
CICS Transaction Server for z/OS
Version 5 Release 3

Problem Determination Guide

GC34-7422-00Licensed Materials – Property of IBM

IBM

CICS Transaction Server for z/OS
Version 5 Release 3

Problem Determination Guide

GC34-7422-00Licensed Materials – Property of IBM

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 357.

This edition applies to the IBM CICS Transaction Server for z/OS Version 5 Release 3 (product number 5655-Y04)
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Licensed Materials – Property of IBM

Contents

Preface ix
What this book is about ix
Who this book is for ix
What you need to know to understand this book .. ix
How to use this book ix
Location of topics in the Knowledge Center x
Notes about terms used in this book x

Changes in CICS Transaction Server
for z/OS, Version 5 Release 3 xiii

Part 1. Approaches to problem
determination 1

Chapter 1. Introduction to problem
determination 3
Before you start - preliminary checks 3
What to do next 7

Chapter 2. Classifying the problem . .. 9
Using symptom keywords to classify problems . .. 9
Using the symptoms to classify the problem . .. 10

CICS has stopped running 10
CICS is running slowly 11
A task fails to start 12
A task is running slowly 12
A task stops running at a terminal. 12
A transaction has abended 13
You have obtained some incorrect output . .. 13
A storage violation has occurred 13

Distinguishing between waits, loops, and poor
performance 14

Waits 14
Loops 15
Poor performance 16
Poor application design 17

Classifying problems by functional area 18
What to do next 18

Chapter 3. Sources of information . .. 19
Your own documentation 19
Product information 19
Source listings and link-edit maps 20
Abend codes and error messages 20
Symptom strings 20
Change log 20
Dumps 21
Statistics 21
Monitoring 21
Transaction inputs and outputs 22

Terminal data. 22
Transient data and temporary storage 22
Passed information 23

Files and databases 23
Traces 23

Part 2. Dealing with the problem .. 25

Chapter 4. Dealing with transaction
abend codes 27
Collecting the evidence 27
What the abend code can tell you 28
Transaction abend codes: AEYD, AICA, ASRA,
ASRB, and ASRD 28
Finding where a program check occurred 29
What type of program check occurred? 31
Dealing with arithmetic exceptions 33
Dealing with protection exceptions 33
Causes of protection exceptions. 34

Transaction isolation 34
Command protection 35
Possible causes of protection exceptions
referencing CICS DSAs 35
Protection exceptions referencing the read-only
DSAs 36
Protection exceptions referencing the UDSA and
EUDSA. 36

Analyzing the problem further 37
Abends when CICS is using the DBCTL interface.. 37
Worksheet for transaction abends 38
FEPI abends 39

Chapter 5. Dealing with CICS system
abends. 41
The documentation you need 41
Interpreting the evidence 42
Looking at the kernel domain storage areas . .. 43

Finding which tasks are associated with the error 44
Finding more information about the error . .. 46
The storage addressed by the CICS registers and
PSW. 49

Using the linkage stack to identify the failing
module 51

Using the PSW to find the offset of the failing
instruction 53
Finding the PTF level of the module in error .. 53

Chapter 6. Dealing with waits 55
Techniques for investigating waits 56

Investigating waits - online method 56
Investigating waits using trace 57
Investigating waits - the formatted CICS system
dump 58

Investigating terminal waits 63
Terminal waits - first considerations 64
Terminal waits - a systematic approach 64

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 iii

z/OS Communications Server in use - debugging
procedures 66
Tools you can use for debugging terminal waits
when the z/OS Communications Server is in use. 72
Your task is waiting on a physical terminal . .. 72

Investigating storage waits 73
Investigating temporary storage waits 75

Is temporary storage close to being exhausted? 77
Is fragmentation of unallocated storage causing
the WRITEQ TS request to fail?. 77

Investigating enqueue waits 77
Using a system dump to resolve enqueue waits 78
EXEC CICS ENQ waits 80

Investigating interval control waits 81
Finding the reason for a DELAY request not
completing 82
Using trace to find out why tasks are waiting on
interval control 83

Investigating file control waits 87
Resource type CFDTWAIT - wait for CFDT
request to complete. 88
Resource type CFDTPOOL - wait for CFDT a
request slot 89
Resource type CFDTLRSW - wait for CFDT
locking request slot 89
Resource type FCACWAIT & FCCRSUSP - wait
for SMSVSAM clean up 89
Resource type FCBFSUSP - waits for VSAM
buffers 90
Resource type FCCAWAIT - waits on the
SMSVSAM control ACB 90
Resource type FCCFQR - wait for SMSVSAM
server notification 90
Resource type FCCFQS - wait for user task to
issue quiesce 91
Resource type FCDWSUSP - wait for VSAM to
complete update processing 91
Resource type FCFRWAIT - wait for file state
changes. 91
Resource type FCFSWAIT - wait for file state
changes. 92
Resource type FCIOWAIT - wait for VSAM I/O
(non-RLS) 92
Resource type FCIRWAIT - wait for FC
environment to be rebuilt. 92
Resource types FCPSSUSP and FCSRSUSP - waits
for VSAM strings 93
Resource type FCQUIES - wait for a quiesce
request to complete. 93
Resource type FCRAWAIT - file control to
process non-recoverable requests 93
Resource type FCRBWAIT - file control to process
recoverable requests 94
Resource type FCRDWAIT - wait for a drain of
the RLS control ACB 94
Resource type FCRPWAIT - wait for file control
initialization to complete 94
Resource Type FCRRWAIT - wait for dynamic
RLS restart to complete 95
Resource type FCRVWAIT - wait for VSAM I/O
(RLS) 95

Resource type FCTISUSP - wait for a VSAM
transaction ID 96
Resource types FCXCSUSP, FCXDSUSP,
FCXCPROT, and FCXDPROT - VSAM exclusive
control waits 96
Resource type ENQUEUE - waits for locks on
files or data tables 98

Investigating loader waits 100
Investigating lock manager waits 101

Collecting information on resource locks . .. 101
ECB “PSTDECB” - DLI code lock, PSB load I/O,
or DMB load I/O 103

Investigating transaction manager waits 103
Maximum task condition waits 104
Transaction summary. 104
MXT summary 106
Transaction class summary 106
A user task is waiting on resource type
FOREVER 107
Resource type TRANDEF 107

Resolving deadlocks in a CICS region 107
Resolving deadlocks in a sysplex 111
Resolving indoubt and resynchronization failures 111
What to do if CICS has stalled. 111

CICS has stalled during initialization 111
CICS has stalled during a run 112
CICS has stalled during termination 114

Chapter 7. How tasks are made to wait 117
The resources that CICS tasks can wait for . .. 117
Dispatcher waits 132
CICS DB2 waits 134
WebSphere MQ waits 135
DBCTL waits 136

Connection to DBCTL has failed to complete 136
A user task is waiting on resource type DBCTL 136
Disconnection from DBCTL has failed to
complete 136

EDF waits 137
Log manager waits 137
Task control waits 138

Resource type KCCOMPAT. 139
Resource type KC_ENQ 140

SNA LU control waits 140
Interregion and intersystem communication waits 142
Transient data waits 142

Resource type TD_INIT: waits during
initialization processing 142
Resource type TDEPLOCK: waits for transient
data extrapartition requests. 143
Resource types TDIPLOCK, ENQUEUE,
TD_READ, Any_MBCB, Any_MRCB,
MBCB_xxx, and MRCB_xxx 143

CICS system task waits 146
FEPI waits 146
Recovery manager waits. 147
CICS Web waits 147

Chapter 8. Dealing with loops 149
What sort of loop is indicated by the symptoms? 149

Licensed Materials – Property of IBM

iv CICS TS for z/OS 5.3: Problem Determination Guide

Tight loops and non-yielding loops 150
Yielding loops 151

Investigating loops that cause transactions to abend
with abend code AICA 152

Getting the documentation you need 153
Looking at the evidence 153
Identifying the loop 154
Finding the reason for the loop 166

Investigating loops that are not detected by CICS 166
Identifying the loop 167
Finding the reason for the loop 168

What to do if you cannot find the reason for a loop 168

Chapter 9. Dealing with performance
problems 169
Finding the bottleneck 169

Initial attach to the transaction manager . .. 169
Initial attach to the dispatcher 170

Why tasks fail to get attached to the transaction
manager 170
Why tasks fail to get attached to the dispatcher 171

Using transaction manager statistics 171
Using CICS monitoring 172
Using trace 172

Why tasks fail to get an initial dispatch 173
Priorities of tasks 174
How storage conditions impact new tasks . .. 174

Why tasks take a long time to complete 175
A summary of performance bottlenecks, symptoms,
and causes 176

Chapter 10. Dealing with incorrect
output 177
Trace output is incorrect 177

Tracing has gone to the wrong destination. .. 177
You have captured the wrong trace data . .. 178

Dump output is incorrect 181
The dump does not seem to relate to your CICS
region 181
You do not get a dump when an abend occurs 181
Some dump IDs are missing from the sequence
of dumps. 184
You do not get the correct data when formatting
the CICS system dump 184

Incorrect data is displayed on a terminal 185
The preliminary information you need to get 185
Tools for debugging terminal output in a z/OS
Communications Server environment 185

Specific types of incorrect output for terminals .. 186
Logon rejection message. 186
Unexpected messages and codes 186
Unexpected appearance of upper and lowercase
characters 187
CRTE and uppercase translation 188
EXEC CICS SET TERMINAL and uppercase
translation 189
CICS client virtual terminal. 189
Katakana terminals - mixed English and
Katakana characters 189
Data that is displayed incorrectly 190

Incorrect data is present on a VSAM data set . .. 191
An application does not work as expected. . .. 191
Your transaction produces no output at all . .. 192

Can you use the terminal where the transaction
should have started? 192
No output - what to do if the task is not in the
system 193
Techniques to find out whether a transaction
started. 193
Investigating tasks initiated by ATI 196

Your transaction produces some output, but it is
wrong 198

The origins of corrupted data 198
Are records in the file incorrect or missing? .. 199
Is the data mapped correctly into the program? 199
Is the data being corrupted by bad
programming logic? 199
Is the data being mapped incorrectly to the
terminal? 200

Chapter 11. Dealing with storage
violations 201
Avoiding storage violations. 201
Two kinds of storage violation. 202
CICS has detected a storage violation 202

What happens when CICS detects a storage
violation 203
What to do if you cannot find what is
overlaying the SAA 205

Storage violations that affect innocent transactions 207
A strategy for storage violations affecting
innocent transactions 207
Procedure for resolving storage violations
affecting innocent transactions. 208

Programming errors that can cause storage
violations. 208
Storage recovery 209

Chapter 12. Dealing with external
CICS interface (EXCI) problems . .. 211

Chapter 13. Dealing with TCP/IP
connectivity problems 213

Chapter 14. Dealing with log manager
problems 217
Categories of problem 217
Exceeding the capacity of a log stream 218
How CICS checks for the availability of the MVS
logger 218
Some conditions that cause CICS log manager
error messages 219

Message DFHLG0772. 220
Message DFHLG0002. 222

Restarting CICS after a system log failure 223
Diagnosing problems in the MVS logger 224

Console messages and dumps 224
GRS resource contention. 224

Licensed Materials – Property of IBM

Contents v

Checking coupling facility structure and couple
data set status 226
Checking log stream status 226
SMF and RMF statistics 229
Obtaining MVS logger and coupling facility
dumps 229
Restarting the MVS logger address space . .. 231

Dealing with a corrupt system log 231
Benefits of a diagnostic run. 232
Getting dumps of the MVS logger and coupling
facility address spaces 232

Part 3. Using traces and dumps in
problem determination 235

Chapter 15. Using traces in problem
determination 237
CICS trace 238

Trace levels 238
Trace destinations 239

CICS exception tracing 242
User exception trace entries 243

Program check and abend tracing 243
z/OS Communications Server exit tracing 243

Controlling CICS z/OS Communications Server
exit tracing 244
Interpreting CICS z/OS Communications Server
exit trace entries 244

z/OS Communications Server buffer tracing . .. 245
Selecting tracing by transaction 245

Tracing for selected tasks 246
The tracing logic used by CICS 247

Selecting tracing by component 248
Defining component tracing at system
initialization 248
Defining component tracing when the CICS
system is running 249
Component names and abbreviations 250

Setting trace destinations and tracing status . .. 251

Chapter 16. Formatting and
interpreting trace entries 255
Interpreting extended-format CICS system trace
entries 256
Examples of the extended format for short and
long trace entries 257
Interpreting short-format CICS system trace entries 259
Interpreting abbreviated-format CICS system trace
entries 260
Interpreting user trace entries 262

Chapter 17. Using dumps in problem
determination 265
Setting up the dumping environment 265

Detecting and avoiding duplicate system dumps 266
Where dumps are written 266
Events that can cause dumps to be taken 267

The ways that you can request dumps 267
The occasions when CICS requests a dump .. 268

CICS dumps in a sysplex 269
Automatic dump data capture from related
CICS regions 269
Operator-requested simultaneous dump data
capture 270
Requesting dumps to resolve SMSVSAM
problems 271
Useful CICS master terminal and MVS console
commands in a sysplex 271

Enabling system dumps for some CICS messages 277
System dump actions with messages
DFHAP0001 and DFHSR0001 278

The dump code options you can specify 278
Specifying the areas you want written to a
transaction dump 279

Dump table statistics 280
What happens to a dump request if there is no
dump table entry? 280

The transaction dump table 282
The system dump table 284
Dumping a CFDT list structure 284
Dumping a named counter list structure 285
Dumping a shared temporary storage list structure 286
The CSFE ZCQTRACE facility 287

Chapter 18. Formatting and
interpreting dumps 289
Formatting transaction dumps. 289
Formatting system dumps 289

The DFHIPCSP CICS exit control data 290
Summary of system dump formatting keywords
and levels 291
The default SDUMP formatting levels 301

Interpreting transaction dumps 302
Transaction storage 304

Locating the last command or statement 305
Last command identification 305
Last statement identification 306

Locating program data 307
Storage freeze 308
Formatting a coupling facility data table pool
dump 308
Formatting a named counter pool dump 309
Formatting a shared temporary storage pool dump 309

Chapter 19. The global trap exit
DFHTRAP 311
Installing and controlling the DFHTRAP exit . .. 311
Information passed to the DFHTRAP exit 312
Actions the DFHTRAP exit can take 312
Coding the DFHTRAP exit 313

Part 4. Working with IBM to solve
your problem. 315

Chapter 20. IBM program support .. 317
When to contact the Support Center 317
Dealing with the Support Center 317

What the Support Center needs to know . .. 318

Licensed Materials – Property of IBM

vi CICS TS for z/OS 5.3: Problem Determination Guide

What happens next 319
Reporting a FEPI problem to IBM 320

Chapter 21. APARs, fixes, and PTFs 321
The APAR process. 321
Collecting the documentation for the APAR . .. 321

General documentation needed for all problems
with CICS 322

Sending the documentation to the change team .. 322
Packing and mailing the APAR box 323

Applying the fix 323
The APAR becomes a PTF 323

Part 5. Appendixes 325

Appendix A. SDUMP contents and
IPCS CICS VERBEXIT keywords . .. 327
Keyword to control block map 327
Control block to keyword map 337

Appendix B. Summary data for PG
and US keywords 351
PG keyword. 351

PGA (program manager anchor) 351

System LLE Summary 352
PGWE Summary 352
PPTE Summary 352
PTA Summary 353
Task LLE Summary 354
CHCB Summary 354
CRCB Summary 354
Task PLCB Summary 354

US keyword 355
USXD summary 355
USUD summary 355

Notices 357
Trademarks 359

Bibliography. 361
CICS books for CICS Transaction Server for z/OS 361
CICSPlex SM books for CICS Transaction Server
for z/OS 362
Other CICS publications 362

Accessibility 363

Index 365

Licensed Materials – Property of IBM

Contents vii

Licensed Materials – Property of IBM

viii CICS TS for z/OS 5.3: Problem Determination Guide

Preface

What this book is about
This manual is about methods of determining the causes of problems in a system
that uses CICS®. It contains information about resolving CICS application and
system problems, dealing with the IBM® Support Center, and handling authorized
program analysis reports (APARs).

This manual documents information NOT intended to be used as a Programming
Interface of IBM CICS Transaction Server Version 5 Release 3.
v This manual does not describe methods of problem determination for the CICS

Front End Programming Interface. See CICS Front End Programming Interface
User's Guide.

v This manual does not describe methods of problem determination for Java™

applications and enterprise Java beans in CICS. See Java Applications in CICS.

Note: For problem determination of the ONC/RPC feature, see the CICS External
Interfaces Guide.

Who this book is for
This book is for those who are responsible for debugging CICS systems and
application programs.

What you need to know to understand this book
This book assumes that you have a good knowledge of CICS. If you are using the
book to resolve system problems, you need to be familiar with the books that tell
you how to install and use a CICS system.

How to use this book
The information in this book is mainly for reference. Use the information to
classify your problem and to find a solution to your problem.

Refer to Table 1 to find the section that you need to read.

Table 1. Road map for the CICS Problem Determination Guide

If you want to... Refer to...

Go through some preliminary checks Chapter 1, “Introduction to problem
determination,” on page 3

Classify the problem according to its
symptoms

Chapter 2, “Classifying the problem,” on
page 9

Look for information to help you diagnose
and resolve the problem

Chapter 3, “Sources of information,” on page
19

Resolve transaction abnormal terminations. Chapter 4, “Dealing with transaction abend
codes,” on page 27

Resolve system abnormal terminations. Chapter 5, “Dealing with CICS system
abends,” on page 41

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 ix

Table 1. Road map for the CICS Problem Determination Guide (continued)

If you want to... Refer to...

Decide whether the problem is caused by a
wait, a loop, or a performance problem.

“Distinguishing between waits, loops, and
poor performance” on page 14

Resolve problems caused by waits. Chapter 6, “Dealing with waits,” on page 55

Resolve problems caused by loops. Chapter 8, “Dealing with loops,” on page
149

Resolve problems caused by performance
problems.

Chapter 9, “Dealing with performance
problems,” on page 169

Know what to do if you don't get the output
you expected.

Chapter 10, “Dealing with incorrect output,”
on page 177

Resolve problems caused by storage
violations.

Chapter 11, “Dealing with storage
violations,” on page 201

Resolve problems with the external CICS
interface.

Chapter 12, “Dealing with external CICS
interface (EXCI) problems,” on page 211

Resolve problems with log manager. Chapter 14, “Dealing with log manager
problems,” on page 217

Use CICS trace. Chapter 15, “Using traces in problem
determination,” on page 237

Use CICS dump. Chapter 17, “Using dumps in problem
determination,” on page 265

Report the problem to IBM. Working with IBM to solve your problem

Look up a dump exit keyword. Appendix A, “SDUMP contents and IPCS
CICS VERBEXIT keywords,” on page 327

Location of topics in the Knowledge Center
The topics in this publication can also be found in the CICS Transaction Server for
z/OS Knowledge Center. The Knowledge Center uses content types to structure
how the information is displayed.

The Knowledge Center content types are generally task-oriented, for example:
upgrading, configuring, and installing. Other content types include reference,
overview, and scenario or tutorial-based information. The following mapping
shows the relationship between topics in this publication and the Knowledge
Center content types, with links to the external Knowledge Center:

Table 2. Mapping of PDF topics to Knowledge Center content types. This table lists the relationship between topics
in the PDF and topics in the content types in the Knowledge Center

Set of topics in this publication Location in the Knowledge Center

All topics Troubleshooting and support

Notes about terms used in this book
When the term “CICS” is used without any qualification in this book, it refers to
the CICS element of CICS Transaction Server.

“MVS” is used for the operating system, which is an element of z/OS.

Licensed Materials – Property of IBM

x CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.support.doc/topics/troubleshooting.html

Throughout this book, the term APPC is used to mean LUTYPE6.2. For example,
APPC session is used instead of LUTYPE6.2 session.

Licensed Materials – Property of IBM

Preface xi

Licensed Materials – Property of IBM

xii CICS TS for z/OS 5.3: Problem Determination Guide

Changes in CICS Transaction Server for z/OS, Version 5
Release 3

For information about changes that have been made in this release, please refer to
What's New in the Knowledge Center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading to CICS TS Version 5.3

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 xiii

Licensed Materials – Property of IBM

xiv CICS TS for z/OS 5.3: Problem Determination Guide

Part 1. Approaches to problem determination

This information tells you how to find the reasons for problems with your CICS
system. It describes how to perform some initial checks on the CICS system, how
to decide the nature of the problem from the symptoms and functional area, and
where to look for useful information that can help you find the cause of the
problem.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 1

Licensed Materials – Property of IBM

2 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 1. Introduction to problem determination

Usually, you start with a symptom, or set of symptoms, and trace them back to
their cause. This information describes tools and techniques you can use to find the
cause of a problem and suggests action for solving the problem.

Sometimes, you cannot solve the problem yourself if, for example, it is caused by
limitations in the hardware or software you are using. If the cause of the problem
is CICS code, you need to contact IBM, as described in Part 4, “Working with IBM
to solve your problem,” on page 315.

This section contains the following topics:
v “Before you start - preliminary checks”
v “What to do next” on page 7

Before you start - preliminary checks
Before you go further into looking for the cause of the problem, run through the
following preliminary checks. These checks might highlight a simple cause or, at
least, narrow the range of possible causes.

About this task

As you go through the questions, make a note of anything that might be relevant
to the problem. Even if the observations you record do not at first suggest a cause,
they might be useful to you later if you must carry out systematic problem
determination.

Procedure
1. Has the CICS system run successfully before? If the CICS system has not

run successfully before, it is possible that you have not yet set it up correctly.
You can check that CICS installed correctly by running batch or online
verification procedures. For more information, see in CICS Transaction Server
for z/OS Installation Guide. If CICS did install successfully, check the
appropriate Upgrading information set for any possible impacts to your
system. If you are currently upgrading to, CICS Transaction Server for z/OS®,
Version 5 Release 3 ensure that you are aware of all the changes that were
made for this release. For details, see What's New and the Upgrading
information set for the release from which you are upgrading.

2. Are there any messages explaining the failure? If a transaction abends, and
the task terminates abnormally, CICS sends a message reporting the fact to the
CSMT log (or your site replacement). If you find a message there, it might
immediately suggest a reason for the failure. Were there any unusual
messages associated with CICS startup, or while the system was running
before the error occurred? These messages might indicate some system
problem that prevented your transaction from running successfully. If you see
any messages that you do not understand, use the CICS messages transaction,
CMAC, for online message information. If you do not have access to a CICS
system to run the CMAC transaction, look in CICS Messages and Codes Vol 1
for an explanation. A suggested course of action that you can take to resolve
the problem might also be included with the explanation.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 3

3. Can you reproduce the error?

a. Can you identify any application that is always in the system when the
problem occurs?
v Check for application coding errors.
v Check that you sufficient resources are defined for the application, such

as VSAM file strings. Typically, if the resources defined are not
sufficient, you would find that the problem is related to the number of
users of the application.

b. Are you using exit programming interface (XPI) calls? If so, be sure to
observe the XPI protocols and restrictions exactly. For programming
information about the XPI, see the CICS Customization Guide. The exit
programming interface is used to start a domain and enter its environment
directly; using it incorrectly can cause severe CICS system problems. Here
are some particular points for your attention:
v Are the input parameters correct? If their format is not valid, they are

rejected by the called domain, and an exception trace is made. If their
values are acceptable to the domain but inappropriate for the system,
they can cause unpredictable effects.

v You cannot use some XPI calls within some of the user exits. If you do,
the results can be unpredictable, and can cause CICS to stall or abend.
See inCICS Customization Guide for details on which exits can use XPI
calls and which cannot.

c. Consider your CICS system definition parameters if the problem is not
related to any particular application. Poorly defined parameters can be the
cause of problems in your system. You can find guidance about setting up
your CICS system in, Specifying CICS system initialization parameters in
Configuring

d. Does the problem seem to be related to system loading? If so, the system
might be running near its maximum capacity, or it might be in need of
tuning. For guidance about dealing with this problem, see the CICS
Performance Guide.

4. Does the failure occur at specific times of day? If the failure occurs at
specific times of day, it can be dependent on system loading. Typically, peak
system loading is at mid-morning and mid-afternoon, so those times are when
load-dependent failures are most likely to happen. If your CICS network
extends across more than one time zone, peak system loading might seem to
you to occur at some other time of day.

5. Is the failure intermittent? If an error is intermittent, particularly if it does
not show the same symptoms, the problem might be more difficult to resolve.
An intermittent failure can be caused by a “random” storage overlay.
Furthermore, the transaction that caused the error might be deleted from the
system long before the symptoms are seen. A method you can use to
investigate random overlays is described in. Chapter 11, “Dealing with storage
violations,” on page 201

6. Have you made any service changes since the last successful run?

a. Have you applied a PTF to CICS?
b. Did it install successfully or did you get an error message during

installation? If you installed it successfully, check with IBM for any PTF
error.

c. Have any patches applied to any other program affected the way CICS
interfaces with the program?

7. Have you made any hardware changes since the last successful run?

Licensed Materials – Property of IBM

4 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/topics/dfha2_specify_cics_sysinitparms.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/topics/dfha2_specify_cics_sysinitparms.html

8. Have you made any software changes since the last successful run? If you
installed a new or modified application, check for error messages in the
output from the:
v Translator
v Compiler
v Assembler
v Linkage editor

9. Have you made any administrative changes since the last successful run?

a. Have you changed your initialization procedure, for example by JCL, CICS
system initialization or override parameters, or z/OS Communications
Server CONFIG/LIST?

b. Has CICS generated any error messages during initialization?
c. Have you installed any resource definitions defined using CEDA? If the

definitions were made but not installed when CICS was last terminated,
they might not be preserved over the termination and subsequent startup.
In general, changes made to the CSD but not installed are not visible when
the CICS system is warm started. However, if the change was in a group in
the GRPLIST specified on a cold start, it is effectively installed during
startup. (Changes which were installed are not visible after a cold start
unless they were made to a group in the GRPLIST.)If START=AUTO was
specified in the system initialization table, or as an override, you must
examine the job log to find out how the CICS system last came up.

d. Have you changed the configuration or the status of installed resources in
CICS?
The CICS configuration might have changed. Installed resources might be
disabled or closed. For example, a file or program might be disabled.
These changes are made using CEMT transactions, the Web User Interface,
CICS explorer, or CICS applications. CICS provides a function to audit
these changes by writing a message to the job log when these commands
are issued. The message DFHAP1900 contains the date, time, transaction
id, netname, user ID, and detail of the command. A system administrator,
or anyone wanting to review audit records, can read the audit messages in
the CICS job log to find any changes that were made to this CICS region.
For commands using generic parameters, each individual command is
audited, so a search for a specific file name, for example, would succeed in
finding that file. See SPI commands that can be audited in Developing
system programs.

10. Are specific parts of the network affected by the problem?

a. Can you identify specific parts of the network that the problem affects? If
you can, look for any explanatory message from the access method. Even
if no message was sent to the console, you might find one in the CSNE
log.

b. Have you made any network-related changes?
c. If the problem affects a single terminal, are your terminal definitions

correct? Consider both the TERMINAL definition, and the TYPETERM
definition it uses.

d. If the problem affects a number of terminals, can you identify a factor that
is common to all of them? For example:
v Do they use the same TYPETERM definition? If so, it is likely that there

is an error in that TYPETERM definition.

Licensed Materials – Property of IBM

Chapter 1. Introduction to problem determination 5

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/topics/dfha8_spi_audit.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/topics/dfha8_spi_audit.html

v Is the whole network affected? If so, CICS might have stalled. See
“What to do if CICS has stalled” on page 111 for advice about dealing
with CICS system stalls.

11. Has the application run successfully before?

a. Have any changes been made to the application since it last ran
successfully? Examine the new or modified part of the application.

b. Have you used RDO to create or alter a transaction, program, or map set?
You must install these definitions before the resources are available to the
running CICS region.

c. If you changed any maps, have you created both a new phase
(TYPE=MAP) and a new DSECT (TYPE=DSECT), and then recompiled
every program using the new DSECT? Use the CEMT commands:

CEMT SET PROGRAM(mapset) NEWCOPY
CEMT SET PROGRAM(all programs) NEWCOPY

See CEMT - master terminal in Reference > System definition for guidance
about the CEMT transaction.

d. Have all the functions of the application been fully exercised before?
Establish what the program was doing when the error occurred, and check
the source code in that part of the program. If a program ran successfully
on many previous occasions, examine the contents of any records, screen
data, and files that were being processed when the error occurred. They
might contain some unusual data value that causes a rarely used path in
the program to be invoked.

e. Check that the application successfully retrieved the records that it
required at the time of the error.

f. Check that all fields within the records at the time of the error contain data
in a format acceptable to the program. Use CICS dump to do this. If you
can reproduce the problem in a test system, you can use programming
language debug tools and the CEDF transaction to check the data and solve
the problem.

12. The application has not run successfully before If your application has not
yet run successfully, examine it carefully for any errors.
a. Check the output from the translator, the compiler, and the linkage editor,

for any reported errors. If your application fails to translate, compile or
assemble, or link-edit cleanly into the correct phase library, it will also fail
to run if you attempt to invoke it.

b. Check the coding logic of the application. Do the symptoms of the failure
indicate the function that is failing and, therefore, the piece of code in
error?

c. The following is a list of some programming errors commonly found in
applications:
v CICS areas are addressed incorrectly.
v The rules for quasi-reentrancy are not followed.
v Transient data is managed incorrectly.
v File resources are not released.
v Storage is corrupted by the program.
v Return codes from CICS requests are ignored.

Licensed Materials – Property of IBM

6 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha721.html

What to do next
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of information in
the rest of the CICS information set.

About this task

If you have not yet found the cause, you must start to look at the problem in
greater detail. Begin by finding the best category for the problem, using the
approach described in Chapter 2, “Classifying the problem,” on page 9.

Licensed Materials – Property of IBM

Chapter 1. Introduction to problem determination 7

Licensed Materials – Property of IBM

8 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 2. Classifying the problem

The purpose of this section is to help you classify your problem into one of the
categories used by the IBM Support Center for its service procedures. IBM Support
Center staff have found that classifying the problem first is a good approach to
problem determination.

It contains the following topics:
v “Using symptom keywords to classify problems”
v “Using the symptoms to classify the problem” on page 10
v “Distinguishing between waits, loops, and poor performance” on page 14
v “Classifying problems by functional area” on page 18
v “What to do next” on page 18.

Using symptom keywords to classify problems
IBM keeps records of all known problems with its licensed programs on the
RETAIN database. IBM Support Center staff continually update the database as
new problems are reported, and they regularly search the database to see if
problems they are told about are already known.

About this task

If you have the IBM INFORMATION/ACCESS licensed program, 5665-266, you
can look on the RETAIN database yourself. Each problem in the database has a
classification type.

Procedure

Classify your problem using one of the following software categories from
RETAIN. Use the appropriate reference to get further information on how to
diagnose each category of problem.
v ABEND (for transaction abends, see Chapter 4, “Dealing with transaction abend

codes,” on page 27; for system abends, see Chapter 5, “Dealing with CICS
system abends,” on page 41)

v WAIT (see Chapter 6, “Dealing with waits,” on page 55)
v LOOP (see Chapter 8, “Dealing with loops,” on page 149)
v POOR PERFORMANCE, or PERFM (see Chapter 9, “Dealing with performance

problems,” on page 169)
v INCORRECT OUTPUT, or INCORROUT (see Chapter 10, “Dealing with

incorrect output,” on page 177)
v MESSAGE

All theses categories are considered in the information on problem determination,
except for the MESSAGE category. If a CICS error message is issued, you can use
the CICS message transaction, CMAC, for online message information. See CMAC
- messages and codes display in Reference > System definition. If you do not have
access to a running CICS system, see CICS messages in Reference -> Diagnostics
for an explanation. If you get a message from another IBM program, or from the
operating system, see the messages and codes information for the appropriate

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 9

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cmac/dfha72g.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cmac/dfha72g.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html

product for an explanation of that message.
CICS messages in Reference -> Diagnostics might provide enough information to
solve the problem quickly, or it might redirect you to other information sources for
further guidance. If you cannot deal with the message, you might eventually need
to contact the IBM Support Center for help.
One type of problem that might result in a number of symptoms, usually
ill-defined, is that of poor application design. Checking the design of an
application is beyond the scope of this information. However, for an example of
how poor design can result in application problems, see “Poor application design”
on page 17.

Using the symptoms to classify the problem
You can classify the problem on the basis of the symptoms you observe. The
symptoms might enable you to classify the problem correctly at once, but
sometimes classification is not so straightforward. You might need to consider the
evidence carefully before making your decision. You might need to make a “best
guess”, and then be prepared to reconsider later on the basis of further evidence.

About this task

Look for the section heading that most nearly describes the symptoms you have,
and then follow the advice given there.

CICS has stopped running
There are three main reasons why CICS might unexpectedly stop running:
1. There could be a CICS system abend.
2. CICS could be in a wait state. In other words, it could have stalled.
3. A program could be in a tight loop.

Consider, too, the possibility that CICS might still be running, but only slowly. Be
certain that there is no activity at all before carrying out the checks in this section.
If CICS is running slowly, you probably have a performance problem. If so, read
“CICS is running slowly” on page 11 to confirm this before going on to Chapter 9,
“Dealing with performance problems,” on page 169 for advice about what to do
next.

If CICS has stopped running, look for any message that might explain the situation.
The message might appear in either of the following places:
v The MVS™ console. Look for any message saying that the CICS job has

abnormally terminated. If you find one, it means that a CICS system abend has
occurred and that CICS is no longer running. In such a case, you need to
examine the CSMT log (see below) to see which abend message has been written
there.
If you do not find any explanatory message on the MVS console, check in the
CSMT log to see if anything has been written there.

v The CSMT log. CSMT is the transient data destination to which abend messages
are written. If you find a message there, use the CMAC transaction or look in
CICS Messages and Codes to make sure there has been a CICS system abend.
If you see only a transaction abend message in the CSMT log, that will not
account for CICS itself not running, and you should not classify the problem as
an abend. A faulty transaction could hold CICS up, perhaps indefinitely, but
CICS would resume work again if the transaction abended.

Licensed Materials – Property of IBM

10 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html

Here are two examples of messages that might accompany CICS system abends,
and which you would find on the CSMT log:

DFHST0001 applid An abend (code aaa/bbbb) has occurred at offset X'offset' in
module modname.

DFHSR0601 Program interrupt occurred with system task taskid in control

If you get either of these messages, or any others for which the system action is to
terminate CICS, turn to Chapter 5, “Dealing with CICS system abends,” on page 41
for advice on what to do next.

If you can find no message saying that CICS has terminated, it is likely that the
CICS system is in a wait state, or that some program is in a tight loop and not
returning control to CICS. These two possibilities are dealt with in Chapter 6,
“Dealing with waits,” on page 55 and Chapter 8, “Dealing with loops,” on page
149, respectively.

CICS is running slowly
If CICS is running slowly, it is likely that you have a performance problem. It
could be because your system is badly tuned, or because it is operating near the
limits of its capacity.

You will probably notice that the problem is worst at peak system load times,
typically at mid-morning and mid-afternoon. If your network extends across more
than one time zone, peak system load might seem to you to occur at some other
time.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
transaction could be the cause. You might classify the problem initially as “poor
performance”, but be prepared to reconsider your classification later.

The following are some individual symptoms that could contribute to your
perception that CICS is running slowly:
v Tasks take a long time to start running.
v Some low priority tasks will not run at all.
v Tasks start running, but take a long time to complete.
v Some tasks start running, but do not complete.
v No output is obtained.
v Terminal activity is reduced, or has ceased.

Some of these symptoms do not, in isolation, necessarily mean that you have got a
performance problem. They could indicate that some task is in a loop, or is waiting
on a resource that is not available. Only you can judge whether what you see
should be classified as “poor performance”, in the light of all the evidence you
have.

You might be able to gather more detailed evidence by using the tools and
techniques that CICS provides for collecting performance data. The following is a
summary of what is available:
v CICS statistics. You can use these to gather information about the CICS system

as a whole, without regard to tasks.

Licensed Materials – Property of IBM

Chapter 2. Classifying the problem 11

v CICS monitoring. You can use this facility to collect information about CICS
tasks.

v CICS tracing. This is not a specific tool for collecting performance data, but you
can use it to gather detailed information about performance problems.

For guidance about using these tools and techniques, and advice about
performance and system tuning in general, seeWhat to investigate when analyzing
performance in the CICS Performance Guide.

You can find guidance about identifying specific performance bottlenecks in your
CICS system in Chapter 9, “Dealing with performance problems,” on page 169.

A task fails to start

If a task fails to start, look first in the CSMT and CSNE logs for any explanatory
message. If you do not find one, the task is possibly being prevented from starting
because either the system is running at the MXT limit, the transaction is queuing
for admittance to a transaction class, or for other performance reasons.

Classify the problem tentatively as “poor performance”, and turn to Chapter 9,
“Dealing with performance problems,” on page 169 for further guidance.

A task is running slowly
If just one task is running slowly, it is likely that the explanation lies with the task
itself. It could be in a loop, or it could periodically be entering a wait state. You
need to decide which of these possibilities is the most likely before starting
systematic problem determination. The ways that you might distinguish between
waits and loops are described in “Distinguishing between waits, loops, and poor
performance” on page 14.

Note: Do not overlook the possibility that the task might be doing unnecessary
work that does not change the final result—for example, starting a skip sequential
browse with large gaps between the keys, or failing to finish one because it is
holding on to resources.

A task stops running at a terminal
When a task stops running at a terminal, you will notice either or both of these
symptoms:
v No output is obtained at the terminal
v The terminal accepts no input

First, make sure that the task is still in the system. Use CEMT INQ TASK to check its
status, and make sure that it has not ended without writing back to the terminal.

If the terminal has a display unit, check to see whether a special symbol has been
displayed in the operator information area that could explain the fault. If the
operator information area is clear, next check to see that no message has been sent
to any of the transient data destinations used for error messages, for example:
v CDBC, the destination for DBCTL related messages
v CSMT, the destination for terminal error and abend messages
v CSTL, the destination for terminal I/O error messages
v CSNE, the destination for error messages written by DFHZNAC and DFHZNEP

Licensed Materials – Property of IBM

12 CICS TS for z/OS 5.3: Problem Determination Guide

For details of the destinations used by CICS, see the CICS System Definition Guide.
If you can find no explanation for the problem, the fault is probably associated
with the task running at the terminal. These are the possibilities:
v The task is in a wait state.
v The task is in a loop.
v There is a performance problem.

Read “Distinguishing between waits, loops, and poor performance” on page 14 to
find out which of these is the most likely explanation. You can then read to the
appropriate section for advice about dealing with the problem.

A transaction has abended
If the transaction abended when you ran your application, CICS gives you an error
message on your screen as well as a message on the CSMT log.

Use the CMAC transaction or look in CICS Messages and Codes for an explanation
of the message, and, perhaps, advice about what you should do to solve the
problem. If the code is not there, or the explanation or advice given is not
sufficient for you to solve the problem, turn to Chapter 4, “Dealing with
transaction abend codes,” on page 27.

You have obtained some incorrect output
Incorrect output might be regarded as any sort of output that you were not
expecting. However, use the term with care in the context of problem
determination, because it might be a secondary effect of some other type of error.
For example, looping could be occurring if you get any sort of repetitive output,
even though that output is not what you had expected.

Also, CICS responds to many errors that it detects by sending messages. You might
regard the messages as “incorrect output”, but they are only symptoms of another
type of problem.

If you have received an unexpected message, and its meaning is not at first clear,
use the CMAC transaction or look in CICS Messages and Codes for an explanation. It
might suggest a simple response that you can make to the message, or it might
direct you to other sources of information for further guidance.

These are the types of incorrect output that are dealt with in this information:
v Incorrect trace or dump data:

– Wrong destination
– Wrong type of data captured
– Correct type of data captured, but the data values were unexpected

v Wrong data displayed on the terminal.

You can find advice about investigating the cause of any of these types of incorrect
output in Chapter 10, “Dealing with incorrect output,” on page 177.

A storage violation has occurred
When CICS detects that storage has been corrupted, this message is sent to the
console:

Licensed Materials – Property of IBM

Chapter 2. Classifying the problem 13

DFHSM0102 applid A storage violation (code X'code') has been detected by
module modname.

If you see this message, or you know (through other means) that a storage
violation has occurred, turn to Chapter 11, “Dealing with storage violations,” on
page 201 for advice about dealing with the problem.

In many cases, storage violations go undetected by CICS, and you only find out
that they have occurred when something else goes wrong as a result of the overlay.
You could, for example, get a program check because code or data has been
overlaid. You might suspect some other type of problem at first, and only after
starting your investigation find that a storage violation has occurred.

You can avoid many storage violations by enabling transaction isolation, storage
protection, and command protection.

Distinguishing between waits, loops, and poor performance
Waits, loops, and poor performance can be quite difficult to distinguish, and in
some cases you need to carry out quite a detailed investigation before deciding
which classification is the right one for your problem.

About this task

Any of the following symptoms could be caused by a wait, a loop, a badly tuned
or overloaded system:
v One or more user tasks in your CICS system fails to start.
v One or more tasks stays suspended.
v One or more tasks fails to complete.
v No output is obtained.
v Terminal activity is reduced, or has ceased.
v The performance of your system is poor.

Because it can be difficult to make a correct classification, consider the evidence
carefully before adopting a problem solving strategy.

This section gives you guidance about choosing the best classification. However,
note that in some cases your initial classification could be wrong, and you will
then need to reappraise the problem.

Waits
For the purpose of problem determination, a wait state is regarded as a state in
which the execution of a task has been suspended. That is, the task has started to
run, but it has been suspended without completing and has subsequently failed to
resume.

The task might typically be waiting for a resource that is unavailable, or it might
be waiting for an ECB to be posted. A wait might affect just a single task, or a
group of tasks that may be related in some way. If none of the tasks in a CICS
region is running, CICS is in a wait state. The way to handle that situation is dealt
with in “What to do if CICS has stalled” on page 111.

If you are authorized to use the CEMT transaction, you can find out which user
tasks or CICS-supplied transactions are currently suspended in a running CICS

Licensed Materials – Property of IBM

14 CICS TS for z/OS 5.3: Problem Determination Guide

system using CEMT INQ TASK. Use the transaction several times, perhaps
repeating the sequence after a few minutes, to see if any task stays suspended. If
you do find such a task, look at the resource type that it is waiting on (the value
shown for the HTYPE option). Is it unreasonable that there should be an extended
wait on the resource? Does the resource type suggest possible causes of the
problem?

You can use EXEC CICS INQUIRE TASK or EXEC CICS INQUIRE TASK LIST as
alternatives to the CEMT transaction. You can execute these commands under
CECI, or in a user program.

Use INQUIRE TASK LIST to find the task numbers of all SUSPENDED, READY,
and RUNNING user tasks. If you use this command repeatedly, you can see which
tasks stay suspended. You may also be able to find some relationship between
several suspended tasks, perhaps indicating the cause of the wait.

If it seems fairly certain that your problem is correctly classified as a wait, and the
cause is not yet apparent, turn to Chapter 6, “Dealing with waits,” on page 55 for
guidance about solving the problem.

However, you should allow for the possibility that a task may stay suspended
because of an underlying performance problem, or because some other task may
be looping.

If you can find no evidence that a task is waiting for a specific resource, you
should not regard this as a wait problem. Consider instead whether it is a loop or
a performance problem.

Loops
A loop is the repeated execution of some code. If you have not planned the loop,
or if you have designed it into your application but for some reason it fails to
terminate, you get a set of symptoms that vary depending on what the code is
doing. In some cases, a loop may at first be diagnosed as a wait or a performance
problem, because the looping task competes for system resources with other tasks
that are not involved in the loop.

The following are some characteristic symptoms of loops:
v The ‘system busy’ symbol is permanently displayed in the operator information

area of a display unit, or stays displayed for long periods.
v The transaction abends with abend code AICA.
v CPU usage is very high, perhaps approaching 100%, yet some tasks stay

suspended or ready, but not running, for a long time.
You can check what the CPU usage is for any MVS job by using the DISPLAY
ACTIVE command at the MVS console to display the active users.

v There is reduced activity at terminals, or possibly no activity at all.
v One or more CICS regions appear to be stalled, or to be continuing only

slowly.
v No CICS messages are written to any destination, when they are expected.
v No new tasks can be started.
v Existing tasks remain suspended.
v The CEMT transaction cannot be used.
v Repetitive output obtained. Try looking in these areas:

Licensed Materials – Property of IBM

Chapter 2. Classifying the problem 15

– Terminals, and the system console.
– Temporary storage queues. You can use CEBR to browse them online.
– Data files and CICS journals.
– Trace tables, but remember that some loops are intentional—some CICS

system tasks use them, for example, to see if there is any work to be done.
v Excessive demand for storage. If the loop contains a GETMAIN request, storage

is acquired each time this point in the loop is passed, as long as sufficient
storage to satisfy the request remains available. If storage is not also freed in the
loop, CICS eventually goes short on storage (SOS) in one of the DSAs. You then
get a message reporting that CICS is under stress in one of these areas.
One further effect is that tasks issuing unconditional GETMAIN requests are
suspended more often as the loop continues and storage is progressively used
up. Tasks making storage requests do not need to be in the loop to be affected in
this way.

v Statistics show a large number of automatically initiated tasks.

v Large numbers of file accesses are shown for an individual task.

Some loops can be made to give some sort of repetitive output. Waits and
performance problems never give repetitive output. If the loop produces no
output, a repeating pattern can sometimes be obtained by using trace. A procedure
for doing this is described in Chapter 8, “Dealing with loops,” on page 149.

If you are able to use the CEMT transaction, try issuing CEMT INQ TASK
repeatedly. If the same transaction is shown to be running each time, this is a
further indication that the task is looping. However, note that the CEMT
transaction is always running when you use it to inquire on tasks.

If different transactions are seen to be running, this could still indicate a loop, but
one that involves more than just a single transaction.

If you are unable to use the CEMT transaction, it may be because a task is looping
and not allowing CICS to regain control. A procedure for investigating this type of
situation is described in “What to do if CICS has stalled” on page 111.

Consider the evidence you have so far. Does it indicate a loop? If so, turn to
Chapter 8, “Dealing with loops,” on page 149, where there are procedures for
defining the limits of the loop.

Poor performance
A performance problem is one in which system performance is perceptibly
degraded, either because tasks fail to start running at all, or because tasks take a
long time to complete after they start.

In extreme cases, some low priority tasks might be attached but then fail to be
dispatched, or some tasks might be suspended and fail to resume. The problem
might then initially be regarded as a wait.

If you get many messages that state that CICS is under stress, this can indicate that
either the system is operating near its maximum capacity, or a task in error has
used up a large amount of storage, possibly because it is looping. The messages
are as follows:
v DFHSM0131 applid CICS is under stress (short on storage below 16 MB)

Licensed Materials – Property of IBM

16 CICS TS for z/OS 5.3: Problem Determination Guide

CICS is under stress in one of the dynamic storage areas (DSAs) in 24-bit
storage.

v DFHSM0133 applid CICS is under stress (short on storage above 16 MB)
CICS is under stress in one of the DSAs in 31-bit storage.

v DFHSM0606 applid The amount of MVS above-the-bar storage available to CICS
is critically low.
CICS is under stress in 64-bit storage.

You can also use CICS storage manager statistics to identify the situation. See
Short-on-storage conditions in dynamic storage areas in the CICS Performance
Guide.

If there is no such indication, see Chapter 9, “Dealing with performance problems,”
on page 169 for advice on investigating the problem. However, before doing so, be
as sure as you can that this is best classified as a performance problem, rather than
a wait or a loop.

Poor application design
If you have only a poorly defined set of symptoms that might indicate a loop, or a
wait, or possibly a performance problem with an individual transaction, consider
the possibility that poor design might be to blame.

An example of poor application design is given here, to show how this can give
rise to symptoms which were at first thought to indicate a loop.

Environment:
CICS and DL/I using secondary indexes. The programmer had made
changes to the application to provide better function.

Symptoms:
The transaction ran and completed successfully, but response was erratic
and seemed to deteriorate as the month passed. Towards the end of the
month, the transaction was suspected of looping and was canceled. No
other evidence of looping could be found, except that statistics showed a
high number of I/Os.

Explanation:
The programmer had modified the program to allow the user to compare
on the last name of a record instead of the personnel number, which it had
done in the past. The database was the type that grew through the month
as activity was processed against it.

It was discovered that in making the change, the program was no longer
comparing on a field that was part of the key for the secondary index. This
meant that instead of searching the index for the key and then going
directly for the record, every record in the file had to be read and the field
compared. The structure of the source program had not changed
significantly; the number of database calls from the program was the same,
but the number of I/Os grew from a few to many thousands at the end of
the month.

Note that these symptoms might equally well have pointed to a performance
problem, although performance problems are usually due to poorly tuned or
overloaded systems, and affect more than just one transaction. Performance
problems tend to have system wide effects.

Licensed Materials – Property of IBM

Chapter 2. Classifying the problem 17

Classifying problems by functional area
About this task

In addition to the RETAIN classifications used by the IBM Support Centers, the
following types of problem also belong in classes of their own:
v EXCI problems - see Chapter 12, “Dealing with external CICS interface (EXCI)

problems,” on page 211
v MRO problems
v Log manager problems - see Chapter 14, “Dealing with log manager problems,”

on page 217
v Java problems - see Troubleshooting Java applications in Troubleshooting and

support
v Storage violations - see Chapter 11, “Dealing with storage violations,” on page

201

Whereas EXCI and MRO errors can easily be classified in a straightforward way,
confirming that you have a storage violation can be difficult. Unless you get a
CICS message stating explicitly that you have a storage violation, you could get
almost any symptom, depending on what has been overlaid. You might, therefore,
classify it initially as one of the RETAIN symptom types described in “Using
symptom keywords to classify problems” on page 9.

What to do next
About this task

If you have already decided that you should refer the problem to the IBM Support
Center, you can find advice about dealing with the Center in Working with IBM to
solve your problem.

Licensed Materials – Property of IBM

18 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/troubleshooting.html

Chapter 3. Sources of information

You should find some of the following sources of information useful in problem
determination.
v “Your own documentation”
v “Product information”
v “Source listings and link-edit maps” on page 20
v “Abend codes and error messages” on page 20
v “Symptom strings” on page 20
v “Change log” on page 20
v “Dumps” on page 21
v “Statistics” on page 21
v “Monitoring” on page 21
v “Transaction inputs and outputs” on page 22
v “Traces” on page 23

Your own documentation
“Your own documentation” is the collection of information produced by your
organization about what your system and applications do and how they do it.

About this task

How much of this kind of information you need depends on how familiar you are
with the system or application, and could include:
v Program descriptions or functional specifications
v Record layouts and file descriptions
v Flowcharts or other descriptions of the flow of activity in a system
v Statement of inputs and outputs
v Change history of a program
v Change history of your installation
v Auxiliary trace profile for your transaction
v Statistical and monitoring profile showing average inputs, outputs, and response

times.

Product information
Product information can refer to the CICS Information Center, or libraries for any
other products you use with your application.

About this task

Make sure that the level of any documentation you refer to matches the level of
the system you are using. Problems often arise through using either obsolete
information or information about a level of the product that is not yet installed.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 19

Source listings and link-edit maps
Include the source listings of any applications written at your installation with
your set of documentation. They often form the largest single element of
documentation. Large installations with thousands of programs might prefer to
keep such listings on CD-ROM.

Make sure you include the relevant linkage-editor output with your source listings
to avoid wasting time trying to find your way through a load module with an
out-of-date link map. Be sure to include the JCL at the beginning of your listings,
to show the libraries that were used and the load library in which the load module
was placed.

Abend codes and error messages
Messages are sent to several transient data destinations, for example:
v CSMT for terminal error and abend messages
v CSNE for messages issued by DFHZNAC
v CSTL for terminal I/O error messages
v CDBC for messages concerning DBCTL
v CSFL for file control messages.

For a list of the destinations used by CICS, see the CICS System Definition Guide.
Use a copy of the appropriate messages and codes documentation to look up any
messages whose meaning you do not know. All CICS messages and codes are
documented in CICS Messages and Codes. Make sure that you also have some
documentation of application messages and codes for programs that were written
at your installation.

Symptom strings
CICS produces symptom strings in CICS system and transaction dumps and in
message DFHME0116.

The symptom string provides a number of keywords that can be directly typed in
and used to search the RETAIN database. If your installation has access to the IBM
INFORMATION/ACCESS licensed program, 5665-266, you can search the RETAIN
database yourself. If you report a problem to the IBM Support Center, you are
often asked to quote the symptom string.

Although the symptom string is designed to provide keywords for searching the
RETAIN database, it can also give you significant information about what was
happening at the time the error occurred, and it might suggest an obvious cause or
a likely area in which to start your investigation.

Change log
The information in the change log can tell you of changes made in the data
processing environment that may have caused problems with your application
program. To make your change log most useful, include the data concerning
hardware changes, system software (such as MVS and CICS) changes, application
changes, and any modifications made to operating procedures.

Licensed Materials – Property of IBM

20 CICS TS for z/OS 5.3: Problem Determination Guide

Dumps
Dumps are an important source of detailed information about problems. Whether
they are the result of an abend or a user request, they allow you to see a snapshot
of what was happening in CICS at the moment the dump is taken.

Chapter 17, “Using dumps in problem determination,” on page 265 contains
guidance about using dumps to locate problems in your CICS system. However,
because they do only provide a “snapshot”, you may need to use them in
conjunction with other sources of information relating to a longer period of time,
such as logs, traces, and statistics.

Statistics
Statistics are often overlooked as a source of debugging information, but statistics
that relate to an application program can help solve problems.

It is useful to have a statistical profile (as mentioned in “Your own documentation”
on page 19) to use for problem determination. If you compare the information in
the profile with the statistical information produced by CICS, any differences you
find might indicate the source of a problem.

Statistics are most often used in system tuning and diagnosis, but they also contain
information that can indicate problems with the way your application handles
resources. For example, you might notice from these statistics that tables are being
loaded, or programs are being linked, for which there is no known requirement.

You can also use statistics to check terminals, files, queues, and other resources, for
irregularities in their activity. For example, if a terminal has a number of errors
that are recorded for a particular transaction that equal the number of times that
transaction was run, this might indicate that an incorrect data stream is being sent
to that terminal. For more information about statistics, see CICS statistics in
Monitoring.

Monitoring
You can use CICS monitoring to provide information for debugging applications.
In addition to the system-defined event monitoring points (EMPs) that already
exist in CICS code itself, you can define user event monitoring points in your own
application programs by using the MONITOR POINT command.

At a user EMP, you can add your own data (up to 256 counters, up to 256 clocks,
and a single character string of up to 8192 bytes) to fields reserved for you in
performance class monitoring data records. You could use these extra EMPs to
count how many times a certain event happens, or to time the interval between
two events. Your definitions in the Monitoring Control Table (MCT) specify the
type and number of fields that are available for your use within each task's
performance record. For further information about the MCT, see Monitoring
control table (MCT) in Reference -> System definition. For programming
information about the MONITOR POINT command, see MONITOR in Reference ->
Application development.

For guidance about choosing performance tools, see Performance measurement
tools in Improving performance. For information about the transactions needed to
invoke these tools, see CEMT - master terminal in Reference > System definition.

Licensed Materials – Property of IBM

Chapter 3. Sources of information 21

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_intro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_intro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.resourcedefinition.doc/macros/mct/overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.resourcedefinition.doc/macros/mct/overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_monitor.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_monitor.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht32h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht32h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha721.html

Transaction inputs and outputs
Transaction inputs and outputs can be divided into the following areas:
v Terminal data
v Transient data and temporary storage
v Passed information
v Files and databases

Terminal data
Terminal data is important in solving problems, because it can help you determine
what data was entered just before the transaction failed, and if there is any output.

The more you know about the information that was input at the terminal on which
the transaction failed, the better your chance of duplicating the problem in a test
environment. However, this information might not be precise, especially if there
are many fields on the input screen. You are recommended to provide a quick and
easy way for terminal operators to report problems, so that they can report the
error while they can still see the data on the screen (or at least remember more
clearly what it was).

The output from a transaction is sometimes easier to capture. If you have a locally
attached printer, you can make a copy. (The problem might be that the printer
output is incorrect.)

The items to look for on the input side are:
v Were all necessary input fields entered?
v Were the contents of the input fields correct?
v Which transmit key was used, (that is ENTER, a function key, or a PA key) ?

On the output screen, check the following points:
1. Do all the required fields contain data?
2. Is the data correct?
3. Is the screen format as it was designed?
4. Are there any non-display fields used to pass data that might not be protected?

Transient data and temporary storage
If the program explicitly uses any transient data or temporary storage queues,
inspect them to see if their content is what you expect. You can use the
CICS-supplied transaction, CEBR, to inspect temporary storage queues in some
detail.

See CICS Supplied Transactions for information about this transaction.

Even if the program does not use queues, look at the system queues for CEMT (or
your site replacement) and CSTL (and CDBC if you use DBCTL) to see if there are
any relevant messages.

The things you might want to look for in the queues are:
1. Are the required entries there?
2. Are the entries in the correct order?
3. Is the queue being written the same one that is being read?

Licensed Materials – Property of IBM

22 CICS TS for z/OS 5.3: Problem Determination Guide

Passed information
Be particularly careful when you are using the common work area (CWA) because
you only have one area for the entire system. A transaction may depend on a
certain sequence of transactions and some other program may change that
sequence.

If you are using the CWA, you must also know if your CICS is split into multiple
MRO regions because there is an independent CWA for each MRO region.

Terminal user areas can have problems because the area is associated with a
terminal and not a particular transaction.

If you are using tables in the CWA, remember that there is no recovery; if a
transaction updates the table and then abends, the transaction is backed out but
the change is not.

Files and databases
Files and databases are often the main source of transaction input and output; you
should always investigate both these areas whenever a program is having
problems.

To do this, you need to use the appropriate utilities and diagnostic tools for the
data access methods that you have at your installation.

Check the various indexes in files and databases. If you have more than one
method of accessing information, one path may be working well but another path
may be causing problems.

When looking through the data in files, pay particular attention to the record
layout. The program may be using an out-of-date record description.

Traces
CICS provides a tracing facility that enables you to trace transactions through the
CICS components as well as through your own programs. CICS auxiliary trace
enables you to write trace records on a sequential device for later analysis.

For information about the tracing facilities provided by CICS, read Chapter 15,
“Using traces in problem determination,” on page 237.

Licensed Materials – Property of IBM

Chapter 3. Sources of information 23

Licensed Materials – Property of IBM

24 CICS TS for z/OS 5.3: Problem Determination Guide

Part 2. Dealing with the problem

Following on from classifying your problem, this section describes how to find the
cause of problems in each area.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 25

Licensed Materials – Property of IBM

26 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 4. Dealing with transaction abend codes

When a CICS transaction abends (ends abnormally), a transaction abend message
and an abend code of four alphanumeric characters are sent to CSMT, the CEMT
transient data destination (or your site replacement).

This is an example of what the message looks like:
DFHAC2006 date time applid Transaction tranid program program name
abend primary abcode at termid.

The message contains several vital pieces of information. It identifies the
transaction (tranid) that failed, and the program (program name) that was being
executed when the failure was detected. Most importantly, it gives you the abend
code (abcode), indicating the nature of the error.

The transaction abend can originate from several places, and the method you use
for problem determination depends on the source of the abend. The procedures are
described in the sections that follow. As you go through them, you might like to
use the worksheet that is included at the end of this section to record your
findings (“Worksheet for transaction abends” on page 38).

Collecting the evidence
The evidence you need to investigate the transaction abend should be in the
information sent to the various transient data queues for error messages, and in
the transaction dump.

Procedure
1. Check the transaction dump to find information about the transaction abend.

CICS produces a symptom string as part of the transaction dump. The
symptom string gives some details about the circumstances of the transaction
dump. It might show, for example, that the dump was taken because the
transaction abended with the abend code ASRA. If you refer the problem that
caused the dump to be taken to the IBM Support Center, they can use the
symptom string to search the RETAIN database for any similar problems. For
an introduction to symptom strings and their contents, see “Symptom strings”
on page 20.
If no transaction dump has been produced, it is possible that transaction
dumping has been suppressed for the transaction (through the transaction
definition), or the dump code entry in the transaction dump code table
suppresses dumping. For guidance about changing the dumping options so
that you get a transaction dump, see Chapter 17, “Using dumps in problem
determination,” on page 265.

2. Check the CSMT log. The transaction abend code and the abend message are
recorded in the log. Make a note of any other messages in the log that might
relate to the abend, because they might provide additional valuable evidence.

3. Check whether any relevant messages were sent to the transient data
destinations used by CICS to record messages. Look in particular for any
messages about files, terminals, or printers that you might be attempting to use.
For a list of destinations used by CICS, see the CICS System Definition Guide.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 27

What the abend code can tell you
The first thing that the transaction abend code can indicate is whether or not this
was a CICS abend. CICS transaction abend codes begin with the letter “A”. A user
program or another product might also use abend codes beginning with “A”.
However, if the transaction abend code begins with anything other than “A”, it is
an abend code belonging to a user program or to some other product. For the sake
of convenience, all such non-CICS abend codes are referred to in this section as
user abend codes.

For detailed information and a full list of the transaction abend codes used by
CICS and by other IBM products, see CICS Messages and Codes.

If you have received a user abend code, it can still be difficult to find out which
program is responsible for it unless you have adequate documentation. For this
reason, it is good practice for all programmers who issue abends from within their
programs to document the codes in a central location at your installation.

As far as vendor products are concerned, the documentation includes, in most
cases, a list of abend codes that are issued from the programs making up the
products. This list, together with the documentation for your internal applications,
should make it possible for you to find what caused the abend. If it is not clear
why the user abend was issued, you might need to describe the problem to the
owner of the program.

Transaction abend codes: AEYD, AICA, ASRA, ASRB, and ASRD
Special procedures apply to the AEYD, AICA, ASRA, ASRB, and ASRD abend
codes.

For an abend code other than AEYD, AICA, ASRA, ASRB, and ASRD, use the
procedures in “Last statement identification” on page 306 to find the last command
that was executed, and then see “Analyzing the problem further” on page 37. For
details about CICS abend codes, see Transaction abend codes in Reference ->
Diagnostics. All transaction abend codes that CICS issues are listed, with an
explanation of why the code was issued, and details of system and user actions.
The same information is available online, using the CICS-supplied messages and
codes transaction, CMAC.

If, after you review this information, you cannot find the cause of the problem,
continue with the procedures in Chapter 4, “Dealing with transaction abend
codes,” on page 27.

AEYD abends

If command protection is activated by the CMDPROT(YES) option in the system
initialization table (SIT), the AEYD transaction abend can occur. CICS terminates a
transaction with this code when an output parameter of an EXEC CICS command
addresses storage that the issuing transaction could not itself directly overwrite.

At the time of the abend, register 2 points to the parameter area that contains the
invalid address. The trace should include an exception trace entry that is created
by DFHEISR or DFHEIGR and that identifies the parameter in error. If the abend is
handled, EXEC CICS ASSIGN ASRASTG, ASRAKEY, and ASRASPC can give
additional information about the abend.

Licensed Materials – Property of IBM

28 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/topics/dfhg4k3.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/topics/dfhg4k3.html

To prevent a recurrence of the abend, correct the program code. Alternatively,
changing one or more of the following options might alleviate the problem:
v EXECKEY in the program definition, if storage protection is active
v TASKDATAKEY in the transaction definition
v ISOLATE in the transaction definition, if transaction isolation is enabled

For further information, see “Avoiding storage violations” on page 201.

AICA abends

If your transaction terminated with abend code AICA, the transaction was
probably in a loop. For detailed guidance about dealing with loops, see Chapter 8,
“Dealing with loops,” on page 149.

ASRA abends

CICS issues an ASRA abend code when it detects that a program check has
occurred in a transaction. Program checks can occur for a wide variety of reasons,
but you can find the nature of the error from the program interrupt code in the
program status word (PSW). The machine hardware uses the PSW to record the
address of the current instruction being executed, the addressing mode, and other
control information. The PSW gives you the address at which the program check
occurred, and so it represents a record of the circumstances of the failure.

ASRB abends

A transaction can abend with an ASRB abend code when a program issues the
MVS ABEND macro. For example, BDAM issues this ABEND macro when it
detects errors, rather than sending a return code to the calling program. CICS is
notified when an MVS abend occurs, and in turn issues an ASRB abend code for
the transaction.

Use the procedures in “Locating the last command or statement” on page 305 to
find the origin of the abend in your program. Use that information, and the
description and procedures for ASRB abends in Transaction abend codes in
Reference -> Diagnostics, to resolve the problem.

ASRD abends

A transaction abends with code ASRD in the following situations:
v An application program attempts to invoke CICS macros.
v An application program attempts to access the common service area (CSA) or

task control area (TCA).

These situations cause a program check that CICS diagnoses as an ASRD abend,
rather than the usual ASRA abend. You can use the information in the PSW to
investigate the cause of an ASRD abend.

Finding where a program check occurred
When a transaction abends with code ASRA or ASRD, the first thing you need to
do is find out where the program check occurred. CICS will have attempted to
establish this for you.

Licensed Materials – Property of IBM

Chapter 4. Dealing with transaction abend codes 29

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/topics/dfhg4k3.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/topics/dfhg4k3.html

About this task

A record of the program in error and the offset of the program check within the
program load module are contained in the following places:
v Message DFHAP0001 or DFHSR0001, which will have preceded the abend
v The transaction abend control block (TACB) which will have been created to

describe the abend
v Exception trace point ID AP 0781 for an ASRA abend or AP 0783 for an ASRD

abend.

See “Interpreting transaction dumps” on page 302.

Procedure
1. Find the offset of the program check within the program load module. The

offset indicates the point in the program at which the program check occurred.
Note that the offset is derived from the PSW next sequential instruction address
and so may indicate the instruction after the one that failed.
v If the offset is not X'FFFFFFFF', go to “What type of program check

occurred?” on page 31.
v If the offset is X'FFFFFFFF', continue following the steps.

2. When the offset is X'FFFFFFFF', CICS was unable to establish the location of
the program check. Use the PSW to obtain the next sequential instruction
address.
The PSW can be found in the following places:
v The TACB for the abend
v At the head of the formatted transaction dump
v Within the kernel error data block traced by exception trace point IDs AP

0781 or AP 0783
3. Note down the start and end addresses of the different program areas in the

transaction dump. Is the next sequential instruction address from the PSW in
any of the programs? If so, then that is the program in which the interrupt
occurred. Use the procedure described in “Locating the last command or
statement” on page 305 to identify the last command executed.
If the address is outside all of the programs, one of two things is likely to have
happened.
v The program in which the program check occurred was running on your

behalf (for example, VSAM or DL/I), but not under CICS control. This is
usually caused by incorrect parameters being passed to the program, or
parameters being passed in the wrong sequence. These are usually caught
and flagged with an appropriate return code, but certain combinations can
cause problems.

v Your program might have taken a “wild” branch into some other piece of
storage. If the address from the PSW ends in an odd number, this is probably
the case, as valid instructions are always on an even address. The address
could be within the CICS address space, or anywhere else in virtual storage.
Often, a wild branch is taken to address zero, because the register that
should contain the branch address is set to zero. The PSW usually contains
address X'00000004' after such a branch has occurred.

4. Check the register contents to see whether any of them contains the next
sequential instruction address from the PSW, or something close to it. This
might help you find out how you got to the wrong address.

Licensed Materials – Property of IBM

30 CICS TS for z/OS 5.3: Problem Determination Guide

If the PSW does point to an instruction in one of your programs, the next thing
to consider is the type of program check that occurred. Otherwise, turn directly
to “Analyzing the problem further” on page 37.

What type of program check occurred?
Knowing what type of program check occurred can be helpful to find the cause of
the error. The type of program check is indicated by the program interrupt code
(PIC), which you can find in the program status word (PSW) at the start of the
transaction dump.

For details about the PSW, see z/Architecture Principles of Operation.

PIC PIC explanation

1 Operation exception - incorrect operation attempted.

Possible causes are as follows:
v Overlaid program
v Overlaid register save area, causing incorrect branch
v Resource unavailable, but program logic assumed valid address returned

and took inappropriate action
v Incorrect branch to data that contains no instruction known to the

machine
v In an assembler-language program, a base register was inadvertently

changed

2 Privileged operation - this program is not authorized to execute this
instruction.

A possible cause is as follows:
v Incorrect branch to this code. Possible reasons for this situation are as

follows:
– Overlaid register save area
– Program overlaid by data that contains the privileged operation code

3 Execution exception - you are not allowed to EXECUTE an EXECUTE
instruction.

Possible causes are as follows:
v Incorrect branch to this code
v Incorrect register contents. Possible reasons for this situation are as

follows:
– Overlaid register save area
– Program overlaid by data that contains the incorrect instruction
– Incorrect program logic

4 Protection exception - read or write access violation has occurred.

Possible causes are as follows:
v Resource unavailable, and return code not checked. Program logic

assumed valid address returned and took inappropriate action.
v Incorrect interface parameters to another program or subsystem (for

example, VSAM or DL/I).
v Overlaid register save area, causing incorrect reference to data.

Licensed Materials – Property of IBM

Chapter 4. Dealing with transaction abend codes 31

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7832

v In an assembler-language program, incorrect initialization or
modification of a register used to address data.

v Attempt to access internal control blocks illegally or use a CICS system
or application programming macro call.

v Attempt to write to storage for which the application does not have an
adequate key. For example, in a CICS system with storage protection, an
application running in USER key attempts to write to the CDSA, RDSA,
ECDSA, ERDSA, ETDSA, or GCDSA.

v Attempt to write to the ERDSA or RDSA when PROTECT is specified
for the RENTPGM parameter.

v Attempt to read or write to another transaction's storage. For example,
in a system running with transaction isolation, a program running in
USER key might experience a protection exception when attempting to
access the USER key task-lifetime storage of another transaction.

v Storage that is passed to CICS as an output parameter through the EXEC
interface that is not addressable by the application issuing the call. The
transaction is abended AEYD, and the PSW shows that a protection
exception has occurred.

5 Addressing exception - the address that you referenced is not available or
is not valid.

A possible cause is as follows:
v Incorrect register contents, which might be because of an overlaid

register save area.

6 Specification exception - incorrect format of an instruction or invalid
registers.

Possible causes are as follows:
v Overlaid program
v Incorrect field lengths used in packed decimal multiply and divide

instructions
v Branch to an odd-numbered address, caused by an overlaid register save

area

7 Data exception - data invalid in a packed or signed display decimal
operation. One, or both of the operands contain data that is not suitable for
the instruction.

Possible causes are as follows:
v Incorrect input data (often because blanks are used where numeric data

is expected)
v Overlaid data
v Overlaid register save area, causing an incorrect branch
v Incorrect program logic, execution of code with uninitialized variables
v Wrong length

8 through F
Arithmetic exceptions, such as divide checks, overflow, and underflow.
They differ in the form of arithmetic that was being used: binary, packed
decimal, or floating point.

Possible causes are as follows:
v Incorrect user data
v Overlaid data areas

Licensed Materials – Property of IBM

32 CICS TS for z/OS 5.3: Problem Determination Guide

v Overlaid register save area, causing incorrect reference to data

10 and above
Program checks associated with system-related interrupts.

Dealing with arithmetic exceptions
About this task

If the program check was due to an arithmetic error (interruption codes 7 through
F), you need to find the operands used in the last instruction.

Procedure
1. Use the procedure described in section “Locating program data” on page 307 to

locate the fields.
2. Check that the operands are valid. You need to know a little about the type of

arithmetic being done, so that you can verify the operands are correct. The
interrupt you received tells you what sort of arithmetic the system was doing
(binary, packed decimal, or floating point), but you need to determine if that is
what you had intended to do. You might need to consult a programming
language manual if you have any queries about this.

3. When you have identified the operands, you need to decide where the problem
is.
Questions to consider include:
v Has the data been overlaid?
v Has the value been changed by faulty logic?
v Does the data type not match the operation type? For example, if you define

the variable as being packed decimal and then you read in binary
information, this causes a ‘data exception’ error.

Dealing with protection exceptions
Storage protection, transaction isolation, and command protection are facilities that
add data integrity by highlighting application errors. The use of these facilities
greatly reduces the number of abends that appear to be CICS problems.

About this task

With the storage protection facility, there are further situations in which a
protection exception (interrupt code 4) might occur:
v An attempt is made to write to the CDSA, RDSA, ECDSA, ERDSA, or GCDSA

when storage protection is active and the application is running in user key.
v An attempt is made to write to the ERDSA or RDSA when PROTECT is

specified for the RENTPGM system initialization parameter.

If transaction isolation (for which storage protection is a prerequisite) is enabled,
additional situations can occur:
v A transaction, defined with ISOLATE(YES), is executing a USER key program

and attempts to read or write to another transaction's USER key task-lifetime
storage in the UDSA or EUDSA.

v A transaction, defined with ISOLATE(NO), is executing a USER key program
and attempts to read or write to another transaction's USER key task-lifetime
storage in the UDSA or EUDSA, but the second transaction is defined with

Licensed Materials – Property of IBM

Chapter 4. Dealing with transaction abend codes 33

ISOLATE(YES). For a full description of the transaction isolation facility and its
use, see TRANSACTION attributes in Reference -> System definition.

If any of these situations occur, CICS abnormally terminates the transaction with
abend code ASRA and issues message DFHSR0622, which identifies the DSA over
which the program attempted to write. This information is in the TACB and is
traced by exception trace point ID AP 0781. It is also useful to know the execution
key of the program at the time of the protection exception, and whether the
program was executing in a subspace (CDSA, UDSA, RDSA, ECDSA, EUDSA,
ERDSA, ETDSA, GCDSA, or GUDSA). This information is in the TACB, exception
trace point ID AP 0781 and at the head of the formatted transaction dump.

If the command protection facility is enabled, a protection exception can occur if
storage that is passed to CICS as an output parameter through the EXEC interface
is not accessible for READ/WRITE by the program that issued the command. The
program is passing to CICS storage that it cannot itself update, but it requires CICS
to update the storage. The transaction terminates abnormally with abend code
AEYD. CICS creates an exception trace entry AP 0779 and saves relevant data in
the TACB that is formatted at the beginning of the transaction dump.

It is still possible for CICS to abend when the problem is in the application. For
example, command protection only checks output parameters and does not prevent
the passing of fetch-protected storage as an input parameter to CICS. When CICS
attempts to read such storage, an ASRA abend occurs.

Causes of protection exceptions
CICS storage protection is intended to prevent application programs erroneously
overwriting CICS programs and control blocks. The occurrence of a protection
exception in a new program running in a system with storage protection active
probably indicates an error in the application program. However, when existing
programs which need to be defined with EXECKEY(CICS) are first run in an
upgraded system with storage protection active, protection exceptions may well
occur.

Any application program causing a protection exception when defined with
EXECKEY(USER) must be examined to determine why it is attempting to modify
storage that it is not allowed to modify. Its definition should be changed to
EXECKEY(CICS) only if it is determined that the application program is
legitimately accessing CICS key storage, and the exception is not the result of an
application error.

Programs might also be incorrectly link-edited as reentrant, and, as a result, loaded
by CICS into one of the read-only DSAs (RDSA, ERDSA). When such an
incorrectly defined program attempts to modify itself, or another program tries to
modify it, a protection exception occurs. The program should be checked to see
whether it should be redefined as non-reentrant, or whether the program should
be changed to be truly reentrant. The protection exception might indicate that the
program uses poor programming techniques that could result in other problems if
uncorrected.

Transaction isolation
Transaction isolation protects the data associated with a user transaction from
being overwritten by EXECKEY(USER) programs invoked by other user
transactions.

Licensed Materials – Property of IBM

34 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.resourcedefinition.doc/resources/transaction/dfha4_attributes.html

If transaction isolation is active, the occurrence of a protection exception in a new
transaction indicates a probable error in the transaction or program definition. An
interdependency might exist between two or more transactions. In a system
running without transaction isolation, a transaction can read or write to the
task-lifetime storage of another transaction. The CICS Interdependency Analyzer
helps to identify potential dependencies. Ideally, such interdependencies should be
removed. If interdependencies cannot be removed, define all affected transactions
with ISOLATE(NO).

For further details about defining transactions, see TRANSACTION attributes in
Reference -> System definition. For more information about CICS Interdependency
Analyzer, see CICS Interdependency Analyzer for z/OS.

Command protection
Command protection prevents CICS from updating storage if the storage address
is passed as a command output parameter by a transaction that is not authorized
to update that storage.

The transaction terminates with abend code AEYD. The exception trace entry AP
0779 supplies details of the failing program and command. When upgrading to a
system with command protection enabled, EXEC commands that pass
unauthorized storage are identified and can be corrected.

Possible causes of protection exceptions referencing CICS
DSAs

The following list summarizes some of the causes of protection exceptions that can
occur in user key programs
v Issuing an MVS macro request. Most MVS macros and services are not

supported in EXECKEY(USER) application programs. Use of unsupported
macros and services might cause a failure if these macros or services attempt to
reference MVS storage outside the CICS DSAs.

v Referencing storage that is obtained by an MVS GETMAIN request or another
MVS macro. MVS storage that is obtained by these methods resides outside the
CICS DSAs, and is therefore protected from user key programs.

v Using PL/I statements, COBOL verbs or compiler options that are not permitted
in CICS application programs (see Developing applications for details of
prohibited language statements and compiler options). For example, the use of
CALL with the RES compiler option, or a verb such as INSPECT, might also
cause MVS storage outside the CICS DSAs to be obtained or updated (such
storage is protected from user-key programs).
In previous releases of CICS, these might have worked, or at least might not
have caused the application to fail. However, the use of these statements and
options can have other effects on the overall execution of the CICS system, and
should be removed where possible.

v Modifying the CWA when CWAKEY=CICS is specified as a system initialization
parameter. In a user key program, this is an invalid reference to storage
allocated from the CDSA or ECDSA.

v Modifying the TCTUA when TCTUAKEY=CICS is specified as a system
initialization parameter. In a user key program this is an invalid reference to
storage allocated from the CDSA or ECDSA.

v Issuing EXEC CICS EXTRACT EXIT command and attempting to update an exit
program’s global work area. In a user key program this is an invalid reference to
storage allocated from the CDSA or ECDSA.

Licensed Materials – Property of IBM

Chapter 4. Dealing with transaction abend codes 35

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.resourcedefinition.doc/resources/transaction/dfha4_attributes.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.resourcedefinition.doc/resources/transaction/dfha4_attributes.html
http://www.ibm.com/support/knowledgecenter/SSPPUS/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/topics/developing.html

Note: If you are using CSP/AD, CSP/AE, or CSP/RS, you must ensure that the
definitions for programs DCBINIT, DCBMODS, DCBRINIT and DCBNCOP
specify EXECKEY(CICS). These are all examples of programs that modify global
work areas that are set up by global user exit programs.

v If you are using DB2® and you use the DB2 message formatting routine
DSNTIAR, which is link-edited with your application programs, you should
apply the PTF for DB2 APAR PN12516, and relink-edit the applications using
DSNTIAR so that they can run in user key. If the applications are not
re-link-edited after this PTF is applied, they will have to run in CICS key. As a
first step, until you have applied this PTF, you can define the applications which
use DSNTIAR with EXECKEY(CICS).

Protection exceptions referencing the read-only DSAs
Protection exceptions occurring in programs resident in the ERDSA and RDSA are
caused by the program not being truly reentrant. It might be that the program
should not be defined as reentrant, or it might be that the program should be
reentrant but is using poor coding techniques which should be corrected rather
than making the program non-reentrant.

For example:
v Using static variables or constants for fields which are set by CICS requests. For

example, in assembler coding, if the LENGTH parameter for a retrieval
operation such as EXEC CICS READQ TS is specified as a DC elsewhere in the
program, a constant is set up in static storage. When CICS attempts to set the
actual length into the data area, it causes a protection exception if the program is
in the ERDSA or RDSA.
In some cases, for example EXEC CICS READ DATASET INTO () LENGTH() ...,
the LENGTH value specifies the maximum length that the application can
accept, and is set by CICS to contain the actual length read on completion of the
operation. Even if the program does not have RENT specified, using a variable
in the program itself for this length could cause problems if the program is
being executed concurrently for multiple users. The first transaction may execute
correctly, resulting in the actual record length being set in the LENGTH
parameter, which is then used as the maximum length for the second
transaction.

v Defining a table with the RENT attribute and then attempting to initialize or
update the table during CICS execution. Such a table should not be defined as
RENT.

v Defining BMS mapsets as RENT can cause a protection exception, if CICS
attempts to modify the mapsets. In some cases, CICS needs to modify BMS
mapsets during execution. Mapsets should not be link-edited with the RENT
attribute. BMS mapsets should be loaded into CICS key storage (because they
should not be modified by application programs) which means they must not be
link-edited with the RENT attribute. (Partition sets are not modified by CICS
and can be link-edited with the RENT attribute.)

Protection exceptions referencing the UDSA and EUDSA
In a system running with transaction isolation enabled, protection exceptions can
occur in programs with EXECKEY(USER).

Such an exception is caused by one transaction using a user key program to read
or write to the user-key task-lifetime storage of another transaction. This situation
might highlight a program error or an interdependency between two transactions.

Licensed Materials – Property of IBM

36 CICS TS for z/OS 5.3: Problem Determination Guide

The IBM CICS Interdependency Analyzer for z/OS tool can help to identify
potential transaction interdependencies. Examples of transaction interdependencies
are:
v A transaction might use EXEC CICS GETMAIN or GETMAIN64 to obtain 24-bit

or 31-bit storage, and pass the address of the storage to other transactions.
Access to this storage by one of these other transactions causes a protection
exception if transaction isolation is enabled, unless both affected transactions are
defined with ISOLATE(NO). Storage to be shared in this manner should be
acquired by a GETMAIN with the SHARED option. This is preferable to
defining the transactions with ISOLATE(NO).

v A transaction might attempt to post an ECB that exists in another transaction’s
task-lifetime storage. ECBs should be acquired by a GETMAIN from shared
storage. Alternatively, the affected transactions should be defined with
ISOLATE(NO).

Transaction isolation does not apply to 64-bit storage, so protection exceptions
caused in this way do not reference the GUDSA.

Analyzing the problem further
About this task

You should now know the point in the program at which the abend occurred, and
what the program was attempting to do.
v If your program uses or calls other programs or systems, examine the interface

and the way you pass data to the program. Are you checking the returned
information from the other system? Incorrect logic paths based on incorrect
assumptions can give unpredictable results.

v Examine the flow of your program using tools like the Execution Diagnostic
Facility (CEDF). Check the transient data and temporary storage queues with the
CICS browse transaction (CEBR), and use the CICS command-level interpreter
and syntax checker transactions (CECI and CECS). If necessary, insert additional
statements into the program until you understand the flow.

v Look at any trace output you might have. If you have a “normal” trace output
included in the documentation, compare the two for differences.

v Define the current environment, and try to isolate any changes in it since your
program last worked. This can be difficult in large installations, because so many
people interact with the systems and slight changes can affect things that seem
unconnected.

Abends when CICS is using the DBCTL interface
If a transaction terminates abnormally while CICS is using DBCTL, you need to
determine whether CICS or IMS™ was in control at the time of the abend.

You can do this by examining the time stamps in the CICS and DBCTL traces. For
guidance about this, see the CICS IMS Database Control Guide.

If tracing was off at the time of the failure, you can find an indicator in the task
local work area for DFHDBAT. The indicator is set when CICS passes control to
DBCTL, and reset when DBCTL returns control to CICS.

To find the indicator, locate the eye-catcher for the TIE in the dump and then
locate the LOCLAREA eye-catcher that follows it. The indicator is at offset X’14’

Licensed Materials – Property of IBM

Chapter 4. Dealing with transaction abend codes 37

from the start of the LOCLAREA eye-catcher. If the indicator byte is set to X’08’,
CICS has passed control to DBCTL, and you should examine the IMS part of the
transaction. If the byte is set to X’00’, DBCTL has returned control to CICS, and
you should investigate the CICS part of the transaction.

Worksheet for transaction abends
1. Record the abend code and messages

Find the abend code from the heading of the dump and record any pertinent
messages.

2. Is this a CICS or a USER abend code?

v If this is a USER abend code, tell the appropriate person.
v For a CICS abend code, continue with 3.

3. Look up the abend code

If you need further advice, continue with 4.
4. Is this an AICA abend?

If it is, read Chapter 8, “Dealing with loops,” on page 149. If not, continue
with 5.

5. Is this an ASRA abend?

If it is, go to step 7. If not, continue with 6.
6. Is this an ASRD abend?

If it is, continue with 7. If not, go to 14.
7. Record the program areas from the dump.

Find the program names from the Module Index at the end of the formatted
dump. For each program, record the program name, the beginning address,
and end address.

8. Record the address of the next instruction from the PSW, or the offset
established by CICS.

9. Did the program check occur in one of the program areas listed above?

If it did, continue with 10. If not, go to 14.
10. Record what type of program check occurred.

You will need to record the Program Interrupt Code (PIC).
11. Find the last statement executed.

See “Locating the last command or statement” on page 305.
12. Was the PIC one of the arithmetic interrupts (7,8,9,A,B,C,D,E,F)?

If it was, find the contents of the operands of the last instruction (see
“Locating program data” on page 307), and go to step 15. If not, continue with
13

13. Was the PIC a protection exception?

If it was, read “Dealing with protection exceptions” on page 33.
Go to 15.

14. Find the last statement executed

See “Locating the last command or statement” on page 305.
15. Analyze the problem and the data gathered.

For most problems you should now have enough information to solve the
problem. If you still cannot find the source, recheck the following:
v Parameters to or from other programs or systems.
v Any needed resource that may not be available.

Licensed Materials – Property of IBM

38 CICS TS for z/OS 5.3: Problem Determination Guide

v The formatted trace, for any unexplained flow.
v The running environment, for any changes in it.

FEPI abends
For information about FEPI-associated abends in CICS or MVS, see the CICS Front
End Programming Interface User's Guide.

Licensed Materials – Property of IBM

Chapter 4. Dealing with transaction abend codes 39

Licensed Materials – Property of IBM

40 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 5. Dealing with CICS system abends

This information provides guidance about gathering essential information about
CICS system abends.

If you have not done so already, use the CMAC transaction or refer to CICS
messages in Reference -> Diagnostics for an explanation of any message you have
received, because it could offer a straightforward solution to your problem. For
further information about the CMAC transaction, see CMAC - messages and codes
display in Reference > System definition.

If the abend was clearly caused by a storage violation, refer to the information in
Chapter 11, “Dealing with storage violations,” on page 201. You know when CICS
has detected a storage violation, because it issues the following message:
DFHSM0102 applid A storage violation (code X’code’)
has been detected by module modname.

After you refer to the information about storage violations, if you find the cause of
the abend is an application error, you must investigate the application to find out
why it caused the abend. However, if you find that a CICS module seems to be in
error, you need to contact the IBM Support Center. Before you do so, you must
gather the following information:
v The name of the failing module, and the module level
v The offset in the module at which the failure occurred
v The instruction at that offset
v The abend type.

This section tells you how to find the information just listed, and contains the
following topics:
v “The documentation you need”
v “Interpreting the evidence” on page 42
v “Looking at the kernel domain storage areas” on page 43
v “Using the linkage stack to identify the failing module” on page 51

The documentation you need
The primary documentation you need for investigating abends is the system dump
that was taken at the time the error occurred. This usually contains all the evidence
needed to find the cause of the problem.

If system dumping is permitted for the dump code, and if system dumping is not
otherwise disabled, a system dump is taken when the error was detected. You can
find out which dump relates to which message, because the time stamps and the
dump IDs are the same.

If a system dump was not taken when the abend occurred, you need to find out
why. Use the procedure described in “You do not get a dump when an abend
occurs” on page 181, and follow the advice given there. When you are sure that
dumping is enabled for the appropriate system dump code, you need to re-create
the system abend.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 41

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cmac/dfha72g.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cmac/dfha72g.html

You can use the interactive problem control system (IPCS) to process dumps and
view them online. See “Formatting system dumps” on page 289 for guidance about
processing dumps using IPCS VERBEXIT parameters. The kernel domain storage
areas (formatting keyword KE) and the internal trace table (formatting keyword
TR) are likely to be the most useful at the start of your investigation.

The formatted output for kernel domain contains summary information about the
error (search for the eye-catcher ===KE). The internal trace table contains the
exception trace entry (if any) that was made at the time the error was detected
(search for the eye-catcher ===TR).

Later, you might find that storage summaries for the application, transaction
manager, program manager, dispatcher, and loader domains (formatting keywords
AP, XM, PG, DS, and LD, respectively) are also useful. In each case, level-1
formatting is sufficient in the first instance.

You can format and print the dump offline. For details of how to do this, see
Dump utilities (DFHDU680 and DFHPD680) in Reference -> Utilities.

You might need to copy the dump so that you can leave the system dump data set
free for use, or so that you have a more permanent copy for problem reporting.

Whether you look at the dump online or offline, do not purge it from the dump
data set until you have either copied it or finished with it; you might need to
format other areas later, or format the same areas in more detail.

Interpreting the evidence
The first things to look at are any messages that accompany the abend, the
exception trace entry in the internal trace table, and the symptom string at the start
of the dump.

Procedure
1. Look at any messages that accompany a CICS system abend, because they

might point directly to the cause of the failure. For advice about the user
response to a message, see CICS messages in Reference -> Diagnostics.

2. Examine the exception trace entry. The exception trace entry gives information
about what was happening when the failure occurred, and data that was being
used at the time. When a CICS system abend occurs, an exception trace entry is
made to the internal trace table and any other active trace destination. It does
not matter whether you have tracing turned on; the trace entry is still made.
If the trace table contains more than one exception trace entry, it is likely that
the last one is associated with the dump. However, this might not always be
the case, and you should make sure that you have found the correct entry. Be
aware, too, that dumps can sometimes be requested without a corresponding
exception trace entry being made.
For details of trace entries, see Chapter 15, “Using traces in problem
determination,” on page 237.

3. Look at the symptom string in the system dump. The symptom string, similar
to the short symptom string at the beginning of a transaction dump, appears at
the beginning of a CICS system dump. It is also written to SYS1.LOGREC and
is issued as part of message DFHME0116.
The symptom string provides a number of keywords that can be directly typed
into RETAIN and used to search the RETAIN database. The possible keywords

Licensed Materials – Property of IBM

42 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha62k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html

are shown in Table 3. The keywords are used at the IBM Support Center to
discover duplicate problems, or problems that have already been reported by
other users and for which a solution is available.

Table 3. Symptom string keywords

Keyword Meaning

PIDS/ Product ID (CICS product number)

LVLS/ Level indicator (CICS release level)

RIDS/ Module name

PTFS/ Module PTF level

MS/ Message ID reporting error

AB/ Abend code

ADRS/ Address or offset indicator

PRCS/ Return code

PCSS/ CICS jobname

OVS/ Overlaid storage

FLDS/ Name of a field associated with problem

REGS/ Software register associated with problem

VALU/ Value of a named field or register

Although the symptom string is designed to provide keywords for searching
the RETAIN database, it can also give you significant information about what
was happening at the time the error occurred, and it might suggest an obvious
cause or a likely area in which to start your investigation. Among other things,
it might contain the abend code. If you have not already done so, look in CICS
messages in Reference -> Diagnostics to see what action it suggests for this
abend code.
If the system cannot gather much information about the error, the symptom
string is less specific. In such cases, it might not help you much with problem
determination, and you need to look at other parts of the dump. The kernel
domain storage summary is a good place to start.

Looking at the kernel domain storage areas
After you look at the symptom string at the start of the dump, the next place to
look is the kernel domain storage summary.

Procedure
1. Gather the following information from the kernel domain storage areas:
v A summary of tasks and their status, and whether they were in error when

the dump was taken.
v An error analysis report for each task currently in error. CICS retains

information for the previous fifty errors.
v The linkage stack for each task, showing which programs have been called

and have not yet returned.
2. When you have this information, find out which tasks are associated with the

error.

Licensed Materials – Property of IBM

Chapter 5. Dealing with CICS system abends 43

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html

Finding which tasks are associated with the error
To find out which tasks are associated with the error, you can use the kernel task
summary. The kernel task summary shows which tasks were in the system when
the dump was taken, whether those tasks were running, and whether they were in
error.

About this task

The task summary is in the form of a table, where each line in the table represents
a different task. The left-hand column of the task summary shows the kernel task
number, which is the number used by the kernel domain to identify the task. This
is not the same as the normal CICS task number taken from field TCAKCTTA of
the TCA.

Figure 1 on page 45 shows an example of a kernel task summary with a task in
error.

Licensed Materials – Property of IBM

44 CICS TS for z/OS 5.3: Problem Determination Guide

Procedure
1. Locate the task summary table in the formatted dump, and look in the ERROR

column. If you find a value of *YES* for a specific task, that task was in error at
the time that the dump was taken.

Note: If the recovery routine that is invoked when the error occurs does not
request a system dump, you will not see any tasks flagged in error. In such a
case, the system dump is likely to have been requested by a program that is
being executed lower down the linkage stack and that received an abnormal
response following recovery. The program that received the error has gone from
the stack, and so cannot be flagged. However, error data for the failing task
was captured in the kernel domain error table (see “Finding more information
about the error” on page 46). Error data is also captured in the error table even
when no system dump is taken at all.
In Figure 1, you can see that kernel task number 0090 is shown to be in error.

===KE: Kernel Domain KE_TASK Summary

KE_NUM KE_TASK STATUS TCA_ADDR TRAN_# TRANSID DS_TASK KE_KTCB ERROR TCB CURRENT_PSW

0001 290F5000 KTCB Step 00000000 00000000 29178038 009C3070 078D1000 80000000 00000000 28F71084
0002 290F5680 KTCB QR 00000000 2917CE00 2917B200 009CE9A8 070C0000 80000000 00000000 00FF3B68
0003 29112000 KTCB RO 00000000 2917CF00 2917A168 009CEBD8 078D1000 80000000 00000000 28F189C8
0004 29112680 KTCB CO 00000000 291CBF00 29278F68 009CE778 078D1000 80000000 00000000 28F189C8
0005 2912F000 KTCB FO 00000000 291D7300 291790D0 009FC0F8 078D1000 80000000 00000000 28F189C8
0006 2912F680 Not Running 00000000 2928D080 2917A168
0007 2914C000 Not Running 29392700 00043 CSNE 292E6E00 2917B200
0008 2914C680 KTCB SL 00000000 291D7D00 3BF15000 009ABB88 078D1000 80000000 00000000 28F189C8
0009 29169000 Not Running 00000000 2928D500 2917B200
000A 2931F800 KTCB CQ 00000000 292AC300 29299F68 009ABE88 078D1000 80000000 00000000 29DDD7BA
000B 2A8AF100 Not Running 29394100 00035 CISE 2928D800 2917B200
000C 2A280100 Unused
000E 2A8BC100 Not Running 29393100 00036 CISM 2928DB00 2917B200
000F 2A280800 Unused
0010 2A8BC800 Not Running 29393700 00037 CISP 2928DC80 2917B200
0011 2A87F100 Not Running 2938E100 00007 CSSY 3BF78380 2917B200
0012 292FD000 Not Running 2938D700 00006 CSSY 292E6B00 2917B200
0013 2A29D100 Unused
0014 2A29D800 Unused
0016 2A2BA100 Unused
0017 292FF680 Not Running 2938C700 00004 CSOL 2928D380 3BF15000
0018 3BF5B000 Not Running 2938D100 00005 CEPM 292E6500 3BF74F68
0019 2A2BA800 Unused
001B 2A7FF800 Not Running 00000000 2928DE00 2917B200
001C 2A87F800 Not Running 2938B700 TCP CSTP 3BF78B00 2917B200
001E 3BFB3000 KTCB SP 00000000 3BF96000 3BF42F68 009AB488 078D1000 80000000 00000000 28F189C8
0020 3BFD0000 KTCB EP000 00000000 292ACE00 3BF74F68 009A9E88 078D1000 80000000 00000000 28F189C8
0021 2A8AF800 Not Running 2938F100 00025 CFQR 3BF78200 2917B200
0023 2A2D7100 Unused
0024 3BFFC680 Not Running 2938C100 00031 CSHQ 3C09D380 2917B200
0026 2A2D7800 Unused
0027 2A2F4100 Unused
0029 3C054000 KTCB L8000 00000000 291D7E00 292BB000 009A3E88 078D1000 80000000 00000000 28F189C8
002B 3C071000 ***Running** 00000000 2928D980 29299F68 009ABE88 078D1000 80000000 00000000 29DDD7BA
002C 3C071680 Not Running 2938E700 00034 CISR 2928D200 2917B200
002E 3C08E680 Not Running 00000000 3C09DE00 2917B200
002F 2A2F4800 Unused
0030 2A2FE100 Unused
0031 2A910100 Not Running 29391700 00027 CSZI 292E6980 3BF88F68
0032 2A2FE800 Unused
0033 2A94B800 KTCB SZ 00000000 3BFD0700 3BF88F68 009A4348 070C0000 80000000 00000000 010B2C90
0036 3C103680 KTCB SO 00000000 291D7F00 3BF17F68 009AB788 078D1400 80000000 00000000 28F189C8
0037 2931F100 Not Running 00000000 3C09D080 2917B200
0038 2A2FF100 Unused
.
.
.
008F 2A7FC800 Unused
0090 2A7FF100 ***Running** 29390700 00049 6421 3BF2F080 2917B200 *YES* 009CE9A8 070C0000 80000000 00000000 00FF3B68
0091 2A8EB100 Not Running 2938F700 00024 CFQS 292E6C80 2917B200
0092 2A8EB800 Not Running 29391100 00026 CSNC 3C09D980 2917B200
0094 2A910800 Not Running 29392100 00023 CEPF 292E6380 3BF01000
0097 2A94B100 KTCB EP001 00000000 3BF79900 3BF01000 009A9390 078D1000 80000000 00000000 28F189C8

Figure 1. Kernel task summary showing a task in error

Licensed Materials – Property of IBM

Chapter 5. Dealing with CICS system abends 45

2. Look next at the STATUS column. For each task you can see one of the
following values:
v ***Running**, meaning that the task was running when the system dump

was taken. If more than one task is shown to be running, the different tasks
are attached to separate TCBs.

v Not Running, meaning that the task is in the system but is currently not
running. For example, the task might be suspended because it is waiting for
a resource, or the task might be ready to run but waiting for a TCB to
become available.

v KE_KTCB, referring to CICS control blocks that correspond to the CICS TCBs.
These are treated as tasks in the kernel task summary.

v Unused, meaning either that the task was in the system but it has now
terminated, or that there has not yet been a task in the system with the
corresponding task number. Earlier unused tasks are likely to have run and
terminated, and later ones are likely never to have represented actual tasks.
It is most unlikely that you will ever need to distinguish between the two
possibilities.

It is very likely that the task shown to be in error has a status of “Running”, as
in the example of Figure 1 on page 45. Such a task would have been running at
the time the error was detected.
It is possible, but less likely, that the task shown to be in error has a status of
“Not Running”. This situation might occur if the task in error was attempting
recovery when, for some reason, it was suspended.

3. If you are using trace to help you diagnose a problem, use the TRAN_# and
KE_NUM columns of the kernel task summary to find more information about
the task. The TRAN_# column for a task can contain the following information:
v A number that matches the task number in the corresponding trace
v TCP for the CICS terminal control task
v Other character entries for CICS system tasks (for example, a component

identifier such as AP for a CICS system task in the AP domain).

When you are working with trace output, you can use the number from the
TRAN_# column to identify entries associated with a user task up to the point
when that task passes control to CICS.
To identify the CICS processing associated with the user task, use the entry in
the KE_NUM column of the kernel task summary. This matches the KE_NUM
shown in the full trace entries for the task so that you can distinguish the CICS
processing associated with the task you are interested in from other CICS
processing.

Finding more information about the error
The summary information for the task in error follows the kernel task summary
and provides more information about the failure. It provides a storage report for
the task, including registers and PSWs, and any data addressed by the registers.

About this task

The PSW is the program status word that is used by the machine hardware to
record the address of the current instruction being executed, the addressing mode,
and other control information. Figure 2 on page 47 is the first part of an example
of such a storage report for a program check.

Licensed Materials – Property of IBM

46 CICS TS for z/OS 5.3: Problem Determination Guide

Procedure
1. Look first in the dump for the following header, which introduces the error

report for the task:
==KE: Tasks in Error: Error Data follows.

2. Next, you will see the kernel error number for the task. The kernel assigns
error numbers consecutively, starting from 00000001.
=KE: Error Number: 00000001

The error number shows the number of program checks and system abends
that occurred for this run of CICS. Not all of them have necessarily resulted in
a system dump.

3. Optional: Some kernel error data follows. Usually, you do not need to find the
format of this data, but if you do, refer to KERRD - Kernel error data in
Reference -> Diagnostics.

4. The next area of interest is the interpretation by the kernel of what went
wrong. This information includes the error code, the error type, the name of the
program that was running, and the offset in the program.
v The error code shows the system and user completion codes issued when the

abend occurred.
v The error type shows whether the error was associated with, for example, a

program check, a system abend, or an internal request for system recovery.
5. There is a report of where the system has recorded that the error occurred, and

the circumstances of the failure. The information has the following general
format:
Error happened in program PPPPPPPP at offset xxxxxxxx

==KE: Tasks in Error: Error Data follows.

** Task in Error: Error Data follows.

=KE: Error Number: 00000001

KERRD 2A7FF4B0 KERNEL ERROR DATA

0000 F0C3F461 C1D2C5C1 018400C4 00000000 C4C6C8C1 D7D3C9F1 00000000 2998BA00 *0C4/AKEA.d.D....DFHAPLI1.....q..* 2A7FF4B0
0020 00000000 29390700 00000000 2A7FF100 3BF2F080 00000001 00000004 FFFFFFFF *............."1..20.............* 2A7FF4D0
0040 079D1001 80000000 00000000 2A1E7742 00040004 00000000 00000000 00000000 *................................* 2A7FF4F0
0060 90800000 00000000 00000000 C6F4E2C1 00000000 2AA00740 00000000 0008196E *............F4SA.......>* 2A7FF510
0080 00000000 29992B78 00000000 2A8411D0 00000000 00000002 00000000 29390988 *.....r.......d.}...............h* 2A7FF530
00A0 00000000 2A1E7564 00000000 2AA00690 00000000 000C0000 00000000 2AA00048 *................................* 2A7FF550

.

.

.
02A0 40A63D70 0000000E 00010004 C0000000 00000000 2A1E768A 2917B200 0000049C * w..........{...................* 2A7FF750
02C0 00000000 00000000 00000000 00000000 *................ * 2A7FF770

Error Code: 0C4/AKEA Error Type: PROGRAM_CHECK Timestamp: CA434E0E38DF218F

Date (GMT) : 03/10/12 Time (GMT) : 09:52:18.791922
Date (LOCAL) : 03/10/12 Time (LOCAL) : 10:52:18.791922

KE_NUM: 0090 KE_TASK: 00000000_2A7FF100 TCA_ADDR: 29390700 DS_TASK: 3BF2F080 XM_TOKEN: 2930A500 TRAN_NO: 00049

=KE: KTCB Details:

KTCB_ADDR: 2917B200 KTCB_TYPE: Q KTCB_MODE: QR MVS_TCB_ADDR: 009CE9A8
ACCUM_TIME: 00000000761B5E9B STIMER_TIME: 000000007D000000 TIMER_STATE: C0000003 ESTAE_STATE: 00
ABEND_999: 00

Error happened in program DFHGA680 at offset 00000322

Error happened under the CICS RB.

Figure 2. Storage report for a task that has experienced a program check - part 1

Licensed Materials – Property of IBM

Chapter 5. Dealing with CICS system abends 47

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs4/DFHKERDK.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs4/DFHKERDK.html

The program name (PPPPPPPP) and offset (xxxxxxxx) are determined by
searching through the CICS loader's control blocks for a program that owned
the abending instruction at the time of the abend. If this search does not find
such a program, the report shows the following text:

PROGRAM PPPPPPPP WAS IN CONTROL, BUT THE PSW WAS ELSEWHERE.

The reported program name (PPPPPPPP) is the program that owns the current
kernel stack entry for the abending task. If this text is shown, it might be
possible to locate the failing program using the method described in “Using the
linkage stack to identify the failing module” on page 51. The failing program
name and offset are also displayed in the section of the report immediately
after the contents of the registers are reported. This information has the
following format: :

DATA AT PSW: AAAAAAAA MODULE: PPPPPPPP OFFSET: XXXXXXXX

If the failing program cannot be located, the module name and offset are
reported as unknown. Possible reasons why the program cannot be located are
as follows:
v The failure occurred in a z/OS loaded module.
v The failing program had been released by the CICS loader before the dump

was taken.
v A wild branch in the failing program caused the PSW to point to storage not

occupied by a CICS loaded program.

The accuracy of the program name and offset reported in a formatted dump
that was produced as the result of a program executing a wild branch cannot
be guaranteed.

6. After the interpretation by the kernel of the error, one of the following
diagnostic messages is shown:
v Error happened under the CICS RB

The error was detected either when CICS code was executing, or when an
access method called by CICS was running (for example, VSAM or QSAM).
The CICS RB is the CICS request block, an MVS control block that records
the state of the CICS program.

v Error did not happen under the CICS RB

This message can be issued in any of the following circumstances:
– An error occurs in CICS SVC code.
– An error occurs in a CICS z/OS Communications Server exit.
– CICS detects a runaway task during the execution of an MVS service

request.
– An error occurs during the execution of an SVC request that was made by

CICS or an access method invoked by CICS.
7. After either of these messages, data that is likely to be related to the problem is

shown. The data shown depends on whether the error happened under the
CICS request block.
v If the error happened under the CICS RB, the error data in the task storage

report is based on values in the PSW and the CICS registers at the time the
error was detected. Figure 2 on page 47 shows the storage report for a task
that failed when a program check was detected. It illustrates the error data
supplied when an error happens under the CICS RB.

v If the error did not happen under the CICS RB, for example when CICS was
calling an MVS service, you get data based on two sets of registers and
PSWs. The registers and PSW of the CICS RB at the time of the error
constitute one set. The registers and PSW of the RB in which the error

Licensed Materials – Property of IBM

48 CICS TS for z/OS 5.3: Problem Determination Guide

occurred constitute the other set. This data will relate, very probably, to the
execution of an SVC routine called by CICS. The error might have occurred,
however, during an IRB interrupt or in an SRB. You can confirm whether this
has happened by checking flags KERNEL_ERROR_IRB and
KERNEL_ERROR_SRB_MODE.

For more information about this data in the task storage report, see “The
storage addressed by the CICS registers and PSW.”

The storage addressed by the CICS registers and PSW
Any storage addressed by the CICS registers and PSW is included in the error data
for the failing task.

Figure 3, Figure 4 on page 50, and Figure 5 on page 51 show parts of an example
storage report for a task that failed when a program check was detected.

Only the values of the registers and PSW, not the storage they address, are
guaranteed to be as they were at the time of the error. The storage that is shown is
a snapshot taken at the time the internal system dump request was issued. Data
might change because, for example, a program check was caused by an incorrect
address in a register, or short lifetime storage is addressed by a register.

Also, in general, where error data is given for a series of errors, the older the error,
the less likely it is that the storage is as it was at the time of the failure. The most
recent error has the highest error number; it might not be the first error shown in
the output.

The Breaking Event Address is the address of the last successful branch before the
program check. If it is available, you can use it to help determine the location of a
wild branch instruction.

The format of the PSW is described in z/Architecture Principles of Operation. The
information in the PSW can help you to find the details needed by the IBM

CICS Registers and PSW

PSW: 079D1001 80000000 00000000 2A1E7742 Instruction Length: 4 Interrupt Code: 04
Exception Address: 00000000_00000000

Execution key at Program Check/Abend: 9 Addressing Mode: 64

Space at Program Check/Abend: Subspace

Breaking Event Address: 00000000_2A1E768A - offset 0000026A in module DFHGA680

64-BIT REGISTERS 0-15

GPR 0-3 00000000_C6F4E2C1 00000000_2AA00740 00000000_0008196E 00000000_29992B78
GPR 4-7 00000000_2A8411D0 00000000_00000002 00000000_29390988 00000000_2A1E7564
GPR 8-B 00000000_2AA00690 00000000_000C0000 00000000_2AA00048 00000000_2AA00100
GPR C-F 00000000_2A1E77A8 00000000_2AA00690 00000000_2A1E75A2 00000000_00000000

ACCESS REGISTERS 0-15

AR 0-3 009FF890 00010004 00000000 00000000
AR 4-7 00000000 00000000 00000000 00000000
AR 8-B 00000000 00000000 00000000 00000000
AR C-F 00000000 00000000 00000000 00000000

FLOATING POINT REGISTERS 0-15

FPR 0-3 00000000_00000000 00000000_00000000 00000000_00000000 00000000_00000000
FPR 4-7 00000000_00000000 00000000_00000000 00000000_00000000 00000000_00000000
FPR 8-B 00000000_00000000 00000000_00000000 00000000_00000000 00000000_00000000
FPR C-F 00000000_00000000 00000000_00000000 00000000_00000000 00000000_00000000
FPCR 00000000

Figure 3. Storage report for a task that has experienced a program check - part 2

Licensed Materials – Property of IBM

Chapter 5. Dealing with CICS system abends 49

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7832

Support Center. You can find the address of the failing instruction, and thus its
offset within the module, and also the abend type. You find the identity of the
failing module itself by examining the kernel linkage stack, as described in “Using
the linkage stack to identify the failing module” on page 51.

The registers might point to data in the CICS region. If the values they hold can
represent 24-bit addresses, you see the data around those addresses. If their values
can represent 31-bit addresses, you see the data around those addresses. If their
values can represent 64-bit addresses, you see the data around those addresses.

The contents of a register might represent a 24-bit address, a 31-bit address, and a
64-bit address. In that case, you get three sets of addressed data. A lower half of
the register might contain a 24-bit address with a higher order bit set, making it
appear like a 31-bit address; or it could contain a genuine 31-bit address. The 64-bit
register could also contain a genuine 64-bit address.

Data at PSW: 00000000_2A1E7742 Module: DFHGA680 Offset: 00000322

PSWDATA 2A1E7420

0000 C4C6C8C7 C1F6F8F0 E3F0021C 001758F0 F0D058F0 F01458F0 F00C58FF 004407FF *DFHGA680T0.....00}.00..00.......* 2A1E7420
0020 5CC6C9D3 D3C9D55C A7F40089 23C1D4F6 F4F2F0F1 404DC95D 40F1F061 F0F361F1 **FILLIN*x4.i.AM64201 (I) 10/03/1* 2A1E7440
0040 F240F1F0 4BF5F040 A9D6E2F6 F8F04040 40C3C9C3 E240F5F6 F5F560E8 F0F4404D *2 10.50 zOS680 CICS 5655-Y04 (* 2A1E7460
0060 C35D40C3 D6D7E8D9 C9C7C8E3 40C9C2D4 40C3D6D9 D7D6D9C1 E3C9D6D5 6B406B40 *C) COPYRIGHT IBM CORPORATION, , * 2A1E7480
0080 C1D3D340 D9C9C7C8 E3E240D9 C5E2C5D9 E5C5C44B 40E44BE2 4B40C7D6 E5C5D9D5 *ALL RIGHTS RESERVED. U.S. GOVERN* 2A1E74A0
00A0 D4C5D5E3 40E4E2C5 D9E240D9 C5E2E3D9 C9C3E3C5 C440D9C9 C7C8E3E2 406040E4 *MENT USERS RESTRICTED RIGHTS - U* 2A1E74C0
00C0 E2C56B40 C4E4D7D3 C9C3C1E3 C9D6D540 D6D940C4 C9E2C3D3 D6E2E4D9 C540D9C5 *SE, DUPLICATION OR DISCLOSURE RE* 2A1E74E0
00E0 E2E3D9C9 C3E3C5C4 40C2E840 C7E2C140 C1C4D740 E2C3C8C5 C4E4D3C5 40C3D6D5 *STRICTED BY GSA ADP SCHEDULE CON* 2A1E7500
0100 E3D9C1C3 E340E6C9 E3C840C9 C2D440C3 D6D9D74B 40D3C9C3 C5D5E2C5 C440D4C1 *TRACT WITH IBM CORP. LICENSED MA* 2A1E7520
0120 E3C5D9C9 C1D3E240 6040D7D9 D6D7C5D9 E3E840D6 C640C9C2 D400EBEC D0080024 *TERIALS - PROPERTY OF IBM...}...* 2A1E7540
0140 A7150007 00000202 2A1E78C8 0000E3F0 10040017 0DEFC0C0 00000119 B90400D1 *x..........H..T0......{{.......J* 2A1E7560

.

.

.
03E0 00000816 00000817 00000818 00000819 0000081A 0000081B 0000081C 0000081D *................................* 2A1E7800
0400 0000081E 0000081F C1D4F3F1 E7F2F0F1 E7D7C3E3 C1404040 C1D4F6F4 F2F0F140 *........AM31X201XPCTA AM64201 * 2A1E7820
0420 4410 *.. * 2A1E7840

Data at BEAR: 2A1E768A Module: DFHGA680 Offset: 0000026A

BEARDATA 2A1E7420

0000 C4C6C8C7 C1F6F8F0 E3F0021C 001758F0 F0D058F0 F01458F0 F00C58FF 004407FF *DFHGA680T0.....00}.00..00.......* 2A1E7420
0020 5CC6C9D3 D3C9D55C A7F40089 23C1D4F6 F4F2F0F1 404DC95D 40F1F061 F0F361F1 **FILLIN*x4.i.AM64201 (I) 10/03/1* 2A1E7440
0040 F240F1F0 4BF5F040 A9D6E2F6 F8F04040 40C3C9C3 E240F5F6 F5F560E8 F0F4404D *2 10.50 zOS680 CICS 5655-Y04 (* 2A1E7460
0060 C35D40C3 D6D7E8D9 C9C7C8E3 40C9C2D4 40C3D6D9 D7D6D9C1 E3C9D6D5 6B406B40 *C) COPYRIGHT IBM CORPORATION, , * 2A1E7480
0080 C1D3D340 D9C9C7C8 E3E240D9 C5E2C5D9 E5C5C44B 40E44BE2 4B40C7D6 E5C5D9D5 *ALL RIGHTS RESERVED. U.S. GOVERN* 2A1E74A0
00A0 D4C5D5E3 40E4E2C5 D9E240D9 C5E2E3D9 C9C3E3C5 C440D9C9 C7C8E3E2 406040E4 *MENT USERS RESTRICTED RIGHTS - U* 2A1E74C0
00C0 E2C56B40 C4E4D7D3 C9C3C1E3 C9D6D540 D6D940C4 C9E2C3D3 D6E2E4D9 C540D9C5 *SE, DUPLICATION OR DISCLOSURE RE* 2A1E74E0
00E0 E2E3D9C9 C3E3C5C4 40C2E840 C7E2C140 C1C4D740 E2C3C8C5 C4E4D3C5 40C3D6D5 *STRICTED BY GSA ADP SCHEDULE CON* 2A1E7500
0100 E3D9C1C3 E340E6C9 E3C840C9 C2D440C3 D6D9D74B 40D3C9C3 C5D5E2C5 C440D4C1 *TRACT WITH IBM CORP. LICENSED MA* 2A1E7520
0120 E3C5D9C9 C1D3E240 6040D7D9 D6D7C5D9 E3E840D6 C640C9C2 D400EBEC D0080024 *TERIALS - PROPERTY OF IBM...}...* 2A1E7540
0140 A7150007 00000202 2A1E78C8 0000E3F0 10040017 0DEFC0C0 00000119 B90400D1 *x..........H..T0......{{.......J* 2A1E7560

.

.

.
0320 20000700 A7150017 002A0000 C1D4F3F1 F2F0F140 D6A58599 A69989A3 85409686 *....x.......AM31201 Overwrite of* 2A1E7740
0340 40D9C4E2 C1409596 A3408485 A38583A3 85840A23 00004110 D0B041E0 C11650E0 * RDSA not detected......}..\A.&* 2A1E7760
0360 10009680 1000E3F0 *..o...T0 * 2A1E7780

Figure 4. Storage report for a task that has experienced a program check - part 3

Licensed Materials – Property of IBM

50 CICS TS for z/OS 5.3: Problem Determination Guide

If, for any reason, the register does not address any data, one of the following
messages is issued:
24-bit data cannot be accessed
31-bit data cannot be accessed
64-bit data cannot be accessed

This means that the addresses cannot be found in the system dump of the CICS
region. MVS keeps a record of how CICS uses storage, and any areas not used by
CICS are considered to lie outside the CICS address space. Such areas are not
dumped in an MVS SDUMP of the region.

It is also possible that the addresses were in the CICS region, but were not
included in the SDUMP. This is because MVS enables you to take SDUMPs
selectively, for example “without LPA”. If a selective SDUMP occurred without
your knowledge, you might think you had an addressing error when the address
was actually valid.

Using the linkage stack to identify the failing module
A linkage stack for a task represents the sequence in which modules and
subroutines were called during execution of a task. It provides a valuable insight
into the sequence of events up until the time of failure, and it also flags any
program or subroutine that was executing when the error was detected.

Data at Registers

REG 0 00000000_C6F4E2C1

64-bit data cannot be accessed **

31-bit data cannot be accessed **

24-bit data follows:

REGDATA 00F4E2C1

-0080 00000004 08001000 00000000 03000028 B6A356E0 000000C9 D5E3C5D9 D5C1D300 *.................t.\...INTERNAL.* 00F4E241
-0060 00000000 00000000 00000000 F4E24000 00000000 00000000 00000000 000000C1 *............4SA* 00F4E261
-0040 E2C3C200 FB028000 FDB30000 00000000 00000000 00000000 00000000 00000000 *SCB.............................* 00F4E281
-0020 00000000 02000000 0100FF00 0000007F F18E10C0 80000028 E66A0000 00000000 *..............."1..{....W.......* 00F4E2A1

0000 00000000 4D1138CA 30B230C6 0AB4A400 00000080 9FDA18CA 30B20E00 00000000 *....(......F..u.................* 00F4E2C1
0020 9FD0C0FF FF010000 00000000 9FDB6000 2600C600 00000000 00000000 9FE04000 *.}{...........-...F..........\ .* 00F4E2E1
0040 00000000 00000000 00000040 00000002 78760002 78472800 00038000 00000000 *...........* 00F4E301
0060 00000000 00000000 00000000 00000000 F9DB4000 00000000 00000000 00000000 *................9.* 00F4E321
0080 00000700 00000000 00000000 098DA600 00000000 00000000 00000000 00000000 *..............w.................* 00F4E341
00A0 9FEAF8FF FFFFFF00 00000000 00000000 00000000 00000002 8040807F FCC0007F *..8...................... .".{."* 00F4E361
00C0 FD7B6000 02000100 07000200 9FEB0800 00000000 00000000 00000000 9FF890C0 *.#-..........................8.{* 00F4E381
00E0 00000002 C2D00000 00000000 000000CA 30B23049 6D1DA300 00000000 00000000 *....B}.............._.t.........* 00F4E3A1

REG 1 00000000_2AA00740

64-bit data follows:

REGDATA 00000000_2AA00740

-0080 00000000 29992B78 00000000 2A8411D0 00000000 00000002 00000000 29390988 *.....r.......d.}...............h* 2AA006C0
-0060 00000000 2A1E7564 00000000 2AA00690 00000000 00089FC4 00000000 2AA00048 *.......................D........* 2AA006E0
-0040 00000000 2AA00100 00000000 2A1E77A8 00000000 2AA00048 00000000 00000000 *...............y................* 2AA00700
-0020 00000000 2AA00100 00000000 00000000 00000000 2AA00690 00000000 00000000 *................................* 2AA00720

0000 2A1E787C AAA00840 00000000 00000000 00000000 00000000 00000000 00000000 *...@...* 2AA00740
0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 2AA00760
0040 - 00FF LINES SAME AS ABOVE 2AA00780

24-bit data cannot be accessed

Figure 5. Storage report for a task that has experienced a program check - part 4

Licensed Materials – Property of IBM

Chapter 5. Dealing with CICS system abends 51

About this task

After you find which task was in error from the kernel’s task summary (see
“Finding which tasks are associated with the error” on page 44), you need to find
out which module was in error. If you report a problem to the IBM Support
Center, the information you need to provide includes the module name.

Figure 6 shows a typical kernel linkage stack.

Procedure
1. Find the task number of the task in error from the KE_NUM column, and use

this as an index into the linkage stack entries. These are shown in the dump
after the task summary.

2. When you have found the task number, look at the TYPE column. The TYPE
column, as shown in the example, can contain any of the following entries:
v Bot marks the first entry in the stack.
v Dom marks a stack entry caused by a domain call.
v Sub marks a stack entry caused by a subroutine.
v Lifo marks a stack entry caused by a LIFO module.
v Int marks a call to an internal procedure identified to the kernel.

3. The modules and subroutines are shown in the listing in the order in which
they were invoked, so the first module you see is at the bottom of the stack,
and the second module is next from bottom. You often see DFHKETA and
DFHDSKE, respectively, in these two positions.
The last module or subroutine in the listing is at the top of the stack, and it
represents the last call that was made before the dump was taken. Assuming
that the system abend caused the dump to be taken, this is likely to be a
routine associated with dump domain.
In the example in Figure 6, program DFHAPLI1 is shown to be in error.

4. If module DFHAPLI or DFHAPLI1 is flagged as in error, consider first whether
an application is the cause of the failure. DFHAPLI is the application language
interface program, and it is on the linkage stack whenever an application is
being executed. If an application is the cause of the error, it is your
responsibility to correct the problem.

5. If an application is not the cause of the error, or the module flagged in error is
not DFHAPLI or DFHAPLI1, report this module name to the IBM Support

KE_NUM @STACK LEN TYPE ADDRESS LINK REG OFFSET ERR NAME

0090 2A83F040 01E0 Bot 28F03C00 A8F04230 000630 DFHKETA
0090 2A83F220 03E0 Dom 28F20900 A8F20B76 000276 DFHDSKE
0090 2A83F600 1130 Dom 28F54BC8 A8F56168 0015A0 DFHXMTA
0090 2A840730 0AA0 Dom 296150C8 A9616546 00147E DFHPGPG

Int +0003CA A96152AE 0001E6 INITIAL_LINK
0090 2A8411D0 0E90 Dom 2998BA00 A9380644 000000 *Y* DFHAPLI1

Int +002B4E A998C77A 000D7A CICS_INTERFACE
0090 2A842060 06C0 Sub 29380A58 A9381E2E 0013D6 DFHSRP
0090 2A842720 1290 Dom 28FAB880 28FB02CD 004A4D DFHMEME

Int +003D82 28FABB6A 0002EA SEND
Int +001840 28FAF6EA 003E6A CONTINUE_SEND

0090 2A8439B0 06F0 Dom 2906B5B8 A906D0E0 001B28 DFHDUDU
Int +000C6C A906B7CA 000212 SYSTEM_DUMP
Int +001AE6 A906C63E 001086 TAKE_SYSTEM_DUMP

Figure 6. Example of a kernel linkage stack showing a task in error

Licensed Materials – Property of IBM

52 CICS TS for z/OS 5.3: Problem Determination Guide

Center, together with the other information described in “Using the PSW to
find the offset of the failing instruction.”

What to do next

You can sometimes use the technique described in this section to gather the
information that the IBM Support Center needs to resolve a CICS system abend.
However, you should normally use the summary information presented in the
formatted output for the kernel domain storage areas. This method is valid only if
the abend has occurred in a module or subroutine that has a kernel linkage stack
entry. This is the case only where the module or subroutine has been invoked by
one of the following mechanisms:
v A kernel domain call
v A kernel subroutine call
v A call to an internal procedure identified to the kernel
v A LIFO call

Routines that have been invoked by assembler language BALR instructions do not
have kernel linkage stack entries.

Using the PSW to find the offset of the failing instruction
You can calculate the offset of the failing instruction from the PSW, although in
practice you seldom need to because the offset is quoted in the storage report for
the task.

Before you begin

For details about format of the PSW, or how to calculate the offset, see
z/Architecture Principles of Operation.

About this task

If you report a problem to the IBM Support Center, the information you need to
provide includes the instruction at the offset.

Procedure
1. Locate the address of the failing instruction in the dump, and find out what

instruction is there. It is sufficient to give the hex code for the instruction, but
make sure you quote as many bytes as you found from the PSW instruction
length field.

2. Identify the abend type from the program interrupt code, so that you can
report that too. For example, it might be protection exception (interrupt code
0004), or data exception (interrupt code 0007). For a list of program interrupt
codes (PICs), see “What type of program check occurred?” on page 31.

Finding the PTF level of the module in error
The IBM Support Center needs to know the PTF level of any module reported to
them as being in error. You can find this in the loader domain program storage
map summary, which you can get using the dump formatting keyword LD.

Figure 7 on page 54 shows some entries from a typical program storage map
summary.

Licensed Materials – Property of IBM

Chapter 5. Dealing with CICS system abends 53

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7832

Note: Entries made in the R/A MODE OVERRIDE columns are the value of the
RMODE and AMODE supplied on the DEFINE_PROGRAM call for that program.
If a REQUIRED_RMODE or REQUIRED_AMODE is not specified, a dsah symbol
(–) is shown in the appropriate column. If AMODE_ANY or RMODE_ANY is
specified, ANY is shown in the appropriate column. Other values are shown as
specified.

==LD: PROGRAM STORAGE MAP

PGM NAME ENTRY PT CSECT LOAD PT. REL PTF LVL. LAST COMPILED COPY NO. USERS LOCN TYP ATTRIBUTE R/A MODE APE ADDRESS

DFHCSA 80041800 DFHCSAOF 00041000 680 I0709192 I 07/09 20.52 1 1 CDSA RPL RESIDENT 24 24 00000048_40A01D88
DFHCSA 00041600 680 I0709192 I 07/09 20.52 24 24

DFHTCP 80041C18 DFHTCP 00041B00 680 I2009070 I 20/09 07.50 1 1 CDSA RPL RESIDENT 24 31 00000048_40A046C8
DFHTCORS 00041EB0 680 I2009070 I 20/09 07.50 24 24
DFHTCCOM 00042188 680 I2009070 I 20/09 07.50 24 24
DFHTCCSS 00042550 680 I2009070 I 20/09 07.50 24 24
DFHTCTI 000426C8 680 I2009070 I 20/09 07.50 24 24
DFHTCSAM 00042750 680 I2009070 I 20/09 07.50 24 24
DFHTCAM 00042B60 680 I2009070 I 20/09 07.50 24 24
DFHTCTRN 00043A50 680 I2009070 I 20/09 07.50 24 24

DFHTCTDY 00044720 DFHTCTDY 00044700 680 I0709192 I 07/09 20.14 1 1 CDSA RPL RESIDENT 24 24 00000048_40A04848
DFHDUIO 80080000 DFHDUIO 00080000 680 I2009070 09/20/12 07.31 1 1 RDSA ANY REUSABLE 24 31 00000048_40A01A88

IPRDUIO 00081688
DFHAIP 00082118 DFHEIP 00082000 680 I0210191 I 02/10 20.04 1 2 RDSA ANY RESIDENT 24 24 00000048_40A01C08

DFHEIPA 00086B70 680 I2009070 I 20/09 07.57 24 24
DFHEIG 00087138 680 I0210191 I 02/10 19.47 24 24
DFHEIGA 00089AC8 680 I2009070 I 20/09 07.58 24 24
DFHCPI 0008A008 680 I0210191 I 02/10 19.43 24 24
DFHAICBP 0008AF60 680 I0709192 I 07/09 20.22 24 24

DFHLIRET 8008B314 DFHLIRET 0008B200 680 I0709192 I 07/09 21.15 1 1 RDSA ANY RESIDENT 24 24 00000048_40A037C8
DFHDLI 8008B514 DFHDLI 0008B400 680 I2009070 I 20/09 07.28 1 1 RDSA ANY RESIDENT 24 ANY 00000048_40A05448

.

.

.

Figure 7. Part of the loader domain program storage map summary

Licensed Materials – Property of IBM

54 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 6. Dealing with waits

This section gives you information about what to do if you are aware that a task is
in a wait state, or if CICS has stalled.

It contains the following topics:
v “Techniques for investigating waits” on page 56
v “Investigating terminal waits” on page 63
v “Investigating storage waits” on page 73
v “Investigating temporary storage waits” on page 75
v “Investigating enqueue waits” on page 77
v “Investigating interval control waits” on page 81
v “Investigating file control waits” on page 87
v “Investigating loader waits” on page 100
v “Investigating lock manager waits” on page 101
v “Resolving deadlocks in a CICS region” on page 107
v “Resolving deadlocks in a sysplex” on page 111
v “Resolving indoubt and resynchronization failures” on page 111
v “What to do if CICS has stalled” on page 111

If CICS has stalled, turn directly to “What to do if CICS has stalled” on page 111.

If you have one or more tasks in a wait state, you should have already carried out
preliminary checks to make sure that the problem is best classified as a wait, rather
than as a loop or as poor performance. If you have not, you can find guidance
about how to do this in Chapter 2, “Classifying the problem,” on page 9.

You are unlikely to have direct evidence that a CICS system task is in a wait state,
except from a detailed examination of trace. You are more likely to have noticed
that one of your user tasks, or possibly a CICS user task - that is, an instance of a
CICS-supplied transaction - is waiting. In such a case, it is possible that a waiting
CICS system task could be the cause of the user task having to wait.

For the purpose of this section a task is considered to be in a wait state if it has
been suspended after first starting to run. The task is not in a wait state if it has
been attached to the transaction manager but has not yet started to run, or if it has
been resumed after waiting but cannot, for some reason, start running. These are
best regarded as performance problems. Tasks that are ready to run but cannot be
dispatched might, for example, have too low a priority, or the CICS system might
be at the MXT limit, or the CICS system might be under stress (short on storage).
If you think you might have such a problem, read Chapter 9, “Dealing with
performance problems,” on page 169.

Most tasks are suspended at least once during their execution, for example while
they wait for file I/O to take place. This is part of the regular flow of control, and
it gives other tasks a chance to run in the meantime. It is only when they stay
suspended longer than they should that a problem arises.

There are two stages in resolving most wait problems involving user tasks. The
first stage involves finding out what resource the suspended task is waiting for,
and the second stage involves finding out why that resource is not available. This

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 55

section focuses principally on the first of these objectives. However, in some cases
there are suggestions of ways in which the constraints on resource availability can
be relieved.

If you know that a CICS system task is in a wait state, it does not necessarily
indicate an error in CICS. Some system tasks spend long periods in wait states,
while they are waiting for work to do. For more information about waiting system
tasks, see “CICS system task waits” on page 146.

Techniques for investigating waits
You can investigate waits in a CICS system by online inquiry, by tracing, or by
analysis of the formatted CICS system dump. The last two techniques are, to some
extent, complementary.

Online inquiry is the least powerful technique, and it can only tell you what
resource a suspended user task is waiting for. This is enough information to locate
the failing area, but you often need to do more investigation before you can solve
the problem. The advantage of online inquiry is that you can find out about the
waiting task as soon as you detect the problem, and so you capture the data early.

Tracing can give you much more detail than online inquiry, but it involves
significant processing overhead. It must also be running with the appropriate
options selected when the task first enters a wait state, so this usually means you
need to reproduce the problem. However, the information it gives you about
system activity in the period leading up to the wait is likely to provide much of
the information you need to solve the problem.

A CICS system dump can give you a picture of the state of the CICS system at an
instant during the wait. You can request the dump as soon as you notice that a
task has entered a wait state, so it gives you early data capture for the problem.
However, the dump is unlikely to tell you anything about system activity in the
period leading up to the wait, even if you had internal tracing running with the
correct selectivity when the task entered the wait. This is because the trace table
has probably wrapped before you have had a chance to respond. However, the
formatted dump might contain much of the information you need to solve the
problem.

If you are able to reproduce the problem, consider using auxiliary tracing and
dumping in combination.

Investigating waits - online method
Online, you can use either CEMT INQ TASK or EXEC CICS INQUIRE TASK to
find out what resource a user task is waiting on. EXEC CICS INQUIRE TASK can
be executed under CECI, or from a user program. Whatever online method you
use, you need to supply the task ID of the suspended user task.

If the task is suspended, the information that is returned to you includes the
resource type or the resource name identifying the unavailable resource. CEMT INQ
TASK displays:
v the resource type of the unavailable resource in the HTYPE field.
v the resource name of the unavailable resource in the HVALUE field.

Licensed Materials – Property of IBM

56 CICS TS for z/OS 5.3: Problem Determination Guide

EXEC CICS INQUIRE TASK returns values in the SUSPENDTYPE and
SUSPENDVALUE fields which correspond to the resource type and resource name
of the unavailable resource.

HTYPE and SUSPENDTYPE, and HVALUE and SUSPENDVALUE correspond to
the values in the resource type and resource name fields of the dispatcher task
summary.

Table 10 on page 118 gives a list of all the resource types and resource names that
user tasks might be suspended on, and references showing where to look next for
guidance about solving the wait.

You probably need a system dump of the appropriate CICS region to investigate
the wait. If you do not yet have one, you can get one using CEMT PERFORM SNAP or
CEMT PERFORM DUMP - but make sure the task is still in a wait state when you take
the dump. You subsequently need to format the dump using keywords for the
given resource type. Advice on which keywords to use is given, where
appropriate, in the individual sections.

Investigating waits using trace
You can find detailed information about the suspension and resumption of tasks
during a run of CICS by studying the trace table. Tracing must, of course, be
running when the task in question is suspended or resumed, and the tracing
options must be selected correctly.

When you look at the trace table, you can find trace entries relating to a particular
task from the task numbers that the entries contain. Each is unique to a task so
you can be sure that, for any run of CICS, trace entries having the same task
number belong to the same task.

For general guidance about setting tracing options and interpreting trace entries,
see Chapter 15, “Using traces in problem determination,” on page 237.

Setting up trace for wait problems

About this task

Gate DSSR of the dispatcher domain provides the major functions associated with
the suspension and resumption of tasks. (See Chapter 7, “How tasks are made to
wait,” on page 117.) The level-1 trace points DS 0004 and DS 0005 are produced
on entry to, and exit from, the gate.

Procedure
1. Select tracing to capture the DS level-1 trace entries to investigate a wait

problem. You need to capture trace entries for other components as well, when
you know what functional areas are involved. The functional area invoking the
task wait might, for example, be terminal control (TC), or file control (FC).
Level-1 tracing is often enough for these components. However, there are cases,
such as those relating to VSAM I/O errors where level-2 trace is needed to
examine the RPL as it is passed to VSAM.

2. Ensure that tracing is performed for the task that has the wait problem. At first
Subsequently, you can
a. Select special tracing for just that task, and disable tracing for all other tasks

by setting the master system trace flag off.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 57

b. Select special tracing for other tasks as well if it becomes clear that they are
implicated in the wait.

Interpreting trace for wait problems
For new-style trace entries, which include those for point IDs DS 0004 and
DS 0005, the function being traced is shown explicitly in the interpretation string.
The functions that can cause a task to enter a wait state are identified in the table.
Look out for these in particular in the trace entries for any waiting task you are
investigating.

Each function has its own set of input and output parameters, and these, too, are
shown in the interpretation strings of the formatted trace entries. Input parameters
are shown in the trace entries made from point ID DS 0004, and output
parameters in the trace entries made from point ID DS 0005.

The values of the parameters can provide valuable information about task waits, so
pay particular attention to them when you study the trace table.

Investigating waits - the formatted CICS system dump
If you are suitably authorized, you can request a CICS system dump using CEMT
PERFORM DUMP, CEMT PERFORM SNAP, or EXEC CICS PERFORM DUMP. Make sure that the
task in question is waiting when you take the dump, so that you capture
information relevant to the wait.

You need to use the dump formatting keyword DS to format the dispatcher task
summary. You probably need to look at other areas of the dump as well, so keep
the dump on the dump data set.

The dispatcher task summary gives you information like that shown in Figure 8.

A brief explanation of the summary information is given in the dump. A more
detailed explanation is given in the section that follows.

Dispatcher task summary fields
Detailed descriptions of the fields in the dispatcher task summary are given in the
following table.

Some of the fields relate to all tasks known to the dispatcher, and some (identified
in the table) relate only to suspended tasks. Values are not provided in fields of the
latter type for tasks that are not suspended.

===DS: DISPATCHER DOMAIN - SUMMARY
KEY FOR SUMMARY

TY = TYPE OF TASK SY=SYSTEM NS=NON-SYSTEM
S = STATE OF TASK DIS=DISPATCHABLE SUS=SUSPENDED RUN=RUNNING REE=RESUMED EARLY
P = PURGEABLE WAIT/SUSPEND Y=YES N=NO
PS = PURGE STATUS OK=NO PURGE PU=PURGED PP=PURGE PENDING
TT = TIMEOUT TYPE IN=INTERVAL DD=DEADLOCK DELAYED DI=DEADLOCK IMMEDIATE
ST = SUSPEND TYPE MVS=WAIT_MVS SUSP=SUSPEND OLDC=WAIT_OLDC OLDW=WAIT_OLDW
DTA= DISPATCHER TASK AREA
AD = ATTACHING DOMAIN
MO = TASK MODE CO=CONCURRENT QR=QUASI-REENTRANT RO=RESOURCE OWNING SZ=FEPI OWNING
RP=ONC/RPC OWNING FO=FILE OWNING

DS_TOKEN KE_TASK TY S P PS TT RESOURCE RESOURCE ST TIME OF TIMEOUT DTA AD ATTACHER MO SUSPAREA XM_TXN_TOKEN
TYPE NAME SUSPEND DUE (DSTSK) TOKEN

00000001 06A23900 SY SUS N OK - ENF NOTIFY MVS 17:50:10.056 - 06B69080 DM 06C33640 RO 06C33658
00020003 06A23580 SY SUS N OK - SUSP 17:51:23.515 - 06B69180 XM 06C06690 QR 06B69180 06C066900000022C
00040003 06A23200 SY SUS N OK - TIEXPIRY DS_NUDGE SUSP 17:50:35.325 - 06B69280 TI 003D0003 QR 06B6A530
00820003 06A30900 SY SUS N OK - ICEXPIRY DFHAPTIX SUSP 17:50:35.326 - 06B89180 XM 06C06360 QR 06B89180 06C063600000006C
00900003 06A30C80 SY SUS N OK - ICMIDNTE DFHAPTIM SUSP 17:50:29.437 - 06B89880 XM 06C06250 QR 06B89880 06C062500000005C
00940003 06B5FC80 SY SUS N OK - TCP_NORM DFHZDSP OLDW 17:51:46.369 - 06B89A80 XM 06C06470 QR 0004FC10 06C064700000008C
00980001 06C3D080 SY SUS N OK IN SMSYSTEM SUSP 17:50:10.081 17:55:10.081 06B89C80 SM 00000002 QR 06B6A580
0200000B 07128B00 NS SUS Y OK - ZCIOWAIT DFHZARQ1 SUSP 17:51:39.616 - 06B9C080 XM 06C06580 QR 06B9C080 06C065800000029C
02020009 07135080 NS RUN 06B9C180 XM 06C06140 QR 06C061400000031C

Figure 8. Dispatcher task summary

Licensed Materials – Property of IBM

58 CICS TS for z/OS 5.3: Problem Determination Guide

Table 4. Descriptions of fields shown in the dispatcher task summary

Field Description

AD The 2-character domain index identifying the domain that
attached the task to the dispatcher.

ATTACHER TOKEN A token provided by the domain that attached the task.
This token uniquely identifies the task to the attaching
domain.

DS_TOKEN A token given by the dispatcher to a domain that attaches a
task. It identifies the attached task uniquely to the
dispatcher.

DTA An address used internally by the dispatcher.

KE_TASK A value that uniquely identifies to the kernel a task that
has been created.

MO The dispatching mode for the task. There is an MVS TCB
for each mode. All tasks in a given mode are running, or
will run next, under the TCB corresponding to the mode.
The possible values are:

CO—concurrent.
FO—file owning.
QR—quasi-reentrant.
RO—resource owning.
RP—ONC RPC
SZ—FEPI owning.

P Whether at the time of the suspend call the control block
containing the definition of the transaction specified
SPURGE(YES) or SPURGE(NO). SPURGE(NO) inhibits
deadlock timeout, CEMT SET TASK PURGE, and EXEC
CICS SET TASK PURGE.

The possible values are:
Y (=YES)—the task is purgeable.
N (=NO)—the task is not purgeable.

PS The purge status of the task. The possible values are:

OK—the task has not been purged, and there is no
purge pending.

PU—the task has been purged, either by the dispatcher
or by the operator.

PP—there is a purge pending on the task.

RESOURCE NAME
(suspended tasks only)

The name of the resource that a suspended task is waiting
for. A value is given only if RESOURCE_NAME has been
included as an input parameter on the suspend call.

RESOURCE TYPE (suspended
tasks only)

The type of the resource that the task is waiting for. A
value is given only if RESOURCE_TYPE has been included
as an input parameter on the suspend call.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 59

Table 4. Descriptions of fields shown in the dispatcher task summary (continued)

Field Description

S The state of the task within the dispatcher. Possible values
are:

v DIS—the task is dispatchable. It is ready to run, and it
will be dispatched when a TCB becomes available.

v RUN—the task is running.

v SUS—the task has been suspended by any of the
functions SUSPEND, WAIT_MVS, WAIT_OLDC, or
WAIT_OLDW of gate DSSR. For an explanation of these
functions, see Chapter 7, “How tasks are made to wait,”
on page 117.

v REE—the task has been resumed early, possibly because
a RESUME request has arrived before the corresponding
SUSPEND request. (The SUSPEND/RESUME interface is
asynchronous.)

ST (suspended tasks only) The type of function that was invoked to suspend a
currently suspended task. Possible values include:

MVS—function WAIT_MVS
OLDC—function WAIT_OLDC
OLDW—function WAIT_OLDW
SUSP—function SUSPEND

For a description of the functions, see Chapter 7, “How
tasks are made to wait,” on page 117.

SUSPAREA (suspended tasks
only)

Either an address used internally by the dispatcher, or an
ECB address, or an ECB list address. These are the cases:

v Address used internally, if the task was suspended by a
SUSPEND call.

v ECB address or ECB list address, if the task was
suspended by a WAIT_MVS or WAIT_OLDW call.

v ECB address, if the task was suspended by a
WAIT_OLDC call.

Look at the value given in the ST column to see which one
of these descriptions applies.

TIME OF SUSPEND
(suspended tasks only)

The time when a currently suspended task was suspended.

The format is hh:mm:ss.mmm (hours, minutes, seconds,
milliseconds), GMT.

TIMEOUT DUE
(suspended tasks only)

The time that a suspended task is due to timeout, if a
timeout interval has been specified. A suspended task only
times out if it is not resumed before this time arrives.

The format is hh:mm:ss.mmm (hours, minutes, seconds,
milliseconds).

TT (suspended tasks only) The timeout type for the task. The possible values, where
one is given, are:

v IN—a timeout interval has been specified for the task.

v DD—deadlock action is to be delayed when the timeout
interval expires.

v DI—deadlock action is immediate when the timeout
interval expires.

Licensed Materials – Property of IBM

60 CICS TS for z/OS 5.3: Problem Determination Guide

Table 4. Descriptions of fields shown in the dispatcher task summary (continued)

Field Description

TY Whether this is a system task or a non-system task. Possible
values are:

v SY—this is a system task.

v NS—this is a non-system task.

A non-system task can be either a user written transaction,
or a CICS-supplied transaction.

Parameters and functions setting fields in the dispatcher task
summary
Many of the values shown in the dispatcher task summary are provided directly
by parameters included on calls to and from the dispatcher. If you are using trace,
you can see the values of the parameters in the trace entries, and this can be useful
for debugging.

For details of how you can use trace to investigate waits, see “Investigating waits
using trace” on page 57.

Table 5 shows the parameters that set task summary fields, the functions that use
those parameters, and the domain gates that provide the functions. Task summary
fields that are not set by parameters are also identified (by none in “Related
parameter” column).

Table 5. Parameters and functions that set fields shown in the dispatcher task summary

Field Related parameter Function Input or
output

Gate

AD DOMAIN_INDEX
INQUIRE_TASK
GET_NEXT

IN
OUT

DSBR

DTA ATTACH_TOKEN CREATE_TASK IN KEDS

DS_TOKEN TASK_TOKEN
ATTACH
CANCEL_TASK
PURGE_INHIBIT_QUERY
SET_PRIORITY
TASK_REPLY

GET_NEXT
INQUIRE_TASK

OUT
IN
IN
IN
IN

OUT
OUT

DSAT

DSBR

KE_TASK TASK_TOKEN
CREATE_TASK
CREATE_TCB
PUSH_TASK
TASK_REPLY
TCB_REPLY

OUT
OUT
IN
IN
IN

KEDS

MO MODE
ATTACH
CHANGE_MODE

GET_NEXT
INQUIRE_TASK

IN
IN

OUT
OUT

DSAT

DSBR

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 61

Table 5. Parameters and functions that set fields shown in the dispatcher task summary (continued)

Field Related parameter Function Input or
output

Gate

P PURGEABLE
SUSPEND
WAIT_MVS
WAIT_OLDC
WAIT_OLDW

IN
IN
IN
IN

DSSR

PS none

RESOURCE NAME RESOURCE_NAME
ADD_SUSPEND
SUSPEND
WAIT_MVS
WAIT_OLDC
WAIT_OLDW

GET_NEXT
INQUIRE_TASK

IN
IN
IN
IN
IN

OUT
OUT

DSSR

DSBR

RESOURCE TYPE RESOURCE_TYPE
ADD_SUSPEND
SUSPEND
WAIT_MVS
WAIT_OLDC
WAIT_OLDW

GET_NEXT
INQUIRE_TASK

IN
IN
IN
IN
IN

OUT
OUT

DSSR

DSBR

S
(see note 1)

STATE
GET_NEXT
INQUIRE_TASK

OUT
OUT

DSBR

SUSPAREA
(see note 2)

ECB_ADDRESS or
ECB_LIST_ADDRESS
(see note 3)

WAIT_MVS
WAIT_OLDC
WAIT_OLDW

IN
IN
IN

DSSR

TIME OF SUSPEND none

TASKNO none

TIMEOUT DUE
(see note 4)

none

TT
INTERVAL and
DEADLOCK_ACTION

SUSPEND
WAIT_MVS
WAIT_OLDW
WAIT_OLDC

IN
IN
IN
IN

DSSR

TY none

ATTACHER TOKEN USER_TOKEN
ATTACH
PURGE_INHIBIT_QUERY
TASK_REPLY

GET_NEXT
INQUIRE_TASK

OUT
OUT

DSAT

DSBR

ST none

Licensed Materials – Property of IBM

62 CICS TS for z/OS 5.3: Problem Determination Guide

Note:

1. Field S (for STATE) of the dispatcher task summary has a wider range of values
than parameter STATE of DSBR functions GET_NEXT and INQUIRE_TASK.
Parameter STATE can only have the values READY, RUNNING, or
SUSPENDED. For the possible values of field S, see “Dispatcher task summary
fields” on page 58.

2. Parameters ECB_ADDRESS and ECB_LIST_ADDRESS only relate to
SUSPAREA when the task has been suspended by the WAIT_MVS,
WAIT_OLDW, or WAIT_OLDC functions of gate DSSR.

3. Parameter ECB_LIST_ADDRESS is only valid for functions WAIT_MVS and
WAIT_OLDW, and not for function WAIT_OLDC.

4. If INTERVAL has been specified, the value of TIMEOUT DUE should be equal
to INTERVAL + TIME OF SUSPEND.

Investigating terminal waits
Before you begin

Read this section if you have any of the following problems:
v A task should have started at a terminal, but has failed to do so.
v A task is waiting on a resource type of KCCOMPAT, with a resource name of

TERMINAL.
v A task is waiting on a resource type of IRLINK, with a resource name of

SYSIDNT concatenated with the session name.

About this task

If you have one or more unresponsive terminals, that is terminals that are showing
no new output and accepting no input, this does not necessarily indicate a terminal
wait.

Procedure
1. If you have one or more unresponsive terminals:

a. Use CEMT INQ TERMINAL to find the transaction running at the terminal.
b. UseCEMT INQ TASK to find out what resource that task is waiting on.
c. When you know that, look at Table 10 on page 118 to find where you can

get further guidance.
2. If all the terminals in the network are affected, and CICS has stalled, read

“What to do if CICS has stalled” on page 111 for advice about how to
investigate the problem.

Results

If you have a genuine terminal wait, remember when you carry out your
investigation that terminals in the CICS environment can have a wide range of
characteristics. A terminal is, in fact, anything that can be at the end of a
communications line. It could, for example, be a physical device such as a 3270
terminal or a printer, or a batch region, or it could be another CICS region
connected by an interregion communication link, or it could be a system that is
connected by an LUTYPE6.1 or APPC (LUTYPE6.2) protocol. If LUTYPE6.1 is in
use, the other system might be another CICS region or an IMS region. With APPC
(LUTYPE6.2), the range of possibilities is much wider. It could include any of the

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 63

systems and devices that support this communications protocol. For example, apart
from another CICS region, there might be a PC or a DISOSS system at the other
end of the link.

If you eventually find that the fault lies with a terminal, or a resource such as
DISOSS, the way in which you approach the problem depends on what type it is.
In some cases, you probably need to look in appropriate books from other libraries
for guidance about problem determination.

Terminal waits - first considerations
When you investigate a terminal wait, there are preliminary considerations that
might lead to a simple solution.
v Look for an obvious physical explanation for the wait, for example, a terminal

operator has not responded to a request for input. For a printer, is it powered
off, or has it run out of paper?

v Check in the CSTL and CSNE logs for any messages. If either DFHTCP or
DFHZCP detected an error related to terminal control, a message is sent to the
CSNE log, and might also be sent to the console.
If there is a message that reports a terminal error that can be related to the task,
the message should provide more information about why the task is waiting.
For an explanation of the message, and a description of the system action in
response to the error, use the CMAC transaction or see CICS messages in
Reference -> Diagnostics.
The CSNE log entry might show that an error was detected, but that TACP or
NACP took no action. This situation might occur if the line or terminal is out of
service, or if the error actions are turned off in the user exits of DFHTEP and
DFHNEP. In this situation, the CICS code to resume the waiting task would
never run, and the task would wait indefinitely.

v Check whether any HANDLE CONDITION routines for terminal errors are
coded incorrectly. If there is an attempt to access the terminal with such an error
in a routine, the application might wait indefinitely.

v If the terminal is installed using autoinstall, check whether the system loaded
DFHZATA, the autoinstall program, or DFHZCQ, which is called by DFHZATA.
The system might fail to load DFHZATA or DFHZCQ because of a
short-on-storage condition. If so, deal with the cause of the short-on-storage
condition.
Check the delete delay that you have specified; if the delay is too short, your
system might be deleting and reinstalling terminals unnecessarily.
If storage fragmentation prevents DFHZATA or DFHZCQ from being loaded,
consider defining them as resident. However, be aware that DFHZCQ is a large
program, and check your storage requirements before making this change.

If none of the preliminary considerations apply, start a systematic investigation into
the reason for the wait.

Terminal waits - a systematic approach
You first need to determine the type of terminal involved in the wait, and the type
of access method in use for that terminal. Both of these factors influence the way
you perform problem determination.

Your strategy must then be to find where in the communication process the fault
lies. These are the basic questions that must be answered:
1. Is the problem associated with the access method?

Licensed Materials – Property of IBM

64 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html

2. If the access method has returned, or has not been involved, is terminal control
at fault?

3. If terminal control is working correctly, why is the terminal not responding?

To answer most of these questions, you will need to do some offline dump
analysis. Use CEMT PERFORM SNAP to get the dump, and then format it using the
formatting keyword TCP. Do not cancel your task before taking the dump. If you
do, the values in the terminal control data areas will not relate to the error.

What type of terminal is not responding?
You can check the terminal type either online, using a system programming
command, or offline, by looking at the appropriate TCTTE in the formatted system
dump.

Online method

Use the transaction CECI to execute the system programming command EXEC CICS
INQUIRE TERMINAL DEVICE. This returns one of the terminal types that are described
in TERMINAL resources in Reference -> System definition.

Offline method

Look at the formatted dump output you have obtained for keyword TCP. First,
identify the TCTTE relating to the terminal, from the four-character terminal ID
shown in field TCTTETI. Now look in field TCTTETT, and read the 1-byte
character that identifies the type of terminal. You can find what terminal type is
represented by the value in the field from the description given in the Data areas
in Reference -> Diagnostics.

What type of access method is in use?
You can use both an online method and an offline method for finding the type of
access method being used by the terminal that is not responding.

Online method

Use the CECI transaction to execute the system programming command EXEC
CICS INQUIRE TERMINAL ACCESSMETHOD. This returns the access method in
use by the terminal.

Offline method

You can find the access method for the terminal from the TCTTE. Look in field
TCTEAMIB, which is the byte name definition for the access method. The Data
areas in Reference -> Diagnostics relates values to access methods.

The most common access method is the z/OS Communications Server, identified
by a value of TCTEVTAM. The problem determination procedures outlined below
focus exclusively on the Communications Server. You might also find either of
these values, each being of special significance for problem determination:
v TCTEISMM, meaning that the access method is ISMM. This is used for

interregion communication, and it shows that the resource that is not responding
is a remote CICS region. In such a case, the most likely reason for the wait is
that some task in the remote region is also in a wait state. The way you deal
with this type of problem is described in “Your task is waiting on a physical
terminal” on page 72.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 65

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs4/preface.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs4/preface.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs4/preface.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs4/preface.html

v TCTELU6, meaning that you have intersystem communication (ISC). In this case,
the resource that is not responding is a remote system, and the way you deal
with the wait depends on what the remote system is. If it is a CICS system, you
need to diagnose the problem in the remote system using the techniques given
in this book. If the remote system is a non-CICS system, you might need to read
a diagnosis book from another library for advice on problem determination.

If you have any other access method, for example BSAM, you need to adapt the
guidance given here accordingly.

z/OS Communications Server in use - debugging procedures
The following information gives guidance about debugging terminal waits when
the access method is z/OS Communications Server.
1. Look in the CSNE log to see if there is an error message that explains the wait.

If it contains an error code, refer to z/OS Communications Server: SNA Messages.
2. Look for any NACP error codes in fields TCTEVRC5, TCTEVRC6, TCTEVRC7,

and TCTEVRC8 of the terminal table entry, TCTTE. Look also for any SNA
sense code in field TCTEVNSS. For an explanation of SNA sense codes, see
z/OS Communications Server: IP and SNA Codes.

Is the problem associated with the z/OS Communications
Server?
You can find the z/OS Communications Server (SNA) process status with respect
to the waiting task from fields TCTEICIP and TCTEIDIP in the TCTTE.

The following are the values you might find there, and their interpretations:
TCTECIP command request in progress
TCTEDIP data request in progress

Either of these status values indicates that a Communications Server request is in
progress, and that the communications server RPL is active. A response is expected
either from the Communications Server, or from the terminal. You can find the
address of the RPL from field TCTERPLA, unless the request was for a RECEIVE
on an APPC session, in which case you can find the RPL address from field
TCTERPLB.

If a Communications Server request is not in progress, the next field of interest is
in the Communications Server system area of the TCTTE. Find four bytes of
Communications Server exit IDs, starting at field TCTEEIDA. If any are nonzero,
the Communications Server request has completed. Nonzero values suggest that
the Communications Server is not involved in the wait. You can find the meanings
of the values from the Communications Server module ID codes list in the table
below.

If you suspect that the problem is associated with Communications Server,
consider using either CICS Communications Server exit tracing or the
Communications Server buffer tracing. Both of these techniques can give you
detailed information about the execution of Communications Server requests. For
guidance about using the techniques, read the appropriate sections in Chapter 15,
“Using traces in problem determination,” on page 237.

Licensed Materials – Property of IBM

66 CICS TS for z/OS 5.3: Problem Determination Guide

z/OS Communications Server submodule identifiers:

This table contains Product-sensitive Programming Interface information.

Hex ID Module Description

X'00' ZDSP DISPATCH
X'01' ZARQ READ /WRITE R
X'02' ZLOC LOCATE
X'03' ZDET DETACH
X'04' ZTCP TCP
X'06' ZCRQ COMMAND REQS
X'08' ZSTU STATUS CHANGE
X'09' ZTSP TERMINAL SHARING
X'0A' ZHPX HPO RPL EXEC OS ONLY
X'0B' ZISP ALLOCATE/FREE
X'0C' ZIS1 INTER SYSTEM
X'0D' ZIS2 INTER SYSTEM 2
X'0E' ZABD INVALID REQUEST/ABEND
X'10' ZATI ATI
X'11' ZATT ATTACH TASK
X'12' ZFRE FREE STORAGE
X'13' ZGET GET STORAGE
X'14' ZRAC RECEIVE ANY
X'15' ZRST RESETSR
X'16' ZRVS RECEIVE SPEC
X'17' ZRVX RECEIVE S EXT
X'18' ZSDS SEND NORMAL
X'19' ZSDX SEND DATA EXIT
X'1A' ZUCT TRANSLATION
X'1B' ZUIX USER EXIT
X'1C' ZACT ACTIVATE SCAN
X'1D' ZSDR SEND RESPONSE
X'1E' ZHPS HPO SEND/RECV CALL
X'1F' ZRPL RECV.ANY BLDER
X'20' ZAIT ATTACH INIT
X'21' ZASX ASYN COM EXIT
X'22' ZCLS CLOSE DESTIN
X'23' ZCLX CLOSE DS EXIT
X'24' ZDWE DWE PROCESS
X'25' ZLEX LERAD EXIT
X'26' ZLGX LOGON EXIT
X'27' ZLRP LOGICAL REC
X'28' ZLTX LOSTERM EXIT
X'29' ZOPN OPEN DESTINAT
X'2A' ZOPX OPEN DESTEXIT
X'2B' ZRAQ READAHEAD QUE
X'2C' ZRAR READAHEAD RET
X'2E' ZRRX REL REQUEST EX
X'2F' ZNSP NETWORK SPEC EXIT
X'30' ZRSY RESYNC
X'31' ZSAX SEND COMM EXT
X'32' ZSCX SCIP EXIT
X'33' ZSDA SEND ASYN COM
X'34' ZSKR SEND COMMAND

RESPONSE ID

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 67

Hex ID Module Description

X'35' ZSES SESSIONC COM
X'36' ZSEX SESSIONC EXIT
X'37' ZSIM SIMLOGON
X'38' ZSIX SIMLOGON EXIT
X'39' ZSLS SETLOGON START
X'3A' ZSSX SEND COM EXIT
X'3B' ZSYX SYNAD EXIT
X'3C' ZTAX TURNAROUND EXIT
X'3D' ZTPX TPEND EXIT
X'3E' ZOPA SNA OPEN ACB
X'3F' ZSHU SNA SHUTDOWN
X'40' ZQUE TERMINAL SHARING
X'41' ZEMW ERROR MESSAGE WRITER
X'42' ZSYN SYNCPOINT HANDLER
X'43' ZTRA SNA RPL TRACE
X'44' ZAND ABEND CONTROL BLOCK
X'45' ZCNA CONSOLE CONTROL
X'46' ZCNR CONSOLE REQUEST
X'47' ZCNC CONSOLE ABNORMAL

COND.
X'48' ZUAX ATTACH USER EXIT
X'49' ZUOX OUTPUT USER EXIT
X'4A' ZARL LU6.2 APPL REQUEST
X'4B' ZARM LU6.2 MIGRATION
X'4C' ZRVL LU6.2 RECEIVE
X'4D' ZRLX LU6.2 RECEIVE EXIT
X'4E' ZSDL LU6.2 SEND
X'4F' ZSLX LU6.2 SEND EXIT
X'50' ZERH LU6.2 APPL ERP
X'52' ZBKT LU6.2 BRACKET STATE

M/C
X'53' ZCNT LU6.2 CONTENTION STATE
X'54' ZCHS LU6.2 CHAIN SEND
X'55' ZCHR LU6.2 CHAIN RECEIVE
X'56' ZUSR LU6.2 CONVERSATION

STATE
X'57' ZDST SNA-ASCII TRAN ROUTINE
X'58' ZEV1 ENCRYPTION VALIDATION

1
X'59' ZEV2 ENCRYPTION VALIDATION

2
X'5E' ZXRC XRF TERMINAL RECOVERY
X'5F' ZXTS XRF TERMINAL SCAN
X'60' ZXRL LU6.2 Transaction Routing
X'61' ZINT Initialization Module Ident
X'62' ZXRT LU6.2 Transaction Routing

TOS
X'63' ZSTA LU6.2 Application Status
X'64' ZRLP LU6.2 RECEIVE post-z/OS

Communications Server
X'65' ZCRT LU6.2 RPL_B state
X'66' ZRAS LU6.2 Slow-down processing
X'67' ZXPS LU6.2 Per sess recovery
X'7D' ZRLG RESPONSE LOGGER

Licensed Materials – Property of IBM

68 CICS TS for z/OS 5.3: Problem Determination Guide

Hex ID Module Description

X'7E' ZNAC NACP
X'7F' ZRSP RESYNC SYSTEM TASK
X'80' ZATR ZATR restart deletes
X'82' ZATA ZATA autoinstall
X'84' ZATD ZATD autoinstall delete
X'86' ZGMM GOOD MORNING

TRANSACTION
X'8B' ZATS ZATS remote install entry
X'C0' ZQ00 DFHZCQ REQUEST

ROUTER
X'C1' ZQIN ZC INITIALIZE
X'C2' ZQBA ZC Bind Analysis
X'C3' ZQCH ZC CHANGE
X'C4' ZQDL ZC DELETE
X'C5' ZQIT ZC INSTALL TCTTE
X'C6' ZQRC ZC RECOVER
X'C7' ZQRS ZC RESTORE
X'C8' ZQIQ ZC INQUIRE
X'C9' ZQIS ZC INSTALL
X'C4' ZTCT DUMMY TCTTE

IDENTIFIER

z/OS Communications Server in use - is SNA LU control at fault?
The first place to look is field TCTVAA1 in the terminal control table prefix,
TCTFX. This contains either the address of the first TCTTE on the active chain, or
the value X’FFFFFFFF’. If you see the latter value, it means that terminal control
does not recognize that it has work to do. If this conflicts with the INQ TASK
report you have received that the task is waiting on some terminal related activity,
report the problem to your IBM Support Center.

If field TCTVAA1 points to a TCTTE on the active chain, check that the TCTTE of
the terminal your task is waiting for is included in the chain. You can find this out
by following the chain using the “next” pointer, field TCTEHACP of the TCTTE. If
it does not contain the address of the next TCTTE on the chain, it contains either of
these values:

X’FFFFFFFF’ this is the last TCTTE on the chain
X’00000000’ this TCTTE is not on the active chain

If you find a value of X’00000000’, report the problem to the IBM Support Center.

The z/OS Communications Server in use—is the LU at fault?
If you have found that the access method and terminal control are not causing the
wait, the terminal itself must be waiting for some reason. You need now to look at
some fields in the TCTTE for the terminal to find its status.

CICS system dumps contain an index to the SNA LU entries. It appears in the
terminal control (TCP) summary section of the dump.

Information about the status and attributes of the SNA LUs appears in an
interpreted form at the end of the control block for each terminal entry. The
information shown depends on the attributes of the terminal.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 69

The example in Figure 9 shows the index followed by a terminal entry with its
interpreted status and attribute information.

The values that are given below for fields in the TCTTE are not the only
possibilities, but they show important things about the terminal status. If you find
any other values for these fields, look in the CICS Data Areas to find out what they
mean.

The following are the questions that need to be asked, and some values that could
provide the answers.
1. Is the terminal in service? Look at field TCTTETS of the TCTTE, to find the

terminal status. The values that indicate why a terminal was failing to respond
include:

TCTTESPO = 1 and TCTTESOS = 1 terminal out of service
TCTTESOS = 1 only terminal in error recovery

Look also at field TCTESEST, to find the session status with respect to
automatic transaction initiation (ATI) for the terminal. Some of the values you
might see are:

TCTESLGI = 0 CREATESESS(NO) in TYPETERM definition
TCTESLGI = 1 CREATESESS(YES) in TYPETERM definition
TCTESLGT = 1 recovering CREATESESS

A value of TCTESLGI = 0, with TCTESLGT = 0, too, shows that
CREATESESS(NO) has been specified in the TYPETERM definition. This means
that EXEC START requests and ATI requests cannot cause a session to be
created. The request is either queued or rejected when no session is currently
established. This can put a terminal into an indefinite wait state, especially if
the terminal is a printer.
A value of TCTESLGI = 1 shows that CREATESESS(YES) has been specified in
the TYPETERM definition. This means that CICS is allowed to create sessions
for the terminal, so the CREATESESS status is not the cause of the wait.

===TCP: TERMINAL CONTROL SUMMARY (SNA LUs)
TERMINAL TASK IN ERROR ACTIVE RPL WORK ZNAC INTERVENTION AUTOINSTALL

TERMID TYPE LOGGED ON ATTACHED SERVICE STATS. REQUEST TO DO QUEUED REQUIRED ACTIVITY
R51 C0 NO NO YES 00000000 NO NO NO NO N/A
R52 C0 NO NO YES 00000000 NO NO NO NO N/A
R53 C0 NO NO YES 00000000 NO NO NO NO N/A
R54 C0 NO NO YES 00000000 NO NO NO NO N/A
R55 C0 NO NO YES 00000000 NO NO NO NO N/A
S51 C0 NO NO YES 00000000 NO NO NO NO N/A
S52 C0 NO NO YES 00000000 NO NO NO NO N/A
S53 C0 NO NO YES 00000000 NO NO NO NO N/A
S54 C0 NO NO YES 00000000 NO NO NO NO N/A
S55 C0 NO NO YES 00000000 NO NO NO NO N/A
-AAA C0 NO NO YES 00000001 NO NO NO NO N/A
-AAB C0 NO NO YES 00000000 NO NO NO NO N/A
TCTTE.R51 03B5C420 TCT TERMINAL ENTRY

0000 D9F5F140 C0000504 03B5C424 00000000 00000000 00000000 00000000 00080000 *R51D.....................* 03B5C420
0020 00000000 0C000000 C5D5E400 00008080 00000000 00000000 00000000 00000000 *........ENU.....................* 03B5C440
0040 00000000 00000000 00000000 00000000 00000000 01D80000 00000000 03B22030 *.....................Q..........* 03B5C460
0060 00000000 00000000 00000000 03B58690 00000000 00000000 03B46390 00000000 *..............f.................* 03B5C480
0080 00000000 00000000 00000000 00000000 03B430F8 00000000 00000000 00000000 *...................8............* 03B5C4A0
00A0 00000000 00000000 00000000 00840000 00000000 00000000 00000000 00000000 *.............d..................* 03B5C4C0
00C0 00000000 80000000 00000000 00000000 00000000 0000003B 01000000 00000000 *................................* 03B5C4E0
00E0 10000000 00000000 00000000 03B5C618 00000000 00000000 00000000 00000000 *..............F.................* 03B5C500
0100 3A008400 00000000 00000000 00000000 00000000 FFFF0000 00000000 00000000 *..d.............................* 03B5C520
0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B5C540
0140 10001000 10000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B5C560
0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B5C580
0180 08090000 00000000 00000000 00000000 00000000 00000000 00000000 03B59421 *..............................m.* 03B5C5A0
01A0 00440000 00001008 D4FD6038 80800014 00000000 00000000 00000000 00000000 *........M.-.....................* 03B5C5C0
01C0 00000000 00000000 00000000 00000000 00000000 00000000 *........................ * 03B5C5E0
TERMID = R51 EXIT FOOTPRINTS (HEX) = 00000000
IN SERVICE TCTTECA (NO TASK ATTACHED)
TCTECCV (STARTED BY TTI) TCTECSM (CA-MODE)
INPUT STATISTICS (DECIMAL) = 00000000 OUTPUT STATISTICS (DECIMAL) = 00000000
ERROR STATISTICS (DECIMAL) = 00000000 TCTE1RY (CICS IS PRIMARY)
TCTELSE (LUC CONTENTION LOSER) TCTESBIF (SBI/BIS SUPPORTED)

Figure 9. Terminal index and terminal entry with interpreted information

Licensed Materials – Property of IBM

70 CICS TS for z/OS 5.3: Problem Determination Guide

A value of TCTESLGT = 1 means that the session is in error recovery. This
could explain why there is no response from the terminal.

2. Has a task been created for this terminal? Look first at field TCTTECA of the
TCTTE.
v If its value is nonzero, there is a task attached to the terminal. You can tell

whether the task has been started from a terminal, or by ATI, from field
TCTEICCV:

TCTECCV = 0 the task has been started by a terminal
TCTECCV = 1 the task has been started by ATI

v If its value is zero, look in fields TCTTEIC and TCTECTI. The values you
might find there are:

TCTTEOIC = 1 ATI is waiting to start
TCTECTI = 1 there is ATI work for ZCP to do

3. Is there a task related to the terminal? You can find the task session state with
SNA from field TCTEMOST, and, if bracket protocol is required (from field
TCTEIBPE), its conversation state with the terminal from field TCTEIINB. The
significant values that might provide further clues to the cause of the wait are:

TCTECSM = 1 the task is in conversation with the terminal
TCTECSM = 0 terminal control will accept new tasks from

the terminal

Look now at field TCTEIBPE, to see if bracket protocol is required:
TCTEBPE = 1 bracket protocol is required

If you find that bracket protocol is required, look in field TCTEIINB:
TCTEINB = 0 a conversation has not been started
TCTEINB = 1 a task is in conversation with the terminal

4. Is the terminal logged on to CICS? Look first at the node session status in the
TCTTE. The three stages of session creation are represented by three separate
bits, in fields TCTEILOS, TCTEIOPD, and TCTEINSD:

TCTELOS = 1 the node is logged on
TCTEOPD = 1 z/OS Communications Server OPNDST macro issued
TCTENSD = 1 Start Data Traffic sent

If all three bits are set, so the value of the byte is TCTENIS, the node is in
session.
You next need to see if the terminal is logging off, or if it has already been
logged off. The fields of interest are TCTEINND, TCTEINBD, and TCTEIPSA.
The values to look for are:

TCTENND = 1 the terminal is to be logged off
TCTENBD = 1 the terminal is logging off because of an error
TCTEPSA = 1 the session with the terminal ended abnormally

—look for any explanatory message on CSMT

If any of these bits are set, the terminal might not be able to respond to the
waiting task.

5. Should the terminal respond to the task? Field TCTEIPRA tells you this:
TCTEPRA = 1 the terminal should respond

If the values you have found in all these fields suggest that the terminal status is
normal, the terminal is probably waiting for some activity to complete before it
responds. The type of investigation you need to do next depends on the type of
terminal involved in the wait. You should already have determined this, for
example by using the system programming command EXEC CICS INQUIRE
TERMINAL DEVICE.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 71

Tools you can use for debugging terminal waits when the
z/OS Communications Server is in use

Among your debugging tools, two are likely to be of particular use for
investigating terminal waits in an SNA environment.

These tools are as follows:
v Communications Server SNA buffer trace. This trace feature is part of the

Communications Server itself and you must see the appropriate manual in the
Communications Server library for details of how to use it.

v CICS Communications Server exit trace. This trace feature is part of CICS and
you can control it from the CETR panel.

For a description of the use of these two types of tracing in CICS problem
determination, see Chapter 15, “Using traces in problem determination,” on page
237.

Your task is waiting on a physical terminal
If your task is waiting on a physical terminal, the terminal should first be checked
physically to see why it is not responding. If the terminal is at a remote location,
you need to ask someone else to check it for you. Some possibilities are:
v A terminal with a keyboard might be waiting for an operator to enter some data.
v A printer might have been powered off, or it could have run out of paper.

Consider also the possibility of hardware error in the terminal.

If a session has been acquired and it has not failed, your task is likely to be
waiting for some response from a task in the other region. This can apply to any of
the interregion or intersystem communication activities—function shipping,
asynchronous processing, transaction routing, distributed transaction processing, or
distributed program link. No matter which of these applies, it is most likely that
the other region is not responding because the related task there has been
suspended.

You need to identify the related task in the remote region, and find out the
resource it is waiting on. When you have done that, see Table 10 on page 118 to
find out which part of this section to turn to next.

Investigating the related task in a remote region
You can identify the region that is not responding to your local task, the related
task in the remote region that is not responding, and the resource that the remote
task is waiting on.

Procedure
1. Identify the region that is not responding to your local task.
v If the task is using interregion communication (IRC), look first at the name

of the resource being waited on, returned together with resource type
IRLINK by CEMT INQ TASK. The first four characters give you the
SYSIDNT of the remote CICS region.

v If the task is using intersystem communication (ISC), you need to look in
field TCTTEIST of the TCTTE, which points to the ISC system table entry.
The first field in the system table entry is the identity of the remote region.

Licensed Materials – Property of IBM

72 CICS TS for z/OS 5.3: Problem Determination Guide

2. When you have identified the region, take a system dump of it. You can do
that either by using the CEMT PERFORM DUMP command in that region, or by
using the MVS DUMP command.

3. Take a system dump of the local region.
4. Format the dumps using the formatting keyword DS to get a summary of the

tasks in each region, and TCP to get the TCTTEs.
5. Find the TCTTE for the task in the local region. The way you find the TCTTE

for the task in the remote region depends on whether you are using LUTYPE6.1
sessions (or IRC) or APPC sessions:
v For LUTYPE6.1 sessions and IRC sessions, look in local control block

TCTENIB, the TCTTE extension for the NIB descriptor, at field TCTESQP.
This gives you the session qualifier pair for the session. It provides the
terminal ID associated with the local task, concatenated with the terminal ID
associated with the remote task. Now go to the dump of the remote region,
and use the terminal ID to locate its TCTTE. Check in field TCTESQP of
TCTENIB to make sure that the session qualifier pair matches that in the
local system. It should be made up of the same terminal IDs, but with their
order reversed.

v For APPC sessions, look in local control block TCTTELUC, the APPC
extension, in field TCTESII. Ignoring the high-order byte, this gives you the
session instance identifier of the session. Now go to the dump of the remote
region, and use the session instance identifier you have found for the remote
task to locate its TCTTELUC. The TCTTE precedes the TCTTELUC in the
dump.

6. When you have confirmed that you have located the correct TCTTE, look in
field TCTTECA. This gives you the TCA address of the task that is not
responding.

7. Using the TCA address as the entry point, you can now investigate the reason
why the task has not responded. It is very likely that it has been suspended
because some resource is unavailable. Look in the dispatcher and transaction
manager summaries. If you can identify your task, you can see what resource it
is waiting on.

8. When you have identified the resource, turn to the appropriate section in this
section for guidance about investigating waits on that resource.

Investigating storage waits
If a task is waiting for a long time on any of the resource types CDSA, RDSA,
SDSA, UDSA, ECDSA, ERDSA, ESDSA, ETDSA, EUDSA, GCDSA, GUDSA, or
GSDSA, you can use a CICS system dump to investigate further.

About this task

Waits on these resources occur when tasks make unconditional storage requests
(SUSPEND=YES) that cannot be satisfied. For storage requests below the 16 MB
line, waits can be on the CDSA, RDSA, SDSA, or UDSA. For storage requests
above 16 MB but below 2 GB, waits can be on the ECDSA, ERDSA, ESDSA,
ETDSA, or EUDSA. For storage requests above the bar, waits can be on the
GCDSA, GUDSA, or GSDSA.

If tasks make conditional storage requests (SUSPEND=NO), tasks are not
suspended on these resources. If the request cannot be satisfied, an exception
response is returned.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 73

CICS automatically attempts to relieve storage when it is under stress, for example
by releasing storage occupied by programs whose current use count is 0. Also, if a
task waits for storage longer than the deadlock timeout parameter specified in the
installed transaction definition, the task might be automatically purged. Certain
conditions prevent purging of a task, for example, a deadlock timeout value of 0,
or a specification of SPURGE(NO).

The most likely reasons for extended waits on storage requests are as follows:
v The task issued an unconditional GETMAIN request for an unreasonably large

amount of storage.
v The task issued an unconditional GETMAIN request for a reasonable amount of

storage, but the system has too little available. The system might be approaching
a short-on-storage (SOS) condition, or the storage might be too fragmented to
satisfy the request.

Procedure
1. Produce a CICS system dump, and format it using the formatting keyword SM.
2. Interpret the dump to investigate the problem.

a. Was the request for too much storage? Look in the SM suspend queue
summary.
This summary includes the number of bytes requested by every task that
the storage manager has suspended. You can see whether any task made a
GETMAIN request for an unreasonably large amount of storage. For
example, the following is the dump output in the SM suspend queue
summary when task 41 requests 10,000,000 bytes:
==SM: Suspend queue summary

KE Task Tran # Susptok Subpool DSA Request

053E5400 0000041 04080011 U0000041 EUDSA 10000016

If the suspended task made a reasonable GETMAIN request, investigate
whether the system is approaching an SOS condition.

b. Is the storage close to being exhausted? Look at the DSA summary in the
formatted dump.
This summary shows the current free space in each DSA, both in bytes and
as a percentage of the total storage. It also shows the size of the largest free
area, that is, the biggest piece of contiguous storage. (In this context,
contiguous storage means storage that is not fragmented by other records. It
is accepted that records too large to fit in a single CI can be split across two
or more CIs that are not necessarily contiguous.)
If the largest free area is smaller than the requested storage, this is probably
the reason why the task cannot obtain its requested storage.
If the amount of free space is unexpectedly small, look at the task subpool
summary. If a task has made an unusually large number of GETMAIN
requests, this might indicate that the task is looping. A looping task might
be issuing GETMAIN requests repetitively, each for a reasonable amount of
storage, but collectively for a very large amount. If you find evidence for a
looping task, see Chapter 8, “Dealing with loops,” on page 149 for more
information. If the task made a reasonable storage request and the system
seems to have sufficient free storage, investigate whether fragmentation of
free storage is causing the GETMAIN request to fail.

c. Is fragmentation of free storage causing the GETMAIN request to fail? Look
at the DSA summary in the formatted dump. If the summary shows that the

Licensed Materials – Property of IBM

74 CICS TS for z/OS 5.3: Problem Determination Guide

current free space is significantly greater than the largest free area, it is
likely that the DSA has become fragmented.

Investigating temporary storage waits
If a user task is waiting on a resource type that starts with TS, showing that it is
for temporary storage, the following information describes possible reasons for the
wait.

About this task

Enqueues on temporary storage should be held in retained state, so no user task
should ever wait on a resource type of ENQUEUE with a value of TSNQ
(temporary storage enqueue). If you have this resource type, see “Investigating
enqueue waits” on page 77.

Procedure
v Resource type TSAUX indicates that a task is waiting because it has made an

unconditional request for temporary storage, and the request cannot be met
because insufficient auxiliary storage is available. Take the following actions:
1. Get a system dump and format it using the formatting keyword TS to show

the temporary storage control blocks, as well as SM and KE as the
information for these components could be useful.

2. Analyze the dump using the help given in “Is temporary storage close to
being exhausted?” on page 77 and “Is fragmentation of unallocated storage
causing the WRITEQ TS request to fail?” on page 77.

These are the two most likely reasons why a task that has issued an
unconditional WRITEQ TS request might be suspended on resource type
TSAUX:
1. The task has issued a request requiring too large a piece of temporary

storage.
2. The task has issued a request requiring a reasonable amount of temporary

storage, but there is too little available.

This could indicate that the amount of auxiliary storage is becoming exhausted.
Otherwise, it could be that there is quite a large amount of auxiliary storage left,
but the storage is too fragmented for the request to be satisfied.
The task has issued an EXEC CICS WRITEQ TS command, without specifying
NOSUSPEND and without any code to handle the NOSPACE condition. If
SPURGE(YES) is defined for the task on the CEDA DEFINE TRANSACTION command,
and a deadlock timeout interval other than 0 has been specified, the task is
purged when that time expires. Otherwise, it is not purged, and is liable to be
suspended indefinitely.
A task that makes a conditional temporary storage WRITEQ TS request
(NOSUSPEND specified) is not suspended if the request cannot be met. Instead,
if the required auxiliary storage is not available, an exception response is
returned to it. There might still be a suspension for another reason - for
example, the temporary storage program itself might become suspended after
issuing a GETMAIN, if CICS went short on storage.

v Resource type TSBUFFER indicates that the task that is waiting has issued an
auxiliary temporary storage request, but the buffers are all in use. If you find
that tasks are often made to wait on this resource, consider increasing the
number of auxiliary temporary storage buffers (system initialization parameter
TS).

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 75

v Resource type TSEXTEND indicates that the waiting task has issued a request
to extend the auxiliary temporary storage data set, but some other task has
already made the same request. The wait does not extend beyond the time taken
for the extend operation to complete. If you have a task that is waiting for a
long time on this resource, check if there is a hardware fault or a problem with
VSAM.

v Resource type TSIO indicates that the task is being made to wait while physical
I/O takes place during an auxiliary temporary storage read or write. If there is
an extended wait on this resource, check if there is a hardware fault or a
problem with VSAM.

v Resource type TSMAINLM indicates that the task that is waiting issued a main
temporary storage request, but the request cannot be met because insufficient
storage is available. If you find that tasks are often made to wait on this
resource, check for large temporary storage queues that could be deleted, or
consider increasing the limit for the storage that is available for main temporary
storage queues to use (system initialization parameter TSMAINLIMIT).

v Resource type TSPOOL indicates that the maximum number of concurrent
requests (10) for a temporary storage pool in the coupling facility has been
reached. The task resumes when one of the requests completes.

v Resource type TSQUEUE indicates that the waiting task has issued a request
against a temporary storage queue that is already in use by another task.
The latter task has the lock on the queue. The length of time that a task has the
lock on a temporary storage queue depends on whether or not the queue is
recoverable. If the queue is recoverable, the task has the lock until the logical
unit of work is complete. If it is not recoverable, the task has the lock for the
duration of the temporary storage request only.
If tasks in your system are frequently made to wait on temporary storage
queues, consider the following:
– Are tasks that are performing operations on the same temporary storage

queue intended to do so, or is the ID of the queue unintentionally not
unique?

– Is it possible to create more temporary storage queues to reduce the
contention between tasks?

– If the queue in question is recoverable, is it possible to make tasks relinquish
control of it more quickly? Consider reducing the size of UOWs, or making
conversational tasks pseudoconversational.

v Resource type TSSHARED indicates that a shared temporary storage request is
being processed asynchronously. The task is resumed when the request is
complete. The logic that determines whether a request is processed
synchronously or asynchronously is outside CICS control.

v Resource type TSSTRING indicates that the task is waiting for an auxiliary
temporary storage VSAM string. If you find that tasks frequently wait on this
resource, consider increasing the number of temporary storage strings (system
initialization parameter TS).

v Resource type TSWBUFFR indicates that the waiting task has issued an
auxiliary temporary storage request, but the write buffers are all in use. You
have no control over how temporary storage allocates read buffers and write
buffers from the buffer pool, but if you find that tasks are often made to wait on
this resource, increasing the number of auxiliary temporary storage buffers
(system initialization parameter TS) should help solve the problem.

Licensed Materials – Property of IBM

76 CICS TS for z/OS 5.3: Problem Determination Guide

Is temporary storage close to being exhausted?
It could be that your task has made a reasonable request for temporary storage,
but the amount of unallocated space is close to exhaustion.

To see if this could be the cause of the wait, look at the temporary storage
summary in the formatted dump. If the current free space is very small, this is
likely to be the reason why the task cannot obtain its requested temporary storage.
In such a case, consider defining secondary extents for the data set.

Look also at the trace. If a task has made an unusually large number of WRITEQ
TS requests, it could be looping. A looping task might be issuing WRITEQ TS
requests repetitively, each for a reasonable amount of storage, but collectively for a
very large amount. If you find evidence for a looping task, turn to Chapter 8,
“Dealing with loops,” on page 149.

If your task has made a reasonable request and the system seems to have sufficient
unallocated temporary storage, you next need to see if fragmentation of
unallocated storage is causing the WRITEQ TS request to fail.

Is fragmentation of unallocated storage causing the WRITEQ
TS request to fail?

You can tell whether fragmentation of unallocated temporary storage is causing the
WRITEQ TS request to fail by looking at the temporary storage summary in the
dump.

The following fields in the summary are of interest should your task be suspended
on resource type TSAUX:
Number of control intervals in data set:
Number of control intervals currently in use:
Available bytes per CI:

For control intervals of 4K, the available bytes per CI figure is 4032.

If your task is attempting to a write a record that is smaller than or equal to the
available bytes per CI figure (including its record header which is 28 bytes
long), this means that no control interval has the required amount of contiguous
space to satisfy the request.

If your task is attempting to write a record that is longer than the available bytes
per CI figure, CICS splits the record into sections of a length equal to this figure.
CICS then attempts to store each section in a completely empty control interval,
and any remaining part of the record in a control interval with the contiguous
space to accommodate it. If your task is waiting on resource type TSAUX after
having attempted to write a record longer than the available bytes per CI figure,
either of the following has occurred:
v There are not enough available completely empty control intervals to

accommodate all the sections
(CIs in data set - CIs in use) < (record length / available bytes per CI)

v No control interval has enough contiguous space to accommodate the remainder.

Investigating enqueue waits
A task is suspended by the enqueue domain if it requests access to a resource on
which another task already holds an enqueue (lock).

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 77

About this task

There are two ways in which you can discover the owner of the enqueue that the
task is waiting on:

Procedure
v Use the CEMT INQUIRE UOWENQ command. For an example of how to use this

command to discover the owner of an enqueue, see “Resource type ENQUEUE”
on page 144. For definitive information about CEMT INQUIRE UOWENQ, see CICS
Supplied Transactions.
Do not use the EXEC CICS ENQ command for recoverable resources.

v Use the NQ section of a system dump if you have an enqueue wait for one of
the following resource names:
– ISSSENQP
– JOURNALS
– KCADDR
– KCSTRING
– LOGSTRMS

Some types of enqueue wait are not displayed by the CEMT INQUIRE
UOWENQ command. In these cases, you can use a system dump to identify the
owner of the enqueue (for an example, see “Using a system dump to resolve
enqueue waits”) .

Results

It is possible for an enqueue wait to be caused by a deadlock. For more
information on how to resolve a deadlock, see “Resolving deadlocks in a CICS
region” on page 107.

Using a system dump to resolve enqueue waits
The CEMT INQUIRE UOWENQ (or CEMT INQUIRE ENQ) command does not return
information about enqueues on some types of resources.

Table 6 shows the resources that this applies to.

Table 6. Resources for which INQUIRE UOWENQ does not return information

Resource name Type of resource

ISSSENQP Sockets used by IPIC communication for an IPCONN.

JOURNALS CICS journal names used during creation, deletion, or use of a journal
entry. See “Log manager waits” on page 137 for information to help
you diagnose problems with the MVS system logger.

KCADDR Addresses locked internally by CICS.

KCSTRING Strings locked internally by CICS.

LOGSTRMS MVS logstream names used during connection of streams to the MVS
logger. A long wait could indicate a problem with the logger. See “Log
manager waits” on page 137 for information to help you diagnose
problems with the MVS system logger.

Licensed Materials – Property of IBM

78 CICS TS for z/OS 5.3: Problem Determination Guide

To investigate enqueue waits on these resources, you can use the NQ section of a
system dump. (You can use a system dump to investigate enqueue waits on other
types of resource, but you might find the INQUIRE UOWENQ command more
convenient.)

CICS maintains a separate enqueue pool for each type of resource that can be
enqueued upon. To produce a summary of each enqueue pool, specify 1 on the NQ
dump formatting keyword (dump formatting keywords are described in
“Summary of system dump formatting keywords and levels” on page 291).
Figure 10 shows an example summary for the transient data enqueue (TDNQ)
pool.

In the table at the bottom of Figure 10, each enqueue in the pool appears on a new
line. If the enqueue has waiters, they are displayed in order on subsequent lines.
Waiters are identified by the string Waiter. The meanings of the table headings are:

Enqueue Name
The string that has been enqueued upon. Normally, up to 30 characters of
the name are displayed; however, the summary reports for file control and
address enqueue pools format the enqueue name differently:
v File control uses six enqueue pools for its various types of lock. Each

enqueue contains the address of a control block (for example, DSNB,
FCTE) in its first four bytes. If the enqueue is a record lock, this is
followed by the record identifier.
Depending upon the type of the data set or file, the remainder of the
enqueue name could, for example, be an RRN in an RRDS, or a record
key in a KSDS data set. In the summary, the remainder of the enqueue
name is displayed in both hex and character formats. This takes up two
summary lines instead of one.

v The summary reports for the EXECADDR and KCADDR enqueue pools
display the enqueue name in hexadecimal format. This is because the
enqueue request was made on an address.

==NQ: ENQUEUE POOL SUMMARY - TDNQ

Default shunt action: Retain
*Total enqueue requests: 34
*Total requests that have waited: 8
*Total requests failed busy: 6
*Total requests failed locked: 2
*Total requests timed out: 1
*Total enqueues that were retained: 1

*NOTE: These values were reset at 15.44.39 (the last statistics interval collection)

OWNER / WAITER
NQEA Tran Tran Lifetime Hash

Enqueue Name Len Sta Address Id Num Local Uowid Uow Tsk Indx
------------------------------ --- --- -------- ---- ----- ---------------- --- --- ----
Q007TOQ 9 Act 052C4580 TDWR 00356 A8EBC70A53A4BC82 1 0 13
Q002FROMQ 9 Act 053D0880 TDRD 00435 A8EBD91A57D9B7D2 2 0 24

Waiter : 0540BBC0 TDRD 00467 A8EBDAC692BB7C10 0 1 24
Waiter : 0537CE70 TDDL 00512 A8EBDAE6FF0B56F2 1 0 24

Q007FROMQ 9 Act 0540CC80 ENQY 00217 A8EBB7FE23067C44 0 1 51
Waiter : 0538F320 ENQY 00265 A8EBBF0846C00FC0 0 1 51
Waiter : 0518C5C0 ENQY 00322 A8EBC393B90C66D8 0 1 51

Q002TOQ 9 Ret 0520B260 ---- ----- A8EBD82AFDA4CD82 1 0 53
Q009FROMQ 9 Act 0540A140 TDRD 00366 A8EBC84D3FF80250 1 0 62

Figure 10. Example system dump, showing summary information for the TDNQ enqueue pool

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 79

v IPIC communication can use more than one socket for an IPCONN
when communicating with another system. For each of these sockets,
there is an IPIC session set (ISSS) control block and an associated
enqueue name.
The enqueue name is a character string that is composed of the first four
characters of the IPCONN name followed by ‘ISSSnnnx’ where nnn is an
index for a particular IPIC session set (ISSS) and x is the character S or
C.

Len The length of the enqueue name.

Sta The state that the enqueue is held in. This field contains either:

Act The enqueue is held in active state—that is, other transactions are
allowed to wait on the enqueue.

Ret The enqueue is held in retained state—that is, other transactions
are not allowed to wait on the enqueue. Typically, this is because
the enqueue is owned by a shunted unit of work.

NQEA Address
The address of the NQEA corresponding to the enqueue owner or waiter.
The NQEA contains the full enqueue name if it was too large to display
fully.

TranId
The transaction identifier of the enqueue owner or waiter. If the enqueue is
owned by a shunted UOW, this field contains '----'.

TranNum
The task number of the enqueue owner or waiter. If the enqueue is owned
by a shunted UOW, this field contains '-----'.

Local Uowid
The local UOW identifier of the enqueue owner or waiter.

Uow Lifetime
For an enqueue owner, the number of times the enqueue is owned with
UOW lifetime. For an enqueue waiter, whether the waiter has requested
the enqueue for the lifetime of the UOW.

Tsk Lifetime
For an enqueue owner, the number of times the enqueue is owned with
task lifetime. For an enqueue waiter, whether the waiter has requested the
enqueue for the lifetime of the task.

Hash Indx
An index into the pool’s internal hash table.

EXEC CICS ENQ waits
These waits are a particular type of enqueue wait. They occur when an application
issues an EXEC CICS ENQ command to acquire an enqueue on a resource, and
another task already holds an enqueue on it.
v A resource name of EXECADDR indicates that the LENGTH option of the EXEC

CICS ENQ command was omitted - that is, the RESOURCE option supplied the
address of the resource to be enqueued upon.

v A resource name of EXECSTRN indicates that the LENGTH option of the EXEC
CICS region ENQ command was specified - that is, the RESOURCE option
supplied the name of the resource to be enqueued upon.

Licensed Materials – Property of IBM

80 CICS TS for z/OS 5.3: Problem Determination Guide

v A resource name of EXECPLEX indicates that the LENGTH option of the EXEC
CICS sysplex ENQ command was specified - that is, the RESOURCE option
supplied the name of the resource to be enqueued upon.

You can use the CEMT INQUIRE UOWENQ command to discover the owner of the
enqueue that the suspended task is waiting on providing the owner is on the same
region. This cannot detect owners on other regions. For EXECADDR type waits, to
display the address of the resource specified on the EXEC CICS ENQ command
you need to use the hexadecimal display option of CEMT.

For detailed information about the EXEC CICS ENQ command, see ENQ in Reference
-> Application development.

Investigating interval control waits
If you have a task that is not running and interval control seems to be involved,
you can use this information to understand the possible causes.

About this task

The following is a list of possible causes, and suggestions to consider before you
carry out a detailed investigation. If these do not give you enough information in
order to solve the problem, go to “Finding the reason for a DELAY request not
completing” on page 82 for further guidance. If, in the course of your preliminary
investigations, you find that the task is waiting because the terminal where it is
due to start is unavailable, turn to “Investigating terminal waits” on page 63.

Procedure
v A terminal task that should have been initiated with an EXEC CICS START

command did not start when you expected it to. CEMT INQ TASK does not
recognize the task, because it has not yet been attached.
One approach is to identify the terminal where the subject task should have
started, and see if that terminal is unavailable. You can use CEMT INQ TERMINAL to
find the status of the terminal.

v You have found that a task is waiting on resource type ICGTWAIT. This means
that the task has issued an EXEC CICS RETRIEVE WAIT command, and the data to
be retrieved is not available.
1. Find the target TERMID for other tasks issuing EXEC CICS START commands

to supply more data. The resource name gives you the name of the terminal
running the task in the ICGTWAIT and therefore the target TERMID.

2. If there are no tasks in the system that would issue START commands for
this TERMID, you need to determine whether this is reasonable.

3. If there are such tasks in the system, check to see why they are not issuing
the required START commands. They might, for example, be waiting for
terminal input.

4. Look at the deadlock timeout interval (DTIMOUT) and the system purge
value (SPURGE) for the task issuing the EXEC CICS RETRIEVE WAIT command.
If there is no DTIMOUT value or SPURGE=NO has been specified, the task
will wait indefinitely for the data.

Note: The task waiting on resource ICGTWAIT might not be the one that you
first set out to investigate. Any AID task scheduled to start at the same terminal
cannot do so until the current task has terminated.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 81

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_enq.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_enq.html

v You have found that the task is waiting on resource type ICWAIT. This means
that the task issued an EXEC CICS DELAY command that has not yet completed.
1. Check that the interval or time specified on the request was what you

intended. If you believe that the expiry time of the request has passed, that
suggests a possible CICS error.

2. Consider the possibility that the task was the subject of a long DELAY that
was due to be canceled by some other task. If the second task failed before it
could cancel the delay, the first would not continue until the full interval
specified on DELAY had expired.

v A task that issued EXEC CICS POST did not have its ECB posted when you
expected it to. Check to make sure the interval or time you specified was what
you intended.

v A task that issued EXEC CICS WAIT EVENT was not resumed when you thought it
should have been. Assuming the WAIT was issued sometime after a POST:
1. Check to make sure that the interval or time specified on the POST was what

you intended.
2. If it is, check to see whether the ECB being waited on was posted. If it has

been posted, that indicates a possible CICS error.

Results

If none of the simple checks outlined here help you to solve the problem, read the
following information.

Finding the reason for a DELAY request not completing
If your preliminary investigations have not shown the reason for the wait, you
need to look in greater detail at the evidence available.

Before you begin

About this task

Procedure
1. Take a system dump, and format it using the keywords CSA, ICP, and AP.

These get you the common system area, the interval control program control
blocks, and the task control areas, respectively. You might also find information
given by the formatting keywords KE (kernel storage areas, including the
calling sequence for each task), DS (dispatcher task summary, including details
of suspended tasks), and TR (internal trace table) to be useful.

2. Locate field CSATODTU in the CSA and make a note of its value. It is the
current CICS time of day in internal ‘timer units’.

3. Locate the TCA for your task, and read the value of field TCAICEAD. This
gives you the address of the interval control element for your task. Use this
information to find the ICE (interval control element) for the task, and look at
field ICEXTOD. Make a note of its value.

Results

If the value of ICEXTOD is greater than CSATODTU, the ICE has not yet reached
the expiry time. The possible explanations are:
v Your task either did not make the DELAY request you expected, or the interval

specified was longer than intended. This could indicate a user error. Check the
code of the transaction issuing the request to make sure it is correct.

Licensed Materials – Property of IBM

82 CICS TS for z/OS 5.3: Problem Determination Guide

v Your task’s delay request was not executed correctly. This might indicate an
error within CICS code, or a corrupted control block.

If the value of ICEXTOD is equal to CSATODTU (very unlikely), you probably
took the system dump just as the interval was about to expire. In such a case,
attempt to re-create the problem, take another system dump, and compare the
values again.

If the value of ICEXTOD is less than CSATODTU, the ICE has already expired. The
associated task should have resumed. This indicates that some area of storage
might have been corrupted, or there is an error within CICS code.

Using trace to find out why tasks are waiting on interval
control

Follow this procedure to use trace to find out why tasks are waiting on interval
control.

Before you begin

Before using trace to find out why your task is waiting on interval control, select
an appropriate trace destination and set up the right tracing options.

About this task

By their nature, interval control waits can be long, so select auxiliary trace as the
destination, because you can specify large trace data sets for auxiliary trace.
However, the data sets do not have to be large enough to record tracing for the
whole interval specified when you first detected the problem. That is because the
error is likely to be reproducible when you specify a shorter interval, if it is
reproducible at all. For example, if the error was detected when an interval of 20
seconds was specified, try to reproduce it specifying an interval of 1 second.

As far as tracing selectivity is concerned, you need to capture level 2 trace entries
made by dispatcher domain, timer domain, and interval control program. The sort
of trace entries that you can expect in normal operation are shown in the examples
below. They show the flow of data and control following execution of the
command EXEC CICS DELAY INTERVAL(000003). A similar set of trace entries would
be obtained if TIME had been specified instead of INTERVAL, because TIME
values are converted to corresponding INTERVAL values before timer domain is
called.

Procedure
1. Use the CETR transaction to set up the following tracing options:

a. Specify special tracing for the level 2 trace points for components DS
(dispatcher domain), TI (timer domain), and IC (interval control program).

b. Select special tracing for the task causing the problem, by specifying special
tracing both for the transaction and for the terminal where it is to be run.

c. Set the master system trace flag off, to turn off all standard tracing. This
helps minimize the number of trace entries not connected with the problem.

d. Make sure that auxiliary tracing is active
2. Set the transaction running. When the problem appears, format the auxiliary

trace data set and either print it or view it online.
3. Analyze the trace, using the examples as a guide.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 83

a. Figure 11 shows the first two entries that you get following execution of the
EXEC CICS DELAY INTERVAL(000003) command.

1) Trace point AP 00E1 is on ENTRY to the EIP DELAY routine. The
function is stated in the trace header, and the fact that this trace is made
on ENTRY can be deduced from the value shown in the request field,
REQ(0004).
The rightmost two bytes of FIELD B give the EIBFN value, in this case
X'1004'. This shows that this is an interval control DELAY request.
The value shown against TASK is the trace task number, and it is
unique to the task while the task is in the system. Its purpose is to show
which trace entries relate to which tasks. The task number in this
example is 00163. As long as the task is in the system, and either
running or suspended, trace entries having this task number always
relate to it. Use the task number for your task to identify the trace
entries associated with it.

2) Trace point AP 00F3 is on ENTRY to the ICP WAIT routine. The
function is given explicitly in the trace header, and both the function
and the fact that this represents ENTRY to the routine can be deduced
from the request field, REQ(2003).
The value of FIELD A, X'0000003C', is an important one for problem
determination. It shows the interval that has been specified, in this case
three seconds. Check the value shown here for your own task, to make
sure it is what you expect it to be.

b. Look next for an entry with point ID DS 0004 showing your task being
suspended, as in Figure 12. You might see TI domain trace entries preceding
it that show entry and exit for
FUNCTION(REQUEST_NOTIFY_INTERVAL), but these do not always
appear. There might also be some intervening entries, but they are unlikely
to be of relevance to the problem.

1) Trace point TI 0100, if shown, is on ENTRY to the
REQUEST_NOTIFY_INTERVAL function of timer domain. This is stated
explicitly in the trace header.

AP 00E1 EIP ENTRY DELAY REQ(0004) FIELD-A(0034BD70) FIELD-B(08001004)
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-8413F43E TIME-16:31:58.0431533750 INTERVAL-00.0000166250 =000602=

AP 00F3 ICP ENTRY WAIT REQ(2003) FIELD-A(0000003C) FIELD-B(00000000)
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-84760B88 TIME-16:31:58.0432681250 INTERVAL-00.0000370000 =000605=

Figure 11. Trace entries following EXEC CICS DELAY INTERVAL(000003) invocation

TI 0100 TISR ENTRY - FUNCTION(REQUEST_NOTIFY_INTERVAL) DOMAIN_TOKEN (00E70000 , 00000000) STCK_INTERVAL
(00000002DC6C1000)

PERIODIC_NOTIFY(NO) NOTIFY_TYPE(TIMER_TASK)
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-8476352A TIME-16:31:58.0442390000 INTERVAL-00.0000155000 =000614=

1-0000 00600000 00000006 00000000 00000000 B3B00000 00000000 01000000 00000000 *.-..............................*
0020 00000000 00000000 00000000 00E70000 00000000 00000000 00000000 00000002 *.............X..................*
0040 DC6C1000 00000000 02020000 00000000 00000000 00000000 00000000 00000000 *.%........................

......*
TI 0101 TISR EXIT - FUNCTION(REQUEST_NOTIFY_INTERVAL) RESPONSE(OK) TIMER_TOKEN(03B9B058 , 0000001B)

TASK-00163 KE_NUM-0007 TCB-009F3338 RET-8476352A TIME-16:31:58.0738898750 INTERVAL-00.0296188125* =000617=
1-0000 00600000 00000006 00000000 00000000 B3B00000 00000000 01000100 00000000 *.-..............................*

0020 00000000 00000000 00000000 00E70000 00000000 03B9B058 0000001B 00000002 *.............X..................*
0040 DC6C1000 00000000 02020000 00000000 00000000 00000000 00000000 00000000 *.%........................

......*
DS 0004 DSSR ENTRY - FUNCTION(SUSPEND) SUSPEND_TOKEN(01040034) RESOURCE_NAME(1477) RESOURCE_TYPE(ICWAIT) PURGEABLE(YES)

DEADLOCK_ACTION(INHIBIT)
TASK-00163 KE_NUM-0007 TCB-009F3338 RET-847645CE TIME-16:31:58.0739336250 INTERVAL-00.0000437500 =000618=

1-0000 00580000 00000014 00000001 00000000 B7050000 00000000 04000100 00000000 *................................*
0020 00000000 01040034 F1F4F7F7 40404040 C9C3E6C1 C9E34040 0000001B 00000002 *........1477 ICWAIT*
0040 DC6C1000 00000000 02010003 00000000 00000000 00000000 *.%......................

*

Figure 12. Trace entries showing interval calculation and task suspension

Licensed Materials – Property of IBM

84 CICS TS for z/OS 5.3: Problem Determination Guide

The value shown in the header for STCK_INTERVAL is derived from
the machine store clock value calculated for the DELAY interval
specified on the EXEC CICS DELAY command. You can find out how store
clock values are related to times in hours, minutes, and seconds in the
z/Architecture Principles of Operation.
If you do the calculation, you find that the value shown is not exactly
equal to the interval you specified. An extra microsecond is added, to
account for the case where the interval is specified as 0.
In this example, 3 seconds is exactly equal to a store clock interval of
X'00000002DC6C0000'. You can see that the actual store clock value is
quoted in the trace entry as X'00000002DC6C1000', which is 3 seconds
plus 1 microsecond.
The TIME field of the trace entry shows the time at which the entry was
made, in the format hh:mm:ss. The value in this example (ignoring the
fractions of a second) is 16:31:58. It follows that the task is due to be
resumed when the time is 16:32:01, because the interval is 3 seconds.

2) Trace point TI 0101, if shown, is on EXIT from the
REQUEST_NOTIFY_INTERVAL function of timer domain. You can see
from RESPONSE(OK) in the header that the function completed
normally.

3) Trace point DS 0004 is on ENTRY to the dispatcher task
SUSPEND/RESUME interface.
The SUSPEND_TOKEN field in the trace header is significant. It shows
the unique suspend token being used for this SUSPEND/RESUME
dialog, and it is referred to explicitly again in a later trace entry showing
that the task has been resumed. In this example, the suspend token is
X’01040034’.
Any subsequent dispatcher trace entry that shows the suspend token for
your task is connected with the suspension or resumption of the task.
Field RESOURCE_TYPE(ICWAIT) in the trace header shows that the
resource type associated with this suspend is ICWAIT. ICWAIT is the
resource type that is returned on CEMT INQ TASK for tasks that are
waiting on interval control.

c. Get some trace entries recording system activity during the period when
your task is suspended. There are likely to be relatively few at the level of
tracing detail you have specified, but you need to look further on in the
trace to find the next entries of interest.

d. Add 3 seconds (or whatever interval you specified) to the time shown on
the last trace entry you looked at, and turn forward to the trace entries
made at around that time. Now look for an entry made from trace point
DS 0004. This does not show the task number for your task, but it does show its
suspend token. When you have found it, go back one entry. You should find
there a trace entry made from trace point AP F322. This and the following
two trace entries of interest are shown in Figure 13 on page 86.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 85

1) Trace point AP F322 is used to report that system task APTIX has been
resumed. APTIX has the job of “waking up” your task on expiration of
the specified interval.
The task number for APTIX is, in this case, X’00006’, and this value is
shown on the trace entry.

2) Trace point DS 0004 is on entry to the dispatcher SUSPEND/RESUME
interface. This function is stated explicitly in the header. TASK-00006
indicates that the trace entry is for system task APTIX.
SUSPEND_TOKEN(01040034) shows that APTIX is requesting dispatcher
domain to resume the task that was suspended for the specified interval.
You will recall that a suspend token of X’01040034’ was given to your
task when it was first suspended.

3) Trace point DS 0005 is on exit from the dispatcher SUSPEND/RESUME
interface.
The trace entry shows RESPONSE(OK), indicating that the task whose
suspend token was X’01040034’ has successfully been resumed.
However, note that this does not necessarily mean that the task has
started to run—it has only been made “dispatchable”. For example, it
still needs to wait for a TCB to become available.

e. Now look forward in the trace, and locate a trace entry made from trace
point AP 00F3 and showing your task number. This and the next entry
conclude the DELAY request for your task. They are shown in Figure 14.

1) Trace point AP 00F3 is on EXIT from interval control program. Field
REQ(0005) shows that this is so, and it also shows that the response was
normal. Anything other than a normal response would result in a value
other than X'00' for the first byte of the REQ field.

2) Trace point AP 00E1 is on EXIT from the EXEC interface program. This
is shown by bits 0–3 of the second byte of the REQ value, X'F4'.
The values shown for FIELD A and FIELD B show that no exception
condition was detected.

That is the end of the DELAY processing, and the task that was suspended
should have been resumed.

AP F322 APTIX RESUMED - SYSTEM TASK APTIX RESUMED
TASK-00006 KE_NUM-0009 TCB-009F3338 RET-84773724 TIME-16:32:01.1016870625 INTERVAL-00.0001065000 =000670=

1-0000 01000000 D7C5D5C4 D5D6E3D7 01107739 00E70000 00000000 03B9B058 0000001B *....PENDNOTP.....X..............*
0020 01080002 00D40000 00000000 03B9B000 00000001 01050002 00000000 00000000 *.....M..........................*
0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

DS 0004 DSSR ENTRY - FUNCTION(RESUME) SUSPEND_TOKEN(01040034)
TASK-00006 KE_NUM-0009 TCB-009F3338 RET-847646D4 TIME-16:32:01.1019761875 INTERVAL-00.0000278125 =000674=

1-0000 00580000 00000014 00000001 00000000 B4000000 00000000 05000100 00000000 *................................*
0020 00000000 01040034 00000000 00E70000 00000000 03B9B058 0000001A 000026EE *.............X..................*
0040 D9AC1000 00000000 00000000 0001632C 00000000 00000000 *R....................... *

DS 0005 DSSR EXIT - FUNCTION(RESUME) RESPONSE(OK)
TASK-00006 KE_NUM-0009 TCB-009F3338 RET-847646D4 TIME-16:32:01.1019959375 INTERVAL-00.0000197500 =000675=

1-0000 00580000 00000014 00000001 00000000 B4000000 00000000 05000100 00000000 *................................*
0020 00000000 01040034 00000000 00E70000 00000000 03B9B058 0000001A 000026EE *.............X..................*
0040 D9AC1000 00000000 00000000 0001632C 00000000 00000000 *R....................... *

Figure 13. Trace entries showing your task being resumed

aAP 00F3 ICP EXIT NORMAL REQ(0005) FIELD-A(01000300) FIELD-B(03BD6EE0
..>.)

TASK-00163 KE_NUM-0007 TCB-009F3338 RET-84760B88 TIME-16:32:01.1023045625 INTERVAL-00.0000154375 =000688=
AP 00E1 EIP EXIT DELAY OK REQ(00F4) FIELD-A(00000000) FIELD-B(00001004)

TASK-00163 KE_NUM-0007 TCB-009F3338 RET-8413F43E TIME-16:32:01.1024153750 INTERVAL-00.0000235625 =000691=

Figure 14. Trace entries showing satisfactory conclusion of the DELAY request

Licensed Materials – Property of IBM

86 CICS TS for z/OS 5.3: Problem Determination Guide

Results

When you look at your own trace table, be concerned principally with finding the
point at which the processing went wrong. Also, watch for bad parameters. If you
do find one, it could mean that an application has a coding error, or some field
holding a parameter has been overlaid, or an error has occurred in CICS code.

Checking your application code is the easiest option you have. If you find that it is
correct and you suspect a storage violation, see Chapter 11, “Dealing with storage
violations,” on page 201. If you think the error is in CICS code, contact the IBM
Support Center.

Investigating file control waits
Most file control waits are associated with resource types starting with the
characters FC. Some are associated with resource type ENQUEUE, but ENQUEUE
is not used exclusively for file control waits.

About this task

Table 7 lists the identifiable resource types associated with file control waits, with
all the possible reasons for waits, and whether they occur for files accessed in RLS
mode, non-RLS mode, or both.

Table 7. Resource types for file control waits

Resource Description RLS or non-RLS access mode

CFDTWAIT The task is waiting for a request to
the CFDT server to complete.

N/A. The wait is caused by access
to a coupling facility data table.

CFDTPOOL The task is waiting for a CFDT
“maximum requests” slot to
become available.

N/A. The wait is caused by access
to a coupling facility data table.

CFDTPOOL The task is waiting for a CFDT
“locking request” slot to become
available.

N/A. The wait is caused by access
to a coupling facility data table.

ENQUEUE The task is waiting for a lock on a
file or data table. See “Resource
type ENQUEUE - waits for locks
on files or data tables” on page 98.

Non-RLS

FCACWAIT CICS is waiting for the last RLS
file to close after an SMSVSAM
failure.

RLS

FCBFSUSP The task is waiting for a VSAM
buffer.

Non-RLS

FCCAWAIT CICS is waiting on a VSAM
control ACB request.

RLS

FCCFQR CICS is waiting for the SMSVSAM
server to notify CICS of a new
quiesce request

RLS

FCCFQS CICS is waiting for a user task to
issue a new quiesce request.

RLS

FCCRSUSP CICS is waiting for last RLS
control ACB request to complete
during clean up after SMSVSAM
failure.

RLS

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 87

Table 7. Resource types for file control waits (continued)

Resource Description RLS or non-RLS access mode

FCDWSUSP The task is waiting for VSAM to
complete update processing.

Non-RLS

FCFRWAIT The task is waiting for a file to
finish closing.

Both

FCFSWAIT The task is waiting to change the
state of a file.

Both

FCIOWAIT The task is waiting for I/O on a
disk volume.

Non-RLS

FCIRWAIT The task is waiting for the
recoverable file control
environment to be rebuilt.

Both

FCPSSUSP The task is waiting for a private
string.

Both

FCQUIES The task is waiting for a quiesce
request to complete.

RLS

FCRAWAIT The task is waiting for file control
to process non-recoverable requests
at CICS restart.

Both

FCRBWAIT The task is waiting for file control
to process recoverable requests at
CICS restart.

Both

FCRDWAIT The task is waiting for a drain of
the RLS control ACB to complete.

RLS

FCRPWAIT The task is waiting for file control
initialization to complete.

RLS

FCRRWAIT The task is waiting for a dynamic
RLS restart to complete.

RLS

FCRVWAIT The task is waiting for I/O on a
disk volume.

RLS

FCSHUTIM An immediate shutdown has been
invoked. Any task attempting to
invoke VSAM will be put into a
permanent wait.

Both

FCSRSUSP The task is waiting for a shared
resource string.

Non-RLS

FCTISUSP The task is waiting for a VSAM
transaction ID.

Non-RLS

FCXCSUSP or
FCXDSUSP

The task is waiting for exclusive
control of a VSAM control interval.

Non-RLS

The implications of waits on any of these file control resource types are dealt with
in the sections that follow.

Resource type CFDTWAIT - wait for CFDT request to complete
If you have a task waiting on resource type CFDTWAIT, the task is waiting on the
coupling facility data table server for a file control request to complete.

Licensed Materials – Property of IBM

88 CICS TS for z/OS 5.3: Problem Determination Guide

Requests to the CFDT server are normally processed synchronously. Therefore, this
wait could indicate that:
v There is a high level of activity to the CFDT server
v The server is processing a request for a record that is longer than 4K bytes
v The task has issued a request for a record that is currently locked by another

task within the sysplex.

Waiting on this resource can occur only for a file defined to access a coupling
facility data table.

Resource type CFDTPOOL - wait for CFDT a request slot
If you have a task waiting on resource type CFDTPOOL, the task is waiting for a
free slot within the maximum requests limit to become available.

CICS places a limit on the number of requests that a region can have running
simultaneously in a coupling facility data tables server. This limit is known as the
“maxreqs” limit, and it avoids overloading the coupling facility. If the number of
requests currently running in the server for a CICS region has reached this limit, a
request waits until one of the other requests completes.

Waiting on this resource can occur only for a file defined to access a coupling
facility data table.

Resource type CFDTLRSW - wait for CFDT locking request
slot

If you have a task waiting on resource type CFDTLRSW, the task is waiting for a
free locking request slot to become available.

CICS places a limit on the number of locking requests (that is, requests that might
acquire record locks) that a region can have simultaneously running in a coupling
facility data table server. This limit is known as the locking request slot (LRS) limit,
and it avoids tasks that hold locks from preventing other coupling facility data
table accesses. If the number of locking requests currently running in the server for
a CICS region has reached the LRS limit, this request waits for one of the locking
requests to complete.

Waiting on this resource can occur only for files defined to access a coupling
facility data table, and only for record access requests that could potentially require
a lock.

Resource type FCACWAIT & FCCRSUSP - wait for SMSVSAM
clean up

The only task that can wait on resource types FCACWAIT and FCCRSUSP is CSFR,
the task that performs clean up after failure of the SMSVSAM server.

This is the server that CICS file control uses for any VSAM request it issues in RLS
mode. clean up after SMSVSAM failure is in two stages.
1. Wait for VSAM to reject any file requests that were in-flight at the time of the

server failure. When all these active file requests have been rejected, CSFR
cleans up CICS state by issuing a CLOSE request against every file open in RLS
mode. When the last CLOSE request has completed, the first stage of clean up
is complete.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 89

If CSFR is waiting for this first stage of clean up to complete, it is waiting on
resource type FCACWAIT.

2. Wait for VSAM to reject any system requests issued against the SMSVSAM
control ACB, and then unregister the control ACB.
If CSFR is waiting for this second stage of clean up to complete, it is waiting on
resource type FCCRSUSP.

FCACWAIT and FCCRSUSP are RLS-related waits only.

Resource type FCBFSUSP - waits for VSAM buffers
If your task is waiting on resource type FCBFSUSP, it means that a VSAM buffer is
not currently available.

You can specify the number of VSAM data buffers and VSAM index buffers in the
FILE resource definition using the DATABUFFERS and INDEXBUFFERS
parameters, respectively. Consider increasing the numbers of these buffers if you
find that tasks are frequently having to wait on this resource type.

If there are insufficient data and index buffers for a single task, the task is
suspended indefinitely. This might happen unexpectedly if you have a base cluster
and one or more paths in the upgrade set, and your application references only the
base. VSAM upgrades the paths whenever changes are made to the base. There
could then be too few buffers defined in the LSRPOOL for both base and paths.

Waiting on this resource can occur only for files accessed in non-RLS mode.

Resource type FCCAWAIT - waits on the SMSVSAM control
ACB

If your task is waiting for resource type FCCAWAIT, it means that the task is
waiting within VSAM for a request issued against the RLS control ACB to
complete. The control ACB is used for requests that are not issued against any
specific file.

For example, requests to:
v Release locks
v Convert locks to retained status
v Quiesce data sets.

If the request is to quiesce a data set, CICS is waiting for other CICS regions that
access the data set to respond to the quiesce request. In other cases, the request
should complete quickly. Failure to complete quickly could indicate a delay within
the VSAM lock manager.

Waits on this type of resource can occur only for files accessed in RLS mode.

Resource type FCCFQR - wait for SMSVSAM server
notification

The system task CFQR can wait on resource type FCCFQR. This is the normal state
for this task and means that the task is waiting on an ECB for more work.

New work is created for the task when CICS receives a quiesce request from its
SMSVSAM server through the CICS RLS quiesce exit program, DFHFCQX.

Licensed Materials – Property of IBM

90 CICS TS for z/OS 5.3: Problem Determination Guide

SMSVSAM drives the CICS RLS quiesce exit, which creates a control block for the
request and posts the CFQR task to notify it of the request’'s arrival.

Resource type FCCFQS - wait for user task to issue quiesce
The system task CFQS can wait on resource type FCCFQS. This is the normal state
for this task and means that the task is waiting on an ECB for more work.

New work is created for this system task when a user task issues a quiesce request
(for example, issues an EXEC CICS SET DSNAME(...) QUIESCED WAIT
command). The user request is processed by CICS module DFHFCQI, which
creates a control block for the request and posts the CFQS task to notify it of the
request’s arrival.

Resource type FCDWSUSP - wait for VSAM to complete
update processing

If your task is waiting on resource type FCDWSUSP, it has received a VSAM
response which might indicate that your task is trying to read a record while this
record is being updated.

Depending on the VSAM response code:
v The read is using a VSAM path while this record is being updated by another

request. This other request is updating the record either using the base or
another path. If VSAM has not yet completed the update, the content of the
alternate index currently in use is no longer the same as the content of the base
data set.

v A concurrent write to the end of the data set is incomplete.

This is a transient condition. CICS waits for all current update operations for this
VSAM data set to complete and retries the request twice. If the error continues
after the request is retried, CICS assumes that there is a genuine error and returns
a response of ILLOGIC to the application. Since ILLOGIC is a response to all
unexpected VSAM errors, CICS also returns the VSAM response and reason codes
(X'0890') or (X'089C') in bytes 2 and 3 of EIBRCODE. These identify the cause of
the ILLOGIC response.

Waiting on this resource can occur only for files accessed in non-RLS mode.

Resource type FCFRWAIT - wait for file state changes
If your task is waiting on resource type FCFRWAIT, it means that an implicit open
is being performed on a file and that file is found to be closing.

This behavior can happen, for example, when an implicit open is being performed
on a file and that file is found to be closing. In that situation the task performing
the implicit open waits in an FCFRWAIT for the file to finish closing at which time
it attempts to open the file again.

Only one task at a time waits on FCFRWAIT. If any other tasks attempt to change
the state of the same file, they are suspended on resource type ENQUEUE. See
“Task control waits” on page 138.

Waiting on this resource can occur for files accessed in both RLS and non-RLS
mode.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 91

Resource type FCFSWAIT - wait for file state changes
If your task is waiting on resource type FCFSWAIT, it means that it has attempted
to change the state of a file, but another task is still using the file.

This can happen, for example, if a long-running transaction, possibly
conversational, is using a recoverable file. The file cannot be closed until the
updates made by the transaction have been committed; that is, the transaction has
issued a syncpoint. In such a case, consider changing the programming logic so
that intermediate syncpoints are issued.

Only one task at a time waits on FCFSWAIT. If any other tasks attempt to change
the state of the same file, they are suspended on resource type ENQUEUE. See
“Task control waits” on page 138.

Waiting on this resource can occur for files accessed in both RLS and non-RLS
mode.

Resource type FCIOWAIT - wait for VSAM I/O (non-RLS)
If you have a task waiting on resource type FCIOWAIT, it means that the task is
waiting within VSAM for I/O to take place.

For example, VSAM uses MVS RESERVE volume locking, and it is likely that
another job has at present got the lock on the volume. See if there are any
messages on the MVS console to explain the error.

A wait on resource type FCIOWAIT occurs when the exclusive control conflict is
deferred internally by VSAM and not returned as an error condition to CICS. An
example of this is when a request against an LSR file is made for exclusive control
of a control interval (for example, by WRITE or READ UPDATE) and either this
task or another task already holds shared control of this control interval (for
example, by STARTBR).

Exclusive control waits are discussed further in “Resource types FCXCSUSP,
FCXDSUSP, FCXCPROT, and FCXDPROT - VSAM exclusive control waits” on page
96.

Waiting on this resource can occur only for files accessed in non-RLS mode.

Resource type FCIRWAIT - wait for FC environment to be
rebuilt

During CICS initialization, on a warm or emergency restart, file control must wait
for the recoverable file control environment to be rebuilt before performing any
restart actions for recoverable files.

DFHFCIR is the module that rebuilds the recoverable file control environment, and
the file control initialization task waits on resource type FCIRWAIT.

Because this wait occurs during CICS initialization, you should not be able to see a
task waiting on this resource.

Licensed Materials – Property of IBM

92 CICS TS for z/OS 5.3: Problem Determination Guide

Resource types FCPSSUSP and FCSRSUSP - waits for VSAM
strings

If your task is waiting on either of resource types FCPSSUSP or FCSRSUSP, it
means that it cannot get a VSAM string. FCPSSUSP shows that the wait is for a
private string, and FCSRSUSP shows that the wait is for a shared resource string.
You can purge the task from the system, if the task is purgeable.

For non-RLS mode, the number of strings defined for a VSAM data set (STRINGS
parameter in the FILE resource definition) determines how many tasks can use the
data set concurrently. STRINGS can have a value in the range 1–255. For RLS
mode, strings are automatically allocated as needed up to a maximum of 1024.
When all the strings are in use, any other task wanting to access the data set must
wait until a string has been released.

The CICS monitoring facility provides performance data for the VSAM string wait
time for each user task. The performance data field 427, FCVSWTT, in the
DFHFILE group, shows the elapsed time in which the task waited for a VSAM
string. If tasks are being caused to wait unduly for strings, consider whether you
can increase the value of STRINGS, or change the programming logic so that
strings are released more quickly.

An example of programming logic that can hold onto strings (and other VSAM
resources) for too long is when a conversational transaction issues a STARTBR or
READNEXT and then enters a wait for terminal input without issuing an ENDBR.
The browse remains active until the ENDBR, and the VSAM strings and buffers are
retained over the terminal wait. Also, for an LSR file, the transaction continues to
hold shared control of the control interval and causes transactions that attempt to
update records in the same control interval to wait.

Similarly, transactions hold VSAM resources for too long if a READ UPDATE or
WRITE MASSINSERT is outstanding over a wait for terminal input.

Waiting on this resource can occur for files accessed in both RLS and non-RLS
mode.

Resource type FCQUIES - wait for a quiesce request to
complete

If your task is waiting on resource type FCQUIES, the task is waiting for the
completion of a quiesce command it has issued for a data set.

For example, an EXEC CICS SET DSNAME(...) QUIESCED WAIT command. The
command generates an FCQSE containing the request and passes this into the
CFQS task. The CFQS task posts the user task when the request is completed. The
resource name gives the hexadecimal address of the FCQSE control block.

Resource type FCRAWAIT - file control to process
non-recoverable requests

A non-recoverable file control request waits on resource type FCRAWAIT if file
control has not completed the actions required to allow the processing of
non-recoverable work. These actions include the building of FCT entries.

You do not see a task waiting on this resource type, because this wait occurs
during CICS initialization.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 93

Waits on this resource type can occur for files accessed in both RLS and non-RLS
mode.

Resource type FCRBWAIT - file control to process recoverable
requests

A recoverable file control request waits on resource type FCRBWAIT if file control
has not completed the actions required to allow the processing of recoverable
work. These actions include the rebuilding of non-RLS enqueues and restarting
RLS access.

You do not see a task waiting on this resource type, because this wait occurs
during CICS initialization.

Waiting on this resource can occur for files accessed in both RLS and non-RLS
mode.

Resource type FCRDWAIT - wait for a drain of the RLS control
ACB

If a task is waiting on resource type FCRDWAIT, it is waiting for completion of the
drain of the RLS control ACB following an SMSVSAM server failure.

DFHFCRD is the module that performs the drain. When the SMSVSAM server
fails, CICS must drain all RLS processing, which involves:
v Disabling further RLS access
v Preventing existing tasks from issuing further RLS requests after the server

becomes available again
v Closing all ACBs that are open in RLS mode.

If a system task is waiting on this resource, it means that it is waiting to perform a
dynamic RLS restart to reestablish access to a restarted (new) SMSVSAM server.
CICS access to the failed server must be drained before CICS can register with the
new server.

If a user task is waiting on this resource, it means that it is waiting in backout
processing for a drain to complete before checking whether the file being backed
out is open, because drain affects the open state of the file.

The drain is carried out by the system task CSFR. This should normally complete
without problems, although it may take some time if there is a large number of
files to be closed. If a task is waiting on FCRDWAIT for a considerable length of
time, you should check whether the CSFR task is itself in a wait and therefore
failing to complete.

Resource type FCRPWAIT - wait for file control initialization to
complete

If a task is waiting on resource type FCRPWAIT, dynamic RLS restart is waiting for
file control initialization to complete.

DFHFCRP is the module that performs most of file control initialization processing.
A dynamic RLS restart occurs when a restarted SMSVSAM server becomes
available following a failure of the previous server. If this occurs during CICS
initialization, dynamic RLS restart must wait for file control initialization to
complete.

Licensed Materials – Property of IBM

94 CICS TS for z/OS 5.3: Problem Determination Guide

Because this wait occurs during CICS initialization, you should not be able to see a
task waiting on this resource.

Resource Type FCRRWAIT - wait for dynamic RLS restart to
complete

If a task is waiting on resource type FCRRWAIT it means that a dynamic RLS
restart is waiting for an earlier dynamic RLS restart to complete.

DFHFCRR is the module that performs dynamic RLS restart processing.

A dynamic RLS restart occurs when a restarted SMSVSAM server becomes
available following a failure of the previous server. If a restarted SMSVSAM server,
which has caused one dynamic RLS restart, fails and becomes available again, it
causes CICS to perform another dynamic RLS restart. If the first dynamic RLS
restart has not finished, the second dynamic RLS restart must wait for the first to
complete.

If a task is waiting in FCRRWAIT for a considerable length of time, you should
check whether there is any other task performing dynamic RLS restart, which is
itself in a wait and therefore failing to complete.

Resource type FCRVWAIT - wait for VSAM I/O (RLS)
If you have a task waiting on resource type FCRVWAIT, it means that the task is
waiting within VSAM for I/O to take place, or is waiting for a record lock.

A wait on resource type FCRVWAIT occurs when conflicts over shared or exclusive
locks are deferred internally by VSAM and not returned as an error condition to
CICS. Conflicts that can cause an FCRVWAIT wait are:
v A task issues a file control READ UPDATE request for a record, for which:

– Another task already holds an exclusive lock
– One or more tasks hold a shared lock.

v A task issues a file control READ request with CONSISTENT or REPEATABLE
integrity for a record, for which:
– Another task already holds an exclusive lock.
– Another task is waiting for an exclusive lock because one or more tasks may

already have a shared lock, or another task has an exclusive lock.

Waiting on this resource can occur only for files accessed in RLS mode.

A task could be in an FCRVWAIT state because of a deadlock. If VSAM detects an
RLS deadlock condition, it returns a deadlock exception condition to CICS, causing
CICS file control to abend the transaction with an AFCW abend code. CICS also
writes messages and trace entries that identify the members of the deadlock chain.

VSAM cannot detect a cross-resource deadlock (for example, a deadlock arising
from use of RLS and DB2 resources) where another resource manager is involved.
A cross-resource deadlock is resolved by VSAM when the timeout period expires,
as defined by either the DTIMOUT or FTIMEOUT parameters, and the waiting
request is timed out. In this situation, VSAM cannot determine whether the
timeout is caused by a cross-resource deadlock, or a timeout caused by another
transaction acquiring an RLS lock and not releasing it. In the event of a timeout,
CICS writes trace entries and messages to identify the holder of the lock for which
a timed-out transaction is waiting. Similarly, a task could be made to wait on

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 95

another task that has an exclusive or shared lock on a record. If this second task
was, itself, waiting for an exclusive lock on a resource for which the first task
already has a lock, both tasks would be deadlocked.

Resource type FCTISUSP - wait for a VSAM transaction ID
If your task is waiting on resource type FCTISUSP, it means that there are no
VSAM transaction IDs available.

Transaction IDs are retained by a task for the duration of a MASSINSERT session.
Waits on FCTISUSP should not be prolonged, and if your task stays suspended on
this resource type, it could indicate any of the following:
v There could be a system-wide problem. CICS could have stopped running, or it

might be running slowly. Turn to Chapter 2, “Classifying the problem,” on page
9 for advice if you suspect this.

v There could be a performance problem. Guidance about dealing with
performance problems is given in Chapter 9, “Dealing with performance
problems,” on page 169.

v The logic of your applications might need changing, so that tasks do not retain
VSAM transaction IDs for too long. If the task does other processing during the
session, perhaps even involving input from an operator, code to release the
VSAM transaction ID should be included each time.

Waiting on this resource can occur only for files accessed in non-RLS mode.

Resource types FCXCSUSP, FCXDSUSP, FCXCPROT, and
FCXDPROT - VSAM exclusive control waits

If your task is waiting on resource type FCXCSUSP, FCXDSUSP, FCXCPROT, or
FCXDPROT, it means that it cannot get exclusive control of a VSAM control
interval at the present time. Another task already has shared or exclusive control of
the control interval, so your task is suspended pending the release of that control
interval.

An exclusive control wait on these resource types occurs in CICS, unlike the
similar wait on FCIOWAIT, which occurs in VSAM. See “Resource type FCIOWAIT
- wait for VSAM I/O (non-RLS)” on page 92.

FCXCPROT or FCXDPROT waits indicate that VSAM has detected an error in the
base cluster, AIX, or upgrade set. In these cases, it is not advisable to purge the
requests because the data set can be lift in an inconsistent state. Purge other tasks
involved in the wait to allow CICS to retry the VSAM requests for those tasks with
FCXCPROT and FCXDPROT waits.

Unlike the FCXCSUSP and FCXDSUSP types, tasks waiting with a resource type of
FCXCPROT or FCXDPROT will not be purged if the are suspended for longer than
their DTIMOUT value.

The CICS monitoring facility provides performance data for the exclusive control
wait time for each user task. The performance data field 426, FCXCWTT, in the
DFHFILE group, shows the elapsed time in which the task waited for exclusive
control. If you find that exclusive control conflicts occur too often in your system,
consider changing the programming logic so that applications are less likely to
have exclusive control for long periods.

Waiting on this resource can occur only for files accessed in non-RLS mode.

Licensed Materials – Property of IBM

96 CICS TS for z/OS 5.3: Problem Determination Guide

The possibility that a task is deadlocked, waiting on itself or another task for
release of the control interval, is dealt with in the next section.

Exclusive control deadlock
In non-RLS mode, without some means of avoiding it, a task could wait on itself
for exclusive control of a VSAM control interval. If this was allowed to happen, the
task would be deadlocked, and neither able to release exclusive control or
reacquire it.

Similarly, a task could be made to wait on another task that has exclusive or
shared control of a VSAM control interval. If this second task was, itself, waiting
for exclusive control of a resource of which the first task has exclusive or shared
control, then both tasks would be deadlocked.

CICS however, provides a mechanism to avoid exclusive control deadlock. If a task
is waiting on resource type FCXCSUSP or FCXDSUSP and causing a task to wait
(either itself or another task), causing a deadlock, the task abends either with
abend code AFCF or AFCG at the time that it makes the request for exclusive
control.
v A task that abends with abend code AFCF would have been waiting for

exclusive control of a VSAM control interval of which another task has shared or
exclusive control.

v A task that abends with abend code AFCG would have been waiting for
exclusive control of a VSAM control interval of which it has shared control.

See Transaction abend codes in Reference -> Diagnostics for more information
about these abend codes.

To resolve the problem, you must determine which program caused the potential
deadlock. Find out which programs are associated with the abending task, and
attempt to find the one in error. It is likely to be one that provides successive
browse and update facilities. When you have found the programs associated with
the task, see “How tasks can become deadlocked waiting for exclusive control” for
guidance about finding how the error might have occurred.

For further details on the redispatch of CICS tasks that were waiting for VSAM
exclusive control of a control interval to become available, see File control
operations in Reference -> Application development.

How tasks can become deadlocked waiting for exclusive control
Tasks can become deadlocked waiting for exclusive control of a CI only when they
have shared control of the CI and then attempt to get exclusive control without
relinquishing shared control first. This can only occur for VSAM shared resource
data sets accessed in non-RLS mode.

For the deadlock to occur, a transaction must first issue a VSAM READ SEQUENTIAL
request using EXEC CICS STARTBR. This is a VSAM shared control operation. It must
then issue some VSAM request requiring exclusive control of the CI without first
ending the shared control operation.

The requests that require exclusive control of the CI are:
v VSAM READ UPDATE, using EXEC CICS READ UPDATE and then EXEC CICS REWRITE.

Exclusive control of the CI is not acquired until after the initial read is complete,
but it happens automatically after that and the CI is not released until the record
has been rewritten.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 97

|
|
|

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/topics/dfhg4k3.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_fileconops.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_fileconops.html

v VSAM WRITE DIRECT, using EXEC CICS WRITE.
v VSAM WRITE SEQUENTIAL, using EXEC CICS WRITE MASSINSERT.

VSAM handles requests requiring exclusive control on a data set that is already
being used in shared control mode by queueing them internally. VSAM returns
control to CICS, but transactions waiting for exclusive control remain suspended.

Example of code causing an exclusive deadlock
The following sequence of EXEC commands would cause an exclusive control
deadlock to occur.

The first command causes shared control to be acquired:
EXEC CICS STARTBR

FILE(myfile)
RIDFLD(rid-area)

This causes no problems. The next command at first acquires shared control while
the record is read into input-area. When an attempt is subsequently made to get
exclusive control, deadlock occurs because the task that wants exclusive control is
also the task that is preventing it from being acquired.

EXEC CICS READ
FILE(myfile)
INTO(input-area)
RIDFLD(rid-area)
UPDATE

The following sequence of commands would not cause deadlock to occur, because
the transaction relinquishes its shared control of the CI by ending the browse
before attempting to get exclusive control of it.

The first command causes shared control to be acquired:
EXEC CICS STARTBR

FILE(myfile)
RIDFLD(rid-area)

The next command causes shared control to be relinquished:
EXEC CICS ENDBR

FILE(myfile)

The next command initially causes shared control to be acquired. The record is
read into input-area, and then exclusive control is acquired in place of shared
control.

EXEC CICS READ
FILE(myfile)
INTO(input-area)
RIDFLD(rid-area)
UPDATE

The transaction now resumes. Exclusive control is relinquished following the next
REWRITE or UNLOCK command on file myfile.

Resource type ENQUEUE - waits for locks on files or data
tables

A resource type of ENQUEUE with a resource name beginning “FC” indicates that
the task is waiting for a lock on a file or data table.

Licensed Materials – Property of IBM

98 CICS TS for z/OS 5.3: Problem Determination Guide

Table 8 shows the type of lock that each of the “FC” resource names represents.

Table 8. Resource/pool names and lock types

Resource or pool
name

Lock type

FCDSRECD VSAM or CICS-maintained data table record

FCFLRECD BDAM or user-maintained data table record

FCDSRNGE KSDS key range

FCDSLDMD VSAM load mode

FCDSESWR ESDS write

FCFLUMTL User-maintained data table load

Resource name FCDSRECD
A resource name of FCDSRECD indicates a wait for a record lock in a VSAM file
or CICS-maintained data table.

When a transaction updates a record in a VSAM file or CICS-maintained data
table, locking occurs at two levels. VSAM locks the CI when the record has been
read, and CICS locks the record.

The CI lock is released as soon as the REWRITE (or UNLOCK) request is
completed. However, if the file or data table is recoverable, the record is not
unlocked by CICS until the updating transaction has reached a syncpoint. This is
to ensure that data integrity is maintained if the transaction fails before the
syncpoint and the record has to be backed out.

If a transaction attempts to access a record that is locked by another transaction, it
is suspended on resource type ENQUEUE until the lock is released. This can be a
long wait, because an update might depend on a terminal operator typing in data.
Also, the suspended transaction relinquishes its VSAM string and, perhaps, its
exclusive control of the CI, and has to wait once more for those resources.

If transactions are commonly made to wait for this reason, you should review the
programming logic of your applications to see if the record-locking time can be
minimized.

Note that CICS only locks a record for update. Other transactions are allowed to
read the record, and this presents a potential read integrity exposure. Thus, a
transaction might read a record after an update has been made, but before the
updating transaction has reached its syncpoint. If the reading transaction takes
action based on the value of the record, the action is incorrect if the record has to
be backed out.

There is some more information about read integrity in Chapter 10, “Dealing with
incorrect output,” on page 177.

Resource name FCFLRECD
A resource name of FCFLRECD indicates a wait for a record lock in a BDAM file
or user-maintained data table.

Neither BDAM nor user-maintained data tables use the “control interval” concept.
When a task reads a record for update, the record is locked so that concurrent

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 99

changes cannot be made by two transactions. If the file or data table is recoverable,
the lock is released at the end of the current unit of work. If the file or data table is
not recoverable, the lock is released on completion of the REWRITE or UNLOCK
operation.

If a second task attempts to update the same record while the first has the lock, it
is suspended on resource type ENQUEUE.

Resource name FCDSRNGE
A resource name of FCDSRNGE indicates a wait for a range lock in a recoverable
KSDS data set.

When a transaction issues a mass-insert WRITE request to a recoverable KSDS data
set, CICS obtains exclusive control of a range of key values. This enables CICS to
perform an efficient sequential write operation, while maintaining integrity. The
range extends to the next higher key in the data set.

If another transaction tries to write a record in the locked key range, or delete the
record at the end of the range, it is suspended until the range lock is released. The
lock is released when the transaction holding it issues a syncpoint, ends the
mass-insert operation by issuing an UNLOCK, or changes to a different range.

Resource name FCDSLDMD
A resource name of FCDSLDMD indicates a wait for a lock in a VSAM data set
that has been opened in load mode.

When a VSAM data set is opened in load mode, only one request can be issued at
a time. If a transaction issues a WRITE request while another transaction’s WRITE
is in progress, it is suspended until the first WRITE completes.

Resource name FCDSESWR
A resource name of FCDSESWR indicates a wait for an ESDS write lock.

For integrity reasons, WRITE requests to recoverable ESDS data sets must be
serialized. When a transaction issues such a request, it holds the ESDS write lock
for the time it takes to log the request, obtain a record lock, and write the data set
record. If another transaction issues a WRITE request during this period, it is
suspended until the ESDS lock is released. The lock is normally released when the
WRITE completes, but may be held until syncpoint if the WRITE fails.

Resource name FCFLUMTL
A resource name of FCFLUMTL indicates a wait during loading of a
user-maintained data table.

When loading a user-maintained data table from its source data set, this lock is
used to serialize loading with application READ requests.

Investigating loader waits
A task is suspended by the loader domain if it has requested a program load and
another task is already loading that program. Once the load in progress is
complete, the suspended task is resumed very quickly and the wait is unlikely to
be detected.

Licensed Materials – Property of IBM

100 CICS TS for z/OS 5.3: Problem Determination Guide

About this task

Note that the loader does not suspend a task while a program is loaded if it is the
first one to ask for that program.

If the requested program is not loaded quickly, the reasons for the wait need to be
investigated. The possible reasons for the wait, and the ways you should
investigate them are:

Procedure
1. The system could be short on storage (SOS), so only system tasks can be

dispatched. To check if the system is short on storage:
a. Use the CEMT transaction, submitting one or more of the following

commands: CEMT I SYS SOSABOVEBAR, CEMT I SYS SOSABOVELINE or CEMT I
SYS SOSBELOWLINE.

b. To see if SOS has been reached too often, examine the job log, check the run
statistics, or submit CEMT I DSAS.

If SOS has been reached too often, take steps to relieve the storage constraints.
For guidance about this, see Identifying storage stressin the CICS Performance
Guide.

2. Check for messages that might indicate that there is an I/O error on a library. If
you find a message, investigate the reason why the I/O error occurred.

3. There could be an error within MVS. Has there been any sort of message to
indicate this? If so, it is likely that you need to refer the problem to the IBM
Support Center.

Investigating lock manager waits
If a resource name of LMQUEUE has been shown for a task, it means that the
suspended task cannot acquire the lock on a resource it has requested, probably
because another task has not released it.

About this task

A user task cannot explicitly acquire a lock on a resource, but many of the CICS
modules that run on behalf of user tasks do lock resources. If this is a genuine
wait, and the system is not just running slowly, this could indicate a CICS system
error.

Collecting information on resource locks
This section describes the data that you should find if the resource locks are being
managed correctly.

About this task

Procedure
1. Take a system dump, and format it using keywords LM and DS. This formats

the storage areas belonging to lock manager domain and dispatcher domain.
2. Turn to the lock manager summary information. Figure 15 on page 102 is an

example.
3. Establish which lock the suspended task is waiting on. Obtain the KE_TAS

number from the dispatcher domain summary for the suspended task and
match this with an OWNER in the ‘LOCK WAIT QUEUE’ section of the lock

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 101

manager summary information. In the example, only one task is suspended
and waiting to obtain the LD_GBLOK lock. The owner (KE_TAS identifier) of
this task is 03B0B3A0.

4. Find out which task currently holds the lock that the suspended task is waiting
on. You can do this by looking at the lock manager summary for that lock—in
this case, LD_GBLOK.
v If the mode of the lock is SHR (shared), you will not be able to proceed any

further and you will have to contact your IBM Support Center.
v If the mode is EXCL (exclusive), the identifier of the task that currently holds

the lock is given in the OWNER field.

In the example, the task that currently has the lock, LD_GBLOK, is
030B0AAD0. Because the OWNER field is the KE_TAS identifier of the task,
you can find out from the dispatcher domain summary the status, dispatcher
task number, and TCA address of the task that currently holds the lock.

5. When you have all this information ready, contact the IBM Support Center and
report the problem to them.

Example

The following table describes each of the fields in the lock manager summary
information.

Table 9. Fields in the lock manager summary information

Field Description

LOCK NAME The name given to the lock by the domain that originally issued the
ADD_LOCK command.

LOCK TOKEN The token assigned by the lock manager to uniquely identify the lock.

OWNER A token that uniquely identifies the owner of the lock. It is blank unless
a task currently holds the lock, in which case the KE_TAS number of
the task is given.

MODE The lock mode. It can be:

Blank No task currently holds the lock.

EXCL The lock is exclusive—only one task can hold the lock at any
one time. The lock owner is identified in the OWNER field.

SHR The lock is shared—several tasks can hold the lock. In this
case, the OWNER field will be blank.

COUNT Blank unless the lock mode is SHR, when it shows the number of tasks
currently holding the shared lock.

LOCK LOCK OWNER MODE COUNT # LOCK # LOCK -> QUEUE
NAME TOKEN REQUESTS SUSPENDS
---- ----- ----- ---- ----- -------- -------- --------
SMLOCK 03B051D8 0 0
DSITLOCK 03B05208 4 0
LD_GBLOK 03B05238 03B0AAD0 EXCL 1 1 03B09378
LD_LBLOK 03B05268 0 0
DMLOCKNM 03B05298 03B0B690 EXCL 35 0
CCSERLCK 03B052C8 0 0
==LM: LOCK WAIT QUEUE
LOCK ADDRESS -> NEXT OWNER MODE SUSPEND STATUS
NAME TOKEN
---- ------- ------- ----- ---- ------- ------
LD_GBLOK 03B09378 00000000 03B0B3A0 EXCL 010B0001

Figure 15. Lock manager summary information

Licensed Materials – Property of IBM

102 CICS TS for z/OS 5.3: Problem Determination Guide

Table 9. Fields in the lock manager summary information (continued)

Field Description

LOCK
REQUESTS

The cumulative total of the number of times a lock has been
requested—that is, the number of times the LOCK request has been
issued for the lock.

LOCK
SUSPENDS

The cumulative total of the number of tasks that have been suspended
when requesting this lock because the lock is held by another task.

-> QUEUE Blank unless tasks are currently suspended, awaiting the lock. If this is
the case, this field contains the address of the first such task. Further
information about the task is given in the ‘LOCK WAIT QUEUE’
section of the information.

ADDRESS The address of the lock manager LOCK_ELEMENT that represents the
suspended task.

-> NEXT The address of the next task in the queue awaiting the lock. If this field
is zeros, this is the last task in the queue.

OWNER The KE_TAS number of the task that is currently suspended, awaiting
the lock.

MODE The lock mode. It can be:

EXCL The lock is exclusive—only one task can hold the lock at any
one time. The lock requester is identified in the OWNER field.

SHR The lock is shared—several tasks can hold the lock.

SUSPEND
TOKEN

The dispatcher suspend token for the suspended task.

STATUS The status of the suspended task. It can be:

Blank The task is waiting to acquire the lock.

DELETED
The suspended task has been deleted from the queue. This
occurs only if the lock is deleted.

PURGED
The task was purged while waiting to acquire the lock.

ECB “PSTDECB” - DLI code lock, PSB load I/O, or DMB load
I/O

If you find that a task is waiting on ECB PSTDECB, it indicates either an error
within CICS or IMS code, or some hardware fault preventing a PSB or DMB from
being loaded.

If you have no evidence of a hardware fault, contact the IBM Support Center and
report the problem to them.

Investigating transaction manager waits
About this task

Formatting a system dump using the keyword XM=1 provides a number of
transaction manager summaries that are useful for identifying why tasks have
failed to run.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 103

A task may fail to run if the system has reached the maximum number of tasks
allowed, or if the task is defined in a transaction class that is at its MAXACTIVE
limit.

Maximum task condition waits
Tasks can fail to run if either of the following limits is reached:
v MXT (maximum tasks in CICS system)
v MAXACTIVE (maximum tasks in transaction class)

If a task is waiting for entry into the MXT set of transactions, the resource type is
MXT, and the resource name is XM_HELD. If a task is waiting for entry into the
MAXACTIVE set of transactions for a TCLASS, the resource type is TCLASS, and
the resource name is the name of the TCLASS that the task is waiting for.

If a task is shown to be waiting on resource type MXT, it is being held by the
transaction manager because the CICS system is at the MXT limit. The task has not
yet been attached to the dispatcher.

The limit that has been reached, MXT, is given explicitly as the resource name for
the wait. If this type of wait occurs too often, consider changing the MXT limit for
your CICS system.

Transaction summary
The transaction summary lists all transactions (user and system) that currently
exist. The transactions are listed in order of task number and the summary
contains two lines per transaction.

The meanings of the column headings are as follows:

Tran id
The primary transaction id associated with the transaction

Tran num
The unique transaction number assigned to the transaction

Txn Addr
The address of the transaction control block

Txd Addr
The address of the transaction definition instance associated with the
transaction

Start Code
The reason the transaction was attached, as follows:
C A CICS internal attach
T A terminal input attach
TT A permanent transaction terminal attach
QD A transient data trigger level attach
S A START command without any data
SD A START command with data
SZ A front end programming interface (FEPI) attach
DF Start code not yet known—to be set later.

Sys Tran
Indicator (Yes or No) of whether the transaction is attached as a system
transaction. System transactions do not contribute towards MXT.

Licensed Materials – Property of IBM

104 CICS TS for z/OS 5.3: Problem Determination Guide

Status An indicator of how far through attach the transaction has progressed and
whether the transaction is abending or not. The first line may take the
following values:
PRE The transaction is in the early stages of attach.
TCLASS

The transaction is waiting to acquire membership of a tclass.
MXT The transaction is waiting on MXT.
ACT The transaction is active, that is, it has been DS attached.

Depending on the value in the first line, the second line of the status field
may further qualify the transaction state. For each first line value, the
meaning of the second line is as follows:
PRE No data is displayed in the second line
TCLASS

The second line contains the name of the tclass that the transaction
is waiting to join.

MXT or ACT
If applicable, the second line indicates if the transaction is flagged
for deferred abend or a deferred message, or if the transaction is
already abending, as follows:
DF(xxxx)

indicates that the transaction is scheduled for deferred
abend, where xxxx is the abend code.

DM(yy)
indicates that the transaction is scheduled for a deferred
message, and yy indicates the message type

AB(xxxx)
indicates that the transaction is already abending with
abend code xxxx.

DS token
The token identifying the DS task (if any) assigned to the transaction.

Facility type
Type of the principal facility owned by the transaction.

Facility token
Transaction token for the principal facility owner.

AP token
The AP domain transaction token.

The first word of this token contains the address of the TCA (if any)
associated with the transaction.

PG token
The program manager transaction token.

XS token
The security domain transaction token.

US token
The user domain transaction token.

RM token
The recovery manager transaction token.

SM token
The storage manager domain transaction token.

MN token
The monitoring domain transaction token.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 105

Example
==XM: TRANSACTION SUMMARY

Tran Tran TxnAddr Start Sys Status DS Facility Facility AP PG XS US RM SM
id num TxdAddr code Tran token type token token token token token token token

CSTP 00003 10106200 C Yes ACT 00120003 None n/a 10164600 00000000 00000000 00000000 1016C000 10089020

101793C0 01000000 1017E000 00000000 00000000 10164600 00000000

CSNE 00031 10106100 C Yes ACT 00000003 None n/a 10164C00 00000000 00000000 00000000 1016C058 11542054
10A34B40 01000000 1017E048 00000000 00000000 10164C00 00000000

IC06 10056 10E2B200 T No ACT 089601C7 Terminal 10E167A0 1124F600 00000000 00000000 10114023 1016C9A0 11543610
10AC9300 00000000 00000000 1017E7E0 00000000 10E0F6A0 1124F600 00000000

IC12 10058 10E34C00 SD No ACT 050601AD None n/a 001DE600 00000000 00000000 10114023 1016C9F8 11545114
10AC93C0 00000000 1017E828 00000000 10E31400 001DE600 00000000

TA03 93738 10E0E000 T No ACT 088211E3 Terminal 10ED9000 0024B000 00000000 00000000 10114023 1016C738 115437B0
10AD3D40 00000000 00000000 1017E090 00000000 10117D60 0024B000 00000000

TA03 93920 10AFF200 T No TCL 00000000 Terminal 11214BD0 00000000 00000000 00000000 10114023 00000000 00000000
10AD3D40 DFHTCL03 00000000 00000000 00000000 00000000 10117680 00000000 00000000

TA03 93960 10E2D200 T No TCL 00000000 Terminal 10E573F0 00000000 00000000 00000000 10114023 00000000 00000000
10AD3D40 DFHTCL03 00000000 00000000 00000000 00000000 10E0F6C0 00000000 00000000

TA03 93967 10AFEA00 T No TCL 00000000 Terminal 10ECCBD0 00000000 00000000 00000000 10114023 00000000 00000000
10AD3D40 DFHTCL03 00000000 00000000 00000000 00000000 10117540 00000000 00000000

TA03 94001 10E34800 T No ACT 00000000 Terminal 10E2C3F0 00000000 00000000 00000000 10114023 00000000 00000000
10AD3D40 DF(AKCC) 00000000 00000000 00000000 00000000 10E31120 00000000 00000000

TA02 95140 10E2D300 T No ACT 0386150D Terminal 10E2C5E8 00057000 00000000 00000000 10114023 1016C790 11544754
10AD3C80 00000000 00000000 1017E510 00000000 10E0F320 00057000 00000000

TA02 95175 10E12C00 T No TCL 00000000 Terminal 10E937E0 00000000 00000000 00000000 10114023 00000000 00000000
10AD3C80 DFHTCL02 00000000 00000000 00000000 00000000 10E0F100 00000000 00000000

TA02 95187 10E0B000 T No TCL 00000000 Terminal 10EA95E8 00000000 00000000 00000000 10114023 00000000 00000000
10AD3C80 DFHTCL02 00000000 00000000 00000000 00000000 10117800 00000000 00000000

TA02 95205 10E2D600 T No MXT 00000000 Terminal 10E837E0 00000000 00000000 00000000 10114023 00000000 00000000
10AD3C80 DF(AKCC) 00000000 00000000 00000000 00000000 10E0F780 00000000 00000000

TA04 96637 10E33000 T No ACT 060408E7 Terminal 10E05BD0 00057600 00000000 00000000 10114023 1016C7E8 115457C8
10AD3E00 00000000 00000000 1017E558 00000000 10E31040 00057600 00000000

TA04 96649 10E34000 T No TCL 00000000 Terminal 10AE89D8 00000000 00000000 00000000 10114023 00000000 00000000
10AD3E00 DFHTCL04 00000000 00000000 00000000 00000000 10E312C0 00000000 00000000

F121 99305 10E2D800 T No ACT 020C1439 Terminal 10EA93F0 00060000 00000000 00000000 10114023 1016C898 115423FC
10AD3BC0 AB(AFCY) 00000000 00000000 1017E708 00000000 10E0F920 00060000 00000000

TS12 99344 10AFED00 T No MXT 00000000 Terminal 10E499D8 00000000 00000000 00000000 10114023 00000000 00000000
10AD6B40 00000000 00000000 00000000 00000000 101178C0 00000000 00000000

MXT summary
The MXT summary indicates whether CICS is currently at the maximum number
of tasks, showing the current number of queued and active transactions.

To check the status of an individual transaction, consult the main transaction
summary (“Transaction summary” on page 104).

Transaction class summary
The transaction class summary lists each transaction class that is currently
installed. For each class, the current number of active and queued transactions is
shown.

A transaction class is at its MAXACTIVE limit if its ‘current active’ total is greater
than or equal to its ‘max active’ setting. If a transaction class is at its MAXACTIVE

==XM: MXT SUMMARY

Maximum user tasks (MXT): 7
System currently at MXT: Yes
Current active user tasks: 7
Current queued user tasks: 2

* Peak active user tasks: 7
* Peak queued user tasks: 2
* Times at MXT limit: 1

* NOTE: these values were reset at 18:00:00 (the last statistics interval collection)

Licensed Materials – Property of IBM

106 CICS TS for z/OS 5.3: Problem Determination Guide

limit, a number of transactions could be queueing in that transaction class. The
transaction id and number of each queued transaction is listed with its transaction
class (for example, transaction classes DFHCTL01, DFHCTL02, and DFHCTL03 in
Figure 16).

A user task is waiting on resource type FOREVER
If you have found that a user task is waiting on a resource type of FOREVER, and
resource name DFHXMTA, transaction manager has detected a severe error during
task initialization or task termination. Transaction manager has suspended the task.

The suspended task is never resumed, and holds its MXT slot until CICS is
terminated. You must cancel CICS to remove this task as you will be unable to
quiesce the system. You cannot purge or forcepurge the task.

This wait is always preceded by one of the following messages: DFHXM0303,
DFHXM0304, DFHXM0305, DFHXM0306, DFHXM0307, DFHXM0308,
DFHXM0309, DFHXM0310. Transaction manager also takes a memory dump and
message DFHME0116 is produced and contains the symptom string.

Resource type TRANDEF
The suspended transaction has attempted to update the transaction definition
identified by the transaction ID but found it already locked by another transaction.

Resolving deadlocks in a CICS region
You can diagnose deadlocks between tasks wanting an exclusive lock on the same
resource, such as a record in a non-RLS file, a recoverable transient data queue, or
any resource represented by an EXEC CICS ENQUEUE.

About this task

Enqueue deadlocks between tasks occur when each of two transactions (say, A and
B) needs an exclusive lock on a resource that the other holds already. Transaction A
waits for transaction B to release the resource. However, if transaction B cannot
release the resource because it, in turn, is enqueued on a resource held by
transaction A, the two transactions are deadlocked. Further transactions may then
queue, enqueued on the resources held by transactions A and B.

Use the following example to help you diagnose deadlocks. The scenario is that a
user of task 32 complains that a terminal is locked and is unable to enter data.

==XM: TCLASS SUMMARY

Tclass Max Purge Current Current Total Queuing Queuing Queuing
Name Active Threshld Active Queued Attaches TranNum Transid Start Time

-------- -------- -------- -------- -------- -------- ------- ---- ------------
DFHTCL01 1 0 0 0 0
DFHTCL02 1 3 1 2 7 95175 TA02 18:00:19.677

95187 TA02 18:00:24.624
DFHTCL03 1 4 1 3 29 93920 TA03 17:55:40.584

93960 TA03 17:55:42.230
93967 TA03 17:55:52.253

DFHTCL04 1 0 1 1 23 96649 TA04 18:06:04.348
DFHTCL05 1 0 0 0 0
DFHTCL06 1 0 0 0 0
DFHTCL07 1 0 0 0 0
DFHTCL08 1 0 0 0 0
DFHTCL09 1 0 0 0 0
DFHTCL10 1 0 0 0 0

*** Note that the ’Total Attaches’ figures were reset at 18:00:00 (the last statistics interval collection)

Figure 16. Transaction class summary

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 107

Procedure
1. Use the command CEMT INQUIRE TASK to display the tasks in the system. For

example, a display similar to the following might appear:

INQUIRE TASK
STATUS: RESULTS - OVERTYPE TO MODIFY
Tas(0000025) Tra(CEMT) Fac(T773) Run Ter Pri(255)

Sta(TO) Use(CICSUSER) Uow(AA8E9505458D8C01)
Tas(0000028) Tra(TDUP) Fac(T774) Sus Ter Pri(001)

Sta(TO) Use(CICSUSER) Uow(AA8E950545CAD227) Hty(ZCIOWAIT) Hva(DFHZARQ1)
Tas(0000032) Tra(FUPD) Fac(T775) Sus Ter Pri(001)

Sta(TO) Use(CICSUSER) Uow(AA8E950545DAC004) Hty(ENQUEUE) Hva(FCDSRECD)
Tas(0000035) Tra(FUPD) Fac(T784) Sus Ter Pri(001)

Sta(TO) Use(CICSUSER) Uow(AA8E950545DBC357) Hty(ENQUEUE) Hva(FCDSRECD)
Tas(0000039) Tra(FUPD) Fac(T778) Sus Ter Pri(001)

Sta(TO) Use(CICSUSER) Uow(AA8E97FE9592F403) Hty(ENQUEUE) Hva(FCDSRECD)
Tas(0000042) Tra(FUP2) Fac(T783) Sus Ter Pri(001)

Sta(TO) Use(CICSUSER) Uow(AA8E97FE95DC1B9A) Hty(ENQUEUE) Hva(FCDSRECD)

Task 32 is waiting on an enqueue Hty(ENQUEUE). You can also see that the task
is waiting for a lock on a data set record Hva(FCDSRECD). At this stage, you
cannot tell which (if any) task has control of this resource.

2. Use the command CEMT INQUIRE UOWENQ at the same terminal. This command
displays information about the owners of all enqueues held. More importantly,
for deadlock diagnosis purposes, it displays information about the tasks
waiting for the enqueues. A screen similar to the following might be displayed:

INQUIRE UOWENQ
STATUS: RESULTS
Uow(AA8E9505458D8C01) Tra(CEMT) Tas(0000025) Act Exe Own
Uow(AA8E950545CAD227) Tra(TDUP) Tas(0000028) Act Tdq Own
Uow(AA8E950545DAC004) Tra(FUPD) Tas(0000032) Act Dat Own
Uow(AA8E950545DBC357) Tra(FUPD) Tas(0000035) Act Dat Wai
Uow(AA8E97FE9592F403) Tra(FUP2) Tas(0000039) Act Dat Wai
Uow(AA8E9505458D8C01) Tra(TSUP) Tas(0000034) Ret Tsq Own
Uow(AA8E97FE9592F403) Tra(FUP2) Tas(0000039) Act Dat Own
Uow(AA8E950545DAC004) Tra(FUPD) Tas(0000032) Act Dat Wai
Uow(AA8E97FE95DC1B9A) Tra(FUPD) Tas(0000042) Act Dat Own

You can see all the enqueue owners and waiters on the same region on this
display. Tasks waiting for an enqueue are displayed immediately after the task
that owns the enqueue. Owners and waiters on other regions are not displayed.

3. If you system is busy, you can clarify the display by displaying only those
resources that the task you are interested in owns and waits for. This is called
filtering. You add a filter to the end of the command as follows: CEMT INQUIRE
UOWENQ TASK(32).

INQUIRE UOWENQ TASK(32)
STATUS: RESULTS
Uow(AA8E950545DAC004) Tra(FUPD) Tas(0000032) Act Dat Own
Uow(AA8E950545DAC004) Tra(FUPD) Tas(0000032) Act Dat Wai

You can now see that task 32 owns one enqueue but is also waiting for another.
This display shows one line of information per item, listing:
v UOW identifier
v Transaction identifier
v Task identifier
v Enqueue state (active, or retained)
v Enqueue type
v Relation (whether owner of the enqueue or waiter).

Licensed Materials – Property of IBM

108 CICS TS for z/OS 5.3: Problem Determination Guide

4. To see more information, press ENTER alongside the item that interests you. If
you press ENTER alongside the first entry of the output from CEMT INQUIRE
UOWENQ TASK(32), a screen similar to the following might be displayed:

INQUIRE UOWENQ TASK(32)
RESULT

Uowenq
Uow(AA8E950545DAC004)
Transid(FUPD)
Taskid(0000032)
State(Active)
Type(Dataset)
Relation(Owner)
Resource(ACCT.CICS700.ACCTFILE)
Qualifier(SMITH)
Netuowid(..GBIBMIYA.IYA2T774.n......)
Enqfails(00000000)

This shows you details of the enqueue that task 32 owns.
5. Expand the second entry to display the enqueue that task 32 is waiting for:

INQUIRE UOWENQ TASK(32)
RESULT

Uowenq
Uow(AA8E950545DAC004)
Transid(FUPD)
Taskid(0000032)
State(Active)
Type(Dataset)
Relation(Waiter)
Resource(INDX.CICS700.ACIXFILE)
Qualifier(SMITH)
Netuowid(..GBIBMIYA.IYA2T774.n......)
Enqfails(00000000)

Expanding the one-line display is useful because RESOURCE and QUALIFIER
fields are then revealed. These identify the physical resource that is related to
the enqueue. You can see, from the first entry in this example, that task 32
owns the enqueue on record identifier “SMITH” in the
ACCT.CICS700.ACCTFILE data set. You can also see, from the second
expanded entry, that task 32 is waiting on an enqueue - for record identifier
“SMITH” in the INDX.CICS700.ACIXFILE data set.

6. Investigate why task 32 is waiting on the enqueue detailed in the second
expanded entry. You need to find out which task owns this enqueue and why it
is holding it for such a long time. You can do this by filtering the CEMT INQUIRE
UOWENQ command with the RESOURCE and QUALIFIER options.
a. Enter CEMT INQUIRE UOWENQ RESOURCE(INDX.CICS700.ACIXFILE)

QUALIFIER(SMITH). This shows the task that owns the enqueue that is being
waited on.

INQUIRE UOWENQ RESOURCE(INDX.CICS700.ACIXFILE) QUALIFIER(SMITH)
STATUS: RESULTS
Uow(AA8E97FE9592F403) Tra(FUP2) Tas(0000039) Act Dat Own
Uow(AA8E950545DAC004) Tra(FUPD) Tas(0000032) Act Dat Wai

This shows you that another task, task 39, owns the enqueue that task 32 is
waiting on.

b. Find out why task 39 is holding this enqueue, using the CEMT command
again as a filter for task 39. Enter CEMT INQUIRE UOWENQ TASK(39).

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 109

INQUIRE UOWENQ TASK(39)
STATUS: RESULTS
Uow(AA8E97FE9592F403) Tra(FUP2) Tas(0000039) Act Dat Wai
Uow(AA8E97FE9592F403) Tra(FUP2) Tas(0000039) Act Dat Own

This shows you that task 39 is also waiting for an enqueue.
c. Expand the entry that indicates the waiting state. You might see a display

similar to the following:

INQUIRE UOWENQ TASK(39)
RESULT

Uowenq
Uow(AA8E97FE9592F403)
Transid(FUP2)
Taskid(0000039)
State(Active)
Type(Dataset)
Relation(Waiter)
Resource(ACCT.CICS700.ACCTFILE)
Qualifier(SMITH)
Netuowid(..GBIBMIYA.IYA2T776.p.nk4..)
Enqfails(00000000)

This shows you that task 39 is waiting for the enqueue on record “SMITH”
in the ACCT.CICS700.ACCTFILE data set. This is the enqueue that task 32
owns.

You can now see that the deadlock is between tasks 32 and 39.
7. To confirm that your diagnosis is correct, filter by the RESOURCE and

QUALIFIER of this enqueue. This also shows that task 35 also waits on the
enqueue owned by task 32.

INQUIRE UOWENQ RESOURCE(ACCT.CICS700.ACCTFILE) QUALIFIER(SMITH)
STATUS: RESULTS
Uow(AA8E950545DAC004) Tra(FUPD) Tas(0000032) Act Dat Own
Uow(AA8E950545DBC357) Tra(FUPD) Tas(0000035) Act Dat Wai
Uow(AA8E97FE9592F403) Tra(FUP2) Tas(0000039) Act Dat Wai

You are now in a position of knowing which transaction(s) to cancel and
investigate further.

Results

You can also use the EXEC CICS INQUIRE UOWENQ command or the EXEC CICS
INQUIRE ENQ command in your applications. These return all the information that is
available under CEMT INQUIRE UOWENQ. If you want to automate deadlock detection
and resolution, these commands are of great benefit.

Note that CEMT INQUIRE UOWENQ can be used only for files accessed in non-RLS
mode, because files accessed in RLS mode have their locks managed by VSAM, not
by CICS. Deadlock and timeout detection for files accessed in RLS mode is also
performed by VSAM.

Licensed Materials – Property of IBM

110 CICS TS for z/OS 5.3: Problem Determination Guide

Resolving deadlocks in a sysplex

About this task

Since sysplex-scope ENQUEUE supports deadlock timeout there should be no
possibility of an unresolved deadlock across CICS systems.
v If a CICS task fails, the NQ domain releases all MVS ENQs held on behalf of

that CICS task
v If a CICS system fails, MVS releases all MVS ENQs owned by that CICS region.

This applies even if the reason for the CICS system failure was an MVS failure.

When there is a rogue task with enqueues held, which hangs or loops but is not
subject to runaway, the entire region can halt. CPSM tries to assist in the
determination of which task to purge to free-up the system. CPSM allows you to
put out an alert when a task's suspend time is too long. Once this has occurred,
you need to find the task causing the problem. To do this:

Procedure
1. Display the suspended task's details and determine what the suspend reason is.

If the suspend reason is ENQUEUE, you have to find out which enqueue is
being waited upon by this task.

2. Display the enqueues held and the one this task is waiting for using the
UOWENQ display (uow) Browse for this UOWid). From this display you can
get the enqueue name that this task is waiting for.

3. Display the details of this enqueue You are now in a position to analyze the
problem to determine the cause of the problem.

Results

Resolving indoubt and resynchronization failures
About this task

For examples of how to resolve indoubt and resynchronization failures, see
Problem determination in the CICS Intercommunication Guide.

What to do if CICS has stalled
CICS can stall during initialization, when it is running apparently “normally”, or
during termination. These possibilities are dealt with separately in the following
information.

Procedure
1. If CICS stalls during initialization, read “CICS has stalled during initialization.”
2. If CICS stalls during a run, read “CICS has stalled during a run” on page 112.
3. If CICS stalls during termination, read “CICS has stalled during termination”

on page 114

CICS has stalled during initialization
If CICS stalls during initialization, on an initial, cold, warm, or emergency start,
the first place to look is the MVS console log. This tells you how far initialization
has progressed.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 111

Note that there might be significant delays at specific stages of initialization,
depending on how CICS last terminated.

On a cold start, loading the GRPLIST definitions from the CSD data set can take
several minutes. For large systems, the delay could be 20 minutes or more while
this takes place. You can tell if this stage of initialization has been reached because
you get this console message:
DFHSI1511 INSTALLING GROUP LIST xxxxxxxx

On a warm start, there may be a considerable delay while resource definitions are
being created from the global catalog.

If you find that unexpected delays occur at other times during CICS initialization,
consider the messages that have already been sent to the console and see if they
suggest the reason for the wait. For example, a shortage of storage is one of the
most common causes of stalling, and is always accompanied by a message. The
JCL job log is another useful source of information.

You can find out if this has happened by taking an SDUMP of the CICS region.
Format the dump using the keywords KE and DS, to get the kernel and dispatcher
task summaries.

Consider, too, whether any first-or second-stage program list table (PLT) program
that you have written could be in error. If such a program does not follow the
strict protocols that are required, it can cause CICS to stall. For programming
information about PLT programs, see the CICS Customization Guide.

CICS has stalled during a run
If a CICS region that has been running normally stalls, so that it produces no
output and accepts no input, the scope of the problem is potentially system-wide.
The problem might be confined exclusively to CICS, or it could be caused by any
other task running under MVS.

Look first on your MVS console for any messages. Look particularly for messages
indicating that operator intervention is needed, for example to change a tape
volume. The action could be required on behalf of a CICS task, or it could be for
any other program that CICS interfaces with.

If there is no operator action outstanding, inquire on active users at the MVS
console to see what the CPU usage is for CICS. If you find the value is very high,
this probably indicates that a task is looping. Read Chapter 8, “Dealing with
loops,” on page 149 for advice about investigating the problem further.

If the CPU usage is low, CICS is doing very little work. Some of the possible
reasons are:
v The system definition parameters are not suitable for your system.
v The system is short on storage, and new tasks cannot be started. This situation is

unlikely to last for long unless old tasks cannot, for some reason, be purged.
v The system is at one of the MXT or transaction class limits, and no new tasks

can be attached. In such a case, it is likely that existing tasks are deadlocked,
and for some reason they cannot be timed out.

v There is an exclusive control conflict for a volume.
v There is a problem with the communications access method.
v There is a CICS system error.

Licensed Materials – Property of IBM

112 CICS TS for z/OS 5.3: Problem Determination Guide

The way you can find out if any of these apply to your system is dealt with in the
information that follows. For some of the investigations, you will need to see a
system dump of the CICS region. If you do not already have one, you can request
one using the MVS console. Make sure that CICS is apparently stalled at the time
you take the dump, because otherwise it will not provide the evidence you need.
Format the dump using the formatting keywords KE and XM, to get the storage
areas for the kernel and the transaction manager.

Are the system definition parameters wrong?
The system definition parameters for your system might be causing it to stall,
possibly at a critical loading. Check what is specified, paying particular attention
to the following items:
v The CICS maximum tasks (MXT) and transaction class (MAXACTIVE) limits. If

these parameters are too low, new tasks might fail to be attached. If you think
that one of these limits might be the cause of the stall, read “Are MXT or
transaction class limits causing the stall?” on page 114 for advice about further
investigation.

v ICV, the system region exit time. If this parameter is set too high, CICS might
relinquish control to the operating system for longer than intended when it has
no work to do, and might give the impression of a stall.

v ICVR, the runaway task time interval. If this parameter is set too high, a
runaway task might stop other tasks from running for a relatively long time. The
maximum ICVR value is 2,700,000 milliseconds, in which case, a runaway task
would not time out for 45 minutes. CICS could, in the meantime, be stalled. If
the ICVR parameter is set to 0, the runaway task does not time out at all.
You should already have an indication if the ICVR is the problem, from the CPU
usage.

For more details about the choice of these and other system definition parameters,
see Interval control value parameters and Improving the performance of a CICS
system in Improving performance.

Is the system short on storage?
Storage manager statistics and console messages can indicate that the system is
short on storage.

If storage is under stress, storage manager statistics indicate that a storage stress
situation has occurred. For example, check the “Times went short on storage” and
“Total time SOS” statistics.

Also, if the short-on-storage (SOS) condition is caused by a suspended GETMAIN
request, or if CICS cannot alleviate the situation by releasing programs with no
current user and by slowing the attachment of new tasks, the following actions
occur:
v A message that states that CICS is short on storage is sent to the console:

– DFHSM0131 for storage below 16 MB
– DFHSM0133 for storage above 16 MB but below 2 GB
– DFHSM0606 for storage above the bar

v The storage manager statistic “Times went short on storage” is updated.

CICS can become short on storage independently in any dynamic storage area
(DSA). You might see tasks suspended on any of the following resource types:
CDSA, SDSA, RDSA, UDSA, ECDSA, ESDSA, ERDSA, EUDSA, ETDSA, GCDSA,
GUDSA, or GSDSA.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 113

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht330.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht330.html

Are MXT or transaction class limits causing the stall?
Before new transactions can be attached for the first time, they must qualify under
the MXT and transaction class limits. In a system that is running normally, tasks
run and terminate and new transactions are attached, even though these limits are
reached occasionally. It is only when tasks can neither complete nor be purged
from the system that CICS can stall as a result of one of these limits being reached.

Look first at the transaction manager summary in the formatted system dump.

Investigate the tasks accepted into the MXT set of tasks to see if they are causing
the problem. XM dump formatting formats the state of MXT and provides a
summary of the TCLASSes and of the transactions waiting for acceptance into each
TCLASS.

Now look at the Enqueue Pool Summary in the NQ section of the dump for a
summary of task enqueues and resources. This section of the dump lists all
enqueues in CICS. Look for any enqueues that have many tasks in a waiting state.
If there are any, look for the unit of work (UOW) for which the enqueue state is
active. Look to see if this UOW is waiting on a resource.

Is there an exclusive control conflict on a volume?
Some programs use MVS RESERVE to gain exclusive control of a volume, and
nothing else can have access to any data set on that volume until it is released.
Watch for operations involving database access, because these could indicate an
exclusive control conflict on a volume.

Is there a problem with the communications access method?
If you suspect that there is a communication problem, you can inquire on the
status of the z/OS Communications Server from the MVS console. To do this, use
the command F cicsname,CEMT INQ VTAM. Substitute the name of the CICS job for
“cicsname”. You can only use this command if the MVS console has been defined
to CICS as a terminal. The status returned has a value of OPEN or CLOSED.
v If the Communications Server status is OPEN, the problem could be associated

with processing done in the Communications Server part of your system or with
processing done in the CICS part of your system. If it appears that there is a
communication problem, consider using either CICS Communications Server exit
tracing or Communications Server buffer tracing. For guidance about using these
techniques, see Chapter 15, “Using traces in problem determination,” on page
237.

v If the Communications Server status is CLOSED, CICS cannot use the
Communications Server to perform communication functions.

Is there an MVS system logger error?
If you suspect that there may be a problem with the MVS system logger, see “Log
manager waits” on page 137.

Is there a CICS system error?
If you have investigated all the task activity, and all the other possibilities from the
list, and you have still not found an explanation for the stall, it is possible that
there is a CICS system error. Contact the IBM Support Center with the problem.

CICS has stalled during termination
Waits often occur when CICS is being quiesced because some terminal input or
output has not been completed. To test this possibility, try using the CEMT
transaction to inquire on the tasks currently in the system.

Licensed Materials – Property of IBM

114 CICS TS for z/OS 5.3: Problem Determination Guide

CICS termination takes place in two stages:
1. All transactions are quiesced.
2. All data sets and terminals are closed.

If you find that you cannot use the CEMT transaction, it is likely that the system is
already in the second stage of termination. CEMT cannot be used beyond the first
stage of termination.

Note: Even if CEMT is not included in the transaction list table (XLT), you can still
use it in the first stage of termination.

The action to take next depends on whether you can use the CEMT transaction,
and if so, whether or not there are current user tasks.
v If you can use the CEMT transaction:

– If there are user tasks currently in the system, check what they are. A task
may be performing a prolonged termination routine, or it might be waiting
on a resource before it can complete its processing. It is also possible that a
task is waiting for operator intervention.
Determine what type of terminal is associated with the task. If the terminal is
a 3270 device, some keyboard input might be expected. If it is a printer, it
might have been powered off or it might have run out of paper.

– If there are no user tasks in the system, it may be that one or more terminals
have not been closed. Use the CEMT transaction to see which terminals are
currently INSERVICE, and then use CEMT SET to place them OUTSERVICE.

If these actions fail, proceed as if you were unable to use the CEMT transaction.
v If you cannot use the CEMT transaction, go to the MVS console or the

NetView® master terminal and display the active sessions. If necessary, close
down the network using the VARY NET,INACT,ID=applid command. This should
enable CICS to resume its termination sequence. If it does not, you might need
to cancel the CICS job. If this does happen, consider whether any PLT program
running in the second quiesce stage could be in error. If such a program did not
follow the strict protocols that are required, it could cause CICS to stall during
termination. For programming information about PLT programs, see Writing
initialization and shutdown programs in Developing system programs.

Licensed Materials – Property of IBM

Chapter 6. Dealing with waits 115

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha35h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha35h.html

Licensed Materials – Property of IBM

116 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 7. How tasks are made to wait

The suspension and resumption of tasks in a CICS system are performed by the
dispatcher domain, usually on behalf of some other CICS component. If the exit
programming interface (XPI) is being used, it can be at the request of user code.

The major dispatcher functions associated with the suspension and subsequent
resumption of tasks are described in detail in Diagnosis reference overview in
Reference -> Diagnostics. You can use trace to see the dispatcher functions that are
requested, and the values of parameters that are supplied. See “Investigating waits
using trace” on page 57.

Some of the dispatcher functions are available to users through the exit
programming interface (XPI). If you have any applications using these XPI
functions, make sure that they follow the rules and protocols exactly. For
programming information about the XPI, see XPI functions (by domain) in
Reference -> System programming.

If you want guidance about using online or offline techniques to investigate waits,
see “Techniques for investigating waits” on page 56.

If you already know the identity of the resource that a task is waiting for, but are
not sure what functional area of CICS is involved, see Table 10 on page 118. It
shows you where to look for further guidance.

Throughout this section, the terms “suspension” and “resumption” and
“suspended” and “resumed” are used generically. Except where otherwise
indicated, they refer to any of the SUSPEND/RESUME and WAIT/POST processes
by which tasks can be made to stop running and then be made ready to run again.

This section covers concept information on the following waits:
v “The resources that CICS tasks can wait for”
v “Dispatcher waits” on page 132
v “CICS DB2 waits” on page 134
v “DBCTL waits” on page 136
v “Investigating storage waits” on page 73
v “EDF waits” on page 137
v “Investigating terminal waits” on page 63
v “Log manager waits” on page 137
v “Task control waits” on page 138
v “SNA LU control waits” on page 140
v “Interregion and intersystem communication waits” on page 142
v “Transient data waits” on page 142
v “CICS system task waits” on page 146
v “FEPI waits” on page 146
v “Recovery manager waits” on page 147

The resources that CICS tasks can wait for
Tasks in a CICS system can wait for various resources.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 117

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.diagnosisref.doc/topics/dfhs3_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.diagnosisref.doc/topics/dfhs3_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha3_xpi_functions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha3_xpi_functions.html

Some resources are identified by both a resource name and a resource type, some
by a resource name alone, and some by a resource type alone. The resource names
and resource types that are shown are the ones that you can see in formatted trace
entries and, for some resources, by online inquiry.

User tasks can be made to wait only for some of the resources. For each such
resource, a topic reference shows you where to look for guidance about dealing
with the wait. The two values in the column Purge status indicate whether the
suspending module permits normal task purging (such as that caused by the API
and CEMT purge commands) and purging caused by a deadlock timeout limit
being reached. The first value indicates whether normal task purging is permitted;
the second indicates whether deadlock timeout is permitted.

The remaining resources are used only by CICS system tasks. If you have evidence
that a system task is waiting for such a resource, and it is adversely affecting the
operation of your system, you probably need to contact your IBM Support Center.
Before doing so, however, read “CICS system task waits” on page 146.

Table 10. Resources that a suspended task might wait for

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

(none) (none) DFHDUIO WAIT_MVS IO System only “CICS system task
waits” on page 146

(none) (none) DFHRMSL7 WAIT_MVS TIMER System only “CICS system task
waits” on page 146

(none) (none) DFHZNAC SUSPEND See note
1 on page 130

System only “CICS system task
waits” on page 146

(none) DLCNTRL DFHDBCT WAIT_MVS See
note 1 on page 130

System only “CICS system task
waits” on page 146

(none) DLCONECT DFHDBCON WAIT_MVS
OTHER_
PRODUCT

System only “CICS system task
waits” on page 146

(none) DMWTQUEU DFHDMWQ SUSPEND MISC System only “CICS system task
waits” on page 146

(none) No,
No

LMQUEUE DFHLMLM SUSPEND LOCK User “Investigating lock
manager waits” on
page 101

ADAPTER No,
No

FEPI_RQE DFHSZATR WAIT_MVS MISC User See note 2 on page
130

ALLOCATE Yes,
Yes

TCTTETI value DFHALP SUSPEND See note
3 on page 130

User “Interregion and
intersystem
communication
waits” on page 142

ALP_TERM (none) DFHALRC WAIT_OLDC MISC System only “Recovery manager
waits” on page 147

Any_MBCB No,
No

Transient data
queue name

DFHTDB
DFHTDRM

SUSPEND IO User “Transient data
waits” on page 142

Any_MRCB No,
No

Transient data
queue name

DFHTDB
DFHTDRM

SUSPEND IO User “Transient data
waits” on page 142

AP_INIT ECBTCP DFHAPSIP WAIT_OLDC MISC System only “CICS system task
waits” on page 146

AP_INIT SIPDMTEC DFHAPSIP WAIT_MVS MISC System only “CICS system task
waits” on page 146

Licensed Materials – Property of IBM

118 CICS TS for z/OS 5.3: Problem Determination Guide

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

AP_INIT TCTVCECB DFHSII1 WAIT_OLDC MISC System only “CICS system task
waits” on page 146

AP_INIT ZGRPECB DFHSII1 WAIT_MVS MISC System only “CICS system task
waits” on page 146

AP_QUIES CSASSI2 DFHSTP WAIT_OLDC MISC System only “CICS system task
waits” on page 146

AP_QUIES SHUTECB DFHSTP WAIT_MVS MISC System only “CICS system task
waits” on page 146

APRDR INITIAL DFHAPRDR SUSPEND MISC System only “Recovery manager
waits” on page 147

APRDR RECOVER DFHAPRC SUSPEND MISC System only “Recovery manager
waits” on page 147

AP_TERM STP_DONE DFHAPDM WAIT_MVS LOCK System only “CICS system task
waits” on page 146

CCSTWAIT VSMSTRNG DFHCCCC WAIT_OLDC IO System only “CICS system task
waits” on page 146

CCVSAMWT ASYNRESP DFHCCCC WAIT_MVS IO System only “CICS system task
waits” on page 146

CCVSAMWT EXCLOGER DFHCCCC WAIT_MVS IO System only “CICS system task
waits” on page 146

CDB2CONN No,
No

(none) DFHD2EX1 WAIT_MVS
OTHER_
PRODUCT

User “CICS DB2 waits”
on page 134

CDB2RDYQ No,
No

Name of
DB2ENTRY or
pool

DFHD2EX1 WAIT_MVS
OTHER_
PRODUCT

User “CICS DB2 waits”
on page 134

CDB2TCB No,
No

(none) DFHD2EX1 WAIT_MVS
OTHER_
PRODUCT

User “CICS DB2 waits”
on page 134

CDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

CFDTWAIT File name DFHFCDO
DFHFCDR
DFHFCDU

WAIT_MVS
MISC
WAIT_MVS
MISC
WAIT_MVS

MISC

User “Investigating file
control waits” on
page 87

CFDTPOOL CFDT pool name DFHFCDO
DFHFCDR
DFHFCDU

SUSPEND
LOCK
SUSPEND
LOCK
SUSPEND
LOCK

User “Investigating file
control waits” on
page 87

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 119

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

CFDTLRSW CFDT pool name DFHFCDR
SUSPEND
LOCK

User “Investigating file
control waits” on
page 87

CSNC MROQUEUE DFHCRNP WAIT_MVS See
note 1 on page 130

System only “CICS system task
waits” on page 146

DB2 No,
No

LOT_ECB DFHD2EX1 WAIT_MVS
OTHER_
PRODUCT

User “CICS DB2 waits”
on page 134

DB2_INIT Yes,
Yes

(none) DFHD2IN1 WAIT_OLDC MISC User “CICS DB2 waits”
on page 134

DB2CDISC Yes,
Yes

Name of
DB2CONN

DFHD2TM WAIT_OLDC MISC User “CICS DB2 waits”
on page 134

DB2EDISA Yes,
Yes

Name of
DB2ENTRY

DFHD2TM WAIT_OLDC MISC User “CICS DB2 waits”
on page 134

DBDXEOT (none) DFHDXSTM WAIT_MVS MISC System only “CICS system task
waits” on page 146

DBDXINT (none) DFHXSTM WAIT_MVS MISC System only “CICS system task
waits” on page 146

DBCTL No,
No

DLSUSPND DFHDBSPX WAIT_MVS
OTHER_
PRODUCT

User “DBCTL waits” on
page 136

DFHAIIN AITM DFHAIIN1 SUSPEND MISC System only “CICS system task
waits” on page 146

DFHCPIN CPI DFHCPIN1 SUSPEND MISC System only “CICS system task
waits” on page 146

DFHPRIN PRM DFHPRIN1 SUSPEND MISC System only “CICS system task
waits” on page 146

DFHPTTW YES DFHPTTW DFHPTTW SUSPEND MISC User

DFHSIPLT EARLYPLT DFHSII1 WAIT_MVS MISC System only “CICS system task
waits” on page 146

DFHSIPLT LATE_PLT DFHSIJ1 WAIT_MVS MISC System only “CICS system task
waits” on page 146

DISPATCH Yes,
Yes

JVM_POOL DFHDSDS4 SUSPEND MISC User “Dispatcher waits”
on page 132

DISPATCH Yes,
Yes

OPENPOOL DFHDSDS4 SUSPEND MISC User “Dispatcher waits”
on page 132

DISPATCH OPEN_DEL DFHDSDS4 SUSPEND MISC User “Dispatcher waits”
on page 132

DISPATCH Yes,
Yes

SOSMVS DFHDSDS4 SUSPEND MISC User “Dispatcher waits”
on page 132

DISPATCH No XMCHILD DFHXMRU SUSPEND MISC User “Dispatcher waits”
on page 132

DISPATCH No XMPARENT DFHXMRU SUSPEND CONV User “Dispatcher waits”
on page 132

DISPATCH No XMPARENT DFHXMRU SUSPEND MISC User “Dispatcher waits”
on page 132

Licensed Materials – Property of IBM

120 CICS TS for z/OS 5.3: Problem Determination Guide

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

DMATTACH QUIESCE DFHDMDM WAIT_MVS MISC System only “CICS system task
waits” on page 146

ECDSA (none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

EDF Yes,
No

DBUGUSER DFHEDFX SUSPEND MISC User “EDF waits” on
page 137

EKCWAIT No,
Yes

ATCHMSUB DFHD2STR WAIT_OLDW
MISC

User CICS DB2 Guide

EKCWAIT No,
Yes

CEX2TERM DFHD2STP WAIT_OLDW
MISC

User CICS DB2 Guide

EKCWAIT No,
Yes

DTCHMSUB DFHD2STR WAIT_OLDW
MISC

User CICS DB2 Guide

EKCWAIT No,
Yes

MSBRETRN DFHD2STP WAIT_OLDW
MISC

User CICS DB2 Guide

EKCWAIT No,
No

SINGLE DFHEKC WAIT_OLDW
MISC

User “Task control waits”
on page 138

ENF NOTIFY DFHDMENF WAIT_MVS See
note 1 on page 130

System only “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

EXECADDR DFHNQED SUSPEND LOCK User “EXEC CICS ENQ
waits” on page 80

ENQUEUE Yes,
Yes

EXECSTRN DFHNQED SUSPEND LOCK User “EXEC CICS ENQ
waits” on page 80

ENQUEUE Yes,
Yes

FCDSESWR DFHNQED SUSPEND LOCK User “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

FCDSLDMD DFHNQED SUSPEND LOCK User “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

FCDSRECD DFHNQED SUSPEND LOCK User “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

FCDSRNGE DFHNQED SUSPEND LOCK User “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

FCFLRECD DFHNQED SUSPEND LOCK User “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

FCFLUMTL DFHNQED SUSPEND LOCK User “Investigating file
control waits” on
page 87

ENQUEUE Yes,
Yes

ISSSENQP DFHNQED SUSPEND LOCK System or
user

“Investigating
enqueue waits” on
page 77

ENQUEUE Yes,
Yes

JOURNALS DFHNQED SUSPEND LOCK User “Investigating
enqueue waits” on
page 77

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 121

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

ENQUEUE Yes,
Yes

KCADDR DFHNQED SUSPEND LOCK System or
user

“Investigating
enqueue waits” on
page 77

ENQUEUE Yes,
Yes

KCSTRING DFHNQED SUSPEND LOCK System or
user

“Investigating
enqueue waits” on
page 77

ENQUEUE Yes,
Yes

LOGSTRMS DFHNQED SUSPEND LOCK User “Investigating
enqueue waits” on
page 77

ENQUEUE Yes,
Yes

TDNQ DFHNQED SUSPEND LOCK User “Transient data
waits” on page 142

ENQUEUE Yes,
Yes

TSNQ DFHNQED SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

EPECQEMT No,
No

EPSUSPND DFHEPEV WAIT_MVS MISC System See note 13 on page
131

EPEDTBMT No,
No

EPSUSPND DFHEPEV WAIT_MVS MISC System See note 14 on page
131

ERDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

ESDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

EUDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

FCACWAIT *CTLACB* DFHFCRD WAIT_OLDC IO System “Investigating file
control waits” on
page 87

FCBFSUSP Yes,
Yes

file ID DFHFCVR SUSPEND IO User “Investigating file
control waits” on
page 87

FCCAWAIT No,
No

CTLACB DFHFCCA WAIT_MVS
OTHER_
PRODUCT

User “Investigating file
control waits” on
page 87

FCCFQR (none) DFHFCQR WAIT_MVS See
note 1 on page 130

System “Investigating file
control waits” on
page 87

FCCFQS (none) DFHFCQS WAIT_MVS MISC System “Investigating file
control waits” on
page 87

FCCRSUSP *CTLACB* DFHFCRD SUSPEND IO System “Investigating file
control waits” on
page 87

FCDWSUSP Yes,
Yes

File ID DFHFCVR SUSPEND IO User “Investigating file
control waits” on
page 87

Licensed Materials – Property of IBM

122 CICS TS for z/OS 5.3: Problem Determination Guide

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

FCFRWAIT Yes,
Yes

File ID DFHFCFR WAIT_OLDC MISC User “Investigating file
control waits” on
page 87

FCFSWAIT Yes,
Yes

File ID DFHFCFS WAIT_OLDC IO User “Investigating file
control waits” on
page 87

FCINWAIT STATIC DFHFCIN1 WAIT_OLDC MISC System only “CICS system task
waits” on page 146

FCIOWAIT No,
No

File ID DFHFCBD
DFHFCVR

WAIT_MVS IO
WAIT_MVS IO

User “Investigating file
control waits” on
page 87

FCIRWAIT RECOV-FC DFHFCRP
DFHFCRR

WAIT_OLDC MISC
WAIT_OLDC M
ISC

System only “Investigating file
control waits” on
page 87

FCPSSUSP Yes,
Yes

CTLACB file
ID file ID

DFHFCCA
DFHFCRS
DFHFCVR

SUSPEND
IOSUSPEND
IOSUSPEND IO

User “Investigating file
control waits” on
page 87

FCQUIES Yes,
Yes

fcqse_ptr
(hexa-decimal)

DFHFCQI SUSPEND See note
1 on page 130

User “Investigating file
control waits” on
page 87

FCRAWAIT Yes,
Yes

FC_FILE DFHEIFC WAIT_OLDC MISC User “Investigating file
control waits” on
page 87

FCRBWAIT Yes,
Yes

File ID DFHFCFR WAIT_OLDC IO User “Investigating file
control waits” on
page 87

FCRDWAIT No,
No

CTLACB DFHFCRC
DFHFCRR

WAIT_OLDC MISC
WAIT_OLDC MISC

System or
user

“Investigating file
control waits” on
page 87

FCRPWAIT FC-START DFHFCRR WAIT_OLDC MISC System only “Investigating file
control waits” on
page 87

FCRRWAIT *DYRRE* DFHFCRR WAIT_OLDC MISC System only “Investigating file
control waits” on
page 87

FCRVWAIT No,
No

File ID DFHFCRV WAIT_MVS
OTHER_
PRODUCT

User “Investigating file
control waits” on
page 87

FCSRSUSP Yes,
Yes

File ID DFHFCVR SUSPEND IO User “Investigating file
control waits” on
page 87

FCTISUSP Yes,
Yes

File ID DFHFCVR SUSPEND IO User “Investigating file
control waits” on
page 87

FCXCSUSP
and
FCXDSUSP

Yes,
Yes

File ID DFHFCVS WAIT_OLDC IO User “Investigating file
control waits” on
page 87

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 123

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

FCXCPROT
and
FCXDPROT

No,
No

File ID DFHFCVS WAIT_OLDC IO User “Investigating file
control waits” on
page 87

FEPRM No,
No

SZRDP DFHSZRDP WAIT_MVS MISC CSZI See note 2 on page
130

FOREVER No,
No

DFHXMTA DFHXMTA WAIT_MVS MISC User “A user task is
waiting on resource
type FOREVER” on
page 107

ICEXPIRY DFHAPTIX DFHAPTIX SUSPEND TIMER System only “CICS system task
waits” on page 146

ICGTWAIT Yes,
Yes

Terminal ID DFHICP SUSPEND MISC User “Investigating
interval control
waits” on page 81

ICMIDNTE DFHAPTIM DFHAPTIM SUSPEND TIMER System only “CICS system task
waits” on page 146

ICP_INIT (none) DFHICRC WAIT_OLDC MISC System only “Investigating
interval control
waits” on page 81

ICP_TERM (none) DFHICRC WAIT_OLDC MISC System only “Investigating
interval control
waits” on page 81

ICP_TSWT (none) DFHICRC WAIT_OLDC MISC System only “Investigating
interval control
waits” on page 81

ICWAIT Yes,
No

Terminal ID (See
note 4 on page
131)

DFHICP SUSPEND MISC User “Investigating
interval control
waits” on page 81

IRLINK Yes,
No

SYSIDNT concat-
enated with
session name

DFHZIS2 WAIT_MVS See
note 5 on page 131

User “Investigating
terminal waits” on
page 63

IS_ALLOC Yes IPCONN DFHISAL SUSPEND User “Interregion and
intersystem

communication
waits” on page 142

IS_ERROR No IS_ERROQ DFHISEM SUSPEND System only “Interregion and
intersystem

communication
waits” on page 142

IS_INPUT No TERMID DFHISRR SUSPEND User “Interregion and
intersystem

communication
waits” on page 142

IS_PACE Yes IPCONN DFHISSR SUSPEND User “Interregion and
intersystem

communication
waits” on page 142

Licensed Materials – Property of IBM

124 CICS TS for z/OS 5.3: Problem Determination Guide

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

IS_RECV Yes IPCONN DFHISSR SUSPEND User “Interregion and
intersystem

communication
waits” on page 142

IS_SESS Yes TERMID DFHISIC SUSPEND User “Interregion and
intersystem

communication
waits” on page 142

JVMTHRED Yes JVM server name DFHSJTH SUSPEND MISC System or
user

See note 15 on page
131

KCCOMPAT No,
No

CICS DFHXCPA WAIT_OLDC
LOCK

User “Task control waits”
on page 138

KCCOMPAT No,
No

LIST DFHXCPA WAIT_OLDW
MISC

User “Task control waits”
on page 138

KCCOMPAT No,
No

SINGLE DFHXCPA WAIT_OLDW
MISC

User “Task control waits”
on page 138

KCCOMPAT Yes,
No

SUSPEND DFHXCPA SUSPEND MISC User “Task control waits”
on page 138

KCCOMPAT Yes,
No

TERMINAL DFHXCPA SUSPEND MISC User “Task control waits”
on page 138 and
“Investigating
terminal waits” on
page 63

LATE_PLT DFHSIPLT DFHSIPLT WAIT_MVS MISC System only “CICS system task
waits” on page 146

LG_DEFER No,
No

Journal name DFHL2SRC SUSPEND IDLE User “Log manager
waits” on page 137

LGDELALL No,
No

Journal name DFHL2HS4 WAIT_MVS IO User “Log manager
waits” on page 137

LGDELRAN No,
No

Journal name DFHL2HS5 WAIT_MVS IO User “Log manager
waits” on page 137

LGENDBLK No,
No

Journal name DFHL2HS9 WAIT_MVS IO User “Log manager
waits” on page 137

LGENDCRS No,
No

Journal name DFHL2HSJ WAIT_MVS IO User “Log manager
waits” on page 137

LG_FORCE Yes,
No

Journal name DFHL2SRC SUSPEND MISC User “Log manager
waits” on page 137

LGFREVER No,
No

DFHLOG DFHL2SLE SUSPEND IDLE User “Log manager
waits” on page 137

LGHARTBT No,
No

LG_MGRST DFHLGHB SUSPEND TIMER System only “How CICS checks
for the availability
of the MVS logger”
on page 218

LGREDBLK No,
No

Journal name DFHL2HS8 WAIT_MVS IO User “Log manager
waits” on page 137

LGREDCRS No,
No

Journal name DFHL2HSG WAIT_MVS IO User “Log manager
waits” on page 137

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 125

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

LGSTRBLK No,
No

Journal name DFHL2HS7 WAIT_MVS IO User “Log manager
waits” on page 137

LGSTRCRS No,
No

Journal name DFHL2HS6 WAIT_MVS IO User “Log manager
waits” on page 137

LGWRITE No,
No

Journal name DFHL2HSF WAIT_MVS IO User “Log manager
waits” on page 137

MBCB_xxx
(See note 6 on
page 131)

No,
No

Transient data
queue name

DFHTDB
DFHTDRM

SUSPEND IO User “Transient data
waits” on page 142

MQseries Yes,
Yes

GETWAIT DFHMQTRU WAIT_MVS
OTHER_PRODUCT

User “WebSphere MQ
waits” on page 135

MRCB_xxx
(See note 6 on
page 131)

No,
No

Transient data
queue name

DFHTDB
DFHTDRM

WAIT_MVS IO User “Transient data
waits” on page 142

MXT No,
No

XM_HELD DFHXMAT See note 7 on page
131

User “Maximum task
condition waits” on
page 104

PIIS Yes,
Yes

RZCBNOTI DFHPIIS SUSPEND MISC System See note 8 on page
131

PROGRAM Yes,
Yes

program ID DFHLDDMI SUSPEND LOCK User “Investigating
loader waits” on
page 100

PROGRAM Yes,
Yes

program ID DFHPGEX
DFHPGIS
DFHPGLD
DFHPGLE
DFHPGLK
DFHPGLU
DFHPGPG
DFHPGRP
DFHPGXE

SUSPEND MISC User

RCP_INIT (none) DFHAPRC WAIT_OLDC MISC System only “CICS system task
waits” on page 146

RDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

RMI DFHERMRS DFHERMRS WAIT_MVS TIMER System only “Recovery manager
waits” on page 147

RMCLIENT No,
No

Client name DFHRMCIC SUSPEND MISC User “Recovery manager
waits” on page 147

Licensed Materials – Property of IBM

126 CICS TS for z/OS 5.3: Problem Determination Guide

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

RMUOWOBJ No,
No

LOGMOVE

EXISTENC

DFHRMUO
DFHRMUW
DFHRMUWJ
DFHRMUWS
DFHRMU1U
DFHRMUO
DFHRMUW
DFHRMUWL
DFHRMUWP
DFHRMUWQ
DFHRMU1D
DFHRMU1K

SUSPEND LOCK User “Recovery manager
waits” on page 147

RZRSTRIG Yes,
Yes

(none) DFHRZSO
DFHRZTA

SUSPEND MISC Misc See note 11 on page
131

RZRSTRAN Yes,
Yes

(none) DFHRZSO
DFHRZTA

SUSPEND MISC Misc See note 12 on page
131

SDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

SOCKET Yes STE DFHSOCK SUSPEND MISC System only

SOCKET Yes MAXSOCKETS DFHSOEC WAIT_MVS IDLE System only

SOCKET Yes SOCLOSE DFHSOSO SUSPEND MISC System or
user

SOCKET Yes RECEIVE DFHSOEC WAIT_MVS IDLE System or
user

SOCKET Yes SEND DFHSOEC WAIT_MVS IDLE System or
user

SOCKET Yes MISCELANEOUS DFHSOEC WAIT_MVS IDLE System or
user

SODOMAIN Yes SO_LTEPTY DFHSODM WAIT_MVS MISC System only

SODOMAIN No SO_LISTN DFHSOLS WAIT_MVS MISC System only

SODOMAIN No SO_NOWORK DFHSOLS WAIT_MVS MISC System only

SODOMAIN No SO_LTERDC DFHSORD WAIT_MVS MISC System or
user

STP_TERM (none) DFHAPRC WAIT_OLDC MISC System only “CICS system task
waits” on page 146

SMPRESOS (none) DFHSMSY WAIT_MVS TIMER System only “CICS system task
waits” on page 146

SMSYSTEM (none) DFHSMSY SUSPEND TIMER System only “CICS system task
waits” on page 146

SMSYRE SMVA_ECB DFHSMSY WAIT_MVS MISC System only “CICS system task
waits” on page 146

SUCNSOLE WTO DFHSUWT WAIT_MVS MISC System only “CICS system task
waits” on page 146

TCLASS No,
No

tclass name DFHXMAT See note 9 on page
131

User “Checking log
stream status” on
page 226

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 127

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

TCLASS Yes,
Yes

tclass name DFHXMCL SUSPEND LOCK User

TCP_NORM DFHZDSP DFHZDSP WAIT_OLDW See
note 1 on page 130

System only “CICS system task
waits” on page 146

TCP_SHUT DFHZDSP DFHZDSP WAIT_OLDW
MISC

System only “CICS system task
waits” on page 146

TCTVCECB ZC_ZGRP DFHZGRP WAIT_OLDC MISC System only “CICS system task
waits” on page 146

TDEPLOCK No,
No

Transient data
queue name

DFHTDA SUSPEND LOCK User “Transient data
waits” on page 142

TD_INIT No,
No

DCT DFHTDA SUSPEND MISC User “Transient data
waits” on page 142

TDIPLOCK No,
No

Transient data
queue name

DFHTDB SUSPEND LOCK User “Transient data
waits” on page 142

TD_READ No,
No

Transient data
queue name

DFHTDB SUSPEND LOCK User “Transient data
waits” on page 142

TIEXPIRY DS_NUDGE DFHTISR SUSPEND TIMER System only “CICS system task
waits” on page 146

TRANDEF Yes,
Yes

Transaction id
DFHXMDD
DFHXMQD

SUSPEND LOCK User “Resource type
TRANDEF” on page
107

TSAUX Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

TSBUFFER Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

TSEXTEND Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

TSIO No,
No

(none) DFHTSAM WAIT_MVS IO User “Investigating
temporary storage
waits” on page 75

TSIOWAIT DFHTEMP DFHTSDM WAIT_MVS IO System only “Investigating
temporary storage
waits” on page 75

TSMAINLM Yes,
Yes

DFHTSSQ DFHTSSQ SUSPEND MISC System only “Investigating
temporary storage
waits” on page 75

TSPOOL Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

TSQUEUE Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

TSSHARED Yes,
Yes

Temporary
storage queue
name

DFHTSSH WAIT_MVS MISC User “Investigating
temporary storage
waits” on page 75

Licensed Materials – Property of IBM

128 CICS TS for z/OS 5.3: Problem Determination Guide

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

TSSTRING Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

TSWBUFFR Yes,
Yes

Temporary
storage queue
name

DFHTSWQ SUSPEND LOCK User “Investigating
temporary storage
waits” on page 75

UDSA Yes,
Yes

(none) DFHSMSQ SUSPEND MISC User “Investigating
storage waits” on
page 73

USERWAIT Yes,
Yes
or
No,
No

Supplied by
application

DFHEIQSK WAIT_MVS MISC
WAIT_OLDW
MISC

User “Task control waits”
on page 138

USERWAIT Yes,
Yes

CDB2TIME DFHD2EX2 WAIT_OLDW
MISC

System CICS DB2 Guide

USERWAIT Yes,
Yes

DB2START DFHD2EX2 WAIT_MVS MISC System only CICS DB2 Guide

WBALIAS No,
No

Target Transid DFHWBXN SUSPEND MISC User “CICS Web waits”
on page 147

WEB_ECB
DFH_STATE_
TOKEN

DFHWBST WAIT_MVS TIMER System or
User

WMQ_INIT Yes,
Yes

(none) DFHMQIN1 WAIT_OLDC MISC User “WebSphere MQ
waits” on page 135

WMQCDISC Yes,
Yes

Name of
MQCONN

DFHMQTM WAIT_OLDC MISC User “WebSphere MQ
waits” on page 135

XRGETMSG Message queue
name

DFHWMQG WAIT_MVS See
note 1 on page 130

System only “CICS system task
waits” on page 146

XRPUTMSG Yes,
Yes

Message queue
name

DFHWMQP WAIT_MVS MISC User

ZC Yes,
No

DFHZCRQ1 DFHZCRQ SUSPEND MISC User “SNA LU control
waits” on page 140

ZC Yes,
No

DFHZEMW1 DFHZEMW SUSPEND MISC User “SNA LU control
waits” on page 140

ZC Yes,
No

DFHZIS11 DFHZIS1 SUSPEND MISC User “SNA LU control
waits” on page 140

ZC Yes,
No

DFHZRAQ1 DFHZRAQ SUSPEND MISC User “SNA LU control
waits” on page 140

ZC Yes,
No

DFHZRAR1 DFHZRAR SUSPEND MISC User “SNA LU control
waits” on page 140

ZC_ZCGRP ZSLSECB DFHZCGRP WAIT_MVS MISC System only “SNA LU control
waits” on page 140

ZC_ZGCH No,
No

CHANGECB DFHZGCH WAIT_MVS MISC User “SNA LU control
waits” on page 140

ZC_ZGIN No,
No

INQ_ECB_ DFHZGIN WAIT_MVS MISC User “SNA LU control
waits” on page 140

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 129

Table 10. Resources that a suspended task might wait for (continued)

Resource type Purge
status

Resource name Suspending
module

DSSR call and
WLM wait type

Task Where to look next

ZC_ZGRP PSINQECB DFHZGRP WAIT_MVS MISC System only “SNA LU control
waits” on page 140

ZC_ZGRP PSOP1ECB DFHZGRP WAIT_MVS MISC System only “SNA LU control
waits” on page 140

ZC_ZGRP PSOP2ECB DFHZGRP WAIT_MVS MISC System only “SNA LU control
waits” on page 140

ZC_ZGUB PSUNBECB DFHZGUB WAIT_OLDC MISC System only “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZARQ1 DFHZARQ SUSPEND See note
10 on page 131

User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZARL1 DFHZARL SUSPEND See note
10 on page 131

User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZARL4 DFHZARL SUSPEND See note
10 on page 131

User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZARR1 DFHZARR1 SUSPEND See note
10 on page 131

User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZARER DFHZARER SUSPEND MISC User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZERH1 DFHZERH SUSPEND CONV User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZERH2 DFHZERH SUSPEND CONV User “SNA LU control
waits” on page 140

ZCIOWAIT Yes,
No

DFHZERH3 DFHZERH SUSPEND CONV User “SNA LU control
waits” on page 140

ZCZGET Yes,
No

DFHZARL2 DFHZARL SUSPEND MISC User “SNA LU control
waits” on page 140

ZCZNAC Yes,
No

DFHZARL3 DFHZARL SUSPEND MISC User “SNA LU control
waits” on page 140

ZCZNAC Yes,
No

DFHZERH4 DFHZERH SUSPEND CONV User “SNA LU control
waits” on page 140

ZXQOWAIT LIST DFHZXQO WAIT_OLDW
MISC

System only “SNA LU control
waits” on page 140

ZXQOWAIT LIST DFHZXST WAIT_OLDW
MISC

System only “SNA LU control
waits” on page 140

Note:

1. The z/OS Workload Manager (WLM) monitoring environment is set to
STATE=IDLE in either of the following situations:
v A conversational task is waiting for terminal input from its principal facility.
v A CICS system task is waiting for work.

2. These waits are used by the Front End Programming Interface (FEPI). Problem
determination for FEPI is discussed in Error handling in the CICS Front End
Programming Interface User's Guide.

3. If the task is waiting for resource type ALLOCATE, the current z/OS
Workload Manager monitoring environment is set to STATE=WAITING and
one of the following conditions is met:

Licensed Materials – Property of IBM

130 CICS TS for z/OS 5.3: Problem Determination Guide

v RESOURCE=SESS_LOCALMVS, if the session being waited for is a session
with another CICS region in the same local MVS image.

v RESOURCE=SESS_SYSPLEX, if the session being waited for is a session
with a CICS region in another z/OS image in the same sysplex.

v RESOURCE=SESS_NETWORK, if the session being waited for is an ISC
session which might be in the same z/OS image.

4. If a terminal is associated with the task.
5. If the task is waiting for resource type IRLINK, the current z/OS Workload

Manager monitoring environment is set to STATE=WAITING,
RESOURCE=CONV. Look at the RMF™ workload activity report to see
whether the task continued beyond the current WLM monitoring
environment. The SWITCHED column in this report can contain the following
values:
v LOCALMVS: the communicating CICS region is on the same local z/OS

image.
v SYSPLEX: the communicating CICS region is on another z/OS image in the

same sysplex.
6. “xxx” is literal.
7. The task has not yet started, because the system is at its MAXTASKS (MXT)

limit.
8. The task is waiting in the pipeline for another task to complete. These tasks

are connected through the Request Stream (RZ) component. The tasks might
be using MRO; for example, as part of a Web Services Atomic Transaction that
is registering with a coordination service and is waiting for a response. The
tasks might be local to the CICS region, in which case MRO is not involved
even though the tasks are still using request streams.

9. The task has not yet started because it is being held for transaction class
purposes.

10. If the task is waiting for resource type ZCIOWAIT, the current z/OS Workload
Manager monitoring environment is set to one of the following states:
v STATE=IDLE for a conversational task, or DTP transaction, that is awaiting

input from its principal facility.
v STATE=WAITING,RESOURCE=CONV for a task awaiting input from its

alternate facility. Look at the RMF workload activity report to see whether
the task continued beyond the current WLM monitoring environment. The
SWITCHED column in this report can contain the following values:
– LOCALMVS: the communicating CICS region is on the same local z/OS

image.
– SYSPLEX: the communicating CICS region is on another z/OS image in

the same sysplex.
– NETWORK: the communicating CICS region is in the z/OS

Communications Server network, which might be in the same z/OS
image.

11. The task is waiting for a request stream request or response from its request
stream partner.

12. The task is waiting to send or receive a request or response.
13. The event processing queue server is waiting for an event to be placed on the

queue.
14. The event processing dispatcher is waiting for an event to be dispatched.
15. The thread limit for the JVM server has been reached, as specified in the

THREADLIMIT attribute of the JVMSERVER resource. The JVM server must

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 131

wait until a thread becomes available before starting another task. To reduce
the frequency of waits for a particular JVM server, increase the value of the
THREADLIMIT attribute for that JVMSERVER resource.

Dispatcher waits
The CICS dispatcher might cause tasks to wait, depending on the availability of
TCBs in the CICS region and the maximum number of TCBs that CICS is allowed
to create for tasks.

The resource names or resource type associated with these dispatcher waits are as
follows:
v DSTSKDEF
v OPENPOOL
v OPEN_DEL
v SOSMVS
v SSL_POOL
v THR_POOL
v XMCHILD
v XMPARENT
v XP_POOL

Resource type DSTSKDEF

A task waiting on the resource type DSTSKDEF is not suspended. Task attach has
added the new task to the dispatcher chain and it is waiting for first dispatch. The
task might be waiting for a dump to complete, for example.

Resource name OPENPOOL

CICS automatically sets the limit for the number of open TCBs in the L8 and L9
mode open TCB pool. The limit is based on the maximum number of tasks (MXT
or MAXTASKS) specified for the CICS region, using the following formula:
(2 * MXT Value) + 32

When a task first needs an L8 or L9 mode open TCB, the dispatcher domain tries
to find a free TCB of this mode with the correct subspace attributes. If no L8 or L9
mode TCB associated with a matching subspace is free, CICS performs these
actions:
v Attaches a new L8 or L9 mode TCB of the required subspace, if the number of

open TCBs in the L8 and L9 mode open TCB pool is less than the limit set by
CICS, and allocates the new TCB to the requesting task.

v Detaches a free open L8 or L9 mode TCB associated with a different subspace, if
there is one available and the limit has been reached, attaches a new L8 or L9
mode TCB, and allocates this new TCB to the requesting task. This process is
referred to as TCB stealing: deleting a free TCB of one type to attach one of a
different type.

However, if neither of these options is available, the dispatcher places the
requesting task onto a queue and the task is suspended, using suspend token
AWAITING_OPENPOOL_TOKEN in the DS task block. When an open TCB
becomes free, or if the limit changes, the task at the front of the queue is resumed,
and the open TCB allocation process is retried.

Licensed Materials – Property of IBM

132 CICS TS for z/OS 5.3: Problem Determination Guide

Resource name OPEN_DEL

If your task is waiting on a resource name of OPEN_DEL, the dispatcher is
detaching an unsuitable TCB (stealing) so that it can allocate a new one, and your
task is waiting for the old TCB to end so that the dispatcher can attach a new one.

If your task requires an open TCB, but no suitable TCB is available, and a new
TCB cannot be attached because the limit set for the number of open TCBs has
been reached, CICS deletes a currently idle TCB to allow the task to attach a TCB
of the required type. However, the attach cannot proceed until the process to delete
the TCB is complete, otherwise, the number of open TCBs in the pool would
temporarily exceed the limit.

Resource type SOSMVS

CICS has a storage monitor for MVS storage, which notifies it when MVS storage
is constrained or severely constrained. The storage monitor checks whether the
availability of MVS storage has dropped below a preset threshold of 40 MB, and
notifies CICS when this is the case. The storage monitor also notifies CICS if the
availability of MVS storage has become so low that MVS storage requests can be
satisfied only from a preset MVS storage cushion of 20 MB.

If CICS queues requests to create TCBs because they cannot obtain sufficient MVS
storage, the requests are suspended with a resource name of SOSMVS.

Resource name SSL_POOL

When a task first needs a S8 mode open TCB, the dispatcher domain attempts to
find a free TCB from the SSL pool. If no S8 mode TCB is free, and the number of
open TCBs in the SSL pool is less than the limit specified by the MAXSSLTCBS
system initialization parameter, CICS attaches a new TCB and allocates it to the
requesting task.

However, if the number of S8 TCBs in the pool is at the limit set by MAXSSLTCBS,
dispatcher places the requesting task onto a queue and the task is suspended,
using suspend token AWAITING_OPEN_TCB_TOKEN in the DS task block. When
an open TCB becomes free, or the MAXSSLTCBS limit is raised, the task at the
front of the queue is resumed, and the open TCB allocation process is retried.

Resource name THR_POOL

When a task first needs a T8 mode open TCB, the dispatcher domain attempts to
find a free TCB from the THRD pool. If no T8 TCB is free, and the number of open
TCBs in the THRD pool is less than the maximum limit, CICS attaches a new TCB
and allocates it to the requesting task. The maximum limit for the THRD pool is
total number of threads reserved for all the JVM servers in the region, up to a limit
of 2000. The number of threads reserved for each JVM server is the
THREADLIMIT value on the JVMSERVER resource, plus 1 (the TCB that is
reserved for the JVM server).

If the number of T8 TCBs in the pool is at the maximum limit, dispatcher places
the requesting task onto a queue and the task is suspended, using suspend token
AWAITING_OPEN_TCB_TOKEN in the DS task block. When an open TCB
becomes free, the task at the front of the queue is resumed, and the open TCB
allocation process is retried.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 133

Resource type XMCHILD

The task is a CICS Business Transaction Services (BTS) child transaction that is
suspended waiting for its parent transaction to resume it. The resource name is the
task number of the parent transaction.

Resource type XMPARENT

The task is a CICS Business Transaction Services (BTS) parent transaction that is
suspended waiting for an associated child transaction to resume it. The resource
name is the task number of the child transaction.

Resource name XP_POOL

CICS automatically sets the limit for the number of X8 and X9 TCBs to a value
equal to the maximum number of tasks specified for the CICS region (the MXT
value).

When a task first needs a X8 or X9 mode open TCB, the dispatcher domain
attempts to find a free TCB from the XP pool. If no X8 or X9 mode TCB is free,
and the number of open TCBs in the XP pool is less than the limit set by CICS,
CICS attaches a new TCB and allocates it to the requesting task.

However, if the number of X8 and X9 TCBs in the pool is at the limit set by CICS,
dispatcher places the requesting task onto a queue and the task is suspended,
using suspend token AWAITING_OPEN_TCB_TOKEN in the DS task block. When
an open TCB becomes free, or if the limit changes, the task at the front of the
queue is resumed, and the open TCB allocation process is retried.

CICS DB2 waits
CICS DB2 uses the WAIT_MVS and WAIT_OLDC functions of the CICS dispatcher
to put the running CICS task into a wait.

Resource type CDB2CONN

The CICS task has an open TCB but is waiting for a DB2 connection to become
available to use with the open TCB. This indicates that the TCBLIMIT value has
been reached, which limits the number of open TCBs (and hence connections) that
can be used to access DB2. The CICS task must wait for a connection to be freed
by another TCB running on behalf of another CICS task, after which it may use the
freed DB2 connection with its own TCB.

You cannot purge the task when it is in this state. Message DFHAP0604 is issued
at the console if an attempt to forcepurge the task is made. Forcepurge processing
is deferred until a DB2 connection has been acquired.

You can increase the number of open TCBs permitted to access DB2 with a SET
DB2CONN TCBLIMIT command. If you increase the TCBLIMIT value, CICS posts
tasks to retry acquisition of a DB2 connection.

Resource type CDB2RDYQ

The task is waiting for a thread to become available. The resource name details the
DB2ENTRY or pool for which there is a shortage of threads.

Licensed Materials – Property of IBM

134 CICS TS for z/OS 5.3: Problem Determination Guide

You cannot purge the task when it is in this state. Message DFHAP0604 is issued
at the console if an attempt to forcepurge the task is made. Forcepurge processing
is deferred until a thread is acquired.

You can increase the number of threads available for the DB2ENTRY with a SET
DB2ENTRY () THREADLIMIT(nn) command. You can increase the number of
threads available for the pool with a SET DB2CONN THREADLIMIT(nn)
command. If you increase the THREADLIMIT value, CICS posts tasks to retry
acquisition of a thread.

Resource type DB2_INIT

DFHD2IN1 (CICS DB2 initialization program) issues the wait for DFHD2IN2 to
complete.

Resource type DB2CDISC

A SET DB2CONN NOTCONNECTED command has been issued with the WAIT or FORCE
option. DFHD2TM waits for the count of tasks using DB2 to reach zero.

Resource type DB2EDISA

A SET DB2ENTRY DISABLED command has been issued with the WAIT or
FORCE option. DFHD2TM waits for the count of tasks using the DB2ENTRY to
reach zero.

WebSphere MQ waits
If a task is waiting on the resource type MQseries, WMQ_INIT, or WMQCDISC,
the CICS-WebSphere MQ adapter has suspended it.

Resource type MQseries

The CICS-WebSphere MQ adapter (DFHMQTRU module) put the task into a CICS
wait because the WAIT option was used with the MQGET call and there was no
message available. The resource name used for the wait is GETWAIT. The
WAIT_MVS function of the dispatcher is used for this wait, and the wait type for
workload management is OTHER_PRODUCT. The task can be purged.

Resource type WMQ_INIT

DFHMQIN1, the CICS-WebSphere MQ initialization program, issues this wait for
DFHMQIN2 to complete. The WAIT_OLDC function of the dispatcher is used for
this wait, and the wait type for workload management is MISC. The task can be
purged.

Resource type WMQCDISC

A SET MQCONN NOTCONNECTED command has been issued with the WAIT or
FORCE option, and the DFHMQTM module waits for the count of user tasks using
WebSphere MQ to reach zero. The resource name is given as the name of the
installed MQCONN resource definition for the CICS system. The WAIT_OLDC
function of the dispatcher is used for this wait, and the wait type for workload
management is MISC. The task can be purged.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 135

DBCTL waits
DBCTL can enter the wait state for three reasons: the connection to DBCTL using
CICS-supplied transaction CDBC has failed to complete, a user task is waiting on
the DBCTL resource DLSUSPND, or the attempt to disconnect from DBCTL using
CICS-supplied transaction CDBC has failed to complete.

Connection to DBCTL has failed to complete
Connection to DBCTL using the CICS-supplied transaction CDBC takes place in
two phases. You can find the current phase using either transaction CDBC, by
refreshing the screen display, or transaction CDBI.

In phase 1, CDBC passes the request for connection to IMS, and returns. It is very
unlikely for a wait to occur during this phase, unless there is an error in CICS
code. In such a case, you would see this message displayed whenever you
inquired on the connection status using CDBI:
DFHDB8291I DBCTL connect phase 1 in progress.

In phase 2, IMS processes the request asynchronously, and returns to CICS when
connection is complete. Until the connection is complete, you see this status
message displayed whenever you inquire with CDBI:
DFHDB8292I DBCTL connect phase 2 in progress.

If this phase fails to complete, the failure is associated with IMS. See the IMS
Diagnosis Guide and Reference manual guidance about debugging the problem.

A user task is waiting on resource type DBCTL
If you find that a user task is waiting on a resource type of DBCTL and resource
name DLSUSPND, the task has made a DL/I request. The task is suspended by
CICS while the request is serviced by DBCTL. If the task has not resumed, the
request has not completed.

Disconnection from DBCTL has failed to complete
When you use CDBC to disconnect from DBCTL, it invokes another CICS
transaction, CDBT. CDBT makes the disconnection request to DBCTL and is
suspended by CICS while DBCTL services the request asynchronously.

If disconnection fails to complete, you can inquire on CDBT using, for example,
CEMT INQ TASK to see how far disconnection has progressed. You will probably
find that CDBT is waiting on resource type DBCTL and resource name
DLSUSPND, in which case the request is being processed by DBCTL.
v If CDBT is waiting on DBCTL, what you do next depends on whether you have

requested “orderly” or “immediate” disconnection.
– If you have requested “orderly” disconnection, it is likely that DBCTL is

waiting for conversational tasks to finish. You can override an “orderly”
disconnection by requesting “immediate” disconnection, in which case the
process should end at once.

– If you have requested “immediate” disconnection, and this does not happen,
there is an unexpected wait within IMS. See the IMS Diagnosis Guide and
Reference for guidance about investigating the problem.

v If CDBT is not waiting on DBCTL, this indicates a problem with CICS code.
Contact the IBM Support Center for further assistance.

Licensed Materials – Property of IBM

136 CICS TS for z/OS 5.3: Problem Determination Guide

EDF waits
A user task is made to wait on resource type EDF and resource name DBUGUSER
when, under the EDF session, CICS has control for EDF processing.

Log manager waits
Read this section if the resource type your task is waiting on starts with the
characters LG, indicating log manager.

The journal name, given as the resource name, refers to the last element of the
MVS log stream name. For example, in the log stream name
PAYRO.ACC0001.UJ4321, the journal name, for these purposes, is UJ4321. If you do
encounter any of these waits, look at the MVS console for messages prefixed with
‘IXG'. These are the MVS system logger messages and might provide further
information about the cause of the wait. The MVS system console might also reveal
evidence of resource contention within MVS, a possible cause of a log manager
wait.

If the task is writing to a journal on an SMF log, the journal name is the name of
the journal.

Do not use the SET TASK command to remove tasks that are waiting for the log
manager resource types. If you use this command to purge the task, CICS ignores
the command. If you use the FORCEPURGE or KILL options, the CICS region might
fail.

Resource type LG_DEFER
The task is the first task to request that the currently active log buffer be
flushed. The task waits for 30 milliseconds to allow other tasks to append
more records to the buffer.

Resource type LG_FORCE
The task is waiting for the flush of a log buffer to complete. It is resumed
by the task that performs the flush operation. The task can be purged if the
log stream is not DFHLOG, the primary system log.

Resource type LG_RETRY
This is a temporary error, reading or writing a log from a log stream. CICS
waits and retries the operation.

Resource type LGDELALL
During an initial start of CICS, CICS calls the MVS system logger macro
IXGDELET ALL. CICS waits until the MVS system logger posts the ECB.

Resource type LGDELRAN
During keypoint processing, CICS calls the MVS system logger macro
IXGDELET RANGE. CICS waits until the MVS system logger posts the
ECB.

Resource type LGENDBLK
During an emergency restart of CICS, or transaction backout, CICS calls
the MVS system logger macro IXGBRWSE END. CICS waits until the MVS
system logger posts the ECB.

Resource type LGENDCRS
During an emergency restart of CICS, CICS calls the MVS system logger
macro IXGBRWSE END. CICS waits until the MVS system logger posts the
ECB.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 137

Resource type LGFREVER
When CICS is quiescing and a dynamic backout fails because a task fails to
read the system log, the task is suspended 'forever' to allow other tasks to
continue to back out. The SDTRAN process deletes these suspended tasks
during CICS shutdown.

Resource type LGHARTBT
The log manager 'heartbeat' system task checks that the MVS Logger
connection to the system log is still valid. The task is in this wait state
most of the time. There must be one task in this state on the system.

Resource type LGREDBLK
During an emergency restart of CICS, or transaction backout, CICS calls
the MVS system logger macro IXGBRWSE READBLOCK. CICS waits until
the MVS system logger posts the ECB.

Resource type LGREDCRS
During an emergency restart of CICS, CICS calls the MVS system logger
macro IXGBRWSE READCURSOR. CICS waits until the MVS system
logger posts the ECB.

Resource type LGSTRBLK
During an emergency restart of CICS, or transaction backout, CICS calls
the MVS system logger macro IXGBRWSE START. CICS waits until the
MVS system logger posts the ECB.

Resource type LGSTRCRS
During an emergency restart of CICS, CICS calls the MVS system logger
macro IXGBRWSE START. CICS waits until the MVS system logger posts
the ECB.

Resource type LGWRITE
In several situations, CICS calls the MVS system logger macro IXGWRITE.
CICS waits until the MVS system logger posts the ECB.

Task control waits
If your task is waiting on a resource type of KCCOMPAT or KC_ENQ, it has been
suspended by the transaction manager. If your task is waiting on a resource type
of EKCWAIT, it has been suspended by task control.

KC_ENQ indicates that CICS code acting for a task has issued an EXEC CICS ENQ
command or a DFHKC TYPE=ENQ macro. If there is an extended wait for no
apparent reason, this might indicate an error within CICS. If that turns out to be
the case, contact the IBM Support Center.

USERWAIT indicates that a task has issued an EXEC CICS WAIT EVENT EXTERNAL or
an EXEC CICS WAITCICS command.

EKCWAIT indicates that a task has issued an EXEC CICS WAIT EVENT command.

If the wait is prolonged, you should identify the event being waited on, and:
v Check that the EXEC CICS WAIT EVENT command specified the correct event.
v Check for problems with the task that should be completing the work for the

specified event. It might be waiting or looping, it might have a performance
problem, or it might have failed completely.

If the resource type is EKCWAIT and the EXEC CICS WAIT EVENT command
included the NAME option, the specified name is the resource name. For

Licensed Materials – Property of IBM

138 CICS TS for z/OS 5.3: Problem Determination Guide

programming information about the NAME option of the WAIT EVENT command,
see the CICS Application Programming Reference.

Resource type KCCOMPAT
If you have a resource type of KCCOMPAT, the resource name tells you more
about the circumstances of the wait.

The meanings of the resource names are described in Table 11.

Table 11. KCCOMPAT waits: meaning of resource names

Resource name Meaning

CICS The task has been suspended on a DFHKC TYPE=WAIT,DCI=CICS
macro call. CICS has issued the macro. The task is waiting for some
internal event, and the ECB should be posted by CICS under another
task.

LIST The task has been suspended on a DFHKC TYPE=WAIT,DCI=LIST
macro call issued by CICS code. It is waiting for any ECB in a list of
ECBs to be posted, after which it is resumed.

SINGLE The task has been suspended on a DFHKC TYPE=WAIT,DCI=SINGLE
macro call issued by CICS code. It is waiting for a single ECB to be
posted, after which it is resumed.

TERMINAL The task has been suspended on a DFHKC
TYPE=WAIT,DCI=TERMINAL macro call. CICS has suspended the task.
The task is waiting for terminal I/O to complete, and stays suspended
until resumed by CICS.

If the resource name for the wait is SINGLE, CICS, or LIST, look at the entry in the
SUSPAREA column of the dispatcher summary in the dump. The type of value it
contains depends on the resource name:
v For SINGLE or CICS, it is the address of an ECB
v For LIST, it is the address of a list of ECBs.

(The contents of the SUSPAREA entry are not significant for TERMINAL, because
this type of wait is subject to the dispatcher RESUME function. For more
information about debugging terminal waits, see “Investigating terminal waits” on
page 63.)

Check the contents of the SUSPAREA entry. Does it contain a valid address? That
is, is it within the CICS address space, and pointing at an ECB, or a list of ECBs?

If you find an invalid address: It is possible that a storage overlay is the cause of
the wait problem. If you suspect this to be the case, turn to Chapter 11, “Dealing
with storage violations,” on page 201 for further advice. However, note that this is
likely to be a “random” overlay, and such problems are often very difficult to
solve.

From the kernel information in the dump, find out which code issued the DFHKC
macro call. If you think that CICS has passed an incorrect address, contact the IBM
Support Center, and report the problem to them.

If you find a valid address: Consider what area the ECB is in. Does the position of
the ECB, and its environment, suggest that it relates to a resource whose
availability you can control? If so, you might be able to solve the problem by
redefining the quantity of that resource.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 139

If the ECB does not lie within an area that you can control, refer the problem to
the IBM Support Center.

Resource type KC_ENQ
If your task is waiting on resource type KC_ENQ, it is unconditionally enqueued
on a single server resource that is currently unavailable.

Typically, tasks are made to wait on KC_ENQ when they make certain types of file
control request, if the file is already in use. These are the cases:
v The waiting task has attempted to change the state of a file that is in use.

Another task has already attempted to change the state of the same file, and is
suspended on resource type FCFSWAIT. For more details, see “Resource type
FCFSWAIT - wait for file state changes” on page 92.

v The waiting task has attempted to update a record in a recoverable file while
another task has the lock on it. The task owning the record lock retains it until it
reaches the end of the current logical unit of work (syncpoint or end of task).
For more details of record locking for VSAM files, see “Resource type
ENQUEUE - waits for locks on files or data tables” on page 98.

If the wait on resource type KC_ENQ is prolonged:
v More than one task might be enqueued on the resource, and the task you are

investigating could be some way down the list. Check the programming logic of
any of your programs accessing the resource, to see if it can be released more
quickly. Consider whether you can include EXEC CICS DEQ commands.

v Another (long-running) task might have used the resource and finished with it,
without issuing an EXEC CICS DEQ command or a DFHKC TYPE=DEQ macro
call. The resource is made available automatically when the task terminates, but
in the meantime, no other tasks are able to use it.

v There might be a CICS system error. If you have considered the other
possibilities and you think this is the most likely explanation, refer the problem
to the IBM Support Center.

SNA LU control waits
Systems Network Architecture (SNA) logical unit (LU) control waits are associated
with the following resource types. The implication of waits on any of these
resource types are also described.

Resource type ZC

If your task is waiting on a resource name of DFHZCRQ1, it is waiting for I/O to
complete. The task is attempting to complete one of the following:
v RESETSR
v A send synchronous data flow
v A send asynchronous command
v SESSIONC.

The task waits for the time specified in the RTIMOUT value of the profile used by
the transaction. If the task times out, it receives either an AKCT or AZCT abend.
v If your task is waiting on a resource name of DFHZEMW1, the error message

writer module, DFHZEMQ, is waiting for the completion of I/O. If a timeout
value exists and is exceeded, the suspend expires.

Licensed Materials – Property of IBM

140 CICS TS for z/OS 5.3: Problem Determination Guide

v If your task is waiting on a resource name of DFHZRAQ1, this means a READ
has been issued. The task is resumed once the I/O operation is complete. If a
timeout value exists and is exceeded, the suspend expires.

v If your task is waiting on a resource name of DFHZRAR1, this means a READ
has been issued. The task is resumed once the I/O operation is complete. If a
timeout value exists and is exceeded, the suspend expires.

Resource type ZC_ZCGRP

DFHZSLS has to set the TCT prefix SNA fields from the ACB. This wait is issued
to ensure that these fields are set before being used.

Resource type ZC_ZGCH

DFHZGCH is waiting for the SNA CHANGE ENDAFFIN macro to complete.

Resource type ZC_ZGIN

DFHZGIN issues the SNA INQUIRE macro and waits until SNA completes
execution of this request.

Resource type ZC_ZGRP
v If the task is waiting on resource name PSINQECB, this means that DFHZGRP

has issued the SNA macro INQUIRE PERSESS during SNA persistent session
restart, or during the reopening of the SNA ACB, and is waiting for a response
from SNA. The wait expires after 5 minutes if SNA does not respond.

v If the task is waiting for resource name PSOP2ECB, this means that DFHZGRP
has issued the SNA macro OPNDST RESTORE during emergency restart, and is
waiting for a response from SNA. The wait expires after 5 minutes if SNA does
not respond.

Resource type ZC_ZGUB

DFHZGUB issues ten SNA CLSDST or TERMSESS macros during persistent
sessions restart. It waits for an RPL to become free for SNA to post the SNA exit.
The wait expires after 5 minutes if SNA does not respond.

Resource type ZCIOWAIT

Suspends on resource type ZCIOWAIT occur when the task is waiting for some
terminal I/O. Once the expected I/O event occurs, the task is resumed.

Resource type ZCZGET

If your task is waiting on a resource name of DFHZARL2, it is suspended by
module DFHZARL which deals with application request logic for LU6.2 devices.
The suspend is caused by a GETMAIN call to DFHZGET failing. DFHZGET is
continually invoked until the GETMAIN is successful.

Resource type ZCZNAC

Suspends on resource type ZCZNAC are on resource names DFHZARL3 or
DFHZERH4. The wait is for DFHZNAC to issue an error message. The error
message to be issued depends on the error that led to the suspend. Various actions
may be taken by DFHZNAC before control is returned to the suspended task.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 141

Resource type ZXQOWAIT

The XRF queue organizer, DFHZXQO, waits for the posting of TCAICTEC and
XQOVECTE which happens when the queue is emptied.

Resource type ZXSTWAIT

The XRF session tracker, DFHZXST, waits for the posting of TCAICTEC and
TCTVXPLE which happens when the session tracking queue is emptied.

Interregion and intersystem communication waits
If you have a user task that is waiting for resource type ALLOCATE, it has
attempted to get a session with another CICS region, but all the sessions are in use.

Consider defining a greater number of sessions, which should solve the problem.
For guidance about this, see the CICS Intercommunication Guide.

If you otherwise have a problem that you have identified as an interregion or an
intersystem communication wait, investigate it as for terminal waits. This is dealt
with in “Investigating terminal waits” on page 63.

The method of debugging is the same in each case. You need to consider the access
method, terminal control, and the “terminal” itself.

For interregion and intersystem communication, the remote region or system is the
terminal. Its status can be found using the same online or offline techniques that
you would use to find the status of a physical terminal. The status may lead you
to suspect that the task running in the remote region is the cause of the problem,
and you then need to investigate why that task is waiting. So you could find that
what started as a terminal wait might, after all, be a wait on some other type of
resource.

Transient data waits
Tasks issuing requests to read and write to transient data destinations can be made
to wait for several different reasons. The reasons depend on the type of request
being made, and whether the task is attempting to access an extrapartition or an
intrapartition queue.

The resource types that might be associated with the wait are described in the
following information. Note that the resource name is the transient data queue
name, except in the case of TD_INIT, whose resource name is DCT.

Resource type TD_INIT: waits during initialization processing
A second stage PLT program that is being run during system initialization can
issue a request for a resource that is not yet available, because the component that
services the request has not yet been initialized.

If the program issues a transient data request that cannot yet be serviced, the
program is suspended on a resource type of TD_INIT with a resource name of
DCT.

Licensed Materials – Property of IBM

142 CICS TS for z/OS 5.3: Problem Determination Guide

You are unlikely to see any evidence for this type of wait, unless you have trace
running during initialization with DS level-1 tracing selected. An error at this stage
would be likely to cause CICS to stall (see “CICS has stalled during initialization”
on page 111), or to terminate abnormally.

Resource type TDEPLOCK: waits for transient data
extrapartition requests

If you have a task suspended on resource type TDEPLOCK, with a resource name
that corresponds to a transient data queue name, the task has issued a request
against an extrapartition transient data queue. Another task is already accessing
the same queue, and the waiting task cannot resume until that activity is complete.

If the wait is prolonged, it could be for either of the following reasons:
v A task needs to change TCB mode to open and close a data set. The task must

relinquish control while this happens, and, depending on the system loading,
this might take several seconds. This contributes to the wait that the second task,
suspended on resource type TDEPLOCK, experiences.

v CICS uses the access method QSAM to write data to extrapartition transient data
destinations. QSAM runs synchronously with tasks that are requesting its
services. This means that any task that invokes a QSAM service must wait until
the QSAM processing is complete. If QSAM enters an extended wait for any
reason, the requesting task also experiences an extended wait.
An extended wait might occur when QSAM attempts to access an extrapartition
data set. QSAM uses the MVS RESERVE volume-locking mechanism to gain
exclusive control of volumes while it accesses them, which means that any other
region that attempts to write to the same volume is forced to wait.

If tasks frequently get suspended on resource type TDEPLOCK, you need to
determine which other transactions write data to the same extrapartition
destination. You might then consider redefining the extrapartition destinations.

Resource types TDIPLOCK, ENQUEUE, TD_READ, Any_MBCB,
Any_MRCB, MBCB_xxx, and MRCB_xxx

If your task is waiting on any of the resource types TDIPLOCK, ENQUEUE,
TD_READ, Any_MBCB, Any_MRCB, MBCB_xxx, or MRCB_xxx, it has made a
transient data intrapartition request that cannot be serviced at once. In each case,
the resource name identifies the intrapartition queue that the request has been
issued against.

Resource type TDIPLOCK: waits for transient data intrapartition
requests
If you have a task suspended on resource type TDIPLOCK, with a resource name
that corresponds to a transient data queue name, the task has issued a request
against an intrapartition transient data queue. Another task is already accessing the
same queue and the waiting task cannot resume until that activity is complete.

If tasks frequently get suspended on resource type TDIPLOCK, you need to
determine which other transactions use the same intrapartition destination. You
might then consider redefining the intrapartition destinations.

For more information about the constraints that apply to tasks writing to
intrapartition destinations, see Transient data control in the CICS Application
Programming Guide.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 143

Resource type ENQUEUE
If a transient data queue has been defined as intrapartition and logically
recoverable, there are further restrictions on the use of the queue by more than one
task at a time (in addition to those leading to waits on resource type TDIPLOCK).

If you have a task suspended on resource type ENQUEUE, and a value of TDNQ,
the task has been suspended while attempting to read, write or delete a logically
recoverable queue because a required enqueue is currently held by another task.

Note: For general information about dealing with enqueue waits, see
“Investigating enqueue waits” on page 77. Issuing a CEMT INQUIRE UOWENQ
command reveals the name of the queue and whether the enqueued read or write
is required by the task. If the task is enqueued against the read end of the queue, a
qualifier of FROMQ is displayed on the CEMT INQUIRE UOWENQ screen. If the task is
enqueued against the write end of the queue, a qualifier of TOQ is displayed on
the CEMT INQUIRE UOWENQ screen.

If you want to delete a queue, both the read and the write enqueues must be
obtained. No task may, therefore, read or write to a queue while a delete operation
is in progress. A delete cannot proceed until any task currently reading has
completed its read or any task writing has committed its changes.

In general, a wait on a resource type of ENQUEUE should not last for long unless
the task owning the enqueue has been delayed. If the UOW that owns the enqueue
has suffered an indoubt failure, the UOW is shunted. If the queue accessed by this
UOW is defined as WAIT=YES and WAITACTION=QUEUE, the wait can last for a
long period of time. To deduce if an indoubt failure has occurred:
v Issue a CEMT INQUIRE UOWENQ command to display the name of the enqueue

owner.
v Issue a CEMT INQUIRE UOW command to see if the UOW is shunted.

Resource type TD_READ
If a queue is defined as logically recoverable, a TD_READ wait may be
encountered.

A task can read from a queue while another task is writing to the same queue. If
this happens, the first task holds the read enqueue and the second task holds the
write enqueue on the queue. The task reading the queue can only read data that
has already been committed. It cannot read data that is currently being written to
the queue until the task holding the write enqueue commits the changes it has
made and dequeues from the write end of the queue.

A task is suspended on a resource type of TD_READ if it is trying to read
uncommitted data from a logically recoverable queue. The queue name is
displayed in a qualifier. The suspended task is forced to wait until the task owning
the write enqueue commits the changes it has made..

In most cases, the suspended task will not have to wait long. A lengthy wait can
occur if the task owning the write enqueue suffers from an indoubt failure (which
causes the associated UOW to be shunted), and the queue is defined with the
WAIT=YES and WAITACTION=QUEUE attributes.

If you do not want to wait for data to be committed to the queue, code
NOSUSPEND on the READQ TD request. QBUSY is returned to the application
and the task does not wait.

Licensed Materials – Property of IBM

144 CICS TS for z/OS 5.3: Problem Determination Guide

Resource type Any_MBCB
If your task is waiting on resource type Any_MBCB, the resource name is the name
of an intrapartition queue that it is attempting to access.

This type of wait shows that all the transient data I/O buffers are in use, and the
task resumes only when one becomes available.

Tasks are only likely to wait in this way in a heavily loaded system.

Resource type Any_MRCB
When a transient data I/O buffer has been acquired for a task, a VSAM string
must be obtained. If all the VSAM strings available for transient data processing
are in use, the task is suspended on resource type Any_MRCB, with a resource
name equal to the intrapartition queue name.

Waits on Any_MRCB should not be prolonged, except in a heavily loaded system.

Resource type MRCB_xxx
A resource type of MRCB_xxx, with a resource name equal to an intrapartition
transient data queue name, shows that the suspended task has successfully
obtained a VSAM string, and is now waiting for VSAM I/O to complete. This
should not be a long wait, unless operator intervention is required.

Resource type MBCB_xxx
If a task is waiting on resource type MBCB_xxx, with a resource name equal to the
intrapartition queue name, this indicates contention for a transient data I/O buffer.
It should not be an extended wait, although it is dependent on VSAM I/O taking
place on behalf of another task that has issued a transient data request. If that, for
any reason, takes a long time, the wait on resource type MBCB_xxx is
correspondingly long. (For descriptions of the waits that might occur during
transient data VSAM I/O processing, see “Resource type Any_MRCB” and
“Resource type MRCB_xxx”).

The reason for this type of wait is best illustrated by example, as follows:
1. Task #1 issues a transient data request that requires access to an intrapartition

queue. Before the request can be serviced, task #1 must be assigned a transient
data I/O buffer that is not currently being used by any other task.
I/O buffers each contain a copy of a control interval (CI) from a data set. Each
CI contains records that correspond to elements in an intrapartition queue. A
search is made to see if the CI required for task #1 is already in one of the I/O
buffers. If it is, that I/O buffer can be used to service the request made by task
#1, and no VSAM I/O is involved. If it is not, task #1 is allocated any buffer, so
the required CI can be read in. The current contents of the buffer is
overwritten.
An I/O buffer can have a R/O (read only) status or a R/W (read/write) status.
If the buffer that is allocated to task #1 has R/W status, it contains a copy of a
CI that has been updated by some other task, but not yet written back to the
data set. Before the buffer can be used by task #1, the CI it contains must be
preserved by writing it back to the data set.

2. A request now arrives from task #2, and the request requires the CI that is
currently being written to the data set. No two buffers can contain the same CI,
so task #2 is made to wait on resource type MRCB_xxx until the outcome of the
VSAM I/O is known.
If VSAM I/O was successful, task #2 is resumed and assigned some other I/O
buffer.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 145

If VSAM I/O was unsuccessful, task #2 can use the I/O buffer that already
contains the CI it needs.

CICS system task waits
From an analysis of trace, you could have evidence that a CICS system task is in a
wait state. You might have seen the task suspended on a SUSPEND call to the
dispatcher, but with no corresponding RESUME call. Alternatively, by looking at
the dispatcher task summary in a formatted CICS system dump, you might see
that a CICS system task is waiting.

Note: You cannot get online information about waiting system tasks from CEMT INQ
TASK or EXEC CICS INQUIRE TASK.

If a system task is in a wait state, and there is a system error preventing it from
resuming, contact your IBM Support Center. However, do not assume that there is
a system error unless you have other evidence that the system is malfunctioning.
Other possibilities are:
v Some system tasks are intended to wait for long periods while they wait for

work to do. Module DFHSMSY of storage manager domain, for example, can
stay suspended for minutes, or even hours, in normal operation. Its purpose is
to clean up storage when significant changes occur in the amount being used,
and that might happen only infrequently in a production system running well
within its planned capacity.

v System tasks perform many I/O operations, and they are subject to constraints
like string availability and volume and data set locking. In the case of tape
volumes, the tasks can also be dependent on operator action while new volumes
are mounted.

If, in addition to the waiting system task, you think you have enough evidence
that shows there is a system error, contact your IBM Support Center.

FEPI waits
This section outlines the CICS waits that FEPI issues.

Table 12 shows the points at which FEPI issues CICS waits:

Table 12. FEPI waits

Resource name Resource type Wait type Description

FEPI_RQE ADAPTER WAIT_MVS Issued in the FEPI adapter when a
FEPI command is passed to the
Resource Manager for processing.
Ends when the Resource Manager
has processed the request.

SZRDP FEPRM WAIT_MVS Issued in the FEPI Resource
Manager when it has no work to
do. Ends when work arrives (from
either the FEPI adapter or a z/OS
Communications Server exit).

It is possible for a FEPI_RQE wait to be outstanding for a long time, such as when
awaiting a flow from the back-end system that is delayed due to network traffic. It

Licensed Materials – Property of IBM

146 CICS TS for z/OS 5.3: Problem Determination Guide

is recommended that you do not cancel tasks that are waiting at this point; to do
so could lead to severe application problems.

An SZRDP wait is generated when the FEPI Resource Manager is idle.
Consequently, the SZ TCB is also inactive. On lightly loaded systems, this occurs
frequently.

If the Resource Manager abends, then any active CICS FEPI transactions are left
waiting on the FEPI_RQE resource. Because the Resource Manager is absent, these
waits never get posted, so the transactions suspend. You must issue a CEMT SET
TASK FORCEPURGE command to remove these suspended transactions from the
system.

Recovery manager waits
This section describes waits associated with the CICS recovery manager (RM).

Resource type RMCLIENT

If a task is suspended with a resource type of RMCLIENT, the recovery manager is
trying to call a client which has not yet registered or set its gate. Clients register
with the recovery manager and set their gates during CICS initialization, so the
suspended task should be resumed by the time CICS initialization is complete.

If such a task does remain suspended for a long time after CICS initialization
completes, there is probably an error in CICS. Contact your IBM Support Center.

Resource type RMUOWOBJ
v If a task is suspended with a resource type of RMUOWOBJ and a resource name

of LOGMOVE, the recovery manager is trying to log data for a unit of work
while an activity keypoint which is moving the UOW’s log data is in progress.
The suspended task should be resumed when the activity keypoint task
completes the move of the UOW’s log data.
If a task remains suspended for a long time with a resource type of
RMUOWOBJ and a resource name of LOGMOVE, try to discover why the
activity keypoint task (CSKP) is not completing.

v If a task is suspended with a resource type of RMUOWOBJ and a resource name
of EXISTENC, the recovery manager is trying to delete a unit of work while an
activity keypoint is in progress. The suspended task should be resumed when
the activity keypoint task finishes working with the UOW.
If a task remains suspended for a long time with a resource type of
RMUOWOBJ and a resource name of EXISTENC, try to discover why the
activity keypoint task (CSKP) is not completing.

CICS Web waits
This section describes waits associated with CICS web support.

Resource type WBALIAS

A suspend can occur on the CICS WEB attach transaction after it has attached its
partner (WEB alias) transaction. This suspend only occurs if the client socket is
using SSL to communicate with CICS. The suspend is resumed when the WEB
alias transaction terminates.

Licensed Materials – Property of IBM

Chapter 7. How tasks are made to wait 147

Licensed Materials – Property of IBM

148 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 8. Dealing with loops

A loop is a sequence of instructions that is executed repetitively. Loops that are
coded into applications must always be guaranteed to terminate, because otherwise
CICS might experience symptoms such as high CPU usage and transaction abends.

The list of symptoms are described in “Loops” on page 15. If a loop does not
terminate, it could be that the termination condition can never occur, or it might
not be tested for, or the conditional branch could erroneously cause the loop to be
executed over again when the condition is met.

This section outlines procedures for finding which programs are involved in a loop
that does not terminate. It contains the following topics:
v “What sort of loop is indicated by the symptoms?”
v “Investigating lock manager waits” on page 101
v “Investigating loops that are not detected by CICS” on page 166
v “What to do if you cannot find the reason for a loop” on page 168

If you find that the looping code is in one of your applications, check through the
code to find out which instructions are in error. If it looks as if the error is in CICS
code, you probably need to contact the IBM Support Center.

Some CICS domains can detect loops in their own routines, and let you know if
one is suspected by sending the following message:
DFHxx0004 applid A possible loop has been detected at offset X’offset’
in module modname

The two characters xx represent the two-character domain index. If, for example,
monitoring domain had detected the loop, the message number would be
DFHMN0004. If you see this sort of message repeatedly, contact the IBM Support
Center.

What sort of loop is indicated by the symptoms?
Unplanned loops can be divided into those that can be detected by CICS, and
those that cannot. In turn, the loops that CICS can detect can be classified into
tight loops and non-yielding loops.

Figure 17 on page 150 gives an example of code containing a simple tight loop.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 149

CICS can detect some looping tasks by comparing the length of time the tasks
have been running with the runaway time interval, ICVR, that you code in the
system initialization table. If a task runs for longer than the interval you specify,
CICS regards it as “runaway” and causes it to abend with an abend code of AICA.

However, in some cases, CICS requests that are contained in the looping code can
cause the timer to be reset. Not every CICS request can do this; it can only happen
if the request can cause the task to be suspended. Thus, if the looping code
contains such a request, CICS cannot detect that it is looping.

The properties of the different types of loop, and the ways you can investigate
them, are described in the sections that follow.

Tight loops and non-yielding loops
Tight loops and non-yielding loops are both characterized by the fact that the
looping task can never be suspended within the limits of the loop. This makes
them detectable by CICS, which compares the time they have been running
continually with the runaway time interval, ICVR, that you code in the system
initialization table.

If the tasks run for longer than the interval you specify, CICS regards them as
“runaway” and causes them to abend with an abend code of AICA.

Note: If you make the ICVR value equal to 0, runaway task detection is disabled.
Runaway tasks can then cause the CICS region to stall, meaning that CICS must be
canceled and brought up again. You might choose to set ICVR to zero in test
systems, because of the wide variation in response times. However, it is usually
more advisable to set ICVR to a large value in test systems.

A tight loop is one involving a single program, where the same instructions are
executed repeatedly and control is never returned to CICS. In the extreme case,
there could be a single instruction in the loop, causing a branch to itself.

A non-yielding loop is also contained in a single program, but it differs from a
tight loop in that control is returned temporarily from the program to CICS.
However, the CICS routines that are invoked are ones that neither suspend the
program nor pass control to the dispatcher. The CICS commands that do not cause
tasks to wait include (but are not restricted to) ASKTIME, DEQ, ENQ, ENTER
TRACENUM, FREEMAIN, HANDLE, RELEASE, TRACE ON/OFF. Whether a
command allows the ICVR to be reset might also depend on other factors. For

PROCEDURE DIVISION.
EXEC CICS

HANDLE CONDITION ERROR(ERROR-EXIT)
ENDFILE(END-MSG)

END-EXEC.
ROUTE-FILE.

EXEC CICS
ROUTE INTERVAL(0)

LIST(TERM-ID)
END-EXEC.

NEW-LINE-ATTRIBUTE.
GO TO NEW-LINE-ATTRIBUTE.
MOVE LOW-VALUES TO PRNTAREA.
MOVE DFHBMPNL TO PRNTAREA.

Figure 17. Example of code containing a tight loop

Licensed Materials – Property of IBM

150 CICS TS for z/OS 5.3: Problem Determination Guide

instance, a FREEMAIN might reset the ICVR if the storage lock is held. A READ
might also not wait if the intended record is already in a VSAM buffer. There is,
therefore, no point at which the task can be suspended, and so the ICVR cannot be
reset.

Figure 18 shows an example of code that contains a simple non-yielding loop. In
this case, the loop contains only one CICS command, EXEC CICS ASKTIME.

If you have a transaction that repeatedly abends with an abend code of AICA, first
make sure the ICVR value has not been set too low. If the value seems reasonable,
read “Investigating loops that cause transactions to abend with abend code AICA”
on page 152 for advice on determining the limits of the loop.

If you have a stalled CICS region, diagnose the problem using the techniques in
“What to do if CICS has stalled” on page 111. Check if the ICVR value has been
set to zero. If it has, change the value and try to cause a transaction to abend with
a code of AICA.

For information about how CICS handles a looping or runaway task that runs in a
JVM server, see CICS task and thread management.

Yielding loops
Yielding loops are characterized by returning control at some point to a CICS
routine that can suspend the looping task. However, the looping task is eventually
resumed, and so the loop continues.

CICS is unable to use the runaway task timer to detect yielding loops, because the
timer is reset whenever the task is suspended. Thus, the runaway task time is
unlikely ever to be exceeded, and so the loop goes undetected by the system.

Yielding loops typically involve a number of programs. The programs might be
linked to and returned from, or control might be transferred from one program to
another in the loop. A yielding loop can also be confined to just one program, in
which case it must contain at least one wait-enabling CICS command.

PROCEDURE DIVISION.
EXEC CICS

HANDLE CONDITION ERROR(ERROR-EXIT)
ENDFILE(END-MSG)

END-EXEC.
ROUTE-FILE.

EXEC CICS
ROUTE INTERVAL(0)

LIST(TERM-ID)
END-EXEC.

NEW-LINE-ATTRIBUTE.
EXEC CICS

ASKTIME
END-EXEC.
GO TO NEW-LINE-ATTRIBUTE.
MOVE LOW-VALUES TO PRNTAREA.
MOVE DFHBMPNL TO PRNTAREA.

Figure 18. Example of code containing a non-yielding loop

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 151

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/thread_overview.html

Figure 19 shows a specific example of a yielding loop within a single program.
This code issues the SUSPEND command, which is always a yielding type of
command. Every time SUSPEND is issued, the dispatcher suspends the task
issuing the request, and sees if any other task of higher priority can run. If no such
task is ready, the program that issued the SUSPEND is resumed.
You can detect a yielding loop only by circumstantial evidence such as repetitive

output, or excessive use of storage. A fuller description of what to look out for is
given in “Loops” on page 15.

If you suspect that you have a yielding loop, turn to “Investigating loops that are
not detected by CICS” on page 166 for further guidance.

Investigating loops that cause transactions to abend with abend code
AICA

If the loop causes a transaction to abend with abend code AICA, it must either be
a tight loop or a non-yielding loop. You do not need to find which type you have,
although this is likely to be revealed to you when you do your investigation.

About this task

Both a tight loop and a non-yielding loop are characterized by being confined to a
single user program. You should know the identity of the transaction to which the
program belongs, because it is the transaction that abended with code AICA when
the runaway task was detected.

Procedure
1. Get the documentation you need.
2. Look at the evidence.
3. Identify the loop, using information from the trace table and transaction dump.
4. Determine the reason for the loop.

Results

Use the following information to complete the steps above.

PROCEDURE DIVISION.
EXEC CICS

HANDLE CONDITION ERROR(ERROR-EXIT)
ENDFILE(END-MSG)

END-EXEC.
ROUTE-FILE.

EXEC CICS
ROUTE INTERVAL(0)

LIST(TERM-ID)
END-EXEC.

NEW-LINE-ATTRIBUTE.
EXEC CICS

SUSPEND
END-EXEC.
GO TO NEW-LINE-ATTRIBUTE.
MOVE LOW-VALUES TO PRNTAREA.
MOVE DFHBMPNL TO PRNTAREA.

Figure 19. Example of code containing a yielding loop

Licensed Materials – Property of IBM

152 CICS TS for z/OS 5.3: Problem Determination Guide

Getting the documentation you need

Before you begin

When investigating loops that cause transactions to abend AICA, you need the
CICS system dump accompanying the abend. System dumping must be enabled
for dump code AICA.

About this task

You can use the system dump to find out:
v Whether the loop is in your user code or in CICS code
v If the loop is in your user code, the point at which the loop was entered.

It is also useful to have trace running, as trace can help you to identify the point in
your program where looping started. If you have a non-yielding loop, it can
probably also show you some instructions in the loop.

A tight loop is unlikely to contain many instructions, and you might be able to
capture all the evidence you need from the record of events in the internal trace
table. A non-yielding loop may contain more instructions, depending on the EXEC
CICS commands it contains, but you might still be able to capture the evidence
you need from the record of events in the internal trace table. If you find that it is
not big enough, direct tracing to the auxiliary trace destination instead.

Procedure
1. You need to trace CICS system activity selectively, to ensure that most of the

data you obtain is relevant to the problem. Set up the tracing like this:
a. Select level-1 special tracing for AP domain, and for the EXEC interface

program (EI).
b. Select special tracing for just the task that has the loop, and disable tracing

for all other tasks by turning the master system trace flag off.

You can find guidance about setting up these tracing options in Chapter 15,
“Using traces in problem determination,” on page 237.

2. Start the task, and wait until it abends AICA.
3. Format the CICS system dump with formatting keywords KE and TR, to get

the kernel storage areas and the internal trace table. (See “Formatting system
dumps” on page 289.)

Results

You now have the documentation you need to find the loop.

Looking at the evidence
Once you have collected the necessary documentation, use the following guidance
to analyze the information you have gathered.

About this task

The stage needs to be set just so.

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 153

Procedure
1. Look first at the kernel task summary. The runaway task is flagged “*YES*” in

the ERROR column. The status of the task is shown as “***Running**”.
2. Use the kernel task number for the looping task to find its linkage stack.
v If a user task is looping, DFHAPLI, a transaction manager program, should

be near the top of the stack. You are likely to find other CICS modules at the
top of the stack that have been invoked in response to the abend. For
example, those associated with taking the dump.

v If you find any program or subroutine above DFHAPLI that has not been
invoked in response to the error, it is possible that CICS code, or the code of
another program, has been looping.

Results

If you find that the loop is within CICS code, you need to contact the IBM Support
Center. Make sure you keep the dump, because the Support Center staff need it to
investigate the problem.

If the kernel linkage stack entries suggest that the loop is in your user program,
you next need to identify the loop.

Identifying the loop
To identify loops in user programs, you can look in the transaction dump or you
can use the trace table.

Procedure
v To identify a loop by using the transaction dump, use the following steps:

1. Find the program status word (PSW), and see whether it points into your
program. This is likely to be the case if you have a tight loop, and it should
lead you to an instruction within the loop.

2. Use the module index at the end of the formatted dump to find the module
name of the next instruction. If the instruction address is not in your code, it
is less useful for locating the loop. However, try to identify the module that
contains the instruction, because it is probably the one that was called during
the execution of a CICS request made within the loop. If the PSW address is
not contained in one of these areas, another program was probably executing
on behalf of CICS when the runaway task timer expired.

Note: It is possible that the loop is in a module owned by CICS or another
product, and your program is not responsible for it. If the loop is in CICS
code, contact the IBM Support Center.

3. If the PSW points to a module outside your application program, find the
address of the return point in your program from the contents of register 14
in the appropriate register save area. The return address will lie within the
loop, if the loop is not confined to system code.

4. When you have located a point within the loop, work through the source
code and try to find the limits of the loop.

v To identify a loop by using the trace table, use the following steps:
1. Go to the last entry in the internal trace table, and work backwards until you

get to an entry for point ID AP 1942. The trace entry should have been made
when recovery was entered after the transaction abended AICA.

Licensed Materials – Property of IBM

154 CICS TS for z/OS 5.3: Problem Determination Guide

2. Make a note of the task number, so you can check that any other trace
entries you read relate to the same abended task.

3. Look at the entries preceding AP 1942. In particular, look for trace entries
with the point ID AP 00E1. These entries should have been made either just
before the loop was entered (for a tight loop), or within the loop itself (for a
non-yielding loop). Entries with a point ID of AP 00E1 are made on entry to
the EXEC interface program (DFHEIP) whenever your program issues an
EXEC CICS command, and again on exit from the EXEC interface program.
Field B gives you the value of EIBFN, which identifies the specific command
that was issued.

4. When you have identified the value of EIBFN, use the table Table 13 to
identify the command that was issued.

5. For trace entries made on exit from DFHEIP, field A gives you the response
code from the request. Look carefully at any response codes - they could
provide the clue to the loop. Has the program been designed to deal with
every possible response from DFHEIP? Could the response code you see
explain the loop?

If you see a repeating pattern of trace points for AP 00E1, you have a
non-yielding loop. If you can match the repeating pattern to statements in the
source code for your program, you have identified the limits of the loop.
If you see no repeating pattern of trace points for AP 00E1, it is likely that you
have a tight loop. The last entry for AP 00E1 (if there is one) should have been
made from a point just before the program entered the loop. You might be able
to recognize the point in the program where the request was made, by matching
trace entries with the source code of the program.

Example

In the column of the EIBFN codes table headed Type, API indicates that the
command is described in the Application development reference, and SPI indicates
that it is described in System commands in Reference > System programming. SPI
does not indicate that the special (SP) translator option is required for this
command. FEPI indicates commands used by the Front End Programming
Interface. See .

Table 13. EIB Field Name Values & Types
EIBFN value Command Type

X'0202' ADDRESS API
X'0204' HANDLE CONDITION API
X'0206' HANDLE AID API
X'0208' ASSIGN API
X'020A' IGNORE CONDITION API
X'020C' PUSH API
X'020E' POP API
X'0210' ADDRESS SET API
X'0402' RECEIVE API
X'0404' SEND API
X'0406' CONVERSE API
X'0408' ISSUE EODS API
X'040A' ISSUE COPY API
X'040C' WAIT TERMINAL API
X'040E' ISSUE LOAD API
X'0410' WAIT SIGNAL API
X'0412' ISSUE RESET API

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 155

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/reference_applications.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/topics/dfha81j.html

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'0414' ISSUE DISCONNECT API
X'0416' ISSUE ENDOUTPUT API
X'0418' ISSUE ERASEAUP API
X'041A' ISSUE ENDFILE API
X'041C' ISSUE PRINT API
X'041E' ISSUE SIGNAL API
X'0420' ALLOCATE API
X'0422' FREE API
X'0424' POINT API
X'0426' BUILD ATTACH API
X'0428' EXTRACT ATTACH API
X'042A' EXTRACT TCT API
X'042C' WAIT CONVID API
X'042E' EXTRACT PROCESS API
X'0430' ISSUE ABEND API
X'0432' CONNECT PROCESS API
X'0434' ISSUE CONFIRMATION API
X'0436' ISSUE ERROR API
X'0438' ISSUE PREPARE API
X'043A' ISSUE PASS API
X'043C' EXTRACT LOGONMSG API
X'043E' EXTRACT ATTRIBUTES API
X'0602' READ API
X'0604' WRITE FILE API
X'0606' REWRITE API
X'0608' DELETE API
X'060A' UNLOCK API
X'060C' STARTBR API
X'060E' READNEXT API
X'0610' READPREV API
X'0612' ENDBR API
X'0614' RESETBR API
X'0802' WRITEQ TD API
X'0804' READQ TD API
X'0806' DELETEQ TD API
X'0A02' WRITEQ TS API
X'0A04' READQ TS API
X'0A06' DELETEQ TS API
X'0C02' GETMAIN API
X'0C04' FREEMAIN API
X'0C12' GETMAIN64 API
X'0C14' FREEMAIN64 API
X'0E02' LINK API
X'0E04' XCTL API
X'0E06' LOAD API
X'0E08' RETURN API
X'0E0A' RELEASE API
X'0E0C' ABEND API
X'0E0E' HANDLE ABEND API
X'0E10' INVOKE APPLICATION API
X'1002' ASKTIME API
X'1004' DELAY API
X'1006' POST API

Licensed Materials – Property of IBM

156 CICS TS for z/OS 5.3: Problem Determination Guide

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'1008' START API
X'1008' START BREXIT API
X'100A' RETRIEVE API
X'100C' CANCEL API
X'1202' WAIT EVENT API
X'1204' ENQ API
X'1206' DEQ API
X'1208' SUSPEND API
X'1402' WRITE JOURNALNUM API
X'1404' WAIT JOURNALNUM API
X'1406' WRITE JOURNALNAME API
X'1408' WAIT JOURNALNAME API
X'1602' SYNCPOINT API
X'1604' RESYNC ENTRYNAME SPI
X'1802' RECEIVE MAP API
X'1804' SEND MAP API
X'1806' SEND TEXT API
X'1808' SEND PAGE API
X'180A' PURGE MESSAGE API
X'180C' ROUTE API
X'180E' RECEIVE PARTN API
X'1810' SEND PARTNSET API
X'1812' SEND CONTROL API
X'1A02' TRACE API
X'1A04' ENTER TRACEID API
X'1C02' DUMP API
X'1E02' ISSUE ADD API
X'1E04' ISSUE ERASE API
X'1E06' ISSUE REPLACE API
X'1E08' ISSUE ABORT API
X'1E0A' ISSUE QUERY API
X'1E0C' ISSUE END API
X'1E0E' ISSUE RECEIVE API
X'1E10' ISSUE NOTE API
X'1E12' ISSUE WAIT API
X'1E14' ISSUE SEND API
X'2002' BIF DEEDIT API
X'2004' DEFINE COUNTER API
X'2006' GET COUNTER API
X'2008' UPDATE COUNTER API
X'200A' DELETE COUNTER API
X'200C' REWIND COUNTER API
X'200E' QUERY COUNTER API
X'2014' DEFINE DCOUNTER API
X'2016' GET DCOUNTER API
X'2018' UPDATE DCOUNTER API
X'201A' DELETE DCOUNTER API
X'201C' REWIND DCOUNTER API
X'201E' QUERY DCOUNTER API
X'2020' BIF DIGEST API
X'2202' ENABLE PROGRAM SPI
X'2204' DISABLE SPI
X'2206' EXTRACT EXIT SPI

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 157

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'2402' ALLOCATE API
X'2404' ASSIGN API
X'2406' EXTRACT PROCESS API
X'2408' FREE API
X'240A' ISSUE ABEND API
X'240C' CONNECT PROCESS API
X'240E' ISSUE CONFIRMATION API
X'2410' ISSUE ERROR API
X'2412' ISSUE SIGNAL API
X'2414' RECEIVE API
X'2416' SEND API
X'2418' WAIT API
X'241A' ISSUE PREPARE API
X'241C' EXTRACT ATTRIBUTES API
X'2602' TRANSFORM DATATOXML API
X'2604' TRANSFORM XMLTODATA API
X'2802' SIGNAL EVENT API
X'3002' CREATE PROGRAM SPI
X'3004' CREATE MAPSET SPI
X'3006' CREATE PARTITIONSET SPI
X'3008' CREATE TRANSACTION SPI
X'300A' CREATE PROFILE SPI
X'300C' CREATE TYPETERM SPI
X'300E' CREATE CONNECTION SPI
X'3010' CREATE TERMINAL SPI
X'3012' CREATE SESSIONS SPI
X'3014' CREATE FILE SPI
X'3016' CREATE LSRPOOL SPI
X'3018' CREATE PARTNER SPI
X'301A' CREATE TRANCLASS SPI
X'301C' CREATE TDQUEUE SPI
X'301E' CREATE JOURNALMODEL SPI
X'3020' CREATE DB2CONN SPI
X'3022' CREATE DB2ENTRY SPI
X'3024' CREATE DB2TRAN SPI
X'3026' CREATE PROCESSTYPE SPI
X'3028' CREATE TSMODEL SPI
X'302A' CREATE ENQMODEL SPI
X'302C' CREATE REQUESTMODEL SPI
X'302E' CREATE DOCTEMPLATE SPI
X'3030' CREATE TCPIPSERVICE SPI
X'3032' CREATE CORBASERVER SPI
X'3034' CREATE DJAR SPI
X'3036' CREATE URIMAP SPI
X'3038' CREATE PIPELINE SPI
X'303A' CREATE WEBSERVICE SPI
X'303C' CREATE IPCONN SPI
X'303E' CREATE LIBRARY SPI
X'3040' CREATE BUNDLE SPI
X'3042' CREATE ATOMSERVICE SPI
X'3044' CREATE MQCONN SPI
X'3046' CREATE JVMSERVER SPI
X'3402' DEFINE ACTIVITY API

Licensed Materials – Property of IBM

158 CICS TS for z/OS 5.3: Problem Determination Guide

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'3404' DEFINE PROCESS API
X'3406' RUN ACTIVITY API
X'3408' RUN ACQPROCESS API
X'340E' ACQUIRE PROCESS API
X'3410' ACQUIRE ACTIVITYID API
X'3412' DELETE CONTAINER API
X'3414' GET CONTAINER API
X'3416' PUT CONTAINER API
X'3418' RESET ACTIVITY API
X'341A CHECK ACTIVITY API
X'341C' CANCEL ACTIVITY API
X'341E' CANCEL ACQPROCESS API
X'3420' SUSPEND ACTIVITY API
X'3422' SUSPEND ACQPROCESS API
X'3424' RESUME ACTIVITY API
X'3426' RESUME ACQPROCESS API
X'3428' DELETE ACTIVITY API
X'342A' LINK ACQPROCESS API
X'342C' LINK ACTIVITY API
X'342E' CANCEL ACQACTIVITY API
X'3430' RUN ACQACTIVITY API
X'3432' LINK ACQACTIVITY API
X'3434' SUSPEND ACQACTIVITY API
X'3436' RESUME ACQACTIVITY API
X'3438' CHECK ACQPROCESS API
X'343A' CHECK ACQACTIVITY API
X'343C' RESET ACQPROCESS API
X'3440' MOVE CONTAINER API
X'3454' GET64 CONTAINER API
X'3456' PUT64 CONTAINER API
X'3458' QUERY CHANNEL API
X'345A' DELETE CHANNEL API
X'3602' DEFINE INPUT EVENT API
X'3602' DEFINE COMPOSITE EVENT API
X'3604' DELETE EVENT API
X'3608' ADD SUBEVENT API
X'360A' REMOVE SUBEVENT API
X'360E' TEST EVENT API
X'3610' RETRIEVE REATTACH EVENT API
X'3612' RETRIEVE SUBEVENT API
X'3614' DEFINE TIMER API
X'3616' DELETE TIMER API
X'3618' CHECK TIMER API
X'361A' FORCE TIMER API
X'3802' WEB RECEIVE API
X'3804' WEB SEND API
X'3806' WEB READ API
X'3808' WEB STARTBROWSE API
X'3816' WEB PARSE URL API
X'3818' WEB OPEN API
X'380A' WEB READNEXT API
X'380C' WEB ENDBROWSE API
X'380E' WEB WRITE API

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 159

|||
|||

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'3810' WEB EXTRACT API
X'3814' WEB RETRIEVE API
X'3A02' INQ RRMS SPI
X'3C02' DOCUMENT CREATE API
X'3C04' DOCUMENT INSERT API
X'3C06' DOCUMENT RETRIEVE API
X'3C08' DOCUMENT SET API
X'3C10' DOCUMENT DELETE API
X'381A' WEB CLOSE API
X'381C' WEB CONVERSE API
X'3E0E' EXTRACT TCPIP API
X'3E10' EXTRACT CERTIFICATE API
X'4202' INQUIRE AUTINSTMODEL SPI
X'4210' DISCARD AUTINSTMODEL SPI
X'4402' INQUIRE PARTNER SPI
X'4410' DISCARD PARTNER SPI
X'4602' INQUIRE PROFILE SPI
X'4610' DISCARD PROFILE SPI
X'4802' ENTER TRACENUM API
X'4804' MONITOR API
X'4A02' ASKTIME ABSTIME API
X'4A04' FORMATTIME API
X'4A06' CONVERTTIME API
X'4C02' INQUIRE FILE SPI
X'4C04' SET FILE SPI
X'4C10' DISCARD FILE SPI
X'4E02' INQUIRE PROGRAM SPI
X'4E04' SET PROGRAM SPI
X'4E10' DISCARD PROGRAM SPI
X'5002' INQUIRE TRANSACTION SPI
X'5004' SET TRANSACTION SPI
X'5010' DISCARD TRANSACTION SPI
X'5202' INQUIRE TERMINAL SPI
X'5204' SET TERMINAL SPI
X'5206' INQUIRE NETNAME SPI
X'5208' SET NETNAME SPI
X'5210' DISCARD TERMINAL SPI
X'5212' INQUIRE TERMINAL SPI
X'5214' SET TERMINAL SPI
X'5216' INQUIRE NETNAME SPI
X'5402' INQUIRE SYSTEM SPI
X'5404' SET SYSTEM SPI
X'5412' INQ SYSTEM SPI
X'5602' SPOOLOPEN INPUT API
X'5602' SPOOLOPEN OUTPUT API
X'5604' SPOOLREAD API
X'5606' SPOOLWRITE API
X'5610' SPOOLCLOSE API
X'5802' INQUIRE CONNECTION SPI
X'5804' SET CONNECTION SPI
X'5806' PERFORM ENDAFFINITY SPI
X'5810' DISCARD CONNECTION SPI
X'5A02' INQUIRE MODENAME SPI

Licensed Materials – Property of IBM

160 CICS TS for z/OS 5.3: Problem Determination Guide

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'5A04' SET MODENAME SPI
X'5C02' INQUIRE TDQUEUE SPI
X'5C04' SET TDQUEUE SPI
X'5C10' DISCARD TDQUEUE SPI
X'5E02' INQUIRE TASK SPI
X'5E04' SET TASK SPI
X'5E06' CHANGE TASK API
X'5E08' INQUIRE STORAGE SPI
X'5E12' INQUIRE TCLASS SPI
X'5E14' SET TCLASS SPI
X'5E18' DISCARD TRANCLASS SPI
X'5E1A' INQUIRE TRANCLASS SPI
X'5E1C' SET TRANCLASS SPI
X'5E22' WAIT EXTERNAL API
X'5E32' WAITCICS API
X'5E42' INQUIRE SUBPOOL SPI
X'6002' INQUIRE JOURNALNUM SPI
X'6004' SET JOURNALNUM SPI
X'6010' DISCARD JOURNALNAME SPI
X'6012' INQUIRE JOURNALNAME SPI
X'6014' SET JOURNALNAME SPI
X'6202' INQUIRE VOLUME SPI
X'6204' SET VOLUME SPI
X'6402' PERFORM SECURITY SPI
X'6412' PERFORM SSL FUNCTION SPI
X'6602' INQUIRE DUMPDS SPI
X'6604' SET DUMPDS SPI
X'6612' INQUIRE TRANDUMPCODE SPI
X'6614' SET TRANDUMPCODE SPI
X'6622' INQUIRE SYSDUMPCODE SPI
X'6624' SET SYSDUMPCODE SPI
X'6802' INQUIRE VTAM 1 SPI
X'6804' SET VTAM 1 SPI
X'6812' INQUIRE AUTOINSTALL SPI
X'6814' SET AUTOINSTALL SPI
X'6822' INQUIRE DELETSHIPPED SPI
X'6824' SET DELETSHIPPED SPI
X'6826' PERFORM DELETSHIPPED SPI
X'6A02' QUERY SECURITY API
X'6C02' WRITE OPERATOR API
X'6C12' CICSMESSAGE API
X'6E02' INQUIRE IRC SPI
X'6E04' SET IRC SPI
X'7002' INQUIRE STATISTICS SPI
X'7004' SET STATISTICS SPI
X'7006' PERFORM STATISTICS SPI
X'7008' COLLECT STATISTICS SPI
X'7012' INQUIRE MONITOR SPI
X'7014' SET MONITOR SPI
X'7026' EXTRACT STATISTICS SPI
X'7202' PERFORM RESETTIME SPI
X'7402' SIGNON API
X'7404' SIGNOFF API

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 161

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'7406' VERIFY PASSWORD API
X'7408' CHANGE PASSWORD API
X'740A' VERIFY PHRASE API
X'740C' CHANGE PHRASE API
X'740E' VERIFY TOKEN API
X'7410' REQUEST PASSTICKET API
X'7602' PERFORM SHUTDOWN SPI
X'7802' INQUIRE TRACEDEST SPI
X'7804' SET TRACEDEST SPI
X'7812' INQUIRE TRACEFLAG SPI
X'7814' SET TRACEFLAG SPI
X'7822' INQUIRE TRACETYPE SPI
X'7824' SET TRACETYPE SPI
X'7A02' INQUIRE DSNAME SPI
X'7A04' SET DSNAME SPI
X'7C02' INQUIRE EXCI SPI
X'7E02' DUMP TRANSACTION API
X'7E04' PERFORM DUMP SPI
X'8002' INQUIRE TSQUEUE SPI
X'8004' SET TSQUEUE SPI
X'8012' INQUIRE TSQNAME SPI
X'8014' SET TSQNAME SPI
X'801A' INQUIRE TSPOOL SPI
X'8022' INQUIRE TSMODEL SPI
X'8030' DISCARD TSMODEL SPI
X'8032' INQUIRE TEMPSTORAGE SPI
X'8034' SET TEMPSTORAGE SPI
X'820C' REQUEST PASSTICKET FEPI
X'820E' AP FEPI
X'8210' ALLOCATE POOL FEPI
X'8210' ALLOCATE PASSCONVID FEPI
X'8212' CONVERSE FORMATTED FEPI
X'8214' CONVERSE DATASTREAM FEPI
X'8216' EXTRACT CONV FEPI
X'8218' EXTRACT FIELD FEPI
X'821A' EXTRACT STSN FEPI
X'821C' FREE FEPI
X'821E' ISSUE FEPI
X'8220' RECEIVE FORMATTED FEPI
X'8222' RECEIVE DATASTREAM FEPI
X'8224' SEND FORMATTED FEPI
X'8226' SEND DATASTREAM FEPI
X'8228' START FEPI
X'8402' Normal Shutdown FEPI
X'8404' Immediate Shutdown FEPI
X'8406' Forced Shutdown FEPI
X'8408' CICS End of Task FEPI
X'840E' SP NOOP FEPI
X'8422' INQUIRE PROPERTYSET FEPI
X'8428' INSTALL PROPERTYSET FEPI
X'8430' DISCARD PROPERTYSET FEPI
X'8442' INQUIRE NODE FEPI
X'8444' SET NODE FEPI

Licensed Materials – Property of IBM

162 CICS TS for z/OS 5.3: Problem Determination Guide

|||

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'8444' SET NODELIST FEPI
X'8448' INSTALL NODELIST FEPI
X'844A' ADD POOL FEPI
X'844C' DELETE POOL FEPI
X'8450' DISCARD NODELIST FEPI
X'8462' INQUIRE POOL FEPI
X'8464' SET POOL FEPI
X'8464' SET POOLLIST FEPI
X'8468' INSTALL POOL FEPI
X'8470' DISCARD POOL FEPI
X'8482' INQUIRE TARGET FEPI
X'8484' SET TARGETLIST FEPI
X'8484' SET TARGET FEPI
X'8488' INSTALL TARGETLIST FEPI
X'8490' DISCARD TARGETLIST FEPI
X'84A2' INQUIRE CONNECTION FEPI
X'84A4' SET CONNECTION FEPI
X'8602' ACQUIRE SPI
X'8802' INQUIRE EXITPROGRAM SPI
X'8A02' INQUIRE REQID SPI
X'8C02' WRITE MESSAGE API
X'9002' INQUIRE UOW SPI
X'9004' SET UOW SPI
X'9022' INQUIRE UOWENQ SPI
X'9042' INQUIRE UOWLINK SPI
X'9044' SET UOWLINK SPI
X'9062' INQUIRE UOWDSNFAIL SPI
X'9082' INQUIRE ENQMODEL SPI
X'9084' SET ENQMODEL SPI
X'9090' DISCARD ENQMODEL SPI
X'9202' INQUIRE JOURNALMODEL SPI
X'9210' DISCARD JOURNALMODEL SPI
X'9212' INQUIRE STREAMNAME SPI
X'9402' INQUIRE DB2CONN SPI
X'9404' SET DB2CONN SPI
X'9410' DISCARD DB2CONN SPI
X'9422' INQUIRE DB2ENTRY SPI
X'9424' SET DB2ENTRY SPI
X'9430' DISCARD DB2ENTRY SPI
X'9442' INQUIRE DB2TRAN SPI
X'9444' SET DB2TRAN SPI
X'9450' DISCARD DB2TRAN SPI
X'9602' INQUIRE PROCESSTYPE SPI
X'9604' SET PROCESSTYPE SPI
X'9610' DISCARD PROCESSTYPE SPI
X'9612' INQUIRE ACTID SPI
X'9614' INQUIRE CONTAIN SPI
X'9616' INQUIRE EVENT SPI
X'9618' INQUIRE PROCESS SPI
X'9620' STARTBROWSE ACTIVITY SPI
X'9622' GETNEXT ACTIVITY SPI
X'9624' ENDBROWSE ACTIVITY SPI
X'9626' STARTBROWSE CONTAINER SPI

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 163

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'9628' GETNEXT CONTAINER SPI
X'962A' ENDBROWSE CONTAINER SPI
X'962C' STARTBROWSE EVENT SPI
X'962E' GETNEXT EVENT SPI
X'9630' ENDBROWSE EVENT SPI
X'9632' STARTBROWSE PROCESS SPI
X'9634' GETNEXT PROCESS SPI
X'9636' ENDBROWSE PROCESS SPI
X'9638' INQUIRE TIMER SPI
X'963A' STARTBROWSE TIMER SPI
X'963C' GETNEXT TIMER SPI
X'963E' ENDBROWSE TIMER SPI
X'9802' INQUIRE CFDTPOOL SPI
X'9A02' INQUIRE REQUESTMODEL SPI
X'9A10' DISCARD REQUESTMODEL SPI
X'9C02' INQUIRE TCPIPSERVICE SPI
X'9C04' SET TCPIPSERVICE SPI
X'9C10' DISCARD TCPIPSERVICE SPI
X'9C12' INQUIRE TCPIP SPI
X'9C14' SET TCPIP SPI
X'9C22' INQUIRE WEB SPI
X'9C24' SET WEB SPI
X'9E02' INQUIRE DOCTEMPLATE SPI
X'9E10' DISCARD DOCTEMPLATE SPI
X'A202' CSD ADD SPI
X'A204' CSD ALTER SPI
X'A206' CSD APPEND SPI
X'A208' CSD COPY SPI
X'A20A' CSD DEFINE SPI
X'A20C' CSD DELETE SPI
X'A20E' CSD INSTALL SPI
X'A210' CSD LOCK SPI
X'A212' CSD REMOVE SPI
X'A214' CSD RENAME SPI
X'A216' CSD UNLOCK SPI
X'A218' CSD USERDEFINE SPI
X'A21A' CSD INQUIREGROUP SPI
X'A21C' CSD INQUIRELIST SPI
X'A21E' CSD INQUIRERSRCE SPI
X'A220' CSD GETNEXTGROUP SPI
X'A222' CSD GETNEXTLIST SPI
X'A224' CSD GETNEXTSRCE SPI
X'A226' CSD STARTBRGROUP SPI
X'A228' CSD STARTBRLIST SPI
X'A22A' CSD STARTBRSRCE SPI
X'A22C' CSD ENDBRGROUP SPI
X'A22E' CSD ENDBRLIST SPI
X'A230' CSD ENDBRSPACE SPI
X'A232' CSD DISCONNECT SPI
X'B010' DISCARD JVMSERVER SPI
X'B042' INQUIRE JVMSERVER SPI
X'B044' SET JVMSERVER SPI
X'B052' INQUIRE OSGIBUNDLE SPI

Licensed Materials – Property of IBM

164 CICS TS for z/OS 5.3: Problem Determination Guide

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'B062' INQUIRE OSGISERVICE SPI
X'B402' INQUIRE BRFACILITY SPI
X'B404' SET BRFACILITY SPI
X'B602' INQUIRE DISPATCHER SPI
X'B604' SET DISPATCHER SPI
X'B612' INQUIRE MVSTCB SPI
X'BC02' INQUIRE PIPELINE SPI
X'BC04' SET PIPELINE SPI
X'BC06' PERFORM PIPELINE SPI
X'BC10' DISCARD PIPELINE SPI
X'BC22' INQUIRE WEBSERVICE SPI
X'BC24' SET WEBSERVICE SPI
X'BC30' DISCARD WEBSERVICE SPI
X'BE02' INQUIRE URIMAP SPI
X'BE04' SET URIMAP SPI
X'BE10' DISCARD URIMAP SPI
X'BE12' INQUIRE HOST SPI
X'BE14' SET HOST SPI
X'C002' INVOKE SERVICE API
X'C004' SOAPFAULT CREATE API
X'C006' SOAPFAULT ADD API
X'C008' SOAPFAULT DELETE API
X'C00A' WSACONTEXT BUILD API
X'C00C' WSACONTEXT GET API
X'C00D' WSACONTEXT DELETE API
X'C010' WSAEPR CREATE API
X'C202' INQUIRE IPCONN SPI
X'C204' SET IPCONN SPI
X'C210' DISCARD IPCONN SPI
X'C212' INQUIRE IPFACILITY SPI
X'C402' INQUIRE ASSOCIATION SPI
X'C602' INQUIRE LIBRARY SPI
X'C604' SET LIBRARY SPI
X'C610' DISCARD LIBRARY SPI
X'C802' INQUIRE BUNDLE SPI
X'C804' SET BUNDLE SPI
X'C810' DISCARD BUNDLE SPI
X'C812' INQUIRE BUNDLEPART SPI
X'CA02' INQUIRE EVENTBINDING SPI
X'CA04' SET EVENTBINDING SPI
X'CA10' DISCARD EVENTBINDING SPI
X'CA12' INQUIRE EVENTPROCESS SPI
X'CA14' SET EVENTPROCESS SPI
X'CA22' INQUIRE CAPTURESPEC SPI
X'CA28' INQUIRE CAPOPTPRED SPI
X'CA32' INQUIRE EPADAPTERSET SPI
X'CA34' SET EPADAPTERSET SPI
X'CA42' INQUIRE EPADAPTER SPI
X'CA44' SET EPADAPTER SPI
X'CA52' INQUIRE EPADAPTINSET SPI
X'CA2A' INQUIRE CAPDATAPRED SPI
X'CA2C' INQUIRE CAPINFOSRCE SPI
X'CC02' INQUIRE ATOMSERVICE SPI

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 165

Table 13. EIB Field Name Values & Types (continued)
EIBFN value Command Type

X'CC04' SET ATOMSERVICE SPI
X'CC10' DISCARD ATOMSERVICE SPI
X'CE02' INQUIRE MQCONN SPI
X'CE04' SET MQCONN SPI
X'CE10' DISCARD MQCONN SPI
X'CE12' INQUIRE MQINI SPI
X'D002' INQUIRE XMLTRANSFORM SPI
X'D004' SET XMLTRANSFORM SPI

Note:

1. VTAM® is the previous name for z/OS Communications Server.

Finding the reason for the loop
When you have identified the limits of the loop, you need to find the reason why
the loop occurred.

Assuming you have the trace, and EI level-1 tracing has been done, ensure that
you can explain why each EIP entry is there. Verify that the responses are as
expected.

A good place to look for clues to loops is immediately before the loop sequence,
the first time it is entered. Occasionally, a request that results in an unexpected
return code can trigger a loop. However, you usually can only see the last entry
before the loop if you have CICS auxiliary or GTF trace running, because the
internal trace table is likely to wrap before the AICA abend occurs.

Investigating loops that are not detected by CICS
You probably suspect that you have a loop through circumstantial evidence, and
CICS has failed to detect it. You might, for example, see some sort of repetitive
output, or statistics might show an excessive number of I/O operations or requests
for storage. These types of symptom can indicate that you have a yielding loop.

About this task

The nature of the symptoms might indicate which transaction is involved, but you
probably need to use trace to define the limits of the loop. Use auxiliary trace to
capture the trace entries, to ensure that the entire loop is captured in the trace data.
If you use internal trace, there is a danger that wraparound will prevent you from
seeing the whole loop.

Procedure
1. Use the CETR transaction to set up the following tracing options. You can use

the transaction dynamically, on the running CICS system. For guidance about
using the CETR transaction, see Chapter 15, “Using traces in problem
determination,” on page 237.
a. Select level-1 special tracing for every component. You need to capture as

much trace information for the task as possible, because you do not yet
know what functions are involved in the loop.

b. Set all standard tracing off, by setting the master system trace flag off.
c. Select special tracing for just the task containing the loop.

Licensed Materials – Property of IBM

166 CICS TS for z/OS 5.3: Problem Determination Guide

d. Set the auxiliary tracing status to STARTED, and the auxiliary switch status
to ALL. As CETR allows you to control trace dynamically, you do not need
to start tracing until the task is running and the symptoms of looping
appear.

These steps ensure that you get all level-1 trace points traced for just the task
you suspect of looping, the trace entries being sent to the auxiliary trace
destination.

2. When you have captured the trace data, you need to purge the looping task
from the system.
a. Use the CEMT INQ TASK command to find the number of the task.
b. Purge the task using either the CEMT SET TASK PURGE or the CEMT SET TASK

FORCEPURGE command.

Note: The use of FORCEPURGE is, in general, not recommended, because
it can cause unpredictable system problems. For example, it causes task
storage areas to be released, including I/O areas, without notifying any
components that might be accessing them. If the FORCEPURGEd task was
waiting for input, such an area might be written to after it is released. The
storage might even be in use by another task when the input occurs.

This causes the transaction to abend, and to produce a transaction dump of the
task storage areas.

3. In addition to the auxiliary trace data and the transaction dump, get the source
listings of all the programs in the transaction.

Results

The trace data and the program listings should enable you to identify the limits of
the loop. You need the transaction dump to examine the user storage for the
program. The data you find there could provide the evidence you need to explain
why the loop occurred.

Identifying the loop
About this task

Procedure
1. Examine the trace table, and try to detect the repeating pattern of trace entries.

If you cannot do so straightaway, remember that many different programs
might be involved, and the loop could be large. Another possibility is that you
might not have captured the entire loop in the trace data set. This could be
because the loop did not have time to complete one cycle before you purged
the transaction, or the trace data sets might have wrapped before the loop was
complete.
Consider also the possibility that you might not be dealing with a loop, and the
symptoms you saw are due to something else - poor application design, for
example.

2. If you are able to detect a pattern, you should be able to identify the
corresponding pattern of statements in your source code.

3. And finally, this.

Licensed Materials – Property of IBM

Chapter 8. Dealing with loops 167

Results

Note: The PSW is of no value in locating loops that are not detected by CICS. The
contents of the PSW are unpredictable, and the PSW is not formatted in the
transaction dump for ATCH abends.

Finding the reason for the loop

Before you begin

About this task

Procedure
1. Look carefully at the statements contained in the loop. Does the logic of the

code suggest why the loop occurred?
2. If not, examine the contents of data fields in the task user storage. Look

particularly for unexpected response codes, and null values when finite values
are expected. Programs can react unpredictably when they encounter these
conditions, unless they are tested for and handled accordingly.

Example

What to do next

What to do if you cannot find the reason for a loop
If you cannot find the reason for a non-yielding or a yielding loop using the
techniques outlined above, there are two more approaches that you can adopt.

About this task

Procedure
1. Use the interactive tools that CICS provides.
v Use the execution diagnostic facility (CEDF) to look at the various parts of

your program and storage at each interaction with CICS. If you suspect that
some unexpected return code might have caused the problem, CEDF is a
convenient way of investigating the possibility.

v Use CECI and CEBR to examine the status of files and queues during the
execution of your program. Programs can react unpredictably if records and
queue entries are not found when these conditions are not tested for and
handled accordingly.

2. Modify the program, and execute it again. If the program is extremely complex,
or the data path difficult to follow, you might need to insert additional
statements into the source code.
v Adding extra ASKTIME commands allow you to use EDF and inspect the

program at more points.
v Request dumps from within your program, and insert user trace entries, to

help you find the reason for the loop.

Licensed Materials – Property of IBM

168 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 9. Dealing with performance problems

When you have a performance problem, you might be able to find that it is
characterized by one of the following symptoms, each of which represents a
particular processing bottleneck.

If so, turn directly to the relevant section:
1. Some tasks fail to get attached to the transaction manager—see “Why tasks fail

to get attached to the transaction manager” on page 170.
2. Some tasks fail to get attached to the dispatcher—see “Why tasks fail to get

attached to the dispatcher” on page 171.
3. Some tasks get attached to the dispatcher, but fail to get dispatched—see “Why

tasks fail to get an initial dispatch” on page 173.
4. Tasks get attached to the dispatcher and then run and complete, but take a long

time to do so—see “Why tasks take a long time to complete” on page 175.

If you are only aware that performance is poor, and you have not yet found which
of these is relevant to your system, read “Finding the bottleneck.”

There is a quick reference section at the end of this section (“A summary of
performance bottlenecks, symptoms, and causes” on page 176) that summarizes
bottlenecks, symptoms, and actions that you should take.

Finding the bottleneck
Four potential bottlenecks can be identified for user tasks, and three for CICS
system tasks.

About this task

The bottlenecks are:
v Attach to transaction manager (user tasks only)
v Attach to dispatcher (user tasks and system tasks)
v Initial dispatch (user tasks and system tasks)
v Dispatch, suspend and resume cycle (user tasks and system tasks)

Procedure
1. Determine which bottleneck is causing your performance problem. Each

bottleneck is affected by a different set of system parameters and you might
find that adjusting the parameters solves the problem.

2. If performance is particularly poor for any of the tasks in your system, you
might be able to capture useful information about them with the command
CEMT INQ TASK. However, tasks usually run more quickly than you can inquire
on them, even though there might be a performance problem. You can use
performance class monitoring or tracing to get the information you require.

Initial attach to the transaction manager
If a task has not been attached to the transaction manager, you cannot get any
information about its status online.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 169

CEMT INQ TASK returns a response indicating that the task is not known. If the task
has not already run and ended, this response means that it has not been attached
to the transaction manager.

Guidance about finding out why tasks take a long time to get an initial attach to
the transaction manager is given in “Why tasks fail to get attached to the
transaction manager.”

Initial attach to the dispatcher
If a task has been attached to the transaction manager, but has not yet been
attached to the dispatcher, CEMT INQ TASK shows it to be ‘SUSPENDED’ on a
resource type of MXT or TCLASS. These are the only valid reasons why a user
task, having been attached to the transaction manager, would not be attached to
the dispatcher.

If CEMT INQ TASK returns anything other than this, the task is not waiting to be
attached to the dispatcher. However, consider whether the MXT limit might be
causing the performance problem, even though individual tasks are not being held
up long enough for you to use CEMT INQ TASK on them. In such a case, use
monitoring and tracing to find just how long tasks are waiting to be attached to
the dispatcher.

Guidance about finding whether the MXT limit is to blame for the performance
problem is given in “MXT summary” on page 106.

Initial dispatch
A task can be attached to the dispatcher, but then take a long time to get an initial
dispatch.

In such a case, CEMT INQ TASK returns a status of ‘Dispatchable’ for the task. If you
keep getting this response and the task fails to do anything, it is likely that the task
you are inquiring on is not getting its first dispatch.

The delay might be too short for you to use CEMT INQ TASK in this way, but still
long enough to cause a performance problem. In such a case, use tracing or
performance class monitoring for the task, either of which would tell you how
long the task had to wait for an initial attachment to the dispatcher.

If you think your performance problem could be due to tasks taking a long time to
get a first dispatch, read “Why tasks fail to get an initial dispatch” on page 173.

The dispatch, suspend, and resume cycle
If performance is poor and tasks are getting attached and dispatched, the problem
lies with the dispatch, suspend and resume cycle.

Tasks run, but the overall performance is poor. If you are able to show that tasks
are getting attached and then dispatched, read “Why tasks take a long time to
complete” on page 175.

Why tasks fail to get attached to the transaction manager
A task might fail to get attached to the transaction manager for one of the
following reasons:

Licensed Materials – Property of IBM

170 CICS TS for z/OS 5.3: Problem Determination Guide

1. The interval specified on an EXEC CICS START command might not have
expired, or the time specified might not have been reached, or there might be
some error affecting interval control.
Guidance about investigating these possibilities is given in “Investigating
interval control waits” on page 81. You need to consider doing this only if
INTERVAL or TIME was specified on the START command.

2. The terminal specified on an EXEC CICS START command might not be available.
It could be currently OUTSERVICE, or executing some other task. You can
check its status using CEMT INQ TERMINAL, and perhaps take some remedial
action.
Remember that several tasks might be queued on the terminal, some of which
might require operator interaction. In such a case, the transaction to be started
might not get attached to the transaction manager for a considerable time.

3. A remote system specified on an EXEC CICS START command might not be
available, or an error condition might have been detected in the remote system.
In such a case, the error would not be reported back to the local system.
You can use CEMT INQ TERMINAL to inquire on the status of the remote system.

Why tasks fail to get attached to the dispatcher
Two valid reasons why a user task might fail to get an initial attach to the
dispatcher are that the system has reached the maximum number of tasks (MXT)
limit or the task belongs to a transaction class that has reached its MAXACTIVE
limit.

For a system task, there may not be enough storage to build the new task. This
sort of problem is more likely to occur near peak system load times.

Is the MXT limit preventing tasks from getting attached?

Before the transaction manager can attach a user task to the dispatcher, the task
must first qualify under the MXT (maximum tasks in the system) and transaction
class limits. If a task is not getting attached, it is possible that one or both of these
values is too small.

You might be able to use CEMT INQ TASK to show that a task is failing to get
attached because of the MXT or transaction class limits. If you cannot use CEMT
because the task is held up for too short a time, you can look at either the
transaction global statistics, transaction class statistics, or the CICS
performance-class monitoring records. Another option is to use CICS system
tracing. For more information on setting MXT, see Setting the maximum task
specification (MXT) in Improving performance.

Using transaction manager statistics
You can use the transaction global statistics and transaction class statistics to see
whether the MXT and transaction class limits are adversely affecting performance.

About this task

To find out how often the MXT and transaction class limits are reached, look at the
transaction global statistics and transaction class statistics. You can compare the
number of times these limits are reached with the total number of transactions and
see whether the values set for the limits are adversely affecting performance.

Licensed Materials – Property of IBM

Chapter 9. Dealing with performance problems 171

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht34u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht34u.html

Procedure
1. To gather statistics relating to the number of times that the MXT or transaction

class limits are reached, you need to use, at the start of the run, the command
CEMT PERFORM STATISTICS RECORD (or your site replacement) with the
keywords TRANSACTION and TRANCLASS.
CEMT PERFORM STATISTICS RECORD [TRANCLASS TRANSACTION]

The statistics are gathered and recorded in the SMF data set.
2. Format this data set by using the statistics utility program, DFHSTUP. You

might find the following DFHSTUP control parameters useful:
SELECT APPLID=
COLLECTION TYPE=
REQTIME START= ,STOP=
DATE START= ,STOP=

If you correctly code these control parameters, you avoid formatting
information that is unnecessary at this point. For information about the
DFHSTUP utility, see Statistics utility program (DFHSTUP) in Reference ->
Utilities.

Results

If MXT is never reached, or reached only infrequently, it is not affecting
performance. If MXT is reached for 5% of transactions, this might have a noticeable
effect on performance. When the ratio reaches 10%, there is likely to be a
significant effect on performance, and this could account for some tasks taking a
long time to get a first attach.

What to do next

Consider revising the MXT and transaction class values if the statistics indicate
that they are affecting performance. For guidance about the performance
considerations when you set these limits, see CICS monitoring facility:
Performance and tuning in Improving performance.

Using CICS monitoring
You can use monitoring information to find out how long an individual task waits
to be attached to the dispatcher.

Monitoring produces performance class records (if performance class monitoring is
active) for each task that is executing or has executed in the CICS region.
Performance class records contain a breakdown of the delays incurred in
dispatching a task, part of which is the impact on a task of the MXT limit and
transaction class limits.

For further information on the data produced by CICS monitoring, see Monitoring
overview.

Using trace
You can use trace if you want to find out just how long an individual task waits to
be attached to the dispatcher.

Licensed Materials – Property of IBM

172 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/ciom.ibm.cics.ts.doc/dfha6/topics/dfha62i.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/ciom.ibm.cics.ts.doc/dfha6/topics/dfha62i.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht35e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht35e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/monitoring.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/monitoring.html

About this task

If you do not want to do any other tracing, internal trace is probably a suitable
destination for trace entries. Because the task you are interested in is almost
inactive, very few trace entries are generated.

Procedure
1. Select special tracing for the transaction associated with the task, and turn off

all standard tracing by setting the master system trace flag off.
2. Define as special trace points the level-1 trace points for transaction manager

(XM), and for the CICS task controlling the facility that initiates the task, such
as terminal control (TC). Make sure that no other trace points are defined as
special. For guidance about setting up these tracing options, see Chapter 15,
“Using traces in problem determination,” on page 237.

3. When you have selected the options, start tracing to the internal trace table and
attempt to initiate the task.

4. When the task starts, get a system dump using the command CEMT PERFORM
SNAP. Format the dump using the keyword TR, to get the internal trace table.

5. Look for the trace entry showing terminal control calling the transaction
manager with a request to attach the task, and the subsequent trace entry
showing the transaction manager calling dispatcher domain with a request to
attach the task. The time stamps on the two trace entries tell you the time that
elapsed between the two events. That is equal to the time taken for the task to
be attached.

What to do next

Why tasks fail to get an initial dispatch
When a task is past the transaction class and MXT barriers, it can be attached to
the dispatcher. It must then wait for its initial dispatch. If tasks are made to wait
for a relatively long time for their first dispatch, you will probably notice the
degradation in the performance of the system.

You can get evidence that tasks are waiting too long for a first dispatch from
performance class monitoring. If you do find this to be the case, you need to
investigate the reasons for the delay. To calculate the initial dispatch delay incurred
by a task use the following fields from the performance-class monitoring record:

DSPDELAY = First dispatch delay
TCLDELAY = Transaction Class delay
MXTDELAY = MXT delay

Using the above names:

Delay in dispatcher = DSPDELAY - (TCLDELAY + MXTDELAY)

If the value you calculate is significantly greater than 0, the dispatcher could not
dispatch the task immediately.

The following factors influence the length of time that a task must wait before
getting its first dispatch:
v The priority of the task
v Whether the system is becoming short on storage

Licensed Materials – Property of IBM

Chapter 9. Dealing with performance problems 173

v Whether the system is short on storage

Priorities of tasks
Normally, the priorities of tasks determine the order in which they are dispatched.
Priorities can have any value in the range 1 - 255. If your task is getting a first
dispatch (and, possibly, subsequent dispatches) too slowly, you might consider
changing its priority to a higher value.

You cannot control the priorities of CICS system tasks.

One other factor affecting the priorities of tasks is the priority aging multiplier,
PRTYAGE, that you code in the system initialization parameters. This determines the
rate at which tasks in the system can have their priorities aged. Altering the value
of PRTYAGE affects the rate at which tasks are dispatched, and you probably need to
experiment to find the best value for your system.

How storage conditions impact new tasks
CICS attempts to alleviate storage stress conditions by releasing programs with no
current user, and by not attaching new tasks.

If these actions fail to eliminate storage stress, or if the short-on-storage (SOS)
condition is caused by a suspended GETMAIN, one or more of the following
messages is sent to the console:
DFHSM0131 applid CICS is under stress (short on storage below 16MB)

DFHSM0133 applid CICS is under stress (short on storage above 16MB)

DFHSM0606 applid
The amount of MVS above the bar storage available to CICS is critically low

If you do not observe the SOS messages, you can find out how many times CICS
became SOS from the storage manager statistics (the “Times went short on storage”
statistic). You can also get this information from the storage manager domain DSA
summary in a formatted system dump.

For more information about short-on-storage conditions, see Short-on-storage
conditions in dynamic storage areas in Improving performance.

The dispatcher recognizes two other conditions on the approach to an SOS
condition:
v storage getting short
v storage critical

These two conditions affect the chance of new tasks getting a first dispatch. From
the point when storage gets short, through to when storage gets critical and up to
the SOS condition, the priorities of new user tasks are reduced in proportion to the
severity of the condition. However, this is not true if the PRTYAGE system
initialization parameter is set to 0. At first, you are not likely to notice the effect,
but as the “storage critical” condition is approached, new tasks might typically be
delayed by up to a second before they are dispatched for the first time.

It is likely that “storage getting short” and “storage critical” conditions occur many
times for every occasion that the SOS condition is reached. To see how often these
points are reached, select level-2 tracing for the dispatcher domain and look out for
trace point IDs DS 0038 (“storage getting short”) and DS 0039 (“storage critical”).
Trace point DS 0040 shows that storage is OK.

Licensed Materials – Property of IBM

174 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_sos.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_sos.html

The following table summarizes the effects of storage conditions on task priorities:

Table 14. How storage conditions affect new tasks getting started

State of storage Effects on user tasks

Storage getting short Priority of new user tasks reduced a little

Storage critical Priority of new user tasks reduced considerably

Why tasks take a long time to complete
The purpose of this section is to deal not with waiting tasks, but instead with tasks
that complete more slowly than they should.

When a ready task is dispatched, it becomes a running task. It is unlikely to
complete without being suspended at least once, and it is likely to go through the
‘READY - RUNNING - SUSPENDED’ cycle several times during its lifetime in the
dispatcher.

The longer the task spends in the non-running state, either ‘ready’ or ‘suspended’,
the greater your perception of performance degradation. In extreme cases, the task
might spend so long in the non-running state that it is apparently waiting
indefinitely. It is not likely to remain ‘ready’ indefinitely without running, but it
could spend so long suspended that you would probably classify the problem as a
wait.

Here are some factors that can affect how long tasks take to complete.

The effect of system loading on performance

The most obvious factor affecting the time taken for a task to complete is system
loading. For more information, see Improving the performance of a CICS system
the CICS Performance Guide. Note in particular that there is a critical loading
beyond which performance is degraded severely for only a small increase in
transaction throughput.

The effect of task timeout interval on performance

The timeout interval is the length of time a task can wait on a resource before it is
removed from the suspended state. A transaction that times out is normally
abended.

Any task in the system can use resources and not allow other tasks to use them.
Normally, a task with a large timeout interval is likely to hold on to resources
longer than a task with a short timeout interval. Such a task has a greater chance
of preventing other tasks from running. It follows that task timeout intervals
should be chosen with care, to optimize the use of resources by all the tasks that
need them.

The distribution of data sets on DASD volumes

CICS uses QSAM to write data to extrapartition transient data destinations, and
QSAM uses the MVS RESERVE mechanism. If the destination happens to be a
DASD volume, any other CICS regions trying to access data sets on the same
volume are held up until the TD WRITE is complete.

Licensed Materials – Property of IBM

Chapter 9. Dealing with performance problems 175

Other system programs also use the MVS RESERVE mechanism to gain exclusive
control of DASD volumes, making the data sets on those volumes inaccessible to
other regions.

If you notice in particular that tasks making many file accesses take a long time to
complete, check the distribution of the data sets between DASD volumes to see if
volume locking could be the cause of the problem.

A summary of performance bottlenecks, symptoms, and causes
This summary includes the symptoms you get if the performance of your system is
restricted, and the specific causes of the delays at each point.

Table 15. A summary of performance bottlenecks, symptoms and causes

Bottleneck Symptoms Possible causes

Initial attach to
transaction
manager

CEMT INQ TASK does not know task.

Tracing shows long wait for attach
to transaction manager.

v Interval on EXEC CICS START too
long

v Terminal not available

v Remote system not available

Initial attach to
dispatcher

CEMT INQ TASK shows wait on MXT
or transaction class.

Tracing shows long wait for attach
to dispatcher.

MXT or transaction class limits set
too low

First dispatch Performance class monitoring
shows long wait for first dispatch.

Storage statistics show CICS has
gone short-on-storage (SOS).

v MXT or transaction class limits
set too low

v Priority of task set too low

v Insufficient storage

v System under stress, or near it

SUSPEND /
RESUME cycle

Tasks take a long time to complete. v System loading high

v Task timeout interval too large

v CICS data sets are on volumes
susceptible to MVS RESERVE
locking

Licensed Materials – Property of IBM

176 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 10. Dealing with incorrect output

Incorrect output has been categorized into a number of areas. Look at the
appropriate section to diagnose why this problem is occurring.

The various categories of incorrect output are dealt with in:
v “Trace output is incorrect”
v “Dump output is incorrect” on page 181
v “Incorrect data is displayed on a terminal” on page 185
v “Specific types of incorrect output for terminals” on page 186
v “Incorrect data is present on a VSAM data set” on page 191
v “An application does not work as expected” on page 191
v “Your transaction produces no output at all” on page 192
v “Your transaction produces some output, but it is wrong” on page 198.

Trace output is incorrect
If you have been unable to get the trace output you need, you can find guidance
about solving the problem in this section. You can be very selective about the way
CICS does tracing, and the options need to be considered carefully to make sure
you get the tracing you want.

There are two main types of problem:
v Your tracing might have gone to the wrong destination. This is dealt with in

“Tracing has gone to the wrong destination.”
v You might have captured the wrong data. This is dealt with in “You have

captured the wrong trace data” on page 178.

Tracing has gone to the wrong destination
In terms of destinations, CICS system trace entries belong to one of three groups -
internal tracing, auxiliary tracing and GTF tracing.
v CICS trace entries, other than CICS z/OS Communications Server (SNA) exit

traces and exception traces, go to any of the following trace destinations that are
currently active:
– The internal trace table
– The current auxiliary trace data set
– The GTF trace data set.

v CICS Communications Server exit traces that are not exception traces go only to
the GTF trace data set, if GTF tracing is active.

v CICS Communications Server exit traces that are exception traces go to the
internal trace table and, if GTF tracing is active, to the GTF trace data set.

v All other CICS exception traces go to the internal trace table and to any other
trace destination that is currently active.

For CICS system tracing other than exception traces and CICS Communications
Server exit traces, you can inquire on the current destinations and set them to what
you want using the CETR transaction.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 177

CETR - trace control illustrates what you might see on a CETR screen, and
indicates how you can change the options by overtyping the fields. From that
illustration you can see that, from the options in effect, a normal trace call results
in a trace entry being written to the GTF trace destination. If an exceptional
condition occurred, the corresponding exception trace entry would be made both
to the GTF data set and to the internal trace table, even though the internal trace
status is STOPPED.

Note that the master system trace flag value only determines whether standard
tracing is to be done for a task (see Table 25 on page 247). It has no effect on any
other tracing status.

Internal tracing
goes to the internal trace table in main storage. The internal trace table is
used as a buffer in which the trace entries are built no matter what the
destination. It, therefore, always contains the most recent trace entries, even
if its status is STOPPED—if at least one of the other trace destinations is
currently STARTED.

Auxiliary tracing
goes to one of two data sets, if the auxiliary tracing status is STARTED.
The current data set can be selected from the CETR screen by overtyping
the appropriate field with A or B, as required. What happens when the
data set becomes full is determined by the auxiliary switch status. Make
sure that the switch status is correct for your system, or you might lose the
trace entries you want, either because the data set is full or because they
are overwritten.

GTF tracing
goes to the GTF trace data set. GTF tracing must be started under MVS,
using the TRACE=USR option, before the trace entry can be written. Note
that if GTF tracing has not been started in this way, the GTF tracing status
can be shown as STARTED on the CETR screen and yet no trace entries are
made, and no error condition reported.

You have captured the wrong trace data
There are several ways in which you might capture the wrong trace data. The
following points are some sets of symptoms that suggest specific areas for
attention
1. You are not getting the right task tracing, because:
v Tasks do not trace the right trace points for some components.
v Transactions are not being traced when they are started from certain

terminals.
v There is no tracing for some terminals that interest you.
If you are aware of symptoms like these, it is likely that you do not have the
right task tracing options set up. Turn to “You are not getting the correct task
tracing” on page 179 for further guidance.

2. You are getting the wrong amount of data traced, because:
v Tracing is not being done for all the components you want, so you are

getting too little information.
v Tracing is being done for too many components, so you are getting more

information than you want.
v You are not getting the right trace points (level-1 or level-2) traced for some

of the components.

Licensed Materials – Property of IBM

178 CICS TS for z/OS 5.3: Problem Determination Guide

v Tasks are not tracing the component trace points you want. This evidence
suggests CICS component tracing selectivity is at fault.

If your observations fit any of these descriptions, turn to “You are not getting
the correct component tracing” for guidance about fixing the problem.

3. The data you want is missing entirely from the trace table.
If you have this sort of problem, turn to “The entries you want are missing
from the trace table” for guidance about finding the cause.

It is worth remembering that the more precisely you can define the trace data you
need for any sort of problem determination, the more quickly you are likely to get
to the cause of the problem.

You are not getting the correct task tracing
If you are not getting the correct task tracing, use the CETR transaction to check
the transaction and terminal tracing options, and if necessary change them.

You can define whether you want standard or special CICS tracing for specific
transactions, and standard or special tracing for transactions started at specific
terminals. You can also suppress tracing for transactions and terminals that do not
interest you. The type of task tracing that you get (standard or special) depends on
the type of tracing for the corresponding transaction-terminal pair, in the way
shown in Table 24 on page 246.

You can deduce from the table that it is possible to get standard tracing when a
transaction is initiated at one terminal, and special tracing when it is initiated from
another terminal. This raises the possibility of setting up inappropriate task tracing
options, so the trace entries that interest you - for example, when the transaction is
initiated from a particular terminal - are not made.

You are not getting the correct component tracing
If you are not getting the correct component tracing, use the CETR transaction to
inquire on the current component tracing options and, if necessary, to change
them.
1. check that you are only tracing components that interest you. If some other

components are being traced, change the options so they are no longer traced
for standard tracing or for special tracing, as appropriate.

2. check that the right tracing levels have been defined for standard tracing and
special tracing. Remember that, whenever a task that has standard tracing is
running, the trace points that you have defined as standard for a component
are traced whenever that component is invoked. Similarly, special trace points
are traced whenever special task tracing is being done.
Table 25 on page 247 illustrates the logic used to determine whether a trace call
is to be made from a trace point.

3. If you are satisfied that the component tracing selectivity is correct but you are
still getting too much or too little data, read “You are not getting the correct
task tracing.”

The entries you want are missing from the trace table
Read this section if one or more entries you were expecting were missing entirely
from the trace table.

These cases are considered:
v The trace data you wanted did not appear at the expected time.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 179

v The earliest trace entry in the table was time-stamped after the activity that
interested you took place.

v You could not find the exception trace entry you were expecting.

If the trace entry did not appear at the expected time, consider these possibilities:
v If tracing for some components or some tasks did not appear, you might not

have set up the tracing selectivity correctly. For guidance about checking and
correcting the options, see “You are not getting the correct task tracing” on page
179 and “You are not getting the correct component tracing” on page 179.

v If you were using GTF tracing, it might not have been active at the time the
trace entry should have been made. GTF tracing must be started under MVS
using the TRACE=USR option.

v If CICS z/OS Communications Server exit trace entries (point IDs AP FCxx)
were missing, remember that they are only ever made to the GTF trace data set.

v If you attempted to format the auxiliary trace data set selectively by transaction
or terminal, and trace entries for the transaction or terminal were missing
entirely, it could be that you did not capture the corresponding “transaction
attach” (point ID XM 1102) trace entry. This could occur if the master system
trace flag is switched off and the transaction status is set to special, or if you do
not have KC level 1 tracing selected.
When you select trace entries by specifying TRANID or TERMID parameters in the
DFHTU700 trace control statements, DFHTU700 searches for any transaction
attach trace entries that contain the specified TRANID or TERMID. It then
formats any associated trace entries, identified by the TASKID found in the
transaction attach trace entry data.
It follows that you must have KC level-1 tracing selected for the task in question
at the time it is attached if you want to format the auxiliary trace data set
selectively by transaction or terminal.
For more details about trace formatting using DFHTU700, see the CICS
Operations and Utilities Guide.

If the options were correct and tracing was running at the right time, but the trace
entries you wanted did not appear, it is likely that the task you were interested in
did not run or did not invoke the CICS components you expected. Examine the
trace carefully in the region in which you expected the task to appear, and attempt
to find why it was not invoked. Remember also that the task tracing options might
not, after all, have been appropriate.

If the earliest trace entry was later than the event that interested you, and tracing
was running at the right time, it is likely that the trace table wrapped round and
earlier entries were overwritten.

Internal trace always wraps when it is full. Try using a bigger trace table, or direct
the trace entries to the auxiliary trace or GTF trace destinations.

Note: Changing the size of the internal trace table during a run causes the data
that was already there to be destroyed. In such a case, the earliest data would have
been recorded after the time when you redefined the table size.

Auxiliary trace switches from one data set to the next when it is full, if the
autoswitch status is NEXT or ALL.

If the autoswitch status is NEXT, the two data sets can fill up but earlier data
cannot be overwritten. Your missing data might be in the initial data set, or the

Licensed Materials – Property of IBM

180 CICS TS for z/OS 5.3: Problem Determination Guide

events you were interested in might have occurred after the data sets were full. In
the second case, you can try increasing the size of the auxiliary trace data sets.

If the autoswitch status is ALL, you might have overwritten the data you wanted.
The initial data set is reused when the second extent is full. Try increasing the size
of the auxiliary trace data sets.

GTF trace always wraps when the data set is full. If this was your trace
destination, try increasing the size of the GTF trace data set.

If you cannot find an exception trace entry that you expected, bear in mind that
exception tracing is always done to the internal trace table irrespective of the status
of any other type of tracing. So, if you missed it in your selected trace destination,
try looking in the internal trace table.

Dump output is incorrect
Read this section if you do not get the dump output you expect.

The things that can go wrong are:
v The dump does not seem to relate to you CICS region.
v You do not get a dump when an abend occurs.
v Some dump IDs are missing from the sequence of dumps in the dump data set.
v You do not get the correct data when you format a system dump.

The sections that follow give guidance about resolving each of these problems in
turn.

The dump does not seem to relate to your CICS region
If you have experienced this problem, it is likely that you have dumped the wrong
CICS region. It should not occur if you are running a single region.

If you invoked the dump from the MVS console using the MVS MODIFY
command, check that you specified the correct job name. It must be the job used to
start the CICS region in which you are interested.

If you invoked the dump from the CICS master terminal using CEMT PERFORM SNAP,
check that you were using the master terminal for the correct region. This is more
likely to be a problem if you have an SNA network, because that allows you to
switch a single physical SNA LU between the different CICS regions.

You do not get a dump when an abend occurs
Read this section if you are experiencing any of these problems:
v A transaction abended, but you do not get a transaction dump.
v A transaction abended and you get a transaction dump, but you do not get the

system dump you want at the same time.
v A system abend occurred, but you do not get a system dump.

There are, in general, two reasons why dumps might not be taken:
v Dumping is suppressed because of the way the dumping requirements for the

CICS region were defined. The valid ways that dumping can be suppressed are
described in detail in the sections that follow.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 181

v A system error could have prevented a dump from being taken. Some of the
possibilities are:
– No transaction or system dump data sets were available.
– An I/O error occurred on a transaction or a system dump data set.
– The system dump data set was being written to by another region, and the

DURETRY time was exceeded.
– There was insufficient space to write the dump in the dump data set. In such

a case, you might have obtained a partial dump.
Depending on the areas that are missing from the dump, the dump
formatting program might subsequently be able to format the data that is
there, or it might not be able to format the data at all.

For each of these system errors, there should be a message explaining what has
happened. Use the CMAC transaction or see CICS Messages and Codes for
guidance about the action to take.

How dumping can be suppressed
If you do not get a dump when an abend occurred, and there was no system error,
the dumping that you required must somehow have been suppressed.

There are several levels at which dumping can be suppressed:
v System dumps can be globally suppressed.
v System dumps and transaction dumps can be suppressed for specific

transactions.
v System dumps can be suppressed for specific dump codes from a dump domain

global user exit program.
v System dumps and transaction dumps can be suppressed by dump table

options.

You need to find out which of these types of dump suppression apply to your
system before you decide what remedial action to take.

Global suppression of system dumping
System dumping can be suppressed globally in two ways:
v By coding a value of NO for the DUMP parameter in the system initialization

table.
v By using the system programming command EXEC CICS SET SYSTEM DUMPING,

with a CVDA value of NOSYSDUMP.

If system dumping has been suppressed globally by either of these means, any
system dumping requirements specified in the transaction dump table and the
system dump table are overridden.

You can inquire whether system dumping has been suppressed globally by using
the EXEC CICS INQUIRE SYSTEM DUMPING system programming command. If
necessary, you can cancel the global suppression of system dumping using EXEC
CICS SET SYSTEM DUMPING with a CVDA value of SYSDUMP.

Suppression of system dumping from a global user exit program
System dumping can be suppressed for specific dump codes by an XDUREQ user
exit program. For programming information about the XDUREQ global user exit
program, see the CICS Customization Guide.

Licensed Materials – Property of IBM

182 CICS TS for z/OS 5.3: Problem Determination Guide

If an exit program that suppresses system dumping for a particular dump code is
enabled, system dumping is not done for that dump code. This overrides any
system dumping requirement specified for the dump code in the dump table.

The exit program can suppress system dumps only while it is enabled. If you want
the system dumping suppression to be canceled, you can issue an EXEC CICS
DISABLE command for the program. Any system dumping requirements specified
in the dump table then take effect.

Suppression of dumping for individual transactions
Transaction dumps taken when a transaction abends can be suppressed for
individual transactions by using the EXEC CICS SET TRANSACTION DUMPING system
programming command, or by using the DUMP attribute on the RDO definition of
the transaction. None of the dumping requirements specified in the transaction
dump table would be met if a transaction for which dumping is suppressed were
to abend.

You can use EXEC CICS INQUIRE TRANSACTION DUMPING to see whether dumping has
been suppressed for a transaction, and then use the corresponding SET command
to cancel the suppression if necessary.

Suppression of dumping by dump table options
If transaction dumping and system dumping are not suppressed by any of the
preceding mechanisms, the dump table options determine whether or not you get
a dump for a particular dump code.

You can inquire on transaction and system dump code attributes using CEMT INQ
TRDUMPCODE and CEMT INQ SYDUMPCODE, respectively. You must specify the dump
code you are inquiring on.

If you find that the dumping options are not what you want, you can use CEMT SET
TRDUMPCODE code or CEMT SET SYDUMPCODE code to change the values of the
attributes accordingly.
v If you had no transaction dump when a transaction abended, look first to see if

attribute TRANDUMP or NOTRANDUMP is specified for this dump code. The
attribute needs to be TRANDUMP if a transaction dump is to be taken.
If the attribute is shown to be TRANDUMP, look next at the maximum number
of dumps specified for this dump code, and compare it with the current number.
The values are probably equal, showing that the maximum number of dumps
have already been taken.

v If you had a transaction dump but no system dump, use CEMT INQ TRDUMPCODE
and check whether there is an attribute of SYSDUMP or NOSYSDUMP for the
dump code. You need to have SYSDUMP specified if you are to get a system
dump as well as the transaction dump.
Check also that you have not had all the dumps for this dump code, by
comparing the maximum and current dump values.

v If you had no system dump when a system abend occurred, use CEMT INQ
SYDUMPCODE and check whether you have an attribute of SYSDUMP or
NOSYSDUMP for the dump code. You need SYSDUMP if you are to get a
system dump for this type of abend.
Finally, check the maximum and current dump values. If they are the same, you
need to reset the current value to zero.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 183

Some dump IDs are missing from the sequence of dumps
CICS keeps a count of the number of times that dumping is invoked during the
current run, and the count is included as part of the dump ID given at the start of
the dump.

Note: SDUMPs produced by the kernel do not use the standard dump domain
mechanisms, and always have a dump ID of 0/0000.

If both a transaction dump and a system dump are taken in response to the event
that invoked dumping, the same dump ID is given to both. However, if just a
transaction dump or just a system dump is taken, the dump ID is unique to that
dump.

The complete range of dump IDs for any run of CICS is, therefore, distributed
between the set of system dumps and the set of transaction dumps, but neither set
of dumps has them all.

Table 16 gives an example of the sort of distribution of dump IDs that might occur.
Note that each dump ID is prefixed by the run number, in this case 23, and that
this is the same for any dump produced during that run. This does not apply to
SDUMPs produced by the kernel; these always have a dump ID of 0/0000.

Table 16. Typical distribution of dump IDs between dump data sets

On system dump data set On transaction dump data set

ID=23/0001

ID=23/0002 ID=23/0002

ID=23/0003

ID=23/0004

ID=23/0005

ID=23/0006

ID=23/0007

ID=23/0008

For further discussion of the way CICS manages transaction and system dumps,
see Chapter 17, “Using dumps in problem determination,” on page 265.

You do not get the correct data when formatting the CICS
system dump

If you did not get the correct data formatted from a CICS system dump, these are
the most likely explanations:
v You did not use the correct dump formatting keywords. If you do not specify

any formatting keywords, the whole system dump is formatted. However, if you
specify any keywords at all, you must be careful to specify keywords for all the
functional areas you are interested in.

v You used the correct dump formatting keywords, but the dump formatting
program was unable to format the dump correctly because it detected an error.
In such a case, you should be able to find a diagnostic error message from the
dump formatter.

v A partial dump might have been specified at the MVS level, for example
“without LPA”. This requirement would be recorded in the MVS parameter
library.

Licensed Materials – Property of IBM

184 CICS TS for z/OS 5.3: Problem Determination Guide

Incorrect data is displayed on a terminal
There are many reasons why you might get the wrong data displayed, some with
system-related causes and some with application-related causes. If you think that it
is system-related, read this section for some suggestions on likely areas in which to
start your investigations.

For the present purpose, a terminal is considered to be any device where data can
be displayed. It might be some unit with a screen, or it could be a printer. Many
other types of terminals are recognized by CICS, including remote CICS regions,
batch regions, IMS regions and so on, but they are not considered in this section on
incorrect output.

Broadly, there are two types of incorrect output that you might get on a screen, or
on a printer:
v The data information is wrong, so unexpected values appear on the screen or in

the hard copy from a printer.
v The layout is incorrect on the screen or in the hard copy. That is, the data is

formatted wrongly.

In practice, you may sometimes find it difficult to distinguish between incorrect
data information and incorrect formatting. In fact, you seldom need to make this
classification when you are debugging this type of problem.

Sometimes, you might find that a transaction runs satisfactorily at one terminal,
but fails to give the correct output on another. This is probably due to the different
characteristics of the different terminals, and you should find the answer to the
problem in the sections that follow.

The preliminary information you need to get
Before you can investigate the reasons why incorrect output is displayed at a
terminal, you need to gather some information about the transaction running at the
terminal, and the about terminal itself.

The first things you need to know are:
1. The identity of the transaction associated with the incorrect output.
2. For an autoinstalled terminal, the model number, to ensure that you inquire on

the correct TERMTYPE. You can find this from the autoinstall message in the
CADL log.

Depending on the symptoms you have experienced, you probably need to examine
the PROFILE definitions for the transaction, and the TYPETERM definitions for the
affected terminal. The attributes most likely to be of interest are SCRNSIZE for the
PROFILE, and ALTSCREEN, ALTPAGE, PAGESIZE, EXTENDEDDS, and QUERY
for TYPETERM. Other attributes might also be significant, but the values you find
for the attributes named here can often explain why the incorrect output was
obtained.

Tools for debugging terminal output in a z/OS
Communications Server environment

Among the debugging tools you have, two are likely to be of particular use for
investigating terminal incorrect output errors in a z/OS Communications Server
environment.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 185

These debugging tools are as follows:

z/OS Communications Server buffer trace
This is a function of the Communications Server. You need to read the
appropriate manual in the z/OS Communications Server library to find out
how to use it.

CICS Communications Server exit trace
This is a function of CICS, and you can control it from the CETR panel.

For information on using tracing in CICS problem determination, see Chapter 15,
“Using traces in problem determination,” on page 237.

Specific types of incorrect output for terminals
This section contains some suggestions about what to do for specific types of
incorrect output, and what might be at fault.

Logon rejection message
If you get a logon rejection message when you attempt to log on to CICS, it could
be that the TYPETERM definitions for the terminal are incorrect.

A message recording the failure is written to the CSNE log or, in the case of
autoinstall, to the CADL log.

You are likely to get a logon rejection if you attempt to specify anything other than
QUERY(NO) for a terminal that does not have the structured query field feature.
Note that NO is the default value for TYPETERM definitions that you supply, but
YES is the value for TYPETERM definitions that are supplied with CICS.

If you have a persistent problem with logon rejection, you can use the z/OS
Communications Server buffer trace to find out more about the reasons for the
failure.

Unexpected messages and codes
If the “wrong data” is in the form of a message or code that you do not
understand, look in the appropriate manual for an explanation of what it means.

Messages that are prefixed by DFH originate from CICS. You can look up messages
in and CICS messages in Reference -> Diagnostics. For codes that appear in the
space at the bottom of the screen where status information is displayed, look in the
appropriate guide for the terminal.

The following are examples of common errors that can cause messages or codes to
be displayed:
v SCRNSIZE(ALTERNATE) has been specified in a PROFILE, and too many rows

have been specified for ALTSCREEN and ALTPAGE in the TYPETERM
definition for the terminal.

v An application has sent a spurious hex value corresponding to a control
character in a data stream. For example, X’11’ is understood as “set buffer
address” by a 3270 terminal, and the values that follow are interpreted as the
new buffer address. This eventually causes an error code to be displayed.
If you suspect this may be the cause of the problem, check your application code
carefully to make sure it cannot send any unintended control characters.

Licensed Materials – Property of IBM

186 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.messages.doc/DFHmessages.html

v EXTENDEDDS(YES) has been specified for a device that does not support this
feature. In such a case, a message is sent to the screen, and a message might also
be written to the CSMT log.
The default value for EXTENDEDDS is NO, but check to make sure that YES
has not been specified if you know your terminal is not an extended data stream
device.

Unexpected appearance of upper and lowercase characters
If the data displayed on your terminal has unexpectedly been translated into
uppercase characters, or if you have some lowercase characters when you were
expecting uppercase translation, you must look at the options governing the
translation.

These are the significant properties of the various translation options you have:
v The ASIS option for BMS or terminal control specifies that lowercase characters

in an input data stream are not to be translated to uppercase.
ASIS overrides the UCTRAN attributes for both TYPETERM and PROFILE
definitions.

v The UCTRAN attribute of the TYPETERM definition states whether lowercase
characters in input data streams are to be translated to uppercase for terminals
with this TYPETERM definition.
The UCTRAN attribute of TYPETERM is overridden by ASIS, but it overrides
the UCTRAN attribute of a PROFILE definition.

v The UCTRAN attribute of a PROFILE states whether lowercase characters in the
input data stream are to be translated to uppercase for transactions with this
PROFILE running on SNA logical units (LUs). The PROFILE UCTRAN value is
valid only for SNA LUs.
The UCTRAN option for a PROFILE is overridden by both the UCTRAN option
for a TYPETERM definition and the BMS or terminal control ASIS option.

v If the ASIS option is NOT specified, then if either the PROFILE or the
TYPETERM definitions specify UCTRAN(YES), the data presented to the
transaction IS translated.

Note: You can also use the user exit XZCIN to perform uppercase translation.

The UPPERCASE option in the offline utilities (DFHSTUP, DFHDU700,
DFHTU700) specify whether all lowercase characters are to be translated to
uppercase characters.

Table 17 and Table 18 summarize whether you get uppercase translation,
depending on the values of these options.

Table 17. Uppercase translation truth table — ASIS option not specified

Profile TYPETERM UCTRAN(YES) TYPETERM UCTRAN(NO)

UCTRAN(YES) Yes Yes

UCTRAN(NO) Yes No

Table 18. Uppercase translation truth table — ASIS option is specified

Profile TYPETERM UCTRAN(YES) TYPETERM UCTRAN(NO)

UCTRAN(YES) No No

UCTRAN(NO) No No

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 187

CRTE and uppercase translation
A description of how to initiate a CRTE session and the required input.

Initiate a CRTE session

The input required to start a CRTE routing session is of the form:
CRTE SYSID(xxxx),TRPROF(yyyyyyyy)

Translation to uppercase is dictated by the typeterm of the terminal at which CRTE
was entered and CRTE’s transaction profile definition as shown in Table 19.

Table 19. Uppercase translation on CRTE session initiation

TYPETERM UCTRAN CRTE PROFILE UCTRAN INPUT TRANSLATED TO
UPPERCASE

YES YES/NO ALL OF THE INPUT

NO NO NONE OF THE INPUT. See
note.

NO YES ALL OF THE INPUT
EXCEPT THE TRANSID. See
note.

TRANID YES ALL OF THE INPUT

TRANID NO TRANSID ONLY

Note: If the transid CRTE is not entered in uppercase, it will not be recognized (unless
there is a lower/mixed case alias), and message DFHAC2001 will be issued.

Input within the CRTE session

During the CRTE routing session, uppercase translation is dictated by the typeterm
of the terminal at which CRTE was initiated and the transaction profile definition
of the transaction being initiated (which has to be a valid transaction on the
application owning region) as shown in Table 20.

Table 20. Uppercase translation during CRTE session

TYPETERM UCTRAN TRANSACTION PROFILE
(AOR) UCTRAN

INPUT TRANSLATED TO
UPPERCASE

YES YES/NO ALL OF THE INPUT

NO NO NONE OF THE INPUT. See
note.

NO YES ALL OF THE INPUT
EXCEPT THE TRANSID. See
note.

TRANID YES ALL OF THE INPUT

TRANID NO TRANSID ONLY

Note: If the transid CRTE is not entered in uppercase, it will not be recognized (unless
there is a lower/mixed case alias defined on the AOR) and message DFHAC2001 will be

issued.

During a CRTE routing session, if the first six characters entered at a screen are
CANCEL, CICS will recognize this input in upper, lower or mixed case and end the
routing session.

Licensed Materials – Property of IBM

188 CICS TS for z/OS 5.3: Problem Determination Guide

Be aware that when transaction routing from CICS Transaction Server for z/OS,
Version 5 Release 3 to an earlier release of CICS that does not support transaction
based uppercase translation, uppercase translation only occurs if it is specified in
the typeterm.

EXEC CICS SET TERMINAL and uppercase translation
In a single system, if the EXEC CICS SET TERMINAL command is issued for a
terminal while it is running a transaction performing RECEIVE processing,
unpredictable results might occur.

This is because the command can override the typeterm definition regarding
uppercase translation and RECEIVE processing interrogates the uppercase translate
status of the terminal in order to establish whether translation is required.

In a transaction routing environment, the system programmer who issues the
EXEC CICS SET TERMINAL command should be aware (for SNA logical units)
that the TOR terminal uppercase translate status is copied to the AOR surrogate
terminal on every flow across the link from the TOR to the AOR. Consequently:
v The EXEC CICS SET TERMINAL change of uppercase translate status will only take

effect on the AOR on the next flow across the link.
v Any AOR typeterm definition used to hard code remote terminal definitions will

be overridden with the TOR values for uppercase translate status.
v EXEC CICS INQUIRE TERMINAL issued on the AOR can return misleading

uppercase translation status of the terminal, since the correct status on the TOR
may not yet have been copied to the AOR.

v The processing of RECEIVE requests on the TOR and AOR can interrogate the
uppercase translate status of the terminal. Therefore unpredictable results can
also occur if the system programmer issues the EXEC CICS SET TERMINAL
command during receive processing.

CICS client virtual terminal
If the code page sent by a client is incorrect, this can lead to the entire screenful of
data being incorrect. You must resolve this problem at the client end of operations.

The entire screenful of data might also be incorrect if the bit
TCTSK_VIRTUAL_TERMINAL is not set on in the skeleton for the virtual terminal.
The bit might have been overwritten, or not turned on when the virtual terminal
was being created during CTIN processing.

Katakana terminals - mixed English and Katakana characters
If you are using a Katakana terminal, you might see some messages that contain
mixed English and Katakana characters.

That is because Katakana terminals cannot display mixed-case output. Uppercase
characters in the data stream appear as uppercase English characters, but lowercase
characters appear as Katakana characters. If you have any Katakana terminals that
are connected to your CICS system, specify MSGCASE=UPPER in the system
initialization table to ensure that messages contain uppercase characters only.

The offline utilities DFHSTUP, DFHDU700, andDFHTU700 have an extra
parameter to ensure that all output is translated to uppercase. See Utilities
reference in Reference for details on how to use these parameters.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 189

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/reference_utilities.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/reference_utilities.html

Data that is displayed incorrectly
Suggestions on how to deal with incorrect data values, partially missing data, early
data that is overlaid by later data and data that is formatted incorrectly.

Wrong data values are displayed

If the data values are wrong on the user’s part of the screen (the space above the
area used to display status information to the operator), or in the hard copy
produced by a printer, it is likely that the application is at fault.

Some data is not displayed

If you find that some data is not being displayed, consider these possibilities:
v The SENDSIZE value for the TYPETERM definition could be too large for the

device receiving the data. Its receiving buffer could then overflow, with some
data being lost.

v SCRNSIZE(ALTERNATE) might be specified in the PROFILE definition for the
transaction running at the terminal, while default values for ALTSCREEN and
ALTPAGE are allowed in the TYPETERM definition for the terminal.
The default values for ALTSCREEN and ALTPAGE are 0 rows and 0 columns, so
no data could then be displayed if SCRNSIZE(ALTERNATE) were specified.

v EXTENDEDDS(YES) is specified for a device that does not support this feature.

Early data is overlaid by later data

Early data can be overlaid by later data, so that data appears in the wrong order,
when the SENDSIZE value of the TYPETERM definition is too large for the device
receiving the data. This is because the buffer can wrap when it is full, with the
surplus data overlaying the first data that was received.

The data is formatted wrongly

Incorrect formatting of data can have a wide range of causes, but here are some
suggestions of areas that can sometimes be troublesome:
v BMS maps are incorrect.
v Applications have not been recompiled with the latest maps.
v Different numbers of columns have been specified for ALTSCREEN and

ALTPAGE in the TYPETERM definitions for the terminal. This can lead to
unpredictable formatting errors. However, you will not see them unless
SCRNSIZE(ALTERNATE) has been specified in the PROFILE for the transaction
running at the terminal.

v The PAGESIZE values included in the TYPETERM definitions must suit the
characteristics of the terminal, or you get formatting errors.
For a screen display, the number of columns specified must be less than or equal
to the line width. For a printer, the number of columns specified must be less
than the line width, or else both BMS (if you are using it) and the printer might
provide a new line and you will get extra spacing you do not want.
The default values for PAGESIZE depend on the value you specify for the
DEVICE keyword.

v If you get extra line feeds and form feeds on your printer, it could be that an
application is sending control characters that are not required because the
printer is already providing end of line and end of form operations.

Licensed Materials – Property of IBM

190 CICS TS for z/OS 5.3: Problem Determination Guide

If your application is handling the buffering of output to a printer, make sure
that an “end of message” control character is sent at the end of every buffer full
of data. Otherwise, the printer might put the next data it receives on a new line.

Incorrect data is present on a VSAM data set
If READ UPDATE is not used, an error can occur because VSAM allows a record
to be read by one transaction while another transaction is updating it.

If the first transaction were to take some action based on the value of the record,
the action would probably be erroneous.

For example, in inventory control, a warehouse has 150 items in stock. 100 items
are sold to a customer, who is promised delivery within 24 hours. The invoice is
prepared, and this causes a transaction to be invoked that is designed to read the
inventory record from a VSAM data set and update it accordingly.

In the meantime, a second customer also asks for 100 items. The salesperson uses a
terminal to inquire on the number currently in stock. The “inquire” transaction
reads the record that has been read for update but not yet rewritten, and returns
the information that there are 150 items. This customer, too, is promised delivery
within 24 hours.

Errors of this kind are prevented by the use of READ UPDATE.

An application does not work as expected
It is not possible to give specific advice on dealing with this sort of problem, but
the points and techniques that follow should help you to find the area where the
failure is occurring.

General points for you to consider
1. Make sure you can define exactly what happened, and how this differs from

what you expected to happen.
2. Check the commands you are using for accuracy and completeness. For

programming information about EXEC CICS commands, see the CICS Application
Programming Reference. Are any default values the ones you really want? Does
the description of the effect of each command match your expectations?

3. Can you identify a failing sequence of commands? If so, can it be reproduced
using CECI?

4. Consider the resources required by the application. Are they defined as
expected?

5. Are the required functions in the failing functional area available in this
system?

6. For “input” type requests, does the item exist? You can verify this using offline
utilities.

7. For “output” type requests, is the item created? Verify that the before and after
images are as expected.

Using traces and dumps

Traces and dumps can give you valuable information about unusual conditions
that might be causing your application to work in an unexpected way.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 191

1. If the path through the transaction is indeterminate, insert user trace entries at
all the principal points.

2. If you know the point in the code where the failure occurs, insert a CICS
system dump request immediately after it.

3. Use CETR to select special tracing for the level-1 trace points for all
components. Select special tracing for the failing task only, and disable all
standard tracing by setting the master system trace flag off.

4. Run the transaction after setting the trace options, and wait until the system
dump request is executed. Format the internal trace table from the dump
(formatting keyword TR), and examine the trace entries before the failure. Look
in particular for unusual or unexpected conditions, possibly ones that the
application is not designed to handle.

Your transaction produces no output at all
If your transaction produced no output at all, you need to carry out some
preliminary checks before looking at the problem in detail. You might be able to
find a simple explanation for the failure.
1. Are there any messages explaining why there is no output?

Look carefully in each of the transient data destinations CSMT, CSTL, and
CDBC for any messages that might relate to the task. You could find one there
that explains why you received no output.
If you can find no such message, the next step is to get some information about
the status of the transaction that produced no output, your terminal, and the
CICS system.

2. Can you use the terminal where the transaction should have started? See “Can
you use the terminal where the transaction should have started?” for the steps
to follow.

3. If you obtained no output and the task is still in the system, it is either waiting
for a resource, or looping. You should get an indication of which of these two
conditions is the most likely from the status for the task returned by CEMT INQ
TASK.
v If you have a suspended task, treat this as a “wait” problem. Use the

techniques described in Chapter 6, “Dealing with waits,” on page 55 to
investigate it further.

v If you have a running task, it is likely to be looping. See Chapter 8, “Dealing
with loops,” on page 149 to find out what to do next.

If you have obtained no output and the task is not in the system, read “No
output - what to do if the task is not in the system” on page 193.

4. Did the task run? There are a variety of techniques for finding this information.
These are described in “Techniques to find out whether a transaction started”
on page 193

Can you use the terminal where the transaction should have
started?

Go to the terminal where the transaction should have started, and note whether
the keyboard is locked. If it is, press RESET. Now try issuing CEMT INQ TASK (or
your site replacement) from the terminal.

If you cannot issue CEMT INQ TASK from the terminal, one of these
explanations applies:
v The task that produced no output is still attached to the terminal.

Licensed Materials – Property of IBM

192 CICS TS for z/OS 5.3: Problem Determination Guide

v The terminal where you made the inquiry is not in service.
v There is a system-wide problem.
v You are not authorized to use the CEMT transaction. (This may be because you

have not signed on to the terminal and the CEMT transaction is not authorized
for that terminal. If you have signed on to the terminal, you are probably
authorized to use CEMT.)

Try to find a terminal where you can issue CEMT INQ TASK. If no terminal seems
to work, there is probably a system-wide problem. Otherwise, see if the task you
are investigating is shown in the summary.
v If the task is shown, it is probably still attached, and either looping or waiting.

Turn to “Distinguishing between waits, loops, and poor performance” on page
14 to see what to do next.

v If the task is not shown, there is a problem with the terminal where you first
attempted to issue CEMT INQ TASK.

If you are able to issue CEMT INQ TASK from the terminal where the
transaction was attached, one of these explanations applies:
v The transaction gave no output because it never started.
v The transaction ran without producing any output, and terminated.
v The transaction started at another terminal, and might still be in the system. If it

is still in the system, you can see it in the task summary that you got for CEMT
INQ TASK. It is probably looping or waiting. See “Distinguishing between waits,
loops, and poor performance” on page 14 for advice about what to do next. If
you do not see the task in the summary, go to “No output - what to do if the
task is not in the system.”

No output - what to do if the task is not in the system
If you have obtained no output and CEMT INQ TASK shows the task is not in the
system, one of two things could have happened:
v Your transaction never started.
v Your transaction ran, but produced no output.

Note: If you’re not getting output on a printer, the reason could be that you are
not setting on the START PRINTER bit in the write control character. You need
to set this bit to get printed output if you have specified the STRFIELD option
on a CONVERSE or SEND command, which means that the data area specified
in the FROM option contains structured fields. Your application must set up the
contents of the structured fields.

Your task might have been initiated by direct request from a terminal, or by
automatic task initiation (ATI). Most of the techniques apply to both sorts of task,
but there are some extra things to investigate for ATI tasks. Carry out the tests
which apply to all tasks first, then go on to the tests for ATI tasks if you need to.

Techniques to find out whether a transaction started
There are many different techniques for finding out whether a transaction started,
or whether it ran but produced no output. Use the ones that are most convenient
at your installation.

Using CICS system trace entry points
CICS system tracing is probably the most powerful technique for finding out
whether a transaction started. You might need to direct the trace output to the

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 193

auxiliary trace destination, depending on how certain you can be about the time
the task is expected to start. Even a large internal trace table might wrap and
overlay the data you want to see if you are not too sure about when the task
should start.

Before you begin

You need to use the CETR transaction to set up the right tracing options. See
Chapter 15, “Using traces in problem determination,” on page 237 for guidance
about setting up trace options.

Procedure
1. Select special tracing for just your task, and disable tracing for all other tasks

by setting the master system trace flag off.
2. Set up special tracing for the level one trace points for the components that are

likely to be used during the invocation of the task. The components you choose
depend on how the task is initiated: by direct request from a terminal or by
automatic transaction initialization. The components should always include
loader domain (LD), program manager (PG), transaction manager (XM), and
dispatcher domain (DS). Make sure that special tracing is disabled for all other
components, to minimize the amount of trace data that is collected and the
tracing overhead.

3. Now turn tracing on, and attempt to start your task.
4. When you are sure that the time has passed when the output should have

appeared, stop tracing, and format the trace data set.

Results

If your transaction ran, you should see the following types of trace entries for your
task and the programs associated with it:
v Loader domain, when it loaded your program, if the program was not already

in main storage.
v Transaction manager, when it attached your task to the dispatcher.
v Dispatcher domain, when your task got its first dispatch. You might also see

subsequent entries showing your task being suspended, and then resumed.
v Program manager, for any program management functions associated with your

task.

If trace entries for any of these processes are missing, that should help you to find
where the failure occurred.

Using supplied transactions and EDF
You can use CICS-supplied transactions or the execution diagnostic facility (EDF)
to find out whether a transaction started successfully.

Debug nonterminal transactions

You can use CEDX to debug nonterminal transactions. CICS intercepts the
transaction specified on the CEDX tranid command, and displays the EDF diagnostic
panels at the terminal at which the EDF command is issued. CEDX provides the
same function and diagnostic display panels as CEDF, and the same basic rules for
CEDF also apply to CEDX.

Licensed Materials – Property of IBM

194 CICS TS for z/OS 5.3: Problem Determination Guide

Debug transactions from a terminal

If the transaction that is being tested requires a terminal, you can use EDF. You
must have two other terminals for input, as well as the one that the transaction
requires (tttt). Use one of these others to put the transaction terminal under control
of EDF, with the command:
CEDF tttt

At the remaining terminal, enter the transaction, or sequence of transactions, that
initiate the transaction that is being tested. Wait long enough for the transaction to
start. If no output appears at the second terminal, the transaction has not started. If
you have not yet done so, consider using trace to get more information about the
failure.

Debug transactions that use TD queues or TS queues

You can use CEBR to investigate your transaction if the transaction reads or writes
to a transient data queue, or writes to a temporary storage queue. A change in
such a queue is strong evidence that the transaction ran, provided that the
environment is sufficiently controlled that nothing else could produce the same
effect.

You must be sure that no other transaction that might be executed while you are
doing your testing performs the same action. The absence of such a change does
not mean that the transaction did not run; it might have run incorrectly, so that the
expected change was not made.

Debug transactions that write to files

If your transaction writes to a file, you can use CECI before and after the
transaction to look for evidence of the execution of your transaction. A change in
the file means the transaction ran. If no change occurred, that does not necessarily
mean that the transaction failed to run; it could have worked incorrectly, so that
the changes you were expecting were not made.

Using statistics
If nobody else is using the transaction that you are investigating, you can tell from
CICS statistics whether the program has run.

About this task

You can use the CEMT PERFORM STATISTICS RECORD or CEMT INQUIRE PROGRAM
command to obtain statistics that indicate whether the program has run. Use one
of the following procedures.

Procedure
v Use the CEMT PERFORM STATISTICS RECORD command.

1. Enter the command CEMT PERFORM STATISTICS RECORD, using the
TRANSACTION option, before you test your transaction.
CEMT PERFORM STATISTICS RECORD
[TRANSACTION]

Statistics on transactions that have been run are recorded in the SMF data
set.

2. Initiate the transaction and wait until it should have run.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 195

3. Repeat the CEMT PERFORM STATISTICS RECORD command to get a new set of
statistics written to the SMF data set.

4. Format the SMF data set for the APPLID that interests you, and look at the
statistics recorded before and after you attempted to run the transaction. You
can use the statistics utility program, DFHSTUP, to prepare and print reports
offline using the data recorded in the SMF data set. The following control
parameters can be useful:
SELECT APPLID=
COLLECTION TYPE=REQ
TIME START= ,STOP=
DATE START= ,STOP=

If the count for your transaction increased by 1, the transaction ran. If the
count is unchanged, the transaction did not run.

v Use the CEMT INQUIRE PROGRAM command.
1. Enter the command CEMT INQUIRE PROGRAM(program), where program is the

program name. The resulting screen includes a USECOUNT value. This
value is the number of times that the program has run since the start of the
current CICS session.

2. Initiate the transaction and wait until it should have run.
3. Enter the CEMT INQUIRE PROGRAM command again. If the program has run, the

USECOUNT value is incremented.

The USECOUNT value is not reset as part of statistics. When the USECOUNT
value reaches its maximum (2147483647), it does not increment but remains
fixed at that maximum value.

Disabling the transaction
If your transaction requires a terminal, you can disable the transaction to test
whether the problem is becauese of the terminal.

Use the following steps:
1. Use CEMT to disable the transaction that is being tested.
2. Initiate the transaction.

CICS issues the following message at the terminal where the transaction should
run:
DFHAC2008 date time applid Transaction tranid has been disabled and cannot be used

If you do not get this message, it is likely that your transaction did not start
because of a problem with that terminal.

Investigating tasks initiated by ATI
In addition to the general techniques for all tasks described above, there are some
additional ones for tasks that should have started by ATI.

Tasks to be started by ATI can be invoked in any of these ways:
v By issuing EXEC CICS START commands, even if no interval is specified
v By BMS ROUTE operations
v By writing to transient data queues with nonzero trigger levels.

There are many reasons why automatically initiated tasks could fail to start. Even
when the CICS system is operating normally, an ATI transaction might fail to start
for any of the following reasons:

Licensed Materials – Property of IBM

196 CICS TS for z/OS 5.3: Problem Determination Guide

v It might require a resource that is not available. The resource is usually a
terminal, although it could be a queue.

v It might not be scheduled to start until some time in the future. START
commands and output sent with BMS ROUTE are both subject to this sort of
scheduling, but transactions started when transient data trigger levels are
reached are not.

CICS maintains two chains for scheduling transactions that have been requested,
but not started. They are the interval control element (ICE) chain, and the
automatic initiate descriptor (AID) chain. The information contained in one or
other of the chains can sometimes indicate why your task has failed to start.

The ICE chain
The ICE chain is used for tasks scheduled to start after some specified interval, for
example on an EXEC CICS START command.

You can locate it in the formatted system dump by looking at the ICP section.
Look in field ICETRNID of each ICE (the 4-character transaction ID) to see if it
relates to your task.

If you find an ICE for your task, look in field ICEXTOD. That will show you the
expiration time of day. Does it contain the value you expect? If not, either the task
which caused this one to be autoinitiated was in error, or there is a system
problem.

The AID chain
The AID chain is used for tasks that are due to start immediately. Tasks are moved
from the ICE chain to the AID chain as soon as the scheduled time expires, and
they are placed there directly if there is no time delay requested.

If a task needs a resource, usually a terminal, that is unavailable, the task remains
on the AID chain until it can use the resource.

AIDs are addressed from system entries with their forward and backward chain
pointers at offset '0C' and '10' respectively. AIDs contain the following fields that
can be useful in debugging.

AIDTYPE (X'2D')
Type of aid:

Content Offset Meaning

AIDBMS X'80' BMS AID

AIDPUT X'50' Start with data

AIDINT X'40' Start with no data

AIDTDP X'10' Transient data AID

AIDISC X'08' Queued allocate type AID

AIDCRRD X'04' Remote delete type AID

AIDSTATI (X'2E')
AID status indicator:

Content Offset Meaning

AIDPRIV X'80' Privileged allocate

AIDSENT X'40' This has been sent to the TOR by CRSR

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 197

Content Offset Meaning

AIDCANCL X'20' Cancel this AID

AIDROUTP X'10' Not yet routed to the AOR

AIDSHIPD X'08' Prevent duplicate send

AIDREMX X'04' AID for a remote transaction

AIDREMT X'02' AID for a remote terminal

AIDSTTSK X'01' Task already initiated

AID_TOR_NETNAME (X'65')
Netname of the owning region for a specific terminal

AID_TERMINAL_NETNAME (X'5D')
Netname of terminal

AIDDATID (X'34')
TS queue name holding the data.

AID_REROUTED (X'4E')
AID rerouted to a different TOR

You can see the AIDs in the TCP section of the formatted system dump. Look in
field AIDTRNID (the 4-character transaction ID) of each AID, to see if it relates to
your task.

If you do find an AID that relates to your task, your task is scheduled to start, but
cannot do so because the terminal is unavailable. Look in field AIDTRMID to find
the symbolic ID of the terminal, and then investigate why the terminal is not
available. One possibility is that the terminal is not in ATI status, because ATI(YES)
has not been specified for it in the TYPETERM definition.

Your transaction produces some output, but it is wrong
If your transaction produces no output at all, read “Your transaction produces no
output at all” on page 192. For other types of wrong terminal output, read this
section.

The origins of corrupted data
You get incorrect output to a terminal if data, which is the object of the transaction,
becomes corrupted at some stage.

For example, consider a transaction that reads records from a file, processes the
information in the records, and displays the results on a terminal. The data might
be corrupted at any of points 1 through 5, as it flows from file to terminal.
1. Data records might be incorrect, or they could be missing from the file.
2. Data from the file might be mapped into the program incorrectly.
3. Data input at the terminal might be mapped into the program incorrectly.
4. Bad programming logic might corrupt the data.
5. The data might be mapped incorrectly to the terminal.

Each of these possibilities will be dealt with in turn.

Licensed Materials – Property of IBM

198 CICS TS for z/OS 5.3: Problem Determination Guide

Are records in the file incorrect or missing?
You can check the contents of a file or database either by using CECI or by using a
utility program to list off the records in question.

If you find bad data in the file or data set, the error is likely to have been caused
by the program that last updated the records containing that data. If the records
you expected to see are missing, make sure that your application can deal with a
‘record not found’ condition.

If the data in the file is valid, it must have been corrupted later on in the
processing.

Is the data mapped correctly into the program?
When a program reads data from a file or a database, the data is put into a field
described by a symbolic data declaration in the program.

Is the data contained in the record that is read compatible with the data
declaration in the program?

Check each field in the data structure receiving the record, making sure in
particular that the type of data in the record is the same as that in the declaration,
and that the field receiving the record is the right length.

If the program receives input data from the terminal, make sure that the relevant
data declarations are correct for that, too.

If there seems to be no error in the way in which the data is mapped from the file
or terminal to the program storage areas, the next thing to check is the program
logic.

Is the data being corrupted by bad programming logic?
To find out whether data is being corrupted by bad programming logic in the
application, consider the flow of data through the transaction.

You can determine the flow of data through your transaction by “desk checking”,
or by using the interactive tools and tracing techniques supplied by CICS.

Desk checking your source code is sometimes best done with the help of another
programmer who is not familiar with the program. Such a person might see
weaknesses in the code that you have overlooked.

You can use interactive tools to see how the data values being manipulated by
your program change as the transaction proceeds.
v CEDF is a powerful interactive tool for checking your programming logic. You

can use it to follow the internal flow from one CICS command-level statement to
another. If necessary, you can add CICS statements such as ASKTIME at critical
points in your program, to see if certain paths are taken, and to check program
storage values.

v You can use CECI to simulate CICS command statements. Try to make your test
environment match the environment in which the error occurred as closely as
possible. If you do not, you might find that your program works with CECI, but
not otherwise.

Licensed Materials – Property of IBM

Chapter 10. Dealing with incorrect output 199

v You can use CEBR to look at temporary storage and transient data queues, and
to put data into them. This can be useful when many different programs use the
queues to pass data.
When you use CEBR to look at a transient data queue, the records you retrieve
are removed from the queue before they are displayed to you. This could alter
the flow of control in the program you are testing. You can, however, use CEBR
to copy transient data queues to and from temporary storage, as a way of
preserving the queues if you need to.

You can use user tracing to trace the flow of control and data through your
program, and to record data values at specific points in the execution of the
transaction. For example, you can look at the values of counters, flags, and key
variables during the execution of your program. You can include up to 4000 bytes
of data on any trace entry, and so this can be a powerful technique for finding
where data values are being corrupted.

For programming information about how you can invoke user tracing, see
Application development reference.

You can use CSFE storage freeze to freeze the storage associated with a terminal or
a transaction so that it is not released by a freemain request at the end of
processing. This can be a useful tool if, for example, you want to investigate
possible storage violations. You need to get a transaction dump to look at the
storage after you have run the task with storage freeze on.

For long-running tasks, there is a possibility that a large amount of storage may be
consumed because it cannot be released by a freemain request while storage freeze
is on. For short-running tasks, however, there should be no significant overhead.

If, after using these techniques, you can find no fault with the logic of the
program, the fault either lies with the way data is mapped to the terminal, or you
could have missed some important evidence.

Is the data being mapped incorrectly to the terminal?
Incorrect data mapping to a terminal can have both application-related and
system-related causes.

If you are using BMS mapping, check the items below.
v Examine the symbolic map very carefully to make sure that it agrees with the

map in the load module. Check the date and time stamps, and the size of the
map.

v Make sure that the attributes of the fields are what they should be. For example:
– An attribute of DARK on a field can prevent the data in the field from being

displayed on the screen.
– Failing to turn on the modified data tag (MDT) in a field might prevent that

field from being transmitted when the screen is read in.

Note: The MDT is turned on automatically if the operator types data in the
field. If, however, the operator does not type data there, the application must
turn the tag on explicitly if the field is to be read in.

v If your program changes a field attribute byte, or a write control character, look
at each bit and check that its value is correct by looking in the appropriate
reference manual for the terminal.

Licensed Materials – Property of IBM

200 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/reference_applications.html

Chapter 11. Dealing with storage violations

A storage violation occurs when a transaction attempts to modify storage that it
does not own.

The following topics describe how to deal with storage violations:
v “Avoiding storage violations”
v “Two kinds of storage violation” on page 202
v “CICS has detected a storage violation” on page 202
v “Storage violations that affect innocent transactions” on page 207
v “Programming errors that can cause storage violations” on page 208
v “Storage recovery” on page 209

Avoiding storage violations
CICS provides three facilities that help to prevent storage violations.

About this task

CICS subsystem storage protection
prevents user application programs from directly overwriting CICS code
and control blocks.

Transaction isolation
prevents a user transaction from directly overwriting user application
storage of other transactions.

Command protection
prevents CICS, when processing an EXEC CICS command, from overwriting
storage that the issuing transaction could not itself directly overwrite.

Even if your system uses all the CICS storage protection facilities, CICS storage
violations can occur in certain circumstances in systems using storage protection.
For example:
v An application program could contain the necessary instructions to switch to

CICS key and modify CICS storage.
v An application program could contain the necessary instructions to switch to the

basespace and modify other transactions’ storage.
v An application program could be defined with EXECKEY(CICS) and could thus

modify CICS storage and other transactions’ storage.
v An application could overwrite one or more storage check zones in its own

task-lifetime storage.

To gain the full benefit of CICS storage protection, you need to examine the
storage needs of individual application programs and control the storage key
definitions that are used.

When CICS detects and prevents an attempted storage violation, the name of the
abending program and the address of the area it tried to overwrite are passed to
the program error program (DFHPEP). For programming information about
DFHPEP, see the CICS Customization Guide.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 201

If a storage violation occurs in your system, please read the rest of this section.

Two kinds of storage violation
Storage violations can be divided into two classes, namely those detected and
reported by CICS, and those not detected by CICS. They require different problem
determination techniques.

CICS-detected violations are identified by the following message sent to the
console:
DFHSM0102 applid A storage violation (code Xcode’)
has been detected by module modname

If you have received this message, turn first to the description of message
DFHSM0102 in CICS Messages and Codes to see an explanation of the message, and
then to CICS Trace Entries to see an explanation of the exception trace point ID,
X'code'. This tells you how CICS detected the storage violation. Then return to this
section, and read “CICS has detected a storage violation.”

Storage violations not detected by CICS are less easy to identify. They can cause
almost any sort of symptom. Typically, you might have got a program check with a
condition code indicating ‘operation exception’ or ‘data exception’, because the
program or its data has been overlaid. Otherwise, you might have obtained a
message from the dump formatting program saying that it had found a corrupted
data area. Whatever the evidence for the storage violation, if it has not been
detected by CICS, turn to “Storage violations that affect innocent transactions” on
page 207.

CICS has detected a storage violation
CICS can detect storage violations when:
1. The duplicate storage accounting area (SAA) or the initial SAA of a TIOA

storage element has become corrupted.
2. The leading storage check zone or the trailing storage check zone of a user-task

storage element has become corrupted.

CICS detects storage violations involving TIOAs by checking the SAA chains when
it receives a FREEMAIN command to release an individual element of TIOA
storage, at least as far as the target element. It also checks the chains when it
releases the storage, by using a FREEMAIN request, belonging to a TCTTE after
the last output has taken place. CICS detects storage violations involving user-task
storage by checking the storage check zones of an element of user-task storage
when it receives a command to release that element of storage by using a
FREEMAIN request. It also checks the chains when it releases all the storage, by
using a FREEMAIN request, belonging to a task when the task ends.

The storage violation is detected not at the time it occurs, but only when the SAA
chain or the storage check zones are checked. This is illustrated in Figure 20 on page
203, which shows the sequence of events when CICS detects a violation of a user
task storage element. The sequence is the same when CICS detects a violation of a
TIOA storage element.

The fact that the SAA or storage check zone is overlaid some time before it is
detected does not matter too much for user storage where the trailing storage check
zone has been overlaid, because the transaction whose storage has been violated is

Licensed Materials – Property of IBM

202 CICS TS for z/OS 5.3: Problem Determination Guide

also very likely to be the one responsible for the violation. It is fairly common for
transactions to write data beyond the end of the allocated area in a storage element
and into the check zone. This is the cause of the violation in Figure 20.

The situation could be more serious if the leading check zone has been overlaid,
because in that case it could be that some other unrelated transaction was to
blame. However, storage elements belonging to individual tasks are likely to be
more or less contiguous, and overwrites could extend beyond the end of one
element and into the next.

If the leading storage check zone was only overwritten by chance by some other
task, the problem might not be reproducible. On other occasions, other parts of
storage might be affected. If you have this sort of problem, you need to investigate
it as though CICS had not detected it, using the techniques of “Storage violations
that affect innocent transactions” on page 207.

Finding the offending transaction when the duplicate SAA of a TIOA storage
element has been overlaid might not be so straightforward. This is because TIOAs
tend to have much longer lifetimes than tasks, because they wait on the response
of terminal operators. By the time the storage violation is detected, the transaction
that caused it is unlikely to still be in the system. However, the techniques for
CICS-detected violations still apply.

Note: For storage elements with SAAs, the address that is returned on the
GETMAIN request is that of the leading SAA; for storage elements with storage
check zones, the address that is returned is that of the beginning of usable storage.

What happens when CICS detects a storage violation
When CICS detects a storage violation, it makes an exception trace entry in the
internal trace table, issues message DFHSM0102 and takes a CICS system dump,
unless you have suppressed dumping for system dump code SM0102.

If you have suppressed dumping for this dump code, re-enable it and attempt to
reproduce the error. The system dump is an important source of information for
investigating CICS-detected storage violations.

If storage recovery is on (STGRCVY=YES in the SIT), the corrupted SAAs or check
zones are repaired and the transaction continues. See “Storage recovery” on page
209.

Leading

storage

check

zone

Trailing

storage

check

zone

Data written by task

Storage check zones

do not match

Leading

storage

check

zone

Trailing

storage

check

zone

Storage check zones

match

Task writes data, overlaying the trailing storage

check zone

When the task ends, CICS attempts to FREEMAIN the

storage element, but finds that the two storage check

elements are not identical. CICS issues an error message

and continues. The corrupted element remains unchanged,

and cannot be reused, unless storage recovery is on.

User task issues GETMAIN. Storage element

is obtained. The leading and trailing check zones

match.

Figure 20. How user-storage violations are committed and detected

Licensed Materials – Property of IBM

Chapter 11. Dealing with storage violations 203

If storage recovery is not on, CICS abends the transaction whose storage has been
violated (if it is still running). If the transaction is running when the error is
detected and if dumping is enabled for the dump code, a transaction dump is
taken. This is in addition to the SM0102 system dump.

If you received a transaction abend message, read “What the transaction abend
message can tell you.” Otherwise, go on to “What the CICS system dump can tell
you.”

What the transaction abend message can tell you
If you get a transaction abend message, it is very likely that CICS detected the
storage violation when it was attempting to satisfy a FREEMAIN request for user
storage.

Make a note of the information the message contains, including:
v The transaction abend code.
v The identity of the transaction whose storage has been violated.
v The identity of the program running at the time the violation was detected.
v The identity of the terminal at which the task was started.

Because CICS does not detect the overlay at the time it occurs, the program
identified in the abend message probably is not the one in error. However, it is
likely that it issued the FREEMAIN request on which the error was detected. One
of the other programs in the abended transaction might have violated the storage
in the first place.

What the CICS system dump can tell you
Before looking at the system dump, you must format it using the appropriate
formatting keywords. The ones you need for investigating storage violations are:
v TR, to get you the internal trace table
v TCP, to get you terminal-related areas
v AP, to get you the TCAs and user storage.

The dump formatting program reports the damaged storage check zone or SAA
chain when it attempts to format the storage areas, and this can help you with
diagnosis by identifying the TCA or TCTTE owning the storage.

When you have formatted the dump, take a look at the data overlaying the SAA or
storage check zone to see if its nature suggests which program put it there. There
are two places you can see this, one being the exception trace entry in the internal
trace table, and the other being the violated area of storage itself. Look first at the
exception trace entry in the internal trace table to check that it shows the data
overlaying the SAA or storage check zone. Does the data suggest what program
put it there? Remember that the program is likely to be part of the violated
transaction in the case of user storage. For terminal storage, you probably have
more than one transaction to consider.

As the SAAs and storage check zones are only 8 bytes long, there might not be
enough data for you to identify the program. In this case, find the overlaid data in
the formatted dump. The area is pointed to in the diagnostic message from the
dump formatting program. The data should tell you what program put it there,
and, more importantly, what part of the program was being executed when the
overlay occurred.

Licensed Materials – Property of IBM

204 CICS TS for z/OS 5.3: Problem Determination Guide

If the investigations you have done so far have enabled you to find the cause of
the overlay, you should be able to fix the problem.

What to do if you cannot find what is overlaying the SAA
The technique described in this section enables you to locate the code responsible
for the error by narrowing your search to the sequence of instructions executing
between the last two successive old-style trace entries in the trace table.

You do this by forcing CICS to check the SAA chain of terminal storage and the
storage check zones of user-task storage every time an old-style trace entry is made
from AP domain. These types of trace entry have point IDs of the form AP 00xx,
“xx” being two hexadecimal digits. Storage chain checking is not done for
new-style trace entries from AP domain or any other domain. (For a discussion of
old and new-style trace entries, see Chapter 15, “Using traces in problem
determination,” on page 237.)

The procedure has a significant processing overhead, because it involves a large
amount of tracing. You are likely to use it only when you have had no success
with other methods.

How you can force storage chain checking
You can force storage chain checking either by using the CSFE DEBUG transaction,
or by using the CHKSTSK or CHKSTRM system initialization parameter.

Tracing must also be active, or CICS will do no extra checking. The CSFE
transaction has the advantage that you need not bring CICS down before you can
use it.

Table 21 shows the CSFE DEBUG options and their effects. Table 22 shows the
startup overrides that have the same effects.

Table 21. Effects of the CSFE DEBUG transaction

CSFE syntax Effect

CSFE DEBUG, CHKSTSK=CURRENT This checks storage check zones for all
storage areas on the transaction storage
chain for the current task only.

If a task is overlaying one of the storage
check zones of its own user storage, use

CSFE DEBUG,CHKSTSK=CURRENT

CSFE DEBUG, CHKSTRM=CURRENT This checks SAAs for all TIOAs linked off
the current TCTTE. Use this if the SAA of a
TIOA has been overlaid.

CSFE DEBUG, CHKSTSK=NONE This turns off storage zone checking for
transaction storage areas.

CSFE DEBUG, CHKSTRM=NONE This turns off SAA checking for TIOAs.

Table 22. Effects of the CHKSTSK and CHKSTRM overrides

Override Effect

CHKSTSK=CURRENT As CSFE DEBUG,CHKSTSK=CURRENT

CHKSTRM=CURRENT As CSFE DEBUG,CHKSTRM=CURRENT

CHKSTSK=NONE As CSFE DEBUG,CHKSTSK=NONE. This override
is the default.

Licensed Materials – Property of IBM

Chapter 11. Dealing with storage violations 205

Table 22. Effects of the CHKSTSK and CHKSTRM overrides (continued)

Override Effect

CHKSTRM=NONE As CSFE DEBUG,CHKSTRM=NONE. This override
is the default.

Your strategy should be to have the minimum tracing that will capture the storage
violation, to reduce the processing overhead and to give you less trace data to
process. Even so, you are likely to get a large volume of trace data, so direct the
tracing to the auxiliary trace data sets. For general guidance about using tracing in
CICS problem determination, see Chapter 15, “Using traces in problem
determination,” on page 237.

You need to have only level-1 tracing selected, because no user code is executed
between level-2 trace points. However, you do not know which calls to CICS
components come before and after the offending code, so you need to trace all
CICS components in AP domain. (These are the ones for which the trace point IDs
have a domain index of “AP”.) Set level-1 tracing to be special for all such
components, so that you get every AP level-1 trace point traced using special task
tracing.

If the trailing storage check zone of a user-storage element has been overlaid, select
special tracing for the corresponding transaction only. This is because it is very
likely to be the one that has caused the overlay.

If the duplicate SAA of a TIOA has been overlaid, you need to select special
tracing for all tasks associated with the corresponding terminal, because you are
not sure which has overlaid the SAA. It is sufficient to select special tracing for the
terminal and standard tracing for every transaction that runs there, because you
get special task tracing with that combination. (See Table 24 on page 246.)

Your choice of terminal tracing depends on where the transaction is likely to be
initiated from. If it is only ever started from one terminal, select special tracing for
that terminal alone. Otherwise, you need to select special tracing for every such
terminal.

When you have set up the tracing options and started auxiliary tracing, you need
to wait until the storage violation occurs.

What happens after CICS detects the storage violation?
When the storage violation is detected by the storage violation trap, storage
checking is turned off, and an exception trace entry is made. If dumping has not
been disabled, a CICS system dump is taken.

The following message is sent to the console:
DFHSM0103 applid STORAGE VIOLATION (CODE X’code’) HAS BEEN DETECTED BY THE STORAGE
VIOLATION TRAP. TRAP IS NOW INACTIVE

The value of 'code' is equal to the exception trace point ID, and it identifies the type
of storage that was being checked when the error was detected. A description of
the exception trace point ID, and the data it contains, is in CICS Trace Entries.

Format the system dump using the formatting keyword TR, to get the internal
trace table. Locate the exception trace entry made when the storage violation was
detected, near the end of the table. Now scan back through the table, and find the

Licensed Materials – Property of IBM

206 CICS TS for z/OS 5.3: Problem Determination Guide

last old-style trace entry (AP 00xx). The code causing the storage violation was
being executed between the time that the trace entry was made and the time that
the exception trace entry was made.

If you have used the CHKSTSK=CURRENT option, you can locate the occurrence
of the storage violation only with reference to the last old-style trace entry for the
current task.

You need to identify the section of code that was being executed between the two
trace entries from the nature of the trace calls. You then need to study the logic of
the code to find out how it caused the storage violation.

For suggestions on programming errors that might have caused your particular
problem, look at the list of common ones given in “Programming errors that can
cause storage violations” on page 208.

Storage violations that affect innocent transactions
CICS does not usually detect storage violations that affect innocent transactions;
that is, transactions that do not cause the violation. However, CICS sometimes
detects that the initial SAA of a TIOA element or the storage check zone of a
user-storage element has been overlaid by a task that does not own it.

If they are reproducible, storage violations of this type typically occur at specific
offsets within structures. For example, the start of an overlay might always be at
offset 30 from the start of a field.

The most likely cause of such a violation is a transaction that writes data to a part
of the DSAs that it does not own, or possibly that releases such an area by using a
freemain request. The transaction might obtain the area by using a getmain request
and then release it by using a freemain request before writing the data, or an
application might not maintain addressability correctly in another way. Another
possible reason is that a transaction posted an event control block (ECB) after the
task that was waiting on it was canceled.

Storage violations that affect innocent transactions are generally more difficult to
resolve than those that CICS detects. You might not become aware of them until
some time after they occur, so you need a long history of system activity to find
out their cause.

A strategy for storage violations affecting innocent
transactions

The storage violation has been caused by a program writing to an area it does not
own, but you probably have no idea at the outset which program is at fault.

Look carefully at the content of the overlay before you do any other investigation,
because it could help you to identify the transaction, program, or routine that
caused the error. If it does not provide the clue you need, your strategy should be
to use CICS tracing to collect a history of all the activities that reference the
affected area.

The trace table must go back as far as task attach of the program causing the
overlay, because that trace entry relates the transaction’s identity to the unit of

Licensed Materials – Property of IBM

Chapter 11. Dealing with storage violations 207

work number used on subsequent entries. This could mean that a very large trace
table is needed. Internal trace is not suitable, because it wraps when it is full and it
then overwrites important trace entries.

Auxiliary trace is a suitable destination for recording long periods of system
activity, because it is possible to specify very large auxiliary trace data sets, and
they do not wrap when they are full.

If you have no idea which transaction is causing the overlay, you need to trace the
activities of every transaction. This impacts performance, because of the processing
overhead.

Procedure for resolving storage violations affecting innocent
transactions

1. Ensure that level-1 trace points are in the special set for all CICS components.
Select special tracing for all user tasks, by setting up special tracing for all user
transactions and all terminals, and disable standard tracing by setting the
master system trace flag off.

2. Use the CETR transaction to set up the tracing options, and select auxiliary
trace as the trace destination. When you get the symptoms that tell you that the
storage violation has occurred, take a system dump—unless the error causes a
system dump to be taken.

3. Format the system dump, and format and print the auxiliary trace data set. If
you know which area of storage the violation occurred in, you can use
appropriate dump formatting keywords. Otherwise, you need to format the
entire system dump. The dump formatting program may report that it has
found some incorrect data. If not, you need to find the overlaid area by other
means.

4. Locate all the entries in the trace table that address the overlaid area.
Operations involving GETMAIN and FREEMAIN in particular are likely
pointers to the cause of the error.

5. When you have found a likely trace entry, possibly showing a GETMAIN or
FREEMAIN addressing the area, find the ID of the associated transaction by
locating the trace entry for TASK ATTACH. Rather than locating this manually,
it is probably better to reformat the auxiliary trace data set selectively to show
just trace entries corresponding to the task’s unit of work.

6. Having found the identity of the transaction, take a look at all the programs
belonging to the transaction. It is likely that one of these caused the overlay,
and you need to consider the logic of each to see if it could have caused the
error. This is a long job, but it is one of the few ways of resolving a storage
violation affecting an innocent transaction.

What to do if you still cannot find the cause of the overlay

If you are unable to identify the cause of the storage violation after carrying out
the procedures of the preceding section, contact your IBM Support Center. They
might suggest coding a global trap/trace exit to detect the storage violation.

Programming errors that can cause storage violations
A number of commonly occurring programming errors can cause storage
violations.

Licensed Materials – Property of IBM

208 CICS TS for z/OS 5.3: Problem Determination Guide

1. Failing to obtain sufficient storage when using a getmain request. This is often
caused by failure to recompile all the programs for a transaction after a
common storage area has been redefined with a changed length.

2. Runaway subscript. Make sure that your tables can only grow to a finite size.
3. Writing data to an area after it has been released by using a freemain request.

When a task releases an area that it has been addressing by using a freemain
request, it can no longer write data to the area without the risk of overwriting
some other data that might subsequently be there.

4. Hand posting an ECB for a canceled task.
If a task waiting on a CICS ECB is canceled, and then a transaction attempts to
hand post the ECB when the resource being waited on becomes available, it
might corrupt data that belongs to an unrelated activity if the area that was
once occupied by the ECB has been reused.

Storage recovery
The STGRCVY system initialization parameter enables you to vary the action taken
by CICS on detection of a storage violation.

In normal operation, CICS sets up four task-lifetime storage subpools for each task.
Each element in the subpool starts and ends with a check zone that includes the
subpool name. At each FREEMAIN, and at end of task, CICS inspects the check
zones and abends the task if either has been overwritten.

Terminal input-output areas (TIOAs) have similar check zones, each of which is set
up with the same value. At each FREEMAIN of a TIOA, CICS inspects the check
zones and abends the task if they are not identical.

If CICS is initialized with STGRCVY(YES), the overwriting of check zones is
treated differently. After the system dump has been taken for the storage violation,
CICS resets the check zones to their initial value and the task continues execution.

STGRCVY(NO) is the default.

Licensed Materials – Property of IBM

Chapter 11. Dealing with storage violations 209

Licensed Materials – Property of IBM

210 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 12. Dealing with external CICS interface (EXCI)
problems

The following CICS messages support the external CICS interface:
DFHIR3799

DFHEX0001 DFHEX0011
DFHEX0002 DFHEX0012
DFHEX0003 DFHEX0013
DFHEX0004 DFHEX0014
DFHEX0005 DFHEX0015
DFHEX0010 DFHEX0016

Messages DFH5502W and DFH5503E include support for the external CICS
interface facility.

This facility is also supported by two translator messages, DFH7004I and
DFH7005I. For full details of all CICS messages, see CICS Messages and Codes.

The external CICS interface outputs trace to two destinations: an internal trace
table and an external MVS GTF data set. The internal trace table resides in the
non-CICS MVS batch region. Trace data is formatted and included in any dumps
produced by the external CICS interface.

Trace entries are issued by the external trace interface destined for the internal
trace table or an MVS GTF data set. They are listed in CICS Trace Entries.

The external CICS interface produces MVS SYSM dumps for some error conditions
and MVS SDUMPs for other, more serious conditions. These dumps contain all the
external CICS interface control blocks, as well as trace entries. You can use IPCS to
format these dumps.

A user-replaceable module, DFHXCTRA, is available for use under the guidance of
IBM service personnel. It is the equivalent of DFHTRAP used in CICS. It is
invoked every time the external CICS interface writes a trace entry. The actions of
the CICS-supplied DFHXCTRA are, on a pipe FREEMAIN error, to:
1. Make a trace entry
2. Take an SDUMP
3. Skip writing the current trace entry
4. Disable itself.

For detailed problem determination information about the external CICS interface
including information about trace, system dumps and MVS abends, see the CICS
External Interfaces Guide.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 211

Licensed Materials – Property of IBM

212 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 13. Dealing with TCP/IP connectivity problems

If you are experiencing TCP/IP connectivity problems, read the following
information to find out how to diagnose the problem.

Before you begin

Ensure that TCP/IP services are active by specifying TCPIP=YES as a system
initialization parameter. Ensure that your TCP/IP resource definitions are defined,
installed and open. For more information about configuring TCP/IP, see the CICS
Transaction Server for z/OS Installation Guide.

About this task

You might be having problems either because you have changed the HOST
attribute in your resources to allow IPv6 traffic, or you might have a problem and
none of your configuration settings have changed, for example, because there have
been external changes that have affected your settings. Investigate the source
region and target region to find out why you have problems connecting.

Procedure
1. For each region, determine if you are operating in a single-mode (IPv4)

environment or a dual-mode (IPv4 and IPv6) environment. Common problems
related to IPv6 are because an environment does not support IPv6 and an IPv6
address has been used to attempt a connection to that environment. The figure
shows that two dual-mode CICS TS 4.1 environments can communicate using
either IPv4 or IPv6 addressing. A single-mode CICS TS 4.1 environment is also
connected, but can communicate using IPv4 only.

Dual-mode environment

CTS 4.1

Single-mode environment

CTS 4.1

Dual-mode environment

CTS 4.1

IPv4 IPv4

IPv6 IPv6

For more information about single and dual-mode environments, see the CICS
Internet Guide. The following problems are examples of messages received when
there is a mismatch of IPv4 and IPv6 environments:
a. If the TCPIPSERVICE definition in the listening CICS region specifies an

IPv6 address in the HOST attribute (or a hostname that resolves to an IPv6
address) and either CICS region is operating in a single mode environment,
the listening CICS region might receive a DFHAM4907W message “Opening
TCPIPSERVICE XXXX has failed because the IP address is not known”. One
of the situations when this message is issued is because a region operating
in a single-mode environment does not have IPv6 capability.

b. If a CICS region operating in a dual-mode environment issues a WEB OPEN
command, specifying an IPv6 address (or a hostname that resolves to an
IPv6 address) to a listening CICS region that is operating in a single-mode
environment, the CICS region issuing the command might receive a

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 213

NOTFND error code with a RESP2 value of 20 (host name is not resolved
by name server or the format of the host option is incorrect). This message
can be issued because the dual-mode environment has attempted to connect
using IPv6 and the single-mode region does not have IPv6 capability.

c. Check that you have not explicitly specified IPv6 address information in the
HOST option of your resources (or a hostname that resolves to an IPv6
address), unless you know that you operate in a CICS TS 4.1 dual-mode
environment, and that any remote regions you want to connect to CICS TS
4.1 also operate dual-mode environments. You might receive message
DFHIS1007 if an invalid attempt was made to use an IPv6 address.

d. Check that an attempt to install and open the TCPIPSERVICE resource was
successful. If message DFHSO0110 is issued, it might be that an IPv6
address or a hostname that resolves to an IPv6 address has been specified,
and there is no dual-mode capability to support the request.

e. If the TCPIPSERVICE resource opens successfully, check message
DFHSO0107, which returns the IP address that was used to connect. This
will give you more information on the type of address used.

f. Check that the address you entered is being displayed in the format that you
expect. If you have specified a low IPv6 address, that is, the address has
leading zeros in the first six or more segments, CICS stores and displays the
IPv6 address in IPv4 format. Here are some examples of how CICS displays
low IPv6 addresses:

Table 23. How CICS handles valid low IPv6 addresses

Specified valid IPv6 address How CICS stores and displays the address

::9 0.0.0.9

::10 0.0.0.16

::10A 0.0.0.10

::ABCD 0.0.171.205

::FFFF 0.0.255.255

::FFFF:9 255.255.0.9

::FFFF:10 255.255.0.16

::FFFF:10A 255.255.0.10

::FFFF:ABCD 255.255.171.205

::FFFF:FFFF 255.255.255.255

2. For both regions, inquire on the resource which relates to the protocol that you
are using (for example, URIMAP) and compare to the listening TCPIPSERVICE
resource. If you are using the IPIC protocol, inquire on the both sets of
complementary IPCONN and TCPIPSERVICE resources to compare attributes.
For example, inquire on the following TCP/IP resource attributes:
a. Inquire on the HOST option to determine the host name, IPv4, or IPv6

address specified for the region. If you have an IPv6 address or a hostname
that resolves to an IPv6 address in the HOST option, ensure that both CICS
regions are operating in dual-mode environments.

b. If there is a host name in the HOST option, this might resolve to an IPv6
address at the domain name server. Trace points SO 0436 and SO 0437 give
details of resolved addresses, or consult your system support representative
to find out the IP addresses that have been configured at the domain name
server for this port.

Licensed Materials – Property of IBM

214 CICS TS for z/OS 5.3: Problem Determination Guide

3. Look for any error messages or TCP/IP connection information that might
indicate the cause of the connectivity problem; for example, a port sharing
conflict or a problem because the task has not run properly. You can inquire on
socket application data (ApplData) for each TCP socket owned by CICS to
correlate TCP/IP connections with the CICS regions and transactions using
them. ApplData is also available using Netstat reports. For more information
about CICS ApplData, see the CICS Intercommunication Guide.

4. Modify any resources that have not been correctly defined.
5. Verify that traffic is flowing across the connection.

What to do next

The network connection is available. If the connection is not available, contact your
Network Administrator and request an investigation into the network components
that are being used to connect your CICS regions.

Licensed Materials – Property of IBM

Chapter 13. Dealing with TCP/IP connectivity problems 215

Licensed Materials – Property of IBM

216 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 14. Dealing with log manager problems

The CICS log manager uses services provided by the MVS logger to support the
logging and journaling of data to the CICS system log, forward recovery logs,
autojournals, and user journals.

This section contains the following topics:
v “Categories of problem”
v “Exceeding the capacity of a log stream” on page 218
v “How CICS checks for the availability of the MVS logger” on page 218
v “Some conditions that cause CICS log manager error messages” on page 219
v “Diagnosing problems in the MVS logger” on page 224.

Categories of problem
The following categories of problem (in order of ascending impact on the user)
may be encountered by the CICS log manager.
1. Those problems within the MVS logger that the MVS logger resolves for itself.

CICS has no involvement in this category and might only experience the
problem as an increase in response times.

2. Where the MVS logger is unable to satisfy the CICS log manager's request
immediately. This problem state can be encountered:
v For a log stream that uses a coupling facility structure, on a “STRUCTURE

FULL” condition, where the coupling facility has reached its capacity before
offloading data to DASD. This state may also be encountered during the
rebuilding of a coupling facility structure.

v For a DASD-only log stream, on a 'STAGING DATA SET FULL' condition,
where the staging data set has reached its capacity before offloading data to
secondary storage.

If either of these conditions occur, CICS issues message DFHLG0771 (for a
general log) or DFHLG0777 (for a system log). The CICS log manager retries
the request every three seconds until the request is satisfied. Typically, this can
take up to a minute.

3. If the MVS logger fails, CICS is abended. If the system log has not been
damaged, a subsequent emergency restart of CICS should succeed.

4. If a return code implies that the CICS system log has been damaged, CICS is
quiesced, meaning transactions are allowed to run to completion as far as
possible, with no further records being written to the system log. To get CICS
back into production, you must perform an initial start. However, before doing
so you may want to perform a diagnostic run, to gather information for problem
diagnosis - see “Dealing with a corrupt system log” on page 231.
If a return code implies damage to a forward recovery log or autojournal, all
files using the log stream are quiesced and their transactions run to completion.
Message DFHFC4800, DFHFC4801, or DFHFC4802 is issued. User transactions
writing journal records to the log stream experience a write error. For a forward
recovery log, before you can continue to use the log stream, you must:
a. Take an image copy of all data sets referencing the log stream.
b. Redefine the log stream.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 217

c. Unquiesce the data sets using the affected logs. You may then explicitly
open the files but they open automatically at the first READ or WRITE if
they are in a CLOSED ENABLED state after the unquiesce.

For an autojournal, before you can continue to use the log stream, you must:
a. Try to read and recover data from the damaged autojournal.
b. Redefine the log stream.

Exceeding the capacity of a log stream
The MVS logger imposes a limit on the number of data sets per log stream. In
practice, this is unlikely to be a problem.

System log

You are strongly recommended to allow the CICS log manager to manage the size
of the system log. If you do so, you do not need to worry about the data set limit
being exceeded.

In the unlikely event that you need to retain data beyond the time it would be
deleted by CICS, see the CICS Transaction Server for z/OS Installation Guide for
advice on how to define the system log.

General logs

If a journal write to a user journal fails because the data set limit is reached, you
must delete the tail of the log, or archive it, before you can use the SET
JOURNALNAME command to open the journal and make it available for use again. For
an example of how to do this, see the CICS Operations and Utilities Guide.
v The number of data sets per log stream recognized by the MVS logger is several

million. In normal circumstances, you do not need to be concerned about the
limit being exceeded.

v You can cause redundant data to be deleted from log streams automatically, after
a specified period. To arrange this for general log streams, define the logs to
MVS with AUTODELETE(YES) and RETPD(dddd), where dddd is the number of
days for which data is to be retained. This causes the MVS logger to delete an
entire log data set when all the data in it is older than the retention period
(RETPD) specified for the log stream.

How CICS checks for the availability of the MVS logger
At intervals, CICS itself checks for the availability of the MVS logger. It uses one of
two procedures to perform these checks, depending on your operating system.

CICS checks by querying the system log connection status. If the check fails, CICS
either abends or quiesces, depending on the returned MVS logger reason code.

The interval at which CICS checks for the availability of the MVS logger varies,
depending on the amount of system logging activity in the CICS region. The first
check is made after CICS has not made contact with the MVS logger for 10
seconds. If CICS continues to perform no system logging after the first check, the
interval between checks doubles each time, up to a maximum of 600 seconds. If
CICS makes contact with the MVS logger at any point, the interval between checks
is halved, down to a minimum of 10 seconds.

Licensed Materials – Property of IBM

218 CICS TS for z/OS 5.3: Problem Determination Guide

The checking interval can be affected by the exit time interval specified in the ICV
system initialization parameter:
v If the value specified in the ICV system initialization parameter is less than 10

seconds, it has no effect on the checking interval.
v If the value specified in the ICV system initialization parameter is greater than 10

seconds but less than 600 seconds, the checking interval varies between the
value specified in the ICV system initialization parameter, and 600 seconds. The
first check is made after an interval corresponding to the value in the ICV system
initialization parameter, instead of being made after 10 seconds. The minimum
checking interval is the value in the ICV system initialization parameter.

v If the value specified in the ICV system initialization parameter is greater than
600 seconds, the checking interval does not vary, and always corresponds to the
value in the ICV system initialization parameter.

For more information about this parameter, see ICV system initialization parameter
in Reference -> System definition.

Use the statistics field IGXQUERY in the CICS log manager statistics to monitor
the number of checks that CICS makes for the availability of the MVS logger.

Some conditions that cause CICS log manager error messages
Problems in the CICS log manager and its interface with the MVS system logger
can arise from various conditions, as a result of which the CICS region can fail
because of loss of access to its system log. You need to be aware of the more
common conditions, which (although very rare) result in a failure in this
component of CICS.

In order to understand what has happened in a particular failure, it is helpful to
look at the various combinations of messages that can be issued by CICS in
different error situations. This approach is useful in ensuring that you gather the
necessary diagnostic information at the time of the failure, to enable accurate
problem determination and resolution. It also helps to ensure a rapid restart of the
CICS region, with a full appreciation of the possible impact on data integrity.

The following CICS log manager messages cover some of the CICS logger failure
situations. The more common message combinations are as follows:

DFHLG0772, DFHLG0800, and DFHLG0738
DFHLG0772, DFHLG0800, DFHLG0736, and DFHLG0741
DFHLG0772 and DFHLG0740
DFHLG0772 and DFHLG0734
DFHLG0002 and DFHLG0734

Note that if messages DFHLG0736, DFHLG0738, or DFHLG0740 are issued, CICS
recovery manager sets its global catalog type-of-start override record to
AUTODIAG. For more information, see “Restarting CICS after a system log
failure” on page 223.

Note: For details of all the return and reason codes for the MVS logger macros, see
z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG.

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 219

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_icv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_icv.html

Message DFHLG0772
DFHLG0772 is the first message CICS issues if the MVS logger returns an
exception condition in response to a call to an IXGCONN, IXGWRITE, IXGBRWSE,
or IXGDELET operation.

The MVS logger return and reason codes for the failure are given in the message,
together with the name of the call and the attributes of the log stream being
accessed at the time. Message DFHLG0772 is followed by one or more other
messages when CICS has determined the extent of the problem.

CICS takes a system dump at the time the message is issued. This is the primary
source of information for determining the cause of the error, and a dump from a
DFHLG0772 should not be suppressed. See “Setting a SLIP trap” on page 229 for
information on how to capture dumps of the MVS system logger address space
and the coupling facility structure at the same time. These three pieces of
documentation are essential if you refer the problem to IBM service. You are also
recommended to run the DFHJUP utility to obtain printed output from the
DFHLOG and DFHSHUNT system log streams before you restart a failed region.

If CICS decides the data integrity is compromised, or the problem is too serious to
allow continued operation, it marks the system log as broken. CICS then begins
automatic action to shut itself down.

Log block not found with DFHLG0800, DFHLG0736 and
DFHLG0741
If CICS issues DFHLG0772 with return code 8 and reason code IxgRsnCodeNoBlock
(00000804), it means that the MVS logger could not find a log block requested by
CICS, because the log data is missing from the log stream.

If this occurs after initialization is complete, CICS issues messages DFHLG0800,
DFHLG0736 and at least one DFHLG0741:

DFHLG0800
This provides further diagnostic information to complement the system dump
captured with the preceding DFHLG0772 message.

DFHLG0800 gives the log stream block ID of the requested block and the block
ID of the chain history point of the log block chain being read by CICS. The
DFHLG0800 message is one of the most important pieces of diagnostic
information when investigating a failure caused by an 00000804 reason code.

DFHLG0736
This message informs you that CICS is performing a normal shutdown, issued
by system task CSQC, following the DFHLG0772 and DFHLG0800 messages.

The task that was executing when the error occurred is abended but cannot
perform backout because of the failure (see message DFHLG0741).

Performing a normal shutdown allows all other existing tasks unaffected by
the error to complete normally, but prevents new work from starting. Note that
this phase of processing is exceptional in that CICS cannot make any use of the
system log either for reading or writing, and therefore updates performed by
the tasks running in this phase are not recoverable: if one of these tasks
abends, any updates it makes cannot be backed out by CICS. If a task does
abend in this phase, capture details of the task from the associated message
DFHLG0741 (see below).

If the other existing tasks complete normally with a successful syncpoint, CICS
does not need to read the log for any data that may have been written for

Licensed Materials – Property of IBM

220 CICS TS for z/OS 5.3: Problem Determination Guide

these tasks before the system log failed. These successfully completed tasks are
unaffected by the failure, even though the log is marked as “broken”.

DFHLG0741
This message follows DFHLG0736, and identifies the task ID, the transaction
ID and the terminal ID associated with the task. There must be at least one
task that has attempted to read the system log—the task that issued the log
manager request that led to the DFHLG0772, DFHLG0800, and DFHLG0736 set
of messages being issued. CICS suspends the task indefinitely with resource
type LGFREVER (meaning “logger wait forever”). The current UOW in the
suspended task cannot be allowed to complete and commit its changes. This
decision is taken because log data relating to the UOW has been lost. Similarly,
the UOW cannot be backed out by dynamic transaction backout, because the
required before images cannot be read from the system log.

CICS issues a DFHLG0741 message for each task affected in this way. If any
other in-flight tasks attempt backout (by issuing a SYNCPOINT ROLLBACK or
ABEND command, or by failing and being abended by CICS), these also are
suspended LGFREVER. They are in the same position as the task that triggered
the DFHLG0736 message. That is, they are attempting to retrieve log data from
the system log, and CICS cannot guarantee the integrity of the system log
because some of the log data is not accessible by the MVS logger.

Note: The quiesce of CICS initiated with message DFHLG0736 continues until
the in-flight tasks on the system complete, either successfully by committing
their updates, or by abending. Those tasks that attempt a backout are
suspended forever. CICS, therefore, is unable to complete a normal shutdown
operation and hangs, requiring intervention to be terminated. This intervention
can be by one of the following:
v Operator action
v The shutdown assist transaction
v A CICS monitor package.

The intervention is required because there is at least one task suspended
indefinitely in an LGFREVER wait.

After DFHLG0800, DFHLG0736, and DFHLG0741, ensure that you perform a
diagnostic start, followed by an initial start when you have successfully captured
the diagnostics. See “Restarting CICS after a system log failure” on page 223 for
details.

Log block not found with DFHLG0800 and DFHLG0738
If CICS issues DFHLG0772 with return code 8 and reason code IxgRsnCodeNoBlock
(00000804), it means that the MVS logger could not find a log block requested by
CICS, because the log data is missing from the log stream.

If this occurs during initialization, CICS issues messages DFHLG0800 and
DFHLG0738:

DFHLG0800
This provides further diagnostic information to complement the system dump
captured with the preceding DFHLG0772 message.

DFHLG0800 gives the log stream block ID of the requested block and the block
ID of the chain history point of the log block chain being read by CICS. The
DFHLG0800 message is one of the most important pieces of diagnostic
information when investigating a failure caused by an 00000804 reason code.

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 221

DFHLG0738
This informs you that CICS cannot continue initializing and is terminating. The
MVS logger has failed to retrieve log data in which CICS has an interest
during the restart, and because of this CICS cannot rely on the integrity of the
system log.

After DFHLG0800 and DFHLG0738, ensure that you perform a diagnostic start,
followed by an initial start when you have successfully captured the diagnostics.
See “Restarting CICS after a system log failure” on page 223 for details.

Loss of log data with DFHLG0740
If DFHLG0772 gives the MVS system logger reason code as
IxgRsnCodeLossOfDataGap (0000084B), it is followed by DFHLG0740.

DFHLG0740
This explains that a write request to the system log completed successfully, but
the MVS logger has detected that previously hardened log data has since been
lost from the log. Therefore, the integrity of the system log is suspect, because
CICS might need to refer to the missing log data at some point in the future
either for dynamic transaction backout of a UOW, or system recovery on either
a cold, warm or emergency restart.

CICS initiates a quiesce of the system in the same way as for a DFHLG0736
message. If all in-flight tasks complete normally and commit their changes,
they terminate successfully with no need to refer to the system log, ensuring
data integrity of local resources is maintained. However, as in the case of
DFHLG0741 (see above) if any in-flight tasks attempt backout (by issuing a
SYNCPOINT ROLLBACK or ABEND command, or by failing and being
abended by CICS), these are suspended with resource type LGFREVER. Any
transactions that fail to complete before shutdown must be recovered by some
other way before starting CICS again.

CICS forces the next restart to be an initial start, because this is the only type
of restart that has no interest in any log data previously stored on the system
log

Log error with DFHLG0734
If CICS issues DFHLG0772 with a reason code other than block not found
(IxgRsnCodeNoBlock) or loss of log data (IxgRsnCodeLossOfDataGap), it issues
message DFHLG0734.

DFHLG0734
This indicates a severe exception condition, indicated by the reason code in the
preceding DFHLG0772 message and CICS immediately terminates. The
problem should be investigated and the error corrected before restarting CICS.

Under this abnormal termination CICS does attempt to allow in-flighttasks to
complete. In this case, CICS does not force the next type of start to be an initial
start. The type-of-restart indicator in the recovery manager control record is set to
"emergency restart needed," to ensure CICS performs an emergency restart. This is
because the nature of this error and its resolution should allow a CICS emergency
restart to restore the system to a committed state. This assumes the system log
remains intact and is accessible to CICS when you perform the restart.

Message DFHLG0002
This is a general message that is issued when a severe error has occurred within
the CICS log manager domain. The module in error is identified in the message,

Licensed Materials – Property of IBM

222 CICS TS for z/OS 5.3: Problem Determination Guide

together with the unique error code value. CICS takes a system dump to allow
problem determination of the severe error condition.

This is usually followed by another message, typically DFHLG0734.

Severe log manager error with DFHLG0734

If CICS issues DFHLG0002, but determines that an emergency restart may resolve
the error and successfully recover in-flight tasks, CICS issues DFHLG0734.

DFHLG0734
This indicates a severe exception condition, indicated by the reason code in the
preceding DFHLG0002 message and CICS immediately terminates. The
problem should be investigated and the error corrected before restarting CICS.

The type-of-restart indicator in the recovery manager control record is set to
“emergency restart needed,” to ensure CICS performs an emergency restart. This is
because the nature of this error and its resolution could allow a CICS emergency
restart to restore the system to a committed state. This assumes the system log
remains intact and is accessible to CICS when you perform the restart.

Restarting CICS after a system log failure
When you restart CICS with START=AUTO after a failure following DFHLG0736,
DFHLG0738, or DFHLG0740, CICS initializes for a diagnostic run only.

About this task

On a diagnostic run, CICS produces a dump of the CICS region state, retrieved
from the CICS system log and then terminates. On a diagnostic run, CICS
performs no recovery work and no new work. This situation persists until you
start the region with an initial start.

A diagnostic run produces diagnostics for investigation by IBM Service. For
example, if DFHLG0772 reported return code 8 and reason code
IxgRsnCodeNoBlock (00000804), but the associated system dump is lost, the
diagnostic run reproduces the dump (assuming the 00000804 condition is a solid
failure).

For information about the AUTODIAG type-of-start override record, see the CICS
Operations and Utilities Guide. For more details of a diagnostic run, see “Dealing
with a corrupt system log” on page 231.

When you have obtained the required diagnostics and are ready to restart the
region with the broken system log, you can do so only with an initial start. You
can do this either by running the DFHRMUTL utility with the
SET_AUTO_START=AUTOINIT parameter, or by specifying START=INITIAL as a
system initialization parameter.

Procedure
v Run the DFHRMUTL utility with the SET_AUTO_START=AUTOINIT parameter.
v Alternatively, specify the START=INITIAL as a system initialization parameter.

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 223

Results

An initial start is the only form of CICS startup that does refer to log data written
during the previous run. It is the only restart that is possible in these
circumstances.

Diagnosing problems in the MVS logger
Extended waits by the CICS log manager can be caused by problems within the
MVS logger or other areas of MVS. You can investigate these by looking at the
MVS console messages.

About this task

Look at the following:
v “Console messages and dumps”
v “GRS resource contention”
v “Checking coupling facility structure and couple data set status” on page 226
v “Checking log stream status” on page 226
v “SMF and RMF statistics” on page 229
v “Obtaining MVS logger and coupling facility dumps” on page 229
v “Restarting the MVS logger address space” on page 231

Console messages and dumps
Look for:
v Outstanding WTOR messages
v IXGxxx messages
v Allocation, catalog and HSM error messages
v IO errors for log stream data sets and LOGR couple data sets
v IXCxxx messages, indicating problems with the coupling facility structure or

couple data sets.
v 1C5 abends, and other abends from the IXGLOGR address space.

Log stream data sets are of the form IXGLOGR.stream_name.Annnnnnn. The high level
qualifier (IXGLOGR) may be different if the HLQ parameter was specified when
the log stream was defined.

Explanations of MVS logger reason codes which are shown in CICS and MVS
messages and traces are in the IXGCON macro and in z/OS MVS Programming:
Assembler Services Reference, Volume 1.

GRS resource contention
To check GRS resource contention by displaying GRS enqueues and latch usage on
all machines in the sysplex, issue either of the following MVS commands.

The RO *ALL phrase means that the command goes to all systems in the sysplex:
RO *ALL,D GRS,C

RO *ALL,D GRS,RES=(SYSZLOGR,*)

A normal response looks like:
D GRS,C

ISG020I 12.06.49 GRS STATUS 647
NO ENQ CONTENTION EXISTS
NO LATCH CONTENTION EXISTS

Licensed Materials – Property of IBM

224 CICS TS for z/OS 5.3: Problem Determination Guide

D GRS,RES=(SYSZLOGR,*)

ISG020I 14.04.28 GRS STATUS 952
NO REQUESTORS FOR RESOURCE SYSZLOGR *

A response showing GRS contention looks like this. You may also see latch set
name SYS.IXGLOGER_MISC:

D GRS,C

ISG020I 12.06.31 GRS STATUS 619
LATCH SET NAME: SYS.IXGLOGER_LCBVT
CREATOR JOBNAME: IXGLOGR CREATOR ASID: 0202

LATCH NUMBER: 7
REQUESTOR ASID EXC/SHR OWN/WAIT
IXGLOGR 0202 EXCLUSIVE OWN
IXGLOGR 0202 SHARED WAIT

D GRS,RES=(SYSZLOGR,*)

ISG020I 19.58.33 GRS STATUS 374
S=STEP SYSZLOGR 91
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV26 MSLDELC1 002F 008F6370 EXCLUSIVE OWN
S=STEP SYSZLOGR 93
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV26 MSLWRTC1 002E 008DED90 EXCLUSIVE OWN
MV26 MSLWRTC1 002E 008DB990 EXCLUSIVE WAIT
MV26 MSLWRTC1 002E 008DB700 EXCLUSIVE WAIT
MV26 MSLWRTC1 002E 008F60C8 EXCLUSIVE WAIT
S=SYSTEMS SYSZLOGR LPAYROL.TESTLOG.TLOG1
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV27 IXGLOGR 0011 008F7398 EXCLUSIVE OWN
MV26 IXGLOGR 0011 008F7398 EXCLUSIVE WAIT

This shows which tasks (that is, MVS TCBs) have exclusive enqueues on the log
streams, and which tasks are waiting for them. It is quite normal for enqueues and
latches to be obtained, occasionally with contention. They are indications of a
problem only if they last for more than a minute or so.

Long term enqueuing on the SYSZLOGR resource can be a sign of problems even
if there is no contention.

You can choose to display only those log streams exclusively enqueued on by CICS
jobs in the sysplex. Issue the following MVS command:

D GRS,RES=(DFHSTRM,*)

A typical response to this command looks like this:
ISG020I 14.51.28 GRS STATUS 541
S=SYSTEMS DFHSTRM PAYROL.CICSVR.DFHLGLOG
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL91 0042 007D9108 SHARE OWN
MV29 PAYROL93 0044 007D9138 SHARE OWN
S=SYSTEMS DFHSTRM PAYROL.FWDRECOV.UTL3
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL91 0042 007D9108 SHARE OWN
MV29 PAYROL93 0044 007D9138 SHARE OWN
S=SYSTEMS DFHSTRM PAYROL.IYK8ZET1.DFHJ02
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL91 0042 007D9108 SHARE OWN
S=SYSTEMS DFHSTRM PAYROL.IYK8ZET1.DFHLOG
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL91 0042 007D9108 EXCLUSIVE OWN

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 225

S=SYSTEMS DFHSTRM PAYROL.IYK8ZET1.DFHSHUNT
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL91 0042 007D9108 EXCLUSIVE OWN
S=SYSTEMS DFHSTRM PAYROL.IYK8ZET3.DFHJ02
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL93 0044 007D9138 SHARE OWN
S=SYSTEMS DFHSTRM PAYROL.IYK8ZET3.DFHLOG
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL93 0044 007D9138 EXCLUSIVE OWN
S=SYSTEMS DFHSTRM PAYROL.IYK8ZET3.DFHSHUNT
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV29 PAYROL93 0044 007D9138 EXCLUSIVE OWN

Checking coupling facility structure and couple data set
status

To display the MVS logger couple data set status, issue the following MVS
command:

D XCF,CPL,TYPE=LOGR

A normal response looks like this:
D XCF,CPL,TYPE=LOGR
IXC358I 14.47.51 DISPLAY XCF 391
LOGR COUPLE DATA SETS
PRIMARY DSN: SYS1.SYSPLEX2.SEQ26.PLOGR

VOLSER: P2SS05 DEVN: 230D
FORMAT TOD MAXSYSTEM
12/20/95 09:25:48 8

ALTERNATE DSN: SYS1.SYSPLEX2.SEQ26.ALOGR
VOLSER: P2SS06 DEVN: 2C10
FORMAT TOD MAXSYSTEM
12/20/95 09:27:45 8

LOGR IN USE BY ALL SYSTEMS

If the response shows that LOGR is not in use by all systems, there may be a
problem to investigate. Look for IXCxxx messages which might indicate the cause
of the problem and issue the following command to attempt reconnection to the
couple data set:

SETXCF CPL,TYPE=(LOGR),PCOUPLE=(couple_dataset_name)

To display all structures with Failed_persistent connections, issue the following
MVS command:

D XCF,STR,STRNM=*,STATUS=FPCONN

The MVS logger should resolve any failed connections.

Checking log stream status
To display information about the status of CICS log streams, a batch job should
issue the IXCMIAPU command:

LIST LOGSTREAM NAME(streamname) DETAIL(YES)

You can use wildcards to select multiple log streams. For example, the following
job produces a report on the system log streams for CICS region IYLX4:

//IYLXLIST JOB NOTIFY=WILLIN,MSGCLASS=A
//LOGLIST EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=A,DCB=RECFM=FBA
//SYSIN DD *

DATA TYPE(LOGR) REPORT(NO)
LIST LOGSTREAM NAME(WILLIN.IYLX4.DFH*) DETAIL(YES)

Licensed Materials – Property of IBM

226 CICS TS for z/OS 5.3: Problem Determination Guide

Figure 21 on page 228 shows a typical response to this command, with system logs
streams for CICS region IYXL4.

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 227

LOGSTREAM NAME(WILLIN.IYLX4.DFHLOG) STRUCTNAME() LS_DATACLAS()
LS_MGMTCLAS() LS_STORCLAS() HLQ(IXGLOGR) MODEL(NO) LS_SIZE(0)
STG_MGMTCLAS() STG_STORCLAS() STG_DATACLAS() STG_SIZE(0)
LOWOFFLOAD(40) HIGHOFFLOAD(85) STG_DUPLEX(YES) DUPLEXMODE(UNCOND)
RMNAME() DESCRIPTION() RETPD(0) AUTODELETE(NO)
DASDONLY(YES)
MAXBUFSIZE(64000)

LOG STREAM ATTRIBUTES:

User Data:
00
00

LOG STREAM CONNECTION INFO:

SYSTEMS CONNECTED: 1

SYSTEM STRUCTURE CON CONNECTION CONNECTION
NAME VERSION ID VERSION STATE
-------- ---------------- -- ---------- ----------
MV28 0000000000000000 00 00000000 N/A

LOG STREAM DATA SET INFO:

DATA SET NAMES IN USE: IXGLOGR.WILLIN.IYLX4.DFHLOG.<SEQ#>

Ext. <SEQ#> Lowest Blockid Highest GMT Highest Local
----- -------- ---------------- ----------------- ---------------

*00001 A0000007 0000000000496BAB 07/18/97 08:29:13 07/18/97 09:29:

NUMBER OF DATA SETS IN LOG STREAM: 1

POSSIBLE ORPHANED LOG STREAM DATA SETS:

DATA SET NAMES:
--
IXGLOGR.WILLIN.IYLX4.DFHLOG.A0000037
IXGLOGR.WILLIN.IYLX4.DFHLOG.A0000404

NUMBER OF POSSIBLE ORPHANED LOG STREAM DATA SETS: 2

LOGSTREAM NAME(WILLIN.IYLX4.DFHSHUNT) STRUCTNAME() LS_DATACLAS()
LS_MGMTCLAS() LS_STORCLAS() HLQ(IXGLOGR) MODEL(NO) LS_SIZE(0)
STG_MGMTCLAS() STG_STORCLAS() STG_DATACLAS() STG_SIZE(0)
LOWOFFLOAD(0) HIGHOFFLOAD(80) STG_DUPLEX(YES) DUPLEXMODE(UNCOND)
RMNAME() DESCRIPTION() RETPD(0) AUTODELETE(NO)
DASDONLY(YES)
MAXBUFSIZE(64000)

LOG STREAM ATTRIBUTES:

User Data:
00
00

LOG STREAM CONNECTION INFO:

SYSTEMS CONNECTED: 1

SYSTEM STRUCTURE CON CONNECTION CONNECTION
NAME VERSION ID VERSION STATE
-------- ---------------- -- ---------- ----------
MV28 0000000000000000 00 00000000 N/A

LOG STREAM DATA SET INFO:

DATA SET NAMES IN USE: IXGLOGR.WILLIN.IYLX4.DFHSHUNT.<SEQ#>

Ext. <SEQ#> Lowest Blockid Highest GMT Highest Local
----- -------- ---------------- ----------------- ---------------

*00001 A0000000 0000000000001F1E 07/16/97 12:52:22 07/16/97 13:52:

NUMBER OF DATA SETS IN LOG STREAM: 1

POSSIBLE ORPHANED LOG STREAM DATA SETS:

NUMBER OF POSSIBLE ORPHANED LOG STREAM DATA SETS: 0

Figure 21. Example output produced by the LIST LOGSTREAM NAME command

Licensed Materials – Property of IBM

228 CICS TS for z/OS 5.3: Problem Determination Guide

If you are using coupling facility log streams, the IXCMIAPU LIST STRUCTURE
NAME(structname) DETAIL(YES) command is useful in finding the status of CICS
log stream structures. For further information about these commands, see z/OS
MVS Setting Up a Sysplex.

SMF and RMF statistics
SMF 88 log stream statistics records and RMF coupling facility usage reports are
useful for analyzing problems that are affecting performance.

Increasing the amount of coupling facility storage allocated to a structure, or the
size of a staging data set, might improve both MVS logger performance and CICS
performance.

Obtaining MVS logger and coupling facility dumps
If you suspect there is a problem within the MVS logger which is not a result of
some other resolvable problem, you may need to collect additional diagnostic
information. The dumps generated by CICS often don’t contain sufficient
information about the MVS logger.

A dump of XCF and MVS logger address spaces from all systems is useful in the
diagnosis of such problems. To obtain the dump, issue the following series of MVS
commands:
DUMP COMM=(meaningful dump title)
R ww,JOBNAME=(IXGLOGR,XCFAS,cics_jobname),DSPNAME=(’IXGLOGR’.*,’XCFAS’.*),CONT
R xx,STRLIST=(STRNAME=structure,(LISTNUM=ALL),ACC=NOLIM),CONT
R yy,REMOTE=(SYSLIST=*(’XCFAS’,’IXGLOGR’),DSPNAME,SDATA),CONT
R zz,SDATA=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,TRT,CSA,GRSQ,XESDATA),END

Use the R xx,STRLIST=(STRNAME=structure,(LISTNUM=ALL),ACC=NOLIM),CONT
instruction only where you suspect a problem with the coupling facility structure.

Error records written to the MVS LOGREC data set may also be useful.

Setting a SLIP trap
The procedure described in the previous section produces “snapshots” of the MVS
logger address space and coupling facility structure at the time the commands are
issued. However, it is usually more useful to take a memory dump at the time an
error occurs.

If you have applied MVS APAR OW27057, a dump of the MVS logger address
space is produced automatically if an MVS IXGBRWSE or IXGDELET request fails
because the MVS logger cannot find a specific log stream block identifier. (The
MVS logger issues a return code of 8 with a reason code of 804.) To cater for other
possible logger errors, or to obtain a memory dump of the coupling facility
structure associated with a failing log stream, you can set an MVS serviceability
level indication processing (SLIP) trap. Setting a SLIP trap causes MVS to take a
specified set of actions when a specified event occurs. For example, you could
specify that MVS is to take a dump of the MVS logger address space if CICS issues
a particular message.

Figure 22 on page 230 shows an example SLIP trap that captures a dump of the
CICS address space, the MVS logger address space, and the coupling facility
structure associated with the failing logstream.

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 229

In this example, the SLIP triggers when a specific CICS log manager message
DFHLG0772 is written to the console. This is specified in the EQ parameter of the
SLIP:
+4,EQ,C4C6C8D3,+8,EQ,C7F0F7F7,+C,EQ,F2)

D F H L G 0 7 7 2 <equates to

You can also set a more “generic” trap, that is triggered by the occurrence of any
one of a range of messages. For example, to cause the SLIP to be triggered by any
log manager message in the DFHLG07xx range, alter the value of the EQ parameter
to:
+4,EQ,C4C6C8D3,+8,EQ,C7F0F7),

D F H L G 0 7 <equates to

To use the example SLIP, you must:
1. Replace the cicsjob value with the name of the CICS job (or jobs) to be

dumped.
2. Replace the xx, yy, and zz values with the appropriate operator reply numbers,

as each segment is entered.
3. Replace the structname value with the name of the coupling facility structure

that contains the failing log stream.
For system log failures only, you can get the name of the coupling facility
structure (or structures) from the two DFHLG0104 messages that were issued
when CICS connected to DFHLOG and DFHSHUNT during the run in which
the failure occurred.
For all other log streams, to get the name of the coupling facility structure use
the LIST LOGSTREAM NAME command already described. For example:
//LOGRRPT EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DATA

TYPE(LOGR)
REPORT(YES)
LIST LOGSTREAM NAME(logstream_name) DETAIL(YES)

SLIP SET,IF,LPAMOD=(IGC0003E,0),DATA=(1R?+
4,EQ,C4C6C8D3,+8,EQ,C7F0F7F7,+C,EQ,F2),A=S <change the message
VCD,JOBLIST=(cicsjob,IXGLOGR,XCFAS), <change CICS Job

-->response xx

xx,DSPNAME=(’XCFAS’.*,’IXGLOGR’.*),STRLIST
=(STRNAME=structname,LOCKENTRIES,ACC=NOLIM <change STRNAME
,(LISTNUM=ALL,

-->response yy

yy,ENTRYDATA=SERIALIZE,ADJUNCT=CAPTURE)),S
DATA=(RGN,XESDATA,ALLNUC,CSA,LSQA,PSA,SQA,
SWA,TRT,COUPLE,WLM,GRSQ,LPA),

-->response zz

zz,ID=LOGR,REMOTE=(JOBLIST,DSPNAME,SDATA),
END

Figure 22. An example SLIP trap. The trap is triggered when CICS issues a DFHLG0772
message. It captures dumps of the CICS address space, the MVS logger address space, and
the coupling facility structure associated with the failing log stream.

Licensed Materials – Property of IBM

230 CICS TS for z/OS 5.3: Problem Determination Guide

Figure 21 on page 228 shows example output produced by the LIST LOGSTREAM
NAME command. Search for the log stream name; the structure name follows it.
Step 3 on page 230 assumes two things:
v That the failing log stream is a coupling facility log stream. If it is a

DASD-only log stream, the STRLIST parameter in the example SLIP is not
appropriate.

v That the logging problem is repeatable. It is assumed that the log stream has
failed at least once before the SLIP is set (the initial failure allowing you to
deduce the name of the coupling facility structure to be dumped).

Note:

1. The example SLIP will just fit into the extended operator command area of
MVS Version 5 or later.

2. The example SLIP may result in extra dumps being produced for both CICS
and the MVS logger address space.

For definitive information about setting SLIP traps, see the z/OS MVS Diagnosis:
Tools and Service Aids manual.

Restarting the MVS logger address space

Before you begin

About this task

If the MVS logger address space has failed, you can restart it as follows:

Procedure
1. Use the command S IXGLOGRS. Note the S at the end. IXGLOGRS restarts

IXGLOGR as a system address space.
2. After the MVS logger has restarted, restart all the CICS regions.

Example

What to do next

CAUTION:
If you forcibly cancel the MVS logger address space (by issuing a FORCE
IXGLOGR,ARM command) or coupling facility structures used by the MVS logger
(by issuing a SETXCF FORCE,CON,STRNAME=structname,CONNAME=ALL command),
there is a risk of corruption in the CICS system logs. If the system log is
corrupted, CICS issues a message telling you that you need to perform an initial
start. Data integrity will be compromised because of the loss of log data
required for consistency.

Dealing with a corrupt system log
If the system log becomes corrupt, CICS quiesces. After the system log has been
corrupted, it cannot be used again; to get CICS back into production, you must
perform an initial start.

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 231

About this task

To prevent the problem recurring, you also need to gather diagnosis information
that will enable IBM Service to discover why the log was corrupted. Unfortunately,
performing an initial start destroys all information from the previous run of CICS.
To gather diagnostic information:

Procedure
1. Scan the failed system log, using a utility such as DFHJUP. However, the

output produced by DFHJUP in these circumstances is not easy to interpret.
2. To supplement DFHJUP's output, perform a diagnostic run of CICS, using the

corrupt system log, before performing the initial start.
a. Specify AUTO on the START system initialization parameter. If the system

log becomes corrupt, CICS:
v Sets the recovery manager autostart override record in the global catalog

so that the next automatic restart of CICS is a diagnostic run
(AUTODIAG).

v Issues message DFHRM0152, saying that the next automatic restart will
be a diagnostic run, and should be performed before an initial start.

b. If the system log is not corrupt, but you still want to perform a diagnostic
run, use the recover manager utility program DFHRMUTL. For information
about DFHRMUTL, see the CICS Operations and Utilities Guide.

On a diagnostic run, CICS:
a. Produces a dump of the CICS system state, retrieved from the failed system

log.
b. Terminates. Note that, on a diagnostic run, CICS performs no recovery work

and no new work.

The output produced by a diagnostic run is usually passed to IBM Service.

Benefits of a diagnostic run
The advantages of performing a diagnostic run are:
v It collects diagnostic information automatically, thus allowing you to get CICS

back into production quickly.
v When CICS failed, a system dump may not have been produced. A diagnostic

run provides one.
v If the diagnostic run is not able to retrieve all the records from the CICS system

log, the last record it retrieves shows the point at which the log became
unreadable, and may indicate the cause of the problem.

v A diagnostic run allows you to capture a dump of the MVS logger address
space. See “Getting dumps of the MVS logger and coupling facility address
spaces.”

Getting dumps of the MVS logger and coupling facility
address spaces

For reliable diagnosis, it is important that you have dumps of the MVS logger
address space and (if applicable) the coupling facility structures used by the
system log.

Licensed Materials – Property of IBM

232 CICS TS for z/OS 5.3: Problem Determination Guide

Before you begin

This means that, before performing the diagnostic run, you will probably need to
set a SLIP trap, as described in “Setting a SLIP trap” on page 229.

About this task

You need to set a SLIP if any of the following are true:
v You have not applied MVS APAR OW27057.
v MVS did not produce a dump of the logger address space.
v MVS produced a dump of the logger address space but you have not kept the

dump.
v The CICS system log uses coupling facility log streams.

When specifying the SLIP, note the following:

Procedure
1. Set the trap for the specific DFHLG07xx message that CICS issued when the

original failure occurred. See the example SLIP in Figure 22 on page 230. When
the diagnostic run occurs and the failure repeats, the message will drive the
SLIP.
Occasionally, the DFHLG07xx message that was issued at the time of the
original failure is not repeated during a diagnostic run. Instead, a different
DFHLG07xx message is issued. Therefore the SLIP is not triggered. If this
happens, perform another diagnostic run. This time, however, set the SLIP for
the DFHLG07xx message that was issued during the first diagnostic run.

2. Change the JOBLIST parameter in the example SLIP to read
JOBLIST=(IXGLOGR,XCFAS),

You do not need to specify a dump of the CICS system, because one is taken
automatically by the diagnostic run mechanism.

3. Specify a dump of the MVS logger address space. See the example SLIP. If you
have applied MVS APAR OW27057, and the original failure occurred because
the MVS logger was unable to find a specific log stream block identifier, an
extra dump may be produced.

4. If the system log uses coupling facility log streams, specify a dump of the
coupling facility structure. You can get the name of the structure from the two
DFHLG0104 messages that were issued when CICS connected to DFHLOG and
DFHSHUNT during the run in which the failure occurred.
If DFHLOG and DFHSHUNT use separate coupling facility structures, dump
both structures. Specify the names of both structures on the STRLIST parameter.

Example

Licensed Materials – Property of IBM

Chapter 14. Dealing with log manager problems 233

Licensed Materials – Property of IBM

234 CICS TS for z/OS 5.3: Problem Determination Guide

Part 3. Using traces and dumps in problem determination

This section describes the types of general and specialized trace available to you
for problem determination, and the types of dumps that CICS can take.

This section contains:
v Chapter 15, “Using traces in problem determination,” on page 237
v Chapter 17, “Using dumps in problem determination,” on page 265
v Chapter 19, “The global trap exit DFHTRAP,” on page 311

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 235

Licensed Materials – Property of IBM

236 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 15. Using traces in problem determination

This section describes the types of general and specialized trace available to you
for problem determination, how to control the amount of tracing that CICS
produces, and how to format and interpret tracing.

The following types of tracing can be used for CICS systems:
v CICS tracing, which is performed by the trace domain at predetermined trace

points in CICS code during the regular flow of control. This includes user
tracing from applications. You get this when you turn on CICS internal tracing,
auxiliary tracing, and GTF tracing. You control this type of tracing to suit your
needs, except that, when an exception condition is detected by CICS, it always
makes an exception trace entry. You cannot turn exception tracing off.

v CICS exit programming interface (XPI) tracing, which uses the TRACE_PUT XPI
call from an exit program. You can control this within the exit program, or by
enabling and disabling exits.

v Program check and abend tracing, which is used by CICS to record pertinent
information when a program check or abend occurs. This is controlled by CICS
code.

v CICS z/OS Communications Server exit tracing. The exits are driven by the
Communications Server when it reaches a particular stage in its asynchronous
processing, but the trace points are in CICS code. You can turn CICS
Communications Server exit tracing on or off.

v Communications Server buffer tracing. This is a part of the Communications
Server, but it can be used to record the flow of data between logical units in the
CICS environment. You can control this type of tracing to meet your needs.

In addition to the general trace produced by CICS, there are a number of other,
more specialized forms of trace that you can use. These are:
v CICS exception tracing
v Program check and abend tracing
v CICS Communications Server tracing
v FEPI trace.

For information about using trace to solve FEPI problems, see FEPI trace in
Reference -> Diagnostics.

You have a large amount of control over the amount of CICS tracing that is done.
There are a number of selection mechanisms available to you to control the extent
of CICS tracing carried out in the system. These are:
v “Selecting tracing by transaction” on page 245
v “Selecting tracing by component” on page 248
v “Setting trace destinations and tracing status” on page 251

You can select any combination of internal tracing, auxiliary tracing and GTF
tracing to be active at the same time. Your choice has no effect on the selectivity
with which system tracing is done, but each type of tracing has a set of
characteristic properties. These properties are described in “Internal trace table” on
page 240, “Auxiliary trace data sets” on page 240, and “Generalized Trace Facility
(GTF)” on page 241.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 237

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.30/com.ibm.cics.ts.fepi.doc/topics/dfhp7kz.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.30/com.ibm.cics.ts.fepi.doc/topics/dfhp7kz.html

CICS trace
General CICS tracing is handled by the CICS trace domain. It traces the flow of
execution through CICS code, and through your applications as well. You can see
what functions are being performed, which parameters are being passed, and the
values of important data fields at the time trace calls are made. This type of tracing
is also useful in first failure data capture, if an exception condition is detected by
CICS.

For programming information about how to make trace calls from your own
application programs, see the CICS Application Programming Reference.

Trace points are included at specific points in CICS code. From these points, trace
entries can be written to any currently selected trace destination. Some trace points
are used to make exception traces when exception conditions occur, and some are
used to trace the mainline execution of CICS code.

CICS provides different levels of tracing to assist with problem determination.
Standard trace level 1 is the default setting for each component to be traced within
CICS. The user can use CETR to specify what trace levels are set for each
component of CICS. By default, INTTR, SYSTR, and USERTR are set ON. This
means the master system and user trace flags default to be set on, and internal
tracing is active. STNTR defaults to 1, as do all the STNTRxx values, and as a
result standard trace component tracing defaults to level 1 for all CICS trace
components. The consequence of this is that by default a CICS system incurs the
CPU usage to provide this level of internal CICS trace data.

There is a trade-off between the CPU cost in capturing trace data for problem
determination, set against the ability to diagnose problems if they occur. Some
customers elect to run with limited levels of tracing active on their system. While
choosing to use CICS trace does increase processing requirements, not using CICS
tracing reduces the amount of problem determination information that is available
for the CICS region.

Note: CICS always performs exception tracing when it detects an exception
condition, so a minimum of first failure data capture is provided regardless of your
CICS trace setting. However, exception tracing by its nature is limited in what
diagnostic data it can provide. It is difficult to perform initial problem
determination without CICS tracing being active and all components capturing
their trace data, as it is the trace information that helps to identify the flow of
system activity, and the events in chronological order, leading up to a failure. For
this reason, to assist with problem determination it is recommended that the
default settings of all CICS domains and components is used when tracing is
active. This is standard trace level 1 tracing.

All CICS trace points are listed in alphabetical sequence in CICS Trace Entries.

Trace levels
Apart from exception trace points, all trace points in CICS have an associated level
attribute. The level of a trace point indicates the depth of information that the trace
point provides.

Trace levels 1–32 are available in CICS, but in practice nearly all mainline trace
points have a trace level of 1 or 2.

Licensed Materials – Property of IBM

238 CICS TS for z/OS 5.3: Problem Determination Guide

You can use the trace levels to specify the level of CICS system tracing that you
require for the CICS region, or for an individual component or task.

Level-1 trace points
Level-1 trace points are designed to give you enough diagnostic
information to fix errors caused by user applications or user actions. CICS
provides level-1 trace points in the following situations:
v Entry to, and exit from, every CICS domain. The information includes

the domain call parameter list, and the address of any data that is useful
for a high-level understanding of the function to be performed.

v Entry to, and exit from, major internal domain functions. The
information includes parameters passed on the call, and any output from
the function.

v Before and after calls to other programs, such as the z/OS
Communications Server. The information includes the request that is to
be made, the input parameters on the request, and the result of the call.

Level-2 trace points
Level-2 trace points are situated between the level-1 trace points, and they
provide information that is likely to be more useful for fixing errors within
CICS code. You probably will not want to use level-2 trace points yourself,
unless you are requested to do so by IBM support staff after you have
referred a problem to them.

Level-3 trace points
Trace points at level 3 and above are reserved for special cases. Very few
components have trace points higher than level 2, and they are only likely
to be of use by IBM support staff. The SJ domain uses trace levels 29–32 to
control JVM tracing, but these correspond to JVM trace levels 0, 1, and 2,
plus a user-definable trace level.

Trace destinations
You can choose from any number of the destinations for the trace entries produced
by CICS. Any combination of these destinations can be active at any time.
v The internal trace table
v The auxiliary trace data sets
v The MVS generalized trace facility (GTF) data sets
v The JVM server trace file in z/OS Unix System Services

You can choose the most appropriate trace destinations based on their
characteristics, the amount of trace data that you need to capture, and whether you
want to integrate CICS tracing with tracing done by other programs. The JVM
server trace file is unique to each JVM server. It contains SJ domain tracing that
traces the the JVM server starting. It can also contain AP domain tracing that traces
the transactions that are running in the JVM server. For more information on this
trace file, see Troubleshooting Java applications in Troubleshooting and support.

You can control the status and certain other attributes of the trace destinations
either while CICS is running, or by specifying system initialization parameters at
CICS startup. For instructions to control the trace destinations, see “Setting trace
destinations and tracing status” on page 251.

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 239

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/troubleshooting.html

Internal trace table
The CICS internal trace table is held in storage in the CICS region. It is allocated at
an early stage during CICS initialization, and it exists for the whole of the CICS
run.

CICS obtains MVS 64-bit (above-the-bar) storage (outside the CICS DSAs) for the
internal trace table.

You use the TRTABSZ system initialization parameter to specify the size of the
internal trace table at CICS startup. Its minimum size is 16 KB, and its maximum
size is 1 GB. The default size is 12288 KB (12 MB).

Every CICS region always has an internal trace table. Even if internal tracing has
not been started for the CICS region, the internal trace table is used as a buffer for
the other trace destinations. Trace entries are built there and copied to the auxiliary
trace data sets or to GTF trace if those destinations are started.

In addition, exception trace entries are always written to the internal trace table,
even if no trace destinations are currently started. Other trace destinations that are
currently started get the exception trace entry as well, but the entry always goes to
the internal trace table even if you have turned tracing off completely. This
function provides first failure data capture.

The internal trace table wraps when it is full. When the end of the table is reached,
the next trace entry to be directed to the internal trace table goes to the start, and
overlays the trace entry that was formerly there. You can increase or decrease the
size of the internal trace table while CICS is running, but if you do so you lose all
of the trace data that was present in the table at the time of the change.

For a transaction dump, CICS copies the current internal trace table to produce the
transaction dump trace table. You use the TRTRANSZ system initialization parameter
to specify the size of the transaction dump trace table, which is created in MVS
storage in 64-bit (above-the-bar) storage.

The internal trace table is most useful for background tracing or when you do not
need to capture an extensive set of trace entries. If you need to trace CICS system
activity over a long period, or if you need many trace entries over a short period,
one of the other trace destinations is likely to be more appropriate.

You can format the internal trace table in two ways:
v From a CICS system dump, using the CICS print dump exit, DFHPD700.

If the internal trace table is large, you can use trace selection parameters to
reduce the number of trace entries that are formatted. See Selecting parts of the
CICS internal trace table.

v From a transaction dump, using the CICS dump utility program, DFHDU700.

Auxiliary trace data sets
The auxiliary trace data sets are CICS-owned BSAM data sets named DFHAUXT
and DFHBUXT. If you want to use auxiliary trace, you must create one or both of
these data sets before you start CICS; you cannot create them while CICS is
running.

For instructions to set up the auxiliary trace data sets, see the topic "Setting up
auxiliary trace data sets" in the CICS System Definition Guide. The auxiliary trace
data sets require two 4 KB data buffers in the CICS region's storage.

Licensed Materials – Property of IBM

240 CICS TS for z/OS 5.3: Problem Determination Guide

|

When you first start CICS auxiliary trace, any trace entries are directed to the
initial auxiliary trace data set. If CICS terminated normally when auxiliary trace
was last active, this is the auxiliary trace data set that was not being used at the
time. Otherwise, it is the DFHAUXT data set. If you initialize CICS with auxiliary
trace started, DFHAUXT is used as the initial auxiliary trace data set.

When you have two auxiliary trace data sets, you can choose from the following
actions for CICS to take when one data set is full. You specify your chosen action
using the auxiliary switch, which you can set using the AUXTRSW system
initialization parameter or the CEMT transaction:
v When the initial data set is full, no more trace entries are directed to the

auxiliary trace data sets. (AUXTRSW=NO)
v When the initial data set is full, then the other data set receives the next trace

entries. When that one is full, no more trace entries are directed to the auxiliary
trace data sets. (AUXTRSW=NEXT)

v Auxiliary trace data is written alternately to each data set, and CICS switches
from one to the other every time the current one becomes full. With this action
selected, trace entries are eventually overwritten, as they are in the internal trace
table. (AUXTRSW=ALL)

When auxiliary tracing is started or when it is paused, the auxiliary trace data set
that is currently in use is open. When auxiliary tracing is stopped, the auxiliary
trace data set is closed.

You can use auxiliary trace data sets to collect large amounts of trace data,
provided that you initially define large enough data sets. For example, you might
want to use auxiliary trace to track system activity over a long period of time,
perhaps to solve an unpredictable storage violation problem. Auxiliary trace can be
particularly useful if you are using CICS trace during startup, because of the high
volume of trace entries that are written when CICS is initializing.

CICS provides a trace utility program, DFHTU700, that you can use to extract all
or selected trace entries from auxiliary trace data sets, and format and print the
data. You can select the trace entries based on the time when they were written,
and the reports from the trace utility program include time stamps to help you
match external events with a particular area of the trace.

Generalized Trace Facility (GTF)
The generalized trace facility (GTF) in z/OS is a service aid that is part of the MVS
system product. CICS issues an MVS GTRACE macro to write trace entries to GTF.
GTF must be started with the TRACE=USR option in MVS before you start CICS
GTF trace.

GTF stores trace entries in a trace table in MVS main storage, or in up to 16 data
sets on tape or disk.

If the storage available to GTF becomes full, the next trace entries go to the start,
and overlay the trace entries that were formerly there. For more information about
setting up GTF in z/OS, see The Generalized Trace Facility (GTF) in z/OS MVS
Diagnosis: Tools and Service Aids.

GTF is most useful when you want to integrate trace entries from a CICS region
with those from other CICS regions or other programs. GTF can record trace
entries from all supported CICS releases, and it can be used by other programs
besides CICS, such as the z/OS Communications Server (for SNA). You can relate

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 241

http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ieav100/gtfch.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ieav100/gtfch.htm

CICS trace entries to those from the Communications Server using the task
identifier in the trace header. However, because different products might run
asynchronously, be cautious about using the sequence of trace entries in the GTF
trace data set as evidence when you investigate problems.

To extract and format trace entries from GTF, you use the GTFTRACE
subcommand in the interactive problem control system (IPCS). IPCS calls the
CICS-supplied formatting routines DFHTG700 and DFHTR700. You can select the
trace entries by specifying options on the USR parameter of the GTFTRACE
subcommand for IPCS to select the trace entries, or by specifying options on the
CICS parameter GTFTRACE subcommand for IPCS to pass to DFHTR700.

CICS exception tracing
CICS exception tracing is always done by CICS when it detects an exception
condition. The sorts of exception that might be detected include bad parameters on
a domain call, and any abnormal response from a called routine. The aim is “first
failure data capture”, to record data that might be relevant to the exception as soon
as possible after it has been detected.

CICS uses a similar mechanism for both exception tracing and “normal” tracing.
Exception trace entries are made from specific points in CICS code, and data is
taken from areas that might provide information about the cause of the exception.
The first data field in the trace entry is usually the parameter list from the last
domain call, because this can indicate the reason for the exception.

The exception trace points do not have an associated “level” attribute, and trace
calls are only ever made from them when exception conditions occur.

Exception trace entries are always written to the internal trace table, even if no
trace destinations at all are currently STARTED. That is why there is always an
internal trace table in every CICS region, to make sure there is always somewhere
to write exception trace entries. If the other trace destinations are STARTED, the
exception trace entries are written there, as well.

You can select tracing options so that exception traces only are made to an auxiliary
trace data set. This is likely to be useful for production regions, because it enables
you to preserve exception traces in auxiliary storage without incurring any general
tracing overhead. You need to disable all standard and special task tracing, and
enable auxiliary trace:
1. Ensure that special tracing has not been specified for any task.
2. Set the master system trace flag off.
3. Set the auxiliary trace status to STARTED, and the auxiliary trace data set and

the auxiliary switch status to whatever values you want.

Exception traces are now made to an auxiliary trace data set, but there is no other
tracing overhead.

The format of an exception trace entry is almost identical to that of a normal trace
entry. However, you can identify it by the eye-catcher *EXC* in the header.

Note: Exception conditions that are detected by MVS, for example, operation
exception, protection exception, or data exception, do not cause a CICS exception

Licensed Materials – Property of IBM

242 CICS TS for z/OS 5.3: Problem Determination Guide

trace entry to be made directly. However, they do cause a CICS recovery routine to
be invoked, and that, in turn, causes a “recovery” exception trace entry to be
made.

User exception trace entries
The EXCEPTION option on the EXEC CICS ENTER TRACENUM command enables user
programs to write a trace entry to the trace destinations, even when the master
user trace flag is off. User exception trace entries are always written to the internal
trace table (even if internal tracing is set off), but are written to other destinations
only if they are active.

The user exception trace entries CICS writes are identified by the character string
*EXCU in any formatted trace output produced by CICS utility programs. For
example, an application program exception trace entry generated by an EXEC CICS
ENTER TRACENUM() EXCEPTION command appears in formatted trace output
as:
USER *EXCU - APPLICATION-PROGRAM-EXCEPTION

If you use the exit programming interface (XPI) trace control function to write user
trace entries, you can use the DATA1 block descriptor to indicate whether the
entry is an exception trace entry. Enter the literal ‘USEREXC’ in the DATA1 field
on the DFHTRPTX TRACE_PUT call to identify an exception trace entry. This is
interpreted by the trace formatting utility program as follows:
USER *EXCU - USER-EXIT-PROGRAM-EXCEPTION

See the CICS Customization Guide for programming information about XPI trace
control function.

Program check and abend tracing
Program check and abend tracing is carried out by kernel domain. The kernel
records information about program checks and abends, including details of the
registers and the PSW at the time of failure.

You cannot format the program check and abend trace information directly, but
you get a summary of its contents in a formatted CICS system dump when you
specify dump formatting keyword KE. The information is provided in the form of
a storage report for each task that has had a program check or an abend during
the current run of CICS.

An example of such a storage report is given in Figure 2 on page 47.

z/OS Communications Server exit tracing
z/OS Communications Server SNA exit tracing gives you a way of tracing SNA
requests made from CICS.

You can control it online, using transaction CETR. See Figure 23 on page 247 for an
illustration of the screen you need to use.

When CICS issues an SNA request, SNA services the request asynchronously and
CICS continues executing. When SNA has finished with the request, it returns
control to CICS by driving a CICS SNA exit. Every such exit contains a trace point,
and if CICS SNA exit tracing is active, a trace entry is written to the GTF trace

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 243

data set. GTF tracing must be active, but you do not need to start it explicitly from
CICS. It is enough to start SNA exit tracing from the CETR transaction and
terminal trace panel.

Note: The GTF trace data set can receive trace entries from a variety of jobs
running in different address spaces. You need to identify the trace entries that have
been made from the CICS region that interests you. You can do this by looking at
the job name that precedes every trace entry in the formatted output.

You can use this type of tracing in any of the cases where you might want to use
SNA buffer tracing, but it has the advantage of being part of CICS and, therefore,
controllable from CICS. This means that you do not need a good understanding of
SNA system programming to be able to use it. CICS SNA exit tracing also has the
advantage of tracing some important CICS data areas relating to SNA requests,
which might be useful for diagnosing problems.

Controlling CICS z/OS Communications Server exit tracing
You can turn CICS z/OS Communications Server SNA exit tracing on and off
using the CETR transaction. You can specify tracing for just a single terminal, or
for all the terminals in the SNA network. However, you cannot select which CICS
exits are to be traced. Whenever CICS Communications Server exit tracing is
running, you get a trace entry every time a CICS exit is driven by Communications
Server.

If you select “normal” CICS tracing for the affected terminals at the same time as
you have CICS Communications Server exit tracing running, you can then correlate
CICS activities more easily with the asynchronous processing done by
Communications Server.

If you must turn on CICS Communications Server exit tracing in an application
owning region (AOR) while you are signed-on to a terminal in a terminal owning
region (TOR), follow these steps:
1. Invoke CETR on the AOR.
2. Press PF5 to call up the CETR transaction and terminal trace screen.
3. Enter the APPLID of the TOR in the NETNAME field.
4. Complete other fields as required.
5. Press Enter.

CICS Communications Server trace entries are always written to the GTF trace
data set, and you can format them in the usual way. See Chapter 16, “Formatting
and interpreting trace entries,” on page 255 for more information. Direct all
“normal” CICS tracing to the GTF trace destination as well, so you get the regular
trace entries and the CICS Communications Server exit trace entries in sequence in
a single data set. If you send the normal tracing to another destination, you get
only the isolated traces from the exit modules with no idea of related CICS activity.

Interpreting CICS z/OS Communications Server exit trace
entries

CICS z/OS Communications Server exit trace entries can be identified by their
trace point IDs, which are in the range AP FC00 through AP FCFF. Not all the
values in the range are used.

Licensed Materials – Property of IBM

244 CICS TS for z/OS 5.3: Problem Determination Guide

The format of the trace entries is similar to that shown in “Interpreting
extended-format CICS system trace entries” on page 256. The interpretation string
contains the netname of the terminal to which the trace entry relates, if the trace
entry was made from a terminal-specific trace point. This makes it easy to identify
the terminal associated with the Communications Server request. The trace entries
also contain data from one or more selected CICS data fields, for example from the
TCTTE. For guidance on interpreting the data values you might find there, see
Trace entries overview in Reference -> Diagnostics.

z/OS Communications Server buffer tracing
z/OS Communications Server SNA buffer tracing enables you to look at all the
data that is passed between logical units on an SNA communication link.

The trace entries, which include the netname of the terminal to which they relate,
are made to the GTF trace data set. If you want to send “normal” CICS trace
entries there, you can rationalize the activities of CICS with the asynchronous
activities of SNA.

Selecting tracing by transaction
For each transaction, you can specify whether standard tracing or special tracing is
to be done, or whether tracing is to be suppressed for that transaction altogether.

About this task

For each component, you can specify two sets of trace level attributes. The trace
level attributes define the trace point IDs to be traced for that component when
standard task tracing is being done and when special task tracing is being done,
respectively.

If you are running a test region, you probably have background tracing most of the
time. In this case, the default tracing options (standard tracing for all transactions,
and level-1 trace points only in the standard set for all components) probably
suffice. All you need do is to enable the required trace destinations and set up any
related tracing options. Details are given in “Setting trace destinations and tracing
status” on page 251.

For a production system, background tracing might incur an unacceptable
processing overhead. If you find this to be so, you are recommended to set up
tracing so that exception traces only are recorded on an auxiliary trace data set.
There need be no other tracing overhead, and you can be sure that the exception
trace will be preserved even when the event invoking the trace does not cause a
system dump to be taken. For details, see “CICS exception tracing” on page 242.

When specific problems arise, you can set up special tracing so you can focus on
just the relevant tasks and components. Use this procedure to specify the tracing
you need:

Procedure
1. If you believe that specific tasks are involved in the problem, use special

tracing:
v When the problem is associated with a non-terminal task, or is associated

with particular transactions, select special tracing for each suspect
transaction.

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 245

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.traceentries.doc//topics/overview.html

v When the problem is associated with particular terminals, select special
tracing for each suspect terminal.

2. If you believe that specific components are implicated in the problem:
a. For each suspected component, decide whether you need special level-1

tracing only, or level-1 and level-2 tracing.
b. Turn special tracing off for all other components.

3. If you do not need standard tracing, turn the master system trace flag off.
4. Enable the trace destinations.

Tracing for selected tasks
You can select which tasks are to have standard tracing, which are to have special
tracing, and which are to have tracing suppressed. If you specify standard tracing
for a task, trace entries are made at all the trace points in the standard set. If you
specify special task tracing, you get trace entries at all the trace points in the
special set. If you suppress tracing for a task, you do not get any tracing done
(except exception tracing) when that task is running.

For transactions that run at terminals, a task is considered to be an instance of a
transaction run at a specific terminal. By defining the type of tracing you want by
transaction and terminal, you automatically define what task tracing is to be done.

For non-terminal transactions, a task is just an instance of the transaction. The type
of tracing you define for the transaction alone defines the type of task tracing that
is to be done.

The type of task tracing you get for the various combinations of transaction tracing
and terminal tracing is summarized in the truth table shown in Table 24.

Table 24. The combination of task trace options

OPTION on
TRANSACTION

OPTION on TERMINAL
Task tracing

tracing suppressed standard tracing SUPPRESSED

tracing suppressed special tracing SUPPRESSED

standard tracing standard tracing STANDARD

standard tracing special tracing SPECIAL

special tracing standard tracing SPECIAL

special tracing special tracing SPECIAL

You can set up the task tracing you want using the CETR transaction, with the
screen shown in Figure 23 on page 247. You need to type in the transaction ID or
the terminal ID or the netname for the terminal, together with the appropriate
tracing.

The status can be any one of STANDARD, SPECIAL, or SUPPRESSED for the
transaction, and either STANDARD or SPECIAL for the terminal.

This screen can also be used to set up certain other terminal tracing options. You
can select ZCP tracing for a named terminal (trace point ID AP 00E6), and you can
also select CICS z/OS Communications Server exit tracing for the terminal. For
more details about CICS Communications Server exit tracing, see “z/OS
Communications Server exit tracing” on page 243.

Licensed Materials – Property of IBM

246 CICS TS for z/OS 5.3: Problem Determination Guide

Note: VTAM is now the z/OS Communications Server.
The CETR transaction can, for example, help you to get standard tracing for a
transaction when it is run at one terminal, and special tracing when it is run at a
second terminal.

Note:

1. You can turn standard tracing off for all tasks by setting the master system
trace flag off. You can do this with the CETR transaction, using the screen
shown in CETR - trace control, or you can code SYSTR=OFF at system
initialization. However, any special task tracing will continue—it is not affected
by the setting of the system master trace flag.

2. If you run with standard tracing turned off and you specify levels of tracing for
the required components under the "Special" heading in the “Components Trace
Options” screen shown in Figure 24 on page 249, you can use CETR to trace a
single transaction. To do this, specify the transaction ID and a transaction status
of SPECIAL, on the screen shown in Figure 23.

The tracing logic used by CICS
The logic used by CICS to decide whether a trace call is to be made from a trace
point is shown in Table 25. It is assumed that at least one trace destination is
STARTED.

Table 25. Logic used to determine if a trace call is to be made from a trace point

Is tracing
suppressed
for this task?

Is standard
tracing
required for
this task?

Is the master
system trace
flag on?

Is special
tracing
specified for
this domain
and trace
level?

Is standard
tracing
specified for
this domain
and trace
level?

Is trace call
made?

Yes not applicable not applicable not applicable not applicable No

No Yes Yes not applicable Yes Yes

No Yes Yes not applicable No No

No Yes No not applicable not applicable No

No No not applicable Yes not applicable Yes

No No not applicable No not applicable No

CETR Transaction and Terminal Trace
Type in your choices.
Item Choice Possible choices
Transaction ID ===> Any valid 4 character ID
Transaction Status ===> STandard, SPecial, SUppressed
Terminal ID ===> Any valid Terminal ID
Netname ===> Any valid Netname
Terminal Status ===> STandard, SPecial
Terminal VTAM Exit Trace ===> ON, OFf
Terminal ZCP Trace ===> ON, OFf
VTAM Exit override ===> NONE All, System, None
When finished, press ENTER.
PF1=Help 3=Quit 6=Cancel Exits 9=Error List

Figure 23. CETR screen for specifying standard and special task tracing

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 247

Selecting tracing by component
You need to decide for each component the trace levels to be used for both
standard and special tracing. You can define this either during system initialization
or online using the CETR transaction.

About this task

“Component names and abbreviations” on page 250 lists the components for which
you can select trace levels for standard and special tracing. You can reference this
list online through CETR, by pressing PF1 on the component screen (see Figure 24
on page 249).

There are special considerations for the following CICS domains and their
corresponding component codes:

AP (Application domain)
The component codes BF, BM, BR, CP, DC, DI, EC, EI, FC, IC, IS, KC, PC,
RI, SC, SZ, TC, TD, TS, UE, WB, and WU are either entirely or partly
subcomponents of the AP domain. The corresponding trace entries are
produced with a point ID of AP nnnn. For example, trace point AP 0471 is
a file control level-1 trace point and AP 0472 is a file control level-2 trace
point. These trace points are produced only if the trace setting for the FC
component is “(1,2)” or “ALL”. The component code AP is used for trace
points from the AP domain that do not fall into any of the subcomponent
areas listed above.

SM (Storage manager domain)
In the storage manager component (SM), two levels of tracing, level 3 and
level 4, are intended for IBM field engineering staff. These trace levels take
effect only if specified in system initialization parameters and modify the
internal SM operation for CICS subpools as follows:

SM level 3 trace
The quickcell mechanism is deactivated. Every CICS subpool,
regardless of quickcelling requirements, will issue domain calls for
getmain and freemain services, and these calls will be traced.

SM level 4 trace
Subpool element chaining on every CICS subpool is forced. Every
CICS subpool, regardless of element chaining requirements, will
use element chaining.

A significant performance overhead is introduced into your CICS system if
these storage manager trace levels are selected. Specifying SM=ALL
activates SM trace levels 1, 2, 3, and 4.

Defining component tracing at system initialization
You can code any of the following parameters to define component tracing at CICS
system initialization time:
v SPCTR, to indicate the level of special tracing required for CICS as a whole.
v SPCTRxx, where xx is one of the two-character component identifiers that specify

the level of special tracing you require for a particular CICS component (see
Component names and abbreviations).

v STNTR, to indicate the level of standard tracing required for CICS as a whole.

Licensed Materials – Property of IBM

248 CICS TS for z/OS 5.3: Problem Determination Guide

v STNTRxx, where xx is one of the two-character component identifiers that specify
the level of standard tracing you require for a particular CICS component (see
Component names and abbreviations).

For more information about system initialization parameters, see the CICS System
Definition Guide.

Defining component tracing when the CICS system is running
You can use the CETR transaction to define component tracing dynamically on the
running CICS system.

Figure 24 shows you what the CETR Component Trace Options screen looks like.
To make changes, overtype the settings shown on the screen, and then press
ENTER.

The trace levels for a specific CICS component are represented by two values. One
value shows the active level of tracing for standard tracing; the other shows
possible levels for special tracing. In CETR, you can set the active level of tracing
for standard or special tracing for an individual component or for a group of
components.

In this example, all components except AP, DH and EI have level-1 tracing enabled
during standard tracing. AP and EI have both level-1 and level-2 tracing enabled,
which will provide more detailed information than level-1 tracing alone. The DH
component has a standard trace setting of ALL, which will provide the maximum
amount of trace information possible.

For special tracing, all components except BM and DC can have level-1 and level-2
tracing enabled.

Level-1 trace points are designed to give you enough diagnostic information to fix
errors caused by user applications or user actions, while level-2 trace points
provide information that is likely to be more useful for fixing errors within CICS

CETR Component Trace Options
Overtype where required and press ENTER. PAGE 1 OF 3
Component Standard Special
-------- ------------------------------- ---------------------------

AP 1-2 1-2
BA 1 1-2
BM 1 1
BR 1 1-2
CP 1 1-2
DC 1 1
DD 1 1-2
DH ALL 1-2
DM 1 1-2
DP 1 1-2
DS 1 1-2
DU 1 1-2
EC 1 1-2
EI 1-2 1-2
EJ 1 1-2
EM 1 1-2
EP 1 1-2
FC 1 1-2
GC 1 1-2
IC 1 1-2
IS 1 1-2

PF: 1=Help 3=Quit 7=Back 8=Forward 9=Messages ENTER=Change

Figure 24. CETR screen for specifying component trace options

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 249

code. Generally, you will not want to use level-2 trace points yourself, unless
requested to do so by IBM support staff after you have referred a problem to them.

Component names and abbreviations
CICS components are abbreviated to a 2-letter code to make interfaces, such as the
CETR transaction, easier to use.

Code Component name

AP Application domain

BA Business application manager

BM* Basic mapping support

BR* 3270 bridge

CP* Common programming interface

DC* Dump compatibility layer

DD Directory manager domain

DH Document handling domain

DM Domain manager domain

DP Debugging profiles domain

DS Dispatcher domain

DU Dump domain

EC* Event capture and emission

EI* Exec interface

EJ Enterprise Java domain

EM Event manager domain

EP Event processing domain

FC* File control

GC Global catalog domain

IC* Interval control

IE ECI over TCP/IP domain

IS* ISC or IRC

KC* Task control

KE Kernel

LC Local catalog domain

LD Loader domain

LG Log manager domain

LM Lock domain

ME Message domain

ML Markup language domain

MN Monitoring domain

MP Managed platform domain

NQ Enqueue domain

OT Object transaction domain

PA Parameter domain

Licensed Materials – Property of IBM

250 CICS TS for z/OS 5.3: Problem Determination Guide

Code Component name

PC* Program control

PG Program manager domain

PI Pipeline domain

PT Partner domain

RA Resource manager adapters

RI* Resource manager interface (RMI)

RL Resource life-cycle domain

RM Recovery manager domain

RS Region status domain

RX RRS-coordinated EXCI domain

RZ Request streams domain

SC* Storage control

SH Scheduler services domain

SJ JVM domain

SM Storage manager domain

SO Sockets domain

ST Statistics domain

SZ* Front End Programming Interface (FEPI)

TC* Terminal control

TD* Transient data

TI Timer domain

TR Trace domain

TS Temporary storage domain

UE* User exit interface

US User domain

WB Web domain

WU CICS Management Client Interface (CMCI) domain

W2 Web 2.0 domain

XM Transaction manager domain

XS Security manager domain

Notes:

1. Components marked * are subcomponents of the AP domain. The trace entries
for these components are produced with a trace point ID of AP nnnn.

2. For the DS domain function CHANGE_MODE, a trace entry is generated if DS
level 2 or 3 tracing is active.

Setting trace destinations and tracing status
You can set the system tracing status by using the appropriate system initialization
parameters or by using the CETR transaction when CICS is running. You can use
the CETR transaction to make changes in response to contingencies as they arise.

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 251

About this task

There are four possible destinations for trace entries in CICS:
v The internal trace table
v The auxiliary trace data sets
v The MVS generalized trace facility (GTF) data sets
v The JVM server trace file in z/OS Unix System Services

You can select any combination of tracing, based on these factors:
v The characteristics of the various types of CICS tracing
v The amount of trace data that you need to capture
v Whether you want to integrate CICS tracing with tracing done by other

programs

For information about the different trace destinations, see “Trace destinations” on
page 239.

Procedure
v To set up the tracing status at system initialization, use the following system

initialization parameters:
– AUXTR, to specify whether auxiliary trace is to be on or off at CICS startup.
– AUXTRSW, to specify whether or not automatic switching takes place for

auxiliary trace data sets when they are full.
– GTFTR, to specify whether CICS is to use GTF as a destination for CICS trace

data.
– INTTR, to specify whether internal tracing is to be on or off at CICS startup.
– SYSTR, to set the master system trace flag on or off at CICS startup.
– TRTABSZ, to specify the size of the internal trace table.
– TRTRANSZ, to specify the size of the transaction dump trace table, which is

the copy of the internal trace table that CICS makes in the event of a
transaction dump.

– USERTR, to set the master user trace flag on or off at CICS startup. This flag
must be on if your applications make user trace calls.

v To set the tracing status while CICS is running, use the CETR transaction or the
CEMT transaction:
1. If you want to use standard tracing or capture user trace entries from

applications, ensure that the master system trace flag is set to ON. If it is
OFF, no standard tracing is done at all, even though standard tracing might
be specified for some tasks. Also, any trace call requests in your programs
are ignored. You can see the role of the master system trace flag in Logic
used to determine if a trace call is to be made from a trace point.

2. If you want to direct regular tracing explicitly to the internal trace table, set
internal tracing status to STARTED. The internal trace table is used as a
buffer for the other trace destinations, so it always contains the most recent
trace entry if at least one trace destination is STARTED. It is also used as the
destination for exception trace entries.

3. To use GTF tracing, set the GTF trace status to STARTED. Ensure that the
GTF trace data set is defined to MVS. Be aware that no error condition is
reported if the CICS GTF status is started but GTF tracing has not been

Licensed Materials – Property of IBM

252 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_auxtr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_auxtrsw.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_gtftr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_inttr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_systr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_trtabsz.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_usertr.html

started under MVS. If this happens, the trace entries are not written. To write
trace entries, MVS GTF trace must be started with the TRACE=USR option
before CICS GTF trace is started.

4. To start writing entries to the auxiliary trace data sets, set the auxiliary trace
status to STARTED. If you have two auxiliary trace data sets, you can use the
auxiliary switch to specify the action CICS takes when one data set is full.
For an explanation of the actions, see “Auxiliary trace data sets” on page 240.

5. To start writing JVM server tracing, use the CETR transaction to trace the SJ
and AP components. JVM servers do not use auxiliary or GTF tracing.
Instead, a small amount of trace is written to the internal trace table and the
rest of the trace is written out to a file in zFS that is unique for the JVM
server. For more information, see Activating and managing tracing for JVM
servers in Troubleshooting and support.

6. To stop internal tracing, GTF tracing, or auxiliary tracing, set their status to
STOPPED. For auxiliary tracing, you can also set a status of PAUSED. With
this status, CICS stops writing entries to the auxiliary trace data set, but
leaves the data set open.

v To change the size of the internal trace table while CICS is running, use the
CETR transaction. When you change the size of the internal trace table, you lose
all of the trace data that was present in the table at the time of the change. If
you want to keep the data and change the size of the table, take a system dump
before you make the change.

Related concepts:
“CICS trace” on page 238
General CICS tracing is handled by the CICS trace domain. It traces the flow of
execution through CICS code, and through your applications as well. You can see
what functions are being performed, which parameters are being passed, and the
values of important data fields at the time trace calls are made. This type of tracing
is also useful in first failure data capture, if an exception condition is detected by
CICS.
“Trace destinations” on page 239
You can choose from any number of the destinations for the trace entries produced
by CICS. Any combination of these destinations can be active at any time.

CEMT

CETR
Related tasks:
“Selecting tracing by transaction” on page 245
For each transaction, you can specify whether standard tracing or special tracing is
to be done, or whether tracing is to be suppressed for that transaction altogether.
“Selecting tracing by component” on page 248
You need to decide for each component the trace levels to be used for both
standard and special tracing. You can define this either during system initialization
or online using the CETR transaction.
Related information:

Specifying CICS system initialization parameters

Licensed Materials – Property of IBM

Chapter 15. Using traces in problem determination 253

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfhpj_trace_jvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfhpj_trace_jvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha721.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/transactions/cetr/dfha727.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/topics/dfha2_specify_cics_sysinitparms.html

Licensed Materials – Property of IBM

254 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 16. Formatting and interpreting trace entries

Before you can look at the trace entries that have been sent to the various trace
destinations, you need to do some formatting. The way you do the formatting
varies depending on the destination.

You can specify abbreviated, short, or full trace formatting, to give you varying
levels of information and detail in your output. Typically, abbreviated-format trace
gives you one line of trace per entry; short-format provides two lines of trace per
entry; full-format provides many lines of trace per entry. The structures of the
different types of trace entry are described in the sections that follow.

Most of the time, the abbreviated trace table is the most useful form of trace
formatting, as you can quickly scan many trace entries to locate areas of interest.

However, in error situations, you might require more information than the
abbreviated trace can provide. The short trace provides the information that is
presented in the abbreviated trace, and, additionally, presents certain items that are
presented in the full trace. These are:
v Interpreted parameter list
v Return address
v Time that the trace entry was written
v Time interval between trace entries

These items of information are often very useful in the diagnosis of problems. By
selecting the short format, you can gain access to this information without having
to bear the processing overhead of formatting a full trace, and without having to
deal with the mass of information in a full trace.

There may be occasions, however, when you need to look at full format trace
entries, to understand more fully the information given in the corresponding
abbreviated and short entries, and to be aware of the additional data supplied with
many full trace entries.

For abbreviated and full trace formatting, a trace summary table provides
summary information about the trace entries that relate to each task in the system
during the time period. The trace summary table appears at the end of the
formatted trace output. Use the table to see the tasks that were traced, and the
location and number of their trace entries in the trace output. The table also
highlights any long time gaps between the trace entries for a task, which can
indicate a performance problem, and any exception trace entries for a task. The
trace summary table is not produced for short-format trace.

The internal trace table can be formatted in one of two ways:
1. From a CICS system dump, using the CICS print dump exit, DFHPD700.
2. From a transaction dump, using the CICS dump utility program, DFHDU700.

Auxiliary trace can be formatted using the CICS trace utility program, DFHTU700.
You can control the formatting, and you can select trace entries on the basis of
task, terminal, transaction, time frame, trace point ID (single or range), dispatcher

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 255

|
|
|
|
|
|
|
|

task reference, and task-owning domain. This complements the usefulness of
auxiliary trace for capturing large amounts of trace data.

Note: Trace entries can only be formatted selectively by transaction or terminal if
the “transaction attach” entry (point ID XM 1102, XM level-1) for the transaction is
included in the trace data set. The transaction attach entry will not be written if for
example the master system trace flag is switched off and the transaction status is
set to special.

GTF trace can be formatted with the same sort of selectivity as auxiliary trace,
using a CICS-supplied routine with the MVS interactive problem control system
(IPCS).

For more details of trace utility programs, see the CICS Operations and Utilities
Guide.

Interpreting extended-format CICS system trace entries
CICS system trace entries made to the internal trace table, the auxiliary trace data
sets, and the GTF trace data set can all be formatted to give the same type of
information.

About this task

There are two slightly different extended trace entry formats. The short style
resembles the format used in earlier releases of CICS, and gives FIELD A and
FIELD B values. The other long style uses a different format, described below.

Procedure
1. Look at the trace point ID. This is an identifier that indicates where the trace

point is in CICS code. In the case of application (AP) domain, the request type
field included in the entry is also needed to uniquely identify the trace point.
For all other domains, each trace point has a unique trace point ID.
Its format is always a two-character domain index, showing which domain the
trace point is in, then a space, then a four-digit (two-byte) hexadecimal number
identifying the trace point within the domain. The following are examples of
trace point IDs:
AP 00E1 trace point X’00EE’ in Application Domain
DS 0005 trace point X’0005’ in Dispatcher Domain
TI 0101 trace point X’0101’ in Timer Domain

2. Look at the interpretation string. It shows:
v The module where the trace point is located
v The function being performed
v Any parameters passed on a call, and any response from a called routine.

3. Look at the standard information string. It shows:
v The task number, which is used to identify a task uniquely for as long as it

is in the system. It provides a simple way of locating trace entries associated
with specific tasks, as follows:
– A five-digit decimal number shows that this is a trace entry for a task

with a TCA, the value being taken from field TCAKCTTA of the TCA.
– A three-character non-numeric value in this field shows that the trace

entry is for a system task. You could, for example, see “III” (initialization),
or “TCP” (terminal control).

Licensed Materials – Property of IBM

256 CICS TS for z/OS 5.3: Problem Determination Guide

– A two-character domain index in this field shows that the trace entry is
for a task without a TCA. The index identifies the domain that attached
the task.

v The kernel task number (KE_NUM), which is the number used by the
kernel domain to identify the task. The same KE_NUM value for the task is
shown in the kernel task summary in the formatted system dump.

v The time when the trace entry was made. (Note that the GTF trace time is
GMT time.)

v The interval that elapsed between this and the previous trace entry, in
seconds.

The standard information string gives two other pieces of useful information:
v The CICS TCB ID and the address of the MVS TCB (field TCB) that is in

use for this task. This field can help you in comparing a CICS trace with the
corresponding MVS trace. As there can be multiple OTE TCBs, the TCB ID
for an OTE TCB is in the format ccnnn where cc identifies the type of OTE
TCB (e.g. X9, L8 etc.) and nnn is a sequence number identifying which of the
OTE TCBs is in use.

v The return address (field RET), passed in Register 14 to a called routine. This
field helps by showing what invoked the module that is making this trace
entry.

4. Read the data fields, that contain information relevant to the function being
performed.
For short trace points, these are shown as fixed length (4-byte) FIELD A and
FIELD B values in the same line as the interpretation string. Both the
hexadecimal data values and any printable EBCDIC characters that they
represent are shown. Some short trace entries also have a RESOURCE field.
When provided, it is usually the name of a resource associated with the request
being traced. For example, for program control requests, it is the program
name.
For long trace points, 1–7 variable-length data fields can be given. They are
shown immediately below the standard information line. Any printable
EBCDIC characters represented by byte values in the data fields are shown on
the right of the trace.
Some of the data fields in the new trace entries contain material intended for
use by IBM support personnel and you cannot interpret them directly.
However, there is enough information to resolve user errors and for IBM
support personnel to resolve most system errors in the interpretation string for
the entry.

Examples of the extended format for short and long trace entries
The tracing in the AP domain has two different styles of trace entry; the oldest
style of trace entry is short and contains minimal information, whereas the later
style of trace entry is long, containing much more information to help with
problem determination.

Figure 25 shows a trace entry made from a short trace point. Its trace point ID is
AP 00E1, corresponding to trace ID X'E1' in old releases of CICS.

AP 00E1 EIP EXIT INQUIRE-PROGRAM OK REQ(00F4) FIELD-A(00000000) FIELD-B(00004E02 ..+.) BOUNDARY(0200)

TASK-00048 KE_NUM-07FC TCB-L8000/009A0E88 RET-B28102A2 TIME-11:19:53.2944533850 INTERVAL-00.0000226252 =000491=

Figure 25. Example of the extended format for a short trace entry

Licensed Materials – Property of IBM

Chapter 16. Formatting and interpreting trace entries 257

Note: For some trace entries, an 8-character resource field is shown after FIELD B.

The explanation of the short trace entry is as follows:
v AP 00E1 shows that this trace entry was made from trace point X'00E1' in the

application domain.
Although all short trace points are in AP domain, not all AP domain trace points
are short. Some are long trace points and they have a similar format to that
shown in Figure 26. In general, short trace points have values less than or equal
to X'00FF' and new AP-domain trace points have values greater than or equal to
X'0200'

v EIP EXIT INQUIRE-PROGRAM OK is the interpretation string, which gives
information about what was going on at the time the trace entry was made.
– EIP identifies the module where the trace point is located, in this case

DFHEIP.
– EXIT shows that the trace entry was written on completion of processing a

request.
– INQUIRE-PROGRAM shows the type of function requested.

v REQ(00F4) represents the request type of the short trace format. In this example,
byte 1 bits 0–3 (X'F') show that the trace entry is made on exit from the request.

v FIELD-A and FIELD-B contain the same data as FIELD A and FIELD B in the
short format.
FIELD-A bytes 0–3 would contain the secondary response, EIBRESP2. FIELD-B
bytes 0–1 would contain the condition number, EIBRESP. In this example, both
are zero, indicating that no error response has been returned. FIELD-B bytes 2–3
contain the command code, EIBFN. In this example, this is X'4E02', showing that
the EXEC CICS command was INQUIRE PROGRAM.

Note: For some trace entries, an 8-character resource field is shown after FIELD
B.

v BOUNDARY shows the dispatcher state and the EIS boundary flags.
v The standard information string shows:

– TASK-00048 shows that the task number for the currently running task is
00048. Any trace entries having the same task number would have been made
while this task was running.

– KE_NUM-07FC shows that the kernel task number for the task is 07FC. If you
took a system dump while this task was in the system, you could identify the
task in the kernel summary information from this number.

– TCB-L8000/009A0E88 is the address of the MVS TCB.
– RET-B28102A2 is the return address.
– The time when the trace entry was made was 11:19:53.2944533850.
– The interval that elapsed between this and the preceding trace entry was

00.0000226252 seconds.

Figure 26 shows a long trace entry.

The explanation of the long trace entry is as follows:

SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(1A4A) SUSPEND(YES) INITIAL_IMAGE(00) STORAGE_CLASS(TASK)
TASK-00163 KE_NUM-0007 TCB-QR /009F3338 RET-800411F2 TIME-16:31:52.5916976250 INTERVAL-00.0000666250 =000112=

1-0000 00480000 00000011 00000000 00000000 B6700000 00000000 02000100 C4C6C8C3 *............................DFHC*
0020 C5E3D9C4 03BD5BB0 00001A4A 03BD5B01 00000001 01000698 04755D70 40400008 *ETRD..$.... ..$........Q..). ..*
0040 00000FE8 C3C5E3D9 *...YCETR *

Figure 26. Example of the extended format for a long trace entry

Licensed Materials – Property of IBM

258 CICS TS for z/OS 5.3: Problem Determination Guide

v SM 0C01 shows that this trace entry was made from trace point X'0C01' in the
storage manager domain.

v SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(1A4A) SUSPEND(YES)
INITIAL_IMAGE(00) STORAGE_CLASS(TASK) is the interpretation string, which
provides the following information:
– SMMG tells you that the trace call was made from module DFHSMMG.
– ENTRY FUNCTION(GETMAIN) tells you that the call was made on entry to

the GETMAIN function.
– GET_LENGTH(1A4A) SUSPEND(YES) INITIAL_IMAGE(00)

STORAGE_CLASS(TASK) tells you the parameters associated with the
GETMAIN call, as follows:
- The request is for X'1A4A' bytes of storage.
- The task is to be suspended if the storage is not immediately available.
- The storage is to be initialized to X'00'
- The storage class is TASK.

v The standard information string provides the following information:
– The task currently running is task number X'00163'.
– The kernel task number for the task is 0007.
– The time when the trace entry was made was 16:31:52.5916976250.
– The time that elapsed between this and the preceding trace entry was

00.0000666250 seconds.
v The data that is displayed following the standard information was taken from

only one data area.
Storage manager trace points contains details of trace point ID SM 0C01. The
data area is the SMMG parameter list.
Relevant information is formatted from the data area and appears in the trace
entry interpretation string.
Information about some data areas is intended for use by IBM support
personnel, and therefore the details of their format and contents might not be
available to you. If you reach a point at which you are certain that you cannot
continue the problem determination process because you do not have access to
information about a data area, contact your IBM Support Center.

Interpreting short-format CICS system trace entries
About this task

Short-format trace entries contain the information that is presented in the
abbreviated-format trace entry and the following items from the interpretation
string of the extended-format trace entry:
v Interpreted parameter list, showing keyword and value
v Return address
v Time
v Interval

Procedure
v If you are using the short-format for an old-style trace entry, use the following

example to help you interpret the trace. Figure 27 on page 260 shows an
example of the short-format for an old-style entry.

Licensed Materials – Property of IBM

Chapter 16. Formatting and interpreting trace entries 259

In this example:
– 00030 is the task number
– QR is the TCB ID
– AP 00E1 is the trace point ID
– EIP ENTRY INQUIRE-TRACEFLAG is the interpretation string
– REQ(0004) is the type of request
– FIELD-A(071F6018 ..-.) FIELD-B(08007812) are the values of FIELDA

and FIELDB respectively, with their EBCDIC interpretation.
– RET-870844CE is the CALL return address
– 11:39:44.8516351250 is the time the trace entry was made
– 00.0000343750 is the interval since the last trace entry
– =000011= is the trace entry number

v If you are using the short-format for a new-style trace entry, use the following
example to help you interpret the trace. Figure 28 shows an example of the
short-format for a new-style trace entry.
In this example:

– 035925 is the task number
– QR is the TCB ID
– SM 0C01 is the trace point ID.
– SMMG ENTRY GETMAIN GET_LENGTH(6A80SUSPEND(NO) INITIAL_IMAGE(00)

STORAGE_CLASS(USER24) CALLER(EXEC) is the interpretation string, including
the interpreted parameter list.

– RET-8735C8AC is the CALL return address
– 16:28:40.7980146252 is the time the trace entry was made
– 00.0000308750 is the interval since the last trace entry
– =000013= is the trace entry number

The following example denotes the tracing of different OTE TCBs. Notice in
particular that the OTE TCB IDs have a sequential number associated with them
to indicate the TCB that is in use.

00258 X90A4 SM 0301 SMGF ENTRY GETMAIN SUBPOOL_TOKEN(27E5AAAC , 0000007F) GET_LENGTH(448) SUSPEND(YES) INITIAL_IMAGE(00) REMARK
(APPIS) RET-9BAC3384 14:25:09.6470453803 00.0000002812 =002602=

00258 X90A4 SM 0302 SMGF EXIT GETMAIN/OK ADDRESS(1C790000) RET-9BAC3384 14:25:09.6470490678 00.0000036875 =002603=
00258 X90A4 SM 0301 SMGF ENTRY GETMAIN SUBPOOL_TOKEN(27E5AC14 , 00000081) GET_LENGTH(104) SUSPEND(YES) INITIAL_IMAGE(00) REMARK

(APPIS) RET-9BAC3412 14:25:09.6470493803 00.0000003125 =002604=
00258 X90A4 SM 0302 SMGF EXIT GETMAIN/OK ADDRESS(000C0320) RET-9BAC3412 14:25:09.6470503803 00.0000010000 =002605=
00259 X90A6 DS 0010 DSBR ENTRY INQUIRE_TCB RET-9BABF518 14:25:09.6470622773 00.0000118969 =002606=
00259 X90A6 DS 0011 DSBR EXIT INQUIRE_TCB/OK OWNER_TCB_TOKEN(1C387BE0) RET-9BABF518 14:25:09.6470658085 00.0000035312 =002607=

Interpreting abbreviated-format CICS system trace entries
Abbreviated-format CICS trace entries contain much of the information present in
the corresponding extended-format trace entries, and they are often sufficient for
debugging purposes. There is a one-to-one correspondence between the trace entry
numbers for the abbreviated and extended trace entries, so you can easily identify
the trace entry pairs.

00030 QR AP 00E1 EIP ENTRY INQUIRE-TRACEFLAG REQ(0004) FIELD-A(071F6018 ..-.) FIELD-B(08007812)
RET-870844CE 11:39:44.8516351250 00.0000343750 =000011=

Figure 27. Example of the short-format for an old-style trace entry

035925 QR SM 0C01 SMMG ENTRY GETMAIN GET_LENGTH(6A80SUSPEND(NO) INITIAL_IMAGE(00) STORAGE_CLASS(USER24) CALLER(EXEC)
RET-8735C8AC 16:28:40.7980146252 00.0000308750 =000013=

Figure 28. Example of the short-format for a new-style trace entry

Licensed Materials – Property of IBM

260 CICS TS for z/OS 5.3: Problem Determination Guide

About this task

Abbreviated trace entries show the CICS TCB ID of the TCB instead of an MVS
TCB address.

Procedure
v If you are using old-style trace entries, use the following example to help you

interpret the trace.
In this example:

– 00021 is the task number
– QR is the TCB ID
– AP 00E1 is the trace point ID
– EIP ENTRY INQUIRE-TRACEFLAG is the abbreviated interpretation string
– 0004 is the request field
– 00223810 is FIELDA, with its EBCDIC interpretation
– 00007812 is FIELDB, with its EBCDIC interpretation
– =000005= is the trace entry number

Note: For some trace entries, an 8-character resource field appears to the right of
FIELD B. Also, some trace entries include a RESOURCE field.
For ZCP trace entries, FIELD B (which contains the TCTTE address) is printed
twice on each line. This allows both sides of the output to be scanned for the
terminal entries on an 80-column screen without having to scroll left and right.

v If you are using new-style trace entries, use the following example to help you
interpret the trace.
In this example:

– 00021 is the task number
– QR is the TCB ID
– AP 00E1 is the trace point ID
– LDLD EXIT ACQUIRE_PROGRAM/OK 03B8A370 ,

00000001,848659C0,048659A0,410,200,REUSABLE is the abbreviated
interpretation string

– =000005= is the trace entry number
1. Abbreviated-format new-style trace entries are less readily interpreted,

because the parameters in the interpretation string are not identified by
name. If you are not familiar with the parameters included in the trace entry,
you need to look at the corresponding extended-format (or short-format)
trace entry to find out what they are. Figure 31 on page 262 shows the
corresponding extended-format trace entry.

00021 QR AP 00E1 EIP ENTRY INQUIRE-TRACEFLAG 0004,00223810,00007812 =000005=

Figure 29. Example of the abbreviated format for an old-style trace entry

00021 QR LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 03B8A370 , 00000001,848659C0,048659A0,410,200,REUSABLE =000023=

Figure 30. Example of the abbreviated format for a new-style trace entry

Licensed Materials – Property of IBM

Chapter 16. Formatting and interpreting trace entries 261

LD 0002 shows that this trace entry was made from trace point X'0002' in the
loader domain.
The interpretation string provides this information:
– LDLD tells you the trace call was made from within module DFHLDLD.
– EXIT FUNCTION(ACQUIRE_PROGRAM) tells you the call was made on

exit from the ACQUIRE_PROGRAM function
The standard information string gives you this information:
– The task currently running has a task number of 00021.
– The kernel task number for the task is 0007.
– The time when the trace entry was made was 10:45:49.6888118129. (Note

that the GTF trace time is GMT time.)
– The time that elapsed between this and the preceding trace entry was

00.0000235625 seconds.
The data displayed below the standard information was taken from only one
data area. If you look in CICS Trace Entries for details of trace point ID LD
0002, you will see that the data area is the LDLD parameter list.

The following example denotes the tracing of different TCBs. Notice in particular
that the OTE TCB IDs have a sequential number associated with them to
indicate the TCB that is in use.

00255 QR SM 0D01 SMMF ENTRY FREEMAIN EIIC TEM,1D710958,TEMPSTG =001561=
00256 L9016 SM 0301 SMGF ENTRY GETMAIN CAD0,YES,LE_RUWA,TASK31 =001562=
00255 QR SM 0D02 SMMF EXIT FREEMAIN/OK USER storage at 1D710958 =001563=
00256 L9016 LM 0003 LMLM ENTRY LOCK 1AF55C48,EXCLUSIVE =001564=
00256 L9016 LM 0004 LMLM EXIT LOCK/OK =001565=
00255 L9015 AP 00E1 EIP EXIT RETRIEVE OK 00F4,00000000,0000100A =001566=

Interpreting user trace entries
User trace entries have point IDs in the range AP 0000 through AP 00C2, the
numeric part of the point ID being specified in the application.

About this task

Extended format user trace entries show a user-defined resource field, and a
user-supplied data field that can be up to 4000 bytes in length. A typical
extended-format entry is shown in Figure 32.

The interpretation string for the entry contains the string “APPLICATION-
PROGRAM-ENTRY”, to identify this as a user trace entry, and the resource field.

LD 0002 LDLD EXIT - FUNCTION(ACQUIRE_PROGRAM) RESPONSE(OK) NEW_PROGRAM_TOKEN(03B8A370 , 00000001) ENTRY_POINT(848659C0) LOAD_POINT
(048659A0) PROGRAM_LENGTH(410) FETCH_TIME(200) PROGRAM_ATTRIBUTE(REUSABLE)

TASK-00021 KE_NUM-0007 TCB-QR /009FF3C0 RET-847B26A2 TIME-10:45:49.6888118129 INTERVAL-00.0000235625 =000023=
1-0000 00880000 0000001C 00000000 00000000 BBA02800 00000000 01000100 C4C6C8C3 *.h..........................DFHC*

0020 D9D84040 FD052000 00062060 03B8A370 00000001 848659C0 048659A0 A4F78696 *RQ-..t.....df...f..u7fo*
0040 00000410 C3D9E2D8 00000000 C3C9C3E2 E4E2C5D9 01010002 1C000000 00000000 *....CRSQ....CICSUSER............*
0060 00000000 00000200 C302D840 40000500 01000000 00000000 00000000 00000000 *........C.Q*
0080 00000000 00000000 *........ *

Figure 31. Example of the corresponding extended-format trace entry

AP 000B USER EVENT - APPLICATION-PROGRAM-ENTRY - SEND - CICS USER TRACE ENTRY HELP INFORMATION
TASK-00163 KE_NUM-0007 TCB-QR /009F3338 RET-8003F54C TIME-16:32:01.1295568750 INTERVAL-00.0001965625 =000731=

1-0000 E4E2C5D9 404040 *USER *
2-0000 C3C9C3E2 40E4E2C5 D940E3D9 C1C3C540 C5D5E3D9 E8404040 40404040 40404040 *CICS USER TRACE ENTRY *

0020 C8C5D3D7 40C9D5C6 D6D9D4C1 E3C9D6D5 40404040 40404040 40404040 40404040 *HELP INFORMATION *
0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
0060 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

3-0000 E2C5D5C4 40404040 *SEND *

Figure 32. Example of the extended format for a user trace entry

Licensed Materials – Property of IBM

262 CICS TS for z/OS 5.3: Problem Determination Guide

There are three data fields on an extended-format user trace entry:
1. The character string “USER”.
2. User data from the area identified in the FROM parameter of the trace

command.
3. The resource field value identified in the RESOURCE parameter of the trace

command.

The abbreviated-trace entry corresponding to the extended trace entry of Figure 32
on page 262 is shown in Figure 33.

Abbreviated-format trace entries show the user resource field in the interpretation
string. There is also an optional user data field that contains as much user-specified
data as can be fitted into the line. If successive user trace entries have the same
resource field value, but different data field values, you might need to see the
corresponding extended trace entries to assess their significance. Figure 34 shows
an example of the short format for a user trace entry.

00163 QR AP 000B USER EVENT APPLICATION-PROGRAMRY SEND CICS USER TRACE ENTRY HELP INFORMATION =000731=

Figure 33. Example of the abbreviated format for a user trace entry

00031 QR AP 000B USER EVENT APPLICATION-PROGRAM-E SEND - CICS USE RET-800820A2 11:42:27.1176805000 00.0000 247500 =00 0815=

Figure 34. Example of the short format for a user trace entry

Licensed Materials – Property of IBM

Chapter 16. Formatting and interpreting trace entries 263

Licensed Materials – Property of IBM

264 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 17. Using dumps in problem determination

You have the choice of two different types of CICS dump to help you with
problem determination. They are the transaction dump, of transaction-related
storage areas, and the CICS system dump, of the entire CICS region.

The type of dump to use for problem determination depends on the nature of the
problem. In practice, the system dump is often more useful, because it contains
more information than the transaction dump. You can be reasonably confident that
the system dump has captured all the evidence you need to solve your problem,
but it is possible that the transaction dump might have missed some important
information.

The amount of CICS system dump data that you could get is potentially very
large, but that need not be a problem. You can leave the data on the system dump
data set, or keep a copy of it, and format it selectively as you require.

You can control the dump actions taken by CICS, and also what information the
dump output contains. There are two aspects to controlling dump action:
1. Setting up the dumping environment, so that the appropriate dump action is

taken when circumstances arise that might cause a dump to be taken.
2. Causing a dump to be taken. Both users and CICS can issue requests for

dumps to be taken.

For information about using dumps to solve FEPI problems, see the CICS Front
End Programming Interface User's Guide.

Setting up the dumping environment
There are several levels at which the dumping environment can be set up.

About this task

Procedure
v To globally suppress or enable system dumps at system initialization, use the

DUMP system initialization parameter This does not apply to CICS kernel domain
dumps.

v To globally suppress or enable system dumps dynamically, use the EXEC CICS
SET SYSTEM DUMPING command. This does not apply to CICS kernel domain
dumps.

v To enable or suppress transaction dumps for individual transactions, use one of
the following options:
– EXEC CICS SET TRANSACTION DUMPING system programming command
– CEMT SET TRDUMPCODE command
– DUMP attribute of the RDO definition for the transaction.

v To suppress specific dump codes from a dump domain, use the XDUREQ global
user exit program. This does not apply to CICS kernel domain dumps.

v To suppress or enable system dumps (apart from CICS kernel domain dumps),
and specifying other dumping requirements, use dump codes. A dump code
defines what action CICS is to take under any of the circumstances in which a

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 265

dump might be required. Dump codes are kept in one of two dump tables, one
for transaction dump codes and the other for system dump codes. For details,
see “The dump code options you can specify” on page 278.

v To enable dumps of the builder parameter at specific stages in the build process
of terminal or connection definitions, use the CSFE ZCQTRACE facility. For
details, see “The CSFE ZCQTRACE facility” on page 287.

Detecting and avoiding duplicate system dumps
When more than one CICS system runs under one instance of the MVS operating
system, two CICS systems can take duplicate system dumps.

Each CICS system dump header includes a symptom string. The symptom string
will be created only if the system dump code has the DAE option specified in the
dump table entry. The default action is that symptom strings are not produced.
This can, however, be altered by means of the DAE system initialization parameter.

The symptom strings provide sufficient information to enable the detection of
duplicate dumps. You can take advantage of this in either of two ways:
1. Use MVS Dump Analysis Elimination (DAE) to detect and suppress duplicate

dumps. (If the symptom string has been suppressed by the dump table option,
DAE will not suppress the system dump.)
You can control DAE with an ADYSETxx parmlib member. For information
about DAE, see z/OS MVS Diagnosis: Tools and Service Aids.

2. Manually compare the headers of system dumps, so that you are aware that
you have duplicate dumps. Doing it this way, you avoid repeating the same
analysis, but still have a separate dump listing for each CICS system.

Where dumps are written
Transaction dumps and system dumps are written to different destinations.
v Transaction dumps go to a pair of CICS BSAM data sets, with DD names

DFHDMPA and DFHDMPB. Some of the attributes of these data sets can be set
by system initialization parameters, some can be set dynamically using CEMT
SET DUMPDS or EXEC CICS SET DUMPDS, and all can be inquired on by
using CEMT INQ DUMPDS or EXEC CICS INQUIRE DUMPDS. DFHDMPA and
DFHDMPB have the following attributes:
– CURRENTDDS status. This tells you the data set that is currently active,

which is the one where transaction dumps are currently written.
You can use the system initialization parameter DUMPDS to specify the
transaction dump data set that is to be opened during initialization. You can
use the CEMT SET DUMPDS transaction or an EXEC CICS SET command to switch
the dump data sets.

– One of the statuses OPEN or CLOSED. A transaction dump data set must be
OPEN if it is to be written to.

– The current data set has one of the statuses AUTOSWITCH or
NOAUTOSWITCH. You can set the status during system initialization using
the DUMPSW system initialization parameter, and you can set it dynamically
using the CEMT transaction or an EXEC CICS SET command.
If the status is AUTOSWITCH, a switch is made automatically to the other
dump data set when the current one becomes full, and subsequent transaction
dumps are written to the new dump data set. The overflowing transaction
dump is written in its entirety to the new dump data set.

Licensed Materials – Property of IBM

266 CICS TS for z/OS 5.3: Problem Determination Guide

The dump data set being switched to does not inherit the AUTOSWITCH
status, to prevent data in the first dump data set from being overwritten by
another switch. You need to reset the AUTOSWITCH status explicitly, if you
want it.
If the status is NOAUTOSWITCH, a switch is not made when the current
dump data set becomes full, so no more transaction dumps can be written.

v CICS system dumps are written to MVS dump data sets. CICS can write only
one system dump to any individual dump data set.
If another address space is already taking an SDUMP when CICS issues the
SDUMP macro, the request fails but is automatically retried. You can use the
DURETRY system initialization parameter to define the total time that CICS is to
continue trying to take an SDUMP.
If CICS tries to take an SDUMP when all the dump data sets are full, the dump
is lost. Because of this, it is advisable to monitor the number of full data sets,
and to take copies of dumps before processing them, so that you can free the
dump data sets for reuse.

Events that can cause dumps to be taken
The following are the events that can cause dumps to be taken, if the dumping
environment allows dumping under the circumstances:

Explicit requests for dumps from users
CICS transaction abends
CICS system abends.

On most occasions when dumps are requested, CICS references a dump code that
is specified either implicitly or explicitly to determine what action should be taken.
Dump codes are held in two dump tables, the transaction dump table and the
system dump table.

Note: Due to the circumstances under which they are called, the following
transactions might not always produce a transaction dump:

ASPF
ASPN
ASPO
ASPP
ASPQ
ASPR
ASP1
ASP2
ASP3
ASP7
ASP8

The ways that you can request dumps
You can issue an explicit request for a dump by using the CEMT transaction, by
using an EXEC CICS command, or by using an exit programming interface (XPI)
call.

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 267

|
|

|

|

|

|

|

|

|

|

|

|

|

v CEMT PERFORM [DUMP|SNAP] enables you to get a CICS system dump from the
master terminal, if system dumping has not been globally suppressed. The
system dump code that is needed is supplied by CICS, and it has a specific
value of “MT0001”.

v You can use EXEC CICS PERFORM DUMP to get a CICS system dump, if system
dumping is not globally suppressed. You must specify a system dump code
when you use this command and it must be a maximum of 8 characters in
length.

v You can use EXEC CICS DUMP TRANSACTION to get a transaction dump. You get a
transaction dump even if dumping has been suppressed for the transaction that
you identify on the command.
You must specify a transaction dump code when you use this command and it
must be a maximum of 4 characters in length. It could, for example, be TD01.

v You can make a TRANSACTION_DUMP or a SYSTEM_DUMP XPI call from an
exit program to get a transaction dump or a system dump, respectively. For
programming information about these exits, see the CICS Customization Guide.

You might use these methods of taking dumps if, for example, you had a task in a
wait state, or you suspected that a task was looping. However, these methods are
not useful for getting information following a transaction abend or a CICS system
abend. This is because the evidence you need is almost certain to disappear before
your request for the dump has been processed.

Specifying the areas you want written to a transaction dump
When you use the EXEC CICS DUMP TRANSACTION command to get a transaction
dump, you can specify which areas of storage are to be dumped. You cannot
specify in the dump table which areas are to be written to the transaction dump
for particular transaction dump codes. You always get a complete transaction
dump whenever a transaction abend occurs, if the dump code requires a
transaction dump to be taken.

The occasions when CICS requests a dump
In general, CICS requests a dump when a transaction or CICS system abend
occurs. The dumping environment determines whether or not a dump is taken.

CICS does not take a transaction dump if a HANDLE ABEND is active at the
current logical level. This is called an implicit HANDLE ABEND and causes the
suppression of transaction dumps. To make PL/I on units work, PL/I library
routines can issue HANDLE ABEND. The NODUMP option on an EXECS CICS
ABEND command, an internal call, or the transaction definition, prevents the taking
of a transaction dump.

The following are the occasions when CICS requests a dump:
v CICS requests a transaction dump, and perhaps a system dump, after a

transaction abend occurs. There are two cases:
– You can include the command EXEC CICS ABEND in one of your applications,

causing it to abend when some condition occurs. You must specify a
four-character transaction abend code on this command, and this is used as
the transaction dump code. It could, for example, be ‘MYAB’.

– CICS might cause a transaction to abend, for any of the reasons described in
CICS Messages and Codes. In this case, the four-character CICS transaction
abend code is used as the transaction dump code. It might, for example, be
ASRA.

Licensed Materials – Property of IBM

268 CICS TS for z/OS 5.3: Problem Determination Guide

v A CICS system dump could be taken following a CICS system abend. In this
situation, the system dump code is often equal to the abend message ID, with
the leading letters “DFH” stripped off. In the case of message DFHST0001, for
example, the system dump code would be “ST0001”. However, in some cases
the system dump code cannot be directly related to a CICS message, either
because it does not closely resemble the message, or because no message
accompanies the event causing the dump to be invoked. For details of these
system dump codes, see CICS Messages and Codes.

v When a transaction dump or system dump is taken, and the dump code
includes the RELATED attribute on the DUMPSCOPE option, system dumps are
taken of all CICS regions in the sysplex which are related to the CICS region on
which this transaction dump or system dump is taken. A related CICS region is
one in which the unit of work identifiers, in the form of APPC tokens, of one or
more tasks match those in the CICS region that issued the dump request.
Typically, these may be regions in a distributed transaction processing
environment.

v A CICS system dump can be requested from within the Node Error Program
(NEP) when a terminal error is processed for a terminal with no task attached.
For information about using NEPs to handle terminal errors, read the entry for
message DFHZC3496 in CICS Messages and Codes; also read the programming
information on NEPs in the CICS Customization Guide.

v A CICS system dump can also be requested from the global trap/trace exit. In
this case, the system dump code is TR1003.

CICS dumps in a sysplex
You can capture simultaneous dump data from multiple CICS regions across a
sysplex. This facility helps with problem determination in XCF/MRO
environments where many CICS regions are running.

Capturing dump data in this way is useful in the following situations:
v A task involves multiple CICS regions in a sysplex and one region issues a

dump, typically in response to an error.
To fully diagnose and solve the problem, dump data from all CICS regions
related to the region that issues the dump request is usually required. This
dump data must be captured at the same time as the dump taken on the region
that issues the dump.

v A MVS console operator needs to capture, simultaneously, dump data from
multiple CICS regions in the sysplex.

To collect dump data in this way, you need MVS/ESA 5.1, the z/OS Workload
Manager (WLM), and the XCF facility. The z/OS images in the sysplex must be
connected through XCF. The CICS regions must be using MRO that is supported
by the CICS TS 5.3 interregion communication program, DFHIRP.

Automatic dump data capture from related CICS regions
It is possible to collect dump data simultaneously from all related CICS regions in
a sysplex. Related CICS regions are those containing one or more tasks which have
unit of work identifiers, in the form of APPC tokens, that match the unit of work
identifiers in the CICS region which initially issued the dump request.

The CICS regions must be connected via XCF/MRO. Connections using thez/OS
Communications Server (SNA) ISC are not eligible to use the related dump facility.

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 269

The function is controlled by the DUMPSCOPE option on each CICS dump table
entry. You can set this option to have either of the following values:
v RELATED - take dumps for all related CICS regions across the sysplex.
v LOCAL - take dumps for the requesting CICS region only. This is the default.

The DUMPSCOPE option is available on the following master terminal and system
programming commands:
v EXEC CICS INQUIRE SYSDUMPCODE
v EXEC CICS SET SYSDUMPCODE
v EXEC CICS INQUIRE TRANDUMPCODE
v EXEC CICS SET TRANDUMPCODE
v CEMT INQUIRE SYDUMPCODE
v CEMT SET SYDUMPCODE
v CEMT INQUIRE TRDUMPCODE
v CEMT SET TRDUMPCODE

If the DUMPSCOPE option is set to RELATED in the CICS region issuing the
dump request, a request for a system dump is sent to all MVS images in the
sysplex that run related CICS regions.

The local MVS image running the CICS region that initiated the dump request has
two dumps - one of the originating CICS region, the other containing the
originating CICS region and up to fourteen additional related CICS regions from
the local MVS image.

When a dump is requested, the DUMPSCOPE option is tested only in the CICS
region issuing the original dump request. If the requesting CICS region has
DUMPSCOPE defined as RELATED for the dump code, then all related CICS
regions are dumped even if they have DUMPSCOPE defined as LOCAL for the
dump code.

There is a maximum of fifteen address spaces in an SDUMP. If there are more than
fifteen related CICS regions on an MVS image, then not all of them will be
dumped. Related CICS regions may also fail to be dumped if they are swapped
out when the dump request is issued. You should consider whether to make
certain CICS regions non-swappable as a result.

Operator-requested simultaneous dump data capture
The MVS console operator might want to issue a dump request simultaneously to
several CICS regions in the sysplex. There might be a problem in the sysplex
where one or more CICS regions is hanging and, to fully diagnose and solve the
problem, dump data captured at the same time is required.

Without this facility, such simultaneous dump data capture across multiple CICS
regions in the sysplex is impossible.

Use the following command at the console:
DUMP COMM=()
R x,REMOTE=(SYSLIST=*),PROBDESC=(SYSDCOND,SYSDLOCL,(DFHJOBN,jobnames))

where:
v REMOTE controls the issuing of dumps on remote systems.
v SYSLIST=* means the request is to be routed to all remote systems.
v PROBDESC is problem description information, as follows:

Licensed Materials – Property of IBM

270 CICS TS for z/OS 5.3: Problem Determination Guide

– SYSDCOND is an MVS keyword that specifies that a dump is to be taken on
remote MVS images if the IEASDUMP.QUERY exit responds with return code
0. CICS supplies DFHDUMPX as the IEASDUMP.QUERY exit.

– SYSDLOCL is an MVS keyword that drives the IEASDUMP.QUERY exit on the
local and remote MVS images. This allows the CICS regions on the local MVS
region to be dumped.

– DFHJOBN is a CICS keyword. The operator should include the generic job
name. This is used by DFHDUMPX to determine which address spaces to
dump.

For a description of all command options, see z/OS MVS System Commands.

If you adopt a suitable naming convention for your CICS regions, this can be used
to define suitable generic job names to determine which CICS regions to dump.
For recommendations on naming conventions, see z/OS V1R1.0-V1R12.0 Parallel
Sysplex Application Migration. If you follow these recommendations, the generic
job name for all CICS regions in the sysplex would be CICS*.

Requesting dumps to resolve SMSVSAM problems
You may sometimes encounter a CICS problem that involves SMSVSAM. If you
need to submit such a problem to IBM, in particular where CICS or a CICS
transaction is in a hung state while accessing VSAM data sets in RLS mode,
include a dump of the following items.
v All the SMSVSAM server address spaces in the sysplex, together with their

associated data spaces
v The address space of the CICS region that is hanging
v The GRS address space
v The VSAM CATALOG address space.

You can obtain such a dump by using the following command:
/DUMP COMM=(comment to describe the problem)

When MVS responds, reply to WTOR number nn with the following:
/R nn,JOBNAME=(CICS-job-name,SMSVSAM,CATALOG,GRS),DSPNAME=’SMSVSAM’.*,

REMOTE=(SYSLIST=*(’SMSVSAM’,’CATALOG’,’GRS’),DSPNAME,SDATA,
END

Note: You can use the CONT option to split this command into parts, as follows:
/R nn,JOBNAME=(CICS-job-name,SMSVSAM,CATALOG,GRS), CONT
/R nn,DSPNAME=’SMSVSAM’.*,REMOTE=(SYSLIST=*(’SMSVSAM’, CONT
/R nn,’CATALOG’,’GRS’),DSPNAME,SDATA, END

Useful CICS master terminal and MVS console commands in a
sysplex

MVS support for remote SDUMPs is available only for images running
MVS/ESA 5.1 or later and which are connected by XCF. Related CICS SDUMPs
are produced only for CICS regions which are MRO connected using XCF.

DFHIRP must be at CICS TS 5.3 level. Connections using z/OS Communications
Server ISC are not eligible to use the related dump facility.

If you are unable to produce related system dumps when there are related CICS
regions across MVS images, ensure that the regions are MRO connected.

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 271

http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ieag100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.e0sp401/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.e0sp401/toc.htm

Use the command CEMT I IRC to ensure that interregion communication is
available. If IRC is not available it may be started using the CEMT S IRC OPEN
command. Failure to start IRC results in DFHIRxxx messages which may be used
to identify the source of the problem.

During IRC start processing, CICS attempts to join XCF group DFHIR000. If this
fails, return code yyy is given in the DFHIR3777 message.

The following MVS console commands may be used to monitor activity in the
sysplex:
v D XCF - to identify the MVS sysplex and list the name of each MVS image in the

sysplex.
An example of a response to this command looks like this:

This response tells you that MVS image DEV5 has joined sysplex DEVPLEX5.
v D XCF,GROUP - to list active XCF groups by name and size (note that CICS, group

DFHIR000, is missing from the following example response).

v D XCF,COUPLE - to list details about the XCF coupling data set and its definitions.
In the following example response, the data set has a MAXGROUP of 10 and a
peak of 10. The response to XCF,GROUP indicates there are currently 10 active
groups. If CICS now attempts to join XCF group DFHIR000, it will be rejected
and the IRC start will fail with message DFHIR3777.

08.14.16 DEV5 d xcf
08.14.16 DEV5 IXC334I 08.14.16 DISPLAY XCF 602

SYSPLEX DEVPLEX5: DEV5

16.21.36 DEV5 d xcf,group
16.21.36 DEV5 IXC331I 16.21.36 DISPLAY XCF 877

GROUPS(SIZE): COFVLFNO(1) SYSDAE(2) SYSGRS(1)
SYSIGW00(1) SYSIGW01(1) SYSIKJBC(1)
SYSMCS(6) SYSMCS2(3) SYSWLM(1)
WINMVSG(1)

16.30.45 DEV5 d xcf,couple
16.30.45 DEV5 IXC357I 16.30.45 DISPLAY XCF 883
SYSTEM DEV5 DATA

INTERVAL OPNOTIFY MAXMSG CLEANUP RETRY CLASSLEN
42 45 500 60 10 956

SSUM ACTION SSUM INTERVAL WEIGHT
N/A N/A N/A

SYSPLEX COUPLE DATA SETS
PRIMARY DSN: SYS1.XCFDEV5.PXCF

VOLSER: SYS001 DEVN: 0F0E
FORMAT TOD MAXSYSTEM MAXGROUP(PEAK) MAXMEMBER(PEAK)
08/16/93 08:05:39 8 10 (10) 87 (6)

ALTERNATE DSN: SYS1.XCFDEV5.AXCF
VOLSER: SYS001 DEVN: 0F0E
FORMAT TOD MAXSYSTEM MAXGROUP MAXMEMBER
08/16/93 08:05:41 8 10 87

Licensed Materials – Property of IBM

272 CICS TS for z/OS 5.3: Problem Determination Guide

This example also indicates that the primary and alternate data sets are on the
same volume, thereby giving rise to a single point of failure.

Use the command CEMT I CONNECTION to display the status of the connections.
‘XCF' is displayed for every acquired connection using MRO/XCF for
communications.

CICS initialization issues an MVS CSVDYNEX request to add DFHDUMPX as an
MVS IEASDUMP.QUERY exit. If you need to change the status of the exit, use the
MVS console command SETPROG EXIT.

If you have determined that XCF communication is in use, you can verify that the
CICS SDUMP exit has been established using the following MVS commands:

This example indicates that the exit has not been established.

The following displays indicate that DFHDUMPX is active as an IEASDUMP exit
with one CICS TS 5.3 region active in one MVS image.

You may issue MVS dump commands from the console to verify that remote
dumping is available within the MVS image, without an active CICS region.

I CONNECTION
STATUS: RESULTS - OVERTYPE TO MODIFY
Con(FORD) Net(IYAHZCES) Ins Acq Xcf
Con(F100) Net(IYAHZCEC) Ins Acq Irc
Con(F150) Net(IYAHZCED) Ins Acq Irc
Con(GEO) Net(IYAHZCEG) Ins Acq Xcf
Con(GMC) Net(IYAHZCEB) Ins Acq Xcf
Con(JIM) Net(IYAHZCEJ) Ins Acq Xcf
Con(MARY) Net(IYAHZCEM) Ins Acq Xcf
Con(MIKE) Net(IYAHZCEI) Ins Acq Xcf

+ Con(RAMB) Net(IYAHZCEE) Ins Acq Xcf
SYSID=CHEV APPLID=IYAHZCET

RESPONSE: NORMAL TIME: 01.28.59 DATE: 06.11.94
PF 1 HELP 3 END 7 SBH 8 SFH 9 MSG 10 SB 11 SF

D PROG,EXIT,MODNAME=DFHDUMPX
08.16.04 DEV5 CSV463I MODULE DFHDUMPX IS NOT ASSOCIATED ANY EXIT

D PROG,EXIT,EN=IEASDUMP.QUERY
08.17.44 DEV5 CSV463I NO MODULES ARE ASSOCIATED WITH EXIT IEASDUMP.QUERY

D PROG,EXIT,MODNAME=DFHDUMPX
01.19.16 DEV5 CSV461I 01.19.16 PROG,EXIT DISPLAY 993
EXIT MODULE STATE MODULE STATE MODULE STATE
IEASDUMP.QUERY DFHDUMPX A

D PROG,EXIT,EN=IEASDUMP.QUERY
01.19.46 DEV5 CSV462I 01.19.46 PROG,EXIT DISPLAY 996
MODULE DFHDUMPX
EXIT(S) IEASDUMP.QUERY

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 273

In the next example, the messages from SDUMP indicate that one dump of the
master address space has been taken.

Another test is to issue the dump command specifying the CICS XCF group.

The messages from SDUMP indicate that one dump of the master address space
has been taken.

To verify that the remote dumping function works on the local system, use the
following commands:

11.29.59 DEV5 dump comm=(NO CICS)
11.29.59 DEV5 *03 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
11.36.49 DEV5 r 03,remote=(syslist=*),probdesc=(sysdcond,
sysdlocl,(dfhjobn,iyahzcet))

11.36.49 DEV5 IEE600I REPLY TO 03 IS;REMOTE=(SYSLIST=*),
PROBDESC=(SYSDCOND,SYSDL

11.36.52 DEV5 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=001 REQUESTED BY JOB (*MASTER*)
DUMP TITLE=NO CICS

*11.37.03 DEV5 *IEA911E COMPLETE DUMP ON SYS1.DUMP03
*DUMPID=001 REQUESTED BY JOB (*MASTER*)
*FOR ASID (0001)
*REMOTE DUMPS REQUESTED
*INCIDENT TOKEN: DEVPLEX5 DEV5 06/28/1994 11:36:49

11.42.33 DEV5 dump comm=(STILL NO CICS)
11.42.33 DEV5 *05 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
11.43.27 DEV5 r 05,remote=(grplist=dfhir000(*)),
probdesc=(sysdcond,sysdlocl,(dfhjobn,iyahzcet))

11.43.28 DEV5 IEE600I REPLY TO 05
IS;REMOTE=(GRPLIST=DFHIR000(*)),PROBDESC=(SYSD

11.43.31 DEV5 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=002 REQUESTED BY JOB (*MASTER*)
DUMP TITLE=STILL NO CICS

*11.43.42 DEV5 *IEA911E COMPLETE DUMP ON SYS1.DUMP03
*DUMPID=002 REQUESTED BY JOB (*MASTER*)
*FOR ASID (0001)
*REMOTE DUMPS REQUESTED
*INCIDENT TOKEN: DEVPLEX5 DEV5 06/28/1994 11:43:28

Licensed Materials – Property of IBM

274 CICS TS for z/OS 5.3: Problem Determination Guide

The messages from SDUMP indicate two dumps were taken, one for the master
address space and a second which contains ASIDs 0101, 0012, 0001, 0005, 000B,
000A, 0008, 0007. Note that the same incident token is used for both dumps.

The following example lists the MVS console messages received when the CICS
master terminal command CEMT P DUMP is issued from CICS APPLID
IYAHZCET executing in ASID 19 on MVS image DEV6. IYAHZCET has at least
one related task in the CICS region executing in ASID 1B on MVS DEV6 and
ASIDS 001A, 001C, 001B, 001E, 001F, 0020, 001D, 0022, 0024, 0021, 0023, 0028, 0025,
0029, 0026 on MVS image DEV7.

The dump in SYS1.DUMP03 on DEV6 was taken as a result of the CEMT request
on IYAHZCET.

11.45.57 DEV5 dump comm=(TEST REMOTE FUNCTION ON LOCAL SYSTEM
11.45.57 DEV5 *06 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
11.46.57 DEV5 r 06,remote=(grplist=*(*)),probdesc=(sysdlocl)
11.46.59 DEV5 IEE600I REPLY TO 06 IS;REMOTE=(GRPLIST=*(*)),
PROBDESC=(SYSDLOCL)

11.47.00 DEV5 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=003 REQUESTED BY JOB (*MASTER*)
DUMP TITLE=TEST REMOTE FUNCTION ON LOCAL SYSTEM
11.47.17 DEV5 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=004 REQUESTED BY JOB (DUMPSRV)
DUMP TITLE=TEST REMOTE FUNCTION ON LOCAL SYSTEM

*11.47.39 DEV5 *IEA911E COMPLETE DUMP ON SYS1.DUMP03
*DUMPID=003 REQUESTED BY JOB (*MASTER*)
*FOR ASID (0001)
*REMOTE DUMPS REQUESTED
*INCIDENT TOKEN: DEVPLEX5 DEV5 06/28/1994 11:46:57
*11.47.59 DEV5 *IEA911E COMPLETE DUMP ON SYS1.DUMP04
*DUMPID=004 REQUESTED BY JOB (DUMPSRV)
*FOR ASIDS(0101,0012,0005,0001,000A,000B,0008,0007)
*REMOTE DUMP FOR SYSNAME: DEV5
*INCIDENT TOKEN: DEVPLEX5 DEV5 06/28/1994 11:46:57

- 22.19.16 DEV6 JOB00029 +DFHDU0201 IYAHZCET ABOUT TO TAKE SDUMP. DUMPCODE: MT0001
- 22.19.23 DEV7 DFHDU0214 DFHDUMPX IS ABOUT TO REQUEST A REMOTE SDUMPX.
- 22.19.23 DEV6 DFHDU0214 DFHDUMPX IS ABOUT TO REQUEST A REMOTE SDUMPX.

22.19.27 DEV6 JOB00029 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=001 REQUESTED BY JOB (IYAHZCET)
DUMP TITLE=CICS DUMP: SYSTEM=IYAHZCET CODE=MT0001 ID=1/0001

22.19.43 DEV6 JOB00029 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=002 REQUESTED BY JOB (DUMPSRV)
DUMP TITLE=CICS DUMP: SYSTEM=IYAHZCET CODE=MT0001 ID=1/0001

- 22.19.43 DEV6 JOB00029 +DFHDU0202 IYAHZCET SDUMPX COMPLETE. SDUMPX RETURN CODE X’00’

*22.21.00 DEV6 *IEA911E COMPLETE DUMP ON SYS1.DUMP03
*DUMPID=001 REQUESTED BY JOB (IYAHZCET)
*FOR ASID (0019)
*REMOTE DUMPS REQUESTED
*INCIDENT TOKEN: DEVPLEX1 DEV6 06/10/1994 22:19:16
*ID = DUMP : APPLID IYAHZCET DUMPCODE MT0001 /1/0001

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 275

The dump in SYS1.DUMP04 on DEV6 was taken as a remote dump by MVS dump
services as a result of the CEMT request on IYAHZCET. Note that the incident
token and ID are the same.

The dump in SYS1.DUMP05 on DEV7 was taken as a remote dump by MVS dump
services as a result of the CEMT request on IYAHZCET. Note that the incident
token and ID are the same as those for the dumps produced on DEV6, indicating
the originating MVS and CICS IDs.

The following example lists the MVS console messages received when transaction
abend SCOP is initiated after having first been added to the transaction dump
table in CICS IYAHZCES as requiring related dumps. (CEMT S TRD(SCOP) ADD
RELATE).

CICS IYAHZCES (ASID 1A in MVS DEV7) has at least one related task in CICS
IYAHZCET (ASID 19 in MVS DEV6).

The dump in SYS1.DUMP03 on DEV6 was taken upon receipt of the remote dump
request issued from IYAHZCES. Note the incident token and ID are the same as

*22.21.15 DEV6 *IEA911E COMPLETE DUMP ON SYS1.DUMP04
*DUMPID=002 REQUESTED BY JOB (DUMPSRV)
*FOR ASIDS(0019,001B)
*REMOTE DUMP FOR SYSNAME: DEV6
*INCIDENT TOKEN: DEVPLEX1 DEV6 06/10/1994 22:19:16
*ID = DUMP : APPLID IYAHZCET DUMPCODE MT0001 /1/0001

22.22.35 DEV7 JOB00088 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=003 REQUESTED BY JOB (DUMPSRV)
DUMP TITLE=CICS DUMP: SYSTEM=IYAHZCET CODE=MT0001 ID=1/0001

*22.25.58 DEV7 *IEA911E COMPLETE DUMP ON SYS1.DUMP05
*DUMPID=003 REQUESTED BY JOB (DUMPSRV)
*FOR ASIDS(001A,001C,001B,001E,001F,0020,001D,0022,0024,0021,0023,0028,
*0025,0029,0026)
*REMOTE DUMP FOR SYSNAME: DEV6
*INCIDENT TOKEN: DEVPLEX1 DEV6 06/10/1994 22:19:16
*ID = DUMP : APPLID IYAHZCET DUMPCODE MT0001 /1/0001

23.40.41 DEV7 JOB00088 +DFHDU0201 IYAHZCES ABOUT TO TAKE SDUMP. DUMPCODE: SCOP
23.40.49 DEV7 DFHDU0214 DFHDUMPX IS ABOUT TO REQUEST A REMOTE SDUMPX.
23.40.55 DEV7 JOB00088 IEA794I SVC DUMP HAS CAPTURED:

DUMPID=012 REQUESTED BY JOB (IYAHZCES)
DUMP TITLE=CICS DUMP: SYSTEM=IYAHZCES CODE=SCOP ID=1/0008

23.40.49 DEV6 DFHDU0214 DFHDUMPX IS ABOUT TO REQUEST A REMOTE SDUMPX.
23.40.56 DEV6 JOB00029 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=007 REQUESTED BY JOB (DUMPSRV)
DUMP TITLE=CICS DUMP: SYSTEM=IYAHZCES CODE=SCOP ID=1/0008

23.41.11 DEV7 JOB00088 IEA794I SVC DUMP HAS CAPTURED:
DUMPID=013 REQUESTED BY JOB (DUMPSRV)
DUMP TITLE=CICS DUMP: SYSTEM=IYAHZCES CODE=SCOP ID=1/0008

23.41.11 DEV7 JOB00088 +DFHDU0202 IYAHZCES SDUMPX COMPLETE. SDUMPX RETURN CODE X’00’

*23.41.18 DEV6 *IEA911E COMPLETE DUMP ON SYS1.DUMP03
*DUMPID=007 REQUESTED BY JOB (DUMPSRV)
*FOR ASID (0019)
*REMOTE DUMP FOR SYSNAME: DEV7
*INCIDENT TOKEN: DEVPLEX1 DEV7 06/10/1994 23:40:41
*ID = DUMP : APPLID IYAHZCES DUMPCODE SCOP /1/0008

Licensed Materials – Property of IBM

276 CICS TS for z/OS 5.3: Problem Determination Guide

those for dumps produced on DEV7.

The dump in SYS1.DUMP04 on DEV7 was taken as a remote dump by MVS dump
services as a result of the request from IYAHZCES. Note the incident token and ID
are the same as those for the dumps produced on DEV6, indicating the originating
MVS and CICS IDs. A second dump of ASID 1A is taken because the CICS
IEASDUMP does not have information indicating that a dump has already been
taken for that address space.

Enabling system dumps for some CICS messages
There are occasions when you might need diagnostic information for an event that
causes a message to be sent, but does not normally cause CICS to take a system
dump. You can enable system dumping for some CICS messages that do not
normally cause CICS to take a system dump.

Before you begin

To determine which messages you can do this for, look in CICS Messages and Codes
Vol 1. If the message you are interested in has a 2-character alphabetic component
ID after the DFH prefix, and it has either XMEOUT global user exit parameters, or
a destination of “Terminal User”, you can use it to construct a system dump code
to add to the dump table.

About this task

You cannot enable dumping for messages that do not have the characteristics
described earlier. For example, some messages that are issued early during
initialization cannot be used to cause CICS to take a system dump, because the
mechanisms that control dumping might not be initialized at that time. Also, you
cannot enable dumping for the message domain's own messages (they are prefixed
by DFHME) where they do not normally cause CICS to take a system dump.

Procedure
1. Add the dump code (constructed by removing the DFH prefix from the

message number) to the system dump table.
2. Specify the SYSDUMP option.

Results

CICS then causes a system dump to be taken when the message is issued.

*23.41.28 DEV7 *IEA911E COMPLETE DUMP ON SYS1.DUMP03
*DUMPID=012 REQUESTED BY JOB (IYAHZCES)
*FOR ASID (001A)
*REMOTE DUMPS REQUESTED
*INCIDENT TOKEN: DEVPLEX1 DEV7 06/10/1994 23:40:41
*ID = DUMP : APPLID IYAHZCES DUMPCODE SCOP /1/0008

*23.41.38 DEV7 *IEA911E COMPLETE DUMP ON SYS1.DUMP04
*DUMPID=013 REQUESTED BY JOB (DUMPSRV)
*FOR ASID (001A)
*REMOTE DUMP FOR SYSNAME: DEV7
*INCIDENT TOKEN: DEVPLEX1 DEV7 06/10/1994 23:40:41
*ID = DUMP : APPLID IYAHZCES DUMPCODE SCOP /1/0008

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 277

System dump actions with messages DFHAP0001 and
DFHSR0001

In the event of a program check or MVS abend in the AP domain or in a user
application program, CICS may issue either message DFHAP0001 or DFHSR0001.

Message DFHSR0001 is issued by CICS only when storage protection is active; that
is, the system initialization parameter STGPROT=YES is specified or allowed to
default. CICS determines which of these messages to issue depending on whether
or not the program check or MVS abend occurs in code running in user key.
v If the code had been running in user key at the time of the program check or

MVS abend, CICS issues message DFHSR0001 and takes a system dump with
dump code SR0001. Only application programs defined with EXECKEY(USER)
run in user key.

v If the code had not been running in user key at the time of the program check
or MVS abend, CICS issues message DFHAP0001 and takes a system dump with
dump code AP0001.

So, if CICS storage protection is active, this mechanism enables you to suppress the
system dumps caused by errors in application programs, while still allowing
dumps caused by errors in CICS code to be taken. To achieve this, use either a
CEMT SET SYDUMPCODE or an EXEC CICS SET SYSDUMPCODE command to
suppress system dumps for system dumpcode SR0001:
CEMT SET SYDUMPCODE(SR0001) ADD NOSYSDUMP

If storage protection is not active, the dumps may be suppressed by a suppression
of dumpcode AP0001. Note, however, that this suppresses dumps for errors in
both application and CICS code. The XDUREQ global user exit can be used to
distinguish between AP0001 situations in application and nonapplication code.

You cannot control AP0001 and SR0001 system dumps by using the DUMP
parameter of the TRANSACTION resource definition. The DUMP parameter of the
TRANSACTION resource definition controls only transaction dumps.

Usually, program checks, or MVS abends caused by an application program, are
also followed by an ASRA, ASRB or ASRD transaction abend and a transaction
dump. If, in some instances, you want the SDUMP for one of these transaction
abends but not the other, specify the one you want by using either a CEMT
TRDUMPCODE or an EXEC CICS TRANDUMPCODE command. For example,
specifying:
CEMT SET TRDUMPCODE(ASRB) ADD SYSDUMP

adds an entry to the dump table and ensures that SDUMPs are taken for ASRB
abends. However, note that the SDUMP in this instance is taken at a later point
than the SDUMP normally taken for system dump code AP0001 or SR0001.

The dump code options you can specify
You can specify what dump action is to be taken by CICS for each individual
dump code, either by using a CEMT transaction or by using a system
programming command.

The options you can specify differ slightly, depending on whether you are defining
the action for a transaction dump code or for a system dump code.
v For a transaction dump code, you can specify:

Licensed Materials – Property of IBM

278 CICS TS for z/OS 5.3: Problem Determination Guide

– Whether a transaction dump is to be taken.
– Whether a system dump is to be taken, with or without a transaction dump.
– Whether a system dump is to be taken on every CICS region in the sysplex

related to the CICS region on which the transaction dump is taken. A related
CICS region is one on which the unit of work identifiers, in the form of APPC
tokens, of one or more tasks match those in the CICS region that takes the
transaction dump.

– Whether CICS is to be terminated.
– The maximum number of times the transaction dump code action can be

taken during the current run of CICS, or before the count is reset.
v For a system dump code, you can specify:

– Whether a system dump is to be taken.
– Whether a system dump is to be taken on every CICS region in the sysplex

related to the CICS region on which the system dump is taken. A related
CICS region is one on which the unit of work identifiers, in the form of APPC
tokens, of one or more tasks match those in the CICS region that takes the
system dump.

– Whether CICS is to be terminated.
– The maximum number of times the system dump code action can be taken

during the current run of CICS, or before the count is reset.
– Whether the system dump is eligible for suppression by DAE.

Note:

1. Only a transaction dump code can cause both a transaction dump and a system
dump to be taken.

2. If a severe error is detected, the system can terminate CICS even if you specify
that CICS is not to be terminated.

3. Values of 0–998 for “maximum times dump code action can be taken” are
literal, but a value of 999 (the default) means there is no limit.

4. You cannot suppress CICS kernel domain dumps.

All the options you specify are recorded in the appropriate dump table, and
written in the CICS global catalog. Any dump table entries you have changed or
created during a CICS run are preserved when CICS is subsequently shut down.
They are available during the next run unless a cold start of CICS is performed, in
which case they are deleted from the global catalog.

The only circumstances in which dump table additions and changes are lost are:
v When a cold start of CICS is performed.
v When the CICS global catalog is redefined, although this is likely to be done

only in exceptional circumstances.
v When CICS creates a temporary dump table entry for you, because you have

asked for a dump for which there is no dump code in the dump table.

Specifying the areas you want written to a transaction dump
When you use the EXEC CICS DUMP TRANSACTION command to get a transaction
dump, you can specify which areas of storage are to be dumped. You cannot
specify in the dump table which areas are to be written to the transaction dump
for particular transaction dump codes. You always get a complete transaction
dump whenever a transaction abend occurs, if the dump code requires a
transaction dump to be taken.

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 279

Dump table statistics
CICS maintains the following statistics for each dump table entry:
v The number of times the dump code action has been taken. This count is

referred to as the “dumps taken”. Its value increments every time the dump
code action is taken, irrespective of what action has been specified in the dump
table entry. The current count can be reset to zero by a CEMT transaction, by a
system programming command, or by statistical interval expiry.
If system dumping is globally suppressed:
– The dumps-taken count for a system dump code is not incremented by dump

requests using that dump code, but the dumps-suppressed count is
incremented.

– The dumps-taken count for a transaction dump code specifying a system
dump is incremented by dump requests using that dump code. This is so
even if the dump code specifies that only a system dump is to be taken.

v For a transaction dump code, the number of transaction dumps that have been
taken. The number increments every time a transaction dump is taken for this
dump code. However, it is not incremented if transaction dumping has been
suppressed in this table entry.

v For a transaction dump code, the number of transaction dumps that have been
suppressed.

v The number of system dumps that have been taken. The number is incremented
every time a system dump is taken for this dump code. It is not incremented if
system dumping has been suppressed, either explicitly in the dump table entry
or because system dumping has been suppressed globally.

v The number of system dumps that have been suppressed, either explicitly for
this dump code or because system dumping has been suppressed globally.

Note:

1. Dump code statistics are all reset when CICS is shut down—unlike dump code
attributes, which are not reset.

2. The following dump code statistics are reset at the end of every statistics
collecting interval:
v Number of transaction dumps taken
v Number of transaction dumps suppressed
v Number of system dumps taken
v Number of system dumps suppressed.

What happens to a dump request if there is no dump table
entry?

If a dump is requested, either by CICS or the user, using a dump code that is not
in the dump table, CICS makes a temporary dump table entry using default values
for the attributes. However, the entry is not written to the CICS global catalog, and
it is lost when CICS is shut down.

The default value used for the DAEOPTION attribute (for all new system dump
codes) is set by means of the DAE= system initialization parameter. The default
value for the maximum number of times that the dump action can be taken is set
by the TRDUMAX system initialization parameter (for new or added transaction
dump codes) and the SYDUMAX system initialization parameter (for new or
added system dump codes).

Licensed Materials – Property of IBM

280 CICS TS for z/OS 5.3: Problem Determination Guide

You can modify the default values for a transaction dump table entry using the
following commands:
v CEMT SET TRDUMPCODE

v EXEC CICS SET TRANDUMPCODE

v EXEC CICS SET TRANSACTION DUMPING (to modify the TRANDUMPING attribute
only).

The following table shows the default values for transaction dump table entries
and the attributes you can specify to modify them:

Table 26. Default values for transaction dump table entries

Action Default Attribute Permitted value

Take a transaction
dump?

YES TRANDUMPING TRANDUMP or
NOTRANDUMP

Take a system dump? NO SYSDUMPING SYSDUMP or
NOSYSDUMP

Take system dumps on
related systems?

NO DUMPSCOPE LOCAL or RELATED

Shut down CICS? NO SHUTOPTION SHUTDOWN or
NOSHUTDOWN

Maximum times dump
code action can be taken

999 MAXIMUM 0 through 999

You can modify the default values for a system dump table entry using the
following commands:
v CEMT SET SYDUMPCODE
v EXEC CICS SET SYSDUMPCODE
v EXEC CICS SET SYSTEM DUMPING (to modify the SYSDUMPING attribute

only).

The following table shows the default values for system dump table entries and
the attributes you can specify to modify them:

Table 27. Default values for system dump table entries

Action Default Attribute Permitted value

Take a system dump? YES SYSDUMPING SYSDUMP or
NOSYSDUMP

Take system dumps on
related systems?

NO DUMPSCOPE LOCAL or RELATED

Shut down CICS? NO SHUTOPTION SHUTDOWN or
NOSHUTDOWN

Is dump eligible for
DAE?

NO DAEOPTION DAE or NODAE

Maximum times dump
code action can be taken

999 MAXIMUM 0 through 999

For example, if you issue a command requesting a dump, using the previously
undefined dump code SYDMPX01:
EXEC CICS PERFORM DUMP DUMPCODE('SYDMPX01')

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 281

CICS makes a temporary dump table entry for dump code SYDMPX01, and you
can browse it, and see that it has the default attributes for a system dump code.
You can also see that the current count has been set to 1, as a dump has been
taken.

Attempting to add the dump code to the dump table after CICS has made the
entry causes the exception response ‘DUPREC’ to be returned. If you want to make
a change to the CICS-generated default table entry, and have that entry preserved
across CICS runs, you must delete it and then add a new entry with the options
you require.

The transaction dump table
Table 28 shows some examples of the sort of information that might be maintained
in the transaction dump table for different transaction dump codes.

Table 28. Examples of transaction dump table entries

Type of information Example 1 Example 2 Example 3

Transaction dump code MYAB ASRA AKC3

Take a transaction dump? YES NO NO

Take a system dump? YES YES NO

Take system dumps on related
systems?

NO YES NO

Shut down CICS? NO NO NO

Maximum times dump code
action can be taken

50 30 999

Times dump code action already
taken (current count)

0 30 37

Transaction dumps taken 0 0 0

Transaction dumps suppressed 0 30 37

System dumps taken 0 30 0

System dumps suppressed 0 0 37

v Example 1 shows a transaction dump table entry for transaction dump code
MYAB. This is a user-supplied dump code, specified either on an
EXEC CICS DUMP TRANSACTION command, or as a transaction abend code on an
EXEC CICS ABEND command.
The table entry shows that when this dump code is invoked, both a transaction
dump and a system dump are to be taken, and CICS is not to be terminated.
System dumps on related systems are not to be taken. The dump code action
can be taken a maximum of 50 times, but the action for this dump code has not
been taken since CICS was started or since the current count (“times dump
action taken”) was reset.

v Example 2 shows a transaction dump table entry for transaction dump code
ASRA. This is a CICS transaction abend code, and this dump table entry is
referred to every time a transaction abends ASRA. The entry shows that a
system dump only is to be taken for an ASRA abend, and that CICS is not to be
terminated. System dumps on related systems are to be taken. It also shows that
the action for this abend code has already been taken the maximum number of
times, so no action is taken when another ASRA abend occur. However, the
current count could be reset to 0 dynamically using either a CEMT transaction

Licensed Materials – Property of IBM

282 CICS TS for z/OS 5.3: Problem Determination Guide

or a system programming command (SET TRANDUMPCODE or SET
SYSDUMPCODE). More system dumps would then be taken for subsequent
ASRA abends.

v Example 3 shows a transaction dump table entry for transaction dump code
AKC3. This is a CICS transaction abend, and this dump table entry is referenced
every time a transaction abends AKC3 - that is, whenever the master terminal
operator purges a task.
The entry shows that no action at all is to be taken in the event of such an
abend. System dumps on related systems are not to be taken. The maximum
number of times the dump code action can be taken is given as 999, meaning
that there is no limit to the number of times the specified action is taken. The
dump code action has been taken 37 times, but each time both the transaction
dump and the system dump were suppressed.

Table 29 shows how the transaction dump table entry for transaction dump code
MYAB would be updated with and without global suppression of system
dumping. Only the updated fields are shown.

Table 29. Effect of global suppression of system dumping on transaction dump table update

Type of information Before update System dumping
enabled

System dumping
suppressed

Transaction dump code MYAB

Take a transaction dump? YES

Take a system dump? YES

Take system dumps on related
systems?

NO

Shut down CICS? NO

Maximum times action can be
taken

50

Times action already taken 0 1 1

Transaction dumps taken 0 1 1

Transaction dumps suppressed 0 0 0

System dumps taken 0 1 0

System dumps suppressed 0 0 1

The statistics show that a system dump was taken when system dumping was
enabled, but not when system dumping was suppressed.

There is a further effect. CICS maintains a record of the current dump ID, which is
the number of the most recent dump to be taken. This is printed at the start of the
dump, together with the appropriate dump code. It is concatenated with the CICS
run number, which indicates the number of times that CICS has been brought up
since the global catalog was created, to provide a unique ID for the dump.

Note: This does not apply to SDUMPs taken by the kernel; these always have a
dump ID of 0/0000.

For example, for the ninth dump to be taken during the eleventh run of CICS, if
the dump code were TD01, this is what you would see:

CODE=TD01 ID=11/0009

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 283

If system dumping is enabled for the dump code, the same dump ID is given to
both the transaction dump and the system dump.

The system dump table
Table 30 shows two examples of the sort of information that might be maintained
in the system dump table for different system dump codes.

Table 30. Examples of system dump table entries

Type of information Example 1 Example 2

System dump code SYDMP001 MT0001

Take a system dump? YES YES

Take system dumps on related systems? YES NO

Is the dump eligible for DAE? YES NO

Shut down CICS? YES NO

Maximum times action can be taken (default) 999

Times action already taken 0 79

System dumps taken 0 79

System dumps suppressed 0 0

The sort of information kept in the system dump table is similar to that kept in the
transaction dump table (see Table 28 on page 282).
v Example 1 shows a system dump table entry for system dump code SYDMP001,

a user-supplied system dump code, specified using EXEC CICS PERFORM
DUMP. System dumps on related systems are to be taken. Dumps duplicate of
this one are to be suppressed by DAE. The table entry shows that no dumps
have yet been taken. However, if one were taken, CICS would be shut down. If
global suppression of system dumping was in effect, no dump would be taken
but CICS would be shut down if this dump code were referenced.

v Example 2 shows the system dump table entry for system dump code MT0001,
the CICS-supplied dump code for system dumps requested from the master
terminal, with CEMT PERFORM DUMP or CEMT PERFORM SNAP. CICS is not
shut down when a dump is taken for this dump code. Also, the value of 999 for
“maximum times action can be taken” shows that an unlimited number of
dumps can be taken for this dump code. The current count (“times action
already taken”) shows that to date, 79 dumps have been requested using CEMT.

Dumping a CFDT list structure
You can use the MVS DUMP command to obtain a dump of the coupling facility
list structure for a coupling facility data table pool.

Before you begin

In order to obtain a dump of a coupling facility list structure, you must specify a
value for the DUMPSPACE parameter in the CFRM policy for the coupling facility. The
recommended value is 5% of the space in the coupling facility. For more
information, see z/OS MVS Setting Up a Sysplex.

Licensed Materials – Property of IBM

284 CICS TS for z/OS 5.3: Problem Determination Guide

About this task

Procedure
1. Enter the following command at the console:

DUMP COMM=(cfdt_poolname)

In response to the DUMP command, the system prompts you with a reply
number for the dump options you want to specify.

2. Enter the reply:
REPLY nn,STRLIST=(STRNAME=DFHCFLS_poolname,ACCESSTIME=NOLIMIT,

(LISTNUM=ALL,ADJUNCT=DIRECTIO,ENTRYDATA=UNSERIALIZE)),END

If you want to use abbreviations for the keywords, enter:
R nn,STL=(STRNAME=DFHCFLS_poolname,ACC=NOLIM,

(LNUM=ALL,ADJ=DIO,EDATA=UNSER)),END

The parameter ACCESSTIME=NOLIMIT allows XES to override server access time
limits, to obtain serialization to take the dump. Without this parameter, no
dump is taken if any server is active.
The parameters ADJUNCT=DIRECTIO and ENTRYDATA=UNSERIALIZE notify XES
not to keep the serialization while dumping adjunct areas and entry data. If
servers are currently active but it is considered important to obtain a serialized
dump, to show the structure at a moment in time, replace these parameters
with ADJUNCT=CAPTURE and ENTRYDATA=SERIALIZE. Note that this will lock
out server access to the structure until the dump is complete. If
system-managed structure duplexing is available, then both instances of the
structure will be dumped.

What to do next

For more information about the MVS DUMP command, see z/OS MVS System
Commands.

Dumping a named counter list structure
You can use the MVS DUMP command to obtain a dump of the coupling facility
list structure for a named counter pool.

Before you begin

In order to obtain a dump of a coupling facility list structure, you must specify a
value for the DUMPSPACE parameter in the CFRM policy for the coupling facility. The
recommended value is 5% of the space in the coupling facility. For more
information, see z/OS MVS Setting Up a Sysplex.

About this task

Procedure
1. Enter the following command at the console:

DUMP COMM=(named_counter_poolname)

2. In response to the DUMP command, the system prompts you with a reply
number for the dump options you want to specify. Enter the reply:
REPLY nn,STRLIST=(STRNAME=DFHNCLS_poolname,ACCESSTIME=NOLIMIT,

(LISTNUM=ALL,ADJUNCT=DIRECTIO)),END

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 285

Using abbreviations for the keywords, this reply can be entered as:
R nn,STL=(STRNAME=DFHNCLS_poolname,ACC=NOLIM,(LNUM=ALL,ADJ=DIO)),END

The parameter ACCESSTIME=NOLIMIT allows XES to override server access time
limits, to obtain serialization to take the dump. Without this parameter, no
dump is taken if any server is active.
The parameter ADJUNCT=DIRECTIO notifies XES not to keep the serialization
while dumping adjunct areas. If servers are currently active but it is considered
important to obtain a serialized dump, to show the structure at a moment in
time, replace this parameter with ADJUNCT=CAPTURE. Note that this will lock
out server access to the structure until the dump is complete. If
system-managed structure duplexing is available, then both instances of the
structure will be dumped.

What to do next

For more information about the MVS DUMP command, see z/OS MVS System
Commands.

Dumping a shared temporary storage list structure
Before you begin

In order to obtain a dump of a coupling facility list structure, you must specify a
value for the DUMPSPACE parameter in the CFRM policy for the coupling facility. The
recommended value is 5% of the space in the coupling facility. For more
information, see z/OS MVS Setting Up a Sysplex.

About this task

Procedure
1. You can use the MVS DUMP command to obtain a dump of the coupling

facility list structure for the shared temporary storage pool.
You can use the MVS DUMP command to obtain a dump of the coupling
facility list structure for the shared temporary storage pool. For example, enter
the following command at the console:
DUMP COMM=(sharedts_poolname)

In response to the DUMP command, the system prompts you with a reply
number for the dump options you want to specify.

2. When prompted, enter the reply:
REPLY nn,STRLIST=(STRNAME=DFHXQLS_poolname,ACCESSTIME=NOLIMIT,

(LISTNUM=ALL,ADJUNCT=DIRECTIO,ENTRYDATA=UNSERIALIZE)),END

Using abbreviations for the keywords, this reply can be entered as:
R nn,STL=(STRNAME=DFHXQLS_poolname,ACC=NOLIM,

(LNUM=ALL,ADJ=DIO,EDATA=UNSER)),END

The parameter ACCESSTIME=NOLIMIT allows XES to override server access time
limits, to obtain serialization to take the dump. Without this parameter, no
dump is taken if any server is active.
The parameters ADJUNCT=DIRECTIO and ENTRYDATA=UNSERIALIZE notify XES
not to keep the serialization while dumping adjunct areas and entry data. If
servers are currently active but it is considered important to obtain a serialized

Licensed Materials – Property of IBM

286 CICS TS for z/OS 5.3: Problem Determination Guide

dump, to show the structure at a moment in time, replace these parameters
with ADJUNCT=CAPTURE and ENTRYDATA=SERIALIZE. Note that this will lock
out server access to the structure until the dump is complete. If
system-managed structure duplexing is available, then both instances of the
structure will be dumped.

What to do next

For more information about the MVS DUMP command, see z/OS MVS System
Commands.

The CSFE ZCQTRACE facility
The CSFE ZCQTRACE facility is used to gather information during the build
process of terminal or connection definition.

The syntax is as follows:
CSFE {ZCQTRACE=termid|ZCQTRACE,AUTOINSTALL|ZCQTRACE,OFF}

When CSFE ZCQTRACE is enabled, a dump of the builder parameter set and the
appropriate TCTTE is written to the transaction dump data set at specific points in
the processing. Table 31 shows the circumstances in which dumps are invoked, the
modules that invoke them, and the corresponding dump codes.

Table 31. ZCQTRACE dump codes

Module Dump code When invoked

DFHTRZCP AZCQ Installing terminal when termid = terminal ID

DFHTRZZP AZQZ Merging terminal with TYPETERM when termid =
terminal ID

DFHTRZXP AZQX Installing connection when termid = connection ID

DFHTRZIP AZQI Installing sessions when termid = connection ID

DFHTRZPP AZQP When termid = pool terminal ID

DFHZCQIQ AZQQ Inquiring on resource when termid = resource ID
(resource = terminal or connection)

DFHZCQIS AZQS Installing a resource when termid = resource ID
(resource = terminal or connection), or when
ZCQTRACE,AUTOINSTALL is specified.

If a terminal definition is shipped from a terminal owning region (TOR) to an
application owning region (AOR) and ZCQTRACE is enabled for that terminal in
the TOR, then DFHZCQIQ invokes a dump in the TOR, and DFHZCQIS invokes a
dump in the AOR.

Licensed Materials – Property of IBM

Chapter 17. Using dumps in problem determination 287

Licensed Materials – Property of IBM

288 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 18. Formatting and interpreting dumps

CICS system dumps and transaction dumps are written unformatted to the
appropriate dump data set. In other words, they are memory dumps of all or part
of the CICS address space.

Unformatted dumps are not easy to interpret, and you are recommended not to
use them for debugging. CICS provides utilities for formatting transaction dumps
and CICS system dumps, and you should always use them before you attempt to
read any dump. You can quickly locate areas of storage that interest you in a
formatted dump, either by browsing it online, or by printing it and looking at the
hard copy.

The formatting options that are available for transaction dumps and system dumps
are described in “Formatting transaction dumps” and “Formatting system dumps,”
respectively.

Formatting transaction dumps
You can format transaction dumps offline using the CICS dump utility program,
DFHDU700. Individual transaction dumps must be formatted in their entirety, but
you can control which dumps are formatted from the dump data set.

About this task

You can select dumps to be formatted as follows:
v Those taken in a specific period of time
v Those associated with a specific transaction identifier
v Those taken for a specific transaction dump code
v Those having specific dump ID - that is, those for specific CICS runs and dump

count values.

You can also use the SCAN option with the dump utility program, to get a list of
the transaction dumps recorded on the specified dump data set.

For information about using DFHDU700 to format transaction dumps, see the CICS
Operations and Utilities Guide.

Formatting system dumps
You can process system dumps from the dump data set by invoking the interactive
problem control system (IPCS).

About this task

The CICS formatting routine for use under the MVS interactive problem control
system (IPCS) is supplied as DFHPDX. This standard name is not suitable for
those users running more than one release of CICS, because the dump formatting
process in each version of DFHPDX is release-specific, and you must use the
correct version for the system dump you are formatting. The module is named
with the release identifier as part of the name - DFHPD700 is the formatting
routine you must define to IPCS when formatting CICS TS 5.3 system dumps.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 289

The DFHIPCSP CICS exit control data
IPCS provides an exit control table with imbed statements to enable other products
to supply exit control information.

The IPCS default table, BLSCECT, normally in SYS1.PARMLIB, has the following
entry for CICS:
IMBED MEMBER(DFHIPCSP) ENVIRONMENT(ALL) /*CICS */

Ensure that the CICS-supplied DFHIPCSP member can be found by your IPCS job.
You can either copy DFHIPCSP into SYS1.PARMLIB (so that it is in the same
default library as BLSCECT) or provide an IPCSPARM DD statement to specify the
library containing the IPCS control tables. For example:
//IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR For BLSCECT
// DD DSN=CICSTS53.CICS.SDFHPARM,DISP=SHR For DFHIPCSP

Figure 35 shows the release-specific entries specified in DFHIPCSP.

To use the DFHIPCSP member as it is, rename the CICS-supplied version of
DFHPDX for earlier releases to the names shown in the table.
v The IPCS dump analysis subcommands enable you to format and analyze

CICS-produced SDUMPs, which you can either view at a terminal or print. You
can:
– Examine the data in a dump

/* == */
EXIT EP(DFHPD212) VERB(CICS212) ABSTRACT(+

’CICS Version 2 Release 1.2 analysis’)
EXIT EP(DFHPD321) VERB(CICS321) ABSTRACT(+

’CICS Version 3 Release 2.1 analysis’)
EXIT EP(DFHPD330) VERB(CICS330) ABSTRACT(+

’CICS Version 3 Release 3 analysis’)
EXIT EP(DFHPD410) VERB(CICS410) ABSTRACT(+

’CICS Version 4 Release 1 analysis’)
EXIT EP(DFHPD510) VERB(CICS510) ABSTRACT(+

’CICS Transaction Server for OS/390 Release 1 analysis’)
EXIT EP(DFHPD520) VERB(CICS520) ABSTRACT(+

’CICS Transaction Server for OS/390 Release 2 analysis’)
EXIT EP(DFHPD530) VERB(CICS530) ABSTRACT(+

’CICS Transaction Server for OS/390 Release 3 analysis’)
EXIT EP(DFHPD610) VERB(CICS610) ABSTRACT(+
’CICS Transaction Server for z/OS V2 R1 analysis’)

EXIT EP(DFHPD620) VERB(CICS620) ABSTRACT(+
’CICS Transaction Server for z/OS V2 R2 analysis’)

EXIT EP(DFHPD630) VERB(CICS630) ABSTRACT(+
’CICS Transaction Server for z/OS V2 R3 analysis’)

EXIT EP(DFHPD640) VERB(CICS640) ABSTRACT(+
’CICS Transaction Server for z/OS V3 R1 analysis’)

EXIT EP(DFHPD650) VERB(CICS650) ABSTRACT(+
’CICS Transaction Server for z/OS V3 R2 analysis’)

EXIT EP(DFHPD660) VERB(CICS660) ABSTRACT(+
’CICS Transaction Server for z/OS V4 R1 analysis’)

EXIT EP(DFHPD670) VERB(CICS670) ABSTRACT(+
’CICS Transaction Server for z/OS V4 R2 analysis’)

EXIT EP(DFHPD680) VERB(CICS680) ABSTRACT(+
’CICS Transaction Server for z/OS V5 R1 analysis’)

/* == */

Figure 35. Release-specific entries in DFHIPCSP for DFHPDnnn routines

Licensed Materials – Property of IBM

290 CICS TS for z/OS 5.3: Problem Determination Guide

– Locate and verify control blocks associated with certain functions or system
components

– Trace and verify chains of control blocks
– Perform contention analysis on key MVS resources
– Locate modules and unit control blocks
– Execute user-written exits for certain control blocks
– Keep a list of names and locations of control blocks and areas of the dump

that you consider important.
v The CICSnnn dump exit (where nnn is the CICS release identifier) enables you to

format a dump selectively by specifying one or more CICS component
identifiers as parameters to the exit. Thus, the CICS700 dump exit enables you to
process a CICS TS for z/OS, Version 5.3 dump selectively. You can:
– Specify which job in the dump data set is to be formatted (JOB parameter).
– Specify which component storage areas are to be formatted, and at what level

of detail, by using formatting keywords and level numbers (keyword
parameter). You do this using the IPCS command: VERBEXIT CICS700
’keyword,...’.

– Specify the default level of detail for components that are not explicitly
identified by keyword (DEF parameter).

– Specify whether the output is to be printed in uppercase characters
(UPPERCASE parameter).

The use of formatting keywords enables you to format those parts of the dump
that interest you at any particular time, at specific levels of detail. You have the
option of formatting other parts later for further investigation by you or by the
IBM service organizations. It is advisable to copy your dumps so that you can save
the copy and free the dump data set for subsequent use.

Summary of system dump formatting keywords and levels
The component keywords specify the areas of CICS for which you want the
CICS700 exit to format dump data, and the level number operand specifies the
amount of data that you want formatted.

If you omit all of the component keywords, and you do not specify DEF=0, the
CICS dump exit formats dump data for all components.

The CICS dump component keywords, and the levels that you can specify for each
of them, are as follows:

AI [={0|2}]
Autoinstall model manager.
AI=0 Suppress formatting of AI control blocks.
AI=2 Format AI control blocks.

AP [={0|1|2|3}]
Application domain.
AP=0 Suppress formatting of AP control blocks.
AP=1 Format a summary of addresses of the AP control blocks for each

active transaction.
AP=2 Format the contents of the AP control blocks for each active

transaction.
AP=3 Format level-1 and level-2 data.
APS=<TASKID=Task identifier>

Application selection. The APS component keyword allows you to limit

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 291

the formatting of system dumps to only those storage areas relating to
the task identifier specified. Contents of the application domain control
blocks for the specified transaction will be listed along with language
environment storage areas for the same transaction. You must use
angled brackets around the specified parameter.

BA [={0|1|2|3}]
Business application manager domain.
BA=0 Suppress formatting of business application manager domain control

blocks.
BA=1 Format the BA unit of work context (BAUW) and BA activity (BAACT)

summaries.
BA=2 Format the anchor block (BADMANC), BA unit of work context

(BAUW), and BA activities (BAACT).
BA=3 Format level-1 and level-2 data.

BR [={0|1|2|3}]
The 3270 bridge domain
BR=0 Suppress formatting of bridge domain control blocks.
BR=1 Format bridge facility summary information.
BR=2 Format all control blocks and bridge messages in the system.
BR=3 Format level-1 and level-2 data.

CC [={0|2}]
The CICS catalog domain.
CC=0 Suppress formatting of CC control blocks.
CC=2 Format the CC control blocks.

CP [={0|2}]
The common programming interface.
CP=0 Suppress formatting of CP control blocks.
CP=2 Format the CPI static storage.

CQ [={0|1|2}]
Console queue.

CQ=0 Suppress formatting of console queue control blocks.

CQ=1 Format the console queue summary.

CQ=2 Format the console queue control blocks and CQ trace table.

CSA[={0|2}]
The CICS common system area.
CSA=0

Suppress formatting of the CSA.
CSA=2

Format the CSA and its extension, the optional features list
(CSAOPFL).

CV[={0|1|2|3}]
The CCSID conversion interface.
CV=0 Suppress formatting of CCSID conversion control blocks.
CV=1 Format the summary of CCSID conversion information.
CV=2 Format the CCSID conversion control blocks.
CV=3 Format level-1 and level-2 data.

DB2 [={0|1|2|3}]
The CICS DB2 interface.
DB2=0

Suppress formatting of DB2 control blocks.

Licensed Materials – Property of IBM

292 CICS TS for z/OS 5.3: Problem Determination Guide

DB2=1
Format the summary of tasks currently using the CICS DB2 interface.

DB2=2
Format the control blocks.

DB2=3
Format level-1 and level-2 data.

DD[={0|1|2|3}]
The directory manager domain.
DD=0 Suppress formatting of DD control blocks.
DD=1 Format the directory manager summary.
DD=2 Format the directory manager control blocks, including the anchor

block, directory headers, and AVL tree headers.
DD=3 Format level-1 and level-2 data.

DH[={0|1|2|3}]
The document handler domain.
DH=0 Suppress formatting of DH control blocks.
DH=1 Format document handler summary information.
DH=2 Format the domain anchor block, document anchor block, document

control record, document data block, and document bookmark block.
DH=3 Format level-1 and level-2 data.

DLI[={0|2}]
CICS DL/I interface.
DLI=0 Suppress formatting of DLI control blocks.
DLI=2 Format DLI control blocks.

DM[={0|1|2|3}]
The domain manager.
DM=0 Suppress formatting of DM control blocks.
DM=1 Format the wait queue.
DM=2 Format the anchor block.
DM=3 Format level-1 and level-2 data.

DP[={0|1|2|3}]
The debugging profiles domain.
DP=0 Suppress formatting of DP control blocks.
DP=1 Format a summary of the DP control blocks.
DP=2 Format the DP control blocks.
DP=3 Format level-1 and level-2 data.

DS[={0|1|2|3}]
The dispatcher domain.
DS=0 Suppress formatting of DS control blocks.
DS=1 Format the dispatcher dump summary.
DS=2 Format the anchor block.
DS=3 Format level-1 and level-2 data.

DU[={0|1|2|3}]
The dump domain.
DU=0 Suppress formatting of DU control blocks.
DU=1

Format the dump domain summary information.
DU=2 Format the DU anchor block.
DU=3 Format level-1 and level-2 data.

EC [={0|1|2|3}]
The event capture domain.

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 293

EC=0 Suppress formatting of EP control blocks.
EC=1 Format summary information.
EC=2 Format EP control blocks.
EC=3 Format level-1 and level-2 data.

EJ[={0|1}]
The enterprise Java domain.
EJ=0 Suppress formatting of EJ control blocks.
EJ=1 Format the EJ control blocks.

EM[={0|1|2}]
The event manager.
EM=0 Suppress formatting of EM control blocks.
EM=1 Format a summary of the active event pools.
EM=2 Format the content of the EM control blocks.

EP [={0|1|2|3}]
The event processing domain.
EP=0 Suppress formatting of EP control blocks.
EP=1 Format summary information.
EP=2 Format EP control blocks.
EP=3 Format level-1 and level-2 data.

FCP[={0|2}]
The file control program.
FCP=0 Suppress formatting of the file control table.
FCP=2 Format the file control table.

FT[={0|1|2|3}]
The feature domain.
FT=0 Suppress formatting of the feature table.
FT=1 Provide a system dump summary.
FT=2 Provide a dump for the feature table.
FT=3 Provide a summary and dump for the feature table.

ICP[={0|2}]
The interval control program.
ICP=0 Suppress formatting of the interval control elements (ICEs).
ICP=2 Format the ICEs.

IE[={0|1|2}]
The ECI over TCP/IP domain.
IE=0 Suppress formatting of the IE control blocks.
IE=1 Format a summary of the IE control blocks.
IE=2 Format the content of the IE control blocks.

IND[={0|1|2|3}]
The page number indexes for the formatted output.
IND=0

Suppress formatting of the page number indexes.
IND=1

Provide a control block index sorted by address.
IND=2

Provide a control block index sorted by block name.
IND=3

Format level-1 and level-2 data.

IPCS does not produce page numbers if formatting directly to the terminal.

Licensed Materials – Property of IBM

294 CICS TS for z/OS 5.3: Problem Determination Guide

IS[={0|1|2|3}]
The IP interconnectivity domain.
IS=0 Suppress formatting of IS domain information.
IS=1 Format the summary of IPCONN definitions and their sessions.
IS=2 Format the IS domain control blocks.
IS=3 Format level-1 and level-2 data.

JCP [={0|2}]
The journal control area.
JCP=0 Suppress formatting of the JCA.
JCP=2 Format the JCA.

KE[={0|1|2|3}]
The CICS kernel.
KE=0 Suppress formatting of the kernel control blocks.
KE=1 Format the stack and a summary of tasks.
KE=2 Format the anchor block.
KE=3 Format level-1 and level-2 data.

LD[={0|1|2|3}]
The loader domain.
LD=0 Suppress formatting of loader domain control blocks.
LD=1 Format a program status and module summary.
LD=2 Format the anchor block, the current program elements (CPEs), and the

active program elements (APEs).
LD=3 Format level-1 and level-2 data.

LG[={0|1|2|3}]
The log manager domain.
LG=0 Suppress formatting of log manager domain control blocks.
LG=1 Format the log manager summary.
LG=2 Format all log manager control blocks.
LG=3 Format level-1 and level-2 data.

LM[={0|1|2|3}]
The lock manager domain.
LM=0 Suppress formatting of lock manager domain control blocks.
LM=1 Format the lock status and allocated locks summary.
LM=2 Format the anchor block and quickcells.
LM=3 Format level-1 and level-2 data.

ME[={0|2}]
The message domain.
ME=0 Suppress formatting of the ME anchor block.
ME=2 Format the anchor block.

ML[={0|1|2|3}]
The markup language domain.
ML=0 Suppress formatting of the ML domain control blocks.
ML=1 Format summary information.
ML=2 Format ML domain control blocks.
ML=3 Format level-1 and level-2 data.

MN[={0|1|2|3}]
The monitoring domain.
MN=0 Suppress formatting of monitoring domain control blocks.
MN=1 Format the monitoring status and monitoring dictionary summary.
MN=2 Format the anchor block and monitoring control table.
MN=3 Format level-1 and level-2 data.

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 295

MP[={0|1|2|3}]
The managed platform domain.
MP=0 Suppress formatting of managed platform domain control blocks.
MP=1 Format the summary information for MP domain.
MP=2 Format the MP domain control blocks.
MP=3 Format level-1 and level-2 data.

MQ[={0|1|2|3}]
The CICS-WebSphere MQ interface.
MQ=0 Suppress formatting of CICS-WebSphere MQ control blocks.
MQ=1 Format the summary of tasks currently using the CICS-WebSphere MQ

interface.
MQ=2 Format the control blocks.
MQ=3 Format level-1 and level-2 data.

MRO[={0|2}]
CICS multiregion operation.
MRO=0

Suppress formatting of all MRO control blocks.
MRO=1

Format MRO control block summary.
MRO=2

Format MRO control blocks, APPC URDs, and any associated DWE
chains.

MRO=3
Format level-1 and level-2 data.

NQ [={0|2}]
The enqueue manager domain.
NQ=0 Suppress formatting of NQ control blocks.
NQ=2 Format NQ control blocks.

OT[={0|1|2}]
The object transaction domain.
OT=0 Suppress formatting of OT control blocks.
OT=1 Format a summary of OT control blocks.
OT=2 Format the contents of the OT control blocks.

PA[={0|2}]
The parameter manager domain.
PA=0 Suppress formatting of the PA anchor block.
PA=2 Format the PA anchor block.

PCT[={0|2}]
The program control table (for TRANSACTION resource definitions).
PCT=0

Suppress formatting of the transaction resource definitions.
PCT=2

Format the transaction resource definitions.

PG[={0|1|2|3}]
The program manager domain.
PG=0 Suppress formatting of program manager domain control blocks.
PG=1 Format the program manager summary.
PG=2 Format the program manager control blocks, including the anchor

block, the LLEs, the PGWEs, the PROGRAM resource definitions, the
PLCBs, and the HTBs.

PG=3 Format level-1 and level-2 data.

Licensed Materials – Property of IBM

296 CICS TS for z/OS 5.3: Problem Determination Guide

PI [={0|1|2|3}]
The pipeline domain.
PI=0 Suppress formatting of PI domain information.
PI=1 Format the pipeline summary.
PI=2 Format the PI domain control blocks.
PI=3 Format level-1 and level-2 data.

PR [={0|2}]
Partner resource management.
PR=0 Suppress formatting of PR areas.
PR=2 Format the PR static storage and the partner resource table.

PT [={0|1|2|3}]
The partner domain.
PT=0 Suppress formatting of partner domain control blocks.
PT=1 Format summary information.
PT=2 Format all control blocks.
PT=3 Format level-1 and level-2 data.

RD [={0|2}]
Resource definition.
RD=0 Suppress formatting of RD areas.
RD=2 Format the RD recovery and locking blocks.

RL [={0|1|2|3}]
The resource life-cycle domain.
RL=0 Suppress formatting of RL control blocks.
RL=1 Format summary information.
RL=2 Format RL control blocks.
RL=3 Format level-1 and level-2 data.

RM [={0|2}]
The recovery manager domain.
RM=0 Suppress formatting of RM control blocks.
RM=2 Format RM control blocks.

RS [={0|1|2|3}]
The region status domain.
RS=0 Suppress formatting of RS control blocks.
RS=1 Format summary information.
RS=2 Format RS control blocks.
RS=3 Format level-1 and level-2 data.

RX [={0|2|3}]
The recoverable resource manaagement services (RRMS) domain.
RX=0 Suppress formatting of RRMS control blocks.
RX=1 Format summary of unit-of-recovery information.
RX=2 Format all RRMS domain storage.
RX=3 Format level-1 and level-2 data.

RZ[={0|1|2}]
The request streams domain.
RZ=0 Suppress formatting of EJ control blocks.
RZ=1 Format a summary of RZ control blocks.
RZ=2 Format the contents of the RZ control blocks.
RZ=3 Format level-1 and level-2 data.

SH [={0|1|2|3}]
The scheduler services manager domain.

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 297

SH=0 Suppress formatting of the scheduler services manager domain control
blocks.

SH=1 Format the SH unit of work pending queue (SHPQUEUE), and the
bound, pending, and committed SH request (SHREQUES) summaries.

SH=2 Format the anchor block (SHDMANC), SH unit of work pending
queue, (SHPQUEUE) and the bound, pending, and committed SH
requests (SHREQUES).

SH=3 Format level-1 and level-2 data.

SJ[={0|1|2}]
The JVM domain.
SJ=1 Format a summary of SJ control blocks.
SJ=2 Format the contents of the SJ control blocks.
SJ=3 Format level-1 and level-2 data.

SM[={0|1|2|3}]
The storage manager domain.
SM=0 Suppress formatting of storage manager domain control blocks.
SM=1 Format the dynamic storage areas (DSAs), task and domain storage

subpools, transaction areas (SMXs), suspend queue, and subspace area
(SUA) summaries.

SM=2 Format the anchor block (SMA), subpool control areas (SCAs),
pagepool areas (PPAs), pagepool extent areas (PPXs), storage manager
transaction areas (SMXs), subspace areas (SUAs), suspend queue
elements (SQEs), page allocation maps (PAMs), DSA extent descriptors
(DXEs), and DSA extent getmain descriptors (DXGs).

SM=3 Format level-1 and level-2 data.

SO[={0|1|2|3}]
The socket domain.
SO=0 Suppress formatting of the socket domain control blocks.
SO=1 Format a summary of the socket domain control blocks.
SO=2 Format the contents of the socket domain control blocks in full.
SO=3 Format both the level-1 and level-2 data. Specifying SO is the same as

SO=3.

SSA[={0|2}]
The static storage areas.
SSA=0

Suppress formatting of the static storage areas address list.
SSA=2

Format the static storage areas address list.

ST[={0|1|2|3}]
The statistics domain.
ST=0 Suppress formatting of statistics domain control blocks.
ST=1 Format statistics collection details.
ST=2 Format the anchor block.
ST=3 Format level-1 and level-2 data.

SZ[={0|1}]
Front end programming interface (FEPI).
SZ=0 Suppress formatting of the FEPI static area.
SZ=1 Format the FEPI static area. Nothing is printed unless you have

installed FEPI.

TCP[={0|1|2|3}]
The terminal control program.

Licensed Materials – Property of IBM

298 CICS TS for z/OS 5.3: Problem Determination Guide

TCP=0
Suppress formatting of TCP control blocks.

TCP=1
Format the terminal control and AID summaries.

TCP=2
Format the terminal control table, the terminal input/output areas, and
the AIDs.

TCP=3
Format level-1 and level-2 data.

TDP[={0|1|2|3}]
The transient data program.
TDP=0

Suppress formatting of transient data control blocks.
TDP=1

Format the summary of transient data queue definitions.
TDP=2

Format the transient data static storage areas and the multiple strings
control blocks (MRCBs).

TDP=3
Format level-1 and level-2 data.

TI[={0|1|2|3}]
The timer domain.
TI=0 Suppress formatting of timer domain control blocks.
TI=1 Format outstanding request details.
TI=2 Format the anchor block.
TI=3 Format level-1 and level-2 data.

TK[={0|1|2|3}]
The task summary and dump formatter.
TK=0 Suppress task summary formatter.
TK=1 Format a summary table for all tasks in the system dump.
TK=2 Format the transaction (TXN), user and system task control areas

(TCAs), exec interface block (EIB), exec interface user structure (EIUS),
kernel task control block (KTCB), transaction monitoring area (TMA)
and program level control blocks (PLCBs) for each of the tasks in the
system dump.

TK=3 Format level-1 and level-2 data.
TKS=<TASKID=Task Identifier>

Format the level-1 and level-2 data for the specified task.

TMP[={0|2}]
The table manager program.
TMP=0

Suppress formatting of table manager static storage and control blocks.
TMP=2

Format table manager static storage and control blocks.

TR[={0|1|2|3}
The trace domain.
TR=0 Suppress formatting of trace.
TR=1 Format abbreviated trace.
TR=2 Format full trace.
TR=3 Format level-1 and level-2 data.

TRS[={<trace selectivity parameter(s)>}]
Trace entry selectivity.

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 299

|
|
||
||
||
|
|
|
|
||
|
|

This keyword is effective only if the TR keyword value is 1, 2, or 3.

You can use the TRS component keyword to select trace entries from internal
trace in a system dump for formatting and printing. You do this in a similar
way to the selection of trace entries in an auxiliary trace for formatting and
printing.

The trace selectivity parameter can be any valid trace selectivity parameter
available to DFHTU700 for the formatting of CICS auxiliary trace entries,
except for the parameters PAGESIZE, ABBREV, SHORT and FULL. You can
also use the LAST_BLOCKS parameter, which is specifically for formatting
internal trace in a system dump. As with DFHTU700, you can select any
number of parameters from those available.

The trace selection parameters have the same format and default values when
used to select trace entries from an internal SDUMP trace, as when you use
DFHTU700 to format auxiliary trace entries. You must use angled brackets
around the parameter, or sequence of parameters, that you specify.

TS[={0|1|2|3}]
Temporary storage domain.
TS=0 Suppress formatting of temporary storage control blocks.
TS=1 Format a summary of temporary storage control blocks and temporary

storage control block checking.
TS=2 Format temporary storage control blocks.
TS=3 Format level-1 and level-2 data.

You can also specify the options for TS with angled brackets, for:
TS=<1>

Summary.
TS=<2>

Format control blocks.
TS=<3>

Consistency checking of the TS buffers with the TS control blocks.

You can specify more than one of these values between angled brackets. For
example, TS=<1,2> gives summary and formatting of control blocks without
consistency checking.

UEH[={0|2}]
The user exit handler.
UEH=0

Suppress formatting of control blocks.
UEH=2

Format control blocks.

US[={0|1|2|3}]
The user domain.
US=0 Suppress formatting of user domain control blocks.
US=1 Format the user domain summary.
US=2 Format the control blocks.
US=3 Format level-1 and level-2 data.

WB[={0|1|2}]
The Web domain.
WB=0 Suppress formatting of Web domain control blocks.
WB=1 Format the Web domain summary. This level displays the current state

of CICS Web support, followed by a summary of the state blocks
controlled by the state manager.

Licensed Materials – Property of IBM

300 CICS TS for z/OS 5.3: Problem Determination Guide

WB=2 Format the control blocks. This level displays the current state of CICS
Web support, followed by the Web anchor block, the global work area
and associated control blocks, and the Web state manager control
blocks.

WU[={0|1|2|3}]
The CICS management client interface.
WU=0 Suppress formatting of CICS management client interface control

blocks.
WU=1 Format the CICS management client interface summary. This level

displays a list of currently running CICS management client interface
requests and a list of all cached results currently being held.

WU=2 Format the control blocks. This level displays the CICS management
client interface anchor block and a control block for each running
request.

WU=3 Format level-1 and level-2 data.

W2[={0|1|2|3}]
The Web 2.0 domain.
W2=0 Suppress formatting of Web 2.0 domain control blocks.
W2=1 Format the Web 2.0 domain summary.
W2=2 Format the control blocks.
W2=3 Format level-1 and level-2 data.

XM[={0|1|2|3}]
The transaction manager.
XM=0 Suppress formatting of transaction manager control blocks.
XM=1 Format the domain summary, global state summary, transaction

summary, transaction class summary, and MXT summary.
XM=2 Format the control blocks, including the transaction domain anchor

block, transactions (TXn), and transaction class control blocks (TCL).
XM=3 Format level-1 and level-2 data.

XRF[={0|2}]
The extended recovery facility.
XRF=0 Suppress formatting of control blocks.
XRF=2 Format control blocks.

XS[={0|2}]
The security domain.
XS=0 Suppress formatting of anchor block and supervisor storage.
XS=2 Format anchor block and supervisor storage.

For a more detailed list of the contents of SDUMPs for each of the VERBEXIT
keywords, see Appendix A, “SDUMP contents and IPCS CICS VERBEXIT
keywords,” on page 327.

The default SDUMP formatting levels
The DEF dump exit parameter specifies the default level of formatting you want for
data from the dump data set. Note that the DEF parameter is only effective for
components that are not included in a list of component keywords.

The levels that you can specify are as follows:

Level Meaning

0 For those components not included in a specified list of keywords,
suppress all component formatting. Note that if you specify DEF=0, but do

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 301

not specify any component keywords, you still get the dump summary
and, if appropriate, the error message index.

1 For those components not included in a specified list of keywords, and
where applicable, format the summary information only. (A summary is
not available for all components; see the level numbers available for the
individual keywords for those for which a summary of dump information
is available.)

2 For those components not included in a specified list of keywords, format
the control block information only.

3 For those components not included in a specified list of keywords, format
the control block information and also (where applicable) the summary
information.

Interpreting transaction dumps
The contents of a transaction dump are described, and guidance on locating
information that is useful for debugging transactions is provided.

About this task

The different parts of the transaction dump are dealt with in the order in which
they appear, but be aware that only those parts that users should be using for
problem determination are described. Some control blocks which do appear in the
transaction dump are intended for the problem determination purposes of IBM
Service and are not described in this section.

The job log for the dump utility program, DFHDU700, is sometimes shown at the
start of the transaction dump, depending on how the job was invoked. You can
ignore it, because it does not contain any information that can be used for
debugging.

Procedure
1. The first thing to look for is the symptom string. The symptom string tells you

something about the circumstances of the transaction dump. It might show,
for example, that the dump was taken because the transaction abended with
abend code ASRA.
If you refer the problem that caused the dump to be taken to the IBM Support
Center, they can use the symptom string to search the RETAIN database for
problems that resemble it.

2. Look for the CICS Transaction Server for z/OS level. It shows you what level
of CICS was being executed when the transaction dump was taken.

3. The transaction environment summary provides you with a formatted
summary of the transaction environment at the time the dump is taken.

4. Depending on whether the transaction abended remotely or locally, you will
see different information in the transaction dump as follows:
a. If the transaction abended remotely (the abend originally occurred in a

remote distributed program link (DPL) server program), and the abend is
being reissued on the local system, a message indicates this. The message
contains the SYSID of the system that passed the abend to the local
system. This information is taken from the transaction abend control block.

b. If the transaction dump was taken in response to a local abend with abend
code AICA, ASRA, ASRB, or ASRD:

Licensed Materials – Property of IBM

302 CICS TS for z/OS 5.3: Problem Determination Guide

1) A PSW is formatted from the dump data set. It belongs to the program
that was being executed when the abend occurred. It is taken from the
transaction abend control block.

2) A set of registers that belong to the program that was executing when
the error was detected is also provided. They are taken from the
transaction abend control block.

c. If the transaction abended locally with abend code ASRA or ASRB:
1) The execution key that is in force at the time of the abend is formatted.

It is taken from the transaction abend control block.
2) CICS formats the space, basespace or subspace, in which the program

was executing. If transaction isolation is not enabled, the program
always executes in the basespace.

See “Transaction storage” on page 304 for more information on the
transaction abend control block.

5. If the transaction has issued any EXEC commands, then a set of registers is
displayed. These are the registers from the last EXEC command that was
issued.

6. The next thing in the transaction dump is the entire TCA. This contains
information about the transaction to which the dump relates. Note that the
user area precedes the system area.
The system area of the task control area is formatted separately, because it can
be addressed separately by CICS. It contains system information relating to
the task and can often be a valuable source of debugging information.

7. Any transaction work area relating to the transaction is formatted, if present.
8. The EXEC interface structure (EIS) contains information about the transaction

and program specific to the execution interface component of CICS.
a. The system EXEC interface block (SYSEIB) is used solely by programs

using the SYSEIB option. If you see this in the transaction dump, read the
CICS Application Programming Guide

b. The EXEC interface user structure (EIUS) contains execution interface
component information that must reside in user key storage.

9. DFHEIB contains information relating to the passing of EXEC requests from
the program to CICS, and the passing of data between the program and CICS.
Field EIBFN is of particular interest, because it shows the type of the last
EXEC command to be issued by the program. For programming information
about the values that EIBFN can contain, see Function codes of EXEC CICS
commands.

10. The kernel stack entries contain information that has been saved by the kernel
on behalf of programs and subroutines on the kernel linkage stack. If you
refer the problem to the IBM Support Center, they might need to use the stack
entries to find the cause of the failure.

11. The common system area (CSA) is one of the main control areas used by
CICS. It contains information relating to the system as a whole, and to the task
that was running when the transaction dump was invoked. It can be very
useful for debugging both application problems and system problems. You
cannot access fields in the CSA in your programs. Attempting to do so causes
your transaction to terminate abnormally with abend code ASRD.
The common system area optional features list (CSAOPFL), an extension of
the CSA, contains the addresses of CICS optional features.

12. The abbreviated-format trace table is formatted by default. You can suppress it
by specifying the NOABBREV parameter in the DFHDU700 job. A “one entry per

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 303

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/topics/dfha8mf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.systemprogramming.doc/topics/dfha8mf.html

line” summary of the trace entries, copied from the internal trace table, is
formatted. Provided that you had EI level-1 and PC level-1 tracing selected for
your task, you can identify the last CICS command issued by your task quite
easily. The procedure is outlined in “Locating the last command or statement”
on page 305.

13. Following the abbreviated-format trace table is the corresponding
extended-format trace table. This is formatted by default. You can suppress it
by specifying the NOFULL parameter in the DFHDU700 job. It contains more
detail, but you can probably get all the information you need using the
abbreviated trace.

14. The common work area (CWA) is the installation-defined work area for use by
all programs and is formatted if it exists.

15. You are likely to find several areas of the dump that describe transaction
storage that can be useful for debugging purposes. For information on what to
look for, see “Transaction storage.”

16. The TCTTE (terminal control table terminal entry) contains information about
the terminal that is the principal facility of the transaction. You usually find
one TCTTE for the transaction if the transaction is terminal oriented. For
“daisy chained” transactions, you might find more than one. To look at the
TIOA for the task, find the address in field TCTTEDA of the TCTTE.

17. Program information for the current transaction shows summary information
for all linked programs for the transaction that have not yet returned,
including load point, entry point, and length. This is followed by the program
storage for each of these programs. This is where you can find the instructions
addressed by register 14 and by the PSW, and hence the point of failure in
your program. For details of how you do this, see “Locating the last command
or statement” on page 305.
Other program manager control blocks are shown too, including resource
definition information for active programs, and load list elements and
program storage for any programs loaded by this transaction but not yet
released.
For each program level you can find the current channel (if any), other
channels created by the link level, and all their containers. Up to 32K of each
container's data is also displayed. Note that this is a copy of the data rather
than the actual address of the data.
For each task you can find the transaction channel (if any), and all its
containers. Up to 32K of each container's data is also displayed. Note that this
is a copy of the data rather than the actual address of the data.

18. The final item that you find in the transaction dump is the module index. This
shows you all the modules that were in storage when the error was detected,
and their addresses.

Transaction storage
Transaction storage is storage that is either obtained by CICS to store information
about a transaction, or obtained explicitly by the transaction, by using a GETMAIN
request, for its own purposes.

The dump might contain several such areas, each introduced by a header that
describes it as transaction storage of a particular class, for example:

USER24
USER31
USER64
CICS24

Licensed Materials – Property of IBM

304 CICS TS for z/OS 5.3: Problem Determination Guide

CICS31
CICS64

Transaction storage class CICS31 contains, among other things, the transaction
abend control block (TACB). To find it, look for the eye-catcher DFHTACB.
DFHTACB contains the following useful valuable information that relates to the
abend:
v The program status word (PSW) and general purpose registers of the program

executing at the time of the abend (for local AICA, ASRA, ASRB and ASRD
abends only. However, for some AICA abends, only the “next sequential
instruction” part of the PSW and the registers are present.) Registers 12 and 13
contain the addresses of the TCA and CSA, respectively, in all abends except for
ASRA and ASRB abends. For ASRA and ASRB abends, these registers contain
data as at the time of the abend.

v The name of the failing program.
v The offset in the failing program at which the abend occurred (for local ASRA,

ASRB and ASRD abends only).
v The execution key at the time of the abend (for local ASRA and ASRB abends

only).
v Whether the abend was caused by an attempt to overwrite a protected CICS

DSA (local ASRA abends only).
v Whether the program is executing in a subspace or the basespace.
v The subspace STOKEN.
v The subspace’s associated ALET.

If the abend originally occurred in a remote DPL server program, an eye-catcher
REMOTE is present, and the registers and PSW are not present.

Locating the last command or statement
The easiest way of locating the last command issued by your application before the
abend is to use the internal trace table.

Before you begin

You must have had internal trace running, and you need to have captured entries
from the EI level-1 and PC level-1 trace points for your task. The way you can find
the last command using trace is described in “Last command identification.”

About this task

If you did not have trace running, you need to rely on values in registers
belonging to your programs, and try to relate these to your source statements. That
might lead you to an EXEC CICS command, or to another type of statement in your
program. The procedure is outlined in “Last statement identification” on page 306.

Last command identification
This process for identifying the last command applies to system dumps, in which
it is necessary to identify the abending task.

Step 2 is relevant to transaction dumps.
1. If the abend was a local AICA, ASRA, ASRB, or ASRD, find the last entry in

the table and work back until you find an entry for trace point ID AP 1942. If
you cannot find AP 1942, then search for any one of the following: AP 0790, AP

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 305

0791, or AP 0792. The trace entry for AP 1942 is made on entry to APLI’s
recovery routine. The entries for AP 0790, AP 0791, and AP 0792 are made by
DFHSRP, the AP domain recovery routine that deals with program checks,
operating system abends, and runaway task conditions. The task number for
your task is shown in the entry.
If the abend was none of those mentioned above, find the last entry in the table
and work back until you find an entry for trace point ID AP 00F2 (PCP abend)
that references the abend code. The task number of your task is shown in the
entry.

2. Now go back until you find the last trace entry showing your task number that
was made from trace point ID AP 00E1. The trace entry is located in the EXEC
interface program, DFHEIP. The data in the trace entry includes the value of
EIBFN, which tells you the specific command your program issued before the
abend. For programming information about the possible values that EIBFN can
take, and their meanings, see Function codes of EXEC CICS commands in the
CICS Application Programming Reference. The AP 00E1 trace point also includes
the value of register 14 in the RET= field. Register 14 is the return address of the
calling routine. See Chapter 16, “Formatting and interpreting trace entries,” on
page 255.

3. You might now be able to identify the program that was being run when the
abend occurred, from knowing the structure of the application. If not, you can
identify the program by using the information in the “program information for
the current transaction” section of the dump. The failing program is the one
most recently linked to (the first program printed in this section). The summary
information includes the name of the program, and its load point, entry point,
and length.

4. You should by now have found the program containing the last EXEC
command that was issued before the abend. You next need to locate the EXEC
command in that program. If you cannot do it by inspection, use the techniques
described in the next section.

Last statement identification
1. Locate the CICS transaction storage areas of the transaction dump. These areas

are maintained by CICS, and they relate to the transaction that was running
when the abend occurred. Find the eye-catcher DFHTACB in at least one of the
areas. This eye-catcher signifies the start of the transaction abend control block
and it contains the registers and PSW belonging to the program that was
running when the abend occurred. If there is more than one area containing
this eye-catcher, it means that two or more successive abends occurred. Find
the first occurrence, because that relates to the abend that started the sequence.

2. Locate the PSW for the program in the TACB and make a note of the next
sequential instruction address. The PSW for the program is present if the abend
is AICA, ASRA, ASRB or ASRD. Alternatively, obtain the offset of the abend
within the failing program load module from the TACB. The offset is present if
the abend is ASRA, ASRB or ASRD and is valid if not X'FFFFFFFF'. Note the
value of register 14, too.

3. Use the “program information for the current transaction” section of the dump
to obtain the name and entry point of the failing program. Alternatively, obtain
the name of the failing program from the TACB.

4. The offset or PSW should point to an instruction in the program. If it does not,
register 14 shows a return address into your program. Either way, correlate the
address with a statement in the source code for the program.

Licensed Materials – Property of IBM

306 CICS TS for z/OS 5.3: Problem Determination Guide

If the source language is Assembler, the instruction where the abend occurred is
apparent from the program storage in the dump. If the source language is
COBOL, PL/I, or C, refer to a compiler output mapping source statements onto
the object code.

Locating program data
You might want to look at the data that your application program has in its
storage areas.

You must refer to the appropriate programming language information for details of
the structure of the acquired storage of the program.

CICS maintains a pointer to the chain of dynamic storage that an assembler
program uses in field TCAPCDSA of the system area of the TCA.

Dumps for C/370 programs

The use of the relevant C/370 registers is as follows:

Register Use

3 In most circumstances, this is the base register

12 Holds the address of the CICS TCA for the C/370 program

13 Holds the address of the register save area

Location of COBOL dumped areas

The dumped COBOL program is in the “program information for the current
transaction” section of the dump, and is addressed by the LOAD_POINT parameter
on the appropriate LDLD ACQUIRE_PROGRAM exit trace entry.

The register save area INIT1+X'48' (covering registers 0 through 14) should have
register 12 pointing to the program global table (PGT), register 13 pointing to the
task global table (TGT), and some others to locations in the data area and compiled
code of the program storage. If not, a CICS error is indicated.

For each invocation of the COBOL program, CICS copies the static TGT from
program storage into CICS dynamic storage (the COBOL area) and uses the
dynamic copy instead of the static one. CICS also copies working storage from
program storage to the COBOL area, above the TGT. Task-related COBOL areas
thus enable the single copy of a COBOL program to multithread as if it were truly
reentrant.

The dumped COBOL area

The COBOL area contains the following:
v The COBOL working storage for the task
v A copy of the TGT

The TGT is addressed by TCAPCHS in the system part of the TCA. The TGT is
used to hold intermediate values set at various stages during program execution.
The first 18 words of the TGT constitute a standard save area, in which the current
registers of the program are stored on any request for CICS service.

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 307

Storage freeze
Certain classes of CICS storage that are normally freed during the processing of a
transaction can, optionally, be kept intact and freed only at the end of the
transaction.

Then, in the event of an abend, the dump contains a record of the storage that
would otherwise have been lost, including the storage used by CICS service
modules. The classes of storage that can be frozen in this way are those in the
teleprocessing and task subpools, and in terminal-related storage (TIOAs).

The storage freeze function is invoked by the CSFE transaction. For information
about using CSFE, see CICS Supplied Transactions.

Formatting a coupling facility data table pool dump
About this task

Procedure
1. To format a coupling facility data table structure dump, use the IPCS STRDATA

subcommand.
2. To display the table index list, use the STRDATA subcommand as follows:

STRDATA DETAIL LISTNUM(2) ENTRYPOS(ALL)

The key of each entry in this list is the table name, and the first word of the
adjunct area is the corresponding data list number. If the table is open, entry
data is present containing a list of information about the current table users
(regions that have the table open). Each one is identified by its MVS system
name and CICS APPLID. The number of users is at +X'14' in the adjunct area.
After any valid table user elements, the rest of the data area is uninitialized and
can contain residual data up to the next 256-byte boundary.

3. To display the table data, convert the data list number to decimal and
specifying it on another STRDATA subcommand. For example, if the first word
of the adjunct area is X'00000027', the command to display the table data is as
follows:
STRDATA DETAIL LISTNUM(39) ENTRYPOS(ALL)

In the data list, the key of each entry is the record key, and the data portion
contains the user data with a 2-byte length prefix (or a 1-byte X'80' prefix if the
data length is 32767 bytes). The rest of any data area is uninitialized and can
contain residual data up to the next 256-byte boundary. The entry version
contains the time stamp at the time the record was last modified or created.
The adjunct area contains information for locking and recovery. It contains null
values (binary zeros) if the record is not locked. When the record is locked, the
lock owner APPLID and UOWID appear in this area.
If a record has a recoverable rewrite pending, there are two entries with the
same key, where the second entry is the before-image.

What to do next

For information about the STRDATA subcommand and its options, see z/OS MVS
Interactive Problem Control System IPCS) User's Guide .

Licensed Materials – Property of IBM

308 CICS TS for z/OS 5.3: Problem Determination Guide

Formatting a named counter pool dump
About this task

Procedure

To format a named counter structure dump, use the IPCS STRDATA subcommand
as follows:
STRDATA DETAIL LISTNUM(0) ENTRYPOS(ALL)

Results

The key of each entry in this list is the counter name. The version field contains
the counter value minus its maximum value minus 3 (in twos complement form)
which has the effect that all counters have a value of -2 when they have reached
their limit (and the value of -1, equal to all high values, never occurs). The start of
the adjunct area contains the 8-byte minimum and maximum limit values that
apply to the counter.

What to do next

For information about the STRDATA subcommand and its options, see z/OS MVS
Interactive Problem Control System IPCS) User's Guide.

Formatting a shared temporary storage pool dump
Procedure
1. To format a shared temporary storage pool dump, use the IPCS STRDATA

subcommand.
2. To display the queue index list, use the STRDATA subcommand as follows:

STRDATA DETAIL LISTNUM(2) ENTRYPOS(ALL)

The key of each entry in this list is the queue name. For a small queue, the first
word of the adjunct area is the total length of queue data which is included in
the queue index entry; for a queue that has been converted to the large format,
the first word contains zero. The second word of the adjunct area is the number
of the corresponding data list if the queue has been converted to the large
format, or zero otherwise.
For a small queue, the queue data is stored as the data portion of the queue
index entry, with a 2-byte length prefix preceding each item.

3. To display the queue data for a large queue, convert the data list number to
decimal and specifying it on another STRDATA subcommand For example if
the second word of the adjunct area is X'0000000A', the command to display
the queue data is:
STRDATA DETAIL LISTNUM(10) ENTRYPOS(ALL)

In the data list, the key of each entry is the item number, and the data portion
contains the item data with a 2-byte length prefix. The rest of any data area is
uninitialized and may contain residual data up to the next 256-byte boundary.

What to do next

For information about the STRDATA subcommand and its options, see z/OS MVS
Interactive Problem Control System IPCS) User's Guide .

Licensed Materials – Property of IBM

Chapter 18. Formatting and interpreting dumps 309

Licensed Materials – Property of IBM

310 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 19. The global trap exit DFHTRAP

The global trap exit DFHTRAP is an Assembler language program that can be
invoked when the CICS trace domain is called to write a trace entry. DFHTRAP is
intended to be used only under the guidance of IBM Service personnel, to make a
detailed diagnosis of a problem without having to stop and restart CICS.

Typically, the global trap exit is used to detect errors that cannot be diagnosed by
other methods:
v Errors that occurred some time before the effects are noticed
v Errors that cause intermittent problems that are difficult to reproduce

For example, a field might be changed to a bad value, or some structure in storage
might be overlaid at a specific offset.

A skeleton version of DFHTRAP is supplied in both source and load-module
forms. The source of DFHTRAP is cataloged in the CICS700.SDFHMAC library.

Installing and controlling the DFHTRAP exit
Before you use the global trap exit DFHTRAP you must install and activate it.

About this task

You can install and activate the global trap exit DFHTRAP at CICS initialization or
while CICS is running. You can also deactivate the exit while CICS is running.

If a program check occurs in DFHTRAP, the recovery routine in DFHTRPT marks
the exit as unusable, and it is ignored on future invocations of the trace domain.
CICS issues the message DFHTR1001 to the system console and takes a CICS
system dump with dump code TR1001, showing the PSW and registers at the time
of the interrupt. To recover from this situation, you must replace the current
version of DFHTRAP.

Procedure
v Install DFHTRAP as part of the RDO group DFHFE, using one of the following

methods:
– The GRPLIST system initialization parameter.
– The CEDA transaction while CICS is running.

v To activate the global trap exit at CICS initialization, specify the system
initialization parameter TRAP=ON, either in DFHSIT or as a startup override.

v To activate or reactivate the global trap exit while CICS is running, issue the
following command:
CSFE DEBUG,TRAP=ON

v To deactivate the global trap exit, issue the following command:
CSFE DEBUG,TRAP=OFF

v To replace the current version of DFHTRAP, issue the following sequence of
commands:
CSFE DEBUG,TRAP=OFF
CEMT SET PROGRAM(DFHTRAP) NEWCOPY
CSFE DEBUG,TRAP=ON

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 311

Information passed to the DFHTRAP exit
The CICS trace domain passes information to the DFHTRAP exit in a parameter
list addressed by register 1. The DSECT DFHTRADS is supplied for this list.

DFHTRADS contains the addresses of the following items:
v The return-action flag byte
v The trace entry that has just been added to the trace table
v Up to three data fields for data below the bar or above the bar (in 64-bit storage)

to be included in a further trace entry
v An 80-byte work area for the sole use of the global trap exit
v The CICS common system area (CSA)
v The task control area (TCA), if there is one
v A register save area

The CSA address is zero for invocations of DFHTRAP early in initialization, before
the CSA is acquired.

The DSECT also contains EQU statements for use in setting the return-action flag
byte.

The global trap exit can look at data from the current trace entry to determine
whether or not the problem under investigation has appeared. It can also look at
the TCA of the current task, and the CSA. The DSECTs for these areas are included
in the skeleton source for DFHTRAP.

Actions the DFHTRAP exit can take
The global trap exit can set a return-action flag byte to tell the trace domain what
action is required on return from the exit.

Any combination of the following actions can be specified:
v Do nothing.
v Make a further trace entry using data in 24 bit storage or 31 bit storage (below

the bar).
v Make a further trace entry using data in 64 bit storage (above the bar).
v Take a CICS system dump. There are two possible actions here, take a system

dump while holding the trace lock using system dump code TR1004, or take a
system dump without holding the trace lock using system dump code TR1003.
Holding the trace lock while the system dump is taken is more invasive to the
system but might be required if debugging a concurrency problem.

v Terminate CICS without a system dump after message DFHTR1000. (If you
require a system dump, the system dump return-action flag must also be set.)

v Disable the trap exit, so that it is not invoked again until you issue the
command CSFE DEBUG,TRAP=ON.

All actions are honored on return to the trace domain.

The skeleton source for DFHTRAP shows how to make a further trace entry. When
DFHTRAP detects a TS GET request, you can ask for a further trace entry to be
made by entering the data required in the data fields supplied for this purpose,
and by setting the appropriate bit in the return-action flag byte. If the required
data is in 64 bit storage (above the bar), you must use the 64 bit versions of the
data fields, and set the appropriate bit in the return-action flag byte to show that

Licensed Materials – Property of IBM

312 CICS TS for z/OS 5.3: Problem Determination Guide

64 bit data is used. The trace domain makes a trace entry with trace point ID
TR 0103, incorporating the information supplied by the exit.

Trace entries created following a request by DFHTRAP are written to the currently
active trace destination. This could be the internal trace table, the auxiliary trace
data set, or the GTF trace data set.

The skeleton source for DFHTRAP also shows how to detect the trace entry made
by the storage manager (SM) domain for a GETMAIN request for a particular
subpool. The skeleton source shows you how to look at the data fields within a
trace entry.

Coding the DFHTRAP exit
The source of the skeleton version of the global trap exit DFHTRAP contains
comments that explain its use of registers and DSECTs, and the coding required to
use the exit.

About this task

The skeleton version of DFHTRAP is supplied in both source and load-module
forms. The source of DFHTRAP is cataloged in the CICS700.SDFHMAC library.
DFHTRAP runs in AMODE(64).

The 80-byte work area that is provided for the sole use of the global trap exit is in
64-bit storage (storage above the bar). When the global trap exit is activated, the
trace domain acquires the storage and initializes it to binary zeros. The working
storage exists until the global trap exit is deactivated by the command CSFE
DEBUG,TRAP=OFF. In a dump, the DFHTRAP working storage is located as
follows:
v In a CICS transaction dump, the information about DFHTRAP is soon after the

CSA optional features list. The 80-byte work area is at the end of the DFHTRAP
working storage and is immediately preceded by a 16-byte eye catcher
(DFHTRAP_WORKAREA), so that the work area can be located even if it has
not been formatted.

v In a CICS system dump, the DFHTRAP working storage is in the trace domain
(TR) section. See “Formatting system dumps” on page 289 for details of how to
use the TR keyword to format the trace domain information in the dump.

For information about the actions that you can specify for DFHTRAP, see “Actions
the DFHTRAP exit can take” on page 312.

Procedure
v Ensure that the code in DFHTRAP does not use any CICS services, cause the

current task to lose control, or change the status of the CICS system.
v Ensure that DFHTRAP saves and restores the trace domain's registers. The

supplied skeleton version contains the code necessary to do this. You are
strongly advised not to change this code.

v Ensure that DFHTRAP is specified as AMODE(64) and RMODE(ANY).
DFHTRAP might switch addressing mode while it is running, but it must
always return control to the trace domain in 64-bit mode.

v Ensure that the library search sequence in the CICS startup JCL finds the correct
version of the load module.

Licensed Materials – Property of IBM

Chapter 19. The global trap exit DFHTRAP 313

Licensed Materials – Property of IBM

314 CICS TS for z/OS 5.3: Problem Determination Guide

Part 4. Working with IBM to solve your problem

The IBM Support organization is a global network of centers, with expertise across
the IBM product portfolio. For information about how to contact and work with
IBM Support, refer to the Software Support Handbook.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 315

http://www-304.ibm.com/support/customercare/sas/f/handbook/home.html

Licensed Materials – Property of IBM

316 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 20. IBM program support

The IBM Customer Engineering Program Support structure exists to help you
resolve problems with IBM products, and to ensure that you can make the best use
of your IBM computing systems. Program support is available to all licensed users
of IBM licensed programs, and you can get assistance by telephoning your local
Support Center.

This section helps you decide when to contact the Support Center, and what
information you need to collect before contacting the Center. The section also gives
you an understanding of the way in which IBM Program Support works.

When to contact the Support Center
Before contacting the Support Center, try to ensure that the problem belongs with
the Center. Do not worry if you cannot be sure that the problem is due to CICS
itself. How sure you are depends on the complexity of your installation, the
experience and skill levels of your systems staff, and the symptoms that you have
been getting.

In practice, many errors reported to Program Support turn out to be user errors, or
they cannot be reproduced, or they need to be dealt with by other parts of IBM
Service. This indicates just how difficult it can be to determine the precise cause of
a problem. User errors are mainly caused by faults in application programs and
errors in setting up systems. TCT parameters, in particular, have been found to
cause difficulty in this respect.

Dealing with the Support Center
Your first contact with the Support Center is the call receipt operator, who takes
initial details and routes your call to the correct support group.

About this task

The Support Center needs to know as much as possible about your problem, and
you should have the information ready before making your first call. It is a good
idea to put the information down on a problem reporting sheet, such as this one:

Problem Reporting sheet

Date Severity Problem no.

Incident no.

Problem/Inquiry

Abend/Prog CK Incorrout MVS Rel

Wait Module MVS Lvl

Loop Message CICS Rel

Performance Other CICS Lvl

Documentation available

Abend System dump Program output

Message Transaction dump Other

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 317

Trace Translator output Symptom string

Compiler output

Actions

Date Name
Activity

Resolution

PTF APAR
Other

There are two advantages of using a problem reporting sheet:
1. You will be communicating with the IBM Support Center by telephone. So,

with all your findings before you on a sheet of paper, you are prepared to
respond to the questions that you may be asked.

2. You should maintain your own in-house tracking system to record all
problems. This information can then be used for planning, organizing,
communicating, and establishing priorities for controlling and solving these
problems.

What the Support Center needs to know
When you contact the Support Center, you need to give the operator the name of
your organization and your access code. Your access code is a unique code
authorizing you to use IBM Software Services, and you provide it every time you
contact the Center.

Using this information, the operator accesses your customer profile, which contains
details of your address, relevant contact names, telephone numbers, and details of
the IBM products at your installation.

The Support Center operator asks you if this is a new problem, or a further call on
an existing one. If it is new, you are assigned a unique incident number. A problem
management record (PMR) is opened on the RETAIN system, where all activity
associated with your problem is recorded. The problem remains “open” until it is
solved.

Make a note of the incident number on your own problem reporting sheet. The
Center expects you to quote the incident number in all future calls connected with
this problem.

If the problem is new to you, the operator asks you for the source of the problem
within your system software—that is, the program that seems to be the cause of
the problem. As you are reading this book, it is likely that you have already
identified CICS as the problem source. You also need to give the version and
release number, for example Version 4 Release 1.

You need to give a severity level for the problem. Severity levels can be 1, 2, or 3.
They have the following meanings:
v Severity level 1 indicates that you are unable to use a program, resulting in a

critical condition that needs immediate attention.

Figure 36. Sample problem reporting sheet

Licensed Materials – Property of IBM

318 CICS TS for z/OS 5.3: Problem Determination Guide

v Severity level 2 indicates that you are able to use the program, but that
operation is severely restricted.

v Severity level 3 indicates that you are able to use the program, with limited
functions, but the problem is not critical to your overall operation.

When deciding the severity of the problem, take care neither to understate it nor to
overstate it. The Support Center procedures depend on the severity level so that
the most appropriate use can be made of the Center’s skills and resources. Your
problem is normally dealt with immediately if it is severity level 1.

Finally, the call receipt operator offers you a selection of specific component areas
within CICS (for example, terminal control, file control) and asks you to choose the
area where your problem appears to lie. Based on this selection, the operator can
route your call to a specialist in the chosen area.

The keywords are subsequently used as search arguments on the RETAIN
database, to see if your problem is a known one that has already been the subject
of an authorized program analysis report (APAR).

You are not asked for any more information at this stage. However, you need to
keep all the information relevant to the problem, and any available documentation
such as dumps, traces, and translator, compiler, and program output.

How your problem is subsequently progressed depends on its nature. The
representative who handles the problem gives you guidance about what is
required from you. The possibilities are described in the next section.

What happens next
Details of your call are passed using the RETAIN problem management system to
the appropriate support group. Your problem, assuming it is one associated with
CICS, is put on the CICS queue. The problems are dealt with in order of severity
level.

At first, a support center representative uses the keywords that you have provided
to search the RETAIN database. If your problem is found to be one already known
to IBM, and a fix has been devised for it, a Program Temporary Fix (PTF) can
quickly be dispatched to you.

Let the representative know if any of the following events occurred before the
problem appeared:
v Changes in level of MVS or licensed programs
v Regeneration of any product
v PTFs applied
v Additional features used
v Application programs changed
v Unusual operator action.

You might be asked to give values from a formatted dump or trace table. You
might also be asked to carry out some special activity, for example to set a trap, or
to use trace with a certain type of selectivity, and then to report on the results.

It might be necessary to have several follow-up telephone calls, depending on the
complexity of the symptoms and your system environment. In every case, the

Licensed Materials – Property of IBM

Chapter 20. IBM program support 319

actions taken by you and the Support Center are entered in the PMR. The
representative can then be acquainted with the full history of the problem before
any follow-up call.

The result of the investigations determines whether your problem is a new one, or
one that is already known. If it is already known, and a fix has been developed,
the fix is sent to you.

If the problem is new, an APAR may be submitted. This is dealt with by the CICS
change team. See Chapter 21, “APARs, fixes, and PTFs,” on page 321.

Reporting a FEPI problem to IBM
About this task

For information specifically about reporting a FEPI problem, see the CICS Front
End Programming Interface User's Guide.

Licensed Materials – Property of IBM

320 CICS TS for z/OS 5.3: Problem Determination Guide

Chapter 21. APARs, fixes, and PTFs

An APAR is an “authorized program analysis report”. An APAR is your means of
informing the appropriate change team of a problem you have found with an IBM
program.

When the change team solves the problem, they produce a fix enabling you to get
your system running properly again. Finally, a PTF is produced to replace the
module in error, and the APAR is closed.

The APAR process
The first step in the APAR process is that a support center representative enters
your APAR into the RETAIN system. The APAR text contains a description of your
problem. If you have found a means of getting round the problem, details of this
are entered as well. Your name is also entered, so that the Support Center knows
who to contact if the change team need to ask anything further about the APAR
documentation.

When the APAR is entered, you are given an APAR number. You must write this
number on all the documentation you submit to the change team. This number is
always associated with the APAR and its resolution and, if a code change is
required, it is associated with the fix as well.

The next stage in the APAR process, getting relevant documentation to the change
team, is up to you.

The following is a summary of the things you need to do:
1. You must collect all of the documentation that is required for the APAR. You

are given guidance by the support center on precisely what you need to send.
The documentation that is required varies, depending on the problem area, but
“Collecting the documentation for the APAR” gives you an idea of the material
that you should supply.

2. You need to package all the documentation and send it to the change team. The
procedure for this is given in “Sending the documentation to the change team”
on page 322.

3. Lastly, you need to apply the PTF resulting from the APAR, possibly after
testing the fix on your system. This is described in “Applying the fix” on page
323.

Collecting the documentation for the APAR
As a general rule, the documentation you need to submit for an APAR includes all
the material you need yourself to perform problem determination. Some of the
documentation is common to all CICS problems, and some is specific to particular
types of problem.

About this task

Make sure the problem you have described can be seen in the documentation you
send. If the problem has ambiguous symptoms, you need to reveal the sequence of
events leading up to the failure. Tracing is valuable in this respect, but you might

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 321

be able to provide details that trace cannot give. You are encouraged to annotate
your documentation, if your annotation is legible and if it does not cover up vital
information. You can highlight data in any hard copy you send, using transparent
highlighting markers. You can also write notes in the margins, preferably using a
red pen so that the notes are not overlooked.

Finally, note that if you send too little documentation, or if it is unreadable, the
change team will return the APAR marked “insufficient documentation”. It is,
therefore, worthwhile preparing your documentation carefully and sending
everything relevant to the problem.

The general documentation is described in “General documentation needed for all
problems with CICS.” However, these are only guidelines. You must find out from
the support center precisely what documentation you need to send for your
specific problem.

General documentation needed for all problems with CICS
The following is a list of the general documentation you might be asked to submit
for an APAR:
v Any hard or softcopy illustrating the symptoms of the problem.
v A system dump of the CICS address space. Format the whole system dump if

you plan to submit hardcopy. Otherwise, you can send the system dump data
set on tape.

v A CICS trace. Auxiliary trace and GTF trace are best, but internal trace can be
used if you do not have either of these traces. If internal trace has been running,
it is in the system dump in any case.

v Relevant CICS tables. Again, these tables are unnecessary if preassembled
versions are used.

v Listings of relevant application programs.
v Console logs.
v CICS logs (for example, the CSMT log) wherever possible. These contain

information that is often overlooked. They are useful when z/OS
Communications Server is in use.

v JCL listings. These can be seen on system dumps, and do not need to be sent
twice.

v A list of PTFs and APARs applied. The System Modification Program (SMP)
CICS control data set (CDS) provides this information and must be sent.

v Details of any user modifications.

Sending the documentation to the change team
About this task

Follow the directions in APAR II02709 when gathering documentation to send to
the change team. If you do not have access to the RETAIN database, ask your IBM
representative to obtain a copy of APAR II02709 for you. If you cannot submit the
documentation electronically, use an APAR box, which you can obtain from your
local IBM branch. APAR boxes are clearly marked as such, and they have a panel
where tracking information such as the APAR number can be written.

Licensed Materials – Property of IBM

322 CICS TS for z/OS 5.3: Problem Determination Guide

Packing and mailing the APAR box
Ship all your documentation and notes in one or more APAR boxes, making sure
that the boxes are marked, for example, “1 of 2”, and so on, if you need to use
more than one.

If you include any magnetic tapes, ensure that this is clearly indicated on the
outside of the box. This lessens the chance of their being stored in magnetic fields
strong enough to damage the data.

To make sure the documentation reaches the correct destination, that is, the CICS
change team, the box should be marked:
SHIP TO CODE 5U6

You also need a mailing label with the address of the CICS change team on it.

When the change team receives the package, this is noted in your APAR record on
the RETAIN system. The team then investigates the problem. Occasionally, they
need to ask the Support Center to contact you for more documentation, perhaps
specifying some trap you must apply before getting it.

When the problem is solved, a code is entered on RETAIN to close the APAR, and
you are provided with a fix.

You can enquire any time at your Support Center on how your APAR is
progressing, particularly if it is a problem of high severity.

Applying the fix
When the change team have found a fix for your problem, they might want you to
test it on your system. If they do ask you to test the fix, you are normally given
two weeks to do it and to provide them with the results. However, you can ask for
an extension if you are unable to complete the testing in that time.

About this task

When the team is confident that the fix is satisfactory, the APAR is certified by the
CICS development team and the APAR is closed. You receive notification when
this happens.

The APAR becomes a PTF
If the solution involves a change to code in a CICS module that you can assemble,
you are sent the code change right away. The change is later distributed as a PTF.

If you cannot assemble the module yourself, because it involves a part of CICS that
is object serviced, you might be supplied with a ZAP or a TOTEST PTF.

If you want a PTF to resolve a specific problem, you can order it explicitly by its
PTF number through the IBM Support Center. Otherwise, you can wait for the PTF
to be sent out on the standard distribution tape.

Licensed Materials – Property of IBM

Chapter 21. APARs, fixes, and PTFs 323

Licensed Materials – Property of IBM

324 CICS TS for z/OS 5.3: Problem Determination Guide

Part 5. Appendixes

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 325

Licensed Materials – Property of IBM

326 CICS TS for z/OS 5.3: Problem Determination Guide

Appendix A. SDUMP contents and IPCS CICS VERBEXIT
keywords

The following two tables provide a cross-reference between the CICS control blocks
contained in an SDUMP and their associated IPCS CICS VERBEXIT keyword.

The first table provides a list of IPCS CICS VERBEXIT keywords and the CICS
control blocks that they display.

The second table provides a list of all CICS control blocks in an SDUMP,
alphabetically, with their associated IPCS CICS VERBEXIT keyword.

Keyword to control block map
AI keyword

v AITMSSA (AITM static storage)
v AITMTE (AITM entry)

AP keyword
v CICS24 (task storage, below 16 MB, CICS key)
v CICS31 (task storage, above 16 MB, CICS key)
v CICS64 (task storage, above the bar, CICS key)
v DWE (user DWE storage)
v EIB (EXEC interface block)
v EIS (EXEC interface structure)
v EIUS (EXEC interface user structure)
v FILE (user file storage)
v JCA (journal control area)
v MAPCOPY (user BMS MAP storage)
v SYSEIB (system EXEC interface block)
v SYS_TCA (task control area, system area only)
v TCA (task control area, user)
v TD (user transient data)
v TS (user temporary storage)
v USER24 (task storage, below 16 MB, user key)
v USER31 (task storage, above 16 MB, user key)
v USER64 (task storage, above the bar, user key)

APS keyword

v CICS24 (task storage, below 16 MB, CICS key)
v CICS31 (task storage, above 16 MB, CICS key)
v DWE (user DWE storage)
v EIB (EXEC interface block)
v EIS (EXEC interface structure)
v EIUS (EXEC interface user structure)
v FILE (user file storage)
v JCA (journal control area)
v MAPCOPY(user BMS MAP storage)
v SYSEIB (system EXEC interface block)
v SYS_TCA (task control area, system area only)

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 327

v TCA (task control area, user)
v TD (user transient data)
v TS (user temporary storage)
v USER24 (task storage, below 16 MB, user key)
v USER31 (task storage, above 16 MB, user key)

Refer to the z/OS Language Environment Debugging Guide manual for details
of LE control blocks and data areas.

BR keyword
v Bridge facility bitmap
v Bridge facility block
v Bridge facility keep chain
v BRXA (bridge exit interface)
v TXN_CS

CP keyword
v CPSTATIC (common programming interface static storage)

CSA keyword
v CSA (common system area)
v CSAOPFL (CSA optional features list)
v CWA (common work area)

DB2 keyword
v D2CSB (CICS DB2 subtask block)
v D2ENT (CICS DB2entry control block)
v D2GLB (CICS DB2 global block)
v D2LOT (CICS DB2 life of task block)
v D2PKGSET (CICS DB2 PACKAGESET control block)
v D2SS (CICS DB2 static storage)
v D2TRN (CICS DB2tran control block)

DD keyword
v ANCHOR (directory manager anchor block)
v AVL_HEAD (AVL tree header)
v BRWS_VAL (browse value)
v DIR_HEAD (directory header)
v HASH_TBL (hash table)
v HASHELEM (collision list element)

DH keyword
v DBB (document bookmark block)
v DCR (document control record)
v DDB (document data block)
v DHA (document handler domain anchor block)
v DOA (document anchor block)

DLI keyword
v CWE (CICS-DBCTL control work element)
v DFHDLP (CICS-DLI interface parameter list)
v DGB (CICS-DBCTL global block)
v DGBCTA (DBCTL transaction area)
v DSB (CICS-DBCTL scheduling block)
v DXPS (CICS-DL/I-XRF anchor block)
v PAPL (DL/I-DRA architected parameter list)
v RSB (remote scheduling block)
v SYS_TCA (TCA system area only)
v TCA (task control area)

Licensed Materials – Property of IBM

328 CICS TS for z/OS 5.3: Problem Determination Guide

DM keyword
v DMANCHOR (domain manager anchor block)
v WQP (domain wait queue)

DP keyword
v DPA (DP domain anchor block)
v DPTA (DP domain task area)

DS keyword
v DSANC (dispatcher anchor block)
v DS_TCB (TCB block)
v DTA (dispatcher task area)
v SUSPAREA (unformatted SUSPEND_AREAS/TOKENS)
v TASK (unformatted DTAs)

DU keyword
v DUA (dump domain anchor block)
v DUBUFFER (transaction dump data set buffer)
v OPENBLOK (transaction dump Open block)
v SDTE (system dump table elements)
v TDTE (transaction dump table elements)

EC keyword
v DFHECSS (Event capture static storage)
v DFQE (Deferred filter queue element)
v ECAF (Failed EP adapter in EP adapter set)
v ECCD (Event capture application event capture data item)
v ECCS (Event capture specification)
v ECEVB (Event binding)
v ECFP (Event capture application event filter predicate)
v ECFPX (Event capture application event filter predicate extension)
v ECSCD (Event capture system event capture data item)
v ECSFP (Event capture system event filter predicate)

EJ keyword

v DFHEJANC (EJ domain anchor block)
v DFHEJANE (EJ domain elements anchor area)
v EJAO (EJ domain object store anchor area)
v EJDU_BLOCK (Task related Java diagnostics)
v OS_ELEMENT (EJ object store elements)
v SYSLIB (DFHEJDUB)

EM keyword
v EMA (EM anchor block)
v EVA (event pool anchor)
v EVB (event pool block)

EP Keyword
v ECQE (Event processing queue element)
v EDTB (Event processing dispatcher task block)
v EPA (Event processing anchor block)
v EPAC (Event processing adapter configuration data)
v EPADA (Event processing adapter)
v EPADI (EP adapter name in EP adapter set)
v EPADT (EP adapter set)

FCP keyword
v ACB (VSAM ACBs)

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 329

v AFCTE (application file control table element)
v DCB (data control block)
v DFHDTTABLE (data table base area)
v DFHDTFILE (data table path area)
v DFHDTHEADER (data table global area)
v DSNB (data set name block)
v DTRGLOBL (data table remote global area)
v FBWA (data table browse area)
v FCSTATIC (FCP static storage, anchor block)
v FCTE (file control table element)
v FLAB (file lasting access block)
v FRAB (file request anchor block)
v FRTE (file request thread element)
v SHRCTL (shared LSRPOOLs)
v VSWA (VSAM work area)

ICP keyword
v ICE (interval control elements/AIDs)

IE keyword
v Control blocks associated with TCP/IP conversations.

II keyword
v II domain anchor block
v MDA (request model - model class anchor block)
v Request receiver - per request receiver task:

– CONN_DATA (connection data)
– cicsTaskTrackingContext
– Saved service contexts
– TXN_DATA (transaction data)
– Replies - per reply outstanding

- LISTEN_DATA
- cicsTaskTrackingContext

Request - per request outstanding
- ruei containing pointer and length of each element of the request
- Each element of the request

v Request processor - per request processor task:
– RP_DATA (request processor data)
– For each outstanding request received:

- cicsTaskTrackingContext
– For each outstanding reply:

- LISTEN_DATA
- cicsTaskTrackingContext

KE keyword

See note 1.
v AFCB (CICS AFCB)
v AFCS (CICS AFCS)
v AFT (CICS AFT)
v AUTOSTCK (automatic storage stack entry)
v DOH (domain table header)
v DOM (domain table entry)
v KCB (kernel anchor block)
v KERNSTCK (kernel linkage storage stack entry)
v KERRD (kernel error data)
v KTCB (KTCB table entry)
v TAH (task table header)

Licensed Materials – Property of IBM

330 CICS TS for z/OS 5.3: Problem Determination Guide

v TAS (task table entry, TASENTRY)
v TCH (KTCB table header)

LD keyword

See note 1.
v APE (active program element)
v CPE (current program element)
v CSECTL (program CSECT List)
v LD_GLBL (loader domain global storage, anchor block)
v LDBE (loader domain browse element)
v LDWE (loader domain wait element)
v LLA (load list area)

LG keyword
v LGA (log domain anchor)
v LGBR (stream, journal, journalmodel browse)
v LGGL (general log data)
v LGJI (journal information)
v LGJMC (journalmodel content)
v LGSD (stream data)
v LGUOW (log manager unit of work token)
v STATSBUF (log manager statistics)
v Block class data
v Block instance data
v BrowseableStream class data
v BrowseableStream instance data
v Chain class data
v Chain instance data
v HardStream instance data
v L2 anchor block
v Stream class data
v Stream instance data
v SuspendQueue elements
v SystemLog class data

LM keyword
v FREECHAI (LM domain freechain 1)
v FREECHAI (LM domain freechain 2)
v FREECHAI (LM domain freechain 3)
v LMANCHOR (lock manager domain anchor block)
v LMQUICK1 (LM domain quickcell 1)
v LMQUICK2 (LM domain quickcell 2)
v LMQUICK3 (LM domain quickcell 3)
v LOCK_ELE (LM domain lock element)

ME keyword
v MEA (message domain anchor block)

ML keyword
v MLA (markup language domain anchor block)

MN keyword
v MCT (monitoring control table)
v MNA (monitoring domain global storage, anchor block)
v MNAFB (monitor authorization facility parameter block)
v MNCONNS (monitor field connectors)
v MNDICT (monitor dictionary)
v MNEXC (exception record buffer)

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 331

v MNEXLIST (user EMP address list)
v MNFLDMAP (excluded/included CICS field map)
v MNPER (performance data buffer)
v MNSMF (SMF record buffer)
v MNTMA (transaction monitoring area)
v MNWLMPB (MVS WLM performance blocks)

MP keyword
v MPA (MP domain anchor block)
v MPMOD (MP model)
v MPMODR (MP model rule)
v MPPFA (MP policy event action failed EP adapter in EP adapter set

block)
v MPPMB (MP policy modifier block)
v MPPPB (MP policy block)
v MPPRB (MP policy rule block)
v MPTAS (MP task storage)

MRO keyword

See note 1.
v CCB (connection control block)
v CRB (CICS region block)
v CSB (connection status block)
v LACB (logon address control block)
v LCB (logon control block)
v LXA (LX array)
v SCACB (subsystem connection address control block)
v SCCB (subsystem connection control block)
v SCTE (subsystem control table extension)
v SLCB (subsystem logon control block)
v SUDB (subsystem user definition block)
v UCA (use count array)

OT keyword
v OTAN (OT domain anchor block)

PA keyword
v DFHSIT (system initialization table)
v OVERSTOR (override parameter temporary work area)
v PAA (parameter manager domain anchor block)
v PARMSAVE (SIT override parameters)
v PRVMODS (SIT PRVMOD list)
v SITDLI (SIT DL/I extension)

PA keyword
v DFHSIT (system initialization table)
v OVERSTOR (override parameter temporary work area)
v PAA (parameter manager domain anchor block)
v PARMSAVE (SIT override parameters)
v PRVMODS (SIT PRVMOD list)
v SITDLI (SIT DL/I extension)

PCP keyword
v PPTTE (program processing table entries - program resource definitions)

PCT keyword
v TXD64 (transaction definition instance 64 bit extension)
v TXDINST (transaction definition instance)
v TXDSTAT (transaction definition static data)

Licensed Materials – Property of IBM

332 CICS TS for z/OS 5.3: Problem Determination Guide

PG keyword
v CHCB (channel control block)
v CPCB (container pool control block)
v CRCB (container control block)
v CSCB (container segment block)
v HTB (handle table)
v LLE (load list element, can be system LLE or task LLE)
v PGA (program manager anchor)
v PGWE (program manager wait element)
v PLCB (program manager program level control block)
v PPTE (program processing table element)
v PTA (program transaction area)

For an explanation of PG summary data in a level-1 dump, see
Appendix B, “Summary data for PG and US keywords,” on page 351.

PI keyword
v HPE (header program element)
v PEB (pipeline element block)
v PIA (pipeline manager anchor block)
v PIH (pipeline element header block)
v SNE (service handler element)
v WCB (Web service control block)
v WHB (Web service header block)
v WRB (Web service resource block)

RL keyword
v RLA (resource life-cycle domain anchor block)

RM keyword
v RMCD (recovery manager client directory)
v RMCI (recovery manager client identity)
v RMDM (recovery manager domain anchor)
v RMLI (recovery manager loggable identity)
v RMLK (recovery manager link)
v RMNM (recovery manager logname)
v RMRO (recovery manager resource owner)
v RMSL (recovery manager system log)
v RMUW (recovery manager)

RS keyword
v RSA (Region status domain anchor block)

RX keyword
v Active Unit of Recovery data (CICS key)
v Active Unit of Recovery data (Key 0)
v DFHRXSVC dynamic storage area
v In-resync Unit of Recovery data (CICS key)
v In-resync Unit of Recovery data (Key 0)
v RX domain anchor block (CICS key)
v RX domain anchor block (Key 0)

RZ keyword
v RZDM (RZ domain anchor block)
v RZREQSTR (rz_reqstream instance data)
v RZRMB (rzrmb instance data)
v RZTR (rztr instance data)

SJ keyword
v SJA (JVM domain anchor block)

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 333

v SJCCH (Shared class cache control block)
v SJTCB (JVM TCB control block)
v SJVMS (JVMset or control block)

SM keyword
v CTN (cartesian tree node)
v DXE (DSA extent list element)
v DXG (DSA extent getmain description)
v DXH (DSA extent list header)
v GPAM (page allocation map for 64 bit DSA)
v GPPA (page pool control area for 64 bit DSA)
v GPPX (page pool extent control area for 64 bit DSA)
v MCA (SM macro-compatibility control area)
v PAM (page allocation map)
v PPA (page pool control area)
v PPX (page pool extent control area)
v QPF (quickcell page free element)
v QPH (quickcell page header)
v SAE (storage access table entry)
v SAT (storage access table)
v SCA (subpool control area)
v SCE (storage element descriptor)
v SCF (free storage descriptor)
v SMA (storage manager domain anchor block)
v SMSVCTRT (DFHSMSVC trace table)
v SMX (transaction storage area)
v SQE (suspend queue element)
v STAB (storage manager statistics buffer)
v SUA (subspace area)

SO keyword
v LTE (Listener table entry)
v SOA (SO domain anchor block)
v STE (Session table entry)
v TDA (Tcpipservice anchor block)
v TDB (Tcpipservice control block)
v TBR (Tcpipservice browse block)

SSA keyword
v SSA (static storage areas)
v SSAL (static storage address list)

ST keyword
v STANCHOR (statistics domain anchor block)
v STSAFPB (statistics authorization facility parameter block)
v STSMF (statistics SMF record)
v STSTATS (statistics domain statistics record)

SZ keyword
v SZSDS (FEPI static area)

TCP keyword
v ACB (z/OS Communications Server access method control block)
v AID (automatic initiation descriptor)
v AWE (autoinstall work element)
v BIND (bind image)
v BITMAPn (one of several resource naming BITMAPs)
v CCIN (CICS client CCIN parameters)
v CTIN (CICS client CTIN parameters)

Licensed Materials – Property of IBM

334 CICS TS for z/OS 5.3: Problem Determination Guide

v DCB (BSAM data control block)
v DIB (data interchange block)
v DUMTCTTE (dummy TCTTE)
v EXLST (z/OS Communications Server ACB exit list)
v ISORM (indirect system object resolution map)
v LOGDS (extracted logon or CLSDST Pass data)
v LUITE (local userid table element)
v NIB (node initialization block)
v NIBLIST (persistent sessions INQUIRE PERSESS list of NIBs)
v PRSS (persistent sessions CV29, FMH5, BIS, and BID data)
v PS_BID (persistent sessions OPNDST RESTORE BID)
v PS_BIND (persistent sessions INQUIRE PERSESS BIND)
v PS_BIS (persistent sessions OPNDST RESTORE BIS)
v PS_CV29 (persistent sessions OPNDST RESTORE control vector 29)
v PS_FMH5 (persistent sessions OPNDST RESTORE FMH5)
v PS_MODN (persistent sessions INQUIRE PERSESS modename)
v PS_NIB (persistent sessions INQUIRE PERSESS NIB)
v PS_PLST (persistent sessions INQUIRE PERSESS parameter list)
v PS_POOL (persistent sessions RPL pool header)
v PS_RPL (persistent sessions RPL)
v PS_SESS (persistent sessions INQUIRE PERSESS session ID)
v PWE (postponed work element)
v RACE (receive-any control elements)
v RAIA (z/OS Communications Server receive-any Input area)
v RPL (z/OS Communications Server request parameter list, receive-any

RPLs)
v SNEX (TCTTE signon extension)
v TACLE (terminal abnormal condition line entry)
v TCTENIB (NIB descriptor)
v TCTESBA (APPC send/receive buffer)
v TCTFX (TCT prefix)
v TCTLE (TCT line entries)
v TCTTELUC (TCTTE APPC extension)
v TCTME (TCT mode entry)
v TCTSE (TCT system entries)
v TCTSK (TCT skeleton entries)
v TCTTE (TCT terminal entries)
v TCTTECCE (console control element)
v TCTTETTE (TCTTE extension)
v TCTTEUA (TCTTE user area)
v TIOA (terminal I/O area)
v WAITLST (wait list)
v ZEPD (TC module entry list)

TDP keyword
v ACB (TD VSAM ACB)
v BUFFER (TD I/O buffer)
v DCTE (transient data queue definitions)
v MBCA (TD buffer control area)
v MBCB (TD buffer control block)
v MQCB (TD queue control block)
v MRCA (TD string control area)
v MRCB (TD string control block)
v MRSD (TD CI state map, segment descriptor)
v MWCB (TD wait control block)
v RPL (TD VSAM RPL)

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 335

v SDSCI (TD SCSCI)
v TDCUB (TD CI update block)
v TDST (TD static storage)
v TDQUB (TD queue update block)
v TDUA (TD UOW anchor block)
v VEMA (TD VSAM error message area)

TI keyword
v TIA (Timer domain anchor block)
v TRE (Timer request elements)

TMP keyword
v DIRSEG (directory segments)
v SKT (scatter tables)
v TM_LOCKS (read lock blocks)
v TMSTATIC (table manager static storage)

TR keyword

See note 1.
v TRA (trace domain anchor block)
v TRDCB (auxiliary trace data set DCB)
v TRDECB (auxiliary trace data set DECB)

TS keyword
v ACA (TS auxiliary control area)
v BCA (TS buffer control area)
v BMH (TS byte map header)
v BMP (TS byte map)
v BRB (TS browse block)
v DTN (TS digital tree node)
v ICE (interval control element)
v PCA (TS pool control area)
v QAB (TS queue anchor block)
v QOB (TS queue ownership block)
v QUB (TS queue update block)
v SBB (TS shared browse block)
v STE (TS sysid table entry)
v TSA (TS anchor block)
v TSBUFFER (TS I/O buffer)
v TSI (TS item descriptor)
v TSM (TS main item header)
v TSHANCH (TS shared class anchor)
v TSMNANCH (TS main class anchor)
v TSMODEL (TS model class anchor)
v TSNANCH (TS name class anchor)
v TSOANCH (TS ownership lock class anchor)
v TSQ (TS queue control block)
v TSQANCH (TS queue class anchor)
v TSS (TS aux section descriptor)
v TST (TS table header)
v TSTTE (TS table entry)
v TSW (TS wait element)
v TSX (TS aux item descriptor)
v VCA (TS VSWA control area)
v VSWA (TS VSAM work area)
v XRH (TS aux record header)

UEH keyword

Licensed Materials – Property of IBM

336 CICS TS for z/OS 5.3: Problem Determination Guide

v EPB (exit program blocks)
v GWA (EPB global work area)
v TIE (task interface element)
v UET (user exit table)

US keyword
v USA (user domain anchor block)
v USXD (user domain transaction data)
v USUD (user domain user data), one or more of the following:

– Principal
– Session
– EDF

For an explanation of US summary data in a level-1 dump, see
Appendix B, “Summary data for PG and US keywords,” on page 351.

WB keyword
v GWA (Global work area)
v WBABC (Web anchor block)
v WBSTC (Web state manager blocks)

XM keyword
v MXT (XM domain MXT tclass)
v TCL (XM domain tclass)
v TXN (XM domain transaction)
v XM_XB (XM domain browse element)
v XMA (XM domain anchor block)

XRF keyword
v CAVM_STA (CAVM static storage)
v XRP_ACTS (XRP active status area)
v XRP_ALTS (XRP alternate status area)
v XRP_HLTH (XRP health area)
v XRP_XRSA (XRP anchor area)
v XRPSTAT (XRP static storage)

XS keyword
v XSA (security domain anchor block)
v XSSS (security supervisor storage)

Note 1: The keyword can also be used when formatting an EXCI SDUMP, that is a
dump of a non-CICS address space that is using EXCI to communicate with CICS.
See Formatting system dumps in Troubleshooting.

Control block to keyword map

CICS control block VERBEXIT
keyword

ACA TS auxiliary control area TS

ACB VSAM ACBs FCP

ACB z/OS Communications Server access method control
block

TCP

ACB TD VSAM ACB TDP

AFCB CICS AFCB KE

AFCS CICS AFCS KE

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 337

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhtm/topics/dfhtmc0076.html

CICS control block VERBEXIT
keyword

AFCTE Application file control table element FCP

AFT CICS AFT KE

AID Automatic initiation descriptor TCP

AITM Static storage AI

AITMTE Autoinstall terminal models AI

ANCHOR Directory manager anchor block DD

APE Active program element LD

AUTOSTCK Automatic storage stack entry KE

AVL_HEAD AVL tree header DD

AWE Autoinstall work element TCP

BCA TS buffer control area TS

BIND Bind image TCP

BITMAPn Instance of resource naming BITMAP TCP

BMH TS byte map header TS

BMP TS byte map TS

BRB TS browse block TS

BRWS_VAL Browse value DD

BRXA Bridge exit interface BR

Bridge facility bitmap BR

Bridge facility keep chain BR

Bridge facility block BR

TXN_CS BR

BUFFER TD I/O buffer TDP

CAVM_STA CAVM static storage XRF

CC_ACB Local catalog ACB CC

CC_RPL Local catalog RPLs, one each thread CC

CCB Connection control block MRO

CCBUFFER Local catalog buffers, one each thread CC

CCIN CICS client CCIN parameters TCP

CHCB Channel control block PG

CICS24 Task storage - below 16 MB, CICS key AP APS

CICS31 Task storage - above 16 MB, CICS key AP APS

CICS64 Task storage - above the bar, CICS key AP APS

CONN_DATA Connection data II

Licensed Materials – Property of IBM

338 CICS TS for z/OS 5.3: Problem Determination Guide

CICS control block VERBEXIT
keyword

CPCB Container pool control block PG

CPE Current program element LD

CPSTATIC Common program interface storage CP

CRB CICS region block MRO

CRCB Container control block PG

CSA Common system area CSA

CSCB Container segment block PG

CSAOPFL CSA optional features list CSA

CSB Connection status block MRO

CSECTL Program CSECT list LD

CTIN CICS client CTIN parameters TCP

CTN Cartesian tree node SM

CWA Common work area CSA

CWE CICS/DBCTL control work element DLI

D2CSB CICS DB2 subtask block DB2

D2ENT CICS DB2entry control block DB2

D2GLB CICS DB2 global block DB2

D2LOT CICS DB2 life of task block DB2

D2PKGSET CICS DB2 PACKAGESET control block DB2

D2SS CICS DB2 static storage DB2

D2TRN CICS DB2tran control block DB2

DCB Data control block FCP

DCB BSAM data control block TCP

DCTE Destination control table entries (transient data queue
definitions)

TDP

DFHDLP CICS/DLI interface parameter list DLI

DFHDTTABLE Data table base area FCP

DFHDTFILE Data table path area FCP

DFHDTHEADER Data table global area FCP

DFHECSS Event capture static storage EC

DFQE Deferred filter queue element EC

DFHEJANC EJ domain anchor block EJ

DFHEJANE EJ domain elements anchor area EJ

DFHSIT System initialization table PA

DGB CICS/DBCTL global block DLI

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 339

CICS control block VERBEXIT
keyword

DGBCTA DBCTL transaction area DLI

DIB Data interchange block TCP

DIR_HEAD Directory header DD

DIRSEG Directory segments TMP

DMANCHOR Domain manager anchor block DM

DOH Domain table header KE

DOM Domain table entry KE

DPA DP domain anchor block DP

DPTA DP domain task area DP

DS_TCB TCB block DS

DSANC Dispatcher anchor block DS

DSB CICS/DBCTL scheduling block DLI

DSNB Data set name block FCP

DTA Dispatcher task area DS

DTN TS digital tree node TS

DTRGLOBL Data table remote global area FCP

DUA Dump domain anchor block DU

DUBUFFER Transaction dump-data set buffer DU

DUMTCTTE Dummy TCTTE TCP

DWE User DWE storage AP APS

DXE DSA extent list element SM

DXG DSA extent getmain descriptor SM

DXH DSA extent list header SM

DXPS CICS-DL/I-XRF anchor block DLI

ECAF Failed EP adapter in EP adapter set EC

ECCD Event capture application event capture data item EC

ECCS Event capture specification EC

ECEVB Event binding EC

ECFP Event capture application event filter predicate EC

ECFPX Event capture application event filter predicate
extension

EC

ECQE Event processing queue element EP

ECSCD Event capture system event capture data item EC

ECSFP Event capture system event filter predicate EC

EDTB Event processing dispatcher task block EP

Licensed Materials – Property of IBM

340 CICS TS for z/OS 5.3: Problem Determination Guide

CICS control block VERBEXIT
keyword

EIB EXEC interface block AP APS

EIS EXEC interface structure AP APS

EIUS EXEC interface user structure AP APS

EJAO EJ domain object store anchor area EJ

EJDU_BLOCK Task-related Java diagnostics EJ

EPA Event processing anchor block EP

EPAC Event processing adapter configuration data EP

EPADA Event processing adapter EP

EPADI EP adapter name in EP adapter set EP

EPADT EP adapter set EP

EPB Exit program blocks UEH

EXLST z/OS Communications Server ACB exit list TCP

FBWA Data table browse area FCP

FCSTATIC FCP static storage - anchor block FCP

FCTE File control table element FCP

FILE User file storage AP APS

FLAB File lasting access block FCP

FRAB File request anchor block FCP

FREECHAI LM domain freechain 1 LM

FREECHAI LM domain freechain 2 LM

FREECHAI LM domain freechain 3 LM

FRTE File request thread element FCP

GC_ACB Global catalog ACB CC

GC_RPL Global catalog RPLs, one each thread CC

GCBUFFER Global catalog buffers, one each thread CC

GPAM Page allocation map for 64 bit DSA SM

GPPA Pagepool control area for 64 bit DSA SM

GPPX Pagepool extent control area for 64 bits DSA SM

GWA EPB global work area UEH

GWA Web global work area WB

HASH_TBL Hash table DD

HASHELEM Collision list element DD

HPE Header program element PI

HTB Handle table PG

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 341

|||

|||

|||

CICS control block VERBEXIT
keyword

ICE Interval control elements/AIDs ICP

ICE TS interval control element TS

IECCB IE domain client conversation block IE

IECSB IE domain connection status block IE

ISORM Indirect system object resolution map TCP

JCA Journal control area AP APS

KCB Kernel anchor block KE

KERNSTCK Kernel linkage storage stack entry KE

KERRD Kernel error data KE

KTCB KTCB table entry KE

LACB Logon address control block MRO

LCB Logon control block MRO

LD_GLBL Loader domain global storage - anchor block LD

LDBE Loader domain browse element LD

LDWE Loader domain wait element LD

LGA Log domain anchor block LG

LGBR Stream/journal/journalmodel browse LG

LGGL General log data LG

LGJI Journal information LG

LGJMC Journalmodel content LG

LGSD Stream data LG

LGUOW Log manager unit of work token LG

Block class data LG

Block instance data LG

BrowseableStream class data LG

BrowseableStream instance data LG

Chain class data LG

Chain instance data LG

HardStream instance data LG

L2 anchor block LG

Stream class data LG

Stream instance data LG

SuspendQueue elements LG

SystemLog class data LG

Licensed Materials – Property of IBM

342 CICS TS for z/OS 5.3: Problem Determination Guide

CICS control block VERBEXIT
keyword

LLE Load list element PG

LMANCHOR Lock manager domain anchor block LM

LMQUICK1 LM domain quickcell 1 LM

LMQUICK2 LM domain quickcell 2 LM

LMQUICK3 LM domain quickcell 3 LM

LOCK_ELE LM domain lock element LM

LOGDS Extracted logon or CLSDST pass data TCP

LUITE Local userid table element TCP

LXA LX array MRO

MAPCOPY User BMS MAP storage AP APS

MBCA TD buffer control area TDP

MBCB TD buffer control block TDP

MCA SM macro-compatibility control area SM

MCT Monitoring control table MN

MDA Requestmodel model class anchor block II

MEA Message domain anchor block ME

MLA Markup language domain anchor block ML

MNA Monitor domain global storage - anchor block MN

MNAFB Monitor authorization facility parameter block MN

MNCONNS Monitor field connectors MN

MNDICT Monitor dictionary MN

MNEXC Exception record buffer MN

MNEXLIST User EMP address list MN

MNFLDMAP Excluded/included CICS field map MN

MNPER Performance data buffer MN

MNSMF SMF record buffer MN

MNTMA Transaction monitoring area MN

MNWLMPB MVS WLM performance blocks MN

MPA MP domain anchor block MP

MPMOD MP model MP

MPMODR MP model rule MP

MPPFA MP policy event action failed EP adapter in EP
adapter set block

MP

MPPMB MP policy modifier control block MP

MPPPB MP policy block MP

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 343

CICS control block VERBEXIT
keyword

MPPRB MP policy rule block MP

MPTAS MP task storage MP

MQCB TD queue control block TDP

MRCA TD string control area TDP

MRCB TD string control block TDP

MRSD TD CI state map - segment descriptor TDP

MWCB TD wait control block TDP

MXT XM domain MXT tclass XM

NIB Node initialization block TCP

NIBLIST Persistent session INQUIRE PERSESS NIBs TCP

OPENBLOK Transaction dump open block DU

OS_ELEMENT EJ object store elements EJ

OTAN OT domain anchor block OT

OVERSTOR Override parameter temporary work area PA

PAA Parameter manager domain anchor block PA

PAM Page allocation map SM

PAPL DLI/DRA architected parameter list DLI

PARMSAVE SIT override parameters PA

PCA TS pool control area TS

PEB Pipeline element block PI

PGA Program management anchor PG

PGWE Program management wait element PG

PIA Pipeline manager anchor block PI

PIH Pipeline element header block PI

PLCB Program management program control block PG

PPA Pagepool control area SM

PPTE Program processing table element PG

PPTTE Program processing table entries (program definitions) PCP

PPX Pagepool extent control area SM

PRSS Persistent sessions CV29, FMH5, BIS, and BID data TCP

PRSTATIC Partner resource static area PR

PRTE Partner resource table entries PR

PRVMODS SIT PRVMOD list PA

PS_BID Persistent sessions OPNDST RESTORE BID TCP

Licensed Materials – Property of IBM

344 CICS TS for z/OS 5.3: Problem Determination Guide

CICS control block VERBEXIT
keyword

PS_BIND Persistent sessions INQUIRE PERSESS BIND TCP

PS_BIS Persistent sessions OPNDST RESTORE BIS TCP

PS_CV29 Persistent sessions OPNDST RESTORE control vector
29

TCP

PS_FMH5 Persistent sessions OPNDST RESTORE FMH5 TCP

PS_MODN Persistent sessions INQUIRE PERSESS modename TCP

PS_NIB Persistent sessions INQUIRE PERSESS NIB TCP

PS_PLST Persistent sessions INQUIRE PERSESS parameter list TCP

PS_POOL Persistent sessions RPL pool header TCP

PS_RPL Persistent sessions RPL TCP

PS_SESS Persistent sessions INQUIRE PERSESS session ID TCP

PTA Program transaction area PG

PWE Postponed work element TCP

QAB TS queue anchor block TS

QOB TS queue ownership block TS

QPH Quickcell page header SM

QPK Quickcell page free element SM

QUB TS queue update block TS

RACE Receive-any control elements TCP

RAIA z/OS Communications Server receive-any input area TCP

RMCBS Recovery manager control blocks RM

RP_DATA Request processor data II

RPL z/OS Communications Server request parameter list -
receive-any RPLs

TCP

RPL TD VSAM RPL TDP

RSA Region status domain anchor block RS

RSB Remote scheduling block DLI

RZDM RZ domain anchor block RZ

RZREQSTR rz_reqstream instance data RZ

RZRMB rzrmb instance data RZ

RZTR rztr instance data RZ

SAE Storage access table entry SM

SAT Storage access table SM

SBB TS shared browse block TS

SCA Subpool control areas SM

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 345

CICS control block VERBEXIT
keyword

SCACB Subsystem connection address control block MRO

SCCB Subsystem connection control block MRO

SCE Storage element descriptor SM

SCF Free storage descriptor SM

SCTE Subsystem control table extension MRO

SDSCI TD SCSCI TDP

SDTE System dump table elements DU

SHRCTL Shared LSRPOOLs FCP

SITDLI SIT DL/I extension PA

SJA JVM domain anchor block SJ

SJCCH Shared class cache control block SJ

SJTCB JVM TCB control block SJ

SJVMS JVMset or control block SJ

SKT Scatter tables TMP

SLCB Subsystem logon control block MRO

SMA Storage manager domain anchor block SM

SMX Transaction storage area SM

SNE Service handler element PI

SNEX TCTTE signon extension TCP

SQE Suspend queue element SM

SSA Static storage areas SSA

SSAL Static storage address list SSA

STANCHOR Statistics domain anchor block ST

STATSBUF Log manager statistics LG

STE TS sysid table entry TS

STSAFPB Statistics authorization facility parameter block ST

STSMF Statistics SMF record ST

STSTATS Statistics domain statistics record ST

SUA Subspace area SM

SUDB Subsystem user definition block MRO

SUSPAREA Unformatted SUSPEND_AREAS/TOKENS DS

SYSLIB DFHEJDUB EJ

SYS_TCA TCA - system DLI AP

SZSDS FEPI static area SZ

Licensed Materials – Property of IBM

346 CICS TS for z/OS 5.3: Problem Determination Guide

CICS control block VERBEXIT
keyword

TACLE Terminal abnormal condition line entry TCP

TAH Task table header KE

TAS Task table entry - TASENTRY KE

TASK Unformatted DTAs DS

TCA Task control area DLI AP

TCH KTCB table header KE

TCL XM domain tclass XM

TCTENIB NIB descriptor TCP

TCTESBA LU6.2 send/receive buffer TCP

TCTFX TCT prefix TCP

TCTLE TCT line entries TCP

TCTME TCT mode entry TCP

TCTSE TCT system entries TCP

TCTSK TCT skeleton entries TCP

TCTTE Terminal control table terminal entries (terminal
definitions)

TCP

TCTTECCE Console control element TCP

TCTTELUC TCTTE LU6.2 extension TCP

TCTTETTE TCTTE extension TCP

TCTTEUA TCTTE user area TCP

TD User transient data AP APS

TDCUB TD CI update block TDP

TDQUB TD queue update block TDP

TDST TD static storage TDP

TDTE Transaction dump table elements DU

TDUA TD UOW anchor block TDP

TIA Timer domain anchor block TI

TIE Task interface element UEH

TIOA Terminal I/O area TCP

TM_LOCKS Read lock blocks TMP

TMSTATIC Table manager static storage TMP

TRA Trace domain anchor block TR

TRDCB Auxiliary trace data set DCB TR

TRDECB Auxiliary trace data set DECB TR

TRE Timer request elements TI

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 347

CICS control block VERBEXIT
keyword

TS User temporary storage AP APS

TSA TS anchor block TS

TSBUFFER TS I/O buffer TS

TSHANCH TS shared class anchor TS

TSI TS item descriptor TS

TSM TS main item header TS

TSMNANCH TS main class anchor TS

TSMODEL TS model class anchor TS

TSNANCH TS name class anchor TS

TSOANCH TS ownership lock class anchor TS

TSQ TS queue control block TS

TSQANCH TS queue class anchor TS

TSS TS aux section descriptor TS

TST TS table header TS

TSTTE TS table entry TS

TSW TS wait element TS

TSX TS aux item descriptor TS

TXD64 Transaction definition instance 64 bit extension PCT

TXDINST Transaction definition instance PCT

TXDSTAT Transaction definition static data PCT

TXN XM domain transaction XM

TXN_DATA Transaction data II

UCA Use count array MRO

UET User exit table UEH

USER24 Task storage - below 16 MB, user key AP APS

USER31 Task storage - above 16 MB, user key AP APS

USER64 Task storage - above the bar, user key AP APS

VCA TS VSWA control area TS

VEMA TD VSAM error message area TDP

VSWA VSAM work area FCP

VSWA TS VSAM work area TS

WAITLST Wait list TCP

WBABC Web anchor block WB

WBSTC Web state manager block WB

Licensed Materials – Property of IBM

348 CICS TS for z/OS 5.3: Problem Determination Guide

CICS control block VERBEXIT
keyword

WCB Web service control block PI

WHB Web service header block PI

WQP Domain wait queue DM

WRB Web service resource block PI

XMA XM domain anchor block XM

XM_XB XM domain browse element XM

XRH TS aux record header TS

XRP_ACTS XRP active status area XRF

XRP_ALTS XRP alternate status area XRF

XRP_HLTH XRP health area XRF

XRP_XRSA XRP anchor area XRF

XRPSTAT XRP static storage XRF

ZEPD TC module entry list TCP

Licensed Materials – Property of IBM

Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords 349

Licensed Materials – Property of IBM

350 CICS TS for z/OS 5.3: Problem Determination Guide

Appendix B. Summary data for PG and US keywords

This section lists the elements of the control block summaries in a level-1 IPCS
dump for the PG and US keywords.

PG keyword
The summaries appear below in the sequence in which they appear in a dump.
This is broadly the sequence in which the control blocks are listed in Appendix A,
“SDUMP contents and IPCS CICS VERBEXIT keywords,” on page 327
form=numonly, but note:
v The system LLE summary, if present, follows the PGA summary, but the task

LLE summary, if present, follows the PTA summary.
v The HTB does not appear in a summary.

PGA (program manager anchor)
PG Domain Status

One of the following:
v Initializing
v Initialized
v Quiescing
v Quiesced
v Terminating
v Terminated.

Autoinstall status
Either active or inactive.

Autoinstall catlg status
Autoinstall catalog status, one of the following:
v All
v Modify
v None.

Autoinstall exit name
Autoinstall exit name.

Attempted autoinstalls
Number of attempted autoinstalls in decimal.

Failed autoinstalls
Number of failed autoinstalls in decimal.

Rejected autoinstalls
Number of rejected autoinstalls in decimal.

XRSINDI active
Status of user exit, either Y or N.

Exec calls allowed
Either Y or N.

System LLE chain head
Address of system LLE chain head, zero if no chain exists.

PGWE chain head
Address of PGWE chain head, or zero if no chain exists.

Stats last - 1st word
Statistics last reset time using GMT (on two lines).

Reset time - 2nd word
Second part of last reset time.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 351

SM access token
SM access token value.

SM isolation token
SM isolation token value.

Storage protect
Either Y or N.

Cold start
Either Y or N.

Recovery complete
Either Y or N.

System LLE Summary
LLE-ADDR

LLE address.
PROGRAM

Program name.
PPTE-ADD

PPTE address.

PGWE Summary
PGWE-ADD

Address of suspended program.
PROGRAM

Name of suspended program.
SUS-TOKN

Suspend token.
PPTE-ADD

Program PPTE address.

PPTE Summary
PPTE ADDRESS

Address of PPTE block.
PROGRAM NAME

The tables are indexed using the program name.
MOD TYPE

Module type, one of the following:
v PG - Program
v MP - Mapset
v PT - Partitionset.

LANG DEF
Language defined, one of the following:
v NDF - Not defined
v ASS - Assembler
v C - C
v COB - OS/VS COBOL (programs of this type do not run in CICS)
v CO2 - Enterprise COBOL or VS COBOL II
v LE3 - Le370
v PLI - PL/I.

LANG DED
Language deduced, one of the following:
v NDD - Not deduced
v ASS - Assembler
v C - C
v COB - OS/VS COBOL (programs of this type do not run in CICS)
v CO2 - Enterprise COBOL or VS COBOL II

Licensed Materials – Property of IBM

352 CICS TS for z/OS 5.3: Problem Determination Guide

v LE3 - Le370
v PLI - PL/I.

INST TYPE
PPTE installation type, one of the following:
v R - Built from RDO
v C - Built from catalog constant
v G - Built from grouplist
v A - Autoinstall
v S - System autoinstall
v M - Manual.

CEDF STAT
CEDF status, either CED (CEDF allowed) or NOC (CEDF not allowed).

AVAL STAT
Program availability status, either E (enabled) or DI (disabled).

DATA LOC
Data location, either A (any location) or B (below 16 MB).

EXEC KEY
Execution key, either C (CICS) or U (user).

DPL SUBS
DPL subset, either DP (DPL subset) or F (full API).

RE LOAD
Indicates whether this is a reload program, either Y or N.

LOAD STAT
Load status, one of the following:
v L - Loaded
v NL - Not loadable
v ND - Not loaded.

HOLD STAT
CICS hold status, either C (loaded for CICS lifetime) or T (task lifetime).

USE COUNT
Use count in decimal, blank if 0.

LOCK OWNER
Transaction number of locking program.

PGWE CHAIN
Indicator of presence of any PGWEs, either Y or N.

REMOTE PRGID
Remote program name.

REMOTE SYSID
Remote system name.

REMOTE TRNID
Remote transaction name.

PTA Summary
TRAN NUM

Transaction number.
PTA ADDRESS

Address of PTA.
LOG-LVL

Logical level count in decimal.
SYS-LVL

System level count in decimal.
TASK-LLE

Address of task LLE head, zero if no task LLE exists.
PLCB Address of PLCB head, or zero if no PLCB exists.

Licensed Materials – Property of IBM

Appendix B. Summary data for PG and US keywords 353

Task LLE Summary
LLE-ADDR

LLE address.
PROGRAM

Program name.
PPTE-ADD

PPTE address.

CHCB Summary
CHANNEL

Channel name (followed by *CURRENT* if it is the program's current
channel).

CHCB CHCB address.
LEN Total length of all containers in the channel.
CCSID

Default coded character set ID for the channel.
GN Generation number.
CPCB Address of container pool control block.

CRCB Summary
CONTAINER

Container name.
TYPE Container type. The type is one of the following:

CICS An internal system container.
R/O A read-only container.
USER A user-data container.

CRCB CRCB address.
LEN Length of data in the container.
CCSID

The default coded character set ID for the container or, if the container was
created with the BIT option, DTYPE(BIT).

GN Generation number.
CSCB

CSCB anchor address.

Task PLCB Summary
PLCB-ADD

PLCB address.
PROGRAM

Program name.
LOG-LVL

Logical level of program.
LOAD

Program load point.
ENTRY

Program entry point.
LENGTH

Program length.
CA-CURR

Current commarea address.
CLEN Current commarea length.
INVK-PRG

Name of invoking program.
STG Commarea storage class. Can be one of five:

v Blank - No commarea for this level.

Licensed Materials – Property of IBM

354 CICS TS for z/OS 5.3: Problem Determination Guide

v C - CICS
v C24 - CICS 24 bit
v U - User
v U24 - User 24 bit.

EXIT-NME
Exit name derived from user exit number, if applicable.

ENV Environment type, one of the following:
v EXEC - Command level application
v GLUE - Global user exit
v PLT - PLT program
v SYS - CICS system program
v TRUE - Task-related user exit
v URM - User-replaceable module.

PPTE-ADD
Program PPTE address.

US keyword
A level-1 dump summarizes only the user domain data (USUD). The fields
displayed are the same for each type of USUD (principal, session, or EDF).

USXD summary
TRAN NUM

Transaction number.
PRINCIPAL TOKEN

Principal token, if any.
SESSION TOKEN

Session token, if any.
EDF TOKEN

EDF token, if any.

USUD summary
TOKEN

User token.
USERID

User identifier.
GROUPID

Group identifier.
ADDCOUNT

Adduser use count.
TRNCOUNT

Transaction use count.
OPID Operator identifier.
CLASSES

A bitmap expressing the operator classes in order 24 to 1.
PRTY Operator priority.
TIMEOUT

Timeout interval in hours and minutes (hh:mm) as defined in the CICS
RACF segment. This specifies when an inactive terminal is signed off.

ACEE Address of ACEE.
XRFSOFF

XRF user signon. Can be NOFORCE or FORCE.
USERNAME

User name.

Licensed Materials – Property of IBM

Appendix B. Summary data for PG and US keywords 355

Licensed Materials – Property of IBM

356 CICS TS for z/OS 5.3: Problem Determination Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 357

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

CICSPlex® SM Web User Interface :

For the WUI main interface: Depending upon the configurations deployed, this
Software Offering may use session and persistent cookies that collect each user’s
user name and other personally identifiable information for purposes of session
management, authentication, enhanced user usability, or other usage tracking or
functional purposes. These cookies cannot be disabled.

For the WUI Data Interface: Depending upon the configurations deployed, this
Software Offering may use session cookies that collect each user’s user name and
other personally identifiable information for purposes of session management,
authentication, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the WUI Hello World page: Depending upon the configurations deployed, this
Software Offering may use session cookies that collect no personally identifiable
information. These cookies cannot be disabled.

For CICS Explorer®: Depending upon the configurations deployed, this Software
Offering may use session and persistent preferences that collect each user’s user
name and password, for purposes of session management, authentication, and
single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the
user's explicit action to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www-01.ibm.com/software/info/product-privacy/.

Licensed Materials – Property of IBM

358 CICS TS for z/OS 5.3: Problem Determination Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www-01.ibm.com/software/info/product-privacy/

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Licensed Materials – Property of IBM

Notices 359

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Licensed Materials – Property of IBM

360 CICS TS for z/OS 5.3: Problem Determination Guide

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory - base, GI13-3375
CICS Transaction Server for z/OS Program Directory activation module - base,
GI13-3376
CICS Transaction Server for z/OS Program Directory activation module - Developer
Trial, GI13-3377
CICS Transaction Server for z/OS Program Directory activation module - Value Unit
Edition, GI13-3378
CICS Transaction Server for z/OS What's New, GC34-7437
CICS Transaction Server for z/OS Upgrading to CICS TS Version 5.3, GC34-7436
CICS Transaction Server for z/OS Installation Guide, GC34-7414

Access to CICS
CICS Internet Guide, SC34-7416
CICS Web Services Guide, SC34-7452

Administration
CICS System Definition Guide, SC34-7428
CICS Customization Guide, SC34-7404
CICS Resource Definition Guide, SC34-7425
CICS Operations and Utilities Guide, SC34-7420
CICS RACF® Security Guide, SC34-7423
CICS Supplied Transactions, SC34-7427

Programming
CICS Application Programming Guide, SC34-7401
CICS Application Programming Reference, SC34-7402
CICS System Programming Reference, SC34-7429
CICS Front End Programming Interface User's Guide, SC34-7412
CICS C++ OO Class Libraries, SC34-7405
CICS Distributed Transaction Programming Guide, SC34-7410
CICS Business Transaction Services, SC34-7403
Java Applications in CICS, SC34-7417

Diagnosis
CICS Problem Determination Guide, GC34-7422
CICS Performance Guide, SC34-7421
CICS Messages and Codes Vol 1, GC34-7418
CICS Messages and Codes Vol 2, GC34-7419
CICS Diagnosis Reference, GC34-7409
CICS Recovery and Restart Guide, SC34-7424
CICS Data Areas, GC34-7406
CICS Trace Entries, SC34-7430
CICS Debugging Tools Interfaces Reference,GC34-7408

Communication
CICS Intercommunication Guide, SC34-7415
CICS External Interfaces Guide, SC34-7411

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 361

Databases
CICS DB2 Guide, SC34-7407
CICS IMS Database Control Guide, SC34-7413
CICS Shared Data Tables Guide, SC34-7426

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7441
CICSPlex SM Web User Interface Guide, SC34-7451

Administration and Management
CICSPlex SM Administration, SC34-7438
CICSPlex SM Operations Views Reference, SC34-7447
CICSPlex SM Monitor Views Reference, SC34-7446
CICSPlex SM Managing Workloads, SC34-7444
CICSPlex SM Managing Resource Usage, SC34-7443
CICSPlex SM Managing Business Applications, SC34-7442

Programming
CICSPlex SM Application Programming Guide, SC34-7439
CICSPlex SM Application Programming Reference, SC34-7440

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7449
CICSPlex SM Resource Tables Reference Vol 2, SC34-7450
CICSPlex SM Messages and Codes, GC34-7445
CICSPlex SM Problem Determination, GC34-7448

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 5 Release 3 .

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

Licensed Materials – Property of IBM

362 CICS TS for z/OS 5.3: Problem Determination Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 363

Licensed Materials – Property of IBM

364 CICS TS for z/OS 5.3: Problem Determination Guide

Index

A
abbreviated-format trace 261
abend codes

transaction 27
AICA 29
ASRA 29
ASRB 29
CICS 28
destination 27
documentation 28
interpretation 28
product other than CICS 28
user 28

ABEND symptom keyword 9
abends

AICA 150
DBCTL interface 37
dump not made when expected 181
exception trace entry 42
investigating 41

the documentation you need 41
looking at the symptom string 42
symptom keyword 9
transaction 27

AICA 29
ASRA 29
ASRB 29
worksheet 38

access method
BSAM 66
determining the type in use 65
intersystem communication 65
ISMM 65
possible reason for stalled

system 114
z/OS Communications Server

terminal waits 66
access methodLogical Unit access

resource names
DFHZCRQ1 140

resource types
ZC 140

SNASystems Network Architecture
Logical Unit

terminal control waits 140
addressing exception 32
AEYD

causes 28
AICA abend

probable cause 29
PSW 303
registers 303

AICA abends 150
AID chain

investigating tasks that have not
started 197

locating in the formatted system
dump 197

AIDTRMID (symbolic ID of
terminal) 198

AIDTRNID (transaction ID) 198

AITM resource name 120
ALLOCATE resource type 118, 142
ALTPAGE attribute 186, 190
ALTSCREEN attribute, 186, 190
Any_MBCB resource type 118
Any_MRCB resource type 118
AP_INIT resource type 118, 119
AP_QUIES resource type 119
AP_TERM resource type 119
APAR (authorized program analysis

report)
authorization 321
closing 323
documentation needed 321
process 321
submitting 322

APPC (LUTYPE6.2), range of devices 63
application programs

storage areas 307
arithmetic exceptions 32, 33

investigating 33
ASIS option 187
ASRA abend

execution key 303
PSW 303
registers 303

ASRB abend
causes 29
execution key 303
PSW 303
registers 303

ASRD abend
causes 29
PSW 303
registers 303

assemblers
errors in output 3

asynchronous processing 72
ASYNRESP resource name 119
ATCHMSUB, resource name 121
ATI (automatic transaction initiation) 70
autoinitiated tasks

excessive numbers shown in
statistics 16

automatic initiate descriptor (AID)
identifying the related task 198
identifying the terminal 198
investigating tasks that have not

started 197
automatic transaction initiation (ATI)

task produced no output 193, 196
looking at the AID chain 197
looking at the ICE chain 197
resource not available 197
task not yet scheduled to

start 197
automatic transaction initiation session

status 70
auxiliary switch 240
auxiliary trace 239, 240, 259

abbreviated-format 261

auxiliary trace (continued)
controlling 252
extended-format 256
formatting 255

selectivity 255
interpreting 256, 261
loss of trace data 178
short-format 259
trace entries missing 180

auxiliary trace utility program,
DFHTUnnn 239, 240

AUXTR, system initialization
parameter 252

AUXTRSW, system initialization
parameter 252

B
BDAM

cause of ASRB abends 29
record locking 99

BMS (basic mapping support)
applications not compiled with latest

maps 190
ASIS option 187
attributes of fields 200

DARK field attribute 200
incorrect output to terminal 200

attributes of fields 200
DARK field attribute 200
MDT 200
modified data tag 200
symbolic map 200

maps incorrect 190
MDT 200
modified data tag 200
symbolic map 200

bottlenecks 169, 176
dispatch, suspend and resume

cycle 170
initial attach to the dispatcher 170
initial attach to the transaction

manager 170
initial dispatch 170

BSAM 66
builder parameter set (BPS)

CSFE ZCQTRACE facility 287

C
CCSTWAIT resource type 119
CCVSAMWT resource type 119
CDB2CONN resource type 119
CDB2RDYQ resource type 119
CDB2TCB resource type 119
CDB2TIME, resource name 129
CDBC transaction

DBCTL connection fails 136
DBCTL disconnection fails 136

CDBT transaction 136

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1997, 2015 365

CDSA resource type 119
CEBR transaction

checking programming logic 199
investigating loops 168

CECI transaction
checking for bad data in a file 199
checking programming logic 199
investigating loops 168

CEDF transaction
checking programming logic 199
investigating loops 168

CEMT INQUIRE TASK
HTYPE field 56
HVALUE field 56

CEMT INQUIRE UOWENQ command
deadlock diagnosis 108

CEMT transaction
SET PROGRAM NEWCOPY 3
use during CICS termination 115

CETR transaction 252
controlling CICS SNA exit

tracing 244
example screen 249
master system trace flag 247
selecting components to be

traced 250
setting special trace levels 250
setting standard trace levels 250
suppressing standard tracing 247
task tracing options 246
terminal tracing options 246
transaction tracing options 246

CEX2TERM, resource name 121
CFDTLRSW resource type 120
CFDTPOOL resource type 119
CFDTWAIT resource type 119
CHANGECB resource name 129
CHKSTRM option, startup override 205
CHKSTSK option, startup override 205
CICS GTF trace 259

abbreviated-format 261
controlling 252
extended-format 256
formatting 256

selectivity 256
interpreting 256, 261
no CICS trace entries made 178
short-format 259
trace entries missing 180

CICS running slowly 11
CICS stalled

caused by SOS condition 113
during a run 112, 150
during initialization 112
during quiesce 115
during termination 115
effect of ICV parameter 113
effect of ICVR parameter 113
effect of MXT parameter 113, 114
exclusive control of volume

conflict 114
investigating the reason for the

stall 10
messages 10
on cold start 112
on emergency restart 112
on initial start 112

CICS stalled (continued)
on warm start 112
PLT initialization programs 112
PLT shutdown programs 115
possible causes 10
specific regions 15
system definition parameters

wrong 113
CICS system abends

CICS system dump following 269
CSMT log messages 10
exception trace entry 42
from global trap exit DFHTRAP 312
information needed by the Support

Center 41
investigating 41
looking at the symptom string 42
messages 11
the documentation you need 41

CICS system dumps
data not formatted correctly 184
destination 267
dispatcher domain storage areas 101
dump not made on CICS system

abend 181
following CICS system abend 269
following transaction abend 268
formatting 289

selectivity 289
formatting keywords 291
formatting levels 291
from global trap exit DFHTRAP 312
global suppression 182, 265
in problem determination 265
interactive problem control system

(IPCS) 289
internal trace table 42
investigating CICS system abends 41
investigating waits 56, 58
kernel domain storage areas

CICS system abends 42
error code 47
error data 48
error type 47
failing program 47
information provided 43
kernel error number 47
point of failure 47
PSW at time of error 48
registers at time of error 48
task error information 46
task summary 44
tasks in error 45
waits for resource locks 101

locating the AID chain 197
locating the ICE chain 197
lock manager domain storage

areas 101
looking at the symptom string 42
precautions using dump formatting

keywords 184
statistics 280
storage manager domain storage

areas 73
storage violation 203, 204, 208
suppression by user exit

program 182

CICS system dumps (continued)
suppression for individual

transactions 183, 265
system dump code option 279
system dump codes 265
temporary storage control blocks 75
terminal control storage areas 65

CICS, resource name 125
CICS610 dump exit

JOB parameter 291
keyword parameter 291

CICS680 dump exit
DEF parameter 291

classification of problems 9
COBOL programs

working storage 307
common system area (CSA)

in transaction dump 303
locating the AID chain 197
optional features list 303

compilers
errors in output 3

component tracing
identifying codes 248
precautions when selecting 179
setting special trace levels 250
setting standard trace levels 250

content type mapping x
content types x
control interval (CI)

exclusive control deadlock 97
exclusive control waits 96

CPI resource name 120
CRTE and uppercase translation 188
CSAOPFL 303
CSASSI2 resource name 119
CSATODTU 82
CSFE DEBUG transaction

global trap exit DFHTRAP 311
storage checking 205
TRAP operand 311

CSFE transaction
checking the programming logic 200
storage freeze option 200

CSFE ZCQTRACE transaction
dumps of builder parameter set 287

CSMT log
abend messages 3, 10, 12
terminal error messages 12, 64

CSNC resource type 120
CURRENTDDS, transaction dump data

set status 266
CWA (common work area) 304

D
data corruption

bad programming logic 199
incorrect mapping to program 199
incorrect mapping to terminal 200

attributes of fields 200
DARK field attribute 200
MDT 200
modified data tag 200
symbolic map 200

incorrect records in file 199
missing records in file 199

Licensed Materials – Property of IBM

366 CICS TS for z/OS 5.3: Problem Determination Guide

data corruption (continued)
possible causes 198

data exception 31
DATABUFFERS parameter of FILE

resource definition 90
DB2 migration considerations

DSNTIAR 36
DB2 resource type 120
DB2_INIT resource type 120
DB2CDISC resource type 120
DB2EDISA resource type 120
DB2START, resource name 129
DBCTL (database control)

abends 37
connection fails 136
disconnection fails 136
immediate disconnection 136
orderly disconnection 136
waits 136

DBCTL resource type 120, 136
DBDXEOT resource type 120
DBDXINT resource type 120
DBUGUSER resource name 121
DCT resource name 128
deadlock timeout interval

EXEC CICS WRITEQ TS
command 75

interval control waits 81
task storage waits 73

deadlocks
resolving 107
resolving in a sysplex 111

DEF parameter of CICS dump exit 291
destination control table (DCT)

extrapartition transient data
destination 143

logically recoverable queues 143
DFHAIIN resource type 120
DFHAUXT 239, 240
DFHBUXT 239, 240
DFHCPIN resource type 120
DFHDMPA dump data set 266
DFHDMPB dump data set 266
DFHEIB 303

EIBFN 303
DFHKC TYPE=DEQ macro 140
DFHKC TYPE=ENQ macro 138
DFHKC TYPE=WAIT macro 138

DCI=CICS option 139
DCI=LIST option 139
DCI=SINGLE option 139
DCI=TERMINAL option 139

DFHPRIN resource type 120
DFHPTTW resource name 120
DFHPTTW resource type 120
DFHSIPLT resource name 125
DFHSIPLT resource type 120
DFHTACB 304, 306

PSW 304
registers 304

DFHTEMP resource name 128
DFHTRADS DSECT 312
DFHTSSQ resource name 128
DFHTUnnn, CICS auxiliary trace utility

program 239, 240
DFHZARER resource name 130
DFHZARL1 resource name 130

DFHZARL2 resource name 130
DFHZARL3 resource name 130
DFHZARL4 resource name 130
DFHZARQ1 resource name 130
DFHZARR1 resource name 130
DFHZCRQ1 resource name 129
DFHZDSP resource name 128
DFHZEMW1 resource name 129
DFHZERH1 resource name 130
DFHZERH2 resource name 130
DFHZERH3 resource name 130
DFHZERH4 resource name 130
DFHZIS11 resource name 129
DFHZRAQ1 resource name 129
DFHZRAR1 resource name 129
diagnostic run, of CICS 232
DISOSS, communication with CICS 64
DISPATCH resource type 120
dispatcher

dispatch, suspend and resume
cycle 170, 175

failure of tasks to get attached 170,
171

failure of tasks to get initial
dispatch 170, 173

functions of gate DSSR 117
suspension and resumption of

tasks 117
tracing the suspension and

resumption of tasks 57
dispatcher wait

OPEN_DEL 133
OPENPOOL 132
SSL_POOL 133
THR_POOL 133
XMCHILD 134
XMPARENT 134
XP_POOL 134

distributed transaction processing
(DTP) 72

DLCNTRL resource name 118
DLCONECT resource name 118
DLSUSPND resource name 120
DMATTACH resource type 121
DMB (data management block)

load I/O 103
DMWTQUEU resource name 118
domain identifying codes 248
DS_NUDGE resource name 128
DSA (dynamic storage area)

current free space 73
storage fragmentation 73

DSNTIAR 36
DSSR gate of dispatcher domain

tracing the functions 57
interpreting the trace table 58

tracing the input and output
parameters 58

DSTSKDEF dispatcher wait 132
DTCHMSUB, resource name 121
dump codes

checking the attributes 183
DUMPSCOPE option 269
RELATED attribute 269
storage violation 203
system 183, 265

CICS termination option 279

dump codes (continued)
system (continued)

maximum dumps option 279
NOSYSDUMP attribute 183
options 279
RELATED dumping option 279
SYSDUMP attribute 183
system dumping option 279

transaction 183, 265
CICS termination option 279
format 268
maximum dumps option 279
NOTRANDUMP attribute 183
options 278
RELATED dumping option 279
system dumping option 279
TRANDUMP attribute 183
transaction dumping option 279

dump data sets
attributes 266
AUTOSWITCH status 266
CLOSED status 266
current status 266
DFHDMPA 266
DFHDMPB 266
inquiring on 266
NOAUTOSWITCH status 266
OPEN status 266
setting 266
switch status 266

dump domain
XDUREQ global user exit 182

dump table
examples 282, 284
options 183, 279

loss of additions and changes 279
preservation of additions and

changes 279
statistics 280

current count 280
reset 280
system dumps suppressed 280
system dumps taken 280
times dump code action

taken 280
transaction dumps

suppressed 280
transaction dumps taken 280

suppression of dumping 183
system 284
temporary entries 279, 280
transaction 282

DUMP, system initialization
parameter 182, 265

DUMPDS, system initialization
parameter 266

dumping in a sysplex 269
dumps

CFDT list structure dump 284
controlling

CEMT transaction 268
dump codes 265
dump tables 265
examples 282, 284
EXEC CICS commands 268
selective dumping of storage 268,

279

Licensed Materials – Property of IBM

Index 367

dumps (continued)
controlling (continued)

specifying dump options 278
using an undefined dump

code 280
controlling dump action 265
current dump ID 283
dump output is incorrect

data not formatted correctly 184
dump not made on abend 181
investigating 181
some dump IDs missing from the

sequence of dumps 184
wrong CICS region 181

dumps 21
events that can cause dumps 267
formatting a CFDT pool dump 308
formatting a named counter pool

dump 309
formatting a shared temporary storage

pool dump 309
formatting keywords 291
formatting levels 291
IDs missing from the sequence of

dumps 184
in a sysplex 269
in problem determination 265
looking at the symptom string 42
named counter list structure

dump 285
options 278
Region Status Server list structure

dump 284
requesting dumps 268
setting the dumping

environment 265
shared temporary storage list

structure dump 286
suppressing 182, 266

DUMPSCOPE dump code option 269
DUMPSW, system initialization

parameter 266
DURETRY, system initialization

parameter 267

E
EARLYPLT resource name 120
ECB (event control block)

EXEC CICS POST command 82
finding the address. 139
invalid address, task control

waits 139
posting after task is canceled 207
PSTDECB 103
storage violations 207
valid address, task control waits 139

ECBTCP resource name 118
ECDSA resource type 121
EDF (execution diagnostic facility)

investigating loops 168
use in investigating no task

output 194
waits 137

EDF resource type 121
EDSA (extended dynamic storage area)

current free space 73

EDSA (extended dynamic storage area)
(continued)

storage fragmentation 73
EIBFN 303

in last command identification 306
EKCWAIT resource type 121
EMP (event monitoring point) 21
ENF resource type 121
ENQUEUE on single server

resource 140
ENQUEUE resource type 91, 92, 121,

122, 138, 140
BDAM record locking 99
ESDS write lock 100
KSDS range lock 100
VSAM load mode lock 100
VSAM record locking 99

enqueue waits 78
EPECQEMT resource type 122
EPEDTBMT resource type 122
ERDSA resource type 122
error code 47
error data 48
error number 47
error type 47
ESDSA resource type 122
EUDSA resource type 122
event monitoring point (EMP) 21
exceeding the capacity of a log

stream 218
exception trace

characteristics 242
CICS system abends 42
destination 242
format 242
missing trace entries 181
purpose 242
storage violation 203, 204, 206
user 243

EXCLOGER resource name 119
exclusive control of volume conflict 114
EXEC CICS ABEND command 268
EXEC CICS DELAY command 82
EXEC CICS DUMP TRANSACTION

command 268, 279
EXEC CICS ENTER TRACENUM

command 243
EXEC CICS INQUIRE TASK

SUSPENDTYPE field 57
SUSPENDVALUE field 57

EXEC CICS PERFORM DUMP
command 268

EXEC CICS POST 82
EXEC CICS READ UPDATE

command 97
EXEC CICS RETRIEVE WAIT

command 81
EXEC CICS REWRITE command 97
EXEC CICS START command 81, 171
EXEC CICS STARTBR command 97
EXEC CICS WAIT EVENT command 82
EXEC CICS WRITE command 97
EXEC CICS WRITE MASSINSERT

command 98
EXEC CICS WRITEQ TS command 75

NOSUSPEND 75
REWRITE option 75

EXEC interface block (EIB)
EIBFN 303

EXECADDR resource name 121
EXECSTRN resource name 121
execution diagnostic facility (EDF)

investigating loops 168
execution exception 31
Execution key 303
exit programming interface (XPI)

correctness of input parameters 3
need to observe protocols and

restrictions 3
problems using 3
restrictions in user exits 3
suspension and resumption of

tasks 117
SYSTEM_DUMP call 268
TRANSACTION_DUMP call 268

extended-format trace 256
EXTENDEDDS attribute,

TYPETERM 186, 190
extrapartition transient data waits 143

F
FCACWAIT resource type 122
FCBFSUSP resource type 90, 122
FCCAWAIT resource type 90, 122
FCCFQR resource type 90, 122
FCCFQS resource type 91, 122
FCCRSUSP resource type 122
FCDSESWR resource name 121
FCDSLDMD resource name 121
FCDSRECD resource name 121
FCDSRNGE resource name 121
FCDWSUSP resource type 91, 122
FCFLRECD resource name 121
FCFLUMTL resource name 121
FCFRWAIT resource type 91, 123
FCFSWAIT resource type 92, 123
FCINWAIT resource type 123
FCIOWAIT resource type 92, 123
FCIRWAIT resource type 92, 123
FCPSSUSP resource type 93, 123
FCQUIES resource type 93, 123
FCRAWAIT resource type 93, 123
FCRBWAIT resource type 94, 123
FCRDWAIT resource type 94, 123
FCRPWAIT resource type 94, 123
FCRRWAIT resource type 95, 123
FCRVWAIT resource type 95, 123
FCSRSUSP resource type 93, 123
FCTISUSP resource type 96, 123
FCVSWTT 93
FCXCPROT resource type 96, 124
FCXCSUSP resource type 96, 123
FCXCWTT 96
FCXDPROT resource type 96, 124
FCXDSUSP resource type 96, 123
file accesses, excessive 16
file control waits 87

BDAM record locking 99
drain of RLS control ACB 94
ESDS write lock 100
exclusive control conflict 96
exclusive control deadlock 97
FC environment rebuild 92

Licensed Materials – Property of IBM

368 CICS TS for z/OS 5.3: Problem Determination Guide

file control waits (continued)
file state changes 91, 92
KSDS range lock 100
process non-recoverable requests 93
process recoverable requests 94
RLS control ACB access 90
VSAM buffer unavailable 90
VSAM completing update

processing 91
VSAM I/O 92, 95
VSAM I/O waits (RLS) 95
VSAM load mode lock 100
VSAM record locking by CICS 99
VSAM string unavailable 93
VSAM transaction IDs 96
VSAM upgrade set activity 90, 91, 93
wait for dynamic RLS restart 95
wait for FC initialization 94

first failure data capture 239, 240, 242
FOREVER resource type 124
formatting CICS system dumps 289

keywords 291
front end programming interface (FEPI)

dump control option 298
FEPI waits 146

function shipping 72

G
global catalog data set (GCD)

dump table options 279
effect of redefinition on dump

table 279
global ENQUEUE 111
global trap exit DFHTRAP 311

actions 312
activating 311
coding 313
deactivating 311
information passed to the exit 312
installing 311
program check handling 311
uses 311
work area 313

global trap/trace exit 208
GTF (generalized trace facility) 239, 241
GTFTR, system initialization

parameter 252

H
HTYPE field 56
HVALUE field 56

I
I/O buffers, transient data

all in use 145
IBM Support Center

call receipt 317
Call Receipt 318
dealing with the Center 317
problem reporting 317
use of RETAIN database 9, 319
when to contact 317

ICE (interval control element) 197

ICE expiration 82
ICETRNID transaction ID 197
ICEXPIRY resource type 124
ICEXTOD expiration time 197
ICEXTOD value 82
ICGTWAIT resource type 63, 81, 124
ICMIDNTE resource type 124
ICV, system initialization parameter

possible cause of CICS stall 113
ICVR, system initialization parameter

non-yielding loops 150
possible cause of CICS stall 113
tight loops 150

ICWAIT resource type 63, 82, 124
incorrect output

abend codes 20
application did not work as

expected 191
BMS mapping 200

attributes of fields 200
DARK field attribute 200
MDT 200
modified data tag 200
symbolic map 200

change log 20
checking for bad data in a file 199
checking the mapping from file to

program 199
checking the programming logic 199

desk checking 199
using CEBR 199
using CECI 199
using CEDF 199
using interactive tools 199

databases 23
error messages 20
files 23
incorrect output read from VSAM

data set 191
investigating 177
link-edit maps 20
monitoring 21
no output obtained 192

ATI tasks 193, 196
disabling the transaction 196
explanatory messages 192
finding if the task ran 193
possible causes 192
START PRINTER bit on write

control character 193
task not in system 193
task still in system 192
testing the terminal status 192
using execution diagnostic

facility 194
using statistics 195
using trace 194

passed information 23
printed output wrong 185
source listings 20
statistics 21
symptom keyword 9
symptoms 13
temporary storage 22
terminal data 22
terminal output wrong 185
trace 23

incorrect output (continued)
trace data wrong 178
trace destination wrong 177
trace entries missing 179
trace output wrong 177
transaction inputs and outputs 22
transient data 22
unexpected messages 13
user documentation 19
wrong CICS components being

traced 179
wrong output obtained 198

possible causes 198
wrong tasks being traced 179

INCORROUT symptom keyword 9
INDEXBUFFERS parameter of FILE

resource definition 90
information sources 19
INFORMATION/ACCESS licensed

program 9
INITIAL resource name 119
initialization stall 112
INQUIRE UOWENQ command

deadlock diagnosis 110
INQUIRE_ resource name 129
interactive problem control system (IPCS)

analyzing CICS system dumps 289
CICS dump exit 291
CICS system abends 42

internal trace 259
abbreviated-format 261
controlling 252
extended-format 256
formatting 255
interpreting 256, 261
short-format 259
trace entries missing 180

internal trace table 239, 240
intersystem communication (ISC)

poor performance 171
waits 72, 142

interval control
element 82
performance considerations 171
waits 81

deadlock timeout interval 81
systematic investigation 82

interval control element (ICE) 197
INTTR, system initialization

parameter 252
IRC (interregion communication)

poor performance 171
waits 72, 142

IRLINK resource type 63, 124
IS_ALLOC 124
IS_ERROR 124
IS_INPUT 124
IS_PACE 124
IS_RECV 125
IS_SESS 125
ISMM access method 65
ISSSENQP resource name 121

J
job log 302
JOB parameter of CICS dump exit 291

Licensed Materials – Property of IBM

Index 369

JOURNALS resource name 121
JVM_POOL dispatcher wait 132
JVM_POOL resource name 120
JVMTHRED 125

K
Katakana terminals 189

mixed English and Katakana
characters 189

KCADDR resource name 122
KCCOMPAT resource type 125, 138, 139

resource names 139
CICS 139
LIST 139
SINGLE 139
SUSPEND 139
TERMINAL 63, 139

KCSTRNG resource name 122
kernel domain

information given in dump 43
error code 47
error data 48
error table 46
error type 47
failing program 47, 53
kernel error number 47
point of failure 47
PSW at time of error 48
registers at time of error 48
storage addressed by PSW 49
storage addressed by registers 49
task error information 46
task summary 44
tasks in error 45, 46

linkage stack 52
identifying the task in error 52

stack entries 303
storage areas 43

keyword parameter of CICS dump
exit 291

Knowledge Center x
Knowledge Center content types x

L
last command identification 305
last statement identification 306
LATE_PLT resource name 120
LATE_PLT resource type 125
level-1 trace points 238
level-2 trace points 238
level-3 trace points 238
LG_DEFER resource type 125
LG_FORCE resource type 125
LG_MGRST resource name 125
LGDELALL resource type 125
LGDELRAN resource type 125
LGENDBLK resource type 125
LGENDCRS resource type 125
LGFREVER resource type 125
LGHARTBT resource type 125
LGREDBLK resource type 125
LGREDCRS resource type 125
LGSTRBLK resource type 126
LGSTRCRS resource type 126

LGWRITE resource type 126
link editor

errors in output 3
LIST resource name 125, 130
LMQUEUE resource name 101, 118
loader domain (LD)

program storage map 53
waits 101

lock manager domain (LM)
involvement in waits 101

identifying the lock owning
task 101

investigating 101
log manager problems

categories of 217
corrupt system log 232
diagnostic run, of CICS 232
exceeding the capacity of a log

stream 218
problems in the MVS logger 224

logon rejection 186
LOGSTRMS resource name 122
LOOP symptom keyword 9
loops

CICS detected 149
debugging with interactive tools 168
identifying the point of entry 154
in CICS code 149
investigating 149

looking at the evidence 153
techniques 152, 166

investigating by modifying your
program 168

looking at the transaction dump 154
non-yielding 149

characteristics 150
finding the cause 166
investigating 152
possible causes 166

possible causes 149
potential consumption of storage 73
potential consumption of temporary

storage 77
symptom keyword 9
symptoms 14, 15, 149

CICS region stalled 15
CPU usage high 15
reduced activity at terminals 15
repetitive output 15
short on storage 16
system busy symbol 15

tight 149
characteristics 150
finding the cause 166
identifying an instruction in the

loop 154
investigating 152
possible causes 166

types 149
using CEBR 168
using CECI 168
using CEDF 168
using the CEMT transaction 16
using trace 153, 166
yielding 149

characteristics 151
finding the cause 168

loops (continued)
yielding (continued)

investigating 166
possible causes 168

LOT_ECB resource name 120
lowercase characters 187
LU waits

z/OS Communications Server access
method in use 66

LUs
status 69

LUTYPE6.1, range of devices 63

M
MAXSOCKETS resource name 127
MBCB_xxx resource type 126
MESSAGE symptom keyword 9
messages

absence of, when expected 15
CICS under stress 16
destination

CDBC 12
CSMT 10, 12
CSTL 12

DFHAC2008 196
DFHSM0131 16, 174
DFHSM0133 16, 174
DFHSM0604 174
DFHSM0606 16, 174
DFHSR0601 11
DFHST0001 11
dump formatting error 204
preliminary checks 3
short on storage 174
sources 3
storage violation 202, 204
symptom keyword 9
terminal errors 64
transaction abend 27
transaction disabled 196
unexpected 13, 186

MISCELANEOUS resource name 127
missing trace entries 179
module index

in transaction dump 304
MONITOR POINT command 21
monitoring point 21
MQseries resource type 126
MRCB_xxx resource type 126
MRO waits 72, 142
MROQUEUE resource name 120
MSBRETRN, resource name 121
multiregion operation waits 72, 142
MVS ABEND macro 29
MVS console

CICS termination message 10
MVS logger availability check 218
MVS RESERVE locking

CICS system stalls 114
effect on CICS performance 175
transient data extrapartition

waits 143
VSAM I/O waits 92

MXT (maximum tasks value)
effect on performance 171
kernel task summary 46

Licensed Materials – Property of IBM

370 CICS TS for z/OS 5.3: Problem Determination Guide

MXT (maximum tasks value) (continued)
possible cause of CICS stall 114
reason for task failing to start 12
waits 104
XM_HELD resource type 104

MXT resource type 126
MXT, system initialization parameter

possible cause of CICS stall 113

N
NetView 115
networks

messages 64
preliminary checks 3

NOSYSDUMP, system dump code
attribute 183

NOTRANDUMP, transaction dump code
attribute 183

O
ONC/RPC 9
open transaction environment

TCB stealing 133
OPEN_DEL resource name 120
OPEN_DEL wait 133
OPENPOOL dispatcher wait 132
OPENPOOL resource name 120
OPENPOOL wait 132
operation exceptions 31
output

absence when it is expected 14
none obtained 192

ATI tasks 193, 196
disabling the transaction 196
explanatory messages 192
finding if the task ran 193
possible causes 192
START PRINTER bit on write

control character 193
task not in system 193
task still in system 192
testing the terminal status 192
using execution diagnostic

facility 194
using statistics 195
using trace 194

repetitive 15
wrong 198

possible causes 198

P
PAGESIZE attribute, TYPETERM 190
PC, communication with CICS 64
PERFM symptom keyword 9
performance

bottlenecks 169, 176
dispatch, suspend and resume

cycle 170
initial attach to the dispatcher 170
initial attach to the transaction

manager 170
initial dispatch 170

performance (continued)
dispatch, suspend and resume

cycle 175
extrapartition transient data 175
initial attach to the dispatcher 171
initial attach to the transaction

manager 170
initial dispatch to the dispatcher 173
interval control delays 171
MXT limit 171
performance class monitoring 173
poor

at peak system load times 11
finding the bottleneck 169
investigating 169
lightly loaded system 11
possible causes 11
symptom keyword 9
symptoms 11, 14, 16, 169

remote system status 171
system loading 175
task control statistics 171
task priority 174
task timeout interval 175
terminal status 171
use of MVS RESERVE 175
using trace 173

performance class monitoring 173
PIIS resource type 126
PL/I application programs

locating the DSA chain 307
PMR (problem management record) 318
preliminary checks

all functions fully exercised 3
any changes to the application 3
any previous success 3
changes since last success 3

hardware modification 3
initialization procedure 3
modified application 3
new application 3
PTF (program temporary fix) 3
resource definitions 3

common programming errors 3
failure at specific times of day 3
intermittent failures 3
interval control waits 81
messages 3
network related errors 3

many terminals 3
single terminal 3

no previous success 3
output from assembler 3
output from compiler 3
output from link editor 3
output from translator 3
reproducible problems 3

caused by poor system
definition 3

related to applications 3
related to system loading 3

terminal waits 64
printers

no output 193
printed output wrong 185, 190
unexpected line feeds and form

feeds 190

printers (continued)
write control character 193

privileged operation 31
PRM resource name 120
problem classification 9
problem determination

FEPI waits 146
problem management record (PMR) 318
problem reporting

documentation needed 319
IBM Program Support 317
information needed 318
report sheet 317

problems in the MVS logger 224
processors

usage high 15
PROFILE definition

SCRNSIZE attribute 186, 190
UCTRAN attribute 187

program check
addressing exception 32
arithmetic exceptions 32, 33

investigating 33
cause of ASRA abends 29
data exception 31
execution exception 31
investigating 30
next sequential instruction 30
operation exception 31
outside of CICS 30
possible types 31
privileged operation 31
protection exception 31
specification exception 32
system interrupts 33
wild branch 30

program check and abend tracing 243
program control waits 101
program interrupt code (PIC)

addressing exception 32
arithmetic exceptions 32
data exception 31
execution exception 31
interpretation 31
operation exception 31
privileged operation 31
protection exception 31
specification exception 32
system interrupts 33

program list table (PLT)
programs executing during CICS

quiesce 115
transient data waits 112, 142

PROGRAM resource type 126
program status word (PSW) 29
programming errors

preliminary checks 3
programs

information for current
transaction 304

loops 149
problems with loading 101
representation in linkage stack 52
storage 304

protection exception 31
dealing with 33
possible causes 34

Licensed Materials – Property of IBM

Index 371

PSB (program specification block)
load I/O 103

PSINQECB resource name 130
PSOP1ECB resource name 130
PSOP2ECB resource name 130
PSTDECB 103
PSUNBECB resource name 130
PSW (program status word)

at time of error 48
CICS system abends 48
description 29
finding the offset of a failing

instruction 53
format 53
in transaction abend control

block 304
in transaction dump 303

PTF 323
PTF level 53

Q
QSAM 143, 175
QUIESCE resource name 121
quiesce stall 115

R
RCP_INIT resource type 126
RDSA resource type 126
RECEIVE resource name 127
record locking

BDAM data sets 99
VSAM data sets 99

registers
at time of error 48
CICS system abends 48
data addressed at the time of

error 49
in transaction abend control

block 304
in transaction dump 303

registers at last EXEC command 303
RELATED dump code attribute 269
Remote abend indicator 302
resource definition online (RDO)

ALTER mapset 3
ALTER program 3
ALTER transaction 3
DEFINE mapset 3
DEFINE program 3
DEFINE transaction 3
INSTALL option 3

resource names
CTLACB 123
AITM 120
ASYNRESP 119
ATCHMSUB 121
CDB2TIME 129
CEX2TERM 121
CHANGECB 129, 140
CICS 125
CPI 120
CSASSI2 119
DB2START 129
DBUGUSER 121

resource names (continued)
DCT 128, 142
DFH_STATE_TOKEN 129
DFHPTTW 120
DFHSIPLT 125
DFHTEMP 128
DFHTSSQ 128
DFHXMTA 124
DFHZARER 130
DFHZARL1 130
DFHZARL2 130, 140
DFHZARL3 130, 140
DFHZARL4 130
DFHZARQ1 130
DFHZARR1 130
DFHZCRQ1 129
DFHZDSP 128
DFHZEMW1 129, 140
DFHZERH1 130
DFHZERH2 130
DFHZERH3 130
DFHZERH4 130, 140
DFHZIS11 129
DFHZRAQ1 129, 140
DFHZRAR1 129, 140
DLCNTRL 118
DLCONECT 118
DLSUSPND 120
DMWTQUEU 118
DS_NUDGE 128
DTCHMSUB 121
EARLYPLT 120
ECBTCP 118
EXCLOGER 119
EXECADDR 121
EXECSTRN 121
FCDSESWR 121
FCDSLDMD 121
FCDSRECD 121
FCDSRNGE 121
FCFLRECD 121
FCFLUMTL 121
file ID 121, 122, 123, 124
GETWAIT 126
HVALUE 57
INITIAL 119
INQ_ECB 129
INQUIRE 140
inquiring during task waits 56
ISSSENQP 121
JOURNALS 121
JVM_POOL 120
KCADDR 122
KCSTRNG 122
LATE_PLT 120
LG_MGRST 125
LIST 125, 130
LMQUEUE 101, 118
LOGSTRMS 122
LOT_ECB 120
MAXSOCKETS 127
message queue ID 129
MISCELANEOUS 127
module name 124
MROQUEUE 120
MSBRETRN 121
OPEN_DEL 120

resource names (continued)
OPENPOOL 120
PRM 120
program ID 126
PSINQECB 130, 140
PSOP1ECB 130
PSOP2ECB 130, 140
PSUNBECB 130, 140
QUIESCE 121
RECEIVE 127
RZCBNOTI 126
SEND 127
SHUTECB 119
SINGLE 121, 125
SIPDMTEC 118
SMSYRE 127
SMSYSTEM 127
SO_LISTN 127
SO_LTEPTY 127
SO_LTERDC 127
SO_NOWORK 127
SOCLOSE 127
SOSMVS 120
STATIC 123
STE 127
STP_DONE 119
summary of possible values 118
SUSPEND 125
SUSPENDVALUE 57
SYSIDNT/session ID 124
target transid 129
TCLASS 127
TCTTETI value 118
TCTVCECB 119
TDNQ 122
TERMINAL 125
terminal ID 124
transient data queue name 118, 126,

128, 143, 145
TSBUFFER 128
TSEXTEND 128
TSIO 128
TSNQ 122
TSQUEUE 128
TSSTRING 129
TSWBUFFR 129
VSMSTRNG 119
WTO 127
XM_HELD 126
XMCHILD 120
XMPARENT 120
ZC_ZGRP 128
ZGRPECB 119
ZSLSECB 129, 140

resource types
ALLOCATE 118, 142
Any_MBCB 118, 145
Any_MRCB 118, 145
AP_INIT 118, 119
AP_QUIES 119
AP_TERM 119
CCSTWAIT 119
CCVSAMWT 119
CDB2CONN 119, 134
CDB2RDYQ 119, 134
CDB2TCB 119
CDSA 73, 119

Licensed Materials – Property of IBM

372 CICS TS for z/OS 5.3: Problem Determination Guide

resource types (continued)
CFDTLRSW 120
CFDTPOOL 119
CFDTWAIT 119
CSNC 120
DB2 120
DB2_INIT 120, 135
DB2CDISC 120, 135
DB2EDISA 120, 135
DBCTL 120, 136
DBDXEOT 120
DBDXINT 120
DFHAIIN 120
DFHCPIN 120
DFHPRIN 120
DFHPTTW 120
DFHSIPLT 120
DISPATCH 120
DMATTACH 121
DSTSKDEF 132
ECDSA 73, 121
EDF 121, 137
EKCWAIT 121, 138
ENF 121
ENQUEUE 121, 122, 144
EPECQEMT 122
EPEDTBMT 122
ERDSA 73, 122
ESDSA 122
EUDSA 73, 122
FCACWAIT 122
FCBFSUSP 90, 122
FCCAWAIT 90, 122
FCCFQR 90, 122
FCCFQS 91, 122
FCCRSUSP 122
FCDWSUSP 91, 122
FCFRWAIT 91, 123
FCFSWAIT 92, 123
FCINWAIT 123
FCIOWAIT 92, 123
FCIRWAIT 92, 123
FCPSSUSP 93, 123
FCQUIES 93, 123
FCRAWAIT 93, 123
FCRBWAIT 94, 123
FCRDWAIT 94, 123
FCRPWAIT 94, 123
FCRRWAIT 95, 123
FCRVWAIT 95, 123
FCSRSUSP 93, 123
FCTISUSP 96, 123
FCXCPROT 96, 124
FCXCSUSP 96, 123
FCXDPROT 96, 124
FCXDSUSP 96, 123
FOREVER 124
HTYPE 57
ICEXPIRY 124
ICGTWAIT 81, 124
ICMIDNTE 124
ICWAIT 82, 124
inquiring during task waits 56
IRLINK 63, 124
KC_ENQ 91, 92, 138, 140
KCCOMPAT 63, 125, 138, 139
LATE_PLT 125

resource types (continued)
LG_DEFER 125, 137
LG_FORCE 125, 137
LG_RETRY 137
LGDELALL 125, 137
LGDELRAN 125, 137
LGENDBLK 125, 137
LGENDCRS 125, 137
LGFREVER 138
LGHARTBT 125, 138
LGREDBLK 125, 138
LGREDCRS 125, 138
LGSTRBLK 126, 138
LGSTRCRS 126, 138
LGWRITE 126, 138
MBCB_xxx 126, 145
MQseries 126, 135
MRCB_xxx 126, 145
MXT 126
PIIS 126
PROGRAM 126
RCP_INIT 126
RDSA 126
RMCLIENT 126
RMI 126
RMUOWOBJ 127
RZRSTRAN 127
RZRSTRIG 127
SDSA 127
SMPRESOS 127
SOCKET 127
SODOMAIN 127
SOSMVS 133
STP_TERM 127
SUCNSOLE 127
summary of possible values 118
SUSPENDTYPE 57
TCP_NORM 128
TCP_SHUT 128
TCTVCECB 128
TD_INIT 128, 142
TD_READ 128, 144
TDEPLOCK 128, 143
TDIPLOCK 128, 143
TIEXPIRY 128
TRANDEF 128
TSAUX 75, 128
TSBUFFER 75
TSEXTEND 76
TSIO 76
TSIOWAIT 128
TSMAINLM 76, 128
TSPOOL 76, 128
TSQUEUE 76
TSSHARED 76, 128
TSSTRING 76
TSWBUFFR 76
UDSA 73, 129
USERWAIT 129, 138
WBALIAS 129
WEB_ECB 129
WMQ_INIT 129, 135
WMQCDISC 129, 135
XRGETMSG 129
ZC 129
ZC_ZCGRP 129, 140
ZC_ZGCH 129, 140

resource types (continued)
ZC_ZGIN 129, 140
ZC_ZGRP 130, 140
ZC_ZGUB 130, 140
ZCIOWAIT 130, 140
ZCZGET 130, 140
ZCZNAC 130, 140
ZXQOWAIT 130, 140
ZXSTWAIT 130

resources
DBCTL 136
definition errors 3
inquiring during task waits 56
locks 101

investigating waits 101
log manager 137
names 118
storage manager 73
task control 138
temporary storage 75
types 118

RETAIN problem management system
APARs 321
data base 9, 319
problem management record 318
symptom keywords 9
using INFORMATION/ACCESS 9

RLS (record-level sharing)
taking SMSVSAM dumps 271

RMCLIENT resource type 126
RMI resource type 126
RMUOWOBJ resource type 127
RZRSTRAN resource type 127
RZRSTRIG resource type 127

S
SAA (storage accounting area)

chains 202
overlays 202, 204, 207

SCRNSIZE attribute, PROFILE 186, 190
SDSA resource type 127
SDUMP macro 267

failure 267
retry on failure 267

SEND resource name 127
SENDSIZE attribute, TYPETERM 190
short-format trace 259
SHUTECB resource name 119
SINGLE resource name 125
SINGLE, resource name 121
SIPDMTEC resource name 118
SLIP trap, MVS 229
SMPRESOS resource type 127
SMSVSAM problems

taking RLS-related dumps 271
SMSYRE resource name 127
SMSYSTEM resource name 127
SNA

process status 66
session state with task 71

SO_LISTN resource name 127
SO_LTEPTY resource name 127
SO_LTERDC resource name 127
SO_NOWORK resource name 127
SOCKET resource type 127
SOCLOSE resource name 127

Licensed Materials – Property of IBM

Index 373

SODOMAIN resource type 127
SOS (short on storage)

caused by looping code 16
potential cause of waits 73

SOSMVS dispatcher wait 132
SOSMVS resource name 120
SPCTR, system initialization

parameter 248
SPCTRxx, system initialization

parameter 248
specification exception 32
SSL_POOL dispatcher wait 132
SSL_POOL wait 133
START PRINTER bit on write control

character 193
statistics

autoinitiated tasks 16
file accesses 16
task control

number of times at MXT 171
use in investigating no task

output 195
STE resource name 127
stealing TCBs 132
STGRCVY system initialization

parameter 209
STNTR, system initialization

parameter 248
STNTRxx, system initialization

parameter 248
storage

consumption by looping tasks 73
fragmentation 73
task subpool summary 73
waits 73

fragmentation of free storage 73
too little free storage 73

storage chain checking
by CICS 202
forcing 205

storage freeze 308
storage manager domain (SM)

conditional storage requests 73
request for too much storage 73
suspend queue summary 73
trace levels 3 and 4 248
unconditional storage requests 73
waits 73

likely causes 73
storage recovery 209
storage violations

CHKSTRM option 205
CHKSTSK option 205
CICS detected 201, 202
CICS system dump 203, 204
exception trace entry 203, 204, 206
forcing storage chain checking 205
investigating 201
looking at the overlaying data 204
possible causes 209
programming errors 209
reason for invalid ECB address 139
symptoms 202
TIOA 202
undetected 201, 207
user task storage element 202
using CSFE DEBUG 205

storage violations (continued)
using trace 205, 207

STP_DONE resource name 119
STP_TERM resource type 127
STRFIELD option

CONVERSE command 193
SEND command 193

STRINGS parameter of FILE resource
definition 93

structured fields 193
SUCNSOLE resource type 127
suppressing dumps

CICS dump table options 182
MVS Dump Analysis Elimination

(DAE) 266
SUSPEND resource name 125
SUSPENDTYPE field 57
SUSPENDVALUE field 57
symbolic maps 200
symptom strings

in transaction dump 302
problem determination 42
RETAIN database search 302
RETAIN search keywords 42

symptoms
CICS has stopped running 10
CICS running slowly 11
incorrect output 13
keywords 9, 319
loops 14, 15
low priority tasks will not start 11
no output is obtained 11
poor performance 11, 14, 16, 169
tasks do not complete 11
tasks in a wait state 14
tasks take a long time to complete 11
tasks take a long time to start 11
terminal activity is reduced 11
use in classifying problems 10
waits 14

SYS1.DUMP data set 267
SYSDUMP, system dump code

attribute 183
SYSIDNT/session ID resource name 124
sysplex

MVS console commands 271
problem determination 269
resolving deadlocks 111

system busy symbol 15
system initialization

AUXTR parameter 252
AUXTRSW parameter 252
defining component tracing

requirements 248
defining the tracing status 252
DUMP parameter 182, 265
DUMPDS parameter 266
DUMPSW parameter 266
DURETRY parameter 267
global suppression of CICS system

dumps 265
GTFTR parameter 252
INTTR parameter 252
setting transaction dump data set

attributes 266
SPCTR parameter 248
SPCTRxx parameter 248

system initialization (continued)
STNTR parameter 248
STNTRxx parameter 248
suppressing standard tracing 247
SYSTR parameter 247
TRTABSZ parameter 252
USERTR parameter 252

system loading, effect on
performance 175

system task waits 118, 146
intentional 146

SYSTEM_DUMP, exit programming
interface call 268

SYSTR, system initialization
parameter 247

T
task control

waits 138
causes 139
failure of task to DEQUEUE on

resource 140
invalid ECB address 139
resource type KCCOMPAT 139
unconditional ENQUEUE on single

server resource 140
valid ECB address 139

task control area (TCA)
in transaction dump 303
system area 303
user area 303

task termination
abnormal 3

task tracing
precautions when choosing

options 179
special 246
standard 246
suppressed 246

tasks
abnormal termination 3
ATI, no output produced 193, 196

looking at the AID chain 197
looking at the ICE chain 197

conversation state with terminal 71
dispatch, suspend and resume

cycle 170, 175
dispatching priority 174
error data 48
exclusive control deadlock 97
failure during MVS service call 48
failure to complete 11, 12, 14
failure to get attached to the

dispatcher 170, 171
failure to get attached to the

transaction manager 170
failure to get initial dispatch 170, 173
failure to start 11, 12, 14
failure under the CICS RB 48
identifying the AID 198
identifying the ICE 197
identifying, in remote region 72
in a wait state 14
in error 45

identified in linkage stack 52

Licensed Materials – Property of IBM

374 CICS TS for z/OS 5.3: Problem Determination Guide

tasks (continued)
information in kernel domain storage

areas 46
lock owning

identifying a lock being waited
on 101

looping 149
consumption of storage 73, 77
identifying the limits 167

MXT limit 171
PSW at time of error 48
reason for remaining on the AID

chain 197
registers at time of error 48
runaway

detection by MVS 48
non-yielding loops 150
tight loops 150

session state with SNA 71
slow running 12, 175
subpool summary 73
summary in kernel storage 44
suspended 14

inquiring on 14
investigating 56

task error information 46
timeout interval 175
tracing 179, 246
transfer from ICE to AID chain 197
waits 55

CICS DB2 134
DBCTL 136
definition of wait state 55
EDF 137
log manager 137
maximum task conditions 104
on locked resources 101
online investigation 56
stages in resolving wait

problems 55
storage manager 73
suspension and resumption of

tasks 117
system 118
task control 138
techniques for investigating 56
temporary storage 75
user 118
using the formatted CICS system

dump 56
using trace 56
WebSphere MQ 135

TCLASS resource type 127
TCP_NORM resource type 128
TCP_SHUT resource type 128
TCSESUSF 197
TCTTE (terminal control table terminal

entry)
in transaction dump 304

TCTTE chain, in terminal waits 69
TCTVCECB resource name 119
TCTVCECB resource type 128
TD_INIT resource type 128
TD_READ resource type 128
TDEPLOCK resource type 128
TDIPLOCK resource type 128
TDNQ resource name 122

temporary storage
conditional requests for auxiliary

storage 75
consumption by looping tasks 77
current free space 77
repetitive records 15
summary 77
unconditional requests for auxiliary

storage 75
waits 75

unallocated space close to
exhaustion 77

terminal control program (TCP) 69
TERMINAL resource name 125
terminal tracing

precautions when choosing
options 179

special 246
standard 246
suppressed 246

terminal waits
access method 66
autoinstall program not loaded 64
communications server access method

in use
z/OS Communications Server

process status 66
Communications server access method

in useSNA
communications server exit

ids 66
CREATESESS(NO) in TYPETERM

definition 70
error action by TACP or NACP turned

off 64
finding the access method 65
finding the type of terminal 65
HANDLE CONDITION coded

incorrectly 64
interregion communication 72
intersystem communication 65, 72
ISMM access method 65
multiregion operation 72

identifying tasks in remote
regions 72

identifying the remote region 72
operator failing to respond 64
preliminary considerations 64
printer powered off 64
printer run out of paper 64
SNA access method in use

automatic transaction initiation
session status 70

node session status 71
task conversation state with

terminal 71
task session state with SNA 71
task status 71

SNA access method in usez/OS
Communications Server

TCTTE chain 69
Systems network architecture access in

use
SNA terminal control 140

z/OS Communications Server access
method in use

NACP error codes 66

terminal waits (continued)
z/OS Communications Server access

method in use (continued)
SNA sense codes 66
terminal status 69

terminal waitsSNA LU control waits
terminal control waits 140

terminal waitsz/OS Communications
Server

SNA access method in usez/OS
Communications Server

terminal control status 69
terminals

ATI status 198
control characters in data stream 186
conversation state with task 71
error messages 64
incorrect mapping of data 200

attributes of fields 200
DARK field attribute 200
MDT 200
modified data tag 200
symbolic map 200

incorrect output displayed
data formatted wrongly 190
debugging tools 186
early data overlaid by later

data 190
investigating 185
logon rejection message 186
mixed English and Katakana

characters 189
some data not displayed 190
unexpected messages and

codes 186
unexpected uppercase or lowercase

characters 187
wrong data values displayed 190

no output 11, 12
range of characteristics 63
reduced activity 11, 14, 15
repetitive output 15
status

effect on performance 171
terminal control program 69
terminals

no input accepted 12
unresponsive 63

termination
abnormal 3
system dump code option 279
transaction dump code option 279

termination stall 115
THR_POOL dispatcher wait 132
THR_POOL wait 133
TIEXPIRY resource type 128
trace

abbreviated format 303
abbreviated-format 261
calls to other programs 238
CICS Communications Server exit

destinations 177
identifying the terminal 245
interpretation 245

CICS Communications Server exitSNA
terminal waits 72

Licensed Materials – Property of IBM

Index 375

trace (continued)
CICS SNA exit

advantages 244
description 243
destination 243

CICS z/OS Communications Server
exit

controlling 244
communications server buffer

description 245
Communications Server buffer

investigating logon rejection 186
communications server bufferSNA

destination 245
Communications Server SNA buffer

terminal waits 72
controlling

auxiliary trace 252
CICS GTF trace 252
internal trace 252
special task tracing 246
special trace levels 250
standard task tracing 246
standard trace levels 250
suppressing standard tracing 247
suppressing task tracing 246

data provided on call 238
exception trace 242

destinations 177, 239
DFHTUnnn. trace utility

program 239, 240
domain entry 238
domain exit 238
DSSR functions 57

input and output parameters 58
interpreting the trace table 58

entries from AP domain 257
entries missing 179
example of formatted entry 257
extended-format 256, 304
formatted entry

interpretation string 256
interval 257
kernel task number 257
standard information string 256
task number 256
time of entry 257

formatting 255
from global trap exit DFHTRAP 312
global trap exit DFHTRAP 311
GTFTR, system initialization

parameter 252
in problem determination

loops 153, 166
poor performance 173
storage violations 205, 207

incorrect output from
investigating 177
trace entries missing 179
wrong CICS components being

traced 179
wrong data captured 178
wrong destination 177
wrong tasks being traced 179

interpreting 256, 261
user entries 262

interpreting user entries 262

trace (continued)
INTTR, system initialization

parameter 252
investigating waits 56, 57

setting the tracing options 57
last command identification 305
last statement identification 306
level-1 238
level-2 238
level-3 238
levels 238, 242
logic of selectivity 247
master system trace flag 178, 247
overview of different types 237
points 238

location 238
program check and abend 243
repetitive output 15
storage manager trace levels 248
suspension and resumption of

tasks 57
interpreting the trace table 58

use in investigating no task
output 194

user 200
checking programming logic 200

user exception trace entries 243
USERTR, system initialization

parameter 252
trace utility program, DFHTUnnn 239,

240
trademarks 359
TRANDEF resource type 128
TRANDUMP, transaction dump code

attribute 183
transaction abends

abend code 27
documentation 28
interpretation 28

AICA 29, 150
ASRA 29
ASRB 29
collecting the evidence 27
CSMT log messages 10
dump not made when expected 181
from global trap exit DFHTRAP 312
getting a transaction dump 27
investigating 27
last command identification 305
last statement identification 306
message 27
messages 3, 13
storage violation 204
system dump following 268
transaction dump following 268
worksheet 38

transaction deadlocks
in a sysplex 111
resolving 107

transaction dumps
abbreviated-format trace table 303
accompanying transaction abends 27
common system area 303
CSA 303
CSAOPFL 303
CWA 304
destination 266

transaction dumps (continued)
DFHTACB 304, 306
dump not made on transaction

abend 181
exec interface structure 303
EXEC interface user structure 303
execution key 303
extended-format trace table 304
following transaction abend 268
formatting 289

selectivity 289
in problem determination 265
interpretation 302
job log for 302
kernel stack entries 303
last command identification 305
last statement identification 306
locating program data 307
module index 304
optional features list 303
program information 304
program storage 304
PSW 303
registers 303
registers at last EXEC command 303
remote abend indicator 302
selective dumping of storage 268,

279
statistics 280
storage violation 203, 204
suppression for individual

transactions 183, 265
symptom string 302
system EXEC interface block 303
task control area, system area 303
task control area, user area 303
TCTTE 304
transaction abend control block 304,

306
transaction dump code options 278
transaction dump codes 265
transaction storage 304
transaction work area 303

transaction list table (XLT) 115
transaction manager

failure of tasks to get initial
attach 170

transaction routing 72
transaction storage

in transaction dump 304
transaction tracing

precautions when choosing
options 179

special 246
standard 246
suppressed 246

TRANSACTION_DUMP, exit
programming interface call 268

transactions
disabling 196
evidence that it ran 194

program control 194
program load 194
task attach 194
task dispatch 194

no output produced 192
ATI tasks 193, 196

Licensed Materials – Property of IBM

376 CICS TS for z/OS 5.3: Problem Determination Guide

transactions (continued)
no output produced (continued)

disabling the transaction 196
explanatory messages 192
finding if the task ran 193
investigating 192
possible causes 192
START PRINTER bit on write

control character 193
task not in system 193
task still in system 192
testing the terminal status 192
using execution diagnostic

facility 194
using statistics 195
using trace 194

wrong output produced 198
investigating 198
possible causes 198

transient data
extrapartition destinations 143

performance considerations 175
I/O buffers 145
intrapartition destinations 143
recoverable queues 143
VSAM I/O 145
VSAM strings 145
waits 142

during initialization 142
extrapartition 143
I/O buffer contention 145
I/O buffers all in use 145
intrapartition 143
resource names 142
resource types 142
VSAM I/O 145
VSAM strings all in use 145

translator
errors in output 3

traps 311
TRTABSZ, system initialization

parameter 252
TSAUX resource type 75, 128
TSBUFFER resource name 75, 128
TSEXTEND resource name 76, 128
TSIO resource name 76, 128
TSIOWAIT resource type 128
TSMAINLM resource name 76
TSMAINLM resource type 128
TSNQ resource name 122
TSPOOL resource type 76, 128
TSQUEUE resource name 76, 128
TSSHARED resource type 76, 128
TSSTRING resource name 76, 129
TSWBUFFR resource name 76, 129
TYPETERM definition

ALTPAGE attribute 186, 190
ALTSCREEN attribute 186, 190
ATI status 198
CREATESESS(NO), cause of terminal

waits 70
EXTENDEDDS attribute 186, 190
PAGESIZE attribute 190
SENDSIZE attribute 190
UCTRAN attribute 187

U
UCTRAN attribute 188

PROFILE definition 187
TYPETERM definition 187

UDSA resource type 129
uppercase characters 187
user task waits 118
user tracing

checking programming logic 200
exception trace entries 243
interpretation 262

USERTR, system initialization
parameter 252

USERWAIT resource type 129

V
VARY NET,INACT command 115
VSAM

data buffers 90
exclusive control deadlock 97
exclusive control of control

interval 96
I/O waits 92, 95
incorrect data read from file 191
index buffers 90
strings 93
transaction ID waits 96
waits

exclusive control deadlock 97
file state changes 91, 92
for exclusive control of control

interval 96
for VSAM transaction ID 96
I/O 92
record locking by CICS 99
VSAM buffer unavailable 90
VSAM string unavailable 93

VSAM READ SEQUENTIAL 97
VSAM READ UPDATE 97
VSAM WRITE DIRECT 97
VSAM WRITE SEQUENTIAL 98
VSMSTRNG resource name 119

W
WAIT symptom keyword 9
waits

CICS DB2 134
DBCTL 136
deadlock timeout interval 81
definition 14, 55
EDF 137
enqueue 78
FEPI 146
file control 87
interregion communication 72, 142
intersystem communication 72, 142
interval control 81
investigating 55
lock manager 101
log manager 137
maximum task conditions 104
online investigation 56

finding the resource 56
program control 101

waits (continued)
SNA LU control 140
stages in resolving 55
storage manager 73
suspension and resumption of

tasks 117
symptom keyword 9
symptoms 14
task control 138
techniques for investigating 56
temporary storage 75
terminal 63
transient data 142

during initialization 142
extrapartition 143
I/O buffer contention 145
I/O buffers all in use 145
intrapartition 143
VSAM I/O 145
VSAM strings all in use 145

using the formatted CICS system
dump 56, 58

using trace 56, 57
setting the tracing options 57

WebSphere MQ 135
waits in the dispatcher 132
WBALIAS resource type 129
WCC (write control character) 193
WEB_ECB resource type 129
WMQ_INIT resource type 129
WMQCDISC resource type 129
working storage, COBOL programs 307
write control character (WCC) 193
WTO resource name 127

X
XDUREQ, dump domain global user

exit 182
XLT (transaction list table) 115
XM_HELD resource type 104
XMCHILD resource name 120
XMCHILD wait 134
XMPARENT resource name 120
XMPARENT wait 134
XP_POOL dispatcher wait 132
XP_POOL wait 134
XRGETMSG resource type 129
XRPUTMSG resource type 129

Z
ZC resource type 129
ZC_ZCGRP resource type 129
ZC_ZGCH resource type 129
ZC_ZGIN resource type 129
ZC_ZGRP resource name 128
ZC_ZGRP resource type 130
ZC_ZGUB resource type 130
ZCIOWAIT 130
ZCZGET resource type 130
ZCZNAC resource type 130
ZGRPECB resource name 119
ZSLSECB resource name 129
ZXQOWAIT resource type 130
ZXSTWAIT resource type 130

Licensed Materials – Property of IBM

Index 377

Licensed Materials – Property of IBM

378 CICS TS for z/OS 5.3: Problem Determination Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 5 Release 3
Problem Determination Guide

Publication No. GC34-7422-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
GC34-7422-00

GC34-7422-00

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

Licensed Materials – Property of IBM

GC34-7422-00

	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Location of topics in the Knowledge Center
	Notes about terms used in this book

	Changes in CICS Transaction Server for z/OS, Version 5 Release 3
	Part 1. Approaches to problem determination
	Chapter 1. Introduction to problem determination
	Before you start - preliminary checks
	What to do next

	Chapter 2. Classifying the problem
	Using symptom keywords to classify problems
	Using the symptoms to classify the problem
	CICS has stopped running
	CICS is running slowly
	A task fails to start
	A task is running slowly
	A task stops running at a terminal
	A transaction has abended
	You have obtained some incorrect output
	A storage violation has occurred

	Distinguishing between waits, loops, and poor performance
	Waits
	Loops
	Poor performance
	Poor application design

	Classifying problems by functional area
	What to do next

	Chapter 3. Sources of information
	Your own documentation
	Product information
	Source listings and link-edit maps
	Abend codes and error messages
	Symptom strings
	Change log
	Dumps
	Statistics
	Monitoring
	Transaction inputs and outputs
	Terminal data
	Transient data and temporary storage
	Passed information
	Files and databases

	Traces

	Part 2. Dealing with the problem
	Chapter 4. Dealing with transaction abend codes
	Collecting the evidence
	What the abend code can tell you
	Transaction abend codes: AEYD, AICA, ASRA, ASRB, and ASRD
	Finding where a program check occurred
	What type of program check occurred?
	Dealing with arithmetic exceptions
	Dealing with protection exceptions
	Causes of protection exceptions
	Transaction isolation
	Command protection
	Possible causes of protection exceptions referencing CICS DSAs
	Protection exceptions referencing the read-only DSAs
	Protection exceptions referencing the UDSA and EUDSA

	Analyzing the problem further
	Abends when CICS is using the DBCTL interface
	Worksheet for transaction abends
	FEPI abends

	Chapter 5. Dealing with CICS system abends
	The documentation you need
	Interpreting the evidence
	Looking at the kernel domain storage areas
	Finding which tasks are associated with the error
	Finding more information about the error
	The storage addressed by the CICS registers and PSW

	Using the linkage stack to identify the failing module
	Using the PSW to find the offset of the failing instruction
	Finding the PTF level of the module in error

	Chapter 6. Dealing with waits
	Techniques for investigating waits
	Investigating waits - online method
	Investigating waits using trace
	Setting up trace for wait problems
	Interpreting trace for wait problems

	Investigating waits - the formatted CICS system dump
	Dispatcher task summary fields
	Parameters and functions setting fields in the dispatcher task summary

	Investigating terminal waits
	Terminal waits - first considerations
	Terminal waits - a systematic approach
	What type of terminal is not responding?
	What type of access method is in use?

	z/OS Communications Server in use - debugging procedures
	Is the problem associated with the z/OS Communications Server?
	z/OS Communications Server in use - is SNA LU control at fault?
	The z/OS Communications Server in use—is the LU at fault?

	Tools you can use for debugging terminal waits when the z/OS Communications Server is in use
	Your task is waiting on a physical terminal
	Investigating the related task in a remote region

	Investigating storage waits
	Investigating temporary storage waits
	Is temporary storage close to being exhausted?
	Is fragmentation of unallocated storage causing the WRITEQ TS request to fail?

	Investigating enqueue waits
	Using a system dump to resolve enqueue waits
	EXEC CICS ENQ waits

	Investigating interval control waits
	Finding the reason for a DELAY request not completing
	Using trace to find out why tasks are waiting on interval control

	Investigating file control waits
	Resource type CFDTWAIT - wait for CFDT request to complete
	Resource type CFDTPOOL - wait for CFDT a request slot
	Resource type CFDTLRSW - wait for CFDT locking request slot
	Resource type FCACWAIT & FCCRSUSP - wait for SMSVSAM clean up
	Resource type FCBFSUSP - waits for VSAM buffers
	Resource type FCCAWAIT - waits on the SMSVSAM control ACB
	Resource type FCCFQR - wait for SMSVSAM server notification
	Resource type FCCFQS - wait for user task to issue quiesce
	Resource type FCDWSUSP - wait for VSAM to complete update processing
	Resource type FCFRWAIT - wait for file state changes
	Resource type FCFSWAIT - wait for file state changes
	Resource type FCIOWAIT - wait for VSAM I/O (non-RLS)
	Resource type FCIRWAIT - wait for FC environment to be rebuilt
	Resource types FCPSSUSP and FCSRSUSP - waits for VSAM strings
	Resource type FCQUIES - wait for a quiesce request to complete
	Resource type FCRAWAIT - file control to process non-recoverable requests
	Resource type FCRBWAIT - file control to process recoverable requests
	Resource type FCRDWAIT - wait for a drain of the RLS control ACB
	Resource type FCRPWAIT - wait for file control initialization to complete
	Resource Type FCRRWAIT - wait for dynamic RLS restart to complete
	Resource type FCRVWAIT - wait for VSAM I/O (RLS)
	Resource type FCTISUSP - wait for a VSAM transaction ID
	Resource types FCXCSUSP, FCXDSUSP, FCXCPROT, and FCXDPROT - VSAM exclusive control waits
	Exclusive control deadlock
	How tasks can become deadlocked waiting for exclusive control
	Example of code causing an exclusive deadlock

	Resource type ENQUEUE - waits for locks on files or data tables
	Resource name FCDSRECD
	Resource name FCFLRECD
	Resource name FCDSRNGE
	Resource name FCDSLDMD
	Resource name FCDSESWR
	Resource name FCFLUMTL

	Investigating loader waits
	Investigating lock manager waits
	Collecting information on resource locks
	ECB “PSTDECB” - DLI code lock, PSB load I/O, or DMB load I/O

	Investigating transaction manager waits
	Maximum task condition waits
	Transaction summary
	MXT summary
	Transaction class summary
	A user task is waiting on resource type FOREVER
	Resource type TRANDEF

	Resolving deadlocks in a CICS region
	Resolving deadlocks in a sysplex
	Resolving indoubt and resynchronization failures
	What to do if CICS has stalled
	CICS has stalled during initialization
	CICS has stalled during a run
	Are the system definition parameters wrong?
	Is the system short on storage?
	Are MXT or transaction class limits causing the stall?
	Is there an exclusive control conflict on a volume?
	Is there a problem with the communications access method?
	Is there an MVS system logger error?
	Is there a CICS system error?

	CICS has stalled during termination

	Chapter 7. How tasks are made to wait
	The resources that CICS tasks can wait for
	Dispatcher waits
	CICS DB2 waits
	WebSphere MQ waits
	DBCTL waits
	Connection to DBCTL has failed to complete
	A user task is waiting on resource type DBCTL
	Disconnection from DBCTL has failed to complete

	EDF waits
	Log manager waits
	Task control waits
	Resource type KCCOMPAT
	Resource type KC_ENQ

	SNA LU control waits
	Interregion and intersystem communication waits
	Transient data waits
	Resource type TD_INIT: waits during initialization processing
	Resource type TDEPLOCK: waits for transient data extrapartition requests
	Resource types TDIPLOCK, ENQUEUE, TD_READ, Any_MBCB, Any_MRCB, MBCB_xxx, and MRCB_xxx
	Resource type TDIPLOCK: waits for transient data intrapartition requests
	Resource type ENQUEUE
	Resource type TD_READ
	Resource type Any_MBCB
	Resource type Any_MRCB
	Resource type MRCB_xxx
	Resource type MBCB_xxx

	CICS system task waits
	FEPI waits
	Recovery manager waits
	CICS Web waits

	Chapter 8. Dealing with loops
	What sort of loop is indicated by the symptoms?
	Tight loops and non-yielding loops
	Yielding loops

	Investigating loops that cause transactions to abend with abend code AICA
	Getting the documentation you need
	Looking at the evidence
	Identifying the loop
	Finding the reason for the loop

	Investigating loops that are not detected by CICS
	Identifying the loop
	Finding the reason for the loop

	What to do if you cannot find the reason for a loop

	Chapter 9. Dealing with performance problems
	Finding the bottleneck
	Initial attach to the transaction manager
	Initial attach to the dispatcher
	Initial dispatch
	The dispatch, suspend, and resume cycle

	Why tasks fail to get attached to the transaction manager
	Why tasks fail to get attached to the dispatcher
	Using transaction manager statistics
	Using CICS monitoring
	Using trace

	Why tasks fail to get an initial dispatch
	Priorities of tasks
	How storage conditions impact new tasks

	Why tasks take a long time to complete
	A summary of performance bottlenecks, symptoms, and causes

	Chapter 10. Dealing with incorrect output
	Trace output is incorrect
	Tracing has gone to the wrong destination
	You have captured the wrong trace data
	You are not getting the correct task tracing
	You are not getting the correct component tracing
	The entries you want are missing from the trace table

	Dump output is incorrect
	The dump does not seem to relate to your CICS region
	You do not get a dump when an abend occurs
	How dumping can be suppressed
	Global suppression of system dumping
	Suppression of system dumping from a global user exit program
	Suppression of dumping for individual transactions
	Suppression of dumping by dump table options

	Some dump IDs are missing from the sequence of dumps
	You do not get the correct data when formatting the CICS system dump

	Incorrect data is displayed on a terminal
	The preliminary information you need to get
	Tools for debugging terminal output in a z/OS Communications Server environment

	Specific types of incorrect output for terminals
	Logon rejection message
	Unexpected messages and codes
	Unexpected appearance of upper and lowercase characters
	CRTE and uppercase translation
	EXEC CICS SET TERMINAL and uppercase translation
	CICS client virtual terminal
	Katakana terminals - mixed English and Katakana characters
	Data that is displayed incorrectly

	Incorrect data is present on a VSAM data set
	An application does not work as expected
	Your transaction produces no output at all
	Can you use the terminal where the transaction should have started?
	No output - what to do if the task is not in the system
	Techniques to find out whether a transaction started
	Using CICS system trace entry points
	Using supplied transactions and EDF
	Using statistics
	Disabling the transaction

	Investigating tasks initiated by ATI
	The ICE chain
	The AID chain

	Your transaction produces some output, but it is wrong
	The origins of corrupted data
	Are records in the file incorrect or missing?
	Is the data mapped correctly into the program?
	Is the data being corrupted by bad programming logic?
	Is the data being mapped incorrectly to the terminal?

	Chapter 11. Dealing with storage violations
	Avoiding storage violations
	Two kinds of storage violation
	CICS has detected a storage violation
	What happens when CICS detects a storage violation
	What the transaction abend message can tell you
	What the CICS system dump can tell you

	What to do if you cannot find what is overlaying the SAA
	How you can force storage chain checking
	What happens after CICS detects the storage violation?

	Storage violations that affect innocent transactions
	A strategy for storage violations affecting innocent transactions
	Procedure for resolving storage violations affecting innocent transactions

	Programming errors that can cause storage violations
	Storage recovery

	Chapter 12. Dealing with external CICS interface (EXCI) problems
	Chapter 13. Dealing with TCP/IP connectivity problems
	Chapter 14. Dealing with log manager problems
	Categories of problem
	Exceeding the capacity of a log stream
	How CICS checks for the availability of the MVS logger
	Some conditions that cause CICS log manager error messages
	Message DFHLG0772
	Log block not found with DFHLG0800, DFHLG0736 and DFHLG0741
	Log block not found with DFHLG0800 and DFHLG0738
	Loss of log data with DFHLG0740
	Log error with DFHLG0734

	Message DFHLG0002

	Restarting CICS after a system log failure
	Diagnosing problems in the MVS logger
	Console messages and dumps
	GRS resource contention
	Checking coupling facility structure and couple data set status
	Checking log stream status
	SMF and RMF statistics
	Obtaining MVS logger and coupling facility dumps
	Setting a SLIP trap

	Restarting the MVS logger address space

	Dealing with a corrupt system log
	Benefits of a diagnostic run
	Getting dumps of the MVS logger and coupling facility address spaces

	Part 3. Using traces and dumps in problem determination
	Chapter 15. Using traces in problem determination
	CICS trace
	Trace levels
	Trace destinations
	Internal trace table
	Auxiliary trace data sets
	Generalized Trace Facility (GTF)

	CICS exception tracing
	User exception trace entries

	Program check and abend tracing
	z/OS Communications Server exit tracing
	Controlling CICS z/OS Communications Server exit tracing
	Interpreting CICS z/OS Communications Server exit trace entries

	z/OS Communications Server buffer tracing
	Selecting tracing by transaction
	Tracing for selected tasks
	The tracing logic used by CICS

	Selecting tracing by component
	Defining component tracing at system initialization
	Defining component tracing when the CICS system is running
	Component names and abbreviations

	Setting trace destinations and tracing status

	Chapter 16. Formatting and interpreting trace entries
	Interpreting extended-format CICS system trace entries
	Examples of the extended format for short and long trace entries
	Interpreting short-format CICS system trace entries
	Interpreting abbreviated-format CICS system trace entries
	Interpreting user trace entries

	Chapter 17. Using dumps in problem determination
	Setting up the dumping environment
	Detecting and avoiding duplicate system dumps

	Where dumps are written
	Events that can cause dumps to be taken
	The ways that you can request dumps
	Specifying the areas you want written to a transaction dump

	The occasions when CICS requests a dump

	CICS dumps in a sysplex
	Automatic dump data capture from related CICS regions
	Operator-requested simultaneous dump data capture
	Requesting dumps to resolve SMSVSAM problems
	Useful CICS master terminal and MVS console commands in a sysplex

	Enabling system dumps for some CICS messages
	System dump actions with messages DFHAP0001 and DFHSR0001

	The dump code options you can specify
	Specifying the areas you want written to a transaction dump

	Dump table statistics
	What happens to a dump request if there is no dump table entry?

	The transaction dump table
	The system dump table
	Dumping a CFDT list structure
	Dumping a named counter list structure
	Dumping a shared temporary storage list structure
	The CSFE ZCQTRACE facility

	Chapter 18. Formatting and interpreting dumps
	Formatting transaction dumps
	Formatting system dumps
	The DFHIPCSP CICS exit control data
	Summary of system dump formatting keywords and levels
	The default SDUMP formatting levels

	Interpreting transaction dumps
	Transaction storage

	Locating the last command or statement
	Last command identification
	Last statement identification

	Locating program data
	Storage freeze
	Formatting a coupling facility data table pool dump
	Formatting a named counter pool dump
	Formatting a shared temporary storage pool dump

	Chapter 19. The global trap exit DFHTRAP
	Installing and controlling the DFHTRAP exit
	Information passed to the DFHTRAP exit
	Actions the DFHTRAP exit can take
	Coding the DFHTRAP exit

	Part 4. Working with IBM to solve your problem
	Chapter 20. IBM program support
	When to contact the Support Center
	Dealing with the Support Center
	What the Support Center needs to know
	What happens next

	Reporting a FEPI problem to IBM

	Chapter 21. APARs, fixes, and PTFs
	The APAR process
	Collecting the documentation for the APAR
	General documentation needed for all problems with CICS

	Sending the documentation to the change team
	Packing and mailing the APAR box

	Applying the fix
	The APAR becomes a PTF

	Part 5. Appendixes
	Appendix A. SDUMP contents and IPCS CICS VERBEXIT keywords
	Keyword to control block map
	Control block to keyword map

	Appendix B. Summary data for PG and US keywords
	PG keyword
	PGA (program manager anchor)
	System LLE Summary
	PGWE Summary
	PPTE Summary
	PTA Summary
	Task LLE Summary
	CHCB Summary
	CRCB Summary
	Task PLCB Summary

	US keyword
	USXD summary
	USUD summary

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

