
CICS Transaction Server for z/OS
Version 4 Release 1

Diagnosis Reference

GC34-7038-02

���

CICS Transaction Server for z/OS
Version 4 Release 1

Diagnosis Reference

GC34-7038-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 2331.

This edition applies to Version 4 Release 1 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface xxxvii
What this book is about xxxvii
Who this book is for xxxvii
What you need to know to use this book . . . xxxvii
Notes on terminology xxxvii

Changes in CICS Transaction Server
for z/OS, Version 4 Release 1 xxxix

Part 1. Introduction 1

Chapter 1. CICS domains 3
Domain gates 7
Functions provided by gates 7
Specific gates, generic and call-back gates 8
Domain call formats 8
Ownership of formats 9
Tokens 9

The BROWSE_TOKEN parameter on domain interfaces 9
The RESPONSE parameter on domain interfaces . . . 9

Chapter 2. Application domain 11

Part 2. CICS components 13

Chapter 3. Autoinstall for terminals,
consoles and APPC connections . . . 15
Design overview 15

Autoinstall of a terminal logon flow 16
Autoinstall of APPC device logon flow 17
Autoinstall of consoles install flow 19
Sign-on to consoles flow 19
Disconnection flow for terminals (LU-initiated) 19
Deletion of autoinstalled APPC devices. 21
Deletion of autoinstalled consoles 21
Shipping a TCTTE for transaction routing . . . 22

Modules 23
DFHZATDX 23
DFHZATDY 23

Diagnosing autoinstall problems 24
Diagnosing APPC autoinstall problems 25

Diagnosing console autoinstall problems 25
VTAM exits 26
Trace 26

Chapter 4. Autoinstall terminal model
manager 29
Functions provided by the autoinstall terminal
model manager 29

AIIN format, START_INIT function 29
AIIN format, COMPLETE_INIT function . . . 30
AIIQ format, LOCATE_TERM_MODEL function 30
AIIQ format, UNLOCK_TERM_MODEL function 30

AIIQ format, INQUIRE_TERM_MODEL function 31
AIIQ format, START_BROWSE function 31
AIIQ format, GET_NEXT function 31
AIIQ format, END_BROWSE function 32
AITM format, ADD_REPL_TERM_MODEL
function 32
AITM format, DELETE_TERM_MODEL function 33

Modules 33
Exits 34
Trace 34

Chapter 5. Basic mapping support . . . 35
Design overview 35

Message routing 37
Terminal paging 37
Device independence 37

Control blocks 38
Modules 40

DFHDSB (data stream build) 43
DFHIIP (non-3270 input mapping) 44
DFHMCP (mapping control program) 45
DFHML1 (LU1 printer with extended attributes
mapping) 48
DFHM32 (3270 mapping) 49
DFHPBP (page and text build) 50
DFHPHP (partition handling program) 52
DFHRLR (route list resolution program) 53
DFHTPP (terminal page processor) 54
DFHTPQ (undelivered messages cleanup
program) 56
DFHTPR (terminal page retrieval program) . . . 57
DFHTPS (terminal page scheduling program) . . 58

Copy books 59
Exits 59
Trace 59

Chapter 6. Builders 61
Design overview 61

What is a builder (DFHBS*)? 61
Builder parameter set (BPS) 61
TCTTE creation and deletion 62
Component overview 62
DFHZCQ and TCTTE generation 63
Patterns, hierarchies, nodes, and builders . . . 68
The DELETE process 71
Completing the process description 73
The hierarchy and its effect upon the creation
process 74
ROLLBACK 77
Catalog records and the CICS global catalog data
set 77

Control blocks 79
Terminal storage acquired by the builders . . . 79

© Copyright IBM Corp. 1997, 2011 iii

TCTTE layout 80
Terminal definition 80

Modules 80
Module entry 81
Subroutine entry 82
Subroutine exit (return to module entry) 82
Patterns 82
Calling sequence of builders for a 3277 remote
terminal 82
Builder parameter list 84
When the builders are called 84

Diagnosing problems with the builders 85
Exits 86
Trace 86
Messages 86

Message sets 86
How messages show up in a trace 87

Chapter 7. Built-in functions 89
Design overview 89

Field edit (DEEDIT) 89
Phonetic conversion 89

Modules 89
Exits 90
Trace 90

Chapter 8. CICS-DB2 Attachment
Facility 91
Design overview 91

CICS Initialization 91
CICS-DB2 Attachment startup 92
CICS-DB2 attachment shutdown 92
CICS-DB2 mainline processing 93

Control blocks 97
DFHD2SS (CICS-DB2 static storage) 97
DFHD2GLB (CICS-DB2 global block) 97
DFHD2ENT (CICS-DB2 DB2ENTRY block) . . . 97
DFHD2TRN (CICS-DB2 DB2TRAN block) . . . 97
DFHD2CSB (CICS-DB2 connection block) . . . 97
DFHD2GWA (CICS-DB2 global work area) . . . 97
DFHD2LOT (CICS-DB2 life of task block) . . . 98

Modules 98
Exits 98
Trace 98
Statistics 99

Chapter 9. Command interpreter . . . 101
Design overview 101
Modules 101
Exits 101
Trace 101

Chapter 10. CSD utility program
(DFHCSDUP) 103
Design overview 103
Modules 104
Exits 104
Trace 105
Statistics 105

Chapter 11. Database control (DBCTL) 107
Design overview 107

The connection process 108
The interface layer 113
DBCTL system definition 116
DBCTL PSB scheduling 116
Database calls 116
DBCTL PSB termination 116
System termination 116

Control blocks 117
Modules 117
Exits 118

Chapter 12. Data interchange program 119
Design overview 119
Modules 120
Exits 120
Trace 120

Chapter 13. Distributed program link 121
Modules 122
Exits 122
Trace 122

Chapter 14. Distributed transaction
processing 123
Design overview 123

Distributed transaction processing with MRO
and LU6.1 123
Mapped and unmapped conversations (LU6.2) 123

Modules 125
DFHEGL 125
DFHETC and DFHETL 125
DFHZARL 126
DFHZARM 128
DFHZARQ 129
DFHZARR 130
DFHZERH 131
DFHZISP 132
DFHZSTAP 132

Exits 132
Trace 132

Chapter 15. DL/I database support 135
Design overview 135

The router component (DFHDLI) 136
Control blocks 137

DL/I interface block (DIB) 137
DL/I interface parameter list (DLP) 137
User interface block (UIB) 138

Modules 138
Exits 139
Trace 139

Chapter 16. Dump utility program
(DFHDU660) 141
Design overview 141

Data sets 141
Processing 141

iv CICS TS for z/OS 4.1: Diagnosis Reference

Modules 142
Copy books 143
Exits 143
Trace 143

Chapter 17. Dynamic allocation
sample program (IBM 3270 only) . . . 145
Design overview 145
Control blocks 146
Modules 146
Exits 147
Trace 147
External interfaces 147

Chapter 18. ECI over TCP/IP 149
Design Overview 149

Listener task, CIEP 149
Mirror task, CPMI 150
PING 150
Notes 151
Modules 151

Chapter 19. EXEC interface 153
Design overview 153
Control blocks 153
Modules 155

DFHEIP 165
Method of calling processor modules 166

Exits 167
Trace 167

Chapter 20. Execution diagnostic
facility (EDF) 169
Design overview 169
Modules 169

CEBR transaction (DFHEDFBR) 169
EDF display (DFHEDFD) 169
EDF map set (DFHEDFM) 170
EDF control program (DFHEDFP) 170
EDF response table (DFHEDFR) 171
EDF task switch program (DFHEDFX) 171

Exits 172
Trace 172

Chapter 21. Extended recovery facility
(XRF) 173
Design overview 173
Control blocks 173
Modules 173
Exits 174
Trace 174

Chapter 22. External CICS interface 175
Design overview 175

The programming interfaces 175
Modules 177
Exits 178
Trace 178

Chapter 23. Field engineering program 179
Design overview 179
Modules 179
Exits 179
Trace 179

Chapter 24. File control 181
Design overview 181

Deblocking services for BDAM data sets . . . 181
Concurrency control 181
Sequential retrieval 182
Read Integrity 183
Backout logging 183
Forward Recovery Logging 183
Automatic journaling and logging 183
Use of concurrent tasks 184
Shared Data table services 184
Coupling facility data tables server 184
How CICS processes file control requests . . . 184
Processing using VSAM 185
Processing using Data Tables 185
General request processing 185

Control blocks 193
Access method control block (ACB) 195
Data control block (DCB) 195
Data set name block (DSNB) 196
File browse work area (FBWA) 197
File control static storage (FC static) 197
File control quiesce receive element (FCQRE) 197
File control quiesce send element (FCQSE) . . 198
File control coupling facility data table pool
element (FCPE) 198
File control coupling facility data table pool
wait element (FCPW) 198
File control table entry (FCTE) 199
File control table entry (FCPW) 199
File control coupling facility data tables UOW
pool block (FCUP) 199
File input/output area (FIOA) 200
File lasting access block (FLAB) 200
File control locks locator blocks (FLLBs) . . . 201
File request anchor block (FRAB) 201
File request thread elements (FRTEs) 202
Keypoint list element (KPLE) 203
Shared resources control (SHRCTL) block . . . 203
VSAM work area (VSWA) 204

Modules 204
DFHEIFC (file control EXEC interface module) 205
DFHFCAT (file control catalog manager) . . . 206
DFHFCBD (file control BDAM request
processor) 207
DFHFCCA (file control RLS control ACB
manager) 208
DFHFCDL (file control CFDT load program) 208
DFHFCDN (file control DSN block manager) 208
DFHFCDO (file control CFDT open/close
program) 211
DFHFCDR (file control CFDT request processor) 211
DFHFCDTS (file control shared data table
request program) 211

Contents v

DFHFCDTX (file control shared data table
function ship program) 211
DFHFCDU (file control CFDT UOW calls
program) 211
DFHFCDW (file control CFDT RMC program) 211
DFHFCDY (file control CFDT resynchronization
program) 212
DFHFCES (file control ENF servicer) 212
DFHFCFL (file control FRAB and FLAB
processor) 212
DFHFCFR (file control file request handler) . . 212
DFHFCFS (file control file state program) . . . 214
DFHFCIN1 (file control initialization program 1) 217
DFHFCIN2 (file control initialization program 2) 217
DFHFCIR (file control initialize recovery) . . . 218
DFHFCL (file control shared resources pool
processor) 219
DFHFCLF (file control log failures handler) . . 220
DFHFCLJ (file control logging and journaling
program 220
DFHFCMT (file control table manager) 220
DFHFCN (file control open/close program) . . 223
DFHFCNQ (file control non-RLS lock handler) 227
DFHFCOR (file control offsite recovery
completion) 227
DFHFCQI (file control RLS quiesce initiation) 227
DFHFCQR (file control quiesce receive
transaction) 228
DFHFCQS (file control RLS quiesce send
transaction) 228
DFHFCQT (file control RLS quiesce common
system transaction) 228
DFHFCQU (file control RLS quiesce processor) 228
DFHFCQX (file control RLS quiesce exit) . . . 228
DFHFCRC (file control recovery control
program) 229
DFHFCRD (file control RLS cleanup transaction) 231
DFHFCRF (file control function shipping
interface module) 231
DFHFCRL (file control share control block
manager) 232
DFHFCRO (file control RLS open/close
program) 233
DFHFCRP (file control restart program) . . . 233
DFHFCRR (file control RLS restart) 235
DFHFCRS (file control RLS record management
processor) 235
DFHFCRV (file control RLS VSAM interface
processor) 236
DFHFCSD (file control shutdown program) . . 236
DFHFCST (file control statistics program) . . . 236
DFHFCVR (file control VSAM interface
program) 238
DFHFCVS (file control VSAM request processor) 239

Parameter lists 240
FCCR POINT function 240
FCCR HIGHEST function 241
FCCR READ function 242
FCCR READ_DELETE function 243
FCCR UNLOCK function 243
FCCR LOAD function 244

FCCR WRITE function 245
FCCR REWRITE function 246
FCCR DELETE function 247
FCCR DELETE_MULTIPLE function 249
FCCT OPEN function 250
FCCT CLOSE function 252
FCCT DELETE function 253
FCCT SET function 253
FCCT EXTRACT_STATISTICS function 254
FCCU PREPARE function 255
FCCU RETAIN function 256
FCCU COMMIT function 256
FCCU BACKOUT function 257
FCCU INQUIRE function 257
FCCU RESTART function 258
FCDS EXTRACT_CFDT_STATS function . . . 259
FCDS DISCONNECT_CFDT_POOLS function 260
FCDU PREPARE function 260
FCDU RETAIN function 261
FCDU COMMIT function 262
FCDU BACKOUT function 263
FCDU INQUIRE function 264
FCDU RESTART function 265
FCDY RESYNC_CFDT_POOL function 266
FCDY RESYNC_CFDT_LINK function 266
FCDY RETURN_CFDT_ENTRY_POINTS
function 267
FCFL END_UOWDSN_BROWSE function . . . 267
FCFL FIND_RETAINED function 268
FCFL FORCE_INDOUBTS function 268
FCFL GET_NEXT_UOWDSN function 269
FCFL RESET_BFAILS function 270
FCFL RETRY function 270
FCFL START_UOWDSN_BROWSE function . . 270
FCFL TEST_USER function 271
FCLJ FILE_OPEN function 271
FCLJ FILE_CLOSE Function 272
FCLJ READ_ONLY Function 272
FCLJ READ_UPDATE Function 273
FCLJ WRITE_UPDATE Function 274
FCLJ WRITE_ADD Function 275
FCLJ WRITE_ADD_COMPLETE Function . . . 276
FCLJ WRITE_DELETE Function 277
FCLJ SYNCHRONIZE_READ_UPDATE
Function 277
FCLJ TAKE_KEYPOINT Function 278
FCLJ DATASET_COPY Function 278
FCQR RECEIVE_QUIESCES Function 279
FCQS SEND_QUIESCES Function 279
FCQU PROCESS_QUIESCE Function 280
FCRR RESTART_RLS Function 282
FCRR RESOURCE_AVAILABLE function . . . 283
FCRR LOST_LOCKS_RECOVERED function 284

File Control's call back gates 285
Exits 286
Trace 286

Chapter 25. Front end programming
interface (FEPI) 289
Design overview 289

FEPI as a CICS transaction 289

vi CICS TS for z/OS 4.1: Diagnosis Reference

Application flows 289
The FEPI Resource Manager work queues . . . 292

Control blocks 293
Dump 294
FEPI and VTAM 295

VTAM control blocks 295
VTAM exits 295

Modules 296

Chapter 26. Function shipping 301
Design overview 301

Application programming functions with CICS
function shipping 301
Local and remote names 302
Mirror transactions 302
Initialization of CICS for CICS function shipping 303
Communication with a remote system 303
Protocols 303
CICS function shipping environment 304
CICS function shipping—handling of EXEC
CICS commands 306
CICS function shipping—handling of DL/I
requests 310
Terminal control support for CICS function
shipping 312
NOCHECK option function handling 314

Exits 314
Trace 315

Chapter 27. Good morning message
program 317
Design overview 317
Modules 317
Exits 317
Trace 317

Chapter 28. Interregion
communication (IRC) 319
Design overview 319
Control blocks 319

Terminal control layer 319
DFHIR layer 321
Terminal control layer and DFHIR layer . . . 323
MRO ECB summary 324

Modules 324
DFHIRP (interregion communication (SVC)
program) 325
CICS address space modules 325

Exits 328
Trace 328

Chapter 29. Intersystem
communication (ISC) 329

Chapter 30. Interval control 331
Design overview 331

Time of day 331
Time-dependent task synchronization 331
Automatic time-ordered transaction initiation 331

Time-of-day control 331
Control blocks 332
Modules 332
Exits 332
Trace 333

Chapter 31. Language Environment
interface 335
Design overview 335

Establishing the connection 336
Storage for the transaction 337
Storage acquisition 338

Control blocks 338
Modules 338
Exits 338
Trace 338
External interfaces 339

Language Environment interface parameter lists 339
Work areas 343
PGMINFO2 345
Program termination block 345

Chapter 32. Master terminal program 347
Design overview 347
Modules 347
Exits 347
Trace 347

Chapter 33. Message generation
program 349
Design overview 349
Modules 349
Exits 349
Trace 350

Chapter 34. Message switching 351
Design overview 351
Control blocks 352
Modules 352
Exits 352
Trace 352
External interfaces 353

Chapter 35. Multiregion operation
(MRO) 355

Chapter 36. Node abnormal condition
program 357
Design overview 357
Control blocks 359
Modules 359
Exits 360
Trace 360
Statistics 360

Chapter 37. Node error program . . . 361
Design overview 361
Modules 361

Contents vii

Exits 361
Trace 362

Chapter 38. Program control 363
Design overview 363

Services in response to requests 363
Modules 363

DFHEPC 363
Exits 365
Trace 366

Chapter 39. Program error program 367
Design overview 367
Control blocks 367
Modules 367
Exits 367
Trace 367

Chapter 40. Program preparation
utilities 369
Design overview 369
Modules 369
Exits 369
Trace 370

Chapter 41. Remote DL/I 371
Design overview 371

System definition 371
DL/I PSB scheduling 371
Database calls 371
DL/I PSB termination 371

Control blocks 371

Chapter 42. Resource definition online
(RDO) 373
Design overview 373
Modules 373
Exits 375
Trace 375

Chapter 43. SAA Communications and
Resource Recovery interfaces 377
Design overview 378

The SAA Communications interface 378
The SAA Resource Recovery interface 379

Functions provided by the CPI component . . . 379
CPIN format, START_INIT function 380
CPIN format, COMPLETE_INIT function . . . 380
CPSP format, SYNCPOINT_REQUEST function 380

Modules 381
Exits 381
Trace 381

Chapter 44. Statistics utility program
(DFHSTUP) 383
Design overview 383

DFHSTUP operation 385
Modules 385

Chapter 45. Storage control
macro-compatibility interface 387
Design overview 387
Modules 387
Exits 387
Trace 387

Chapter 46. Subsystem interface . . . 389
Functional overview 389

Subsystem definition 389
Design overview 389

Console message handling 389
Control Blocks 391
Modules 392
Exits 393
Trace 393
External interfaces 393

Chapter 47. Subtask control 395
Design overview 395

DFHSKM (subtask manager program) 395
DFHSKC (subtask control program) 396
DFHSKE (subtask exit program) 396

Control blocks 397
Modules 398
Exits 398
Trace 398
External interfaces 398

Chapter 48. Syncpoint program . . . 401
Design overview 401

Task-related user exit resynchronization . . . 401
Control blocks 402

Deferred work element (DWE) 402
Modules 402

DFHSPP 402
DFHDBP 403
DFHAPRC 403

Exits 403
Trace 404

Chapter 49. System dump formatting
program 405
Design overview 405
Modules 405
Exits 407
Trace 407
External interfaces 407

Chapter 50. System recovery program 409
Design overview 409

System recovery table 409
Recovery initialization 410
Error handling 410
DFHSRLIM interface 413
System dump suppression 413

Modules 414
Exits 414
Trace 414

viii CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 51. System spooler interface 415
Design overview 415

System spooler interface modules 415
Normal flow 415
Abnormal flow 416

Modules 416
Exits 416
Trace 416

Chapter 52. Table manager 417
Design overview 417

Hash table 417
Range table and getnext chain 417
Secondary indexes 418
Functions of the table manager 419
Read locks 419
Browse token 420
Quiesce state 420
Finding table entries in a partition dump . . . 420

Control blocks 422
Modules 422
Exits 422
Trace 422
Table Management Statistics 423

Chapter 53. Task-related user exit
control 425
Functional overview 425
Design overview 426

Task-related user exit implementation 427
Processors 429

Control blocks 430
Modules 431
Exits 431
Trace 431
External interfaces 432

Chapter 54. Task-related user exit
recovery 433
Design overview 433

The two-phase commit process 433
The single-phase commit process 434

Modules 436
Exits 436
Trace 436
External interfaces 436

Chapter 55. Terminal abnormal
condition program 437
Design overview 437
Modules 439
Exits 439
Trace 440

Chapter 56. Terminal control 441
Design overview 441

Terminal control services 442
Terminal error recovery 443
Testing facility—BSAM 443

Terminal control modules (DFHZCP, DFHTCP) 444
Defining terminals to CICS 452
Autoinstall 458
QUERY function (DFHQRY) 458

Control blocks 458
Modules 460
Exits 462
Trace 463

Chapter 57. Terminal error program 465
Design overview 465
Modules 465
Exits 465
Trace 465

Chapter 58. Trace control
macro-compatibility interface 467
Design overview 467
Modules 468
Exits 468
Trace 468

Chapter 59. Trace formatting 469
Design overview 469

Segmented entries on GTF 471
Control blocks 472
Modules 472
Exits 473

Chapter 60. Transaction Failure
program 475
Design overview 475
Modules 477
Exits 477
Trace 477

Chapter 61. Transaction restart
program 479
Design overview 479
Control blocks 480
Modules 480
Exits 480
Trace 480
Transaction Restart Statistics 480

Chapter 62. Transaction routing . . . 481
Design overview 481

Overview of operation in the
application-owning region for APPC transaction
routing 482
Overview of operation in the terminal-owning
region for APPC transaction routing 491
Transformer program (DFHXTP) 495

Control blocks 499
Relay transaction control blocks 499
User transaction control blocks 500

Modules 501
Exits 502
Trace 502

Contents ix

Chapter 63. Transient data control 503
Design overview 503

Intrapartition queues 503
Extrapartition queues 504
Indirect queues 504
Automatic transaction initiation 504
Transient data services 505
Transient data 505

Modules 508
Exits 508
Trace 508

Chapter 64. User exit control 509
Design overview 509

User exit control modules 510
Control blocks 512
Modules 513
Exits 514
Trace 514

Chapter 65. VTAM generic resource 515
Design Overview 515
Generic resource and LU6.1/LU6.2 515

LU6.2 GR to GR connections 515
LU6.2 GR to non-GR connections 516
LU6.1 517

Ending affinities 517
Generic resource and ATI 517
Modules 518

DFHZBLX 518
DFHZGCH 518
DFHZGIN 519

Problem solving for generic resource 519
Generic resource status byte (TCTV_GRSTATUS) 520
Generic resource flag byte (TCSEI_GR) 520
Trace 521
Waits 521

Chapter 66. VTAM LU6.2 523
Design overview 523

Session management 523
LU6.2 session states 525
LU6.2 SEND and RECEIVE processing 525
Limited resources 526

Modules 526
DFHZRVL 527
DFHZRLP 527
DFHZSDL 529
DFHZSLX 530
DFHZRLX 530
DFHCLS3 530
DFHZLS1 531
DFHZGCN 531
DFHZGCA 533

Exits 533
Trace 533

Chapter 67. VTAM persistent sessions
support 535
Design overview 535

Situations in which sessions are not
reestablished 536
Situations in which VTAM does not retain
sessions 537
Persistent sessions restart flow 537

Modules 543
Diagnosing persistent sessions problems 545
Persistent sessions status byte (TCTE_PRSS) . . . 547
Bid status byte (TCTE_BID_STATUS) 550
Summary of persistent session waits 551
VTAM exits 551
Trace 552
Statistics 552

Chapter 68. WTO and WTOR 553
Design overview 553
Modules 553
Exits 553
Trace 553

Chapter 69. CICS Web support and
the CICS business logic interface . . 555
Control blocks 555
Modules 556

Initialization, DFHWBIP 557
Web attach processing, DFHWBXN 557
Default analyzer program, DFHWBAAX . . . 557
Alias transaction, DFHWBA 557
HTTP client processing, DFHWBCL 558
CICS business logic interface, DFHWBBLI . . . 558
CICS Web support for 3270 display applications 558
Unescaping function, DFHWBUN 558

Exits 558
Trace 559

Part 3. CICS domains 561

Chapter 70. Application Manager
Domain (AP) 563
Application Manager Domain's specific gates . . . 563

ABAB gate, CREATE_ABEND_RECORD
function 563
ABAB gate, INQUIRE_ABEND_RECORD
function 565
ABAB gate, START_ABEND function 568
ABAB gate, TAKE_TRANSACTION_DUMP
function 569
ABAB gate, UPDATE_ABEND_RECORD
function 570
APAC gate, REPORT_CONDITION function 572
APAP gate, TRANSFER_SIT function 573
APCR gate, ESTIMATE_ALL function 574
APCR gate, ESTIMATE_CHANGED function 574
APCR gate, EXPORT_ALL function 575
APCR gate, EXPORT_CHANGED function . . 576
APCR gate, IMPORT_ALL function 576
APCR gate, IMPORT_CHANGED function . . 578
APEX gate, INVOKE_USER_EXIT function . . 578
APID gate, PROFILE function 579

x CICS TS for z/OS 4.1: Diagnosis Reference

APID gate, QUERY_NETNAME function . . . 580
APIQ gate, INQ_APPLICATION_DATA function 580
APIQ gate, INQ_SIT_PARM function 581
APJC gate, WRITE_JOURNAL_DATA function 581
APLI gate, ESTABLISH_LANGUAGE function 582
APLI gate, START_PROGRAM function . . . 584
APLJ gate, PIPI_CALL_SUB function 586
APLI gate, PIPI_INIT_SUB_DP function . . . 587
APLI gate, PIPI_TERM function 587
APLX gate, NOTIFY_REFRESH function . . . 588
APRA gate, RELAY_TERMINAL_REQUEST
function 589
APRA gate, REMOTE_ATTACH function . . . 589
APRA gate, REMOTE_DETACH function . . . 589
APRD gate, END_ATOMS function 589
APRD gate, INITIALISE function 590
APRD gate, PRE_INITIALISE function 591
APRR gate, IPIC_ROUTE_TRANSACTION
function 591
APRS gate, ACQUIRE_SURROGATE function 591
APRS gate, RELEASE_SURROGATE function 592
APRT gate, ROUTE_TRANSACTION function 592
APRX gate, FLATTEN_REQUEST function . . 593
APRX gate, FLATTEN_RESPONSE function . . 593
APRX gate, UNFLATTEN_REQUEST function 594
APRX gate, UNFLATTEN_RESPONSE function 594
APTC gate, CANCEL function 594
APTC gate, CLOSE function 595
APTC gate, EXTRACT_PROCESS function . . 595
APTC gate, LISTEN function 595
APTC gate, OPEN function 596
APTC gate, RECEIVE function 596
APTC gate, SEND function 597
APTC gate, SET_SESSION function 597
APTD gate, DELETE_TRANSIENT_DATA
function 598
APTD gate, INITIALISE_TRANSIENT_DATA
function 599
APTD gate, READ_TRANSIENT_DATA function 600
APTD gate, RESET_TRIGGER_LEVEL function 601
APTD gate, WRITE_TRANSIENT_DATA
function 601
APXM gate, BIND_XM_CLIENT function . . . 602
APXM gate, INIT_XM_CLIENT function . . . 603
APXM gate, RELEASE_XM_CLIENT function 603
APXM gate, RMI_START_OF_TASK function 603
BRAT gate, ATTACH function 603
BRIQ gate, INQUIRE_CONTEXT function . . . 604
CCNV gate, CONVERT_ADS function 606
CCNV gate, CONVERT_DATA function . . . 608
CCNV gate, CREATE_CONVERSION_TOKEN
function 610
CCNV gate, EXTRACT_ADS function 611
CCNV gate, FREE_CONVERSION_TOKEN
function 613
CCNV gate, GET_CONVERSION_TOKEN
function 614
CCNV gate, INITIALISE function 615
CCNV gate, INQUIRE_CONVERSION_SIZE
function 617
CCNV gate, VERIFY_CGCSGID function . . . 618

CCNV gate, VERIFY_CICS_CCSID function . . 620
CCNV gate, VERIFY_IANA_CCSID function 621
CCNV gate, VERIFY_IBM_CCSID function . . 622
CQCQ gate, CLOSE_MVS_CIB_QUEUE function 623
CQCQ gate, DEFER_CIB function 624
CQCQ gate, GET_CIB function 624
CQCQ gate, GET_PROCESSED_CIB function 625
CQCQ gate, INITIALIZE function 625
CQCQ gate, MERGE_CIB_QUEUES function 625
CQCQ gate, PUT_CIB function 626
CQCQ gate, PUT_PROCESSED_CIB function 626
CQCQ gate, TRACE_PUT_CQ function 626
ECIS gate, DISCARD_EVENTBINDING function 627
ECIS gate, END_BROWSE_CAPTURESPEC
function 627
ECIS gate, END_BROWSE_EVENTBINDING
function 627
ECIS gate, GET_NEXT_CAPTURESPEC function 628
ECIS gate, GET_NEXT_EVENTBINDING
function 628
ECIS gate, INQ_CAPTURESPEC function . . . 629
ECIS gate, INQ_EVENTBINDING function . . 630
ECIS gate, INQ_EVENTPROCESS function . . 630
ECIS gate, SET_EVENTPROCESS function . . . 630
ECIS gate, SET_EVENTBINDING function . . 631
ECIS gate, START_BROWSE_CAPTURESPEC
function 631
ECIS gate, START_BROWSE_EVENTBINDING
function 632
ECSE gate, SIGNAL_EVENT function 632
FCAT gate, INQ_BASEDSNAME function . . . 633
FCAT gate, INQ_CATALOG_QUIESCESTATE
function 633
FCAT gate, INQ_CATALOG_RECOV_REQD
function 634
FCAT gate, INQ_DATASET_STATE function . . 635
FCAT gate, SET_BWO_BITS_DISABLED
function 635
FCAT gate, SET_BWO_BITS_ENABLED function 636
FCAT gate, SET_CATALOG_RECOV_POINT
function 636
FCAT gate, SET_CATALOG_RECOV_REQD
function 637
FCAT gate, SET_CATALOG_RECOVERED
function 637
FCCA gate, CHECK function 638
FCCA gate, COLD_START_RLS function . . . 639
FCCA gate, DRAIN_CONTROL_ACB function 639
FCCA gate, INQUIRE_RECOVERY function . . 640
FCCA gate, LOST_LOCKS_COMPLETE function 640
FCCA gate, QUIESCE_COMPLETE function . . 641
FCCA gate, QUIESCE_REQUEST function . . . 642
FCCA gate, REGISTER_CONTROL_ACB
function 643
FCCA gate, RELEASE_LOCKS function . . . 644
FCCA gate, RESET_NONRLS_BATCH function 644
FCCA gate, RETAIN_DATASET_LOCKS
function 645
FCCA gate, RETAIN_UOW_LOCKS function 646
FCCA gate, UNREGISTER_CONTROL_ACB
function 646

Contents xi

|
||
||
||

|
||

||
||
||
||

 | |
 |
 | |
 |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 |
 | |
 | |

FCCI gate, INQUIRE function 647
FCCR gate, DELETE function 649
FCCR gate, DELETE_MULTIPLE function . . . 650
FCCR gate, HIGHEST function 652
FCCR gate, LOAD function 652
FCCR gate, POINT function 653
FCCR gate, READ function 654
FCCR gate, READ_DELETE function 656
FCCR gate, REWRITE function 656
FCCR gate, UNLOCK function 657
FCCR gate, WRITE function 658
FCCT gate, CLOSE function 659
FCCT gate, DELETE function 660
FCCT gate, EXTRACT_STATISTICS function . . 661
FCCT gate, OPEN function 662
FCCT gate, SET function 665
FCCU gate, BACKOUT function 666
FCCU gate, COMMIT function 667
FCCU gate, INQUIRE function 668
FCCU gate, PREPARE function 669
FCCU gate, RESTART function 670
FCCU gate, RETAIN function 670
FCDN gate, CATALOG_DSNB function . . . 671
FCDN gate, COMMIT_DSNREFS function . . . 671
FCDN gate, CONNECT_DSNB function . . . 672
FCDN gate, DELETE_DSNB function 673
FCDN gate, DISCONNECT_DSNB function . . 673
FCDN gate, END_DSNB_BROWSE function . . 674
FCDN gate, GET_NEXT_DSNB function . . . 675
FCDN gate, INQUIRE_DSNB function 676
FCDN gate, RESET_ALL_QUIESCE_STATUS
function 678
FCDN gate, SET_CATALOG_RECOVERED
function 678
FCDN gate, SET_DSNB function 679
FCDN gate, START_DSNB_BROWSE function 680
FCDN gate, UPDATE_RECOVERY_POINTS
function 680
FCDS gate, DISCONNECT_CFDT_POOLS
function 680
FCDS gate, EXTRACT_CFDT_STATS function 681
FCDU gate, BACKOUT function 682
FCDU gate, COMMIT function 683
FCDU gate, INQUIRE function 684
FCDU gate, PREPARE function 686
FCDU gate, RESTART function 687
FCDU gate, RETAIN function 688
FCDY gate, RESYNC_CFDT_LINK function . . 689
FCDY gate, RESYNC_CFDT_POOL function . . 689
FCDY gate, RETURN_CFDT_ENTRY_POINTS
function 690
FCFL gate, END_UOWDSN_BROWSE function 690
FCFL gate, FIND_RETAINED function 691
FCFL gate, FORCE_INDOUBTS function . . . 691
FCFL gate, GET_NEXT_UOWDSN function . . 692
FCFL gate, RESET_BFAILS function 693
FCFL gate, RETRY function 694
FCFL gate, START_UOWDSN_BROWSE
function 694
FCFL gate, TEST_USER function 695
FCFR gate, CLEAR_ENVIRONMENT function 695

FCFR gate, DELETE function 696
FCFR gate, END_BROWSE function 699
FCFR gate, FREE_UNUSED_BUFFERS function 700
FCFR gate, PREPARE_FILE_REQUEST function 701
FCFR gate, PREPARE_TO_BACKOUT function 701
FCFR gate, READ_INTO function 702
FCFR gate, READ_NEXT_INTO function . . . 705
FCFR gate, READ_NEXT_SET function 708
FCFR gate, READ_NEXT_UPDATE_INTO
function 711
FCFR gate, READ_NEXT_UPDATE_SET
function 714
FCFR gate, READ_PREVIOUS_INTO function 716
FCFR gate, READ_PREVIOUS_SET function . . 719
FCFR gate, READ_PREVIOUS_UPDATE_INTO
function 722
FCFR gate, READ_PREVIOUS_UPDATE_SET
function 725
FCFR gate, READ_SET function 727
FCFR gate, READ_UPDATE_INTO function . . 730
FCFR gate, READ_UPDATE_SET function . . . 734
FCFR gate, REPLACE function 737
FCFR gate, REPLACE_DELETE function . . . 740
FCFR gate, RESET_BROWSE function 742
FCFR gate, RESTART_FILE_CONTROL function 744
FCFR gate, REWRITE function 744
FCFR gate, REWRITE_DELETE function . . . 747
FCFR gate, START_BROWSE function 749
FCFR gate, TEST_FILE_USER function 751
FCFR gate, UNLOCK function 752
FCFR gate, WRITE function 753
FCFS gate, CANCEL_CLOSE_FILE function . . 757
FCFS gate, CLOSE_FILE function 757
FCFS gate, DISABLE_FILE function 759
FCFS gate, ENABLE_FILE function 760
FCFS gate, OPEN_FILE function 760
FCIN gate, INITIALISE_FILE_CONTROL
function 762
FCIN gate, WAIT_FOR_FILE_CONTROL
function 762
FCLJ gate, DATASET_COPY function 762
FCLJ gate, FILE_CLOSE function 763
FCLJ gate, FILE_OPEN function 763
FCLJ gate, READ_ONLY function 764
FCLJ gate, READ_UPDATE function 765
FCLJ gate, SYNCHRONISE_READ_UPDATE
function 766
FCLJ gate, TAKE_KEYPOINT function 766
FCLJ gate, WRITE_ADD function 767
FCLJ gate, WRITE_ADD_COMPLETE function 768
FCLJ gate, WRITE_DELETE function 769
FCLJ gate, WRITE_UPDATE function 770
FCMT gate, ADD_FILE function 771
FCMT gate, COMMIT_FILES function 776
FCMT gate, DELETE_FILE function 776
FCMT gate, END_BROWSE_FILE function . . 776
FCMT gate, GET_NEXT_FILE function 777
FCMT gate, INQUIRE_FILE function 783
FCMT gate, START_BROWSE_FILE function 789
FCMT gate, UPDATE_FILE function 789
FCQI gate, COMPLETE_QUIESCE function . . 793

xii CICS TS for z/OS 4.1: Diagnosis Reference

FCQI gate, INITIATE_QUIESCE function . . . 794
FCQI gate, INQUIRE_QUIESCE function . . . 795
FCQR gate, RECEIVE_QUIESCES function . . 796
FCQS gate, SEND_QUIESCES function 796
FCQU gate, PROCESS_QUIESCE function . . . 797
FCRF gate, BROWSE function 799
FCRF gate, DELETE function 801
FCRF gate, END_BROWSE function 802
FCRF gate, READ function 803
FCRF gate, REPLACE function 804
FCRF gate, REPLACE_DELETE function . . . 805
FCRF gate, RESET_BROWSE function 806
FCRF gate, REWRITE function 807
FCRF gate, START_BROWSE function 808
FCRF gate, UNLOCK function 809
FCRF gate, WRITE function 810
FCRL gate, COMMIT_POOLS function 811
FCRL gate, SET_POOL function 811
FCRP gate, RESTART_FILE_CONTROL function 812
FCRR gate, LOST_LOCKS_RECOVERED
function 813
FCRR gate, RESOURCE_AVAILABLE function 814
FCRR gate, RESTART_RLS function 814
FCSD gate, TERMINATE function 816
FCST gate, COLLECT_FILE_STATISTICS
function 816
FCST gate, COLLECT_POOL_STATISTICS
function 817
FCST gate, END_FILE_IN_POOL_BROWSE
function 818
FCST gate, GET_NEXT_FILE_IN_POOL function 818
FCST gate, START_FILE_IN_POOL_BROWSE
function 819
FCVC gate, INQUIRE_CATALOG function . . 820
ICXM gate, INQUIRE_FACILITY function . . . 821
LEPT gate, CREATE_LE_ENCLAVE function 821
LEPT gate, CREATE_PTHREAD function . . . 821
LEPT gate, INVOKE_PTHREAD function . . . 822
LEPT gate, PTHREAD_REPLY function 822
LEPT gate, TERMINATE_LE_ENCLAVE
function 822
LEPT gate, TERMINATE_PTHREAD function 823
SAIQ gate, INQUIRE_SYSTEM function . . . 823
SAIQ gate, SET_SYSTEM function 826
TDOC gate, CLOSE_ALL_EXTRA_TD_QUEUES
function 826
TDOC gate, CLOSE_TRANSIENT_DATA
function 827
TDOC gate, OPEN_TRANSIENT_DATA
function 827
TDTM gate, ADD_REPLACE_TDQDEF function 829
TDTM gate, COMMIT_TDQDEFS function . . 832
TDTM gate, DISCARD_TDQDEF function . . . 832
TDTM gate, END_BROWSE_TDQDEF function 833
TDTM gate, GET_NEXT_TDQDEF function . . 833
TDTM gate, INQUIRE_TDQDEF function . . . 837
TDTM gate, SET_TDQDEF function 841
TDTM gate, START_BROWSE_TDQDEF
function 842
TDXM gate, BIND_SECONDARY_FACILITY
function 842

TDXM gate, INQUIRE_TRAN_DATA_FACILITY
function 842
TFAL gate, ALLOCATE function 843
TFAL gate, CANCEL_AID function 843
TFAL gate,
CANCEL_AIDS_FOR_CONNECTION function . 844
TFAL gate, CANCEL_AIDS_FOR_TERMINAL
function 844
TFAL gate, CANCEL_SPECIFIC_AID function 845
TFAL gate, CHECK_TRANID_IN_USE function 845
TFAL gate, DISCARD_AIDS function 846
TFAL gate, FIND_TRANSACTION_OWNER
function 846
TFAL gate, GET_MESSAGE function 846
TFAL gate, INITIALIZE_AID_POINTERS
function 847
TFAL gate, INQUIRE_ALLOCATE_AID function 847
TFAL gate, LOCATE_AID function 848
TFAL gate, LOCATE_REMDEL_AID function 848
TFAL gate, LOCATE_SHIPPABLE_AID function 849
TFAL gate, MATCH_TASK_TO_AID function 849
TFAL gate, PURGE_ALLOCATE_AIDS function 849
TFAL gate, RECOVER_START_DATA function 850
TFAL gate, REMOTE_DELETE function . . . 850
TFAL gate, REMOVE_EXPIRED_AID function 851
TFAL gate, REMOVE_EXPIRED_REMOTE_AID
function 851
TFAL gate, REMOVE_MESSAGE function . . . 852
TFAL gate, REMOVE_REMOTE_DELETES
function 852
TFAL gate, REROUTE_SHIPPABLE_AIDS
function 853
TFAL gate, RESCHEDULE_BMS function . . . 853
TFAL gate, RESET_AID_QUEUE function . . . 854
TFAL gate, RESTORE_FROM_KEYPOINT
function 854
TFAL gate, RETRIEVE_START_DATA function 854
TFAL gate, SCHEDULE_BMS function 855
TFAL gate, SCHEDULE_START function . . . 856
TFAL gate, SCHEDULE_TDP function 858
TFAL gate, SLOWDOWN_PURGE function . . 858
TFAL gate, TAKE_KEYPOINT function 858
TFAL gate, TERM_AVAILABLE_FOR_QUEUE
function 858
TFAL gate, TERMINAL_NOW_UNAVAILABLE
function 859
TFAL gate, UNCHAIN_AID function 859
TFAL gate,
UPDATE_TRANNUM_FOR_RESTART function . 859
TFBF gate, BIND_FACILITY function 860
TFIQ gate, INQUIRE_MONITOR_DATA
function 860
TFIQ gate, INQUIRE_TERMINAL_FACILITY
function 862
TFIQ gate, SET_TERMINAL_FACILITY function 864
TFRF gate, RELEASE_FACILITY function . . . 865
XSWM gate, XRF_GET function 865
XSWM gate, XRF_PUT function 866

Application domain's call-back gates 866
Application Manager Domain's generic gates . . . 867
Application Manager Domain's generic formats 867

Contents xiii

APUE gate, SET_EXIT_STATUS function . . . 867

Chapter 71. Business Application
Manager Domain (BA) 869
Business Application Manager Domain's specific
gates 869

BAAC gate, ACQUIRE_ACTIVITY function . . 869
BAAC gate, ADD_ACTIVITY function 869
BAAC gate, ADD_REATTACH_ACQUIRED
function 870
BAAC gate, ADD_TIMER_REQUEST function 870
BAAC gate, CANCEL_ACTIVITY function . . 870
BAAC gate, CHECK_ACTIVITY function . . . 871
BAAC gate, DELETE_ACTIVITY function . . . 872
BAAC gate, LINK_ACTIVITY function 872
BAAC gate, RESET_ACTIVITY function . . . 873
BAAC gate, RESUME_ACTIVITY function . . 873
BAAC gate, RETURN_END_ACTIVITY function 874
BAAC gate, RUN_ACTIVITY function 874
BAAC gate, SUSPEND_ACTIVITY function . . 875
BABR gate, COMMIT_BROWSE function . . . 875
BABR gate, ENDBR_ACTIVITY function . . . 875
BABR gate, ENDBR_CONTAINER function . . 876
BABR gate, ENDBR_PROCESS function . . . 876
BABR gate, GETNEXT_ACTIVITY function . . 876
BABR gate, GETNEXT_CONTAINER function 877
BABR gate, GETNEXT_PROCESS function . . 877
BABR gate, INQUIRE_ACTIVATION function 878
BABR gate, INQUIRE_ACTIVITY function . . 878
BABR gate, INQUIRE_CONTAINER function 880
BABR gate, INQUIRE_PROCESS function . . . 881
BABR gate, STARTBR_ACTIVITY function . . 881
BABR gate, STARTBR_CONTAINER function 882
BABR gate, STARTBR_PROCESS function . . . 883
BACR gate, COPY_CONTAINER function . . . 883
BACR gate, DELETE_CONTAINER function . . 884
BACR gate, GET_CONTAINER_INTO function 885
BACR gate, GET_CONTAINER_LENGTH
function 885
BACR gate, GET_CONTAINER_SET function 886
BACR gate, MOVE_CONTAINER function . . 887
BACR gate, PUT_CONTAINER function . . . 888
BAPR gate, ACQUIRE_PROCESS function . . . 888
BAPR gate, ADD_PROCESS function 889
BAPR gate, CANCEL_PROCESS function . . . 890
BAPR gate, CHECK_PROCESS function . . . 890
BAPR gate, LINK_PROCESS function 891
BAPR gate, RESET_PROCESS function 891
BAPR gate, RESUME_PROCESS function . . . 892
BAPR gate, RUN_PROCESS function 892
BAPR gate, SUSPEND_PROCESS function . . . 893
BATT gate, ADD_REPLACE_PROCESSTYPE
function 893
BATT gate, COMMIT_PROCESSTYPE_TABLE
function 894
BATT gate, DISCARD_PROCESSTYPE function 894
BATT gate, END_BROWSE_PROCESSTYPE
function 895
BATT gate, GET_NEXT_PROCESSTYPE function 895
BATT gate, INQUIRE_PROCESSTYPE function 895
BATT gate, SET_PROCESSTYPE function . . . 896

BATT gate, START_BROWSE_PROCESSTYPE
function 897
BAXM gate, BIND_ACTIVITY_REQUEST
function 897
BAXM gate, INIT_ACTIVITY_REQUEST
function 898

Business Application Manager Domain's generic
gates 898
Business application manager domain's call-back
gates 899
Business application manager domain's generic
formats 899
Modules 900
Exits 902

Chapter 72. CICS Catalog Domain
(CC) 903
CICS Catalog Domain's specific gates 903

CCCC gate, ADD function 903
CCCC gate, DELETE function 903
CCCC gate, END_BROWSE function 904
CCCC gate, END_WRITE function 904
CCCC gate, GET function 904
CCCC gate, GET_NEXT function 905
CCCC gate, GET_UPDATE function 905
CCCC gate, PUT_REPLACE function 905
CCCC gate, START_BROWSE function 906
CCCC gate, START_WRITE function 906
CCCC gate, STARTUP_CLOSE function . . . 906
CCCC gate, STARTUP_OPEN function 907
CCCC gate, TYPE_PURGE function 907
CCCC gate, WRITE function 907
CCCC gate, WRITE_NEXT function 908

CICS Catalog Domain's generic gates 908
Modules 909

Chapter 73. Directory manager domain
(DD) 911
Directory manager domain's specific gates 911

DDAP gate, BIND_LDAP function 911
DDAP gate, END_BROWSE_RESULTS function 912
DDAP gate, FLUSH_LDAP_CACHE function 912
DDAP gate, FREE_SEARCH_RESULTS function 913
DDAP gate, GET_ATTRIBUTE_VALUE function 913
DDAP gate, GET_NEXT_ATTRIBUTE function 914
DDAP gate, GET_NEXT_ENTRY function . . . 914
DDAP gate, SEARCH_LDAP function 915
DDAP gate, START_BROWSE_RESULTS
function 916
DDAP gate, UNBIND_LDAP function 917
DDBR gate, END_BROWSE function 917
DDBR gate, GET_NEXT_ENTRY function . . . 917
DDBR gate, START_BROWSE function 918
DDDI gate, ADD_ENTRY function 918
DDDI gate, CREATE_DIRECTORY function . . 919
DDDI gate, DELETE_ENTRY function 919
DDDI gate, REPLACE_DATA function 920
DDLO gate, LOCATE function 920

Directory manager domain's generic gates 921

xiv CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 74. Document Handler
Domain (DH) 923
Document Handler Domain's specific gates . . . 923

DHDH gate, CREATE_DOCUMENT function 923
DHDH gate, DELETE_BOOKMARK function 925
DHDH gate, DELETE_DATA function 925
DHDH gate, DELETE_DOCUMENT function 926
DHDH gate, INQUIRE_DOCUMENT function 926
DHDH gate, INSERT_BOOKMARK function 926
DHDH gate, INSERT_DATA function 927
DHDH gate, REPLACE_DATA function . . . 928
DHDH gate, RETRIEVE_WITH_CTLINFO
function 930
DHDH gate, RETRIEVE_WITHOUT_CTLINFO
function 930
DHDH gate, SET_PARAMETERS function . . . 931
DHFS gate, DELETE_HFS_FILE function . . . 931
DHFS gate, END_BROWSE_DIRECTORY
function 931
DHFS gate, GET_NEXT_IN_DIRECTORY
function 932
DHFS gate, INQUIRE_HFS_FILE function . . . 932
DHFS gate, MAKE_HFS_DIRECTORY function 933
DHFS gate, READ_HFS_FILE function 933
DHFS gate, START_BROWSE_DIRECTORY
function 934
DHFS gate, WRITE_HFS_FILE function . . . 935
DHSL gate, ADD_SYMBOL_LIST function . . . 936
DHSL gate, EXPORT_SYMBOL_LIST function 936
DHSL gate, IMPORT_SYMBOL_LIST function 937
DHSL gate, SET_SYMBOL_VALUE_BY_API
function 937
DHSL gate, SET_SYMBOL_VALUE_BY_SSI
function 938
DHTM gate, ADD_REPLACE_DOCTEMPLATE
function 938
DHTM gate, DELETE_DOCTEMPLATE function 940
DHTM gate, END_BROWSE function 940
DHTM gate, GET_NEXT function 941
DHTM gate, INITIALIZE_DOCTEMPLATES
function 942
DHTM gate, INQUIRE_DOCTEMPLATE
function 942
DHTM gate, INQUIRE_TEMPLATE_STATUS
function 944
DHTM gate, READ_TEMPLATE function . . . 944
DHTM gate, START_BROWSE function . . . 945

Document handler domain's generic gates 946
Document handler domain's call-back gates . . . 946
Modules 947

Chapter 75. Domain Manager Domain
(DM) 949
Domain Manager Domain's specific gates 949

DMDM gate, ADD_DOMAIN function 949
DMDM gate, QUIESCE_SYSTEM function . . . 949
DMDM gate, SET_PHASE function 950
DMDM gate, WAIT_PHASE function 950
DMEN gate, DELETE function 951
DMEN gate, LISTEN function 952

DMIQ gate, END_BROWSE function 952
DMIQ gate, GET_NEXT function 953
DMIQ gate, INQ_DOMAIN_BY_ID function . . 953
DMIQ gate, INQ_DOMAIN_BY_NAME
function 954
DMIQ gate, INQ_DOMAIN_BY_TOKEN
function 954
DMIQ gate, START_BROWSE function 955

Domain manager domain's generic gates 956
Domain Manager domain's generic formats . . . 956

DMDM gate, INITIALISE_DOMAIN function 956
DMDM gate, PRE_INITIALISE function . . . 956
DMDM gate, QUIESCE_DOMAIN function . . 957
DMDM gate, TERMINATE_DOMAIN function 957

Domain Manager domain call-back formats . . . 958
DMEN gate,
NOTIFY_SMSVSAM_OPERATIONAL function . 958

Modules 958

Chapter 76. Debugging profile domain
(DP) 961
Debugging profile domain's specific gates 961

DPFM gate, ACTIVATE_DEBUG_PROFILE
function 961
DPFM gate, DELETE_DEBUG_PROFILE
function 962
DPFM gate, END_PM_BROWSE function . . . 962
DPFM gate, GET_DEBUG_PROFILE function 962
DPFM gate, INACTIVATE_DEBUG_PROFILE
function 965
DPFM gate, READNEXT_PM_PROFILE function 965
DPFM gate, REPLACE_DEBUG_PROFILE
function 967
DPFM gate, SAVE_DEBUG_PROFILE function 970
DPFM gate, START_PM_BROWSE function . . 972
DPIQ gate, INQUIRE_DEBUG_TASK function 973
DPIQ gate, INQUIRE_PARAMETERS function 973
DPIQ gate, SET_DEBUG_PROFILE function . . 974
DPIQ gate, SET_DEBUGGING function . . . 974
DPIQ gate, SET_PARAMETERS function . . . 974
DPLM gate, ENDBR_DEBUG_PROFILES
function 975
DPLM gate, READNEXT_DEBUG_PROFILE
function 975
DPLM gate, READNEXT_INPUT function . . . 978
DPLM gate, RESTARTBR_DEBUG_PROFILES
function 980
DPLM gate, STARTBR_DEBUG_PROFILES
function 980
DPLM gate, UPDATE_PROFILE_IN_LIST
function 981
DPPM gate, PATTERN_MATCH_PROFILE
function 982
DPPM gate, PATTERN_MATCH_TASK function 984
DPUM gate, GET_USER_DEFAULTS function 985
DPUM gate, SAVE_USER_DEFAULTS function 987
DPWD gate, PROCESS_PAGE function 990
DPWD gate, PROCESS_SUBMIT function . . . 990
DPWE gate, PROCESS_PAGE function 991
DPWE gate, PROCESS_SUBMIT function . . . 992
DPWJ gate, PROCESS_PAGE function 992

Contents xv

DPWJ gate, PROCESS_SUBMIT function . . . 993
DPWL gate, PROCESS_PAGE function 993
DPWL gate, PROCESS_SUBMIT function . . . 994
DPXM gate, BIND_XM_CLIENT function . . . 994
DPXM gate, INIT_XM_CLIENT function . . . 995
DPXM gate, RELEASE_XM_CLIENT function 995

Debugging profile domain's generic gates 996

Chapter 77. Dispatcher Domain (DS) 997
Dispatcher Domain's specific gates 997

DSAT gate, ATTACH function 997
DSAT gate, CANCEL_TASK function 998
DSAT gate, CHANGE_MODE function 999
DSAT gate, CHANGE_PRIORITY function 1001
DSAT gate, CLEAR_MATCH function 1002
DSAT gate, DELETE_SUBSPACE_TCBS
function 1002
DSAT gate, FREE_SUBSPACE_TCBS function 1003
DSAT gate, RELEASE_OPEN_TCB function 1003
DSAT gate, SET_PRIORITY function 1003
DSAT gate, SET_TRANSACTION_TOKEN
function 1004
DSAT gate, TCB_POOL_MANAGEMENT
function 1005
DSBR gate, END_BROWSE function 1005
DSBR gate, GET_NEXT function 1005
DSBR gate, INQUIRE_TASK function 1007
DSBR gate, INQUIRE_TCB function 1009
DSBR gate, SET_TASK function 1010
DSBR gate, SET_TCB function 1011
DSBR gate, START_BROWSE function 1012
DSIT gate, ACTIVATE_MODE function . . . 1012
DSIT gate, ADD_TCB function 1014
DSIT gate, DELETE_ALL_OPEN_TCBS
function 1014
DSIT gate, DELETE_OPEN_TCB function . . 1015
DSIT gate, DELETE_TCB function 1015
DSIT gate, FREE_TCB function 1016
DSIT gate, INQUIRE_DISPATCHER function 1016
DSIT gate, PROCESS_DEAD_TCBS function 1017
DSIT gate, SET_DISPATCHER function . . . 1018
DSMT gate, END_BROWSE_MVSTCB function 1019
DSMT gate, GET_NEXT_MVSTCB function 1019
DSMT gate, INQUIRE_MVSTCB function . . 1020
DSMT gate, SNAPSHOT_MVSTCBS function 1021
DSMT gate, START_BROWSE_MVSTCB
function 1021
DSSR gate, ADD_SUSPEND function 1021
DSSR gate, DELETE_SUSPEND function . . . 1022
DSSR gate, RESUME function 1022
DSSR gate, SUSPEND function 1023
DSSR gate, WAIT_MVS function 1024
DSSR gate, WAIT_OLDC function 1026
DSSR gate, WAIT_OLDW function 1028

Dispatcher domain's generic gates 1030
Dispatcher domain's generic formats 1031

DSAT gate, TASK_REPLY function 1031
DSAT gate, PURGE_INHIBIT_QUERY function 1031
DSAT gate, FORCE_PURGE_INHIBIT_QUERY
function 1032
DSAT gate, NOTIFY_DELETE_TCB function 1032

Modules 1032
Exits 1033

Chapter 78. Dump Domain (DU) . . . 1035
Dump Domain's specific gates 1035

DUDT gate, ADD_SYSTEM_DUMPCODE
function 1035
DUDT gate, ADD_TRAN_DUMPCODE
function 1036
DUDT gate, DELETE_SYSTEM_DUMPCODE
function 1037
DUDT gate, DELETE_TRAN_DUMPCODE
function 1037
DUDT gate, ENDBR_SYSTEM_DUMPCODE
function 1037
DUDT gate, ENDBR_TRAN_DUMPCODE
function 1038
DUDT gate, GETNEXT_SYSTEM_DUMPCODE
function 1038
DUDT gate, GETNEXT_TRAN_DUMPCODE
function 1039
DUDT gate, INQUIRE_SYSTEM_DUMPCODE
function 1040
DUDT gate, INQUIRE_TRAN_DUMPCODE
function 1041
DUDT gate, SET_SYSTEM_DUMPCODE
function 1042
DUDT gate, SET_TRAN_DUMPCODE function 1044
DUDT gate, STARTBR_SYSTEM_DUMPCODE
function 1045
DUDT gate, STARTBR_TRAN_DUMPCODE
function 1045
DUDU gate, SYSTEM_DUMP function . . . 1045
DUDU gate, TRANSACTION_DUMP function 1047
DUFT gate, DEREGISTER function 1049
DUFT gate, INQUIRE_FEATURE function . . 1049
DUFT gate, REGISTER function 1050
DUFT gate, UPDATE_FEATURE function . . 1051
DUSR gate, CROSS_SYSTEM_DUMP_AVAIL
function 1052
DUSR gate, DUMPDS_CLOSE function . . . 1052
DUSR gate, DUMPDS_OPEN function . . . 1052
DUSR gate, DUMPDS_SWITCH function . . . 1052
DUSR gate, INQUIRE_CURRENT_DUMPDS
function 1053
DUSR gate,
INQUIRE_DUMPDS_AUTOSWITCH function . 1053
DUSR gate,
INQUIRE_DUMPDS_OPEN_STATUS function . 1053
DUSR gate, INQUIRE_INITIAL_DUMPDS
function 1054
DUSR gate, INQUIRE_RETRY_TIME function 1054
DUSR gate, INQUIRE_SYSTEM_DUMP
function 1054
DUSR gate, SET_DUMPDS_AUTOSWITCH
function 1055
DUSR gate, SET_DUMPTABLE_DEFAULTS
function 1055
DUSR gate, SET_INITIAL_DUMPDS function 1056
DUSR gate, SET_RETRY_TIME function . . . 1056
DUSR gate, SET_SYSTEM_DUMP function 1056

xvi CICS TS for z/OS 4.1: Diagnosis Reference

DUSR gate, SET_TRANTABLESIZE function 1057
DUSR gate, SET_TRANTABLETYPE function 1057

Dump domain's generic gates 1058
Initialization and termination 1058

Modules 1060
Exits 1061

Chapter 79. Enterprise Java Domain
(EJ) 1063
Enterprise Java Domain's specific gates 1063

EJBB gate, END_BROWSE function 1063
EJBB gate, GET_NEXT function 1063
EJBB gate, START_BROWSE function 1065
EJBG gate, ADD_BEAN function 1066
EJBG gate, ADD_BEAN_STATS function . . . 1067
EJBG gate, CONFIRM_ALL_BEANS function 1068
EJBG gate, DELETE_ALL_BEANS function 1068
EJBG gate, DELETE_BEAN function 1069
EJBG gate, GET_BEAN_DD function 1069
EJBG gate, INQUIRE_BEAN function 1070
EJBG gate, RESET_BEAN_STATS function . . 1071
EJCB gate, END_BROWSE function 1072
EJCB gate, GET_NEXT function 1072
EJCB gate, START_BROWSE function 1075
EJCG gate, ACTION_CORBASERVER function 1075
EJCG gate, ADD_CORBASERVER function 1076
EJCG gate, AMEND_CORBASERVER function 1079
EJCG gate, DELETE_CORBASERVER function 1081
EJCG gate, ESTABLISH function 1081
EJCG gate, INQUIRE_CORBASERVER function 1082
EJCG gate, RELINQUISH function 1084
EJCG gate, RESOLVE_CORBASERVER function 1085
EJCG gate, SET_ALL_STATE function 1085
EJCG gate, WAIT_FOR_CORBASERVER
function 1086
EJDB gate, END_BROWSE function 1087
EJDB gate, GET_NEXT function 1087
EJDB gate, START_BROWSE function 1089
EJDG gate, ACTION_DJAR function 1089
EJDG gate, ADD_DJAR function 1090
EJDG gate, AMEND_DJAR function 1091
EJDG gate, CALL_EVENT_URM function . . 1092
EJDG gate, COUNT_FOR_CS function . . . 1093
EJDG gate, DELETE_ALL_DJARS function 1094
EJDG gate, DELETE_DJAR function 1095
EJDG gate, INQUIRE_DJAR function 1095
EJDG gate, RESOLVE_DJAR function 1097
EJDG gate, SCAN_DJARS function 1097
EJDG gate, SET_ALL_STATE function 1098
EJDG gate, WAIT_FOR_DJAR function . . . 1099
EJDG gate, WAIT_FOR_USABLE_DJARS
function 1099
EJDI gate, ADD_ENTRY function 1100
EJDI gate, INITIALISE function 1101
EJDI gate, LOOKUP_ENTRY function 1101
EJDI gate, REMOVE_ENTRY function 1102
EJDU gate, DUMP_DATA function 1103
EJDU gate, DUMP_STACK function 1103
EJDU gate, INQUIRE_TRACE_FLAGS function 1103
EJGE gate, INITIALISE function 1104
EJGE gate, QUIESCE function 1105

EJGE gate, TERMINATE function 1105
EJIO gate, RESOLVE function 1105
EJIO gate, RESOLVE_CSERVERS function . . 1106
EJIO gate, RESOLVE_DJARS function 1106
EJIO gate, SET_RSTATE function 1107
EJJO gate, ADD_BEAN function 1108
EJJO gate, END_BEAN_BROWSE function 1108
EJJO gate, ESTABLISH function 1109
EJJO gate, GET_BEAN_DD function 1109
EJJO gate, GET_NEXT_BEAN function . . . 1110
EJJO gate, INQUIRE_CORBASERVER function 1111
EJJO gate, SET_BEAN_STATS function 1113
EJJO gate, START_BEAN_BROWSE function 1114
EJJO gate, WAIT_FOR_CORBASERVER
function 1115
EJJO gate, WAIT_FOR_USABLE_DJARS
function 1115
EJMI gate, ADD_BEAN function 1116
EJMI gate, ADD_METHOD function 1116
EJMI gate, DISCARD_METHOD_INFO
function 1117
EJMI gate, GET_METHOD_INFO function . . 1117
EJMI gate, INITIALISE function 1118
EJOB gate, END_BROWSE_OBJECT function 1118
EJOB gate, GET_NEXT_OBJECT function . . . 1118
EJOB gate, INQUIRE_OBJECT function . . . 1120
EJOB gate, INQUIRE_STORES function . . . 1121
EJOB gate, RETRIEVE_STATISTICS function 1121
EJOB gate, START_BROWSE_OBJECT function 1122
EJOS gate, ACTIVATE_OBJECT function . . . 1123
EJOS gate, CLOSE_OBJECT_STORE function 1123
EJOS gate, OPEN_OBJECT_STORE function 1124
EJOS gate, REMOVE_OBJECT function . . . 1125
EJOS gate, REMOVE_STORE function 1125
EJOS gate, STORE_OBJECT function 1126
EJSO gate, AMEND_CORBASERVER function 1127
EJSO gate, INQUIRE_CORBASERVER function 1130

Enterprise Java domain's generic gates 1133
Modules 1133

Chapter 80. Event Manager Domain
(EM) 1135
Event Manager Domain's specific gates 1135

EMBR gate, END_BROWSE_EVENT function 1135
EMBR gate, END_BROWSE_TIMER function 1135
EMBR gate, GET_NEXT_EVENT function . . 1135
EMBR gate, GET_NEXT_TIMER function . . . 1136
EMBR gate, INQUIRE_EVENT function . . . 1137
EMBR gate, INQUIRE_TIMER function . . . 1138
EMBR gate, START_BROWSE_EVENT function 1138
EMBR gate, START_BROWSE_TIMER function 1139
EMEM gate, ADD_SUBEVENT function . . . 1139
EMEM gate, CHECK_TIMER function 1140
EMEM gate, DEFINE_ATOMIC_EVENT
function 1140
EMEM gate, DEFINE_COMPOSITE_EVENT
function 1140
EMEM gate, DEFINE_TIMER function . . . 1141
EMEM gate, DELETE_EVENT function . . . 1142
EMEM gate, DELETE_TIMER function . . . 1143
EMEM gate, FIRE_EVENT function 1143

Contents xvii

EMEM gate, FORCE_TIMER function 1143
EMEM gate, INQUIRE_STATUS function . . . 1144
EMEM gate, REMOVE_SUBEVENT function 1145
EMEM gate, RETRIEVE_REATTACH_EVENT
function 1145
EMEM gate, RETRIEVE_SUBEVENT function 1145
EMEM gate, TEST_EVENT function 1146

Event manager domain's generic gates 1146
Modules 1147

Chapter 81. Event processing
domain (EP) 1149
Event processing domain's specific gates 1149

EPAS gate, FORMAT_EVENT function . . . 1149
EPEV gate, PUT_EVENT function 1149
EPEV gate, SYNC_EVENT function 1150
EPIS gate, SET_EVENT_PROCESSING function 1150

Event processing domain's generic gates 1151
Modules 1151

Chapter 82. IP ECI (IE) domain . . . 1153
IP ECI domain's specific gates 1153

IEIE gate, PROCESS_ECI_FLOW function . . 1153
IEIE gate, RECEIVE function 1153
IEIE gate, SEND function 1154
IEIE gate, SEND_ERROR function 1154

IP ECI domain's generic gates 1155
Modules 1155

Chapter 83. IIOP domain (II) 1157
IIOP domain's specific gates 1157

IICP gate, ABSTRACT function 1157
IICP gate, ADD_LOGICAL_SERVER function 1157
IICP gate, DELETE_LOGICAL_SERVER
function 1158
IICP gate, DISCARD_DJAR function 1158
IICP gate, DJAR_SCAN function 1158
IICP gate, INSTALL_DJAR function 1159
IICP gate, PRE_INSTALL_DJAR function . . . 1159
IICP gate, PUBLISH_CORBASERVER function 1160
IICP gate, PUBLISH_DJAR function 1160
IICP gate, PUBLISH_LOGICAL_SERVER
function 1161
IICP gate, RETRACT_CORBASERVER function 1161
IICP gate, RETRACT_DJAR function 1161
IICP gate, RETRACT_LOGICAL_SERVER
function 1162
IIMM gate, ADD_REPLACE_RQMODEL
function 1162
IIMM gate, COMMIT_RQMODELS function 1163
IIMM gate, DELETE_RQMODEL function . . 1164
IIRH gate, FIND_REQUEST_STREAM function 1164
IIRH gate, PARSE function 1166
IIRP gate, GET_INITIAL_DATA function . . . 1167
IIRP gate, INITIALISE function 1168
IIRP gate, INVOKE function 1168
IIRP gate, RECEIVE_REPLY function 1169
IIRP gate, RECEIVE_REQUEST function . . . 1170
IIRP gate, SEND_REPLY function 1171
IIRP gate, TERMINATE function 1172

IIRP gate, UPDATE_WORKREQUEST function 1172
IIRQ gate, END_BROWSE function 1172
IIRQ gate, GET_NEXT function 1173
IIRQ gate, INQUIRE_RQMODEL function . . 1174
IIRQ gate, MATCH_RQMODEL function . . . 1175
IIRQ gate, START_BROWSE function 1175
IIRR gate, PROCESS_REQUESTS function . . 1176

IIOP domain's generic gates 1176
Modules 1177
Exits 1178

Chapter 84. Inter-system (IS) domain 1179
IS domain specific gates 1179

ISCO gate, ACQUIRE_CONNECTION function 1179
ISCO gate, INITIALIZE_CONNECTION
function 1180
ISCO gate, RELEASE_CONNECTION function 1180
ISCO gate, TERMINATE_CONNECTION
function 1182
ISIC gate, ADD_IPCONN function 1182
ISIC gate, AUTOINSTALL_IPCONN function 1184
ISIC gate, DISCARD_IPCONN function . . . 1186
ISIC gate, ENDBROWSE_IPCONN function 1186
ISIC gate, GETNEXT_IPCONN function . . . 1187
ISIC gate, INQUIRE_IPCONN function . . . 1189
ISIC gate, INQUIRE_IPCONN_BY_APPLID
function 1191
ISIC gate, SET_IPCONN function 1193
ISIC gate, STARTBROWSE_IPCONN function 1195
ISIF gate, GET_IPFACILITY_LIST function 1195
ISIF gate, INQUIRE_IPFACILITY function . . 1196
ISIS gate, ALLOCATE_SEND function 1196
ISIS gate, BIND_RECEIVER function 1197
ISIS gate, CONVERSE function 1197
ISIS gate, INITIALIZE_RECEIVER function 1198
ISIS gate, INQUIRE_FACILITY function . . . 1199
ISIS gate, RECEIVE_BUFFER function 1200
ISIS gate, RECEIVE_REQUEST function . . . 1201
ISIS gate, ROUTING_CONVERSE function 1202
ISIS gate, SEND_BUFFER function 1203
ISIS gate, SEND_ERROR function 1205
ISIS gate, SEND_RESPONSE function 1205
ISIS gate, SET_PARAMETERS function . . . 1206
ISRE gate, CICS_RESYNC function 1207
ISRE gate, FORCE_LINKS function 1208
ISRE gate, KEEP_LINKS function 1208
ISRE gate, RESYNC_LINKS function 1209
ISRE gate, XA_RESYNC function 1210
ISRR gate, NOTIFY function 1210
ISRR gate, NOTIFY_SERVICE function . . . 1211
ISRR gate, PROCESS_ERROR_QUEUE function 1212
ISRR gate, PROCESS_INPUT_QUEUE function 1212
ISRR gate, TERMINATE_INPUT function . . 1212

IS domain modules 1213

Chapter 85. Kernel Domain (KE) 1215
Kernel Domain's specific gates 1215

KEAR gate, DEREGISTER function 1215
KEAR gate, READY function 1215
KEAR gate, REGISTER function 1215

xviii CICS TS for z/OS 4.1: Diagnosis Reference

|
||
||
||
||
||
||
||
||

 | |

 | |

KEAR gate, WAITPRED function 1215
KEDD gate, ADD_DOMAIN function 1216
KEDD gate, ADD_GATE function 1216
KEDD gate, DELETE_GATE function 1217
KEDD gate, INQUIRE_ANCHOR function 1217
KEDD gate, INQUIRE_DOMAIN_BY_NAME
function 1217
KEDD gate, INQUIRE_DOMAIN_BY_TOKEN
function 1218
KEDD gate, INQUIRE_DOMAIN_TRACE
function 1218
KEDD gate, INQUIRE_GLOBAL_TRACE
function 1219
KEDD gate, INQUIRE_TASK_TRACE function 1220
KEDD gate, PERFORM_SYSTEM_ACTION
function 1220
KEDD gate, SET_ANCHOR function 1221
KEDD gate, SET_DEFAULT_RECOVERY
function 1221
KEDD gate, SET_DOMAIN_TRACE function 1222
KEDD gate, SET_GLOBAL_TRACE function 1222
KEDD gate, SET_TASK_TRACE function . . . 1223
KEDD gate, SET_TRAP_OFF function 1224
KEDD gate, SET_TRAP_ON function 1224
KEDS gate,
ABNORMALLY_TERMINATE_TASK function . 1224
KEDS gate, ADD_CRITICAL_MODULE
function 1225
KEDS gate, ADD_CRITICAL_WINDOW
function 1225
KEDS gate, CREATE_TASK function 1226
KEDS gate, CREATE_TCB function 1226
KEDS gate,
DETACH_TERMINATED_OWN_TCBS
function 1228
KEDS gate, END_TASK function 1228
KEDS gate, FREE_TCBS function 1229
KEDS gate, INQUIRE_MVSTCB function . . . 1230
KEDS gate, INQUIRE_TCB function 1230
KEDS gate, POP_TASK function 1230
KEDS gate, PROCESS_KETA_ERROR function 1231
KEDS gate, PUSH_TASK function 1231
KEDS gate, READ_TIME function 1232
KEDS gate, RESET_TIME function 1233
KEDS gate, RESTORE_STIMER function . . . 1233
KEDS gate, SEND_DEFERRED_ABEND
function 1234
KEDS gate, START_FORCE_PURGE_PROTECT
function 1235
KEDS gate, START_PURGE_PROTECTION
function 1235
KEDS gate, START_RUNAWAY_TIMER
function 1235
KEDS gate, STOP_FORCE_PURGE_PROTECT
function 1236
KEDS gate, STOP_PURGE_PROTECTION
function 1236
KEDS gate, STOP_RUNAWAY_TIMER function 1236
KEGD gate, INQUIRE_KERNEL function . . . 1237
KEGD gate, SET_KERNEL function 1239

KETI gate, ADJUST_STCK_TO_LOCAL
function 1240
KETI gate, CONVERT_TO_DECIMAL_TIME
function 1241
KETI gate, CONVERT_TO_STCK_FORMAT
function 1241
KETI gate,
INQ_LOCAL_DATETIME_DECIMAL function . 1242
KETI gate, INQUIRE_DATE_FORMAT function 1242
KETI gate, REQUEST_NOTIFY_OF_A_RESET
function 1243
KETI gate, RESET_LOCAL_TIME function 1243
KETI gate, SET_DATE_FORMAT function . . 1243
KEXM gate,
TRANSACTION_INITIALISATION function . 1243

Kernel domain generic formats 1244
KEDS gate, TASK_REPLY function 1244
KEDS gate, TCB_REPLY function 1245
KETI gate, NOTIFY_RESET function 1246

Modules 1246

Chapter 86. Loader Domain (LD) 1249
Loader domain's specific gates 1249

LDLB gate, ADD_REPLACE_LIBRARY
function 1249
LDLB gate, DISCARD_LIBRARY function . . 1251
LDLB gate, END_BROWSE_LIBRARY function 1252
LDLB gate, GET_NEXT_LIBRARY function 1252
LDLB gate, INQUIRE_LIBRARY function . . . 1254
LDLB gate, LOG_LIBRARY_ORDER function 1257
LDLB gate, SET_LIBRARY function 1257
LDLB gate, START_BROWSE_LIBRARY
function 1258
LDLD gate, ACQUIRE_PROGRAM function 1258
LDLD gate, CATALOG_PROGRAMS function 1260
LDLD gate, CONVERT_NAME function . . . 1260
LDLD gate, DEFINE_PROGRAM function 1261
LDLD gate, DELETE_PROGRAM function 1263
LDLD gate, END_BROWSE function 1263
LDLD gate, GET_NEXT_INSTANCE function 1263
LDLD gate, GET_NEXT_PROGRAM function 1266
LDLD gate, IDENTIFY_PROGRAM function 1268
LDLD gate, INQUIRE_OPTIONS function . . 1270
LDLD gate, INQUIRE_PROGRAM function 1271
LDLD gate, REFRESH_PROGRAM function 1273
LDLD gate, RELEASE_PROGRAM function 1274
LDLD gate, SET_OPTIONS function 1275
LDLD gate, START_BROWSE function . . . 1276

Loader domain's generic gates 1276
Modules 1277

Chapter 87. Log manager domain
(LG) 1279
Log manager domain's specific gates 1279

LGBA gate, BROWSE_ALL_GET_NEXT
function 1279
LGBA gate, END_BROWSE_ALL function . . 1279
LGBA gate, START_BROWSE_ALL function 1280
LGCB gate, CHAIN_BROWSE_GET_NEXT
function 1280

Contents xix

LGCB gate, END_CHAIN_BROWSE function 1281
LGCB gate, START_CHAIN_BROWSE function 1281
LGCC gate, BROWSE_CHAINS_GET_NEXT
function 1282
LGCC gate, CREATE_CHAIN_TOKEN
function 1282
LGCC gate, DELETE_ALL function 1283
LGCC gate, DELETE_HISTORY function . . . 1283
LGCC gate, END_BROWSE_CHAINS function 1284
LGCC gate, INQUIRE_DEFER_INTERVAL
function 1284
LGCC gate,
INQUIRE_KEYPOINT_FREQUENCY function . 1284
LGCC gate, INQUIRE_KEYPOINT_STATS
function 1285
LGCC gate, RELEASE_CHAIN_TOKEN
function 1285
LGCC gate, RESET_KEYPOINT_STATS
function 1286
LGCC gate, RESTORE_CHAIN_TOKEN
function 1286
LGCC gate, SET_DEFER_INTERVAL function 1287
LGCC gate, SET_HISTORY function 1287
LGCC gate, SET_KEYPOINT_FREQUENCY
function 1288
LGCC gate, START_BROWSE_CHAINS
function 1288
LGCC gate, SYSINI function 1289
LGGL gate, CLOSE function 1289
LGGL gate, FORCE function 1289
LGGL gate, FORCE_JNL function 1290
LGGL gate, INITIALIZE function 1290
LGGL gate, OPEN function 1290
LGGL gate, UOW_TIME function 1291
LGGL gate, WRITE function 1292
LGGL gate, WRITE_JNL function 1292
LGJN gate, DISCARD function 1293
LGJN gate, END_BROWSE function 1294
LGJN gate, EXPLICIT_OPEN function 1294
LGJN gate, GET_NEXT function 1295
LGJN gate, IMPLICIT_OPEN function 1296
LGJN gate, INITIALIZE function 1297
LGJN gate, INQUIRE function 1298
LGJN gate, PROCESS_STATISTICS function 1299
LGJN gate, SET function 1299
LGJN gate, START_BROWSE function 1299
LGJN gate, STREAM_FAIL function 1300
LGLB gate, CONNECT function 1300
LGLB gate, DISCONNECT function 1301
LGLB gate, DISCONNECT_ALL function . . 1301
LGLB gate, GL_FORCE function 1302
LGLB gate, GL_WRITE function 1302
LGLD gate, DISCARD function 1303
LGLD gate, END_BROWSE function 1303
LGLD gate, GET_NEXT function 1304
LGLD gate, INITIALIZE function 1304
LGLD gate, INQUIRE function 1304
LGLD gate, INSTALL function 1305
LGLD gate, MATCH function 1306
LGLD gate, START_BROWSE function . . . 1306
LGMV gate, MOVE_CHAIN function 1306

LGPA gate, INQUIRE_PARAMETERS function 1307
LGPA gate, SET_PARAMETERS function . . . 1307
LGSR gate, LOGSTREAM_STATS function 1307
LGST gate, CONNECT function 1308
LGST gate, DISCONNECT function 1309
LGST gate, END_BROWSE function 1309
LGST gate, GET_NEXT function 1309
LGST gate, INITIALIZE function 1310
LGST gate, INQUIRE function 1310
LGST gate, START_BROWSE function 1311
LGWF gate, FORCE_DATA function 1311
LGWF gate, WRITE function 1312

Logger manager domain's generic gates 1313
Log manager domain's call-back gates 1314
Log manager domain's call-back formats 1314

LGGL gate, ERROR function 1314
Modules 1315
Exits 1317

Chapter 88. Lock Manager Domain
(LM) 1319
Lock Manager domain's specific gates 1319

LMLM gate, ADD_LOCK function 1319
LMLM gate, DELETE_LOCK function 1319
LMLM gate, LOCK function 1320
LMLM gate, TEST_LOCK_OWNER function 1320
LMLM gate, UNLOCK function 1321

Lock manager domain's generic gates 1321
Modules 1322

Chapter 89. Message Domain (ME) 1323
Message Domain's specific gates 1323

MEBM gate,
INQUIRE_MESSAGE_DEFINITION function . 1323
MEBM gate, INQUIRE_MESSAGE_LENGTH
function 1323
MEBM gate, RETRIEVE_MESSAGE function 1324
MEME gate, CONVERSE function 1325
MEME gate, INQUIRE_MESSAGE function 1326
MEME gate, INQUIRE_MESSAGE_LENGTH
function 1326
MEME gate, RETRIEVE_MESSAGE function 1328
MEME gate, SEND_MESSAGE function . . . 1329
MEME gate, VALIDATE_LANGUAGE_CODE
function 1331
MEME gate, VALIDATE_LANGUAGE_SUFFIX
function 1332
MESR gate, SET_MESSAGE_OPTIONS
function 1333

Message domain's generic gates 1333
Modules 1334
Exits 1335

Chapter 90. Markup language domain
(ML) 1337
Markup language domain's specific gates . . . 1337

MLPC gate, PARSE_CONTAINER function 1337
MLTF gate, PARSE_XSDBIND_FILE function 1337
MLTF gate, QUERY_XML function 1338
MLTF gate, RELEASE_XSDBIND function . . 1339

xx CICS TS for z/OS 4.1: Diagnosis Reference

 |
 | |
 | |
 | |
 | |
 | |
 | |

MLTF gate,
TRANSFORM_STRUCTURE_TO_XML function 1340
MLTF gate,
TRANSFORM_XML_TO_STRUCTURE function 1341
MLXT gate, INSTALL_XMLTRANSFORM
function 1342
MLXT gate, DISCARD_XMLTRANSFORM
function 1344
MLXT gate, INQUIRE_XMLTRANSFORM
function 1344
MLXT gate, SET_XMLTRANSFORM function 1345
MLXT gate,
START_BROWSE_XMLTRANSFORM function . 1346
MLXT gate, GET_NEXT_XMLTRANSFORM
function 1346
MLXT gate,
END_BROWSE_XMLTRANSFORM function . 1347

Modules 1348

Chapter 91. Monitoring Domain (MN) 1349
Monitoring Domain's specific gates 1349

MNMN gate, ACCUMULATE_RMI_TIME
function 1349
MNMN gate, EXCEPTION_DATA_PUT
function 1349
MNMN gate, INQUIRE_MONITORING_DATA
function 1350
MNMN gate, INQUIRE_RESOURCE_DATA
function 1350
MNMN gate, MONITOR function 1351
MNMN gate, PERFORMANCE_DATA_PUT
function 1351
MNSR gate, INQ_MONITORING function 1352
MNSR gate, SET_MCT_SUFFIX function . . . 1353
MNSR gate, SET_MONITORING function . . 1354
MNXM gate,
TRANSACTION_INITIALISATION function . 1356
MNXM gate, TRANSACTION_TERMINATION
function 1356

Monitoring domain's generic gates 1357
Modules 1358
Exits 1359

Chapter 92. Enqueue Domain (NQ) 1361
Enqueue Domain's specific gates 1361

NQED gate, DEQUEUE function 1361
NQED gate, ENQUEUE function 1362
NQIB gate, END_BROWSE_ENQUEUE
function 1364
NQIB gate, GET_NEXT_ENQUEUE function 1364
NQIB gate, INQUIRE_ENQUEUE function 1366
NQIB gate, START_BROWSE_ENQUEUE
function 1367
NQNQ gate, CREATE_ENQUEUE_POOL
function 1368
NQNQ gate, DEACTIVATE function 1370
NQNQ gate, DEQUEUE_TASK function . . . 1371
NQNQ gate, INTERPRET_ENQUEUE function 1371
NQNQ gate, REACQUIRE_ENQUEUE function 1372
NQNQ gate, SET_NQRNAME_LIST function 1373

NQRN gate, ADD_REPLACE_ENQMODEL
function 1374
NQRN gate, COMMIT_ENQMODEL function 1375
NQRN gate, DISCARD_ENQMODEL function 1376
NQRN gate, END_BROWSE_ENQMODEL
function 1376
NQRN gate, GET_NEXT_ENQMODEL
function 1376
NQRN gate, INQUIRE_ENQMODEL function 1377
NQRN gate, INQUIRE_NQRNAME function 1378
NQRN gate, REMOVE_ENQMODEL function 1379
NQRN gate, RESTORE_DIRECTORY function 1379
NQRN gate, SET_ENQMODEL function . . . 1379
NQRN gate, START_BROWSE_ENQMODEL
function 1380

Enqueue Domain's generic gates 1380
Enqueue domain's call-back gates 1381
Modules 1381
Exits 1382

Chapter 93. Object transaction
service domain (OT) 1383
Object transaction service domain's specific gates 1383

OTCO gate, FORGET function 1383
OTCO gate, RESYNC function 1383
OTCO gate, SET_COORDINATOR function 1384
OTCO gate, SET_LAST_AGENT function . . . 1384
OTCP gate, RESYNC_COORDINATOR
function 1384
OTCP gate, RESYNC_SUBORDINATE function 1385
OTRS gate, FORGET_TRANSACTION function 1385
OTRS gate, PERFORM_RESYNC function . . 1385
OTRS gate, SET_REMOTE_STATUS function 1386
OTSU gate, ADD_SUBORDINATE function 1386
OTSU gate, FORGET function 1387
OTSU gate, RESYNC function 1387
OTSU gate, SET_VOTE function 1387
OTTR gate, BEGIN_TRAN function 1388
OTTR gate, COMMIT function 1389
OTTR gate, COMMIT_ONE_PHASE function 1389
OTTR gate, IMPORT_TRAN function 1389
OTTR gate, PREPARE function 1390
OTTR gate, ROLLBACK function 1390
OTTR gate, SET_ROLLBACK_ONLY function 1390

Modules 1390

Chapter 94. Parameter Manager
Domain (PA) 1393
Parameter Manager Domain's specific gates . . . 1393

PAGP gate, FORCE_START function 1393
PAGP gate, GET_PARAMETERS function . . 1393
PAGP gate, INQUIRE_PARM function 1394
PAGP gate, INQUIRE_START function . . . 1395

Parameter manager domain's generic gates . . . 1395
Modules 1396

Chapter 95. Program Manager
Domain (PG) 1397
Program Manager domain's specific gates . . . 1397

Contents xxi

|
||
|
||
|
||
|
||
|
||
||
|
||
|
||
|
||
||

 | |

PGAQ gate, INQUIRE_AUTOINSTALL
function 1397
PGAQ gate, SET_AUTOINSTALL function 1398
PGAQ gate, SET_SYSTEM function 1398
PGCH gate, BIND_CHANNEL function . . . 1399
PGCH gate, COPY_CHANNEL function . . . 1399
PGCH gate, CREATE_CHANNEL function 1399
PGCH gate, DELETE_CHANNEL function 1400
PGCH gate, DELETE_OWNED_CHANNELS
function 1401
PGCH gate, DETACH_CHANNEL function 1401
PGCH gate, INQUIRE_BOUND_CHANNEL
function 1402
PGCH gate, INQUIRE_CHANNEL function 1402
PGCH gate,
INQUIRE_CHANNEL_BY_TOKEN function . . 1403
PGCH gate, INQUIRE_CURRENT_CHANNEL
function 1404
PGCH gate, RENAME_CHANNEL function 1405
PGCH gate, SET_CURRENT_CHANNEL
function 1405
PGCP gate, COPY_CONTAINER_POOL
function 1405
PGCP gate, CREATE_CONTAINER_POOL
function 1406
PGCP gate, DELETE_CONTAINER_POOL
function 1406
PGCP gate, INQUIRE_CONTAINER_POOL
function 1406
PGCR gate, COPY_CONTAINER function . . 1407
PGCR gate, DELETE_CONTAINER function 1408
PGCR gate, ENDBR_CONTAINER function 1409
PGCR gate, GET_CONTAINER_INTO function 1409
PGCR gate, GET_CONTAINER_LENGTH
function 1411
PGCR gate, GET_CONTAINER_SET function 1413
PGCR gate, GETNEXT_CONTAINER function 1415
PGCR gate, INQUIRE_BROWSE_CONTEXT
function 1416
PGCR gate, INQUIRE_CONTAINER function 1416
PGCR gate,
INQUIRE_CONTAINER_BY_TOKEN function . 1417
PGCR gate, MOVE_CONTAINER function 1419
PGCR gate, PUT_CONTAINER function . . . 1420
PGCR gate, SET_CONTAINER function . . . 1422
PGCR gate, STARTBR_CONTAINER function 1422
PGCR gate, TRACE_CONTAINERS function 1423
PGDD gate, DEFINE_PROGRAM function 1423
PGDD gate, DELETE_PROGRAM function 1427
PGEX gate, INITIALIZE_EXIT function . . . 1428
PGEX gate, TERMINATE_EXIT function . . . 1429
PGHM gate, CLEAR_LABELS function . . . 1429
PGHM gate, FREE_HANDLE_TABLES
function 1430
PGHM gate, IGNORE_CONDITIONS function 1430
PGHM gate, INQ_ABEND function 1431
PGHM gate, INQ_AID function 1432
PGHM gate, INQ_CONDITION function . . . 1433
PGHM gate, POP_HANDLE function 1434
PGHM gate, PUSH_HANDLE function . . . 1435
PGHM gate, SET_ABEND function 1435

PGHM gate, SET_AIDS function 1436
PGHM gate, SET_CONDITIONS function . . 1437
PGIS gate, END_BROWSE_PROGRAM
function 1438
PGIS gate, GET_NEXT_PROGRAM function 1439
PGIS gate, INQUIRE_CURRENT_PROGRAM
function 1444
PGIS gate, INQUIRE_PROGRAM function 1449
PGIS gate, REFRESH_PROGRAM function 1455
PGIS gate, SET_PROGRAM function 1456
PGIS gate, START_BROWSE_PROGRAM
function 1458
PGLD gate, LOAD function 1459
PGLD gate, LOAD_EXEC function 1460
PGLD gate, RELEASE function 1461
PGLD gate, RELEASE_EXEC function 1462
PGLE gate, LINK_EXEC function 1462
PGLK gate, LINK function 1464
PGLK gate, LINK_PLT function 1465
PGLU gate, LINK_URM function 1466
PGPG gate, INITIAL_LINK function 1467
PGRE gate, PREPARE_RETURN_EXEC
function 1468
PGXE gate, PREPARE_XCTL_EXEC function 1469
PGXM gate, INITIALIZE_TRANSACTION
function 1470
PGXM gate, TERMINATE_TRANSACTION
function 1470

Program manager domain's generic gates . . . 1471
INITIALISE_DOMAIN 1471
QUIESCE_DOMAIN 1471
TERMINATE_DOMAIN 1472

Modules 1472

Chapter 96. Pipeline Manager
Domain (PI) 1475
Pipeline Manager Domain's specific gates . . . 1475

PIAT gate, CREATE_CONTEXT function . . . 1475
PIAT gate, CREATE_CONTEXT_RESP function 1475
PIAT gate, CREATE_NON_TERMINAL_MSG
function 1476
PIAT gate, CREATE_REGISTER_REQUEST
function 1476
PIAT gate, CREATE_REGISTER_RESP function 1477
PIAT gate, CREATE_TERMINAL_MSG
function 1477
PIAT gate, PROCESS_CONTEXT function . . 1478
PIAT gate, PROCESS_CONTEXT_RESP
function 1478
PIAT gate, PROCESS_MSG function 1479
PICC gate, FIND_SIGNATURE function . . . 1479
PICC gate, HANDLE_PARSE_EVENT function 1480
PICC gate, PERFORM_XML_PARSE function 1481
PIII gate, PARSE_ICM function 1481
PIIW gate, INVOKE_WEBSERVICE function 1482
PIMM gate, BUILD_CONTENT_TYPE function 1483
PIMM gate, BUILD_MIME_HEADERS function 1484
PIMM gate, BUILD_MIME_MESSAGE function 1485
PIMM gate, BUILD_MULTIPART_RELATED
function 1486

xxii CICS TS for z/OS 4.1: Diagnosis Reference

PIMM gate,
CONVERT_CID_TO_CONTENT_ID function . 1487
PIMM gate,
CONVERT_CONTENT_ID_TO_CID function . 1487
PIMM gate, DELETE_ATTACHMENTS
function 1487
PIMM gate, GENERATE_CONTENT_ID
function 1488
PIMM gate, GET_ATTACHMENT function 1489
PIMM gate, PARSE_CONTENT_TYPE function 1489
PIMM gate, PARSE_MIME_HEADERS function 1490
PIMM gate, PARSE_MIME_MESSAGE function 1491
PIMM gate, PARSE_MULTIPART_RELATED
function 1492
PIMM gate, PUT_ATTACHMENT function 1493
PIPL gate, ADD_PIPELINE function 1494
PIPL gate, COMPLETE_PIPELINE function 1494
PIPL gate, DISCARD_PIPELINE function . . . 1495
PIPL gate, END_BROWSE_PIPELINE function 1495
PIPL gate, ESTABLISH_PIPELINE function 1496
PIPL gate, GET_NEXT_PIPELINE function 1496
PIPL gate, INQUIRE_PIPELINE function . . . 1497
PIPL gate, PERFORM_PIPELINE function . . 1498
PIPL gate, RELINQUISH_PIPELINE function 1499
PIPL gate, RESOLVE_PIPELINE function . . . 1499
PIPL gate, SET_PIPELINE function 1499
PIPL gate, START_BROWSE_PIPELINE
function 1500
PIPM gate, INVOKE_PROGRAM function 1500
PIPM gate, INVOKE_STUB function 1501
PIPM gate, START_PIPELINE function . . . 1502
PIRE gate, PERFORM_RESYNC function . . . 1503
PISC gate, DYN_CREATE_WEBSERVICE
function 1503
PISC gate, UPDATE_WEBSERVICE function 1503
PISF gate, SOAPFAULT_ADD function . . . 1504
PISF gate, SOAPFAULT_CREATE function 1504
PISF gate, SOAPFAULT_DELETE function 1505
PISN gate, SOAP_11 function 1505
PISN gate, SOAP_12 function 1506
PITC gate, ISSUE function 1506
PITC gate, VALIDATE function 1507
PITC gate, GET_RESPONSE function 1508
PITC gate, TRUST_CLIENT function 1508
PITG gate, SEND_REQUEST function 1509
PITG gate, SEND_RESPONSE function . . . 1509
PITG gate, CONVERSE function 1510
PITG gate, RECEIVE_REQUEST function . . . 1511
PITG gate, SEND_ERROR_RESPONSE function 1511
PITL gate, PROCESS_SOAP_REQUEST
function 1512
PIWR gate, CREATE_WEBSERVICE function 1512
PIWR gate, DECREMENT_USE_COUNT
function 1513
PIWR gate, DISCARD_WEBSERVICE function 1513
PIWR gate, END_BROWSE_WEBSERVICE
function 1514
PIWR gate, GET_NEXT_WEBSERVICE function 1514
PIWR gate, INCREMENT_USE_COUNT
function 1515

PIWR gate, INITIALISE_WEBSERVICE
function 1516
PIWR gate, INQUIRE_WEBSERVICE function 1516
PIWR gate, RESOLVE_ALL_WEBSERVICES
function 1518
PIWR gate, SET_WEBSERVICE function . . . 1518
PIWR gate, START_BROWSE_WEBSERVICE
function 1519
PIXI gate, PARSE_XOP function 1519
PIXO gate, BUILD_XOP function 1520

Pipeline Manager domain's generic gates 1521
Modules 1521

Chapter 97. Partner Management
Domain (PT) 1523
Partner Management Domain's specific gates . . 1523

PTTW gate, BREAK_PARTNERSHIP function 1523
PTTW gate, CREATE_PARTNERSHIP function 1524
PTTW gate, CREATE_POOL function 1524
PTTW gate, DESTROY_PARTNERSHIP
function 1525
PTTW gate, DESTROY_POOL function . . . 1526
PTTW gate, END_POOL_BROWSE function 1527
PTTW gate, GET_NEXT_POOL function . . . 1527
PTTW gate, INQUIRE_GARBAGE_INTERVAL
function 1527
PTTW gate, INQUIRE_USER_TOKEN function 1528
PTTW gate, MAKE_PARTNERSHIP function 1528
PTTW gate, QUERY_PARTNERSHIP function 1529
PTTW gate, QUERY_POOL function 1530
PTTW gate, SET_GARBAGE_INTERVAL
function 1531
PTTW gate, SET_USER_TOKEN function . . . 1532
PTTW gate, START_POOL_BROWSE function 1532
PTTW gate, TRIGGER_PARTNER function 1532
PTTW gate, WAIT_FOR_PARTNER function 1534

Modules 1535

Chapter 98. Resource life-cycle
domain (RL) 1537
Resource life-cycle domain's specific gates . . . 1537

RLPM gate, DISCARD_BUNDLE function . . 1537
RLPM gate, END_BROWSE_BUNDLE function 1537
RLPM gate, GET_NEXT_BUNDLE function 1538
RLPM gate, INQUIRE_BUNDLE function . . 1539
RLPM gate, INSTALL_BUNDLE function . . 1540
RLPM gate, SET_BUNDLE function 1540
RLPM gate, START_BROWSE_BUNDLE
function 1541
RLRO gate, CREATED function 1541
RLRO gate, DEREGISTER function 1542
RLRO gate, DISCARDED function 1542
RLRO gate, DRIVE_PENDING function . . . 1542
RLRO gate, END_BROWSE_BUNDLERES
function 1543
RLRO gate, GET_NEXT_BUNDLERES function 1543
RLRO gate, NOTIFY function 1544
RLRO gate, REGISTER function 1544
RLRO gate, START_BROWSE_BUNDLERES
function 1544

Contents xxiii

 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 |
 | |

RLXM gate, INQUIRE_SCOPE function . . . 1545
RLXM gate, POP_SCOPE function 1545
RLXM gate, PUSH_SCOPE function 1546
RLXM gate, RELEASE_XM_CLIENT function 1546

Resource life-cycle domain's generic gates . . . 1546
Resource life-cycle domain's call-back formats 1547

RLCB gate, CREATE function 1547
RLCB gate, DISCARD function 1548
RLCB gate, INQUIRE function 1548
RLCB gate, INQUIRE_BY_NAME function 1549
RLCB gate, SET function 1549

Modules 1549

Chapter 99. Recovery Manager
Domain (RM) 1551
Recovery Manager Domain's specific gates . . . 1551

RMCD gate, INQUIRE_CLIENT_DATA
function 1551
RMCD gate, REGISTER function 1551
RMCD gate, SET_CLIENT_DATA function 1552
RMCD gate, SET_GATE function 1552
RMDM gate, INQUIRE_LOCAL_LU_NAME
function 1552
RMDM gate, INQUIRE_STARTUP function 1553
RMDM gate, SET_LOCAL_LU_NAME function 1553
RMDM gate, SET_PARAMETERS function 1554
RMDM gate, SET_STARTUP function 1554
RMLN gate, ADD_LINK function 1554
RMLN gate, DELETE_LINK function 1557
RMLN gate, END_LINK_BROWSE function 1557
RMLN gate, GET_NEXT_LINK function . . . 1557
RMLN gate, INBOUND_FLOW function . . . 1561
RMLN gate, INITIATE_RECOVERY function 1561
RMLN gate, INQUIRE_LINK function 1563
RMLN gate, INSERT_LINK function 1566
RMLN gate, ISSUE_PREPARE function . . . 1566
RMLN gate, RECORD_VOTE function . . . 1567
RMLN gate, REMOVE_LINK function 1567
RMLN gate, REPORT_RECOVERY_STATUS
function 1568
RMLN gate, SET_LINK function 1569
RMLN gate, SET_MARK function 1571
RMLN gate, SET_RECOVERY_STATUS
function 1571
RMLN gate, START_LINK_BROWSE function 1572
RMLN gate, TERMINATE_RECOVERY
function 1573
RMNM gate, CLEAR_PENDING function . . 1573
RMNM gate, INQUIRE_LOGNAME function 1574
RMNM gate, SET_LOGNAME function . . . 1575
RMOT gate, COMMIT function 1575
RMOT gate, PREPARE function 1576
RMOT gate, ROLLBACK function 1576
RMOT gate, SET_OTS_UOW function 1576
RMRE gate, APPEND function 1576
RMRE gate, AVAIL function 1578
RMRE gate, FORCE function 1579
RMRE gate, KEYPOINT_DATA function . . . 1580
RMRE gate, REMOVE function 1581
RMRE gate, REQUEST_FORGET function . . 1582

RMSL gate, TAKE_ACTIVITY_KEYPOINT
function 1583
RMUW gate, BACKOUT_UOW function . . . 1583
RMUW gate, BIND_UOW_TO_TXN function 1583
RMUW gate, COMMIT_UOW function . . . 1584
RMUW gate, CREATE_NETWORK_UOWID
function 1585
RMUW gate, CREATE_UOW function 1585
RMUW gate, END_UOW_BROWSE function 1586
RMUW gate, END_WORK_TOKEN_BROWSE
function 1587
RMUW gate, FORCE_UOW function 1587
RMUW gate, GET_NEXT_UOW function . . . 1588
RMUW gate, GET_NEXT_WORK_TOKEN
function 1590
RMUW gate, INQUIRE_UOW function . . . 1591
RMUW gate, INQUIRE_UOW_ID function 1594
RMUW gate, INQUIRE_UOW_TOKEN
function 1594
RMUW gate, INQUIRE_WORK_TOKEN
function 1595
RMUW gate, REATTACH_REPLY function 1595
RMUW gate, SET_UOW function 1596
RMUW gate, SET_WORK_TOKEN function 1597
RMUW gate, START_UOW_BROWSE function 1597
RMUW gate,
START_WORK_TOKEN_BROWSE function . . 1598

Recovery manager domain call-back formats . . 1599
RMRO gate, DELIVER_BACKOUT_DATA
function 1599
RMRO gate, END_BACKOUT function . . . 1600
RMRO gate, PERFORM_COMMIT function 1601
RMRO gate, PERFORM_PREPARE function 1601
RMRO gate, PERFORM_SHUNT function . . 1602
RMRO gate, PERFORM_UNSHUNT function 1602
RMRO gate, START_BACKOUT function . . . 1602
RMDE gate, DELIVER_FORGET function . . 1603
RMDE gate, DELIVER_RECOVERY function 1603
RMDE gate, END_DELIVERY function . . . 1604
RMDE gate, START_DELIVERY function . . . 1605
RMKP gate, TAKE_KEYPOINT function . . . 1605
RMLK gate, PERFORM_COMMIT function 1605
RMLK gate, PERFORM_PRELOGGING
function 1607
RMLK gate, PERFORM_PREPARE function 1608
RMLK gate, PERFORM_SHUNT function . . 1609
RMLK gate, PERFORM_UNSHUNT function 1610
RMLK gate, REPLY_DO_COMMIT function 1610
RMLK gate, SEND_DO_COMMIT function 1611

Modules 1612

Chapter 100. Region status domain
(RS) 1617
Region status domains specific gates 1617

RSDU gate, END_SYSTEM_DUMP function 1617
RSDU gate, END_TRANSACTION_DUMP
function 1617
RSDU gate, START_SYSTEM_DUMP function 1618
RSDU gate, START_TRANSACTION_DUMP
function 1618
RSSR gate, DEREGISTER_INTEREST function 1618

xxiv CICS TS for z/OS 4.1: Diagnosis Reference

||
||
||
||
||
||
||
||
||
||
||
||

 |
 | |
 | |
 | |
 |
 | |
 | |
 |
 | |
 | |

RSSR gate, INQUIRE_TARGET_STATUS
function 1619
RSSR gate, SET_THRESHOLD_PERCENTAGE
function 1620
RSSR gate, START_RECORDING function . . 1621
RSSR gate, STOP_RECORDING function . . . 1622
RSSR gate, TEST_CONNECTION function 1623
RSXM gate, END_TRANSACTION function 1623
RSXM gate, START_TRANSACTION function 1624

Region status domains generic gates 1624
Modules 1625

Chapter 101. RRMS domain (RX) 1627
RRMS domain's specific gates 1627

RXDM gate, INQUIRE_RRS function 1627
RXDM gate, SET_PARAMETERS function . . 1627
RXUW gate, GET_CLIENT_REQUEST function 1628
RXUW gate, INQUIRE function 1628
RXUW gate, PUT_CLIENT_REQUEST function 1629

RRMS domain's call-back gates 1630
Modules 1630

Chapter 102. Request Streams
Domain (RZ) 1633
Request Streams Domain's specific gates 1633

RZRJ gate, PERFORM_JOIN function 1633
RZRT gate, SET_EXIT_PROGRAM function 1633
RZSO gate, CREATE function 1633
RZSO gate, JOIN function 1635
RZSO gate, LEAVE function 1636
RZSO gate, RECEIVE_REPLY function . . . 1636
RZSO gate, SEND_REQUEST function . . . 1637
RZSO gate, WEAK_JOIN function 1638
RZTA gate, GET_CURRENT function 1638
RZTA gate, GET_DEBUG_DATA function . . 1639
RZTA gate, GET_JOIN_DATA function . . . 1639
RZTA gate, GET_PUBLIC_ID function 1639
RZTA gate, GET_SERVER_DATA function . . 1640
RZTA gate, RECEIVE_REQUEST function . . 1640
RZTA gate, SEND_REPLY function 1641
RZTA gate, TERMINATE function 1641

Modules 1642

Chapter 103. Scheduler Services
Domain (SH) 1643
Scheduler Services Domain's specific gates . . . 1643

SHPR gate, ADD_PENDING_REQUEST
function 1643
SHPR gate, DELETE_PENDING_REQUEST
function 1644
SHPR gate, SET_BOUND_REQUEST function 1644
SHRQ gate, PERFORM_REGULAR_DREDGE
function 1644
SHRQ gate, PERFORM_RESTART_DREDGE
function 1645
SHRQ gate, PERFORM_SHUTDOWN function 1645
SHRR gate, RECEIVE_REQUEST function . . 1645
SHRR gate, RETRY_REQUEST function . . . 1646
SHRR gate, ROUTE_REQUEST function . . . 1646

SHRT gate, INQUIRE_EXIT_PROGRAM
function 1647
SHRT gate, SET_EXIT_PROGRAM function 1647

Scheduler Services Domain's generic gates . . . 1648
Scheduler domain's call-back gates 1649
Modules 1649

Chapter 104. Java Virtual Machine
Domain (SJ) 1651
Java Virtual Machine Domain's specific gates . . 1651

SJCC gate, ADD_TO_ACTIVE_JVMSET
function 1651
SJCC gate, REGISTER_JAVA_VERSION
function 1651
SJCC gate, RELOAD_CLASSCACHE function 1651
SJCC gate, START_CLASSCACHE function 1652
SJCC gate, STOP_CLASSCACHE function . . 1652
SJDS gate, DELETE_THREADED_TCB function 1653
SJJS gate, CREATE_JVMSERVER function . . 1653
SJJS gate, COMPLETE_JVMSERVER function 1654
SJJS gate, DISCARD_JVMSERVER function 1655
SJJS gate, END_BROWSE_JVMSERVER
function 1656
SJJS gate, GET_NEXT_JVMSERVER function 1656
SJJS gate, INQUIRE_JVMSERVER function 1657
SJJS gate, MARK_THREAD_DELETED
function 1658
SJJS gate, RESOLVE_ALL_JVMSERVERS
function 1658
SJJS gate, SET_JVMSERVER function 1658
SJJS gate, START_BROWSE_JVMSERVER
function 1659
SJIN gate, DESTROY_SHAREDCC function 1659
SJIN gate, INITIALIZE_JVM function 1660
SJIN gate, INITIALIZE_SHAREDCC function 1660
SJIN gate, INVOKE_GC function 1660
SJIN gate, INVOKE_JAVA_PROGRAM function 1661
SJIN gate, UPDATE_JVMSERVER_PROFILE
function 1661
SJIS gate, DELETE_INACTIVE_JVMS function 1662
SJIS gate, END_BROWSE_JVM function . . . 1662
SJIS gate, END_BROWSE_JVMPROFILE
function 1663
SJIS gate, GET_NEXT_JVM function 1663
SJIS gate, GET_NEXT_JVMPROFILE function 1664
SJIS gate, INQUIRE_CLASSCACHE function 1665
SJIS gate, INQUIRE_JVM function 1667
SJIS gate, INQUIRE_JVMPOOL function . . . 1668
SJIS gate, INQUIRE_JVMPROFILE function 1669
SJIN gate, PERFORM_JVMPOOL function . . 1669
SJIS gate, SET_CLASSCACHE function . . . 1670
SJIS gate, SET_JVMPOOL function 1671
SJIS gate, SET_JVMPROFILEDIR function . . 1672
SJIS gate, START_BROWSE_JVM function . . 1673
SJIS gate, START_BROWSE_JVMPROFILE
function 1673
SJTH gate, INVOKE_JAVA_PROGRAM
function 1673

JVM domain's generic gates 1674
Modules 1675
Exits 1675

Contents xxv

|
||
|
||
||
||
||
||
||
||
||

 | |
 | |
 | |
 | |
 |
 | |
 | |
 | |
 |
 | |
 |
 | |
 | |
 |
 | |

 |
 | |

 |
 | |

Chapter 105. Storage Manager
Domain (SM) 1677
Storage Manager Domain's specific gates 1677

SMAD gate, ADD_SUBPOOL function . . . 1677
SMAD gate, DELETE_SUBPOOL function . . 1678
SMAD gate, END_SUBPOOL_BROWSE
function 1679
SMAD gate, GET_NEXT_SUBPOOL function 1679
SMAD gate, INQUIRE_SUBPOOL function 1680
SMAD gate, START_SUBPOOL_BROWSE
function 1680
SMAR gate, ALLOCATE_TRANSACTION_STG
function 1680
SMAR gate, RELEASE_TRANSACTION_STG
function 1681
SMCK gate, CHECK_STORAGE function . . . 1682
SMCK gate, RECOVER_STORAGE function 1682
SMGF gate, FREEMAIN function 1683
SMGF gate, GETMAIN function 1684
SMGF gate, INQUIRE_ELEMENT_LENGTH
function 1685
SMMC gate, FREEMAIN function 1686
SMMC gate, FREEMAIN_ALL_TERMINAL
function 1688
SMMC gate, GETMAIN function 1688
SMMC gate, INITIALISE function 1690
SMMC gate, INQUIRE_ELEMENT_LENGTH
function 1690
SMMC gate, INQUIRE_TASK_STORAGE
function 1691
SMSR gate, INQ_TRANSACTION_ISOLATION
function 1691
SMSR gate, INQUIRE_ACCESS function . . . 1692
SMSR gate, INQUIRE_ACCESS_TOKEN
function 1693
SMSR gate, INQUIRE_DSA_LIMIT function 1693
SMSR gate, INQUIRE_DSA_SIZE function 1694
SMSR gate, INQUIRE_ISOLATION_TOKEN
function 1694
SMSR gate,
INQUIRE_REENTRANT_PROGRAM function . 1695
SMSR gate, INQUIRE_SHORT_ON_STORAGE
function 1695
SMSR gate, INQUIRE_STORAGE_PROTECT
function 1696
SMSR gate, SET_DSA_LIMIT function 1696
SMSR gate, SET_DSA_SIZE function 1697
SMSR gate, SET_REENTRANT_PROGRAM
function 1697
SMSR gate, SET_STORAGE_PROTECT
function 1698
SMSR gate, SET_STORAGE_RECOVERY
function 1698
SMSR gate, SET_TRANSACTION_ISOLATION
function 1699
SMSR gate, SWITCH_SUBSPACE function 1699
SMSR gate, UPDATE_SUBSPACE_TCB_INFO
function 1700
S2AD gate, ADD_SUBPOOL function 1701
S2AD gate, DELETE_SUBPOOL function . . . 1702

S2AD gate, END_SUBPOOL_BROWSE
function 1703
S2AD gate, GET_NEXT_SUBPOOL function 1703
S2AD gate, INQUIRE_SUBPOOL function . . 1703
S2AD gate, START_SUBPOOL_BROWSE
function 1704
S2GF gate, FREEMAIN function 1704
S2GF gate, GETMAIN function 1705
S2GF gate, INQUIRE_ELEMENT_LENGTH
function 1706
S2SR gate, COPY_ABOVE_BAR_TO_BELOW
function 1707
S2SR gate, COPY_BELOW_BAR_TO_ABOVE
function 1707

Storage manager domain generic gates 1708
Storage manager domain generic formats . . . 1709

SMNT gate, MVS_STORAGE_NOTIFY function 1709
SMNT gate, STORAGE_NOTIFY function . . 1710

Modules 1712

Chapter 106. Sockets Domain (SO) 1715
Sockets Domain's specific gates 1715

SOAD gate, ADD_REPLACE_TCPIPSERVICE
function 1715
SOAD gate, DELETE_TCPIPSERVICE function 1717
SOCK gate, ACCEPT function 1717
SOCK gate, BIND function 1719
SOCK gate, CANCEL function 1720
SOCK gate, CLOSE function 1721
SOCK gate, CONNECT function 1722
SOCK gate, CREATE function 1723
SOCK gate, ESTABLISH function 1725
SOCK gate, GET_DATA_LENGTH function 1726
SOCK gate, GET_SOCKET_OPTS function 1727
SOCK gate, LISTEN function 1728
SOCK gate, RECEIVE function 1730
SOCK gate, RECEIVE_SSL_DATA function 1732
SOCK gate, RELINQUISH function 1733
SOCK gate, RESERVE function 1734
SOCK gate, SCHEDULE_RECEIVER_TASK
function 1735
SOCK gate, SEND function 1735
SOCK gate, SEND_SSL_DATA function . . . 1737
SOCK gate, SET_SOCKET_OPTS function . . 1738
SOCK gate, SURRENDER function 1739
SOIS gate, DELETE_CERTIFICATE_DATA
function 1740
SOIS gate, EXPORT_CERTIFICATE_DATA
function 1741
SOIS gate, IMPORT_CERTIFICATE_DATA
function 1742
SOIS gate, INITIALIZE_ENVIRONMENT
function 1742
SOIS gate, INQUIRE function 1743
SOIS gate, INQUIRE_CONNECTION function 1748
SOIS gate, INQUIRE_PARAMETERS function 1749
SOIS gate, INQUIRE_SOCKET_TOKEN
function 1751
SOIS gate, INQUIRE_STATISTICS function 1751
SOIS gate, SET function 1753
SOIS gate, SET_PARAMETERS function . . . 1754

xxvi CICS TS for z/OS 4.1: Diagnosis Reference

SOIS gate, VALIDATE_CIPHERS function . . 1755
SOIS gate, VERIFY_IP_ADDRESS function 1755
SOLS gate, LISTEN function 1756
SORD gate, DEREGISTER function 1757
SORD gate, IMMCLOSE function 1757
SORD gate, REGISTER function 1758
SORD gate, REGISTER_NOTIFICATION
function 1760
SORL gate, UPDATE_REVOCATION_LIST
function 1761
SOTB gate, END_BROWSE function 1762
SOTB gate, GET_NEXT function 1762
SOTB gate, INQUIRE_TCPIPSERVICE function 1764
SOTB gate, SET_TCPIPSERVICE function . . 1767
SOTB gate, START_BROWSE function 1768

Socket domain's generic gates 1768
Modules 1769

Chapter 107. Statistics Domain (ST) 1771
Statistics domain's specific gates 1771

STST gate, COLLECT_RESOURCE_STATS
function 1771
STST gate, COLLECT_STATISTICS function 1772
STST gate, DISABLE_STATISTICS function 1772
STST gate, INQ_STATISTICS_OPTIONS
function 1773
STST gate, RECORD_STATISTICS function 1773
STST gate, REQUEST_STATISTICS function 1774
STST gate, SET_STATISTICS_OPTIONS
function 1774
STST gate, STATISTICS_COLLECTION
function 1775

Statistics domain's generic gates 1776
Statistics domain's generic gates 1777
Statistics domain's generic formats 1777

STST gate, COLLECT_RESOURCE_STATS
function 1778
STST gate, COLLECT_STATISTICS function 1778

Modules 1779

Chapter 108. Timer Domain (TI) . . . 1781
Timer Domain's specific gates 1781

TIMF gate, CONVERT_TIME function 1781
TIMF gate, FORMAT_TIME function 1782
TIMF gate, INQUIRE_TIME function 1784
TISR gate, CANCEL function 1786
TISR gate, INQUIRE_EXPIRATION_TOKEN
function 1787
TISR gate, REQUEST_NOTIFY_INTERVAL
function 1787
TISR gate, REQUEST_NOTIFY_TIME_OF_DAY
function 1788

Timer domain's generic gates 1789
Timer domain's generic formats 1790

TISR gate, NOTIFY function 1790
Modules 1790

Chapter 109. Trace Domain (TR) 1791
Trace Domain's specific gates 1791

TRFT gate, TRACE_PUT function 1791

TRPT gate, TRACE_PUT function 1792
TRSR gate, ACTIVATE_TRAP function . . . 1793
TRSR gate, DEACTIVATE_TRAP function . . 1793
TRSR gate, INQUIRE_AUXILIARY_TRACE
function 1793
TRSR gate, INQUIRE_GTF_TRACE function 1794
TRSR gate, INQUIRE_INTERNAL_TRACE
function 1795
TRSR gate, PAUSE_AUXILIARY_TRACE
function 1795
TRSR gate, SET_AUX_TRACE_AUTOSWITCH
function 1795
TRSR gate, SET_INTERNAL_TABLE_SIZE
function 1796
TRSR gate, START_AUXILIARY_TRACE
function 1796
TRSR gate, START_GTF_TRACE function . . 1796
TRSR gate, START_INTERNAL_TRACE
function 1797
TRSR gate, STOP_AUXILIARY_TRACE
function 1797
TRSR gate, STOP_GTF_TRACE function . . . 1798
TRSR gate, STOP_INTERNAL_TRACE function 1798
TRSR gate, SWITCH_AUXILIARY_EXTENTS
function 1798

Trace domain's generic gates 1799
Modules 1799

Chapter 110. Temporary Storage
Domain (TS) 1801
Temporary Storage Domain's specific gates . . . 1801

TSAD gate, ADD_REPLACE_TSMODEL
function 1801
TSAD gate, DELETE_TSMODEL function . . 1802
TSAD gate, INITIALISE function 1802
TSBR gate, CHECK_PREFIX function 1802
TSBR gate, END_BROWSE function 1803
TSBR gate, GET_NEXT function 1803
TSBR gate, INQUIRE_QUEUE function . . . 1804
TSBR gate, START_BROWSE function 1805
TSMB gate, END_BROWSE function 1805
TSMB gate, GET_NEXT function 1806
TSMB gate, INQUIRE_TSMODEL function 1807
TSMB gate, MATCH function 1808
TSMB gate, START_BROWSE function . . . 1809
TSPT gate, GET function 1809
TSPT gate, GET_RELEASE function 1810
TSPT gate, GET_RELEASE_SET function . . . 1811
TSPT gate, GET_SET function 1811
TSPT gate, PUT function 1812
TSPT gate, PUT_REPLACE function 1813
TSPT gate, RELEASE function 1813
TSQR gate, ALLOCATE_SET_STORAGE
function 1814
TSQR gate, DELETE function 1814
TSQR gate, READ_INTO function 1815
TSQR gate, READ_NEXT_INTO function . . . 1816
TSQR gate, READ_NEXT_SET function . . . 1817
TSQR gate, READ_SET function 1818
TSQR gate, REWRITE function 1819
TSQR gate, WRITE function 1820

Contents xxvii

TSRM gate, INQUIRE_QUEUE function . . . 1821
TSSH gate, ADD_POOL function 1821
TSSH gate, DELETE function 1822
TSSH gate, END_BROWSE function 1822
TSSH gate, END_TSPOOL_BROWSE function 1822
TSSH gate, GET_NEXT function 1823
TSSH gate, GET_NEXT_TSPOOL function . . 1824
TSSH gate, INITIALISE function 1824
TSSH gate, INQUIRE_POOL_TOKEN function 1824
TSSH gate, INQUIRE_QUEUE function . . . 1825
TSSH gate, INQUIRE_SYSID_TABLE_TOKEN
function 1826
TSSH gate, INQUIRE_TSPOOL function . . . 1826
TSSH gate, READ_INTO function 1827
TSSH gate, READ_NEXT_INTO function . . . 1828
TSSH gate, READ_NEXT_SET function . . . 1828
TSSH gate, READ_SET function 1829
TSSH gate, REWRITE function 1830
TSSH gate, START_BROWSE function 1831
TSSH gate, START_TSPOOL_BROWSE
function 1831
TSSH gate, WRITE function 1831
TSSR gate, SET_BUFFERS function 1832
TSSR gate, SET_START_TYPE function . . . 1833
TSSR gate, SET_STRINGS function 1833

Temporary Storage domain generic gates 1833
Temporary Storage domain call-back formats . . 1834

TSIC format, DELIVER_IC_RECOVERY_DATA
function 1834
TSIC format, SOLICIT_INQUIRES function 1835

Modules 1835
Exits 1836

Chapter 111. User Domain (US) . . . 1837
User Domain's specific gates 1837

USAD gate, ADD_USER_WITH_PASSWORD
function 1837
USAD gate,
ADD_USER_WITHOUT_PASSWORD function . 1839
USAD gate, DELETE_USER function 1841
USAD gate, INQUIRE_DEFAULT_USER
function 1842
USAD gate, INQUIRE_USER function 1844
USAD gate, VALIDATE_USERID function . . 1846
USAD gate, NOTIFY_USERID function . . . 1846
USAD gate, ADD_USER_VIA_ICRX function 1846
USAD gate, INQUIRE_ICRX function 1848
USAD gate, RELEASE_ICRX function 1849
USAD gate, ICRX_TO_USERID function . . . 1849
USAD gate, GET_ASSOCIATED_DATA_LIST
function 1850
USFL gate, FLATTEN_USER function 1850
USFL gate, TAKEOVER function 1851
USFL gate, UNFLATTEN_USER function . . . 1851
USIS gate, SET_USER_DOMAIN_PARMS
function 1852
USIS gate, INQUIRE_DOMAIN function . . . 1853
USXM gate, ADD_TRANSACTION_USER
function 1853
USXM gate, DELETE_TRANSACTION_USER
function 1854

USXM gate, END_TRANSACTION function 1854
USXM gate, FLATTEN_TRANSACTION_USER
function 1854
USXM gate, INIT_TRANSACTION_USER
function 1855
USXM gate, INQUIRE_TRANSACTION_USER
function 1856
USXM gate, TERM_TRANSACTION_USER
function 1858
USXM gate,
UNFLATTEN_TRANSACTION_USER function . 1858

User domain's generic gates 1859
Modules 1860

Chapter 112. Web Domain (WB) . . . 1861
Web Domain's specific gates 1861

WBAP gate, END_BROWSE function 1861
WBAP gate, GET_HTTP_RESPONSE function 1861
WBAP gate, GET_MESSAGE_BODY function 1862
WBAP gate, INITIALIZE_TRANSACTION
function 1863
WBAP gate, INQUIRE function 1864
WBAP gate, READ function 1865
WBAP gate, READ_NEXT function 1866
WBAP gate, SEND_RESPONSE function . . . 1867
WBAP gate, START_BROWSE function . . . 1869
WBAP gate, WRITE_HEADER function . . . 1870
WBCL gate, CLOSE_SESSION function . . . 1870
WBCL gate, END_BROWSE_HEADERS
function 1871
WBCL gate, INQUIRE_SESSION function . . 1873
WBCL gate, OPEN_SESSION function 1875
WBCL gate, PARSE_URL function 1877
WBCL gate, READ_HEADER function . . . 1878
WBCL gate, READ_NEXT_HEADER function 1880
WBCL gate, READ_RESPONSE function . . . 1881
WBCL gate, START_BROWSE_HEADERS
function 1883
WBCL gate, WRITE_HEADER function . . . 1884
WBCL gate, WRITE_REQUEST function . . . 1886
WBFM gate, PARSE_MULTIPART_FORM
function 1888
WBFM gate, PARSE_URL_ENCODED_FORM
function 1889
WBFM gate, PARSE_URL_ENCODED_LIST
function 1890
WBFM gate, URL_DECODE function 1891
WBSR gate, RECEIVE function 1892
WBSR gate, SEND function 1893
WBSR gate, SEND_STATIC_RESPONSE
function 1894
WBSV gate, READ_REQUEST function . . . 1895
WBSV gate, WRITE_RESPONSE function . . . 1897
WBSV gate, PEEK_HEADERS function . . . 1898
WBSV gate, INQUIRE_CURRENT_SESSION
function 1899
WBSV gate, SET_SESSION function 1900
WBSV gate, CLOSE_SESSION function . . . 1901
WBSV gate, INQUIRE_SESSION function . . 1901
WBUR gate, ADD_REPLACE_URIMAP
function 1902

xxviii CICS TS for z/OS 4.1: Diagnosis Reference

||
||
||
||
||
|
||

||

WBUR gate, DELETE_URIMAP function . . . 1905
WBUR gate, END_BROWSE_HOST function 1905
WBUR gate, END_BROWSE_URIMAP function 1906
WBUR gate, GET_NEXT_HOST function . . . 1907
WBUR gate, GET_NEXT_URIMAP function 1908
WBUR gate, INITIALIZE_URIMAPS function 1911
WBUR gate, INQUIRE_HOST function . . . 1911
WBUR gate, INQUIRE_URIMAP function . . 1912
WBUR gate, LOCATE_URIMAP function . . . 1915
WBUR gate, SET_HOST function 1917
WBUR gate, SET_URIMAP function 1918
WBUR gate, START_BROWSE_HOST function 1921
WBUR gate, START_BROWSE_URIMAP
function 1922

Web domain's generic gates 1922
Web domain's call-back gates 1923
Modules 1923
Exits 1924

Chapter 113. Web 2.0 Domain (W2) 1925
Web 2.0 Domain's specific gates 1925

W2AT gate, ADD_ATOMSERVICE function 1925
W2AT gate, ADD_REPLACE_ATOMSERVICE
function 1927
W2AT gate, DELETE_ATOMSERVICE function 1928
W2AT gate, END_BROWSE_ATOMSERVICE
function 1929
W2AT gate, GET_NEXT_ATOMSERVICE
function 1930
W2AT gate, INITIALIZE_ATOMSERVICES
function 1932
W2AT gate, INQUIRE_ATOMSERVICE
function 1932
W2AT gate, SET_ATOMSERVICE function 1934
W2AT gate, START_BROWSE_ATOMSERVICE
function 1935
W2W2 gate, HANDLE_ATOM_REQUEST
function 1936
W2W2 gate, SET_PARAMETERS function . . 1936

Modules 1937
Exits 1937

Chapter 114. Transaction manager
domain (XM) 1939
Transaction manager domain's specific gates . . 1939

XMAT gate, ATTACH function 1939
XMAT gate, REATTACH function 1942
XMBD gate, END_BROWSE_TRANDEF
function 1943
XMBD gate, GET_NEXT_TRANDEF function 1944
XMBD gate, START_BROWSE_TRANDEF
function 1948
XMCL gate, ADD_REPLACE_TCLASS function 1948
XMCL gate, ADD_TCLASS function 1949
XMCL gate, DELETE_TCLASS function . . . 1950
XMCL gate, DEREGISTER_TCLASS_USAGE
function 1950
XMCL gate, END_BROWSE_TCLASS function 1950
XMCL gate, GET_NEXT_TCLASS function 1951

XMCL gate, INQUIRE_ALL_TCLASSES
function 1951
XMCL gate, INQUIRE_TCLASS function . . . 1952
XMCL gate, LOCATE_AND_LOCK_TCLASS
function 1952
XMCL gate, REGISTER_TCLASS_USAGE
function 1953
XMCL gate, SET_TCLASS function 1953
XMCL gate, START_BROWSE_TCLASS
function 1954
XMCL gate, UNLOCK_TCLASS function . . . 1954
XMDD gate, DELETE_TRANDEF function 1955
XMER gate, ABEND_TRANSACTION function 1955
XMER gate, INQUIRE_DEFERRED_ABEND
function 1955
XMER gate, INQUIRE_DEFERRED_MESSAGE
function 1956
XMER gate, REPORT_MESSAGE function . . 1957
XMER gate, SET_DEFERRED_ABEND function 1958
XMER gate, SET_DEFERRED_MESSAGE
function 1958
XMFD gate, FIND_PROFILE function 1960
XMIQ gate, END_BROWSE_TRANSACTION
function 1960
XMIQ gate, END_BROWSE_TXN_TOKEN
function 1960
XMIQ gate, GET_NEXT_TRANSACTION
function 1961
XMIQ gate, GET_NEXT_TXN_TOKEN function 1965
XMIQ gate, INQUIRE_TRANSACTION
function 1965
XMIQ gate,
INQUIRE_TRANSACTION_TOKEN function . 1970
XMIQ gate, PURGE_TRANSACTION function 1971
XMIQ gate, SET_TRANSACTION function 1971
XMIQ gate, SET_TRANSACTION_TOKEN
function 1973
XMIQ gate, START_BROWSE_TRANSACTION
function 1974
XMIQ gate, START_BROWSE_TXN_TOKEN
function 1974
XMLD gate, LOCATE_AND_LOCK_TRANDEF
function 1975
XMLD gate, UNLOCK_TRANDEF function 1976
XMRU gate, RUN_TRANSACTION function 1976
XMSR gate, INQUIRE_DTRTRAN function 1977
XMSR gate, INQUIRE_MXT function 1977
XMSR gate, SET_DTRTRAN function 1978
XMSR gate, SET_MXT function 1978
XMXD gate, ADD_REPLACE_TRANDEF
function 1979
XMXD gate, INQUIRE_REMOTE_TRANDEF
function 1983
XMXD gate, INQUIRE_TRANDEF function 1988
XMXD gate, SET_TRANDEF function 1993
XMXE gate, FREE_TXN_ENVIRONMENT
function 1995
XMXE gate, GET_TXN_ENVIRONMENT
function 1995

Transaction manager domain's generic gates . . . 1996
Transaction Manager domain's callback formats 1996

Contents xxix

||
||
||
|
||
||
|
||
|
||
|
||
|
||
||
|
||
|
||
||
||
||

XMAC gate, ABEND_TERMINATE function 1996
XMAC gate, BIND_XM_CLIENT function . . 1997
XMAC gate, INIT_XM_CLIENT function . . . 1997
XMAC gate, RELEASE_XM_CLIENT function 1998
XMAC gate, TRANSACTION_HANG function 1998

Transaction manager domain's generic formats 1999
XMDN gate, TRANDEF_DELETE_QUERY
function 1999
XMDN gate, TRANDEF_NOTIFY function 1999
XMNT gate, MXT_CHANGE_NOTIFY function 2000
XMNT gate, MXT_NOTIFY function 2000
XMPP gate, FORCE_PURGE_INHIBIT_QUERY
function 2001

Modules 2001
Exits 2003

Chapter 115. Security Domain (XS) 2005
Security Domain's specific gates 2005

XSAD gate, ADD_USER_WITH_PASSWORD
function 2005
XSAD gate,
ADD_USER_WITHOUT_PASSWORD function . 2007
XSAD gate, DELETE_USER_SECURITY
function 2008
XSAD gate, INQUIRE_USER_ATTRIBUTES
function 2009
XSAD gate, VALIDATE_USERID function . . 2012
XSAD gate, ADD_USER_VIA_ICRX function 2013
XSAD gate, INQUIRE_ICRX function 2013
XSAD gate, RELEASE_ICRX function 2014
XSAD gate, RELEASE_ICRX_STORAGE
function 2015
XSCT gate, INQUIRE_CERTIFICATE function 2015
XSCT gate, INQUIRE_REVOCATION_LIST
function 2018
XSEJ gate, ADD_REPL_ROLE_FOR_METHOD
function 2018
XSEJ gate, CHECK_CALLER_IN_ROLE
function 2019
XSEJ gate, CHECK_EJB_METHOD function 2020
XSEJ gate, DELETE_BEAN_SECURITY function 2021
XSEJ gate, INQUIRE_DISTINGUISHED_NAME
function 2021
XSEJ gate, INQUIRE_HASH_CODE function 2022
XSEJ gate, INQUIRE_PRINCIPAL function 2022
XSEJ gate, SET_ROLE_FOR_CODED_ROLE
function 2024
XSFL gate, FLATTEN_USER_SECURITY
function 2025
XSFL gate, UNFLATTEN_ESM_UTOKEN
function 2025
XSFL gate, UNFLATTEN_USER_SECURITY
function 2026
XSIS gate, INQ_SECURITY_DOMAIN_PARMS
function 2028
XSIS gate, INQUIRE_REALM_NAME function 2031
XSIS gate, INQUIRE_REGION_USERID
function 2031
XSIS gate, SET_NETWORK_IDENTIFIER
function 2032

XSIS gate, SET_SECURITY_DOMAIN_PARMS
function 2032
XSIS gate, SET_SPECIAL_TOKENS function 2036
XSLU gate, GENERATE_APPC_BIND function 2036
XSLU gate, GENERATE_APPC_RESPONSE
function 2036
XSLU gate, VALIDATE_APPC_RESPONSE
function 2037
XSPW gate, CREATE_PASSTICKET function 2038
XSPW gate, INQUIRE_CERTIFICATE_USERID
function 2039
XSPW gate, INQUIRE_PASSWORD_DATA
function 2040
XSPW gate, REGISTER_CERTIFICATE_USER
function 2041
XSPW gate, UPDATE_PASSWORD function 2042
XSRC gate, CHECK_CICS_COMMAND
function 2043
XSRC gate, CHECK_CICS_RESOURCE
function 2046
XSRC gate, CHECK_NON_CICS_RESOURCE
function 2047
XSRC gate, CHECK_SURROGATE_USER
function 2048
XSRC gate, REBUILD_RESOURCE_CLASSES
function 2049
XSXM gate, ADD_TRANSACTION_SECURITY
function 2049
XSXM gate, DEL_TRANSACTION_SECURITY
function 2050
XSXM gate, END_TRANSACTION function 2050

Security manager domain's generic gates 2050
Modules 2051

Part 4. CICS modules 2053

Chapter 116. CICS directory 2055
Classification of elements 2055

Name 2055
Type 2055
Library 2055

Optional listings 2056
Contents of the distribution tapes 2056

Chapter 117. CICS executable
modules 2161
DFHACP 2161
DFHAICBP 2161
DFHALP 2162
DFHAMP 2162
DFHAPJC 2162
DFHAPSIP 2163
DFHAPST 2163
DFHAPTD 2164
DFHAPTI 2164
DFHAPTIM 2165
DFHAPTIX 2165
DFHASV 2165
DFHBSIB3 2166
DFHBSIZ1 2166

xxx CICS TS for z/OS 4.1: Diagnosis Reference

||
||
||
|
||

DFHBSIZ3 2166
DFHBSMIR 2166
DFHBSMPP 2167
DFHBSM61 2167
DFHBSM62 2167
DFHBSS 2167
DFHBSSA 2168
DFHBSSF 2168
DFHBSSS 2168
DFHBSSZ 2168
DFHBSSZB 2169
DFHBSSZG 2169
DFHBSSZI 2169
DFHBSSZL 2169
DFHBSSZM 2170
DFHBSSZP 2170
DFHBSSZR 2170
DFHBSSZS 2170
DFHBSSZ6 2171
DFHBST 2171
DFHBSTB 2171
DFHBSTBL 2171
DFHBSTB3 2172
DFHBSTC 2172
DFHBSTD 2172
DFHBSTE 2173
DFHBSTH 2173
DFHBSTI 2173
DFHBSTM 2173
DFHBSTO 2174
DFHBSTP3 2174
DFHBSTS 2174
DFHBSTT 2174
DFHBSTZ 2175
DFHBSTZA 2175
DFHBSTZB 2175
DFHBSTZC 2175
DFHBSTZE 2176
DFHBSTZH 2176
DFHBSTZL 2176
DFHBSTZO 2177
DFHBSTZP 2177
DFHBSTZR 2177
DFHBSTZS 2177
DFHBSTZV 2178
DFHBSTZZ 2178
DFHBSTZ1 2178
DFHBSTZ2 2178
DFHBSTZ3 2179
DFHBSXGS 2179
DFHBSZZ 2179
DFHBSZZS 2179
DFHBSZZV 2180
DFHCAPB 2180
DFHCCNV 2180
DFHCMP 2181
DFHCPY 2181
DFHCRC 2181
DFHCRNP 2181
DFHCRQ 2182
DFHCRR 2182

DFHCRS 2182
DFHCRSP 2183
DFHCRT 2183
DFHCSA 2183
DFHCSDUP 2183
DFHCSSC 2184
DFHCSVC 2184
DFHCUCAB 2185
DFHCUCB 2185
DFHCUCCB 2185
DFHCUCDB 2185
DFHCWTO 2186
DFHDBAT 2186
DFHDBCON 2186
DFHDBCR 2187
DFHDBCT 2187
DFHDBCTX 2187
DFHDBDI 2188
DFHDBDSC 2188
DFHDBIQ 2188
DFHDBME 2189
DFHDBMOX 2189
DFHDBP 2189
DFHDBREX 2190
DFHDBSPX 2190
DFHDBSSX 2190
DFHDBSTX 2190
DFHDBTOX 2191
DFHDBUEX 2191
DFHDCP 2191
DFHDES 2192
DFHDIP 2192
DFHDLI 2192
DFHDLIAI 2193
DFHDLIDP 2193
DFHDLIRP 2193
DFHDMP 2194
DFHDRPG 2194
DFHDSBA$, DFHDSB1$ 2194
DFHDU660 2195
DFHDXACH 2195
DFHDXSTM 2195
DFHDYP 2196
DFHEAI 2196
DFHEAI0 2196
DFHEAP1$ 2197
DFHEBF 2197
DFHEBU 2197
DFHECI 2198
DFHECID 2198
DFHECIP 2198
DFHECP1$ 2199
DFHEDAD 2199
DFHEDAP 2199
DFHEDC 2200
DFHEDFBR 2200
DFHEDFD 2200
DFHEDFM 2201
DFHEDFP 2201
DFHEDFR 2201
DFHEDFX 2201

Contents xxxi

DFHEDI 2202
DFHEDP 2202
DFHEDP1$ 2202
DFHEEI 2203
DFHEEX 2203
DFHEFRM 2203
DFHEGL 2204
DFHEIIC 2204
DFHEIDTI 2204
DFHEIP 2204
DFHEIPA 2205
DFHEIFC 2205
DFHEISR 2205
DFHEJC 2206
DFHEKC 2206
DFHELII 2206
DFHEMS 2206
DFHEMTA 2207
DFHEMTD 2207
DFHEMTP 2207
DFHEOTP 2208
DFHEPC 2208
DFHEPI 2208
DFHEPP1$ 2208
DFHEPS 2209
DFHERM 2209
DFHESC 2209
DFHEISP 2210
DFHESTP 2210
DFHETC 2210
DFHETD 2210
DFHETL 2211
DFHETR 2211
DFHETS 2211
DFHEXI 2211
DFHFCAT 2212
DFHFCBD 2212
DFHFCDN 2212
DFHFCDTS 2213
DFHFCFR 2213
DFHFCFS 2213
DFHFCL 2214
DFHFCM 2214
DFHFCMT 2214
DFHFCN 2215
DFHFCRL 2215
DFHFCRP 2215
DFHFCSD 2216
DFHFCST 2216
DFHFCU 2216
DFHFCVR 2216
DFHFCVS 2217
DFHFDP 2217
DFHFEP 2217
DFHGMM 2218
DFHHPSVC 2218
DFHICP 2218
DFHIIPA$, DFHIIP1$ 2219
DFHIRP 2219
DFHIRW10 2220
DFHISP 2220

DFHJCP 2221
DFHJUP 2221
DFHKCP 2221
DFHKCQ 2222
DFHKCRP 2222
DFHKCSC 2222
DFHKCSP 2223
DFHLUP 2223
DFHMCPA$, DFHMCPE$, DFHMCP1$ 2223
DFHMCX 2224
DFHMGP 2224
DFHMGT 2224
DFHMIRS 2225
DFHML1 2225
DFHMROQP 2226
DFHMSP 2226
DFHMXP 2227
DFHM32A$, DFHM321$ 2227
DFHPBPA$, DFHPBP1$ 2227
DFHPD660 2228
DFHPEP 2229
DFHPHP 2229
DFHPL1OI 2229
DFHPRK 2230
DFHPSP 2230
DFHPSPDW 2230
DFHPSPSS 2231
DFHPSPST 2231
DFHPSSVC 2231
DFHPUP 2231
DFHP3270 2232
DFHQRY 2232
DFHRCEX 2232
DFHRKB 2233
DFHREST 2233
DFHRLRA$, DFHRLR1$ 2233
DFHRMSY 2234
DFHRTC 2234
DFHRTE 2234
DFHSFP 2235
DFHSIA1 2235
DFHSIB1 2235
DFHSIC1 2235
DFHSID1 2236
DFHSIF1 2236
DFHSIG1 2237
DFHSIH1 2237
DFHSII1 2237
DFHSIJ1 2238
DFHSIP 2238
DFHSKP 2239
DFHSMSCP 2239
DFHSNAT 2239
DFHSNNFY 2240
DFHSNMIG 2240
DFHSNP 2240
DFHSNSN 2241
DFHSNVCL 2241
DFHSNVID 2241
DFHSNVPR 2241
DFHSNVTO 2242

xxxii CICS TS for z/OS 4.1: Diagnosis Reference

DFHSPP 2242
DFHSRLI 2242
DFHSRP 2243
DFHSSEN 2243
DFHSSGC 2243
DFHSSIN 2244
DFHSSMGP 2244
DFHSSMGT 2244
DFHSSWT 2245
DFHSSWTF 2245
DFHSSWTO 2245
DFHSTDT 2245
DFHSTFC 2246
DFHSTIB 2246
DFHSTJC 2246
DFHSTLK 2247
DFHSTLS 2247
DFHSTP 2247
DFHSTSZ 2248
DFHSTTD 2248
DFHSTTM 2249
DFHSTTR 2249
DFHSTTS 2249
DFHSUSN 2249
DFHSUSX 2250
DFHSUZX 2251
DFHTACP 2251
DFHTAJP 2251
DFHTBSB 2252
DFHTBSBP 2252
DFHTBSD 2252
DFHTBSDP 2252
DFHTBSL 2253
DFHTBSLP 2253
DFHTBSQ 2253
DFHTBSQP 2253
DFHTBSR 2254
DFHTBSRP 2254
DFHTBSSP 2254
DFHTBS00 2254
DFHTCBP 2255
DFHTCP 2255
DFHTCRP 2256
DFHTCRPC 2256
DFHTCRPL 2256
DFHTCRPS 2256
DFHTCRPU 2257
DFHTDA 2257
DFHTDB 2258
DFHTDEXL 2258
DFHTDP 2258
DFHTDQ 2259
DFHTDRM 2259
DFHTDRP 2259
DFHTDTM 2260
DFHTDX 2260
DFHTEP 2260
DFHTMP 2260
DFHTON 2261
DFHTOR 2262
DFHTORP 2262

DFHTPPA$, DFHTPP1$ 2262
DFHTPQ 2263
DFHTPR 2263
DFHTPS 2264
DFHTRAP 2265
DFHTR660 and AMDUSREF 2265
DFHTRP 2265
DFHTRZCP 2266
DFHTRZIP 2266
DFHTRZPP 2266
DFHTRZXP 2266
DFHTRZYP 2267
DFHTRZZP 2267
DFHTSP 2267
DFHTU660 2267
DFHUCNV 2268
DFHUEH 2268
DFHUEM 2269
DFHUSBP 2269
DFHWCCS 2269
DFHWCGNT 2270
DFHWDATT 2270
DFHWDINA 2270
DFHWDISP 2270
DFHWDSRP 2271
DFHWDWAT 2271
DFHWKP 2271
DFHWLFRE 2272
DFHWLGET 2272
DFHWMG1 2272
DFHWMI 2273
DFHWMMT 2273
DFHWMPG 2273
DFHWMP1 2273
DFHWMQG 2274
DFHWMQH 2274
DFHWMQP 2274
DFHWMQS 2275
DFHWMRD 2275
DFHWMS 2275
DFHWMS20 2275
DFHWMWR 2276
DFHWOS 2276
DFHWOSA 2276
DFHWOSB 2276
DFHWSRTR 2277
DFHWSSN1 2277
DFHWSSN2 2277
DFHWSSN3 2278
DFHWSSOF 2278
DFHWSSR 2279
DFHWSSW 2279
DFHWSTI 2279
DFHWSTKV 2280
DFHWSXPI 2280
DFHWTI 2281
DFHWTRP 2281
DFHXCP 2281
DFHXCPC 2281
DFHXCP1 2282
DFHXFP 2282

Contents xxxiii

DFHXFQ 2282
DFHXFX 2283
DFHXRA 2283
DFHXRB 2283
DFHXRC 2284
DFHXRCP 2284
DFHXRE 2284
DFHXRP 2284
DFHXRSP 2285
DFHXSMN 2285
DFHXSMX 2285
DFHXSS 2286
DFHXSSB 2286
DFHXSWM 2286
DFHXTCI 2287
DFHXTP 2287
DFHZABD 2287
DFHZACT 2287
DFHZAIT 2288
DFHZAND 2288
DFHZARER 2288
DFHZARL 2289
DFHZARM 2289
DFHZARQ 2289
DFHZARR 2290
DFHZARRA 2290
DFHZARRC 2291
DFHZARRF 2291
DFHZASX 2291
DFHZATA 2292
DFHZATD 2292
DFHZATDX 2292
DFHZATI 2293
DFHZATMD 2293
DFHZATMF 2293
DFHZATR 2293
DFHZATS 2294
DFHZATT 2294
DFHZBAN 2294
DFHZBKT 2295
DFHZBLX 2295
DFHZCA 2295
DFHZCB 2296
DFHZCC 2296
DFHZCHS 2297
DFHZCLS 2298
DFHZCLX 2298
DFHZCNA 2298
DFHZCNR 2299
DFHZCNT 2299
DFHZCP 2299
DFHZCQ 2300
DFHZCQDL 2300
DFHZCQIN 2300
DFHZCQIQ 2301
DFHZCQIS 2301
DFHZCQIT 2301
DFHZCQRS 2301
DFHZCRQ 2302
DFHZCRT 2302
DFHZCUT 2302

DFHZCW 2302
DFHZCX 2303
DFHZCXR 2303
DFHZCY 2303
DFHZCZ 2305
DFHZDET 2305
DFHZDSP 2305
DFHZDST 2306
DFHZEMW 2306
DFHZERH 2306
DFHZEV1 2306
DFHZEV2 2307
DFHZFRE 2307
DFHZGET 2307
DFHZHPRX 2307
DFHZHPSR 2308
DFHZISP 2308
DFHZIS1 2308
DFHZIS2 2308
DFHZLEX 2309
DFHZLGX 2309
DFHZLOC 2310
DFHZLRP 2310
DFHZLTX 2310
DFHZLUS 2311
DFHZNAC 2311
DFHZNEP 2312
DFHZNSP 2312
DFHZOPA 2312
DFHZOPN 2313
DFHZOPX 2313
DFHZQUE 2313
DFHZRAC 2314
DFHZRAQ 2314
DFHZRAR 2314
DFHZRAS 2314
DFHZRLG 2315
DFHZRLP 2315
DFHZRLX 2315
DFHZRRX 2316
DFHZRSP 2316
DFHZRST 2316
DFHZRSY 2316
DFHZRVL 2317
DFHZRVS 2317
DFHZRVX 2317
DFHZSAX 2318
DFHZSCX 2318
DFHZSDA 2318
DFHZSDL 2319
DFHZSDR 2319
DFHZSDS 2319
DFHZSDX 2320
DFHZSES 2320
DFHZSEX 2320
DFHZSHU 2320
DFHZSIM 2321
DFHZSIX 2321
DFHZSKR 2321
DFHZSLS 2322
DFHZSLX 2322

xxxiv CICS TS for z/OS 4.1: Diagnosis Reference

DFHZSSX 2322
DFHZSTAP 2323
DFHZSTU 2323
DFHZSUP 2323
DFHZSYN 2324
DFHZSYX 2324
DFHZTAX 2324
DFHZTPX 2325
DFHZTRA 2325
DFHZTSP 2325
DFHZUCT 2325
DFHZUIX 2326
DFHZUSR 2326
DFHZXCU 2326
DFHZXQO 2326
DFHZXRC 2327
DFHZXRE0 2327
DFHZXRL 2327
DFHZXRT 2328

DFHZXST 2328

Part 5. Appendixes 2329

Notices 2331
Trademarks 2332

Bibliography 2333
CICS books for CICS Transaction Server for z/OS 2333
CICSPlex SM books for CICS Transaction Server
for z/OS 2334
Other CICS publications 2334

Accessibility 2335

Index 2337

Contents xxxv

xxxvi CICS TS for z/OS 4.1: Diagnosis Reference

Preface

What this book is about
When the term ”CICS” is used without any qualification in this manual, it refers to
the CICS® element of CICS Transaction Server for z/OS®.

”MVS” is used for the operating system, which is an element of z/OS.

This manual gives a detailed description of the various components that make up
a CICS system. It also provides reference tables of CICS source modules and
executable modules.

This manual is intended to help you in diagnosing problems with CICS.

This manual documents information NOT intended to be used as a Programming
Interface of Version 4 Release 1.

Who this book is for
This book provides a basis for communication between the system programmer
and the IBM® support representative whenever a problem with CICS code is
suspected.

What you need to know to use this book
You should have system programming experience and a good working knowledge
of CICS and of the functions used in your system to support CICS applications.

Before using this book, you should have read the CICS Problem Determination Guide
to learn about the general approach to CICS problem-solving and the procedures
to use when diagnosing and reporting system problems. You should already be
familiar with the general layout of CICS traces and dumps.

In addition, you may need to refer to the following books in the CICS library while
diagnosing what appears to be a system problem:
v CICS Data Areas for details of the layout and contents of CICS data areas
v CICS Messages and Codes manual for information about the messages and abend

codes that can be issued by a running CICS system

Notes on terminology
The following abbreviations are used throughout this book:

Term Meaning
CICS When used without qualification in the book, refers to the CICS element of

IBM CICS Transaction Server for z/OS
ESA IBM Enterprise Systems Architecture/370 (ESA/370)
MVS™ The IBM operating system, which can be either an element of OS/390®, or

MVS/Enterprise System Architecture System Product (MVS/ESA SP)
VTAM®

IBM Advanced Communications Function/Virtual Telecommunications
Access Method (ACF/VTAM)

© Copyright IBM Corp. 1997, 2011 xxxvii

VTAM/NCP
IBM Virtual Telecommunications Access Method/Network Control
Program (VTAM/NCP)

IMS™ IMS/ESA
DL/I The DL/I facilities of IMS/ESA
FEPI Front End Programming Interface

xxxviii CICS TS for z/OS 4.1: Diagnosis Reference

Changes in CICS Transaction Server for z/OS, Version 4
Release 1

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 2.3

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1997, 2011 xxxix

xl CICS TS for z/OS 4.1: Diagnosis Reference

Part 1. Introduction

This information describes the functional areas, or components, into which CICS is
divided. If you are using this information to diagnose a system problem, to find
out whether a function is working as designed, you must also consult the
appropriate administration and programming information.

In this and other CICS information, the term component is used in a general way to
refer to any unit of code that performs an identifiable set of functions and manages
a certain type of data.

Some CICS components are shipped as object code only (OCO). If the component
causing a problem is OCO, it is the responsibility of IBM to diagnose the problem
further. If the component is not OCO, refer to the Program Directory for CICS
Transaction Server for z/OS for details on how to view the source code. Use this set
of detailed information to identify more specifically the cause of the problem. The
Chapter 116, “CICS directory,” on page 2055 shows which CICS object modules are
regarded as OCO; no source code is available for these modules.

© Copyright IBM Corp. 1997, 2011 1

2 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 1. CICS domains

At the top level, CICS is organized into domains. With the exception of the
application domain, which contains several components, each domain is a single
major component of CICS.

Domains never communicate directly with each other. Calls between domains are
routed through kernel linkage routines. Calls can be made only to official interfaces
to the domains, and they must use the correct protocols. This structure is shown in
Figure 1.

 Each domain manages its own data. No domain accesses another domain’s data
directly. If a domain needs data belonging to another domain, it must call that
domain, and that domain then passes the data back in the caller’s parameter area.

The following table lists the CICS domains alphabetically by domain identifier. For
each domain, the table also shows whether or not the domain is OCO, and gives a
reference to the section describing the interfaces to the domain.

 Domain ID Domain OCO? See topic

AP Application See note Chapter 70,
“Application
Manager Domain
(AP),” on page
563

Domain

Domain

Domain

Domain

Domain

Domain

Domain

Domain

Kernel

linkage

routines

Figure 1. CICS organization—domains

© Copyright IBM Corp. 1997, 2011 3

Domain ID Domain OCO? See topic

BA Business Application Manager Yes Chapter 71,
“Business
Application
Manager Domain
(BA),” on page
869

CC Local catalog Yes Chapter 72,
“CICS Catalog
Domain (CC),”
on page 903

DD Directory manager Yes Chapter 73,
“Directory
manager domain
(DD),” on page
911

DH Document handler Yes Chapter 74,
“Document
Handler Domain
(DH),” on page
923

DM Domain manager Yes Chapter 75,
“Domain
Manager Domain
(DM),” on page
949

DP Debugging profile domain Yes Chapter 76,
“Debugging
profile domain
(DP),” on page
961

DS Dispatcher Yes Chapter 77,
“Dispatcher
Domain (DS),”
on page 997

DU Dump No Chapter 78,
“Dump Domain
(DU),” on page
1035

EJ Enterprise Java No Chapter 79,
“Enterprise Java
Domain (EJ),” on
page 1063

EM Event manager Yes Chapter 80,
“Event Manager
Domain (EM),”
on page 1135

EP Event processing Yes Chapter 81,
“Event
processing
domain (EP),” on
page 1149

GC Global catalog Yes Chapter 72,
“CICS Catalog
Domain (CC),”
on page 903

4 CICS TS for z/OS 4.1: Diagnosis Reference

||||
|
|
|
|

Domain ID Domain OCO? See topic

IE IP ECI Yes Chapter 82, “IP
ECI (IE)
domain,” on
page 1153

II IIOP No Chapter 83, “IIOP
domain (II),” on
page 1157

IS Inter-system (IS) domain Yes Chapter 84,
“Inter-system (IS)
domain,” on
page 1179

KE Kernel Yes Chapter 85,
“Kernel Domain
(KE),” on page
1215

LD Loader Yes Chapter 86,
“Loader Domain
(LD),” on page
1249

LG Log manager Yes Chapter 87, “Log
manager domain
(LG),” on page
1279

LM Lock manager Yes Chapter 88,
“Lock Manager
Domain (LM),”
on page 1319

ME Message Yes Chapter 89,
“Message
Domain (ME),”
on page 1323

MN Monitoring Yes Chapter 91,
“Monitoring
Domain (MN),”
on page 1349

NQ Enqueue Yes Chapter 92,
“Enqueue
Domain (NQ),”
on page 1361

OT Object transaction service No Chapter 93,
“Object
transaction
service domain
(OT),” on page
1383

PA Parameter manager Yes Chapter 94,
“Parameter
Manager Domain
(PA),” on page
1393

PT Partner Yes Chapter 97,
“Partner
Management
Domain (PT),” on
page 1523

Chapter 1. CICS domains 5

Domain ID Domain OCO? See topic

PG Program manager Yes Chapter 95,
“Program
Manager Domain
(PG),” on page
1397

RM Recovery manager Yes Chapter 99,
“Recovery
Manager Domain
(RM),” on page
1551

RX Resource recovery service Yes Chapter 101,
“RRMS domain
(RX),” on page
1627

RZ Request Stream No Chapter 102,
“Request Streams
Domain (RZ),”
on page 1633

SH Scheduler services Yes Chapter 103,
“Scheduler
Services Domain
(SH),” on page
1643

SJ JVM Domain No Chapter 70,
“Application
Manager Domain
(AP),” on page
563

SM Storage manager Yes Chapter 105,
“Storage
Manager Domain
(SM),” on page
1677

SO Sockets Domain No Chapter 106,
“Sockets Domain
(SO),” on page
1715

ST Statistics Yes Chapter 107,
“Statistics
Domain (ST),” on
page 1771

TI Timer Yes Chapter 108,
“Timer Domain
(TI),” on page
1781

TR Trace No Chapter 109,
“Trace Domain
(TR),” on page
1791

TS Temporary storage Yes Chapter 110,
“Temporary
Storage Domain
(TS),” on page
1801

WB Web Yes Chapter 112,
“Web Domain
(WB),” on page
1861

6 CICS TS for z/OS 4.1: Diagnosis Reference

Domain ID Domain OCO? See topic

W2 Web 2.0 Yes Chapter 113,
“Web 2.0 Domain
(W2),” on page
1925

XM Transaction manager Yes Chapter 114,
“Transaction
manager domain
(XM),” on page
1939

XS Security manager Yes Chapter 115,
“Security
Domain (XS),” on
page 2005

Note: The application domain is mainly non-OCO, but it contains these OCO
components:
v CICS data table services
v RDO for VSAM files and LSR pools
v Some EXEC CICS system programming functions
v Autoinstall terminal model manager
v Partner resource manager
v SAA Communications and Resource Recovery
v Some of the file control functions
v Recovery manager connectors interfaces.

The offline statistics utility program (DFHSTUP) and the system dump formatting
routines are also treated as OCO.

Domain gates
A domain gate is an entry point or interface to a domain. It can be called by any
authorized caller who needs to use some function provided by the domain.

A number of domain functions are available through the exit programming
interface (XPI). For details, see the The CICS Customization Guide.

In practice, every domain has several gates. Each gate has a 4-character identifier;
the first two characters are the identifier of the owning domain, and the second
two characters differentiate between the functions of the domain’s gates. Here, for
example, are two of the dispatcher (DS) domain’s gates:
 DSAT
 DSSR

Functions provided by gates
An individual gate can provide many functions. The required function is
determined by the parameters included on the call. The DSSR gate of the DS
domain, for example, provides all these functions:
 ADD_SUSPEND
 DELETE_SUSPEND
 INQUIRE_SUSPEND_TOKEN
 RESUME
 SUSPEND
 WAIT_MVS

Chapter 1. CICS domains 7

||||
|
|
|

WAIT_OLDC
 WAIT_OLDW.

Specific gates, generic and call-back gates
It is useful to distinguish between specific gates, generic gates and callback gates:
v A specific gate gives access to a set of functions that are provided by that

domain alone. The functions are likely to be requested by many different callers.
DS domain, for example, has a specific gate (DSAT) that provides
CHANGE_MODE and CHANGE_PRIORITY functions (among other functions).
Only the DS domain provides those functions, but they can be requested by
many different callers.

v A generic gate gives access to a set of functions that are provided by several
domains.
Most domains provide a QUIESCE_DOMAIN function, for example, so that they
can be quiesced when CICS is shutting down normally. They each have a
generic gate that provides this function. DM domain makes a generic call to that
gate in any domain that is to be quiesced.

v A call-back gate also gives access to a set of functions that can be provided by
several domains. Unlike a generic gate where the call is broadcast to all domains
that have provided a gate a call-back is restricted to specific domains but uses a
format owned by the calling domain.
For example the Recovery Manager calls the domains that have registered an
interest in syncpoint processing using the PERFORM_PREPARE function format
that it owns.

Domain call formats
Any module calling a domain gate must use the correct format for the call. The
format represents the parameter list structure. It describes the parameters that must
be provided on the call (the input parameters), and the parameters that are
returned to the caller when the request has been processed (the output
parameters).

For example, Table 1 lists the input and output parameters for the ATTACH
function of the DS domain’s DSAT gate.

 Table 1. Domain call formats
Input parameters Output parameters

PRIORITY
USER_TOKEN
[TIMEOUT]
TYPE
[MODE]
[TASK_REPLY_GATE_INDEX]
[SPECIAL_TYPE]

TASK_TOKEN
RESPONSE
[REASON]

Parameters not shown in brackets are mandatory, and are always interpreted in
trace entries. Parameters shown in brackets are optional, and are in trace entries
only if values have been set. An exception to this rule is that, regardless of whether
REASON is mandatory or optional for a particular function, its value is included
in a trace entry only for a non-‘OK’ response.

8 CICS TS for z/OS 4.1: Diagnosis Reference

The domain call formats described are in the sections dealing with the domains
that own them, as discussed in “Ownership of formats.”

Ownership of formats
Every format is ‘owned’ by a domain:
v The formats for specific calls are owned by the domain being called. DS domain,

for example, owns the format for the CHANGE_MODE and
CHANGE_PRIORITY calls. This book uses the term specific format to refer to
such formats.

v The formats for generic calls and call-back calls are owned by the calling
domain. DM domain, for example, owns the format for calls to (generic) gates
providing the QUIESCE_DOMAIN function in other domains. This book uses
the term generic format to refer to such formats.

Tokens
Tokens are passed as parameters on many domain calls. They identify uniquely
objects that are operands of domain functions.

Here are some examples:
TASK_TOKEN

uniquely identifies a task to be used as the operand of a function.
DOMAIN_TOKEN

uniquely identifies a domain to be used as the operand of a function.
SUSPEND_TOKEN

uniquely identifies a task for the purpose of a suspend or resume dialog.

The BROWSE_TOKEN parameter on domain interfaces
Some domains provide functions that callers can use to browse through a set of
objects in the domain. These functions normally use a browse token that
encapsulates the state of the browse operation.

The browse token is represented in most cases by the BROWSE_TOKEN parameter,
although some domains use a different name.
1. The called domain creates the token when the calling domain issues a

START_BROWSE request, and returns it to the caller.
2. The calling domain passes the token to the called domain on GET_NEXT and

similar requests. The called domain uses the token to distinguish concurrent
browse operations from one another, and to maintain the state of the browse
operation.

3. Finally the calling domain passes the token to the called domain on an
END_BROWSE request, after which the token is invalid.

The RESPONSE parameter on domain interfaces
All domain calls return the RESPONSE parameter to indicate whether the call was
successful.

The RESPONSE parameter has the following values:

OK The requested function has been completed successfully.

Chapter 1. CICS domains 9

EXCEPTION
Processing of the function could not be completed, and the domain state is
unchanged. More information is given in the REASON parameter.

DISASTER
The domain could not complete the request because of some irrecoverable
system problem. More information is given in the REASON parameter.

INVALID
The parameter list is not valid. More information is given in the REASON
parameter.

KERNERROR
The kernel was unable to call the required function gate.

PURGED
A purge has been requested for the task making the domain call.

10 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 2. Application domain

Application programs are run in the application (AP) domain, which contains
several major components, as shown in Figure 2 on page 12.

Most application domain CICS functions are either provided by modules that are
part of the CICS nucleus, that is to say they are an integral part of the system and
are loaded at system initialization time, or they are system application programs,
which are loaded as needed in the same way as user application programs.

© Copyright IBM Corp. 1997, 2011 11

AP domain

Application services

Basic mapping support

System reliability

Built-in functions
Command interpreter

Abnormal condition program

Data interchange program

Execution diagnostic facility

Dynamic backout
Emergency restart
Keypoint programs
Node abnormal condition program

Extended recovery
facility

Node error program
Program error program
Retry program
System recovery program

Intercommunication
facilities

Task-related user exit recovery
Terminal abnormal condition program

Distributed transaction processing

Terminal error program

Function shipping

Interregion communication

Transaction routing

Recovery manager connectors

VTAM LU6.1
VTAM LU6.2

System control

AP domain initialization

System services

AP domain termination
DL/I and DBCTL support

Dynamic allocation

EXEC interface program

Field engineering program

File control
Interval control

"Good morning" message program
Master terminal program
Message switching
Operator terminal
Resource definition
Signon and sign-off
System spooling interface
Time-of-day control

Transient data control

Resource recovery manager

Storage compatibility

Syncpoint program

Table manager

Task-related user exit control
Temporary-storage control

Terminal control
Trace compatibility

User exit control

Event capture

Figure 2. AP domain - major components

12 CICS TS for z/OS 4.1: Diagnosis Reference

Part 2. CICS components

Topics describing the major components of a CICS system that do not use a
domain interface. Offline utilities, such as the statistics utility program, are also
covered.

© Copyright IBM Corp. 1997, 2011 13

14 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 3. Autoinstall for terminals, consoles and APPC
connections

Autoinstall for terminals provides the ability to log on to CICS from a logical unit
(LU), known to VTAM but not previously defined to CICS, and to make a
connection to a running CICS system.

A new connection is created and installed automatically if autoinstall for
connections is enabled, and either of the following occurs:
v An APPC BIND request or CINIT request is received for an APPC service

manager (SNASVCMG) session that does not have a matching CICS
CONNECTION definition

v A BIND is received for a single session that does not have a matching CICS
CONNECTION definition.

A new console is created and installed automatically if autoinstall for consoles is
enabled and a CIB (Command Input Buffer sent from MVS) is received by CICS
(DFHZCNA) and the console TCTTE does not already exist.

For an introduction to autoinstall, and information about how to implement it, see
theCICS Resource Definition Guide.

The CICS Customization Guide gives information about implementing the autoinstall
user program. The CICS-supplied programs are:
v DFHZATDX, which provides autoinstall for terminals only
v DFHZATDY, which provides autoinstall for terminals and APPC connections.

These programs are user-replaceable, because you may need to tailor the basic
function to suit your CICS environment.

Design overview
Before a VTAM device can communicate with CICS, a VTAM session must be
established between the device and CICS. The sequence of operations is LOGON,
Open Destination (OPNDST), and Start Data Traffic (SDT). CICS can also initiate
the LOGON by using a SIMLOGON.

The session can be requested by:
v Specifying AUTOCONNECT when the terminal is defined to CICS
v A VTAM master terminal command requesting a LOGON to CICS for a given

terminal; for example, V NET,LOGON=CICSA,ID=L3277C1
v An individual terminal operator issuing a LOGON request (LOGON

APPLID(CICSA))
v A CICS master terminal command requesting LOGON for a given terminal

(CEMT SET TERMINAL(xxxx) INSERVICE ACQUIRED)
v CICS internally requesting a LOGON; for example, to process an ATI request
v LOGAPPL=CICS in the LU statement.

Consoles are not VTAM resource but they usse a similar mechanism to autoinstall
the TCTTE.

© Copyright IBM Corp. 1997, 2011 15

Autoinstall of a terminal logon flow
This section describes the flow of control for a terminal that is to be logged on by
autoinstall.
1. When a terminal or single session APPC device attempts to log on, VTAM

drives the logon exit. The CICS logon exit is DFHZLGX (load module
DFHZCY).
In the following circumstances, an LU is a candidate for autoinstall:
v If it is not already defined to CICS (using RDO)
v If neither CICS nor VTAM is quiescing
v If the autoinstall user program (specified by the AIEXIT system initialization

parameter) exists
v If the VTAM RPL is present
v If it is not an LU6.1 session or an LU6.2 parallel session
v If it is an LU6.2 single session terminal and the ISC=YES system initialization

parameter is specified
v If the maximum number of concurrent logon requests (specified by the

AIQMAX system initialization parameter) has not been exceeded.
DFHZLGX searches for the terminal in the terminal control table (TCT) by
comparing the NETNAME passed by VTAM with the NETNAME found in the
NIB descriptor for each installed terminal.
If a match is not found and AUTOINSTALL is enabled (TCTVADEN is set),
CICS verifies that the terminal is eligible for autoinstall. Processing then
consists of:
v Building an autoinstall work element (AWE) by issuing an MVS GETMAIN

for subpool 1
v Copying the CINIT RU into the AWE
v Adding the AWE to the end of the AWE chain, which is chained from the

TCT prefix.
If a match is found showing that this autoinstall terminal already exists, a
postponed work element (PWE) is created and the terminal is reinstalled after
deletion of the TCTTE (TCTEDZIP is ON) or if AILDELAY=0. If, however,
AILDELAY¬=0 but TCTEDZIP is not ON (that is, the TCTTE deletion is
pending), the TCTTE is reused after cleanup.

2. Later, the work element (AWE) is actioned by DFHZACT attaching transaction
CATA. For every AWE on the AWE chain, the DFHZATA autoinstall program is
dispatched, passing to DFHZATA the AWE’s address.

3. The DFHZATA program:
a. Validates the BIND image in the CINIT RU. If the image is not valid, issue

message DFHZC6901.
b. If VTAM Model Terminal Support (MTS) is being used (ACF/VTAM 3.3 or

later), and the name of a CICS model has been supplied in a X'2F' MTS
control vector, DFHZATA checks that the model exists by using the AIIQ
subroutine interface of the AITM manager (see Chapter 4, “Autoinstall
terminal model manager,” on page 29). If the model does not exist, issue
message DFHZC6936.
DFHZATA compares the BIND image contained in the MTS model with the
BIND image passed in the CINIT RU. If there is a mismatch, issue message
DFHZC6937.
This validated MTS model is the only model passed to the autoinstall
control program.

16 CICS TS for z/OS 4.1: Diagnosis Reference

c. In the absence of an MTS model name, DFHZATA browses the autoinstall
terminal model (AITM) table using the AIIQ subroutine interface of the
AITM manager. These models must have been installed, with appropriate
TYPETERM definitions, either at system initialization or by a CEDA
INSTALL command.
Compare the BIND image contained in each model with the BIND image
passed in the CINIT RU, and build a list of suitable models to be passed to
the autoinstall control program.
For autoinstall of an LU to be successful, the following must match:
v CINIT BIND image, taken from the VTAM LOGMODE entry specified for

the LU in the VTAMLST
v Autoinstall terminal model BIND image, built according to the

specifications in the TYPETERM and TERMINAL definitions.

(Both versions of the BIND image should accurately define the
characteristics of the device.) If the model BIND matches the CINIT BIND,
the model is added to the list of candidate entries.
If the list is empty (no matching models are found), the request is rejected
and message DFHZC6987 is written to the CADL log.

d. On completion of the model search, if any, DFHZATA links to the
autoinstall control program (the CICS-supplied default is DFHZATDX).

e. Issue DFHZCP_INSTALL to create the TCTTE. DFHZATA uses information
from the model selected by the exit program and the associated TYPETERM
entry to build the TCTTE.

f. If the install was successful, commit the TCTTE and queue it for LOGON
processing. The new TCTTE is queued for OPNDST processing, then later
the “good morning” message is written.

g. Free the AWE.

Autoinstall of APPC device logon flow
This section describes the flow of control for an APPC parallel session device (or
single session via a BIND) that is to be logged on by autoinstall.
1. When an APPC device attempts to logon, VTAM drives the logon exit

DFHZLGX if a CINIT is received, or the SCIP exit DFHZBLX if a BIND is
received.
Note that DFHZBLX is a new VTAM exit module that is called by DFHZSCX if
an LU62 BIND has been received.
In the following circumstances, an APPC LU is a candidate for autoinstall.
v If the connection is not already defined to CICS.
v If the connection is not already installed.
v If the autoinstall user program (specified by the AIEXIT system initialization

parameter) exists and caters for functions 2-4 as well as functions 0-1.
v If the VTAM ACB is open.
v If it is an APPC parallel session connection.
v If it is an APPC single session connection with an incoming BIND (as

opposed to CINIT - which uses terminal autoinstall).
v If ISC=YES is specified in the SIT.
v If the maximum number of concurrent logon requests (specified by

AIQMAX) has not been exceeded.
v If the customer has installed the correct 'template' connection that is to be

'cloned' (or copied) to create the new connection.

Chapter 3. Autoinstall for terminals, consoles and APPC connections 17

DFHZLGX or DFHZBLX searches for the connection in the terminal control
table (TCT) by comparing the NETNAME passed by VTAM with the
NETNAME found in the NIB descriptor for each installed session.
If a match is found and AUTOINSTALL is enabled (TCTVADEN is set), CICS
verifies that the terminal is eligible for autoinstall. Processing then consists of:
v Building an autoinstall work element (AWE) by issuing an MVS GETMAIN

for subpool 1.
v Copying the CINIT RU (DFHZLGX) or BIND (DFHZBLX) into the AWE.
v Adding the AWE to the end of the AWE chain, which is chained from the

TCT prefix.

If a match is found showing that this connection already exists then the logon
proceeds as for a defined connection.

2. Later, the AWE is actioned by DFHZACT attaching transaction CATA. For
every AWE on the AWE chain, the DFHZATA autoinstall program is
dispatched, passing to DFHZATA the AWE's address.

3. The DFHZATA program:
a. Validates the BIND image passed in the AWE. If the image is not valid,

issue message DFHZC6901.
b. Calls DFHZGAI Function(CREATE_CLONE_BPS) to create a Builder

Parameter Set from which to create the new connection ('clone'). This is
done by calling the customer supplied autoinstall user exit program (which
can be based on DFHZATDY) in which the customer chooses which
'template' connection the new connection should be copied from.
If at any point DFHZGAI finds a problem it issues message DFHZC6920 or
DFHZC6921 or DFHZC6922 with an exception trace entry which will
explain the reason for failure.

c. Issue DFHZCP function(INSTALL) to create the CONNECTION,
MODEGROUP and SESSIONs, based on the attributes of the template
connection.

d. For parallel sessions with an incoming BIND, chose the SNASVCMG
secondary session and call DFHZGAI (SET_TCTTE_FOR_OPNDST). This
mimics code in DFHZBLX to check the session against the incoming BIND.
If at any point DFHZGAI finds a problem it issues message DFHZC6923
with an exception trace entry which explains the reason for failure.

e. For parallel session with an incoming CINIT, chose the SNASVCMG
primary session.

f. If the install was successful, commit the CONNECTION and queue it for
logon processing. The new CONNECTION is queued for OPNDST
processing.

g. Free the AWE.

Autoinstall of an APPC Generic Resource connection
If this system is registered as a generic resource and a bind is received from
another generic resource then VTAM exit DFHZBLX will initiate an autoinstall if
there is no generic or member name connection available for use.

An AWE is created with extra parameters such as the generic resource name and
member name of the partner and possibly a suggested template.

Autoinstall then continues as for normal APPC and the extra parameters are
reflected into the TCSE and TCTTE via the BPS.

18 CICS TS for z/OS 4.1: Diagnosis Reference

Autoinstall of consoles install flow
1. The modify command comes into DFHZCNA via a CIB (Command Input

Buffer) from MVS when a user types a console command for CICS.
2. DFHZCNA scans the Console Control Elements for a matching console name. If

no CCE is found and autoinstall for consoles is enabled then an Autoinstall
Work Element is created and added to the AWE queue.

3. DFHZACT scans the AWE queue and attached the CATA transaction.
4. The CATA transaction calls DFHZATA which sees the AWE is fir a console

(sometimes called a Console Work Element) and calls DFHZATA2.
5. DFHZATA2 does the following:

a. Finds the console models (AICONS is supplied in group DFHTERMC).
b. If SIT AICONS(YES) is specified the models are passed to the autoinstall

user-replaceable program which returns the termid. The default autoinstall
user-replaceable program returns the last 4-characters of the consolename.

c. If SIT AICONS(AUTO) is specified DFHZGBM is called to get a name in the
console bitmap in the form ^AAA. The autoinstall user-replaceable program
is not called.

d. Calls DFHZCP FUNCTION(INSTALL).
e. Issues EXEC CICS SYNCPOINT.
f. Signs on if using preset security of USERID=*EVERY|*FIRST specified in the

AI model TYPETERM.
g. Geta a TIOA to hold the data specified in the command, e.g. if /f

jobname,CEMT I TE was typed at the console then CEMT I TE is put into
the TIOA.

h. Call DFHZATT to attach the transaction specified in the MODIFY command
(e.g. CEMT).

Sign-on to consoles flow
If a CIB is received with the same console name but with a different USERID then
the autoinstall program DFHZATA2 is called to sign off the original USERID and
sign on to the new USERID as follows:
1. DFHZCNA receives the modify and

a. Finds the CCE
b. Finds that the USERID is different and is already signed on
c. Creates an AWE for signoff/on
d. Chains the AWE for DFHZACT.

2. DFHZACT attaches CATA
3. CATA calls DFHZATA which calls DFHZATA2 for signoff/on
4. DFHZATA2 issues preset security sign off for the original USERID followed by

sign on for the new USERID
5. DFHZATA2 then gets a TIOA for the modify command data and calls

DFHZATT to attach the transaction as for normal autoinstall for consoles.

Disconnection flow for terminals (LU-initiated)
This section describes the flow of control when a request is made to disconnect an
autoinstalled terminal (for example, by entering a CESF LOGOFF command),
ultimately causing an EXEC CICS ISSUE LOGOFF command to be issued.
1. First the following functions are performed:
v Set on the CLSDST flag in the TCTTE.

Chapter 3. Autoinstall for terminals, consoles and APPC connections 19

v Put the TCTTE on the activate chain for DFHZACT to dispatch.
2. Control is then passed to the Close destination program, DFHZCLS, which

performs the following functions:
v Set on the SHUTDOWN_IN_PROGRESS flag in the TCTTE.
v Set on the REQUEST_SHUTDOWN flag in the TCTTE.

3. The Send asynchronous commands program, DFHZDSA is then called to send
a VTAM SHUTD command to the LU (autoinstalled terminal) to be
disconnected. The DFHZDSA program removes the TCTTE from the activate
chain, pending completion of the SHUTD command.

4. When the VTAM SHUTD command has completed, VTAM calls the
asynchronous send exit, DFHZSAX, which performs the following functions:
v Set off the REQUEST_SHUTDOWN flag in the TCTTE.
v Set on the SHUTDOWN_SEND flag in the TCTTE.
v Put the TCTTE back on the activate chain for DFHZACT to dispatch.

5. VTAM then drives the asynchronous receive exit, DFHZASX, with the SHUTC
(“shutdown complete”) command sent by the LU to be disconnected.
DFHZASX performs the following functions:
v Ensures that the NODE_QUIESCED_BY_CICS, SHUTDOWN_IN_PROGRESS,

and CLSDST flags are still on.
v Puts the TCTTE back on the activate chain for DFHZACT to dispatch.

6. Control is then passed to the Close_Destination program, DFHZCLS. The
DFHZCLS program performs the following functions:
v Set on the PENDING_DELETE flag in the TCTTE to prevent VTAM exits

scheduling requests for the device.
v Issue UNBIND (CLSDST POST=RESP) for the device.

7. The Close destination exit, DFHZCLX, is driven. If the CLSDST request is
successful (that is, there is a positive response from UNBIND), the following
functions are performed:
v Set on the SESSION_CLOSED flag in the TCTTE.
v Flag the TCTTE for deletion.
v Enqueue the TCTTE to DFHZNAC.

8. Control is passed to the DFHZNAC program, which performs the following
functions:
v Set on the DELETE_REQUIRED flag in the TCTTE.
v Put the TCTTE on the activate chain for DFHZACT to dispatch.
v Issue message DFHZC3462 (session terminated).

9. On the delete request, the DFHZNCA copybook of DFHZNAC checks the value
of the system initialization parameter AILDELAY.
v If AILDELAY is zero, the TCTTE is queued via DFHZACT with the address

of the TCTTE as input. Its function is to perform cleanup operations, the
principal operation being to ask DFHZCQ to delete the TCTTE.

v If AILDELAY is not zero, DFHZNCA initiates CATD using the delay
specified and passes the address of the TCTTE.

Up to three attempts are made to delete the TCTTE. This is because the reason
for the failure may be the existence of a transient condition, such as the TCTTE
being on the DFHZNAC queue to output a message to CSMT. If the initial
delete attempt fails, it is attempted again after one second; if this fails, another
attempt is made after a further 5 seconds. If the third attempt fails, it is
assumed that the failure is a hard failure, which will not disappear until the

20 CICS TS for z/OS 4.1: Diagnosis Reference

device is reconnected; in this case, message DFHZC6943 is issued, a syncpoint
is taken, and the TCTTE delete status is reset to make the TCTTE reusable.
If the deletion is successful, the delete is committed, the autoinstall control
program is invoked to permit any specific cleanup operations to take place, and
message DFHZC6966 is issued.
If a PWE exists for this TCTTE, the PWE is requeued onto the AWE chain.

Disconnection of an autoinstalled terminal can also be requested by CICS
shutdown, terminal time-out, and terminal errors. In these cases the flow is slightly
different.

Deletion of autoinstalled APPC devices.
This section describes the flow of control when an APPC sync level 1 device has its
last session released. This can occur as a result of unbind flows from the partner or
a RELEASE command being issued against the connection in this system.

Only synclevel 1 autoinstalled connections are deleted in this way. They will have
had TCSE_IMPLICIT_DELETE set by the builders from zx_delete_x in the BPS (set
by DFHZGAI).

TCSE_CATLG_NO indicates that the connection is not to be written to the catalog
(SIT Parameter AIRDELAY=0).
1. After DFHZCLS, the CLSDST program, issues DFHTCPLR TIDYUP TCSEDDP

and TCSE_DELETE_SCHEDULE are set and CATD is initiated with a delay of
AILDELAY.

2. CATD runs DFHZATD which sets TCSE_DELETE_STARTED and calls
DFHZCP FUNCTION=DELETE to delete the sessions, modegroup and
connection.

If a SIMLOGON or BIND occur before the delete starts
(TCSE_DELETE_SCHEDULED) then the connection delete is aborted and the
connection reused.

If a SIMLOGON occurs during the actual delete (TCSE_DELETE_STARTED) then
the delete is vetoed and the connection is reacquired.

If a BIND occurs during the actual delete (TCSE_DELETE_STARTED) then the
delete goes ahead and the PWE that was created is turned into an AWE and the
logon will create a new connection.

If TCSE_DELETE_AT_RESTART is set then DFHZATR will delete the connection if
it has not been used after restart with a delay specified in the AIRDELAY system
initialization parameter.

Disconnection flow (APPC devices)
These connections are not deleted at LOGOFF time, so the disconnection flow is
the same as for a defined connection.

Deletion of autoinstalled consoles
Consoles are deleted after a certain period of inactivity. The default is 60 minutes
but this can be overridden in the autoinstall user-replaceable program.
1. The delete time is saved in the CCE during install in TCTCE_TIMEOUT_TIME.
2. DFHCESC runs at certain intervals
3. DFHCESC checks the CCEs for any console whose delete time has expired

Chapter 3. Autoinstall for terminals, consoles and APPC connections 21

4. For each expired CCE DFHCESC does the following
a. Attaches CATD to do the delete
b. CATD calls DFHZATD as for a terminal

Shipping a TCTTE for transaction routing
For transaction routing, a terminal can be defined by an entry in the
terminal-owning region (TOR) with the SHIPPABLE=YES attribute.

In this case, the terminal definition is shipped to any application-owning region
(AOR) when the terminal user invokes a transaction owned by and defined to that
region. Definitions for advanced program-to-program communication (APPC)
devices always have the SHIPPABLE=YES attribute set.

The entry in the TOR could have been installed using CEDA INSTALL, the
GRPLIST at system initialization, or autoinstall. When an autoinstalled TCTTE in a
TOR is deleted, the relevant shipped terminals are deleted using a separate timing
mechanism.

The first time a transaction is invoked

For non-APPC devices (see Figure 3 on page 23), the following processing is
performed:
1. In the AOR, look for an existing skeleton TCTTE (TCTSK) whose

REMOTENAME is the same as the local name in the TOR. If found, skip the
following steps; otherwise:

2. Issue ZC_INQUIRE to the TOR.
3. In the TOR:
v Send a builder parameter set (BPS) representing the TCTTE to the AOR.
v Set on the SHIPPED flag (TCTEMROP) in the TCTTE.
v Set on the SHIPPED flag (TCSEMROP) in the TCTSE for the AOR system.
v Rewrite each entry to the catalog.

4. In the AOR:
v Use the existing name from the TOR.
v INSTALL the terminal (DFHZATS does the remote install).
v Set on the SHIPPED flag (TCTSKSHI) in the TCTSK.
v Set on the SHIPPED flag (TCSEMROG) in the TCTSE for the TOR system.
v Rewrite each entry to the catalog.

22 CICS TS for z/OS 4.1: Diagnosis Reference

For APPC devices:
1. In the AOR, look for an existing skeleton TCTTE (TCTSK) whose

REMOTENAME is the same as the local name in the TOR. If found, skip the
following steps; otherwise:

2. INSTALL the terminal (DFHZATS does the remote install).
3. Set on the SHIPPED flag (TCTSKSHI) in the TCTSK.
4. Set on the SHIPPED flag (TCSEMROG) in the TCTSE for the TOR system.
5. Rewrite each entry to the catalog.

Modules
ZC (terminal control) together with the following:

 Module Function

DFHZATA Autoinstall program
DFHZATA2 Console autoinstall program linkedits with DFHZATA
DFHZATD Autoinstall delete program
DFHZATDX Autoinstall control program
DFHZATDY Sample autoinstall user exit
DFHZATR Autoinstall restart program
DFHZATS Remote autoinstall|delete program
DFHZCTRI Trace interpretation for DFHZGAI
DFHZGAI APPC-specific autoinstall functions

DFHZATDX
The DFHZATDX module provides user input to autoinstall processing. This
module is a component of ZCP, and is the default autoinstall user program (that is,
it is used if you choose not to provide your own). For further information about
the DFHZATDX sample program, see the CICS Customization Guide.

DFHZATDX is also called when creating and deleting shipped terminals
(skeletons).

DFHZATDY
DFHZATDY is a sample autoinstall user-replaceable program, which you must
modify before you can use it. Its main function is to choose a template connection
which is to be used in creating the new autoinstall connection clone. It also has to

TERM TOR AOR

TCTTE TCTSE TCTSE

TCTEMROP TCSEMROP TCSEMROG

ZC_INQUIRE

TCTSK
DFHAPRT ZC_INSTALL

MODEL

TCTSKSHI

SURROGATE

Figure 3. Transaction-routing flow for non-APPC devices

Chapter 3. Autoinstall for terminals, consoles and APPC connections 23

chose a name for the new connection. For further information about the
DFHZATDY sample program see the the CICS Customization Guide.

DFHZATDY is also called when creating and deleting shipped terminals
(skeletons).

Diagnosing autoinstall problems
When diagnosing problems with autoinstall, consult the following list. If you have
a problem with autoinstall of APPC devices, and the following list does not resolve
the problem, see “Diagnosing APPC autoinstall problems” on page 25.
v The autoinstall model table (AMT) in an SDUMP
v CEMT INQUIRE AUTINSTMODEL—showing which models are installed
v TC level-1 trace, point ID AP FC8A—showing the CINIT RU contained in the

AWE on entry to DFHZATA
v CADL, CSMT, and CSNE logs:

– Autoinstall messages (DFHZC69xx)
– Builder messages (DFHZC59xx, DFHZC62xx, and DFHZC63xx)
– Terminal error messages
– Information produced by DFHZNAC

v Dump taken in the user install program (the CICS-supplied default is
DFHZATDX).

Most autoinstall problems can be grouped into three categories:
1. CICS rejects the LOGON request (message DFHZC2411 on the CSNE log).
2. The device rejects the actual BIND parameters (message DFHZC2403 on the

CSNE log).
3. DFHZATA diagnoses a problem (message DFHZC69xx on the CADL log).

The first category of problem is caused by CICS being in the wrong state to accept
an autoinstall, for example, CICS is shutting down or AUTOINSTALL is disabled
(message DFHZC2433).

The second category of problem arises when the two BIND images match, but the
BIND is rejected by the actual device (message DFHZC2403). For information
about valid BIND parameters, consult the 3274 Control Unit Description and
Programmer’s Guide, GA23-0061.

The BIND image is contained in the CINIT RU passed to the LOGON exit. This is
shown in trace point ID AP FC8A.

The reason for the third category of problem should be shown in the contents of
the associated DFHZC69xx message on the CADL log. For example, message
DFHZC6987 shows a BIND image mismatch between the incoming CINIT and the
best available model (unlikely).

The length of each BIND image is found in the halfword preceding the image. A
comparison is made for the smaller of the two length values, but not exceeding
X'19' (decimal 25) bytes. The comparison is accomplished by an XC (exclusive OR)
of the two BIND images into a work area. The result is ANDed with a mask that
defines the required settings.

24 CICS TS for z/OS 4.1: Diagnosis Reference

Additional bits are reset if the LU type, found in byte 14 of the BIND image, is 1,
2, 3, or 4. The final result in the work area must be 256 bytes of X'00'; any other
value causes DFHZATA to reject the LOGON and write message DFHZC6987 to
the CADL log.

For autoinstall to function correctly, three items must match:
1. The CINIT BIND image taken from the LOGMODE entry specified for the LU

in the VTAMLST
2. The CICS MODEL BIND image built according to the specifications in the

TYPETERM and TERMINAL entries
3. Device characteristics.

Diagnosing APPC autoinstall problems
When diagnosing APPC autoinstall problems, first refer to “Diagnosing autoinstall
problems” on page 24. Most of points in that section apply to APPC autoinstall
problems except for points that refer to autoinstall models.

Any APPC autoinstall problem should be accompanied by message DFHZC6920 to
23. These messages each have exception trace entries which should trace enough
information to allow you to diagnose the problem.

There are three autoinstall instances of DFHZC2411:
v 4 System termination - CSASTIM tested.
v 5 VTAM termination - TCTVVTQS tested.
v 6 ISC=NO specified in the SIT.

There are two additional instances of DFHZC2433:
v 3 Autoinstall disabled - TCTVADEN tested in DFHZBLX.
v 4 Autoinstall temporarily disabled - TCTVADIN tested in DFHZBLX.

There are two additional instances of DFHZC3482:
v 3 No MVS storage for DFHZBLX to obtain MVS AWE storage.
v 4 No MVS storage for reporting a failure in a dummy work element.

Diagnosing console autoinstall problems
Much of the autoinstall for terminal advice is relevant. However, the following
points should also be helpful.
1. Information about autoinstalled consoles is contained in:
v The AWE (CWE)
v The TCT prefix in the console BITMAP
v The CCE
v The SNEX
v The interface to the autoinstall user-replaceable program.

2. When DFHZCNA is called with a modify command trace point AP FCF0 is
issued and traces the CIB and CIB extension.

3. Trace point AP FCA7 shows the AWE/CWE created by DFHZCNA and passed
to DFHZATA2.

4. DISCARD (used via CEMT or EXEC CICS) is useful whilst testing autoinstall
for consoles.

Chapter 3. Autoinstall for terminals, consoles and APPC connections 25

5. CEMT INQUIRE TERMINAL is useful for seeing what consoles are installed
and what their console names are.

6. The console names can vary depending on how the modify command was
issued:
v /f jobname,CEMT I TE from a TSO SDSF panel gives a console name of the

USERID or the console name if changed using option 8 of SDSF.
v f jobname,CEMT I TE from a TSO console gives a console name of the TSO

USERID.
v M/F jobname, CEMT I TE from the TSO SDSF panel gives a console name of

MASTnn where nn is the names of the system. If SEC=YES is specified in the
SIT then the user must first sign on with m/f jobname,CESN.

v // MODIFY jobname,CEMT I TE from a job stream gives a console names of
INTERNAL. If SEC=YES is specified in the SIT then the user must first sign
on with m/f jobname,CESN.

7. The console name BITMAP is dumped in the TCP section of system dumps.
8. The extended control blocks are dumped if present when a system dump is

taken.

VTAM exits
A VTAM exit is a special-purpose user-written routine that is scheduled by VTAM
when the requested operation is complete. VTAM creates a trace record when the
exit is given control.

RE entries represent RPL exits except SEND, RECEIVE, OPNDST, and CLSDST. UE
entries represent non-RPL and asynchronous exits SCIP, LOGON, and LOSTERM.

See OS/390 eNetwork Communications Server: SNA Programming for general VTAM
exit information.

Trace
The following point IDs are provided for the autoinstall programs (DFHZATA,
DFHZATD, DFHZATR, and DFHZATS), as part of terminal control:
v AP FC80 through AP FC8C, for which the trace levels are TC 1 and TC 2.

The following point IDs are provided for APPC autoinstall:
v AP FA00 to FA21, for which the trace levels are TC1 and TC2.

The following point IDs are provided for console autoinstall:
v AP FCF0
v AP FCA3 to FCA7

RE and UE trace points are recorded when the VTAM trace API option is
requested by:
F NET,TRACE,TYPE=VTAM,OPTION=API,MODE=EXT

GTF must have been started with the USR option.

Each VTAM exit routine in CICS sets an ID byte in the TCTTE exit trace field
(TCTEEIDA).

26 CICS TS for z/OS 4.1: Diagnosis Reference

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 3. Autoinstall for terminals, consoles and APPC connections 27

28 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 4. Autoinstall terminal model manager

The autoinstall terminal model manager (an OCO component of the AP domain) is
responsible for managing all operations involving the autoinstall terminal model
table. Autoinstall terminal models are used during the autoinstall logon process
(see step 3 on page 16). They are installed either at system initialization or using
CEDA INSTALL (see Chapter 42, “Resource definition online (RDO),” on page 373),
and can be discarded using either the CEMT transaction or EXEC CICS commands.

The acronym AITM is often used for “autoinstall terminal model” in the contexts
of both the manager and the associated table; it is also the name of one of the
subroutine call formats.

The AITM manager is implemented as a set of subroutine interfaces.

Functions provided by the autoinstall terminal model manager
Table 2 summarizes the external subroutine interfaces provided by the autoinstall
terminal model manager. It shows the subroutine call formats, the level-1 trace
point IDs of the modules providing the functions for these formats, and the
functions provided.

 Table 2. Autoinstall terminal model manager’s subroutine interfaces

Format Trace Function

AIIN
 AP 0F10
AP 0F11

 START_INIT
COMPLETE_INIT

AIIQ
 AP 0F18
AP 0F19

 LOCATE_TERM_MODEL
UNLOCK_TERM_MODEL
INQUIRE_TERM_MODEL
START_BROWSE
GET_NEXT
END_BROWSE

AITM
 AP 0F08
AP 0F09

 ADD_REPL_TERM_MODEL
DELETE_TERM_MODEL

AIIN format, START_INIT function
The START_INIT function of the AIIN format is used to attach a CICS task to
perform initialization of the AITM manager.

Input parameters
None.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|DISASTER|KERNERROR

© Copyright IBM Corp. 1997, 2011 29

AIIN format, COMPLETE_INIT function
The COMPLETE_INIT function of the AIIN format is used to wait for the
initialization task attached by the START_INIT function to complete processing.

Input parameters
None.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|DISASTER|KERNERROR

AIIQ format, LOCATE_TERM_MODEL function
The LOCATE_TERM_MODEL function of the AIIQ format is used to obtain the
attributes of a named autoinstall terminal model, and obtain a read lock on that
entry in the AITM table in virtual storage.

Input parameters
TERM_MODEL_NAME

specifies the name of the autoinstall terminal model to be located.
BPS identifies a buffer into which the attributes of the autoinstall terminal

model are to be placed.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER or EXCEPTION. Possible values
are:

 RESPONSE Possible REASON values

DISASTER TM_LOCATE_FAILED

EXCEPTION TERM_MODEL_NOT_FOUND

AIIQ format, UNLOCK_TERM_MODEL function
The UNLOCK_TERM_MODEL function of the AIIQ format is used to release a
read lock on a previously located entry from the AITM table in virtual storage.

Input parameters
TERM_MODEL_NAME

specifies the name of the autoinstall terminal model to be unlocked.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER or EXCEPTION. Possible values
are:

 RESPONSE Possible REASON values

DISASTER TM_UNLOCK_FAILED

30 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION TERM_MODEL_NOT_FOUND

AIIQ format, INQUIRE_TERM_MODEL function
The INQUIRE_TERM_MODEL function of the AIIQ format is used to obtain the
attributes of a named autoinstall terminal model. (No read lock is retained.)

Input parameters
TERM_MODEL_NAME

specifies the name of the autoinstall terminal model to be located.
BPS identifies a buffer into which the attributes of the autoinstall terminal

model are to be placed.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER or EXCEPTION. Possible values
are:

 RESPONSE Possible REASON values

DISASTER TM_LOCATE_FAILED
TM_UNLOCK_FAILED

EXCEPTION TERM_MODEL_NOT_FOUND

AIIQ format, START_BROWSE function
The START_BROWSE function of the AIIQ format is used to initiate a browse of
the AITM table. The browse starts at the beginning of the table.

Input parameters
None.

Output parameters
BROWSE_TOKEN

is a token used to refer to this browse session on subsequent browse
requests.

RESPONSE
is the subroutine’s response to the call. It can have any of these values:
OK|DISASTER|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. It has this value:
START_BROWSE_FAILED

AIIQ format, GET_NEXT function
The GET_NEXT function of the AIIQ format is used to obtain the name and
attributes of the next autoinstall terminal model in the AITM table for the specified
browse session.

Input parameters
BROWSE_TOKEN

is the token identifying this browse session.

Chapter 4. Autoinstall terminal model manager 31

BPS identifies a buffer to receive the attributes of the next entry in the AITM
table.

Output parameters
TERM_MODEL_NAME

is the name of the next entry in the AITM table.
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER or EXCEPTION. Possible values
are:

 RESPONSE Possible REASON values

DISASTER TM_GET_NEXT_FAILED
TM_UNLOCK_FAILED

EXCEPTION END_OF_MODELS

AIIQ format, END_BROWSE function
The END_BROWSE function of the AIIQ format is used to terminate a browse of
the AITM table.

Input parameters
BROWSE_TOKEN

is the token identifying this browse session.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have either of these values:
OK|KERNERROR

AITM format, ADD_REPL_TERM_MODEL function
The ADD_REPL_TERM_MODEL function of the AITM format is used to add or
update an entry in the AITM table in virtual storage, and record the entry on the
CICS catalog.

Input parameters
TERM_MODEL_NAME

specifies the name of the autoinstall terminal model to be added or
updated.

BPS specifies the attributes of the named autoinstall terminal model.
SYSTEM_STATUS

specifies the status of the CICS system at the time of the call. It can have
any one of these values:
COLD_START|WARM_START|ONLINE

where ONLINE means during execution.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

32 CICS TS for z/OS 4.1: Diagnosis Reference

[REASON]
is returned when RESPONSE is DISASTER or EXCEPTION. Possible values
are:

 RESPONSE Possible REASON values

DISASTER NOT_INITIALISED
ADD_REPL_FAILED

EXCEPTION TERM_MODEL_IN_USE

AITM format, DELETE_TERM_MODEL function
The DELETE_TERM_MODEL function of the AITM format is used to remove an
entry from the AITM table in virtual storage and the CICS catalog.

Input parameters
TERM_MODEL_NAME

specifies the name of the autoinstall terminal model to be added or
updated.

SYSTEM_STATUS
specifies the status of the CICS system at the time of the call. It can have
any one of these values:
COLD_START|WARM_START|ONLINE

where ONLINE means during execution.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER or EXCEPTION. Possible values
are:

 RESPONSE Possible REASON values

DISASTER NOT_INITIALISED
DELETE_FAILED

EXCEPTION TERM_MODEL_IN_USE
TERM_MODEL_NOT_FOUND

Modules
 Module Function

DFHAIDUF Formats the AITM manager control blocks in a CICS system dump

DFHAIIN1 Handles the following requests:

v START_INIT

v COMPLETE_INIT

DFHAIIN2 Runs as a CICS task to perform initialization of the AITM manager

Chapter 4. Autoinstall terminal model manager 33

Module Function

DFHAIIQ Handles the following requests:

v LOCATE_TERM_MODEL

v UNLOCK_TERM_MODEL

v INQUIRE_TERM_MODEL

v START_BROWSE

v GET_NEXT

v END_BROWSE

DFHAIRP Initializes the AITM table at CICS startup

DFHAITM Handles the following requests:

v ADD_REPL_TERM_MODEL

v DELETE_TERM_MODEL

DFHAPTRN Interprets AITM manager trace entries

Exits
No global user exit points are provided for this component.

Trace
The following point IDs are provided for the AITM manager:
v AP 0F00 through AP 0F1F, for which the trace levels are AP 1 and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

34 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 5. Basic mapping support

Basic mapping support (BMS) allows the CICS application programmer to have
access to input and output data streams without including device-dependent code
in the CICS application program.

BMS provides the following services:
Message routing

This allows application programs to send output messages to one or more
terminals not in direct control of the transaction.

Terminal paging
This allows the user to prepare a multipage output message without
regard to the physical size of the output terminal; the output can then be
retrieved by page number in any order.

Device independence
This allows the user to prepare output without regard to the control
characters required for a terminal; CICS automatically inserts the control
characters and eliminates trailing blanks from each line.

Most of the BMS programs are resident in the CICS nucleus.

Design overview
BMS is an interface between CICS and its application programs. BMS formats
input and output display data in response to BMS commands in programs. To do
this, it uses device information from CICS system tables, and formatting
information from maps that you have prepared for the program.

BMS enables an application program to read in device-dependent data and convert
it to a device-independent standard form, or to generate device-dependent output
data from this device-independent standard form. In both cases, the structure of
the device-independent standard form, and the layout of the data on the display
terminal, are determined by a user-defined map. Related maps—for example, maps
used in the same application program—are grouped together into a map set. See
the CICS Application Programming Guide for further information about the definition
and use of maps and map sets.

On some terminals (such as the IBM 8775 display terminal and the IBM 3290
information panel), the available display area may be divided into a set of related
“logical” screens called partitions. The layout and properties of the set of partitions
that can be simultaneously displayed on a terminal are defined by the BMS user in
a partition set. See the the CICS Application Programming Guide for further details
about the definition and use of partition sets.

Maps, map sets, and partition sets are assembled offline using CICS macros. The
user defines and names fields and groups of fields that can be written to and read
from the devices supported by BMS. The assembled maps contain all the
device-dependent control characters necessary for the proper manipulation of the
data stream.

Associated with each map is a table of field names which is copied into each
application program that uses the map. Data is passed to and from the application
program under these field names. The application program is written to

© Copyright IBM Corp. 1997, 2011 35

manipulate the data under the various field names so that alteration of a map
format does not necessarily lead to changes in program logic. New fields can be
added to a map format without making it necessary to reprogram existing
applications.

Output data can be supplied from the application program by placing the data in
the table under the appropriate field name. As an alternative, output maps can
contain field default data that is sent when data is not supplied by an application
program. This facility permits the specification of titles, headers, and so on, for
output maps.

Optionally, the display of all the default data can be suppressed by the application
program for any output map. Each time a map is used, the application program
can temporarily modify the attributes of any named field in the output map. The
extended attributes can also be modified if maps are defined with the DSATTS
operand.

Output map fields with no field names can contain default data, but the
application program cannot replace the default data or modify the attributes of
unnamed fields.

For input, the user assembles a map defining the fields that can be written to and
received from a particular device. Any data received for a particular field is moved
across using the field name in the symbolic storage definition for the map.
Light-pen-detectable fields defined in an input map are flagged as detected if
present in an IBM 3270 Information Display System input stream. An input map
for a particular case can specify a subset of the fields potentially receivable; any
fields received and not represented in that map are discarded. This permits the
number of fields from a map that can be typed or selected to be changed, without
making it necessary to reprogram applications that currently receive data from the
map.

Maps are stored in the CICS program load library. When a map is required by
BMS, a copy is automatically retrieved by CICS from the program load library
without application program action. Multiple users of a map contained in the
program load library share a single copy in main storage.

BMS permits any valid combination of field attributes to be specified by the user
when generating maps. Inclusion of BMS in CICS is a system generation option
and does not prevent the application program from accessing a particular device in
native mode (without using BMS). Intermixing BMS and native mode support for a
terminal from the same application program may yield unpredictable results.
When using mixed mode support, it is the user’s responsibility to ensure the
correct construction and interpretation of native mode data streams.

BMS permits the application program to pass a native mode data stream that has
already been read in, and (if, for a terminal of the IBM 3270 Information Display
System, the screen has been formatted) to interpret this data stream according to a
given input map. This facility allows data entered with the initial reading of a
transaction to be successfully mapped using BMS.

BMS provides the following services:
v Message routing
v Terminal paging
v Device independence.

36 CICS TS for z/OS 4.1: Diagnosis Reference

Message routing
Message routing permits the application program to send an output message to
one or more terminals not in direct control of the transaction. The message is
automatically sent to a terminal if the terminal status allows reception of the
message. If a terminal is not immediately eligible to receive the message, the
message is preserved for that terminal until a change in terminal status allows it to
be sent. The message routing function is used by the CICS message-switching
transaction.

A BMS map that specifies extended attributes can be used for terminals that do not
support extended attributes. When sending data to a variety of terminals, some of
the terminals may support extended attributes and others may not. When a BMS
ROUTE request is processed, BMS looks at the TCTTEs for all specified terminals
and constructs a set of all the supported attributes.

A data stream is produced by BMS using this set of attributes, and the data stream
and set of attributes for each page are written to a temporary-storage record. When
the page is later read from temporary storage, the data stream for each terminal is
modified, if necessary, to delete attributes not supported by that terminal.

Terminal paging
Terminal paging allows the user to prepare more output than can be conveniently
or physically displayed at the receiving terminal. The output can then be retrieved
by pages in any order; that is, in the order in which they were prepared or by
skipping forward or backward in the output pages.

Terminal paging also provides the ability to combine several small areas into one
area, which is then sent to the terminal. This enables the user to prepare output
without regard for the record size imposed by the output terminal.

CICS provides the terminal operator with a generalized page retrieval facility that
can be used to retrieve and dispose of pages.

Device independence
Device independence allows the user to prepare output without regard for the
control characters required for message heading, line separation, and so on. Input
to device independence consists of a data string with optional new-line characters.

Device independence divides the data string into lines no longer than those
defined for the particular terminal. If new-line characters appear occasionally in
the data string to further define line lengths, they are not ignored. CICS inserts the
appropriate leading characters, carriage returns, and idle characters, and eliminates
trailing blanks from each line. If the device does not support extended attributes,
the extended attributes are ignored.

CICS allows the user to set horizontal and vertical tabs on those devices that
support the facility (for example, the IBM 3767 Communication Terminal, and the
IBM 3770 Data Communication System). For such devices, CICS supports data
compression inbound and data compression outbound, based on the tab
characteristics in the data stream under the control of the appropriate maps.

Chapter 5. Basic mapping support 37

Control blocks
BMS makes use of the following control blocks (see Figure 4 on page 40):

 DSECT Function

DFHMAPDS Defines a physical map. It contains overlays for map set data, map data,
and field data. The physical map set is stored in the CICS program
library and requires a resource definition when loaded into main storage
by BMS.

DFHMCAD Defines a mapping control area (MCA). MCAs are used in DFHM32 and
DFHML1 to merge (both) and sort (DFHML1 only) fields in different
maps in the chain of map copies. The MCA contains field position, flags,
and pointers to map and application data structure relating to this field.

DFHMCBDS Defines the message control block (MCB). MCBs are built and referenced
by DFHTPR. There is one MCB per level of page chaining. The MCBs
are chained together, with the head of the chain anchored off the TCTTE
BMS extension. The MCB contains a copy of the MCR, with additional
working data.

DFHMCRDS Defines the message control record (MCR). MCRs are held in CICS
temporary storage. There is one MCR per BMS message in temporary
storage. The MCR contains data such as the number of pages in this
message, the list of target terminals for this message, data on which
pages are for which LDCs or partitions, and so on. The MCR is written
to temporary storage by DFHMCP. It is read and purged by DFHTPR,
DFHTPS, and DFHTPQ.

DFHOSPWA Defines the output services processor work area (OSPWA). This is the
main BMS control block. For standard and full-function BMS, there is an
OSPWA that is chained off the TCA and is built by DFHMCP on the first
BMS command in a transaction. It contains a copy of the BMS TCA
request bytes, together with the BMS status and working area. DFHTPR
has its own private OSPWA. This overlays the TWA for DFHTPR unless
SEND PAGE RETAIN is used. If SEND PAGE RETAIN is used, DFHTPR
obtains an additional OSPWA, and chains the base OSPWA off the new
OSPWA. This avoids DFHTPR damaging the base OSPWA. The OSPWA
is deleted during task termination.

A shorter version of the OSPWA is used by DFHMCPE (part of both the
minimum-function BMS mapping control program DFHMCPE$ and also
the BMS fast-path module DFHMCX). It is built in DFHMCPE's LIFO
storage, and includes space for the request information from the TCA.
The DFHMCPE OSPWA is defined within DFHMCPE.

DFHPGADS Defines a page control area (PGA). DFHTPP builds a PGA at the end of
the device data stream in the terminal input/output area (TIOA)
(addressed as ADDR(TIOADBA) + TIOATDL) for the SET and PAGING
disposition. The PGA contains the 3270 write control character (WCC),
flags about the type of TC write required, and the extended features
used in this page of data stream.

DFHPSDDS Defines a physical partition set. The partition set is stored in the CICS
program library and requires a resource definition when loaded into
main storage by BMS.

38 CICS TS for z/OS 4.1: Diagnosis Reference

DSECT Function

DFHTTPDS Defines the terminal type parameter (TTP). This contains information for
a terminal type. Note that BMS builds pages on a TTP basis. For
standard and full-function BMS, DFHRLR builds TTPs as follows:

1. A “direct TTP” is built for the transaction terminal. If this supports
partitions or LDCs, a further direct TTP is built for each referenced
LDC or partition. This contains data for that LDC or partition. These
direct TTPs are chained together, and the head of the chain is
contained in the OSPWA. Direct TTPs are deleted by DFHMCP on a
SEND PAGE, PURGE MESSAGE, or SEND PARTNSET command.

2. If routing is in effect, there is a chain of routed TTPs, with one TTP
per terminal type in the route list. Routed TTPs are deleted by
DFHMCP on a SEND PAGE or PURGE MESSAGE command.

Most of BMS uses the TTP rather than the TCTTE to determine
terminal-related information.

TCTTETTE The TCTTETTE DSECT in the DFHTCTZE macro defines the TCTTE
BMS extension. It is chained off the TCTTE (TCTTETEA field).

DFHTPE Defines the BMS partition extension. This is chained off the TCTTE BMS
extension if the terminal supports partitions.

See CICS Data Areas for a detailed description of these control blocks.

Chapter 5. Basic mapping support 39

Modules
BMS makes use of the following modules (see Figure 5 on page 43):

 Module Function

DFHDSB Addresses the page buffer, which was composed by the page and text
build program (DFHPBP).

DFHEMS The EXEC interface processor for BMS commands.

DFHIIP Called in response to requests for BMS services involving terminals
other than IBM 3270 Information Display Systems.

TCA TCTTE

x'08' TCAFCAAA x'78' TCTTETEA
Address of facility Address of TCTTE

extension

x'158' TCAOSPWA
Address of BMS work area TCTTE extension

x'20' TCTTEPGM
Address of first MCB

OSPWA
MCB

x'A8' OSPCTTP
Address of current TTP x'04' MCBNEXT

Address of next MCB or 0
x'AC' OSPDTTP

Address of direct TTP
Direct TTP

x'B0' OSPTTP
Address of first
routing TTP x'24' TTPPGBUF

Address of page buffer

x'C0' OSPTIOA
Address of original TIOA x'2C' TTPMLA

Address of loaded map set

x'D0' OSPDWE x'30' TTPMAPA
Address of DWE Address of map

(within map set)

Routing TTP (see note 2) x'34' TTPMMFCP
Address of modified map

x'20' TTPCHAIN
Address of next Route list area (RLA)
routing TTP or zero (see note 1)

Route list area Map set

Routing TTP (see note 2) MAP

x'20' TTPCHAIN Page buffer
0

Route list area MAP (copy)

x'08' TTPRLCHA
Address of next RLA x'04' BMSMDA
or zero Address of data (TIOA)

x'2A' BMSMCA
RLA extension Address of next map or 0

User TIOA

Notes: | MAP and TIOA (copy)
1. The route list area (RLA)

is not used in the direct
TTP. x'04' BMSMDA

Address of data (TIOA)
2. Each routing TTP has the

same format as the direct x'2A' BMSMCA 0
TTP.

TIOA (copy)

Figure 4. Control blocks associated with basic mapping support (BMS)

40 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHMCP The interface between application programs and the modules that
perform mapping, message switching, page and text building,
device-dependent output preparation, and message disposition to
terminals, temporary-storage areas, or the application program.

DFHMCX The BMS fast path module for standard and full-function BMS, and the
program for minimum BMS support. It is called by DFHMCP if the
request satisfies one of the following conditions:

v It is a non-cumulative direct terminal send map or receive map issued
by a command-level program.

v It is for a 3270 display or an LU3 printer which does not support
outboard formatting. If the terminal supports partitions, it is in the
base state.

v The CSPQ transaction has been started.

v The message disposition has not changed.

DFHM32 Called in response to requests for BMS services involving terminals of
the 3270 Information Display System.

DFHPBP Processes all BMS output requests (SEND MAP, SEND PAGE, and SEND
TEXT). It performs the following functions:

v Positions the data in the page, either by placing it in a buffer, or by
copying it and adjusting the map for an IBM 3270 Information
Display System (SEND MAP ACCUM)

v Places the data into the page buffer (SEND TEXT ACCUM)

v Inserts device-dependent control characters for other than 3270
Information Display System devices, removing extended attributes.

DFHPHP Processes terminal operations that involve partitions.

DFHRLR Builds terminal type parameters (TTPs), which are the main blocks for
building and writing out data in BMS.

DFHTPP Directs completed pages to a destination specified in the BMS output
request: SEND TEXT sends to the originating terminal; SEND MAP
PAGING or SEND TEXT PAGING directs to temporary storage; and
SEND MAP SET or SEND TEXT SET directs to a list of completed pages
that are returned to the application program).

DFHTPQ Checks the chain of automatic initiate descriptors (AIDs) to detect and
delete AIDs that have been on the chain for an interval exceeding the
purge delay time interval specified by the PRGDLAY system
initialization parameter, if this has a nonzero value.

DFHTPR Processes messages built by BMS and placed in temporary storage.

DFHTPS Invoked for each terminal type to which a BMS logical message built
with SEND MAP PAGING or SEND TEXT PAGING is to be sent. For
each terminal designated by the originating application program,
DFHTPR is scheduled to display the first page of the logical message if
the terminal is in paging status, or the complete message if it is in
autopage status.

Basic mapping support (BMS) is provided by means of a number of modules, each
of which interfaces with other BMS modules, CICS control components, and
application programs. The maps that are handled by BMS may be new maps,
created to utilize BMS mapping capabilities. The interrelationships of CICS
programs requesting mapping services are summarized in Figure 5 on page 43.
Further details for specific programs within BMS are given in the topics that
follow.

Chapter 5. Basic mapping support 41

One of three versions (MINIMUM, STANDARD, or FULL) of basic mapping
support can be selected by the system initialization parameter BMS (see the CICS
System Definition Guide). Where the generated versions of a BMS module differ
according to the level of function provided, a suffix identifies the version as
follows:
v E$ for minimum function
v A$ for standard function
v 1$ for full function.

In the module lists that follow, an asterisk (*) after a module name shows that the
module is suffixed in this way. Elsewhere in this book, however, the BMS modules
are usually referenced by their unsuffixed names with no distinction made
between the minimum, standard, and full-function versions.

The module used by all three versions of BMS (minimum, standard, and
full-function) is:
v DFHMCP* (mapping control program).

Additional modules used by both standard and full-function versions of BMS are:
v DFHDSB* (data stream build)
v DFHIIP* (non-3270 input mapping)
v DFHMCX (fast path module)
v DFHML1 (LU1 printer mapping)
v DFHM32* (3270 mapping)
v DFHPBP* (page build program)
v DFHPHP (partition handling program)
v DFHRLR* (route list resolution)
v DFHTPP* (terminal page processor).

Additional modules used only by full-function BMS are:
v DFHTPQ (terminal page cleanup)
v DFHTPR (terminal page retrieval)
v DFHTPS (terminal page scheduling).

A detailed description of each of these modules follows in alphabetic order of
module name.

42 CICS TS for z/OS 4.1: Diagnosis Reference

DFHDSB (data stream build)
The data stream build program addresses the page buffer, composed by the page
and text build program (DFHPBP). The page buffer contains lines of output data
that are to be written to a terminal other than an IBM 3270 Information Display
System. The number of lines is contained in the TTPLINES field. The data stream
build program performs the following functions on the data in the page buffer:
v Truncates trailing blanks within data lines
v Substitutes strings of physical device control characters for logical new-line

characters that terminate each line of data
v Provides a format management header (FMH) for some VTAM-supported

devices
v Allows horizontal and vertical tab processing.

Figure 6 on page 44 shows the relationships between the components of data
stream build.

CICS BMS

DFHRLR DFHMCP DFHMCX
Route list Mapping Fast-path module
resolution control program
program

Non-3270 input

CSPS

DFHIIP DFHTPS
Non-3270 input Terminal page
mapping program scheduling

program
Retain/release (LINK)

3270 Input neither (SCHEDULE)

Schedule

3270 Output DFHPBP DFHTPR
Page build program Terminal page

retrieval program

Output
Non-3270 for LU1 First Time
Output Printer (IC INITIATE)

with
Extended
Attributes CSPQ

DFHM32 DFHDSB DFHML1 DFHTPQ
3270 mapping Data stream LU1 printer with Terminal page
program build program extended attributes cleanup program

mapping program

through through
DFHPBP DFHPBP Program delay

(IC INITIATE)

through DFHPBP DFHTPP
Terminal page
processor
program

Figure 5. Modules associated with basic mapping support (BMS)

Chapter 5. Basic mapping support 43

Note:

1. DFHDSB is entered from the page build program to process the page buffer.
2. For SEND TEXT commands with the NOEDIT option specified, page buffer

compression is skipped and control returns to DFHPBP, which calls the
terminal page processor (DFHTPP).

3. For SEND TEXT commands without the NOEDIT option, the appropriate
device control characters for the target device are selected for substitution.

4. The page buffer containing the data to be compressed is located through the
address stored at TTPPGBUF.

5. After compression of the page buffer data, control returns to DFHPBP, which
calls DFHTPP to provide disposition of the page.

DFHIIP (non-3270 input mapping)
The non-3270 input mapping program (DFHIIP) is called in response to requests
for BMS services involving terminals other than IBM 3270 Information Display
Systems.

Figure 7 on page 45 shows the relationships between the components of non-3270
input mapping.

TCA

TCAOSPWA 1 Page and text
Data stream build
build (DFHPBP)
(DFHDSB)

OSPWA 2 5

OSPTRT
Terminal
page processor

OSPCTTP (DFHTPP)

TTP
3 Device

TTPPGBUFF control
TTPDS characters
TTPLINES
TTPCOL6
TTPLDCTT
TTPDCCAD

Page buffer

Data to be
output 4

Figure 6. Data stream build interfaces

44 CICS TS for z/OS 4.1: Diagnosis Reference

Note:

1. A RECEIVE MAP request by an application program, communicating with
other than an IBM 3270 Information Display System, passes information
through the TCA through the mapping control program (DFHMCP) to DFHIIP.

2. The map required for an operation is either passed by the application program
or loaded by DFHMCP.

3. DFHIIP communicates with storage control to obtain and release buffers for
mapping operations.

DFHMCP (mapping control program)
The mapping control program (DFHMCP) is the interface between application
programs and the modules that perform mapping, message switching, page and
text building, device-dependent output preparation, and message disposition to
terminals, temporary-storage areas, or the application program.

Figure 8 on page 46 shows the relationships between the components of mapping
control.

Application
program
EXEC CICS....

1

Mapping
control
program
(DFHMCP)

1
DFHOSPWA

2 Non-3270 input
mapping
(DFHIIP)

DFHTTPDS

2 3 Storage
manager

DFHMAPDS

2

Figure 7. Non-3270 input mapping interfaces

Chapter 5. Basic mapping support 45

Note:

 1. This program is entered when an application program issues a request for
basic mapping support services.

 2. It may also be called by task control to process a deferred work element
(DWE) if an application program terminates and there are partial pages in
storage, or the message control record (MCR) created during execution of the
task has not been placed in temporary storage.

 3. The following information is returned to the requester: error codes, page
overflow information, and (for a SEND MAP SET or SEND TEXT SET
command) a list of completed pages.

 4. DFHMCP communicates with temporary storage control to put the MCR for
routed or stored messages, if a ROUTE command, or SEND MAP PAGING or

Application Task
program control
EXEC CICS... program

2
3 1

TCAMSRC1 DWE
TCAMSOC

2
TCAMSRC1-3
TCAMSRI1 4
TCAMSPGN
TCAMSOCN
TCAMSRLA Mapping

control
TCAFCAAA program 5 Terminal
TCAOSPWA (DFHMCP) control

program

BMS work area (OSPWA)

6 Temporary
OSPTTP storage

control
program

TCTTE

TCTTETI 7 Storage
TCTTEDA manager

CSA
8 Interval

CSAUNQID control
CSAOPFLA program

Optional features list (CSAOPFL)
9 Transient

data
CSABMS control

program

10 Route
3270 13 list
mapping resolution
(DFHM32) (DFHRLR)

11 Non-3270
Page and 14 input
text build mapping
(DFHPBP) (DFHIIP)

12 Fast
Partition 15 path
handling (DFHMCX)
program
(DFHPHP)

Figure 8. Mapping control program interfaces

46 CICS TS for z/OS 4.1: Diagnosis Reference

SEND TEXT PAGING command is issued. A DELETEQ TS command is issued
to request that a message be purged from temporary storage if a PURGE
MESSAGE command is issued.

 5. DFHMCP communicates with storage control to:
v Acquire and free storage in which the MCR is built (a SEND MAP

command after a SEND MAP PAGING, SEND TEXT PAGING, or ROUTE
command)

v Acquire and free storage in which to copy the message title (a ROUTE
command with the TITLE option specified)

v Acquire storage to build automatic initiate descriptors (AIDs) for
non-routed messages, or routed messages to be delivered immediately (a
SEND PAGE command)

v Acquire a BMS work area (OSPWA) at the time of the initial BMS request
v Acquire and free an area used for user request data if a SEND PAGE

command must be simulated before processing the user’s request
v Free the returned page list (a DELETEQ TS command)
v Free map copies if SEND PAGE command was issued and pages were

being built in response to SEND PAGE commands
v Free terminal type parameters (TTPs) (SEND PAGE command).

 6. DFHMCP communicates with program manager to:
v Load and delete map sets
v Link to the terminal page retrieval program (DFHTPR) to process one or

more pages of a message if a SEND PAGE command is issued with the
RETAIN® or RELEASE option specified

v Abnormally terminate tasks that incur errors that cannot be corrected.
 7. DFHMCP communicates with interval control to:

v Initiate transaction CSPQ
v Obtain the current time of day, which is then used to time stamp AIDs for

routed messages
v Initiate transaction CSPS for messages to be delivered later.

 8. DFHMCP communicates with task control to schedule transaction CSPQ for
every terminal that is to receive a routed message to be delivered immediately.

 9. Transient data control is used to send error and information messages to the
master terminal.

10. Route list resolution (DFHRLR) is used to collect terminals from a
user-supplied route list or from the entire TCT by terminal type, and build a
terminal type parameter (TTP), which controls message building, for each
terminal type. It is also used to build a single-element TTP for the originating
terminal.

11. Non-3270 input mapping (DFHIIP) is used to process RECEIVE MAP requests
for a terminal other than an IBM 3270 Information Display System.

12. The mapping control program calls DFHMCX if the request is eligible for the
BMS fast-path module.

13. 3270 mapping (DFHM32) is used to process RECEIVE MAP requests for an
IBM 3270 Information Display System.

14. Page and text build (DFHPBP) processes the following output requests:
15. Page and text build program (DFHPBP) processes all BMS output requests

v SEND MAP
v SEND MAP PAGING

Chapter 5. Basic mapping support 47

v SEND MAP SET
v SEND PAGE
v SEND TEXT
v SEND TEXT PAGING
v SEND TEXT SET.

For 3270 output, DFHM32 is called; for other output, DFHML1 is called.
16. The partition handling program (DFHPHP) is called when the data is in an

inbound structured field. DFHPHP extracts the partition ID, device AID, and
cursor address.

DFHML1 (LU1 printer with extended attributes mapping)
The LU1 printer with extended attributes mapping program, DFHML1, is called in
response to requests for BMS services involving terminals of the 3270 Information
Display System. Figure 9 shows how the DFHML1 program responds to these
requests.

Note:

1. The following types of requests, by application programs communicating with
LU1 printer mapping, pass information through the mapping control program
(DFHMCP), and the page and text build program (DFHPBP), to DFHML1:

Application
program
EXEC CICS...

1

Mapping
control
program
(DFHMCP)

1

Page and text 5 Terminal
build program page processor
(DFHPBP) (DFHTPP)

1

DFHOSPWA

User data area
2 LU1 printer 3

with extended
attributes
mapping program
(DFHML1)

DFHTTPDS

2

DFHMAPDS

2 4 Storage
manager

Figure 9. LU1 printer with extended attributes mapping program interfaces

48 CICS TS for z/OS 4.1: Diagnosis Reference

v SEND MAP ACCUM
v SEND MAP SET
v SEND TEXT
v SEND TEXT ACCUM
v SEND TEXT SET
For one page of output, DFHML1 acquires an area and formats it into a chain
of control blocks known as map control areas (MCAs). Each MCA corresponds
to one map on the page and contains information about chaining down the
maps and processing the fields in each map. DFHML1 then builds the data
stream directly from the maps and the TIOAs.

2. Maps are either passed by the application program or loaded by DFHMCP.
3. The address of a terminal input/output area (TIOA) is supplied by the

application program for all requests.
4. DFHML1 communicates with storage control to obtain and release storage for

MCAs and for the mapped data.
5. All requests (see note 1 on page 48) are sent to a designated destination by the

terminal page processor (DFHTPP), after the return of control to DFHPBP.

DFHM32 (3270 mapping)
The 3270 mapping program (DFHM32) is called in response to requests for BMS
services involving terminals of the 3270 Information Display System. Figure 10
shows how the 3270 mapping program responds to these requests.

Note:

1. The following types of requests by an application program communicating with
an IBM 3270 Information Display System passes information through the TCA
by way of the mapping control program (DFHMCP) and the page and text
build program (DFHPBP) to DFHM32:

Application
program
EXEC CICS...

Mapping 1
control
program
(DFHMCP)

2

DFHOSPWA Page and text
build program
(DFHPBP)

3 3270 1
Mapping
program
(DFHM32)

5
DFHTTPDS

3
Terminal
page processor
(DFHTPP)

DFHMAPDS

3 4 Storage
manager

Figure 10. 3270 mapping program interfaces

Chapter 5. Basic mapping support 49

v SEND MAP ACCUM
v SEND MAP PAGING
v SEND MAP SET
v SEND TEXT
v SEND TEXT ACCUM
v SEND TEXT PAGING
v SEND TEXT SET
For one page of output, DFHM32 acquires an area and formats it into a chain
of control blocks known as map control areas (MCAs). Each MCA corresponds
to one map on the page and contains information for chaining down the maps
and processing the fields in each map. DFHM32 then builds the data stream
directly from the maps and the TIOAs.

2. A RECEIVE MAP or RECEIVE MAP FROM request by an application program
communicating with an IBM 3270 Information Display System passes
information through the TCA through the message control program (DFHMCP)
to DFHM32.

3. Maps are either passed by the application program or loaded by DFHMCP.
4. DFHM32 communicates with storage control to obtain and release storage for

MCAs and for the mapped data.
5. All output requests (see note 1 on page 49) are sent to a designated destination

by the terminal page processor (DFHTPP) after control is returned to DFHPBP.

DFHPBP (page and text build)
The page and text build program (DFHPBP) processes all BMS output requests
v SEND MAP
v SEND MAP PAGING
v SEND MAP SET
v SEND PAGE
v SEND TEXT
v SEND TEXT PAGING
v SEND TEXT SET.

It performs the following functions:
v Positions the data in the page, either by placing it in a buffer, or by copying it

and adjusting the map for an IBM 3270 Information Display System (SEND
MAP ACCUM)

v Places the data into the page buffer (SEND TEXT ACCUM)
v Inserts device-dependent control characters for other than 3270 Information

Display System devices, removing extended attributes.

Figure 11 on page 51 shows the relationships between the components of page and
text build.

50 CICS TS for z/OS 4.1: Diagnosis Reference

Note:

1. DFHPBP is entered from the mapping control program, DFHMCP, to process
all BMS output requests. It is called once for each terminal type parameter
(TTP) on the TTP chain pointed to by OSPTTP. The current TTP in the chain is
pointed to by OSPCTTP.

2. DFHPBP returns control to DFHMCP when request processing is complete, or
when the page must be written out before a SEND MAP ACCUM request can
be processed and an OFLOW=symbolic address operand was specified.

3. OSPTR2, OSPTR3, ..., OSPTR7 contain request data from the DFHBMS macro
expansion. OSPRC1 and OSPRC3 contain return codes to be examined by
DFHMCP.

4. For a SEND MAP ACCUM request for an IBM 3270 Information Display
System, the map is copied and chained to the TTP. For a SEND TEXT ACCUM
request for an IBM 3270 Information Display System, a dummy map is created
and chained to the TTP. When a page is complete, control is given to 3270
mapping (DFHM32), which combines the map copies chained to the TTP and
maps the data.

TCA
Mapping control
program

TCAOSPWA
(DFHMCP)

1,2
BMS work area (OSPWA)

OSPTR2 to OSPTR7
OSPRC1 Page and text 5 Storage manager
OSPRC3 3 build program

(DFHPBP)
OSPWCC
OSPCTTP

1 OSPCP

Terminal type parameter (TTP)

6 Program manager

TTPMMFCP
TTPPGBUF

Terminal page
Page buffer processor

(DFHTPP)

4

4,7,8

Copied map

3270 mapping
DFHMSD, DFHMDI, (DFHM32) or LU1

BMSMDA and DFHMDF macros printer with
for dummy map for extended
SEND TEXT ACCUM attributes
for 3270 or LU1 mapping (DFHML1)

Dummy map for printer with
3270 or LU1 extended mapping
printer with attributes
extended mapping
attributes
mapping

BMSMDA

TIOA

8

Figure 11. Page and text build program interfaces

Chapter 5. Basic mapping support 51

For a SEND MAP ACCUM request for an LU1 printer with extended attributes,
the map is copied and chained to the TTP. For a SEND TEXT ACCUM request,
a dummy map is created and chained to the TTP. When a page is complete,
control is given to the LU1 printer mapping program (DFHML1), which
combines the map copies chained to the TTP and maps the data.

5. DFHPBP communicates with storage control to:
v Acquire and free buffers in which pages are built
v Acquire storage for copies of maps for SEND MAP ACCUM or SEND TEXT

ACCUM
v Acquire storage for a copy of the user’s data for SEND MAP ACCUM or

SEND TEXT ACCUM.
6. DFHPBP requests program manager to terminate a transaction abnormally

(ABEND) if certain errors occur that cannot be corrected.
7. A SEND TEXT ACCUM request for an IBM 3270 Information Display System

causes a map set consisting of one dummy map to be passed to 3270 mapping
(DFHM32). The map has one field with attributes FREEKB and FRSET.
SEND TEXT ACCUM requests for an LU1 printer cause a map set consisting of
one dummy map to be passed to the LU1 printer mapping program
(DFHML1). The map has one field with attributes FREEKB and FRSET.

8. If the page is being constructed for an IBM 3270 Information Display System,
control is given to DFHM32 to map the data and then to DFHTPP to output the
page.
If the page is being constructed for an LU1 printer, control is given to DFHML1
to map the data, and then to DFHTPP to output the page. Otherwise, control is
given to DFHDSB to add device dependencies to the page, and then to the
terminal page processor (DFHTPP) to output the page.

DFHPHP (partition handling program)
The partition handling program (DFHPHP) processes terminal operations that
involve partitions. DFHPHP has one entry point, and starts with a branch table
that passes control to the required routine according to the request. It consists of
routines that perform the following functions:
v PHPPSI tests whether there is a partition set in storage. If there is and it is not

the required partition set, that partition set is deleted. When no partition set is in
storage, an attempt is made to load the appropriate partition set.

v PHPPSC builds a data stream to destroy any partitions that may already be
loaded on the terminal, creates the partition set designated by the application
partition set, and sets the name of the partition set in the TCTTE to be the name
of the application partition set.

v PHPPIN extracts the AID, cursor address, and partition ID. The AID and cursor
address are put in the TCTTE, and the partition ID is converted to a partition
name and returned to the caller. A check is made that the partition ID is a
member of the application partition set.

v PHPPXE sends a data stream to a terminal to activate the appropriate partition
and sends an error message to any error message partition if input arrived from
an unexpected partition.

Figure 12 on page 53 shows the relationships between the components of partition
handling.

52 CICS TS for z/OS 4.1: Diagnosis Reference

Notes:

1. DFHPHP is called by the mapping control program (DFHMCP) and by the
terminal output macro (DFHTOM).

2. PHPPSI refers to OSPWA to check whether a partition set is loaded.
3. PHPPSI communicates with program manager to load the partition set.
4. PHPPSI puts the name of the partition set in TPE (terminal partition extension)

as the application partition set.
5. PHPPSC calls storage control to acquire a TIOA in which to build and free the

original TIOA.
6. PHPPSC sets a slot in the TCTTE to be the partition set data stream

concatenated with the terminal partition set name if the terminal is not in the
base state.

7. PHPPIN places the AID and the cursor address in the TCTTE.
8. PHPPXE calls storage control to get a TIOA, retrieves the error message text by

calling the message domain, fills the TIOA with data, transmits the data, and
frees the TIOA.

9. PHPPSC references the partition set object to build the partition creation data
stream.

DFHRLR (route list resolution program)
The route list resolution program (DFHRLR) builds terminal type parameters
(TTPs), which are the main blocks for building and writing out data in BMS.

Mapping control Terminal output
program macro
(DFHMCP) (DFHTOM)

1 1

DFHOSPWA

2 Partition handling 3 Program manager
program (DFHPHP) domain

DFHTPE

4 5,8 Storage manager

DFHTIOA

5,8

DFHTCTTE

6,7

DFHPSDDS

9

Figure 12. Partition handling program interfaces

Chapter 5. Basic mapping support 53

Figure 13 shows the route list resolution program interfaces.

Note:

1. DFHRLR is called by the mapping control program (DFHMCP) to determine
the grouping of terminal destinations.

2. If data is to be routed, DFHRLR groups the terminals in the user’s route list by
terminal type and builds a routing TTP for each type. For each TTP, the
supported attributes of the corresponding terminals are accumulated. The
address of the first routing TTP in the chain of TTPs is placed in OSPTTP.

3. If data is not to be routed, a direct TTP is built for the originating terminal and
its address is placed in OSPDTTP.

4. DFHRLR communicates with storage control to acquire storage for the TTP.
5. Program manager services are requested by means of an ABEND command if

errors occur that cannot be corrected.

DFHTPP (terminal page processor)
The terminal page processor (DFHTPP) directs completed pages to a destination
specified in the BMS output request:
v SEND MAP or SEND TEXT sends to the originating terminal

Mapping
TCA control program

TCAOSPWA
TCAMSRLA
TCAFCAAA
TCASCSA

1

TCTTE

TCTTETI
TCTTETT Route list 4 Storage
TCTTEOI resolution manager
TCTTEOCL program
TCTTEPGL (DFHRLR)
TCTTEPGC
TCTTEDDS
TCTTEMSS
TCTEAPGL
TCTEAPGC
TCTE32SF
TCTEDSCC 5 Program
TCTEDSCL control
TCTEASCC program
TCTEASCL

User's route list

URLTRMID

URLOPID

URLTSF

BMS work area (OSPWA)

OSPTTP

OSPDTTP 2,3

OSPOCN

Terminal type parameter (TTP)

TTPCHAIN
...
TTP Data
...

Next TTP

Figure 13. Route list resolution program interfaces

54 CICS TS for z/OS 4.1: Diagnosis Reference

v SEND MAP PAGING or SEND TEXT PAGING directs to temporary storage
v SEND MAP SET or SEND TEXT SET directs to a list of completed pages that are

returned to the application program.

Figure 14 shows the relationships between the terminal page processor and other
components in response to BMS output requests.

Note:

1. DFHTPP is entered from DFHPBP after processing by 3270 mapping (DFHM32)
for 3270s, by LU1 printer with extended attributes mapping (DFHML1) for
those LU1 printers, and by data stream build (DFHDSB) for other devices.

2. DFHTPP communicates with storage control to obtain:
v The return list (to store the address of completed pages to be returned to the

program)
v Deferred work elements (DWEs), which ensure that message control

information is written to disk, even if the program neglects to issue a SEND
PAGE request

v Storage for a list that correlates pages on temporary storage with the logical
device codes for which they are destined.

3. Temporary-storage control is used to store pages and the message control
record (MCR) for messages stored on temporary storage.

4. The terminal type parameter (TTP) controls the formatting of a message for a
particular terminal type (for example, an IBM 2741 Communication Terminal).
TTPPGBUF contains the address of a completed page.

LU1 printer
3270 mapping with extended Data stream build
(DFHM32) attributes mapping (DFHDSB)

(DFHML1)

DFHPBP

1
TCA

TCAOSPWA 2 Storage
TCATSDI Terminal page manager
TCATSRN processor

(DFHTPP)

OSPWA

OSPTR4
OSPTR5 3 Temporary
OSPDWE storage
OSPINDO1 control program

OSPRETPG
OSPRC1
OSPRC2

OSPCTTP
5 Terminal output

TTP macro (DFHTOM)

TTPPGBUF
TTPMSUFX 4

Data to be output

Page control area

List of
returned pages

Figure 14. Terminal page processor interfaces

Chapter 5. Basic mapping support 55

5. The terminal output macro (DFHTOM) is issued to provide an open subroutine
assembled within DFHTPP that puts a completed page out to the terminal. If
the data stream contains extended attributes, and the terminal does not support
extended attributes, the extended attributes are deleted.

DFHTPQ (undelivered messages cleanup program)
The undelivered messages cleanup program (DFHTPQ) checks the chain of
automatic initiate descriptors (AIDs) to detect and delete AIDs that have been on
the chain for an interval exceeding the purge delay time interval specified by the
PRGDLAY system initialization parameter, if this has a nonzero value.

Figure 15 shows the undelivered messages cleanup program interfaces.

Note:

1. DFHTPQ is initiated the first time by the mapping control program (DFHMCP),
by interval control, or by the transaction CSPQ. Thereafter, it reinitiates itself
(see note 5).

2. DFHTPQ communicates with the allocation program (DFHALP) to locate and
unchain AIDs.

3. DFHTPQ communicates with storage control to free AIDs that have been
purged and to acquire storage for notification messages.

4. Transient data control is used to send notification messages.
5. Interval control is used to obtain the current time and to reinitiate this task

(DFHTPQ).
6. DFHTPQ communicates with temporary-storage control to retrieve and replace

message control records (MCRs) and to purge messages.

Program
control program

1

CSA

Undelivered 2 Terminal
CSAAIDBA messages allocation

cleanup program program (DFHALP)
(DFHTPQ)

3 Storage
manager

AID

4 Transient data
control program

5 Interval
control program

6 Temporary
storage
control program

TCA

TCAICRT

Figure 15. Undelivered messages cleanup program interfaces

56 CICS TS for z/OS 4.1: Diagnosis Reference

DFHTPR (terminal page retrieval program)
The terminal page retrieval program (DFHTPR) processes messages built by BMS
and placed in temporary storage.

Figure 16 shows the relationships between the components of page retrieval.

Note:

 1. DFHTPR can be initiated as a stand-alone transaction (CSPG), or by a
user-defined paging command (for example, P/, or 3270 PA/PF keys), or
linked to from a BMS conversational operation (SEND PAGE request with
CTRL=RETAIN or RELEASE).
DFHTPR performs the following functions:
v Displays the first page of a routed message
v Displays subsequent pages of a message at a terminal for which a SEND

PAGE request with CTRL=AUTOPAGE was specified
v Processes paging commands from a terminal
v Processes the CSPG transaction when it is entered at the terminal

Program Mapping
control program control program

1 2
System initialization
table (SIT)

Terminal 3
Paging commands page retrieval Storage

managerprogram
(DFHTPR)

CSA

4
CSATCNDT
CSATODB
CSAAIDBA

Temporary
storage
control
program

TCA
5

TCATSDI

Basic
mapping
support

TCAOSPWA

TCAFCAAA

BMS work area (OSPWA) 6 Task
control
program

OSPTR4
OSPTR7

7 Interval
TCTTE control

program

TCTTETI
TCTTEPGB 8 Terminal
TCTTEPGM control
TCTTEPGL program
TCTTEPGC
TCTEAPGL
TCTEAPGC
TCTE32SF

9 Transient
data
control
program

AID

10 Terminal
output
macro
(DFHTOM)

Figure 16. Page retrieval program interfaces

Chapter 5. Basic mapping support 57

v Purges a message displayed at the terminal if the terminal is in display
status and other than a paging command is entered at the terminal.

 2. DFHTPR is entered from the BMS mapping control program (DFHMCP) to
display the first page of a message originated at the terminal if
CTRL=RETAIN was specified in the BMS request. DFHTPR reads from the
terminal and processes paging commands until other than a paging command
is entered.

 3. DFHTPR uses storage control to:
v Acquire and free message control blocks (MCBs)
v Free message control record (MCR) storage
v Acquire storage for information and error messages to be sent to the

destination terminal and the master terminal
v Free an automatic initiate descriptor (AID) taken off the AID chain
v Acquire and free storage for a route list constructed in response to a COPY

command entered at a terminal
v Acquire a TIOA into which to place a device-independent page when

performing the COPY function.
 4. Temporary-storage control is used to retrieve and replace MCRs and to

retrieve and purge pages.
 5. Basic mapping support is used to display error and information messages at a

requesting terminal, and to send a page to the destination terminal in the
COPY function.

 6. Task control is used to retain exclusive control of an MCR while it is being
updated.

 7. DFHTPR communicates with interval control during error processing when a
temporary-storage identification error is returned while attempting to retrieve
an MCR. Up to four retries (each consisting of a one-second wait followed by
another attempt to read the MCR) are performed. (The error may be due to
the fact that an MCR has been temporarily released because another task is
updating it. If so, the situation may correct itself, and a retry is successful.)

 8. Terminal control is used to read in the next portion of terminal input after a
page or information message is sent to the terminal when a SEND PAGE
request with CTRL=RETAIN was specified.

 9. Transient data control is used to send error or information messages to the
master terminal.

10. The terminal output macro (DFHTOM) is issued to provide an open
subroutine that puts a completed page out to the terminal.

DFHTPS (terminal page scheduling program)
The terminal page scheduling program (DFHTPS) is invoked for each terminal
type to which a BMS logical message built with SEND MAP PAGING or SEND
TEXT PAGING is to be sent. For each terminal designated by the originating
application program, DFHTPR is scheduled to display the first page of the logical
message if the terminal is in paging status, or the complete message if it is in
autopage status.

58 CICS TS for z/OS 4.1: Diagnosis Reference

Copy books
 Copy book Function

DFHBMSCA Defines constants for field attribute values, flags returned by BMS, and
character attribute types and values for SEND TEXT. It is usually copied
into BMS application programs.

DFHMCPE Included in the minimum-function BMS mapping control program
DFHMCPE$, and also forms the BMS fast-path module DFHMCX used
by both standard and full-function BMS. It is a small, fast,
self-contained, limited-function BMS for 3270 displays and printers.

DFHMCPIN Included in the standard and full-function versions of the BMS mapping
control program, DFHMCPA$ and DFHMCP1$ respectively. It contains
the code for input mapping.

DFHMIN Included in the DFHM32 and DFHMCPE programs. It contains input
mapping code for 3270 terminals.

DFHMSRCA Defines constants for MSR control. This is usually copied into BMS
application programs.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for basic mapping support, all with a trace
level of BM 1:
v AP 00CD, for temporary-storage errors
v AP 00CF, for exit trace
v AP 00FA, for entry trace.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 5. Basic mapping support 59

60 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 6. Builders

The builder modules:
v Make the autoinstall process possible (that is, build a terminal control table

terminal entry (TCTTE) dynamically).
v Allows new TCT entries to be added on a running CICS system.
v Allow the TCT to be dynamically updated on a running CICS system.
v Allow TCT entries to be deleted on a running CICS system.
v Reduce emergency restart times for those systems that use the autoinstall

function. These systems have to take the time to restore and recover only those
terminals that were autoinstalled at the time of termination.

v Reduce warm start times for those systems that use auto-install. No
auto-installed terminals (except LU6.2 parallel systems are recovered at warm
start).

v Reduce shutdown times for those systems using auto-install. Auto-install catalog
entries are deleted but the entry in storage is not destroyed during shutdown.

In this section, the term TCTTE is used in a general way to refer to the terminal
control table entries for connections (TCT system entries, TCTSEs), mode groups
(TCT modegroup entries, TCTMEs), sessions (session TCT terminal entries,
TCTTEs), skeletons (TCTSKs), and models.

To build or delete a control block for a particular device, a set of builders is called.
The set of builders is specified by a tree structure of patterns, each pattern
specifying one builder.

The builder modules (DFHBS*) are link-edited together into the DFHZCQ load
module.

Design overview

What is a builder (DFHBS*)?
A builder is responsible for all the actions that can occur on a particular
subcomponent of the TCTTE. The term subcomponent means a separately obtained
area of storage which is referenced from the TCTTE or a collection of fields in the
TCTTE that are logically associated with one another. General terms sometimes
used instead of subcomponent are object or node. For example, the NIB descriptor,
LUC extension, and BMS extension are all considered to be subcomponents.

Builder parameter set (BPS)
Each time a calling module invokes DFHZCQ for INSTALL, it supplies a builder
parameter set (BPS). The BPS describes the device to be defined. The device-type is
determined by matching attributes in the BPS with a table of definitions,
DFHTRZYT, in module DFHTRZYP.

A BPS consists of a fixed-length prefix, a bit map preceded by its own length, an
area for fixed-length parameters preceded by its own length, and three
variable-length parameters, BIND, USERID, and PASSWORD. Each variable-length
parameter has a 1-byte length field.

© Copyright IBM Corp. 1997, 2011 61

TCTTE creation and deletion
This section starts by describing the structure of the main components involved in
the process of creating and deleting TCTTEs. Figure 17 is in two halves: the top
half shows those components that can initiate the process of collecting all the
necessary data or parameters that go toward fully defining a TCTTE, and the
bottom half is concerned with how to go about creating the TCTTE after it has the
full set of parameters. Thus, all the processes are aiming for the same common
interface. This section deals first with the top-level processes that are activated to
create or delete TCTTEs; for the time being, assume that after returning from the
DFHZCQ interface a TCTTE has been created. (For a more detailed description, see
“DFHZCQ and TCTTE generation” on page 63.)

Component overview

DFHTCRP
The DFHTCRP program is responsible for reestablishing the TCTTEs that were in
existence in the previous run. There are conceptually three stages of processing in
this module:
1. Initialize DFHZCQ. Initialize DFHAPRD. If START=COLD, terminate.
2. Reestablish TCTTEs that were saved on the CICS catalog. If START=WARM,

terminate.
3. Call DFHAPRDR to forward-recover in-flight TCTTEs from the system log, if

an emergency restart is being performed.

DFHAMTP
The DFHAMTP program is used as part of INSTALL processing. It calls DFHTOR,
then DFHZCQ.

Warm & emer Cold CEDA AUTOINSTALL Transaction
start start INSTALL logon exit routing

DFHTCRP DFHAMTP DFHZATA DFHZTSP

- - - - - -

DFHZCQ

(syncpoint processing)

DFHTBSS

DFHTBS DFHBS*

DFHAPRDRDFHZGTA DFHTONR

Figure 17. Top-level view of the components participating in TCTTE creation

62 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZATA and the CATA transaction
CATA is a transaction that is initiated by the logon exit and causes DFHZATA to
run. It is passed the CINIT which is used to deduce the parameters which must be
passed to DFHZCQ in order to create a TCTTE.

DFHZTSP
The terminal sharing program, DFHZTSP, is used by transaction routing for
devices of all types, exclusively so for non-APPC devices.

DFHZCQ
The DFHZCQ program supports the INSTALL and DELETE interface that results
in the TCTTE being created or deleted. It relies on its callers to supply the
complete set of parameters that are to be used to create the TCTTE; that is, it is not
responsible for determining parameters for the TCTTE.

DFHBS* builder programs
The builders are responsible for creating the TCTTE. The parameters given to
DFHZCQ are passed on to the builders. They extract the parameters and set the
relevant fields in the TCTTE.

DFHTBS
The DFHTBS program is an interpreter that uses a pattern given to it by DFHZCQ
to drive the whole TCTTE creation or deletion process according to certain rules.

DFHAPRDR
The DFHAPRDR program is the orchestrator of the commitment of TCTTE creation
or deletion. It is responsible for driving DFHTBSS and DFHTONR for syncpoints,
during cold start and also for recovering in-flight creates or deletes from the
system log during emergency restart. It is called by the Recovery Manager,
DFHTCRP and DFHAMTP during start-up and directly from DFHTBS (to roll-back
an atom).

DFHTBSS
The DFHTBSS program is responsible for logging forward recovery records and for
updating the catalog as a result of the request initiated by DFHZCQ and actioned
by DFHTBS. It is driven by DFHAPRDR.

DFHTONR
The DFHTONR program is responsible for logging forward recovery records and
for updating the catalog for install or delete requests for TYPETERMS. It is driven
by DFHAPRDR.

DFHZGTA
DFHZGTA is the module called by DFHBS* and DFHZTSP (for remote system
entry sessions) to add or delete index entries for TCTTE entries. It maintains locks
on terminal namespaces, and handles calls to TMP to add, quiesce, delete, unlock
and unquiesce entries. It is driven at syncpoint or rollback for an atom by
DFHAPRDR.

DFHZCQ and TCTTE generation
This topic describes how a TCTTE gets built and deleted. You need to understand
at least one method by which a builder parameter set (BPS) is created; for example,
CEDA INSTALL or AUTOINSTALL. A BPS contains all the values necessary for the
creation of a TCTTE.

Chapter 6. Builders 63

Figure 18 gives a more detailed view of the main components involved in the
INSTALL process.

The four-stage process

In summary, the process consists of four stages:
1. Collecting the parameters together.
2. Creating the storage for the TCTTE and copying the parameters. Note

however, that at the end of this stage, a TCTTE has effectively been built. It is
still unknown to the rest of the CICS system, that is, the TCTTE name has not
been exposed. The modules involved here are DFHTBSB and DFHBS*.

3. Producing a recovery record. This is done at syncpoint processing time in the
DFHTBSS module. This stage is usually called Phase 1 syncpoint.

4. Writing or updating the catalog. Again, this is done in DFHTBSS and is called
Phase 2 syncpoint. It is at about this stage that the TCTTE name becomes
exposed and known to the rest of CICS.

What is DFHZCQRT?
DFHZCQRT is an array of “patterns” where each pattern defines a list of builders
that need to be called in order to create this particular type of TCTTE, that is, a
pattern is equivalent to a type of terminal. The array entry consists of two parts:
information that is private to DFHZCQ, and the pattern that is interpreted by
DFHTBS.

What does DFHTBSBP do?
The pattern entry is passed to DFHTBSBP (via DFHTBSB) after it has been found
by DFHZCQIS. DFHTBSBP calls each builder identified by the pattern in sequence
to create the object for which the builder is responsible. Note that DFHTBSBP
knows nothing about the TCTTE; DFHTBSBP merely follows a set of simple rules.
It keeps an audit trail of each builder that is called.

What is the RRAB used for?
The audit trail kept by DFHTBSBP is implemented by obtaining a Resource
definition Recovery Anchor Block (RRAB) that has some user storage attached to it.
As DFHTBSBP calls each builder to perform an action, it adds an “action element”
to the RRAB. (See “What is syncpointing?” on page 65) The address of the RRAB
for a UOW is held in the ‘APRD’ recovery manager slot, which ensures that
DFHAPRDR will be called at syncpoint. The RRAB stores the action blocks in two
types of chains, one for actions that are not part of a named resource definition

DFHZCQ

D F H Z C Q R T

DFHZCQIS

DFHTBS

RRAB

DFHTBSB DFHBS*

Syncpoint processing

DFHTBSS

DFHAPRDR

Figure 18. Major active components in the INSTALL process

64 CICS TS for z/OS 4.1: Diagnosis Reference

'atom' and one for actions that are part of a named atom. This later type are
chained off a Resource definition Action Name block (RABN). Also held in the
RRAB is an indicator set by DFHTOR if DFHTONR should be called at syncpoint
(if a typeterm has been installed), and a chain of Resource Definition Update
Blocks (RDUB).

What is a resource definition 'atom'?
Certain resource definitions must be installed or deleted as a single set. These
definitions are called a resource definition 'atom'. CICS installs the members of a
RDO group as individual resource definitions, which can fail without causing the
other resources to fail except for these atoms, which bear the name of the logical
set of definitions. For example:

A connection and its associated sessions
is named for the connection

A pool of terminals
is named for the pool of terminals

What is a Resource definition Atom Name block (RABN)?
The RABN is only created for those atoms of resource recovery that are named. It
holds the name of the atom, a chain of action elements for the atom, and the
recovery outcome of the atom (whether it failed and was backed out, or succeeded
and should be committed). DFHTBSB uses the RABN to decide if a session
definition should not be installed because the install of the parent connection has
already failed, for example. In our auto-install example, if the definition being
installed is a parallel connection, there will be a RABN for it from which the action
elements are chained.

What is a Resource Definition Update Block (RDUB)?
The RDUB is a record of locks held by a UOW against names in three namespaces:
1. Termids and Sysids
2. Netnames
3. Unique ids (Composed of the Netname of a Terminal Owning Region followed

by a period ‘.’ followed by the Termid or Sysid in that TOR)

During the installation, deletion, or replacement of a TCTTE definition the builders
DFHBS* obtain locks by calling DFHZGTA. These locks guarantee exclusive or
shared access to names in these namespaces. Exclusive access is used to prevent
another task from installing another definition with the same name, netname or
unique-id while this UOW is trying to install or delete (an action which may have
to be reversed). Shared access is used to block another task from deleting an entry
that a definition that this task is updating (for example, a system definition name
may be locked by a remote terminal definition that refers to it).

RDUBs also exist on a global chain so that other UOWs can easily find out if a
particular lock is held.

What is syncpointing?
When DFHTBSBP has exhausted the list of builders, it returns to its caller.
Similarly, DFHZCQIS returns to its caller, which could have been autoinstall.
However, there is still an audit trail that is attached to the RRAB. It is only when
the calling task terminates or issues DFHSP USER or EXEC CICS SYNCPOINT that
the next two stages occur.

Syncpoint processing consists of two phases. The first phase (prepare phase)
requires the resource manager to write a forward-recovery record to the log. Thus,

Chapter 6. Builders 65

if the second phase (commit phase) fails to write to the catalog, this recovery
record can be used to forward-recover the action on an emergency restart.

DFHTBS
The DFHTBS program is an interpreter that uses a pattern given to it by DFHZCQ
to drive the whole TCTTE installation or deletion process according to certain
rules.

DFHAPRDR
DFHAPRDR is invoked by recovery manager if the ‘APRD’ RM slot is non-zero.
This slot contains the address of the RRAB for this UOW if any resource definition
has taken place. It is also called by DFHTBS directly if an atom needs to be
rolled-back or to commit an atom during Cold Start. DFHAPRDR examines the
RRAB and chooses whether to call DFHTBSS, DFHTONR and DFHZGTA for each
phase of syncpoint or individual atom commitment.

If either DFHTBSS or DFHTONR have records to log/catalog, DFHAPRDR calls
the recovery manager to request that a record is written to the catalog noting that a
forget record will be written once syncpoint completes. The purpose of this call is
that if CICS should fail between the start of syncpoint phase 2 and the end, on an
emergency restart recovery manager will call DFHAPRDR with the log records for
this UOW so that they can be re-applied to the catalog, and the TCTTE entry or
entries can be re-built.

DFHTBSS
The DFHTBSS program is responsible for performing the correct recovery actions
for each atom and UOW at syncpoint (or during the rollback of an individual
atom). It writes forward recovery records to the system log and updates the catalog
during phase 1 and phase 2 of syncpoint respectively. It is directly driven by
DFHAPRDR.

The purpose of the builder (DFHBS*) modules is to build a TCTTE, TCTSE, and
TCTME and its associated control blocks. A TCTTE is built for terminals only; a
TCTSE and TCTME are built for both LU6.1 with MRO and LU6.2 single sessions;
all three are built for LU6.2 parallel sessions. DFHTBSS is invoked by DFHAPRDR
with a parameter list that indicates whether this call is for an individual atom or
for syncpoint and which phase is in force. For phase 1, it uses the action blocks
audit-trail to recall each builder. It asks each builder to supply the address and
length of the subcomponent so that it can create a single record containing a copy
of each component as a list; that is, the first part of the record contains a copy of
the object created by the first builder in the sequence, the second part contains a
copy of the object created by the second builder, and so on until the audit trail list
is finished. This record is then written to the system log as a forward recovery
record.

When DFHTBSS is reentered for the second phase (again a parameter on the call
by DFHAPRDR), it uses the record created in the first phase as the record that is
written to the catalog. During this stage, each builder is called to tidy up after the
object for which it is responsible; for example, for the TCTTE itself, it puts the
TCTTE in service.

Again note, DFHTBSS only implements a set of rules.

DFHTONR
DFHTONR is responsible for writing catalog records for TYPETERMs. It is called
by DFHAPRDR.

66 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZGTA
DFHZGTA is the module that is called by DFHBS* modules to add index entries
for TCTTE entries so that they can be located quickly either by DFHZLOC,
DFHZGTI or in VTAM exit code. It calls DFHTMP services. It obtains and releases
locks using the RDUB blocks, and at syncpoint is responsible for releasing all TMP
locks and unquiescing any TMP entries that were quiesced by DFHBS* modules.

Summary
v In overview, the process consists of four stages: parameter collection, obtaining

and initializing, phase 1 recovery record and logging, and phase 2 catalog
record.

v A builder contains TCTTE specific code.
v DFHTBS* modules implement the abstract rules for creating generic “objects”.
v DFHZCQRT contains patterns that define what builders are to be used to build

the TCTTE.
v Syncpoint processing consists of two stages (prepare and commit).
v DFHAPRDR is responsible for orchestrating the syncpoint process for all of

resource definition recovery.
v DFHTBSS is driven by DFHAPRDR using the audit trail produced by DFHTBSB.
v DFHTONR is driven by DFHAPRDR if any TYPETERMs were installed.
v DFHZGTA is driven by DFHAPRDR if any locks need to be released.

Example of an autoinstall
Consider the following: a terminal operator has logged on to the system and is
being autoinstalled. The CATA transaction is responsible for collecting together the
parameters required for the DFHZCQ INSTALL.

The process continues from the point where the DFHZCQ INSTALL is issued from
CATA:
 1. A call has been made to cause an install to occur. DFHZCQ ensures that other

related modules are already loaded.
 2. DFHZCQ calls the install-specific module (given in the parameter block

passed to DFHZCQ)
 3. DFHZCQIS performs various checks on the parameters passed by the caller of

DFHZCQ.
 4. DFHZCQIS finds a pattern in DFHZCQRT that matches with information

given in the parameters.
 5. DFHZCQIS calls DFHTBS with the pattern and parameters.
 6. DFHTBS routes the request to DFHTBSB; it is omitted from further

discussions.
 7. DFHTBSB checks that a valid pattern has been passed.
 8. DFHTBSB creates the RRAB which gets attached to the APRD Recovery

Manager slot.
 9. DFHTBSB calls the next builder as defined by the pattern.
10. Each builder (DFHBS*) creates its section of the TCTTE.
11. DFHTBSB adds an action element to the RRAB giving information about this

particular builder.
12. Steps 9, 10, and 11 are repeated until the pattern is finished.
13. DFHTBSB tidies up the RRAB and returns.
14. DFHTBS returns.

Chapter 6. Builders 67

15. If the return code was 'OK', DFHZCQIS returns the address of the hidden
TCTTE.

16. DFHZCQ returns.
17. The caller continues until DFHSP USER is issued or the task terminates.
18. DFHAPRDR invokes DFHTBSS with the RRAB indicating phase 1.
19. DFHTBSS examines the RRAB to determine phase.
20. Using the action elements created in step 11 on page 67, DFHTBSS recalls each

builder asking for information to be saved on the recovery log.
21. Each builder (DFHBS*) returns the address of the object built in step 10 on

page 67.
22. Using these addresses, DFHTBSS builds the recovery record.
23. DFHTBSS writes the recovery record to the system log.
24. DFHTBSS saves the stored version for the next phase.
25. DFHTBSS returns.
26. Recovery Manager calls all other resource managers that have a part to play

in the process; it knows this because there are addresses in the RM slots for
this UOW.

27. DFHTBSS is called for phase 2. It reuses the in-storage version of the recovery
record to write to the catalog.

28. DFHTBSS returns.

Patterns, hierarchies, nodes, and builders
Patterns were introduced in the previous section. This section examines in detail
what they look like. To achieve this, several terms have to be explained.

What is a hierarchy?
In this context, “hierarchy” is another word for tree. The structure of the TCTTE
can be thought of as a tree: at the top node is the TCTTE itself, containing pointers
to lower-level nodes.

Figure 19 shows the master node as the TCTTE, with subnodes connected to it
(BMS extension, special features extension, and so on).

As a result of this structure, it can be seen that the creation process must follow
several rules. For example, the storage for the master node has to be obtained
before pointers to subnodes are saved in it.

What is a pattern?
The objective of a pattern is to reflect or represent the hierarchy as described
above. Figure 20 on page 69 outlines the shape of a pattern. For each of the nodes
in Figure 19, there is a pattern. Starting with the TCTTE (the master node), there is
a master pattern. B1offset references the subpattern for the BIND image node;
B2offset references the subpattern for the BMS extension node; B3offset and
B4offset reference the subpatterns for user area and SNTTE subnodes respectively.

TCTTE

+
BMS extension Special features LUC systems NIB descriptor

extension extension extension

Figure 19. TCTTE structure

68 CICS TS for z/OS 4.1: Diagnosis Reference

In total, there are five patterns: the master pattern and four subpatterns—so what
is meant by pattern above was really a collection of patterns.

Note that each pattern contains the address of a builder, so we could represent the
TCTTE structure as:

The purpose of the builders
The purpose of the builders is to centralize the major functional code for creation
and deletion of the nodes associated with the TCTTE. Figure 20 and Figure 21
show how the patterns refer to the builders; the pattern is exploited by the
DFHTBS* code to activate the relevant builder function. For example, DFHTBSBP,
when given a pattern, extracts the address of the builder and invokes the BUILD
function belonging to the builder.

How does DFHTBSBP do its work?
First, you must examine more closely the structure of a builder in Figure 22 on
page 70.

Pattern name

Builder address

B1offset

B2offset

Bnoffset

Figure 20. Pattern structure

Master pattern

DFHBStz

Master builder

Subpatterns

DFHBStzb DFHBStb DFHBSto DFHBStc DFHBSts

Sub-builders

Figure 21. Patterns and subpatterns

Chapter 6. Builders 69

Remember that the pattern references a builder. In fact, it references a stub, the
first word of which points to a table (BSH_EP_TABLE), and is followed by code
that is responsible for enacting the entry as required by the caller. For example, if
the caller wanted to call BUILD, a call would be made to the stub with value 1.
The stub would extract the offset to the build code from the BSH_EP_TABLE, and
perform the call.

Thus, making a call from DFHTBS* to DFHBS* is relatively simple: all that is
needed is the function number (1 for BUILD, 2 for DESTROY, ...), a call to the stub,
and the pattern.

Summary
v The TCTTE is structured as a hierarchy with a master node (the TCTTE itself)

and subnodes (BIND image, BMS extension, and so on).
v Patterns mimic this hierarchy and consist of a master pattern which refers to

subpatterns.
v In turn, each pattern points to a builder: the master pattern refers to the master

builder and the subpatterns refer to the sub-builders.
v Builders centralize the major creation and deletion functions associated with the

node for which they are responsible.
v The invocation (or activation) of the builder functions is performed under the

strict control of the DFHTBS* modules.
v The order of invocation is totally determined by the structuring of the patterns.

Pattern

DFHBS*

save registers;
call;
return

BSH_EP_TABLE

build destroy

ready unready

connect flatten

unflatt find1st

findnxt makekey

Build specific code
(GETMAIN)

Destroy specific code
(FREEMAIN)

..............

Figure 22. The builder stub

70 CICS TS for z/OS 4.1: Diagnosis Reference

The DELETE process
By examining the hierarchy (see Figure 19 on page 68), you can see that there are
certain rules that have to be established. Firstly, you should check that the TCTTE
and its subcomponents are quiesced, that is, there is no activity in progress. And
secondly, and perhaps more obviously, the top node must not be the first object to
be freed. From this, you can derive two basic rules, or “functions”, that must be
supplied by any DFHBS*:

UNREADY
For all nodes associated with the master node. Ensures that no activity is
occurring; for example, that a CLSDST is not in progress. It must also
achieve exclusive ownership of the object; for example, ZGTA QUIESCE
ensures no locates on the given TCTTE succeed and that no other UOWs
can install another similarly named object until syncpoint. Further, it
initiates the ZGTA DELETE which does a TMP DELETE to remove the
entry.

DESTROY
Lower objects first. (See “What about the “lower objects first” rule?”:) Frees
the storage belonging to the node.

What about the “lower objects first” rule?
Figure 23 tries to add meaning to the descriptions of the UNREADY and
DESTROY functions. As each builder is called (as determined by the master
pattern), DFHTBSD records an audit trail of called builders. However, the audit
trail is managed slightly differently for the delete process, to guarantee order of
processing by DFHTBSS at phase 2 time. For further information, see “Completing
the process description” on page 73.

Example of a reinstall
 1. CEDA reads the CSD and converts the definition into a builder parameter set

(BPS).
 2. CEDA issues a DFHZCP INSTALL passing the BPS.
 3. Using the resource type code in the BPS, DFHZCQIS searches the DFHZCQRT

table for the associated pattern.

DFHZCQ TCTTE

(TCTTERTK)

D F H Z C Q R T

DFHZCQDL

DFHTBS

DFHBS*

RRAB
Unready

DFHTBSD

Syncpoint DFHAPRDR

Destroy
DFHTBSSP

Figure 23. Major active components in the DELETE process

Chapter 6. Builders 71

4. DFHZCQIS calls DFHTBSB passing the BPS and the pattern.
 5. DFHTBSB checks the pattern and creates a resource definition recovery action

block (RRAB) for the audit trail.
 6. Using the pattern, DFHTBSB calls the CHECKSET entry point of the

associated builder.
 7. The master builder does a DFHZGTI LOCATE to check whether the TCTTE

already exists.
 8. A TCTTE is found to exist, so the builder issues DFHZCP DELETE passing

the address of the old TCTTE.
 9. When a TCTTE is created, its position within the DFHZCQRT table is saved in

the TCTTE. DFHZCQDL uses this value to find the pattern associated with
this TCTTE.

10. DFHZCQDL calls DFHTBSD passing the object to be deleted and the pattern.
11. DFHTBSD extends the audit trail so that information about this delete can be

recorded.
12. DFHTBSD calls the UNREADY entry of each builder.
13. Each builder (DFHBS*) checks whether its part of the TCTTE is being used

(and vetoes the UNREADY if it is). It calls ZGTA QUIESCE and ZGTA
DELETE to lock and remove the index entries.

14. DFHTBSD updates the audit trail for each called builder.
15. DFHTBSD returns.
16. DFHZCQDL returns.
17. The master builder checks the return code (that is, that no builder vetoed the

UNREADY).
18. The master builder returns.
19. DFHTBSB checks the return code and recalls each builder at the BUILD entry

point passing the BPS.
20. Each builder obtains some storage and copies the parameters from the BPS. It

uses ZGTA ADD calls to lock and add index entries
21. DFHTBSB tidies up the RRAB and returns.
22. DFHZCQIS records the position within DFHZCQRT that enables DFHZCQDL

to find the pattern.
23. DFHZCQIS Returns.
24. CEDA checks the return code and issues DFHSP USER.

Note: At this stage there are two TCTTEs: the old one that was UNREADY
and the new one.

25. CEDA calls: DFHTBSS is entered for the first time (phase 1). The audit trail
consists of two parts (A and B). Part A contains the list of builders involved
with the UNREADY; part B contains the list of builders that created the new
TCTTE.

26. CEDA writes a recovery record to the system log for Part A indicating that a
delete is about to take place in phase 2.

27. CEDA creates a recovery record from Part B which represents the new TCTTE
to be built.

28. CEDA calls each builder asking for its subcomponent (FLATTEN).
29. DFHZQIX returns an address and length.
30. CEDA concatenates each subcomponent into the recovery record.
31. CEDA writes the recovery record to the system log.

72 CICS TS for z/OS 4.1: Diagnosis Reference

32. CEDA returns (end of phase 1).
33. CEDA reenter for phase-2 processing.
34. CEDA processes Part A, calling the DESTROY entry for each builder.
35. Each builder frees its part of the old TCTTE.
36. CEDA processes Part B of the audit trail.
37. CEDA writes the recovery record to the catalog.
38. CEDA calls the READY entry point for each builder on the audit trail.
39. Each builder does any tidying up that needs to be done.
40. CEDA returns.

Completing the process description
To complete the description of the creation and deletion process, two further
functions must be described: CONNECT and READY.

CONNECT
Figure 19 on page 68 shows the TCTTE hierarchy. All that has happened at build
time is that the separate parts of the TCTTE have been obtained. Access to these
subcomponents is achieved by referencing pointers that are held in the TCTTE. So
the CONNECT builder entry point is used to join the subcomponent to the TCTTE.

READY
The READY builder entry point is provided to enable any final tidying up that
may be required at the end of the build process. For example, if the TCTTE has the
AUTOCONNECT option, a SIMLOGON is initiated from this entry point. In
general, this entry point is rarely used.

The creation/deletion state machine
Figure 24 shows the symmetry between the various builder functions.

The starting point can be either state 5 (installing a TCTTE) or state 1 (deleting a
TCTTE). Thus, if several TCTTEs had been successfully built, but the last one
resulted in an error, we would end up in state 4. If it were not for the last one, we
would have ended up in state 3. So the caller is returned an error response, and
issues a DFHSP ROLLBACK. This causes DFHTBSS to call the DESTROY function
of the builders for all elements on the audit trail—even for those that were
“successfully” built in this atom, or UOW. Thus, an install of a atom can be
perceived as one complete unit. During the DESTROY process, if the atom is being
rolled-back, the builders call ZGTA QUIESCE and ZGTA DELETE to remove index
entries for the new TCTTE. Likewise during the READY process, if a delete is
being rolled back, the builders call ZGTA ADD to re-instate index entries for the
TCTTE.

UNREADY
State 2 -

TCTTE hidden and
vetoed

READY

UNREADY DESTROY
State 1 - State 3 - State 5 -

TCTTE visible TCTTEs hidden NOTHING

READY BUILD
+ CONNECT

DESTROY
State 4 -

(Partial) TCTTEs
and vetoed

BUILD

Figure 24. Create/delete state diagram

Chapter 6. Builders 73

The hierarchy and its effect upon the creation process
Summary so far
v Object creation is a four-stage process.
v It is controlled by a pattern.
v Each pattern refers to a builder.
v Each builder is responsible for a subcomponent of the TCTTE.
v Builders have a number of procedural entry points:

– BUILD
– CONNECT
– DESTROY
– READY
– UNREADY.

v These entry points are called under the control of the DFHTBS components.

This section now looks in greater detail at how the control of the builder calling
process is implemented. To do that, you need to understand in greater detail the
structure of the hierarchy, and the way the DFHTBS components interpret that
structure.

Figure 25 shows a more general hierarchy. Node 1 can be considered as a master
node: it is at the top of the tree and has two subnodes (2 and 3). However, you
could say that node 2 and its subnodes are also a tree: node 2 is the master node,
and nodes 4, 5, and 6 are the subnodes. Similarly, with node 3: it has subnodes 7,
8, 9, and 10.

The DFHTBS components exploit the idea that a tree consists of a node with trees
below it. In fact, DFHTBSBP uses recursion to access the tree of patterns.

Recursion
This section demonstrates how recursion is used to process a much simpler
structure than that given in Figure 25. The example shown in Figure 26 on page 76
is for the DFHTBSP program, which has the following parameters:
Input: PATTERN, HIGHERNODE, and BUILDER
Inout: AUDITTRAIL
Output:

NODE and RESPONSE.

The following list outlines the flow in DFHTBSBP. The step references refer to steps
in this list.
 1. Add and initialize an action to the AUDITTRAIL (this is used later in steps 5

and 11).

1

2 3

4 5 6 7 8 9 10

Figure 25. A general hierarchy

74 CICS TS for z/OS 4.1: Diagnosis Reference

2. Using parameter PATTERN, find the address of the associated builder.
 3. Call the builder stub with function number 1 (for BUILD) with the following

parameters:
Input: HIGHERNODE and BUILDER
Output:

NODE.
The builder uses the BUILDER parameters to create its specific object. Storage
is obtained and the parameters are copied into it.

 4. Check that the response from the build is ‘OK’.
 5. Copy the address of the output parameter NODE into the AUDITTRAIL

action.
 6. Process all the subpatterns that may be attached to your pattern
 7. Get the next subpattern Pn.
 8. Call DFHTBSBP with the following parameters:

Input: Pn, NODE, and BUILDER
Inout: AUDITTRAIL
Output:

SUBNODE and SUBRESPONSE

Note: In this step, you call yourself again, passing NODE. At the next level of
recursion, this appears as HIGHERNODE.

 9. Stop when the last pattern is processed.
10. Call the builder stub with function number 5 (for CONNECT) with the

following parameters:
Input parameters:

NODE
Inout parameters:

HIGHERNODE
The builder’s CONNECT entry point now places the address as given by
NODE into an offset of HIGHERNODE.

11. Finally, place the address of the pattern into the AUDITTRAIL action.

Chapter 6. Builders 75

Simple recursion example

 Consider the following simplified version of the hierarchy as given in Figure 26.
The step references refer to steps in the list in the section “Recursion” on page 74.
1. Start with pattern P1. Call its associated builder (step 3 on page 75). This

creates node N1.
2. All the patterns below P1 are processed, the first of which is P2.
3. Call DFHTBSBP passing P2, N1, BUILDER parameters, and others:

a. Using the passed pattern (now P2), call the builder. This creates node N2.
b. Process all patterns below P2; there are no subpatterns, so steps 6 on page

75 through 9 on page 75 6 on page 75 are not performed.
c. Call the CONNECT entry of the builder, passing higher node N1 and the

node just created, N2. This makes N1 point to N2.
d. Return to caller.

4. Get the next pattern, P3.
5. Call DFHTBSBP passing P3, N1, BUILDER parameters, and others:

a. Using the passed pattern (now P3), call the builder. This creates node N3.
b. Process all patterns below P3; there are no subpatterns, so steps 6 on page

75 through 9 on page 75 6 on page 75 are not performed.
c. Call the CONNECT entry of the builder passing in higher node N1 and the

node just created N3. This makes N1 point to N3.
d. Return to caller.

6. Last pattern processed (step 10 on page 75).
7. Call the builder associated with P1 to connect node N1 to HIGHERNODE.

(This is zero because there is no higher node. Usually, a master builder’s
CONNECT function either does nothing or adds the TCTTE name and address
into the table management tables.)

TBSB

Create audit P1 (Builder B1)
trail

Call TBSBP
P2 P3

(B2) (B3)
TBSBP Simple hierarchy

Builder B1

(Step 3) Build

Connect

TBSBP
(Step 8) Builder B3
(Step 10) TBSBP

Builder B2

(Step 3) Build

Connect

(Step 10)

Figure 26. Simple example showing recursion

76 CICS TS for z/OS 4.1: Diagnosis Reference

ROLLBACK
What happens when an error occurs during the install process? An example of this
would be when one TCTTE within a group is still in service when a CEDA COPY
command is being processed for the group with the REPLACE option specified.
“Example of a reinstall” on page 71 shows such a replace operation. The builders
for the existing TCTTE are called (UNREADY) in order to check that the DELETE
(FREEMAIN) can proceed. Thus, the audit trail refers to all called builders.

If the “total vote” from all the UNREADY builder calls indicates OK, the build
proceeds for the new TCTTE that is to replace the existing one. Thus, at the end of
the process, the audit trail consists of a list of references to builders associated with
the old TCTTE, and a list of references to builders for the new TCTTE (lists A and
B).

Consider the case when the group contains definitions for three TCTTEs, and a
VETO occurs for the last one. This means that there is an audit trail for A1, B1, A2,
B2 for which there was success, and list A3 for the unsuccessful UNREADY for the
third TCTTE.

The failure condition is returned to the caller (CEDA), which then issues a DFHSP
ROLLBACK.

Recovery Manager invokes DFHAPRDR which in turn invokes the DFHTBSS
module, with a parameter that indicates a rollback is required. Thus, the “A” lists
are processed, and all the READY entry points of the builders are called. Then the
“B” lists are processed, and the DESTROY builder entry is called to free the storage
obtained for the supposedly new TCTTEs.

To summarize, the rollback operation for UNREADY is READY, and the one for
BUILD is DESTROY.

Catalog records and the CICS global catalog data set

Overview
The fourth stage of the process is to produce a catalog record that is written to the
CICS global catalog data set. This record is used on a subsequent restart to
re-create the TCTTE, but in a different way from the “Build” process described
above. A CEDA INSTALL means that the TCTTE lives across CICS restarts,
avoiding the necessity of rerunning the install.

A RESTORE from the CICS catalog is a faster operation than a CEDA INSTALL
because there is no conversion of the CSD definition to a builder parameter set,
and less I/O involved.

In summary, a catalog record is produced by recalling each of the builders asking
for the address of the data that they want to be recorded on the catalog. Each
subcomponent of the TCTTE is then copied and concatenated into one record,
which is then written to the catalog. This process is known as FLATTEN.

A CATALOG call is made when significant events change the state of a TCT entry
which would be needed on a subsequent emergency restart. An example is the
recording of the membername of a generic VTAM resource connection when a bind
has occurred for the first time.

Chapter 6. Builders 77

On the restart, the record is read from the catalog, and presented back to each of
the original builders. Each builder performs a GETMAIN, and copies its section of
the recovery record into the acquired storage. This process is known as
UNFLATTEN.

At shutdown, auto-installed entries are removed from the catalog with an
UNCATALOG call (if they were cataloged because AIRDELAY¬=0). This drives
DFHTBS and the builders to produce similar records to those for a DELETE call,
but only to take action to delete the catalog record. This is significantly more
efficient than calling the builders to DELETE each entry, as the copy in storage is
left untouched.

The key and the recovery record
When the build process in DFHTBSBP has finally finished, this module makes a
call to the master builder at the MAKEKEY entry point. The builder produces a
key that is used to index the associated recovery record. (See Figure 27.)

This information is placed on the audit trail so that it can be picked up by
DFHTBSS. It consists of two parts:
1. Information that allows access to the catalog
2. The recovery record header.

More about the audit trail
Figure 28 on page 79 shows the layout of an audit trail. Internally it is known as
an action block, which consists of action elements. As each builder is invoked by
DFHTBSBP or DFHTBSDP, an action element is appended to the action block. Each
element has a reference to a pattern (PATT). This is to allow DFHTBSS to enter the
associated builder at the READY or DESTROY entry points.

CCRECP contains the address of the recovery record header. Only one of these is
produced as a direct result of the MAKEKEY call to the master builder. All other
action elements have their CCRECP set to zero.

12 34 Overall length

Token length

token

Total length of recovery record

length of pattern name

Pattern

Length of key

Key

Figure 27. The recovery record

78 CICS TS for z/OS 4.1: Diagnosis Reference

DFHTBSS and the FLATTEN process
During phase-1 syncpoint processing, DFHTBSS searches the action elements for a
nonzero CCRECP. On detection, it calls DFHTBSLP, passing the reference to the
pattern as given in the action element.

The storage “segments” are returned to DFHTBSSP which extracts the address and
length from each segment and copies them into the recovery record.

The RESTORE process
The recovery record header contains the pattern name which is used to find the
master pattern in DFHZCQRT. This is then passed to DFHTBSR to drive the
recovery process by calling each builder’s UNFLATTEN entry.

Each segment is extracted from the recovery record and is passed to the associated
builder’s UNFLATTEN entry point. These routines usually obtain some storage
and copy the segment into it.

Control blocks
Builder modules all use both LIFO and a builder parameter set (BPS), which are
passed between the CSECTs (DFHBS* modules). See “Builder parameter set (BPS)”
on page 61 for further information about the BPS.

Terminal storage acquired by the builders
The following terminal storage is acquired by the builders:
Control block Description Storage manager subpool
field
TCTSE Terminal control table ZCTCSE
 system entry
TCTME Terminal control table ZCTCME
 mode entry
TCTTE Terminal control table ZCTCTTEL (large TCTTEs)
 terminal entry ZCTCTTEM (medium TCTTEs)
 ZCTCTTES (small TCTTEs)
TCTENIBA NIB descriptor ZCNIBD
TCTEBIMG BIND image ZCBIMG
TCTTECIA User area ZCTCTUA

BS_ACTION_
PLM

NEXT

PREV

REQSTG

BS_ACTION_ELEMENT
ARRAY(1) PATT

NODE

CCRECP

ADD
CCWR

ARRAY(2) CCDEL
CCONLY

:
:
:

Figure 28. Action block and action elements (audit trail)

Chapter 6. Builders 79

TCTTESNT Signon extension ZCSNEX
TCTELUCX LUC extension ZCLUCEXT
TCTTETEA BMS extension ZCBMSEXT
TCTTETPA Partition extension ZCTPEXT
TCTTECCE Console control element ZCCCE

TCTTE layout

 Formatted dumps give the TCTTE first, followed by its supporting control blocks.

Terminal definition
CEDA DEFINE puts a definition on the CSD. The definition is in the form of a
CEDA command.

CEDA INSTALL reads the definition from the CSD, calls the builders and builds
the definition in CICS DSA, and updates the CICS global catalog data set for
future recovery.

EXEC CICS CREATE builds the same record that would be obtained from the CSD
and then calls the builders just like CEDA INSTALL.

EXEC CICS DISCARD calls the builders with a pointer to the TCTTE entry that is
to be deleted. The builders then freemain the TCTTE, remove index entries and the
catalog record.

Modules
DFHZCQ handles all requests for the dynamic add and delete of terminal control
resources. It contains the following CSECTs:
DFHBSIB3 DFHBSSZM DFHBSTP3 DFHBSTZ1
DFHBSIZ1 DFHBSSZP DFHBSTS DFHBSTZ2
DFHBSIZ3 DFHBSSZR DFHBSTT DFHBSTZ3
DFHBSMIR DFHBSSZS DFHBSTZ DFHBSXGS
DFHBSMPP DFHBSSZ6 DFHBSTZA DFHBSZZ
DFHBSM61 DFHBST DFHBSTZB DFHBSZZS
DFHBSM62 DFHBSTB DFHBSTZC DFHBSZZV
DFHBSS DFHBSTBL DFHBSTZE DFHZCQCH
DFHBSSA DFHBSTB3 DFHBSTZH DFHZCQDL
DFHBSSF DFHBSTC DFHBSTZL DFHZCQIN
DFHBSSS DFHBSTD DFHBSTZO DFHZCQIQ
DFHBSSZ DFHBSTE DFHBSTZP DFHZCQIS
DFHBSSZB DFHBSTH DFHBSTZR DFHZCQIT
DFHBSSZG DFHBSTI DFHBSTZS DFHZCQRS
DFHBSSZI DFHBSTM DFHBSTZV DFHZCQRT
DFHBSSZL DFHBSTO DFHBSTZZ DFHZCQ00

Note: The term “node” refers either to a TCTTE or to one of its subsidiary parts,
such as the NIB descriptor.

TCTTE

NIBD LUC
extn

SNTTE

Partition
support

BIND BMS
extn

User
area

Figure 29. TCTTE layout

80 CICS TS for z/OS 4.1: Diagnosis Reference

Subroutines that are found in the builders:
BSEBUILD

BUILD: Create the node. For example, obtain the shared storage for the
node.

BSECON
CONNECT: Connect the higher node to the lower. For example, make the
TCTTE point to the NIB descriptor.

BSEDESTR
DESTROY: Abolish a deleted node. For example, free the storage removed
from TMP’s chains.

BSEFINDF
FINDFIRST: Find the first subsidiary node of a higher node. For example,
BSFINDF(TCTTE) returns the NIBD being built.

BSEFINDN
FINDNEXT: Find the next subsidiary node of the one just found. For
example, return the address of the next model TCTTE.

BSEFLAT
FLATTEN: Build the catalog or log record segment for each part of the
TCTTE. This is passed back to the caller to create a complete “flattened”
TCTTE.

BSEMAKEY
MAKEKEY: Create a key that is used to write out the new node to the
global catalog.

BSENQIRE
ENQUIRE: The converse of BUILD, it creates a BPS from a TCTTE. The
BPS can then be shipped to another system.

BSEREADY
READY: Make a node ready to use. For example, add to TMP’s chains.

BSERESET
RESET: Build the TCTTE from the CICS global catalog. (RESET is a
cut-down version of UNFLATTEN.)

BSEUNFLA
UNFLATTEN: Build the TCTTE from the CICS global catalog.

BSEUNRDY
UNREADY: Check that a node can be deleted. For example, ensure that no
AIDs are queued on a TCTTE before deleting.

Not all subroutines are found in all builders. Certain subroutines are required, but
do nothing other than return to the caller. The subroutine names are the same in
each builder.

Module entry
Consider a module entry to be a router that does some housekeeping and then
branches to the appropriate subroutine:
v Enter the builder at offset X'18'.
v The first X'17' bytes are taken up by the standard DFHVM macro expansion.
v Save DFHTBS’s registers (DFHTBS calls each builder).
v Save the first two entries in the parameter list:

1. The address of LIFO storage
2. The index number of the subroutine to call.

v Increase the value of register 1 by 8 to get past the first two entries.
v Branch to the appropriate subroutine of the builder using the index number

passed.

Chapter 6. Builders 81

v Return from the builder subroutine.
v Restore registers.
v Return to DFHTBS.

Subroutine entry
v Register 1 points to the parameter list.
v Store Register 14 (return address) at Register 2 + X'nn' (varies by entry point).
v Store the parameter list into Register 2 + X'nn' (varies by entry point).
v The length of the parameter list varies.

Subroutine exit (return to module entry)
v Exit from the subroutine only through an “official” exit point.
v The exit point is usually the end of the subroutine.
v The end of the subroutine is indicated with “*end; /*BUILD */”.
v In some cases, the end of the subroutine branches back to the exit point

somewhere within the subroutine.
v Return (BR R14) from within the subroutine.
v Reload Register 14 from Register 2 + X'nn' and return to caller.

Patterns
In DFHZCQRT, a series of patterns define the flow through the builder modules.
(See Figure 30.) For each kind of terminal, there is a different pattern.

If installing, DFHZCQIS selects the pattern and calls DFHTBS (table builder
service). If deleting, DFHZCQDL does the selection.

DFHTBS interprets the pattern and calls each builder that the pattern calls out.
DFHTBS knows nothing about the terminal or whether you are installing or
deleting. It does what the pattern tells it to do.

DFHTBS passes a BPS as it calls each builder. The BPS allows one builder to be
used for many different kinds of terminals. For example, DFHBSTC obtains the
user area for all terminal types. The BPS contains the length to be obtained.

Calling sequence of builders for a 3277 remote terminal
 1. DFHZCQRT contains a series of comments followed by the patterns. The

comment appears as:
 /* * * * * * * * * * * * */
 /* 3277 REMOTE */
 /* * * * * * * * * * * * */

 2. Shortly afterwards is a Declare (DCL) followed by a level-1 name:
DCL 1 P145002 STATIC

|DFHZCQIS DFHZCQRT|

| DFHTBS |

| BSTZ BSTZ1 |. . . |BSZZV BSTZ3|

Figure 30. Calling sequence of builders (determined by patterns)

82 CICS TS for z/OS 4.1: Diagnosis Reference

This is the name of the pattern that drives the build process for a 3277 remote
terminal.
v DFHBSTZ is indicated to be the first builder called.
v One pattern is used to drive the building process.
v 18 subpatterns are to be used.
v Three of these 18 subpatterns each call one additional pattern.
v The terms “pattern” and “builder” mean the same thing. Therefore:

DFHBSTZ + DFHBSxx + DFHBSxx = 22
 (1) + (18) + (3) = 22
 pattern + sub- + sub-sub- = 22
 patterns patterns

Thus we have to go through 22 builder modules to build a 3277 remote
terminal.

 3. Go to the cross-reference at the back of the dump and find where P145002 is
defined in assembler language. Go to that address.

 4. This states that the first builder to be called is DFHBSTZ. This is the main
one.

 5. Drop down to the 2-byte fields that follow: these state the names of the
builders that are to be called, in sequence (18 should be listed).

 6. The first one is IAATZ1 which does not sound familiar:
v Go to the cross-reference at the back of the dump, look up IAATZ1, and go

to where it is defined.
v You see that this is DFHBSTZ1.
v You can also see a close resemblance between IAATZ1 and DFHBSTZ1, but

do not count on this to be always true.
 7. Now you know that the second builder to be called is DFHBSTZ1.
 8. The next two builders to be called are IAATCV (DFHBSTV) and IAATCB

(DFHBSTB).
 9. The fifth builder to be called according to the pattern needs to be looked at:

v The pattern says that IACTZ3 should be called.
v When you go to where IACTZ3 is defined, you find that this is DFHBSIZ3.
v You also see that DFHBSIZ3 calls IAATM.
v Look up IAATM and you see that it is DFHBSTM.
v This is a sub to a subpattern, and this is how nesting of builder calls occurs.
v Thus, DFHBSIZ3 calls DFHBSTM when building a local 3277.
v DFHBSTM accounts for one of the “other” three mentioned in step 2.

10. If you continue through this pattern, you can identify the names of the 22
builders that would be called to build a 3270 local TCTTE.
Here is the complete list, in order, of the builders that are called:
1 DFHBSTZ 12 DFHBSTH
2 DFHBSTZ1 13 DFHBSTI
3 DFHBSTZV 14 DFHBSTS
4 DFHBSTZB 15 DFHBSTT
5 DFHBSIZ3 16 DFHBSTZA
6 DFHBSTM 17 DFHBSTP3
7 DFHBSTB 18 DFHBSZZ
8 DFHBSIB3 19 DFHBSTB3
9 DFHBSTO 20 DFHBSTZE
10 DFHBSTC 21 DFHBSZZV
11 DFHBSTE 22 DFHBSTZ3

Chapter 6. Builders 83

A look at “Pattern Trace” supports this flow. Note that the first ZCP TBSB(P)
BUILD and its matching return (the return has no builder suffix) should be
ignored.

Builder parameter list
As each builder is called by DFHTBS, a parameter list is passed. Unique data is
passed to enable one builder module to be called for a variety of terminal types.
The length of the builder parameter list is fixed for each kind of subroutine; for
example, the parameter list passed to BSEBUILD is always X'23' bytes long,
regardless of the builder involved.
Subroutine Length of parameter list
 (hexadecimal)
BSEBUILD 23
BSECON 13
BSEDESTR 7
BSEMAKEY B
BSEREADY 3
BSEUNRDY 17
BSEFINDF F
BSEFINDN B
BSEFLAT B
BSEUNFLA 27
BSENQIRE 7

When the builders are called
Builders are called during:
v Cold start
v Warm start
v Emergency restart
v After emergency restart
v Autoinstall logon and logoff
v APPC autoinstall
v CEDA INSTALL
v EXEC CICS CREATE
v EXEC CICS DISCARD
v Transaction routing
v Non-immediate shutdown.

Cold start
v Read information from the CSD and call builders to build RDO-defined

terminals.
v Load in DFHTCT for non-VTAM terminals. Builders are not called.

Warm start

Note: A warm start is identical to an emergency restart from the builders
perspective. The only difference is that Recovery Manager has no forward-recovery
records to pass to DFHAPRDR.
v Read information from the global catalog and call builders to restore

RDO-defined terminals.
v Load in DFHTCT for non-VTAM terminals. Builders are not called.

84 CICS TS for z/OS 4.1: Diagnosis Reference

Emergency restart
v Read information from the global catalog and call builders to restore

RDO-defined terminals.

Note: Auto-installed terminals will not have a catalog entry if AIRDELAY=0
v Recovery Manager calls DFHAPRDR which calls the builders to restore in-flight

terminals installs from the system log.
v Load in DFHTCT for non-VTAM resources. Builders are not called.

After emergency restart
Delete autoinstalled terminals after the time period has expired as specified in the
AIRDELAY parameter (if the user has not logged back on before then).

APPC autoinstall
v Inquire on the model supplied by the autoinstall user program
v Install an APPC connection created from the above inquire.

Autoinstall logon and logoff
v Logon: Install terminal entry using model entry in the AMT.
v Logoff: Delete terminal entry.

CEDA INSTALL
Install VTAM terminal resources. (There is no builder process for CEDA DEFINE
or ALTER.)

EXEC CICS CREATE
Install VTAM terminal resources.

EXEC CICS DISCARD
Delete VTAM terminal resources.

Transaction routing
If a TCTTE is defined as shippable, its definition is shipped to the remote system
and installed there. The definition is obtained by an INQUIRE call to the builders
in the Terminal Owning Region and built with an INSTALL call in the Application
Owning Region.

Shutdown
Delete autoinstalled terminals from the catalog (if they had entries, and are not
LU6.2 parallel connections). On a warm start, therefore, autoinstalled terminals are
not recovered.

Diagnosing problems with the builders
When working on a problem associated with a builder (for example, abend or
loop), it may be helpful to ask yourself the following questions:
v Why am I in a DFHBS* module? Am I doing CEDA GRPLIST install, CEDA

GROUP install, autoinstall, logon, logoff, catalog, uncatalog, create or discard?
v What is the termid/sysid of the terminal I am working with (the one I am

installing, deleting, cataloging or uncataloging)?
v Is this resource part of an resource definition atom?
v How is this terminal defined?
v Are there any messages associated with this terminal?

Chapter 6. Builders 85

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for the DFHZCQxx modules:
v AP FCB0 - FCBF, for which the trace level is 1.

The following point IDs are provided for the DFHTBSx modules:
v AP FCC0 - FCC9, for which the trace level is 1.

The following point IDs are provided for the DFHTBSxP modules:
v AP 0630 - 0644, exception trace.
v AP FCD0 - FCD9, for which the trace level is 1.
v AP FCDA - FCDB, for which the trace level is 2.

The following point IDs are provided for the DFHTBSS module:
v AP 0620 - 0621, for which the trace level is 1.
v AP 0622 - 062E, and 0645 exception trace.

The following point IDs are provided for the DFHTONR module:
v AP 0648 - 0649, for which the trace level is 1.
v AP 064A - 064C, exception trace.

The following point IDs are provided for the DFHAPRDR module:
v AP 0601 - 0602, for which the trace level is 1.
v AP 0603 - 061E, exception trace.

The following point IDs are provided for the DFHZGTA module:
v AP FA80 - FA81, for which the trace level is 1.
v AP FA82 - FA9A, exception trace.

The following point ID is provided for message set production:
v AP FCDD, exception trace.

The following point ID is provided for DFHBSTZA:
v AP FCDE, exception trace.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Messages
Builder modules issue messages in the DFHZC59xx, DFHZC62xx, and DFHZC63xx
series.

Message sets
If a builder finds an error, it adds a message to a message set. This set is then
printed by the caller; for example:

86 CICS TS for z/OS 4.1: Diagnosis Reference

DFHTCRP Cold start (local system entry
 and error console only)
DFHAMTP CEDA, EXEC CICS CREATE
DFHEIQSC EXEC CICS DISCARD CONNECTION
DFHEIQST EXEC CICS DISCARD TERMINAL
DFHZATA Autoinstall
DFHZATD Autoinstall delete
DFHZATS Install and delete transaction routed terminals

How messages show up in a trace
If a message is issued from a builder module (that is, those with a prefix of
DFHZC59xx, DFHZC62xx, or DFHZC63xx), it appears in the trace as a table
builder services message trace entry with the following point ID:
v AP FCDD, exception trace.

This trace entry is produced when a message is added to the message set and
indicates there was a problem in building or deleting a terminal or connection.

For more information about the trace points, see the CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 6. Builders 87

88 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 7. Built-in functions

CICS provides the application programmer with two commonly used functions:
field edit and phonetic conversion.

These are functions that generally used to be coded as separate subroutines by the
programmer. They are referred to as built-in functions.

The field edit function is provided by the BIF DEEDIT command of the CICS
application programming interface.

The phonetic conversion function is provided as a subroutine that can be called by
CICS application programs, and also by any offline programs.

Design overview
The built-in functions component includes field edit and phonetic conversion, both
of which are available to a CICS application program. Also, the phonetic
conversion subroutine can be used offline.

Field edit (DEEDIT)
The field edit function allows the application program to pass a field containing
EBCDIC digits (0 through 9) intermixed with other values, and receive a result
with all non-numeric characters removed.

For further details of this function, see the CICS Application Programming Reference.

Phonetic conversion
This facility allows the user to organize a file according to name (or similar
alphabetic key), and access the file using search arguments that may be misspelled.

The phonetic conversion subroutine (DFHPHN) converts a name into a partial key,
which can then be used to access a database file. The generated key is based upon
the sound of the name. This means that names sounding similar, but spelled
differently, generally produce identical keys. For example, the names SMITH,
SMYTH, and SMYTHE all produce a phonetic key of S530. Likewise, the names
ANDERSON, ANDRESEN, and ANDRESENN produce a phonetic key of A536.
The encoding routine ignores embedded blanks in a name, so you can write names
prefixed by ‘Mc’ with or without a blank between the prefix and the rest of the
name, for example, ‘McEWEN’ or ‘Mc EWEN’.

For details of how to code a CALL statement for the DFHPHN subroutine
according to the language of the application program, see the CICS Application
Programming Guide.

Modules
 Module Description

DFHEBF EXEC interface processor for BIF DEEDIT command
DFHPHN Phonetic conversion subroutine

© Copyright IBM Corp. 1997, 2011 89

Exits
No global user exit points are provided for these functions.

Trace
No tracing is performed for the phonetic conversion subroutine.

The following point ID is provided for DFHEBF:
v AP 00FB, for which the trace level is BF 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

90 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 8. CICS-DB2 Attachment Facility

The CICS-DB2® Attachment facility allows applications programs to access and
update data held in DB2 tables managed by the DB2 for OS/390 product. It also
allows applications to send operator commands to a DB2 subsystem.

Design overview
The CICS-DB2 Attachment facility allows connection to a DB2 subsystem using the
CICS resource manager interface (RMI), which is also known as the task related
user exit interface. The attachment facility interfaces to DB2 through a series of
requests to three components of DB2, each of which processes specific types of
requests:
v Subsystem Support Subcomponent (SSSC) for thread and system control requests
v Advanced Database Management Facility (ADMF) for SQL requests
v Instrumentation Facility Component (IFC) for IFI requests

There no are DB2 release dependencies within the attachment facility; it can
connect to a DB2 subsystem running any supported level of DB2.

The architecture of the CICS-DB2 interface is described in the CICS DB2 Guide. The
attachment facility exploits the open transaction environment (OTE) and uses
CICS-managed open TCBs.

CICS Initialization
During CICS Initialization the following modules are invoked:

CICS-DB2 initialization gate DFHD2IN1
DFHD2IN1 first receives control from DFHSII1 duiring CICS initialization by
means of a DFHROINM INITIALISE call. When invoked with this function
DFHD2IN1 attaches a system task CSSY to run program DFHD2IN2.

DFHD2IN1 is invoked a second time later by DFHSII1 by means of a DFHROINM
WAIT_FOR_INITIALIZATION call for which DFHD2IN1 issues a CICS wait to
wait for DFHD2IN2 processing to complete.

CICS-DB2 recovery task DFHD2IN2
DFHD2IN2 runs under CICS system task CSSY attached by DFHD2IN1.
DFHD2IN2 links to program DFHD2RP, the CICS-DB2 restart program. On return
from DFHD2RP, DFHD2IN2 posts the ecb waited on by DFHD2IN1 so that CICS
Initialization can continue.

CICS-DB2 restart program DFHD2RP
DFHD2RP runs under system task CSSY during CICS initialization. DFHD2RP
performs the following functions:
v Adds storage manager subpools for the DFHD2ENT, DFHD2TRN and

DFHD2CSB control blocks.
v Issues lock manager domain ADD_LOCK requests to add the necessary locks

required by the CICS-DB2 Attachment facility to manage the dynamic chains of
DFHD2LOT and DFHD2CSB control blocks, plus locks to manipulate the
DFHD2GLB, DFHD2ENT and DFHD2TRN control blocks.

© Copyright IBM Corp. 1997, 2011 91

v Loads CICS-DB2 modules DFHD2CC, DFHD2CO, DFHD2D2, DFHD2STR,
DFHD2STP and DFHD2TM

v Activates the DFHD2TM gate with the kernel.
v For cold and Initial CICS starts:

– Purges the Global catalog of DFHD2GLB, DFHD2ENT and DFHD2TRN
control blocks

v For warm and emergency CICS starts:
– Installs DFHD2GLB, DFHD2ENT and DFHD2TRN blocks found on the global

catalog

CICS-DB2 Attachment startup
The CICS-DB2 Attachment facility can be started using one of the following
methods:
v specifying program DFHD2CM0 in PLTPI
v specifying SIT parameter DB2CONN=YES
v Issuing the DSNC STRT command
v Issuing the CEMT or EXEC CICS SET DB2CONN CONNECTED command

All of the above ways result in an EXEC CICS SET DB2CONN CONNECTED
command being issued and the CICS-DB2 startup program DFHD2STR getting
control.

CICS-DB2 startup program DFHD2STR
The startup program starts by reading a temporary storage queue to obtain any
parameters passed if a DSNC STRT command has been issued. It also retrieves any
parameters specified via the INITPARM SIT parameter by linking to program
DFHD2INI.

Next DFHD2STR must ensure the necessary DFHD2GLB block is installed. If a
DFHD2GLB is already installed, representing an installed DB2CONN, then it is
checked to make sure interface is currently shut before startup can proceed.

The remainder of DFHD2STR processing is as follows:
v Initialise the DFHD2GLB and set the state to 'connecting'
v MVS load the DB2 program request handler
v Attach a CICS system task to run the CICS DB2 service task CEX2
v Call DFHD2CO to connect to DB2 and obtain indoubts
v Enable the CICS-DB2 TRUE DFHD2EX1
v If connected to DB2 for OS/930 Version 5 or earlier, then issue an MVS Attach

for the CICS-DB2 master subtask program DFHD2MSB and wait for DFHD2MSB
initialization processing to complete

v Set the status of the connection to 'connected'
v Post CEX2 to process any indoubts passed from DB2
v Update state in the temporary storage queue to pass back to a DSNC STRT

command

CICS-DB2 attachment shutdown
The CICS-DB2 Attachment facility can be stopped using one of the following
methods:
v Issuing the DSNC STOP command

92 CICS TS for z/OS 4.1: Diagnosis Reference

v Issuing the CEMT or EXEC CICS SET DB2CONN NOT CONNECTED command
v Running the CDBQ or CDBF transactions
v Shutting down CICS

All of the above ways result in an EXEC CICS SET DB2CONN NOTCONNECTED
command being issued and the CICS-DB2 shutdown program DFHD2STP getting
control.

CICS-DB2 shutdown program DFHD2STP
Processing in DFHD2STP is as follows:
v If CDB2SHUT is set in the dump table, take a system dump (serviceability aid)
v If a CDB2SHUT dump has not been taken, and the CICS-DB2 master subtask

program DFHD2MSB has unexpectedly abended, then a system dump is taken
with a dump code of MSBABEND.

v Post CICS-DB2 service task CEX2 to end all subtasks, then terminate itself. Wait
for service task to complete.

v If present, post master subtask DFHD2MSB to terminate. Wait for it to terminate,
then detach master subtask TCB.

v Call DFHD2CO to disconnect from DB2.
v Call DFHD2CC to write out shutdown statistics.
v If the CICS-DB2 attachment is to go into 'standbymode':

– Re-initialize DFHD2GLB and set the state to 'connecting'.
– Post any tasks who are waiting for shutdown to complete.
– Issues 'Waiting for DB2 attach' message

v If the CICS-DB2 attachment is not to go into 'standbymode':
– Disable the CICS-DB2 TRUE DFHD2EX1.
– MVS delete the program request handler.
– Re-initialize the DFHD2GLB, set the state to 'shut'.
– Issue the shutdown complete message and post any tasks who are waiting for

shutdown to complete.

CICS-DB2 mainline processing

CICS-DB2 task related user exit (TRUE) DFHD2EX1
Control is passed to the TRUE via the CICS RMI. The TRUE manages the
relationship between a CICS task (represented by a LOT control block), and a
CICS-DB2 thread (represented by a CSB control block). DFHD2EX1 uses
parameters set in the DB2CONN and DB2ENTRY definitions to manage use of the
CICS DB2 threads, each thread running under a thread TCB.
v When connected to DB2 for OS/930 Version 5 or earlier, the thread TCB is a

subtask managed by the CICS DB2 attachment facility. It is the subtask running
program DFHD2EX3 which issues requests to DB2 on behalf of a CICS task. A
wait/post protocol is executed between the CICS task running in the CICS-DB2
TRUE, and the subtask in program DFHD2EX3.

v When connected to DB2 for OS/930 Version 6 or later, the thread TCB is a CICS
open TCB (L8 mode). Program DFHD2D2 is called under the open TCB, and
issues the requests to DB2. In this case, both DFHD2EX1 and DFHD2D2 run
under the L8 TCB.

The CICS-DB2 TRUE DFHD2EX1 gets invoked by the RMI for the following
events:

Chapter 8. CICS-DB2 Attachment Facility 93

v EXEC SQL commands and DB2 IFI commands from application programs
v syncpoint
v end of task
v INQUIRE EXITPROGRAM commands for the DB2 TRUE with the CONNECTST

or QUALIFIER keywords (RMI SPI calls)
v EDF - when EDFing EXEC SQL commands
v CICS shutdown

CICS-DB2 coordinator program DFHD2CO
The coordinator program runs under the CICS Resource owning (RO) TCB, and
handles the overall connection between CICS and a DB2 subsystem. It is called :
v by DFHD2STR during startup of the attachment facility to issue the coordinator

identify to DB2, that is to establish connection to DB2. Once established, it
passes DB2 an ECB to be posted should DB2 terminate, and it also obtains from
DB2 a list of units of work (UOWs) that DB2 is indoubt about. This list is
anchored off the CICS-DB2 global block (DFHD2GLB) for processing later in
startup.

v by DFHD2STP during shutdown of the attachment facility to terminate the
identify to DB2 and so disconnect.

v by the CICS-DB2 TRUE DFHD2EX1 during resync processing to pass the
resolution of a indoubt unit of work to DB2. Indoubt resolution has to be done
under the same TCB that issued the coordinator identify to DB2.

CICS-DB2 master subtask program DFHD2MSB
When operating with DB2 for OS/930 Version 5 or earlier, the DFHD2MSB TCB is
attached by DFHD2STR during startup of the Attachment facility. It runs as a
'daughter' of the main CICS TCB. It is 'mother' to all the subtask TCBs which
process the DB2 work. The DFHD2MSB TCB is detached by DFHD2STP during
CICS-DB2 Attachment shutdown.

The main functions of DFHD2MSB are:
v To attach thread subtasks as required
v To detach thread subtasks as required
v To provide a recovery routine to cleanup if a thread subtask fails

CICS-DB2 subtask program DFHD2EX3
When operating with DB2 for OS/930 Version 5 or earlier, a CICS-DB2 subtask
TCB is attached by DFHD2MSB when required by DFHD2EX1. It runs as a
daughter of the DFHD2MSB TCB and a granddaughter of the main CICS TCB. A
CICS-DB2 subtask TCB normally remains active for the lifetime of the CICS
Attachment facility and terminates as part of CICS-DB2 Attachment facility
shutdown. Exception conditions that cause a subtask TCB to be detached are:
v if the DB2CONN TCBLIMIT parameter is lowered
v if a CICS task is forcepurged whilst its associated subtask is active in DB2
v If a failure occurs during syncpoint processing during the indoubt window

requiring the thread to be released.

The DFHD2EX3 program issues requests to DB2 using the DB2 SSSC, ADMF and
IFC interfaces communicating via the DB2 program request handler DSNAPRH. In
order to process DB2 requests a TCB first has to IDENTIFY to DB2, secondly it has
to SIGNON to DB2 to establish authorization ids to DB2. Thirdly a thread has to
be created. Once a thread has been created API and syncpoint requests can flow to
DB2. Subsequent SIGNON requests can occur for a thread to change authorization

94 CICS TS for z/OS 4.1: Diagnosis Reference

ids to DB2 or for the purposes of DB2 cutting accounting records (partial SIGNON)
When a thread is nolonger required it is terminated. The TCB remains identified
and signed on to DB2 and awaits another request requiring it to create a thread
again.

Each DB2 subtask runs an instance of program DFHD2EX3 and each is represented
by a DFHD2CSB control block. A CSB control block is anchored to one of three
CSB chains depending on its state (an active thread within a UOW, a thread
waiting for work, or an identified, signed on TCB with no thread). The CICS-DB2
TRUE DFHD2EX1 manages the CSB chains.

CICS-DB2 thread processor DFHD2D2
The thread processor program DFHD2D2 is used only when operating with DB2
for OS/930 Version 6 and above, when the CICS-DB2 Attachment Facility uses
CICS open TCBs (L8 TCBs) rather than privately managed subtask TCBs. In the
Open Transaction environment (OTE), the CICS-DB2 TRUE DFHD2EX1 is invoked
under an L8 TCB. Instead of posting a subtask, DFHD2EX1 calls DFHD2D2 under
the L8 TCB. DFHD2D2 performs the same functions as performed by subtask
program DFHD2EX3 in a non OTE environment, that is issuing the identify,
signon, create thread, terminate thread calls to DB2, plus the api and syncpoint
calls to DB2.

DFHD2D2 is called via a subroutine domain call on which the address of the
relevant connection control block (DFHD2CSB) is passed. On the first call of a unit
of work, DB2 is called to "associate" the connection with the calling L8 TCB. Once
this is done, calls to DB2 can proceed as normal. When a DB2 thread is released
from a CICS transaction (typically at syncpoint), the connection is "dissociated"
from the L8 TCB. Hence a connection control block (DFHD2CSB) has an affinity to
an L8 TCB whilst is associated. With DB2 for OS/930 Version 5 and below a
connection has a permanent affinity to its subtask TCB.

CICS-DB2 service task program DFHD2EX2
The CICS-DB2 service task program DFHD2EX2 runs as a CICS system task under
transaction CEX2. Its mains functions are:
v To wait for DB2 to startup if DB2 is down when connection is attempted if

STANDBYMODE=RECONNECT or CONNECT is specified in the DB2CONN.
v To initiate shutdown of the CICS-DB2 Attachment facility if posted to do so.
v To perform the protected thread purge cycle.
v To issue EXEC CICS RESYNC to process DB2 indoubts.
v For DB2 for OS/930 Version 5 or earlier, to terminate all subtasks during

CICS-DB2 Attachment facility shutdown.

CICS-DB2 PLTPI program DFHD2CM0
Used in PLTPI or as a result of DB2CONN=YES being set in the SIT. It issues an
EXEC CICS SET DB2CONN CONNECTED command to start up the CICS DB2
Attachment facility.

CICS-DB2 comand processor DFHD2CM1
DFHD2CM1 processes commands issues via the DSNC command. The following
commands are processed:
v DSNC STRT - EXEC CICS SET DB2CONN CONNECTED command issued
v DSNC STOP - EXEC CICS SET DB2CONN NOTCONNECTED command issued
v DSNC MODIFY DEST - EXEC CICS SET DB2CONN MSGQUEUEn command

issued

Chapter 8. CICS-DB2 Attachment Facility 95

v DSNC MODIFY TRAN - EXEC CICS SET DB2CONN THREADLIMIT or EXEC
CICS SET DB2ENTRY THREADLIMIT command issued.

v DSNC DISC - call passed to DFHD2CC to disconnect threads
v DSNC DISP PLAN - call passed to DFHD2CC to display information on threads

for a particular DB2 plan
v DSNC DISP TRAN - call passed to DFHD2CC to display information on threads

for a transaction.
v DSNC DISP STAT - call passed to DFHD2CC to write out statistics
v DSNC -db2command - DB2 IFI ccommand issued to send operator command to

the connected DB2 subsystem.

CICS-DB2 shutdown quiesce program DFHD2CM2
Runs under transaction CDBQ. Issues an EXEC CICS SET DB2CONN
NOTCONNECTED WAIT command to shutdown the CICS-DB2 Attachment
facility.

CICS-DB2 shutdown force program DFHD2CM3
Runs under transaction CDBF. Issues an EXEC CICS SET DB2CONN
NOTCONNECTED FORCE command to shutdown the CICS-DB2 Attachment
facility.

CICS-DB2 table manager DFHD2TM
Handles installs, discards, inquire and set requests for the DFHD2GLB,
DFHD2ENT and DFHD2TRN control blocks representing the DB2CONN,
DB2ENTRY and DB2TRAN resources. Callers of DFHD2TM are:
v DFHAMD2 - for CEDA install and EXEC CICS CREATE
v DFHD2EX1 - to complete disablement of a DB2ENTRY or to complete

Attachment facility shutdown
v DFHD2RP - to install objects from the Global Catalog during CICS restart
v DFHEIQD2 - for EXEC CICS INQUIRE,SET and DISCARD of DB2 objects
v DFHESE - for inquiry during EXEC CICS QUERY SECURITY processing.

CICS DB2 statistics program DFHD2ST
Called by AP domain statistics program DFHAPST to process CICS-DB2 statistics
for EXEC CICS COLLECT STATISTICS and EXEC CICS PERFORM STATISTICS
commands.

CICS DB2 connection control program DFHD2CC
DFHD2CC proceses the following requests:
v Start_db2_attachment - request routed on to DFHD2STR
v Stop_db2_attachment - request routed on to DFHD2STP
v Write_db2_statistics - statistics collected from control blocks and are written out

to the terminal, to transient data or to SMF.
v disconnect_threads - CSB control blocks searched and marked so that threads are

terminated when they are next released.
v display_plan and display_tran - thread information collected from control blocks

and output to the terminal.

CICS DB2 EDF processor DFHD2EDF
Receives control from CICS-DB2 TRUE DFHD2EX1 when the TRUE is invoked for
an EDF request. DFHD2EDF uses the RMI provided parameters to format the
screen to be output by EDF before and after an EXEC SQL request is issued.

96 CICS TS for z/OS 4.1: Diagnosis Reference

Control blocks

DFHD2SS (CICS-DB2 static storage)
CICS-DB2 static storage (D2SS) is acquired by DFHSIB1 and anchored off field
SSZDB2 in the static storage address list DFHSSADS. The static storage is
initialized by the CICS-DB2 restart program DFHD2RP. Its lifetime is that of the
CICS region. CICS-DB2 static storage holds information such as storage manager,
lock manager and directory manager tokens acquired during restart processing
before any other CICS-DB2 control blocks are installed.

DFHD2GLB (CICS-DB2 global block)
The DFHD2GLB block represents an installed DB2CONN definition. It is
getmained by DFHD2TM when a DB2CONN is installed and freemained by
DFHD2TM when a DB2CONN is discarded. It holds CICS-DB2 state data global to
the connection and also the state data for pool threads and commands threads. The
pool and command sections of the DFHD2GLB are mapped by a common type
definition DFHD2RCT which is also used to map the DFHD2ENT control block.

The DFHD2GLB block is anchored off CICS-DB2 static storage in field
D2S_DFHD2GLB.

DFHD2ENT (CICS-DB2 DB2ENTRY block)
The DFHD2ENT block represents an installed DB2ENTRY definition. It is
getmained by DFHD2TM when a DB2ENTRY is installed and freemained by
DFHD2TM when a DB2ENTRY is discarded. It uses a type definition DFHD2RCT
in common with the pool and command sections of the DFHD2GLB block to
achieve a common layout for all three areas. A DFHD2ENT block is located using a
directory manager index that is keyed off the RDO name of the DB2ENTRY.

DFHD2TRN (CICS-DB2 DB2TRAN block)
The DFHD2TRN block represents an installed DB2TRAN definition. It is
getmained by DFHD2TM when a DB2TRAN is installed and freemained by
DFHD2TM when a DB2TRAN is discarded. A DB2TRAN can be located in two
ways. Firstly by a directory manager index keyed off the RDO name of the
DB2TRAN. Secondly by a directory manager index keyed off the transaction id
associated with the DB2TRAN.

DFHD2CSB (CICS-DB2 connection block)
The DFHD2CSB block represents a CICS-DB2 connection, with or without a thread.
A DFHD2CSB is created by DFHD2EX1 prior being passed to DFHD2EX3 or
DFHD2D2. A DFHD2CSB is freed by DFHD2EX1 after the DFHD2EX3 program
has returned to MVS, or when DFHD2D2 indicates it should be freed. A
DFHD2EX3 block is anchored off one of several CSB chains from a DB2ENTRY or
the DFHD2GLB depending on the state of the connection and the DB2 thread.

DFHD2GWA (CICS-DB2 global work area)
The DFHD2GWA block is the global work area of the CICS-DB2 task related user
exit (TRUE) DFHD2EX1. It is getmained when the TRUE is enabled, and
freemained when the TRUE is disabled. The D2GWA holds a chain of LOT control
blocks representing the tasks currently using the CICS-DB2 interface.

Chapter 8. CICS-DB2 Attachment Facility 97

DFHD2LOT (CICS-DB2 life of task block)
The DFHD2LOT block is the task local work area of the CICS-DB2 task related
user exit (TRUE) DFHD2EX1. It is getmained by DFHERM when a task first calls
the CICS-DB2 TRUE. It is freemained by DFHERM at end of task. Its address is
passed to DFHD2EX1 by DFHERM in parameter UEPTAA in the DFHUEPAR RMI
parameter list.

The DFHD2LOT holds CICS-DB2 state information for a CICS task using the
CICS-DB2 interface.

Modules
 Module Description

DFHD2CC CICS-DB2 connection control program
DFHD2CO CICS-DB2 coordinator program
DFHD2CM0 CICS-DB2 PLTPI startup program
DFHD2CM1 CICS-DB2 command processor
DFHD2CM2 CICS-DB2 quiesce shutdown program
DFHD2CM3 CICS-DB2 force shutdown program
DFHD2D2 CICS-DB2 thread processor
DFHD2EDF CICS-DB2 EDF processor
DFHD2EX1 CICS-DB2 task related user exit (TRUE)
DFHD2EX2 CICS-DB2 service task program
DFHD2EX3 CICS-DB2 subtask program
DFHD2INI CICS-DB2 Initparm processor
DFHD2IN1 CICS-DB2 initialization gate
DFHD2IN2 CICS-DB2 recovery task
DFHD2MSB CICS-DB2 master subtask program
DFHD2RP CICS-DB2 restart program
DFHD2STP CICS-DB2 shutdown program
DFHD2STR CICS-DB2 startup program
DFHD2ST CICS-DB2 statistics program
DFHD2TM CICS-DB2 table manager
DSNCUEXT CICS-DB2 sample dynamic plan exit

Exits
There are no Global user exits provided by the CICS DB2 Interface.

The CICS DB2 interface does however provide a dynamic plan 'exit' in the form of
a user-replaceable program. A sample default exit is provided called DSNCUEXT.
A dynamic plan exit allows the name of the plan to chosen dynamically at
execution time. For further information about dynamic plan exits see the CICS DB2
Guide.

Trace
The CICS-DB2 Attachment facility outputs trace entries in the range AP 3100 to AP
33FF. Trace output from the CICS-DB2 TRUE (DFHD2EX1) and the thread
processor (DFHD2D2), and GTF trace from the CICS-DB2 subtask is controlled by
the RI (RMI) trace flag. Trace from the rest of the attachment and other CICS-DB2
modules is controlled by the RA (Resource Manager Adapter) trace flag.

98 CICS TS for z/OS 4.1: Diagnosis Reference

Statistics
A limited set of CICS-DB2 statistics can be obtained by issuing the DSNC DISP
STAT command, which will output the statistics to a CICS terminal. The same
format of statistics is output to a nominated transient data queue when the
CICS-DB2 Attachment facility is shut down For more information see the CICS
DB2 Guide.

A more comprehensive set of CICS-DB2 statistics can be obtained by issuing an
EXEC CICS PERFORM STATISTICS RECORD command with the DB2 keyword, or
by issuing the EXEC CICS COLLECT STATISTICS command with the DB2CONN
or DB2ENTRY keywords. CICS-DB2 Global statistics are mapped by DSECT
DFHD2GDS. CICS-DB2 resource statistics are mapped by DSECT DFHD2RDS. For
more information see the CICS Performance Guide.

Chapter 8. CICS-DB2 Attachment Facility 99

100 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 9. Command interpreter

The command interpreter demonstrates to the application programmer the syntax
of CICS commands and the effects of their execution. It can also be used to
perform simple one-off tasks whose nature does not justify the writing of a
permanent application.

Design overview
The command interpreter is invoked by the CECI transaction and is an interactive,
display-oriented tool that checks the syntax of CICS commands and executes them.
Another transaction, CECS, performs only syntax checking.

The user enters a command that is analyzed in the same way as it would be by the
command translator, which processes it as if it were part of an application
program. The results of this analysis, including any messages, an indication of
defaults assumed, and the entire syntax of the command, are then displayed.

When the command is syntactically valid, the user can request its execution. The
interpreter calls DFHEIP, passing a parameter list precisely as would be passed
during the execution of a program that contained the command.

The interpreter does all this using the same command-language tables as are used
by the command translator. These tables contain data that define the syntax of
CICS commands and the contents of the parameter lists required by DFHEIP to
execute them.

Modules
 Module Function

DFHECIP Invoked by CECI. Checks that the terminal is suitable. Obtains and
initializes working storage. Loads the language tables. Links to
DFHECID

DFHECSP Same as DFHECIP, but invoked by CECS

DFHECID Receives data from the terminal and sends back a display. Analyzes
commands. Constructs parameter lists for DFHEIP, which it calls. Deals
with PF keys

DFHEITAB Command-language table (application programmer commands)

DFHEITBS Command-language table (system programmer commands).

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 101

102 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 10. CSD utility program (DFHCSDUP)

The CSD utility program, DFHCSDUP, provides offline services for you to list and
modify the resource definitions in the CICS system definition (CSD) file.
DFHCSDUP can be invoked as a batch program, or from a user-written program
running either in batch mode or under TSO. The second method provides a more
flexible interface to the utility, allowing for the specification of up to five user exit
routines to be called at various points during DFHCSDUP processing.

Further information about using DFHCSDUP is given in the CICS Operations and
Utilities Guide and the CICS Customization Guide.

The following commands can be used with DFHCSDUP:
ADD
ALTER
APPEND
COPY
DEFINE
DELETE
EXTRACT
INITIALIZE
LIST
PROCESS
REMOVE
SCAN
SERVICE
UPGRADE
USERDEFINE
VERIFY

These commands are described in the CICS Operations and Utilities Guide.

Design overview
When DFHCSDUP is invoked, control passes to the utility command processor
(DFHCUCP), which validates commands and invokes the appropriate routine to
execute the requested function. Unless DFHCSDUP has been invoked from a user
program specifying a get-command exit, DFHCUCP takes a command from the
input data set, using DFHCUCB to obtain the command and DFHCUCAB to
analyze and parameterize it. When supplied, the get-command exit is invoked
from the point during DFHCUCB’s processing where commands would otherwise
be read from SYSIN (or an alternatively named input data set when DFHCSDUP is
invoked from a user program).

Some syntax errors are diagnosed and reported by DFHCUCAB, and further
contextual validation takes place in DFHCUCV. Valid commands are then passed
to the relevant service routine for execution. If command execution is successful,
the next command is processed.

All commands are validated, but the execution of commands from the input data
set stops when an incorrect command is encountered, and execution of subsequent
commands is also suppressed if an error of severity 8 or higher occurs when the
command is executed. When commands are supplied by a get-command exit,

© Copyright IBM Corp. 1997, 2011 103

|
|
|
|

however, DFHCSDUP attempts to execute all commands, even if an error is
detected in the command syntax or during processing (unless the error is serious
enough to warrant an ABEND).

If errors occur while processing commands, error messages in the DFH51xx,
DFH52xx, DFH55xx, and DFH56xx series are written to SYSPRINT (or an
alternatively named output data set when DFHCSDUP is invoked from a user
program).

An ESTAE environment is established by DFHCUCP shortly after the start of
DFHCSDUP processing. If an operating system abend subsequently occurs, control
passes to the ESTAE exit routine, which then returns to MVS requesting a dump
and scheduling a retry routine to get control. This retry routine attempts cleanup
processing before returning to the caller of DFHCSDUP with a return code of ‘16’.

To protect the integrity of the CSD, DFHCUCP issues a STAX macro to defer the
handling of any attention interrupts that may occur in a TSO environment until all
processing associated with the current command has been completed.

DFHCSDUP uses batch versions of RDO routines from the parameter utility
program (DFHPUP) and the CSD management program (DFHDMP) to read, write,
and update resource definitions on the CSD file. All CSD control functions use the
batch environment adapter (DFHDMPBA), which performs environment-
dependent VSAM operations on the CSD file. DFHDMPBA also processes all
interactions with operating system services.

Modules
DFHCSDUP is link-edited from a number of object modules, including batch
versions of routines from DFHPUP and DFHDMP.

Exits
When invoked as a conventional batch program, DFHCSDUP supports only one
user exit: the EXTRACT exit, which is invoked at various stages during the
processing of an EXTRACT command. The name of the user-written program to
get control must be specified by the USERPROGRAM keyword of the EXTRACT
command. Details of selected CSD objects are passed to the user exit program so
that users can analyze the contents of their CSD in any way they may choose.

When invoked from a user program, DFHCSDUP supports the following five user
exits, the addresses of which can be specified in the EXITS parameter of
DFHCSDUP’s entry linkage:
1. Initialization exit—invoked by DFHCUCP
2. Termination exit—invoked by DFHCUCP
3. EXTRACT exit—invoked by DFHCULIS
4. Get-command exit—invoked by DFHCUCB
5. Put-message exit—invoked by DFHBEP.

Note: A user exit routine specified by the USERPROGRAM keyword of an
EXTRACT command is used in preference to any EXTRACT exit routine specified
on the entry linkage.

For further information about these user exits, see the CICS Customization Guide.

104 CICS TS for z/OS 4.1: Diagnosis Reference

Trace
Trace points are not applicable to offline utilities.

Statistics
The following statistics are maintained by DFHCSDUP, and are written, when
appropriate, to SYSPRINT (or alternatively named output data set):
CMDSEXOK Commands executed OK
CMDSINER Commands in error
CMDSNOTX Commands not executed
CMDSWARN Commands with warning messages.

All the above statistics are kept in DFHCUCP’s static storage and are always
output at the end of processing.

Chapter 10. CSD utility program (DFHCSDUP) 105

106 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 11. Database control (DBCTL)

An overall description of DL/I database support is given in Chapter 15, “DL/I
database support,” on page 135. This section gives information that is specific to
database control (DBCTL).

Design overview
The CICS support that enables connection to DBCTL, via the database resource
adapter (DRA), is based on the CICS resource manager interface (RMI), also known
as the task-related user exit interface. However, because it is necessary to provide
compatibility with the existing CICS-DL/I implementation (in terms of link-edit
stubs, API return codes, and so on), a limited amount of support within CICS itself
is provided, but there are no DBCTL release dependencies within the CICS
modules.

The main components of the CICS-DBCTL interface are shown in Figure 31:

v The connection process (CICS-DBCTL)
CICS-DBCTL connection and disconnection programs

These programs are used for establishing and terminating the connection
with the DRA.

CICS-DBCTL control program
This program is responsible for resolving indoubt units of work after a
CICS or DBCTL failure. It also outputs messages when DBCTL notifies
CICS of a change in the status of the CICS-DBCTL interface.

 When the CICS disconnects from DBCTL, the control program is
responsible for invoking the disable program which performs cleanup.

DRA control exit
This exit is invoked by the DRA, when connection has been established
with the DBCTL address space, to initiate the resynchronization process,

CICS address space

MENU, CONN, DISC,
INQ, CONTROL TRANS

USER DL/I
TRANSACTIONS

RMI
STUB

CICS

R
M
I

A
D
A
P
T
E
R

(A/T)

D
R
A

LOG

EXITS

IMS/ESA address space

D
B
C
T
L

D
L
/
I

D
B
R
C

I
R
L
M

LOG

Figure 31. The major components of the CICS-DBCTL interface

© Copyright IBM Corp. 1997, 2011 107

that is, to initiate the resolution of indoubt units of work. It is also
invoked to handle cases where connection to DBCTL cannot be achieved
or when the connection has failed.

DBCTL user-replaceable program
This program is invoked whenever CICS successfully connects to DBCTL
and whenever CICS disconnects from DBCTL.

Disable program
This program is invoked when CICS disconnects from DBCTL.

v The DBCTL call processor program
The function of this program is to issue an RMI call to DBCTL and to maintain
compatibility with the existing CICS-DL/I interface in areas such as application
program return codes, and so on.

v The interface layer
The adapter

The adapter’s primary responsibility is interfacing the RMI and DRA
parameter lists. Other responsibilities include the issuing of DRA
initialization and termination calls, when invoked by the CICS
connection and disconnection programs, and the management of CICS
tasks, in order to effect an orderly shutdown of the CICS-DBCTL
interface.

DRA suspend and resume exits
These exits are invoked by the DRA in order to suspend and resume a
CICS task while a DL/I call is processed by DBCTL.

Adapter exits
There are four exits for use by the adapter:
– The statistics exit
– The token exit
– The monitoring exit
– The status exit.

Details of these components are described in the following sections.

Note: CICS documentation uses the term “connecting and disconnecting from
DBCTL”. The DRA documentation refers to “initializing and terminating the
CICS-DBCTL interface”. In general, these two terms are synonymous.

The connection process

Connection and disconnection programs
In order to initialize, terminate, and inquire on the status of the interface, a set of
four programs is available:
1. Menu program
2. Connection program
3. Disconnection program
4. Inquiry program.

Menu program (DFHDBME): This permits a terminal user to display a menu,
which offers the option of connecting and disconnecting from DBCTL.

The menu program passes control to either the connection or the disconnection
program, as appropriate, using the COMMAREA to pass any overrides and
parameters.

108 CICS TS for z/OS 4.1: Diagnosis Reference

In the case of connection, it offers the ability to supply the suffix of the DRA
startup parameter table and the name of the DBCTL region. The DRA startup
parameter table contains various parameters, mostly relating to the initialization of
the CICS-DBCTL interface, including the name of the DBCTL region and the
minimum and maximum number of CICS-DBCTL threads. It also contains the
length of time in seconds that the DRA waits after an unsuccessful attempt to
connect to DBCTL, before attempting to connect again.

For disconnection, it offers the ability to specify whether an orderly or immediate
disconnection from DBCTL is required.

The menu program is intended for use by CICS operators or network controllers,
that is, users with special privileges.

BMS maps are used for both the menu and the inquiry programs. It should be
noted that the bottom half of the menu screen includes all the items which appear
on the inquiry screen, and the values are displayed on entry to the menu program,
if they are known. The DRA startup table suffix is not included on the inquiry
screen because the DRA startup table contains the application group name which is
used for security checking.

After a connection request has been issued, it is possible to issue a disconnection
request (orderly or immediate) from the menu program while the connection
process is still in progress. After an orderly disconnection request has been issued,
it is also possible to issue an immediate disconnection request while the orderly
disconnection process is in progress. This has the effect of upgrading the orderly
disconnection to an immediate disconnection.

Connection program (DFHDBCON): This program invokes the adapter
requesting connection to DBCTL.

This program can be invoked either from the menu program or from the CICS PLT.
It issues an ATTACH request of the CICS control program that later carries out
resynchronization of indoubt units of work with DBCTL. The control program then
issues a WAIT request.

The connection program continues by loading, activating (using the EXEC CICS
ENABLE command), and then calling the adapter (using a DFHRMCAL request).
A set of parameters is passed to the adapter which includes:
v The CICS applid
v The DRA startup parameter table suffix (optional)
v The DBCTL ID (optional)
v A set of exit addresses.

As a result of the DFHRMCAL request issued from the connection program, the
adapter loads the DRA startup/router module from the CICS STEPLIB library and
passes control to it, supplying it with various parameters including the CICS
applid, DRA startup parameter table suffix, and DBCTL ID. The DRA
startup/router module loads the DRA startup table. It then initiates the processes
required to establish the DRA and then returns control to the adapter which, in
turn, returns control to the connection program which then terminates. Until this
point is reached, any DBCTL requests issued from CICS tasks are rejected by the
CICS RMI stub (the DBCTL call processor).

Chapter 11. Database control (DBCTL) 109

The DRA startup/router module is responsible for establishing the DRA
environment, using the parameters specified in the DRA startup table in the CICS
STEPLIB library, overridden by any parameters passed to it.

The DRA establishes contact with the DBCTL address space and then invokes the
control exit to initiate the resynchronization process.

Disconnection program (DFHDBDSC): This program invokes the adapter
requesting disconnection from DBCTL.

The disconnection program is used to terminate the DRA environment. Two types
of disconnection are available:
Orderly disconnection

All existing CICS tasks using DBCTL are allowed to run to completion.
Immediate disconnection

Existing DL/I requests are allowed to complete but no further DL/I
requests are accepted.

In both cases a DBCTL U113 abend is avoided. (DBCTL can issue a U113 abend if
CICS terminates while there is an active DL/I thread running on its behalf in
DBCTL. The thread remains active for the duration of the PSB schedule, but
DBCTL would issue a U113 abend if the thread is doing something for the CICS
task.)

The disconnection program calls the adapter, using DFHRMCAL, supplying a
parameter to indicate the type of termination required.

In the case of immediate disconnection, the adapter issues a DRA TERM call and
returns to the disconnection program only when all existing DL/I threads have
completed. In the case of orderly disconnection, the adapter assumes responsibility
for managing CICS tasks, that is, it continues to accept requests for current tasks
using DBCTL until they terminate, but does not allow new CICS tasks to use
DBCTL. When the adapter detects that the count of permitted tasks has reached
zero, it issues a DRA TERM call.

The disconnection program finally posts the control program to notify it of the fact
that the CICS-DBCTL interface has been terminated. The control program then
terminates after starting the disable program. The disable program issues a
DISABLE command for the adapter, and performs cleanup.

It should be noted that the terminal used to invoke the disconnection program is
released after the input to the menu screen has been validated, enabling the
terminal operator to use other programs. Any further messages from the
disconnection process are generated centrally.

Inquiry program (DFHDBIQ): This program enables the user to inquire on the
status of the interface. It is intended for a wider audience than the menu program;
for example, application programmers.

Control program (DFHDBCT)
The control program is invoked in the following circumstances:
v When the control exit is invoked by the adapter on behalf of the DRA
v When a CEMT FORCEPURGE command is issued for a CICS task executing in

DBCTL

110 CICS TS for z/OS 4.1: Diagnosis Reference

v When the disconnection program has received a response from the adapter as a
result of a CICS-DBCTL interface termination request.

Its function in all cases is to issue messages. It then issues a WAIT after every
invocation. Also, it has some special functions in three cases:
1. When contact has been made with DBCTL and resynchronization of in-doubts

is required.
In this case, the control program issues the command:
 EXEC CICS RESYNC ENTRYNAME(adapter)
 IDLIST(DBCTL's in-doubts) ...

This causes CICS to create tasks for each indoubt unit of work. Each task
performs resynchronization and then informs the adapter via the CICS
syncpoint manager as to whether the task has committed or backed out. The
adapter then notifies the DRA on a task basis.
The following is a list of the possible calls to the adapter from the CICS
syncpoint manager:
v Prepare to commit
v Commit unconditionally1

v Backout1

v Unit of recovery is lost to CICS cold start2

v DBCTL should not be indoubt about this unit of recovery2.
Notes:
1 These items can be issued as a result of a RESYNC request.
2 These items can be issued as a result of a RESYNC request only.

2. When /CHECKPOINT FREEZE has been requested.
In this case, the control program invokes the disconnection program requesting
an orderly disconnection from DBCTL. Generally, an orderly disconnection
from DBCTL allows CICS tasks already using DBCTL to continue until task
termination. However, when a /CHECKPOINT FREEZE has been requested,
DBCTL prevents any PSB schedules from taking place. Thus, in this case, some
tasks might be terminated before end of task is reached with a ‘DBCTL not
available’ return code, if they issue a subsequent PSB schedule request.

3. When the disconnection program invokes the control program.
In this case, the control program starts the disable program.

DRA control exit (DFHDBCTX)
The control exit is invoked in the DRA environment in the following
circumstances:
v When contact has been established with the DBCTL address space, in order to

initiate resynchronization.
The control exit is invoked in the DRA environment whenever contact has been
established with DBCTL, whether invoked by the user or due to the DRA
automatically reestablishing contact after a DBCTL failure. The control exit
receives an input parameter list that includes the DBCTL ID, DBCTL’s list of
indoubt units of work, and the DBCTL RSE name. The control exit posts the
control program, which performs the resynchronization.

v When the MVS subsystem interface (SSI) rejects the IDENTIFY request to
DBCTL, thereby causing the IDENTIFY to fail.
This could occur if the DRA was trying to issue an IDENTIFY request to a
DBCTL subsystem that was not running. In this case the control exit sets a

Chapter 11. Database control (DBCTL) 111

response code of ‘0’. The first time in a connection attempt that the DRA receives
a ‘0’ response after an MVS SSI failure, the DRA outputs message DFS690A
inviting the operator to reply WAIT or CANCEL. On subsequent failures when a
response code of ‘0’ is returned, the DRA waits for the length of time specified
in the DRA startup table before attempting the IDENTIFY request again.

v When DBCTL rejects the IDENTIFY request to DBCTL; for example, incorrect
application group name (AGN) supplied.
In this case, the control exit asks the DRA to terminate.

v When the operator replies CANCEL to the DFS690A message during DRA
initialization, because contact cannot be established with DBCTL.
In this case, the control exit notifies the DRA to terminate immediately.

v When DBCTL abnormally terminates.
In this case, the control exit invokes the control program and then it asks the
DRA to issue an IDENTIFY request to DBCTL.

v When the DRA abnormally terminates.
In this case, it is not possible to access DBCTL from the same CICS session
without initializing the CICS-DBCTL interface using the menu program.

v When a /CHECKPOINT FREEZE request has been issued to DBCTL.
Note that /CHECKPOINT FREEZE is the command used to close down a
DBCTL subsystem. In this case the control exit invokes the control program
which, in turn, invokes the disconnection program requesting an orderly
disconnection from DBCTL. The control exit notifies the DRA to wait for a
termination request.

DBCTL user-replaceable program (DFHDBUEX)
The DBCTL user-replaceable program, DFHDBUEX, is invoked whenever CICS
successfully connects or disconnects from DBCTL. It provides the opportunity for
the customer to supply code to enable and disable CICS-DBCTL transactions at
these times.

The program runs as a CICS application and can thus issue EXEC CICS requests.
The program is invoked with a CICS COMMAREA containing the following
parameters:
v Request type: CONNECT | DISCONNECT
v Reason for disconnection: MENU DISCONNECTION | /CHECKPOINT

FREEZE | DRA FAILURE | DBCTL FAILURE
v DRA startup table suffix
v DBCTL ID.

See the CICS Customization Guide for information about the DFHDBUEX program.

Disable program (DFHDBDI)
The disable program, DFHDBDI, is invoked when CICS disconnects from DBCTL.
It performs cleanup, which includes disabling the adapter.

The DBCTL call processor program (DFHDLIDP)
Among the functions of the DBCTL call processor program, DFHDLIDP, are:

Issuing DFHRMCAL requests to the adapter: DL/I requests issued from
application programs that have been routed to this module are passed on to the
adapter. The DBCTL call processor constructs a register 1 parameter list that
includes the DL/I parameter list and a thread token. It then issues a DFHRMCAL
request.

112 CICS TS for z/OS 4.1: Diagnosis Reference

It is the responsibility of this module to generate the thread token required by the
DRA.

Maintaining return code compatibility: If any calls are made to the RMI before
the first part of the connection process has completed, that is, before the
DFHDBCON program has received a “successful” response code from the DRA via
the adapter, error return codes are set in the task control area (TCA) to indicate
that DBCTL is unavailable. These codes are put in the user interface block (UIB) by
the DL/I call router program, DFHDLI.

Similarly, the DBCTL call processor informs application programs when DBCTL is
no longer available; for example, after a DBCTL abend.

Another function of the call processor is to set up the TCA fields, TCADLRC and
TCADLTR, with response and reason codes respectively for the call. This ensures
that the application program continues to receive responses indicating normal
response, NOTOPEN, and INVREQ conditions, with the appropriate response and
reason codes in the corresponding UIB fields, UIBFCTR and UIBDLTR, after
NOTOPEN and INVREQ conditions have been raised.

Initiating PC abends: If an ‘unsuccessful’ return code is passed back to CICS as a
result of a DBCTL request, indicating that the CICS thread must be abended, the
DBCTL call processor issues a PC ABEND, which invokes syncpoint processing to
back out changes made to recoverable resources. Various abend codes can be
issued. Note that, in the case of a deadlock abend (abend code ADCD) it may be
possible to restart the program.

Exception trace entries are output in the case of transaction abends.

Writing CICS messages: For any thread abend in DBCTL, a CICS message is
written indicating the abend code passed back to CICS in the field PAPLRETC.
Similarly, for any scheduling failures, where the application program receives the
UIBRCODE field (UIBFCTR and UIBDLTR fields combined) set to X'0805', the
scheduling failure subcode is contained in a CICS message.

The interface layer

Adapter (DFHDBAT)
Control is passed to the adapter via the CICS RMI. It is the responsibility of the
adapter to construct the DRA INIT, DRA TERM, and DRA THREAD parameter
lists from the RMI parameter list passed to it. It must also transform the DRA
parameter list passed back after a DL/I call to the format expected by CICS.

Part of the DRA parameter list requires two tokens to be generated by CICS:
1. A thread token
2. A recovery token.

The thread token is generated by the DBCTL call processor, and enables a CICS
unit of work to be related to a DBCTL unit of work. It is used by the asynchronous
RESUME exit to identify the CICS thread to be resumed after a DL/I call.

The 16-byte recovery token is constructed by concatenating an 8-byte unique CICS
subsystem name (the CICS applid) with the 8-byte CICS RMI recovery token (also
known as the unit of work ID).

Chapter 11. Database control (DBCTL) 113

A further responsibility of the adapter is to manage CICS tasks when an orderly
termination of the CICS-DRA interface has been requested by means of the CICS
termination program. In this case, it continues to accept DL/I requests from CICS
tasks currently using DBCTL, but does not allow new CICS tasks to use DBCTL.
When the adapter detects that the count of current tasks has reached zero, it issues
a DRA TERM call to shut down the interface.

Table 3 summarizes the types of invocations of the adapter code from CICS, and
how the adapter reacts to the individual invocation.

Table 4 summarizes the types of invocations of the adapter code from the DRA,
and how the adapter reacts to each individual invocation.

Table 5 on page 115 summarizes the cases when the adapter invokes the adapter
exits.

 Table 3. CICS-adapter request summary

Invocation Invoker Adapter action

Initialize Connection program Issues DRA INIT

Terminate-Orderly Disconnection program Issues DRA TERM after
waiting for CICS-DBCTL
tasks to quiesce

Terminate-Fast Disconnection program Issues DRA TERM

PSB Schedule DBCTL call processor Issues THREAD SCHED

DL/I request DBCTL call processor Issues THREAD DLI

Prepare CICS syncpoint manager Issues THREAD PREP

Commit CICS syncpoint manager Issues THREAD COMTERM

Abort CICS syncpoint manager Issues THREAD ABTTERM

Lost To CICS cold start CICS syncpoint manager Issues COLD request

DBCTL should not be in
doubt

CICS syncpoint manager Issues UNKNOWN request

Task is terminating CICS task manager Issues TERMTHRD

Force Purge Task Control program Issues PURGE THREAD

Orderly CICS Term CICS termination Issues DRA TERM after
waiting for CICS-DBCTL
tasks to quiesce

Immediate CICS Term CICS termination Issues DRA TERM

CICS is abending CICS termination Issues DRA TERM

CICS has been canceled CICS termination Returns to CICS

 Table 4. DRA-adapter request summary

Invocation from the DRA Adapter action

CICS-DBCTL connection is complete Invoke the control exit

MVS SSI has rejected the IDENTIFY request
to DBCTL

Invoke the control exit

DBCTL has rejected the IDENTIFY request Invoke the control exit

Operator has replied CANCEL to message
DFS690A

Invoke the control exit

DBCTL has terminated abnormally Invoke the control exit

114 CICS TS for z/OS 4.1: Diagnosis Reference

Table 4. DRA-adapter request summary (continued)

Invocation from the DRA Adapter action

DRA has terminated abnormally Invoke the control exit

/CHECKPOINT FREEZE has been issued Invoke the control exit

PSB schedule, DL/I, syncpoint, thread
termination, thread purge, or interface
termination request is to be suspended

Invoke the suspend exit

PSB schedule, DL/I, syncpoint, thread
termination, thread purge, or interface
termination request is to be resumed

Invoke the resume exit

 Table 5. Adapter exit summary

Circumstances Adapter action

Successful completion of THREAD SCHED
request

Invoke the monitoring exit

Completion of THREAD COMTERM or
THREAD ABTTERM request

Invoke the monitoring exit

DRA thread failure Invoke the status exit

Resynchronization request issued from CICS
recovery manager

Invoke the token exit

CICS orderly or immediate term Invoke the token exit

CICS ABEND Invoke the token exit

Completion of DRA TERM issued as a result
of a termination request from disconnection
program

Invoke the statistics exit

Completion of DRA TERM issued as a result
of a CICS orderly termination request

Invoke the statistics exit

Suspend exit (DFHDBSPX)
The suspend exit is invoked by the adapter on behalf of the DRA so that a CICS
thread can be suspended during the processing of a DL/I call. The suspend exit
outputs a trace entry immediately before issuing a WAIT, and a trace entry
immediately after it is posted by the resume exit.

The suspend exit is also invoked by the adapter when a disconnection request
from the menu is being processed.

Resume exit (DFHDBREX)
The resume exit is invoked asynchronously by the adapter on behalf of the DRA,
and it is executed in the DRA environment. It handles both normal resume and
abnormal resume after an abend of the thread. The resume exit issues an MVS
POST.

When a thread fails, the resume exit is invoked and an ‘unsuccessful’ return code
is passed back to the DBCTL call processor, indicating that CICS must issue an
abend for that thread (task).

Adapter exits
The following sections describe the adapter exits.

Chapter 11. Database control (DBCTL) 115

The adapter statistics exit (DFHDBSTX): The statistics exit is invoked by the
adapter when the CICS-DBCTL interface has been terminated by the CICS operator
using the menu program to request disconnection from DBCTL. The exit is also
invoked by the adapter when CICS is terminated in an orderly way.

The function of the exit is to invoke the CICS statistics domain supplying the data
that has been returned from the DRA relating to the individual CICS-DBCTL
session.

For a /CHECKPOINT FREEZE command, the exit is not invoked, but the statistics
domain is called by DFHCDBCT.

The adapter token exit (DFHDBTOX): The token exit is invoked by the adapter
when a task is encountered which has not been allocated a thread token, that is, it
has not been through the DBCTL call processor module. This occurs for
resynchronization tasks and for the CICS termination invocation.

The adapter monitoring exit (DFHDBMOX): The monitoring exit is invoked by
the adapter when monitoring data has been returned by DBCTL as a result of a
PSB schedule request, and a CICS SYNCPOINT or DLI TERM request. The exit
passes the data on to the CICS monitoring domain to update the tasks monitoring
information.

The adapter status exit (DFHDBSSX): The status exit is invoked by the adapter
in the event of a DRA thread failure, so that resources owned by the failing thread
can be transferred to CICS, which then releases the transferred resources during
syncpoint processing.

DBCTL system definition
DBCTL system definition is described in the IMS System Definition Reference.

DBCTL PSB scheduling
When a CICS task requests the scheduling of a DL/I PSB by means of an EXEC
DLI SCHEDULE request or DL/I PCB call, and the request is for a DBCTL PSB,
control is passed to DFHDLIDP.

Database calls
For DBCTL, DFHDLIDP invokes the CICS RMI to pass control to DBCTL.

DBCTL PSB termination
DBCTL PSB termination is performed during the syncpoint when the resource
manager interface (RMI) communicates with DBCTL.

System termination
Support is provided to close down the CICS-DBCTL interface during CICS
termination. This should avoid the possibility of causing DBCTL to terminate with
a U113 abend because of CICS terminating while DL/I threads are running on its
behalf in DBCTL.

To provide the support, there is an extension to the RMI to invoke active adapters
at CICS termination.

If CICS termination hangs because the CICS-DBCTL interface does not close down,
the operator should type in a /DISPLAY ACTIVE command on the DBCTL console

116 CICS TS for z/OS 4.1: Diagnosis Reference

and identify the threads corresponding to the CICS system being terminated. This
is possible because the threads’ recovery tokens, which are displayed, start with
the CICS applid. The operator should then issue /STOP THREAD requests for
each thread.

Control blocks
The following diagram shows the major control blocks used to support the
CICS-DBCTL interface:

The DL/I interface parameter list (DLP) is described in “DL/I interface parameter
list (DLP)” on page 137.

The DBCTL global block (DGB) is acquired, from storage above the 16MB line,
when the CICS-DBCTL interface is first initialized. It lasts for the remainder of the
CICS execution.

The DBCTL scheduling block (DSB) is acquired, from storage above the 16MB line,
when a task issues a PSB schedule request to DBCTL; that is, the PSB used does
not appear in the remote PDIR. The DSB is freed at task termination.

See CICS Data Areas for a detailed description of these control blocks.

Modules
 Module Description

DFHDBAT Adapter
DFHDBCON Initialization program
DFHDBCT Control program
DFHDBCTX Control exit
DFHDBDI Disable program
DFHDBDSC Termination program
DFHDBIE Inquiry screens
DFHDBIQ Inquiry program
DFHDBME Menu program
DFHDBMOX Monitoring exit
DFHDBNE Menu screens
DFHDBREX Resume exit
DFHDBSPX Suspend exit
DFHDBSSX Status exit

CSADLI
DLP

DLPDLI
DLPEDPEP
DLPDPEP
DLPDGB

TCADSBA DSB

DGB

Entry point for DFHDLI
Entry point for DFHEDP
Entry point for DFHDLIDP

Figure 32. Some control blocks used for DBCTL support

Chapter 11. Database control (DBCTL) 117

Module Description

DFHDBSTX Statistics exit
DFHDBTOX Token exit
DFHDBUEX DBCTL user exit
DFHDLI DL/I router program
DFHDLIDP DBCTL call processor

Exits
The following global user exit points are provided for DBCTL:
v In DFHDBCR: XXDFB and XXDTO
v In DFHDBCT: XXDFA.

For further information about these exit points, see the CICS Customization Guide
and the CICS IMS Database Control Guide

118 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 12. Data interchange program

The data interchange program (DFHDIP) supports the batch controller functions of
the IBM 3790 Communication System and the IBM 3770 Data Communication
System. Support is provided for the transmit, print, message, user, and dump data
sets of the 3790 system.

Design overview
The data interchange program is designed as a function manager for Systems
Network Architecture (SNA) devices. It is invoked via DFHEDI for command-level
requests, or internally by the basic mapping support (BMS) routines using the
DFHDI macro. DFHDIP performs the following actions:
1. Determines whether a new output destination has been specified (it retains

information about the previous destinations in the data interchange control
block) and, if so, builds appropriate FMHs to select the new destination, and
outputs these FMHs to the SNA device via terminal control.

2. Invokes the appropriate subroutine to perform the desired function:

ADD Builds ADD FMH, transmits it and the user data

REPLACE
Builds REPLACE FMH, transmits it and the user data

ERASE
Builds ERASE FMH and RECID FMH and transmits them

NOTE Builds NOTE FMH, transmits it, and returns the reply to the user

QUERY
Builds QUERY FMH, transmits it, and outputs END FMH

SEND Outputs user data

WAIT Waits for completion of the I/O

END Builds END FMH and transmits it

ABORT
Builds ABORT FMH and transmits it

ATTACH
Removes FMH from initial input

DETACH
Frees the storage used by DFHDIP

RECEIVE
Reads a complete record from the logical device.

3. Sets the appropriate return code.

Figure 33 on page 120 shows the data interchange program interfaces.

© Copyright IBM Corp. 1997, 2011 119

Note:

1. The application program invokes DFHEDI (via DFHEIP) which then
communicates with DFHDIP by setting fields in the TCA.

2. DFHDIP receives control.
3. If no storage has been obtained for the data interchange block (DIB), storage

control is invoked. The storage is chained to the TCTTE. Significant status
information, such as the currently selected destination, is remembered in the
data interchange block, which is freed at the end of task processing.

4. A trace entry is made.
5. If logging is present (protected task and message integrity) and if a destination

change or function change occurs on output, temporary-storage control is
invoked to write the DIB to recoverable temporary storage.

6. Terminal control is invoked to output any built FMH and also to output the
user data. (DFHTC TYPE=WRITE is issued.) For input requests, DFHTC
TYPE=READ requests are issued to obtain a non-null input record.

7. Any errors obtained from the device are decoded and placed in the TCA return
code slot. If no errors were detected, a return code of ‘0’ (zero) is returned.

Modules
DFHEDI, DFHDIP

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for the data interchange program:
v AP 00D7, for which the trace level is DI 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

1
Application 2 Data interchange 3 Storage
program program control
EXEC CICS (DFHDIP)
...

4 Trace
control

5 Temporary
storage
control

7 6 Terminal
control

Figure 33. Data interchange program interfaces

120 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 13. Distributed program link

Distributed program link enables a program (the client program) in one CICS
region to issue an EXEC CICS LINK command to link to a program (the server
program) running in another CICS region (the resource region). The link can be
through intermediate CICS regions.

The communication in distributed program link processing is, from the CICS side,
synchronous, which means that it occurs during a single invocation of the client
program, and that requests and replies between two programs can be directly
correlated.

CICS distributed program linkThe CICS Intercommunication Guide includes
information about distributed program link processing.

Figure 34 gives an overview of distributed program link operation.

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 153.
This routes all program control requests to DFHEPC. DFHEPC passes all remote
LINK requests to the program manager domain (PGLE_LINK_EXEC request). For
local programs, program manager links to the program and, on return, it returns to
DFHEPC. For remote programs, program manager returns to DFHEPC with and
exception response, with a reason code indicating “remote program”, and DFHEPC
passes the request to the intersystems program, DFHISP. The operation of DFHISP
for distributed program link is the same as for function shipping, but only the

SYSTEM A

Application program

LINK
command

DFHXFP
DFHEIP

DFHEPC

DFHPGLE Request to
system B

DFHISP
Response to
application
program

DFHXFP
DFHEIP

DFHEPC

DFHPGLE

DFHISP

SYSTEM B

DFHMIRS

DFHEIP

DFHEPC
DFHXFP

DFHPGLE

Server program

Response
DFHMIRS to

system A
DFHEIP

DFHEPC
DFHXFP

DFHPGLE

Figure 34. Overview of program link

© Copyright IBM Corp. 1997, 2011 121

DFHXFP transformations are used. (See Chapter 26, “Function shipping,” on page
301.) The operation of DFHPEP is described in Chapter 38, “Program control,” on
page 363; the interface to DFHPGLE LINK_EXEC is described in “PGLE gate,
LINK_EXEC function” on page 1462.

CICS handles session failures and systems failures for distributed program link
processing by returning a TERMERR condition to the program that issued the
LINK request.

If the server program terminates abnormally and does not handle the abend itself,
DFHMIRS returns the abend code to the program that issued the LINK request.
This code is the last abend code to occur in the server program, which may have
handled other abends before terminating.

A client program using distributed program link can specify that a SYNCPOINT is
to be taken in the resource region on successful completion of the server program.
That is, any resources updated by the server program (or any associated program)
are treated as if they are a separate unit of work.

Modules
The following modules are involved in the distributed program link:

DFHEIP
EXEC interface (see Chapter 19, “EXEC interface,” on page 153)

DFHEPC
DFHEIP program control interface (see Chapter 38, “Program control,” on
page 363)

DFHISP
ISC converse (see Chapter 26, “Function shipping,” on page 301)

DFHMIRS
Mirror transaction (see Chapter 26, “Function shipping,” on page 301)

DFHPGLE
PG domain - link exec function (see “PGLE gate, LINK_EXEC function” on
page 1462)

DFHXFP
Online data transformation program (see “DFHXFP” on page 2282)

Exits
There are three global user exit points in DFHEPC: XPCERES, XPCREQ and
XPCREQC.

Trace
No trace points are provided for this function.

122 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 14. Distributed transaction processing

Distributed transaction processing enables a CICS transaction to communicate with
a transaction running in another system. The transactions are designed and coded
explicitly to communicate with each other, and thereby to use the intersystem link
with maximum efficiency.

The communication in distributed transaction processing is, from the CICS side,
synchronous, which means that it occurs during a single invocation of the CICS
transaction and that requests and replies between two transactions can be directly
correlated.

The CICS Intercommunication Guide tells you about multiregion operation and
intersystem communication, and also includes some information about distributed
transaction processing. Guidance information about designing and developing
distributed applications is given in the CICS Distributed Transaction Programming
Guide.

Design overview
CICS handles session failures and systems failures for distributed transaction
processing in the same way as for CICS function shipping. See the relevant
sections in Chapter 26, “Function shipping,” on page 301 for further information.

Distributed transaction processing with MRO and LU6.1
Figure 35 gives an overview of the modules involved with distributed transaction
processing for MRO and LU6.1 ISC.

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 153.
This routes all terminal control requests to DFHETC. DFHETC handles
BUILD_ATTACH, EXTRACT, and POINT_TC requests itself. It routes all other
requests (SEND, WAIT, CONVERSE, RECEIVE (with journal)), to DFHZARQ,
except for FREE_TC and ALLOCATE_TC requests, which are routed to DFHZISP.
If the request requires that the user conversation state be returned, DFHETC calls
DFHZSTAP. All these modules are described in detail under “Modules” on page
125.

Mapped and unmapped conversations (LU6.2)
In mapped conversations, the data passed to and received from the LU6.2
application programming interface (API) is user data. Mapped conversations use

DFHEIP

BUILD_ATTACH DFHETC DFHZSTAP
EXTRACT
POINT_TC

DFHZARQ SEND DFHZISP FREE_TC
WAIT ALLOCATE_TC
CONVERSE
RECEIVE (with journal)

Figure 35. Distributed transaction processing for MRO and LU6.1

© Copyright IBM Corp. 1997, 2011 123

the normal CICS API. Application programs and function shipping requests
written for LU6.1 operate using mapped conversations when transferred to LU6.2.

Figure 36 gives an overview of the modules involved with the processing of
mapped conversations in LU6.2. ISC.

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 153.
This routes all terminal control requests to DFHETC. DFHETC routes all requests
relating to an LU6.2 session to DFHETL except for ALLOCATE_TC requests, which
are routed to DFHZISP.

In turn, DFHETL calls DFHZARL to process most requests; it calls DFHZISP to
handle FREE_TC requests, and DFHZARM to handle the receipt of unrecognized
or unsupported IDs. If the request requires that the user conversation state be
returned, DFHETL calls DFHZSTAP.

DFHZARL’s processing depends on the type of request; for example, it calls
DFHZISP to allocate a TCTTE, DFHZARR to receive data, and DFHZERH for
outbound or inbound FMH7 processing. If the request needs to be transaction
routed, DFHZARL calls DFHZXRL to route the request to the terminal-owning
region (see Chapter 62, “Transaction routing,” on page 481).

With the exception of DFHZXRL, all these modules are described in detail under
“Modules” on page 125.

Unmapped conversations (also known as basic conversations), are used principally
for communication with device-level products that do not support mapped
conversations, and which possibly do not have an API open to the user. In
unmapped conversations, the data passed to and received from the LU6.2 API
contains GDS headers.

Figure 37 on page 125 gives an overview of the modules involved with the
processing of unmapped conversations in LU6.2 ISC.

DFHEIP

DFHETC

LU6.2 ALLOCATE_TC
only

FREE_TC only
DFHETL DFHZSTAP DFHZISP

DFHZARL DFHZARM

DFHZISP DFHZARR DFHZERH DFHZXRL

Figure 36. Distributed transaction processing for mapped conversations in LU6.2

124 CICS TS for z/OS 4.1: Diagnosis Reference

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 153.
This passes control to DFHEGL to process GDS commands. DFHEGL routes all
GDS conversation-related commands directly to DFHZARL. Some validation of
application-provided parameters is performed, and errors are reflected back to the
application. If the request requires that the user conversation state be returned,
DFHEGL calls DFHZSTAP.

DFHZARL’s processing depends on the type of request; for example, it calls
DFHZISP to allocate a TCTTE, DFHZARR to receive data, and DFHZERH for
outbound or inbound FMH7 processing. If the request needs to be transaction
routed, DFHZARL calls DFHZXRL to route the request to the terminal-owning
region (see Chapter 62, “Transaction routing,” on page 481).

Modules

DFHEGL
DFHEGL processes GDS commands. It is an EXEC interface processor module, and
receives control directly from DFHEIP. The TCTTE for the session is located and
checked for validity. All GDS conversation-related commands are mapped into a
DFHLUC macro call and routed directly to DFHZARL. There is no mapping or
unmapping of data, state indicators are not maintained, and there are no FMHs to
process.

DFHETC and DFHETL
DFHEIP routes all terminal control requests to DFHETC (the EXEC interface
processor for terminal control). DFHETC handles BUILD_ATTACH, EXTRACT, and
POINT_TC requests itself. It routes all other requests relating to an MRO or LU6.1
session to DFHZARQ except for FREE_TC and ALLOCATE_TC requests, which are
routed to DFHZISP. It routes all other requests relating to an LU6.2 session to
DFHETL except for ALLOCATE_TC, which is routed to DFHZISP.

DFHETL performs the following actions:
1. Maps an application request into a form suitable for the DFHZCP and

DFHZCC application request modules. This includes mapping application data
into GDS records.

2. Detects errors and returns error codes to the application.
3. Unmaps data from GDS records.
4. Maintains state indicators.

For ISSUE CONFIRMATION, CONNECT PROCESS, EXTRACT PROCESS, ISSUE
ERROR, ISSUE ABEND, and ISSUE SIGNAL commands, DFHETL:
1. Maps application requests into DFHLUC macro calls.

DFHEIP

DFHEGL DFHZSTAP

DFHZARL

DFHZISP DFHZARR DFHZERH DFHZXRL

Figure 37. Distributed transaction processing for unmapped conversations in LU6.2

Chapter 14. Distributed transaction processing 125

2. Updates state indicators in the TCTTE (for example, the TCTTE indicator that
shows that a CONNECT PROCESS command has been issued).

For SEND and CONVERSE commands, DFHETL:
1. Obtains storage for the processing of outbound application data.
2. Creates attach FMHs, if appropriate.
3. Calls DFHZARL to transmit data.

For RECEIVE commands, DFHETL:
1. Obtains storage for the processing of inbound data.
2. Calls DFHZARL to receive inbound data.
3. Extracts inbound FMHs, as appropriate.
4. Unmaps inbound data.
5. Validates LLs and rejects them if not valid.
6. Manages the passing of data back to the application.
7. If the application issues a RECEIVE NOTRUNCATE request in order to receive

only part of the chain, retains the residual data for subsequent RECEIVE
requests. DFHETL receives one complete chain of data at a time from
DFHZARL.

For WAIT commands, DFHETL calls DFHZARL.

For FREE commands, DFHETL:
1. Checks that the terminal is in the correct state to be freed.
2. Frees the storage used to hold RECEIVE data and the ETCB.
3. Calls DFHZISP to free the session.

DFHZARL
DFHZARL is always invoked via the DFHLUC macro. The DFHLUCDS DSECT
maps a parameter list that is set up to pass information to and return information
from DFHZARL. DFHZARL manages data in buffers, not in TIOAs. SEND
commands cause data to be assembled by DFHZARL into a buffer until a WAIT, or
other event, causes the data in the buffer to be transmitted.

DFHZARL invokes DFHZSDL to send data to VTAM, by placing requests on the
activate chain. However, for optimization, DFHZARL can invoke DFHZSDL
directly. Receive requests are handled by DFHZARR.

DFHZARL invokes DFHZUSR to manage the conversation state. The LU6.2 states
for each session are stored in the TCTTE for that session.

If the request needs to be transaction routed, DFHZARL calls DFHZXRL to route
the request to the terminal-owning region (see Chapter 62, “Transaction routing,”
on page 481).

Details of DFHZARL’s processing for the principal functions of the DFHLUC
macro that is used to invoke DFHZARL are given below.

INITIAL_CALL function
This function is requested by DFHZSUP. DFHZARL acquires LU6.2 send and
receive buffers. If the transaction is being started as a result of an ATTACH request

126 CICS TS for z/OS 4.1: Diagnosis Reference

received from a remote system, DFHZARL transfers any data received with the
attach header from the TIOA into the receive buffer.

ALLOCATE function
DFHZARL performs the following actions:
1. If the request passed the address of a profile entry, puts this address in the

TCA. If the request passed the name of a profile, calls transaction manager to
locate the entry and then puts the address of the entry in the TCA.

2. If the request passed a netname rather than a specific sysid, calls DFHZLOC to
locate the TCTTE for the netname and then puts the sysid into the DFHLUC
parameter list (as if the caller had the specified sysid).

3. Copies the DFHLUC parameter list to LIFO storage.
4. Calls DFHZISP to allocate a TCTTE.
5. Addresses the TCTTE allocated.
6. Acquires LU6.2 send and receive buffers.
7. Sets the user state machine (DFHZUSRM), request = ALLOCATE_RESOURCE.
8. Returns results to the caller.

SEND function
DFHZARL performs the following actions:
1. Checks the user state machine (DFHZUSRM).
2. Checks the LL count and maintains a record of the outstanding LL count.
3. If the command is SEND LAST, INVITE, or CONFIRM, and the outstanding LL

count is nonzero, issues an error message.
4. Sets the user state machine (DFHZUSRM).
5. Issues RECEIVE IMMEDIATE requests, as required, to pick up any negative

responses sent by the partner program.

The caller must specify WAIT in the request to force the data to be sent
immediately. SEND CONFIRM has an implicit WAIT, and control is not returned
until a response has been received, when the state machine is set.

For a SEND request with WAIT, DFHZARL then:
1. Sets the user state machine (DFHZUSRM), request=WAIT.
2. Invokes DFHZSDL for transmission of the data in application area or send

buffer.

For a SEND request without WAIT, DFHZARL then:
1. If there is sufficient space in the send buffer for all the data, transfers the data

from the application area to the send buffer, and returns control to the caller.
2. Saves the INVITE and LAST indicators.
3. If the send buffer cannot hold all the data, invokes DFHZSDL for an implicit

SEND.

If data or a CONFIRM command was sent (or both), DFHZARL then:
1. Checks for a signal received.
2. Checks for exception (negative) response received. If found, calls DFHZERH to

handle the error. On return, sets the state machine.
3. Returns results to the caller.

Chapter 14. Distributed transaction processing 127

When an implicit send is required, DFHZARL passes the data to DFHZSDL for
transmission, passing the address of the data in the send buffer and in the
application buffer. The total length of data passed to DFHZSDL is a multiple of the
request unit size. On return to DFHZARL, the remaining data is transferred to the
send buffer. The parameters passed to DFHZARL, such as INVITE and LAST, are
not transmitted by DFHZSDL.

RECEIVE function
DFHZARL passes the DFHLUC parameter list, specifying the type of receive
required, to DFHZARR for processing (see “DFHZARR” on page 130).

ISSUE ERROR or ABEND function
DFHZARL is called as a result of an ISSUE ERROR or ISSUE ABEND command,
and performs the following actions:
1. Sets the user state machine
2. Calls DFHZERH.

DFHZARM
DFHETL may invoke DFHZARM to provide service functions. DFHZARQ passes
control to DFHZARM instead of initiating DFHZSDS, DFHZRVS, and so on, if
DFHZARQ finds that it is an LU6.2 session. This applies to the SEND, WAIT,
RECEIVE, and SIGNAL commands. The same applies to DFHZISP for the FREE
command.

DFHZARM translates the data stream to and from a format suitable for invoking
DFHZARL. In particular:
v An LU6.2 attach FMH may have to be requested.
v Data must be passed in GDS record format (structured fields preceded by an

LLID).

DFHZARM is invoked via the DFHLUCM macro, which has seven executable
options:
v DFHLUCM TYPE =

– SEND
– RECEIVE
– WAIT
– SIGNAL
– FREE
– INVALID_ID

DFHLUCM TYPE=STORAGE defines the storage in LIFO for passing primary
input and output. The DSECT name is DFHLUMDS. TCTTE contains the
secondary input and output. The principal functions are described in the following
sections.

SEND function
DFHZARM performs the following actions:
1. Maps the data into GDS record format. The IDs used are:
v X'12F1'
v X'12F2'
v X'12FF'.

128 CICS TS for z/OS 4.1: Diagnosis Reference

2. Examines bits set in the TCTTE by DFHZARL to determine which DFC to
apply.

3. Invokes DFHZARL (using a DFHLUC TYPE=SEND,LIST=... macro call) to pass
the GDS records and DFC indicators.

4. Updates the state bits in TCTTE as necessary.
5. Interrogates the LU6.2 ATTACH_FMH_BUILT bit in the TCTTE, which was set

by DFHZSUP or DFHETL. This bit indicates whether this is first SEND. If an
LU6.2 attach header has not already been built as a result of a CONNECT
PROCESS command, DFHZARM issues CONNECT_PROCESS to DFHZARL,
assuming synclevel 2, before sending the data.

RECEIVE function
DFHZARM performs the following actions:
1. Calls DFHZARL using TYPE=BUFFER. Two calls are made. On the first call,

the first 4 bytes (LLID) are retrieved into LIFO. These are examined and the LL
is used to determine the TIOA size and to specify the length required in the
second call.

2. On the second call, retrieves the remainder of the data directly into the TIOA. If
the LL indicates concatenated data, a series of calls is made to retrieve all the
data.

FREE function
The FREE function is used, for example, by DFHZISP to ensure that I/O has
completed and CEB sent, using null data if necessary.

INVALID_ID function
The INVALID_ID function is used by DFHETL and DFHZARM itself. It handles
the receipt of unrecognized or unsupported IDs. DFHZARM calls DFHZARL with
ISSUE_ERROR (X'0889010x'), and sends a record with ID X'12F4' followed by the
unrecognized ID. If the remote system responds, DFHZARM turns the flows
around so that the local system can try again.

LU6.1 chains
An LU6.1 chain corresponds to one SEND command. LU6.2 chains are bigger, so:
v For outbound data, DFHZARM maps one SEND into one structured field

(concatenated if necessary).
v For inbound data, DFHZARM retrieves one (possibly concatenated) field and

calls it a chain, thus preserving compatibility.

DFHZARQ
DFHETC routes SEND, WAIT, CONVERSE, and some RECEIVE commands to
DFHZARQ. RECEIVE commands are passed to DFHZARQ if input journaling is in
effect. Otherwise, the call is routed to DFHZARL directly.

DFHZARQ passes control to DFHZARM instead of initiating DFHZSDS,
DFHZRVS, and so on, if DFHZARQ finds that it is an LU6.2 session. This applies
to the SEND, WAIT, RECEIVE, and SIGNAL commands.

Reasons for calling DFHZARQ are:
v To avoid duplication of existing code
v So that DFHZCP performs journaling of outbound data
v To perform an implicit CONNECT PROCESS if SEND or CONVERSE is the next

session-related command after ALLOCATE

Chapter 14. Distributed transaction processing 129

v To enable the SNA change direction (CD) and end bracket (EB) indicators to
flow with the data.

DFHZARR
DFHZARR is called by DFHZARL to handle receive requests. Details of the
processing follow.

RECEIVE function
This function must be able to handle receipt of the following:
v Application data
v FMH7s and ER1s (negative responses)
v PS_headers (Prepares, Request_commits)
v Indicators such as CD, CEB, and RQD2
v Signal.

Figure 38 gives an overview of the modules involved with the processing of
receive requests. These modules are described in Chapter 117, “CICS executable
modules,” on page 2161.

DFHZARL passes the DFHLUC parameter list, specifying the type of receive
required, to DFHZARR.

DFHZARR then performs the following actions:
1. Checks that request is valid; if not, returns error codes.
2. Initializes the application and LU6.2 receive buffers (by calls to DFHZARRA

and the DFHZARR0 subroutine of DFHZARR respectively).
3. Calls DFHZARRC to determine what to process next.
4. Depending on DFHZARRC’s response, calls the relevant subroutine.
5. If “enough” (or all that can be) has not been received, loops back to step 3;

otherwise step 6.
6. Tests for (and returns) signal when it has been received.

The results of the receive are passed back to the caller in the DFHLUC parameter
list.

To control this processing, DFHZARR uses the variables receive_type and
what_next, as follows.

DFHZARL

DFHZARR

DFHZARRA DFHZARRC DFHZARER DFHZARRF

DFHZERH

DFHZRVL

DFHZUSR

Figure 38. Distributed transaction processing of LU6.2 receive requests

130 CICS TS for z/OS 4.1: Diagnosis Reference

receive_type can have the following values:
RECEIVE_WAIT

Request was a receive and wait.
RECEIVE_IMMEDIATE

Request was a receive immediate.
LOOK_AHEAD

All the allowed user data has been received, but only one receive
immediate call to the DFHZARR1 subroutine of DFHZARR is permitted to
attempt to pick up indicators such as CD, CEB, or a PS_header.

NO_MORE_RECEIVES
No more calls to DFHZARR1 are permitted, but processing may continue
with what has already been received.

NO_RECEIVE_LOOK_AHEAD
All the allowed user data has been received. An attempt must be made to
pick up indicators such as CD, CEB, or a PS_header without a call to
DFHZARR1. This value is only required for a receive immediate request.

RECEIVE_COMPLETE
Receive processing is finished.

The first two values are possible initial values of receive_type, and the other four
are used as the receive progresses.

what_next is an output of DFHZARRC, and represents what is next to be
processed. It can have the following values:
DATA_RECORD

Application data
FMH_RECORD

FMH7 in the buffer
PS_HEADER_RECORD

Prepare or Request_commit
PARTIAL_LL

First byte of a logical record only, therefore cannot tell whether it is a
DATA_RECORD or PS_HEADER_RECORD

CD Change Direction
CEB Conditional End Bracket
RQD2 RQD2 without CD or CEB
RQD2_CD

RQD2 with CD
RQD2_CEB

RQD2 with CEB
ER1 Negative response
EMPTY_BUFFER

Nothing available to receive.

DFHZERH
DFHZERH is called by DFHZARL or DFHZARRF, when it is required to transmit
error information or when error information has been received.

Outbound errors
For outbound errors, DFHZERH is invoked by DFHZARL following an
ISSUE_ERROR, ISSUE_ABEND, or SYNC_ROLLBACK request.

An FMH7 must be transmitted, but can only be transmitted if the session is in the
send state.

If the session is in the receive state, DFHZERH:

Chapter 14. Distributed transaction processing 131

1. Sends a negative response
2. Purges the remaining data to end of chain.

In all cases, DFHZERH then:
1. Checks that the session is still in bracket
2. Clears the send buffers
3. Calls DFHZARL to send the FMH7.

Inbound errors
For inbound errors, DFHZERH is invoked by DFHZARL or DFHZARRF when a
process-level exception response or an FMH7 has been received.

If an exception response is received while in the send state, DFHZERH purges the
present output buffer and sends ‘LIC,CD,RQE1’ to put the conversation into
receive state—so that the following FMH7 can be received.

If an FMH7 is received, DFHZERH examines the associated sense code and any
GDS error log data, then returns to its caller.

DFHZISP
DFHZISP is called by DFHETC to perform ALLOCATE_TC requests. (ALLOCATE
commands are passed to DFHZISP because DFHETC cannot check the session type
until the session is allocated.)

DFHZISP is also called to perform FREE_TC requests.

DFHZSTAP
DFHZSTAP provides a means of determining the conversation state of an MRO or
LU6.2 session from the application side. This function is required if the application
issues an EXEC CICS EXTRACT ATTRIBUTES command with the STATE option,
or a conversation-based command with the STATE option.

For MRO, modules that invoke MVS services via the DFHTC macro also update
the conversation state information with a DFHZCNVM TYPE=PUT macro call.
When an application requires the conversation state of a session, DFHETC calls
DFHZSTAP using a DFHZSTAM TYPE=GETCURRSTATE macro, which returns a
value representing the conversation state of the session.

For LU6.2, DFHZUSR is called to maintain the user conversation state machine.
(See Chapter 66, “VTAM LU6.2,” on page 523 for further details.) When an
application requires the conversation state of a session, DFHETL (mapped) or
DFHEGL (unmapped) calls DFHZSTAP using a DFHZSTAM
TYPE=GETCURRSTATE macro. DFHZSTAP examines the DFHZUSR state machine
and maps the information into a value representing the conversation state of the
session.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for distributed transaction processing:
v AP FDxx, for which the trace level is TC 1

132 CICS TS for z/OS 4.1: Diagnosis Reference

v AP FExx (LU6.2 application receive requests), for which the trace levels are TC 2
and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 14. Distributed transaction processing 133

134 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 15. DL/I database support

Facilities for accessing DL/I databases and database control (DBCTL) support are
available only with IMS/ESA.

Within a single CICS system, the following types of support can be available:
v DBCTL support present. For specific information about DBCTL, see Chapter 11,

“Database control (DBCTL),” on page 107.
v Remote DL/I and DBCTL support present (the PDIR system initialization

parameter is specified). For specific information about remote DL/I, see
Chapter 41, “Remote DL/I,” on page 371.

The rest of this section covers DL/I database support in general.

Design overview
The following types of DL/I requests can be made by a CICS system:
v EXEC DLI statements (converted into standard CALL DLI statements by

DFHEDP)
v CALL DLI statements.

CICS support for DL/I is provided as follows:
1. A router component

This component determines whether the call is using a remote or DBCTL PSB,
and passes control to the appropriate call processor. This component is
described in more detail later in this section.

2. A DL/I call processor
This component is subdivided into:
v A remote DL/I call processor
v A DBCTL DL/I call processor.
Each call processor deals with a specific interface that is described in the
appropriate section of this book for the remote DL/I function and the DBCTL
function.

Figure 39 on page 136 shows the relationships between the components of the
CICS-DL/I interface.

© Copyright IBM Corp. 1997, 2011 135

Note:

1. When DL/I functions are requested by an application program or a CICS
control module through execution of a CALL or CALLDLI macro, DFHDLI sets
the required fields in the TCA. EXEC DLI statements are converted into
standard CALL DLI statements by DFHEDP.
If the request is for a remote database, DFHDLI passes control to DFHDLIRP. If
the request is for a DBCTL database, DFHDLI passes control to DFHDLIDP.
In addition to processing DL/I input/output requests, the DL/I interface, on
request, schedules and terminates DL/I program specification blocks (PSBs).

The remainder of this section is concerned with the router component.

The router component (DFHDLI)
The router component receives a request in standard CALL DLI parameter lists. At
schedule time, it determines whether the request is a remote or DBCTL request.

Among the functions of the router are the following:

Deciding where to process a request
At PSB schedule time, the router determines whether the DL/I requests issued
from the application program should be routed to DBCTL or another CICS system
(remote). The presence (or absence) of the PSB used in the PDIR determines where
the call gets routed.

If no PDIR exists (that is, the PDIR=NO system initialization parameter is specified
or is allowed to default), the request is routed to the DBCTL call processor.

If a PDIR has been specified, the router module scans the PDIR. All entries in the
PDIR have a SYSIDNT option specified. If the PSB is not found in the PDIR, or if
the PDIR entry specifies a SYSIDNT that is the SYSIDNT of the CICS system that
is currently running, the request is routed to the DBCTL call processor. Otherwise,
the request is routed to the remote call processor.

All DL/I requests are routed to the same DL/I call processor as the corresponding
PSB schedule request in the same unit of work.

CICS-DL/I
interface
(DFHDLI,
DFHDLIRP,
DFHDLIDP)

Application
program

CALL DLI
EXEC DLI

TCA

RMI DBCTL

1

Figure 39. CICS-DL/I interfaces

136 CICS TS for z/OS 4.1: Diagnosis Reference

Initiating synchronization processing
The router provides special handling of the DL/I TERM call. When the router
detects a TERM call, it forces a syncpoint, causing CICS to carry out syncpoint
processing for the task.

Generating CICS trace records
The router module generates CICS trace records at DL/I call entry and DL/I call
exit.

Control blocks
DL/I database support uses the control blocks DIB, DLP, and UIB, which are
shown in Figure 40.

DL/I interface block (DIB)
When an application program issues EXEC DLI requests, it uses the user DL/I
interface block (DIB) instead of the user interface block (UIB). On return, DFHEDP
extracts data from the UIB to place in the DIB. The storage for the user DIB is part
of the application program. The definition of the user DIB is automatically inserted
by the CICS translator for an EXEC DLI application program.

DL/I interface parameter list (DLP)
The DL/I interface parameter list (DLP) is a global DL/I interface control block
that lasts for the duration of a CICS session, and contains information relating to

Application
program

EXEC DLI
DFHEDP
DFHDLI
DFHDLIDP
DFHDLIRP

DLP

Application
program

CALL DLI

DIB

UIB

Figure 40. Control blocks for DL/I database support

Chapter 15. DL/I database support 137

the type of DL/I support present in the CICS system. The DLP is created during
CICS startup and is addressed by CSADLI in the CSA optional features list.

See for a detailed description of this control blocks.

User interface block (UIB)
The user interface block (UIB) is the control block used by the CALL and CALL
DL/I interfaces to pass response codes and the PCB address list to application
programs using CALL DL/I services. The UIB is acquired when a task issues its
first PSB schedule request specifying that it requires a UIB. The UIB is freed at task
termination. TCADLIBA points to the UIB.

See CICS Data Areas for a detailed description of these control blocks.

Modules
Figure 41 on page 139 shows the module flow of DL/I requests to the DL/I call
processors. DL/I requests from application programs made using CALL or CALL
DL/I are handled by DFHEIP. Requests made using EXEC DLI are passed from
DFHEIP, to the RMI, to DFHEDP. Next, three main CICS-DL/I interface modules
process the requests. The first module, DFHDLI, determines what sort of DL/I
request is being made and then passes control to one of two call processors. These
are the DBCTL DL/I call processor, DFHDLIDP, and the remote call processor,
DFHDLIRP. DFHDLIDP routes the requests to the RMI, then DFHDBAT, to
IMS/ESA® modules. DFHDLIRP routes the request to DFHISP.

138 CICS TS for z/OS 4.1: Diagnosis Reference

The common CICS-DL/I interface modules consist of the following:
v DFHDLI—contains the code for routing requests to DFHDLIRP and DFHDLIDP
v DFHDLIDP—contains the code for DBCTL requests.
v DFHDLIRP—contains the code for remote DL/I requests

Exits
The following global user exit points are provided in DFHDLI: XDLIPRE and
XDLIPOST. For further information about these, see the CICS Customization Guide
and the CICS IMS Database Control Guide .

Trace
The following point ID is provided for DL/I and DBCTL:
v AP 03xx, for which the trace levels are RA 1, RA 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

DFHEIP DFHEIP

RMI

DFHEDP

DFHDLI

CALL or CALLDLI EXEC DLI

Application

DFHDLIRP

DFHISP

(remote DL/I)

DFHDLIDP

RMI

DFHDBAT

IMS/ESA
modules

(DBCTL)

Figure 41. Module flow of DL/I requests to the DL/I call processors

Chapter 15. DL/I database support 139

140 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 16. Dump utility program (DFHDU660)

The dump utility program (DFHDU660) runs offline (in batch mode) to produce a
printout of the CICS transaction dumps from a CICS transaction dump data set
(DFHDMPA or DFHDMPB).

Design overview
DFHDU660 operates in batch mode while one of the dump data sets is closed.
Each area, program, and table entry is identified, formatted, and printed separately,
with both actual and relative addresses to facilitate analysis. You can select single
or double spacing of dumps when the dump utility program is executed.

The CICS dump data set (DFHDMPA or DFHDMPB) contains a number of CICS
transaction dumps. These are produced as the result of a transaction abend or a
user-application EXEC CICS DUMP TRANSACTION request.

DFHDU660 runs as a stand-alone program in batch mode to format and print the
contents of a transaction dump data set. Parameters specified on the SYSIN data
set can be used to print only selected dumps or an index of the dumps in the data
set.

For further details about DFHDU660, see the CICS Operations and Utilities Guide.

Data sets
There are three sources of data for DFHDU660:
Parameters on JCL EXEC statement

A character string of keywords that can be specified to control the layout
and format of the dumps.

SYSIN
Records specifying the criteria to be used in selecting which of the dumps
on the data set are to be printed.

DFHDMPDS
The transaction dump data set.

There are two output files:
DFHPRINT

The print file for the formatted transaction dump.
DFHTINDX

The print file for the index of dumps on the data set.

Processing
Figure 42 on page 142 shows the dump utility program interfaces.

© Copyright IBM Corp. 1997, 2011 141

The overall flow of the processing within DFHDU660 is as follows. Unless
otherwise indicated, all processing is performed by DFHDUPR, the main
component of DFHDU660.
1. Process the EXEC parameters if they are present.
2. Call DFHDUPP to open the print data set DFHPRINT.
3. Open the dump data set DFHDMPDS.
4. Read the dumps from DFHDMPDS. For each dump there are four categories of

records:
Dump header record

Call DFHDUPS to see whether this dump is required for printing. On
the first time through, DFHDUPS reads the selective print information
from SYSIN. DFHDUPS also calls DFHDUPH to add the dump to the
dump index data set DFHTINDX. DFHDUPH opens DFHTINDX on its
first invocation.

Module index records
DFHDUPM is called to accumulate the module index information in a
table in main storage.

Other data records
The data is formatted into print lines and DFHDUPP is invoked to
write them to DFHPRINT.

Dump trailer record
DFHDUPM is invoked to sort and format the module index records.
DFHDUPP is called to write them to DFHPRINT.

5. When the end of the dump data set is encountered:
a. DFHDUPP is called to close DFHPRINT.
b. DFHDUPH is called to close DFHTINDX.
c. DFHDUPR closes DFHDMPDS.

6. DFHDU660 terminates.

Modules
 Module Function

DFHDUPR Controlling routine, responsible for reading information from the dump
data set DFHDMPDS.

DFHDUPS Receives the address of a dump header record from the dump data set,
and decides whether this dump fulfils the criteria for printing. On first
entry, reads and stores the selective print parameters from SYSIN.

DFHDUPP Is responsible for all access to the print file DFHPRINT, namely for
OPEN, CLOSE, and PUT requests.

DFHDUPH Writes line to dump index for each dump header record encountered.
On first entry, opens the index file DFHTINDX.

(EXEC PARAMETERS) (DFHDMPDS) (SYSIN)

DFHDUnnn DFHDUPS

DFHDUPH DFHDUPP DFHDUPM

(DFHTINDX) (DFHPRNT)

Figure 42. Dump utility program interfaces

142 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHDUPM Invoked for each module index entry found to save information.
Invoked when dump trailer record found to format and print the
complete module index.

Copy books
 Copy book Function

DFHDUPSC Contains the definition of the parameter list passed to DFHDUPS.

DFHDUPMC Contains the definition of the parameter list passed to DFHDUPM.

DFHDUPPC Contains the definition of the parameter list passed to DFHDUPP.

Exits
Global user exit points are not applicable to offline utilities.

Trace
Trace points are not applicable to offline utilities.

Chapter 16. Dump utility program (DFHDU660) 143

144 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 17. Dynamic allocation sample program (IBM 3270
only)

Any data set defined to file control can be allocated to CICS dynamically when the
file is opened, rather than at CICS job initiation time. This allocation takes place
automatically if job control statements for the data set are not included in the CICS
job stream, and if both the data set name and the disposition have been specified
in the file control table when the data set is opened.

The dynamic allocation sample program provides an alternative way to perform
dynamic allocation. When used with a terminal of the IBM 3270 Information
Display System, it gives the user access to the functions of DYNALLOC (SVC 99)
in MVS. This can be used, in conjunction with master terminal functions and
suitable operating procedures, to allocate and deallocate any file that CICS can
dynamically open and close.

Design overview
The program runs as a CICS transaction, using CICS functions at the command
level wherever possible. It does not modify any CICS control blocks. Only the
DYNALLOC function is available through the program; any manipulation of the
environment before or after the DYNALLOC request must be done by other
means.

CICS supplies sample resource definitions for the program load module, DFH99,
and the transaction, ADYN, that invokes it. These definitions are in the group
DFH$UTIL. Note that DFH99 must be defined with EXECKEY(CICS).

The flow in a normal invocation is as follows. The main program, DFH99M,
receives control from CICS, and carries out initialization. This includes determining
the screen size and allocating input and output buffer sections, and issuing initial
messages. It then invokes DFH99GI to get the input command from the terminal.
Upon return, if the command was null, the main program terminates, issuing a
final message.

The command obtained has its start and end addresses stored in the global
communication area, COMM. The main program allocates storage for tokenized
text, and calls DFH99TK to tokenize the command. If errors were detected at this
stage, further analysis of the command is bypassed.

Following successful tokenizing, the main program calls DFH99FP to analyze the
verb keyword. DFH99FP calls DFH99LK to look up the verb keyword in the table,
DFH99T. DFH99LK calls DFH99MT if an abbreviation is possible. Upon finding the
matching verb, DFH99FP puts the address of the operand section of the table into
COMM, and puts the function code into the DYNALLOC request block.

The main program now calls DFH99KO to process the operand keywords. Each
keyword in turn is looked up in the table by calling DFH99LK, and the value
coded for the keyword is checked against the attributes in the table. DFH99KO
then starts off a text unit with the appropriate code, and, depending on the
attributes the value should have, calls a conversion routine

© Copyright IBM Corp. 1997, 2011 145

v For character and numeric strings, DFH99CC is called. It validates the string,
and puts its length and value into the text unit.

v For binary variables, DFH99BC is called. It validates the value, converts it to
binary of the required length, and puts its length and value into the text unit.

v For keyword values, DFH99KC is called. It looks up the value in the description
part of the keyword table using DFH99LK, and puts the coded equivalent value
and its length into the text unit.

When a keyword specifying a returned value is encountered, DFH99KO makes an
entry on the returned value chain, which is anchored in COMM. This addresses
the keyword entry in DFH99T, the text unit where the value is returned, and the
next entry. In this case the conversion routine is still called, but it only reserves
storage in the text unit, setting the length to the maximum and the value to zeros.

When all the operand keywords have been processed, DFH99KO returns to the
main program, which calls DFH99DY to issue the DYNALLOC request.

DFH99DY sets up the remaining parts of the parameter list, and if no errors too
severe have been detected, a subtask is attached to issue the DYNALLOC SVC. A
WAIT EVENT is then issued against the subtask termination ECB. When the
subtask ends, and CICS dispatches the program again, the DYNALLOC return
code is captured from the subtask ECB, with the error and reason codes from the
DYNALLOC request block, and a message is issued to give these values to the
terminal.

DFH99DY then returns to the main program, which calls DFH99RP to process
returned values. DFH99RP scans the returned value chain, and for each element
issues a message containing the keyword and the value found in the text unit. If a
returned value corresponds to a keyword value, DFH99KR is called to look up the
value in the description, and issue the message.

Processing of the command is now complete, and the main program is reinitialized
for the next one, and loops back to the point where it calls DFH99GI.

Messages are issued at many places, using macros. The macro expansion ends with
a call to DFH99MP, which ensures that a new line is started for each new message,
and calls DFH99ML, the message editor. Input to the message editor is a list of
tokens, and each one is picked up in turn and converted to displayable text. For
each piece of text, DFH99TX is called, which inserts the text into the output buffer,
starting a new line if necessary. This ensures that a word is never split over two
lines.

When the command has been processed, the main program calls DFH99MP with
no parameters, which causes it to send the output buffer to the terminal, and
initialize it to empty.

Control blocks
The sample program does not have any control blocks.

Modules
 Module Function

DFH99BC Convert to binary target

146 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFH99CC Character and number string conversion
DFH99DY Issue SVC 99 and analyze result
DFH99FP Process function keyword
DFH99GI Format display and get input
DFH99KC Keyword value conversion
DFH99KH List keywords for help
DFH99KO Process operator keywords
DFH99KR Convert returned value to keyword
DFH99LK Search key set for given token
DFH99ML Build message text from token list
DFH99MM Main control program (entry point DFH99M)
DFH99MP Message filing routine
DFH99MT Match abbreviation with keyword
DFH99RP Process returned values
DFH99T Table of keywords
DFH99TK Tokenize input command
DFH99TX Text display routine
DFH99VH List description for help

Exits
No global user exit points are provided for this function.

Trace
This sample program makes no entries in the trace, over and above the normal
entries one would see for a CICS user transaction.

External interfaces
SVC 99—MVS DYNALLOC SVC.

Chapter 17. Dynamic allocation sample program (IBM 3270 only) 147

148 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 18. ECI over TCP/IP

The IP ECI (IE) domain processes external call interface (ECI) requests that arrive
from a CICS client that is connected to CICS by a TCP/IP network. It attaches a
mirror task to issue the appropriate program link request, and returns the results
to the client.

For information on tracking origin data, see the CICS Intercommunication Guide.

Design Overview
The CICS code that processes external call interface (ECI) requests that arrive from
a TCP/IP network via the Sockets Domain (SO) is mostly contained within the IP
ECI (IE) domain. Some code that is logically part of the function runs in AP
domain. This is because SO domain works by attaching a listener task (CIEP for
IPECI) to handle incoming data, and IE domain attaches a mirror task (CPMI) to
issue the program link request and return any resulting output.

There are five logically separate pieces of code for this function:
v IE domain initialisation and termination code in DFHIEDM.
v The AP domain part of the listener task, in program DFHIEP.
v The IE domain part of the listener task, in the PROCESS_ECI_FLOW function of

program DFHIEIE.
v The AP domain part of the mirror task, in programs DFHMIRS and DFHIEXM.
v The IE domain part of the mirror task, in the SEND, RECEIVE and

SEND_ERROR functions of program DFHIEIE.

See Chapter 82, “IP ECI (IE) domain,” on page 1153 for more information.

Listener task, CIEP
The CIEP task is attached by SO domain when it receives data on the port
specified in the IPECI TCPIPSERVICE. The CIEP transaction handles control flows
directly, or attaches a mirror task to issue the ECI program link request.

The valid flows that may be received by CIEP are:
v Attach FMH for CCIN INSTALL

The initial flow from a client is an attach for the CCIN transaction to install the
client. No attach is done as IE domain handles the install processing internally.

v Attach FMH for CCIN UNINSTALL
A client can terminate its connection with CICS by sending a CCIN UNINSTALL
transaction request. No attach is done as IE domain handles the install
processing internally.

v Attach FMH for some other transid, assumed to be a mirror
v FMH7 indicating the client wants to abend a conversation.
v Connection level PING request/reply
v Conversation level PING request/reply
v Connection status 01, last transmission from client (equivalent to UNINSTALL)
v User data in extended conversation (Link request or SYNCPOINT RU)

© Copyright IBM Corp. 1997, 2011 149

All other flows are rejected by CIEP; conversation errors with an FMH7, control
errors by closing the socket.

The different flows are distinguished by testing various fields in the flow headers,
including the SNA format RH.

Request header settings
Response headers are never sent. All flows have request headers. Errors are
returned by sending FMH7 with CEB.

All flows are OIC,RQE1.

The link requests to a long running mirror are packaged as FMH43s but, because
they are within a GDS, should not cause the RH FMH bit to be set on.

 Direction Type of flow Request header flags

in CCIN INSTALL FMH5 BB OIC CD RQE1 FMH

out CCIN INSTALL reply CEB OIC RQE1

in CCIN UNINSTALL request BB CEB OIC RQE1 FMH

in Mirror FMH5 + link request BB OIC CD RQE1 FMH

out Non long-running mirror
link reply

CEB OIC RQE1

out Long-running mirror link
reply

OIC CD RQE1

in Long-running mirror link
request

OIC CD RQE1

in Long-running mirror sync
flow

OIC CD RQE1

out Long-running mirror sync
reply

CEB OIC RQE1

out Conversation failure (FMH7) CEB OIC RQE1 FMH

in FMH7 CEB OIC RQE1 FMH

Mirror task, CPMI
A mirror task is attached by the listener task to handle a particular client
conversation. The transaction attach callback module for IE mirrors is DFHIEXM. It
sets the IECCB (IP ECI Conversation Control Block) to be the mirror task's facility
token and establishes security context for the mirror task, using userid and
password sent from the client where required.

The mirror task main program, DFHMIRS, issues the IEIE RECEIVE for the
available data, and then performs the same functions as it does for ECI requests
received in other environments. It then issues the IEIE SEND to return the output
from the linked program to the client. For a conversation marked by the client as
'extended', the mirror then issues another IEIE RECEIVE which causes it to be
suspended, waiting for more data. For a non-extended conversation, the mirror
terminates after the SEND.

PING
CICS TS supports full connection and conversation level PING as architected for
the CICS family. This consists of defined flows to allow CICS to determine whether

150 CICS TS for z/OS 4.1: Diagnosis Reference

specified connections, or particular conversations on a connection, are still
considered active. CICS TS sends a PING request if the RTIMOUT interval is
exceeded when waiting for data from a client:
v Send conversation level PING if the client install indicated this was supported.
v Send connection level PING otherwise.
v If it is a conversation PING that has timed out, abend the task after sending a

connection level PING to confirm whether the client is still active.
v If a connection level PING times out, uninstall the client.

Notes
1. The socket is full duplex, so SENDs and RECEIVEs can be issued in any order,

and asynchronously by different CICS tasks. This is necessary for multiple
conversations on the same socket, and means that the CIEP task can issue a
SOCK RECEIVE as soon as it has attached the mirror. The SOCK SEND will be
done under the mirror task.

2. Sending tasks ENQ on the socket to prevent the data from multiple
conversations being interleaved. The ENQ is issued by SO domain.

3. The SO socket token is the second part of the user token but is never required
in the CIEP task. The sends and receives issued from CIEP use the socket
implicit in the task's state.

4. If the connection is lost or closed by TCP/IP and there are long running
mirrors waiting on receives, SO domain is notified, attaches CIEP and returns a
bad response on the SO receive issued by CIEP.

Modules
DFHIEP

The initial program for the IP ECI listener transaction, CIEP.

DFHIEXM
The IPECI mirror transaction attach callback module.

 Sets the IECCB to be the mirror task's facility token.

Establishes security context for the mirror task, using userid and password
sent from client where required.

Chapter 18. ECI over TCP/IP 151

152 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 19. EXEC interface

The EXEC interface provides the support for application programs containing
EXEC CICS commands.

Design overview
The relevant parts of the EXEC interface are:
v The main EXEC interface module, DFHEIP, which is called when an EXEC CICS

command is executed in a user application program.
A parameter list is passed, in which the first argument (referred to as arg-zero)
contains a group code and a function code as the first 2 bytes.
– The group code in general indicates the CICS component associated with the

command being executed. In subsequent processing it is this code alone
which determines which EXEC processor module (see below) is called from
DFHEIP.

– The function code identifies the actual command being executed.

Note: DFHEIP is link-edited with other modules to form the application
interface program (DFHAIP) load module. DFHEIPA (next to be described) is
one of these modules.

v The DFHEIPA module, which handles the allocation and freeing of dynamic
storage (mapped by DFHEISTG) for assembler-language application programs in
response to DFHEIENT and DFHEIRET calls respectively.

v A set of EXEC processor modules, each of which is called from DFHEIP, and
which performs the first level of analysis of the command being executed. The
processor then calls the appropriate CICS domain to complete the execution of
the command.

v A set of EXEC stubs, one for each of the application languages: COBOL, PL/I, C,
and assembler language. The appropriate stub must be link-edited at the front of
each CICS application program, and provides the mechanism for getting to the
correct entry points in DFHEIP.

v The DFHAPLI module, which is called at the initialization and termination of
each application program.

Control blocks
The control blocks associated with the EXEC interface are as follows:
EXEC interface block (EIB) (DSECT name: DFHEIBLK).

Each task in a command-level environment has a control block called the
EXEC interface block (EIB) associated with it. The EIB is used for direct
communication between command-level programs and CICS.

 The EIB contains information that is useful during the execution of an
application program, such as the transaction identifier, the time and date
(initially when the task is started, and subsequently, if updated by the
application program), and the cursor position on a display device. The EIB
also contains information that is helpful when a dump is being used to
debug a program. DFHEIBLK defines the layout of an EIB, and is included
automatically in the application program, giving access to all of the fields
in the EIB by name.

© Copyright IBM Corp. 1997, 2011 153

A further EIB, known as the “system” EIB, exists for each task. The system
EIB has the same format as the “user” (or “application”) EIB. It is intended
for use mainly by CICS system code. In general, application programs have
addressability to the user EIB only, which is a copy taken of the system EIB
at appropriate times. However, any service programs translated with the
SYSEIB option have addressability to the system EIB also, so that they can
issue EXEC CICS commands without causing the user EIB to be updated.
(See the CICS Application Programming Guide for further information about
the SYSEIB translator option.)

Figure 43 shows the format of an EIB.

EXEC interface communication area (DSECT name: DFHEICDS).
The EXEC interface communication area describes the storage that is used
to pass the COMMAREA from one command-level transaction to another
using an EXEC CICS RETURN command with the TRANSID,
COMMAREA, and LENGTH options.

 Figure 44 on page 155 shows the format of the EXEC interface
communication area.

DSECT: DFHEIBLK
Register: DFHEIBR

x'00' EIBTIME EIBDATE
0HHMMSS 00YYDDD

x'08' EIBTRNID EIBTASKN
Transaction identifier Task number

x'10' EIBTRMID EIBRSVD1 EIBPOSN
Terminal identifier Reserved Cursor position

x'18' EIBCALEN EIBAID EIBFN EIBRCODE
COMMAREA length 3270 Last function Last response code

AID requested returned

x'20' EIBRCODE EIBDS
Continued Last data set referenced

x'28' EIBDS EIBREQID
Continued Last identifier assigned by CICS

to an interval control request

x'30' EIBREQID EIBRSRCE
Continued Resource name

x'38' EIBRSRCE EIBSYNC EIBFREE EIBRECV EIBSEND EIBATT
Continued Sync Term Data Attach

point free RECV Reserved data
req'sted req'sted req'sted exists

x'40' EIBEOC EIBFMH EIBCOMPL EIBSIG EIBCONF EIBERR EIBERRCD
Data Data Data Signal Confirm Error Error code
complete contains complete received req'sted received received

FMH

x'48' EIBCONF EIBERR EIBERRCD EIBRESP
Confirm Error Error code Condition number
req'sted received received

x'50' EIBRESP2 EIBRLDBK EIBLENG
More details on condition Rolled

back

Figure 43. EXEC interface block (EIB)

154 CICS TS for z/OS 4.1: Diagnosis Reference

EXEC interface storage (EIS) (DSECT name: DFHEISDS).
The EXEC interface storage is used by DFHEIP as the interface between
the application program and CICS control blocks. It contains a system area
used by DFHEIP only. EIS is storage acquired by the DFHAPXM module
(part of the transaction manager), along with other task-lifetime storage
such as the TCA and both system and user EIBs. There is one EIS per
transaction (not per program), and it is addressed by TCAEISA in the TCA.
(See Figure 45.)

See CICS Data Areas for a detailed description of these control blocks.

Modules
The EXEC interface comprises the following modules:
v The main interface module (DFHEIP)
v Prologue and epilogue code for assembler-language programs (DFHEIPA)
v 55 EXEC interface processors
v 4 EXEC stubs.

Of the EXEC interface processors, 16 are coded in Assembler language; the other
modules are coded in other languages. All are CICS nucleus modules.

These processor modules (together with DFHEIP) support the EXEC CICS
commands listed in Table 6 on page 156.

DFHEIP also supports EXEC DLI commands, by passing them through the external
resource manager interface program, DFHERM, on their way to DFHEDP for
conversion to standard CALL parameter lists acceptable to DL/I.

The following tables list all the EXEC CICS commands, showing the class of each
command (basic or special), its group and function codes, also the name and

DFHEICDS

x'00' EIC_COMMAREA_ADDRESS COMMAREA
Address of COMMAREA

x'04' EIC_ Reserved
SUBPOOL

x'08' Reserved

x'0C' EICLL EICBB
Length of
COMMAREA

Note:
EIC_SUBPOOL is a flag indicating the storage subpool
used by the COMMAREA.

Note: EIC_SUBPOOL is a flag indicating the storage subpool used by the COMMAREA.

Figure 44. EXEC interface communication area (EIC)

TCA

DFHEISDS
x'190' TCAEISA

x'08' EIS_USER_EIB_
ADDRESS EIB
Address of EIB

Figure 45. EXEC interface storage (EIS)

Chapter 19. EXEC interface 155

language of the associated EXEC interface processor. Table 6 is ordered by
command name. Table 7 on page 160 is ordered by group/function code.

The group and function codes used by the Front End Programming Interface
(FEPI) feature are not listed in these tables. However, the EXEC CICS FEPI
commands use group codes of 82 (API-type commands) and 84 (SPI-type
commands). For details about the EXEC CICS FEPI commands, see the the CICS
Front End Programming Interface User's Guide.

Note: An asterisk (*) after a command name in the tables shows that the command
is intended for CICS internal use only.

 Table 6. EXEC CICS commands ordered by command name

Command Class Gp/fn code Module
DFH...

Lang

ABEND B 0E 0C EPC A
ACQUIRE TERMINAL S 86 02 EIACQ O
ADDRESS B 02 02 EEI A
ADDRESS SET B 02 10 EEI A
ALLOCATE B 04 20 ETC A
ASKTIME B 10 02 EIIC O
ASKTIME ABSTIME B 4A 02 EIDTI O
ASSIGN B 02 08 EEI A
BIF DEEDIT B 20 02 EBF A
BUILD ATTACH B 04 26 ETC A
CANCEL B 10 0C EIIC O
CHANGE TASK B 5E 06 EIQSK O
COLLECT STATISTICS S 70 08 EIQMS O
CONNECT PROCESS B 04 32 ETC A
CONVERSE B 04 06 ETC A
CREATE CONNECTION S 30 0E EICRE O
CREATE FILE S 30 14 EICRE O
CREATE JOURNALMODEL S 30 1E EICRE O
CREATE LSRPOOL S 30 16 EICRE O
CREATE MAPSET S 30 04 EICRE O
CREATE PARTITIONSET S 30 06 EICRE O
CREATE PARTNER S 30 18 EICRE O
CREATE PROFILE S 30 0A EICRE O
CREATE PROGRAM S 30 02 EICRE O
CREATE SESSIONS S 30 12 EICRE O
CREATE TDQUEUE S 30 1C EICRE O
CREATE TERMINAL S 30 10 EICRE O
CREATE TRANCLASS S 30 1A EICRE O
CREATE TRANSACTION S 30 08 EICRE O
CREATE TYPETERM S 30 0C EICRE O
DELAY B 10 04 EIIC O
DELETE B 06 08 EIFC O
DELETEQ TD B 08 06 ETD A
DELETEQ TS B 0A 06 ETS A
DEQ B 12 06 EKC A
DISCARD AUTINSTMODEL S 42 10 EIQTM O
DISCARD FILE S 4C 10 EIQDS O
DISCARD JOURNALMODEL S 92 10 EIQSL O
DISCARD JOURNALNAME S 60 10 EIQSJ O
DISCARD PARTNER S 44 10 EIQPN O

156 CICS TS for z/OS 4.1: Diagnosis Reference

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module
DFH...

Lang

DISCARD PROFILE S 46 10 EIQPF O
DISCARD PROGRAM S 4E 10 EIQSP O
DISCARD TRANSACTION S 50 10 EIQSX O
DISABLE B 22 04 UEM A
DUMP B 1C 02 EDC A
DUMP SYSTEM B 7E 04 EDCP O
DUMP TRANSACTION B 7E 02 EDCP O
ENABLE B 22 02 UEM A
ENDBR B 06 12 EIFC O
ENQ B 12 04 EKC A
ENTER TRACEID B 1A 04 ETR A
ENTER TRACENUM B 48 02 ETRX O
EXTRACT ATTACH B 04 28 ETC A
EXTRACT ATTRIBUTES B 04 3E ETC A
EXTRACT EXIT B 22 06 UEM A
EXTRACT LOGONMSG B 04 3C ETC A
EXTRACT PROCESS B 04 2E ETC A
EXTRACT TCT B 04 2A ETC A
FORMATTIME B 4A 04 EIDTI O
FREE B 04 22 ETC A
FREEMAIN B 0C 04 ESC A
GDS ALLOCATE B 24 02 EGL A
GDS ASSIGN B 24 04 EGL A
GDS CONNECT PROCESS B 24 0C EGL A
GDS EXTRACT ATTRIBUTES B 24 1C EGL A
GDS EXTRACT PROCESS B 24 06 EGL A
GDS FREE B 24 08 EGL A
GDS ISSUE ABEND B 24 0A EGL A
GDS ISSUE CONFIRMATION B 24 0E EGL A
GDS ISSUE ERROR B 24 10 EGL A
GDS ISSUE PREPARE B 24 1A EGL A
GDS ISSUE SIGNAL B 24 12 EGL A
GDS RECEIVE B 24 14 EGL A
GDS SEND B 24 16 EGL A
GDS WAIT B 24 18 EGL A
GETMAIN B 0C 02 ESC A
HANDLE ABEND B 0E 0E EPC A
HANDLE AID B 02 06 EEI A
HANDLE CONDITION B 02 04 EEI A
IGNORE CONDITION B 02 0A EEI A
INQUIRE AUTINSTMODEL S 42 02 EIQTM O
INQUIRE AUTOINSTALL S 68 12 EIQVT O
INQUIRE CONNECTION S 58 02 EIQSC O
INQUIRE DCE S 8E 02 EIQDE O
INQUIRE DSNAME S 7A 02 EIQDN O
INQUIRE DUMPDS S 66 02 EIQDU O
INQUIRE EXITPROGRAM S 88 02 EIQUE O
INQUIRE FILE S 4C 02 EIQDS O
INQUIRE IRC S 6E 02 EIQIR O
INQUIRE JOURNALMODEL S 92 02 EIQSL O
INQUIRE JOURNALNAME S 60 12 EIQSJ O

Chapter 19. EXEC interface 157

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module
DFH...

Lang

INQUIRE JOURNALNUM S 60 02 EIQSJ O
INQUIRE MODENAME S 5A 02 EIQSM O
INQUIRE MONITOR S 70 12 EIQMS O
INQUIRE NETNAME S 52 06 EIQST O
INQUIRE PARTNER S 44 02 EIQPN O
INQUIRE PROFILE S 46 02 EIQPF O
INQUIRE PROGRAM S 4E 02 EIQSP O
INQUIRE REQID S 8A 02 EIQRQ O
INQUIRE STATISTICS S 70 02 EIQMS O
INQUIRE STREAMNAME S 92 12 EIQSL O
INQUIRE SYSDUMPCODE S 66 22 EIQDU O
INQUIRE SYSTEM S 54 02 EIQSA O
INQUIRE TASK S 5E 02 EIQSK O
INQUIRE TCLASS S 5E 12 EIQSK O
INQUIRE TDQUEUE S 5C 02 EIQSQ O
INQUIRE TERMINAL S 52 02 EIQST O
INQUIRE TRACEDEST S 78 02 EIQTR O
INQUIRE TRACEFLAG S 78 12 EIQTR O
INQUIRE TRACETYPE S 78 22 EIQTR O
INQUIRE TRANDUMPCODE S 66 12 EIQDU O
INQUIRE TRANSACTION S 50 02 EIQSX O
INQUIRE TSQUEUE S 0A 08 EIQTS O
INQUIRE VTAM S 68 02 EIQVT O
ISSUE ABEND B 04 30 ETC A
ISSUE ABORT B 1E 08 EDI A
ISSUE ADD B 1E 02 EDI A
ISSUE CONFIRMATION B 04 34 ETC A
ISSUE COPY B 04 0A ETC A
ISSUE DISCONNECT B 04 14 ETC A
ISSUE END B 1E 0C EDI A
ISSUE ENDFILE B 04 1A ETC A
ISSUE ENDOUTPUT B 04 16 ETC A
ISSUE EODS B 04 08 ETC A
ISSUE ERASE B 1E 04 EDI A
ISSUE ERASEAUP B 04 18 ETC A
ISSUE ERROR B 04 36 ETC A
ISSUE LOAD B 04 0E ETC A
ISSUE NOTE B 1E 10 EDI A
ISSUE PASS B 04 3A ETC A
ISSUE PREPARE B 04 38 ETC A
ISSUE PRINT B 04 1C ETC A
ISSUE QUERY B 1E 0A EDI A
ISSUE RECEIVE B 1E 0E EDI A
ISSUE REPLACE B 1E 06 EDI A
ISSUE RESET B 04 12 ETC A
ISSUE SEND B 1E 14 EDI A
ISSUE SIGNAL B 04 1E ETC A
ISSUE WAIT B 1E 12 EDI A
LINK B 0E 02 EPC A
LOAD B 0E 06 EPC A
MONITOR B 48 04 ETRX O

158 CICS TS for z/OS 4.1: Diagnosis Reference

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module
DFH...

Lang

PERFORM RESETTIME S 72 02 EIPRT O
PERFORM SECURITY S 64 02 EIPSE O
PERFORM SHUTDOWN S 76 02 EIPSH O
PERFORM STATISTICS S 70 06 EIQMS O
POINT B 04 24 ETC A
POP B 02 0E EEI A
POST B 10 06 EIIC O
PURGE MESSAGE B 18 0A EMS A
PUSH B 02 0C EEI A
QUERY SECURITY B 6A 02 ESE O
READ B 06 02 EIFC O
READNEXT B 06 0E EIFC O
READPREV B 06 10 EIFC O
READQ TD B 08 04 ETD A
READQ TS B 0A 04 ETS A
RECEIVE B 04 02 ETC A
RECEIVE MAP B 18 02 EMS A
RECEIVE PARTN B 18 0E EMS A
RELEASE B 0E 0A EPC A
RESETBR B 06 14 EIFC O
RESYNC B 16 04 ESP A
RETRIEVE B 10 0A EIIC O
RETURN B 0E 08 EPC A
REWRITE B 06 06 EIFC O
ROUTE B 18 0C EMS A
SEND B 04 04 ETC A
SEND CONTROL B 18 12 EMS A
SEND MAP B 18 04 EMS A
SEND PAGE B 18 08 EMS A
SEND PARTNSET B 18 10 EMS A
SEND TEXT B 18 06 EMS A
SET AUTOINSTALL S 68 14 EIQVT O
SET CONNECTION S 58 04 EIQSC O
SET DCE S 8E 04 EIQDE O
SET DSNAME S 7A 04 EIQDN O
SET DUMPDS S 66 04 EIQDU O
SET FILE S 4C 04 EIQDS O
SET IRC S 6E 04 EIQIR O
SET JOURNALNAME S 60 14 EIQSJ O
SET JOURNALNUM S 60 04 EIQSJ O
SET MODENAME S 5A 04 EIQSM O
SET MONITOR S 70 14 EIQMS O
SET NETNAME S 52 08 EIQST O
SET PROGRAM S 4E 04 EIQSP O
SET STATISTICS S 70 04 EIQMS O
SET SYSDUMPCODE S 66 24 EIQDU O
SET SYSTEM S 54 04 EIQSA O
SET TASK S 5E 04 EIQSK O
SET TCLASS S 5E 14 EIQSK O
SET TDQUEUE S 5C 04 EIQSQ O
SET TERMINAL S 52 04 EIQST O

Chapter 19. EXEC interface 159

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module
DFH...

Lang

SET TRACEDEST S 78 04 EIQTR O
SET TRACEFLAG S 78 14 EIQTR O
SET TRACETYPE S 78 24 EIQTR O
SET TRANDUMPCODE S 66 14 EIQDU O
SET TRANSACTION S 50 04 EIQSX O
SET VTAM S 68 04 EIQVT O
SIGNOFF B 74 04 ESN O
SIGNON B 74 02 ESN O
SPOOLCLOSE B 56 10 EPS O
SPOOLOPEN B 56 02 EPS O
SPOOLREAD B 56 04 EPS O
SPOOLWRITE B 56 06 EPS O
START B 10 08 EIIC O
STARTBR B 06 0C EIFC O
SUSPEND B 12 08 EKC A
SYNCPOINT B 16 02 ESP A
TRACE B 1A 02 ETR A
UNLOCK B 06 0A EIFC O
WAIT CONVID B 04 2C ETC A
WAIT EVENT B 12 02 EKC A
WAIT EXTERNAL B 5E 22 EIQSK O
WAIT JOURNALNAME B 14 08 EJC A
WAIT JOURNALNUM B 14 04 EJC A
WAIT SIGNAL B 04 10 ETC A
WAIT TERMINAL B 04 0C ETC A
WAITCICS B 5E 32 EIQSK O
WRITE FILE B 06 04 EIFC O
WRITE JOURNALNAME B 14 06 EJC A
WRITE JOURNALNUM B 14 02 EJC A
WRITE OPERATOR B 6C 02 EOP O
WRITEQ TD B 08 02 ETD A
WRITEQ TS B 0A 02 ETS A
XCTL B 0E 04 EPC A
Abbreviations:

 Class of command: B = basic S = special
 Language of module: A = assembler O = other

 Table 7. EXEC CICS commands ordered by group/function code

Command Class Gp/fn code Module
DFH...

Lang

ADDRESS B 02 02 EEI A
HANDLE CONDITION B 02 04 EEI A
HANDLE AID B 02 06 EEI A
ASSIGN B 02 08 EEI A
IGNORE CONDITION B 02 0A EEI A
PUSH B 02 0C EEI A
POP B 02 0E EEI A
ADDRESS SET B 02 10 EEI A
RECEIVE B 04 02 ETC A
SEND B 04 04 ETC A

160 CICS TS for z/OS 4.1: Diagnosis Reference

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module
DFH...

Lang

CONVERSE B 04 06 ETC A
ISSUE EODS B 04 08 ETC A
ISSUE COPY B 04 0A ETC A
WAIT TERMINAL B 04 0C ETC A
ISSUE LOAD B 04 0E ETC A
WAIT SIGNAL B 04 10 ETC A
ISSUE RESET B 04 12 ETC A
ISSUE DISCONNECT B 04 14 ETC A
ISSUE ENDOUTPUT B 04 16 ETC A
ISSUE ERASEAUP B 04 18 ETC A
ISSUE ENDFILE B 04 1A ETC A
ISSUE PRINT B 04 1C ETC A
ISSUE SIGNAL B 04 1E ETC A
ALLOCATE B 04 20 ETC A
FREE B 04 22 ETC A
POINT B 04 24 ETC A
BUILD ATTACH B 04 26 ETC A
EXTRACT ATTACH B 04 28 ETC A
EXTRACT TCT B 04 2A ETC A
WAIT CONVID B 04 2C ETC A
EXTRACT PROCESS B 04 2E ETC A
ISSUE ABEND B 04 30 ETC A
CONNECT PROCESS B 04 32 ETC A
ISSUE CONFIRMATION B 04 34 ETC A
ISSUE ERROR B 04 36 ETC A
ISSUE PREPARE B 04 38 ETC A
ISSUE PASS B 04 3A ETC A
EXTRACT LOGONMSG B 04 3C ETC A
EXTRACT ATTRIBUTES B 04 3E ETC A
READ B 06 02 EIFC O
WRITE FILE B 06 04 EIFC O
REWRITE B 06 06 EIFC O
DELETE B 06 08 EIFC O
UNLOCK B 06 0A EIFC O
STARTBR B 06 0C EIFC O
READNEXT B 06 0E EIFC O
READPREV B 06 10 EIFC O
ENDBR B 06 12 EIFC O
RESETBR B 06 14 EIFC O
WRITEQ TD B 08 02 ETD A
READQ TD B 08 04 ETD A
DELETEQ TD B 08 06 ETD A
WRITEQ TS B 0A 02 ETS A
READQ TS B 0A 04 ETS A
DELETEQ TS B 0A 06 ETS A
INQUIRE TSQUEUE S 0A 08 EIQTS O
GETMAIN B 0C 02 ESC A
FREEMAIN B 0C 04 ESC A
LINK B 0E 02 EPC A
XCTL B 0E 04 EPC A
LOAD B 0E 06 EPC A

Chapter 19. EXEC interface 161

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module
DFH...

Lang

RETURN B 0E 08 EPC A
RELEASE B 0E 0A EPC A
ABEND B 0E 0C EPC A
HANDLE ABEND B 0E 0E EPC A
ASKTIME B 10 02 EIIC O
DELAY B 10 04 EIIC O
POST B 10 06 EIIC O
START B 10 08 EIIC O
RETRIEVE B 10 0A EIIC O
CANCEL B 10 0C EIIC O
WAIT EVENT B 12 02 EKC A
ENQ B 12 04 EKC A
DEQ B 12 06 EKC A
SUSPEND B 12 08 EKC A
WRITE JOURNALNUM B 14 02 EJC A
WAIT JOURNALNUM B 14 04 EJC A
SYNCPOINT B 16 02 ESP A
RESYNC B 16 04 ESP A
RECEIVE MAP B 18 02 EMS A
SEND MAP B 18 04 EMS A
SEND TEXT B 18 06 EMS A
SEND PAGE B 18 08 EMS A
PURGE MESSAGE B 18 0A EMS A
ROUTE B 18 0C EMS A
RECEIVE PARTN B 18 0E EMS A
SEND PARTNSET B 18 10 EMS A
SEND CONTROL B 18 12 EMS A
TRACE B 1A 02 ETR A
ENTER TRACEID B 1A 04 ETR A
DUMP B 1C 02 EDC A
ISSUE ADD B 1E 02 EDI A
ISSUE ERASE B 1E 04 EDI A
ISSUE REPLACE B 1E 06 EDI A
ISSUE ABORT B 1E 08 EDI A
ISSUE QUERY B 1E 0A EDI A
ISSUE END B 1E 0C EDI A
ISSUE RECEIVE B 1E 0E EDI A
ISSUE NOTE B 1E 10 EDI A
ISSUE WAIT B 1E 12 EDI A
ISSUE SEND B 1E 14 EDI A
BIF DEEDIT B 20 02 EBF A
ENABLE B 22 02 UEM A
DISABLE B 22 04 UEM A
EXTRACT EXIT B 22 06 UEM A
GDS ALLOCATE B 24 02 EGL A
GDS ASSIGN B 24 04 EGL A
GDS EXTRACT PROCESS B 24 06 EGL A
GDS FREE B 24 08 EGL A
GDS ISSUE ABEND B 24 0A EGL A
GDS CONNECT PROCESS B 24 0C EGL A
GDS ISSUE CONFIRMATION B 24 0E EGL A

162 CICS TS for z/OS 4.1: Diagnosis Reference

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module
DFH...

Lang

GDS ISSUE ERROR B 24 10 EGL A
GDS ISSUE SIGNAL B 24 12 EGL A
GDS RECEIVE B 24 14 EGL A
GDS SEND B 24 16 EGL A
GDS WAIT B 24 18 EGL A
GDS ISSUE PREPARE B 24 1A EGL A
GDS EXTRACT ATTRIBUTES B 24 1C EGL A
CREATE PROGRAM S 30 02 EICRE O
CREATE MAPSET S 30 04 EICRE O
CREATE PARTITIONSET S 30 06 EICRE O
CREATE TRANSACTION S 30 08 EICRE O
CREATE PROFILE S 30 0A EICRE O
CREATE TYPETERM S 30 0C EICRE O
CREATE CONNECTION S 30 0E EICRE O
CREATE TERMINAL S 30 10 EICRE O
CREATE SESSIONS S 30 12 EICRE O
CREATE FILE S 30 14 EICRE O
CREATE LSRPOOL S 30 16 EICRE O
CREATE PARTNER S 30 18 EICRE O
CREATE TRANCLASS S 30 1A EICRE O
CREATE TDQUEUE S 30 1C EICRE O
CREATE JOURNALMODEL S 30 1E EICRE O
INQUIRE AUTINSTMODEL S 42 02 EIQTM O
DISCARD AUTINSTMODEL S 42 10 EIQTM O
INQUIRE PARTNER S 44 02 EIQPN O
DISCARD PARTNER S 44 10 EIQPN O
INQUIRE PROFILE S 46 02 EIQPF O
DISCARD PROFILE S 46 10 EIQPF O
ENTER TRACENUM B 48 02 ETRX O
MONITOR B 48 04 ETRX O
ASKTIME ABSTIME B 4A 02 EIDTI O
FORMATTIME B 4A 04 EIDTI O
INQUIRE FILE S 4C 02 EIQDS O
SET FILE S 4C 04 EIQDS O
DISCARD FILE S 4C 10 EIQDS O
INQUIRE PROGRAM S 4E 02 EIQSP O
SET PROGRAM S 4E 04 EIQSP O
DISCARD PROGRAM S 4E 10 EIQSP O
INQUIRE TRANSACTION S 50 02 EIQSX O
SET TRANSACTION S 50 04 EIQSX O
DISCARD TRANSACTION S 50 10 EIQSX O
INQUIRE TERMINAL S 52 02 EIQST O
SET TERMINAL S 52 04 EIQST O
INQUIRE NETNAME S 52 06 EIQST O
SET NETNAME S 52 08 EIQST O
INQUIRE SYSTEM S 54 02 EIQSA O
SET SYSTEM S 54 04 EIQSA O
SPOOLOPEN B 56 02 EPS O
SPOOLREAD B 56 04 EPS O
SPOOLWRITE B 56 06 EPS O
SPOOLCLOSE B 56 10 EPS O

Chapter 19. EXEC interface 163

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module
DFH...

Lang

INQUIRE CONNECTION S 58 02 EIQSC O
SET CONNECTION S 58 04 EIQSC O
INQUIRE MODENAME S 5A 02 EIQSM O
SET MODENAME S 5A 04 EIQSM O
INQUIRE TDQUEUE S 5C 02 EIQSQ O
SET TDQUEUE S 5C 04 EIQSQ O
INQUIRE TASK S 5E 02 EIQSK O
SET TASK S 5E 04 EIQSK O
CHANGE TASK B 5E 06 EIQSK O
INQUIRE TCLASS S 5E 12 EIQSK O
SET TCLASS S 5E 14 EIQSK O
WAIT EXTERNAL B 5E 22 EIQSK O
WAITCICS B 5E 32 EIQSK O
INQUIRE JOURNALNUM S 60 02 EIQSJ O
SET JOURNALNUM S 60 04 EIQSJ O
INQUIRE JOURNALNAME S 60 12 EIQSJ O
SET JOURNALNAME S 60 14 EIQSJ O
PERFORM SECURITY S 64 02 EIPSE O
INQUIRE DUMPDS S 66 02 EIQDU O
SET DUMPDS S 66 04 EIQDU O
INQUIRE TRANDUMPCODE S 66 12 EIQDU O
SET TRANDUMPCODE S 66 14 EIQDU O
INQUIRE SYSDUMPCODE S 66 22 EIQDU O
SET SYSDUMPCODE S 66 24 EIQDU O
INQUIRE VTAM S 68 02 EIQVT O
SET VTAM S 68 04 EIQVT O
INQUIRE AUTOINSTALL S 68 12 EIQVT O
SET AUTOINSTALL S 68 14 EIQVT O
QUERY SECURITY B 6A 02 ESE O
WRITE OPERATOR B 6C 02 EOP O
CICSMESSAGE * S 6C 12 EOP O
INQUIRE IRC S 6E 02 EIQIR O
SET IRC S 6E 04 EIQIR O
INQUIRE STATISTICS S 70 02 EIQMS O
SET STATISTICS S 70 04 EIQMS O
PERFORM STATISTICS S 70 06 EIQMS O
COLLECT STATISTICS S 70 08 EIQMS O
INQUIRE MONITOR S 70 12 EIQMS O
SET MONITOR S 70 14 EIQMS O
PERFORM RESETTIME S 72 02 EIPRT O
SIGNON B 74 02 ESN O
SIGNOFF B 74 04 ESN O
PERFORM SHUTDOWN S 76 02 EIPSH O
INQUIRE TRACEDEST S 78 02 EIQTR O
SET TRACEDEST S 78 04 EIQTR O
INQUIRE TRACEFLAG S 78 12 EIQTR O
SET TRACEFLAG S 78 14 EIQTR O
INQUIRE TRACETYPE S 78 22 EIQTR O
SET TRACETYPE S 78 24 EIQTR O
INQUIRE DSNAME S 7A 02 EIQDN O
SET DSNAME S 7A 04 EIQDN O

164 CICS TS for z/OS 4.1: Diagnosis Reference

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module
DFH...

Lang

DUMP TRANSACTION B 7E 02 EDCP O
DUMP SYSTEM B 7E 04 EDCP O
INQUIRE JOURNALMODEL S 92 02 EIQSL O
INQUIRE STREAMNAME S 92 12 EIQSL O
Abbreviations:

 Class of command: B = basic S = special
 Language of module: A = assembler O = other

DFHEIP
The EXEC interface program, DFHEIP, has several entry points associated with
initialization and termination. Note, however, that DFHEIPAN is in the DFHEIPA
module.

Entry point
Function

DFHEIPNA
Formal main entry point

DFHEIPAN
Get or free dynamic storage for assembler-language prologue or epilogue

DFHEIPGM
Get dynamic storage for COBOL initialization

DFHEIPFM
Free dynamic storage for COBOL

DFHEIPTT
Take run-unit token routine for COBOL initialization.

DFHEIP has these entry points associated with executing a command issued from
an application program:

Entry point
Function

DFHEIPRN
EXEC RMI calls

DFHEIPCN
EXEC CICS calls

DFHEIPDN
xxxTDLI calls.

It also has many return and entry points for common functions that are called
from those processor modules residing in the nucleus:

Entry point
Function

EIPNORML
Normal return on completion of command

Chapter 19. EXEC interface 165

Error point
Function

EIPERROR
Condition occurred (code in EIBRCODE)

EIPCONDN
Condition occurred (code in EIBRESP)

EICCER99
Unsupported function, abend AEY9

EICCDF00
Subroutine to invoke EDF

Several length-checking routines (EICCLCnn):

Error point
Function

EICCLC30
Input check, V format only

EICCLC94
LENGERR flag check

Several program control routines (EICCPCnn):

Error point
Function

EICCPC00
Process terminating PL/I program

EICCPC40
HANDLE ABEND processing

Several storage control routines (EICCSCnn):

Error point
Function

EICCSC10
FREEMAIN

EICCSC20
GETMAIN shared storage

EICCSC30
GETMAIN terminal storage

EICCSC70
GETMAIN user storage init. X'00'

EICCFM10
FREEMAIN for COMMAREAs

Method of calling processor modules
All processor modules reside in the CICS nucleus, and the same calling method is
used regardless of the language in which the processor is coded.

CICS initialization puts the address of each module in the CSA optional features
list (CSAOPFL), in a table of addresses starting at CSAEXECS, and at an offset
corresponding to its group code.

The calling method for the processor modules at execution time uses a table (at
label EICC71T in DFHEIP), known as the EXEC command processor module call
table. DFHEIP uses this table, and the table of addresses in CSAOPFL.

166 CICS TS for z/OS 4.1: Diagnosis Reference

The EXEC command processor module call table is indexed by the 1-byte group
code, which identifies the way that the processor is called:

Call type
Description

A Has a vector of offsets at its entry point. This vector is indexed by the
command function code to locate the actual entry point, to which DFHEIP
does an unconditional branch.

 Return is to label EIPNORML, EIPCONDN, or EIPERROR.
B Has a single entry point, for which DFHEIP issues a DFHAM TYPE=LINK

call.

 The appropriate return address in DFHEIP is set in register 14, an
unconditional branch is made to the DFHEIP, which tests the response in
EIBRESP.

C Has a single entry point, for which DFHEIP issues a DFHEIEIM call
(through the kernel).

 Return is to the next instruction, where DFHEIP tests the response in
EIBRESP.

D Has a single entry point, for which DFHEIP uses a BALR R14,R15
instruction; this type is used only for GDS.

 The appropriate return address in DFHEIP is set in register 14, an
unconditional branch is made to the DFHEIP, the response in the user’s
RETCODE field.

Exits
The following global user exit points are provided in DFHEIP:

For further information, see the CICS Customization Guide.

Trace
The following point ID is provided for DFHEIP:
v AP 00E1, for which the trace level is EI 1.

The following point IDs are provided for DFHEISR:
v AP E110 (entry), for which the trace level is EI 2.
v AP E111 (exit), for which the trace level is EI 2.

Trace entries are made before and after the execution of a command by its EXEC
interface processor module.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 19. EXEC interface 167

168 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 20. Execution diagnostic facility (EDF)

The execution diagnostic facility (EDF) allows users of the CICS command-level
programming interface to step through the CICS commands of an application
program. This program can be part of a local or remote transaction. At each step,
the user can check the validity of each command and make temporary
modifications to the program.

Design overview
EDF enables an application programmer to test a command-level application
program online without making any modifications to the source program or the
program preparation procedure. EDF intercepts execution of the application
program at certain points and displays relevant information about the program at
these points.

There are seven places in the EXEC interface program (DFHEIP) where the EDF
can be called:
1. When program initialization has been done, just before control is passed to the

application entry point
2. When program termination is being done, just after control has been received

from the application
3. Before a normal EXEC command is passed to its processor module
4. When a normal EXEC command has returned to DFHEIP
5. Before an EXEC CICS GDS command is passed to its processor module
6. When an EXEC CICS GDS command has returned to DFHEIP
7. Before an EXEC CICS FEPI command is passed to its processor module
8. When an EXEC CICS FEPI command has returned to DFHEIP
9. At the end of a PL/I program.

Modules

CEBR transaction (DFHEDFBR)
The temporary-storage browse transaction (CEBR) allows the user to browse, copy,
or delete items in a queue. CEBR invokes DFHEDFBR to execute the required
action.

EDF display (DFHEDFD)
The EDF display program, DFHEDFD, provides the following functions:
v To display the user program status
v To allow the user to modify argument values and responses
v To allow the user to display and modify the EXEC interface block (EIB) and

program working storage
v To allow the user to display any hexadecimal location in the partition user

screen
v To allow the user to suppress EDF displays until specified conditions are met.

© Copyright IBM Corp. 1997, 2011 169

Method
 1. Data describing user status is passed to DFHEDFD in the TWA.
 2. Initialize exception and abend handling.
 3. If TS queue for user terminal already exists, read control information;

otherwise create control information about TS queue.
 4. Check for security violation.
 5. If necessary, remember user screen.
 6. Build required display by calling DFHEDFS.
 7. Send display to EDF screen.
 8. Extract modified information by calling DFHEDFS.
 9. Analyze request.
10. Set up build information for next display.
11. Go and build required display.
12. When no further displays are required:

a. Save function display
b. If necessary, restore user screen
c. Update control information
d. If transaction is defined as remote, purge TS queue and any shared storage

associated with the EDF task
e. Return to DFHEDFP.

EDF map set (DFHEDFM)
The EDF map set, DFHEDFM, consists of three maps:

DFHEDFM
To display status information at the various EDF interception points

DFHEDFN
To display the EDF stop conditions

DFHEDFP
To display a dump of storage.

All maps are (24,80). The first two lines of each map contain the transaction ID,
program name, status, and so on. The format of these two lines must be identical
for all maps. A menu is displayed with each map, and includes a message line and
a reply field. The format of the menu must be identical for all maps. The cursor is
positioned by symbolic cursor positioning.

EDF control program (DFHEDFP)
The EDF control program, DFHEDFP, provides the CEDF transaction for starting
EDF, and is used in two different ways:
1. To control the debugging task
2. To set debug mode on or off.

Input
Input to the DFHEDFP program is provided as follows:
To control the debugging task

Information describing the user task status is written into the debug
linkage area (DLA) of CEDF by DFHEDFX.

170 CICS TS for z/OS 4.1: Diagnosis Reference

To set debug mode on or off
The user enters a CEDF request at the debug display terminal using the
following syntax:
 CEDF termid,ON|OFF

Alternatively, a PF key may be used to switch single-terminal debug mode
on.

Note: To use EDF for a remote transaction, only single-terminal mode is
available.

Output
Output from the DFHEDFP program is as follows:
To control the debugging task

DFHEDFD displays user program status.
To set debug mode on or off

Switches the debug mode bit either in the user terminal TCTTE or, if an
EXEC task is running, in the user task EIS. For two-terminal debugging,
creates temporary-storage queue element to connect user terminal with
display terminal.

Method
To control the program for debugging a task

If the task is attached by DFHEDFX and if only one terminal is being used
for debugging, link to DFHEDFD to display program status. If two
terminals are being used for debugging, start CEDF at the display terminal,
restore that terminal to the user, resume the user task, then return to CICS.

To set debug mode on or off
If invoked by using a PF key, set the debug mode on for single-terminal
debugging in the user TCTTE. If invoked by a CEDF request, extract the
user terminal ID (default is display terminal), and extract the debug mode
(default is on). If the user terminal ID does not exist, output a diagnostic
message. If the EXEC task is running and the task is in debug mode,
output a diagnostic message; otherwise switch the debug bit in EIS, or
switch the debug bit in TCTTE. Create a temporary-storage queue element
naming the debug terminal.

EDF response table (DFHEDFR)
The EDF response table, DFHEDFR, is a table used by DFHEDFD to interpret the
responses obtained by EXEC commands.

EDF task switch program (DFHEDFX)
The EDF task switch program, DFHEDFX, is used to attach the debugging task,
provide it with all necessary information about the status of the user task, and
suspend the user task until the debugging task allows it to resume.

Method
1. Extract information describing the user task status and copy it into the DLA for

the attached task
2. Issue wait on user terminal
3. Attach CEDF
4. Suspend the user task
5. When the user task is resumed by EDF, check if EDF has not abended
6. If the user requests an abend, abend the user task; otherwise, return to caller.

Chapter 20. Execution diagnostic facility (EDF) 171

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

172 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 21. Extended recovery facility (XRF)

The extended recovery facility (XRF) enables you to achieve a high level of
availability. You can run an alternate CICS system that monitors your active CICS
system, and takes over automatically or by operator control if the active system
fails. You can also plan and execute a takeover yourself when you want to do
maintenance on an active system.

Problems in the active system can be detected and isolated as soon as they occur.
The alternate system can recover and restart quickly, like an emergency restart, and
the time for reconnection of terminals is reduced.

Design overview
A detailed overview of this function is given in the .

Control blocks
A command list table (CLT) is used by an alternate system when it takes over the
running of CICS from an active system. It holds the ID data for the JES system in
use, data used to verify its authority to take over, and routing information. If there
is more than one active system in two CECs, the CLT also holds VTAM MODIFY
commands, and messages to the operator (WTO) to complete the takeover. It is
loaded during takeover, and deleted when processed.

See CICS Data Areas for a detailed description of this control block.

Modules
Figure 46 on page 174 shows the modules for XRF.

© Copyright IBM Corp. 1997, 2011 173

Exits
There is one global user exit point in DFHXRA: XXRSTAT. For further information
about this, see the CICS Customization Guide.

Trace
The following point IDs are provided for the CAVM services:
v AP 00C4, AP 00C5, AP 00C6, and AP 00C7, for which the trace level is AP 1.

The following point IDs are provided for the XRF takeover signon/sign-off
function:
v AP 0Axx, for which the trace levels are AP 1, AP 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Catch-up
transaction
(DFHCXCU)

‘CICS’
catch-up
transaction
(DFHZXCU)

DBCRL
catch-up
transaction
(DFHDXCU)

DBCTL
surveillance
transaction
(DFHDBCR)

Switch
transaction
(DFHXTCI)

CEPT
transaction
(DFHXRCP)

CAVM
state
management

Surveillance
transaction
(DFHXRSP)

PUTMSG
service
(DFHWMP1)

GETMSG
service
(DFHWMG1)

CAVM
message
management
(DFHWMS)

CAVM
surveillance

CAVM
interface
support
(DFHXRA)

Extended
recovery
facility
support

Figure 46. Extended recovery facility support

174 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 22. External CICS interface

The external CICS interface (EXCI) is an integral part of CICS Transaction Server
for z/OS. The function is called an external CICS interface because it enables
non-CICS application programs (client programs) running in MVS to call programs
(server programs) running in a CICS Transaction Server for z/OS region and to pass
and receive data by means of a communications area.

Design overview
This section provides an overview of the design of the external CICS interface. For
more information about the external CICS interface, see theCICS External Interfaces
Guide.

The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in MVS to call a program (a server
program) running in a CICS region and to pass and receive data by means of a
communications area. The CICS application program is invoked as if linked-to by
another CICS application program.

This programming interface allows a user to allocate and open sessions (or pipes) to
a CICS region, and to pass distributed program link (DPL) requests over them. The
multiregion operation (MRO) facility of CICS interregion communication (IRC)
facility supports these requests, and each pipe (A pipe is a one-way
communication path between a sending process and a receiving process. In an
external CICS interface implementation, each pipe maps onto one MRO session,
where the client program represents the sending process and the CICS server
region represents the receiving process. maps onto one MRO session).

Unless the CICS region is running in a sysplex under MVS/ESA 5.1 and therefore
able to use cross-system MRO (XCF/MRO), the client program and the CICS
server region (the region where the server program runs or is defined) must be in
the same MVS image. Although the external CICS interface does not support the
cross-memory access method, it can use the XCF access method provided by
XCF/MRO. See the CICS Intercommunication Guide for information about
XCF/MRO.

A client program that uses the external CICS interface can operate multiple
sessions for different users (either under the same or separate TCBs) all coexisting
in the same MVS address space without knowledge of, or interference from, each
other.

Where a client program attaches another client program, the attached program
runs under its own TCB.

The programming interfaces
The external CICS interface provides two forms of programming interface: the
EXCI CALL interface and the EXEC CICS interface.
The EXCI CALL interface

This interface consists of six commands that allow you to:
v Allocate and open sessions to a CICS system from non-CICS programs

running under MVS

© Copyright IBM Corp. 1997, 2011 175

v Issue DPL requests on these sessions from the non-CICS programs
v Close and deallocate the sessions on completion of the DPL requests.

The six EXCI commands are:
1. Initialize_User
2. Allocate_Pipe
3. Open_Pipe
4. DPL call
5. Close_Pipe
6. Deallocate_Pipe

The processing of an EXCI CALL-level command is shown in Figure 47.
The EXEC CICS interface

The external CICS interface provides a single, composite command–EXEC
CICS LINK PROGRAM– that performs all six commands of the EXCI
CALL interface in one invocation. The processing of an EXEC CICS LINK
command is shown in Figure 48 on page 177.

 This command takes the same form as the distributed program link
command of the CICS command-level application programming interface.

API restrictions for server programs

A CICS server program invoked by an external CICS interface request is restricted
to the DPL subset of the CICS application programming interface. This subset (the
DPL subset) of the API commands is the same as for a CICS-to-CICS server
program.

For details about the DPL subset for server programs, see the CICS Application
Programming Guide.

Batch program DFHXCPRH
2

DFHXCSTB

1
DFHIRP

3
CICS

CALL DFHXCIS (...)

Note:

1. An EXCI CALL API request is issued, and invokes the DFHXCIS entry point in the EXCI
stub, DFHXCSTB.

2. DFHXCSTB locates DFHXCPRH, and invokes it to process the EXCI request. If
DFHXCPRH is not found, DFHXCSTB loads DFHXCPRH before invoking it.

3. DFHXCPRH sets up the control blocks needed for the EXCI request. For a DPL request,
DFHXCPRH invokes DFHIRP to pass control to CICS.

Figure 47. External CICS interface, CALL-level API

176 CICS TS for z/OS 4.1: Diagnosis Reference

Modules
 Module Function

DFHXCALL EXEC-level API macro. Invoked by the CICS translator when processing
EXCI EXEC-level requests.

DFHXCDMP dump services. Calls the CICS SVC to issue SDUMP macro requests, to
take an SDUMP of the EXCI address space.

DFHXCSTB stub link-edited with applications that want to use EXCI.

DFHXCEIP EXEC-level API handler. The main EXCI module that processes EXCI
EXEC-level requests.

DFHXCO options macro for generating the DFHXCOPT options table.

DFHXCOPT options table to customize the EXCI environment.

DFHXCPLD Assembler-language parameter list definitions. Copybook defining the
parameters for use with the EXCI APIs.

DFHXCPLH C parameter list definitions. Copybook defining the parameters for use
with the EXCI APIs.

DFHXCPLL PL/I parameter list definitions. Copybook defining the parameters for
use with the EXCI APIs.

DFHXCPLO COBOL parameter list definitions. Copybook defining the parameters for
use with the EXCI APIs.

DFHXCPRH program request handler The main EXCI module that processes EXCI
CALL-level requests.

DFHXCRCD Assembler-language return code definitions. Copybook defining the
return codes for use with the EXCI APIs.

DFHXCRCH C return code definitions. Copybook defining the return codes for use
with the EXCI APIs.

DFHXCRCL PL/I return code definitions. Copybook defining the return codes for
use with the EXCI APIs.

Batch program DFHXCEIP (3) DFHXCPRH
2

DFHXCSTB DFHXCSTB
4

1
Init User
Allocate Pipe CICS
Open Pipe

EXEC CICS LINK ... DPL
Close Pipe
Deallocate Pipe

Note:

1. An EXCI EXEC API request is issued, and invokes the DFHXCEI entry point in the EXCI
stub, DFHXCSTB.

2. DFHXCSTB locates DFHXCEIP, and invokes it to process the EXCI request. If DFHXCEIP
is not found, DFHXCSTB loads DFHXCEIP before invoking it.

3. DFHXCEIP converts the EXCI EXEC-level request into a series of EXCI CALL-level
requests.

4. The CALL-level requests result in calls to the EXCI stub, DFHXCSTB (as in Figure 47 on
page 176).

Figure 48. External CICS interface, EXEC-level API

Chapter 22. External CICS interface 177

Module Function

DFHXCRCO COBOL return code definitions. Copybook defining the return codes for
use with the EXCI APIs.

DFHXCSVC SVC services. Invoked by the CICS SVC to issue an SDUMP macro to
take an SDUMP of the EXCI address space.

DFHXCTAB language table. Copybook defining the syntax of the EXCI EXEC
language for use by the CICS translator.

DFHXCTRA global trap program. The EXCI equivalent of the DFHTRAP module,
providing the service with ability to collect extra diagnostic information.

DFHXCTRD local trap parameter list definition. Defines the parameter list passed to
DFHXCTRA and all EXCI trace points used by DFHXCTRA.

DFHXCTRP trace services. Writes EXCI trace entries to the EXCI internal trace table.

DFHXCTRI trace initialization. Initializes EXCI trace services.

DFHXCURM User-replaceable program that allows the user to modify the applid of
the CICS region to which the EXCI request is to be issued.

Exits
There are no exit points for the EXCI.

Trace
The EXCI has its own internal trace table in the EXCI address space where the
client program is running. EXCI trace entries can also be written to the MVS GTF
trace data set.

EXCI trace point IDs are EXxxxx, with a trace level of 1, 2, or Exc.

For more information about EXCI tracing, see the CICS External Interfaces Guide.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

178 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 23. Field engineering program

The field engineering program (DFHFEP) is a CICS system service function
primarily designed for an IBM field engineer to use when installing new terminals.
When CICS is running, this program (invoked by the CSFE transaction) transmits a
set of characters to the requesting terminal. In addition, the program can be used
to echo a message; that is, it repeats exactly what is keyed at the terminal.

This program also supports some general debugging functions.

Design overview
When used for testing terminals, DFHFEP first prepares for device-dependent
conditions. It then issues a storage control FREEMAIN, followed by a GETMAIN
for storage for the ENTER message, which it writes using terminal control WRITE,
READ, and WAIT macros. Finally, if print was requested, the character set is
printed; if end was requested, the completion message is issued; otherwise the
input is echoed.

DFHFEP performs all the requests made by the CSFE transaction. In addition to
the terminal test function, CSFE can request the activation or deactivation of:
v System spooling interface trace
v Terminal builder trace
v Storage freeze
v Storage violation trap
v Global trap/trace exit.

See CICS Supplied Transactions for details of the command syntax and functions
provided.

Modules
DFHFEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 179

180 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 24. File control

File control provides a facility for accessing data sets, files, and data tables, using
keyed or relative-byte-address (RBA) access through the virtual storage access
method (VSAM), the basic direct access method (BDAM), shared data table
services and the coupling facility data tables server. VSAM data sets can be
accessed in either RLS or non-RLS mode. RLS mode allows sharing of data sets
across a parallel sysplex. File control allows updates, additions, deletions, random
retrieval, and sequential retrieval (browsing) of logical data in the data sets. If
VSAM is used, access to logical data can be via a VSAM alternate index path, as
well as through the base data set.

File control reads from, and writes to, user-defined data sets and data tables,
gathers statistics, and acquires dynamic storage for I/O operations. File control
uses control information defined by the user in the file control table (FCT). This
table describes the physical characteristics of all the data sets, and any logical
relationships that may exist between them.

Design overview
File control provides the following services and features:
v Random record retrieval
v Random record update
v Random record addition
v Random record deletion (VSAM only)
v Sequential record retrieval
v BDAM deblocking
v Enabling and disabling of files, making them accessible to applications
v Opening and closing of files for the access method
v Exclusive control of records during update operations
v Mass record insertion (VSAM only)
v Automatic journaling and logging.

Deblocking services for BDAM data sets
CICS provides deblocking of logical records on a direct-access (BDAM) data set.
This service is provided for both fixed-length and variable-length records. The data
set must have been created according to standard operating system
record-formatting conventions.

Concurrency control
Protection is provided against the concurrent updating (adding, deleting or
changing) of a data set record by two or more transactions (or strictly speaking,
two or more units of work; a transaction may optionally consist of a sequence of
units of work). This protection is in most cases achieved using locking. If a second
unit of work attempts to update a record which has been locked by another unit of
work, the second unit of work is normally queued until the first releases its lock. If
the lock has been converted into a retained lock (this is done if a syncpoint failure
occurs) then the second unit of work gets an error response rather than being

© Copyright IBM Corp. 1997, 2011 181

queued. An optimized alternative to locking is used to achieve concurrency control
for coupling facility data tables. This is described in the section 'Concurrency
control for coupling facility data tables'.

For a VSAM data set being accessed in non-RLS mode, CICS acquires locks (or
enqueues) using the NQ domain that prevent the same record from being updated
by more than one unit of work at a time. If the file is recoverable, then the lock is
not released until syncpoint (that is, the end of the unit of work), otherwise it is
released when the request thread completes. A request thread consists, for example,
of a read update followed by a rewrite. In non-RLS mode, VSAM also provides a
form of concurrency control known as exclusive control. The sphere of exclusive
control is the control interval (CI), and this means that two different records cannot
be concurrently updated if they are both within the same CI. Exclusive control is
only maintained while a record is being updated, and is released as soon as the
operation is complete.

For a VSAM data set being accessed in RLS mode, VSAM acquires locks at the
record level to prevent the same record from being updated by more than one unit
of work within the sysplex at a time. If the data set is recoverable, then the lock is
not released until syncpoint, otherwise it is released when the request sequence
completes. There is no CI locking with RLS mode.

For a recoverable BDAM file, CICS acquires locks using the NQ domain that
prevent the same record from being updated by more than one unit of work at a
time.

Concurrency control for coupling facility data tables
Concurrency control for coupling facility data tables is provided by using one of
two update models provided by coupling facility data tables support (CFDT
support).

The default is the locking update model, in which the CFDT server acquires locks
at the record level to prevent the same record from being updated by more than
one unit of work within the sysplex at a time. If the data set is recoverable, then
the lock is not released until syncpoint, otherwise it is released when the request
sequence completes.

The contention update model is an optimized alternative to using locking to
achieve update integrity (concurrency control). With this model, which can be
specified on a per-data table basis, no locks are acquired when a record is read for
update, but if another unit of work subsequently changes or deletes this record,
then the first unit of work will be informed that the record has changed (or been
deleted) when it comes to rewrite or delete the record itself. The occurrence of
such a contention is detected by the CFDT server, and the contention update
model is only available for coupling facility data tables.

Sequential retrieval
A facility supported by CICS file control is the sequential retrieval of records from
the database. This facility is known as browsing. To initiate a browse operation, the
user provides either a specific or generic (partial) record reference (key) for the
point at which sequential retrieval is to begin. Each subsequent get request by the
user initiates retrieval of the next sequential record. The application, while in
browse mode, can issue random get for update requests to a different data set,
without interrupting the browse operation. For VSAM files accessed in RLS mode,
the application can update the records that it is browsing. For VSAM files accessed
in non-RLS mode, and BDAM files, in order to update a record of the same data

182 CICS TS for z/OS 4.1: Diagnosis Reference

set, the application must first terminate the browse operation. The same
application can concurrently browse several different data sets and browse the
same data set with multiple tasks.

With VSAM data sets, the application can skip forward during a browse operation
to bypass unwanted data.

All types of CICS data tables (CICS-maintained, user-maintained and coupling
facility) can be browsed.

Read Integrity
When a file is accessed in RLS mode, three levels of read integrity are supported:
v UNCOMMITTED read integrity is the same level of read integrity as is

supported for non-RLS requests. With this level of read integrity, read requests
can return data which has not yet been committed, and which might
subsequently be backed out.

v CONSISTENT read integrity. With this level of read integrity, read requests are
serialized with concurrent update activity for the record, so that a read request
will wait until data which is being updated has been committed (or until the
update has completed, for a non-recoverable data set). This means that read
requests will always see commit-consistent data.

v REPEATABLE read integrity. With this level of read integrity, additional locking
is used so that in addition to waiting for updates to be committed, records that
have been read within a unit of work cannot be updated until the unit of work
completes. This means that if a read is repeated within a unit of work, the same
data will be returned.

Backout logging
File control will perform automatic logging of file operations which update
recoverable files. This logging is written to the CICS system log stream. In the
event of either a system or a transaction failure, the information can subsequently
be used to restore the recoverable data set as though the current transaction had
never run.

For coupling facility data tables, the CFDT server performs its own logging, and is
responsible for backing out updates in the event of a failure.

Forward Recovery Logging
If a file (non-RLS VSAM) or data set (RLS or non-RLS VSAM) is defined to be
forward recoverable, then CICS will perform automatic logging of file operations
which update it. This logging is written to the forward recovery log stream
specified on the file definition or data set. In the event of a failure, the information
can be used to forward recover from a backup copy of the data set.

Forward recovery support is not provided for user-maintained data tables or
coupling facility data tables.

Automatic journaling and logging
Except in the case of user-maintained data tables and coupling facility data tables,
CICS provides optional automatic journaling and logging facilities for records that
are updated, deleted from, or added to a file control data set. Automatic journaling
is specified in the file control table, by the user, for each data set affected. For a
specified data set, a record read for update, a new record added, or an existing

Chapter 24. File control 183

record deleted is automatically written to the specified journal. To allow journaled
records to be associated with the appropriate data set (instead of with the CICS file
name), a special record is journaled showing the current data set allocation
whenever it changes.

Use of concurrent tasks
The file control non-RLS VSAM interface program (DFHFCVR) uses a
change-mode request to the dispatcher to allow VSAM I/O requests and VSAM
UPAD exit code to run under a concurrent task. This provides overlapping of
processing in a multiprocessor environment.

RLS requests use a different mechanism: SMSVSAM assigns each request its own
SRB, allowing MVS to concurrently schedule requests in an analogous way to that
provided by subtasking for non-RLS.

Shared Data table services
Shared data tables (that is, CICS-maintained and user-maintained data tables) are
managed by a set of OCO modules, referred to in this book as “data table
services”. The services are invoked by a branch-and-link interface passing a
parameter block.

Services provided include the following:
v Initialization
v Open, close, and load of tables
v Retrieval and update of table records
v Backout and commit of table changes
v Statistics.

For files that are defined by the user as CICS-maintained or user-maintained data
tables, file control invokes these services at appropriate points in the processing of
application requests.

Coupling facility data tables server
Coupling facility data tables are managed by OCO modules within the CICS
address space, and in a separate address space that is known as the Coupling
Facility Data Tables server (CFDT server). The CFDT server provides access to
coupling facility data tables residing in a coupling facility data tables pool, so that
they can be shared by CICS regions across a parallel sysplex. Refer to the CICS
System Definition Guide for more details about CFDT servers.

For files that are defined by the user as accessing coupling facility data tables, file
control makes calls to the CFDT server at appropriate points in the processing of
application requests.

How CICS processes file control requests
CICS receives file control requests from applications through the EXEC interface.
This section describes only the mainstream processing for such requests. It does
not describe exceptional conditions. For guidance about exceptional conditions, see
the CICS Application Programming Guide. For general-use programming interface
information about exceptional conditions, see the CICS Application Programming
Reference. This section also does not provide details about the specific processing
for requests to any kind of data table.

184 CICS TS for z/OS 4.1: Diagnosis Reference

Processing using VSAM
For VSAM data sets, this section describes the processing followed when the file is
being accessed in non-RLS mode. For RLS mode, the processing is broadly similar,
although it differs in some of the interfaces used to VSAM, and the locking
mechanisms are very different.

Note: File control processing is constrained by the availability of buffers, CICS
strings and (for local shared resource (LSR) files) LSR strings. Tasks can get
suspended during the execution of any file control request if there are not enough
strings or buffers available for the immediate processing that is to be done.

With VSAM RLS, a task waiting for buffers will be suspended in VSAM rather
than in CICS.

Processing using Data Tables
For shared data tables (CICS-maintained and user-maintained data tables),
processing is broadly similar to that for non-RLS VSAM. The main differences are
that, for remote files, non-update requests may be processed locally instead of
being function shipped, and that, in cases where a request cannot be satisfied from
a data table, it may be converted into a non-RLS or RLS VSAM request to be
processed by DFHFCVS or DFHFCRS, or function shipped via DFHFCDTX.

For coupling facility data tables, processing is also broadly similar to that for
non-RLS VSAM. The main difference is that instead of issuing the request to
VSAM, a call or calls are made to entry points within the CFDT server, which then
processes the request and returns the results. A task accessing a coupling facility
data table may occasionally be suspended in the CFDT server.

Note that the following processing sections do not describe data table processing
explicitly.

General request processing
All file requests, whatever the request and whatever the file access method, follow
the same general sequence of steps:
 1. User exit XFCREQ is called.
 2. The request is converted from EXEC parameter list form to FCFR interface

form.
 3. If this is the first file access request by the transaction, a FRAB is obtained and

its address stored in Recovery Manager's FC Token. The FRAB provides the
anchor for file request state for this transaction.

 4. If this is the first request to this file by the transaction, a FLAB is obtained and
the file control table entry is located. If the file is remote or an explicit SYSID
has been specified on the request, the FLAB is marked with a remote
indicator. If this is not the first request to the file, then the FLAB is located
that repressents accesses made to the file by this transaction.

 5. If this is the first, or only, request of a request sequence, a FRTE is obtained. If
this is not the first request in a request sequence, the FRTE that represents the
sequence is located. rather than being function shipped.

 6. If the request is to a local file, and if resource security is active, the security
check is made, unless a check has already been made within the current UOW
for this file.

 7. If the request is to a local file and the file is not already open, it is opened and
its access method dependent attributes are saved in its file control table entry.

Chapter 24. File control 185

8. The SERVREQ attributes of the file are checked.
 9. For READ and browse requests, SET storage is released and/or obtained, as

necesssary.
10. The access method specific request processor is called as follows:

v DFHFCVS for non-RLS VSAM files
v DFHFCRS for RLS VSAM files
v DFHFCBD for BDAM files
v DFHFCDR for coupling facility data tables
v DFHFCDTS for user-maintained data tables
v DFHFCDTS for non-update requests to CICS maintained data tables
v DFHFCVS for update requests to CICS maintained data tables
v DFHFCRF for requests that are to be shipped to a remote region

11. CICS has checked whether the file is defined as local or remote. If it is remote,
the request is function-shipped to the file-owning region, where CICS
processes the request as if it had originated locally.
There is an exception for CICS-maintained and user-maintained data tables,
for which non-update requests are treated as local rather than being function
shipped.
Note that RLS support and coupling facility data tables support both provided
shared access within a parallel sysplex without the use of function shipping.
Files which use either of these types of sharing will be defined as local on all
systems which want to share the data set (in the case of RLS support) or data
table (CFDT support).

12. SET storage is obtained for BDAM files or below the line READ requests.
13. The FRTE is released if the request sequence has ended and the file is closed if

a close is pending, this FRTE is the last user and the FLAB indicates that the
file can be closed.

14. The FCFR responsed are converted to EXEC parameter list responses. In
particular, the EIBRCODE and RESP2 values are constructed.

15. User exit XFCREQC is called.

READ request processing
The course of READ request processing depends on the access method, and
whether or not the UPDATE option is specified on the request:

VSAM processing:

1. The supplied keylength is validated.
2. A VSAM work area (VSWA) is created. This includes the request parameter list

(RPL) that will be passed to VSAM.
The processing that follows depends on whether the UPDATE option was specified on
the READ request.
UPDATE option not specified:

a. The RPL is completed, and a call made to VSAM to get the record.
b. If the request specifies INTO and the record is too large for the

user-specified area, the request is reissued specifying a work area large
enough to hold the record. The record is then copied to the user-specified
area in truncated form, and the LENGERR condition is raised.

c. The VSWA is freed.
d. The read is journaled if specified in the FCT entry.

186 CICS TS for z/OS 4.1: Diagnosis Reference

UPDATE option specified:

a. The UPDATE flag is set in the RPL.
b. An attempt is made to read the record by issuing the VSAM request. READ

UPDATE requires exclusive control of the control interval (CI) containing
the record. VSAM manages the locking mechanism for control intervals. If
the CI is already locked, VSAM returns an error and the requesting task is
forced to wait on resource type FCXCWAIT.

c. CICS file control acquires a record lock on the record just read, using a CICS
ENQUEUE request. The record lock prevents any other transaction from
updating the record before the owning transaction has reached a syncpoint
(for recoverable files), or before the REWRITE, DELETE, UNLOCK or
syncpoint that completes the request sequence (non-recoverable files).

d. Exclusive control of the CI is retained until the REWRITE, DELETE, or
UNLOCK request that follows the READ UPDATE has been completed, or
until the next syncpoint.
The CICS record lock (if any) is retained until the next syncpoint, in case
the transaction updating the record abends and dynamic transaction
backout processing is necessary.

e. If the file is recoverable the request is logged. If required, the request is also
recorded in a user-specified journal.

BDAM processing:

a. A file I/O area (FIOA) is obtained.
b. If the UPDATE option has been specified:

1) The address of the RIDFLD is saved in the FIOA.
2) If the data set is recoverable, the RIDFLD is ENQUEUEd on to lock the

record against other updates. The ENQUEUE is retained until the next
syncpoint.

c. The KEYLENGTH is checked for validity.
d. The key field is converted from character string format (TTTTTTRR) to

binary format (TTR), if necessary.
e. A BDAM READ request is issued. If the READ is successful, the required

block is returned in the FIOA.
f. The key field returned by BDAM is converted from binary format to

character string format, if necessary.
g. If the file is recoverable and UPDATE has been specified, the request is

logged. If required, the request is also recorded in a user-specified journal.
h. If deblocking is required, the required record is located in the block that has

been returned by BDAM:
1) If DEBREC has been specified, the record number is used to locate the

record.
2) If DEBKEY has been specified, the embedded key is used to locate the

record.

WRITE request processing
The course of WRITE request processing depends on the access method, and for
VSAM access on whether the file is a data table: VSAM processing:

1. The KEYLENGTH is checked for validity. If it is incorrect, the INVREQ
condition is raised.

2. A VSAM work area (VSWA) is created. This includes the request parameter list
(RPL) that will be passed to VSAM.

Chapter 24. File control 187

Different paths are now followed depending on the type of file.
ESDS file:

a. If the file is recoverable or writes are to be journaled then
1) If this is not the first write of a sequence and the ESDS write lock is

being waited for by another transaction, then release the lock and end
this sequence, logging the completion if recoverable.

2) If this is (or has become) the first write of a sequence, acquire the ESDS
write lock for the data set.

b. If the file is recoverable, the WRITE ADD request is recorded in the CICS
system log.

c. If required, the WRITE ADD request is recorded in a user-specified journal.
d. Any fields in the RPL not supplied when the VSWA was created are

completed.
e. The RPL is set to point to the user-specified data area. If the user specified a

record that is too large for the file, the length in the RPL is set to the
maximum length, so that the record is truncated.

f. A VSAM PUT request is issued to write the record.
g. If the file is recoverable, a CICS record lock is obtained for the record that

has just been written. The record lock will be retained until the next
syncpoint, in case the transaction writing the record abends and dynamic
transaction backout processing has to be performed.

h. If the file is recoverable, the after-image of the record is logged for forward
recovery and a write complete record is written on the system log.

i. If not a MASSINSERT the ESDS write lock is released, if held.

KSDS or RRDS file:

a. For KSDS requests, the RIDFLD key specified in the request is checked
against the key field in the record to be written. (The record is currently in
the application FROM data area.) If it does not match, the INVREQ
condition is raised.

b. If the file is recoverable and not in load mode:
1) A CICS lock is obtained on the record that is to be written, and an

attempt is made to read the record (by means of a VSAM GET request)
to discover whether it already exists in the file. If it does, the DUPREQ
condition will be raised on the write to VSAM.

2) If the file is a KSDS, and if this request is part of a MASSINSERT, or if a
MASSINSERT is in progress, the read is issued with GTEQ to find the
next record in the base data set. A lock is created, using the key of this
next record, to prevent other transactions from inserting records into the
empty range.

3) If there is no existing record with the given key, the WRITE ADD
request to VSAM is recorded in the CICS system log and, if required, in
a user-specified journal.

c. If the file is not recoverable or in load mode, the WRITE request is recorded,
if required, in the user-specified journal, and if recoverable a record lock is
obtained and the write logged.

d. Any fields in the RPL not supplied when the VSWA was created are
completed.

e. If a data table is associated with the base cluster (the data table will be a
CICS-maintained table, as user-maintained and coupling facility data tables
follow a separate processing path which is not described here). a data table

188 CICS TS for z/OS 4.1: Diagnosis Reference

pre-add is issued to place the record in the table as a not-yet-valid entry. If
the file is recoverable, a record lock is already held; if not, a lock is acquired
before the data table service is called.

f. A VSAM request is issued to write the record.
g. If the file is recoverable, the after-image of the record is logged for forward

recovery.
h. If required, the after-image is recorded in a user-specified journal.
i. If the file is a data table, a data table request is issued to complete the add to

the data table by validating the record. If a record lock was obtained for a
non-recoverable file, it is released.

3. If the MASSINSERT option has not been specified on the WRITE request, the
VSWA for the operation is released.
If MASSINSERT has been specified, the VSWA is not released, because it is
likely to be needed for subsequent WRITE operations. In this case, the end of
MASSINSERT processing is notified to VSAM by the CICS UNLOCK function.
(See “UNLOCK request processing” on page 190.)
Specifying MASSINSERT causes exclusive control of the CI to be acquired.
Exclusive control is released by issuing an UNLOCK request. To avoid
deadlocks, this should be done immediately after the last WRITE MASSINSERT
request.

BDAM processing:

 1. The KEYLENGTH is checked for validity. If it is incorrect, the INVREQ
condition is raised.

 2. The WRITE command input is checked to ensure that MASSINSERT has not
been specified—BDAM does not support MASSINSERT processing. If it has,
condition INVREQ is raised.

 3. A file I/O area (FIOA) is obtained.
 4. If the file is recoverable, the record to be written is ENQUEUEd on. The lock

is retained until the next syncpoint.
 5. The record to be written is copied from the user-supplied data area to the

FIOA. If the record is too large, it is truncated.
 6. If the file is recoverable, the request is logged. If required, the request is also

recorded in a user-specified journal.
 7. The key field is converted from character string format to binary format, if

necessary, and the BDAM I/O request issued.
 8. The key returned by BDAM is converted from binary format to character

string format, if necessary, and passed to the application.
 9. A supervisor call (SVC 53) is issued to release BDAM exclusive control, if

necessary.
10. The FIOA is FREEMAINed.

REWRITE request processing
The REWRITE request is used to write a record back to a file following a READ
UPDATE request. VSAM processing:

1. The RPL is set to point to the user-specified data area. If the user specified a
record that is too large for the file, the length in the RPL is set to the maximum
length, so that the record is truncated.

2. The RPL is completed.
3. If there is a data table associated with the base cluster (this will be a

CICS-maintained table, as user-maintained tables follow data table processing):

Chapter 24. File control 189

a. If the file is nonrecoverable, a record lock is obtained. (If the file is
recoverable, a lock is already held).

b. A data table request is issued to invalidate the record in the table before the
VSAM update.

4. VSAM is called to PUT(UPDATE) the record. Exclusive control of the CI, which
was obtained for the preceding READ UPDATE request, is released, but the
CICS record lock (for recoverable files) is retained until the next syncpoint, in
case the transaction abends and dynamic transaction backout processing is
necessary.

5. If there is a data table associated with the data set, the table record is updated
and its validity is reinstated, by issuing a call to data table services. If the file is
nonrecoverable, the record lock is released.

6. If the file is recoverable, and if the record is successfully rewritten, the
after-image is written to the log for forward recovery.

7. The VSWA for the operation is released.

Note: When a record is updated by way of a path, the corresponding alternate
index is updated by VSAM to reflect the change. However, if the record is
updated directly by way of the base, or by a different path, the AIX® will only
be updated by VSAM if it has been defined to VSAM (when created) to belong
to the upgrade set of the base data set.

BDAM processing:

1. The FIOA that was used in the corresponding READ UPDATE request is
located, and the modified record read into it from the user-specified area. If the
record is too long, it is truncated.

2. A FREEMAIN call is issued to release the FWA.
3. If the file is recoverable, the request is logged. If required, the request is also

recorded in a user-specified journal.
4. The key field is converted from character string format to binary format, if

necessary, and the BDAM I/O request issued.
5. The key returned by BDAM is converted from binary format to character string

format, if necessary, and passed to the application.
6. A supervisor call (SVC 53) is issued to release BDAM exclusive control, if

necessary.
7. A FREEMAIN call is issued to release the FIOA.

UNLOCK request processing
The UNLOCK request is used to release exclusive control obtained during a READ
UPDATE (VSAM or BDAM) or WRITE MASSINSERT (VSAM only) request.

VSAM processing (including CICS-maintained data tables):

1. The VSWA for the operation is released, together with associated storage.
2. An ENDREQ request is sent to VSAM. This releases exclusive control of the CI,

if it is held, and frees any VSAM strings.

BDAM processing:

1. A supervisor call (SVC 53) is issued to release BDAM exclusive control, if
necessary.

2. A FREEMAIN call is issued to release the FIOA.

190 CICS TS for z/OS 4.1: Diagnosis Reference

DELETE request processing
The course of DELETE request processing depends on whether a RIDFLD has been
specified. The processing for user-maintained data tables differs from that for
CICS-maintained data tables. DELETE requests are not valid for VSAM ESDS or
for BDAM files.

VSAM processing (including CICS-maintained data tables):

 1. If a RIDFLD has been specified:
a. If a KEYLENGTH has been specified, it is checked for validity.
b. If the GENERIC option has been specified, and the file is not a KSDS,

condition INVREQ is raised.
c. A VSWA is created.

 2. If no RIDFLD was specified, the SERVREQ attribute of the file is checked to
ensure that DELETE requests are valid for this file. If not, the INVREQ
condition is raised.
If a RIDFLD has been specified, the cycle of actions described below is
performed once if GENERIC has not been specified, or is repeated until there
are no more records containing the generic key, if GENERIC has been
specified.
Start of cycle:

 3. VSAM is requested to GET for UPDATE a record with the specific or generic
key. GET UPDATE processing requires exclusive control of the CI. The record
is read into an internal buffer.
The generic key value, if supplied, is checked against the key contained in the
record. If it does not match, there are no more records containing the generic
key in the file.

 4. If the file is recoverable:
a. A CICS record lock is obtained for the record. This will be held until the

next syncpoint.
b. The VSAM GET UPDATE request is recorded synchronously on the system

log.
c. A CICS range lock is obtained for the record to be deleted if a

MASSINSERT is in progress. This is to prevent an end-of-range record
from being deleted while the range is in use for a MASSINSERT sequence.

 5. If there is a data table (which will be CICS-maintained) associated with the
base cluster, a record lock is acquired if the file is nonrecoverable, and a data
table pre-update call is issued to invalidate the record before the VSAM
update.

 6. A VSAM ERASE request is issued, to delete the record from the file.
 7. If there is a data table associated with the base cluster, the record is deleted

from the table by issuing a call to data table services. If the file is
nonrecoverable, the record lock is released.

 8. If a range lock was acquired, it is released.
 9. If the file is recoverable, a WRITE DELETE record is written in the system log

for forward recovery.
10. If required, a WRITE DELETE record is written to a user-specified journal.

End of cycle.
11. The VSWA is released.

Chapter 24. File control 191

STARTBR and RESETBR request processing
STARTBR and RESETBR request processing are very similar, and are described
together.

VSAM processing:

1. A VSWA is created if STARTBR.
2. The user key is recorded in the VSWA for use in subsequent BROWSE

processing.
3. A call is made to VSAM to point to the record, and to acquire shared control of

the CI.

BDAM processing:

1. An FIOA is obtained and initialized if STARTBR.
2. The initial key is saved in the FIOA, converting the key from character string

format to binary format if necessary.
3. If deblocking is required, the deblocking indicator (DEBREC or DEBKEY) is

saved in the FIOA.

READNEXT and READPREV request processing
READNEXT and READPREV request processing are very similar, and are
described together.

VSAM processing:

1. A check is made that READPREV with a generic key was not requested. If it
was, condition INVREQ is raised.

2. If KEYLENGTH was specified, it is checked for validity. If it is incorrect, the
INVREQ condition is raised.

3. The RPL options are set.
4. If SET is specified, an internal work area is obtained and the RPL is set to point

to the work area. The area is either above or below the 16MB line, depending
on the requirements of the application.

5. If INTO is specified, the RPL is set to point to the user-specified area.
6. A VSAM request is issued to read the record. Shared control of the CI is

needed, and the request will not succeed if some other task already has
exclusive control. In such a case, a call is made to VSAM to reestablish the
correct position in the file. The task then waits until VSAM informs CICS that
the CI is available to the task. CICS resumes the task, which can now acquire
shared control and obtain the required record.

7. If SET is specified, the SET pointer points to the work area.
8. If INTO is specified, a check is made to see if the record is too large to fit into

the user-specified area. If it is too large, the request is reissued using an internal
work area, the data is copied from the work area into the user-specified area
and truncated, and the LENGERR condition is raised.

9. If required, the request is recorded in a user-specified journal.

BDAM processing—READNEXT requests:

1. A check is made that READPREV was not issued. If it was, condition INVREQ
is raised.

2. The FIOA that was created on STARTBR is located.
3. If a new block is required, a BDAM I/O request is issued to get it.
4. If deblocking is required, the required record is located in the block that has

been returned by BDAM:

192 CICS TS for z/OS 4.1: Diagnosis Reference

a. If DEBREC has been specified, the record number is used to locate the
record.

b. If DEBKEY has been specified, the embedded key is used to locate the
record.

5. If INTO is specified, the record or block is moved from the FIOA to the
user-specified area. If the record is longer than the user-specified area, it is
truncated, and the LENGERR condition is raised.

6. If SET is specified, the SET pointer points to the record in the FIOA.
7. The RIDFLD of the record is returned to the application.
8. The current browse position is recorded in the FIOA.

ENDBR request processing
The ENDBR request is used to end a browse session on a file. To avoid deadlocks,
ENDBR must be issued when the browse session is complete.

VSAM processing:

1. An ENDREQ request is sent to VSAM. This frees any VSAM strings that are
held, and relinquishes shared control of the CI.

2. The VSWA for the operation is released.

BDAM processing:

v The FIOA that was used for the browse session is FREEMAINed.

Control blocks
Figure 49 on page 194 shows the major control blocks associated with file control.
Control blocks which are not shown in this diagram include those relating to
coupling facility data tables support.

Chapter 24. File control 193

FRAB

Recovery Manager UOW
representation

FLAB

FRTE

FC work token

APEF work token

FRAB_NEXT_FRAB_ADDRESS

FRAB_PREV_FRAB_ADDRESS

FRAB_FLAB_CHAIN_ADDRESS

FRAB_FLLB_CHAIN_ADDRESS

FRTE_NEXT_FRTE_ADDRESS

FRT_NEXT_IN_FILE_CHAIN

FRT_SET_CONTROL

FRT_WORK_AREA_ADDRESS

FLLB

FFLE

FLLB_DSNB_ADDRESS

FLLB_NEXT_IN_DSNB_CHAIN

FFL_NEXT_FILE

FLLB_NEXT_IN_FRAB_CHAIN

FFL_AFCTE_ADDRESS

FLAB_NEXT_FLAB_ADDRESS

FLAB_FCTE_ADDRESS

FLAB_FRTE_CHAIN_ADDRESS

FLAB_SET_CONTROL

X’10’

X’00’

X’10’

X’00’

X’14’

X’20’

X’08’

X’18’

X’28’

X’14’

X’1C’

X’30’

X’30’

DSNAME BLOCK

FCTBC_FLLB_CHAIN

VSWA

VSWAACB
Address of ACB

VSWAFC
Address of FCT entry

X’28’

X’54’

FIOA

FCFIODCB
Address of DCB

FCFIOFCT
Address of FCT entry

FIOADBA
Data area

X’0C’

X’34’

X’60’

FCT ENTRY (FCTE)

FCTDSID

FCTDSDP

FCTDSBCP

X’00’

X’5C’

X’60’

FCTDSID
File name

FCTDSDP
Address of DSNAME block

FCTDSBCP
Address of DSNAME block
for base cluster

FCT entry (FCTE)

CSAFCSBA
Address of file control
static storage

CSA

X’12C’

File control static storage
DFHFCSDS

FC_SHRCTL_VECTORS (8)
Pointers to SHRCTL blocks

X’B0’

X’00’

X’50’

X’54’

194 CICS TS for z/OS 4.1: Diagnosis Reference

Note: The pointer to the DSNAME block, FCTDSDP, is different from the pointer
to the base cluster DSNAME block, FCTDSBCP, only when the FCT entry does not
represent a base. DSNAME blocks that do not correspond to bases do not have the
base cluster information, although the space is allocated.

These control blocks are described in “Access method control block (ACB)”
through “VSAM work area (VSWA)” on page 204.

Access method control block (ACB)
The ACB identifies to VSAM the file associated with this VSAM request. It is
passed to VSAM by DFHFCRV, for RLS, or DFHFCVR, for non-RLS (it is the RPL,
which points to the ACB, that is passed) to initiate a VSAM request. The ACB lasts
as long as the associated CICS file is open; that is, it is created at file open time
and deleted at file close time by DFHFCN for non-RLS or DFHFCRO for RLS.

The ACB is addressable through a pointer in the associated FCT entry. In addition,
a 4-byte field appended (by CICS) to the ACB structure points back to this FCTE.

Note that the ACB is a VSAM control block.

At open time, storage is obtained from a subpool above the 16MB line. A VSAM
GENCB macro is issued to generate the ACB with attributes obtained from the
FCT entry. At open time, VSAM fills in more information in the ACB. Some of this
is subsequently copied back into the FCTE.

The storage for the ACB is freed when the file is closed.

There is one ACB per VSAM FCT entry.

The layout of the ACB is defined by the VSAM IFGACB structure, and also by a
DSECT of the same name.

ACBs are not cataloged and are not restored across WARM or emergency starts.
The ACB is rebuilt every time a CICS file is opened.

A special type of ACB, known as a base cluster ACB, is created by DFHFCM to
allow for the implicit opening of a base cluster, when required by a non-RLS file
access through an alternate index path. In this case, the 4-byte field appended to
the ACB structure points to the associated DSNAME block for the base cluster.

A second special type of ACB, known as a control ACB is required for VSAM RLS
processing. Storage for the control ACB is obtained by DFHFCCA and filled in
using the GENCB macro before registering the control ACB. The storage is freed
when the control ACB is unregistered by DFHFCCA. The control ACB is passed to
VSAM on calls issued by DFHFCCA. It is used for all requests that are not
associated with a specific file.

Data control block (DCB)
The DCB identifies to BDAM the file associated with this BDAM request. It is
passed to BDAM by DFHFCBD to initiate a BDAM request, and lasts for the
lifetime of the CICS run.

The DCB is addressable through a pointer in the associated FCT entry. In addition,
a 4-byte field appended (by CICS) to the DCB structure points back to this FCTE.

Chapter 24. File control 195

Note that the DCB is a BDAM control block.

There is one DCB per BDAM FCT entry.

The layout of the DCB is defined by the generalized structure IHADCB. The
structure is qualified with a parameter stating that a BDAM DCB is required. There
is also a DSECT of the same name.

The DCB is assembled as part of the FCT. (Note that there is no RDO for BDAM
files.) DFHFCRP acquires storage for the DCB below the 16MB line and copies the
DCB into it (only on cold start). The DCB is cataloged and restored across a warm
and emergency start. Thus, unlike an ACB, a DCB is only built once.

Data set name block (DSNB)
The DSNB represents a physical VSAM or BDAM data set that is being accessed
through one or more CICS files. It is used by file control to hold information
relevant to the data set and not only to the CICS file. Also, it provides a single
“anchor block” to control many requests accessing this data set through many
different CICS files.

After it has been created, a DSNB survives the lifetime of a CICS run unless the
user deletes it by means of an EXEC CICS SET DSNAME REMOVE command or
its CEMT equivalent.

The DSNB is addressable through pointers in an FCTE entry, or through DFHTMP
using the 44-character name as a key, or using the DSNB number as a key.

A DSNB is created, if it does not exist already, when an FCTE attempts to connect
itself to a DSNB. This happens at file open time, or when an EXEC CICS SET FILE
DSNAME command (or its CEMT equivalent) is executed.

A DSNB that represents a VSAM base data set has a base cluster block embedded
in it, which has information specific to the base data set. Note that a BDAM data
set has a small amount of information held in the base cluster block.

A DSNB representing a VSAM path has a blank base cluster block embedded in it.

Information about the base data set is obtained from the VSAM catalog when a
CICS file (path or base) referencing that data set is opened. The information is
stored in the base cluster block.

DSNBs are cataloged in the CICS global catalog and are restored across warm and
emergency starts.

DSNBs reside above the 16MB line.

The layout of the DSNB is defined by the DFHDSNPS structure, and by the
DFHDSNDS DSECT (using the DFHDSND macro).

The DFHFCDN module handles DSNAME blocks (creation, deletion, FCTE-DSNB
connections). DFHFCDN also provides an interface for the EXEC layer to process
DSNAME blocks through the use of EXEC CICS INQUIRE or SET DSNAME, and
CEMT INQUIRE or SET DSNAME. Modules within the file control component can
access the DSNBs directly through pointers in the FCTE.

196 CICS TS for z/OS 4.1: Diagnosis Reference

File browse work area (FBWA)
The FBWA maintains the state of a browse to a data table. It is used for browsing
coupling facility data tables, CICS-maintained data tables, and user-maintained
data tables.

An FBWA is created when the browse is started (via a STARTBR request), and is
addressed by the FRT_FBWA_ADDRESS field in the FRTE. It is stored in a file
control IO buffer of the appropriate size to hold the key information.

Some of the fields are specific to CICS-maintained data tables, because the source
data set will sometimes be accessed during a browse of a CICS-maintained data
table.

There is a variable-length portion at the end of the FBWA which contains keys,
which are pointed to by fields in the fixed hang on!

part:
v CURRENT_KEY points to the first of the key fields, which is used to hold the

key returned by the most recent request.
v REQUEST_KEY points to the second of the key fields, which is used to contain

the key specified at the start of a browse segment (STARTBR or RESETBR).
v NEXT_KEY points to the third of the key fields, which is used for

CICS-maintained data tables to handle "gaps".

File control static storage (FC static)
File control static storage is used by file control to store information for use
throughout the lifetime of a CICS run; for example, SHRCTL vectors and entry
points of file control modules. It is used by file control modules and by modules
outside the file control component, and lasts for the lifetime of a CICS run. It is
addressed by a field in the CSA named CSAFCSBA; it is created by DFHFCIN
during CICS initialization before DFHFCRP gets control, and resides above the
16MB line.

FC static storage is defined by the DFHFCSPS structure and by the DFHFCSDS
DSECT.

File control quiesce receive element (FCQRE)
File control uses quiesce receive elements to communicate details of quiesce
requests received from SMSVSAM. There is also a permanent error FCQRE used
for communicating errors. The FCQRE contains information about the data set to
which the quiesce applies (or the cache for quiesce type QUICA), the type of
quiesce, and (for the error FCQRE) the type of error and error data.

Each quiesce request received from SMSVSAM via the quiesce exit results in
DFHFCQX, the quiesce exit module, creating an FCQRE which is passed to
DFHFCQR, the quiesce receive system task module.

Storage for FCQREs is obtained from storage MVS getmained above the 16MB line.

FCQREs are chained in a one-way linked list anchored from file control static
storage. The permanent error FCQRE is also anchored from file control static
storage, and is added to the FCQRE chain when an error occurs.

Chapter 24. File control 197

The layout of the FCQRE is defined by the DFHFCQRE structure and the
DFHFCQRE DSECT.

File control quiesce send element (FCQSE)
File control uses quiesce send elements to communicate the details of quiesce
requests that are to be sent to SMSVSAM. They contain information about the task
initiating the request, the data set to be quiesced, the type of quiesce requested,
and the address of an ECB which is posted by SMSVSAM when the request is
completed.

Each quiesce request initiated by CICS results in DFHFCQI, the quiesce initiate
module, creating an FCQSE which is passed to DFHFCQS, the quiesce send
module.

Storage for FCQSEs is obtained from the FC_ABOVE subpool, which resides above
the 16MB line.

FCQSEs are chained in a two-way linked list anchored from fields in file control
static storage.

The layout of the FCQSE is defined by the DFHFCQSE structure and the
DFHFCQSE DSECT.

File control coupling facility data table pool element (FCPE)
A file control CFDT pool element represents one connection to a Coupling Facility
Data Table Pool. For each CFDT pool which can be accessed by a given MVS
image, there is a CFDT server running in that image which manages access to the
pool.

An FCPE is created and chained to FC static when a file definition that refers to
the pool is installed and there is not already a pool element for that CFDT pool.
The creation of an FCPE can occur:
v when files are installed at CICS startup,
v when files are installed using CEDA,
v when a SET FILE is issued which names a CFDT pool for which there is not

already a pool element.

FCPEs are getmained from the FCPE subpool which is created by DFHFCRP
during File Control Initialization, and chained to the FCPE chain in FC static. The
head of the FCPE chain is the field FC_FCPE_CHAIN.

FCPEs are catalogued when they are created, so that they can be restored at
emergency restart.

File control coupling facility data table pool wait element
(FCPW)

The file control CFDT pool wait element (FCPW) represents a task which has tried
to issue a request to a coupling facility data table that resides in a particular pool,
but which has to wait because there are no available request slots. Depending on
the kind of request, the FCPW will represent either a 'Locking request slot' (LRS)
waiter or a 'MaxReqs' waiter. A flag in the FCPW indicates what kind of wait it is.

The FCPW is created when a task goes into a MaxReqs or LRS wait. It is
getmained from the pool wait element subpool, and appended to a chain of wait

198 CICS TS for z/OS 4.1: Diagnosis Reference

elements for the pool. The wait chains are anchored in the pool element (FCPE),
with one FCPW for each task that is waiting. The FCPE contains head and tail
fields for the chains of LRS and MaxReqs FCPWs (FCPE_FIRST_LRS_WAITER,
FCPE_LAST_LRS_WAITER, FCPE_FIRST_WAITER and FCPE_LAST_WAITER). The
chains are manipulated using logic which does not require any special case code
for the ends of the chains, but which does mean that when the chains are empty,
the head and tail fields contain a special initial value, rather than zero.

The FCPW includes:
v A pointer to the next FCPW in the chain (if no next FCPW, this contains the

special initial value).
v A pointer to previous FCPW in the chain (if no previous FCPW, this contains the

special initial value).
v The suspend token for the wait.
v The task token of the waiting task.
v The suspend start time.

File control table entry (FCTE)
Each entry in the file control table defines a CICS file that is defined to be the
CICS view of a VSAM or BDAM data set or a data table. The FCTE is used by all
modules in the file control component (but never outside), and lasts for the lifetime
of a CICS run, or from when it is created by RDO to the end of the CICS run.

The FCTE contains information that can be split into three broad groups:
v CICS information about the file, including statistics
v Information that is used as input to build the VSAM ACB or BDAM DCB
v Information that is returned by VSAM, both from the ACB and direct from the

VSAM catalog, when the file is opened.

An FCTE can be created in two ways:
v By defining the file using the DFHFCT TYPE=FILE macro (BDAM only).
v By defining the file online using RDO while CICS is running (VSAM only).

File control table entry (FCPW)

File control coupling facility data tables UOW pool block
(FCUP)

The File Control CFDT UOW Pool Block (FCUP) represents recoverable updates
made within a unit of work to one or more coupling facility data tables residing in
a coupling facility data table pool. An FCUP block is created when a unit of work
makes its first recoverable request to a CFDT in a given pool, at the same time as
an RMC link is added to represent the recoverable update.

There is one FCUP block per UOW per recoverably-updated CFDT pool. The
FCUP is getmained and freemained from the FCUP subpool using the storage
manager quickcell mechanism. The FCUP blocks for a unit of work are chained
from the FRAB for that unit of work, addressed by
FRAB_FCUP_CHAIN_ADDRESS.

An FCUP block contains:
v Forward and back pointers for the chain of FCUP blocks relating to this unit of

work.
v The name of the CFDT pool.

Chapter 24. File control 199

v The CFDT RMC link token.
v A pointer to the pool element for the CFDT pool.
v A pointer back to the owning FRAB.

File input/output area (FIOA)
The FIOA is analogous to the VSWA for VSAM, in that it represents the request to
BDAM. Embedded in the FIOA is what is known as the data event control block
(DECB), which is passed to BDAM to initiate the request.

The FIOA is used by DFHFCBD when processing browse requests against BDAM
files. It holds position in a browse when browsing a BDAM file.

An FIOA survives as long as the DECB needs to survive to complete the BDAM
request; for example, it survives from READ UPDATE to the REWRITE request.

The address of the FIOA is held in the file request thread element (FRTE) in the
FRT_WORK_AREA_ADDRESS field.

Storage for the FIOA is acquired from below the 16MB line.

The layout of the FIOA is defined by the DFHFIOA DSECT.

File lasting access block (FLAB)
The FLAB serves as an anchor for the set of file request thread elements (FRTEs)
belonging to a particular file within a given transaction and a given environment.
If a transaction accesses several files from within the same environment, there will
be one FLAB for each file. If a transaction accesses the same file from more than
one environment, there will be one FLAB for each environment.

The FLAB contains pointers to the FCTE for the file, to the owning FRAB, to the
chain of FRTEs owned by the FLAB, and to the next FLAB in the chain of FLABs
for the unit of work.

The FLAB is used by file control to
v anchor the FRTEs for the file within the unit of work and environment,
v ensure that a file cannot be closed if there are any FRTEs associated with it, or if

there have been recoverable updates made by units of work which have not yet
reached syncpoint phase 2,

v ensure that the corresponding file entry cannot be reallocated to a different data
set, even if the file is closed and disabled, when there is uncommitted
recoverable work associated with the file,

v hold READ SET storage control information across intermediate syncpoints,
v ensure that units of work which have updated the file reach syncpoint before a

copy or BWO copy for a file opened in RLS mode is allowed to proceed,
v record the reason for a failure during syncpoint, and keep track of the fact that

the file has uncommitted updates within a unit of work as a result of the failure.

The file lasting access block is built by DFHFCFR as part of processing of the first
file control request for a particular file within a given transaction and environment.
FLABs for recoverable files are also rebuilt by DFHFCIR at warm and emergency
restart.

200 CICS TS for z/OS 4.1: Diagnosis Reference

The storage for the FLAB is obtained from a FLAB storage subpool above the
16MB line.

The FLAB is deleted after all the FRTEs have been processed during syncpoint
terminate processing, providing that there have been no syncpoint failures for the
file within the unit of work. The FLAB storage is not returned to the FLAB storage
subpool, but is instead added to a chain of free FLABs, anchored from file control
static storage. Subsequent requests to build a FLAB are, if possible, satisfied by a
quick cell mechanism from this chain.

If a unit of work is shunted as a result of a syncpoint failure, the FLABs for any
files which suffered the syncpoint failure are also shunted.

The chain of FLABs for a unit of work is anchored from field
FRAB_FLAB_CHAIN_ADDRESS in the FLAB.

The layout of the FLAB is defined by the DFHFLAB structure and the DFHFLAB
DSECT.

File control locks locator blocks (FLLBs)
The file control locks locator block records the fact that a unit of work held locks
against a file which were protecting uncommitted changes to the file, and that it is
now uncertain whether the locks are valid. This can occur, for example, if the data
set against which the locks were held is now in the lost locks state, or if a non-RLS
open for update has taken place despite the presence of retained locks and has
overridden the locks (in this case the locks are intact, but the data may not be). It
is used by file control to keep track of outstanding recovery work, because whilst
the data set still has FLLBs associated with it, special processing rules apply (the
actual rules vary with the type of lock condition that has occurred).

FLLBs are created by DFHFCRR (for the lost locks condition, or for an
OFFSITE=YES CICS restart), or by DFHFCRO (after a file open which has returned
the ‘non-RLS override’ reason code).

FLLBs are chained from both the associated DSNB and the associated FRAB. There
is one FLLB per file that held locks per unit of work. Since the FLLB records
information about a data set and a unit of work, it contains the DSNB address and
the local unit of work ID. It also contains an indicator of the type of lock failure
condition that it represents.

FLLBs are getmained from an FLLB subpool above the 16MB line.

File control locks locator blocks are freemained by DFHFCRC at commit time when
there are no longer any retained FLABs for the file.

The layout of the FLLB is defined by the DFHFLLB structure and the DFHFLLB
DSECT.

File request anchor block (FRAB)
The file request anchor block serves as an anchor for the set of file lasting access
blocks (FLABs) belonging to a particular transaction. The file request thread
elements (FRTEs) are chained from the FLABs. The FRAB identifies the transaction
to which a given file control request belongs.

Chapter 24. File control 201

The FRAB contains pointers to: the next FRAB in the chain from the FC static, the
chain of FLABs for this transaction, the chain of FLLBs for the transaction, and any
VSWA that has suffered exclusive control conflict for the transaction. The FRAB
also contains some indicators related to recovery, such as whether or not the
transaction holds RLS locks, whether the unit of work has been through phase 2 of
syncpoint, and whether the unit of work has ever been shunted. There is also some
information related to RLS access, including the local unit of work id, a timeout
value to be specified on RLS requests, and some problem determination
information returned by VSAM RLS when deadlocks occur.

The FRAB is built by DFHFCFR as part of processing of the first File Control
request in a transaction. The storage for the FRAB is obtained from a FRAB storage
subpool above the 16MB line. The address of the FRAB is then used as the
Recovery Manager token associated with the client name ‘FC’. FRABs are rebuilt
by DFHFCIR at warm or emergency restart, for units of work which had not
completed when CICS terminated. A FRAB is also built if a failure occurs during
phase 2 of an intermediate syncpoint. The original FRAB for the transaction is
shunted along with the failed parts of the unit of work, and the newly built FRAB
is passed on to the next unit of work in the transaction.

If a unit of work is shunted, the FRAB is shunted with it, unless there was no
recoverable file control work in the unit of work.

The FRAB is deleted after all the FLABs have been processed during syncpoint at
transaction termination. At the same time, the Recovery Manager token is set to
zero. At this point, the FRAB storage is not returned to the FRAB storage subpool,
but is instead added to a chain of free FRABs, anchored from file control static
storage. Subsequent requests to build a FRAB are, if possible, satisfied by a quick
cell mechanism from this chain.

Issuing an INQUIRE_WORK_TOKEN call to the recovery manager with client
name ‘FC’ returns the address of the file request anchor block for a transaction.
There is a chain of all the FRABs in a CICS system, anchored from field
FC_FRAB_CHAIN in file control static storage.

The layout of the FRAB is defined by the DFHFRAB structure and the DFHFRAB
DSECT.

File request thread elements (FRTEs)
FRTEs are used by file control to:
v Represent active file control requests
v Link related requests together as a file thread, for example, the request sequence

STARTBR, READNEXT, ..., ENDBR, or READ UPDATE, REWRITE
v Anchor SET storage used for READ SET UPDATE requests and browse requests

with the set option, the lifetime of which is that of the request thread.

FRTEs are created by the main file control module, DFHFCFR, and are freed either
by DFHFCFR at the end of a request or thread of requests or by the file control
recovery control program, DFHFCRC, at syncpoint if this occurs before a thread of
requests has completed.

FRTEs for a particular file within a particular task and environment are chained
together, and anchored from the FLAB for that file, task and environment.

Storage for FRTEs is acquired from above the 16MB line.

202 CICS TS for z/OS 4.1: Diagnosis Reference

The layout of FRTEs is defined by the DFHFRTE structure and by the DFHFRTE
DSECT.

Keypoint list element (KPLE)
The keypoint list forms part of file control’s implementation of backup while open
(BWO) copy for data sets accessed in non-RLS mode. One KPLE exists for each
keypoint and records the start and end times at which tie up records are written.

The KPLE chain is anchored from FC_KPLE_CHAIN in file control static storage.

The keypoint list elements are created, processed and deleted (when they become
redundant) by DFHFCRC following RMKP take keypoint calls from the recovery
manager. These calls are made whenever a CICS keypoint is taken. KPLEs are
getmained from above the 16MB line.

The layout of the KPLE is defined by the KPLE structure.

Shared resources control (SHRCTL) block
The SHRCTL block represents the CICS region’s requirements of, and the use made
of, a local shared resources pool (LSRPOOL). It is used by DFHFCL when calling
VSAM to build an LSRPOOL. It is also used by DFHFCL and statistics programs to
hold and update file control statistics.

It lasts for the lifetime of a CICS run, and is addressable through a pointer in file
control static storage. There are eight pointers collectively named the SHRCTL
vector.

A SHRCTL block holds information such as how many virtual and hyperspace
buffers of a particular size are needed, how many strings are needed, the
maximum key length allowed. CICS passes this information to VSAM when the
pool is built. It also holds statistics about the pool which are sent to the statistics
domain when requested or when the pool is deleted.

Each SHRCTL block represents one LSRPOOL, and there are eight SHRCTL blocks.
The layout of each SHRCTL block is defined by the DFHFCTLS structure and by
the DFHFCTSR DSECT, and they reside above the 16MB line.

On a CICS cold start, DFHFCRP performs the following:
v Unconditionally builds eight SHRCTL blocks above the 16MB line from a

SHRCTL block subpool
v Fills in default settings in the block, or inserts user-specified information
v Catalogs each SHRCTL block in the CICS global catalog.

On a CICS warm or emergency start:
v DFHFCRP restores all eight SHRCTL blocks from the global catalog.

The contents of a SHRCTL block are decided in one of three ways:
v User defines the contents in the FCT by means of the DFHFCT

TYPE=SHRCTL,LSRPOOL=n macro call. This assembled information is used by
DFHFCRP on a COLD start only (as per FCT entries).

v User defines the contents online through a CEDA DEFINE LSRPOOL command.
v If neither of the above two methods is used, DFHFCL calculates the contents

before calling VSAM to build the LSRPOOL.

Chapter 24. File control 203

VSAM work area (VSWA)
The VSWA represents a VSAM request to CICS. Embedded in the VSWA is the
request parameter list (RPL) which is passed to VSAM to perform the request. In
addition to the RPL, the VSWA contains other CICS information related to the
request.

The VSWA is used by DFHFCVS and DFHFCRS when processing VSAM files.

A VSWA survives as long as the RPL needs to survive to complete the VSAM
request; for example, it survives from READ UPDATE to the REWRITE request.

The address of the VSWA is held in the file request thread element (FRTE) in the
FRT_WORK_AREA_ADDRESS field.

Storage for the VSWA is acquired from above the 16MB line.

The layout of the VSWA is defined by the DFHVSWAS structure and by the
DFHVSWA DSECT.

Modules
This section describes the file control modules. Unless otherwise stated, addressing
mode and residency mode are AMODE 31 and RMODE ANY respectively.

There are also a number of modules which make up the coupling facility data
tables server. These all have names of the form DFHCFxx.

Figure 50 on page 205 shows the main file control modules and their interfaces.

204 CICS TS for z/OS 4.1: Diagnosis Reference

DFHEIFC (file control EXEC interface module)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHEIFC. Stored in the CSA in a field named CSAEIFC.

Purpose
DFHEIFC is DFHEIP’s file control interface. It routes requests to the file control file
request handler, DFHFCFR.

Application
program

EXEC CICS
…

DFHEFRM
(EXEC file

control
syncpoint
processor)

CICS
Recovery
Manager

CEMT

DFHFCR O
(file control

RLS
open/close
program)

DFHFCDO
(file control
open/close
program)

DFHEIP
(EXEC

interface
program)

DFHFCCA
(EXEC file

control RLS
control ACB
manager)

DFHFCRC
(file control
recovery
control

program)

DFHFCFS
(file control

file state
program)

DFHFCN
(file control
non-RLS

open/close
program)

DFHFCL
(file control
LSR pool

processor)

DFHFCNQ
(file control
non-RLS

lock handler)

DFHFCRS
(file control
RLS record

management
processor)

DFHFCRV
(file control
RLS VSAM

interface
program)

DFHFCDR
(file control

CFDT request
program)

DFHEIFC
(file control

EXEC
interface
module)

SMSVSAM RLS

SMSVSAM
RLS

DFHFCFR
(file control
file request

handler)

DFHFCVS
(file control

VSAM
request

processor)

DFHFCVR
(file control

VSAM
interface
program)

DFHFCBD
(file control

BDAM request
processor)

DFHFCLJ
(file control
logging and
journaling
program)

DFHFCDTS
(file control
shared data
table request
processor)

DFHFCDTX
(file control
shared data

table function
ship program)

DFHFCQX
(file control

RLS quiesce)

VSAM
non-RLS

BDAMDFHFCRF

Transformer

Remote
requests

Figure 50. Main file control modules and their interfaces

Chapter 24. File control 205

Called by
DFHEIP exclusively.

Inputs
The EIEI parameter list, as defined by the DFHEIEIA DSECT.

Outputs
Updated EIEI parameter list, with completed EIB.

Operation
v Call user exit XFCREQ.
v Call file control request handler DFHFCFR.
v Call user exit XFCREQC.

How loaded
At CICS startup, as part of the building of the CICS nucleus. The nucleus is built
by DFHSIB1, which uses its nucleus build list to determine the content and
characteristics of the CICS nucleus.

DFHFCAT (file control catalog manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCAT. The entry point address is held in FC static storage in a field named
FC_FCAT_ADDRESS, which is set by DFHFCRP when it loads DFHFCAT.

Purpose
The file control catalog manager is part of the file control component. This
program processes inquire and update requests on the state of the backup while
open (BWO) attributes in the ICF catalog for VSAM data sets and inquire on the
quiesce state in the ICF catalog. The DFSMS Callable Services interface is used for
these operations.

Called by
DFHFCDN

Get the base data set name for a DSNB that has not yet been validated, update
the recovery point, or to set the BWO attributes to a ‘forward recovered’ state

DFHFCN
Inquire on the current state of, and to update, BWO attributes during file open
processing; and to reset these attributes during file close processing.

DFHFCQI
Inquire on the quiesce state of a data set.

Inputs
The FCAT parameter list, as defined by the DFHFCATA DSECT, is created as part
of the subroutine call.

The input parameters are:
 Data set name
 Recovery point

Outputs
Returned in the FCAT parameter list:
 Quiesce state

206 CICS TS for z/OS 4.1: Diagnosis Reference

Base data set name
 State (fuzzy, sharp)
 Response
 Reason

Operation
DFHFCAT provides the following functions:
INQ_BASEDSNAME

Gets the base data set name for a specified data set name from the ICF catalog.
This function is used when there is not a validated DSN block for the data set.

INQ_CATALOG_QUIESCESTATE
If the level of DFSMS is 1.3 or higher, issues an IGWARLS call to determine the
quiesce state of the data set (quiesced or unquiesced).

INQ_DATASET_STATE
Determines the current state of a VSAM data set’s BWO attributes in the ICF
catalog. If the BWO attributes indicate that the data set is “back level”, that is,
a backup copy has been restored but not forward recovered, an exception
response is returned; otherwise, a state of ‘fuzzy’ or ‘sharp’ is returned,
indicating whether or not the data set is defined in the ICF catalog as eligible
for BWO.

SET_CATALOG_RECOVERED
Updates a VSAM data set’s BWO attributes in the ICF catalog to a ‘forward
recovered’ state to indicate that the data set has been forward recovered.

SET_CATALOG_RECOV_POINT
Updates a VSAM data set’s BWO attributes in the ICF catalog with the new
recovery point.

SET_BWO_BITS_DISABLED
Updates a VSAM data set’s BWO attributes in the ICF catalog to show that the
data set is no longer eligible for BWO support, and updates the recovery point.

SET_BWO_BITS_ENABLED
Updates a VSAM data set’s BWO attributes in the ICF catalog to show that the
data set is eligible for BWO support, and updates the recovery point.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCBD (file control BDAM request processor)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCBD. The entry point address is held in FC static storage in a field named
FC_BDAM_ENTRY_ADDRESS.

Addressing mode
AMODE 31.

Residency mode
RMODE 24.

Purpose
The BDAM request processor is part of the file control component. It processes
access requests to BDAM files.

Chapter 24. File control 207

Called by
DFHFCFR, after having determined that the request is for a BDAM file.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT. Also, the file
control environment, including FC static storage and the FCT.

Outputs
Updated FCFR parameter list.

Operation
Acquires and releases FIOA storage as necessary. Implements BDAM exclusive
control requests. Performs record-length and key-length checking. Calls BDAM to
perform the I/O request.

Acquires storage, in the correct key subpool, for requests that specify SET.

How loaded
By DFHFCFS, by means of a loader domain call. DFHFCBD is not loaded unless
DFHFCFS is called to open a BDAM file and, in doing so, it discovers that
DFHFCBD is not yet in storage.

DFHFCCA (file control RLS control ACB manager)
DFHFCCA is the file control RLS control ACB manager. The RLS control ACB is a
special ACB required when a commit protocol application such as CICS uses
VSAM RLS. FCCA processes requests to register and unregister the control ACB,
and all other file control requests to SMSVSAM that have to be made via the
control ACB. These requests are:
v IDAREGP (register)
v IDAUNRP (unregister)
v IDARECOV (clear recovery status)
v IDAINQRC (inquire on recovery)
v IDAQUIES (quiesce)
v IDALKREL (release locks, and retain locks marked for retention)
v IDARETLK (mark locks for retention)

DFHFCCA also includes the code for the RLSWAIT exit used by control ACB
requests. Whenever CICS issues such a request, VSAM drives the RLSWAIT exit as
soon as it is about to transfer control to the SMSVSAM address space. CICS is then
able to drive the dispatcher and schedule other CICS tasks whilst the SMSVSAM
address space is busy processing the request.

DFHFCDL (file control CFDT load program)
DFHFCDL is attached by DFHFCDO to load a load-capable coupling facility data
tavle with records from a source data set.

DFHFCDN (file control DSN block manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

208 CICS TS for z/OS 4.1: Diagnosis Reference

Entry address
DFHFCDN. The entry point address is held in FC static storage in a field named
FC_FCDN_ADDRESS, which is set by DFHFCRP when it loads DFHFCDN.

Purpose
The DSNAME block manager is part of the file control component. This program is
called to perform various operations on data set name blocks. These operations
include connecting and disconnecting DSN blocks and FCT entries, setting their
attributes, and deleting them when no longer required. The program also allows
the caller to inspect a particular DSN block or browse a set of blocks. It can also be
called to update the backup while open (BWO) attributes in the ICF catalog for
VSAM data sets, and to set the quiesce state to normal in all DSN blocks. Finally it
can be called to catalog the information in a DSN block to the CICS global catalog.

Called by
DFHAMFC

Connect a DSN block to a newly created FCT entry
DFHAMPFI

Connect the DSN block for the CSD to the associated FCT entry
DFHEIQDN

Connect, disconnect, delete, set attributes, browse, and inquire against DSN
blocks in response to external requests; and to update the BWO attributes in
the ICF catalog for a VSAM data set to a ‘forward recovered’ state

DFHEIQDS
Connect or disconnect DSN blocks and FCT entries in response to external
requests

DFHFCLF
Set the availability attribute to unavailable after a forward recovery log stream
failure

DFHFCMT
Disconnect the DSN block when deleting an FCT entry

DFHFCN
Connect or disconnect and to catalog a DSN block

DFHFCRC
Update the recovery point in the ICF catalog for all VSAM data sets that are
open for update in non-RLS mode and defined as eligible for BWO support at
keypoint time

DFHFCRD
To reset all quiesce states to normal after an SMSVSAM server failure

DFHFCRO
Connect or disconnect and to catalog a DSN block

DFHFCRP
Connect or reconnect DSN blocks during file control initialization or restart.

Inputs
The FCDN parameter list, as defined by the DFHFCDNA DSECT, is created as part
of the subroutine call.

The input parameters include:
 Request identifier
 Address of FCTE or FCTE token
 Data set name
 Browse token
 Availability status
 Type of pointer
 Recovery point

Chapter 24. File control 209

Outputs
Output parameters, as part of the FCDN parameter list. Apart from the response,
all these are returned on the inquire or browse requests. The parameters include:

Access method
Base data set name
Availability status
DSNB type
File count
DSNB valid status
Lost locks status
Forward-recovery log stream name
Forward-recovery log ID
Recovery status
Response
Reason

Operation
v Connect:

The inputs are a data set name and an FCTE pointer or an FCTE token, with an
indication of whether the entity to be connected is a base or an object.
If the FCT entry is already connected, the connection is broken before connecting
it to a DSN block representing the new object. The DSN block that is connected
can exist already, or DFHFCDN creates a new block before connecting it.
The request is rejected if it requires an existing connection to be broken, and
there are uncommitted updates to the file; that is, there are retained locks.

v Disconnect:
The connection between the FCT entry and the DSN block is broken. The DSN
block remains even if there are no other FCT entries connected to it. The request
is rejected if there are uncommitted updates to the file: that is, there are retained
locks.

v Delete:
Checks are made to ensure that the DSN block is allowed to be deleted. If the
deletion can proceed, the table manager is called to delete the DSN from the
DSN index, and the storage domain is called to free the storage.

v Inquire:
The attributes stored in the DSN block are returned to the caller in the FCDN
parameter list.

v Set:
The availability status is set in the DSN block. The catalog domain is called to
catalog the change.

v Start browse, get next, end browse:
The DSN blocks are browsed in order. For each, the attributes are returned to
the caller.

v Catalog:
The information in a DSN block is cataloged to the CICS global catalog.

v SET_CATALOG_RECOVERED:
This function is used by DFHEIQDN. DFHFCDN in turn issues a
SET_CATALOG_RECOVERED call to DFHFCAT to update the BWO attributes
in the ICF catalog for a given VSAM data set to a ‘forward recovered’ state.

v UPDATE_RECOVERY_POINTS:

210 CICS TS for z/OS 4.1: Diagnosis Reference

This function is used by DFHFCRC. DFHFCDN in turn issues a
SET_CATALOG_RECOV_POINT call to DFHFCAT to update the recovery point
in the BWO attributes in the ICF catalog for every data set that is open for
update in non-RLS mode and defined as eligible for BWO support.
The recovery point is the time from which a forward-recovery utility should
start applying log records. It is always before the time the last backup was
taken. For further information about recovery points and backup while open in
general, see the CICS Recovery and Restart Guide.

v RESET_ALL_QUIESCE_STATUS:
This function is used by DFHFCRD. The DSNB table is scanned, and the quiesce
status is reset to normal in each DSNB.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCDO (file control CFDT open/close program)
When called using the FCFS parameter list, DFHFCDO performs an equivalent
function for coupling facility data table opens and closes as is performed by
DFHFCN for non-RLS VSAM files.

When called using the FCDS parameter list, DFHFCDO performs statistics
collection for coupling facility data tables, and disconnects from CFDT pools at
shutdown.

DFHFCDR (file control CFDT request processor)
DFHFCDR performs an equivalent function for coupling facility data tables as is
performed by DFHFCVS for non-RLS VSAM files, and uses the same interface.

DFHFCDTS (file control shared data table request program)
DFHFCDTS performs an equivalent function for CICS-maintained and
user-maintained data tables as is performed by DFHFCVS for non-RLS VSAM files
and uses the same interface.

DFHFCDTX (file control shared data table function ship
program)

DFHFCDTX receives file requests from DFHFCDTS in FCFRR format, converts
them into command level interface form and then calls ISP to function ship the
request.

The response returned by ISP in the EIB is translated back into an FCFRR response
and reason code.

DFHFCDU (file control CFDT UOW calls program)
DFHFCDU encapsulates the processing required to call the coupling facility data
tables server for unit of work related operations, such as commit, backout, inquire.
It is called via the FCDU parameter list by DFHFCDW and DFHFCDY.

DFHFCDW (file control CFDT RMC program)
DFHFCDW provides a recovery manager connector (RMC) between file control
and the coupling facility data tables server, to support 2-phase commit and
recovery for recoverable coupling facility data tables. It is called by the CICS
Recovery Manager using the RMLK parameter list.

Chapter 24. File control 211

DFHFCDY (file control CFDT resynchronization program)
DFHFCDY performs resynchronization of coupling facility data table pools and
links. It is called using the FCDY parameter list by DFHFCDO, DFHFCDR and
DFHFCDU.

DFHFCES (file control ENF servicer)
DFHFCES is the file control ENF servicer. It is used to prompt dynamic restart of
RLS file control when the SMSVSAM Server becomes available again after an
earlier failure. DFHFCES is invoked whenever the MVS Event Notification Facility
notifies CICS (via the CICS domain manager ENF support) that SMSVSAM is
available.

DFHFCES establishes a transaction environment, and calls DFHFCRR to
dynamically restart RLS.

DFHFCFL (file control FRAB and FLAB processor)
DFHFCFL is the File Control FRAB/FLAB processor. It contains a number of
functions to process FLAB control blocks belonging to a particular base data set. It
processes the functions of the FCFL interface.

The DSNB of the data set is not locked during the processing of the commands. As
a FLAB exists, and hence an FCTE, the DSNB cannot be deleted, therefore there is
no need to lock the DSNB.

DFHFCFR (file control file request handler)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCFR. Stored in the CSA in a field named CSAFCEP.

Purpose
The central module in the file control component.

Processes file control requests issued by DFHEIFC (requests from application
programs), or from other CICS modules (internal CICS file control requests).

Receives and routes file control access-method dependent requests to one of the
following:
v DFHFCRS for VSAM RLS files
v DFHFCVS for VSAM non-RLS files
v DFHFCBD for BDAM files
v DFHFCDR for coupling facility data tables
v DFHFCTS for user-maintained data tables
v DFHFCDTS for non-update requests to CICS maintained data table
v DFHFCVS for update requests to CICS-maintained data tables
v DFHFCRF for requests to remote files

Implements TEST_FILE_USER requests.

212 CICS TS for z/OS 4.1: Diagnosis Reference

Routes RESTART_FILE_CONTROL requests to DFHFCVS and DFHFCRS during
the file control initialization.

Frees buffers at the request of DFHAPSM when ‘short on storage’ has been
detected.

Performs a CLEAR_ENVIRONMENT when requested by DFHERM, DFHAPLI or
DFHUEH. This cleans up file control storage at the completion of a task-related
user exit, a user-replaceable program, or a global user exit:
v The FLAB and FRTE chain are scanned to find all FRTEs for the specified

environment.
v An ENDBR request is issued to terminate any active browse operation.
v An UNLOCK request is issued for any active READ UPDATE or WRITE

MASSINSERT.

Called by
DFHAPLI

AP language interface program
DFHAPSM

AP domain storage notify gate
DFHDMPCA

CSD manager adapter
DFHDTLX

Shared data tables load program
DFHEIFC

File control EXEC interface module
DFHERM

Resource manager interface (RMI) module
DFHFCDL

Coupling facility data tables load program
DFHFCDTS

File control shared data table request processor
DFHFCFR

File control file request handler (a recursive call)
DFHFCRC

File control recovery control program
DFHFCRP

File control restart program
DFHUEH

AP user exit handler.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT. Also the file
control environment, including FC static storage and the FCT.

Outputs
Updated FCFR parameter list.

Operation
Selects on the request type, and passes control to the routine specific to that
request.

Performs monitoring.

Chapter 24. File control 213

Obtains a FLAB and FRTE to represent this request, or scans the FLAB and FRTE
chains to associate this request with a previous FRTE if required. Some checking
for error situations is performed during the scan.

Performs file state checking to determine whether or not a (VSAM or BDAM)
request to a file is able to proceed. If file is enabled but closed and is not a request
to a remote file, opens it before carrying out the request.

Checks for “privileged” requests.

If the request is not remote, checks the “service request” attributes for the file to
determine whether the request can proceed.

Checks the file’s access method (VSAM or BDAM as defined in the FCT). If
BDAM, calls DFHFCBD to process the request. If VSAM and non-RLS, calls
DFHFCVS to process the request. If VSAM and RLS, calls DFHFCRS to process the
request. If a data table, calls DFHFCDTS for read requests against a
CICS-maintained data table or any request against a user-maintained table, and
calls DFHFCVS otherwise (that is, for update and browse requests against a
CICS-maintained data table). If the file is remote, calls DFHFCRF to process the
request.

On return, performs cleanup if required.

How loaded
By DFHSIB1 as part of the CICS nucleus.

DFHFCFS (file control file state program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCFS. The entry point address is held in FC static storage in a field named
FC_FCFS_ADDRESS, which is set by DFHFCRP when it loads DFHFCFS.

Purpose
The file control file state program is part of the file control component.

The program processes requests to enable, disable, open, and close files. Such
requests can originate from explicit requests (either CEMT or EXEC CICS SET),
from implicit requests (such as implicit open), or from requests made from CICS
internal processing.

Close and disable requests are processed in different ways, depending on whether
the request has been issued with the WAIT or the NOWAIT option. A request with
the WAIT option is treated as a synchronous request, that is, control returns to the
requesting program only after all users of the file have completed their use.

A request with the NOWAIT option is treated as an asynchronous request. In this
case, the file is marked with the intended state and control is returned
immediately.

Called by
DFHAMFC

Enable a newly installed file

214 CICS TS for z/OS 4.1: Diagnosis Reference

DFHDMPCA
Change the state of the CSD

DFHDMRM
Close CSD after an error

DFHDTLX
Close the data set associated with a shared data table

DFHEIQDS
Implement CEMT and EXEC CICS requests

DFHFCDL
Close the data set associated with a coupling facility data table

DFHFCDTS
Close shared data table if remote connection disabled or invalidated

DFHFCFR
Implicit open

DFHFCQU
Close files for quiesce, cancel close for unquiesce, enable files

DFHFCRC
Open files which need backout, and close files at syncpoint

DFHFCRD
Immediate close of RLS files

DFHFCRV
Close files for pending immediate close requests

DFHFCSD
Close files on a normal CICS shutdown

DFHFCU
Open all files with FILSTAT=OPEN coded

DFHFCVS
Open the base, and during empty file or I/O error processing.

Inputs
The FCFS parameter list, as defined by the DFHFCFSA DSECT, is created as part
of the subroutine call.

The input parameters are:

Request identifier (open, close, enable, disable, cancel close)
FCTE address
FCTE token
Open options (open base, open for backout)
Close qualifier (close pending, shutdown, immediate close,
quiesce, and so on)
Action (wait, do not wait, force)

Outputs
Returned in the FCFS parameter list:

DFHFCN return code
Register 15 return code
VSAM return code

Operation
Before any processing to change the state of a file is carried out, its FCT entry is
locked by means of a DFHKC ENQ call. At the conclusion of file state change
processing, the FCT entry is unlocked before returning to the caller.
v Enable file.

DFHFCFS marks the FCT entry as ‘enabled’, and catalogs the change.

Chapter 24. File control 215

v Disable file.
If the WAIT option is specified, DFHFCFS tests whether the transaction issuing
the request is a current user of the file. If it is, DFHFCFS returns an exception
response.
DFHFCFS next marks the FCT entry entry as ‘disabled’ and catalogs the change.
If the disable request stems from a close request (see later), DFHFCFS also sets
the implicit indicator, thereby marking the state as ‘unenabled’. However, if this
close request originated from DFHFCSD as part of CICS shutdown processing,
DFHFCFS does not mark the state as ‘unenabled’.
Finally, if the WAIT option is specified, the FCT entry is unlocked before waiting
for the ‘disabled’ ECB in the FCT entry to be posted by the transaction that
reduces the use count to zero.

v Open file.
If the file is unenabled (due to a previous close), DFHFCFS enables it and
catalogs the new state, unless the open option is open for backout.
If the file refers to a BDAM data set, DFHFCFS tests whether DFHFCBD is
already loaded; if not, it calls loader domain to do so.
If the file is a data table, DFHFCFS loads and initializes data table services, if
this has not been done already on a previous open request.
DFHFCFS next calls DFHFCN (for non-RLS) or DFHFCRO (for RLS) to perform
the physical open. After the file has been successfully opened, its FCT entry is
marked accordingly.
For a data table, DFHFCFS issues OPEN and LOAD requests to data table
services.

v Close file.
If there is no close qualifier, the file is first implicitly disabled (as described
above), taking into account the WAIT or NOWAIT option. The new state is
cataloged.
If the file use count is zero, DFHFCFS calls DFHFCN or DFHFCRO to perform
the physical close. After the file has been successfully closed, its FCT entry is
marked accordingly.
An immediate close is issued if the SMSVSAM RLS server fails. The close must
wait until there are no requests active in the RLS record management processor.
The enablement state of the file is not changed. A close with close qualifier of
quiesce is issued to process an RLS quiesce request. The file is unenabled, and
the state catalogued.
For a data table, DFHFCFS issues a CLOSE request to data table services, except
in the case of a special type of CLOSE request issued by DFHFCVS for a
user-maintained data table, when loading is complete and the source data set is
to be closed, but not the table itself.
For a remote data table, DFHFCFS issues a DISCONNECT request to data table
services.
If the file use count is nonzero, DFHFCFS sets the ‘close requested’ indicator in
the FCT and returns to the caller. Any subsequent transaction that reduces the
use count to zero tests the ‘close requested’ indicator and, if set, performs the
actual close.
When called by DFHFCSD during CICS shutdown, DFHFCFS ensures that files
are closed, marks the file as ‘closed unenabled’ in the FCT, but does not record
this change in the global catalog. This allows implicit file opens on a subsequent
restart.

v Cancel close.

216 CICS TS for z/OS 4.1: Diagnosis Reference

An in-progress close is cancelled if a data set is unquiesced. The
close_in_progress flag is reset, any tasks waiting for the file to close are resumed,
and the file is re-enabled.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCIN1 (file control initialization program 1)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCIN1. Stored in the CSA in a field named CSAFCXAD.

Purpose
The file control initialization program is part of the file control component. This
program initializes file control and starts the file control restart task. It also waits
for the restart task to complete, and returns the status of the completion to the
caller.

Called by
DFHSII1, as part of CICS initialization.

Inputs
The FCIN parameter list, as defined by the DFHFCINA DSECT.

Outputs
Updated FCIN parameter list.

Operation
Initialize:
v Calls storage manager domain to add a subpool for file control static storage.
v Calls storage manager domain to create the storage for file control static storage.
v Initializes file control static storage.
v Attaches the file control restart task by means of a DFHKC request, with entry

point address DFHFCIN2.

WAITINIT:
v Issues a dispatcher domain call to wait on the CICS ECB which indicates that

the file control restart task has finished (FC_RECOV_ALLOWED_ACB) in file
control static storage.

v On completion of the wait, tests the response and returns to DFHSII1.

How loaded
Link-edited with DFHFCIN2 to form the DFHFCIN module, which is loaded by
DFHSIB1 as part of the CICS nucleus.

DFHFCIN2 (file control initialization program 2)

Call mechanism
Attached by DFHFCIN1 as a separate CICS task. Given control by means of the
DFHKC TYPE=ATTACH mechanism.

Chapter 24. File control 217

Entry address
DFHFCIN2. Because DFHFCIN2 is link-edited with DFHFCIN1, the entry address
is known to DFHFCIN1 at the time the DFHKC TYPE=ATTACH is issued.

Purpose
The file control initialization program is part of the file control component. This
program loads and calls the file control restart program (DFHFCRP), to perform
file control restart as a separate task.

Called by
CICS task control, after being attached by DFHFCIN1.

Inputs
None.

Outputs
The initialized file control component. Addresses and indicators completed in file
control static storage.

Operation
Calls loader domain to acquire (that is, to load) the DFHFCRP program. Stores the
entry point address of the loaded module (which is also the load point) in
DFHFCIN2’s automatic storage in a field named FCRP_ENTRY_ADDRESS.

If the ACQUIRE request failed, calls loader domain to define program and then
retries the ACQUIRE request.

Calls DFHFCRP by means of a subroutine call via the kernel.

On successful completion, calls loader domain to release DFHFCRP. On both
successful and unsuccessful completion, posts the ECBs
FC_NON_RECOV_ALLOWED_ECB and FC_RECOV_ALLOWED_ECB. The
success or otherwise of File Control restart is indicated by the flag FCSCMPLT in
file control static storage.

On unsuccessful completion, posts the Restart Task ECB complete and returns.

How loaded
By DFHSIB1 as part of the CICS nucleus.

DFHFCIR (file control initialize recovery)
DFHFCIR is the File Control Initialize Recovery Module. It initializes the File
Control environment in which recovery after a CICS failure is carried out.

DFHFCIR handles the delivery of recovery data by the CICS Recovery Manager
during its scan of the system log at warm or emergency restart, and rebuilds the
file control structures that represent units of work that were in-flight or shunted
when CICS terminated.

During its log scan, Recovery Manager calls File Control's recovery gate, which
invokes the module DFHFCRC. DFHFCRC passes the calls through to DFHFCIR
via a kernel subroutine call. The calls are the RMDE functions START_DELIVERY,
DELIVER_RECOVERY, DELIVER_FORGET and END_DELIVERY.

218 CICS TS for z/OS 4.1: Diagnosis Reference

DFHFCL (file control shared resources pool processor)

Call mechanism
BALR, obtaining LIFO storage on entry.

Entry address
DFHFCLNA. DFHFCL is, together with DFHFCN and DFHFCM, link-edited with
DFHFCFS. All calls to DFHFCL are made from DFHFCN; the entry point address
is known to DFHFCN from the link edit.

Purpose
The shared resources pool processor is part of the file control component.

This program is called at file open time to create a specific local shared resources
pool if it does not exist. It is also called to delete a specific pool when the last file
to use the pool is being closed.

The size and characteristics of the pool being built are obtained either from
information in the SHRCTL definition in the FCT or, if that information has not
been provided, from the best information available to DFHFCL at the time of the
open.

Called by
DFHFCL is called exclusively by DFHFCN.

Inputs
The FCLPARAM parameter list, created in DFHFCN’s automatic storage and
addressed by register 1 on the call.

The input parameters are:

Request identifier (build, delete)
LSR pool number

Outputs
Returned in the FCLPARAM parameter list:

DFHFCL return code
BLDVRP/DLVRP return code
VSAM return code

Operation
If the request is for LSR pool creation, DFHFCL first checks whether the SHRCTL
block includes specifications for the number of strings, maximum key length, and
the number of virtual and hyperspace buffers of each of the eleven sizes in the
pool. If these values are known, DFHFCL sets up the BLDVRP parameter list and
creates the pool by issuing the BLDVRP macro.

If some or all of the pool characteristics are not specified in the SHRCTL definition,
DFHFCL calculates the pool requirements from the information in the FCT and the
VSAM catalog.

Each FCT entry is inspected to find whether it is to be included in the pool being
built. If so, its DSNAME is determined and this is used to obtain data set
characteristics from the VSAM catalog. The information required for the BLDVRP
macro is accumulated in the SHRCTL block and the pool is built from these values.

Chapter 24. File control 219

If the request is for LSR pool deletion, DFHFCL first obtains the VSAM statistics
for the pool and saves them in the SHRCTL block. These statistics are unobtainable
after the pool has been deleted.

DFHFCL next deletes the specified pool by issuing a DLVRP macro.

Finally, DFHFCL sends pool statistics to the statistics domain as unsolicited data.

How loaded
As a constituent part of DFHFCFS, which is loaded by DFHFCRP as part of file
control initialization.

DFHFCLF (file control log failures handler)
DFHFCLF provides control of long term logger failures for File Control. It is called
in the event of a failure of a general log stream, which will be either the forward
recovery log for a data set or the autojournal for a file.

The CICS Log Manager invokes DFHFCLF when an MVS log stream being used
for forward recovery or file autojournalling suffers a long term failure. The call is
made using the LGGL ERROR function.

When file control opens a forward recovery log stream or an autojournal, it will
register this call back gate to the Log Manager by specifying FCLF as the file
control error gate.

When called, DFHFCLF takes action to ensure that the log stream failure causes
minimum damage. For a forward recovery log failure it closes all files open against
the data set using that forward recovery log (across the sysplex for a data set
accessed in RLS mode) and issues a message advising that a new backup copy
should be taken. For an autojournal it closes the file using that autojournal and
issues a warning message.

DFHFCLJ (file control logging and journaling program
DFHFCLJ is the file control logging and journaling program. It is called to perform
logging for transaction backout and forward recovery, to write to journals for
autojournal requests and to write to the log of logs.

Records are written to the system log using the RMRE APPEND function, and
optionally forced using the RMRE FORCE function. Records are written to forward
recovery logs and autojournals using the LGGL WRITE function, and to the log of
logs using the LGGL WRITE_JNL function.

DFHFCMT (file control table manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCMT. The entry point address is held in FC static storage in a field named
FC_FCMT_ADDRESS, which is set by DFHFCRP when it loads DFHFCMT.

Purpose
The file control table manager is part of the file control component. This program
is called to add, delete, and set FCT entries, and to return attributes of an FCT
entry (inquire).

220 CICS TS for z/OS 4.1: Diagnosis Reference

Called by
DFHAMFC

Inquire on, add, or delete a newly created FCT entry to the system
DFHAMPFI

Add the entry in the FCT for the CSD to the system
DFHDMPCA

Inquire on and set the attributes of the FCT entry for the CSD
DFHEDFX

Inquire on the attributes of an FCT entry
DFHEIQDS

Inquire on or set the attributes of FCT entries, or delete an FCT entry.

Inputs
The FCMT parameter list, as defined by the DFHFCMTA assembler DSECT, is
created as part of the subroutine call.

The input parameters are:

Common parameters:
 File name
 String number
 Journal ID
 Recovery characteristics
 Journaling characteristics
 Enablement status
 Open time
 Data set disposition
 Service request attributes
 Record format
 Number of data buffers
 Number of index buffers
 Whether to catalog the FCT entry

VSAM-specific parameters:
 VSAM password
 Empty status
 Data set name sharing
 LSR pool ID
 Base name
 Forward recovery log ID
 BWO eligibility
 RLS access mode
 Read integrity

BDAM-specific parameters:
 Exclusive control

Outputs
Output parameters, as part of the FCMT parameter list. Apart from the response,
all these are returned on the inquire or browse requests. The output parameters
are:

Common parameters:
 File type
 String number
 Record size

Chapter 24. File control 221

Key length
 Key position
 Recovery characteristics
 Journaling characteristics
 Enablement status
 Open status
 Open time
 Data set type
 Data set disposition
 Data set name
 Base data set name
 Service request attributes
 Record format
 Block format
 Access method
 Remote name
 Remote system

VSAM-specific parameters:
 VSAM password
 Empty status
 Object type
 Data set name sharing
 Number of data buffers
 Number of index buffers
 Number of active strings
 LSR pool ID
 Whether using shared resources
 Forward-recovery log ID
 RLS access mode
 Read integrity

BDAM-specific parameters:
 Block size
 Block key length
 Relative address form
 Exclusive control
 Response
 Reason

Data Table specific parameters:
 Table type
 Table size

Operation
v Add:

Storage for the new FCT entry is obtained out of the VSAM FCT storage
subpool (BDAM FCT entries cannot be created).
The new FCT entry is completed by filling in the information from the caller’s
parameter list.
The name of the new FCT entry is added to the TMP index.
Finally the information in the new entry is written to the CICS global catalog if
required.

v Delete:

222 CICS TS for z/OS 4.1: Diagnosis Reference

The request is rejected if there are uncommitted updates for the file; that is, there
are retained locks. DFHTMP is called to locate and quiesce the FCT entry.
Any DSN block that is connected to the FCT entry is disconnected.
The FCT entry name is deleted from the TMP index.
The storage for the FCT entry is freed. In the case of a BDAM FCT entry, its
DCB storage is also freed.
Any catalog entries for the FCT entry are deleted.

v Set:
DFHTMP is called to locate the FCT entry.
The request is rejected if there are uncommitted updates for the file; that is, there
are retained locks.
If the FCT entry is not marked ‘closed’ and ‘disabled’ (or ‘unenabled’), the
request is rejected.
Changes are made to the information in the FCT according to the caller’s
parameter list.
Finally the changes are recorded by writing them to the CICS global catalog.

v Inquire:
DFHTMP is called to locate the FCT entry.
The attributes are returned in the FCMT parameter list.

v Connect:
DFHTMP is called to locate the FCT entry.
The connect count is incremented. The FCT token is returned to the caller.

v Disconnect:
DFHTMP is called to quiesce the FCT entry.
A check is made to ensure that the file is closed and disabled (or unenabled). If
the check fails, an error is returned to the caller.
The connect count in the FCT is cleared and a call is again made to DFHTMP to
release the quiesce.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCN (file control open/close program)

Call mechanism
BALR, obtaining LIFO storage on entry.

Entry address
DFHFCNNA. DFHFCN is link-edited with DFHFCFS. All calls to DFHFCN are
made from DFHFCFS; the entry point address is known to DFHFCFS from the
link-edit.

Purpose
The file control open/close program is part of the file control component.

This program performs the physical opening and closing of files by making the
corresponding requests to VSAM or BDAM. Associated with these operations are a
number of further activities that must be completed before control is returned to
DFHFCFS.

These activities include:

Chapter 24. File control 223

v Dynamic allocation of the file
v Empty file checking
v Dynamically setting up ACB fields in advance of the VSAM open
v Copying into file-control control blocks VSAM information about the file which

is available after the open
v Inquiring on, and updating, the VSAM data set’s backup while open (BWO)

attributes in the ICF catalog for a file that is defined in the FCT as eligible for
BWO support if the appropriate prerequisite software levels have been installed

v On close, deallocating the file if necessary and clearing the file control
information related to the file

v Resetting a VSAM data set’s BWO attributes in the ICF catalog during close
processing.

Called by
DFHFCFS, exclusively.

Inputs
The FCSPARMS parameter list, created in DFHFCFS’s automatic storage and
addressed by register 1 on the call.

The input parameters are:

FCTE address
Request identifier

Outputs
Returned in the FCSPARMS parameter list:

DFHFCN return code
Register 15 return code
VSAM return code
Base data set name
Recovery attributes of base

Operation
Execution of the DFHFCN code is serialized. This is done by DFHFCFS issuing a
DFHKC ENQ before calling DFHFCN, and a DFHKC DEQ after calling DFHFCN.
As a consequence, only a single open or close request to any file can be in progress
at any time, and multiple concurrent requests are single-threaded.

The main actions when processing an open request:

 1. If the file is being opened for update and any type of autojournalling is
specified on the file definition, then the autojournal log stream is opened, via
a call to DFHLGGL.

 2. The file is tested to determine if it is allocated to the job by means of a JCL
statement or is to be allocated dynamically.
If the file is already allocated, any existing DSN block to which it may be
connected is disconnected and a new block with the actual DSNAME is
connected. Connecting and disconnecting of DSNAME blocks is always
performed by calling DFHFCDN.
If the file is not already allocated, it is at this point dynamically allocated to
the DSNAME in the DSNAME block to which it is connected.
In the case of a VSAM file, the file’s data set name is used to issue
appropriate SHOWCAT and LOCATE instructions to determine relevant

224 CICS TS for z/OS 4.1: Diagnosis Reference

information from the VSAM catalog about the data set that the file represents.
In particular, the following are obtained:

Base/path indicator
Base data set name
Attributes of the data set
Key length of the base
Relative key position of base key
Maximum record length
Control interval size
Share options
High RBA

 3. The data set is checked to determine if it is empty (high RBA is zero) or is to
be emptied.
The ‘load’ mode indicator is set on.

 4. DFHFCDN is now called to connect the FCT entry to a DSNAME block for
the base cluster (which may be the existing allocation DSNAME block, or may
need to be newly created, or may already exist and need only be pointed to
from the FCT). The base cluster’s attributes, as obtained from the VSAM
catalog, are stored in the base cluster block.
The file’s recovery characteristics are checked against any that may already
have been stored in the base cluster block and, if they have not yet been set
up, are saved there. Any conflict with the stored values is handled. In some
cases the new value overrides the old one, in others an error is returned.
During this processing, if this is the first open for update for a file associated
with this particular data set:
a. a call is made to the VSAM callable interface IGWARLS, in order to get

any recovery attributes that may be defined in the VSAM catalog. If they
are present, then they override any values in the FCT entry.

b. if forward recovery logging is specified, the forward recovery log stream is
opened, using either the log stream name from the VSAM catalog, or a log
stream name derived from the id specified in the file definition.

In the case of an entry sequenced data set or a path to an ESDS, the next
available RBA in the data set is determined and stored in the base cluster
block.

 5. If the file uses a shared resources (LSR) pool, and if the pool is not currently
in existence, DFHFCL is called to determine the pool’s characteristics and to
build it.

 6. Before opening a VSAM file, any STRNO, BUFND, or BUFNI parameters that
may have been specified in the JCL DD statement are copied to the FCT entry
(for LSR opens, these are ignored). The ACB is now created and its various
options and parameters filled in from information in the FCT entry. The
OPEN is finally completed by a call to VSAM.

 7. If the file refers to a BDAM data set, the assembled DCB is used for the open
request and no dynamic setting of DCB options is carried out.

 8. After the VSAM file has been successfully opened, certain file attributes are
obtained from VSAM and are stored in the FCT entry. These include:

Key length
Relative key position
Base/path/AIX indicator
KSDS/ESDS/RRDS/VRRDS indicator
Number of strings required for an update operation.

Chapter 24. File control 225

9. For a file opened for update against a VSAM base data set when the update
use count in the DSNB for this data set is zero, the BWO attributes in the ICF
catalog are validated to find their current state. This is done by making an
INQ_DATASET_STATE call to DFHFCAT, regardless of whether the file is
defined in the FCT as eligible for BWO support.
The file open request is rejected if one of the following is true:
a. The BWO attributes in the ICF catalog show either that the data set is

“back level”, that is, a backup copy has been restored but not forward
recovered, or that either the catalog or the data set has been corrupted.

b. The BWO attributes in the FCT entry conflict with those defined in the
DSNB, that is, the file has already been opened with different attributes
since the DSNB was created.

If the file is defined in the FCT as eligible for BWO support, the BWO
attributes in the ICF catalog are updated by making a
SET_BWO_BITS_ENABLED call to DFHFCAT.
However, if the file is not defined in the FCT as eligible for BWO support, but
the BWO attributes in the ICF catalog currently show that the VSAM base
data set is eligible for BWO support, the BWO attributes in the ICF catalog are
disabled by making a SET_BWO_BITS_DISABLED call to DFHFCAT, and
CICS issues a warning message.

Note: The ICF BWO attributes are a property of a VSAM sphere; therefore,
the VSAM base data set and alternate index path definitions should be
consistent. For a general description of the CICS backup while open (BWO)
facility, see the CICS Recovery and Restart Guide.

10. The base DSNB, and path DSNB if this is a path, are marked as validated and
catalogued.

The main actions when processing a close request:

1. If the close request is for the last file that was opened for update against a
VSAM base data set and the file is defined in the FCT as eligible for BWO
support, the BWO attributes in the ICF catalog are reset so that BWO support is
no longer enabled. This is done by making a SET_BWO_BITS_DISABLED call
to DFHFCAT.

2. Before performing the access method close for a VSAM file, the number of
accumulated EXCPs is obtained by making a call to VSAM and is saved in the
FCT entry ready to be sent to the statistics domain as part of the file statistics.

3. A CLOSE request is then made by issuing the appropriate (VSAM or BDAM)
macro.

4. The ACB storage is freed, and certain fields in the FCT entry which are no
longer valid are cleared.

5. File statistics and data table statistics, if any, are sent to the statistics domain as
unsolicited data.

6. If the file being closed uses shared resources, and if it is the last to have been
closed in its LSR pool, DFHFCL is called to delete the pool.

7. If the file was dynamically allocated at open time, it is deallocated, leaving a
pointer to the DSNAME block in the FCT entry.

8. If the file had an autojournal, then the autojournal log stream is closed.
9. If the base data set was forward recoverable, and its use count is non-zero, then

the forward recovery log stream is closed.

226 CICS TS for z/OS 4.1: Diagnosis Reference

How loaded
As a constituent part of DFHFCFS, which is loaded by DFHFCRP as part of file
control initialization.

DFHFCNQ (file control non-RLS lock handler)
DFHFCNQ is the file control non-RLS lock handler. It is called using the FCCA
RETAIN_DATASET_LOCKS interface to retain locks in cases of backout failure. It
is called using the NQNQ INTERPRET_ENQUEUE interface to interpret File
Control locks for presentation purposes.

Lock retention
When DFHFCRC encounters a failure during an attempt to backout a unit of work
it must retain all record locks held by that UOW for the failing data set. It issues
an FCCA RETAIN_DATASET_LOCKS request to DFHFCCA for RLS access data
sets and to this DFHFCNQ for non-RLS access data sets.

Lock name interpretation
Non-RLS locks include record locks for all file types, and for VSAM files,
mass-insert range locks, load mode locks and ESDS WRITE locks. Each lock
belongs to one of some half dozen or so pools created by DFHFCRP during CICS
initialization. DFHFCNQ is called using the NQNQ INTERPRET_ENQUEUE
interface and is passed the enqueue pool name and the lock identifier. The name of
pool to which a lock belongs is sufficient information to allow the identifier to be
parsed and its constituents returned to the caller.

The pool names and lock constituents are:
v FCDSRECD - Data set name and record identifier - for VSAM and

CICS-maintained data tables
v FCFLRECD - File name and record identifier - for BDAM and user-maintained

data tables
v FCDSRNGE - Data set name and record identifier - VSAM range locks
v FCDSLDMD - Data set name - VSAM load mode locks
v FCDSESWR - Data set name - VSAM ESDS WRITE locks
v FCFLUMTL - File name - UMT load locks

DFHFCOR (file control offsite recovery completion)
DFHFCOR is the file control RLS offsite recovery completion transaction.

Transaction CFOR is attached when CICS detects that is has completed its RLS
offsite recovery processing. RLS offsite recovery is only performed when
OFFSITE=YES is specified as a system initialization override. CFOR may be
attached either during RLS warm or emergency restart (if there is no RLS offsite
recovery work to be performed) or during file control commit processing (if the
commit was for the last remaining item of RLS offsite recovery work).

DFHFCOR issues message DFHFC0575 and awaits an operator reply. When the
reply is received, it enables RLS access for new transactions.

DFHFCQI (file control RLS quiesce initiation)
DFHFCQI is the RLS Quiesce Initiation module. It provides code to initiate a
quiesce request against a base data set. It also provides code to inquire on the
quiesce state of a base data set, and to complete a quiesce request against a base
data set. Quiesce initiations are issued by the CICS API, or by CICS internally, or

Chapter 24. File control 227

by CICS internally cancelling certain in-progress quiesce operations. Quiesce
inquiries are issued via the CICS API. Quiesce completions are issued by CICS
internally.

DFHFCQR (file control quiesce receive transaction)
DFHFCQR is the VSAM RLS Quiesce Receive module, running under a dedicated
CFQR system transaction. It provides code to take quiesce requests from the CICS
VSAM RLS quiesce exit and pass them to DFHFCQU for processing. As DFHFCQR
runs under a system transaction, it has full transaction environment which enables
it to invoke API-capable global user exits, or to call parts of file control that
reference the TCA.

DFHFCQS (file control RLS quiesce send transaction)
DFHFCQS is the VSAM RLS Quiesce Send module, running under a dedicated
CFQS system transaction. It provides code to take quiesce requests from another
task and pass them to SMSVSAM. As DFHFCQS runs under a system transaction,
it has full transaction environment which enables it to invoke API-capable global
user exits, or to call parts of file control that reference the TCA. DFHFCQS is called
from DFHFCQT, the quiesce system transaction module, if the transaction id under
which DFHFCQT was started is ’CFQS’.

DFHFCQT (file control RLS quiesce common system
transaction)

DFHFCQT is the file control RLS quiesce common system transaction.

There are two file control system transactions dedicated to RLS quiesce processing:
CFQS and CFQR. CFQS sends quiesce requests to SMSVSAM in order to initiate
the quiesce or unquiesce of a data set throughout the sysplex. CFQR receives
quiesce requests from VSAM RLS and performs the quiesce processing required for
the CICS region concerned. These transactions share a common top-level program,
DFHFCQT.

There is no DFHFCQT parameter list. The action DFHFCQT takes depends on the
transid of the transaction it is running under. If it is CFQS then DFHFCQS
SEND_QUIESCES is called. If it is CFQR then DFHFCQR RECEIVE_QUIESCES is
called. If DFHFCQS or DFHFCQR subsequently fail with a disastrous error, control
is returned to DFHFCQT and a transaction abend is issued, having first re-attached
the transaction concerned to ensure that RLS Quiesce support is not lost for ever.

DFHFCQU (file control RLS quiesce processor)
DFHFCQU is the RLS Quiesce Process module. It processes quiesce requests
received from SMSVSAM via the quiesce exit mechanism.

DFHFCQX (file control RLS quiesce exit)
DFHFCQX is the RLS Quiesce Exit module. It is called by SMSVSAM whenever
the CICS region concerned is required to perform processing for a quiesce request.

The quiesce exit is specified on the RLS control ACB EXLST. The exit initiates
processing and returns to VSAM. It must not issue any VSAM requests. It is
scheduled as an IRB on the TCB that registered the RLS control ACB. Because of
the environment DFHFCQX cannot issue CICS requests. GTF tracing is used to
trace entry, exit and any errors.In addition, timestamps are made on entry to and

228 CICS TS for z/OS 4.1: Diagnosis Reference

exit from DFHFCQX, and are stored in fields FC_DFHFCQX_ENTRY_STCK and
FC_DFHFCQX_EXIT_STCK respectively of the File Control Static area.

On entry to DFHFCQX, register 1 contains the address of a VSAM structure
mapped by IFGQUIES which defines the quiesce request. The processing of the
quiesce request is performed by the CFQR long-running system transaction
(DFHFCQR). To communicate the quiesce to CFQR, DFHFCQX creates an FC
Quiesce Receive Element (FCQRE) to describe the request, and adds it to a chain in
file control static storage, posting an ECB associated with the chain also in FC
static.

DFHFCRC (file control recovery control program)
DFHFCRC provides recovery control for file control. All calls from the Recovery
Manager domain to file control come through DFHFCRC.

DFHFCRC is called by the Recovery Manager domain to participate in syncpoint
and in warm and emergency restart.

Early on during startup File Control registers as a client of the CICS Recovery
Manager. During File Control initialization, File Control will add its recovery gate
to the kernel, specifying DFHFCRC as the entry point, and then declares the
recovery gate to the CICS Recovery Manager via an RMCD SET_GATE call.

At syncpoint, a resource owner such as File Control may be called either
1. to prepare, optionally followed by shunt-unshunt pairs, followed either by calls

to backout (as in 2 below) or a call to commit.
2. to backout, which involves start_backout, optional delivery of backout data,

and end_backout, followed by prepare and commit, optionally followed by
backout retries (which consist of shunt-unshunt pairs followed by the
start_backout - delivery of backout data - end_backout - prepare - commit
sequence).

At warm or emergency restart, a resource owner such as File Control will be called
with start_delivery, optional deliver_recovery and deliver_forget calls, followed by
end_deliver.

The Recovery Manager functions processed by DFHFCRC are:
v RMRO PERFORM_PREPARE
v RMRO PERFORM_COMMIT
v RMRO START_BACKOUT
v RMRO DELIVER_BACKOUT_DATA
v RMRO END_BACKOUT
v RMRO PERFORM_SHUNT
v RMRO PERFORM_UNSHUNT
v RMKP TAKE_KEYPOINT
v RMDE START_DELIVERY
v RMDE DELIVER_RECOVERY
v RMDE DELIVER_FORGET
v RMDE END_DELIVERY

DFHFCRC performs different processing depending on the function with which it
has been called:

Chapter 24. File control 229

PERFORM_PREPARE
Any active VSAM requests are terminated, and a vote of READ_ONLY is returned
if the unit of work did not make any recoverable file control updates, a vote of
YES if the prepare was successful, or a vote of NO otherwise.

PERFORM_COMMIT
For a forwards syncpoint, any changes made by the unit of work to recoverable
user-maintained data tables are committed. For a backwards syncpoint, locks for
any backout-failed data sets are retained. All other locks are released.

On transaction termination, the FLABs and FRAB are freed unless there are FLABs
marked for retention. On an intermediate syncpoint, various flags in the FLABs
and FRAB are reset to indicate that a commit has been performed.

START_BACKOUT
Any active VSAM requests are terminated, and any changes made by the unit of
work to recoverable user-maintained data tables are backed out.

DELIVER_BACKOUT_DATA
The recoverable file control change represented by the log record delivered to
DFHFCRC is backed out via calls to DFHFCFR which reverse the update. The
change is not backed out if the unit of work has already suffered a backout failure
for the data set, or if the data set is in a ’non-RLS update permitted’ state, or if this
call is being made as part of a CEMT or EXEC CICS SET DSNAME RESETLOCKS
request.

If a failure occurs during the backout, then backout failure processing is carried
out.

END_BACKOUT
Under normal conditions there should be no processing required at
END_BACKOUT, but it is conceivable that there might be outstanding active
VSAM requests to be terminated.

PERFORM_SHUNT
The failed parts of the unit of work's file control structures are put into a condition
to survive without an executable transaction environment. This involves retaining
any FLABs that are marked for retention, which will allow files to be closed, but
not to be reallocated to a different data set.

If this is an intermediate syncpoint, and the shunt is due to a failure in phase 2 of
syncpoint, the transactional parts of the unit of work are copied into a new control
structure to be passed to the follow-on unit of work. A new FRAB is acquired to
anchor this control structure. If this is transaction termination, or the shunt is due
to a failure in phase 1 of syncpoint, the transactional parts are cleaned up.

PERFORM_UNSHUNT
The file control structures are converted back into a condition suitable for a unit of
work that is in an executable state. Retained FLABs for the unit of work are
restored.

TAKE_KEYPOINT
DFHFCRC is called when CICS takes a keypoint, to perform processing required
by BWO backup on non-RLS data sets. This involves the writing of a set of ’tie up
records’ and the calculation of a new BWO recovery time.

230 CICS TS for z/OS 4.1: Diagnosis Reference

START_DELIVERY
DFHFCIR is called to process the call.

DELIVER_RECOVERY
DFHFCIR is called to process the call.

DELIVER_FORGET
DFHFCIR is called to process the call.

END_DELIVERY
DFHFCIR is called to process the call.

DFHFCRD (file control RLS cleanup transaction)
As soon as CICS detects an SMSVSAM server failure, it runs program DFHFCRD
under transaction CSFR to perform cleanup.

Following the server failure all current RLS ACBs become unusable. DFHFCRD
scans a chain of files open in RLS mode, which is anchored from file control static
storage and call DFHFCFS to perform an IMMEDIATE_CLOSE for each open file.

DFHFCRD then waits:
1. for the last file to close,
2. once the last file has closed, for SMSVSAM to complete any residual requests

against the RLS control ACB.

When both these events have occurred, DFHFCRD calls DFHFCCA to perform
UNREGISTER_CONTROL_ACB processing in order to clean up the CICS and
VSAM state with respect to the control ACB.

DFHFCRD finally posts an ECB which allows dynamic RLS restart to go ahead.
Dynamic RLS restart cannot start until DFHFCRD has completed clean up and
posted this ECB.

DFHFCRF (file control function shipping interface module)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
FC_FCRF_ADDRESS stored in FC Static Storage.

Purpose
DFHFCRF is the function shipping interface module. It is called by the access
method independent module DFHFCFR for record management requests (e.g.
reads, writes, rewrites, etc.) that are to be directed to files that are defined as
remote.

DFHFCRF is called with the FCFR parameter list. From this it constructs an FCRF
parameter list, which is subsequently passed to DFHISP and, in turn, either to
DFHXFX (the MRO transformer) or to DFHXFFP (the ISC transformer).

DFHFCRF executes the following requests from the DFHFCFRR parameter list:
v Simple read requests

– READ_INTO and READ_SET
v The read update family

Chapter 24. File control 231

– READ_UPDATE_INTO and READ_UPDATE_SET
– REWRITE
– REWRITE_DELETE
– UNLOCK

v The browse family
– START_BROWSE
– RESET_BROWSE
– READ_NEXT_SET, READ_NEXT_INTO, READ_PREVIOUS_SET,

READ_NEXT_UPDATE_SET, READ_NEXT_UPDATE_INTO,
READ_PREVIOUS_UPDATE_SET, and READ_PREVIOUS_UPDATE_INTO

– END_BROWSE
v Write requests

– WRITE
v Delete requests

– DELETE

Called by
DFHFCFR, the File Control file request handler.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT.

Outputs
The FCRF parameter list, as defined by the DFHFCRFA DSECT.

Operation
Traces module entry.

Checks for an explicit SYSID specified on the request and sets the remote system
and remote file name in the DFHFCRF parameter list ready for function shipping.

Increments statistics for the type of request.

Checks request specific parameters

Ships the request.

Handles return codes.

Finally, traces the module exit.

How loaded
By FCRP at file control initialization.

DFHFCRL (file control share control block manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCRL. The entry point address is held in FC static storage in a field named
FC_FCRL_ADDRESS, which is set by DFHFCRP when it loads DFHFCRL.

232 CICS TS for z/OS 4.1: Diagnosis Reference

Purpose
The file control share control block manager is part of the file control component.

This program modifies the CICS specification of a shared resources pool. The
changes are allowed to be made only when the actual pool is deleted.

Called by
DFHAMFC, when installing an LSR pool defined by RDO.

Inputs
The FCRL parameter list, as defined by the DFHFCRLA DSECT, is created as part
of the subroutine call.

The input parameters are:

Request identifier
Pool identifier
Number of strings
Maximum key length
Share limit
Buffer characteristics

Outputs
The response and reason codes only. These are returned in the FCRL parameter
list.

Operation
The SHRCTL block for the specified pool is addressed. A test is made to determine
whether or not the pool is currently built; if it is built, the request is rejected with
an error response.

The pool characteristics specified in the input parameter list are included in the
SHRCTL block.

Finally the information in the SHRCTL block is written to the CICS global catalog.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCRO (file control RLS open/close program)
DFHFCRO performs an equivalent function for RLS opens and closes as is
performed by DFHFCN for non-RLS access mode.

DFHFCRP (file control restart program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCRP. This address is needed only by DFHFCIN2 during initialization; it is
therefore not saved in FC static storage.

Purpose
The file control restart program is part of the file control component. This program
creates a file control component on a cold or initial start of CICS, or re-creates it

Chapter 24. File control 233

after a warm or emergency start. For a warm or emergency start, the intention is to
reconstruct the identical file control environment which was in effect at the time of
the previous CICS termination.

Called by
DFHFCIN2, during file control initialization.

Inputs
None.

Outputs
The restarted file control component. File control static addresses and indicators
are set up. DFHFCRP’s response and reason codes are set in the parameter list
defined by DFHFCRPA DSECT.

Operation
Calls loader domain to define (if necessary) and acquire (load) the following file
control programs: DFHDTINS, DFHFCAT, DFHFCCA, DFHFCDN, DFHFCD2,
DFHFCES, DFHFCFL, DFHFCFS, DFHFCIR, DFHFCLF, DFHFCLJ, DFHFCMT,
DFHFCNQ, DFHFCQI, DFHFCQU, DFHFCQX, DFHFCRC, DFHFCRL, DFHFCRO,
DFHFCRR, DFHFCRS, DFHFCRV, DFHFCSD, DFHFCST, and DFHFCVS.

Adds gates to the kernel for recovery control, ENF services, and log stream failure
notification.

Calls storage manager domain to add (create) the following storage subpools: file
control general below 16MB, VSAM FCTE, BDAM FCTE, ACB, DCB, SHRCTL,
DSN, FFLE, FRAB, FRTE, FLLB, FLAB, RPL, IFGLUWID, file control fixed-length
buffer storage. Calls the NQ domain to add (create) enqueue subpools for: dataset
record NQs, file record NQs, range NQs, load mode NQs, ESDS write NQs, and
UMT loading NQs.

Calls DFHTMP to create TMP primary indexes for the FCT, AFCT, and DSN tables,
and a TMP secondary index for the DSN table.

If RLS is supported (correct level of DFSMS, and RLS=YES SIT parameter)
initializes the CSFR, CFQS, CFQR and CFOR tasks, registers file control's interest
in the SMSVSAM ENF signal by a LISTEN call to DFHDMEN, and calls DFHFCRR
to restart RLS.

On a warm or emergency start:
v Determines installation levels of the MVS/Data Facility Product (MVS/DFP) (or

DFSMS), the Data Facility Hierarchical Storage Manager (DFHSM), and the Data
Facility Data Set Services (DFDSS) for VSAM backup while open (BWO)
support.

v Restores DSNAME blocks from the CICS global catalog, recreating a DSN
control block in the DSN subpool storage. For each block, adds its DS name to
the TMP primary index, and adds its DS number to the TMP secondary index.

v Restores VSAM file entries from the CICS global catalog. For each entry, adds its
file name to the TMP FCT index.

v Restores BDAM file entries from the CICS global catalog. For each entry, adds its
file name to the TMP FCT index. Further, for each entry, restores the BDAM
DCB from the catalog and copies it to an entry in the DCB storage subpool.

v Restores DSNAME references from the CICS global catalog. For each entry,
locates its FCTE and invokes DFHFCDN to connect the FCTE to its DSN block.

234 CICS TS for z/OS 4.1: Diagnosis Reference

v Restores SHRCTL blocks from the CICS global catalog.

On a cold start:
v As for a warm or emergency start, determines installation levels of MVS/DFP,

DFHSM, and DFDSS for VSAM backup while open (BWO) support.
v Purges the CICS global catalog of all FCTEs, SHRCTL blocks, DSNAME

references, AFCTEs, and BDAM DCBs.
v Calls the loader domain to load the FCT specified by the FCT system

initialization parameter.
v Builds all eight SHRCTL blocks, using any information that may have been

specified in the loaded FCT. Writes the blocks to the CICS global catalog.
v For each file control table entry in the loaded FCT, creates an FCT entry in the

FCT storage subpool, copies the information to it, adds the file name to the TMP
index, and writes the table entry to the CICS global catalog.

v Calls the loader domain to delete the previously loaded FCT.

Indicates file control restart complete for non-recoverable business by setting
FC_NON_REV_ALLOWED_ECB on.

Sends message to inform that file control restart is complete.

If all was successful, turns on the FCSCMPLT flag in FC static.

Finally, posts the FC_RECOV_ALLOWED_ECB in FC static.

How loaded
By the file control initialization module 2, DFHFCIN2, and deleted after it has
completed.

DFHFCRR (file control RLS restart)
DFHFCRR is used to restart the RLS component of File Control. It is called
whenever CICS is restarted and after any total RLS failure. DFHFCRR is also called
whenever a resource can be made available again after earlier failures have been
rectified, and after recovery from Lost Locks.

DFHFCRR is invoked whenever CICS is restarted (COLD, WARM or
EMERGENCY) by DFHFCRP, and following any total RLS failure (DYNAMIC
restart) by DFHFCES.

DFHFCRR is also called to retry work which has been shunted because a resource
(a data set, and RLS cache, or the VSAM RLS server) was not available. For this
purpose, it is called by DFHFCQU when CICS is notified that a data set has been
unquiesced, has completed a non-BWO copy or has completed forward recovery,
and when CICS is notified that a previously failed cache is now available; by
DFHFCFL when the API interface is used to retry all shunted work for a given
data set; and by DFHFCRO when an override condition is detected, in order to
drive any shunted work. DFHFCRR is also called by DFHFCQU when CICS is
notified that all systems have completed lost locks recovery for a data set.

DFHFCRS (file control RLS record management processor)
DFHFCRS performs an equivalent function for RLS access mode record
management requests as is performed by DFHFCVS for non-RLS access mode
requests.

Chapter 24. File control 235

DFHFCRV (file control RLS VSAM interface processor)
DFHFCRV performs an equivalent function for RLS access mode record
management requests as is performed by DFHFCVR for non-RLS access mode
requests.

DFHFCSD (file control shutdown program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCSD. The entry point address is held in FC static storage in a field named
FC_FCSD_ADDRESS, which is set by DFHFCRP when it loads DFHFCSD.

Purpose
The file control shutdown program is part of the file control component. Its
purpose is to close all CICS files that are still open during phase 2 of a normal
controlled CICS termination. This processing is bypassed for immediate
termination.

Called by
DFHSTP, to close all open files managed by CICS file control.

Inputs
The FCSD parameter list, as defined by the DFHFCSDA DSECT, is created as part
of the subroutine call.

The input parameters are:

Type of shutdown (immediate, warm)

Outputs
The response and reason codes only, which are returned in the FCSD parameter
list.

Operation
DFHFCSD has only one function: TERMINATE.

On a ‘warm’ shutdown (that is, a not-immediate shutdown), DFHFCSD calls
DFHTMP to scan all FCT entries. For each file, it calls DFHFCFS to close the file. A
special CLOSE qualifier (shutdown) is specified on the call to DFHFCFS so as not
to catalog the FCT entry as in an ‘unenabled’ state. DFHFCSD also calls
DFHFCDO to disconnect coupling facility data table pools.

If RLS is supported, the quiesce system tasks CFQS and CFQR are terminated.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCST (file control statistics program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

236 CICS TS for z/OS 4.1: Diagnosis Reference

Entry address
DFHFCST. The entry point address is held in FC static storage in a field named
FC_FCST_ADDRESS, which is set by DFHFCRP when it loads DFHFCST.

Purpose
The file control statistics program is part of the file control component.

This program is called to collect statistics for a single file, together with any data
table statistics, or to collect statistics for the activity in a shared resources pool.

It is also called to return file statistics associated with a file’s use of a shared
resources pool.

Called by
DFHSTFC

Collect file statistics
DFHSTLS

Collect pool statistics and also file-in-pool statistics.

Inputs
The FCST parameter list, as defined by the DFHFCSTA DSECT, is created as part
of the subroutine call.

The input parameters are:

Request identifier
File name
FCTE token
Statistics record
Pool identifier
Browse token
Reset indicator

Outputs
Returned in the FCST parameter list:

Browse token
Response
Reason

Operation
v Collect file statistics:

The FCT entry token is validated if supplied; otherwise, the file name is used to
locate the FCT entry.
The file statistics, and any data table statistics, are collected from the FCTE and
copied into the statistics record. The statistics in the FCTE are optionally reset
according to the reset indicator.
For data tables, a STATISTICS data table service request is issued to retrieve and
reset those statistics that are maintained by data table services. These statistics
are appended to the file statistics record.
The FCT entry is unlocked and the statistics record returned to the caller.

v Collect pool statistics:
The SHRCTL block for the specified pool is addressed. The pool statistics are
copied into the statistics record and are returned to the caller.

v Start browse of files in pool:

Chapter 24. File control 237

Storage is obtained from the general file control pool for the browse cursor. The
browse token is returned to the caller.

v Get statistics for next file in pool:
DFHTMP is invoked to locate the FCT entry identified by the browse cursor. If
the file uses the specified pool, the shared pool statistics for this file are retrieved
and returned in the statistics record.
The statistics contain the data and index buffer sizes, and the number of times
buffer waits occurred.
The browse cursor is updated before returning to the caller.

v End browse of files in pool:
The browse cursor storage is freed before returning to the caller.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCVR (file control VSAM interface program)

Call mechanism
BALR, obtaining LIFO storage on entry.

Entry address
DFHFCVR. DFHFCVR is link-edited with DFHFCVS. For calls to DFHFCVR from
DFHFCVS, the entry point address is known to DFHFCVS from the link-edit. This
address is also stored in FC static storage in a field named FC_FCVR_ENTRY. In
addition, there is a further “entry address”, UPADEXIT, which is the entry code for
the UPAD exit code.

Purpose
The VSAM request interface program is part of the file control component.

This module contains code that issues the VSAM requests, and performs UPAD
exit processing in the case of synchronous requests to LSR files, or performs the
IOEVENT wait (‘FCIOWAIT’) in the case of asynchronous requests to NSR files.

The module also contains a number of further routines that implement functions
required by DFHFCVS.

Called by
DFHFCBD

To issue a message
DFHFCFR

To wait on a CICS ECB
DFHFCVR

Recursively, to issue an ENDREQ request to free a deadlock
DFHFCVS

When issuing VSAM requests
DFHFCVS

To execute one of the constituent functions
VSAM

To invoke the UPAD exit.

Inputs
The FCWSV parameter list, as defined by the DFHFCWS macro, is created in the
caller’s automatic storage and addressed by register 1 on the call. The input
parameters are:

238 CICS TS for z/OS 4.1: Diagnosis Reference

Request identifier
FCTE address
VSWA address
ECB address
Wait resource type
Message number
Dump code

In addition, DFHFCVR requires access to the TCA for certain of its operations.

Outputs
FCVR_RESPONSE parameter (only), defined as part of the FCWSV parameter list.

Operation
Initialize: Copies the VSAM exit list to FC static storage. This action is performed
as part of file control initialization.

VSAM_Request: Issues the request to VSAM. Performs the IOEVENT wait.
Handles LSR ‘no buffers’ logical error. Issues change mode request to perform the
request under the concurrent TCB if possible.

Get_Strings and Free_Strings: Acquires and frees the required number of shared
strings from the LSR pool.

Get_TRANID and Free_TRANID: Allocates and releases a VSAM tranid required
during sequential update operations to an LSR file.

Wait_CICSECB: Issues a function request to wait for a CICS ECB to be posted.

Wait_String: Issues a function request to wait for a private string to become
available.

Send_Message: Issues a function request to send a message.

How loaded
Link-edited with DFHFCVS to form the DFHFCVS load module, which is loaded
by DFHFCRP as part of file control initialization.

DFHFCVS (file control VSAM request processor)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCVS. The entry point address is held in FC static storage in a field named
FC_FCVS_ADDRESS, which is set by DFHFCRP when it loads DFHFCVS.

Purpose
Processes file control requests to VSAM files.

Also initializes certain FC static storage fields during file control initialization.

Called by
DFHFCDTS

To access the VSAM source data set to satisfy requests that cannot be satisfied
by the table itself

Chapter 24. File control 239

DFHFCFR
After having determined that the request is for a VSAM file.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT. Also the file
control environment, including FC static storage and the FCT.

Outputs
Updated FCFR parameter list.

Operation
Selects on the request type, and passes control to the routine specific to that
request.

Acquires and releases the VSWA as necessary.

Logs and journals the request if required.

Performs record-length and key-length checking.

Acquires storage, in the correct key subpool, for requests that specify SET.

Calls DFHFCVR to perform the VSAM request.

Resolves conflicts of exclusive control.

Performs record locking and resolves locking conflicts, including the detection of
deadlocks caused either by single tasks that deadlock themselves or by multiple
tasks that deadlock each other.

Performs initialization of FC static storage during file control initialization.

For CICS-maintained data tables, calls data table services to update the table to
keep it in step with the VSAM source data set.

How loaded
By DFHFCRP as part of file control initialization.

Parameter lists
File control provides the following functions in OCO modules:

FCCR POINT function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The POINT function locates a record in a coupling facility data table.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

240 CICS TS for z/OS 4.1: Diagnosis Reference

KEY
is the 16-byte key of the record to be accessed. For approximate key operations,
this specifies the start key and is updated on successful completion to contain
the key of the record accessed.

KEY_COMPARISON
is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

UOW_ID
is the unit of work identification, which is required when updating using the
locking model (non-recoverable or recoverable).

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
KEY

returns the 16-byte key of the located record.
RESPONSE

is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
TABLE_LOADING
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR HIGHEST function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The HIGHEST function returns the highest key in a coupling facility data table, if
any.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
KEY

returns the 16-byte key of the highest record.
RESPONSE

is DFHFCCR’s response to the call. It can have any of these values:

Chapter 24. File control 241

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON]

is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
TABLE_LOADING
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR READ function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The READ function reads a record from a coupling facility data table, optionally
for update.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

KEY_COMPARISON
is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

KEY
is the 16-byte key of the record to be accessed. For approximate key operations,
this specifies the start key and is updated on successful completion to contain
the key of the record accessed.

BUFFER
is the input buffer for read requests.

UOW_ID
is the unit of work identification, which is required when updating using the
locking model (non-recoverable or recoverable).

SUSPEND
specifies whether to wait if the requested record is locked by an active lock,
and can take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
UPDATE_TOKEN

returns a token on a read for update.
KEY

returns the 16-byte key of the highest record.

242 CICS TS for z/OS 4.1: Diagnosis Reference

LOCK_OWNER_SYSTEM
identifies the MVS system from which the record lock was acquired for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

RESPONSE
is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_BUSY
RECORD_LOCKED
TABLE_LOADING
INVALID_REQUEST
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR READ_DELETE function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The READ_DELETE function reads and deletes a record from a coupling facility
data table. It is not used by CICS.

FCCR UNLOCK function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The UNLOCK function unlocks a record previously read for update in a coupling
facility data table.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

Chapter 24. File control 243

KEY
is the 16-byte key of the record to be unlocked.

BUFFER
is the input buffer for read requests.

UPDATE_TOKEN
is the token returned on the preceding read for update.

UOW_ID
is the unit of work identification, which is required for the locking model
(non-recoverable or recoverable).

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE

is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
TABLE_LOADING
INVALID_REQUEST
UPDATE_TOKEN_INVALID
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR LOAD function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The LOAD function adds a record to a coupling facility data table during loading.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

KEY
is the 16-byte key of the record to be loaded.

DATA
is the address and length of the record data to be loaded.

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE

is DFHFCCR’s response to the call. It can have any of these values:

244 CICS TS for z/OS 4.1: Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON]

is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
DUPLICATE_RECORD
MAXIMUM_RECORDS_REACHED
NO_SPACE_IN_POOL
INVALID_REQUEST
INVALID_LENGTH
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR WRITE function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The WRITE function writes a new record to a coupling facility data table.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

KEY
is the 16-byte key of the record to be added.

DATA
is the address and length of the record data to be added.

UOW_ID
is the unit of work identification, which is required when updating using the
locking model (non-recoverable or recoverable).

SUSPEND
specifies whether to wait if the requested record is locked by an active lock,
and can take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

Chapter 24. File control 245

RESPONSE
is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
DUPLICATE_RECORD
RECORD_BUSY
RECORD_LOCKED
MAXIMUM_RECORDS_REACHED
NO_SPACE_IN_POOL
TABLE_LOADING
INVALID_REQUEST
INVALID_LENGTH
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR REWRITE function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The REWRITE function rewrites an existing record in a coupling facility data table,
following a read for update.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

KEY
is the 16-byte key of the record to be rewritten.

DATA
is the address and length of the record data to be rewritten.

UPDATE_TOKEN
is the token returned on the preceding read for update.

UOW_ID
is the unit of work identification, which is required when updating using the
locking model (non-recoverable or recoverable).

SUSPEND
specifies whether to wait if the requested record is locked by an active lock,
and can take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

246 CICS TS for z/OS 4.1: Diagnosis Reference

Output parameters
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

RESPONSE
is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
RECORD_BUSY
RECORD_LOCKED
MAXIMUM_RECORDS_REACHED
NO_SPACE_IN_POOL
TABLE_LOADING
INVALID_REQUEST
INVALID_LENGTH
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR DELETE function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The DELETE function deletes a record from a coupling facility data table,
following a read for update.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

KEY_COMPARISON
is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

Chapter 24. File control 247

KEY_MATCH_LENGTH
is the key match length for generic key operations.

KEY
is the 16-byte key of the record to be deleted.

UPDATE_TOKEN
is the token returned on the preceding read for update.

UOW_ID
is the unit of work identification, which is required when updating using the
locking model (non-recoverable or recoverable).

SUSPEND
specifies whether to wait if the requested record is locked by an active lock,
and can take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
KEY

is the 16-byte key of the record deleted.
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

RESPONSE
is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
RECORD_BUSY
RECORD_LOCKED
TABLE_LOADING
INVALID_REQUEST
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

248 CICS TS for z/OS 4.1: Diagnosis Reference

FCCR DELETE_MULTIPLE function
FCCR is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for data access requests.

The DELETE_MULTIPLE function deletes records from a coupling facility data
table, subject to key match conditions, until no more records match or an exception
occurs.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token returned on OPEN which must be passed on all subsequent
requests against that open table.

KEY_COMPARISON
is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

KEY
is the 16-byte key of the record(s) to be deleted.

UOW_ID
is the unit of work identification, which is required when updating using the
locking model (non-recoverable or recoverable).

SUSPEND
specifies whether to wait if the requested record is locked by an active lock,
and can take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
DELETED_RECORD_COUNT

is the number of records successfully deleted by the delete_multiple request.
KEY

is the 16-byte key of the last record deleted.
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a
record_busy or record_locked condition. Also set when the wait exit is taken
for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

RESPONSE
is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

Chapter 24. File control 249

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
RECORD_BUSY
RECORD_LOCKED
TABLE_LOADING
INVALID_REQUEST
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT OPEN function
FCCT is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for table status functions
(Open, Close etc.).

The OPEN function defines a coupling facility data table table and establishes a
connection between it and a CICS file. A security check is performed for access to
the table name. If the table does not exist, it is implicitly created. If the table
requires loading, it can only be opened if the access mode specifies exclusive
access (or prefer_shared, allowing exclusive access if necessary).

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

RECORD_LENGTH
specifies the maximum record length, in the range 1 to 32767.

KEY_LENGTH
specifies the key length, in the range 1 to 16.

MAXIMUM_RECORDS
specifies the maximum number of records which can be stored in the table.

UPDATE_MODEL
specifies the method to be used for updating. It can take any of the values:
CONTENTION|LOCKING|RECOVERABLE

Contention means version compare and swap. Locking means normal update
locking. Recoverable includes backout support in addition to the basic locking
model.

INITIAL_LOAD
specifies whether initial load is required. It can take the values:
YES|NO

OPEN_MODE
specifies a read_only or read_write open. It can take the values
READ_ONLY|READ_WRITE

ACCESS_MODE
specifies whether the table is being opened for exclusive or shared use. It can
take the values:

250 CICS TS for z/OS 4.1: Diagnosis Reference

EXCLUSIVE|SHARED|PREFER_SHARED

Only one user at a time can have an exclusive open active. If the table requires
loading and is not yet being loaded, it can only be opened in exclusive mode.
If PREFER_SHARED is specified, the table will be opened in exclusive mode if
loading is required, otherwise it will be open in shared mode.

SHARED_ACCESS
specifies for an exclusive mode open whether other users will be allowed
shared access to the file at the same time. It can take the values:
NONE|READ_ONLY|READ_WRITE

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
TABLE_TOKEN

is a unique token representing the connection to this table. It must be passed
on all subsequent requests against that open table, including close and set.

RECORD_LENGTH
returns the maximum record length of the table.

KEY_LENGTH
returns the key length of the table.

MAXIMUM_RECORDS
returns the maximum number of records limit for the table.

UPDATE_MODEL
returns the update model for the data table. It can take any of the values:
CONTENTION|LOCKING|RECOVERABLE

Contention means version compare and swap. Locking means normal update
locking. Recoverable includes backout support in addition to the basic locking
model.

INITIAL_LOAD
returns whether or not the data table requires initial loading. It can take the
values:
YES|NO

ACCESS_MODE
returns whether the table was opened for exclusive or shared use. It can take
the values:
EXCLUSIVE|SHARED

LOADED
returns an indication of whether the table has been loaded. If the table was
created as empty this is set to yes as if loading were already done. It can take
the values:
YES|NO

CURRENT_USERS
returns the number of explicit opens which are currently active against the
table (not including internal recoverable opens issued by the server).

CURRENT_RECORDS
returns the number of records in the data table.

CURRENT_HIGH_KEY
returns the key of the last record in the table at the time of the request, or low
values if the table does not contain any records.

RESPONSE
is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Chapter 24. File control 251

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
ACCESS_NOT_ALLOWED
TABLE_NOT AVAILABLE
NOT_YET_LOADED
SHARED_ACCESS_CONFLICT
EXCLUSIVE_ACCESS_CONFLICT
INCOMPATIBLE_ATTRIBUTES
INCOMPLETE_ATTRIBUTES
INCORRECT_STATE
RECOVERY_NOT_ENABLED
OPTION_NOT_SUPPORTED
NO_SPACE_IN_POOL
MAXIMUM TABLES_REACHED
TOO_MANY_USERS
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT CLOSE function
FCCT is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for table status functions
(Open, Close etc.).

The CLOSE function terminates the connection to the specified table.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token which was returned by the open.

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE

is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

252 CICS TS for z/OS 4.1: Diagnosis Reference

FCCT DELETE function
FCCT is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for table status functions
(Open, Close etc.).

The DELETE function deletes a coupling facility data table, provided that it is not
currently open. A security check for table access is performed.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE

is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
ACCESS_NOT_ALLOWED
TABLE_NOT_FOUND
EXCLUSIVE_ACCESS_CONFLICT
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT SET function
FCCT is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for table status functions
(Open, Close etc.).

The SET function is used to change the attributes of a table. The maximum number
of records can be changed, the open mode can be changed to indicate no longer
loading, and the access mode can be changed from exclusive to shared.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

MAXIMUM_RECORDS
specifies the maximum number of records which can be stored in the table.

AVAILABLE
indicates whether new open requests are to be allowed for this table. It can
take the values:
YES|NO

LOADED
indicates whether the table is to be marked as loaded. It can take the values:
YES|NO

ACCESS_MODE
specifies the access mode which is to be set for the table. It can take the values:

Chapter 24. File control 253

EXCLUSIVE|SHARED

The access mode is normally set to shared when a data table load has
completed.

SHARED_ACCESS
specifies the shared access which is to be allowed by other users when the
access mode is shared.
NONE|READ_ONLY|READ_WRITE

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE

is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
ACCESS_NOT_ALLOWED
TABLE_NOT_FOUND
SHARED_ACCESS_CONFLICT
EXCLUSIVE_ACCESS_CONFLICT
ALREADY_SET
INCORRECT_STATE
OPTION_NOT_SUPPORTED
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT EXTRACT_STATISTICS function
FCCT is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for table status functions
(Open, Close etc.).

The EXTRACT_STATISTICS function returns information about a table which is
currently open, with optional reset.

Input parameters
TABLE_NAME

is the 16-character name of the CFDT (8 characters padded with trailing
spaces).

TABLE_TOKEN
is the token which was returned by the open.

RESET_STATISTICS
is an optional parameter which specifies whether or not statistics are to be
reset. It can take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

254 CICS TS for z/OS 4.1: Diagnosis Reference

Output parameters
CURRENT_USERS

is the number of explicit opens which are currently active against the table (not
including internal recoverable opens issued by the server).

CURRENT_RECORDS
is the number of records currently in the data table.

HIGHEST_RECORDS
is the highest number of records in the table as seen by the current server at
any time since the last statistics reset.

CONTENTION_COUNT
is the number of times a rewrite or delete failed because of a mismatched
version (for the contention model) or the number of times that a lock was
found to be unavailable (for the locking or recoverable models) since the last
statistics reset.

RESPONSE
is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
TABLE_TOKEN_INVALID

FCCU PREPARE function
FCCU is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for unit of work related
functions.

The PREPARE function prepares to commit a unit of work.

Input parameters
UOW_ID

is the CICS unit of work identification, which is prefixed by the CFDT server
with the subsystem name to form the fully qualified unit of work identifier.

TRANSACTION_NUMBER
is used for debug trace purposes.

Output parameters
RESPONSE

is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

Chapter 24. File control 255

FCCU RETAIN function
FCCU is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for unit of work related
functions.

The RETAIN function marks a unit of work as retained.

Input parameters
UOW_ID

is the CICS unit of work identification, which is prefixed by the CFDT server
with the subsystem name to form the fully qualified unit of work identifier.

TRANSACTION_NUMBER
is used for debug trace purposes.

Output parameters
RESPONSE

is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU COMMIT function
FCCU is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for unit of work related
functions.

The COMMIT function commits a unit of work.

Input parameters
UOW_ID

is the CICS unit of work identification, which is prefixed by the CFDT server
with the subsystem name to form the fully qualified unit of work identifier.

TRANSACTION_NUMBER
is used for debug trace purposes.

Output parameters
RESPONSE

is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

256 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU BACKOUT function
FCCU is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for unit of work related
functions.

The BACKOUT function backs out a unit of work.

Input parameters
UOW_ID

is the CICS unit of work identification, which is prefixed by the CFDT server
with the subsystem name to form the fully qualified unit of work identifier.

TRANSACTION_NUMBER
is used for debug trace purposes.

Output parameters
RESPONSE

is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU INQUIRE function
FCCU is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for unit of work related
functions.

The INQUIRE function inquires about the status of a unit of work.

Input parameters
UOW_ID

is the CICS unit of work identification, which is prefixed by the CFDT server
with the subsystem name to form the fully qualified unit of work identifier.

UOW_RESTARTED
is an optional parameter which indicates whether the inquire should select
only units of work which have been through restart processing, and can take
the values:

Chapter 24. File control 257

NO|YES
TRANSACTION_NUMBER

is used for debug trace purposes.
BROWSE

specifies whether the inquire is for a single unit of work or for the first or next
UOW in a browse. If omitted, a single UOW inquire is performed. If specified,
it can take the values
FIRST|NEXT

FIRST indicates a search for a UOWID greater than or equal to the specified
UOWID, and NEXT indicates a search for a UOWID greater than the specified
UOWID.

Output parameters
UOW_STATE

indicates the state of an active unit of work, and can have any of the values:
IN_FLIGHT|IN_DOUBT|IN_COMMIT|IN_BACKOUT

In_flight means that the unit of work has made some changes but has not yet
reached the stage of prepare to commit. In_doubt means that it has been
prepared but not committed or backed out. In_commit means that commit
processing has been started. In_backout means that backout processing has
been started. (When commit or backout processing completes, the unit of work
is deleted).

UOW_ID
is the CICS unit of work id of the UOW for which inquire data is being
returned.

UOW_RESTARTED
indicates whether the unit of work has been through restart processing, and
can take the values:
NO|YES

UOW_RETAINED
indicates whether the locks for the unit of work have been marked as retained,
either explicitly within the current connection or implicitly by a restart. It can
take the values:
NO|YES

RESPONSE
is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND

FCCU RESTART function
FCCU is the parameter list used by File Control to communicate with the Coupling
Facility Data Table cross-memory server, DFHCFMN, for unit of work related
functions.

The RESTART function establishes recovery status on connecting to a CFDT server.

258 CICS TS for z/OS 4.1: Diagnosis Reference

Input parameters
UOW_SUBSYSTEM_NAME

is not specified by CICS (the CICS applid is used by default).
TRANSACTION_NUMBER

is used for debug trace purposes.

Output parameters
RESPONSE

is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
SUBSYSTEM_ALREADY_ACTIVE
RESTART_ALREADY_ACTIVE
TABLE_OPEN_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCDS EXTRACT_CFDT_STATS function
This function causes statistics relating to coupling facility data table usage to be
extracted from the coupling facility data tables server.

Input parameters
FCTE_POINTER

is the address of the FCTE entry of the file for which CFDT statistics are to be
extracted.

RESET_STATISTICS
indicates whether the statistics fields are to be reset to zero or not. It takes the
values
YES|NO

TRANSACTION_NUMBER
is an optional parameter which allows the transaction number to be passed to
the CFDT server for inclusion in trace messages.

Output parameters
CURRENT_USERS

is an optional fullword parameter which returns the current number of users
of the coupling facility data table (that is, the number of opens issued against
it).

MAXIMUM_RECORDS
is an optional fullword parameter which returns the current value of the
MAXNUMRECS limit for the data table.

CURRENT_RECORDS
is an optional fullword parameter which returns the current number of records
in the coupling facility data table.

HIGHEST_RECORDS
is an optional fullword parameter which returns the highest number of records
which have ever been in this coupling facility data table since it was last
created.

Chapter 24. File control 259

CONTENTION_COUNT
is an optional fullword parameter which returns the number of contentions
which have been detected, for a coupling facility data table which uses the
contention update model.

RESPONSE
is DFHFCDS’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
CFDT_REOPEN_ERROR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_STATS_ERROR
CFDT_SYSIDERR
CFDT_TABLE_GONE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER POOL_ELEMENT_NOT_FOUND
ABEND
DISASTER_PERCOLATION

FCDS DISCONNECT_CFDT_POOLS function
This function causes CICS to disconnect from any coupling facility data table pools
to which it is connected.

Input parameters
None

Output parameters
RESPONSE

is DFHFCDS’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION CFDT_DISCONNECT_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU PREPARE function
This function causes the coupling facility data table server to be called to prepare a
unit of work which has made recoverable updates to one or more coupling facility
data tables.

260 CICS TS for z/OS 4.1: Diagnosis Reference

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data
table pool for which the prepare is to be issued. One or more of the coupling
facility data tables updated by the unit of work reside in this pool. The prepare
call will be issued to the CFDT server for this pool.

POOL_NAME
is the name of the coupling facility data table pool. The pool name is included
for diagnostic purposes.

UOW_ID
is the identifier for the unit of work which is to be prepared.

Output parameters
RESPONSE

is DFHFCDU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU RETAIN function
This function causes the coupling facility data table server to be called to convert
locks held by the unit of work against recoverable coupling facility data tables into
retained locks.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data
table pool for which the retain is to be issued. One or more of the coupling
facility data tables updated by the unit of work reside in this pool. The retain
call will be issued to the CFDT server for this pool.

POOL_NAME
is the name of the coupling facility data table pool. The pool name is included
for diagnostic purposes.

Chapter 24. File control 261

UOW_ID
is the identifier for the unit of work for which locks are to be retained.

Output parameters
RESPONSE

is DFHFCDU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
 DISASTER_PERCOLATION

FCDU COMMIT function
This function causes the coupling facility data table server to be called to commit a
unit of work which has made recoverable updates to one or more coupling facility
data tables.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data
table pool for which the commit is to be issued. One or more of the coupling
facility data tables updated by the unit of work reside in this pool. The commit
call will be issued to the CFDT server for this pool.

POOL_NAME
is the name of the coupling facility data table pool. The pool name is included
for diagnostic purposes.

UOW_ID
is the identifier for the unit of work which is to be committed.

Output parameters
RESPONSE

is DFHFCDU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

262 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU BACKOUT function
This function causes the coupling facility data table server to be called to backout a
unit of work which has made recoverable updates to one or more coupling facility
data tables.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data
table pool for which the backout is to be issued. One or more of the coupling
facility data tables updated by the unit of work reside in this pool. The
backout call will be issued to the CFDT server for this pool.

POOL_NAME
is the name of the coupling facility data table pool. The pool name is included
for diagnostic purposes.

UOW_ID
is the identifier for the unit of work which is to be backed out.

Output parameters
RESPONSE

is DFHFCDU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

Chapter 24. File control 263

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU INQUIRE function
This function causes an INQUIRE to be issued to the coupling facility data table in
order to obtain information about the status of an active unit of work. If the
BROWSE parameter is specified, then the function will return the status of the next
unit of work in the browse.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data
table pool for which the INQUIRE is to be issued. The inquire call will be
issued to the CFDT server for this pool.

POOL_NAME
is the name of the coupling facility data table pool. The pool name is included
for diagnostic purposes.

UOW_ID
identifies the unit of work for which status information is to be returned, or
gives the previous unit of work in the browse.

UOW_RESTARTED
is an optional input parameter which indicates whether or not the inquire
should select only units of work which have been through restart processing. It
can take the values
YES|NO

BROWSE
is an optional parameter which specified whether the inquire is for a single
unit of work or for the first or next UOW in a browse, and which can take the
values
FIRST|NEXT

If the BROWSE parameter is omitted, the request is a single UOW inquire. The
FIRST option indicates a search for a UOW id greater than or equal to the
specified UOW_ID, and next indicates a search for a UOW id greater than the
specified UOW_ID.

Output parameters
RETURNED_UOW_ID

Is the unit of work for which the browse is returning status information.

264 CICS TS for z/OS 4.1: Diagnosis Reference

UOW_STATE
indicates the state of the unit of work, and can have the values:
IN_FLIGHT|IN_DOUBT|IN_COMMIT|IN_BACKOUT

UOW_RESTART_STATE
indicates whether the unit of work has been through restart processing.

UOW_RETAINED
indicates whether the locks for the unit of work have been retained.

RESPONSE
is DFHFCDU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU RESTART function
This function establishes recovery status for a coupling facility data table pool
when a CICS region has successfully connected to it.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data
table pool for recovery status is to be established. The RESTART call will be
issued to the CFDT server for this pool.

POOL_NAME
is the name of the coupling facility data table pool. The pool name is included
for diagnostic purposes.

Output parameters
RETURNED_UOW_ID

Is the unit of work for which the browse is returning status information.
UOW_STATE

indicates the state of the unit of work, and can have the values:
IN_FLIGHT|IN_DOUBT|IN_COMMIT|IN_BACKOUT

UOW_RESTART_STATE
indicates whether the unit of work has been through restart processing.

UOW_RETAINED
indicates whether the locks for the unit of work have been retained.

RESPONSE
is DFHFCDU’s response to the call. It can have any of these values:

Chapter 24. File control 265

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON]

is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
SUBSYSTEM_ALREADY_ACTIVE
RESTART_ALREADY_ACTIVE
TABLE_OPEN_FAILED
NO_SPACE_IN_POOL
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDY RESYNC_CFDT_POOL function
This function causes a coupling facility data table pool to be resynchronized.

Input parameters
POOL_NAME

is the name of the coupling facility data table pool which is to be
resynchronized.

Output parameters
RESPONSE

is DFHFCDY’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION INITIATE_RECOVERY_FAILED
TERMINATE_RECOVERY_FAILED
CFDT_SERVER_CALL_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDY RESYNC_CFDT_LINK function
This function causes a link between a unit of work and a coupling facility data
table pool to be resynchronized.

266 CICS TS for z/OS 4.1: Diagnosis Reference

Input parameters
POOL_NAME

is the name of the coupling facility data table pool for which the link is to be
resynchronized.

UOW_ID
is the unit of work ID which identifies the link to be resynchronized.

Output parameters
RESPONSE

is DFHFCDY’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

EXCEPTION INITIATE_RECOVERY_FAILED
TERMINATE_RECOVERY_FAILED
CFDT_SERVER_CALL_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDY RETURN_CFDT_ENTRY_POINTS function
This function causes module DFHFCDY to return the entry point addresses of the
other modules with which it is link-edited.

Input parameters
None

Output parameters
CFDT_EP_DFHFCDW

is the entry point address of module DFHFCDW.
CFDT_EP_DFHFCDU

is the entry point address of module DFHFCDU.
RESPONSE

is DFHFCDY’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID or DISASTER. Possible values are:

 RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCFL END_UOWDSN_BROWSE function
After a browse of all the data set failures within a unit of work, the
END_UOWDSN_BROWSE function releases the storage that was used for a
snapshot of the failures.

Chapter 24. File control 267

Input parameters
BROWSE_TOKEN

is the token which was used for the browse.

Output parameters
RESPONSE

is DFHFCFL’s response to the call. It can have any of these values:
OK|INVALID|DISASTER|PURGED

[REASON]
is returned when RESPONSE is INVALID or DISASTER. Possible values are:

 RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

DISASTER DISASTER_PERCOLATION
ABEND

FCFL FIND_RETAINED function
This function looks for any FLAB associated with the specified data set which is
flagged as retained, indicating that there are retained locks associated with the data
set.

Input parameters
DSNAME

is the 44-character name of the data set for which associated retained locks are
to be found.

Output parameters
RETLOCKS

indicates whether or not there are retained locks associated with the data set,
and can have either of these values:
RETAINED|NORETAINED

RESPONSE
is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

FCFL FORCE_INDOUBTS function
This function is used by the CEMT or EXEC CICS SET DSNAME()
UOWACTION(COMMIT|BACKOUT|FORCE) command. Shunted indoubt units of
work are forced to complete in the specified direction. FORCE means that the
direction is obtained from the ACTION specified on the transaction definition.

Input parameters
DSNAME

is the 44-character name of the data set for which shunted indoubt units of
work are to be forced to complete.

DIRECTION
is the direction in which the units of work are to complete: forwards (commit),

268 CICS TS for z/OS 4.1: Diagnosis Reference

backwards (backout), or heuristic (from the action specified on the transaction
definition). It can have any of these values:
FORWARD|BACKWARD|HEURISTIC

Output parameters
RESPONSE

is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

FCFL GET_NEXT_UOWDSN function
This function returns the failure information for the next data set that has a failure
within the unit of work being browsed.

Input parameters
BROWSE_TOKEN

is the token for the browse, which was returned by a
START_UOWDSN_BROWSE call.

Output parameters
DSNAME

is the 44-character name of the data set for which failure information is
returned.

[RLSACCESS]
indicates whether the data set was last open in RLS or non-RLS access mode,
and can have either of these values:
RLS|NOTRLS

[CAUSE]
indicates the cause of the failure, and can have any of these values:
CACHE|RLSSERVER|CONNECTION|DATASET|UNDEFINED

[RETAIN_REASON]
indicates the reason for the failure, and can have any of these values:
RLSGONE|COMMITFAIL|IOERROR|DATASETFULL|INDEXRECFULL|
OPENERROR|DELEXITERROR|DEADLOCK|BACKUPNONBWO|
LOCKSTRUCFULL|FAILEDBKOUT|NOTAPPLIC|RR_COMMITFAIL|
RR_INDOUBT

RESPONSE
is DFHFCFL’s response to the call. It can have any of these values:
OK|INVALID|EXCEPTION|DISASTER

[REASON]
is returned when RESPONSE is EXCEPTION, INVALID, or DISASTER.
Possible values are:

 RESPONSE Possible REASON values

EXCEPTION END_OF_LIST

INVALID INVALID_BROWSE_TOKEN

DISASTER DISASTER_PERCOLATION
ABEND

Chapter 24. File control 269

FCFL RESET_BFAILS function
This function is used by the CEMT and EXEC CICS SET DSNAME()
ACTION(RESETLOCKS) command. It purges shunted unit of work log records
which hold backout-failure or commit-failure locks on the specified data set, and
releases the locks.

Input parameters
DSNAME

is the 44-character name of the data set for which backout and commit failures
are to be reset.

Output parameters
RESPONSE

is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND
REMOVE_FAILURE

FCFL RETRY function
This function is used by the CEMT and EXEC CICS SET DSNAME()
UOWACTION(RETRY) command. It drives retry of any failed backouts and
commits for the specified data set, by informing DFHFCRR that the failed resource
(that is, the data set) is now available.

Input parameters
DSNAME

is the 44-character name of the data set for which backout and/or commits are
to be retried.

Output parameters
RESPONSE

is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND
RESOURCE_NOT_FOUND

FCFL START_UOWDSN_BROWSE function
This function starts a browse of the data set failures within a unit of work. A
snapshot of the failed data sets for the unit of work and the reasons for the failures
are collected in an in-storage table to be browsed by the GET_NEXT_UOWDSN
function.

270 CICS TS for z/OS 4.1: Diagnosis Reference

Input parameters
UOW

is the 8-byte local unit of work identifier.

Output parameters
BROWSE_TOKEN

is a token which is used during the browse.
RESPONSE

is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or DISASTER. Possible values
are:

 RESPONSE Possible REASON values

EXCEPTION UOW_NOT_FOUND
NO_FLABS_FOUND

DISASTER DISASTER_PERCOLATION
ABEND

FCFL TEST_USER function
This function is used to test if the task has updated a record, and therefore
established itself as a file user, either for any data set or for a specified data set. It
can be used either as a domain subroutine call or as an inline macro.

Input parameters
[ENVIRONMENT]

is an optional parameter which is a fullword environment identifier. If
specified, then the function will test whether the task is a user of any files
within that environment.

[DSNAME]
is an optional parameter which specifies that a particular data set is to be
tested.

Output parameters
FLAB_PTR

is the address of a FLAB which was found by the test. If a non-zero value is
returned, then this means that the user is a task.

RESPONSE
is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

FCLJ FILE_OPEN function
This function is called when a file is opened, and causes a 'tie up record' record to
be written to the log of logs if either the file (or associated data set) is forward

Chapter 24. File control 271

recoverable or if autojournalling is specified for the file, to the forward recovery
log if the file (or associated data set) is forward recoverable, and to the autojournal
if autojournalling is specified for the file.

Input parameters
FCTE_ADDRESS

is the address of the file control table entry for the file being opened.

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR

FCLJ FILE_CLOSE Function
This function is called when a file is closed, and causes a file close log record to be
written to the log of logs if either the file (or associated data set) is forward
recoverable or if autojournalling is specified for the file, to the forward recovery
log if the file (or associated data set) is forward recoverable, and to the autojournal
if autojournalling is specified for the file.

Input parameters
FCTE_ADDRESS

is the address of the file control table entry for the file being closed.

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR

FCLJ READ_ONLY Function
This function causes a read_only log record to be written to an autojournal, if
read-only autojournalling is specified on the file definition. The log record is built
using the input parameters.

Input parameters
BASE_ESDS_RBA

is the RBA of the record being read, if the file is an ESDS.
FCTE_ADDRESS

is the address of the file control table entry for the file being read.
KEY_ADDRESS

is the address of the key of the record being read.

272 CICS TS for z/OS 4.1: Diagnosis Reference

KEY_LENGTH
is the key length of the record being read.

RECORD_ADDRESS
is the address of the record being read.

RECORD_LENGTH
is the length of the record being read.

SHUNTED
indicates whether or not the unit of work has ever been shunted (due to some
failure during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ READ_UPDATE Function
This function causes a read_update log record to be written to the system log, if
the file is recoverable, and if the destination parameter specifies either LOG or
BOTH. It causes a read_update log record to be written to the autojournal if
journaling of read updates is specified on the file definition, and if the destination
parameter specifies either JOURNAL or BOTH. The log record is built using the
input parameters.

Input parameters
BASE_ESDS_RBA

is the RBA of the record being read for update, if the file is an ESDS.
FCTE_ADDRESS

is the address of the file control table entry for the file being read for update.
KEY_ADDRESS

is the address of the key of the record being read for update.
KEY_LENGTH

is the key length of the record being read for update.
RECORD_ADDRESS

is the address of the record being read for update.
RECORD_LENGTH

is the length of the record being read for update.
DESTINATION

specifies whether the log record is to be written to the autojournal, the system
log, or both. It is used to suppress writing records that would otherwise be
requested by the file definition. It can have any of these values:
JOURNAL|LOG|BOTH

SYNCHRONIZE_LOG
indicates whether or not the system log is to be synchronized (forced) when
the log record is written. It can have either of these values:
YES|NO

Chapter 24. File control 273

SHUNTED
indicates whether or not the unit of work has ever been shunted (due to some
failure during syncpoint). It can have either of these values:
YES|NO

Output parameters
[LOG_TOKEN]

is an optional parameter which is returned if SYNCHRONIZE(NO) was
specified, and which contains a token to be used when subsequently
synchronizing (forcing) the system log.

RESPONSE
is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_UPDATE Function
This function causes a write_update log record to be written to the forward
recovery log, if the file (or associated data set) is forward recoverable, and to the
autojournal, if journaling of write updates is specified on the file definition. A
write_update log record represents the completion of a file REWRITE request. The
log record is built using the input parameters.

Input parameters
BACKOUT

indicates if the call is made as part of transaction backout processing. It can
have either of these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record being rewritten, if the file is an ESDS.

FCTE_ADDRESS
is the address of the file control table entry for the file being rewritten to.

KEY_ADDRESS
is the address of the key of the record being rewritten.

KEY_LENGTH
is the key length of the record being rewritten to.

RECORD_ADDRESS
is the address of the record being rewritten.

RECORD_LENGTH
is the length of the record being rewritten.

SHUNTED
indicates whether or not the unit of work has ever been shunted (due to some
failure during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

274 CICS TS for z/OS 4.1: Diagnosis Reference

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_ADD Function
This function causes a write_add log record to be written to the system log if the
file is recoverable, and if the destination parameter specifies BOTH. It causes a
write_add log record to be written to the autojournal if journaling of write adds
was specified on the file definition. The log record is built using the input
parameters.

Input parameters
BACKOUT

indicates if the call is made as part of transaction backout processing. It can
have either of these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record being added, if the file is an ESDS.

FCTE_ADDRESS
is the address of the file control table entry for the file being written to.

KEY_ADDRESS
is the address of the key of the record being added.

KEY_LENGTH
is the key length of the record being written to.

MASSINSERT
indicates whether or not the record is being added as part of a mass insert. It
can have either of these values:
YES|NO

DESTINATION
specifies whether the log record is to be written to the autojournal only, or to
both the autojournal and the system log. It is used to suppress writing records
that would otherwise be requested by the file definition. It can have either of
these values:
JOURNAL|BOTH

RECORD_ADDRESS
is the address of the record being added.

RECORD_LENGTH
is the length of the record being added.

SHUNTED
indicates whether or not the unit of work has ever been shunted (due to some
failure during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

Chapter 24. File control 275

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_ADD_COMPLETE Function
This function causes a write_add_complete log record to be written to the forward
recovery log if the file (or associated data set) is forward recoverable, and to the
autojournal if write_add_complete journaling is specified on the file definition. It
causes a truncated write_add_complete log record to be written to the system log if
the file is a recoverable ESDS accessed in non-RLS mode. If MASSINSERT(YES)
and MASSINSERT_STAGE(LAST) are specified, then only the system log record is
written, and not the forward recovery log or autojournal record. The log record is
built using the input parameters.

Input parameters
BACKOUT

indicates if the call is made as part of transaction backout processing. It can
have either of these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record that has been added, if the file is an ESDS.

FCTE_ADDRESS
is the address of the file control table entry for the file that has been written to.

KEY_ADDRESS
is the address of the key of the record which has been added.

KEY_LENGTH
is the key length for the file which has been written to.

MASSINSERT
indicates whether or not the record was added as part of a mass insert. It can
have either of these values:
YES|NO

[MASSINSERT_STAGE]
is an optional parameter which indicates whether the record is either the first
or last record added during a massinsert sequence. It can have either of these
values:
FIRST|LAST

RECORD_ADDRESS
is the address of the record which has been added.

RECORD_LENGTH
is the length of the record which has been added.

SHUNTED
indicates whether or not the unit of work has ever been shunted (due to some
failure during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

276 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_DELETE Function
This function causes a write_delete log record to be written to the forward
recovery log if the file (or associated data set) is forward recoverable, and to the
autojournal if journaling of write_deletes is specified on the file definition. The log
record is built using the input parameters.

Input parameters
BACKOUT

indicates if the call is made as part of transaction backout processing. It can
have either of these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record being deleted, if the file is an ESDS.

FCTE_ADDRESS
is the address of the file control table entry for the file.

KEY_ADDRESS
is the address of the key of the record being deleted.

KEY_LENGTH
is the key length for the file.

BASE_KEY_ADDRESS
is the address of the base key of the record being deleted, which is used if the
data set is being accessed via a path.

SHUNTED
indicates whether or not the unit of work has ever been shunted (due to some
failure during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ SYNCHRONIZE_READ_UPDATE Function
This function causes any log records previously written to the system log for this
file to be synchronized (forced). The log token returned on a previous call to write
a log record for this file is supplied as input.

Input parameters
FCTE_ADDRESS

is the address of the file control table entry for the file being read for update.

Chapter 24. File control 277

LOG_TOKEN
is the token returned on a previous call. The system log record written by the
previous call, plus any log records written before that, are hardened.

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
RM_RETURNED_ERROR

FCLJ TAKE_KEYPOINT Function
Provided that BWO copy is supported by this CICS (indicated by a flag in file
control static storage), then this function performs a scan of the file control table
and, unless it has been called within the last half hour, writes a tie up record for
each file open for update in non-RLS mode that is BWO-eligible and forward
recoverable to the forward recovery log.

A tie up record specifies which CICS system within the sysplex opened the file,
and the data set which the file was opened against. Tie up records are used by
forward recovery utilities, for example CICSVR.

Input parameters
None

Output parameters
KEYPOINT_TAKEN

indicates whether or not the set of tie up records was successfully written. It
can have either of these values:
YES|NO

RESPONSE
is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
TM_GETNEXT_FCTE_FAILED

FCLJ DATASET_COPY Function
This function is called when DFSMSdss initiates a copy of an RLS data set via the
VSAM RLS quiesce mechanism. The function causes a ’tie up record’ to be written
to the log of logs if either the data set is forward recoverable, or some flavor of
autojournalling has been specified in the file definition. In addition, if applicable, a
record is written to the forward recovery log.

278 CICS TS for z/OS 4.1: Diagnosis Reference

A tie up record specifies which CICS system within the sysplex opened the file,
and the data set which the file was opened against. Tie up records are used by
forward recovery utilities, for example CICSVR.

Input parameters
FCTE_ADDRESS

is the address of the file control table entry for the file associated with a data
set being copied.

Output parameters
RESPONSE

is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR

FCQR RECEIVE_QUIESCES Function
This function consists of a forever loop around a dispatcher wait on an ECB. It
receives work from the CICS RLS quiesce exit DFHFCQX whenever SMSVSAM
requires CICS to perform processing for a quiesce request. DFHFCQX queues the
request to DFHFCQR by adding an FC Quiesce Receive Element (FCQRE) to a
chain anchored in file control static storage, and posting the ECB associated with
the chain, also in FC static.

The posting of the ECB wakes the CFQR transaction, which executes the code in
DFHFCQR. The FCQREs on the chain are processed, and DFHFCQU is called with
function PROCESS_QUIESCE to perform the actual work. The ECB might also be
posted to inform DFHFCQR that CICS is terminating. When DFHFCQU has
finished processing, DFHFCQR unchains and frees the FCQRE.

Input parameters
None.

Output parameters
RESPONSE

is DFHFCQR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
PROCESS_QUIESCE_ERROR
DISASTER_PERCOLATION

FCQS SEND_QUIESCES Function
This function consists of a forever loop around a dispatcher wait on a list of ECBs.
Work is received from tasks that want to send a quiesce request to SMSVSAM.
Such tasks call DFHFCQI with function INITIATE_QUIESCE, which queues the

Chapter 24. File control 279

request to DFHFCQS by adding an FC Quiesce Send Element (FCQSE) to the chain
anchored in file control static storage, and posting an ECB associated with the
chain, also in FC static.

When the ECB is posted, it wakes the CFQS transaction, which executes the code
in DFHFCQS. The FCQSEs on the chain are processed, and DFHFCCA is called
with function QUIESCE_REQUEST to issue the appropriate flavor of IDAQUIES
macro to SMSVSAM. This is an asynchronous operation, and SMSVSAM returns
the address of an ECB that will be posted when the IDAQUIES completes. This is
saved in the FCQSE.

DFHFCQS then goes back into its dispatcher wait. It is waiting on a list of ECBs,
the ECB for the chain plus an ECB for each IDAQUIES request. It wakes and
processes the chain whenever one of these ECBs is posted. The wait also specifies a
timeout interval, so that IDAQUIES requests that hang can be detected. When
DFHFCQS wakes up, this can mean that: there is new work on the chain, or a
quiesce request has completed, or a quiesce request timed out, or CICS is
terminating. When a quiesce request has completed or timed out, DFHFCQS will
resume the initiating task if it is waiting, after issuing appropriate messages and
invoking global user exit XFCQUIS if active.

Input parameters
None.

Output parameters
RESPONSE

is DFHFCQS’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER ABEND
TIMEOUT_CANCEL_ERROR
DISASTER_PERCOLATION

FCQU PROCESS_QUIESCE Function
DFHFCQU PROCESS_QUIESCE is called whenever a quiesce request is received
from VSAM RLS. The quiesce exit DFHFCQX queues requests to the CFQR system
transaction (DFHFCQR), which calls DFHFCQU to process each one in turn. The
PROCESS_QUIESCE function is also called to implement a non-RLS variant of
QUIESCE called NON_RLS_CLOSE. This is for non-RLS files, is only used
internally by CICS, and does not run under the CFQR system transaction. Each
quiesce request type is processed in a different way by DFHFCQU.
QUIESCE

corresponds to an SMSVSAM QUICLOSE. All files open against the data set
are closed, the file state of each file is set to unenabled but with a flag that says
re-enable on QUIOPEN, and a QUICMP is issued for the QUICLOSE back to
VSAM RLS to indicate our QUICLOSE processing is complete. The immediate
option on the DFHFCQU call governs how file closes are to be performed. If
NO or omitted then closes will occur when all UOWs using the data set have
completed normally. If YES then all such UOWs will be force purged to speed
things up.

UNQUIESCE
corresponds to an SMSVSAM QUIOPEN. All files associated with the data set

280 CICS TS for z/OS 4.1: Diagnosis Reference

are checked to see if the file state requires resetting back to enabled, because it
had been set unenabled by a QUICLOSE.

NONBWO_START
corresponds to an SMSVSAM QUICOPY. CICS prepares for a non-BWO
backup of the data set by preventing new units of work from updating the
data set, allowing existing UOWs to finish updating the data set, and then
issuing a QUICMP for the QUICOPY back to SMSVSAM to indicate that
QUICOPY processing is complete. The files involved are not closed.

NONBWO_END
corresponds to an SMSVSAM QUICEND. All files associated with the data set
are checked to see if the file state requires resetting to enabled because it had
been set unenabled by an OPEN failure, and a set of ’tie up records’ are
written for the data set.

BWO
corresponds to an SMSVSAM QUIBWO. CICS prepares for a BWO backup of
the data set by writing a set of ’tie up records’ allowing existing units of work
to finish updating the data set, and then issuing a QUICMP for the QUIBWO
back to SMSVSAM to indicate that QUIBWO processing is complete. The files
involved are not closed, nor are updates prevented.

BWO_END
corresponds to an SMSVSAM QUIBEND. The only processing involved is to
stop an existing BWO quiesce if one is in progress.

LOST_LOCKS_RECOVERED
corresponds to an SMSVSAM QUILLRC. It notifies CICS that lost locks
recovery has been completed for the data set throughout the sysplex.
DFHFCRR is called with function LOST_LOCKS_RECOVERED to process the
availability of the data set.

FORWARD_RECOVERY_COMPLETE
corresponds to an SMSVSAM QUIFRC. It notifies CICS that forward recovery
has been completed for the data set. DFHFCRR is called with function
RESOURCE_AVAILABLE to process the availability of the data set.

CACHE_AVAILABLE
corresponds to an SMSVSAM QUICA. It notifies CICS that a previously failed
cache structure is now available. DFHFCRR is called with function
RESOURCE_AVAILABLE to process the availability of the cache.

NON_RLS_CLOSE
processes a non-RLS variant of type CLOSE called NON_RLS_CLOSE. All
ACBs open against the specified non-RLS data set are closed.

Some of the requests cause global user exit XFCVSDS to be invoked if active and a
DSNB exists for the data set, and XFCVSDS can suppress certain of the requests if
desired. Suppression causes the quiesce request to be cancelled throughout the
sysplex (by issuing the inverse quiesce request).

The types of quiesce that DFHFCQU can receive fall into two ’completion’
categories.
1. Those for which VSAM does not require completion notification. For these no

IDAQUIES QUICMP is issued. The successful return of the quiesce exit
DFHFCQX to VSAM is sufficient. The requests in this category are:
UNQUIESCE, NONBWO_END, BWO_END, CACHE_AVAILABLE,
LOCKS_RECOVERY_COMPLETE, FORWARD_RECOVERY_COMPLETE.

2. Those for which VSAM requires completion notification because CICS must
complete some critical processing. For these an IDAQUIES QUICMP must be
issued when CICS processing is complete. The requests in this category are:
QUIESCE, NONBWO_START, BWO_START.

Chapter 24. File control 281

Input parameters
QUIESCE_TYPE

indicates the type of quiesce being requested. It can have any of these values:
QUIESCE|UNQUIESCE|NONBWO_START|NONBWO_END|BWO_START|
BWO_END|LOCKS_RECOVERY_COMPLETE|
FORWARD_RECOVERY_COMPLETE|CACHE_AVAILABLE|
NON_RLS_CLOSE

DSNAME|CACHE_NAME
either specifies the 44-character name of the data set to which the quiesce
request applies, or (when the quiesce_type is CACHE_AVAILABLE) the
16-character name of the cache structure which has become available.

[IMMEDIATE]
applies when the quiesce_type is QUIESCE or NON_RLS_CLOSE, and
indicates whether units of work which have updated the data set will be
forced to complete immediately, or whether the request will wait for such units
of work to complete naturally. It can have either of these values:
YES|NO

[CONCURRENT]
applies when the quiesce_type is NONBWO_START or BWO_START, and
indicates whether the concurrent copy technique is being used. It is purely
informational, and has no effect on the processing. It can have either of these
values:
YES|NO

[QUIESCE_TOKEN]
is a token which is supplied by SMSVSAM when certain quiesce requests are
initiated, and must be passed back when the quiesce complete is issued.

Output parameters
RESPONSE

is DFHFCQU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

INVALID INVALID_QUIESCE_TYPE

EXCEPTION DSNB_NOT_FOUND

DISASTER ABEND
DISASTER_PERCOLATION
DFHFCRR_ERROR
DFHFCQI_ERROR
DFHFCFS_ERROR
DFHTM_FAILURE

FCRR RESTART_RLS Function
This function performs a restart of the RLS component of file control. The exact
processing depends on the type of restart being performed.

COLD and INITIAL
The RLS control ACB is registered, and RLS is cold started, both via calls to
DFHFCCA.

282 CICS TS for z/OS 4.1: Diagnosis Reference

WARM and EMERGENCY
The RLS control ACB is registered, and recovery information is inquired upon from
SMSVSAM, both via calls to DFHFCCA. If the recovery information indicates that
there are data sets in lost locks status, then the corresponding DSNBs are marked
as being lost locks, and preparation for lost locks recovery is carried out. Any
orphan locks are eliminated.

DYNAMIC
This type of restart occurs when a new instance of the SMSVSAM server becomes
available following a previous server failure.

Having waited for file control restart to complete if it was still in progress, and for
any in-progress dynamic RLS restart to complete, RLS access is drained if this has
not already been done, the control ACB is registered, and recovery information is
inquired upon from SMSVSAM, all three via calls to DFHFCCA. If the recovery
information indicates that there are data sets in lost locks status, then the
corresponding DSNBs are marked as being lost locks, and preparation for lost
locks recovery is carried out. Any orphan locks are eliminated. The CICS recovery
manager is called to unshunt any units of work that are backout-failed due to the
SMSVSAM server failure or a general file backout failure, and any units of work
that are commit-failed due to the SMSVSAM server failure.

Input parameters
TYPE_OF_RESTART

indicates the type of RLS restart being performed, and can have any of these
values:
COLD|WARM|EMERGENCY|DYNAMIC

Output parameters
RESPONSE

is DFHFCRR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

INVALID INVALID_FUNCTION
INVALID_RESTART_TYPE

EXCEPTION REGISTER_CTL_ACB_FAILED
COLD_START_RLS_FAILED
DRAIN_RLS_FAILED
LOST_LOCKS_INFO_LOST
INQUIRE_RECOVERY_FAILED
LOST_LOCKS_COMPLETE_FAILED
ORPHAN_RELEASE_FAILED

DISASTER DSSR_FAILED
TM_LOCATE_FAILED
TM_UNLOCK_FAILED
ABEND
DISASTER_PERCOLATION

FCRR RESOURCE_AVAILABLE function
This function causes the CICS recovery manager to be notified of the availability of
the specified resource. When the resource_type is DSET, an RMRE AVAIL call is

Chapter 24. File control 283

issued for the specified data set. When the resource_type is CACHE, an RMRE
avail call is issued for every data set that has outstanding work shunted due either
to a cache failure or to a general file backout failure. When the resource_type is
OTHER, an RMRE AVAIL call is issued for the specified resource.

Input parameters
RESOURCE_TYPE

is the type of resource which has become available, and can have any of these
values:
DSET|CACHE|OTHER

RESOURCE_NAME
is the 44-character field containing the name of the resource which has become
available.

RESOURCE_NAME_LENGTH
is a halfword containing the actual length of the resource name.

Output parameters
RESPONSE

is DFHFCRR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID or DISASTER. Possible values are:

 RESPONSE Possible REASON values

INVALID INVALID_FUNCTION
INVALID_RESOURCE_TYPE

DISASTER ABEND
DISASTER_PERCOLATION

FCRR LOST_LOCKS_RECOVERED function
This function is called when lost locks recovery for a data set has been completed
by all CICS regions that were sharing it, and causes the flag in the DSNB which
indicates that the data set is in lost locks state to be cleared.

Input parameters
RESOURCE_NAME

is the 44-character field containing the name of the resource (data set) for
which lost locks recovery has been completed.

Output parameters
RESPONSE

is DFHFCRR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible
values are:

 RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

EXCEPTION SPHERE_UNKNOWN

DISASTER TM_LOCATE_FAILED
TM_UNLOCK_FAILED
ABEND
DISASTER_PERCOLATION

284 CICS TS for z/OS 4.1: Diagnosis Reference

File Control's call back gates
Table 8 summarizes file control's call back gates. It shows the FC level-1 trace point
IDs of the modules providing the functions for the gate, the functions provided by
the gate, and the format for calls to the gate.

 Table 8. File control's call back gates

Gate Trace Function Format

RMRO
 FC 0BE0
FC 0BE1

 PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

RMKP
 FC 0BE0
FC 0BE1

 TAKE_KEYPOINT
RMKP

RMLK
 FC 24A0
FC 24A1

 PREPARE
COMMIT
SEND_DO_COMMIT
SHUNT
UNSHUNT

RMLK

RMDE
 FC 0BE0
FC 0BE1

 START_DELIVERY
DELIVER_RECOVERY
DELIVER_FORGET
END_DELIVERY

RMDE

LGGL
 FC 2350
FC 2351

 ERROR
LGGL

DMEN
 FC 0BD0
FC 0BD1

 NOTIFY_SMSVSAM_AVAILABLE
DMEN

You can find descriptions of these functions and their input and output
parameters, in the following topics:
v “Recovery manager domain call-back formats” on page 1599
v “Log manager domain's call-back formats” on page 1314
v “Domain Manager domain call-back formats” on page 958

The functions of the RMRO gate are processed by DFHFCRC. For
PERFORM_PREPARE and PERFORM_COMMIT, DFHFCRC performs prepare and
commit processing respectively for any file resources involved in the unit of work.
For START_BACKOUT, DELIVER_BACKOUT_DATA and END_BACKOUT,
DFHFCRC backs out changes made to file resources by the unit of work. For
PERFORM_SHUNT and PERFORM_UNSHUNT, DFHFCRC respectively shunts
and unshunts the file control structures representing recoverable parts of the unit
of work.

Chapter 24. File control 285

The functions of the RMKP gate are processed by DFHFCRC. For
TAKE_KEYPOINT, DFHFCRC performs processing required for forward recovery
of BWO-eligible non-RLS files.

The functions of the RMLK gate are processed by DFHFCDW, which performs
syncpoint and recovery functions for recoverable coupling facility data tables.

The functions of the RMDE gate are passed through by DFHFCRC to DFHFCIR.
For START_DELIVERY, DFHFCIR takes no action. For DELIVER_RECOVERY and
DELIVER_FORGET, DFHFCIR uses the log records that are delivered to it to
rebuild file control structures representing the recoverable parts of each unit of
work, and also rebuilds locks for non-RLS files. For END_DELIVERY, DFHFCIR
notifies file control that the rebuilding of recovery information at CICS restart is
now complete.

The functions of the LGGL gate are processed by DFHFCLF. For ERROR,
DFHFCLF takes actions to handle a log stream failure for a general log used by file
control.

The functions of the DMEN gate are processed by DFHFCES. For
NOTIFY_SMSVSAM_AVAILABLE, DFHFCES calls DFHFCRR with a function of
RESTART_RLS and TYPE_OF_RESTART as DYNAMIC.

Exits
The following global user exit points are provided for file control:
In DFHEIFC

XFCREQ and XFCREQC
In DFHFCFS

XFCSREQ and XFCSREQC
In DFHFCN

XFCNREC and XFCRLSCO
In DFHFCRC

XFCBFAIL, XFCBOUT, XFCBOVER and XFCLDEL
In DFHFCRO

XFCRLSCO

The following global user exit points are provided specifically for data table
services: XDTAD, XDTLC, and XDTRD.

See the CICS Customization Guide for further information.

Trace
The following point IDs are provided for file control:
v AP 04xx, for which the trace levels are FC 1, FC 2, and Exc
v AP 0Bxx, for which the trace levels are FC 1, FC 2, and Exc.
v AP 23xx, for which the trace levels are FC 1, FC 2, and Exc.
v AP 24xx, for which the trace levels are FC 1, FC 2, and Exc.

Note: Trace entries for shared data table services have point IDs at the lower end
of the AP 0Bxx range, and a corresponding trace level of FC 2. Trace entries for
coupling facility data tables are from AP 2440 upwards.

286 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 24. File control 287

288 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 25. Front end programming interface (FEPI)

The front end programming interface (FEPI) is an integral part of CICS Transaction
Server. The function is called a front end programming interface because it enables
you to write CICS application programs that access other CICS or IMS programs.
In other words, it provides a front end to those programs.

Design overview
This section describes how FEPI works at a high level. It discusses how the FEPI
functions are provided within CICS.

FEPI as a CICS transaction
The main functions of FEPI are provided through the CSZI transaction, which is
defined in group DFHFEPI. CSZI runs the FEPI Resource Manager, which is
responsible for most of the functions of FEPI.

The FEPI Resource Manager transaction is attached during a late stage of CICS
initialization. CSZI runs as a high-priority CICS system task, and cannot be
canceled by an operator; it is terminated during CICS shutdown processing.

The FEPI commands communicate with the Resource Manager through the FEPI
adapter program, which is loaded when CICS initializes, and is part of the CICS
nucleus.

The FEPI adapter receives information from FEPI commands through two EXEC
stubs, DFHESZ and DFHEIQSZ. DFHESZ handles the FEPI application
programming commands, while DFHEIQSZ handles the system programming
commands.

These two EXEC stubs call the adapter to do FEPI work. The adapter
communicates with the Resource Manager through work queues. See “Application
flows” for details of these flows.

Application flows
“FEPI as a CICS transaction” outlined the main components of FEPI. This section
shows the pathways followed by a FEPI command.

Application programming command flows
The FEPI application programming commands flow through the normal EXEC
CICS route into DFHEIP, from where they are routed to DFHESZ. DFHESZ passes
the command parameter list to the FEPI adapter. After checking and other
processing, the adapter generates another parameter list in internal format, and
places it on a queue for the FEPI Resource Manager to process.

While the adapter is waiting for the Resource Manager to process the command, it
issues a wait. The event control block (ECB) for this wait is contained in the
parameter list queued to the Resource Manager. Consequently, the application that
issued the FEPI command is in a wait state while the Resource Manager is
processing the FEPI command. For information about wait processing, see the CICS
Problem Determination Guide.

© Copyright IBM Corp. 1997, 2011 289

When the Resource Manager has retrieved the command from its queue, and
processed it, the ECB is posted, thus ending the wait.

Control returns from the adapter to DFHEIP, and the application program in the
normal fashion.

Figure 51 shows this processing. Note that the details are for illustration only.

System programming command flows
The FEPI system programming commands flow through DFHEIQSZ rather than
DFHESZ, but the overall picture is the same as for FEPI application programming
requests.

However, some system commands can flow directly to the FEPI Resource Manager,
bypassing the EXEC stub. These commands are mainly concerned with FEPI
processing to be done at “special” events, such as task termination and CICS
shutdown.

Figure 52 on page 291 shows this processing. The details are for illustration only.

Application program

EXEC CICS FEPI …

DFHEIP

FEPI
adapter

Give to
RM

Wait for
RM

Get from RM

DFHESZ

Return
through
EIP

Figure 51. FEPI application programming command flows

290 CICS TS for z/OS 4.1: Diagnosis Reference

Logic flow within the FEPI adapter
Figure 53 shows the logic flow within the FEPI adapter in more detail. In
particular, it shows the points at which the FEPI global user exits, XSZBRQ and
XSZARQ, and the FEPI journaling function, are invoked.

Journaling of data occurs after the Resource Manager has processed the request,
but before XSZARQ is called (if active). Data is not journaled if your XSZBRQ exit
program rejects the request.

The FEPI adapter and Resource Manager
The FEPI adapter runs as part of the invoking CICS task, and so runs under the
QR task control block (TCB). The FEPI Resource Manager, running as CSZI, runs
under the SZ TCB (reserved for use by the Resource Manager).

Consequently, the interface between the adapter and the Resource Manager uses
waits and queues to synchronize access. The control block used to pass information
between the adapter and the Resource Manager is called the DQE.

CEMT CICS shutdown End-of-task

FEPI INQ/SET command

Application program DFHEIP

EXEC CICS FEPI (SPI)

DFHEIQSZ

Parameter
list

FEPI adapter

Give to RM

Wait for RM

Get from RM

Return to caller

Figure 52. FEPI system programming command flows

FEPI adapter
Request

Syntax check

Lexical check

Call XSZBRQ if
present

FEPI Resource Manager
Invoke RM
and Wait

Journal if
required

Call XSZARQ if
present

Response Return to caller

Figure 53. Logic flow within the FEPI adapter

Chapter 25. Front end programming interface (FEPI) 291

Figure 54 shows this interaction. The details are for illustration only.

The FEPI Resource Manager work queues
When organizing its work, the FEPI Resource Manager uses a mechanism that is
optimized for the FEPI environment. Each DQE is chained to a queue representing
the work to be done next.

The most common mechanism used for this movement between queues is the
connection on which the original FEPI command is operating.

Summary of Resource Manager work queues
In addition to the application queue, there are other queues used only by the
Resource Manager. They are:
API/Norm

Used for FEPI application requests
API/Expd

Used for FEPI high-priority application requests
PRB Used for Resource Manager internal work
PRB/Time

Used for Resource Manager internal time-dependent work
IRB Used to control work done in VTAM exits
IRB/Time

Used to control time-dependent work done in VTAM exits
TPEND8

Used to process VTAM TPEND8 conditions
Timer Used to control timer-related work
Free Used to hold VTAM RBs that have to be freed
Discard

Used to control requests initiated by FEPI DISCARD commands.
CICS work

Used to schedule work that has to run under the CICS QR TCB.

FEPI FEPI
adapter Resource Manager
(QR TCB) (SZ TCB)

Route for
application
requests

DQE

Figure 54. Interaction of the FEPI adapter and Resource Manager

292 CICS TS for z/OS 4.1: Diagnosis Reference

Control blocks
This section lists some of the FEPI control blocks and their resident storage
subpools, where applicable. For details of the subpools, see Chapter 105, “Storage
Manager Domain (SM),” on page 1677.
DFHSZSDS (Static area)

Used to anchor all FEPI storage
DFHSZDCM (Common area)

Used to anchor all FEPI Resource Manager storage (SZSPFCCM)
DFHSZDND (Node)

Represents a node (SZSPFCND)
DFHSZDPD (Pool)

Represents a pool (SZSPFCPD)
DFHSZDTD (Target)

Represents a target (SZSPFCTD)
DFHSZDPS (Propertyset)

Represents a property set (SZSPFCPS)
DFHSZDCD (Connection)

Represents a connection (a node-target pair) (SZSPFCCD)
DFHSZDCV (Conversation)

Represents a FEPI conversation (SZSPFCCV)
DFHSZDSR (Surrogate)

Used to associate nodes, pools, and targets with other control blocks—not
to be confused with a CICS surrogate terminal (SZSPFCSR)

DFHSZDQE (Queue element)
Used to schedule Resource Manager work (SZSPFCWE).

Some of the relations between FEPI control blocks are shown in Figure 55.

CSA FEPI
static Static area state
area flag

Common area

Node Pool Target Property-set

Surrogate Surrogate Surrogate

Pool Target Node Target Node Pool

Connection

Node Target

Conversation

Figure 55. FEPI control block relationships

Chapter 25. Front end programming interface (FEPI) 293

Dump
This section documents the areas that can be listed by the FEPI dump routines. For
information about how to use these facilities for problem determination, see the
CICS Problem Determination Guide.

Here is a list all the FEPI areas that can be interpreted. If an area does not exist in
your system, it does not appear in the dump—no error message is produced.
v The static area
v The common area:

– The temporary ACB.
v Property sets
v Pools:

– Connections within the pool
– Node surrogates chained to the pool
– Target surrogates chained to the pool
– Queued allocate DQEs waiting within the pool

v Nodes:
– Connections used by the node
– Pool surrogates chained to the node
– Node's ACB
– Node's RPL
– Unsolicited BINDs queued to the node

v Targets:
– Connections used by the target
– Connections queueing on the target
– Pool surrogates chained to the target

v Connections:
– Current API request
– Connection's RPL
– Connection's RESP data
– Formatted data extension:

- Graphics plane
- Attributes
- Highlights
- Color
- Selection
- Validation

v Active conversations
v Browse conversations
v Inactive conversations
v CICS work queues
v PRB DQEs
v PRB time DQEs
v IRB DQEs
v IRB time DQEs

294 CICS TS for z/OS 4.1: Diagnosis Reference

v TPend8 DQEs
v Discard DQEs
v API normal DQEs
v API expd DQEs
v Timer DQEs
v Free RBs
v The stacks (level 2 only).

A DQE is interpreted further, as follows:
v The DRP representing the DQE
v The DQE associated storage
v Any horizontal DQE extension (chained) DQEs.

FEPI and VTAM
This section outlines how FEPI interacts with VTAM, and discusses VTAM control
blocks and exits.

You should refer to OS/390 eNetwork Communications Server: SNA Programming for
all information relating to VTAM programming.

VTAM control blocks
FEPI uses standard VTAM programming facilities for its communication. The way
in which VTAM control blocks interact with FEPI control blocks is as follows:
ACBs Each FEPI node represents a terminal connected to the partner system.

Consequently, each node has an access control block (ACB). This ACB is
opened when the node is acquired, and closed when the node is released.

NIBs Each FEPI target contains the applid of the back-end system. This is used
to build a node initialization block (NIB), when a connection is acquired
by issuing a VTAM REQSESS request. In common with CICS data
communication, the “confidential” flag is set off.

RPLs There are two types of request parameter list (RPL) used by FEPI:
v Each FEPI outbound request causes the generation of an RPL. This RPL

lasts only for the duration of the FEPI request.
v Each FEPI node has a “Receive-Any” RPL. When an inbound flow

occurs, this RPL is attached to the FEPI connection, and turned into a
“Receive-Specific” RPL. When the flow has been received, a new
“Receive-Any” RPL is generated and attached to the node.

VTAM exits
FEPI communicates with VTAM as asynchronously as possible. Therefore, VTAM
exits are extensively used for FEPI communication. The following VTAM exits
receive control at specific stages of the communication process:
DFASY

Processes the receipt of expedited-data-flow control indicators.
LOGON

Processes the receipt of a CINIT in which FEPI is acting as the primary
logical unit (PLU).

LOSTERM
Processes the loss of a session.

NSEXIT
Processes:
v The failure of a process that was responded to positively

Chapter 25. Front end programming interface (FEPI) 295

v A session outage
v The receipt of network service RUs.

SCIP Processes the receipt of session-control requests.
TPEND

Processes the termination of VTAM.

Modules
 Module Function

DFHSZATC adaptor command tables

DFHSZATR adaptor program

DFHSZBCL cleanup API requests at error routine

DFHSZBCS RM collect statistics

DFHSZBFT FREE transaction requests scheduler

DFHSZBLO lost session reporter

DFHSZBRS RM collect resource ID statistics

DFHSZBSI signon exit scheduler

DFHSZBST STSN transaction scheduler

DFHSZBUN unsolicited data transaction scheduler

DFHSZBUS RM unsolicited statistics recording

DFHSZDUF dump formatting routine

DFHSZFRD formatted 3270 RECEIVE support

DFHSZFSD formatted 3270 SEND support

DFHSZIDX SLU P queue install/discard exit

DFHSZPCP SLU P flow controller

DFHSZPDX SLU P drain completion exit

DFHSZPID SLU P send data processor

DFHSZPIX SLU P send completion exit

DFHSZPOA SLU P send response processor

DFHSZPOD SLU P receive data processor

DFHSZPOR SLU P response processor

DFHSZPOX SLU P receive specific response exit

DFHSZPOY SLU P receive specific response processor

DFHSZPQS SLU P REQSESS (request session) issuer

DFHSZPQX SLU P REQSESS exit

DFHSZPSB SLU P bind processor

DFHSZPSC SLU P session controller

DFHSZPSD SLU P SDT processor

DFHSZPSH SLU P SHUTC processor

DFHSZPSQ SLU P quiesce complete (QC) processor

DFHSZPSR RESETSR processor CSECT

DFHSZPSS SLU P STSN processor

DFHSZPSX SLU P OPNSEC completion exit

DFHSZPTE SLU P TERMSESS processor

296 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHSZRCA node control processor

DFHSZRCT issue processor

DFHSZRDC delete connection processor

DFHSZRDG discard node processor

DFHSZRDN delete node processor

DFHSZRDP dispatcher

DFHSZRDS discard property set processor

DFHSZRDT discard target procsssor

DFHSZREQ request passticket module

DFHSZRFC FREE completion processor

DFHSZRGR Dispatcher work queue processor

DFHSZRIA allocate processor

DFHSZRIC define connection processor

DFHSZRID discard processor

DFHSZRIF install free processor

DFHSZRII install processor

DFHSZRIN install node processor

DFHSZRIO ACB open processor

DFHSZRIP install pool processor

DFHSZRIQ inquire processor

DFHSZRIS install processor

DFHSZRIT install target processor

DFHSZRIW SET processor

DFHSZRNC NODE processor

DFHSZRNO NOOP processor

DFHSZRPM timer services

DFHSZRPW request preparation

DFHSZRQR queue for REQSESS processing

DFHSZRQW request queue processor

DFHSZRRD RECEIVE request processor

DFHSZRRT request release processor

DFHSZRSC connection processor

DFHSZRSE SEND request processor

DFHSZRST START request processor

DFHSZRTM recovery services

DFHSZRXD EXTRACT processor

DFHSZRZZ TERMINATE processor

DFHSZSIP initialization processor

DFHSZVBN copy NIB mask to real NIB

DFHSZVGF get queue element FIFO

DFHSZVQS REQSESS dispatcher

Chapter 25. Front end programming interface (FEPI) 297

Module Function

DFHSZVRA VTAM receive_any processor

DFHSZVRI VTAM receive_any issuer

DFHSZVSC delayed bind processor

DFHSZVSL SETLOGON request issuer

DFHSZVSQ VTAM feedback interpreter

DFHSZVSR VTAM feedback interpreter

DFHSZVSY VTAM feedback interpreter

DFHSZWSL RPL exit after SETLOGON

DFHSZXDA VTAM DFASY exit

DFHSZXFR RPL exit to free request block

DFHSZXLG VTAM logon exit

DFHSZXLT VTAM LOSTERM (lost terminal) exit

DFHSZXNS VTAM NSEXIT (network services) exit

DFHSZXPM STIMER IRB exit routine

DFHSZXRA VTAM RECEIVE_ANY exit

DFHSZXSC VTAM SCIP (session control) exit

DFHSZXTP VTAM TPEND exit

DFHSZYLG RPL exit following logon reject

DFHSZYQR post for REQSESS processing

DFHSZYRI VTAM RECEIVE_ANY issuer

DFHSZYSC VTAM SCIP exit extension

DFHSZYSR VTAM feedback interpreter

DFHSZYSY VTAM feedback interpreter

DFHSZZAG get RECEIVE_ANY request block

DFHSZZFR free RECEIVE_ANY request block

DFHSZZNG get session control request block

DFHSZZRG get RPL request block

DFHSZ2CP SLU2 flow controller

DFHSZ2DX SLU2 drain completion exit

DFHSZ2ID SLU2 send data processor

DFHSZ2IX SLU2 send completion exit

DFHSZ2OA SLU2 send response processor

DFHSZ2OD SLU2 receive data processor

DFHSZ2OR SLU2 response processor

DFHSZ2OX SLU2 receive specific completion exit

DFHSZ2OY SLU2 receive specific action module

DFHSZ2QS SLU2 REQSESS issuer

DFHSZ2QX SLU2 REQSESS exit

DFHSZ2SB SLU2 bind processor

DFHSZ2SC SLU2 session controller

DFHSZ2SD SLU2 SDT processor

298 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHSZ2SH SLU2 SHUTC processor

DFHSZ2SQ SLU2 QC processor

DFHSZ2SR SLU2 RESETSR processor

DFHSZ2SX SLU2 OPNSEC processor

DFHSZ2TE SLU2 TERMSESS processor

Chapter 25. Front end programming interface (FEPI) 299

300 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 26. Function shipping

Function shipping allows a transaction from one CICS system to access a resource
owned by another CICS system.

The CICS function shipping facility enables separate CICS systems to be connected
so that a transaction in one system is able to retrieve data from, send data to, or
initiate a transaction in, another CICS system. The facility is available to
application programs that use the command-level interface of CICS.

Design overview
Figure 56 gives an overview of the function shipping component of CICS.

This section provides an overview of the operation of CICS when it is being used
to communicate with other connected CICS systems for CICS function shipping.

Note: The CICS Intercommunication Guide gives a full description of the reasons for
CICS function shipping and how the user can take advantage of the facility.

Application programming functions with CICS function
shipping

The functions provided by CICS are extended for CICS function shipping so that
an application program can issue the following types of command and have them
executed on another system:
v Temporary-storage commands
v Transient data commands
v Interval control commands
v File control commands
v DL/I calls

Function
shipping

Intersystem ISC ALLOCATE Transformation Mirror
communication POINT, FREE program transaction
program (DFHZISP) (DFHXFP (DFHMIRS)
(DFHISP) or DFHXFX)

Intersystem ALLOCATE Transformation Local/remote
communication (DFHZISP) 1 decision
converse (DFHXFP DFHFCEI
(DFHISP) or DFHXFX)

POINT Transformation
(DFHZISP) 2

(DFHXFP
or DFHXFX)

FREE Transformation
(DFHZISP) 3

(DFHXFP
or DFHXFX)

Transformation
4
(DFHXFP
or DFHXFX)

Figure 56. CICS function shipping

© Copyright IBM Corp. 1997, 2011 301

v Program link commands (DPL).

Application programs can use these extended functions without having to know
where the resources are located; information about where resources are located is
contained in the appropriate tables prepared by the system programmer.
Alternatively, provision is made for an application program to name a remote
system explicitly for a particular request.

Support for syncpoints, whether explicit (through EXEC CICS SYNCPOINT
commands) or implicit (through DL/I TERM calls), allows updates to be made in
several systems as part of a single logical unit of work.

Error handling routines may need to be extended to handle additional error codes
that may be returned from a remote system. See the CICS Intercommunication Guide
for the relevant conditions.

Local and remote names
For a transaction to access a resource (such as a file or transient data destination)
in a remote system, it is usually necessary for the local resource table to contain an
entry for the remote resource. The name of this entry (that is, the name by which
the resource is known in the local system) must be unique within the local system.
The entry also contains the identity (SYSIDNT) of the remote system and,
optionally, a name by which the resource is known in the remote system. (If this
latter value is omitted, it is assumed that the name of the resource in the remote
system is the same as the name by which it is known in the local system.)

Mirror transactions
When a transaction issues a command for a function to run on a remote system,
the local CICS system encodes the request and sends it to the system identified in
the appropriate CICS table, or on the command itself. The receipt of this request at
the remote system results in the attachment of one of the CICS-supplied mirror
transactions, namely, CSMI, CSM1, CSM2, CSM3, and CSM5, or transactions CVMI
and CPMI. All these transactions use the mirror program, DFHMIRS.

For distributed program link (DPL) requests shipped from a CICS application
region to a CICS resource region, the name of the mirror transaction to be attached
may be specified by the user. If you specify your own mirror transaction, you must
define the transaction in the resource region and associate it with the
CICS-supplied mirror program, DFHMIRS.

The CVMI and CPMI transactions service requests sent as part of an LU6.2
synclevel 1 conversation, unlike the other transactions that service requests sent as
part of an LU6.2 synclevel 2 conversation or an MRO or LU6.1 conversation.

A mirror transaction runs the initiating transaction’s request and reflects back to
the local system the response code and any control fields and data that are
associated with the request. If the execution of the request causes the mirror
transaction to abend, this information is also reflected back to the initiating
transaction.

If a resource has browse place holders or is recoverable, or the lock has been
acquired, the mirror transaction becomes a long-running mirror and does not end
until the issuing transaction ends the logical unit of work (that is, a SYCNPOINT
or RETURN). Any resources the mirror has acquired are freed when the initiating
transaction issues the appropriate command to free those resources.

302 CICS TS for z/OS 4.1: Diagnosis Reference

Initialization of CICS for CICS function shipping
If CICS has been generated with the appropriate options for intercommunication,
the initialization of CICS with the ISC=YES system initialization parameter
specified causes the following modules to be loaded:
v DFHISP (intersystem communication program)
v DFHXFP (data transformation program)
v DFHXFX (optimized data transformation program).

The entry point addresses of these modules are contained in the optional features
list, which is addressed by CSAOPFLA in the CSA.

The mirror program, DFHMIRS, is not loaded until a request is received from a
remote system. (This program can only be loaded if there is an associated PPT
entry and PCT entries for mirror transactions CSMI, CSM1, CSM2, CSM3, and
CSM5 or for transactions CVMI and CPMI; sample entries are created by the CSD
group DFHISC.)

Note: The ISC=YES system initialization parameter causes other modules besides
those specified earlier to be loaded; the ones mentioned here are those specifically
required for CICS function shipping.

Communication with a remote system
For multiregion operation, communication between CICS systems can be
implemented:
v Through support in CICS terminal control management modules and by use of a

CICS-supplied interregion program (DFHIRP) loaded in the link pack area (LPA)
of MVS. DFHIRP is invoked by a type 3 supervisory call (SVC). The SVC moves
the data to an intermediate area in key 0 MVS CSA storage, and schedules an
SRB to move the data from the intermediate area to the target.

v By the cross-system coupling facility (XCF) of MVS. XCF is required for MRO
links between CICS regions in different MVS images of an MVS sysplex. It is
selected dynamically by CICS for such links, if available.

For ISC, communication between CICS systems takes place via ACF/VTAM links.
CICS and the CICS application programmer are independent of, and unaware of,
the type of physical connection used by ACF/VTAM to connect the two systems.

Protocols
Requests and replies exchanged between systems for CICS interval control, CICS
transient data, CICS temporary storage, and DL/I functions are shipped using the
standard protocol as defined for SNA logical unit type 6.1.

Requests and replies for CICS file control functions are shipped using a private
protocol (with function management headers of type 43).

Symmetrical bracket protocol
Logical unit type 6.1 (LU6.1) sessions between two CICS systems require most
protocols to be symmetrical; therefore, CICS receives (as well as sends) end
bracket.

Shutdown protocol
The LU6.1 shutdown protocol does not use the SHUTDOWN command; it uses the
data flow control commands SBI (stop bracket initiation) and BIS (bracket initial

Chapter 26. Function shipping 303

|
|

|
|
|
|
|

|
|
|

stopped). Shutdown is executed as part of session termination (by DFHZCLS) and
ensures that, when a session is terminated normally (as a result of a master
terminal release command or a normal CICS shutdown), there are no unfinished
syncpoint requests on the session. This means that when the session is initiated, no
resynchronization sequence is required.

Sender error recovery protocol (ERP)
CICS support for LU6.1 uses a symmetrical SNA protocol called Sender ERP. In
addition, when CICS wants to send a negative response to a remote system, it
sends a special negative response (0846), which indicates that an ERP message is to
follow. This ERP message contains the real system and user sense values, together
with a text message. The negative response and ERP message are built by
DFHZEMW, and are received and processed by DFHZRAC, DFHZRVX, and
DFHZNAC.

Resynchronization protocol
CICS support for LU6.1 sessions that use the syncpoint protocol has associated
resynchronization logic, which is used during the initiation of a session after a
previous session has terminated abnormally. This logic is used to generate
messages concerning the outcome of any logical units of work that were in doubt
when the previous session failed. The modules involved are DFHZRSY, DFHZSCX,
and DFHZNAC.

CICS function shipping environment
This section describes the system entries for function shipping in the terminal
control table, and how function shipping requests or replies are transformed
between the format suitable for transmission and the internal parameter list
format.

System entries in the terminal control table
All remote systems with which a given system is able to communicate are
identified and described in terminal control table system entries (TCTSEs). The
name of the system entry is the name specified in the SYSIDNT field of the CICS
table entry describing a remote resource.

CICS uses the TCTSE as an anchor point to queue requests made by CICS
transactions for connection to the remote system.

Figure 57 on page 305 shows three TCTTEs. If a transaction fails and you get a
transaction dump, this figure shows you how to find the relevant TCTTEs from the
TCA.

304 CICS TS for z/OS 4.1: Diagnosis Reference

Transformation of requests and replies for transmission between
systems
Before a request or reply can be transmitted, it must be transformed from its
internal, parameter list (EXEC interface) format to a format suitable for
transmission; when received after transmission, the request must be transformed
back into a parameter list format.

There are four such transformations (numbered 1 through 4), which are performed
by DFHXFP, or by DFHXFX if optimized data transformations are possible. The
latter only applies to data transformations for function shipping in an MRO
environment, excluding those relating to DL/I requests.

Transformation 1
For a request to be sent by the originating system; transforms from parameter
list format to transmission format.

Transformation 2
For a request received by the mirror transaction; transforms from transmission
format to parameter list format.

Transformation 3
For a reply to be sent by the mirror transaction; transforms from parameter list
format to transmission format.

Transformation 4
For a reply received by the originating system; transforms from transmission
format to parameter list format.

TCA

TCAFCAAA TCTTE for session
Address of TCTTE for with system B
task's primary terminal

TCTTECA
TCATCUCN Address of TCA
Address of first
TCTTE in chain

TCTTEUCN
Address of next
TCTTE on chain

TCTTE for task's primary
terminal (such as 3270)

TCTTECA
Address of TCA

TCTTEUCN
Address of next
TCTTE on chain

TCTTE for session
with system C

TCTTECA
Address of TCA

TCTTEUCN
F'0' (end of chain)

Figure 57. Task’s view of CICS function shipping TCTTEs

Chapter 26. Function shipping 305

The parameter list format above refers to the parameter list that is normally passed
to DFHEIP (for CICS requests) or to DFHDLI (for DL/I requests).

The transmission formats of these requests and replies (excluding those for
syncpoint protocol) are described in the DFHFMHDS DSECT.

Information that DFHXFP and DFHXFX need to retain between transformations 1
and 4 (in the originating system) or between transformations 2 and 3 (in the mirror
system) is stored in a transformer storage area called XFRDS; See for a detailed
description of this control block.

CICS function shipping—handling of EXEC CICS commands
This topic describes the sending and receiving of requests and replies (other than
DL/I or syncpoint requests) between two connected systems at the
application-layer level; see Figure 58 on page 307. (The function management and
data flow control layers, implemented by CICS terminal control, work in the same
way, regardless of the type of request being transmitted.)

306 CICS TS for z/OS 4.1: Diagnosis Reference

Sending a request to a remote system
A CICS command is handled for an application program by the EXEC interface
program, DFHEIP. DFHEIP analyzes the arguments of each statement to determine
the requested function and to assign values into the appropriate CICS control
blocks; DFHEIP also performs storage control and error checking on behalf of the
application programmer.

If the system has been initialized with the ISC=YES system initialization parameter,
and if the request is for one of the functions that could be executed on a remote
system (see “Application programming functions with CICS function shipping” on
page 301), DFHEIP invokes a local/remote decision routine, which inspects the
appropriate CICS table to determine whether the request is for a local or a remote
resource (unless a remote system has specifically been requested). For all requests
except file control, this local/remote decision is taken in DFHEIP. For file control

SYSTEM A

DFHEIP DFHEIFC

DFHEIFC

DFHFCFR

Local

Command from
application program

Response to
application program

DFHEIFC or DFHXFX
(transformation 4)

DFHEIFC or DFHXFX
(transformation 4)

DFHEISP

Request to system B
(via terminal control)

DFHISP
waits for
response

Response from system B
(via terminal control)

DFHEISP

DFHEIP

DFHXFP or DFHXFX
(transformation 2)

DFHXFP or DFHXFX
(transformation 3)

DFHEIP

DFHEIP

Mirror
task

Request from system A
(via terminal control)

Mirror
task

waits for
DFHEIP

DFHEIP
handles

the
command

command
from mirror
task

respond to
mirror task

Local TO DFHISP
(remote)

TO DFHISP
(remote)

Response to system A
(via terminal control)

DFHEIFC DFHFCFR

Mirror
task

SYSTEM B

Figure 58. Overview of CICS function shipping

Chapter 26. Function shipping 307

requests, the decision is taken in the file control function shipping interface
module, DFHFCRF (see Chapter 24, “File control,” on page 181).

If the resource is local:
v DFHEIP invokes the appropriate EXEC interface processor module to process the

request locally.
v DFHEIFC calls the file control file request handler, DFHFCFR, to process the

request locally, and finally returns control to DFHEIP.

Note: A SYSID value that names the local system also causes the request to be
processed locally.

If the resource is remote, DFHEIP or DFHFCRF:
1. Allocates a transformer storage area (XFRDS) chained off the EXEC interface

storage EIS. XFRDS provides a central area in which all information about
processing of the request can be accessed.

2. Places the following data in XFRDS:
v Name of remote system, for subsequent use by DFHISP (in XFRDS field

XFRSYSNM)
v Address of the application’s list of parameters (EXEC parameter list)

associated with the command being executed (in XFRDS field XFRPLIST)
v Address of the table (FCT, if DFHFCRF; DCT, and so on, otherwise) for the

requested resource (in XFRDS field XFRATABN).
3. Issues a DFHIS TYPE=CONVERSE macro, which passes control to the CICS

function shipping program DFHISP.

DFHISP obtains the address of the TCTSE for the remote system and places it in
XFRDS field XFRATCSE. DFHISP obtains the address of the TCTTE that controls
the session with the remote system and places it in XFRDS field XFRATCTE.
(DFHISP obtains the address by issuing a DFHTC TYPE=POINT macro. If no
session is established, there is no TCTTE; in this case DFHISP issues a DFHTC
TYPE=ALLOCATE macro to establish the session TCTTE.)

If no session can be allocated because, for example, all sessions are out of service,
DFHISP determines whether or not the function request can be queued for
shipping at a later time. If it the request can be queued, then XFRATCTE is set to
zero.

Optionally (if a TIOA already exists from an earlier CICS function shipping request
from the same application), DFHISP also places the address of the TIOA in XFRDS
field XFRATIOA.

DFHISP then invokes DFHXFP, or DFHXFX for optimized transformations, to
transform the requested command and parameter list into a form suitable for
transmission. This is known as transformation 1, which:
1. Transforms the original command into an appropriate type of request for

transmission.
2. Converts the EXEC parameter list into a data unit having a standardized

character-string format (together with a function control header) suitable for
transmission. The data unit is built in the TIOA and contains a copy of each of
the parameters that are addressed by the EXEC parameter list. (For economy of
transmission, certain types of data are compressed before being placed in the
TIOA.)

308 CICS TS for z/OS 4.1: Diagnosis Reference

3. Returns control to DFHISP.

Note: If local queuing is in effect, the data unit is built in user storage.

DFHISP then invokes terminal control to transmit the contents of the TIOA to the
remote system and waits for the reply from the remote system, if necessary.

If local queuing is in effect, DFHISP issues a DFHIC TYPE=PUT macro specifying
transaction CMPX, which sends the data unit at a later time.

Receiving a request at a remote system
Terminal control receives the request transmission and attaches one of the mirror
transactions.

The mirror program allocates space for XFRDS in its LIFO storage area. As in the
requesting system, XFRDS is a central area in which all information about the
processing of the received request can be accessed. The mirror program places the
following data in XFRDS:
v Address of the session TCTTE (in XFRDS field XFRATCTE)
v Address of the TIOA (in XFRDS field XFRATIOA).

The mirror program also allocates scratch pad storage in the LIFO storage area for
use by DFHXFP (or DFHXFX) in building argument lists. The address of this
storage is placed in XFRPLIST.

The mirror program then invokes DFHXFP, or DFHXFX for optimized
transformations, to transform the received request into a form suitable for
execution by DFHEIP. This is known as transformation 2, which:
1. Transforms the received request (as coded in the function management header

of the data unit) into an appropriate CICS command.
2. Decodes the TIOA and builds (in the first part of the STORAGE area) an EXEC

parameter list that basically consists of addresses that point to fields in the
TIOA. (Those fields that were compressed for transmission are expanded and
placed in the second part of the STORAGE area; for these fields, the EXEC
parameter list points to the expanded versions, not the compressed versions in
the TIOA.)

Note: The NOHANDLE option is specified on each EXEC CICS command that
is created; this has the effect of suppressing DFHEIP’s branching to an error
routine.

3. Returns control to the mirror program.

The mirror program then invokes DFHEIP (in the same way as for an application
program), passing to it (in register 1) the address of the EXEC parameter list just
built.

DFHEIP or DFHFCRF determines whether the request is for a remote resource on
yet another system or for a local resource. If the resource is remote, DFHEIP or
DFHFCRF allocates a new and separate transfer storage area XFRDS and invokes
DFHISP (as described under “Sending a request to a remote system” on page 307).

If the resource is local, the reply is processed for the mirror program in the usual
way.

Chapter 26. Function shipping 309

Sending a reply at a remote system
The process of sending a reply in response to a request from another system is
similar to that for sending a request; see “Sending a request to a remote system”
on page 307.

When DFHEIP has successfully completed execution of the command, control is
returned to the mirror program with the results of the execution in the EXEC
interface block (EIB). The mirror program then invokes DFHXFP, or DFHXFX for
optimized transformations, to transform the command response into a suitable
form for the transmission of the reply. This is known as transformation 3, which:
1. Checks whether the existing TIOA is long enough to take the reply; if not,

DFHXFP (or DFHXFX) frees the existing TIOA and creates a new one.
2. Converts the EXEC parameter list (kept in the scratch pad area STORAGE) into

a data unit having the standardized character-string format suitable for
transmission. The data unit is built in the TIOA. If the request is received by
the mirror program without CD (that is, the requesting system did not expect a
reply), the mirror program issues a DFHTC TYPE=READ or TYPE=FREE
macro. If an error is detected, the mirror program is forced to abend, so that at
least a record of the request failure is written.

3. Returns control to the mirror program.

The mirror program then invokes terminal control to transmit the TIOA. (The
mirror program does this by issuing a DFHTC TYPE=(WRITE,WAIT,READ) macro
if the mirror program holds any state information that must be held for a further
request or until a syncpoint. Otherwise, a DFHTC TYPE=(WRITE,LAST) macro is
issued.

Receiving a reply from a remote system
Terminal control receives the reply and returns control to the initiating task; in
particular, control is passed to DFHISP, which has been waiting for the reply.

DFHISP invokes DFHXFP, or DFHXFX for optimized transformations, (passing to it
the address of the XFRDS area) in order to transform the reply into the form
expected by the application program. This is known as transformation 4, which:
1. Obtains the addresses of the TIOA and of the original EXEC parameter list

from XFRATIOA and XFRPLIST in the XFRDS area.
2. Uses data in the reply to complete the execution of the original command. For

example:
v Sets return codes in the EIB from status bits in the reply
v Stores other received data (if any) in locations specified in the original EXEC

parameter list.
3. Frees the TIOA.
4. Returns control to DFHISP.

DFHISP returns control to DFHEIP (if appropriate through DFHEIFC), which raises
any error conditions associated with return codes set in the EIB. DFHEIP then
returns control to the application program.

CICS function shipping—handling of DL/I requests
DL/I requests are handled in a similar manner to that for CICS commands; see
Figure 59 on page 311.

310 CICS TS for z/OS 4.1: Diagnosis Reference

Sending a DL/I request to a remote system
All DL/I requests are handled by DFHDLI.

DFHDLI determines whether the request is for a remote, or DBCTL database, and
routes the request to the appropriate DL/I call processor. If the request is for a
remote database, DFHDLI invokes DFHDLIRP, which passes control to DFHISP by
issuing a DFHIS TYPE=CONVERSE macro.

SYSTEM A
DL/I request from
application
program

DFHDLI

calls
DFHDLIRP

if request
is for

a remote
database

DFHISP DFHXFP
(transforma-
tion 1)

Request to system B
(via terminal control)

DFHDLIRP
waits for
DFHISP

DFHISP
waits for
reply

Response from system B
(via terminal control)

DFHXFP
DFHISP (transforma-

tion 4)DFHDLIRP
returns to
application
via DFHDLIResponse from

remote database

SYSTEM B
Request from system A
(via terminal control)

DFHXFP Mirror task
(transformation 2)

Mirror task
waits for
DFHDLI

DFHDLI

DFHXFP Mirror task
(transformation 3)

Response to system A
(via terminal control)

Figure 59. Overview of CICS function shipping of DL/I requests

Chapter 26. Function shipping 311

DFHISP then:
1. Invokes DFHXFP to transform the request into a form suitable for transmission
2. Invokes terminal control to transmit the request.

Receiving a DL/I request at a remote system
As for a CICS request, the appropriate mirror transaction (in this case, CSM5) is
attached.

The mirror program invokes DFHXFP to transform the received request into a
form suitable for execution by DFHDLI.

The mirror program then passes the request to DFHDLI in the same way as any
other application program would. DFHDLI determines what type of DL/I request
is being made and then routes the request to the appropriate DL/I call processor:
DFHDLIRP (remote, that is, daisy-chained to yet another system), or DFHDLIDP
(DBCTL).

Sending a DL/I reply at a remote system
When DFHDLI has successfully completed the request, control is returned to the
mirror program with the results in the user interface block (UIB). The mirror
program then:
1. Invokes DFHXFP to transform the results into a form suitable for transmission
2. Invokes terminal control to transmit the reply.

Receiving a DL/I reply from a remote system
On receipt of the reply, terminal control returns control to DFHISP, which has been
waiting for the reply; DFHISP then invokes DFHXFP to transform the reply into a
form that can be used by DFHDLI. DFHXFP sets the return codes in an
intermediate control block, DFHDRX, so that they can ultimately be copied to the
UIB or the TCA for the application program. Control is then returned from
DFHISP through DFHDLIRP to DFHDLI, and finally back to the application
program.

Terminal control support for CICS function shipping
Terminal control support for CICS function shipping falls into the following three
main areas:
1. TCTTE allocation functions, ALLOCATE, POINT, and FREE. These functions

are used mainly by DFHISP to allow a CICS transaction to own additional
TCTTEs. These are session TCTTEs to remote systems; these functions are
supported by DFHZISP.

2. Syncpoint functions, SPR, COMMIT, ABORT, and PREPARE. These functions
are used by the recovery manager connectors to implement the syncpoint
protocol; these functions are supported by DFHZIS1.

3. LU6.1 functions. These functions are used by users of terminal control to
support the data flow control protocols used in a LU6.1 session.

The functions described in areas 1 and 2 above are extensions to the DFHTC macro
that are intended for internal use by CICS control programs only; they are not
documented in the user manuals.

TCTTE allocation functions
Terminal control provides the following TCTTE-related functions:

ALLOCATE function
This allocates to the requesting transaction a session TCTTE for communication

312 CICS TS for z/OS 4.1: Diagnosis Reference

with a remote system. The name of the remote system is passed as a
parameter. The address of the allocated TCTTE or a return code is returned to
the requester. DFHZISP uses the DFHZCP automatic transaction initiation
(ATI) mechanism to allocate the session.

 If the allocation request cannot be satisfied immediately, an automatic initiate
descriptor (AID) is created, and is chained off the system entry; the AID is
used to remember, and subsequently to process, the outstanding allocation
request.

Parallel sessions can be allocated explicitly, or implicitly by reference to a
remote resource; sessions are automatically initiated at allocation time, if
necessary. They can also be initiated by a master terminal ACQUIRE
command, or automatically during CICS initialization if CONNECT=AUTO is
specified in the TCTTE.

POINT function
This causes terminal control to supply the requesting task with the address of
a session TCTTE for a named remote system. The TCTTE must have been
previously allocated to the requesting task.

FREE function
This detaches a TCTTE from the owning task and makes it available for
allocation to another transaction. (The FREE function is the opposite of the
ALLOCATE function.)

TERM=YES operand
This operand enables the issuer of a terminal control macro to select explicitly
the TCTTE to which the requested function is to be applied. The address of the
TCTTE to be processed is passed as a parameter of the request; the TCTTE
must have been previously allocated to the requesting task.

FREE TCTTE indicator
This indicator is set as a result of the remote system issuing a (WRITE,LAST)
or FREE request to show that the current conversation has finished and that
the session should be freed by the current owner of the TCTTE. The receiver of
the FREE indicator (usually DFHISP) must issue a FREE request.

Syncpoint functions
For ISC, terminal control provides the following syncpoint functions (the
equivalent functions for IRC are provided by DFHZIS1):

SPR (syncpoint request) function
This request is issued by the recovery manager connector during syncpoint
processing, and causes terminal control (DFHZSDR) to send a request that has
a definite DR2 response requested. This tells the other side of the session that a
syncpoint is required.

COMMIT function
This request is issued by the recovery manager connector when syncpoint has
been completed. It causes a positive DR2 response to be sent, signaling the
successful completion of syncpoint protocol.

ABORT function
This request causes either a negative DR2 response or an LUSTATUS command
to be sent, indicating that a requested syncpoint operation could not be
completed successfully, or that there has been an abnormal end of the current
logical unit of work.

Chapter 26. Function shipping 313

PREPARE function
This request causes an LUSTATUS command to be sent to the mirror in the
remote system and indicates that a syncpoint should be taken.

VTAM secondary half-session support
CICS acts as both the primary and the secondary halves of an LUTYPE6 session.
To implement secondary half-session support, CICS VTAM terminal control has to
do two things:
1. Implement the secondary half of the data flow control and session control

protocols that CICS already uses as a primary.
2. Use the secondary API provided by VTAM.

The terminal control functions provided by CICS are independent of
primary/secondary considerations. Differences between the primary and secondary
VTAM interfaces are contained within the CICS modules that issue the appropriate
VTAM request. The secondary support functions appear principally in the
DFHZCP modules shown in Table 9.

 Table 9. VTAM secondary support functions
Modules Function Secondary function

DFHZSIM Request LOGON Use REQSESS macro
DFHZOPN OPNDST Use OPNSEC macro
DFHZSCX SCIP exit Receive and process BIND, STSN, SDT,

CLEAR, and UNBIND commands
DFHZCLS CLSDST Use TERMSESS macro
DFHZRSY Resynchronization Build STSN responses
DFHZSKR Respond to Send responses to BIND, SDT, and STSN

commands
DFHZRAC,
DFHZRVX

Receive Receive and process BID commands

DFHZATI, DFHZRVX,
DFHZRAC

Bracket protocol Implement secondary contention resolution
using bracket protocol

DFHZNSP Network services
error exit

Handle secondary LOSTERM type of errors

NOCHECK option function handling
The transmission of a START NOCHECK command and associated data is handled
in a slightly different manner from that for other CICS function shipping
commands. Compared with the process described in Chapter 26, “Function
shipping,” on page 301, the major differences are:
v After DFHISP has allocated the session TCTTE to the requesting task, the

transformation program DFHXFP (or DFHXFX) performs transformation 1. In
addition, the transformation program detects that a START NOCHECK
command is being processed and passes this fact to DFHISP in its return code.
Accordingly, DFHISP issues a DFHTC TYPE=WRITE macro, which is deferred
until syncpoint, return, or another function-shipped request on that ISC session.

v DFHISP returns to its caller.
v On the receiving system, DFHEIP handles the START NOCHECK command in

the usual way and then terminates when the command has been executed; no
response is sent back to the first system.

Exits
DFHISP has two global user exit points, XISCONA and XISLCLQ.

314 CICS TS for z/OS 4.1: Diagnosis Reference

For further information about using these exit points, see the CICS Customization
Guide.

Trace
The following point ID is provided for the intersystem program:
v AP 00DF, for which the trace level is IS 1.

The following point IDs are provided for function shipping data transformation:
v AP D9xx, for which the trace level is IS 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 26. Function shipping 315

316 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 27. Good morning message program

The CICS good morning program issues a good morning message for VTAM
logical units.

Design overview
This module is invoked by running the CSGM system transaction.

If a satisfactory OPNDST has occurred (detected in the OPNDST exit, DFHZOPX)
and if a “good morning” message has been requested on the TCT
TYPE=TERMINAL entry, an NACP request is queued. NACP issues a DFHIC
TYPE=INITIATE for this transaction.

This module determines the terminal type, sets up the appropriate control
characters, gets a TIOA, and writes the message.

For a 3270 terminal, if the operator has entered data before the message has been
received, NACP may be invoked to handle intervention required. In this case the
transaction is abended and the write operation terminated.

A default message text is generated by DFHTCTPX and can be overridden by an
option on the TCT TYPE=INITIAL statement. The text is stored in the TCT prefix.

Modules
DFHGMM

Exits
The XGMTEXT global user exit point is provided in DFHGMM. For further
information about this, see the CICS Customization Guide.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 317

318 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 28. Interregion communication (IRC)

CICS multiregion operation (MRO) enables CICS regions that are running in the
same MVS image, or in the same MVS sysplex, to communicate with each other.
MRO does not support communication between a CICS system and a non-CICS
system such as IMS. 1

ACF/VTAM and SNA networking facilities are not required for MRO. The support
within CICS that enables region-to-region communication is called interregion
communication (IRC). IRC can be implemented in three ways:
v Through support in CICS terminal control management modules and by use of a

CICS-supplied interregion program, DFHIRP, loaded in the MVS link pack area.
DFHIRP is invoked by a type 3 supervisory call (SVC).

v By MVS cross-memory services, which you can select as an alternative to the
CICS type 3 SVC mechanism. Here, DFHIRP is used only to open and close the
interregion links.

v By the cross-system coupling facility (XCF) of MVS. XCF is required for MRO
links between CICS regions in different MVS images of an MVS sysplex. It is
selected dynamically by CICS for such links, if available.

This section describes the communication part of MRO. Chapter 35, “Multiregion
operation (MRO),” on page 355 gives a brief description of multiregion operation.

Design overview
For information about the design and implementation of interregion
communication facilities, and about the benefits of cross-system MRO, see the CICS
Intercommunication Guide.

Control blocks
IRC uses two levels of control blocks:
1. A CICS/MRO terminal control layer
2. An interregion SVC layer interfaced by the DFHIR macro.

Terminal control layer
The CICS/MRO terminal control layer is shown in Figure 60 on page 320.

This layer uses the cross-region block (CRB). This is a global (that is, one per CICS
system) block that is created in the CICS dynamic storage area above the 16MB
line (the ECDSA) when IRC is initialized, and provides information to
communicate with the IRC SVC. See Figure 61 on page 321.

1. The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
and CICS; DCE remote procedure calls to CICS programs.

© Copyright IBM Corp. 1997, 2011 319

CSA

x'128' CSATCTBA
Address of TCT prefix

TCTFX

x'3C' TCTVSEBA
Address of local system entry

TCTSE (local)

x'90' TCSENEXT
Address of first remote
system entry

TCTSE (remote)

x'00' TCTTETI
Connection name
of remote system B

x'08' TCSEDAID

x'0C' TCSESUSF AID
Address of head of AID chain

x'10' AIDCHF
x'28' TCSEVC1 Address of next AID

Address of first primary
session TCTTE

x'3C' AIDTCAA TCA
x'2C' TCSEVC2

Address of first secondary
session TCTTE AID

x'50' TCSESTAS x'10' AIDCHNF
Statistics area Address of next AID

TCTSE (remote) X'3C’ AIDTCAA TCA

x'00' TCTTETI
Connection name AID
of remote system C

x'10' AIDCHNF
x'28' TCSEVC1 Address of dummy AID

x'2C' TCSEVC2
x'3C' AIDTCAA TCA

TCTTE

Primary TCTTE for system B:
a VTAM logical unit type 6 Secondary TCTTE system B
or IRC terminal entry for
session with remote system

x'EC' TCTESLNK Secondary TCTTE system B
ISC system ownership chain

Primary TCTTE for system B Primary TCTTE system C

Primary TCTTE for system B Secondary TCTTE system C

TCA

TCAFCAAA
| | | TCTTE for session

Address of TCTTE for with system B
task's primary terminal

TCTTECA
TCATCUCN |

Address of TCA
Address of first TCTTE
in chain (See note 1)

TCTTEUCN

Address of next
TCTTE on chain

TCTTE for task's primary
terminal (example: a 3270 or
MRO session or surrogate)

|TCTTECA |

Address of TCA

|TCTTEUCN |

Address of next
TCTTE on chain

TCTTE for session
with system C

TCTTECA

320 CICS TS for z/OS 4.1: Diagnosis Reference

Notes:

1. The first TCTTE on the chain is not necessarily the TCTTE for the task’s
primary terminal.

2. A task has allocated MRO sessions to other systems.
3. TCTTEs are described more fully in Chapter 56, “Terminal control,” on page

441.
4. Primary TCTTEs relate to Receive sessions, and secondary TCTTEs relate to

Send sessions.
5. TCSEVC1 is the label on the address of the TCTTE of the first primary session.

TCSEVC2 is that of the first secondary session.
6. The primary and secondary sessions each have sets of TCTTEs. These are found

by using the DFHTC CTYPE=LOCATE macro.
7. A TCTTE is allocated for a surrogate session in transaction routing.

DFHIR layer
The interregion SVC layer interfaced by the DFHIR macro is shown in Figure 62 on
page 322.

CSA

x'C8'

CSAOPFL

x'1D8' CSACRBA
Address of
cross region block

DFHCRBDS

x'34’ CRBSTCA
Address of
suspended mirror
TCA chain

x'3C’ CRBSLCB
Address of SLCB

x'60’ CRBCSNC
Address of CSNC TCA

CSAOPFLA
Address of
optional features list

TCA

x'14’ TCAKCSMR

SLCB

x'00’ SLCBLECB
IRC ECB

TCA

TCA

Figure 61. Cross-region block (CRB)

Chapter 28. Interregion communication (IRC) 321

This layer uses the following control blocks, which, unless otherwise stated, reside
in subpool 241 in MVS storage:
v Global (that is, one per MVS system) housekeeping (used by DFHIRP)

Subsystem control table extension (SCTE)
The SCTE is dynamically created, and contains information about the
number of regions logged on to DFHIRP. It is used to locate the LACB.
See also Figure 74 on page 392, which shows the subsystem interface
control blocks, including a pointer to the SCTE in the CICS subsystem
anchor block (SAB).

Logon address control block (LACB)
The LACB contains entries to identify the regions that have logged on,
and contains the address of the region’s logon control block (LCB).

v Local housekeeping (used by DFHIRP)
Logon control block (LCB)

The LCB is created for each successful log on.
Logon control block entry (LCBE)

The LCBE contains the basic control information for each IRC system
with which this system communicates. It addresses the connection
control blocks (CCBs).

Subsystem user definition block (SUDB)
A SUDB provides access to IRC control blocks. There is one SUDB for
each TCB that is currently logged on (so each SUDB may have multiple
LCBs associated with it). The SUDB contains TCB-related data and
working storage.

Connection control block (CCB)
A CCB is created for each IRC send-receive session, and contains
information controlling the connection to the other region. When the
connection is in use, it addresses the CSB.

Connection status block (CSB)
The CSB provides status information about the connection between two
regions.

MVS transfer buffers (MVS SRB mode)
The MVS transfer buffers are used to transfer IRC data between regions,
and reside in subpool 231 in MVS storage.

AFCB SUDB LACB SCTE

C'AFCX'

LACB
entries

SLCB LCB LCB SLCB

SCCB CCB CSB CCB SCCB

Figure 62. Interregion SVC layer of control blocks interfaced by the DFHIR macro

322 CICS TS for z/OS 4.1: Diagnosis Reference

Terminal control layer and DFHIR layer
Figure 63 shows the control blocks that are accessed by both the terminal control
layer and the DFHIR layer. Figure 64 on page 324 shows the location of these
control blocks in MVS virtual storage.

The following blocks are used by both the terminal control layer and the DFHIR
layer. These blocks are allocated at logon time within a single MVS GETMAIN,
and, unless otherwise stated, reside in subpool 251 of MVS storage.
Subsystem logon control block (SLCB)

The SLCB is used by the IRC SVC and region and contains the master
ECB, posted when the region has IRC activity. It is pointed to by the CRB
and LCB.

Subsystem connection address control block (SCACB)
The SCACB contains entries allowing the addressing of SCCBs from the
SLCB.

Subsystem connection control block (SCCB)
The SCCB is created for each IRC send-receive session, and is allocated at
logon. It contains the ECB, posted when input for the session is available.

Note: There is a one-to-one relationship between TCTTEs and SCCBs
when they are in use.

CSA

OFL CRB

SLCB LCB

LCBEs

SCACB

SCCB CCB

SCCB

Figure 63. Control blocks accessed by CICS/MRO terminal-control layer of control blocks and
by interregion SVC layer of control blocks

Chapter 28. Interregion communication (IRC) 323

MRO ECB summary
The following is a summary of the MRO event control blocks (ECBs):
Name Location Who waits Who posts
Dependent ECB SCCB Application (TC WAIT) DFHIRP
LOGON ECB SLCB CICS (KCP, Op sys WAIT list) DFHIRP
Link ECB LCB DFHIRP (Op sys WAIT) DFHIRP
Work queue ECB QUEUE CSNC transaction DFHIRP
 DFHZIS2
 DFHZLOC

SeeCICS Data Areas for a detailed description of the CICS control blocks.

Modules
Figure 65 gives an overview of the modules involved with interregion
communication.

The modules for IRC are of two types:
1. The interregion communication program: DFHIRP.

MVS

MVS storage MVS storage

CICS1 CICS2

- ECDSA - - ECDSA -

Private
AreaRegion

CRB CRB

SLCB SCCB SCCB SLCB SCCB SCCB

LCB SUDB SUDB LCB

MVS
CSA

LACB

CCB CSB CCB

LPA for MVS DFHIRP

Figure 64. Location of control blocks in MVS virtual storage

Interregion
communication

Interregion CICS
communication region
(SVC) program modules
(DFHIRP)

CICS CICS Interregion Interregion
interregion interregion service session
communication connection subroutines recovery
startup module manager (DFHZIS2) (DFHCRR)
(DFHCRSP) (DFHCRNP)

Interregion
ESTAE
exit
(DFHCRC)

Figure 65. Interregion communication

324 CICS TS for z/OS 4.1: Diagnosis Reference

|

2. CICS address space modules: DFHCRC (interregion ESTAE exit), DFHCRNP
(CICS interregion connection manager), DFHCRR (interregion session recovery),
DFHCRSP (CICS interregion communication startup module), DFHZCP (CICS
terminal management program), and DFHZCX (which includes DFHZIS2, the
interregion service subroutines).

DFHIRP (interregion communication (SVC) program)
The interregion communication program (DFHIRP) is used to pass data from one
region to another in the same processing unit. The programs running in the
regions usually are CICS programs, but DFHIRP does not assume that to be the
case.

Each user of this program must first issue a LOGON request specifying an
8-character name. This user identifier is added to a table maintained in key 0
storage. If cross-memory is being used, acquire and initialize the cross-memory
resources (authorization index (AX), linkage index (LX), and entry table (ET)),
unless this has already been done by a previous logon in this address space.

After the user has logged on, CONNECT requests can be issued to establish data
paths to other users who have also logged on. The users must cooperate in this
process by specifying, when they log on, to whom and from whom they are to be
connected and by how many data paths. If cross-memory is being used, update the
authority tables (ATs) of both address spaces to allow each one to establish
addressability to the other, unless this was done when a previous connection was
established between them.

After a connection has been established, either end of the connection can issue a
SWITCH request to send data to the other end of the connection. The receiver of
the data must provide a buffer into which the data is to be written. If the buffer is
too small, the receiver is notified of the actual data length and, possibly having
obtained a larger buffer, can issue a PULL request to retrieve as much data as is
required. After the first data has been sent, the link must be used by each end
alternately.

A connection can be broken by either end by issuing a DISCONNECT request. If
cross-memory is being used and if the last cross-memory connection between a
pair of address spaces is being removed, update the caller's AT so that the other
system is no longer permitted to access the caller's address space.

When all links have been disconnected, a user can log off using a LOGOFF
request. If cross-memory is being used, free the cross-memory resources acquired
by logon if they are no longer required by the caller's address space.

When MVS cross-memory services are requested (ACCESSMETHOD(XM) in the
RDO CONNECTION definition), communication is performed by DFHIRP running
as an SVC. In this case, it is invoked by an SVC call to a startup program
(DFHCSVC), which calls the required DFHIRP routine.

CICS address space modules
The CICS address space modules control the handling of requests between this
address space and other address spaces. They include several MRO management
modules such as DFHCRSP (see “DFHCRSP (CICS IRC startup module)” on page
326) and DFHCRNP (see “DFHCRNP (connection manager—CSNC transaction)”
on page 326), and several terminal-control modules (see “DFHZCX (CICS terminal
control routines)” on page 327).

Chapter 28. Interregion communication (IRC) 325

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

These modules provide the CICS address space with a DFHTC-level interface to
interregion communication (in the same way as DFHZCP provides a DFHTC-level
interface to VTAM). This enables other CICS modules (such as DFHISP) to allocate
and execute input/output operations on IRC sessions. The IRC sessions are used
for all forms of IRC communication, and the macro-level services available for IRC
are broadly the same. Thus DFHISP works for both IRC and intersystem
communication (ISC) function shipping.

The functions of each module are as follows:

DFHCRSP (CICS IRC startup module)
Execution of this module makes interregion communication possible between this
address space and other address spaces. DFHCRSP, which can be invoked either at
system initialization or by the master terminal, allocates the cross-region block
(CRB), issues a LOGON request to the SVC routine, and attaches the CSNC
transaction (connection manager program, DFHCRNP).

DFHCRNP (connection manager—CSNC transaction)
Interregion communication is controlled by the interregion control program,
DFHCRNP, which runs as transaction CSNC. This is attached when CICS first logs
on to the interregion program, and it remains attached until interregion
communication is closed.

The main purpose of CSNC is to perform housekeeping and control on IRC
sessions, and to simulate the access method. Its functions include the following:
1. Establish connections to other address spaces (by issuing CONNECT requests)
2. Detect unsolicited input data on connections and attach requested tasks to

process such data
3. Disconnect unallocated (between-bracket) sessions during QUIESCE
4. Issue DFHKC AVAIL for any secondary sessions which have become available

for reallocation, and are in demand
5. Issue PC RETURN when QUIESCE is complete.

CSNC is attached by DFHCRSP (IRC startup), and waits when it is not processing
work. It is resumed by the dispatcher when the MRO work queue ECB has been
posted, or the delay interval (if set) has expired and there is delayed work to be
retried.

Whenever CSNC is posted, it checks first whether it has been invoked because
quiescing of the interregion facility is complete.
v If CSNC has no been resumed to complete interregion quiesce processing, it

checks each of the following:
1. If the “delay-queue” is not empty, CSNC attempts to process any work it

finds there. (An element is added to the queue whenever a transaction
cannot be attached by CSNC. The system could, for example, have been at
maximum tasks or short on storage when the previous attempt was made. It
is also possible that a remote system tried to start a new conversation before
the local system had freed the required session from an earlier conversation.)

2. If a new conversation has been received:
– If this is the first conversation on a new connection, and the connecting

region is not a batch region, session recovery is performed. This means
that if the name of the secondary connecting matches the name of the
secondary connected in the previous session, the old session is bound
once again.

326 CICS TS for z/OS 4.1: Diagnosis Reference

– If there is no match, or if a batch region is connecting, the first available
session is allocated.

– CSNC attempts to attach the required transaction, identified in the attach
header included in the data stream. It is possible for a request to arrive for
this session before the session has been freed from the transaction that last
used it. In such a case, the transaction to be attached is added to the
delay-queue.

– The input data stream is built into a TIOA for the session.
3. If this region is a secondary, and there is no task associated with the

connection, and the connection is in quiesce, CSNC disconnects the session.
4. If this region is a primary, and it has received a “disconnect” request from

the connected secondary, CSNC disconnects the session if:
– There is no associated TCTTE
– There is no task associated with the link.

v If CSNC has been resumed to complete interregion quiesce processing, it:
1. Sends message DFHIR3762 to the CSMT log.
2. Resumes any suspended mirror tasks with a facility address of zero, so they

can detach themselves.
3. Disable immediate and delay queues. Any remaining work on those queues

(for example, old retry work which has not been serviced yet) is
automatically discarded.

4. Logs off from the interregion SVC.
5. Detaches, using a DFHLFM TYPE=RETURN request.

DFHCRR (CICS session recovery module)
Whenever a new connection is established (via a successful CONNECT request),
DFHCRNP links to DFHCRR at the secondary end of the connection (that is, at the
source of the connection). DFHCRNP sends a data stream down to the other end
of the connection (the primary end) which causes DFHCRNP to link to DFHCRR
at the primary end. The two DFHCRRs exchange information in order to
determine whether either end of the connection was in doubt when the previous
use of the connection was terminated, and, if so, whether the two ends were in
sync or out of sync. In the case of an indoubt connection, the sequence numbers
are compared, diagnostics are issued, and the session is freed.

DFHCRC (interregion abnormal exit module)
This module contains the ESTAE exit routine corresponding to the ESTAE macro
issued by DFHKESIP. It is invoked if the ESTAE exit, DFHKESTX, decides to
continue the abend, or if an X22 abend (which can’t be handled by DFHKESTX)
occurs.

The purpose of the exit is to free links with other subsystems to which connection
has been made by the interregion SVC, and to free links with the SVC itself. This is
done by issuing to the SVC a CLEAR request (to break links with other
subsystems).

DFHZCX (CICS terminal control routines)
DFHZCX is a load module consisting of a set of object modules, including
DFHZIS1 (ISC or IRC syncpoint) and DFHZIS2 (IRC internal functions).

DFHZIS2 provides the following routines:

I/O request routine (IORENT)
Provides a WRITE/WAIT/READ interface to interregion connections.

Chapter 28. Interregion communication (IRC) 327

GETDATA routine (GDAENT)
Retrieves input data from an IRC connection and puts it into a TIOA.

RECEIVE routine (RECENT)
Receives unsolicited data (begin-bracket in SNA terms) and checks validity.

DISCONNECT routine (DSCENT)
Cleans up this end of a connection, and issues DISCONNECT request to
DFHIRP.

OPRENT routine (OPRENT)
Issues an INSRV request to DFHIRP, in order to allow future connections
between this subsystem and a specified subsystem.

RECABRT routine (RCAENT)
Is invoked when an ABORT FMH (FMH07) is received (indicating that the
connected transaction has abended). The routine issues a message describing
the failure.

STOP routine (STPENT)
Is invoked when communication with other address spaces is to be terminated.
The routine issues a QUIESCE request to DFHIRP.

LOGOFF routine (LGFENT)
Is invoked when quiesce is complete (and during system termination and
abend processing). The routine issues a LOGOFF request to the SVC routine.

 DFHZIS1 also contains routines representing terminal control services which are
supported by IRC (in common with VTAM). These routines include PREPARE,
SPR, COMMIT, and ABORT.

DFHZCP (CICS terminal management program)
DFHZCP is a load module consisting of a set of object modules, including
DFHZARQ (application request handler), DFHZISP (intersystem program
allocation routines), and DFHZSUP (startup task).

DFHZARQ is used (in common with all other telecommunication access methods)
to handle WRITE/WAIT/READ-level requests against IRC connections (sessions).
Routine ZARQIRC in DFHZARQ specifically handles IRC requests by performing
SNA request header processing and invoking IORENT (see DFHZCX) in order to
perform the I/O on the session.

DFHZISP includes routines such as ALLOCATE and FREE.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP DDxx, for which the trace levels are IS 1 and IS 2.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

328 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 29. Intersystem communication (ISC)

CICS intersystem communication (ISC) allows the following:
v CICS-to-CICS communication
v CICS-to-IMS communication
v CICS-to-LUTYPE6.2 terminal or application communication.

These can be execute simultaneously within the same or a different CEC. ISC can
use VTAM LU6.1 or LU6.2 (LU6.2 is preferred for CICS operation). For information
about these methods of communication, see the CICS Intercommunication Guide

The facilities provided by ISC include:
v Transaction routing
v Distributed transaction processing
v Function shipping
v Asynchronous processing
v Distributed program link
v SAA Communications interface.

For information about the design and operation of intersystem communication, see
Chapter 66, “VTAM LU6.2,” on page 523. For descriptions of the facilities provided
by ISC, see Chapter 62, “Transaction routing,” on page 481, Chapter 14,
“Distributed transaction processing,” on page 123, Chapter 26, “Function
shipping,” on page 301, and Chapter 43, “SAA Communications and Resource
Recovery interfaces,” on page 377.

© Copyright IBM Corp. 1997, 2011 329

330 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 30. Interval control

Interval control provides various optional task-related functions based on specified
intervals of time, or specified time of day.

Design overview
The following services are performed by interval control in response to a specific
request from either an application program or another CICS function:

Time of day
The EXEC CICS ASKTIME command retrieves the current time-of-day in either
binary or packed decimal format.

Time-dependent task synchronization
Time-dependent task synchronization provides the user with three optional
services:
1. The EXEC CICS DELAY command allows a task to temporarily suspend itself

for a specified period of time. When the time has elapsed, the task resumes
execution.

2. The EXEC CICS POST command allows a task to be notified when the
specified interval of time has elapsed or the specified time of day occurs. The
task proceeds to execute while the time interval is elapsing.

3. The EXEC CICS CANCEL command allows a task to terminate its own or
another task’s request for a DELAY, POST or START service.

Automatic time-ordered transaction initiation
Automatic time-ordered transaction initiation provides for the automatic initiation
of a transaction at a specified time of day (or after a specified interval of time has
elapsed) and for the sending of data that is to be accessed by the transaction. The
user can also cancel a pending request for automatic time-ordered transaction
initiation.

Optional user exits are provided as follows:
v Before determining what type of request for time services was issued
v Upon expiration of a previously requested time-dependent event
v If a START request names an unknown terminal.

Time-of-day control
The EXEC CICS PERFORM RESETTIME command causes CICS to reset its internal date
and time of day information in accordance with that of the operating system.

The EXEC CICS PERFORM RESETTIME command calls DFHICP with a DFHIC
TYPE=RESET macro. This macro is also issued by DFHAPTIM - the program run
by the “midnight task” attached by interval control initialization - whenever it is
resumed by the TI domain, i.e. at midnight.

DFHICP issues a KETI RESET_LOCAL_TIME call to the TI domain if the reason
for the reset was a time of day change. This allows the TI domain to readjust its

© Copyright IBM Corp. 1997, 2011 331

clocks to the operating system time. DFHICP then calls DFHTAJP to readjust other
CICS clocks to match the operating system time and to make any necessary
changes to the ICE chain resulting from possible changes in the time-to-expiry of
time controlled ICEs. Finally DFHICP scans the ICE chain in order to process any
that may have become expired as a result of the time change, and to reset the time
interval for which the expiry task, DFHAPTIX, will wait, until the next ICE
expires.

Control blocks
An interval control element (ICE—see Figure 66) is created for each
time-dependent request received by interval control. These ICEs are chained from
the CSA in expiration time-of-day sequence.

Expired time-ordered requests are processed by Interval Control when called from
the DFHAPTIX module, which runs under a system task that has been resumed by
the timer domain. The type of service represented by the expired ICE is initiated, if
all resources required for the service are available, and the ICE is removed from
the chain. If the resources are not available, the ICE remains on the chain and
another attempt to initiate the requested service is made later.

SeeCICS Data Areas for a detailed description of this control block.

Modules
DFHAPTIM, DFHAPTIX, DFHICP, DFHICRC, and DFHTAJP

Exits
There are three global user exit points in DFHICP: XICEXP, XICREQ, and
XICTENF. See the CICS Customization Guide for further information.

CSA

DFHICEDS
x'54' CSAICEBA

x'10' ICECHNAD
Address of next ICE

x'14' ICETECAA

x'18' ICETCAAD
Address of TCA

ICE |

x'10' ICECHNAD
Address of next ICE

x'14' ICETECAA
Address of ECA ECA

Post bits
x'18' ICETCAAD x'40008000'

Address of TCA

TCA

Note:
An ECA (event control area) exists only after an
EXEC CICS POST command.

Note: An ECA (event control area) exists only after an EXEC CICS POST command.

Figure 66. Interval control element (ICE)

332 CICS TS for z/OS 4.1: Diagnosis Reference

Trace
The following point ID is provided for DFHICP:
v AP 00F3, for which the trace level is IC 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 30. Interval control 333

334 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 31. Language Environment interface

This section describes the run-time interface between CICS and Language
Environment®.

Design overview
Communication between CICS and Language Environment is made by calling a
special Language Environment interface module (CEECCICS) and passing to it a
parameter list (addressed by register 1), which consists of an indication of the
function to be performed and a set of address pointers to data values or areas.

Module CEECCICS is distributed in the Language Environment library, but must
be copied to an authorized library defined in the STEPLIB concatenation of the
CICS startup job stream.

All calls to Language Environment are made directly from the CICS language
interface module DFHAPLI. This module is called by several components of CICS
to perform specific functions. Table 10 lists those functions, and shows the name of
the CICS module initiating each function call and the Language Environment call
made by DFHAPLI to support the function. The format of each call parameter list
is given in “External interfaces” on page 339.

 Table 10. Language Environment interface calls
Function Module Language Environment call

Terminate Languages DFHSTP Partition Termination
Establish Language

 DFHPGLK
DFHPGLU
DFHPGPG

Establish Ownership Type

Start Program
 DFHPGLK
DFHPGLU

 Thread Initialization
Run Unit Initialization
Run Unit Begin Invocation
Run Unit End Invocation
Run Unit Termination
Thread Termination

Goto DFHEIP Perform Goto
Find Program Attributes DFHEDFX Determine Working Storage
Initialize Languages DFHSIJ1 Partition Initialization

The logical relationship between the different calls is shown in Figure 67 on page
336.

© Copyright IBM Corp. 1997, 2011 335

Note: The actual passing of control to CEECCICS is made from the CICS language
interface program (DFHAPLI), which provides a single point of contact between
CICS and Language Environment. Other modules call DFHAPLI to initiate the
desired function.

All calls to DFHAPLI use either the DFHAPLIM macro (for calls from outside the
CICS application domain), or the DFHLILIM macro (for calls made from within the
application domain).

Establishing the connection
The procedure for establishing the initial connection with Language Environment
is as follows:
1. Load CEECCICS. At CICS startup, DFHSIJ1 invokes DFHAPLI to “initialize

languages”. DFHAPLI issues a BLDL for CEECCICS, followed by an MVS
LOAD macro.

2. Initialize contact with Language Environment. Contact is first made with
Language Environment by having CICS drive the partition initialization

Partition
initialization

C Establish Once only
I ownership type per program
C
S

l
i
f T Thread
e a initialization
t s
i k
m
e l

i
f Run-unit
e initialization
t
i
m
e

Run-unit begin
invocation

L
i Determine
n working
k storage

l
e
v Perform GOTO
e
l

Run-unit end
invocation

Run-unit
termination

Thread
termination

Partition
termination

Figure 67. Language Environment interface components

336 CICS TS for z/OS 4.1: Diagnosis Reference

function. DFHAPLI attempts partition initialization only if the earlier load of
CEECCICS was successful; otherwise, the logic is bypassed.
If the Language Environment partition initialization is successful, and
Language Environment indicates that it can support the running of programs in
languages supported by CICS, a flag is set and no further processing takes
place.
If the partition initialization function fails, CICS issues error message
DFHAP1200.

Application program contact with Language Environment. Whenever a program
written in a supported language is run, the application’s attempt to make contact
with Language Environment fails if the “Language Environment initialization bits”
flag is not set. CICS then tries to run the program itself using the basic support for
the language. If this fails, CICS then abends the transaction and sets the associated
installed resource definition as disabled.

Storage for the transaction
A set of work areas is required during the lifetime of any task that includes one or
more programs supported by Language Environment. This set is known as the
“language interface work area”.

The language interface work area contains storage for the following:
v The largest possible Language Environment interface parameter list (currently 15

parameter elements, but with space allowed for a further three elements)
v A general-purpose register save area for use by DFHAPLI
v A general-purpose register save area for use by Language Environment
v A 240-byte special work area for use by Language Environment as the

equivalent of DFHEISTG for CICS
v A 4-byte Language Environment reason code field
v The IOINFO area (see “IOINFO” on page 343)
v The PGMINFO1 area (see “PGMINFO1” on page 344)
v The program termination block (see “Program termination block” on page 345).

Also, a thread work area is required if Language Environment is involved in the
running of the task. The length of a thread work area is a constant value that is
notified to CICS by Language Environment during the partition initialization
processing. This additional work area is built contiguous with the language
interface work area if the transaction is known to contain one or more programs
that use Language Environment. When such a program is first encountered,
DFHAPLI:
1. Gets from the transaction manager the address of the transaction-related

instance data.
2. Flags the data to tell the transaction manager that the transaction runs

Language Environment application programs.
3. Adds the length of the language interface work area to the total user storage

length for that transaction.

This forces the transaction manager to acquire extra storage, during task
initialization, as an extension to the language interface work area. For the first
occurrence only, DFHAPLI acquires the thread work area.

Further areas known as run-unit work areas (RUWAs) are required at run time if
the transaction includes one or more programs that use Language Environment.

Chapter 31. Language Environment interface 337

The length of an RUWA varies for each program. The lengths required for work
areas above and below the 16MB line by Language Environment are notified to
CICS during the processing to establish ownership type for that program;
thereafter they can be found in the program’s installed resource definition. CICS
adds to the length for the RUWA above the 16MB line a fixed amount for its own
purposes before acquiring the storage.

Storage acquisition
During task initialization, the transaction manager acquires an area of storage, the
language interface work area, which is large enough to hold all required data for
calls to Language Environment. This area is contiguous with the EXEC interface
storage (EIS), and its address is saved in TCACEEPT in the TCA.

The thread work area is usually contiguous with the language interface work area.
Its address is always held in CEE_TWA in the language interface work area.

For every link level entered during the execution of the application, a run-unit
work area must be acquired by CICS and its address passed to Language
Environment during run-unit initialization. Its address is placed in EIORUSTG in
the EXEC interface storage (EIS).

Control blocks
The main control block is the language interface work area. It is addressed by
TCACEEPT in the TCA. For programs supported by Language Environment, the
work area is mapped by the Language_Interface_Workarea DSECT.

Modules
The Language Environment interface is accessed in the language interface program
(DFHAPLI) in response to calls from the following modules:
DFHSIJ1, DFHEIP, DFHEDFX, and DFHSTP.

Exits
No global user exit points are provided for this interface.

Trace
Trace entries are made on entry to and exit from DFHAPLI.

Point IDs AP 1940 to AP 1945, with a trace level of PC 1, correspond to these trace
entries.

The function information is always interpreted.

For entry trace records, the program name and link level are also interpreted
where applicable.

For exit trace records, the returned reason code is interpreted.

Also, all calls into and out of the language environments are traced at level 1. The
point IDs are: AP1948 to AP 1952.

338 CICS TS for z/OS 4.1: Diagnosis Reference

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

The ERTLI function named in the DFHAPLI entry trace is the function requested
on the call, while that named in the DFHAPLI exit trace is the ERTLI function
most recently processed. There are some situations in which a trace record made
on entry to DFHAPLI is not matched by a corresponding exit trace for the same
ERTLI function. In particular, after making a call to Language Environment for
thread initialization, DFHAPLI does not return to the caller, but proceeds with
“run-unit initialization” and “run-unit begin invocation” before finally returning.
Another example is the successful execution of a “perform GOTO” function, which
results in DFHAPLI not returning to the caller.

Note: ERTLI refers to the Extended Run-Time Language Interface. This is an
extension of the Run-Time Language Interface (RTLI) protocols that were defined
to assist communication between CICS and both VS COBOL II and C/370. ERTLI
includes communication between CICS and Language Environment.

External interfaces
This section describes the parameter lists and work areas used for the functions
provided by the Language Environment interface.

Language Environment interface parameter lists
The following tables show the layout and contents of the parameter lists for the
functions provided by the Language Environment interface module CEECCICS.

 Table 11. Language Environment PARTITION_INITIALIZATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"10" (= Partition initialization) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token Yes 8

6 EIBLEN Length of CICS EIB F’word

7 TWALEN Thread work area length Yes F’word

8 CELLEVEL Language Environment-CICS interface
level

Yes F’word

9 GETCAA Get-CAA routine address 4

10 SETCAA Set-CAA routine address 4

11 LANGDEF Language modules defined 32

12 LANGBITS Language availability bits Yes F’word

 Table 12. Language Environment ESTABLISH_OWNERSHIP_TYPE parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"50" (= Establish ownership type) F’word

2 RSNCODE Reason code Yes F’word

Chapter 31. Language Environment interface 339

Table 12. Language Environment ESTABLISH_OWNERSHIP_TYPE parameter
list (continued)

No. Parameter
name

Description Receiver field Data
length

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 reserved

7 reserved

8 PGMINFO1 CICS-Language Environment program
information

48

9 PGMINFO2 Language Environment-CICS program
information

Yes 20

 Table 13. Language Environment THREAD_INITIALIZATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"20" (= Thread initialization) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token Yes 8

7 PREATWA Address of preallocated thread work area 4

8 PGMINFO1 CICS-Language Environment program
information

48

9 PGMINFO2 Language Environment-CICS program
information

20

 Table 14. Language Environment RUNUNIT_INITIALIZATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"30" (= Run-unit initialization) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token Yes 8

8 PGMINFO1 CICS-Language Environment program
information

48

9 PGMINFO2 Language Environment-CICS program
information

20

340 CICS TS for z/OS 4.1: Diagnosis Reference

Table 15. Language Environment RUNUNIT_BEGIN_INVOCATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"32" (= Run-unit begin invocation) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 PGMINFO1 CICS-Language Environment program
information

48

9 PGMINFO2 Language Environment-CICS program
information

20

10 IOINFO Input/output queue details 18

11 RSA RSA at last EXEC CICS command F’word

 Table 16. Language Environment DETERMINE_WORKING_STORAGE parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"60" (= Determine working storage) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 LANG Program language bits F’word

9 PGMRSA Register save area address 4

10 WSA Working storage address Yes 4

11 WSL Working storage length Yes F’word

12 SSA Static storage address (reserved) Yes 4

13 SSL Static storage length (reserved) Yes F’word

14 EP Program entry point Yes 4

 Table 17. Language Environment PERFORM_GOTO parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"70" (= Perform GOTO) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

Chapter 31. Language Environment interface 341

Table 17. Language Environment PERFORM_GOTO parameter list (continued)

No. Parameter
name

Description Receiver field Data
length

7 RTOKEN Run-unit token 8

8 LANG Program language bits F’word

9 LABEL Label argument at Handle F’word

10 RSA RSA at last EXEC CICS command F’word

11 CALLERR Cross call error flag Yes F’word

12 ABCODE Address of TACB abend code F’word

13 R13 Register 13 value at abend F’word

 Table 18. Language Environment RUNUNIT_END_INVOCATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"33" (= Run-unit end invocation) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 PGMINFO1 CICS-Language Environment program
information

48

9 PGMINFO2 Language Environment-CICS program
information

20

10 PTB Program termination block 64

11 RSA RSA at last EXEC CICS command F’word

 Table 19. Language Environment RUNUNIT_TERMINATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"31" (= Run-unit termination) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token Yes 8

 Table 20. Language Environment THREAD_TERMINATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"21" (= Thread termination) F’word

2 RSNCODE Reason code Yes F’word

342 CICS TS for z/OS 4.1: Diagnosis Reference

Table 20. Language Environment THREAD_TERMINATION parameter list (continued)

No. Parameter
name

Description Receiver field Data
length

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token Yes 8

 Table 21. Language Environment PARTITION_TERMINATION parameter list

No. Parameter
name

Description Receiver field Data
length

1 FUNCTION F"11" (= Partition termination) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

Work areas
The following sections describe the work areas required during the lifetime of any
task that includes one or more programs that use the Language Environment
interface.

IOINFO
The IOINFO area, which is built by DFHAPLI in the CICS-Language Environment
work area, is passed to Language Environment on a
RUNUNIT_BEGIN_INVOCATION call.

CICS applications cannot use the SYSIN and SYSPRINT data streams because such
usage would conflict with the way CICS handles I/O. However, an application
may require a general input or output data stream in some situations, for example,
where it is necessary to output a message to a program and the program has not
been written to expect such output under normal operation.

Three such data streams are architected for this purpose: input, output (normal),
and error output. The destinations must be either spools or queues. CICS uses
queues, so the file type is always set to “Q”. Table 22 shows the transient data
queue names that are passed to Language Environment.

 Table 22. Transient data queues for use by Language Environment
File type Language Environment queue name

Input CESI
Output CESO
Error output CESE

Each data stream is identified by a 6-byte control block, and the three control
blocks are concatenated to form the IOINFO area, which CICS passes to Language
Environment.

IOINFO has this format (in assembler-language code):

Chapter 31. Language Environment interface 343

IOINFO DS 0CL18 Input/output queue details

STD_IN DS 0CL6 Standard input file
QORS_IN DS CL1 ..file type - "Q" = transient data
TDQ_IN DS CL4 ..queue name
SPO_IN DS CL1 ..spool class - not used

STD_OUT DS 0CL6 Standard output file
QORS_OUT DS CL1 ..file type - "Q" = transient data
TDQ_OUT DS CL4 ..queue name
SPO_OUT DS CL1 ..spool class - not used

STD_ERR DS 0CL6 Standard error output file
QORS_ERR DS CL1 ..file type - "Q" = transient data
TDQ_ERR DS CL4 ..queue name
SPO_ERR DS CL1 ..spool class - not used

PGMINFO1
The PGMINFO1 area, which is built by DFHAPLI in the CICS-Language
Environment work area, is passed to Language Environment during these interface
calls:
 ESTABLISH_OWNERSHIP_TYPE
 THREAD_INITIALIZATION
 RUNUNIT_INITIALIZATION
 RUNUNIT_BEGIN_INVOCATION
 RUNUNIT_END_INVOCATION

When both CICS and Language Environment are capable of supporting it, the
separate calls to Language Environment for Rununit Initialisation and Rununit
Begin Invocation are combined into a single call. This single call is a Rununit
Initialisation call with additional parameters indicating
1. make the combined call
2. whether CICS believes the RUWA being passed has already been passed to

Language Environment, and so need not be completely initialised by LE.

PGMINFO1 has this format (in assembler-language code):
PGMINFO1 DS 0F
P1_LENGTH DS F Length of PGMINFO1
RULANG DS XL4 Language as defined by user
ASSEMBLER EQU X’80’ ..Assembler
C EQU X’40’ ..C
COBOL EQU X’20’ ..COBOL
PLI EQU X’10’ ..PL/I
LE370 EQU X’04’ ..Language Environment

RULOADMOD DS 0F
RULOADA DS A Run-unit load module address
RULOADL DS F Run-unit load module length

ENTRY_STATIC DS 0F
RUENTRY DS A Run-unit entry point address
RUSTATIC DS A Modified entry address
RWA_31 DS A Address of run-unit storage
 above 16MB
RWA_24 DS A Address of run-unit storage
 below 16MB
APAL DS A Application argument list
 address
RTOPTS DS A Run-time options
RTOPTSL DS F Length of run-time options
RUNAMEP DS A Pointer to the program name
PGMINFO1L EQU *-PGMINFO1

344 CICS TS for z/OS 4.1: Diagnosis Reference

PGMINFO2
The PGMINFO2 area, which forms part of the PPT entry for the running program,
is filled in by Language Environment on successful completion of an
ESTABLISH_OWNERSHIP_TYPE call; and is subsequently passed by CICS to
Language Environment during these interface calls:
 THREAD_INITIALIZATION
 RUNUNIT INITIALIZATION
 RUNUNIT_BEGIN_INVOCATION
 RUNUNIT_END_INVOCATION

PGMINFO2 has this format (in assembler-language code):
PGMINFO2 DS 0F
PRGINLEN DS FL4 Length of PGMINFO2 extension
PLBRWA31 DS F Length of 31-bit RUWA
PLBRWAA EQU X’80’ ..31-bit storage required (C/370)
PLBRWAL DS FL3 ..Length of 31-bit RUWA
PLBRWA24 DS F Length of 24-bit RUWA

PLBLANG DS 0CL4 Language availability byte
PLBLANG1 DS X
PLBCEEEN EQU X’80’ ..Language Environment
 enabled
PLBCEELA EQU X’40’ ..Language Environment
 language known
PLBMIXED EQU X’20’ ..Mixed/single language
PLBCOMPT EQU X’10’ ..Compatibility
PLBEXECU EQU X’08’ ..Language Environment
 executable
PLBASSEM EQU X’04’ ..Assembler language program
PLBC370 EQU X’02’ ..C program
PLBCOBL2 EQU X’01’ ..Enterprise COBOL or VS COBOL II program
PLBLANG2 DS X
PLBOSCOB EQU X’80’ ..OS/VS COBOL program
PLBPLI EQU X’40’ ..PL/I program
PLBTYPE3 DS X Reserved
PLBTYPE4 DS X Reserved
PLBMEMID DS FL4 Language member ID
PLBED EQU *-PGMINFO2

Program termination block
The program termination block (PTB), which is built by DFHAPLI in the
CICS-Language Environment work area, is passed to Language Environment on a
RUNUNIT_END_INVOCATION call.

It has this format (in Assembler-language code):
CELINFO DS 0F
PCHK DS 0CL32 Abend information
 DS CL8
PCHK_PSW DS CL8 ..PSW
PCHKINTS DS 0CL8 ..Interrupt data
PCHK_LEN DS XL2 ../..Instruction length
PCHK_INT DS XL2 ../..Interrupt code
PCHK_ADR DS FL4 ..Exception address
PCHK_GR DS AL4 ..A(GP registers at abend)
PCHK_FR DS AL4 ..A(FP registers at abend)
PCHK_AR DS AL4 ..A(AX registers at abend)
PCHK_EX DS AL4 ..A(Registers at the last time
 a CICS command was issued)
CNTCODE DS 0CL4 Continuation code
CONT1 EQU X’40’ ..retry using registers
CONT2 EQU X’20’ ..retry using PSW
 DS BL3 Reserved

Chapter 31. Language Environment interface 345

RTRY DS 0CL20
RTRY_AD DS FL4 ..Retry address
RTRY_PM DS AL4 ..A(Program mask)
RTRY_GR DS AL4 ..A(GP registers)
RTRY_FR DS AL4 ..A(FP registers)
RTRY_AR DS AL4 ..A(AX registers)

346 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 32. Master terminal program

The master terminal program enables dynamic control of the system. Using this
function an operator can change the values of parameters used by CICS, alter the
status of system resources, terminate tasks, and shut down the CICS system.

Design overview
The master terminal program is invoked by the CEMT transaction. The user enters
a command to INQUIRE about or SET the status of a set of resources, and the
command outputs a display that shows the resultant status of the resources. For a
CEMT SET command, this display can be overtyped to alter the status of most of
the resources displayed.

Commands are analyzed using the same techniques as the command interpreter
described in Chapter 9, “Command interpreter,” on page 101. A language table is
used to define the syntax of commands and the contents of parameter lists which
must be passed to DFHEIP to allow execution. In effect, each CEMT command
results in the execution of a series of EXEC CICS INQUIRE and SET commands.

The master terminal program is also used by the CEST and CEOT transactions,
which provide subsets of the functions available with CEMT. CEST is for
supervisory operators and allows access to a limited set of resources. CEOT only
allows changes to the status of the operator’s own terminal.

Modules
 Module Function

DFHEMTP Invoked by CEMT. Checks that the terminal is suitable. Obtains and
initializes working storage. Loads the language table DFHEITMT. Links
to DFHEMTD.

DFHEOTP Same as DFHEMTP but invoked by CEOT and loads the language table
DFHEITOT.

DFHESTP Same as DFHEMTP but invoked by CEST and loads the language table
DFHEITST.

DFHEMTD Receives data from the terminal and sends back a display. Analyzes
commands and overtypes. Constructs parameter lists for DFHEIP, which
it calls. Deals with PF keys.

DFHEITMT Command language table for CEMT.

DFHEITOT Command language table for CEOT.

DFHEITST Command language table for CEST.

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 347

348 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 33. Message generation program

The message generation program provides an interface for sending CICS messages
to the terminal user only.

Design overview
The input to the message generation program (DFHMGP) consists of the binary
number of the message to be produced, the identifier of the component issuing the
message, and any information to be inserted in the message. DFHMGP builds the
complete message using a prototype held in the message prototype control table,
also known as the message generation table (DFHMGT). The message text itself is
held not in DFHMGT but in the message domain, from which it is retrieved by the
DFHMGPME routine (a component of the DFHMGP load module) when required.
DFHMGP finally sends the message to the appropriate terminal.

The prototype statements are invocations of the DFHMGM TYPE=TEXT macro,
and are contained in copybooks held in DFHMGT.

The message prototype control table consists of a series of copybooks,
DFHMGTnn, each of which contains 1 through 100 messages. They are arranged in
such a way that each DFHMGTnn copybook contains prototypes for messages that
have identifiers of the form DFHccnnxx, where cc is the 2-character identifier of
the component issuing the message, nn is the numerical part of the copybook
name, and xx is in the range 00 through 99. For example, the prototype for
message DFHAC2214 (belonging to the AC component) is in copybook
DFHMGT22.

Within each copybook are invocations of DFHMGM in ascending message number
order. All messages sent to the terminal end user have both OPTION=NLS and
COMPID specified on their DFHMGM invocations.

The main operands of the DFHMGM TYPE=TEXT macro are:
v MSGNO = actual message number
v COMPID = 2-character identifier of component issuing the message (this forms

part of the message identifier)
v OPTION = any special options, for example, (NLS) for messages that require

NLS enabling.

Other operands are provided on the DFHMGM invocations, but in general these
are no longer used.

Modules
DFHMGP, DFHMGT

Exits
No global user exit points are provided for this function.

© Copyright IBM Corp. 1997, 2011 349

Trace
The following point ID is provided for this function:
v AP 00E0, for which the trace level is AP 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

350 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 34. Message switching

This function provides the user with a general-purpose message-switching
capability while CICS is running.

The facility, which can route messages to one or more destinations, is initiated by
the CMSG transaction, or a user-chosen replacement, read from the terminal. For
further information about this transaction, see CICS Supplied Transactions.

Design overview
Message switching runs as a task under CICS. A terminal operator requests
activation of this task by entry of the CMSG transaction identifier (or another
installation-defined 4-character transaction identifier), followed by appropriate
parameters. After it has been initiated, message switching interfaces with CICS
basic mapping support (BMS) and CICS control functions.

Although message switching appears conversational to the terminal operator, the
message switching task is terminated with each terminal response. Conversation is
forced, if continuation is possible, by effectively terminating the transaction with
an EXEC CICS RETURN TRANSID(xxxx) command, where xxxx is the transaction
identifier taken from the task’s PCT entry.

Figure 68 shows the message-switching interfaces.

Note:

1. If the first 4 characters of the terminal input/output area (TIOA) (not including
a possible set buffer address (SBA) sequence from an IBM 3270 Information
Display System) do not match the transaction identifier in the task’s PCT entry,
this task must have started as part of a conversation in which a previous task
has set up the next transaction identifier. A "C" immediately following the
transaction identifier is also a forced continuation. In such a case, information
has been stored in, and has to be retrieved from, temporary storage (using a
record key of 1-byte X'FC', 4-byte terminal identifier, and 3-byte C"MSG") to
allow the task to resume where it left off.

CMSG

Temporary 1 Message 4 Storage
storage switching manager
control program domain
program (DFHMSP)

(Transaction
1 identifier: 6 Terminal

DFHTSIOA CMSG) control
program

2
DFHTIOA 5,6 BMS

7
Program 3
manager TCA
domain

7

TWA

Figure 68. Message-switching interfaces

© Copyright IBM Corp. 1997, 2011 351

2. The operands in the input TIOA are processed and their values and status are
stored in the TWA.

3. If a ROUTE operand specifies terminal list tables (TLTs) for a standard routing
list, the program manager domain is called to load the requested TLTs.

4. Message switching requests storage areas for:
v Building route lists (one or more segments, each of which has room for the

number of destinations specified by MSRTELNG, an EQU within the
program).

v Constructing a record to be placed in temporary storage.
v Providing the message text to BMS in any of the following situations:

– Message parts from previous inputs exceed the current TIOA size
– A message is completed in the current TIOA but has parts from previous

inputs
– A heading has been requested but the message in the current TIOA is too

close to TIOADBA to allow the header to be inserted.
5. Message switching requests BMS routing functions by means of the DFHBMS

TYPE=ROUTE macro. The message text is sent using DFHBMS
TYPE=TEXTBLD, and completion of the message is indicated by DFHBMS
TYPE=PAGEOUT. BMS returns the status of destinations and any error
indications in response to the DFHBMS TYPE=CHECK macro.

6. Message switching interfaces with BMS using DFHBMS TYPE=(EDIT,OUT) and
with CICS terminal control using DFHTC TYPE=WRITE for the IBM 3270
Information Display System only, in providing responses to terminals. These
can indicate normal completion, signal that input is to continue, or provide
notification of input error.

7. Like any other task, message switching has a task control area (TCA) in which
values may be placed before issuing CICS macros, and from which any
returned values can be retrieved after an operation. All values for the DFHBMS
TYPE=ROUTE macro are placed in the TCA because they are created at
execution time. The TWA is used for storing status information (partly saved in
temporary storage across conversations) and space for work. The DFHMSP
module is reentrant.

Control blocks
See the list of control blocks in Chapter 5, “Basic mapping support,” on page 35.

Modules
DFHMSP (the message switching program) is invoked by the CMSG transaction.
DFHMSP’s purpose is to route a message entered at the terminal to one or more
operator-defined terminals or to other operators.

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

352 CICS TS for z/OS 4.1: Diagnosis Reference

External interfaces
See Figure 68 on page 351 for external calls made to other areas or domains.

Chapter 34. Message switching 353

354 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 35. Multiregion operation (MRO)

CICS multiregion operation (MRO) enables CICS regions that are running in the
same MVS image, or in the same MVS sysplex, to communicate with each other.
MRO does not support communication between a CICS system and a non-CICS
system such as IMS.2

ACF/VTAM and SNA networking facilities are not required for MRO. The support
within CICS that enables region-to-region communication is called interregion
communication

The facilities provided by MRO include:
v Transaction routing
v Distributed transaction processing
v Function shipping
v Asynchronous processing
v Distributed program link.

For more information about the design and implementation of interregion
communication facilities, see Chapter 28, “Interregion communication (IRC),” on
page 319. For descriptions of the facilities provided by MRO, see:
v Chapter 13, “Distributed program link,” on page 121
v Chapter 14, “Distributed transaction processing,” on page 123
v Chapter 26, “Function shipping,” on page 301
v Chapter 62, “Transaction routing,” on page 481.

2. The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
and CICS; DCE remote procedure calls to CICS programs.

© Copyright IBM Corp. 1997, 2011 355

356 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 36. Node abnormal condition program

DFHZNAC is a CICS program used by terminal control to analyze abnormal
terminal conditions that are logical unit or node errors detected by VTAM. VTAM
notifies the CICS terminal control program that there is a terminal error, and the
terminal control program places the terminal out of service. The terminal control
program then invokes DFHZNAC, which writes any error messages to the CSNE
transient data destination.

Design overview
The node abnormal condition program (DFHZNAC) can be called for any of
several reasons:
v As a central point of control for most VTAM-related error situations, error

actions can be standardized in table form, allowing for easy addition and
alteration to the way conditions are processed.

v Some exception conditions that are not errors are also processed by DFHZNAC,
but some exception conditions that are errors are not processed by DFHZNAC.

v It provides a single point of user interface to those who want to change the
default actions for an error requiring at most one user program (NEP)—see
Chapter 37, “Node error program,” on page 361.

To process conditions that are not associated with a known terminal, the dummy
TCTTE is used. It is invoked by placing a TCTTE on the system error queue with a
1-byte code relating to the condition. Placing it on the queue makes the TCTTE
‘temporary OUTSERV’ (TCTTESOS); that is, the decision is pending the outcome of
DFHZNAC.

The activate scan routine (DFHZACT) is responsible for attaching the CSNE
transaction to run DFHZNAC; this is done during CICS initialization. The CSNE
transaction remains in the system until CICS or VTAM is quiesced. If DFHZNAC
itself abends, or VTAM is closed and then restarted, DFHZACT attaches a new
CSNE transaction when there is more work for DFHZNAC to do.

There is only ever one CSNE transaction in the system at any one time. (This
should not be confused with the CSNE transaction that is attached by the remote
delete processing of autoinstall.)

Once DFHZNAC has been called, it runs down the system error queue, processing
each error for each TCTTE on the queue. When there is no more work to be done,
DFHZNAC suspends itself, to be resumed by DFHZACT when further processing
is required.

Note that the system error queue need not be empty before DFHZNAC terminates;
errors can be left on the queue to be processed later. For example, in an XRF
environment, some error codes cannot be handled until the alternate CICS system
has taken over; that is, it has passed the ‘initialization complete’ stage. If
DFHZNAC is passed a TCTTE indicating such an error, it leaves that entry on the
queue.

Node abnormal condition program (NACP) processing involves mapping the error
code (placed into the TCTTE by a DFHZERRM macro call) to a set of actions,

© Copyright IBM Corp. 1997, 2011 357

performing any specific processing for that error code, accumulating the actions for
all the error codes in that TCTTE, and then performing the actions.

Figure 69 shows the NACP error code processing. The numbers in Figure 69 refer
to the following notes, which use the table entry for DFHZC3424 as the example:
DFHZNCM MSGNO=3424,
 E1=S88,
 E2=NULL,
 E3=NULL,
 E4=NULL,
 ACT=(ABSEND,ABRECV,ABTASK,CLSDST,SIMLOG),
 CODE=NSP02,
 TYPE=ENTRY

Note:

 1. The error codes in TCTEVRC* and default actions are defined in the
VTAM-associated errors section of CICS Trace Entries.
In the example, TCTVRC5 contains X'5C', which equates to TCZNSP02 (ref
CODE=NSP02).

For each TCTTE

Map error code to a DFHZNCA table entry 1

Call any pre-sense exits designated by the 2
entry

If sense code associated, call DFHZNCS
routine

If any RPL feedback code, call DFHZNCV
routine

Call any pre-NEP exits 3

Call DFHZNEP 4

Output the error-code message 5

Process any 'unavailable printer' error 6

Accumulate actions so far 7

Output any sense message 8

Output any VTAM_3270 message 9

Call any post-NEP exit 10

yes
Another error code for this TCTTE? 11

no

Retrieve accumulated actions 12

Call the action routines 13

Output the 'actions taken' message 14

yes Check again for added error codes and 15
enter again at the top

no

If any work resulting from the actions, 16
add TCTTE to the DFHZACT work queue

get next TCTTE

Figure 69. NACP error code processing

358 CICS TS for z/OS 4.1: Diagnosis Reference

2. Errors that involve SNA sense have it saved in TCTEVNSS. It is processed by
code in copy book DFHZNCS.

 3. Call any pre-NEP exits specified by the table entry; for example, E1=S88
references routine NAPES88.

 4. Call the node error program (NEP), passing a parameter list via a
COMMAREA. This call may or may not change the default actions. The
operation of the NEP is described in the CICS Customization Guide and
Chapter 37, “Node error program,” on page 361.

 5. Output error-code message associated with the table entry (DFHZC3424 from
MSGNO=3424) to the CSNE log.

 6. Check for ‘unavailable printer error’—this caters for a screen copy request that
is unable to find an eligible printer if the first choice is unavailable.

 7. Because there can be multiple error codes, the actions are accumulated now
and performed together later.

 8. Output any sense message resulting from the DFHZNCS call, to the CSNE
log.

 9. Output any VTAM_3270 message resulting from the DFHZNCS call (if it was
non-SNA) to the CSNE log.

10. Call the post-NEP exit, if any (E4=NULL, no routine).
11. Loop for each error code in TCTEVRC*.
12. When all the error codes for this TCTTE that can be processed at this time

have been processed, retrieve the actions that have been accumulated, such as
ACT=(ABSEND, ABRECV, ABTASK, CLSDST, SIMLOG).

13. Call the action routine to process each of the actions.
14. Output the ‘actions taken’ message DFHZC3437 to the CSNE log.
15. Check again for any error codes added asynchronously while the CSNE

transaction was running.
16. Queue any work resulting from the actions to the activate scan routine.

Control blocks
DFHZNAC references CSA, its own TCA, JCA, TCT prefix, TIOA, NIB, PCT, SIT,
TCTWE, VTAM RPL, VTAM ACB, and the NACP/NEP communication area.

As would be expected, however, the processing mainly concerns access to the
TCTTE, and to the NACP/NEP communication area (COMMAREA), which is
mapped by the DFHNEPCA DSECT.

SeeCICS Data Areas or the the CICS Customization Guide for a detailed description
of the NEP communication area.

Modules
 Module Function

DFHZNAC Processes the system error queue of TCTTEs and contains the central
structure of NACP, outlined in Figure 69 on page 358. It contains the
following copy books:

DFHZNCA This copy book contains the exit routines for each error code and the
error code table itself built by DFHZNCM macros.

DFHZNCE Links to the user node error program (DFHZNEP) and responds to the
action flag settings in the NACP/NEP COMMAREA.

Chapter 36. Node abnormal condition program 359

Module Function

DFHZNCS Processes the SNA sense codes and contains the sense code tables built
using a combination of DFHZMJM and DFHZNCM macros.

DFHZNCV Contains the VTAM return code table.

DFHZNCM The macro to build the error code table.

DFHZMJM The macro to build the sense code table.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for the node abnormal condition program, as
part of terminal control:
v AP FCxx, for which the trace levels are TC 1, TC 2, and Exc
v AP FD7E, for which the trace level is TC 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Statistics
The only statistical field that DFHZNAC updates is TCTTETE. Because DFHZNAC
is the main module for terminal errors, it has primary responsibility for updating
the node error count.

360 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 37. Node error program

CICS provides a user-replaceable node error program, DFHZNEP, which assists the
user in the following ways:
v It provides a general environment within which it is easy for users to add their

own error processors.
v It provides the fundamental error recovery actions for a VTAM 3270 network.
v It serves as the default node error program (NEP), where the user selects a NEP

at system initialization.

The DFHZNEP program can be one of the following:
v The CICS-supplied default NEP
v A skeleton sample NEP generated using the DFHSNEP macro
v A user-written NEP generated using the DFHSNEP macro.

Design overview
The purpose of the NEP is to allow user-dependent processing whenever a
communication system event is reported to CICS. An example of the processing
that can be done is to analyze the event and override the default action set by
DFHZNAC. When NEP processing is complete, control returns to DFHZNAC.

The default node error program sets the ‘print TCTTE’ action flag (TWAOTCTE in
the user option byte TWAOPT1, defined in DFHNEPCA) if a VTAM storage
problem has been detected; otherwise, it performs no processing, and leaves the
action flags set by DFHZNAC unchanged.

The skeleton sample NEP provided by CICS can provide extended error handling
for VTAM terminals, and is generated by means of the DFHSNEP macro. This
procedure is described in the CICS Customization Guide.

The DFHSNEP macro can also be used to generate a user-written NEP. Interactions
between the applications and VTAM depend on characteristics of the transactions
and the installation. Each system has different characteristics. The CICS-provided
skeleton NEP is a framework for a user-written NEP to handle network error
conditions that may be unique to a particular installation.

Guidance information about NEP coding is given in the CICS Recovery and Restart
Guide. Reference information about NEP coding is given in the CICS Customization
Guide.

Modules
DFHZNEP

Exits
No global user exit points are provided for this function.

© Copyright IBM Corp. 1997, 2011 361

Trace
No trace points are provided specifically for this function; however, trace entries
are made from DFHZNAC immediately before and after calling the node error
program.

Point IDs AP FC71 and AP FC72, with a trace level of TC 1, correspond to these
trace entries.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

362 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 38. Program control

The program control program, DFHPCP, is an interface routine which supports
DFHPC LINK, ABEND, SETXIT and RESETXIT calls issued in other CICS modules
and invokes the appropriate program manager domain function.

In previous releases DFHPCP provided the functions that are now provided by the
Program Manager Domain, and other domains.

Design overview

Services in response to requests
The following services are performed by DFHPCP in response to DFHPC requests
from other CICS functions, where those functions have not been converted to use
domain interfaces :
Link (LINK)

Builds a parameter list and issues DFHPGLK FUNCTION(LINK) domain
call.

Handle Abend (SETXIT)
If SETXIT macro specifies an abend routine address, then DFHPCP builds a
parameter list and issues a DFHPGHM FUNCTION(SET_ABEND)
OPERATION(HANDLE) call. If SETXIT macro does not specify an abend
routine address, then DFHPCP builds a parameter list and issues a
DFHPGHM FUNCTION(SET_ABEND) OPERATION(CANCEL) call.

RESETXIT
DFHPCP builds a parameter list and issues a DFHPGHM
FUNCTION(SET_ABEND) OPERATION(RESET) call. If SETXIT macro
does not specify an abend routine address, then DFHPCP builds a
parameter list and issues a DFHPGHM CANCEL call.

Abend (ABEND)
If it is an ABEND request without an existing TACB, then the parameter
list is built for this abend. A DFHABAB(CREATE_ABEND_RECORD) is
issued to build the TACB. Else a DFHABAB(UPDATE_ABEND_RECORD)
is issued with the name of the failing program is issued. A
DFHABAB(START_ABEND) call is then made to issue the abend. If the
DFHABAB(START_ABEND) call returns control to this module, it is
because the exit XPCTA has been invoked and modified the return address.
Control is passed to the modified address in the requested execution key.

Modules

DFHEPC

Call mechanism
Branched to from DFHEIP.

Entry address
DFHEPCNA. Stored in the CSA in a field named CSAEPC.

© Copyright IBM Corp. 1997, 2011 363

Purpose
DFHEPC is DFHEIP’s program control interface. It supports the following EXEC
CICS requests
v LINK
v XCTL
v RETURN
v LOAD
v RELEASE
v ABEND
v HANDLE ABEND

It routes a local request to the PG domain, or to DFHABAB (EXEC CICS ABEND)
It routes a remote EXEC CICS LINK request to the intersystem module, DFHISP.

Called by
DFHEPC is called exclusively by DFHEIP.

Inputs
The application parameter list.

Outputs
Updated EIB.

Operation
LINK If SYSID is remote, ships the link request through the DFHISP module.

 If SYSID is local:
v Builds parameter list and calls DFHPGLE FUNCTION(LINK_EXEC)
v Checks the response.
v If response indicates the program is remote, ships the link request

through the DFHISP module.
v Sets up EIBRESP (and, if needed, EIBRESP2).
v Returns control to DFHEIP.

XCTL Builds parameter list and calls DFHPGXE
FUNCTION(PREPARE_XCTL_EXEC)

 Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

If the PGXE request failed, then returns control to DFHEIP

If the PGXE request was successful, then return control to DFHAPLI as for
EXEC CICS RETURN. (DFHAPLI will then invoke the program specified
on EXEC CICS XCTL).

RETURN
Builds parameter list and calls DFHPGRE
FUNCTION(PREPARE_RETURN_EXEC) (this call is bypassed if there are
no options (COMMAREA, TRANSID, INPUTMSG) specified on EXEC
CICS RETURN

 . Checks the response

. Sets up EIBRESP (and, if needed, EIBRESP2).

. If the PGRE request failed, then returns control to DFHEIP

. If the PGRE request was successful (or was bypassed), then return control
to DFHAPLI which completes the return to the calling program or to
Transaction Manager.

364 CICS TS for z/OS 4.1: Diagnosis Reference

LOAD
Builds parameter list and calls DFHPGLD FUNCTION(LOAD_EXEC)

 Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

If the PGLD request was successful, then set the return parameters in the
application parameter list.

Returns control to DFHEIP.
RELEASE

Builds parameter list and calls DFHPGLD FUNCTION(RELEASE_EXEC)

 Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

Returns control to DFHEIP.
HANDLE ABEND

For HANDLE ABEND PROGRAM, perform resource security check and
check whether program name is known.

 Builds parameter list and calls DFHPGHM FUNCTION(SET_ABEND)
v OPERATION(HANDLE) for HANDLE ABEND PROGRAM or LABEL
v OPERATION(CANCEL) for HANDLE ABEND CANCEL
v OPERATION(RESET) for HANDLE ABEND

Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

Returns control to DFHEIP.
ABEND

Builds parameter list and calls DFHABAB
FUNCTION(CREATE_ABEND_RECORD) and
FUNCTION(START_ABEND).

 DFHABAB START_ABEND does not normally return, as control is passed
to a program or label specified on a HANDLE ABEND, or the program is
terminated abnormally.

The XPCTA user exit can request retry. In this case DFHABAB
START_ABEND returns to DFHEPC passing back the retry parameters.
DFHEPC sets the registers and other values and branches to the specified
retry address.

How loaded
At CICS startup, as part of the building of the CICS nucleus. The nucleus is built
by DFHSIB1, which uses its nucleus build list to determine the content and
characteristics of the CICS nucleus.

Exits
 Program Global user exit points

DFHEPC XPCERES
XPCREQ
XPCREQC

DFHABAB XPCABND
XPCTA

Chapter 38. Program control 365

Program Global user exit points

DFHAPLI1 XPCFTCH
XPCHAIR

DFHERM XPCHAIR

DFHUEH XPCHAIR

For further information, see the CICS Customization Guide.

Trace
The following point IDs are provided for entry to and exit from DFHPCPG:
v AP 2000, for which the trace level is PC 1
v AP 2001, for which the trace level is PC 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

366 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 39. Program error program

CICS provides a dummy program error program (DFHPEP) that does nothing
except give control back to the abnormal condition program (DFHACP), which is
invoked during transaction abend processing.

You can provide some additional routines to handle programming errors. For
instance, it is possible to disable the transaction code associated with the program
in error, thus preventing the recurrence of the error until it can be corrected; send
messages to the end-user terminal; initiate a new transaction; or record abend
information in transient data.

Design overview
To provide corrective action in response to a programming error, you can code a
program error program (DFHPEP). This program can then be assembled and
link-edited to replace the dummy DFHPEP.

If provided, this program is invoked by the abnormal condition program
(DFHACP) whenever a task terminates due to a task abnormal condition.
However, it will NOT be called if a task is terminated due to an attach failure (for
example the transaction is not defined) or when CICS deliberately terminates a
task to alleviate a stall.

The user can perform any kind of corrective action within a program error
program.

Guidance information about PEP coding is given in the CICS Recovery and Restart
Guide. Reference information about PEP coding is given in the CICS Customization
Guide.

Control blocks
The control block associated with the program error program is:
DFHPEP_COMMAREA, the commarea passed to DFHPEP.

SeeCICS Data Areas for a detailed description of this control block.

Modules
DFHPEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 367

368 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 40. Program preparation utilities

The program preparation utilities consist of the command-language translators,
which are utility programs that run offline to translate CICS application programs
using command-level CICS requests. They convert the EXEC commands into call
statements in the language in which the EXEC commands are embedded. Versions
of the translator program are available for:
v COBOL (DFHECP1$)
v PL/I (DFHEPP1$)
v C (DFHEDP1$)
v Assembler language (DFHEAP1$).

Design overview
The command-language translators manage storage by creating a stack from a
single area allocated at the start of the program.

Because the input is free-format, the translators move it into a buffer area that can
hold data spanning two or more source records. The analysis of the source is
mainly table driven.

The translators build the replacement source code for each EXEC command in a
form appropriate to the language:
v For COBOL, the replacement code contains a series of MOVE statements,

followed by a CALL statement.
v For PL/I, the replacement code contains a declaration of an entry variable

followed by a CALL statement. These statements are contained within a DO
group.

v For C, the replacement code contains a function call (dfhexec) and may also
contain assignment statements.

v For assembler language, the replacement code is an invocation of the
DFHECALL macro.

Errors in the source can be detected. Spelling corrections are made to the source,
and any unrecognizable or duplicate keywords and options are ignored. For
COBOL, PL/I, and C, the translator produces error diagnostics that are collected
together on the output listing. The assembler language translator, however,
produces error diagnostics in the translated output following the EXEC command
in which the error occurred.

Modules
DFHECP1$, DFHEPP1$, DFHEDP1$, DFHEAP1$

Exits
Global user exit points are not applicable to offline utilities.

© Copyright IBM Corp. 1997, 2011 369

Trace
Trace points are not applicable to offline utilities.

370 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 41. Remote DL/I

An overall description of DL/I database support is given in Chapter 15, “DL/I
database support,” on page 135. This section gives information that is specific to
remote DL/I.

Design overview
This section outlines what you must do to define remote DL/I support, and
describes the functions of remote DL/I.

System definition
For a CICS system that supports only remote databases you must, in addition to
providing the usual definitions that are required for function shipping, code a PSB
directory (PDIR) using the DFHDLPSB macro. Every PDIR entry must have
SYSIDNT specified. The PDIR system initialization parameter must be coded
specifying the suffix of the PDIR.

DL/I PSB scheduling
When a CICS task requests the scheduling of a DL/I PSB by means of an EXEC
DLI SCHEDULE request or DL/I PCB call, and the request is for a remote PSB,
control is passed to DFHDLIRP. DFHDLIRP allocates a remote scheduling block
(RSB) and issues a DFHIS TYPE=CONVERSE macro to ship the scheduling request
to the owning system.

Database calls
For a remote DL/I database call, a DFHIS TYPE=CONVERSE macro is issued to
ship the request to the owning system. The return codes are passed back to the
user in the user interface block (UIB).

DL/I PSB termination
If a remote PSB is terminated, the actions performed are:
1. Free the RSB and local program communication block (PCB) storage.
2. If the DL/I PSB termination was not caused by a CICS syncpoint, request one

now.

Control blocks
Figure 70 on page 372 illustrates some of the control blocks used to support remote
DL/I.

© Copyright IBM Corp. 1997, 2011 371

The DL/I interface parameter list (DLP) is described in “DL/I interface parameter
list (DLP)” on page 137.

The remote PSB directory (PDIR) contains an entry for each remote PSB that can be
used from an application program.

The remote scheduling block (RSB) is acquired when a CICS task issues a PSB
schedule request for a remote PSB. The RSB is freed when the task issues a
SYNCPOINT or a DLI TERM request.

See for a detailed description of these control blocks.

CSADLI
DLP

DLPDLI
DLPEDPEP
DLPRPEP
DLPRPDIR

TCARSBA

PDIR
(Remote
entries

Entry point for DFHDLI
Entry point for DFHEDP
Entry point for DFHDLIRP

RSB

Figure 70. Some control blocks used for remote DL/I support

372 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 42. Resource definition online (RDO)

The CEDA transaction creates and alters the definitions of system resources in the
CICS system definition (CSD) data set.

RDO provides:
v Online transactions that can be used to inspect, change, and install resource

definitions:
– CEDA (inspect, change, and install)
– CEDB (inspect and change)
– CEDC (inspect only).

v A programmable interface to the CEDA transaction, using an EXEC CICS LINK
command in the application program to invoke DFHEDAP directly. (For further
information, see the CICS Customization Guide.)

v A set of system programmer API command (the EXEC CICS CREATE
commands) for creating CICS resources dynamically.

v An offline utility, DFHCSDUP, to inspect or change resource definitions. (For a
description of this utility, see Chapter 10, “CSD utility program (DFHCSDUP),”
on page 103.)

Design overview
Resource definitions are maintained on the CICS system definition (CSD) data set.
The resource definitions in the CSD data set can be viewed and changed using
either the online CEDx transactions, or the offline utility DFHCSDUP.

Installation of resource definitions makes the definitions available to the running
CICS system. Resource definitions can be installed at these times:
v When CICS is cold started, using the GRPLIST system initialization parameter.
v During a run of CICS, using the CEDA transaction.

When resource definitions are installed, they are made available through the
appropriate resource managers.

Modules
The relationships between the components of RDO, and the components of some
of the services it uses, are shown in Figure 71 on page 374.

© Copyright IBM Corp. 1997, 2011 373

DFHEDAP and DFHEDAD control the CEDA, CEDB, and CEDC transactions.
They provide screen management for the transactions, and invoke DFHAMP to
implement any actions that are required.

DFHSII1 invokes DFHAMP when CICS is cold started, to install resource
definitions for the current run. These resource definitions are specified by the
GRPLIST system initialization parameter. DFHSII1 passes the GRPLIST system
initialization parameter to DFHAMP.

DFHAMP, the allocation management program, manages all requests to view,
change, and install resources. It uses the services provided by other parts of RDO,
and by the resource managers:
v DFHAMP invokes DFHPUP and DFHDMP to read, write, and update resource

definitions on the CSD data set:
– DFHPUP, the parameter utility program, converts resource definition data

between the parameter list format provided by DFHAMP and the record
format needed by the CSD.

– DFHDMP, the CSD management program, manages I/O of resource definition
data to and from the CSD data set.

v DFHAMP invokes DFHTOR, the terminal object resolution program, to merge
TERMINAL, TYPETERM, CONNECTION, and SESSION definitions:
– When requests are made to install TERMINALs, TYPETERMs,

CONNECTIONs, and SESSIONs, DFHTOR merges TYPETERM and
TERMINAL information, and also CONNECTION and SESSION information,
and passes this merged information back to DFHAMP.

– DFHAMP passes the merged definitions to DFHZCQ to install in the running
CICS system. Any merged TERMINAL definitions that are to be used as
autoinstall terminal models are passed to the autoinstall terminal model
(AITM) manager.

– When TYPETERM definitions are installed, DFHTOR records the information
about the CICS global catalog for subsequent use.

OFFLINE ONLINE

Offline System CEDA/B/C Resource managers
utility initialization (or

from LINK
command in
application
program)

DFHEDAP

DFHPUP DFHSII1 DFHEDAD

Terminal control
(DFHZCQ)

batch
routines Task control

(DFHKCQ)

DFHPUP DFHAMP
DFHCSDUP

RDO
management

Program control
(DFHPGDD)

DFHDMP DFHDMP DFHTOR
batch
routines

File control
(FCMT, FCRL, FCDN,
FCFS, AFMT)

CSD CICS

AITM manager

data set global
catalog Partner resource

manager

CICS data sets

Figure 71. RDO interfaces

374 CICS TS for z/OS 4.1: Diagnosis Reference

– When the CHECK command is issued, DFHTOR checks the appropriate
TERMINAL, TYPETERM, CONNECTION, and SESSION definitions for
consistency.

v DFHAMP calls the appropriate resource managers to install resources in the
running CICS system:
– DFHZCQ is invoked to install CONNECTION, SESSION, and TERMINAL

definitions.
– DFHAMXM is invoked to install TRANSACTION and PROFILE definitions.
– DFHPGDD is invoked to install PROGRAM, MAPSET, and PARTITIONSET

definitions.
– These subroutine “gates” are called to install resources related to file control:

- FCMT, for FCT entries
- FCRL, for LSR pools
- FCDN, for DSN blocks
- FCFS, to open and close files
- AFMT, for AFCT entries for files.

– The AITM manager is invoked, using an AITM ADD_REPL_TERM_MODEL
subroutine call (see Chapter 4, “Autoinstall terminal model manager,” on
page 29), to install autoinstall terminal models.

– The partner resource manager is invoked to install partner resources for the
SAA communications interface.

DFHEICRE processes all the EXEC CICS CREATE commands. It builds an internal
DEFINE command for the resource to be created, and passes it to DFHCAP for
interpretation. The encoded command is then passed directly to DFHAMP to
install the resource in the running system. The CSD file is not accessed at all
during this processing.

DFHCSDUP, the offline CICS system definition utility program, uses batch
versions of routines from DFHPUP and DFHDMP to read, write, and update
resource definitions on the CSD data set (see Chapter 10, “CSD utility program
(DFHCSDUP),” on page 103).

For a detailed description of how the CEDA transaction handles terminal
resources, see Chapter 56, “Terminal control,” on page 441.

Exits
The XRSINDI global user exit is invoked at each install or EXEC CICS CREATE.

Trace
The following point IDs are provided, with a trace level of AP 1:
v AP 00EB (DFHAMP)
v AP 00EC (DFHDMP)
v AP 00EF (DFHTOR)
v AP 00E2 (DFHPUP).

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 42. Resource definition online (RDO) 375

376 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 43. SAA Communications and Resource Recovery
interfaces

This section describes the CICS implementation of the Communications and
Resource Recovery elements of the Systems Application Architecture® Common
Programming Interface (also known as the SAA Communications and SAA
Resource Recovery interfaces respectively).

The SAA Communications and Resource Recovery interfaces are both call-based
application programming interfaces that are common across all programming
languages and across hardware systems.

The common programming interface (CPI) component of CICS, also sometimes
known as the CP component, provides application programming interfaces that
conform to SAA specifications for Communications and Resource Recovery
interfaces.

Note: This CICS component does not currently handle any other SAA interface
elements.

The CPI component is part of the AP domain, and is shipped as object code only
(OCO).

The SAA Communications interface allows CICS applications to communicate via
APPC (LU6.2) links to partner applications on any system that conforms to SAA
standards. This interface consists of a set of defined verbs as program calls that are
adapted for the language being used. For further information about the general
call-based API, see the SAA CPI Communications Reference manual, SC26-4399.

The SAA Communications interface in CICS provides an alternative to the existing
application interface for distributed transaction processing (see Chapter 14,
“Distributed transaction processing,” on page 123). A single transaction can use
EXEC CICS commands for one conversation while using SAA Communications
calls for another (separate) conversation. Also, one end of a conversation can use
EXEC CICS commands while the other end uses SAA Communications calls.
However, it is not possible to use a mixture of EXEC CICS commands and SAA
Communications calls on the same end of a conversation.

The SAA Resource Recovery interface provides an SAA application programming
interface for commit and backout of recoverable resources. This interface consists
of two defined verbs as program calls that are adapted for the language being
used:

SRRCMIT
Commit

SRRBACK
Backout

For further information, see the SAA CPI Resource Recovery Reference manual,
SC31-6821.

© Copyright IBM Corp. 1997, 2011 377

The SAA Resource Recovery interface in CICS provides an alternative to the use of
EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK commands.
The SRRCMIT call is equivalent to the EXEC CICS SYNCPOINT command, and
the SRRBACK call is equivalent to the EXEC CICS SYNCPOINT ROLLBACK
command. A single application can use SAA Resource Recovery calls, EXEC CICS
commands, or a mixture of both.

Design overview
This section describes the SAA Communications and Resource Recovery interfaces.

The SAA Communications interface
When an application issues an SAA Communications call, control passes via the
DFHCPLC application link-edit stub to the common programming interface
program (DFHCPI), which in turn passes the request to the DFHCPIC program
load module. DFHCPIC verifies the parameters, checks the conversation state, and
(if required) issues a DFHLUC macro call to invoke the LU6.2 application request
logic module (DFHZARL). For details of DFHZARL, see Chapter 14, “Distributed
transaction processing,” on page 123.

Figure 72 shows how the SAA Communications interface support relates to CICS
intersystem communication (ISC) using VTAM LU6.2. The numbers in Figure 72
refer to the notes that follow it. CMxxxx represents a program call defined in the
SAA Communications interface.

Note:

1. Distributed transaction processing (DTP) allows a transaction using EXEC CICS
commands to communicate with a transaction running in another system. This
is carried out by DFHEIP and related EXEC interface processor modules. For a
VTAM LU6.2 intersystem link, each request is converted into DFHLUC macro
requests that call DFHZARL.

2. The SAA Communications interface is implemented by the DFHCPIC load
module within the CP (or CPI) component. DFHCPIC maps the CMxxxx
application requests into DFHLUC macro calls.

3. To begin a conversation, the SAA Communications interface requires specific
information (side information) about the partner program, including its name
and system details. This is implemented within CICS as an RDO object called
the PARTNER, which is encapsulated by the partner resource manager (PR)
component.

CMxxxx EXEC CICS
application application
request (DTP) request

(2) (1)

CP component EXEC interface
PR component component

(3) DFHCPIC (DFHEIP, DFHEGL,
load module DFHETC, DFHETL)

PARTNER

DFHLUC requests

LU6.2 ISC
(DFHZARL, etc.)

Figure 72. SAA Communications application request processing

378 CICS TS for z/OS 4.1: Diagnosis Reference

Using the SAA Communications interface on recoverable
conversations
When using the SAA Communications interface on recoverable conversations (that
is, conversations with the synclevel set to CM_SYNC_POINT), DFHLUC syncpoint
requests are routed to DFHZARL via the SAA Communications interface syncpoint
request handler (DFHCPSRH) in the DFHCPIC load module. This allows the
conversation state to be tracked.

For the equivalent EXEC CICS synclevel 2 conversations, DFHLUC syncpoint
requests pass directly to DFHZARL.

The SAA Resource Recovery interface
When an application issues an SAA Resource Recovery call, control passes via the
DFHCPLRR application link-edit stub to the common programming interface
program (DFHCPI), which in turn passes the request to the DFHCPIRR program
load module. DFHCPIRR verifies the parameters, and (if required) issues an
appropriate DFHSP macro call: DFHSP TYPE=USER for SRRCMIT, or DFHSP
TYPE=ROLLBACK for SRRBACK.

Figure 73 shows how the SAA Resource Recovery interface support relates to the
processing of EXEC CICS SYNCPOINT commands. The number in the figure refers
to the accompanying note. SRRxxxx represents a program call defined in the SAA
Resource Recovery interface, namely, SRRBACK or SRRCMIT.

Functions provided by the CPI component
Table 23 on page 380 summarizes the external subroutine interfaces provided by
the CPI component. It shows the subroutine call formats, the level-1 trace point IDs
of the modules providing the functions for these formats, and the functions
provided.

SRRxxxx EXEC CICS
application SYNCPOINT
request command

(See note.)

CP component EXEC interface
component

DFHCPIRR (DFHEIP, DFHESP)
load module

DFHSP requests

Recovery
manager
domain

Note: The SAA Resource Recovery interface is implemented by the DFHCPIRR load module
within the CP (or CPI) component. DFHCPIRR maps SRRxxxx application requests into
DFHSP macro calls.

Figure 73. SAA Resource Recovery application request processing

Chapter 43. SAA Communications and Resource Recovery interfaces 379

Table 23. CPI component’s subroutine interfaces

Format Trace Function

CPIN AP 0C01
AP 0C02

START_INIT
COMPLETE_INIT

CPSP AP 0CD0
AP 0CD1

SYNCPOINT_REQUEST

CPIN format, START_INIT function
The START_INIT function of the CPIN format is used to attach a CICS task to
perform initialization of the CPI component.

Input parameters
None.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER. Possible values are:

 RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED
ADD_SUSPEND_FAILED

CPIN format, COMPLETE_INIT function
The COMPLETE_INIT function of the CPIN format is used to wait for the
initialization task attached by the START_INIT function to complete processing.

Input parameters
None.

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have any of these values:
OK|DISASTER|KERNERROR

[REASON]
is returned when RESPONSE is DISASTER. It has this value:
INIT_TASK_FAILED

CPSP format, SYNCPOINT_REQUEST function
The SYNCPOINT_REQUEST function of the CPSP format is used to send LU6.2
syncpoint flows on recoverable conversations using the SAA Communications
interface, and to update the conversation state as required.

Input parameters
CPC_ADDRESS

is the address of the SAA Communications conversation control block (CPC).
LUC_ADDRESS

is the address of the DFHLUC parameter list.

380 CICS TS for z/OS 4.1: Diagnosis Reference

Output parameters
RESPONSE

is the subroutine’s response to the call. It can have either of these values:
OK|KERNERROR

Modules
 Module Function

DFHAPTRF Trace interpreter for the SAA Communications and Resource Recovery
interfaces

DFHCPARH SAA Communications application request handler (entry processor for
all application calls to the DFHCPIC load module, routing them to the
appropriate DFHCPCxx module)

DFHCPCxx Components of the DFHCPIC load module, each object module typically
handling a different CMxxxx application request

DFHCPDUF Offline system dump formatter for CP keyword

DFHCPI Common programming interface program (link-edited with DFHEIP and
DFHAICBP to form the DFHAIP load module)

DFHCPIN1 Initialization management program for the SAA Communications and
Resource Recovery interfaces

DFHCPIN2 Runs as a CICS task to perform initialization for the SAA
Communications and Resource Recovery interfaces

DFHCPIR SAA Resource Recovery entry processor, handling all calls to the
DFHCPIRR load module

DFHCPLC Link-edit stub for applications using the SAA Communications interface

DFHCPLRR Link-edit stub for applications using the SAA Resource Recovery
interface

DFHCPSRH SAA Communications syncpoint request handler (part of the DFHCPIC
load module)

Exits
No global user exit points are provided for this component.

Trace
The following point ID is provided for this component:
v AP 0Cxx, for which the trace levels are CP 1, CP 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 43. SAA Communications and Resource Recovery interfaces 381

382 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 44. Statistics utility program (DFHSTUP)

This section provides a general overview of the collection of CICS statistics as well
as describing the operation of the offline statistics utility program (DFHSTUP). For
more information about using the DFHSTUP utility program, see the CICS
Operations and Utilities Guide.

An operator interface to all online statistics functions is provided by the CEMT
transaction. The equivalent programmable interface is provided by the EXEC API.

Statistics may be collected at user-specified intervals from the startup to the
shutdown of a CICS system. Statistics may also be requested, resulting in the
collection of data for the period between the last time statistics were reset and the
time the request was made.

Statistics are also collected at system quiesce or logical end of day; this data is
written to the SMF data set as for a normal interval collection.

An option is provided by the statistics domain to allow the user to specify whether
interval statistics are to be collected. The statistics domain calls each domain in
turn to reset the statistics fields at every interval when statistics are collected.
Statistics (particularly interval statistics) can be used for capacity planning and
performance tuning. For further information, see the CICS Performance Guide.

There is a great similarity between CICS statistics data and CICS performance class
monitoring data. Statistics data is collected on a resource basis, whereas
performance class monitoring collects similar data on a transaction basis. Statistics
can therefore be viewed as resource monitoring.

Design overview
CICS statistics support is divided into the following components:
1. The operator interface. This component is responsible for interfacing to the

various CICS-supported terminals, analyzing the input string and then
invoking the statistics domain to perform the appropriate management
operation. This function is provided by the CEMT transaction, and also by the
EXEC API.

2. The statistics domain. This component is responsible for managing statistics
interfaces, for example, SMF and EXEC API.

3. The statistics update logic. This code is inline in the relevant resource manager.
In this way the control function of statistics is centralized, but the management
and updating of the statistics fields is given to the resource owner.

4. The statistics data collection and reset. For all collection types except
unsolicited (see below), the collection mechanism is the same. The owning
domain is invoked by statistics domain to supply a record that contains the
domain’s statistics. When this record has been formed, the domain then calls
statistics domain to place the data on the SMF data set.
There are five types of collections:
a. Interval. The collection interval default is 3 hours. This may be changed by

the user. The minimum value is 1 minute, the maximum 24 hours. On an

© Copyright IBM Corp. 1997, 2011 383

interval collection, each called domain collects and resets its statistics
counters. No action is taken if the statistics recording status is OFF.

b. Requested. Statistics may be requested using the PERFORM STATISTICS
function provided by the CEMT transaction or the EXEC API. The data
recorded is for the period between the last time statistics were reset and the
time the request was made. Statistics are reset on an interval, end-of-day, or
requested-reset collection; they can also be reset, without a collection, when
changing the statistics recording status from ON to OFF, or from OFF to
ON.
This type of collection can obtain statistics from some or all domains, as
requested. Each called domain collects, but does not reset, its statistics
counters.
Requested statistics are collected even if the statistics recording status is
OFF.

c. Requested-reset. This collection is similar to requested statistics, except that
it always obtains statistics for all domains, and each called domain resets its
statistics counters after collection.
Requested-reset statistics are collected even if the statistics recording status
is OFF.

d. End-of-day. This collection occurs when the system is quiescing. A logical
end-of-day time may be specified. The default time is midnight. This is
primarily for continually running systems. The collection is then made at
this time, and the called domain collects and resets its statistics counters.
End-of-day statistics are collected even if the statistics recording status is
OFF.
Daily systems that are taken down after midnight should change the logical
end of day to a time when the system is not operational.
If the user wants to simulate shutdown statistics, the interval can be set to
24 hours. An end-of-day report, which contains total figures for the CICS
run up to the end of the day, can then be printed by DFHSTUP.

e. Unsolicited. For dynamically allocated and deallocated resources, the
resource records its statistics just before it is deleted; for example, an
autoinstall terminal that logs off and is thereby deleted. USS statistics are
written to SMF regardless of the statistics recording status (STATRCD).

By default DFHSTUP formats the statistics for all types of collection, for all the
specified APPLIDs. However, if you specify the EXTRACT control parameter
but not COLLECTION TYPE, only the extract exit is invoked and no other
statistics output is produced.

5. The statistics formatting control. The offline utility DFHSTUP opens the
statistics data set, which is an unloaded SMF data set, and the I/O interfaces to
that data set. This routine then browses the data set and formats the statistics.
Reports may be produced for any or all of the five types of statistics collections.
DFHSTUP also provides the option of producing a summary report for selected
CICS applids. The summary report is constructed from all the statistics
contained in the interval, requested-reset, end-of-day, and unsolicited
collections. Requested statistics are not involved in the production of the
summary report.

6. The extract statistics reporting function. This is a DFHSTUP exit that takes
statistics data from the input SMF data set and passes it to a user program for
processing in order to create tailored statistics reports. DFH0STXR is a sample
program designed to exploit the extract reporting function. There are also two
skeleton exits; an assembler extract exit called DFH£STXA, and a COBOL

384 CICS TS for z/OS 4.1: Diagnosis Reference

extract exit called DFH0STXC. These show the format and structure of the
interface between DFHSTUP and the extract exit.
Specifying the extract statistics reporting function changes the default
DFHSTUP report settings. If you specify only the EXTRACT control statement,
only the extract exit is driven; other DFHSTUP reports are suppressed. If
EXTRACT is specified, other statistics report control statements, such as
SUMMARY, must also be specified to ensure that the appropriate reports are
produced.

DFHSTUP operation
DFHSTUP runs as a separate MVS job and extracts all or selected entries from the
unloaded SMF data set. The types of entries to be processed by this program are
specified in the SYSIN data set. Entries that can be selected for processing include:
v All entries—the default
v Entries written for specified applids
v Entries written for specified resource types
v Entries written for specified collection types, that is, interval, requested,

requested-reset, end-of-day, or unsolicited
v Entries written during a specified period of time.

You can also select:
v The page size; the default is 60 lines per page.
v Whether output is to be printed in mixed case or all uppercase; the default is to

print in mixed case.
v The summary report option; by default, it is not selected.

Further information about using DFHSTUP is given in the CICS Operations and
Utilities Guide.

Modules
 Module Function

DFH£STXA Skeleton assembler extract exit
DFH0STXC Skeleton COBOL extract exit
DFH0STXR DFHSTUP extract sample program
DFHST03X VTAM statistics summary formatter
DFHST04X Autoinstall terminals statistics summary formatter
DFHST06X Terminal statistics summary formatter
DFHST08X LSRPOOL resource statistics summary formatter
DFHST09X LSRPOOL file statistics summary formatter
DFHST14X ISC/IRC statistics summary formatter
DFHST16X Table manager statistics summary formatter
DFHST17X File control statistics summary formatter
DFHST21X ISC/IRC attach-time statistics summary formatter
DFHST22X FEPI statistics summary formatter
DFHSTD2X CICS DB2 statistics summary formatter
DFHSTDBX DBCTL statistics summary formatter
DFHSTDSX Dispatcher domain statistics summary formatter
DFHSTDUX Dump domain statistics summary formatter
DFHSTE15 DFSORT interface to E15 user exit
DFHSTE35 DFSORT interface to E35 user exit
DFHSTEJX Enterprise Java domain statistics summary formatter

Chapter 44. Statistics utility program (DFHSTUP) 385

Module Function

DFHSTIIX IIOP domain statistics summary formatter
DFHSTIN DFSORT E15 user exit input routine
DFHSTISX IPCONN statistics summary formatter
DFHSTLDX Loader domain statistics summary formatter
DFHSTLGX Log manager domain summary statistics formatter
DFHSTMNX Monitoring domain statistics summary formatter
DFHSTMQX CICS-MQ statistics summary formatter
DFHSTOT DFSORT E35 user exit output routine
DFHSTPGX Program manager domain statistics summary formatter
DFHSTRD Read interface subroutines
DFHSTRMX Recovery manager domain statistics summary formatter
DFHSTSJX JVM domain statistics summary formatter
DFHSTSMX Storage manager domain statistics summary formatter
DFHSTSOX Sockets domain statistics summary formatter
DFHSTSTX Statistics domain statistics summary formatter
DFHSTTQX Transient data statistics summary formatter
DFHSTTSX Temporary storage domain statistics summary formatter
DFHSTU03 VTAM statistics formatter
DFHSTU04 Autoinstall terminals statistics formatter
DFHSTU06 Terminal statistics formatter
DFHSTU08 LSRPOOL resource statistics formatter
DFHSTU09 LSRPOOL file statistics formatter
DFHSTU14 ISC/IRC statistics formatter
DFHSTU16 Table manager statistics formatter
DFHSTU17 File control statistics formatter
DFHSTU21 ISC/IRC attach-time statistics formatter
DFHSTU22 FEPI statistics formatter
DFHSTUD2 CICS DB2 statistics formatter
DFHSTUDB DBCTL statistics formatter
DFHSTUDS Dispatcher domain statistics formatter
DFHSTUDU Dump domain statistics formatter
DFHSTUEJ Enterprise Java domain statistics formatter
DFHSTUII IIOP domain statistics formatter
DFHSTUIS IPCONN statistics formatter
DFHSTULD Loader domain statistics formatter
DFHSTULG Log manager domain statistics formatter
DFHSTUMN Monitoring domain statistics formatter
DFHSTUMQ CICS-MQ statistics formatter
DFHSTUP1 PRE_INITIALIZE
DFHSTUPG Program manager domain statistics formatter
DFHSTURM Recovery manager domain statistics formatter
DFHSTURS User domain statistics formatter
DFHSTURX User domain statistics summary formatter
DFHSTUSJ JVM domain statistics formatter
DFHSTUSM Storage manager domain statistics formatter
DFHSTUSO Sockets domain statistics formatter
DFHSTUTQ Transient data statistics formatter
DFHSTUST Statistics domain statistics formatter
DFHSTUTS Temporary storage domain statistics formatter
DFHSTUXM Transaction manager domain statistics formatter
DFHSTWR Write interface subroutines
DFHSTXMX Transaction manager domain statistics summary formatter

386 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 45. Storage control macro-compatibility interface

DFHSMSCP is responsible for handling all requests for storage services that are
made by using the routine addressed by CSASCNAC in the CICS common system
area (CSA). DFHSMSCP is called by some parts of the CICS AP domain containing
DFHSC macros.

DFHSMSCP converts all requests into calls to the storage manager domain, and its
main function is to get or free storage.

Design overview
The input to DFHSMSCP, set up by the macro used for the invocation, or directly
by the calling program, consists of the following TCA fields:
v TCASCTR—the storage control request byte. This can contain one of the

following values:
– X'80' GETMAIN, in conjunction with:

- X'40' Initialize storage
- X'20' Conditional
- Storage class in bits 3 through 7 (the resulting SMMC GETMAIN storage

class name is given in parentheses where this differs from the first name):
v X'00' 1WD, treated as SHARED
v X'04' LINE
v X'05' TERMINAL or TERM
v X'0C' USER (becomes CICS24)
v X'0D' TRANSDATA or TD
v X'13' SHARED (becomes SHARED_CICS24)
v X'14' CONTROL

– X'40' FREEMAIN, in conjunction with:
- X'01' TCTTE address supplied.

v TCASCIB—the 1-byte value to which storage is to be initialized.
v TCASCNB—the 2-byte field giving the number of bytes requested on the

GETMAIN.
v TCASCSA—the 4-byte address of the storage that was obtained or the storage to

be freed.

Modules
DFHSMSCP

Exits
No global user exit points are provided for this function.

Trace
The point IDs for this function are of the form AP F1xx; the corresponding trace
levels are SC 1 and Exc.

© Copyright IBM Corp. 1997, 2011 387

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

388 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 46. Subsystem interface

The subsystem interface is a mechanism by which the MVS operating system
communicates with its underlying subsystems at certain critical points in its
processing.

CICS is required to be defined as a formal MVS subsystem for the following
purposes:
v Multiregion operation (MRO)
v Shared database support
v Console message handling.

Functional overview
An MVS subsystem consists of two control blocks and a set of functional routines,
all resident in common memory. The control blocks are:
SSCT The subsystem communication table, which contains the 4-character name

of the subsystem and a pointer to the SSVT.
SSVT The subsystem vector table, which contains a list of the subsystem function

codes that the subsystem supports, and the addresses of the functional
routines that support them.

The subsystem is active when the SSCT contains a nonzero pointer to the SSVT,
and inactive when the pointer is zero.

Subsystem definition
Each subsystem is defined to MVS by an entry in an IEFSSNxx member of
SYS1.PARMLIB. (See the z/OS MVS Initialization and Tuning Guide.) Each subsystem
can be defined with an initialization routine and some initialization parameters.
The CICS subsystem is defined with an initialization routine of DFHSSIN, and an
initialization parameter that specifies the name of an additional member of
SYS1.PARMLIB, which contains further CICS-specific subsystem parameters. These
parameters specify whether the console message handling facility is required.

Design overview
When the recommended initialization routine DFHSSIN is specified, the CICS
subsystem is initialized during the master scheduler initialization phase of the
MVS IPL. The CICS-specific subsystem parameters are read from SYS1.PARMLIB,
and the subsystem vector table is created. The supporting subsystem function
routines are loaded into common memory and their addresses are stored into the
subsystem vector table. If everything is successful, the CICS subsystem is made
active by storing the address of the subsystem vector table in the subsystem
communication table.

Console message handling
At startup, a CICS region that supports console message handling notifies the CICS
subsystem of its existence, by using the CICS SVC to issue a subsystem interface
call for the ‘generic connect’ function with a CONNECT subfunction. The
subsystem notes the creation of the new region and, if this is the first such CICS
region to become active, invokes a service of MVS console support called

© Copyright IBM Corp. 1997, 2011 389

“subsystem console message broadcasting”. The message broadcasting service
causes all subsequent console messages to be broadcast to all subsystems that have
expressed an interest in receiving them, including the CICS subsystem. This MVS
service can also be activated by other products, for example, NetView®.

If the message broadcasting service has been activated, either by CICS or by
another product, the CICS subsystem examines all messages issued by WTO
macros in any address space, but it intercepts and modifies only the following:
v Messages beginning with “DFH” that are issued under any CICS TCB, including

those CICS regions that do not have console message handling support.
These messages are reformatted to contain the CICS applid for the region in a
standard position in the message.
Because the CICS subsystem receives control after JES has recorded a console
message in the job’s message log, messages in the job log do not appear to be
reformatted. The messages are only reformatted on the operator consoles and in
the MVS system log.
If the original message is a long one, inserting the CICS applid can cause the
message to exceed the maximum length for an MVS console message. In this
case, the original message is suppressed (that is, does not appear on the
console), and the reformatted message is issued using the MVS multiple-line
console message service to split the message text over several lines. Both the
original message and perhaps several instances of the reformatted multiple-line
message appear in the job log, but only one copy of the reformatted message is
displayed on the console.

v Messages that redisplay, on operator consoles or in the MVS system log,
MODIFY commands that are directed towards CICS and contain signon
passwords for the CESN transaction.
These messages are reformatted with the passwords replaced by asterisks, so
that the original passwords are not exposed.

As each TCB terminates, it issues an ‘end of task’ subsystem call, which is
broadcast to all active subsystems. Likewise, as each address space terminates, it
issues an ‘end of memory’ subsystem call, which is also broadcast to all active
subsystems. When it receives either of these calls, the CICS subsystem first calls
the end-of-memory routine in DFHIRP; then, if the terminating address space is
known by the subsystem, it invokes the ‘generic connect’ function with a
DISCONNECT subfunction.

The DISCONNECT subfunction notes the termination of the CICS address space
and, if this is the last CICS containing console message handling support to
terminate, notifies the “subsystem console message broadcasting” support that the
CICS subsystem is no longer interested in receiving broadcast console messages.
Nevertheless, if another product has kept console message broadcasting active, the
CICS subsystem continues to reformat messages from CICS regions that do not
have console message handling support.

390 CICS TS for z/OS 4.1: Diagnosis Reference

Control Blocks
 DSECT Function

DFHSABDS The CICS subsystem anchor block (SAB). This is used to contain global
subsystem-related information that is common to all CICS regions in the
MVS image. It is used to record the options specified in the DFHSSInn
member of SYS1.PARMLIB. It contains a pointer to a bit map that
records which MVS address spaces contain an active CICS. It also
contains the address of the subsystem control table extension (SCTE)
used by IRC, and the address of the CEC status tracking information
used by XRF.

IEFJSCVT The subsystem communication table (SSCT). This is an MVS control
block. There is one SSCT for each subsystem, including the primary job
entry subsystem (JES) as well as CICS.

IEFJSSVT The subsystem vector table (SSVT). This is an MVS control block. There
is one SSVT for each active subsystem. It contains a lookup table for
determining which function codes are supported by the subsystem, and
a list of the entry points for all the supporting function routines.

Figure 74 on page 392 shows these control blocks.

Chapter 46. Subsystem interface 391

Modules
 Module Function

DFHSSIN Subsystem initialization routine for the CICS subsystem. Reads in
subsystem parameters from member DFHSSInn of SYS1.PARMLIB,
creates SSVT, loads function modules into MVS common storage.

DFHSSEN End-of-task and end-of-memory functional module. Calls DFHIRP’s
EOT/EOM routine. Issues ‘generic connect’ if terminating region or
job-step task is in the CICS address space map.

MVS CVT

X’128’

X’18’

X’04’ X’04’

X’104’

X’00’

X’04’

X’04’

X’04’

X’10’

X’14’

JESCT

SSCT (for JES)

SSCT (for MSRT)

SSCT (for CICS)

SSCT

SSVT (for CICS)

X’18’

SAB

SABASMAP

Other subsystem SSCTs Address space bit map

CVTJESCT
Address of JES
communication table

JESSSCT
Address of first SSCT

SSCTSCTA
Address of next SSCT

SSVTFCOD
Matrix of function IDs

List of addresses of
functional routines
(for example, DFHSSGC,
DFHSSWT, and DFHSSEN)

SSCTSCTA
Address of next SSCT

SABCDD
Address of CEC
‘inoperative’ data

SABSCTE
Address of SCTE

SABMAPPT
Address of bit map for
active CICS regions

SSCTSUSE
Address of subsystem
anchor block

SSCTSSVT
Address of SSVT for CICS

SSCTSCTA
Address of next SSCT

Figure 74. Control blocks associated with the subsystem interface

392 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHSSGC The generic connect functional module. CONNECT subfunction sets the
bit for the current address space in the address space map. If this is the
first CICS region to start, it invokes IEAVG700 to initiate message
broadcasting. DISCONNECT subfunction unsets the bit for the current
address space in the address space map. If this is the last CICS region to
finish, it invokes IEAVG700 to terminate message broadcasting.

DFHSSMGP Message routine for DFHSSIN.

DFHSSMGT Message table for DFHSSIN.

DFHSSWT Router module for the console message handler. Calls DFHSSWTO for
messages beginning with DFH. Calls DFHSSWTF for messages that echo
MODIFY commands.

DFHSSWTF Suppresses passwords from the echoed copies of MODIFY CICS
commands that contain signon passwords.

DFHSSWTO Inserts the applid into all DFH messages issued under a TCB with a
valid AFCB.

Exits
There are no user exits in the subsystem interface support.

Trace
No tracing is performed by the subsystem interface support.

External interfaces
Module DFHSSIN invokes the MVS module IEEMB878 to read its initialization
parameters from SYS1.PARMLIB.

Module DFHSSGC invokes the MVS module IEAVG700 to start and stop console
message subsystem broadcasting.

Modules DFHCSVC and DFHSSEN use the IEFSSREQ interface to communicate
with the CICS subsystem.

Chapter 46. Subsystem interface 393

394 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 47. Subtask control

Subtask control is the interface between a CICS task and a subtask. It avoids
suspending CICS execution, and improves the response time.

This function is invoked by the DFHSK macro with the following calls:
v CTYPE=PERFORM activates an exit routine under a new TCB.
v CTYPE=WAIT waits for subtask to complete.
v CTYPE=RETURN returns control to the main CICS TCB.

Design overview
Some synchronous operating system requests issued by CICS modules could cause
CICS to be suspended until the requests had completed. To avoid the resulting
response-time degradation, certain requests are processed by the general-purpose
subtask control program, DFHSKP. A CICS module calls DFHSKP to execute a
routine within the module under a subtask of the operating system.

DFHSKP does the following:
v Schedules a subtask to execute a routine (called an SK exit routine)
v Allows an SK exit routine to wait on an event control block (ECB) of the

operating system
v Manages subtask creation, execution, and termination
v Handles program checks or abends within the SK exit routine.

DFHSKP consists of the DFHSKM, DFHSKC, and DFHSKE programs.

DFHSKM (subtask manager program)
A DFHSK macro invokes DFHSKM to cause a routine to be executed under a
subtask of the operating system. DFHSKM chooses a subtask to execute the request
unless the caller has specified a particular subtask.

DFHSKM determines whether the subtask is inoperative, not started, or running.
The subtask is called inoperative if it has terminated itself, or could not be
attached. If the subtask is inoperative and the user coded SYNC=YES in the
DFHSK macro, the request is processed synchronously; that is, DFHSKM executes
the request under the CICS task control block (TCB).

If the subtask has not started, DFHSKM attaches a CICS task specifying the entry
point of DFHSKC to execute. DFHSKM then waits on an ECB in the subtask
control area (SKA) for the subtask and continues when the ECB is posted by
DFHSKC, indicating that the subtask has been initialized.

DFHSKM then creates a work queue element (WQE) that represents the work to be
performed under a subtask. The WQE is added to the work queue for the subtask.
When the work ECB of the subtask is posted, signaling work to do, DFHSKM
issues a wait on the work-complete ECB in the WQE. This ECB is posted when the
WQE has been processed by the subtask. DFHSKM returns control to the caller,
indicating the outcome of the processing.

© Copyright IBM Corp. 1997, 2011 395

If the subtask processing the WQE fails before completion, DFHSKM is informed
and attempts to execute the request synchronously if the caller so specified.

When CICS terminates, it issues a DFHSK CTYPE=TERMINATE macro to
terminate the subtasking mechanism. DFHSKM sets a flag in each subtask control
area (in DFHSKP static storage) indicating that the subtask should terminate.
DFHSKM then posts the subtask work ECB to signal the subtask to examine this
flag.

DFHSKM is also invoked by deferred work element (DWE) processing.

When DFHSKM decides to process a WQE synchronously, control is passed to the
routine specified by the caller. This routine may not complete normally and, so that
DFHSKM does not lose the WQE because the task abended, it creates a DWE
containing the address of the WQE. If the task abends, the DWE processor adds
the WQE to the free queue.

DFHSKC (subtask control program)
DFHSKM invokes DFHSKC using the DFHKCP attach logic to start a subtask of
the operating system, and wait for its completion. DFHSKM passes the address of
the subtask control area in the facility control area address (TCAFCAAA) in the
TCA.

DFHSKC issues an EXEC CICS GETMAIN for shared storage to pass to the
subtask for use as its automatic storage. The length required is in a field in
DFHSKE containing the automatic storage requirements. DFHSKC issues the
ATTACH macro with the ECB option to attach the operating system subtask, and
passes the address of the subtask control area.

DFHSKC issues the CICS SVC to authorize the TCB of the subtask to use the SVC.

DFHSKC issues a KC wait on the attach ECB. The module is suspended until
subtask termination, when the ECB is posted. On termination, the subtask puts a
return code in the subtask control area.

When the subtask completes, DFHSKC cleans up the subtask work queue. It then
frees the automatic storage and terminates.

DFHSKC writes messages to CSMT from this module if it was unable to attach a
subtask of the operating system subtask, or the subtask indicated that its
termination was not normal.

DFHSKE (subtask exit program)
When the subtask manager DFHSKM, executing on behalf of a CICS task, decides
that a subtask is to be started, it attaches a CICS task using the DFHKC ATTACH
macro and specifying the entry point of DFHSKCNA. This CICS task attaches the
subtask and waits for subtask completion by means of the ECB parameter coded in
the ATTACH macro.

The ATTACH macro specifies an entry point in DFHSIP (known to MVS by an
IDENTIFY macro issued in DFHSIP). DFHSIP then branches to the entry point of
DFHSKE, whose address is in the subtask control area.

Note: DFHSIP remains in storage after initialization has completed.

396 CICS TS for z/OS 4.1: Diagnosis Reference

The subtask reverses the order of the in-progress queue to service requests on a
first-come, first-served basis. It then loops round the in-progress queue and, for
each WQE, branches to the program specified in the WQE (the SK exit routine).

The exit routine returns control to DFHSKE, either indicating that the exit routine
has completed by issuing a DFHSK CTYPE=RETURN macro or requesting that
execution of the SK exit is suspended until an ECB specified by the exit is posted
by some component of the operating system.

When a return is requested, the ECB in the WQE is posted, causing the dispatcher
domain to resume the CICS task that was waiting for the SK exit to be complete.
When a wait is requested, the WQE is added to the waiting queue, which is
processed later.

When all WQEs in the in-progress queue have been processed, DFHSKE examines
the waiting queue. If any WQEs are on this queue, their ECB addresses are
inserted into an operating-system multiple-wait queue. The subtask work ECB
(posted when a WQE is added to the work queue) is put at the top of this
multiple-wait list. An operating-system multiple-wait is then issued.

When the subtask regains control, an ECB has been posted. This can be because
more work has arrived or because an ECB belonging to an exit routine has been
posted.

The WQEs on the waiting queue are scanned, and those whose ECB has been
posted are moved to the in-progress queue, with a flag on indicating that an SK
exit routine is to be resumed.

Control returns to the beginning of this program which examines the work queue
and proceeds as described earlier.

DFHSKE handles program checks and operating system abends. If an abend exit is
driven when processing a WQE, that WQE is blamed and processing of it
terminates. The CICS task requesting the processing is informed of the problem.

If an abend exit is driven when a WQE is not being processed, it is assumed to be
a problem in the subtasking program. The abend is handled, and a count of
failures is increased. When a threshold is reached, the subtask terminates.

The MVS exits are ESTAE and SPIE.

For normal termination, DFHSKE loops, processing WQEs and waiting when there
is no work to do. The subtask checks a flag in the subtask control area to see if it
has been requested to terminate. If the flag is set, the subtask terminates, indicating
normal termination by setting a response code in the subtask control area for the
attacher, DFHSKC.

Abnormal termination may occur when the error threshold has been reached. The
subtask terminates, but sets an error return code in the subtask control area for the
attacher to see. The attacher, DFHSKC, then cleans up any outstanding WQEs on
the subtask queues.

Control blocks
This function has the following control blocks:

Chapter 47. Subtask control 397

v SK static storage contains pointers to free work queue elements (WQEs) and to
work queue elements.

v SKRQLIST is the parameter area passed to DFHSKP on a request. It contains the
address of the code to be executed, and the address of the ECB.

v DFHSKWPS is the WKE structure containing the address of the next WQE in the
chain, the contents of the parameter field from CTYPE=PERFORM, the save area
for registers, and the work-complete ECB.

v DFHSKAPS is the subtask control area. Each instance of this control block
describes the state of one subtask and contains the address of automatic storage
to be used by DFHSKE, pointers to the WQE used by the subtask, the current
WQE being processed, and the ECB for work and completion.

See CICS Data Areas for a detailed description of these control blocks.

Modules
 Module Function

DFHSKC The subtask control program is invoked by DFHSKM to start up a
subtask of the operating system

DFHSKE The general-purpose multitask program is executed as a subtask of the
operating system

DFHSKM The subtask manager program causes the routine to execute under a
subtask.

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 00DE, for which the trace level is AP 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

External interfaces
The following external calls are made by DFHSKC:
MVS ATTACH

To attach a new TCB
MVS DETACH

To detach a TCB
MVS POST

To post a CICS TCB.

The following external calls are made by DFHSKE:
MVS ESTAE

To establish an error exit
MVS WAIT

To synchronize with the TCB

398 CICS TS for z/OS 4.1: Diagnosis Reference

MVS SETRP
To retry after a failure.

Chapter 47. Subtask control 399

400 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 48. Syncpoint program

This allows the user to specify logical units of work by means of syncpoints. Any
processing performed between syncpoints (provided the resources are declared as
recoverable) can be reversed in the event of an error; but after a given syncpoint
has been reached, the processing performed before that syncpoint cannot be
reversed.

A syncpoint is also taken automatically at the end of each task.

Design overview
The syncpoint program works in conjunction with the Recovery Manager domain
to provide the user with the ability to establish points in application programs at
which all recoverable updates are committed. (The user can, at any time, back out
any uncommitted changes by means of the rollback function.)

The syncpoint interface is provided by the DFHSPP module. DFHSPP is invoked,
via the EXEC Interface module DFHEISP, when an application program issues an
EXEC CICS SYNCPOINT or SYNCPOINT ROLLBACK command. It is also called
from other CICS modules, such as DFHMIRS.

Further important information about syncpoint processing is given in Chapter 26,
“Function shipping,” on page 301 and Chapter 99, “Recovery Manager Domain
(RM),” on page 1551.

DFHSPP implements syncpoint calls by in turn calling the Recovery Manager
domain with DFHRMUWM COMMIT_UOW or BACKOUT_UOW requests. RM
calls its clients with prepare, commit, start backout etc. calls. One of RM's clients is
’APUS’, serviced by module DFHAPRC. Depending on the call from RM
DFHAPRC calls DFHSPP or DFHDBP to process Deferred Work Elements (DWEs).
DWEs provide a mechanism whereby resource owners can record their need to
perform actions at a syncpoint. Most resource owners provide their own RM client
routines, but a few, such as interval control, use DWEs.

Note that the implicit syncpoint or backout performed at task termination is
effected by a direct call to the RM domain, not by issuing a DFHSP macro.

Task-related user exit resynchronization
The purpose of task-related user exit resynchronization is to allow a resource
manager to ask CICS for the resolution of UOWs about which it is indoubt. Task
related user exit resynchronization is called as a result of an EXEC CICS RESYNC
command to restore the CICS end of the thread that was interrupted by the failure
of the connection with the resource manager.

DFHRMSY is passed a parameter list by DFHERMRS which consists of the
following: rmi entryname (8 bytes) - the name of the TRUE to be called for resync.
rmi qualifier (8 bytes) - the qualifier to the name of the TRUE to be called for
resync. uowid (8 bytes) - the id of the UOW to be resynchronized resync type (1
byte) - a flag indicating whether this is a resync as a result of an EXEC CICS
RESYNC command or due to a Recovery manager domain unshunt.

© Copyright IBM Corp. 1997, 2011 401

DFHRMSY's job is to call the named TRUE with a resync call giving the resolution
of the named UOW. The resolution can be commit, backout, should not be indoubt
or lost to initial start. (Lost to initial start means that a START=INITIAL has been
performed subsequent to the indoubt UOW being created. Initial start clears the
log and the catalog meaning that Recovery Manager has no knowledge of the
UOW.)

In order to find the outcome of the UOW, DFHRMSY issues a
INITIATE_RECOVERY call to Recovery manager domain for the named UOW,
which returns the UOW status. DFHRMSY then builds the resync plist to pass to
the TRUE, and calls the TRUE using a DFHRMCAL macro. On return from the
TRUE, if the TRUE returns an OK response indicating that it has successfully
resynced with its resource manager, then DFHRMSY issues a
TERMINATE_RECOVERY call to RECOVERY manager domain specifying
FORGET(YES). This tells RM domain it can remove this TRUE's involvement in the
UOW. If no other components or TRUEs are waiting resync for the UOW, then RM
domain will delete it's knowledge of the UOW. If the TRUE does not return with
an ok response, FORGET(NO) is specified on the TERMINATE_RECOVERY call,
and RM domain retains this UOW for this TRUE. A subsequent resync will be
required.

Control blocks
This section describes the control blocks used by the syncpoint program:
v Deferred work element (DWE)

See CICS Data Areas for a detailed description.

Deferred work element (DWE)
A deferred work element (DWE) is created and placed on a DWE chain to save
information about actions that must be taken when the unit of work terminates.
These actions may depend upon whether the UOW commits or backs out.

DWEs are created by CICS control modules, and chained off field TCADWLBA in
the task’s TCA using DWECHAN as the chain field. The module that creates a
DWE inserts the entry address of a DWE processor in field DWESVMNA of that
DWE. Control is passed to this DWE processor by the syncpoint program at the
end of the task or UOW.

DWEs can be used for work to be done before or after the syncpoint is logged or
in the event of transaction backout.

The layout of DWEs is defined by the DFHDWEPS structure and by the
DFHDWEDS assembler DSECT.

Modules
DFHSPP, DFHAPRC, DFHDBP

DFHSPP
DFHSPP can be invoked by the following macros:
DFHSP TYPE=USER

Take a syncpoint
DFHSP TYPE=ROLLBACK

Roll back the current unit of work

402 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSP TYPE=PHASE_1
Do DWE processing for prepare

DFHSP TYPE=PHASE_2
Do DWE processing for commit

When DFHSPP is called by means of a DFHSP TYPE=USER or TYPE=ROLLBACK
macro the request is converted into a call to the Recovery Manager domain to
commit or backout the current UOW. If the RM request fails SPP calls DFHAPAC
to select an abend code corresponding to the failure reported by RM (for example
ASP1 for an indoubt failure) and, in most cases, issues a PC ABEND with this
abend code.

In the case of a commit or backout failure, however, no PC ABEND is issued and
the transaction continues normally. In these cases CICS has, for the present, been
unable to bring all local resources to the committed state for this unit of work. It
has recorded any data necessary to re-attempt this at some later time, and has
retained any locks necessary to preserve data integrity until then.

When DFHSPP is called by means of a DFHSP TYPE=PHASE_1 or
TYPE=PHASE_2 macro SPP processes any DWEs in the DWE chain (TCADWLBA).
The TYPE=PHASE_1 call is issued by DFHAPRC in response to an RM prepare or
end_backout request. For each DWE in the chain that is not marked as cancelled
(DWECNLM ON) or phase_2 only (DWEPHS2 ON) the DWE processor (entry
address DWESVMNA) is called. In the prepare case SPP collects ’votes’ and may
return a YES, NO or READ-ONLY vote to its caller. Also, if necessary, a DL/I
TERM call is issued to allow DFHDLI to perform end-of-UOW actions. The
TYPE=PHASE_2 call is issued by DFHAPRC in response to an RM commit or
shunt request. For each DWE in the chain that is marked phase 2 and not cancelled
the DWE processor is called. In the shunt case any DWE that is marked for
shunting (DWESHUNT ON) is retained in the DWE chain. All other DWEs are
freed.

DFHDBP
DFHDBP is link-edited with DFHAPRC and is called by DFHAPRC in response to
an RM start_backout request. For each DWE in the task's DWE chain that is not
marked cancelled it marks the DWE as ’backout’ (DWEDYNB ON). For any BMS
DWE it issues a DFHBMS TYPE=PURGE request to discard the incomplete
message, otherwise it calls the DWE processor then marks the DWE as cancelled.

DFHAPRC
DFHAPRC is the module which provides the gate for the ’APUS’ Recovery
Manager client. It provides keypoint and restart support for user written log
records, which is described elsewhere, and syncpoint support where it serves as a
receiver for RMRO calls from the RM domain for prepare, commit, etc. which it
converts into appropriate calls to SPP or DBP described above.

Exits
No global user exit points are provided for this function.

Chapter 48. Syncpoint program 403

Trace
The following point IDs are provided for this function:
v AP 00CB, for which the trace level is AP 1.
v AP D8xx, for which the trace level is AP 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

404 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 49. System dump formatting program

The system dump formatting program is for use on MVS system dump
(SYS1.DUMP) data sets that record system dumps requested by CICS via the MVS
SDUMP macro.

The program is invoked via the interactive problem control system (IPCS). You can
use IPCS either interactively or from an MVS batch job.

The CICS-supplied sample system dump formatting program for use with CICS
Transaction Server for z/OS, Version 4 Release 1 control blocks is called
DFHPD660.

For further information about the system dump formatting programs, about using
IPCS to format and analyze CICS dumps, and about the dump exit parameters
available, see the CICS Operations and Utilities Guide.

Design overview
The system dump formatting program produces a formatted listing of CICS control
blocks grouped within functional area. CICS dump exit parameters can be
specified on the IPCS VERBEXIT subcommand to indicate whether the control
block output is to be produced or suppressed for each functional (component) area.
Summary reports are available for certain of the functional areas, and the dump
exit parameters can also indicate whether these are to be produced or suppressed.

Modules
 Module Function

DFHAIDUF Autoinstall terminal model manager formatter
DFHAPTRA Application domain multiregion operation trace interpreter
DFHAPTRB Application domain extended recovery facility trace interpreter
DFHAPTRC Application domain user exit trace interpreter
DFHAPTRD Application domain trace interpreter
DFHAPTRE Application domain data tables trace interpreter
DFHAPTRF Application domain SAA Communications and Resource Recovery

interfaces trace interpreter
DFHAPTRG Application domain ZC exception and VTAM exit trace interpreter
DFHAPTRI Application domain trace interpretation router
DFHAPTRJ Application domain ZC VTAM interface trace interpreter
DFHAPTRL Application domain CICS OS/2 LU2 mirror trace interpreter
DFHAPTRN Application domain autoinstall terminal model manager trace interpreter
DFHAPTRO Application domain LU6.2 application request logic trace interpreter
DFHAPTRP Application domain program control trace interpreter
DFHAPTRR Application domain partner resource manager trace interpreter
DFHAPTRS Application domain DFHEISR trace interpreter
DFHAPTRV Application domain DFHSRP trace interpreter
DFHAPTRW Front End Programming Interface feature trace interpreter
DFHAPTR0 Application domain old-style trace entry interpreter
DFHAPTR2 Application domain statistics trace interpreter
DFHAPTR4 Application domain transaction manager trace interpreter

© Copyright IBM Corp. 1997, 2011 405

Module Function

DFHAPTR5 Application domain file control trace interpreter
DFHAPTR6 Application domain DBCTL DL/I trace interpreter
DFHAPTR7 Application domain LU6.2 transaction routing trace interpreter
DFHAPTR8 Application domain security trace interpreter
DFHAPTR9 Application domain interval control trace interpreter
DFHCCDUF CICS catalog formatter
DFHCCTRI CICS catalog trace interpreter
DFHCPDUF SAA Communications and Resource Recovery interfaces formatter
DFHCSDUF CSA and CSA optional features list formatter
DFHDBDUF DBCTL and remote DL/I dump formatter
DFHDDDUF Directory manager formatter
DFHDDTRI Directory manager trace interpreter
DFHDMDUF Domain manager formatter
DFHDMTRI Domain manager trace interpreter
DFHDSDUF Dispatcher domain formatter
DFHDSTRI Dispatcher domain trace interpreter
DFHDUDUF Dump domain formatter
DFHDUF Formatting router
DFHDUFUT Service functions routine
DFHDUTRI Dump domain trace interpreter
DFHERDUF Error message index processor
DFHFCDUF File control formatter
DFHFRDUF File control recoverable work elements formatter
DFHICDUF Interval control formatter
DFHIPCSP Table of CICS entries for the IPCS exit control table
DFHIPDUF Kernel stack internal procedure formatter
DFHKEDUF Kernel domain formatter
DFHKELOC Routine for locating domain anchors
DFHKETRI Kernel domain trace interpreter
DFHLDDUF Loader domain formatter
DFHLDTRI Loader domain trace interpreter
DFHLMDUF Lock manager formatter
DFHLMTRI Lock manager trace interpreter
DFHMEDUF Message domain formatter
DFHMETRI Message domain trace interpreter
DFHMNDUF Monitoring domain formatter
DFHMNTRI Monitoring domain trace interpreter
DFHMRDUF Multiregion operation formatter
DFHNXDUF Control block index processor
DFHPADUF Parameter manager formatter
DFHPATRI Parameter manager trace interpreter
DFHPDKW Input parameter string validation routine
DFHPDX1 Control program
DFHPGDUF Program manager formatter
DFHPGTRI Program manager trace interpreter
DFHPRDUF Partner resource manager formatter
DFHPTDUF Program control table formatter
DFHRMDUF Resource recovery manager formatter
DFHSMDUF Storage manager formatter
DFHSMTRI Storage manager trace interpreter
DFHSNTRI Application domain signon trace interpreter
DFHSSDUF Static storage area formatter
DFHSTDUF Statistics domain formatter
DFHSTTRI Statistics domain trace interpreter

406 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHSUDUF Dump domain summary formatter
DFHSUTRI Subroutine trace interpreter
DFHSZDUF Front End Programming Interface feature dump formatter
DFHTCDUF Terminal control formatter
DFHTDDUF Transient data formatter
DFHTDTRI Transient data trace interpreter
DFHTIDUF Timer domain formatter
DFHTITRI Timer domain trace interpreter
DFHTMDUF Table manager formatter
DFHTRDUF Trace domain formatter
DFHTRFFD Trace entry data field formatter
DFHTRFFE Trace entry formatter
DFHTRFPB Routine to process blocks of trace entries
DFHTRFPP Routine for selecting trace entries to be printed
DFHTRIB Trace entry interpretation string builder
DFHTRTRI Trace domain trace interpreter
DFHTSDUF Temporary-storage formatter
DFHUEDUF User exit formatter
DFHUSDUF User domain dump formatter
DFHUSTRI User domain trace interpreter
DFHXMDUF Transaction manager domain formatter
DFHXMTRI Transaction manager domain trace interpreter
DFHXSDUF Security domain dump formatter
DFHXSTRI Security domain trace interpreter
DFHXRDUF Extended recovery facility (XRF) formatter
DFHZXDUF XRF ZCP queue formatter

Exits
Global user exit points are not applicable to offline utilities.

Trace
Trace points are not applicable to offline utilities. However, the output obtained
and any messages issued by the system dump formatting program may provide
clues to problems associated with corrupted data.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

External interfaces
The following external calls are used by the system dump formatting program:
v MVS GETMAIN and FREEMAIN for storage management
v OPEN SVC to open DFHSNAP
v CLOSE SVC to close DFHSNAP
v MVS IPCS service routines.

Chapter 49. System dump formatting program 407

408 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 50. System recovery program

The system recovery programs, DFHSR1, DFHSRP, and DFHSRLI, together form
the default CICS recovery routine for the application (AP) domain. This routine is,
in particular, the recovery routine for program checks, operating system abends,
and runaway tasks that occur in user application code.

Design overview
The CICS kernel intercepts program checks, runaway tasks, operating system
abends and some other internal errors for all CICS domains. The kernel then
selects which CICS recovery routine to pass control to. The selected recovery
routine can then process the error as appropriate.

The DFHSR1 module is the default recovery routine for the application domain. It
receives control if any of the above errors occur in CICS system application
programs, user application programs and some CICS nucleus modules. It processes
internal errors itself but, when dealing with program checks, operating system
abends, and runaway task abends, it calls the DFHSRP module. The DFHSRP
module, in turn, converts the error into a transaction abend, if possible; if not
possible, it terminates CICS. The DFHSRP module uses subroutines in DFHSRLI.

The transaction abend codes that may be issued are:

AEYD
error detected by command protection

AICA task runaway

AKEF domain gate not active

AKEG kernel stack storage GETMAIN failure.

ASRA program check

ASRB
operating system abend

ASRD illegal macro call or attempt to access the CSA or TCA

ASRK
TCA not available

xxxx as set by issuers of deferred abend

The processing associated with each of these abends is described in “Error
handling” on page 410.

For further information about the abends, see CICS Messages and Codes.

System recovery table
Associated with DFHSRP is the system recovery table (SRT). This is a table that the
user can provide, containing operating system abend codes. It controls whether
CICS recovers from program checks and operating system abends in noncritical
code.

© Copyright IBM Corp. 1997, 2011 409

You specify the name of the system recovery table by the SRT system initialization
parameter, as either SRT=NO or SRT=xx, where xx is the two-character suffix of
the SRT:
v If NO is coded, CICS does not recover from program checks or operating system

abends, and terminates if one occurs.
v If a suffix is coded, CICS attempts to recover from all types of program check,

but can only recover from an operating system abend if the abend code appears
in the SRT identified by the suffix (for example, DFHSRT1A where 1A is the
suffix). If the abend code is not in the SRT, CICS terminates.

For information about how to create the SRT, see .

Recovery initialization
The DFHSII1 module calls the DFHSR1 module during AP Domain initialization.
The DFHSR1 module tells the Kernel that it is the default recovery routine for the
AP domain and adds the ABAB gate.

If any error occurs when informing the kernel, CICS is terminated with message
DFHSR0605 and a system dump because it is not possible to run CICS without AP
domain recovery.

Error handling
The DFHSR1 module gets control from the kernel or from other AP domain
modules. It decides whether it is dealing with an internal error or an external error
such as a program check. Internal errors are dealt with by exiting from the
recovery environment and issuing the appropriate kernel call. If either of the
DFHXFP or DFHEMS modules has caused a program check, the DFHSR1 module
exits from the recovery environment and passes control to DFHXFP or DFHEMS.
All other external errors are passed on to the DFHSRP module. If control returns
from the DFHSRP module, DFHSR1 issues a transaction abend. If control returns
from the abend call, it is because the XPCTA exit has requested retry; in which
case, DFHSR1 restores the registers etc and branches to the resume address.

The DFHSRP module makes an exception trace entry, ensures it is running on the
QR TCB and then deals with one of the following:
v Program check (see “Program check” on page 411)
v Operating system abend (see “Operating system abend” on page 412)
v Runaway task (see “Runaway task” on page 412)
v Kernel gate error (see “Kernel gate error” on page 413)
v Deferred abend. (see “Deferred abend” on page 413).

Note: The kernel recovery environment is terminated very soon after DFHSRP
receives control. This ensures that DFHSRP gets driven again if a subsequent error
occurs in DFHSRP itself (rather than the kernel percolating the error to the next
kernel stack entry). DFHSRP is therefore in a position to detect such recursive
errors, and can take the appropriate action.

If DFHSRP can abend the transaction, it builds a Transaction Abend Control Block
(TACB) to describe the abend. The TACB is a task-lifetime control block that
records details of a transaction abend. This TACB may be used by the rest of AP
domain that needs information about the abend. DFHSRP builds the TACB, rather
than letting Program Control build it as part of DFHPC TYPE=ABEND processing.

410 CICS TS for z/OS 4.1: Diagnosis Reference

This enables DFHSRP to include extra information in the TACB that would
otherwise be lost, such as GP registers, PSW, and FP registers at the time of the
error.

Program check
The following processing takes place for a program check, in the order given:
 1. If this program check occurred while DFHSRP was in the middle of

processing a previous program check, then CICS is terminated with message
DFHSR0602 and a system dump. Otherwise DFHSRP may get caught in a
recursive loop.

 2. If this program check occurred while DFHSRP was in the middle of
processing an operating system abend, then CICS is terminated with message
DFHSR0615 and a system dump. This traps program checks in global user exit
XSRAB.

 3. If DFHEIP hired gun checking caused the program check, create an abend
record for abend code AEYD and return to DFHSR1.

 4. If the program check was an 0C4 protection exception, DFHSRP diagnoses the
0C4 further in order to establish whether it was caused by an attempt to
access or overwrite CICS-managed protected storage. Such storage is as
follows:
v The fetch-protected dummy CSA block
v The CDSA
v The ECDSA
v The ERDSA.
v The EUDSA.
v The RDSA.
v The UDSA.
Of the above, it should be noted that one can only 0C4 on the CDSA or
ECDSA if storage protection is active, while 0C4 on the UDSA or EUDSA can
only be obtained if transaction isolation is active.
This diagnosis is accomplished by disassembling the failing instruction, and
examining the instruction operands in conjunction with the execution
conditions at the time of the 0C4 (such as execution key). If the dummy CSA
caused the 0C4 (that is, an attempt was made to access the CSA or TCA, or an
illegal macro call was issued), message DFHSR0618 is issued. If a DSA caused
the 0C4, message DFHSR0622 is issued.

 5. If the SRT=NO system initialization parameter was specified, you have
disabled recovery, and CICS terminates with message DFHSR0603 and a
system dump.

 6. If a CICS system task was in control at the time of the program check,
indicated by a non-numeric transaction number, CICS is terminated with
message DFHSR0601 and a system dump.

 7. Some special processing is performed which applies only to PL/I programs.
 8. DFHSRLI is called to determine the following information:

v The program in which the program check occurred
v The offset in that program
v The execution key.

 9. The results of the diagnosis (program, offset, execution key, and, if an 0C4
abend, any “hit” DSA) are output in an exception trace.

10. Message DFHAP0001 or DFHSR0001 is issued and a system dump is taken.
(See also “System dump suppression” on page 413.)

Chapter 50. System recovery program 411

Whether message DFHAP0001 or DFHSR0001 is issued is governed by the
execution key at the time of the program check. If the program was running
in user key, message DFHSR0001 is issued; otherwise, message DFHAP0001 is
issued.

11. Finally, DFHSRP creates an abend record and returns to DFHSR1.

Operating system abend
The following processing takes place for an operating system abend, in the order
given:
 1. If this abend occurred while DFHSRP was in the middle of processing a

previous operating system abend, then CICS is terminated with message
DFHSR0612 and a system dump. Otherwise, DFHSRP may get caught in a
recursive loop.

 2. If the SRT=NO system initialization parameter was specified, you have
disabled recovery, and CICS terminates with message DFHSR0606. A system
dump may be taken, if specified on the operating system abend.

 3. If the SRT=xx system initialization parameter was specified, DFHSRP searches
the SRT with the suffix xx (that is, DFHSRTxx) for the abend code. If it does
not find the abend code, CICS terminates with message DFHSR0606. A system
dump may be taken, if specified on the operating system abend.

 4. When the abend code has been located, the next check is to see if the
operating system abend occurred in a CICS system task, indicated by a
non-numeric transaction number. If so, CICS terminates with message
DFHSR0613 and a system dump.

 5. Otherwise, the default decision is to abend the transaction with code ASRB.
However, you can modify this decision by coding a global user exit program
at exit point XSRAB. In addition to performing any processing that might be
required for particular operating system abends, the XSRAB exit point allows
you to specify whether to:
v Terminate CICS
v Abend the transaction ASRB
v Abend the transaction ASRB, but cancel any active HANDLE ABEND exits.

 6. If you choose to terminate CICS, CICS terminates with message DFHSR0606.
A system dump may be taken, if specified on the operating system abend.

 7. DFHSRLI is called to determine the following information:
v The program in which the program check occurred
v The offset in that program
v The execution key.

 8. The results of the diagnosis (program, offset, and execution key) are output in
an exception trace.

 9. Message DFHAP0001 or DFHSR0001 is issued and a system dump is taken.
(See also “System dump suppression” on page 413.)
Whether message DFHAP0001 or DFHSR0001 is issued is governed by the
execution key at the time of the program check. If the program was running
in user key, message DFHSR0001 is issued; otherwise, message DFHAP0001 is
issued.

10. Finally, DFHSRP The DFHSRP module creates an abend record with abend
code ASRB returns to DFHSR1.

Runaway task
One of the following processing options takes place for a runaway task:

412 CICS TS for z/OS 4.1: Diagnosis Reference

v If this runaway task occurred while DFHSRP was in the middle of processing an
operating system abend, CICS terminates with message DFHSR0612 and a
system dump. This traps runaway tasks caused by errors in global user exit
XSRAB.

v Otherwise, the DFHSRP module creates an abend record with abend code AICA
and returns to DFHSR1.

Kernel gate error
One of the following processing options takes place for a kernel gate error:
v If this error occurred while DFHSRP was in the middle of processing an

operating system abend, CICS terminates with message DFHSR0612 and a
system dump. This traps kernel gate errors from XPI calls in global user exit
XSRAB.

v Otherwise, the DFHSRP module issues message DFHAP0001, creates an abend
record with abend code AKEF, and returns to DFHSR1.

kernel stack GETMAIN error
The processing that takes place for a kernel stack GETMAIN error is identical to
the processing for a kernel gate error, except that the transaction is abended with
abend code AKEG.

Deferred abend
The DFHSRP module creates an abend record using the abend code set by the
code that issued the deferred abend and returns to DFHSR1.

DFHSRLIM interface
This interface is used to call program DFHSRLI. It provides the following functions
for DFHSRP:

INVOKE_XSRAB
This function invokes global user exit XSRAB if active, passing to it structure
SRP_ERROR_DATA which contains details of the operating system abend that
occurred. The abend recovery option selected by the exit is returned, which is
either to terminate CICS, abend the transaction ASRB, or abend the transaction
ASRB and cancel any active abend exits.

DIAGNOSE_ABEND
This function diagnoses a program check, operating system abend, or other error,
to establish the location of the error. It returns the program in which the error
occurred, the offset within that program, and whether the error occurred in CICS
or user application code. (A decision based on the execution key; user key implies
user application code.)

System dump suppression
When message DFHAP0001 or DFHSR0001 is issued before the transaction is
abended with ASRA, ASRB, ASRD, AKEF, or AKEG, the default is to take a system
dump with dumpcode AP0001 or SR0001 respectively. Message DFHSR0001 is
issued if CICS is running with storage protection active and is running in user key
at the time of the error; otherwise, message DFHAP0001 is issued.

Therefore, it is possible to suppress the system dumps taken for errors occurring in
code that is being run in user key (user application code), while retaining system
dumps for errors occurring in code that is being run in CICS key (CICS code), by
adding SR0001 to the dump table specifying that no system dump is to be taken.

Chapter 50. System recovery program 413

Note that the XDUREQ Global User Exit can be used to distinguish between
AP0001 situations in application and non-application code. This allows selective
dump suppression when storage protection is not active or when it is active but
some applications run in CICS key.

Modules
 Module Function

DFHSRP Called by DFHSR1 to process program checks, operating system abends,
runaway tasks, and so on.

DFHSRLI Provides functions for DFHSRP, via the DFHSRLIM interface.

DFHSR1 The default recovery routine for the AP Domain.

Exits
There is one global user exit point in DFHSR1: XSRAB. This exit can be called if an
operating system abend has occurred and the abend code is in the SRT.

For further information about using the XSRAB exit, see the CICS Customization
Guide.

Trace
The following trace point IDs are provided for DFHSRP and DFHSRLI:
v AP 0701, for which the trace entry level is AP 2
v AP 0702, for which the trace entry level is AP 2
v AP 0780, for which the trace entry level is Exc
v AP 0781, for which the trace entry level is Exc
v AP 0782, for which the trace entry level is Exc
v AP 0783, for which the trace entry level is Exc.
v AP 0790, for which the trace entry level is Exc
v AP 0791, for which the trace entry level is Exc
v AP 0792, for which the trace entry level is Exc
v AP 0793, for which the trace entry level is Exc.
v AP 0794, for which the trace entry level is Exc
v AP 0795, for which the trace entry level is Exc
v AP 0796, for which the trace entry level is Exc
v AP 0797, for which the trace entry level is Exc.
v AP 0798, for which the trace entry level is Exc
v AP 0799, for which the trace entry level is Exc.
v AP 079A, for which the trace entry level is Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

414 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 51. System spooler interface

A system programmer can communicate with the local system spooler and,
consequently, with other system spoolers via the system spooler network facilities.
The system spooler interface single-threads its input, and it is the user’s
responsibility to see that all transactions get the chance to run. One high-priority
transaction should not use the interface exclusively.

Further information about the system spooler interface is given in the CICS
Application Programming Reference.

Design overview
The system spooler interface program opens a system spooler file for either input
or output, reads or writes a file, and closes a file. These functions are for system
programmer use. The input is single-threaded, so only one transaction can use it at
a time.

An application can send files to a remote location by specifying the node of the
location, and the userid (or external writer name) of the user at that location. To
retrieve a file at the remote location, you specify the external writer name, and you
can then retrieve reports from that writer. For security reasons, the external writer
name must begin with the same four characters as the CICS applid. The remote
system to which a file or report is sent, or from which it is received, must have JES
under MVS, or VM.

System spooler interface modules
The SPOOLOPEN command dynamically allocates input or output files using the
CICS SVC, and an application control block (ACB) is opened to process the file.
For an input file, the IEFSSREQ macro is also issued to determine which file to
process. The SPOOLREAD or SPOOLWRITE commands cause GETs or PUTs to be
issued using the ACB. The SPOOLCLOSE command dynamically deallocates a file,
and causes it to be either transmitted or deleted. All processing which could cause
CICS to be suspended is performed under an operating system subtask which is
initiated by subtask control, DFHSKP.

DFHPSPST runs under CICS, but DFHPSPSS, and modules called as a result, run
under the subtask.

Normal flow
When a system spooler interface command is executed, the normal sequence of
invocation of modules is:
1. DFHEIP
2. DFHEPS
3. DFHPSP
4. DFHPSPSS
5. DFHPSPST
6. DFHPSSVC.

DFHPSP is called by:

© Copyright IBM Corp. 1997, 2011 415

v Application programs via DFHEPS issuing the DFHPS macro.
v Syncpoint program and dynamic transaction backout program to the deferred

work element (DWE) module (DFHPSPDW). The entry address of DFHPSPDW
is stored in the DWE. DFHPSPDW then calls DFHPSPST via DFHPS.

Abnormal flow
If a user transaction terminates without issuing a SPOOLCLOSE command,
DFHPSPDW is invoked to process a DWE that was set up when the SPOOLOPEN
command was processed. This closes the file in the usual way.

Modules
 Module Name

DFHEIP DFHEIP initializes the EXEC interface structure (EIS) and then invokes
the application program. Each EXEC CICS command invokes DFHEIP
(nucleus) which in turn invokes the appropriate interface processor.
DFHEIP also returns information to the application program through
EIB (within EIS).

DFHEPS DFHEPS is the link between DFHEIP and the JES interface program,
DFHPSP.

DFHPSP DFHPSP is the system spooler interface control module.

DFHPSPCK DFHPSPCK is the JES interface termination processor.

DFHPSPDW DFHPSPDW is the DWE processor.

DFHPSPSS The system spooler interface subtask module attaches a subtask to check
that a writer name and a token have been supplied. It opens and closes
JES data sets, reads a record, and writes a record.

DFHPSPST DFHPSPST is the JES interface controller.

DFHPSSVC DFHPSSVC is the system spooler interface module that retrieves a data
set name for a given external writer name, dynamically allocates it, and
returns its DDNAME.

Exits
No global user exit points are provided for this interface.

Trace
The following point ID is provided for this interface:
v AP 00E3, for which the trace level is AP 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

416 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 52. Table manager

The table manager controls the locating, adding, deleting, locking, and unlocking
of entries in certain CICS tables. These operations can be performed while CICS is
running.

Design overview
Locating, adding, deleting, locking, and unlocking entries in tables such as the
terminal control table (TCT) are performed by the table manager program,
DFHTMP.

Entries in these tables are also called “resources”. Because the structures of tables
vary as entries are added or deleted, and a quick random access is required, a hash
table mechanism is used to reference the table entries. In addition because fast
access is needed for generic locates and ordered lists of entries, a getnext chain
with a range table is used.

Hash table
The hash table is a set of pointers that are the addresses of directory elements of
table entries. A directory element is a set of pointers; one of these pointers is the
address of the table entry, the remaining pointers are the addresses of the next
elements of various chains used in the different operations of the table manager.
An example of a hash table is shown in Figure 75 on page 418.

The table manager logically combines the characters of the name of the resource,
and transforms the result to give an integer that is evenly distributed over the hash
table size.

When an entry is located or added, the table manager places it at the head of its
chain. Thus frequently used entries tend to have the minimum search times.

If the hash chains become very long, the table manager creates a larger hash table
if storage is available. The hash table is enqueued before and dequeued after the
reorganization, so that no references to the table can be made during
reorganization.

Note: Certain TMP hash tables are not reorganized because they are also used in
VTAM SRB exits.

Range table and getnext chain
Some requests to TMP are not full key locates, but rather generic locates with a
partial key. For example, requests to find all terminals whose Termid starts with
two specified characters. To enable these requests, a getnext chain is maintained
which orders all the directory elements alphabetically by key. There is also a ‘range
table’ which holds pointers to certain elements along the getnext chain and a count
of how many intermediate elements there are in each range.

This range table is hunted with a binary search to find the range in which a given
key (full or partial) will reside, and then the getnext chain is used to find a match
(if one exists) for the search condition.

© Copyright IBM Corp. 1997, 2011 417

A range will be split into two equal ranges if the number of intermediate elements
rises above a threshold which depends on the number of ranges and the number
of elements in the table. So the ranges are dynamic, and do not depend on any
particular key distribution.

The number of ranges in the table is determined when the hash table is created,
and if all the ranges are full, but a range should be split, a reorganization of the
ranges takes place, which increases the range threshold by a factor of 2.

Secondary indexes
A separate hash table, called the secondary index, is created for certain TMP tables,
which allows the same entry to be located by another key. In certain secondary
indexes, the names do not need to be unique (whereas in the primary index the
name is always unique). The secondary index entry is deleted at the same time the
entry in the primary index is deleted.

For example, a secondary index is created for DSNAME blocks. This allows table
entries to be accessed via secondary keys, using the DSNAME block number in the
case of DSNAME blocks.

Certain tables also have aliases as distinct from secondary indexes. These are
alternative names for the table entry, which can be used to locate a table entry.
They exist in the same index as the primary name, and are not included in a
getnext chain, rather they form an alias chain from the primary entry.

Directory segment
TMDSG

x'18' Start of
Scatter table directory elements
TMSKT

Directory element
x'30' SKTDIREA TMDEL

Address of first
directory element chain x'00' DIRTEA

Address of table entry
x'34' SKTDIREA

0 x'04' DIRHSCHN
Address of next element

(Minimum of
64 separate chains) x'18' DIRKEY

SKTDIREA
Address of last Table entry
directory element chain

Directory element

x'00' DIRTEA

x'04' DIRHSCHN
0

x'18' DIRKEY

Table entry

Directory element

x'00' DIRTEA

x'04' DIRHSCHN
0

x'18' DIRKEY

Table entry

Figure 75. Example of a hash table

418 CICS TS for z/OS 4.1: Diagnosis Reference

Functions of the table manager
The table manager performs the following functions:
Locate table entry

For a given name, find the address of the table entry.
Get next table entry

For a given name, find the address of the next table entry in collating
sequence. This can be used repeatedly to find all entries in a range (or all
elements in the whole table).

Add table entry
For a given table entry, add it into the table.

Quiesce a table entry
For a given name, mark its directory segment as busy.

Unquiesce a table entry
For a given name, remove its directory segment from the ‘quiesce’ state.

Delete a table entry
For a given name, delete it and any associated alias. The entry must have
been quiesced first.

Create an index for a table
Create a hash table of a given type.

Add a name into a secondary index
Given a primary name and a secondary name, add the names to the
secondary index.

Add an alias name
For a given name, assign an alias name.

Get next alias name
For a given a name, find the next alias name (if any).

Lock a table entry
For a given a name, assign a read lock to it.

Unlock a directory entry
For a given a name, remove the associated read lock.

Reset lock slots
For a given name, reset the lock slots.

Transfer lock to target task
For a given a name and the address of a target TCA, transfer the read lock
to the target task.

Process deferred work element
Make the changes made by the logical unit of work (LUW) visible at task
syncpoint time.

Read locks
Read locks are used to prevent a table entry being deleted by the table manager.

A read lock is a fullword of storage. When DFHKCP attaches a task, it allocates
storage for a number of local read locks; this storage is addressed by TCATMRLP
in the TCA. Local read locks are not acquired for table entries that cannot be
deleted.

Global read locks are used by the CICS modules that are executed independently
of any task. They reside in the table manager static storage area (TMS) that is
addressed by SSATMP in the static storage address list (SSA).

These locks are released by:
v an Unlock call,
v a Getnext call,

Chapter 52. Table manager 419

v a Reset call,
v the termination of the task,
v or a DWE call.

Read locks are always obtained against the primary index entry even if the request
is against a secondary index or an alias.

Browse token
For Getnext requests on secondary indexes, a browse token is used to hold the
name of the previously found entry. The token consists of the name found in the
secondary index (which may not be unique) and the name in the primary index
(which is unique).

The address of the directory entry cannot be used instead of this logical name
because the entry may be returned unlocked, and so may be deleted when the next
getnext request is received.

The getnext consists of locating the entry in the secondary index which has a the
correct primary index, if it exists, and then moving forward in the getnext chain. If
it does not, an entry with a matching secondary index name, but a higher primary
index name is located, if one exists. If that also does not exist, an entry with a
higher name in the secondary index is located. This requires that entries on the
getnext chain for ordered both by secondary index name and also when identical
secondary index names exist, by primary index name.

Quiesce state
A table entry is moved into quiesce state by a quiesce request if no read locks
(including ones obtained by the issuing task) exist for the entry. When a table entry
moves into quiesced state, it is unable to be located. Locating tasks can choose to
ignore or wait for quiesced entries to be unquiesced or deleted.

If the quiesce request is performed with the commit option, the only ways to
release the quiesced state are:
v Unquiesce
v Delete

For commit requests, the delete takes place immediately the request completes.
Otherwise, if an entry is not deleted or unquiesced by the end of the UOW the TM
DWE will unquiesce the entry. In this case, a delete does not take effect until the
end of the UOW.

Finding table entries in a partition dump
Figure 76 on page 422 shows the relationship of the table manager control blocks.
A general procedure for finding the required table entries in a partition dump is as
follows:
1. Find the CSA.
2. Find the CSA optional features list, CSAOPFL, from its address in field

CSAOPFLA (offset X'C8') in the CSA.
3. Find the static storage area address list (SSA) from its address in field CSASSA

(offset X'1C0') in the CSAOPFL.
4. Find the table manager static storage area (TMS) from its address in field

SSATMP (offset X'14') in the SSA.

420 CICS TS for z/OS 4.1: Diagnosis Reference

5. Look at TMS in CICS Data Areas. The fields TMASKT1 through TMASKT24
hold the addresses of the hash tables for various control blocks. Find the hash
table for the control block you are interested in:

 TMASKT1 Reserved

TMASKT2 Reserved

TMASKT3 Reserved

TMASKT4 Address of profile table (PFT) entries

TMASKT5 Address of file table (FCT) entries

TMASKT6 Address of destination control table (DCT)
entries

TMASKT7 Address of local terminal (TCTE) entries

TMASKT8 Address of remote terminal and connection
(TCNT) entries

TMASKT9 Address of local connection (TCTS) entries

TMASKT10 Reserved

TMASKT11 Address of DSN

TMASKT12 Address of DSNA

TMASKT13 Address of partner resource table (PRT)
entries

TMASKT14 Reserved

TMASKT15 Address of local terminal NETNAME table
(TCNT) entries

TMASKT16 Address of autoinstall terminal model
(AITM) table entries

TMASKT17 Address of signon table (SNT) entries

TMASKT18 Address of session (TCSE) entries

TMASKT19 Address of remote connection (TCSR) entries
(secondary index)

TMASKT20 Address of indirect connection (TCSI) entries
(secondary index)

TMASKT21 Address of connection NETNAME entries
(TCSN) (secondary index)

TMASKT22 Address of remote terminal (TCTR) entries
(secondary index)

TMASKT23 Address of generic connection NETNAME
entries (TCSM) (secondary index)

TMASKT24 Address of remote terminal NETNAME
(TCNR) entries (secondary index)

Use the following formula to find the offset of the individual scatter table:
 Length(TMATTV) * (n-1) + X’08’

Where n = position in table (see above - TMASKTn)
To find Length(TMATTV) (and the value of n) see CICS Data Areas.

6. Find the first directory element from its address in field SKTFDEA (offset X'10')
in the hash table area.

Chapter 52. Table manager 421

7. Directory elements are chained together in alphabetic order. The address of the
next element is in field DIRGNCHN (offset X'10').

8. Look at each directory element until you find the name of the control block you
are looking for. The name is in field DIRKEY (offset X'18'). Field DIRTEA (offset
X'0') holds the address of the desired control block.

Control blocks
Figure 76 shows the table manager control blocks.

See CICS Data Areas for a detailed description of these control blocks.

Modules
DFHTMP

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 00EA, for which the trace level is AP 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

CSA

x'C8' CSAOPFLA
Address of
optional features list

CSAOPFL

x'1C0' CSASSA
Address of static
storage address list

SSA

x'14' SSATMP TMS
Address of table
manager static storage

x'08' TMATTV

Array of tables data

TMASKT(n)

Table scatter table

Figure 76. Table manager control blocks

422 CICS TS for z/OS 4.1: Diagnosis Reference

Table Management Statistics
The statistics utility program, DFHSTUP, provides, for table management, statistics
(for each table) on the amount of storage (expressed in bytes) used by the table
manager to support each table (excluding storage used for the tables themselves).

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see CICS Problem
Determination Guide.

Chapter 52. Table manager 423

424 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 53. Task-related user exit control

Task-related user exit support in CICS, also known as the resource manager
interface (RMI), provides an interface that non-CICS resource managers can use to
communicate with CICS applications. The exit program can be enabled or disabled
dynamically, and useful information can be transferred to a user work area.

Functional overview
The following operations may be performed on a task-related user exit from
application programs:
ENABLE

This is a global operation that names the task-related user exit and causes
the task-related user exit to be loaded into storage, if it has not already
been loaded. It also causes the exit program control block (EPB), which
represents the task-related user exit, and the exit’s global storage to be set
up by the user exit manager module, DFHUEM. The EPB also holds a
TALENGTH argument and a bit-string profile for use in an exit operation.
The ENABLE operation does not pass control to the task-related user exit.
DFHUEM is used to enable both global user exits and task-related user
exits.

 The ENABLE operation is performed in two stages:
1. ENABLE
2. START.

An exit is not made available for execution until it has been both enabled
and started.

You can use the TASKSTART keyword on the ENABLE command to enable
a task-related user exit so that it is invoked at task start for all tasks in the
CICS system.

You can also enable a task-related user exit with the FORMATEDF
keyword, which means that the task-related user exit can provide
formatted screens for EDF to display, whenever a DFHRMCAL request to
the task-related user exit takes place.

The task-related user exit is invoked in the addressing mode of its original
caller unless the LINKEDITMODE keyword is specified on the ENABLE
command, in which case the exit is invoked in its own link-edit AMODE.
LINKEDITMODE is only valid on the first ENABLE command for an exit
program.

EXTRACT
Information concerning an “enabled and started” task-related user exit is
returned to an application when it issues this command.

DISABLE
This is a global operation which in general terms is the reverse of an
ENABLE request. The DISABLE operation can be performed in two stages:
1. STOP: This is the reverse of the START keyword on the ENABLE

request. It causes the task-related user exit to remain in main storage
together with all its associated control blocks; however it is not
available for execution until an ENABLE command with the START
option is specified.

© Copyright IBM Corp. 1997, 2011 425

2. EXITALL: This causes the EXIT and its control blocks to be deleted
from main storage. The EPB however is added to a chain of re-usable
EPB's anchored in the UETH. This function should not be used until all
tasks that have used the exit have ended; the results of EXITALL before
that point are unpredictable.

DFHRMCAL
After an exit has been enabled and started, it can be invoked from an
application using a DFHRMCAL request directly, or by passing control to a
stub which performs the DFHRMCAL request. A register 1 parameter list
may be supplied to the task-related user exit from the application.

 The task interface element (TIE) control block is created for the task and
task-related user exit combination when the task issues its first
DFHRMCAL request, unless the TIE has already been created because the
task-related user exit was enabled for TASKSTART.

When a DFHRMCAL request is issued, control passes to DFHEIP, to
DFHERM (the external resource manager interface program), and then to
the task-related user exit. DFHERM manages the TIEs.

ENABLE, DISABLE, and EXTRACT are all EXEC CICS requests. DFHRMCAL is a
macro.

A task-related user exit can “express interest” in certain types of events, and be
invoked when these events take place. These events are:
v Application invocations (DFHRMCAL mentioned above), associated with which

are optionally the EDF screen format invocations
v System Programming interface events i.e. INQUIRE EXITPROGRAM commands
v Syncpoint related events
v Task termination events
v CICS termination.

By default, it is assumed that task-related user exits are interested in application
invocations only.

Design overview
The task-related user exit interface is comparable with the EXEC interface. When
an application program requests the services of a non-CICS resource manager, it
does so by a module called the task-related user exit. The exit receives arguments
from the application program, and passes them on to the resource manager in a
suitable form.

The advantage of this method is that if the resource manager is changed, the
application program that invokes the resource manager should not need to be
changed too.

The exit is part of the resource manager programs. The name of the exit, or the
name of the entry to the exit, is specified by the resource manager, and each
application program that invokes the resource manager has to be link-edited with
an application program stub that refers to that name.

The exit is enabled and disabled using the user exit manager (DFHUEM). For
enabling, the resource manager can specify the size of a task-related work area that
it requires.

426 CICS TS for z/OS 4.1: Diagnosis Reference

The exit, when enabled and subsequently driven, receives arguments in the form
specified by the DFHUEXIT TYPE=RM parameter list (see the CICS Customization
Guide or the manual). Register 1 points to this parameter list. Register 13 points to
the address of a save area, rather than the address of the CSA. The save area is 18
words long, with registers 14 through 12 stored in the fourth word onward.

Responses to the request are indicated by values placed in register 15, and also by
means that are specific to the architecture of the application interface, for example,
by moving data into storage areas passed by the call, or into the caller’s register
15.

The main control blocks used by the task-related interface are the task interface
element (TIE):
v A TIE is created by DFHERM on the first call by a task to each resource

manager, and it is chained to the TCA for that task.

Task-related user exit implementation
The state of an exit is managed by DFHUEM, which is described under
Chapter 64, “User exit control,” on page 509. For an exit, the TALENGTH
argument and a profile in the form of a bit-string are held in the exit program
block (EPB). These arguments are not processed until the occurrence of an
application program CALL that explicitly names the exit, unless the TASKSTART
keyword is used on the ENABLE request.

Entry to the exit is through the task-related user exit interface, which comprises:
v An application stub provided with the exit, but generated using the

CICS-provided macro DFHRMCAL. It is this stub which explicitly names the
exit, and which is link-edited with each application program that uses the
application program interface (API) of the resource manager.

v DFHEIP, which is entered at DFHEIPCN by the application stub, in much the
same way as EXEC CICS commands are routed at execution time.

v DFHERM, which receives control when DFHEIP discovers that the call is not for
a CICS control function, but for a named exit.

DFHERM receives a set of registers (those of the caller, for example, the application
program), and a routing argument which names the exit. This routing argument is
constructed by DFHRMCAL, in the application stub, and is not normally visible to
the application programmer. DFHERM retrieves the name of the requested exit
from the routing argument, and scans any existing task interface elements (TIEs)
that are chained from the task’s TCA, looking for a TIE associated with the named
exit. If such a TIE is not found, it searches the installed exits on a chain of EPBs,
looking for the matching name. On finding a match, DFHERM constructs a TIE to
represent the connection between that task and the exit. The TIE is initialized from
information provided in the EPB; the TALENGTH argument defines the size of a
task-local work area which can be thought of as a logical extension of the TIE. The
profile string is also copied into the TIE.

DFHERM stacks (stores in a last-in, first-out manner) various parts of the program
execution environment—the status of HANDLE commands, file browse cursors,
the EXEC interface block (EIB), and so on—and builds a parameter structure which
is essentially a superset of that built by DFHUEH. Additional arguments include
the task-local work area, the profile referred to above, and an 8-byte UOW
identifier supplied by Recovery Manager.

Chapter 53. Task-related user exit control 427

DFHERM then passes control to the exit’s entry point using standard CALL
conventions, in which register 13 addresses a save area for DFHERM’s own
registers, register 14 addresses DFHERM’s next sequential instruction, and register
1 addresses the passed parameters. This is a vector of addresses which include that
of the caller’s register save area. Any changes the exit makes to arguments of the
application program interface (API), or to the contents of the caller’s register save
area, are not examined by DFHERM when it regains control, because they are not
part of the CICS task-related user exit interface—rather they are the concern of the
caller and the exit. However, the exit can request DFHERM to schedule certain
actions by means of the profile argument. For example, the exit can request that it
be informed (driven) when commitment of resources (syncpointing) is taking place,
or the exit can request that DFHERM no longer routes API calls to it from this
task.

Finally, on regaining control from the exit, DFHERM unstacks the objects that it
had previously stacked, and returns to the caller. The state of the cursors,
HANDLE labels, and so on, is apparently unchanged by the actions of DFHERM
or the exit. Note that the exit may have used EXEC CICS HANDLE commands;
this does not interfere with the caller’s HANDLE status.

In the discussion of DFHERM so far, the term “caller” has been used for the
application program. However, a caller can be a function such as syncpoint
(DFHERMSP), task control (DFHAPXM or DFHERMSP), system programming
interface (DFHUEIQ), CICS termination (DFHAPDM or DFHSTP) or EDF
(DFHERM). The exit can set appropriate bits in the profile (schedule flag word) so
that, if the corresponding function is subsequently invoked, it in turn calls the exit.
The exit can determine the identity of the caller from the first argument (called the
“function definition”). This argument, passed by DFHERM, always has its first
byte equal to X'00'. (If the first byte is other than X'00', the exit has been entered
from DFHUEH as a global user exit.) DFHERM sets the second byte of this
argument according to the type of caller, thus indicating which interface is
addressed by the caller’s register save area. The second byte is:

X'01' For system programming interface

X'02' For an application program

X'04' For the syncpoint program

X'08' For CICS task control

X'0A' For a CICS termination call

X'0C' For an EDF call.

Any remaining arguments are specific to each individual caller.

The flow of control for the task-related user exit interface is shown in Figure 77 on
page 429.

428 CICS TS for z/OS 4.1: Diagnosis Reference

Processors
The term “processor” is used to refer to two different types of object:
1. For the EXEC interface, it refers to the function-dependent modules associated

with the EXEC interface nucleus, DFHEIP. These processors usually have names
such as DFHEPC, DFHETC, DFHETD, and so on, and each of these is invoked
by DFHEIP. DFHERM is also a processor of this type.

2. In various contexts, including task-related user exits, it refers to a piece of code
that is link-edited with an application program and serves the dual function of:
v Satisfying the CALL requirement for a target address—its entry resolves a

V-type ADCON
v Finding the entry point of DFHEIP.

Both these types of processor are part of the path between an application call and
the functional control module that supports the request. This path appears as
follows:
Application call
 Application processor (type 2)
 DFHEIP
 EXEC interface processor (type 1)
 Functional control module

Examples of the interface are:
EXEC CICS SYNCPOINT ... CICS API
 DFHECI CICS COBOL EIP router
 DFHEIP
 DFHEISP CICS syncpoint router
 DFHSPP CICS syncpoint manager
 CICS Recovery manager domain

EXEC DLI TERM ... DLI HLPI
 DFHECI CICS COBOL EIP router
 DFHEIP
 DFHERM CICS RMI module
 DFHEDP DLI HLPI manager
 (implemented as a task-related
 user exit)

CICS processor DFHEIP

Application program EXEC CICS ?
No

EXEC CICS...

CALL...

Stub
(DFHRMCAL)

DFHERM Task-related
user exit

Figure 77. Task-related user exit control flow

Chapter 53. Task-related user exit control 429

Control blocks
The control blocks used in task-related user exit control are the exit program
control block (DFHEPB), the task interface element (DFHTIEDS).

Figure 78 shows the main control blocks associated with task-related user exits.

Field CSAUETBA in the CSA points to the user exit table (UET); UETHEPBC in the
UET points to the first exit program block (EPB); and EPBCHAIN in each EPB
points to the next EPB in the chain.

Each EPB holds:
v The address of the exit’s entry point (EPBEPN)
v The address of the global work area
v The halfword length of the global work area
v The halfword length of the task-local work area.

One EPB is associated with each enabled task-related user exit program or entry
name.

EPBs used for global user exits and for task-related user exits are held on the same
EPB chain.

The task-related user exit’s global storage is optional. It is associated with an
individual enabled task-related user exit program or entry name. Several
task-related user exit programs or entry names can share the same global storage.

For full details of the EPB, see CICS Data Areas.

The task interface element (TIE) is associated with each associated pair of CICS
task and task-related user exit. The first time a CICS task passes control to a
particular task-related user exit, a TIE is created. The TIE lasts until task
termination.

Note that all TIEs relating to a single task are chained together (more than one TIE
is set up when a single CICS task makes use of more than one task-related user
exit). The TIEs corresponding to a single EPB (that is, to a single task-related user
exit program or entry name) are not chained together.

User exit table

CSAUETBA UETH First EPB
UETHEPBC

EPB (DFHEPB)
EPBEPN
EPBCHAINNext EPB
EPBGAA

Task-related
Task-related user exit's
user exit's global work area
task local
storage

TCATIEBA
TIE (DFHTIEDS)
TIEEPBA
TIECHNANext TIE

for the same taskDWE

Task-local...
work area

Figure 78. Control blocks associated with task-related user exits

430 CICS TS for z/OS 4.1: Diagnosis Reference

A global user exit may only use global storage; a task-related user exit may use
both global storage and task-local work area.

Field TCATIEBA in the TCA points to the first TIE, and TIECHNA in each TIE
points to the next TIE in the chain.

The TIE holds information relevant to all invocations of the task-related user exit
for the task concerned. For example, TIEFLAGS holds information concerning the
events for which the task-related user exit should be invoked, for example, API
calls, syncpoint, and task start.

Figure 79 gives a closer look at the TIE control block chain that is used during the
lifetime of a task-related user exit.

For full details of the TIE control blocks, see CICS Data Areas.

Modules
 Module Function

DFHUEM The EXEC interface processor for the ENABLE, DISABLE, and
EXTRACT user exit commands.

DFHERM Interfaces with task-related user exit.

DFHTIEM Handles the TIE subpools.

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 2520) for which the trace level is RI 1.
v AP 2521)
v AP 2522) for which the trace level is RI 2.

TCA

x'E4' TCATIEBA
Address of TIE

TIE

x'3C' TIECHNA
Address of next TIE

x'4C' TIEEPBA
Address of EPB

x'50' TIEFLAGS
Interest profile

x'58' TIERIECH
Address of first
(or only) RIE on
chain for this TIE

x'60' TIELWA
Local work area

Figure 79. Control blocks used during the lifetime of a task-related user exit

Chapter 53. Task-related user exit control 431

v AP 2523)

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

External interfaces
Calls are made to the task-related user exit via DFHEIP and DFHERM from the
following modules:
DFHAPXM

Task start
DFHERMSP

Task end
DFHERMSP

Syncpoint and backout
DFHRMSY

For syncpoint resynchronization
DFHAPDM

CICS termination
DFHSTP

CICS termination
DFHUEIQ

System programming interface for inquire exitprogram calls
Applications

Application calls to resource manager
DFHERM

EDF invocations for application calls to resource manager

432 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 54. Task-related user exit recovery

Task-related user exit recovery, also known as the resource manager interface (RMI)
recovery, ensures that changes to recoverable resources performed by an external
resource manager in a logical unit of work are either all committed or all backed
out.

Design overview
During the execution of a CICS task, the CICS recovery manager communicates
with the resource manager task-related user exit to prepare to commit, to commit
unconditionally, or to back out. The purpose of these calls is to ensure that changes
to recoverable resources performed in a unit of work (UOW) are either all
committed or all backed out, if there is a failure anywhere in CICS or in any of the
external resource managers.

Each UOW created by Recovery Manager Domain is identified by a UOW_ID and
a Local UOW_ID. The LOCAL UOWID is an eight byte value whose format is easy
for CICS to identify whether the UOW originated before or after an initial start.

When the resource manager receives the call to commit unconditionally or to back
out, it takes the corresponding irreversible step, if possible. If the action is
successful, the resource manager sends the appropriate return code. If not, it sends
a return code which requests that CICS record the state of the UOW, and tries to
resolve the status at a later time.

Recovery manager domain maintains the status of UOWs that require
resynchronization, until all participants in the UOW have successfully
resynchronized. Recovery manager domain maintains these UOWs across cold,
warm and emergency start of CICS. An initial start of CICS however will mean
that Recovery manager domain will lose this information and resynchronization
will not be possible.

The RMI also supports an optimized syncpoint process to improve performance
under certain conditions where a single-phase commit can be used. With single
phase commit Recovery manager does not have to maintain resynchronization
information for the RMI. This optimized process is described in more detail later in
thissection .

The two-phase commit process
The RMI supports the two-phase commit process. The following is a brief
summary of the two-phase commit process and other related processing as seen
from the RMI’s point of view.
v When a unit of work is first created, Recovery manager creates local_uow_id

which will be used by the RMI.
v When the task syncpoints, a prepare-to-commit request is then issued to each

task-related user exit used during the current UOW. For each task-related user
exit, issuing the prepare request indicates the start of phase 1 of commit
processing from CICS’s point of view.

© Copyright IBM Corp. 1997, 2011 433

v If all syncpoint participants vote 'YES' to the prepare requests, then Recovery
manager will commit the UOW. CICS then invokes each task-related user exit
with a commit request. This indicates the start of phase 2 commit processing for
the task-related user exit.
If the task-related user exit is unable to commit the UOW, Recovery manager
will maintain a record of the UOW's status so that the task related user exit can
resync later.

v If one or more of the task-related user exits votes ‘NO’ to the prepare-to-commit
request, all the task’s recoverable resources are backed out.

Resolution of in-doubts
An external resource manager can be left in doubt about the disposition of UOWs,
for example, if the resource manager abnormally terminated after receiving a
prepare request for an UOW, but before receiving the commit or backout request.
The resource manager, at any time while interfacing with CICS, can supply a list of
recovery tokens representing the indoubt UOWs to the task-related user exit. The
task-related user exit (or other related code) can then issue an EXEC CICS
RESYNC request with the indoubt list and the name of the task-related user exit as
parameters.

As a result of a the EXEC CICS RESYNC command, DFHERMRS initiates a CRSY
task (running program DFHRMSY) for each UOW named in the indoubt list
passed from the TRUE. DFHRMSY interfaces with Recovery manager to find out
the status of the UOW, and calls the task-related user exit with the appropriate
resolution, for example 'Commit', 'Backout' and so on. For each successful commit
or backout, DFHRMSY informs Recovery manager that it can delete the TRUEs
involvement in the UOW. When all interested parties in a UOW complete such
processing, Recovery manager deletes its record of the UOW.

If an EXEC CICS RESYNC request is issued without an indoubt list or with an
indoubt list of length zero, then DFHERMRS informs Recovery manager that it can
remove the TRUE (identified by its name and qualifier) from all UOWs in the
resynchronization set, i.e. delete all resync information for a TRUE.

A resynchronization set is first established when a TRUE is enabled. The next
resynchronization set is identified on completion of an EXEC CICS RESYNC
command, and is used for the next RESYNC command. A resynchronization
bounds how many UOWs resync information is deleted for because RESUNC
commands execute at the same time as new work is processed by a TRUE. A
RESYNC command with a zero list should not delete resync information new
UOW created since the resync command was issued.

The single-phase commit process
The RMI also supports the single-phase commit process for UOWs that are
read-only, and for UOWs where CICS detects that only one external resource
manager has been called for update requests. The task-related exit must indicate to
the RMI that it is capable of processing single-phase commit requests; otherwise, a
two-phase commit is used. Use of single-phase commit improves performance,
because CICS does not perform any logging and the task-related user exit is called
only once during syncpoint processing.

Single-phase commit for read-only UOWs
To take advantage of single-phase commit for read-only UOWs, the external
resource manager must return to the task-related user exit an indicator that the
UOW is read-only. This can be done by the resource manager returning a flag

434 CICS TS for z/OS 4.1: Diagnosis Reference

indicating the “history” of the UOW so far (that is, whether it is read-only so far),
or returning information about the current request. In the latter case, it is the
responsibility of the task-related user exit to keep a “history” of the UOW so far.
After each request, the task-related user exit must return to CICS with a flag set in
the parameter list indicating this history.

At syncpoint time, if CICS detects that the UOW is read-only, it invokes the
task-related user exit with an “End-UOW” request instead of the normal prepare
and commit requests associated with a two-phase commit. This means that the
task-related user exit is invoked only once during syncpoint. The “End-UOW”
request is issued during phase 2 syncpoint processing. On receiving an
“End-UOW” request, the task-related user exit should invoke the resource manager
for single-phase commit. There are no return codes associated with the
“End-UOW” request, and CICS does not perform any logging for this type of
request.

Single-phase commit for the single updater
To take advantage of single-phase commit for the single-update situation, the
task-related user exit must indicate to the RMI that it knows the single-update
protocol. It does this by setting a flag in the parameter list at the same time as it
expresses an interest in syncpoint.

At syncpoint time, if CICS detects that only resources owned by one external
resource manager were updated in the UOW, and if the task-related user exit has
indicated that it understands the protocol, CICS invokes the task-related user exit
with an ‘Only’ request, instead of the normal prepare and commit requests
associated with a two-phase commit. This means that the task-related user exit is
invoked only once during syncpoint. The ‘Only’ request is issued during phase 1
syncpoint processing. CICS does not perform any logging for this type of request.
When invoked for an ‘Only’ request, the task-related user exit should invoke the
resource manager for single-phase commit.

There are two architected responses to the ‘Only’ request: ‘OK’ and ‘Backed-out’.
‘OK’ means that the UOW was committed; ‘Backed-out’ means that the
single-phase commit failed and the updates were backed out. It is important to
note that, unlike the two-phase commit, there is no equivalent ‘Remember’
response. If a task-related user exit calls a resource manager for single-phase
commit and, for example, the resource manager abends while processing this
request, the task-related user exit is left in doubt as to the outcome of the request.
The task-related user exit cannot return to CICS in this case, but instead must
output diagnostic messages as appropriate, and then abend the transaction.

Recovery manager does not keep resynchronization information for UOWs using
single phase commit. Because the resource manager is the only updater in the
UOW, CICS is not in doubt about any of its resources. The resource manager has
either committed or backed out the updates. The messages output by the
task-related user exit, in conjunction with any messages output by the resource
manager, can be used to determine the outcome of the UOW.

Chapter 54. Task-related user exit recovery 435

Modules
 Module Function

DFHERMRS DFHERMRS is invoked by DFHEISP as a result of a an EXEC CICS
RESYNC command. It attaches a CRSY task for each UOW identified in
the IDLIST. Calls Recovery manager to delete unwanted
resynchronization information.

DFHRMSY A CRSY task (running program DFHRMSY) is attached for each indoubt
UOW appearing in the indoubt list for an EXEC CICS RESYNC
command. This program then issues the appropriate ‘phase 2 of
syncpoint’ request, that is, commit or backout, to the external resource
manager that issued the EXEC CICS RESYNC.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP 2540) For trace level RI Level 1
v AP 2541)
v AP 2548) For trace level RI level 2
v AP 2549)
v AP 2560) For trace level RI level 1
v AP 2561)

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

External interfaces
Calls are made from DFHRMSY, via DFHERM, to the task-related user exit to
provide information about the disposition of the UOW, when resynchronization of
in-doubts is taking place.

436 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 55. Terminal abnormal condition program

Terminal error processing for BSAM-supported terminals normally routes any error
to the terminal abnormal condition program (DFHTACP). Depending on the type
of error, DFHTACP issues messages, sets error flags, and places the terminal or line
out of service.

Before default actions are taken, CICS passes control to the terminal error program
(DFHTEP) for application-dependent action if necessary. On return from the
terminal error program, DFHTACP performs the indicated action as previously set
by DFHTACP or as altered by the TEP, a sample version of which is supplied by
CICS (DFHXTEP in source code form). See Chapter 57, “Terminal error program,”
on page 465 for further information about the TEP.

Design overview
The terminal abnormal condition program (DFHTACP) is used by terminal control
to analyze any abnormal conditions. Appropriate action is taken with regard to
terminal statistics, line statistics, terminal status, and line status; the task
(transaction) can be terminated. Messages are logged to the transient data master
terminal destination (CSMT) or the terminal log destination (CSTL). DFHTACP
links to the user-supplied (or sample) terminal error program, passing a parameter
list via a COMMAREA that is mapped by the DFHTEPCA DSECT. This allows the
user to attempt recovery from transmission errors and to take appropriate action
for the task.

Table 24 lists the various TACP message processing routines, which assemble the
text of the messages and write them to one of three destinations depending on the
type of error.

The matrix shown in Table 25 on page 438 shows the sequence in which the
message routines are called for each error code. For example, for error code X'88',
the processing routines are executed in the following order: ME, F, W, X, N, BA,
and finally R.

Table 26 on page 439 gives a generalization of TACP's default error handling upon
completion of the message processing. For each error code, it shows the first
routine to be called.

 Table 24. TACP message routines

Routine Function

A Establish DFHTC message number 2501 (Msg too long, please resubmit)

D Establish DFHTC message number 2502 (TCT search error)

F Establish DFHTC message number 2507 (Input event rejected)

H Establish DFHTC message number 2506 (Output event rejected)

I Establish DFHTC message number 2513 (Output length zero)

J Establish DFHTC message number 2514 (No output area provided)

K Establish DFHTC message number 2515 (Output area exceeded)

L Establish DFHTC message number 2517 (Unit check SNS=ss, S.N.O.)

© Copyright IBM Corp. 1997, 2011 437

Table 24. TACP message routines (continued)

Routine Function

M Establish DFHTC message number 2519 (Unit exception, S.N.O.)

N Generate standard message inserts, for example, ‘at term tttt'

O Generate special inserts for message DFHTC2500

Q Write to terminal causing the error, after retrieving the message text from ME domain using
an MEME RETRIEVE_MESSAGE call

R Write to destination (CSMT or CSTL) using an MEME SEND_MESSAGE call to ME domain

T Obtain terminal main storage area (message build area)

V Establish DFHTC message number 2511 (Incorrect write request)

W Establish ‘return code xx' message insert

X Convert hexadecimal byte into 2 printable characters

AB Establish DFHTC message number 2534 (Incorrect destination)

AE Establish DFHTC message number 2500 (Line|CU|Terminal out of service)

AF Obtain terminal statistics

BA Obtain line statistics

BB Establish DFHTC message number 2516 (Unit check SNS=ss)

BC Establish DFHTC message number 2518 (Unit exception)

BF Establish DFHTC message number 2521 (Undetermined unit error)

CA Establish DFHTC message number 2522 (Intercept required)

DB Establish DFHTC message number 2529 (Unsolicited input)

ME Initialize parameter list for calling ME domain

 Table 25. TACP message construction matrix

Error codes

X'81' X'82' X'84' X'85' X'87' X'88' X'8C' X'8D' X'8E' X'8F' X'94' X'95' X'96' X'97' X'99' X'9A' X'9F'

ME ME ME ME ME ME ME ME ME ME ME ME ME ME ME ME ME

T

AE

D

V

DB

F

H

I

J

K

BB

L

BC

M

BF

438 CICS TS for z/OS 4.1: Diagnosis Reference

Table 25. TACP message construction matrix (continued)

Error codes

X'81' X'82' X'84' X'85' X'87' X'88' X'8C' X'8D' X'8E' X'8F' X'94' X'95' X'96' X'97' X'99' X'9A' X'9F'

CA

AB

A

O

W W

AF

Q

X X X X

N N N N N N N N N N N N N N N

BA BA BA

R R R R R R R R R R R R R R R R

 Table 26. TACP default error handling

Error code Default action

X'81' Abend transaction

X'82' none

X'84' Put line in or out of service, as required

X'85' Abend transaction

X'87' Unsolicited input message

X'88' Put line (or terminal) out of service

X'8C' Put line (or terminal) out of service

X'8D' Abend transaction

X'8E' Abend transaction

X'8F' Abend transaction

X'94' I/O error test

X'95' I/O error test

X'96' I/O error test

X'97' I/O error test

X'99' Put line (or terminal) out of service

X'9A' Test line for next operation

X'9F' Abend transaction

Modules
DFHTACP

Exits
No global user exit points are provided for this function.

Chapter 55. Terminal abnormal condition program 439

Trace
The following point ID is provided for the terminal abnormal condition program:
v AP 00E6, for which the trace level is TC 1.

DFHTACP provides trace entries immediately before and after calling DFHTEP.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

440 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 56. Terminal control

Terminal control allows communication between terminals and application
programs. VTAM/NCP is used for most terminal data control and line control
services.

Terminal control supports automatic task initiation to process transactions that use
a terminal but which are not directly initiated by the terminal operator (for
example, printers).

Terminal control can also provide a simulation of terminals, using sequential
devices, in order to help test new applications.

Design overview
The user can specify that concurrent terminal support is to be provided by any
combination of the following access methods:
v VTAM
v Basic sequential access method (BSAM)
v Interregion communication (IRC)
v Console.

The primary function of terminal control is to take an input/output (I/O) request
for a terminal and convert it to a format acceptable to the access method (VTAM or
BSAM).

Terminal control uses data that describes the communication lines and terminals,
kept in the terminal control table (TCT). The TCT is generated by the user as part
of CICS system definition, or dynamically as needed. The TCT entries contain
terminal request indicators, status, statistics, identification, and addresses of I/O
and related areas.

When CICS terminal control is used with VTAM, VTAM itself resides in a separate
address space, having a higher priority than CICS. VTAM-related control blocks
and support programming comprise the CICS terminal control component. The
application programs that run under CICS control communicate with terminals
through the CICS terminal control interface with VTAM.

VTAM network functions allow terminals to be connected to any compatible
control subsystem that is online. This enables a terminal operator to switch from
one CICS system to another, or to another subsystem.

VTAM manages the flow of data between devices in the network and VTAM
application programs such as CICS. VTAM is responsible for:
v Connecting, controlling, and terminating communication between the VTAM

applications and terminal logical units
v Transferring data between VTAM applications and logical units
v Allowing VTAM applications to share communication lines, communication

controllers, and terminals
v Controlling locally attached devices, that is, those not connected through a

communication controller

© Copyright IBM Corp. 1997, 2011 441

v Providing tools to monitor network operations and make dynamic changes to
the network configuration.

In a VTAM environment, the functions of CICS terminal control include:
v Establishing communication with terminal logical units (LUs) by issuing logon

requests, communicated through the access method
v Handling terminal input and passing user program requests for communication

to VTAM
v Returning terminal LUs to the access method by accepting logoff requests
v Taking measures to ensure the integrity of messages flowing to and from VTAM
v Performing logical error recovery processing for VTAM devices.

Terminal control issues VTAM macros to receive incoming messages, and routes
them to the appropriate CICS application program for processing. Likewise, it
sends messages destined for various devices in the network to VTAM, which then
routes them to the appropriate location.

Terminal control services
The following services are performed by, or in conjunction with, terminal control:
v Service request facilities
v System control services
v Transmission facilities.

Service request facilities
Write request

Sets up and issues or queues access method macros; performs journaling and
journal synchronization.

Read request
Sets up and issues access method macros; performs journaling if required.

Wait request
Causes a dispatcher to suspend.

Dispatch analysis
Determines the type of access method and terminal used, and executes the
appropriate area of terminal control.

System control services
Automatic task initiation

Services requests for automatic task (transaction) initiation caused by events
internal to the processing of CICS.

Task initiation
Requests the initiation of a task to process a transaction from a terminal. When
an initial input message is accepted, a task is created to do the processing.

Terminal storage
Performs allocation and deallocation of terminal storage.

Transmission facilities—VTAM
Connection services

Accepts logon requests, requests connection of terminals for automatic task

442 CICS TS for z/OS 4.1: Diagnosis Reference

initiation, and returns terminals to VTAM, as specified by the user. If the
terminal has not been defined, CICS uses the VTAM logon information to
autoinstall the terminal.

Transmission facilities—VTAM/non-VTAM
Access method selection

Passes control to the appropriate access method routine based on the access
method specified in the terminal control table.

Wait
Synchronizes the terminal control task with all other tasks in the system. When
all possible read and write operations have been initiated, terminal control
processing is complete and control is returned to the transaction manager to
allow dispatching of other tasks.

Terminal error recovery
The resolution of certain conditions (for example, permanent transmission errors)
involves both CICS and additional user coding. CICS cannot arbitrarily take all
action with regard to these errors. User application logic is sometimes necessary to
resolve the problem.

For the VTAM part of the network, terminal error handling is carried out by the
node abnormal condition program (NACP) and a sample node error program
(NEP), provided by CICS, or a user-written node error program. For further
information about these, see Chapter 36, “Node abnormal condition program,” on
page 357 and Chapter 37, “Node error program,” on page 361.

For the portion of the telecommunication network connected to BSAM, these
error-handling services are provided by the terminal abnormal condition program
(TACP) and by the user-written or sample terminal error program (TEP). For
further information about these, see Chapter 55, “Terminal abnormal condition
program,” on page 437 and Chapter 57, “Terminal error program,” on page 465.

The following sequence of events takes place when a permanent error occurs for a
terminal:
1. The terminal is “locked” against use.
2. The node or terminal abnormal condition program is attached to the system to

run as a separate CICS task.
3. The node or terminal abnormal condition program writes the error data to a

destination in transient data control if the user has defined one. This
destination is defined by the user and can be intrapartition or extrapartition.

4. The node or terminal abnormal condition program then links to the appropriate
node/terminal error program to allow terminal- or transaction-oriented analysis
of the error. In the node or terminal error program, the user may decide, for
example, to have the terminal placed out of service, have the line placed in or
out of service, or have the transaction in process on the terminal abnormally
terminated.

5. The terminal is “unlocked” for use.
6. The node or terminal abnormal condition program is detached from the system

if no other terminals are to be processed.

Testing facility—BSAM
To allow the user to test programs, BSAM can be used to control sequential
devices, such as card readers, printers, magnetic tape, and direct-access storage

Chapter 56. Terminal control 443

devices. These sequential devices can then be used to supply input/output to CICS
before actual terminals are available or during testing of new applications.

Terminal control modules (DFHZCP, DFHTCP)
Terminal control consists of two CICS resource managers:
ZCP DFHZCP, DFHZCX, and DFHZCXR provide both the common (VTAM and

non-VTAM) interface, and DFHZCA, DFHZCB, DFHZCC, DFHZCW,
DFHZCY, and DFHZCZ provide the VTAM-only support.

TCP DFHTCP provides the non-VTAM support (not MVS console support).

Terminal control communicates with application programs, CICS system control
functions (transaction manager, storage control), CICS application services (basic
mapping support and data interchange program), system reliability functions
(abnormal condition handling), and operating system access methods (VTAM or
BSAM).

Requests for terminal control functions made by application programs, BMS, or the
transaction manager, are processed through the common interface of DFHZCP.
Generally, terminal control requests for other CICS or operating system functions
are issued by either ZCP or TCP, depending upon the terminal being serviced.

The ZCP and TCP suites of programs are loaded at CICS system initialization
according to specified system initialization parameters, as follows:
v DFHTCP is loaded only if TCP=YES is specified.
v DFHZCP, DFHZCX, and DFHZCXR are always loaded.
v DFHZCA, DFHZCB, DFHZCY, and DFHZCZ are loaded only if VTAM=YES is

specified.
v DFHZCC and DFHZCW are loaded only if ISC=YES is specified.

Figure 80 on page 445 shows the relationships between the components of terminal
control.

444 CICS TS for z/OS 4.1: Diagnosis Reference

Notes for Figure 80:

Common interface

 1. When a terminal control request is issued by an application program, or
internally by the basic mapping support (BMS) routines using the DFHTC
macro, request bits are set in the user’s task control area (TCA) and control is
passed to the common interface (VTAM, non-VTAM) routines of DFHZCP.

 2. If the request includes WAIT and the IMMED option is not in effect, control is
passed to the transaction manager to place the requesting program (task) in a
suspended state. If WAIT is not included, control is returned to the requesting
task.

 3. The task’s TCA contains the TCTTE address either in a field named
TCAFCAAA (facility control area associated address) or in a field named
TCATPTA when passing TCATPTA to terminal control.

 4. The dispatcher dispatches terminal control through the common interface
(DFHZDSP in DFHZCP) for one of the following reasons:
v The system address space exit time interval (specified by the ICV system

initialization parameter) has elapsed since the last terminal control dispatch.
v The specified terminal scan delay (specified by the ICVTSD system

initialization parameter) has elapsed.

User TCA Terminal control TCA

User KCP Basic
application mapping
program 2 support

TCAFCAAA

10
TCTTE 1

TCTTEOS
3 TCTTECS MVS console

TCTTECAI Terminal control program
TCTTEOCI DFHZCP - common interface

4 DFHZCX IRC
DFHZCXR

(VTAM, non-VTAM)
Transaction
routing

VTAM

TCAM/BSAM

8 8
ZCP TCP

RPL VTAM Non-VTAM TCTLE
support support

DECB

Node TACLE
abnormal
condition
program

9 9

Node
error
program Terminal

abnormal
error
program

6
Dispatcher
domain 11

5 Storage
manager Terminal

error
program

7
Transaction
manager

Figure 80. Terminal control interfaces

Chapter 56. Terminal control 445

v There is high-performance option (HPO) work to process.
v The terminal control event has been posted complete (for example, an exit

scheduled in the case of VTAM, or an event control block (ECB) posted in
the case of non-VTAM), and CICS is about to go into a wait condition.

 5. Terminal control, through its common interface (DFHZDSP) requests the
dispatcher to perform a CICS WAIT when the terminal control task has
processed through the terminal network and has no further work that it can
do.

 6. Terminal control communicates with storage manager to obtain and release
storage as follows:
VTAM

ZCP modules issue domain calls for terminal storage (TIOAs),
receive-any input area (RAIA) storage, and request parameter list
(RPL) storage.

Non-VTAM
DFHTCP issues DFHSC macros to obtain and release terminal and
line storage.

 7. Terminal control communicates with the transaction manager by means of the
DFHKC macro. The macro can be issued by certain CICS control modules,
depending upon the terminal being serviced. Terminal control may request the
transaction manager to perform one of the following:
v Attach a task upon receipt of a transaction identifier from a terminal.
v Respond to a DFHKC TYPE=AVAIL request (a task control macro

documented only for system programming) when a terminal is required by
or for a task and that facility is available.

 8. Terminal control communicates with operating system access methods in
either of the following ways, depending upon the terminal being serviced:
VTAM

ZCP (referring here to the resource manager) builds VTAM request
information in the RPL which is then passed to VTAM for servicing.
VTAM notifies terminal control of completion by placing completion
information in the RPL. ZCP analyzes the contents of the RPL upon
completion to determine the type of completion and the presence of
error information. Communication with VTAM also occurs by VTAM
scheduling exits, for example, LOGON or LOSTERM. VTAM passes
parameter lists and does not always use an RPL.

 When authorized-path VTAM has been requested (HPO),
communication with VTAM also occurs in service request block (SRB)
mode (using DFHZHPRX); ZCP uses the RPL with an extension to
communicate with its SRB mode code. When an SRB mode RPL
request is complete, ZCP calls the relevant exit or posts the ECB, as
indicated by the RPL extension.

Non-VTAM
DFHTCP builds access method requests in the data event control
block (DECB), which is part of the terminal control table line entry
(TCTLE). The DECB portion of the TCTLE is passed to the access
method by terminal control to request a service of that access method.
The access method notifies terminal control of the completion of the
service through the DECB. Terminal control analyzes the contents of
the DECB upon completion to determine the type of completion and
to check for error information.

 9. Terminal control communicates with the CICS abnormal condition functions in
either of the following ways, depending upon the terminal being serviced:

446 CICS TS for z/OS 4.1: Diagnosis Reference

VTAM
The activate scan routine (DFHZACT, in the DFHZCA load module)
attaches the CSNE transaction to run the node abnormal condition
program (DFHZNAC); this is done during CICS initialization.
DFHZNAC does some preliminary processing and then passes control
to the node error program (DFHZNEP). (The node error program can
be either your own version or the default CICS-supplied version.)
Upon the completion of the user’s error processing, control is returned
to DFHZNAC. (For further information about DFHZNAC, see
Chapter 36, “Node abnormal condition program,” on page 357.)

Non-VTAM
DFHTCP attaches the CSTE transaction to run the terminal abnormal
condition program (TACP) and passes a terminal abnormal condition
line entry (TACLE) when an error occurs. The TACLE is a copy of the
DECB portion of the TCTLE and contains all information necessary for
proper evaluation of the error, together with special action indicators
that can be manipulated to alter the error correction procedure. After
analyzing the DECB, DFHTACP calls the terminal error program
(DFHTEP) with a COMMAREA containing the TACLE address. (The
terminal error program can be either your own version or the default
CICS-supplied version.) For further information about DFHTACP, see
Chapter 55, “Terminal abnormal condition program,” on page 437.

10. Terminal control is executed under either the user’s TCA or its own TCA as
follows:
User’s TCA

a. During the application program interface
b. During the interface with basic mapping support
c. While performing direct VTAM terminal SEND requests.
Terminal control’s TCA

a. When the dispatcher dispatches terminal control
b. When terminal control issues a request to the transaction manager to

attach a task
c. When terminal control issues a request to storage control
d. While performing non-VTAM terminal I/O or queued VTAM terminal I/O
e. For session-control functions when no task is attached.

Because many devices are supported by CICS terminal control, a large number of
modules are required to provide this support.

Figure 81 on page 448 gives an overview of the relationships between the functions
within terminal control and the rest of CICS and Figure 82 on page 448 through
Figure 84 on page 450 show some of the flows through the terminal control
modules.

Chapter 56. Terminal control 447

KCP Application Application KCP/BMS KCP CICS service
program program programs

Locate/status/ Locate/status/ Application Detach Syncpoint Command
ATI ATI request processing request

DFHZDET DFHZCRQDFHZARQ
and DFHZARL

DFHZGTI
and DFHZLOC

DFHZGTI/A
and DFHZLOC

DFHZGTI
and DFHZLOC

Return

Figure 81. Terminal control functions and modules

01

Process VTAM
completed SRB
mode RPLs

Entry from DFHZRVX
system DFHZSDX

initialization TCTVRAEB
Initialization
sequence:

Process VTAM
Attach DFHZINT receive-any

initialization DFHZRPL requests
table DFHSIF1

DFHZAIT DFHZRAC
DFHZAIT DFHZDSP

DFHZSLS
{DFHZXST} Process VTAM
{DFHZXRE} activate chain

VTAM active
analysis Entry from

DFHZACT dispatcher

DFHZDSP
MVS console (Return

from WAIT)

Initialize Issue DSSR
VTAM network WAIT_OLDW

on ECB list Posted by timer
or event completion

DFHZSLS TCZDSP9

1B

Figure 82. Terminal control ZCP and TCP common control routines

448 CICS TS for z/OS 4.1: Diagnosis Reference

01 1B B
TCTLE

TCTLEECB
Initialize
line scan ECB list

A (TCTLE)
TCCCSIN TCTLE

A A (TCTLE)
Line TCTLEECB
advance A (TCTLE)

Return to A (TCTLE)
dispatcher System

termination TCTLE
analysis

TCCCANEA A (TCTLE) TCTLEECB

A (TCTLE)
System not

Last ECB terminating
in list TCTLE

Not last ECB Error TCTLEECB
in list Line status and pending

1A timer analysis

TCCCLLE Timer event
posted

Line out Line status
of service was initiated

TCTLE

Advance to Analyze TACP TCTLEECB
next line A current ECB B preparation

TCCCTMR TCCCLLE TCTDMTCE
TCTLE

TCCCANE
Event TCTLEECB

completed

Select
device-dependent
module

TCCCLTMA

BSAM

DFHTCAM

TCAM

DFHTCAM

1A

Figure 83. Terminal control TCP control routines (BSAM)

Chapter 56. Terminal control 449

High-performance option
When running CICS under MVS, the high-performance option (HPO) can be used.
HPO uses VTAM with CICS as an authorized program so that the VTAM path
length is reduced. This is achieved by dispatching SRBs to issue the send and
receive requests for data to and from the terminals. The SRB code is executed in
the DFHZHPRX module.

System console support
One or more MVS system consoles can be used as CICS terminals. This includes
any MVS extended console introduced from MVS/ESA SP 4.1 onward; for
example, a TSO user issuing the TSO CONSOLE command.

Each console has a unique number (releases before MVS/ESA SP 4.1) or a unique
name (MVS/ESA SP 4.1 onwards). This matches the console number or name
defined in the MVS system generation. Consoles are defined to CICS using CEDA
DEFINE TERMINAL (see Chapter 42, “Resource definition online (RDO),” on page
373). The console number or name is specified using the CONSOLE or
CONSNAME keyword respectively, depending on the level of MVS.

Enter from Enter
'Select terminal EP DFHxxxxx
routine'

DFHTCSTD

Event
analysis

Completion
code analysis

Output event Input event
completion completion
analysis analysis

Activity Input event
control task initiation

Output event Input event
preparation preparation

Event
initiation

Exit to

TCCCTMR

(advance to next
Exit line and wait)

DFHxxxxx

Device-dependent routine
entry point names

Device EP name
type DFHXXXXX

SEQUENTIAL

TCAM

DFHTDMSA

DFHTCAMM

Figure 84. Terminal control general flow through device-dependent modules (TCP only)

450 CICS TS for z/OS 4.1: Diagnosis Reference

The console operator communicates with CICS using the MVS MODIFY command
to start transactions. CICS communicates with the console using either the WTO
macro or the WTOR macro.

A system console is modeled by CICS as a TCTTE that has an associated control
block, the console control element (CCE). The CCE holds the event control block
(ECB) for the console, and both the console ID and the console name.

The interface between a system console and CICS is the command input buffer
(CIB), which is created in MVS-protected storage for each MODIFY command. A
CIB contains the data for a MODIFY command. CICS addresses the first CIB using
the EXTRACT macro and the CIBs are chained together.

The MVS communication ECB is in MVS-protected storage; it is posted complete
for each MODIFY command and reset when there are no CIBs to be processed. The
CICS system wait list holds pointers to the MVS communication ECB and the ECB
for each system console.

When CICS is initialized, an EXTRACT macro is executed to obtain the job name
and point to the MVS communication ECB and the first CIB; all these are stored in
the TCT prefix.

DFHZCP contains two modules, DFHZCNA and DFHZCNR, which perform
system console support.

DFHZCNA is used to:
v Resume a task on completion of a terminal event for the task
v Attach a task to satisfy a request for transaction initiation by a MODIFY

command
v Attach a task (AVAIL) requested by automatic transaction initiation (ATI)
v Detach a terminal from a task when the task has completed
v Shut down console support when CICS is quiescing.

DFHZCNR is used to:
v Issue WTO macros for application program WRITE requests
v Issue WTO and WTOR macros for application program CONVERSE or

(WRITE,READ) requests
v Issue a WTOR macro with message DFH4200 for application program READ

requests.

Console support control modules
DFHZDSP calls DFHZCNA to scan the consoles for any activity.

DFHZCNA checks whether any task is suspended because it is waiting for a
terminal event, for example, a READ, and, if the event is completed, resumes that
task before starting any new task. This is done by scanning the CCE chain for
ECBs that have been posted by MVS.

When a MODIFY command is executed, the communication ECB is posted
complete and a CIB for the command is added to the end of the CIB chain.
DFHZCNA processes the CIB chain in first-in, first-out order. For each CIB,
DFHZCNA searches the CCE chain for the console. With MVS/ESA SP 4.1 (or
later), the search is on console name; otherwise, the search is on console ID.

Chapter 56. Terminal control 451

The task is then attached if the ‘task pending’ flag in the CCE is not set by a
preceding CIB in the chain. In the course of scanning the CIB chain, DFHZCNA
may find a MODIFY command that requires a task to be attached, but cannot
attach the task immediately because there is already a task active, or there is an
outstanding error condition to clear. DFHZCNA therefore sets the ‘task pending’
flag in the CCE to remember the existence of the CIB. During the CIB chain scan,
the condition preventing the task attach might clear, and a subsequent CIB might
be selected for attach. However, the ‘task pending’ flag prevents this, and ensures
that CIBs are processed in order. All ‘task pending’ flags are reset before each CIB
chain scan.

If the task is to be attached, DFHZCNA obtains a TIOA and moves the data from
the CIB to the TIOA. DFHZATT is then called to attach the task. If the attach fails,
the TIOA is freed. A QEDIT macro frees the CIB if the attach is successful, and the
scan continues.

When a transaction is automatically initiated and DFHKCP schedules the
transaction for a terminal which is a console, a flag is set in the CCE by
DFHZLOC. After DFHZCNA has completed scanning the CIB chain, it checks that
the console does not have a task already attached and there is not a CIB on the
chain for the console; if both these conditions are satisfied, the task is attached.

DFHZCNA issues a QEDIT macro to prevent any more MODIFY commands being
accepted when CICS is shutting down. Any MODIFY commands on the CIB chain
after shutdown has been started are processed. When other access methods have
been quiesced, and there are no tasks attached for a console, console support is
shut down.

If a console not defined to CICS is used to enter a MODIFY command, DFHZCNA
sets up an error code and links to DFHACP to issue the error message. This is
done using the TCTTE for the error console, CERR.

DFHZCNR sends terminal control requests from an application program to a
specific system console by issuing WTO and WTOR macros. It is called by
DFHZARQ.

For a WRITE request, DFHZCNR executes either a single WTO macro, or one or
more multiline WTO macros, depending on the amount of data specified for the
request.

For a READ request, DFHZCNR acquires a TIOA for the reply area and executes a
WTOR macro with a CICS-supplied message, DFH4200. This message requests the
operator to reply, and the transaction waits for this reply.

For a CONVERSE or (WRITE,READ) request, DFHZCNR acquires a TIOA for the
reply area and executes a WTOR macro with the data specified for the WRITE. If
there is any data remaining, DFHZCNR then executes either a single WTO macro,
or one or more multiline WTO macros, depending on the amount of data. The
transaction then waits until the operator replies to this request.

Defining terminals to CICS
Terminal definitions are created as CSD records or DFHTCT macros (non-VTAM
only) and then installed in (added to) the terminal control table (TCT) as TCT
terminal entries (TCTTEs).

452 CICS TS for z/OS 4.1: Diagnosis Reference

When a cold start is performed, CICS obtains its TCT entries from DFHTCT
macros or from groups of resource definitions in the CSD file, which are named in
the GRPLIST system initialization parameter. These are recorded in the CICS
catalog.

When a warm start is performed, CICS obtains the definitions from the DFHTCT
macros and from the CICS catalog; the GRPLIST is ignored.

On emergency restart, CICS obtains the definitions from the DFHTCT macros and
from the CICS catalog; the GRPLIST is ignored. Then CICS re-applies any in-flight
TCT updates using information from the system log.

During CICS execution, TCT entries can be added as follows:
v By using the CEDA INSTALL command
v By the autoinstall process when an unknown terminal logs on
v By the transaction routing component when a TCT entry is shipped from a

terminal-owning to an application-owning region.
v By using the EXEC CICS CREATE command

During CICS execution, TCT entries can be deleted as follows:
v By using the EXEC CICS DISCARD command
v By the autoinstall process when an autoinstalled terminal logs off or has been

logged for a period.
v By the transaction routing component when a TCT entry has been unused for a

period.
v Using the CEDA INSTALL, EXEC CICS CREATE, transaction routing, or

autoinstall processes to replace the old entry.

Figure 85 on page 454 shows the terminal control table (TCT).

Chapter 56. Terminal control 453

DFHZCQ
DFHZCQ installs, deletes, catalogs, uncatalogs, recovers, and inquires on terminals.
Entries are installed in and deleted from the terminal control table by DFHZCQ.
DFHZCQ is called by the following modules:

DFHAMTP
For the CEDA transaction and EXEC CICS CREATE, to install TCT entries

DFHEIQSC
For EXEC CICS DISCARD CONNECTION, to discard a connection.

DFHEIQST
For EXEC CICS DISCARD TERMINAL, to discard a terminal.

DFHTBSS
During CICS initialization, to restore terminal definitions at warm or
emergency restart

DFHZATA
The autoinstall program

DFHZATD
The autoinstall delete program

DFHZATS
When a TCT entry is shipped, installed, or deleted for transaction routing

CSA

x'128' CSATCTBA
Address of TCT

DFHTCTFX Wait list
TCT prefix

DFHTCTLE
x'00' TCTVWLA VTAM receive-any

Address of ECB address x'00' TCTLEECB
TCT wait list

x'04' TCTVWLA1 Non-VTAM line x'54' TCTLEPA
First non-VTAM entry ECB addr Address of
wait list entry first terminal

on line
x'1C' TCTVTEBA DFHTCTTE

First terminal TCTTE, non-VTAM
entry

x'08' TCTTESC - 4
x'38' TCTVSEBA Storage chain

Address of first offset
system entry

x'08' TCTTESC
Terminal TIOA

x'E0' TCTVRVRA storage chain
VTAM receive-any
pool address x'0C' TCTTEDA

Address of TIOA
current TIOA

DFHTCPRA
Receive-any x'10' TCTTECA
control element Current task TCA TCA

x'04' TCTVRAL x'70' TCTTELEA
Address of RPL Address of

line entry
x'08' TCTVRAEB

Receive-any ECB

RPL

x'2C' RPLECB
Address of ECB

Figure 85. Terminal control table (TCT)

454 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZTSP
When a transaction route request is received to recatalog the connection if
certain characteristics have changed.

DFHQRY
When the QUERY function is used to discover the actual characteristics of
a device, complete the TCT entry, and recatalog the resulting TCTTE

DFHWKP
The warm keypoint program, to record information for RDO-eligible
terminals in the CICS catalog, and to uncatalog autoinstalled entries.

DFHZCQ calls the table builder services (TBS) modules which in turn, call the
appropriate DFHBSxxx modules to build the TCTTE for the input parameters.
DFHZCQ is heavily dependent on the module that calls it to supply the complete
set of parameters to be used to create the TCTTE; DFHZCQ itself is not responsible
for determining parameters for the TCTTE.

DFHBS* builder programs
DFHZCQ calls the builder programs, whose names all begin DFHBS. These
builders are responsible for creating TCTTEs. The parameters given to DFHZCQ
are passed on to the builders, which extract the parameters and set the relevant
fields in the TCTTE.

For further information about builders, see Chapter 6, “Builders,” on page 61.

Contents of the TCT
The TCT describes the logical units (LUs) known to CICS. Each active LU is
represented by a terminal control table terminal entry (TCTTE). The TCT does not
describe the network configuration; it describes the CICS logical viewpoint of the
network.

The TCT contains pointers to these VTAM-related control blocks:
v Access method control block (ACB)— Link an application program, such as

CICS, to VTAM
v Receive-any control blocks (RA-RPL, RA-ECB, RACE)— Process initial

transaction input
v Node initialization block (NIB) descriptors and bind-area models— Used during

logon processing
v TCTTEs— Describe the logical units known to CICS
v ACB and RPL exit lists— Point to the VTAM exit routines.

TCT indexing(DFHZGTI and DFHZLOC)
There are two types of requests that can be used in CICS to locate terminal entries:
1. DFHZGTI calls
2. and DFHTC CTYPE=LOCATE calls

Both these modules use DFHTM calls to a variety of indexes and chains to locate
terminal entries in the TCT with efficiency.

The DFHZGTI module has the following call types:
Locate Find a TCT entry in the given ‘domain’ which matches the name
GetStart

Obtain a browse token for Getnexts.
GetFirst

Find the first entry that matches the name in the given domain.

Chapter 56. Terminal control 455

GetNext
Find the next entry that matches the name in the given domain.

GetEnd
Release the browse token

Release
Unlock an entry

Callers can decide to have an entry returned as locked or unlocked.

In DFHZGTI the total TCT is carved up into ‘domains’ A TCT entry can reside in
several domains depending on its type. Callers to DFHZGTI specify one domain
on a call and are returned one entry that fits the name (or partial name) that is
supplied. DFHZGTI calls can be for the following domains:
Terminal by termid

All terminals (local, remote, non-vtam) by the terminal id (4-char).
Session by termid

All sessions (VTAM, MRO, remote) by the terminal id (4-char).
Global by termid

All terminal and all sessions by the terminal id (4-char).
System by sysid

All connections (local, remote) by the sysid (4-char)
MRO system by sysid

MRO connections by sysid (4-char).
LU61 system by sysid

LU61 connections by sysid(4-char).
REMDEL system by sysid

Systems that need REMDEL sent to them (because they do not support
timeout) when a local entry is deleted by sysid (4-char).

Terminal by netname
VTAM local terminals by the netname (8-char).

System by netname
All connections (local, remote) by the netname (8-char).

Remote terminal by netname
Remote terminals by the netname (8-char).

Global by netname
Terminals, remote terminals and sessions by the netname (8-char).

Remote by Unique
All remote terminals and remote connections by the unique name that is
Terminal-Owning-Region (TOR) netname, followed by a period, followed
by the termid or sysid in the TOR. (13-char).

Remote terminal by Rsysid
Remote terminals by the value of REMOTESYSTEM (4-char).

Remote system by Rsysid
Remote connections by the value of REMOTESYSTEM (4-char).

Indirect system by Rsysid
Indirect connections by the value of REMOTESYSTEM (4-char).

Generic system by mbrname
Generic connections by the member-name of the connection in the generic
VTAM resource (8-char).

DFHTC CTYPE=LOCATE calls are processed by DFHZLOC. DFHZLOC does not
have access to as wide a range of domains as DFHZGTI, but it provides extra
facilities such as finding particular types of sessions for a connection. Both
DFHZGTI and DFHZLOC can lock TCT entries.

456 CICS TS for z/OS 4.1: Diagnosis Reference

Locks
The table manager program (DFHTMP) is used to locate TCT entries by both
DFHZGTI and DFHZLOC. When DFHTMP gives the address of an entry, it notes
the address of the calling task, and this has the effect of a shared lock unless the
caller asked for the entry not to be locked. All locks are released implicitly at the
end of the task.

When a TCT entry is deleted, it must not be in use by another task. This is
achieved by issuing the DFHTM QUIESCE macro. Other tasks that issue DFHTM
LOCATE for that entry are suspended when they acquire a shared lock. These
tasks are resumed when the original task issues a delete (if the commit option is
used), or at syncpoint if not.

In addition to TMP read locks, DFHZLOC and DFHZGTI, use update locks which
are obtained and released by DFHZGTA. DFHZGTA’s involvement in TCT updates
is discussed in Chapter 6, “Builders,” on page 61. For efficiency, two flags in each
TCT entry (one for delete and one for update) are examined before a TCT entry is
returned. If either is set, and the request does not ask to see all updates,
DFHZGTA is called to determine if the inquiring task holds the lock on the termid
or sysid name. If it does, the entry is returned, otherwise the entry is ignored. This
hides entries that are being installed or replaced from other parts of CICS until
they are ready to be used, without requiring a lock search for each inquiry. The
Builders, see Chapter 6, “Builders,” on page 61, are responsible for setting and
resetting the flags in the TCT entry.

The following sections describe some of the callers of DFHZCQ.

System initialization (DFHTCRP, DFHAPRDR and DFHTBSS)
The DFHTCRP program is responsible for reestablishing TCTTEs that were in
existence in the previous CICS run. There are three stages of processing in
DFHTCRP:
1. Initialize DFHZCQ and DFHAPRDR, then exit if START=COLD
2. Reestablish TCTTEs recorded in the CICS catalog calling DFHZCQ for each

one.
3. Call DFHAPRDR to allow it to proceed and forward-recover in-flight updates

to TCTTEs recorded in the system log at emergency restart or XRF takeover.

The DFHAPRDR program is called by DFHTCRP in two phases:
1. To initialize its control blocks.
2. To wait until Recovery Manager has delivered any inflight log records and

DFHAPRDR (running on another task) has called DFHTBSS to recover them.

DFHAPRDR is called by Recovery Manager (RM) for each log record that are for
UOWs that did not write a Forget record to the system log when CICS failed. It is
then called again to denote the end of any such records. On this call DFHAPRDR
waits until DFHTCRP has rebuilt the TCT from the catalog, and then calls
DFHTBSS to recover each log record (which will update the TCT and catalog).
Then it posts DFHTCRP to show that the TCT has recovered and returns to
Recovery Manager.

The DFHTBSS program is called by DFHAPRDR with log records for TCT updates
that were being written to the catalog when CICS failed. It then calls DFHZCQ to
re-install or re-delete the entries that the log records represent.

Chapter 56. Terminal control 457

CEDA INSTALL and EXEC CICS CREATE (DFHAMTP)
When the CEDA INSTALL command is used to install a group of TERMINAL
definitions, the flow of control is as follows:
1. DFHAMP processes CEDA and EXEC CICS CREATE commands.
2. DFHAMPIL processes the INSTALL and CREATE commands.
3. DFHAMTP calls DFHTOR and then DFHZCQ.
4. DFHTOR receives as input a partial definition (TERMINAL, TYPETERM,

CONNECTION, or SESSIONS), calling one of the DFHTOAxx modules,
depending on the type of resource definition:
v DFHTOAxx adds a partial definition to a BPS. For a terminal device, a

complete BPS is built from information from one TYPETERM and one
TERMINAL definition; for an ISC or MRO link, a complete BPSes are built
from information from one CONNECTION and one (or more) SESSIONS
definition(s).

v DFHTOBPS builds the BPS, calling one of the DFHTRZxP modules to
translate the parameter list into BPS format.

5. When DFHTOR has built a complete BPS, it returns it to DFHAMTP, ready to
be passed to DFHZCQ.

For additional information about this process, see Chapter 42, “Resource definition
online (RDO),” on page 373.

Autoinstall
For information about this process, see Chapter 3, “Autoinstall for terminals,
consoles and APPC connections,” on page 15.

QUERY function (DFHQRY)
The QUERY function (DFHQRY) is used to determine the characteristics of IBM
3270 Information Display System devices, and complete the information about a
device in the TCTTE. DFHQRY sends a read partition query structured field to the
device, and analyzes the response. The TCTTE fields mainly affected are those
used by basic mapping support (BMS), such as extended attributes. If
QUERY(ALL) or QUERY(COLD) is specified in the terminal definition, DFHQRY is
executed before any other transaction is initiated at a terminal. If QUERY(ALL) is
specified, this is done after each logon. If QUERY(COLD) is specified, it is only
done following the first logon after a cold start. After completing the TCTTE fields,
DFHQRY calls DFHZCQ to recatalog the TCTTE.

Control blocks
Figure 86 on page 459 shows the control blocks associated with terminal control.

458 CICS TS for z/OS 4.1: Diagnosis Reference

CSA From part 2
of this figure

x'128' CSATCTBA
Address of TCT prefix Wait list

Address of
TCTFX VTAM activate chain ECB

x'00' TCTVWLA Address of
Address of wait list VTAM receive-any ECB

x'04' TCTWLA1 2
Address of first non-VTAM Address of non-VTAM
wait list element line entry ECB

x'1C' TCTVTEBA End of ECB list
Address of first non-VTAM indication x'FFFFFFFF'
terminal entry

TCTSE
x'38' TCTVSEBA

Address of first
ISC system entry x'08' TCSELNK

Address of next TCTSE

x'E0' TCTVRVRA
Address of VTAM
receive-any pool x'08' TCSELNK

Address of next TCTSE
x'E4' TCTVLNIB

Address of NETNAME chain
for session TCTTEs TCPRA (RACE pool)

x'134' TCTVMNIB To x'04' TCTVRAL
Address of model NIB 1 in Address of RPL
pointers part 2

of this x'08' TCTVRAEB
figure ECB

Receive-any RPL

RPLECB
TCT Address of ECB

Non-VTAM terminal 1 TCTLE
(non-VTAM line entries)

Non-VTAM terminal 2
x'00' TCTLEECB

ECB

Non-VTAM terminal m
x'08' TCTLEDCB

Address of DCB
Notes:

x'0C' TCTLEIOA
1. TACLE is created only when line Address of I/O area

or terminal error has occurred.

x'44' TCTLETEA
Address of active TCTTE

x'4C' TCTLEECA
Address of error chain,
TACLE for TACP (note 1)

x'54' TCTLEPA
Address of
first terminal on line

TCTTE

x'00' TCTTETI
Terminal name

TIOA
x'08' TCTTESC

Address of
terminal storage chain x'04' TIOASCA

Address of next TIOA
x'0C' TCTTEDA

(see note 2)
TIOA

Address of current TIOA

x'10' TCTTECA x'04' TIOASCA (see note 1)
Address of TCA Address of next TIOA

x'6C' TCTENIBA (VTAM) TCA

Address of NIB descriptor
x'08' TCAFCAAA

x'70' TCTTELEA (non-VTAM) To Address of TCTTE
Address of line entry 2 in

part 1
TCTERPLA (VTAM) of this
Address of RPL figure TCTENIB (NIBD)

x'78' TCTTETEA x'04' TCTENPTR
Address of terminal Address of dynamically
table entry extension acquired NIB/BIND

x'90' TCTTEIST
Address of ISC x'54' TCTENNCH (see note 3)
intersystem table x'FFFFFFFF'

TCTNIBLA
1

Address of NIB model
From NIBM0
part 1 Non-3270 NIB model

Chapter 56. Terminal control 459

Figure 87 shows the TCTLE and Figure 88 shows the TACLE.

Terminal input/output areas (TIOAs) are set up by storage control and chained to
the terminal control table terminal entry (TCTTE) as needed for terminal
input/output operations. The TCTTE contains the address of the first terminal-type
storage area obtained for a task (the beginning of the chain), and the address of the
active TIOA.

See CICS Data Areas for a detailed description of these control blocks.

Modules
The DFHZCx modules contain CSECTs that issue VTAM macros to perform
specific communication functions, and exit routines that are driven by VTAM when
network events occur that are related to CICS.

The following is a list of the DFHZCx load modules concerned with terminal
control and VTAM management in CICS, together with brief descriptions of their
component object modules (CSECTs):

DFHTCTLE

x'15' TCTLETLA
Address of terminal list

x'40' TCTLEPLA
Address of polling list

x'44' TCTLETEA
Address of active term table entry

x'4C' TCTLEECA
Address of line error chain

TACLE

x'54' TCTLEPA
Address of first terminal on line

Figure 87. Terminal control table line entry (TCTLE)

TCTLE

DFHTACLE
x'4C' TCTLEECA

x'0C' TCTLEPTE
Address of term entry

Figure 88. Terminal abnormal condition line entry (TACLE)

460 CICS TS for z/OS 4.1: Diagnosis Reference

Module CSECT Description

DFHZCA DFHZACT Activate scan
 DFHZFRE Freemain
 DFHZGET Getmain
 DFHZQUE Queue manager
 DFHZRST RESETSR request
DFHZCB DFHZATI Automatic task initiation
 DFHZDET Task detach
 DFHZHPSR Authorized path SRB requests
 DFHZLRP Logical record presentation
 DFHZRAC Receive-any completion
 DFHZRAS Receive-any slowdown processing
 DFHZRVS Receive specific
 DFHZRVX Receive specific exit
 DFHZSDR Send response
 DFHZSDS Send DFSYN
 DFHZSDX Send synchronous data exit
 DFHZSSX Send DFSYN command exit
 DFHZUIX User input exit

DFHZCC DFHZARER Protocol error and exception handler
 DFHZARL APPC application request logic
 DFHZARM APPC migration logic
 DFHZARR Application receive request logic
 DFHZARRA Application receive buffer support
 DFHZARRC Classify what next to receive
 DFHZARRF Receive FMH7 and ER1
 DFHZBKT Bracket state machine
 DFHZCHS Chain state machine
 DFHZCNT Contention state machine
 DFHZCRT RPL_B state machine
 DFHZRLP GDS post-VTAM receive logic
 DFHZRLX GDS receive exit logic
 DFHZRVL GDS pre-VTAM receive logic
 DFHZSDL GDS send logic
 DFHZSLX GDS send exit logic
 DFHZSTAP Conversation state determination
 DFHZUSR Conversation state machine

DFHZCP DFHZARQ Application request handler
 DFHZATT Attach routine
 DFHZCNA MVS console
 DFHZDSP Dispatcher
 DFHZISP Allocate/free/point
 DFHZSUP Startup task
 DFHZUCT 3270 uppercase translate

DFHZCW DFHZERH APPC ERP logic
 DFHZEV1 APPC bind security (part 1)
 DFHZEV2 APPC bind security (part 2)

DFHZCX DFHSNAS Create signon/sign-off ATI sessions
 DFHSNPU Preset userid signon/sign-off
 DFHSNSU Session userid signon/sign-off
 DFHSNTU Terminal userid signon/sign-off
 DFHSNUS US domain - local and remote signon
 DFHSNXR XRF reflecting signon state
 DFHZABD Abend routine for incorrect requests
 DFHZAND Build TACB before issuing PC abends
 DFHZCNR MVS console request
 DFHZIS1 ISC/IRC syncpoint
 DFHZIS2 IRC internal requests
 DFHZLOC Locate TCTTE and ATI requests
 DFHZSTU Status changing TCTTEs/LCDs and TCTSEs

Chapter 56. Terminal control 461

Module CSECT Description

DFHZCXR DFHBSXGS APPC session name generation
 DFHZTSP Terminal sharing functions
 DFHZXRL APPC command routing
 DFHZXRT Routed APPC command handling

DFHZCY DFHZASX DFASY exit
 DFHZDST SNA-ASCII translation
 DFHZLEX LERAD exit
 DFHZLGX LOGON exit
 DFHZLTX LOSTERM exit
 DFHZNSP Network services exit
 DFHZOPA Open VTAM ACB
 DFHZRRX Release request exit
 DFHZRSY1 Resynchronization part 1
 DFHZRSY2 Resynchronization part 2
 DFHZRSY3 Resynchronization part 3
 DFHZRSY4 Resynchronization part 4
 DFHZRSY5 Resynchronization part 5
 DFHZRSY6 Resynchronization part 6
 DFHZSAX Send command exit
 DFHZSCX SESSION control input exit
 DFHZSDA Send command
 DFHZSES SESSIONC
 DFHZSEX SESSIONC exit
 DFHZSHU Shutdown VTAM
 DFHZSIM SIMLOGON
 DFHZSIX SIMLOGON exit
 DFHZSKR Send response to command
 DFHZSLS SETLOGON start
 DFHZSYN Handle CTYPE=syncpoint/recover request
 DFHZSYX SYNAD exit
 DFHZTPX TPEND exit
 DFHZTRA Create ZCP/VIO trace requests
 DFHZXPS APPC persistent session recovery
 DFHZXRC XRF and persistent sessions state data analysis

DFHZCZ DFHZCLS CLSDST
 DFHZCLX CLSDST exit
 DFHZCRQ CTYPE command request
 DFHZEMW Error message writer
 DFHZOPN OPNDST
 DFHZOPX OPNDST exit
 DFHZRAQ Read ahead queuing
 DFHZRAR Read ahead retrieval
 DFHZTAX Turnaround exit

Exits
DFHZCB has three global user exit points: XZCIN, XZCOUT, and XZCOUT1.

DFHZCP has one global user exit point: XZCATT.

DFHTCP has the following global user exit points: XTCIN, XTCOUT, XTCATT,
XTCTIN, and XTCTOUT.

For further information about these, see the CICS Customization Guide.

462 CICS TS for z/OS 4.1: Diagnosis Reference

Trace
The following point IDs are provided for terminal control:
v AP 00E6 (DFHTCP), for which the trace level is TC 2
v AP 00FC (DFHZCP), for which the trace level is TC 1
v AP FBxx, for which the trace levels are TC 1, TC 2 and Exc
v AP FCxx, for which the trace levels are TC 1, TC 2, and Exc
v AP FDxx, for which the trace level is TC 1
v AP FExx (APPC application receive requests), for which the trace levels are TC 2

and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 56. Terminal control 463

464 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 57. Terminal error program

The terminal error program (DFHTEP) is invoked by the terminal abnormal
condition program (DFHTACP) when an abnormal condition associated with a
terminal or line occurs. The terminal error program (TEP) can be either of the
following:
v The CICS-supplied sample TEP (DFHXTEP in source code form)
v A user-supplied TEP.

Design overview
The TEP analyzes the cause of the terminal or line error that has been detected by
the terminal control program. The CICS-supplied version is designed to attempt
basic and generalized recovery actions.

A user-supplied TEP can be used to enable processing to be performed whenever a
communication system error is reported to CICS; for example, to analyze the error
and accept or override the default actions set by DFHTACP.

When TEP processing is complete, control goes back to DFHTACP.

Note: Communication system errors (non-VTAM) are passed only to
DFHTEP—not to the application programs.

Guidance information about TEP coding is given in the CICS Recovery and Restart
Guide. Reference information about TEP coding is given in the CICS Customization
Guide.

Modules
DFHTEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided specifically for this function; however, DFHTACP
provides trace entries immediately before and after calling the terminal error
program (see Chapter 55, “Terminal abnormal condition program,” on page 437 for
further details).

© Copyright IBM Corp. 1997, 2011 465

466 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 58. Trace control macro-compatibility interface

DFHTRP is responsible for handling all requests for trace services that are made by
using the routine addressed by CSATRNAC in the CICS common system area
(CSA).

Some parts of the CICS AP domain invoke DFHTRP to record trace information.
This is achieved by use of the DFHTR, DFHTRACE, or DFHLFM macro.

DFHTRP converts all requests for recording trace entries into TRACE_PUT calls to
the trace domain. All requests for changing the various trace flags that control
tracing are converted into KEDD format calls to the kernel domain.

Design overview
The input to DFHTRP, set up by the macro used for the invocation or by the
calling program directly, consists of the following TCA fields:
TCATRTR

The trace request byte. The bottom half byte has one of the following
values:
2 User trace entry
3 An entry requested via DFHLFM on entry to a LIFO module
4 A system entry requested via DFHTR or DFHTRACE
5 An entry requested via DFHLFM on exit from a LIFO module.

TCATRID
The trace ID of the entry to be made. This is one byte X'nn'. The resulting
trace point ID is AP 00nn.

TCATRF1/TCATRF2
Two 4-byte fields to appear as FIELD A and FIELD B in the trace entry.

TCATRRSN
An 8-character field used by some entries to specify a resource name.

The following flags in the TCA and CSA are tested by DFHTRP before making the
call to the trace domain (TRACE_PUT function):
CSATRMAS (X'80' bit in CSATRMF1)

The trace master flag. This is off unless at least one of internal, auxiliary, or
GTF trace is active.

TCANOTRC (X'40' bit in TCAFLAGS)
This is set according to the TRACE (YES|NO) specification on the
TRANSACTION definition for the transaction ID used to start this task. It
allows suppression of all trace activity for specified transaction IDs.

X'80' bit in TCATRMF
This is the user entry ‘single’ flag. It allows suppression of user trace
entries for the associated task.

The process flow is as follows:
1. Test appropriate flags and exit if trace not required.
2. Execute data collection routine specific to trace ID in TCATRID to set up fields

in trace entry.
3. Call TR domain with TRACE_PUT call to write the entry to the active

destinations.

© Copyright IBM Corp. 1997, 2011 467

4. Invoke the storage violation trap (if this has been activated) by using the CSFE
DEBUG transaction, or by using the CHKSTSK or CHKSTRM startup override.
See the CICS Problem Determination Guide for information about the detection of
storage violations.

Modules
DFHTRP

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for trace entries recording “trace on” and
“trace off” calls to DFHTRP:
v AP 00FE, for trace turned on
v AP 00FF, for trace turned off.

There are no corresponding trace levels for these point IDs; that is, the trace entries
are always produced.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

468 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 59. Trace formatting

There are three possible destinations for CICS trace entries:

Internal
To main storage in the CICS region

Auxiliary
To a BSAM data set managed by CICS

GTF To the MVS-defined destination for generalized trace facility (GTF) records.

This section describes the code used to interpret and format CICS trace entries
from all of these destinations when they are processed offline.

For more information about using traces in problem determination, see the CICS
Trace Entries.

In this context, “formatting” is used to mean the overall process of producing a
report, suitable for viewing or printing, from trace data in a dump or trace data
set. “Interpretation” is the process of taking just the point ID and the data fields
from a trace entry and producing a character string describing what the entry
represents.

There are four environments for trace formatting:
v Internal trace in transaction dump
v Internal trace in system dump
v Printing auxiliary trace data set
v Printing GTF trace data set or processing GTF records in an SDUMP.

 Table 27. CICS trace formatting summary

Transaction
dump printout

System dump
printout

Auxiliary trace
printout

GTF trace
printout

CICS trace type Internal Internal Auxiliary GTF

Data set DFHDMPx SYS1.DUMPnn DFHxUXT SYS1.DUMPnn
or SYS1.TRACE

Controlling
program

DFHDU660 DFHTRDUF DFHTRPRA DFHTRPRG

Load module
name

DFHDU660 DFHPD660 DFHTU660 AMDUSREF
(alias
DFHTR660)

Design overview
The controlling program (DFHDU660, DFHTRDUF, DFHTRPRA, or DFHTRPRG) is
responsible for acquiring the trace formatting control area (TRFCA), which is used
for communication between the different routines.

As far as possible, the necessary code is constructed of routines that can run in all
four environments. Subroutines required by the common code that cannot

© Copyright IBM Corp. 1997, 2011 469

themselves be common (such as the line print subroutine) have their addresses
placed in the TRFCA by the controlling program.

The controlling routines are:
DFHDU660

The dump utility program used to print transaction dumps. Invokes
DFHTRFPB for each internal table block.

DFHTRDUF
The system dump formatting routine for the trace domain. Invokes
DFHTRFPB for each internal table block.

DFHTRPRA
The main routine of the trace utility program DFHTU660 used to print an
auxiliary trace data set. Invokes DFHTRFPP to encode selective print
parameters. Invokes DFHTRFPB for each auxiliary trace block.

DFHTRPRG
The main routine of the GTF format appendage for CICS entries (format ID
X'EF') AMDUSREF (alias DFHTR660). Invokes DFHTRFPP to encode
selective print parameters. Invokes DFHTRFFE for each trace entry.

A noncommon subroutine required in all four environments is:

TRFPRL
Print a specified character buffer. This is contained in the controlling
program.

The common routines required in more than one environment are:

DFHTRFPP
Process parameters. Passed a character string, encodes the string as
selective print parameters into the TRFCA (for DFHTRPRA and
DFHTRPRG only). See the CICS Operations and Utilities Guide for details of
the selective print parameters.

DFHTRFPB
Process block. Processes a trace block from a dump or auxiliary trace data
set, calling DFHTRFFE for each entry in the block.

DFHTRFFE
Format entry. Passed a trace entry, it calls DFHxxTRI, TRFPRL, and
DFHTRFFD to produce the formatted entry.

DFHTRFFD
Format data. To format and print the trace data fields of a particular entry
in hex and character form. Calls TRFPRL to print each line.

DFHxxTRI
The interpretation routine for the xx domain. Builds the interpretation
string for a particular entry given the trace point ID and the data fields
from the entry. The AP domain routine DFHAPTRI calls one of the
interpretation routines DFHAPTRx. Each of these is responsible for a
functional component of the AP domain.

DFHTRIB
The interpretation build program. Adds printable data to the interpretation
buffer in the TRFCA as requested by the interpretation routine.

DFHCDCON
The interpretation of some trace entries requires analysis of domain call
parameter lists. Converts a hexadecimal parameter list into a printable list
of keywords. If the resulting interpretation string would have been more

470 CICS TS for z/OS 4.1: Diagnosis Reference

than 1024 bytes long if all keywords were included, the warning
‘<<INTERPRETATION OVERFLOWED>>’ is printed with the string.

DFHxxyyT
The data file for an xxyy format parameter list that is used by
DFHCDCON to translate the hexadecimal parameter list into a printable
list of keywords.

The components of the trace formatting function are shown in Figure 89.

Segmented entries on GTF
GTF entries with the CICS format ID X'EF' are written from parts of CICS that run
asynchronously with the mainline code, as well as from the trace domain itself.
The source of the entry is identified by the type byte in TREN_TYPE in the entry
header. See DFHTREN in CICS Data Areas for a full description of the trace entry
header.
Type Source of entry
 00 TR domain
 01 not used
 02 DFHMNSVC
 03 'normal' CICS VTAM exit
 04 CICS VTAM LERAD/SYNAD exit
 05 CICS VTAM TPEND exit
 06 CICS VTAM HPO exit
 07 CICS VTAM HPO LERAD/SYNAD exit

For trace formatting, the different types run on different MVS threads. Because
CICS entries can be split into several GTF entries due to the 256-byte restriction on
GTF entry length, it is possible that header and continuation entries of the different
types may be interleaved on the GTF data set. DFHTRPRG allows for this by
having 4KB buffers for each type in which it can reconstruct segmented entries.
This is made all the more relevant when it is recognized that there could be several
CICS regions writing to the GTF data set at the same time. Not only may different
types become interleaved, but also records of the same type but from different
CICS regions. For each type there can be up to five 4KB buffers for reconstructing
the segmented entries to ensure that all the entries for any region are formatted
completely and correctly. This makes the segmenting of the entries transparent in a
formatted GTF trace, although they appear in order of completion and so may be
out of time sequence.

DFHDUnnn DFHTRDUF DFHTRPRA DFHTRPRG

DFHTRFPP
Process
parameters

DFHTRFPB - Process block

DFHTRFFE - Format entry

DFHxxTRI DFHTRFFD - Format data

DFHTRIB TRFPRL

DFHCDCON DFHxxyyT

Figure 89. Trace formatting components

Chapter 59. Trace formatting 471

Control blocks
The trace formatting control area (TRFCA) is used as a communication area
between the routines that go to make up each of the four trace formatting load
modules. See CICS Data Areas for details of DFHTRFCA.

Modules
 Module Function

Controlling programs
DFHDU660 Internal trace in transaction dump
DFHTRDUF Internal trace in system dump
DFHTRPRA Auxiliary trace
DFHTRPRG GTF trace
Common routines
DFHTRFPB Process trace block
DFHTRFPP Process selective print parameters
DFHTRFFE Format trace entry
DFHTRFFD Format data from entry
DFHTRIB Interpretation build routine
DFHCDCON Parameter list decode routine
Trace interpretation routines
DFHAPTRA MRO entries
DFHAPTRB XRF entries
DFHAPTRC User exit management entries
DFHAPTRD DFHAPDM/DFHAPAP entries
DFHAPTRE Data tables entries
DFHAPTRF SAA communications and resource recovery entries
DFHAPTRG ZC exception and VTAM exit entries
DFHAPTRI Application domain entries (router)
DFHAPTRJ ZC VTAM interface entries
DFHAPTRL CICS OS/2 LU2 mirror entries
DFHAPTRN Autoinstall terminal model manager entries
DFHAPTRO LU6.2 application request logic entries
DFHAPTRP Program control entries
DFHAPTRR Partner resource manager entries
DFHAPTRS DFHEISR trace entries
DFHAPTRV DFHSRP trace entires
DFHAPTRW Front End Programming Interface feature entries
DFHAPTR0 Old-style entries
DFHAPTR2 Statistics entries
DFHAPTR4 Transaction manager entries
DFHAPTR5 File control entries
DFHAPTR6 DBCTL entries
DFHAPTR7 Transaction routing entries
DFHAPTR8 Security entries
DFHAPTR9 Interval control entries
DFHCCTRI Local and global catalog domain entries
DFHDDTRI Directory manager entries
DFHDMTRI Domain manager domain entries
DFHDSTRI Dispatcher domain entries
DFHDUTRI Dump domain entries
DFHKETRI Kernel domain entries
DFHLDTRI Loader domain entries
DFHLGTRI Log Manager domain entries

472 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHL2TRI Log Manager domain entries
DFHLMTRI Lock manager domain entries
DFHMETRI Message domain entries
DFHMNTRI Monitoring domain entries
DFHNQTRI Enqueue domain entries
DFHPATRI Parameter manager domain entries
DFHPGTRI Program manager domain entries
DFHRMTRI Recovery Manager domain entries
DFHSMTRI Storage manager domain entries
DFHSNTRI Signon entries
DFHSTTRI Statistics domain entries
DFHTITRI Timer domain entries
DFHTRTRI Trace domain entries
DFHTSITR Temporary Storage domain entries
DFHUSTRI User domain entries
DFHXMTRI Transaction manager domain entries
DFHXSTRI Security domain entries

Exits
Global user exit points are not applicable to offline utilities.

Chapter 59. Trace formatting 473

474 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 60. Transaction Failure program

The abnormal condition program has been divided into two new programs
according to function.
1. DFHTFP which is a new program that is invoked after transaction initialization

on abnormal termination.
2. DFHACP which is invoked by transaction manager whenever an incorrect

transaction is detected.

The transaction failure program (DFHTFP) is invoked during transaction abend
processing. Its purpose is to reset the status of a terminal attached to the
transaction, and to send a message informing the terminal operator that the
transaction has abended. It also calls the user-written (or default) program error
program (DFHPEP), and writes a message to the CSMT transient data destination.

DFHTFP resolves any abnormal conditions other than those associated with a
terminal, or those handled directly by the operating system.

Design overview
Errors can be classified as belonging in either of two broad categories:
1. DFHTFP. Task abnormal conditions, which are detected by CICS control

programs and are often due to an application program destroying system
control information. When this happens, the task is terminated, the program
error program (DFHPEP) is called, the terminal operator is, if possible,
informed of the error, and the error is logged at destination CSMT. If the
transaction has entered syncpoint processing, then DFHPEP is NOT called.

2. DFHACP. Operator errors, such as incorrect transaction identifiers, security key
violations, or failure of an operator to sign on to the system before attempting
to communicate with CICS. When any of these happens, the program error
program is NOT called, the terminal operator is notified, and the error is
logged at destination CSMT.

Figure 90 on page 476 and Figure 91 on page 476 show the interfaces between the
abnormal condition programs, DFHTFP and DFHACP, and other components
when an error has been detected.

© Copyright IBM Corp. 1997, 2011 475

Note:

1. DFHTFP is invoked by transaction manager whenever a task is abnormally
terminated. The operator ID for error messages is in the terminal control table
terminal entry (TCTTE) at TCTTEOI. DFHTFP returns to transaction manager
after the error message has been issued. When a task is abnormally terminated
because of a stall purge condition, the stall purge count is increased by one and
the transaction identifier (from the installed resource definition) is included in
the error message.

2. DFHTFP communicates with storage control to obtain and release terminal
input/output areas (TIOAs).

3. DFHTFP links to the user-supplied (or default) program error program by
issuing a DFHPGLU LINK_URM domain call, which passes a parameter list via
a COMMAREA (mapped in this case by DFHPCOM TYPE=DSECT). Any abend
within a DFHPEP program results in control returning to DFHTFP unless there
is an active HANDLE ABEND for this program. See Chapter 39, “Program error
program,” on page 367 for further information about the DFHPEP program.

4. DFHTFP and DFHACP both write error messages to the transient data
destination, CSMT, by calling the message domain.

Note:

Transient data
program

User-written
error program

Program manager
domain

DFHAPAC

Storage control
program

Syncpoint
program

Transaction
manager
domain

Recovery
manager
domain

TCT

Transaction
failure
program
(DFHTFP)

1

2

3

3

4

CSA

TDOA

TCTTE

TCTLE

TIOA

Figure 90. DFHTFP abnormal condition program interfaces

CSA

TDOA

Abnormal
condition
program
(DFHACP)

TCT

TCTTE DFHAPXME
Transaction
manager
domain

TCTLE

TIOA

Figure 91. DFHACP abnormal condition program interfaces

476 CICS TS for z/OS 4.1: Diagnosis Reference

1. DFHACP is invoked by transaction manager whenever an incorrect transaction
code is detected.

2. DFHTFP and DFHACP both write error messages to the transient data
destination, CSMT, by calling the message domain.

Modules
DFHTFP, DFHACP, DFHAPAC, and DFHAPXME

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for the abnormal condition program:
v AP 00DC, for which the trace level is AP 1.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 60. Transaction Failure program 477

478 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 61. Transaction restart program

The transaction restart program, DFHREST, is a user-replaceable program that
helps you to determine whether or not a transaction is restarted. The default
version of DFHREST requests a transaction restart under certain conditions; for
example, if a program isolation deadlock occurs (that is, when two tasks each wait
for the other to release a particular DL/I database segment), one of the tasks is
backed out and automatically restarted, and the other is allowed to complete its
update.

For further information about the transaction restart program, see the CICS
Recovery and Restart Guide. For information about how to provide your own code
for DFHREST, see the CICS Customization Guide.

Design overview
In the creation of the program control table (PCT), the system programmer can
designate selected transactions as restartable.

During the execution of any transaction, certain temporary-storage data,
intrapartition destinations, and files are protected for dynamic backout. In
addition, for a restartable transaction, the following actions take place:
v Any terminal input/output area (TIOA), command-level communication area, or

terminal user area existing at task initiation is copied to the dynamic log.
v Interval control automatic initiate descriptors (AIDs) used in the task are

preserved by means of deferred work elements (DWEs) until the next syncpoint.
v Data is maintained to show:

– What terminal traffic has occurred during the task
– Whether a syncpoint has been passed
– Whether or not the current activation of the task is the result of a restart.

If a transaction abends, but before backout has been attempted, DFHREST may be
invoked to decide whether or not the task is to be restarted. Even if DFHREST
decides that the transaction can be restarted, CICS may overrule the restart, for
example because of a transaction backout failure.

DFHREST is invoked by DFHXMTA passing a parameter list via a COMMAREA
that is mapped by the DFHXMRSD DSECT. DFHREST should return to
DFHXMTA, indicating whether or not the transaction should be restarted. If
DFHREST requests a restart, and CICS does not overrule this decision, the
principal facility is not released and the principal facility owner reattaches a new
task to restart the transaction.

Note:

1. DFHREST can invoke CICS facilities such as file control and transient data, via
the command-level interface.

2. If an error occurs while linking to, or in, the transaction restart program, the
restart is not attempted for this task.

3. DFHREST runs before backout.

© Copyright IBM Corp. 1997, 2011 479

Control blocks
CICS supplies a description of the transaction restart program commarea, in
Assembler-language, COBOL, PL/I, and C, which maps the layout of the
parameter list passed between DFHXMTA and DFHREST. The parameter list
contains information that helps you code your own version of DFHREST to
determine whether a restart should be requested for a task.

For a detailed description of this control block, see CICS Data Areas.

Modules
DFHREST is a skeleton user-replaceable program that you can modify.

Exits
Global user exit points are not relevant for this function.

Trace
Trace point IDs are not relevant for this function.

Transaction Restart Statistics
CICS keeps a count of the number of times that each transaction has been
restarted.

480 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 62. Transaction routing

Transaction routing allows one CICS system to run a transaction in another CICS
system. The transaction routing facility enables a terminal operator to enter a CICS
transaction code into a terminal attached to one CICS system, and thereby start a
transaction on another CICS system in a different address space in the same
processing system or in another system.

There are two cases of transaction routing:
v Advanced program-to-program communications (APPC); that is, LU6.2
v Non-APPC (for example, LU2).

APPC transaction routing makes use of much of the non-APPC function, and there
is often considerable overlap between the function provided by modules for each
of the two cases.

The CICS Intercommunication Guide gives a detailed description of transaction
routing.

Design overview
Figure 92 shows the overall design of this component.
 CICS executes the CICS relay program DFHAPRT (which invokes the

user-replaceable dynamic transaction routing program) as follows:
v When a transaction defined with the value DYNAMIC(YES) is initiated.

Transaction
routing

Relay Transaction Terminal Transaction
program routing sharing routing
(DFHAPRT) program program transformation

(DFHRTE) (DFHZTSP) program
(DFHXTP)

Remote Transformation
attach 1
(DFHZTSP) (DFHXTP)

Remote Transformation
application 2
request (DFHXTP)
(DFHZTSP)

Remote Transformation
detach 3
(DFHZTSP) (DFHXTP)

Remote Transformation
flush 4
(DFHZTSP) (DFHXTP)

Route
(DFHZTSP)

Figure 92. Transaction routing

© Copyright IBM Corp. 1997, 2011 481

v When a transaction definition is not found and CICS uses the special transaction
defined on the DTRTRAN system initialization parameter. (For more information
about DTRTRAN, see the CICS System Definition Guide.)

v Before routing a remote, terminal-oriented, transaction initiated by ATI.
v If an error occurs in route selection.
v At the end of a routed transaction, if the initial invocation requests re-invocation

at termination.

If CICS has been generated with the appropriate options for intercommunication,
the initialization of CICS with the ISC=YES system initialization parameter
specified causes the following modules to be loaded:
v DFHXTP (transaction routing data transformation program)
v DFHZCXR (which includes the DFHZTSP CSECT, the terminal sharing

program).

The entry point addresses of these modules are contained in the optional features
list that is addressed by CSAOPFLA in the CSA.

The rest of this section is mainly concerned with APPC transaction routing, which
occurs when an APPC device is linked through an LU6.2 session to a transaction
that is defined as remote.

Overview of operation in the application-owning region for
APPC transaction routing

Figure 93 on page 483 shows the modules in the application-owning region for
transaction routing for APPC devices.

482 CICS TS for z/OS 4.1: Diagnosis Reference

APPC control blocks
A remote APPC device is defined in the application-owning region with a remote
terminal control table system entry (or remote system entry). There are no TCT
mode entries or session TCTTE entries associated with the remote system entry
when it is defined.

A session with the remote APPC device is represented by a surrogate session
TCTTE (or surrogate session entry). The surrogate is built dynamically when the
conversation between the systems is initiated, and is deleted when the
conversation terminates.

Figure 94 on page 484 shows the way in which the TCT entries are related.

CICS internals Application program

DFHTC EXEC CICS EXEC CICS GDS CMxxxx
FREE ALLOCATE Other ALLOCATE FREE Other FREE ALLOCATE Other (see note)

DFHETC DFHETL DFHEGL DFHCPIC

DFHZISP DFHZARQ

DFHZARM

DFHZARL

Other

ALLOCATE
FREE DFHZISP DFHZSUP

DFHZXRL

Subroutine Subroutine Subroutine
ZXRL_FREE ZXRL_ ZXRL_

ALLOCATE COMMANDS

DFHZISP

DFHRTSU

ATTACH

DFHZTSP Note:

Subroutine Subroutine CMxxxx represents the names of
RDETENT RAPPCRE program calls that are defined in

the SAA communications interface.

Figure 93. Transaction routing for APPC devices: modules in the application-owning region

Chapter 62. Transaction routing 483

Remote system entry: The remote system entry is similar to a normal system
entry and, together with the TCT skeleton entry, also includes the following
information:
v SYSIDNT of the terminal-owning region (TCTSKSYS)
v SYSIDNT of remote APPC device (local name) (TCTSKID)
v REMOTENAME of APPC device (SYSIDNT on terminal-owning region)

(TCTSKHID)
v NETNAME of remote APPC device (TCSESID).

The remote system entry may be defined explicitly with CEDA DEFINE and
INSTALL commands.

Alternatively, it is installed dynamically when the first transaction is routed from
the remote APPC device. In this case, all data required to build the system entry is
included in the initial ATTACH data stream from the application-owning region.
No INQUIRE or INSTALL data is sent.

The remote system entry is recorded on the catalog and recovered after warm start
and restart. It is located by TMP in the REMOTE domain and SYSTEM domain.

Surrogate session entry: The session between the terminal-owning region and the
APPC device is represented in the application-owning region by a surrogate
session entry.

The surrogate session entry is used to support the routing of commands to the
APPC device, and to record security and status information for the conversation.

A surrogate session entry cannot be defined by the user; instead it is created when
the conversation is initiated (by an ATTACH request from the APPC device, or an
ALLOCATE request from the application-owning region), and is deleted when the
conversation ends.

The surrogate session entry is not recorded on the catalog, is not accessible via TC
LOCATE, and does not have an entry in the TMP index. It is not recovered after
warm start or restart.

CEMT and EXEC CICS INQUIRE or SET commands cannot be used to modify a
remote system entry.

Remote system entry

TCSESKA

TCT skeleton entry

TCTSKSYS TCTSKMDE TCTSKSRE

TCTSE for link (owning connection)

Surrogate session entry

TCTTEIST

Figure 94. Transaction routing for APPC devices: TCT control-block structure in the
application-owning region

484 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZXRL
This module forms a principal part of the transaction routing component for APPC
devices. It passes DFHLUC macro requests issued in an application-owning region
to the terminal-owning region.

All DFHLUC macro requests cause DFHZARL to be invoked. DFHZARL passes a
request to DFHZXRL if the TCTTE address passed is for a surrogate session, and
the request is one that DFHZXRL is known to handle (apart from ALLOCATE).
ALLOCATE requests are always routed from DFHZARL to DFHZISP. DFHZISP is
then responsible for calling DFHZXRL if the system from which a session is to be
allocated is found to be remote. Table 28 summarizes this and shows which of the
three main routines in DFHZXRL is called. ZXRL_ALLOCATE,
ZXRL_COMMANDS, and ZXRL_FREE are described in “ALLOCATE processing in
the application-owning region” on page 487, “Other LU6.2 command processing in
the application-owning region” on page 489, and “FREE processing in the
application-owning region” on page 488 respectively.

 Table 28. DFHZXRL’s processing of DFHLUC requests

DFHLUC request DFHZXRL’s caller DFHZXRL routine called

ALLOCATE DFHZISP ZXRL_ALLOCATE

ISSUE-ABEND
ISSUE-ATTACH
ISSUE-CONFIRMATION
ISSUE-ERROR
ISSUE-SIGNAL
RECEIVE
SEND
WAIT
EXTRACT-PROCESS

DFHZARL ZXRL_COMMANDS

FREE DFHZARL ZXRL_FREE

The input and output for DFHZXRL is provided by means of the LUC parameter
list, that is, the parameter list which is built by the DFHLUC macro. DFHZARL
passes the LUC parameter list to DFHZXRL unaltered. If the LUC parameter list
previously contained only the SYSID name, DFHZISP adds the address of the
remote system entry to the LUC parameter list before passing it to DFHZXRL.

DFHZXRL calls routine RAPPCRE of DFHZTSP to build the surrogate TCTTE
representing the session with the APPC device, and DFHZISP calls routine
RDETENT to free it.

ATTACH processing in the application-owning region
The following describes how a transaction is attached in the application-owning
region when the attach request has been routed from the terminal-owning region.

DFHZSUP module:

1. Issues DFHSEC TYPE=CHECK,RESTYPE=TRAN to validate transaction
security against the security values associated with the intersystem link at bind
time.

2. Processes the incoming attach FMH5.
For an LU6.2 ISC connection:
v Sets the TCTTE to indicate a mapped or unmapped conversation.
v Validates synclevel requested in FMH5 against the value negotiated at bind

time.

Chapter 62. Transaction routing 485

v Moves the TPN from the FMH5 to the TCA extension.
v Performs attach-time security processing, as defined by the ATTACHSEC

parameter in the resource definition for the LUC CONNECTION to the
terminal-owning region. This may change the security values associated with
the link from the bind-time established values that were checked in step 1 on
page 485) to user-level values, obtained from the SNT for a userid specified
in the FMH5.

For an MRO connection:
v Issues DFHZIRCT FN=ZSUP to extract the USERID and UOW-ID from the

LU6.2 style FMH5.
v Performs attach-time security processing, as defined by the ATTACHSEC

parameter in the resource definition for the LUC CONNECTION to the
terminal-owning region. This can change the security values associated with
the link from the bind-time established values that were checked in step 1 on
page 485) to user-level values, obtained from the SNT for a userid specified
in the FMH5.

v Deletes the LU6.2-style FMH5 from the front of the data stream.
3. Issues DFHZUSRM TYPE=SET,REQUEST=ATTACH_INBOUND and DFHLUC

TYPE=INIT-CALL macros to move input data into a buffer bypassing the
FMH5 ATTACH header.

4. PIP processing is bypassed because PIP is never present on an attach from a
terminal-owning region when transaction routing.

5. Puts the remaining data into a TIOA with a DFHTC
TYPE=(READ,WAIT),NOATNI=YES.

6. Issues a DFHIS TYPE=RATT, to call DFHZTSP to build a surrogate session
entry to represent the session TCTTE in the terminal-owning region.

7. Assign the security values established for the link to the surrogate, as preset
security values are shipped from the terminal-owning region, and cannot be
defined on the application-owning region.
ATTACH security processing in DFHZSUP has established two SNTTEs
associated with the link session:
a. The SNTTE pointed to by TCTELSNT in the LU6.2 extension or TCTEIRSN

for MRO represents link-level security values established at bind time.
b. The SNTTE pointed to by TCTTESNT represents user-level security values

established during ATTACH security processing.
TCTTESNT is copied to the surrogate TCTTE. No provision is made for preset
user security values to override the TCTTESNT value.
Preset security values defined for the terminal session on the terminal-owning
region are processed only on that system, during local attach processing. The
SNTTE then associated with the local TCTTE is used to build the routed attach
FMH5.
At transaction end, no SNTTEs addressed by the surrogate are deleted when
the surrogate is deleted. This is done, if necessary, as part of the termination of
the LINK SESSION.
Each system in a “daisy chain” imposes its own link security requirements. An
intermediate system with a lower level of security would route the ATTACH
with lower security (that is, no USERID or verified bit) which could cause it to
be rejected by the next system in the chain.

8. Passes control to the requested application program.

DFHZTSP module:

486 CICS TS for z/OS 4.1: Diagnosis Reference

1. Performs initialization housekeeping, checks the link TCTTE and TIOA.
2. Locates remote system entry from the TMP REMOTE domain. If not found,

attaches the CITS transaction (DFHZATS) to install it.
3. Builds surrogate session TCTTE.
4. Gets a TIOA and chains it to the surrogate.
5. Issues DFHIS TYPE=XTP,XFNUM=2 to call DFHXTP.
6. Chains surrogate to TCA and Link TCTTE.
7. Copies link operator dispatching priority from the link and establishes

dispatching priority for the surrogate.

DETACH processing in the application-owning region
At transaction end, routine RDETENT of DFHZTSP is called to delete the surrogate
session entry. The remote system entry is not deleted, and can be used by a
subsequent transaction routing request, by an ATI request, or by an ALLOCATE
request issued in the application-owning region.

ALLOCATE processing in the application-owning region
A session can be allocated as a result of either of the following macro calls:
v DFHLUC TYPE=ALLOCATE
v DFHTC TYPE=ALLOCATE

The DFHLUC call invokes DFHZARL, which passes control to DFHZISP, the
module that handles allocation and freeing of sessions. The DFHTC call invokes
DFHZISP directly.

DFHZISP locates the TCTSE for the system identified on the ALLOCATE request.

The request is routed to DFHZXRL if the following conditions hold:
v The system is LU6.2
v The system is remote
v DFHZISP was called as a result of a DFHTC TYPE=ALLOCATE request (which

is the case when DFHZISP is called from DFHZARL).

The address of the remote TCTSE is inserted in the parameter list passed to
DFHZXRL.

If a Privileged Allocate request is made, the transaction abends, because the
request is not permitted for a remote system.

DFHZXRL module: For an ALLOCATE request, control passes to subroutine
ZXRL_ALLOCATE which establishes a session between the application-owning
region and the alternate facility, and builds a surrogate session TCTTE.

Subroutine ZXRL_ALLOCATE:
1. Checks that the parameter list contains the TCTSE address for the remote LU6.2

system.
2. Obtains the address of the TCTSE of the system to which the LU6.2 commands

are to be routed.
3. Allocates a session to the terminal-owning region.

The connection between the terminal-owning region and application-owning
region which supports remote alternate facilities may be an LU6.2 ISC

Chapter 62. Transaction routing 487

connection or an MRO connection. Subroutine ZXRL_ALLOCATE allocates the
session using a DFHTC TYPE=ALLOCATE macro call that can allocate a
session on either type of connection.
The default profile DFHCICSR is used; this may specify the modename for an
LU6.2 connection. The modename specified on the EXEC CICS ALLOCATE is
not used here, but is shipped to the terminal-owning region where it is used to
allocate an LU6.2 session between the terminal-owning region and the APPC
device.
The queuing option (NOQUEUE|NOSUSPEND) specified on the ALLOCATE
request by the caller is used when the DFHTC TYPE=ALLOCATE macro call is
issued for the connection. If NOQUEUE is not specified, the request may also
be queued when it is issued in the terminal-owning region. If a session failure
occurs during this period, the transaction in the application-owning region and
the relay transaction in the terminal-owning region abend.
If a session between the application-owning region and terminal-owning region
cannot be allocated:
v When the failure is due to CICS logic, corruption of CICS storage, or

incorrect resource definition by the user, the transaction abends.
v When the failure is due to other conditions (such as session failure or

‘SYSBUSY’), an appropriate return code is passed to the caller.
The return code is handled so as to minimize the differences between local
and remote APPC devices as seen by the user of the DFHLUC interface. The
actions available are:
– Where the condition could be encountered with a local terminal, reflect

the return code to the caller in LUCRCOD2 and LUCRCOD3 with
LUCESYSI (X'01') in LUCRCOD1.

– Where the condition would not occur with a local terminal, reflect a
different return code to the caller.

4. Issues a DFHIS TYPE=XTP,XFNUM=3 macro call that invokes a stream that is
passed to the terminal-owning region.

5. Issues a DFHTC TYPE=(WRITE,WAIT,READ),FMH=YES macro call to send the
request to the terminal-owning region and receive the response.

6. Issues a DFHIS TYPE=RALL that invokes DFHZTSP to build a surrogate
session TCTTE, then chains the link session TCTTE and the surrogate session
TCTTE together.

7. Issues a DFHIS TYPE=XTP,XFNUM=2 macro call that invokes DFHXTP to
unwrap the response from the terminal-owning region and update the
surrogate session TCTTE and the parameter list created by the DFHLUC macro.

8. Examines the return codes in the response:
v If the request has been successful, returns the surrogate session TCTTE

address to the caller.
v If the request has not been successful, issues a DFHIS TYPE=RDET macro

call to free the surrogate session TCTTE.

FREE processing in the application-owning region
One of the following macro calls is made in the application-owning region to
request that a surrogate session TCTTE should be freed:
v DFHLUC TYPE=FREE
v DFHTC TYPE=FREE

488 CICS TS for z/OS 4.1: Diagnosis Reference

The DFHLUC TYPE=FREE call invokes DFHZARL, which passes control to
DFHZXRL; and subroutine ZXRL_FREE in DFHZXRL is then called to issue a
DFHTC TYPE=FREE request against the surrogate. The DFHTC TYPE=FREE call
invokes DFHZISP.

DFHZISP:
1. Bypasses security processing (sign-off) for a surrogate session entry, because the

sign-off is performed for the link.
2. Issues the DFHIS TYPE=RDET macro that calls DFHZTSP to free the surrogate

and link TCTTEs.

Other LU6.2 command processing in the application-owning
region
Most SAA communications calls, EXEC CICS GDS commands, and EXEC CICS
commands relating to LU6.2 sessions cause a call to DFHZARL using the DFHLUC
macro.

The EXEC CICS SYNCPOINT, EXEC CICS SYNCPOINT ROLLBACK, and EXEC
CICS (GDS) ISSUE PREPARE commands are handled under the control of the
syncpoint program, which uses DFHLUC macro requests to send syncpoint flows
on LU6.2 sessions, and DFHTC macro calls to end any dangling conversations.

DFHTC macro requests: DFHTC macro requests may be issued against surrogate
session TCTTEs. Unlike requests for other surrogate TCTTEs, which are passed to
DFHZTSP, DFHZARQ handles these requests in the same way as other requests
against LU6.2 sessions: they are passed to DFHZARM which in turn calls
DFHZARL. Within DFHZARL, requests are handled in a similar way to those
initiated by the DFHLUC macro.

DFHLUC requests: DFHLUC requests are passed to DFHZARL: when the session
is a surrogate, the request is passed to DFHZXRL (routine ZXRL_COMMANDS).

DFHZXRL module: Input to routine ZXRL_COMMANDS in DFHZXRL is the
application command in the form of a DFHLUC macro call parameter list.
1. ZXRL_COMMANDS normally wraps up the command to be shipped and

relevant TCTTE fields by calling a transformer routine in DFHXTP.
However, if the first syncpoint flow has been received, then:
v Application requests ISSUE-ERROR and ISSUE-ABEND are sent unwrapped

on the link session.
v All other requests are rejected with a state error.

2. ZXRL_COMMANDS tests the state of its link with the terminal-owning region
(this may not be the same as the state of the application):
If it finds that it is in ‘RECEIVE’ state, it issues a DFHTC TYPE=(READ,WAIT)
in order to receive the change direction (CD) indicator from the
terminal-owning region. Except during syncpoint processing, however, the
session is normally in ‘SEND’ state when a command is issued.

3. ZXRL_COMMANDS then sends the wrapped-up request to the remote system
using the DFHTC macro. To reduce the number of flows when the command
may result in the termination of the conversation, the following rules are
applied for both MRO and ISC links:
v If the application command is SEND LAST WAIT and the application

program is in ‘SEND’ state, the command is sent using a DFHTC
TYPE=(WRITE,LAST) macro.

Chapter 62. Transaction routing 489

v If the application command is WAIT and the application program is in ‘FREE
PENDING AFTER SEND LAST’ state, the command is sent using a DFHTC
TYPE=(WRITE,LAST) macro.

v If the end bracket (EB) indicator has been sent to the terminal-owning region
all other commands result in a state error return code.

In other cases and when the link between the terminal-owning region and
application-owning region is MRO, ZXRL_COMMANDS issues a DFHTC
TYPE=(WRITE,WAIT,READ).
However, when the link is LU6.2, the following additional rules are applied in
order to exploit the buffering provided by LU6.2:
v When the application’s command is a SEND and the application is in ‘SEND’

state ZXRL_COMMANDS, issues a DFHTC TYPE=(WRITE,WAIT) macro to
send the request without waiting for a response.

v When the application’s command is a SEND and the application is not in
‘SEND’ state ZXRL_COMMANDS, issues a DFHTC
TYPE=(WRITE,WAIT,READ) so that it can get the state error back from the
remote system immediately.

v For all other commands, including SEND INVITE and so on,
ZXRL_COMMANDS issues a DFHTC TYPE=(WRITE,WAIT,READ).

4. ZXRL_COMMANDS receives the response to its DFHTC macro call. This may
be:
v An ATNI or ATND abend. ZXRL_COMMANDS frees the link session and

returns ‘TERMERR’ to the application.
v ‘SIGNAL’, which is used by the terminal-owning region when it is in

‘RECEIVE’ state to indicate to the application-owning region that there is an
abnormal response pending.
ZXRL_COMMANDS issues a DFHTC TYPE=(WRITE,WAIT,READ) to send
the change direction indicator and get the abnormal response from the
terminal-owning region.

5. When the DFHTC macro included a READ, and the request was succesfully
processed, ZXRL_COMMANDS checks for a wrapped reply from the
terminal-owning region, and calls DFHXTP to unwrap the reply. When the
resulting DFHLUC parameter list indicates SYNCPOINT or SYNCPOINT
ROLLBACK, and the link is an MRO connection, ZXRL_COMMANDS issues a
DFHTC TYPE=READ, because there is a SYNCPOINT or ROLLBACK flow
pending.
When there is no wrapped reply, ZXRL_COMMANDS checks for SYNCPOINT
ROLLBACK received (the only possibility under these circumstances).

LU6.2 daisy-chaining considerations
There is no special-case code to distinguish between the terminal-owning region
and an intermediate system. When DFHZXRT has interpreted a request received
from the application-owning region, it issues the LU6.2 service request (DFHLUC)
macro call with the parameter list that was created in the application-owning
region. The macro generates a call to DFHZARL. If the TCTTE is a surrogate,
which is the case in an intermediate system, control passes to DFHZXRL as
described above.

490 CICS TS for z/OS 4.1: Diagnosis Reference

Overview of operation in the terminal-owning region for APPC
transaction routing

Figure 95 shows the modules in the terminal-owning region for transaction routing
for APPC devices.

In the terminal-owning region, operation is under the control of a relay program.
When transaction routing is initiated from the APPC device, the relay program is
DFHAPRT (which is also used for non-APPC devices). When transaction routing is
initiated by an ALLOCATE request in the application-owning region, the relay
program is DFHCRT. Both relay programs call DFHZTSP, which calls DFHZXRT.

When an APPC device initiates a conversation with an application in the
application-owning region, relay program DFHAPRT is started in the
terminal-owning region. It calls the ROUTENT routine of DFHZTSP, which
allocates a session to the application-owning region and starts the requested
transaction there (see “ATTACH processing in the terminal-owning region”).

When an application running in the application-owning region initiates a
conversation with a remote APPC device by issuing an ALLOCATE request, the
DFHCRT relay program is started in the terminal-owning region. It calls the
ALLOCLUC routine of DFHZTSP which allocates a session to the APPC device
(see Chapter 39, “Program error program,” on page 367).

After a conversation has been started by either method, the LU6.2 commands
passed from the application-owning region are processed by DFHZXRT, which
issues the LU6.2 service request (DFHLUC) macro with an appropriate parameter
list against the APPC device.

ATTACH processing in the terminal-owning region
The following flow describes the steps involved in routing a transaction from an
APPC device across an LU6.2 intersystem link.

DFHZSUP module:

1. Processes the incoming FMH5 from the terminal. This:
v Sets TCTTE to indicate mapped or unmapped conversation.
v Validates synclevel requested in FMH5 against the value negotiated at bind

time.
v Moves the TPN from the FMH5 to the TCA extension.

DFHAPRT DFHCRT

DFHIS DFHIS
TYPE=ROUTE TYPE=ALLOC

DFHZTSP

ROUTENT ALLOCLUC

DFHZXRT

Figure 95. Transaction routing for APPC devices: Modules in the terminal-owning region

Chapter 62. Transaction routing 491

v Performs attach-time security processing, as defined by the ATTACHSEC
parameter in the resource definition for the APPC device (or
CONNECTION). This may change the security values associated with the
terminal from the default link-level values to user-level values, obtained from
the SNT for a user who is signed on.

2. Checks transaction security code against new security levels developed during
ATTACH security processing above.

3. Issues DFHSEC TYPE=CHECK,RESTYPE=TRAN to validate transaction
security against the security values associated with the terminal (and with the
user, if signed on).

4. Issues DFHZUSRM TYPE=SET,REQUEST=ATTACH_INBOUND and DFHLUC
TYPE=INIT-CALL macros to move input data into a buffer bypassing the
FMH5 ATTACH header.

5. If PIP is present, builds a new TCA extension and moves the PIP data into it by
issuing a DFHLUC TYPE=RECEIVE (which also causes the PIP data to be
deleted from the buffer).

6. Puts remaining mapped data into a TIOA with a DFHTC
TYPE=(READ,WAIT),NOATNI=YES.

7. Issues DFHPC TYPE=XCTL to the relay program DFHAPRT.

DFHAPRT module:

1. Drives the dynamic routing exit if the transaction has been defined as dynamic.
2. Sets up the DFHISCRQ parameter list with remote sysid and tranid.
3. Recognizes that the principal facility is an APPC device.
4. Issues DFHIS macro to invoke DFHZTSP.

DFHZTSP module:

1. If the transaction has been defined with an associated TRPROF, the profile
named is located with a DFHKC CTYPE=PROFLOC; otherwise the default
DFHCICSS profile is used.

2. Issues DFHTC TYPE=ALLOCATE,REQUID=CSRR to allocate a session to the
remote system using the profile identified in step 1.

3. Flags the returned TCTTE as a relay link and puts the remote sysid into
TCTESYID in the terminal TCTTE. If the LINK TCTTE status is ‘COLD’, issues
DFHTC CTYPE=CATALOG.

4. Sets up the transformer parameter list (DFHXTSTG) to indicate ATTACH FMH5
required, COLD or not COLD, and transaction routing for an APPC device,
passing the tranid, user TCTTE, and link TCTTE.

5. Issues DFHIS TYPE=XTP,XFNUM=1 to call the transformer program, DFHXTP,
to build the data. (See “Transformer program (DFHXTP)” on page 495.)

6. Issues DFHTC TYPE=(WRITE,WAIT,READ) against the link to route the
ATTACH request to the application-owning region. This causes DFHZARM
(when the link is ISC) or DFHZIS2 (when the link is MRO) to add an LU6.2
FMH5 preceding the LU6.1 FHM5 built by XTP. This contains security data
required to validate the request at the application-owning region.

ALLOCATE processing in the terminal-owning region

DFHCRT module: Transaction CXRT (program DFHCRT) is started in the
terminal-owning region when the attach FMH5 is received from the
application-owning region

492 CICS TS for z/OS 4.1: Diagnosis Reference

Program DFHCRT:
1. Checks that the principal facility of the task is an ISC or MRO session.

If not, and if it is a terminal, a message is written to the facility, and the
transaction terminates.

2. Issues DFHIS TYPE=ALLOC macro which calls DFHZTSP.

DFHZTSP module: The ALLOCLUC routine of DFHZTSP is invoked when the
DFHIS TYPE=ALLOC macro is issued. This routine is called with input from the
application-owning region in a TIOA.

Routine ALLOCLUC:
1. Issues DFHIS TYPE=XTP,XFNUM=4 which updates the TCTTE and builds a

parameter list of the type created by the DFHLUC macro.
2. Verifies that the parameter list contains an ALLOCATE request (the only valid

request at this stage). If it does not, the transaction abends.
3. Issues a DFHLUC MF=E macro with the supplied parameter list.
4. If the request is successful, DFHZTSP:

a. Issues DFHIS TYPE=XTP,XFNUM=1 which wraps the updated TCTTE and
DFHLUC parameter list ready for transmission to the application-owning
region.

b. Issues a DFHTC TYPE=(WRITE,WAIT,READ) against the session with the
application-owning region.

c. Passes control to DFHZXRT. The TIOA received with the preceding DFHTC
request should contain data for one of the requests that DFHZXRT handles.

5. If the request is unsuccessful, DFHZTSP:
v Issues DFHIS TYPE=XTP,XFNUM=1 which wraps the updated TCTTE and

DFHLUC parameter list ready for transmission to the application-owning
region.

v Issues DFHTC TYPE=(WRITE,LAST) to send the response to the
application-owning region.

v Frees the session with the application-owning region.

FREE processing in the terminal-owning region
When an end-bracket has flowed from the application-owning region to the
terminal-owning region as a result of an application command (for example, EXEC
CICS SEND LAST), and the corresponding command has been issued in the
terminal-owning region against the terminal, DFHZXRT issues a DFHLUC
TYPE=FREE macro against the terminal, and a DFHTC TYPE=FREE macro against
the link to the application-owning region.

Other LU6.2 command processing in the terminal-owning region
DFHZXRT is called by DFHZTSP following a DFHTC TYPE=(WRITE,WAIT,READ)
macro. The reply received from the application-owning region is processed as
follows:
1. If an application request has been received, DFHZXRT:
v Calls DFHXTP to unwrap the application program’s request
v Issues the DFHLUC macro call with the parameter list created in the

application-owning region
v Calls DFHXTP to wrap the response to the DFHLUC macro
v Sends the response to the application-owning region.

Chapter 62. Transaction routing 493

Normally the wrapped terminal response is sent to the application-owning
region with a DFHTC TYPE=(WRITE,WAIT,READ) macro. However, there
are exceptions:
– If the response to the DFHLUC macro call is a request for SYNCPOINT

ROLLBACK, DFHZXRT sends the wrapped terminal response with a
DFHTC TYPE=WRITE macro and then issues a DFHSP
TYPE=ROLLBACK command.

– If the response to the DFHLUC macro call is a request for SYNCPOINT,
DFHZXRT sends the wrapped terminal response with a DFHTC
TYPE=WRITE macro and then issues a DFHSP TYPE=PREPARE against
the link.
The response to the macro is processed in the same way as when a
SYNCPOINT request is received from the application, and issued to the
terminal, except that the roles of the terminal and link are reversed.

– If the session to the terminal has been freed by an application command,
DFHZXRT sends the wrapped terminal response with a DFHTC
TYPE=(WRITE,LAST) macro.

– When the session to the application-owning region is in ‘RECEIVE’ state,
normally DFHZXRT issues a DFHTC TYPE=READ to get the next request
from the application.
However, if the link between the terminal-owning and application-owning
regions is LU6.2, and the response to the DFHLUC macro issued to the
terminal indicates that the terminal has issued one of ISSUE_SIGNAL,
ISSUE_ERROR, ISSUE_ABEND, or SYNCPOINT_ROLLBACK, DFHZXRT
issues an ISSUE_SIGNAL against the link with the application-owning
region to notify the application-owning region that the terminal-owning
region wants to send. It then issues a series of DFHTC TYPE=READ
macros until it receives the change of direction indicator.
The data is processed in the normal way when ‘SIGNAL’ is received from
the terminal. In the other cases, that is, if a negative response is received
from the terminal, the data from the application-owning region is purged.
After the change direction indicator is received, DFHZXRT sends the
response to the application-owning region, ISSUE_SIGNAL and
ISSUE_ERROR are sent using a DFHTC TYPE=(WRITE,WAIT,READ)
macro, ISSUE_ABEND is sent using a DFHTC TYPE=(WRITE,LAST)
macro, and SYNCPOINT_ROLLBACK is sent using a DFHTC
TYPE=WRITE macro.

– If the response from the terminal was ‘ROLLBACK’, by a DFHSP
TYPE=ROLLBACK macro is issued.

2. If a syncpoint request has been received, DFHZXRT:
v Issues a DFHLUC TYPE=ISSUE-PREPARE macro against the terminal

TCTTE.
v Checks the terminal’s response:

If the terminal response indicates that a SYNCPOINT or BACKOUT request
was issued, DFHSPP is called.
If the terminal response indicates that the terminal issued a SEND_ERROR
request, DFHZXRT issues a DFHTC CTYPE=ISSUE_ERROR macro followed
by a DFHTC TYPE=(WRITE,WAIT,READ) macro against the link session.
If the terminal response indicates that the terminal issued
DEALLOCATE(ABEND), DFHZXRT issues a DFHTC CTYPE=ISSUE_ABEND
macro against the link session. It then frees the link with the
application-owning region and returns.

494 CICS TS for z/OS 4.1: Diagnosis Reference

3. If a syncpoint rollback request has been received, DFHZXRT issues a
SYNCPOINT ROLLBACK request.

When DFHZXRT detects that EB has flowed on both the session with the terminal
and the session with the application-owning region, it issues DFHTC TYPE=FREE
on both and returns.

Transformer program (DFHXTP)
The terminal-sharing data-transformation program, DFHXTP, constructs and
interprets the data streams flowing between terminal-owning and
application-owning regions, for both APPC and non-APPC transaction routing
environments.

It does this by using four transformers. These either wrap this data from the
surrogate TCTTE (in the AOR) or the real TCTTE (in the TOR) into the link
TCTTE’s TIOA, or they unwrap this data from the link TCTTE’s TIOA into the
surrogate or real TCTTE.

The transformers work in matching wrap and unwrap pairs. Transformer 1 wraps
any data to be sent from a TOR to an AOR, which is then unwrapped in the AOR
by transformer 2. Transformer 3 wraps any data to be sent from an AOR to a TOR,
which is then unwrapped in the TOR by transformer 4. Figure 96 shows this
process.

The transformer program is capable of shipping data from the TCTTE and the
following control blocks that are chained off the TCTTE:
v The TCTTE extension, chained off TCTTETEA in the TCTTE.
v The terminal partition extension, chained off TCTTETPA in the TCTTE BMS

extension.
v The TCTTE user extension, chained off TCTTECIA in the TCTTE.
v The SNTTE, chained off TCTTESNT in the TCTTE.
v The DFHLUC parameter list, and fields chained off it.

Note that because this field is not chained off the TCTTE but is in LIFO, its
address is passed as a parameter to the transformer program.

v The TCA extension for LU6.2 communication.
v Fields from the terminal control table system entry (TCTSE), chained off

TCTTEIST in the TCTTE.
v Fields from the terminal control table mode entry (TCTME), chained off

TCTTEMOD in the TCTTE.
v The data interchange block (DIB), chained off TCTEDIBA in the TCTTE.

The fields to be shipped are defined in tables in the transformer program.

Terminal-owning Application-owning
region region

Transformer Transformer
1 2

Transformer Transformer
4 3

Figure 96. DFHXTP transformer operations

Chapter 62. Transaction routing 495

There is special-case code to deal with fields that cannot be processed by the
table-driven code.

For the transaction routing of LU6.2 commands, DFHXTP must ensure that the
data stream built for transmission contains all the information relevant to support
the issuing of a DFHLUC macro request on the remote system. This information
consists primarily of:
v The DFHLUC parameter list
v Any data addressed by the parameter list
v The conversation state machine (TCTEUSRS in DFHTCTZE) in the TCTTE
v TCTTE fields required to build the surrogate TCTTE, in particular:

– The synclevel supported by the terminal
– The information returned to the application by the EXTRACT PROCESS

command.

Data streams for transaction routing
Figure 97 shows the types of transaction-routing data streams.

The transformer builds four types of data stream for transaction routing:
1. Attach data stream for principal facility
v Built by transformer 1
v Shipped from TOR to AOR
v Unwrapped by transformer 2
v Contains an LU6.1 attach FMH (FMH5)
v For LU6.2, the routed data does not contain a DFHLUC parameter list.

2. Attach data stream for alternate facility
v Built by transformer 3
v Shipped from AOR to TOR
v Unwrapped by transformer 4
v Contains an LU6.1 attach FMH (FMH5)
v For LU6.2, the routed data contains a DFHLUC parameter list.

3. DFHLUC request data stream
v Built by transformer 3

Attach data stream for principal/alternate facility

LU6.1 CICS
attach relay routed data
FMH FMH43

Request/response data stream

CICS
relay routed data
FMH43

Format of FMH43

L CT XCMD XMOD FXCT
G FN

43 80xx

FN = x'00' User data pass-through
FN = x'01' INQUIRE terminal
FN = x'02' INSTALL terminal
FN = x'03' DELETE terminal
FN = x'04' INSTALL response
FN = x'05' LU6.2 remote terminal attach
FN = x'06' LU6.2 DFHLUC request/response

G = x'80' Relay FMH

Figure 97. Transaction-routing data streams

496 CICS TS for z/OS 4.1: Diagnosis Reference

v Shipped from AOR to TOR
v Unwrapped by transformer 4
v For LU6.2, the routed data contains a DFHLUC parameter list.

4. DFHLUC response data stream
v Built by transformer 1
v Shipped from TOR to AOR
v Unwrapped by transformer 2
v For LU6.2, the routed data contains a DFHLUC parameter list.

Note: The first transformer request for remote alternate facilities is to transformer
3, and not to transformer 1. This is because the same transformers are used
whether transaction routing is initiated in the terminal-owning region or in the
application-owning region.

An LU6.1 attach FMH5 is used when a transaction is to be started in the system to
which the request is sent. CSRR is specified as the return process to indicate the
use of transaction routing. In the case of routing to the application-owning region,
the transaction is the user transaction; in the case of routing to the terminal-owning
region, the transaction is the CXRT relay transaction.

Transaction-routed data format
Figure 98 shows the format of the data stream passed between a TOR and an AOR
to provide transaction routing from any supported device.

The fields that are shipped depend principally on the type of terminal and on
other parameters, as follows:

The length field in Figure 98 depends upon whether the field type is described in
the table that follows as being V (Variable), F (Fixed), or U (Undefined). A V field
is 2 bytes in length, an F field is 1 byte, and U indicates a variable that is no longer
wrapped or unwrapped if it is encountered.

Table 29 shows the various data fields that may appear in a transaction routing
data stream, together with their codes and field types.

 Table 29. Transaction routing data stream. Built by the terminal sharing transformer (DFHXTP).

Code Hex Type DSECT Field Description

1 01 V XTPCDTC1 TC request bytes or attach start code
2 02 V XTPCDOPC Operator class
3 03 V XTPCDTUA TCTTE user area
4 04 V XTPCDTIA Terminal I/O area
5 05 V XTPCDCMA COMMAREA
6 06 V XTPCDLPS Terminal partition set
7 07 V XTPCDPLM Page LDC mnemonic
8 08 V XTPCDPGD Page data
9 09 V XTPCDRQI Request ID
10 0A V XTPCDETI Error terminal ID

code length data code length data code length data

Figure 98. Routed data format

Chapter 62. Transaction routing 497

Table 29. Transaction routing data stream (continued). Built by the terminal sharing transformer (DFHXTP).

Code Hex Type DSECT Field Description

11 0B V XTPCDETL Error terminal LDC
12 0C V XTPCDMCF Message control flags
13 0D V XTPCDTTL Message title
14 0E V XTPCDRTT Route target ID:

netname.termid.ldc.opid
15 0F V XTPCDCPS Application partition set
16 10 F DFHTCTTE TCTTEAID Automatic initiate descriptor
17 11 F DFHTCTTE TCTTECAD Cursor address
18 12 F DFHTCTTE TCTESIDO Outbound signal data
19 13 F DFHTCTTE TCTESIDI Inbound signal data
20 14 F DFHTCTTE TCTE32SF Screen size attributes
21 15 F DFHTCTTE TCTTEFX Transparency attributes
22 16 F DFHTCTTE TCTTEBMN Map set name
23 17 F DFHTCTTE TCTTECRE Request completion extension
24 18 F DFHTCTTE TCTTECR Request completion analysis
25 19 F DFHTCTTE TCTTEDES TCAM destination name
26 1A F DFHTCTTE TCTTETM Terminal model number
27 1B F DFHTCTTE TCTTETID Teller identification for 2980
28 1C F DFHTCTTE TCTTEOI Operator identification
29 1D F DFHTCTTE TCTTEEDF EDF mode
30 1E F DFHTCTTE TCTTETC Nominated transaction
31 1F F DFHTCTTE TCTTETS Terminal status
32 20 U DFHSNTTE SNTESSF Userid
33 21 F DFHTCTTE TCTEASCZ

TCTEASCL
TCTEASCC

Alternate screen size attributes

34 22 F DFHTCTTE TCTE32EF
TCTE32E2

3270 extended feature flags

35 23 F DFHTCTTE TCTETXTF 3270 text feature flag
36 24 F TCTTETTE TCTEAPGL

TCTEAPGC
Alternate page size

37 25 F DFHTCTTE TCTECSG1
TCTECSG2

Coded graphic character set identifiers

38 26 F DFHTCTTE TCTEUSRS LU6.2 conversation state machine
39 27 F TCTTELUC TCTECVT LU6.2 conversation type (mapped or

unmapped)
40 28 F TCTTELUC TCTESPL LU6.2 syncpoint level
41 29 F DFHTCTTE TCTESPSA Additional syncpoint flags
42 2A F TCTTELUC TCTEIAHB Attach FMH indicator
43 2B F DFHTCTSE TCSESID NETNAME of APPC device
44 2C U DFHSNTTE SNTENLS User’s national language
45 2D F DFHTCTTE TCTENLS National Language Support Code
46 2E F DFHTCTTE TCTESCFL Security flag
47 2F F DFHTCTTE TCTEITRS Trace flags
48 30 F DFHTCTME TCMEMODE Mode group name
49 31 F DFHTCTTE TCTTENLI National language in use
50 32 F TCTTELUC TCTELUC1 LUC flag byte 1
51 33 F DFHTCTTE TCTESSPL Synclevel of link
53 35 F DFHTCTTE TCTEVTP Send mode/receive mode
54 36 F DFHTCTTE TCTTEIO Task to be initiated
55 37 F DFHLFS PRESETC Preset userid
56 38 F TCTTETTE TCTTEFMB Outbound formatting status
57 39 F DFHTCTTE TCTEUCTB UCTRAN = YES

498 CICS TS for z/OS 4.1: Diagnosis Reference

Table 29. Transaction routing data stream (continued). Built by the terminal sharing transformer (DFHXTP).

Code Hex Type DSECT Field Description

58 3A F DFHTCTTE TCTETSU3 UCTRAN = TRANID
63 3F F DFHTCTTE TCTTETT Terminal type code
64 40 F DFHLUCDS LUCOPN0

LUCOPN1
LUCOPN2
LUCOPN3

LUC request codes

65 41 F DFHLUCDS LUCRCODE LUC request error feedback
66 42 F DFHLUCDS LUCSDBLK LUC conversation feedback
67 43 F DFHLUCDS LUCNSYS System name for LUC Allocate
68 44 F DFHLUCDS LUCMODNM Modename for LUC Allocate
69 45 F DFHLUCDS LUCMSGNO Message number for LUC Abend and

Error
70 46 F DFHLUCDS LUCSENSE Sense code for LUC Abend and Error
71 47 F DFHLUCDS LUCRQCON Conversation type for LUC Issue Attach
72 48 F DFHLUCDS LUCRQSYN Syncpoint level for LUC Issue Attach
73 49 F DFHLUCDS LUCFTPNL

LUCFTPN
TPN for LUC Issue Attach

74 4A F DFHLUCDS LUCPIP PIP indicator for LUC Issue Attach
75 4B F DFHLUCDS LUCTAREL Maximum receivable length for LUC

Receive
76 4C F DFHLUCDS LUCMGAL Mode group name of allocated session
90 5A F DFHDIBDS DIBSENSE DIB system/user sense data
128 80 V XTPCDZIR ZC install response
129 81 V XTPCDZBP ZC builder parameter set
130 82 V XTPCDZIM ZC install message set
131 83 V XTPCOPCL Opclass in routed message
132 84 V XTPCDPNM Program name for ISSUE LOAD
133 85 V XTPLUCSD Message text for LUC Send
134 86 V XTPLUCRD Message text for LUC Receive
135 87 V XTPLUTCX TCA extension for LU6.2
136 88 V XTPLUMSG Message text for LUC Issue Abend or

Issue Error
137 89 V XTPIPASS Issue Pass
138 8A V XTPLDATA Logon Data
139 8B V XTPRETC Issue Pass Return Code
140 8C V XTPLMOD Issue Pass Logmode

Control blocks

Relay transaction control blocks
To support transaction routing, the relay transaction owns two TCTTEs; see
Figure 99 on page 500. One TCTTE is for the terminal, the other is for the link to
the user transaction. The link TCTTE has bit TCTERLT in field TCTETSU set on, to
indicate that it is being used by the relay transaction.

Chapter 62. Transaction routing 499

User transaction control blocks
The user transaction owns two or more TCTTEs; see Figure 100 on page 501. One
TCTTE is always present for the link to the relay transaction, and another TCTTE,
called the surrogate TCTTE, represents the terminal TCTTE in the relay transaction
address space. Field TCTTERLA in the surrogate TCTTE contains the address of
the TCTTE for the link to the relay transaction. Bit TCTESUR (in field TCTETSU)
set on indicates that the TCTTE is for a surrogate terminal. The link TCTTE has bit
TCTERLX in field TCTETSU set on, to indicate that it is being used as a relay link.

If the user transaction executes CICS functions that are shipped to another address
space or processing system, one TCTTE is chained off from the TCA for each
different address space or processing system.

TCA
for relay transaction

TCTTE for link to
x'1B4' TCATCUCN user transaction

Address of
first TCTTE in chain
(see note) x'8C' TCTTEUCN

TCA

TCTTE for terminal
x'08' TCAFCAAA

Address of TCTTE
for principal facility x'8C' TCTTEUCN

= x'00'

Note:
The first TCTTE in the chain
is not necessarily the TCTTE
for the task's principal
facility.

Figure 99. Control blocks associated with the relay transaction

500 CICS TS for z/OS 4.1: Diagnosis Reference

See CICS Data Areas for a detailed description of these control blocks.

Modules
The principal modules associated with transaction routing are as follows:
DFHAPRT

is the relay program for non-APPC devices, and for APPC devices when
the device initiates a transaction by sending an attach FMH5 to CICS.

DFHCRT
is the relay program for APPC devices when CICS sends an attach FMH5
to the device.

DFHRTSU
is the program which maintains the state of a surrogate APPC session
during syncpoint

DFHXTP
is the data transformation program for terminal sharing. It constructs and
interprets data streams flowing between terminal-owning and
application-owning regions, for both APPC and non-APPC transaction
routing environments.

DFHZTSP
is the terminal sharing program. It is used by transaction routing for
devices of all types, exclusively so for non-APPC devices.

DFHZXRL
runs in the application-owning region to route APPC requests to the
terminal-owning region.

DFHZXRT
runs in the terminal-owning region to receive APPC requests from the
application-owning region, and issue them to the APPC device.

TCA

TCTTE for surrogate
x'08' TCAFCAAA

Address of TCTTE for
task's principal facility x'6C' TCTTERLA

x'1B4' TCATCUCN x'8C' TCTTEUCN
Address of Address of
first TCTTE in chain next TCTTE in chain
(see note 1)

TCTTE for link to
relay transaction | |

x'84' TCTTESUA

x'8C' TCTTEUCN
Address of next
TCTTE in chain

TCTTE | |

x'8C' TCTTEUCN
= x'00'

TCTTE |

x'8C' TCTTEUCN
Address of
next TCTTE in chain

Notes:
1. The first TCTTE in the chain

is not necessarily the TCTTE
for the task's principal
facility.

2. Apart from the surrogate
and the link to the relay
transaction, other TCTTEs
can be in use for
function shipping or DTP.

Figure 100. Control blocks for the user transaction (non-APPC device)

Chapter 62. Transaction routing 501

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP DBxx (DFHXTP), for which the trace level is IS 1
v AP 08xx (DFHCRT, DFHZXRL, and DFHZXRT), for which the trace levels are

IS 1, IS 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

502 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 63. Transient data control

Transient data control provides an optional queuing facility for managing data
being transmitted between user-defined destinations (I/O devices or CICS tasks).
This function facilitates data collection.

Design overview
The transient data program provides a generalized queuing facility enabling data
to be queued (stored) for subsequent internal or offline processing. Selected units
of information can be routed to or from predefined symbolic queues. The queues
are classified as either intrapartition or extrapartition.

Intrapartition queues
Intrapartition queues are queues of data, held in a direct-access data set, for
eventual input to one or more CICS transactions. Intrapartition queues are
accessible only by CICS transactions within the CICS address space. Data directed
to or from these internal queues is called intrapartition data. It can consist of
variable-length records only.

An intrapartition queue is mapped onto one or more control intervals in the
intrapartition data set. The control intervals are allocated to a queue as records are
written and freed automatically as they are read or as the queue is deleted.

Examples of the data queued for intrapartition processing are:
v Transactions that require processes to be performed serially, not concurrently. An

example of this type of process is one in which pending order numbers are to be
assigned.

v Data to be used in a data set (file) update that could pass through the queue to
allow the data to be applied in sequence.

Recovery of intrapartition transient data queues
Following abnormal system termination, intrapartition queues defined as
recoverable by the user can be restored. Recovery is accomplished by
reconstructing the queues from catalog data and from log records written
automatically by CICS during normal execution. Two types of recovery are
possible: physical and logical.

Physical recovery of intrapartition transient data queues: Physically recoverable
transient data queues are restored to the state they were in when the system
terminated abnormally. A physically recoverable transient data queue is not backed
out if it has been updated by a unit of work (UOW) that has subsequently failed.
Data written to such a queue is always committed and is restored during warm
and emergency restarts.

When a UOW reads, writes, or deletes a physically recoverable queue, a log record
is written to the system log. When the system is brought up after an abnormal
termination, CICS can re-create a queue by retrieving definition information
associated with the queue from the catalog, and state data from the log. .

Note: There is an exception to the rule that states that a physically recoverable
queue is restored to the state it was in when CICS abnormally terminated. If a

© Copyright IBM Corp. 1997, 2011 503

UOW reads a physically recoverable queue and CICS then terminates abnormally,
the read operation will be backed out when CICS is subsequently brought back up.

Logical recovery of intrapartition transient data queues: Logically recoverable
transient data queues are restored to the state they were in at the time they were
last syncpointed. All inflight UOWs are backed out. If a UOW updates a logically
recoverable queue and subsequently fails, all updates to the queue are backed out.
Logically recoverable queues are restored during warm and emergency restarts.

Logically recoverable queues are logged as part of the first phase of syncpoint
processing. When CICS is brought up after an abnormal termination, it can
re-create logically recoverable queues by retrieving definition information
associated with the queue from the catalog, and state data from the log.

Logically recoverable transient data queues can suffer from indoubt failures. If a
UOW is indoubt and CICS abnormally terminates, the indoubt UOW environment
is recreated when CICS is next brought up. When the indoubt failure is resolved,
the UOW is committed or backed out.

Extrapartition queues
Extrapartition queues are sequential data sets on tape or direct-access devices. Data
directed to or from these external queues is called extrapartition data and can
consist of sequential records that are fixed- or variable-length, blocked or
unblocked.

Data can be placed on an extrapartition data set by CICS for subsequent input to
CICS or for offline processing. Sequentially organized data created by other than
CICS programs can be entered into CICS as an extrapartition data set. Examples of
data that might be placed on extrapartition data sets are:
v System statistics
v Transaction error messages
v Customer data, such as cash payments that can be applied offline.

Indirect queues
Intrapartition and extrapartition queues can be referenced through indirect
destinations. This provides flexibility in program maintenance. Queue definitions
can be changed, using the CEDA transaction, without having to recompile existing
programs.

Automatic transaction initiation
When data is sent to an intrapartition queue and the number of entries (WRITEQs
from one or more programs) in the queue reaches a predefined level (trigger level),
the user can optionally specify that a transaction be automatically initiated to
process the data in that queue.

The automatic transaction initiation (ATI) facility allows a user transaction to be
initiated either immediately, or, if a terminal is required, when that terminal has no
task associated with it. The terminal processing status must be such that messages
can be sent to it automatically. Through the trigger level and automatic transaction
initiation facility, an application program can switch messages to terminals. After a
task has been initiated, a command in the application program is executed to
retrieve the queued data. All data in the queue is retrieved sequentially for the
application program.

504 CICS TS for z/OS 4.1: Diagnosis Reference

Trigger transactions may only execute sequentially against their associated queue.
When a trigger transaction has been attached, another transaction will not be
attached until the first transaction has completed. If a trigger transaction suffers an
indoubt failure, (the transaction must be associated with a logically recoverable
queue) another trigger transaction cannot be attached until the indoubt failure has
been resolved.

Transient data services
The following services are performed by the transient data program in response to
transient data commands issued in application programs:

Intrapartition data disposition
Controls and queues data for serially reusable or re-enterable facilities
(programs, terminals) related to this partition or region.

Intrapartition data acquisition
Retrieves data that has been placed in a queue for subsequent internal
processing.

Extrapartition data acquisition
Enters a sequentially organized data set into the system.

Extrapartition data disposition
Writes fixed- or variable-length data in a blocked or unblocked format on
sequential devices, usually for subsequent offline processing.

Automatic transaction initiation
Initiates a transaction to process previously queued transient data when a
predefined trigger level is reached.

Dynamic open/close
Logically opens or closes specified extrapartition data sets (queues) during the
real-time execution of CICS.

Dynamic allocation and deallocation of extrapartition queues
Extrapartition transient data queues do not have to be predefined in your JCL.
They can be created dynamically.

Transient data
This section describes transient data’s interfaces.

Intrapartition queues
Figure 101 on page 506 shows transient data’s interfaces for intrapartition queues.

Chapter 63. Transient data control 505

Note:

 1. An application program invokes a Transient Data request (WRITEQ TD,
READQ TD, or DELETEQ TD). The EXEC interface module, DFHETD is
invoked and calls Transient Data using the TDTD CDURUN parameter list.

 2. Transient Data locates the target queue using a Directory Manager locate.
 3. Assuming that the required queue has been found, the call is passed to the

module that handles intrapartition queue requests, DFHTDQ.
 4. If the target queue is logically recoverable, Transient Data must tell Recovery

Manager it is interested in this UOW by setting its work token in the
Recovery Manager’s table.

 5. If the target queue is logically recoverable, Transient Data must obtain an
enqueue on the appropriate end of the queue by invoking the Enqueue
Manager.

 6. Data is read from (or written to) the target queue using the appropriate access
method. In the case of physically recoverable queues only, the buffers are
always flushed and the data set hardened.

 7. After the request has completed, Transient Data must log the state of the
queue, if the queue is physically recoverable.

 8. If the request was a WRITEQ TD request and the target queue was physically
recoverable or non-recoverable, the trigger level may have been exceeded. If
the trigger transaction is to be associated with a terminal DFHALP is invoked
so that the required AID can be scheduled. If the trigger transaction is to be
associated with a file, Transaction Manager is invoked to attach the trigger
transaction.

Application
Program

EXEC CICS
. . . TD . . .

DFHETD

DFHTDA DFHTDB DFHTDSUB

DFHTDRM

DFHALP

DFHTDEXP DFHTDSUB

Directory
Manager

Enqueue
Manager

Transaction
Manager

Access
Methods

Recovery
Manager

DFHTDP DFHTDR

Transient
Data

TDTD
parameter
list

LOGGER
1

2 3

5 8

4, 7

9

8

6

10

11

11

Figure 101. Transient data interfaces for intrapartition queues

506 CICS TS for z/OS 4.1: Diagnosis Reference

9. If a UOW has updated a logically recoverable queue, Recovery Manager
invokes Transient Data when the UOW begins syncpoint processing
DFHTDRM.

10. Transient Data invokes the appropriate access methods to harden the data set.
Finally, Recovery Manager invokes Transient Data once more, detailing
whether Transient Data should commit or back out its updates.

11. If the UOW commits the updates. Transient Data attaches a trigger transaction
or schedules an AID if the trigger level has been exceeded. DFHALP is
invoked if the trigger transaction is associated with a terminal. Transaction
Manager is invoked if the trigger transaction is associated with a file.

Extrapartition queues
Figure 102 shows the transient data interfaces for extrapartition queues.

Note:

1. An application program invokes Transient Data services (WRITEQ TD, READQ
TD or DELETEQ TD). The EXEC interface module, DFHETD is invoked.
DFHETD invokes Transient Data using the TDTD CDURUN parameter list.

2. Transient Data locates the target queue using Directory Manager.
3. The request is passed to the appropriate QSAM routine for processing. QSAM

PUT with LOCATE mode is used.
4. If an application program requests that an intrapartition queue be opened or

closed, module DFHTDOC is invoked using the TDOC CDURUN parameter
list.

Application
Program

EXEC CICS
. . . TD . . .

DFHETD

DFHTDA DFHTDOC Access
Methods

Application
Program

EXEC CICS
DFHEIQSQ

DFHTDEXP DFHTDEXP

Directory
Manager

Access
Methods

Transient
Data

1

2

3

4

Figure 102. Transient data interfaces for extrapartition queues

Chapter 63. Transient data control 507

Modules
 Module Function

DFHTDP Provides request analysis and extrapartition processing, RMODE(24)

DFHTDA Included in load module DFHTDP. Provides request analysis and
processing for extrapartition queues

DFHTDEXC Included in load module DFHTDP. Contains subroutines associated with
the processing of extrapartition queues

DFHTDOC Included in load module DFHTDP. Manages the opening and closing of
extrapartition queues

DFHETD Processes EXEC CICS commands and maps them to the TDTD
CDURUN parameter list

DFHTDB Included in load module DFHTDQ. Processes intrapartition queue
requests

DFHTDSUC Included in load module DFHTDQ. Contains subroutines associated
with the processing of intrapartition transient data queues

DFHTDRM Undertakes syncpoint processing on behalf of Transient Data

DFHTDTM Manages requests to install, discard, set and inquire on transient data
queues

Exits
The following global user exit points are provided for this function: XTDREQ,
XTDEREQ, XTDEREQC, XTDIN, and XTDOUT.

See the CICS Customization Guide for further information.

Trace
The following point ID is provided for transient data control:
v AP F6xx, for which the trace levels are TD 1 and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

508 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 64. User exit control

User exit control enables the user to run exit programs at selected points in CICS
modules in the application domain and in other domains. The exit program can be
enabled or disabled dynamically, and useful information can be transferred to a
user work area.

This function:
v Controls which exit programs are to run at which exit points. This is generally

specified using EXEC CICS commands and can be changed during a CICS run.
v Invokes the specified exit programs when control reaches an exit point in a CICS

module, and handles any change in flow indicated by a return code from the
user exit program.

Design overview
User exit control provides an interface that allows the user to run exit programs at
selected points (known as exit points) in CICS control modules. The exit programs
are separate from the control modules and are associated with them dynamically
by means of the EXEC CICS ENABLE command. (See the CICS Customization Guide
for a description of how to use exit programs.)

An exit point can have more than one exit program, and an exit program can be
shared by more than one exit point. Work areas can be set up for the exit
programs, and several exit programs can share a work area. For some exit points,
the continuation of the control module can be controlled by a return code.

Each exit point is identified internally by an exit number. The user exit table (UET)
contains a UET header and an entry for each exit point, in exit-number order. The
UET is addressed from CSAUETBA in the CSA and exists throughout the life of
CICS.

Each enabled exit program is represented by an exit program block (EPB). This
exists only while an exit program is enabled or while any other exit program is
using the work area owned by this exit program. The EPBs are chained together in
order of enablement. The UET header points to the first EPB.

Each activation of an exit program for a particular exit point is represented by an
exit program link (EPL) which points to the EPB for the exit program. The first
EPL for each exit point is contained in the UET entry. If an exit point has more
than one exit program, additional EPLs are obtained to represent each subsequent
activation. These additional EPLs are chained off the UET entry in order of
activation. Thus, for each exit, its EPL chain defines the exit programs that are to
be executed at that exit point, and the order of execution.

The user exit interface (UEI) control blocks are illustrated in Figure 103 on page
510.

© Copyright IBM Corp. 1997, 2011 509

All user exit programs are executed in the AP domain. When exit programs are
activated for exit points in other domains, control is passed from the domain to the
AP domain’s user exit service module, which creates the necessary environment to
invoke the exit programs via the user exit subroutine.

User exit control modules
This section describes the function of the user exit control modules.

DFHUEM (user exit manager)
The user exit manager (DFHUEM) processes EXEC commands that are entered by
an application program or the command interpreter to control user exit activity.
DFHUEM contains three routines, corresponding to the three commands, as
follows:
ENABLE

Checks whether an EPB already exists for the exit program specified in the
PROGRAM operand.

User exit table

Header
@EPB1

Exit1 @EPL1 @EPB1

Exit2

Exit3

Exit4 @EPB2

Exit5

Exit6

@ = address of

Exit program blocks

EPB1 @EPB2 AAA @GWA

EPB2 @EPB3 BBB @GWA
Global
work
area

EPB3 CCC

Exit program links

EPL1 @EPL2 @EPB3

EPL2 @EPB2

Note:

1. There are three enabled programs: AAA, BBB, and CCC.

2. Program AAA owns a global work area, which is shared by program BBB. The global
work area pointer (@GWA) in BBB’s EPB points to the EPB of the program owning the
shared area, namely AAA’s EPB.

3. Exits 1 and 4 are associated with these exit programs.

4. For Exit 1, exit programs AAA, CCC, and BBB have been activated, in that order, as
indicated by the EPL chain.

5. Exit program BBB has been activated for exit 4.

Figure 103. UEI control blocks

510 CICS TS for z/OS 4.1: Diagnosis Reference

v If an EPB is not found and the ENTRY operand is not specified, the exit
program is loaded, and:
1. A new EPB is obtained and added to the chain.
2. The name and entry address of the exit program are placed in the

EPB.
3. If the GALENGTH operand is specified, a work area is obtained, and

its address and length are placed in the EPB.
4. If the GAPROGRAM operand is specified, the address of the EPB for

the exit program specified in the GAPROGRAM operand is placed in
the new EPB, thus allowing exit programs to share a global work
area.

v If the EXIT operand is specified, the EPL chain for the specified exit
point is found.
1. A new EPL is obtained, if necessary, and added to the chain.
2. The address of the EPB for the exit program specified in the

PROGRAM operand is placed in the EPB.
3. The activation count in the EPB is increased by 1.
4. If the exit point is not in the AP domain, the domain is notified that

the exit point is active.
v If the START operand is specified, the start flag in the EPB is set on.

DISABLE
Finds the EPB for the exit program specified in the PROGRAM operand.
v If the STOP or EXITALL operand is specified, the start-flag in the EPB is

set off.
v If the EXIT operand is specified, the EPL chain for the specified exit

point is found. The EPL pointing to the EPB for the exit program
specified in the PROGRAM operand is removed from the chain and the
activation count is reduced by 1.

v If the EXITALL operand is specified:
1. All EPL chains are scanned.
2. All EPLs pointing to the EPB for the exit program specified in the

PROGRAM operand are removed from its chain.
3. If the ENTRY operand was not specified when the exit program was

enabled, the exit program is deleted.
4. The EPB is removed from the chain.
5. If a work area used by the exit program is not still being used by

another exit program, it is released.
6. Any EPB or EPL that is no longer required is moved to a free-chain

anchored in the UETH.
v When EXIT or EXITALL is specified for exit points not in the AP

domain, the domain is notified when there are no exit programs active.
EXTRACT-EXIT

Finds the EPB for the exit program specified in the PROGRAM operand.
The work area’s address and length are extracted from this EPB (or from
the EPB that owns the work area) and placed in the user’s fields specified
in the GASET and GALENGTH operands.

DFHUEH (user exit handler)
The user exit handler module, DFHUEH, is used to process exit points in the AP
domain.

At each exit in a control module, there is a branch to the DFHUEH program. This
module scans the EPL chain for that exit and invokes each started exit program in
the chain, passing it a parameter list and a register save area. On return from each
exit program, the return code is checked and a current return code (maintained by
DFHUEH for return to the control module) is set as appropriate.

Chapter 64. User exit control 511

DFHAPEX (user exit service module)
The user exit service module, DFHAPEX, is used to process exit points in domains
other than the AP domain.

When an exit point is reached in a non-AP domain, control is passed to the user
exit service module (DFHAPEX) in the AP domain, if the domain has previously
been notified that there is an exit program activated for the exit point.

The user exit service module constructs the user exit parameter list, using special
parameters from the domain, and invokes the user exit subroutine (DFHSUEX).

The return code from DFHSUEX is passed back to the calling domain.

DFHSUEX (user exit subroutine)
The DFHSUEX module invokes all started user exit programs for an exit point in a
domain (other than the AP domain) by scanning the EPL chain, using the same
processing as the user exit handler (DFHUEH). The parameter list defined by
DFHAPEX is passed to the exit programs. Return codes from the exit programs are
checked and returned to DFHAPEX.

Control blocks
The control blocks associated with the user exit interface are illustrated in
Figure 104 on page 513 and listed below. Further information about the control
blocks is given in the “Design overview” on page 509 and in Figure 103 on page
510.

512 CICS TS for z/OS 4.1: Diagnosis Reference

The main control blocks are as follows:
UETH User exit table header
UETE User exit table entry—one for every exit point
EPB Exit program block—one for every enabled user exit program, containing

information about the location and activity of the program, and any global
work area owned or shared by the program

EPL. Exit program link—each EPL indicates one exit program to be invoked at
an exit point and which EPL, if any, contains information about the next
program to be invoked at that exit point.

See CICS Data Areas for a detailed description of these control blocks.

Modules
 Module Function

DFHAPEX The interface between an exit point in a domain (other than the AP
domain) and the AP domain.

DFHSUEX Handles the invocation of user exit programs at exit points in CICS
domains (other than the AP domain). Processing is similar to DFHUEH,
passing a parameter list defined in DFHAPEX.

DFHUEH Links an exit point in a CICS management module in the AP domain
and the user code. DFHUEH invokes in turn each started exit program
for that exit point, passing a parameter list defined in the CICS
management module.

CSA

x'1C8' CSAUETBA EPL

x'10' EPLNEPL
UETH Address of
User exit table header next EPL

EPB x'14' EPLEPBA
x'80' UETHEPBC Address of

Address of first EPB EPB
x'04' EPBCHAIN

Address of next EPB
UETE
User exit table entry x'08' EPBEPN

Exit program name

x'08’ UETEFEPL x'10' EBPEPA
Address of next EPL Address of

exit program

x'14' EPBGAA
Address of work area

UETE
EPB

x'08’ UETEFEPL
x'04' EPBCHAIN

x'08' EPBEPN

x'10' EPBEPA EPL

x'14' EPBGAA
x'10' EPLNEPL

Note: 0
EPB

Most of the linkages EPLEPBA
shown are created
dynamically in response x'04' EPBCHAIN
to ENABLE commands. 0

x'08' EPBEPN

x'10' EPBEPA

x'14' EPBGAA

Figure 104. Control blocks associated with the user exit interface

Chapter 64. User exit control 513

Module Function

DFHUEM The EXEC interface processor for the ENABLE, DISABLE, and
EXTRACT user exit commands.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP D5xx, for which the trace levels are UE 1, AP 1, AP 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

For user exit programs running at an exit point within the AP domain, UE level-1
trace entries are produced.

For user exit programs running at an exit point in a CICS domain other than the
AP domain, the UE level-1 trace entries are not produced. Instead, the D5xx trace
entries for AP level 1 and AP level 2 are available, providing more information
than the UE trace. For AP level 1, the DFHUEPAR parameter list is traced,
containing the addresses of fields special to that exit point. For AP level-2 tracing,
the contents of the fields are printed, each field being truncated to 200 bytes if
necessary.

514 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 65. VTAM generic resource

This section describes how the generic resource support provided by VTAM is
used by CICS.

A CICS system may register as a VTAM generic resource. It may then be known
either by its unique applid or by the generic resource name which is shared by a
number of CICS systems, all of which are registered to the same generic resource.

For more information about CICS support for VTAM generic resource consult the
CICS Intercommunication Guide. Consult VTAM Programming for information about
generic resource from the VTAM point of view.

Design Overview
If CICS is to register as a generic resource member, the GRNAME system
initialization parameter must be specified.

If GRNAME is specified CICS attempts to register immediately after the ACB is
open by issuing the VTAM SETLOGON OPTCD=GNAMEADD command.

If registration succeeds, CICS is then a member of the generic resource specified by
the SIT GRNAME parameter and may be addressed either by its generic resource
name or (subject to certain restrictions) by its unique applid. Use of the generic
resource name allows VTAM to balance the workload by selecting whichever
generic resource member is most lightly loaded.

If registration fails, CICS initialization continues but CICS will not be a generic
resource member.

The registration status may be examined by means of the CEMT INQUIRE VTAM
command.

CICS de-registers as a generic resource by means of the VTAM SETLOGON
OPTCD=GNAMEDEL command immediately before the ACB is closed.

Generic resource and LU6.1/LU6.2
Although terminals may log on freely using either the generic resource name or
the member name this is not the case with LU6.1 and LU6.2 connections which are
more restricted in their use of member names.

LU6.2 GR to GR connections
For LU6.2 connections between generic resources the design makes use of LU6.2
autoinstall. Only connections which are intended to issue an ACQUIRE need be
defined and these must all have the generic resource name specified as the
NETNAME.

Two types of connection are possible.
v Generic resource name connections. These are connections which have the

generic resource name as the NETNAME. NETNAMEs must be unique and so
there can only be one of these per partner generic resource.

© Copyright IBM Corp. 1997, 2011 515

v Member name connections. These are connections which have the unique applid
(member name) as the NETNAME.

Since there can only be one generic resource name connection for each partner
generic resource it follows that most connections will be member name
connections.

EXEC CICS INQUIRE CONNECTION or CEMT INQUIRE CONNECTION may be
used to determine which is the generic resource name and which the member
name.

When the first BIND from a different generic resource comes into the SCIP exit
(DFHZBLX), a generic resource name connection will be established. If no
predefined generic resource name connection exists one will be autoinstalled.
Subsequent BINDs coming into DFHZBLX from different members of the same
generic resource will cause member name connections to be autoinstalled. A
member name connection should never be defined for a member of a different
generic resource because this creates the possibility of having two definitions
(TCSE's) for the same connected system.

Communications between members of the same generic resource must be by
member names only.

Two new bits TCSE_GR and TCSE_GRNAME_CONN have been introduced to
indicate the different connection types. They are only valid for LU6.2 connections
between generic resources.

The table shows different values of TCTENNAM, TCSESID and TCSEX62N for
LU6.2 connections between generic resources, depending on the settings of
TCSE_GR and TCSE_GRNAME_CONN:

 TCSE_GR
TCSE_GRNAME_CONN

ON
ON

ON
OFF

TCTENNAM
TCSESID
TCSEX62N

GRname
GRname
membername

membername
membername
GRname

LU6.2 GR to non-GR connections
If a single (non-generic resource) system has an LU6.2 connection to a generic
resource member it may use either the generic resource name or the member name
as the NETNAME.

If the member name is used the initial acquire of the connection must be done by
the non-generic resource partner. This means that the generic resource side must
not have autoconnect set on. This is because the generic resource partner relies on
VTAM to tell it if it is to known by its member name. VTAM does this by setting a
bit which is valid for the first BIND only. Sessions can be acquired by either
partner once the SNASVCMG sessions have bound.

For these connections TCSE_GR is always set off and TCSE_GRNAME_CONN has
no meaning on both systems. The rule here is that TCSESID always contains the
NETNAME (as defined in the RDO connection definition) and TCSEX62N always
contains the member name (unique applid). The table illustrates this:

516 CICS TS for z/OS 4.1: Diagnosis Reference

TCSE_GR
TCSE_GRNAME_CONN
RDO_HOSTNAME

OFF
not applicable
GRname

OFF
not applicable
membername

TCTENNAM
TCSESID
TCSEX62N

GRname
GRname
membername

membername
membername
 membername

If the generic resource name is to be used, the single system may itself be made
into a generic resource allowing it to exploit the design for communications
between generic resources. If this is not possible the solution is to use a "hub" or
code a generic resource resolution exit to ensure that not more than one member of
a generic resource communicates with the single system at any one time using the
generic resource name. (The use of "hubs" is described in the CICS
Intercommunications Guide).

LU6.1
There is no autoinstall for LU6.1, and so less flexibility is allowed for LU6.1
connections between generic resources. CICS-CICS LU6.1 connections can only
communicate by generic resource names and must use a "hub" or a generic
resource resolution exit.

TCSE_GR and TCSE_GRNAME_CONN do not apply to LU6.1. For LU6.1
connections with a generic resource the generic resource name is in TCTENNAM
and TCSESID and the member name is in TCSEX61N.

Ending affinities
Affinities are records held by VTAM to show it where to direct data flows within a
generic resource. Some of these affinities are "owned" by CICS. These are affinities
for LU6.2 synclevel 2, LU6.2 limited resources and LU6.1 connections. They may be
ended by means of the SET CONNECTION ENDAFFINITY and PERFORM
ENDAFFINITY commands.

Generic resource and ATI
This section applies only to those terminals which are logged on using the generic
resource name.

When an ATI request is issued in an AOR for a terminal that is logged on to a
TOR, CICS uses the terminal definition in the AOR to determine the identity of the
TOR to which the request should be shipped. If there is no terminal definition in
the AOR, the “terminal-not-known” global user exits (XICTENF and XALTENF)
may be used to supply the name of the TOR.

However, if the TOR in question is a member of a generic resource and the user
has logged on using the generic resource name, VTAM will have connected the
terminal to the generic resource member which was most lightly loaded at the
time. If the user then logs off and on again the terminal may be connected to a
different generic resource member. If this happens, the TOR which is to receive the
ATI request cannot be determined from the terminal definition in the AOR or the
“terminal-not-known” user exit.

CICS solves the problem in the following manner:

Chapter 65. VTAM generic resource 517

1. The ATI request is first shipped to the TOR specified in the terminal definition
in the AOR (or by the “terminal-not-known” exit). If the terminal is logged on
to this TOR (the “first-choice” TOR) the ATI request completes as normal.

2. If the terminal is not logged on to the first-choice TOR, the TOR issues a VTAM
INQUIRE OPTCODE=SESSNAME to find which generic resource member, if
any, the terminal is now logged on to. This information is passed back to the
AOR and the request is then shipped to the correct TOR.

3. If the first-choice TOR is not available, the AOR issues a VTAM INQUIRE
OPTCODE=SESSNAME to find where the terminal is now logged on. The
INQUIRE is not attempted in the following situations:
v The VTAM in the AOR is a pre-4.2 version and does not support generic

resource.
v The AOR was started with the VTAM system initialization parameter set to

NO.
The INQUIRE will not succeed if the TORs and the AOR are in different
networks.
If the INQUIRE is successful the ATL request is shipped to the TOR where the
terminal is logged on.

Modules

DFHZBLX
DFHZBLX is a new module which has been created to deal with LU6.2 BIND
processing. Part of its function was formerly part of DFHZSCX. It is link-edited
with DFHZSCX and is still logically part of it, but it returns directly to VTAM, not
via DFHZSCX.

There is a new part of the module, apart from that which was once contained in
DFHZSCX, which deals with generic resource BIND processing. If CICS is
registered as a generic resource and the partner is also a generic resource,
DFHZBLX has to decide on the appropriate type of connection. This may be either
a generic resource name connection, in which the NETNAME is the partner's
generic resource name, or a member name connection, in which the NETNAME is
the partner's member name.

DFHZBLX is also responsible for setting the bits in the connection entry which are
specific to generic resource.

If CICS is not registered as a generic resource, the generic resource code is not
invoked.

DFHZGCH
DFHZGCH is a domain subroutine which is called by DFHEIQSC after one of the
following commands.
v EXEC CICS SET CONNECTION ENDAFFINITY
v CEMT SET CONNECTION ENDAFFINITY
v EXEC CICS PERFORM ENDAFFINITY
v CEMT PERFORM ENDAFFINITY

Its function is to issue the VTAM CHANGE OPTCD=ENDAFFINITY command.

If the affinity is ended successfully,

518 CICS TS for z/OS 4.1: Diagnosis Reference

v the connection is deleted if it is autoinstalled.
v If the connection is defined,

– the generic resource specific information in the connection entry is reset,
– the catalog entry is updated,
– the connection is deleted from the TCSM index.

The VTAM return codes are reflected back to DFHEIQSC.

DFHZGIN
DFHZGIN is a domain subroutine.

In a TOR it is called by DFHCRS when a request has been shipped from a remote
system, if a terminal cannot be located.

In an AOR it is called by DFHALP when the schedule of an AID fails because the
TOR has gone away.

It has two functions:
1. INQUIRE_NQN

A VTAM INQUIRE OPTCD=NQN is issued to find the fully qualified
NETNAME of a terminal given the NETNAME as input. The fully qualified
NETNAME is required for INQUIRE OPTCD=SESSNAME.

2. INQUIRE_SESSNAME
A VTAM INQUIRE OPTCD=SESSNAME is issued to find which member of a
generic resource a terminal is logged on to given a fully qualified NETNAME
as input.

The following responses are returned to the caller:
v OK - VTAM return code was X'00' fdb2 X'00'
v NOT FOUND - VTAM return code X'14' fdb2 X'88'
v EXCEPTION - The call was rejected for some other reason than not found.

For the exception case an exception trace is written and a message in the range
DFHZC0182 - DFHZC0185 is output to the CSNE log giving the VTAM return
codes.

Problem solving for generic resource
Trace TC level 1, 2 & exception in the ranges AP FA50-FA59, FAB0-FABA and
FB87-FB8F.

Messages DFHZC0170 to DFHZC0185 are written to the console and CSNE logs.

Information output by DFHZNAC following BIND failures.

If a dump is produced examine the generic resource status and generic resource
flag bytes.

The following symptoms may indicate that an affinity should be ended and has
not been.
v Sessions failing to acquire with message DFHZC2405 "Node not activated". This

may also indicate a setup error.

Chapter 65. VTAM generic resource 519

v Sessions failing to acquire with various instances of DFHZC2411. This may also
indicate that a rule has been violated.

v CICS fails to register as a generic resource when it has previously been a
member of a different generic resource. Message DFHZC0171 is written to the
console with VTAM rtncd X'14' fdb2 X'86'.

v Connections autoinstalling unexpectedly. If a non-generic resource is addressing
a generic resource member by its member name this may also indicate that the
first ACQUIRE was issued from the generic resource side.

Generic resource status byte (TCTV_GRSTATUS)
TCTV_GR_REGD (X'80')

This CICS is registered as a member of a generic resource.

TCTV_GR_REGERR (X'40')
This CICS attempted to register as a generic resource member (SIT
GRNAME parameter specified) but the attempt was rejected by VTAM.

TCTV_GR_NOTAVAIL (X'20')
This CICS attempted to register as a generic resource member (SIT
GRNAME parameter specified) but the level of VTAM was not 4.2 or
above.

TCTV_GR_DREGD (X'08')
This CICS was previously a member of a generic resource but has
successfully de-registered.

TCTV_GR_DREGERR (X'04')
This CICS attempted to de-register as a member of a generic resource by
issuing SETLOGON OPTCD=GNAMEDEL but the attempt was rejected by
VTAM.

TCTV_GR_NOTAPPL (X'02')
The GRNAME system initialization parameter was not specified.

TCTV_GR_NOTREG (X'00')
CICS is not registered as a generic resource and has not attempted to
register. (Holds this value before registration is attempted, if required.)

Generic resource flag byte (TCSEI_GR)
TCSE_GR (X'80)

Both partners are registered as generic resources. Valid from initial acquire
to ENDAFFINITY.

TCSE_GR_NAME_CONN (X'40')
Set on for a generic resource name connection in which TCSESID contains
the generic resource name and TCSEX62N contains the member name.

 Set off for a member name connection in which TCSESID contains the
member name and TCSEX62N contains the generic resource name.

This bit is only meaningful if TCSE_GR is set on.

TCSE_USE_OUR_MEMBER_NAME (X'20')
The partner is using our member name. (An indication that the member
name, not the generic resource name must be passed in the BIND).

TCSE_MSG179_ISSUED (X'10')
Message DFHZC0179 has been issued. This message is issued when the

520 CICS TS for z/OS 4.1: Diagnosis Reference

secondary SNASVCMG session binds if TCSE_GR is set. It makes clear
which is the generic resource name and which the member name of the
partner session.

TCSE_CATLG_DONE (X'08')
A defined connection with an affinity has been catalogued.

TCSE_MSG177_ISSUED (X'04')
Message DFHZC0177 has been issued. This message is output whenever
an LU6.2 limited resources, LU6.2 synclevel 2 or LU6.1 connection is
acquired. It is output when the secondary SNASVCMG session binds. It is
intended to alert the user to the fact that acquiring the connection has
caused an affinity to be created and gives the NETNAME and NETID of
the partner.

Trace
Trace point ids
v FA50 - FA59

are provided for problem determination during ENDAFFINITY processing.
(Module DFHZGCH)

v FAB0 - FABA
are provided for problem determination during INQUIRE SESSNAME
processing. (Module DFHZGIN)

v FB87 - FB8F
are provided for problem determination during generic resource registration and
de-registration. (Module DFHZGSL)

Waits
 Module Type Resource

Name
Resource Type ECB Function

DFHZGCH MVS CHANGECB ZC_ZGCH CHANGECB Wait for completion of
INQUIRE SESSNAME

DFHZGIN MVS INQ_ECB ZC_ZGIN INQ_ECB Wait for ENDAFFINITY to
complete

Chapter 65. VTAM generic resource 521

522 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 66. VTAM LU6.2

This section describes the layer of CICS that manages the interface to VTAM for
LU6.2 communication. VTAM LU6.2 provides advanced program-to-program
communication (APPC) between transaction-processing systems, and enables
device-level products (APPC terminals) to communicate with host-level products
and with each other. APPC sessions can therefore be used for CICS-to-CICS
communication, and for communication between CICS and other APPC systems
(for example, AS/400®) or terminals.

For information about the CICS functions that you can use to exploit LU6.2
communication, see Chapter 13, “Distributed program link,” on page 121,
Chapter 14, “Distributed transaction processing,” on page 123, Chapter 26,
“Function shipping,” on page 301, Chapter 29, “Intersystem communication (ISC),”
on page 329, Chapter 62, “Transaction routing,” on page 481.

Design overview
The main feature that distinguishes LU6.2 from other LU types is the support for
parallel sessions i.e. many sessions (and conversations) between the two LUs at the
same time. These sessions are further grouped by use of the class of service facility
in VTAM. The TCT structure for LU6.2 reflects this. Under the system entry
(TCTSE) are a series of mode group entries (TCTMEs). Within a mode group there
are a number of sessions represented by terminal entries (TCTTEs).

All the sessions within a mode group have the same transmission characteristics,
that is, the same class of service. When a request to ALLOCATE a session is made,
a MODENAME can be specified, indicating which class of service is required.

When a session has been allocated and a conversation started, data can be received
and sent between the connected LUs. This is more or less directly under the
control of the CICS application in the case of DTP, or indirectly under the control
of the user for the other ISC facilities.

CICS also supports LU6.2 single session connections. These are represented by a
TCTSE, a single TCTME and a single TCTTE. They support the same functions as
parallel session connections.

Detailed information about VTAM LU6.2 commands and macros is given in the
relevant VTAM manuals.

Session management
Systems Network Architecture (SNA) defines several processes to be used in
managing LU6.2 sessions. The CICS implementation provides transaction code for
the following Transaction Program Names (TPNs) defined by LU6.2.
v X'06F1' = CHANGE_NUMBER_OF_SESSIONS (CNOS)
v X'06F2' = EXCHANGE_LOG_NAME (XLN)

The required transaction definitions are:

© Copyright IBM Corp. 1997, 2011 523

TRANSACTION XTRANID PROGRAM

CLS1 X'06F10000' DFHZLS1
CLS2 X'06F20000' DFHCLS3

These resource definitions are provided in the DFHISC group.

So that the SNA service transaction programs can always communicate with each
other, even when all the sessions between two systems are busy, two extra sessions
are always created whenever parallel sessions exist between two systems. CICS
generates these two extra sessions (with a reserved MODENAME of SNASVCMG)
unless SINGLESESS(YES) is specified for the connection. Only SNA service
transaction programs are allowed to use these two sessions.

Change Number Of Sessions (CNOS)
When there are parallel sessions between two LU6.2 systems, it is possible to vary
the number of sessions available using CEMT or EXEC CICS commands, either for
the entire connection, or by modegroup. The number of available sessions for a
modegroup is called the SESSION LIMIT. It corresponds to the number of
in-service sessions in that modegroup. The two systems must agree on the session
limit for a modegroup at any given time. To achieve this, the LU6.2 architecture
defines a CNOS service transaction program which runs in each system,
communicating with its counterpart using architected CNOS commands and
replies. They negotiate the session limit and the numbers of contention winners
and losers at each end. For CICS, the CNOS service transaction program is
DFHZLS1.

CNOS commands are not required for the SNASVCMG modegroup on parallel
session connections, or for single session connections, because the session limits are
fixed.

Figure 105 shows the flow of control for CNOS operations.

- - - - - -
ZXRE0 DFHZLS1M DFHIC PUT FMH5 for |
EIQSC 06F1 |
ZNAC |
etc. CLS1 |

|
ZGCN plist |

|
|
|

D F H Z L S 1 |
|
| CNOS
|

DFHIC GET DFHLUC RECEIVE |
TS | source

main ZGCN CNOS |
|

plist command | LU
|

DFHZGCNM CALL FUNCTION DFHZGCNM CALL |
(INITIALIZE|CHANGE|RESET FUNCTION |

_SESSION_LIMIT) (PROCESS_SESSION_LIMIT) |
|
|
|

- - - - - D F H Z G C N |
| |

CNOS | |
Send CNOS Apply negotiation algorithm |

target Receive reply Send reply |
|

LU | |
| |

- - - - - D F H Z G C A |
|

ACTION_CNOS_AND_CONNECT - - - - - -
DFHZGPC

SET_NEGOTIATED_VALUES

DFHZXRE0 ENSURE_SESSIONS_BOUND

Figure 105. Flow of control for CNOS

524 CICS TS for z/OS 4.1: Diagnosis Reference

Exchange Log Name (XLN)
When DFHZNAC determines that it is necessary to exchange log names with a
remote system, it starts the syncpoint resynchronization transaction, using the
DFHCRERI macro specifying FUNCTION(XLN). The main program for this
transaction is DFHCRRSY (in load module DFHLUP). When DFHCRRSY
determines that resynchronization is required it will schedule other instances of
itself to perform the resynchronization.

When TPN X'06F2' is received from a remote system, DFHCRRSY is called to
handle the inbound Exchange Log Names and resynchronization.

LU6.2 session states
The following CICS modules maintain specific states of LU6.2 sessions.

 Module State Macro

DFHZBKT SNA bracket state DFHZBSM
DFHZCNT Contention state DFHZCNM
DFHZCHS Chain state DFHZCHM
DFHZCRT RPL_B state DFHZCRM

These modules are invoked via the macros shown in the last column. Any query or
change to the states is performed using these macros.

The LU6.2 states for each session are stored in the TCTTE for that session. The
modules and associated TCTTE field are usually referred to as state machines.
When a module, such as DFHZARL, wants to check that the session is in a suitable
state to perform a given operation, it uses the appropriate state machine to
perform the check by invoking the CHECK function of the relevant macro. If the
operation subsequently causes a change in the state of the session, the SET
function of the relevant macro is invoked to record the new state.

LU6.2 SEND and RECEIVE processing
LU6.2 SEND processing is done by DFHZSDL, using POST=SCHED to drive the
VTAM exit DFHZSLX asynchronously when the request has been passed to VTAM.

DFHZRVL does LU6.2 RECEIVE processing, issuing the request to VTAM for
asynchronous processing which drives the VTAM exit DFHZRLX on completion.
DFHZRLX queues completed RPLs for further processing by DFHZRLP to a chain
anchored off TCTVRPLQ in the TCT prefix. Entries are removed from the queue by
DFHZDSP, and passed to the program designated to process the completed RPL.
When authorized path VTAM support is used, the SEND and RECEIVE requests
use the CICS high performance option (HPO) routines.

SEND and RECEIVE processing for LU6.2 use different RPLs:
v RECEIVE uses the receive RPL (also known as RPL_B, and addressed by

TCTERPLB in the TCTTE LUC extension).
v SEND uses the send RPL (addressed by TCTERPLA in the TCTTE).

There are two exceptions when a SEND uses the receive RPL instead of the send
RPL:
1. DFHZSDL sending a response
2. DFHZRLP sending DR1 response via synchronous SEND.

Chapter 66. VTAM LU6.2 525

The processing state of the receive RPL is maintained in the LU6.2 RPL_B state
machine field (TCTERPBS in the TCTTE LUC extension) by the DFHZCRT module
and DFHZCRM macro combination, thus allowing rapid identification of the stage
and type of RECEIVE being processed.

LU6.2 state machine transitions for contention, bracket, and chain states are
performed via the DFHZCNM, DFHZBSM, and DFHZCHM macros as part of
SEND and RECEIVE processing for LU6.2 sessions.

Limited resources
For efficient use of some network resources (for example, switched lines), SNA
allows for such resources to be defined in the network as limited resources.
Whenever a session is bound, VTAM indicates to CICS whether the bind is over a
limited resource. Both single and parallel sessions may use limited resources.

The limited resources (LR) function is part of the LU6.2 base option set. When
communicating over switched lines, it may be important to stop using this
expensive resource as soon as possible. LR provides this facility. A bit in the BIND
image is copied into the TCTTE to indicate LR usage. This bit (TCTE_LR) is used
to determine whether CICS should UNBIND the link when the TCTTE is freed and
no outstanding tasks are using the link.

SNASVCMG (parallel) sessions are not scheduled to be unbound until the initial
CNOS exchange has been performed for all mode groups in the connection. They
are then treated in the same way as user sessions.

Two bits in the terminal control table are used to reflect LR: TCTE_LR in the
terminal entry (TCTTE) and TCSE_LR in the system entry (TCTSE). The following
table shows the meanings of the TCTE_LR bit (ON or OFF) in combination with
the TCTENIS ‘node now in session’ bits (YES or NO).

 TCTE_LR TCTENIS Meaning

ON YES Current session over LR
ON NO Previous session over LR
OFF YES Current session not LR
OFF NO Never bound, or previous session not LR

TCSE_LR (in the system entry) is set ON when the first LR session is bound, and
OFF as a result of CNOS negotiation to release the connection. If TCSE_LR is ON
and there are no bound sessions, the connection state is then ‘available’.

Modules
The modules listed below handle the VTAM LU6.2 support in CICS.

Session management state machines

v DFHZBKT
v DFHZCHS
v DFHZCNT
v DFHZCRT

Send and Receive processing

v DFHZRLP
v DFHZRLX

526 CICS TS for z/OS 4.1: Diagnosis Reference

v DFHZRVL
v DFHZSDL
v DFHZSLX

CNOS

v DFHZLS1
v DFHZGCN
v DFHZGCA

Persistent Verification

v DFHCLS3

XLN and Resynchronization

v DFHCRRSY

DFHZRVL
DFHZRVL is invoked to issue an LU6.2 receive specific request to receive:
v Data
v Commands
v Responses
v Purge to end-chain (used by DFHZERH to clear incoming data)
v A single RU.

Two broad categories of RECEIVE data are recognized by CICS; both are processed
as RECEIVE_WAIT requests to VTAM:
1. RECEIVE_WAIT, where CICS waits until input is received from VTAM before

returning control to the caller. This applies to all RECEIVE response and
command requests, and to data requests where the minimum length to be
received is greater than zero.

2. RECEIVE_IMMEDIATE, where CICS immediately returns control to the caller
without waiting for VTAM to complete the request unless the data is already in
the VTAM buffer, in which case it processes the data in the same way as for
RECEIVE_WAIT before returning to the caller. This is requested via a minimum
length of zero. It is used by the RECEIVE_IMMEDIATE call for the SAA
communications interface, by a LOOK_AHEAD call, and in support of timely
receipt of responses, ensuring earlier detection of an ISSUE_ERROR response
from the partner LU.

The receive buffer is set up to receive the data, and the address of the receive exit
DFHZRLX (driven on completion of the request) is stored into the receive RPL
(RPL_B) before the RECEIVE macro is issued to VTAM. DFHZRVL is used by
DFHZERH to determine the state of the session.

DFHZRLP
This module completes the LU6.2 receive specific processing for LU6.2 requests.

RECEIVE_IMMEDIATE requests are processed in two phases, that is, on two
passes through DFHZRLP:
1. The RPL_B state machine (TCTERPBS) is set to indicate that the RECEIVE has

been completed by VTAM; then the exit is taken from DFHZRLP.
2. This phase corresponds to the single phase used for processing

RECEIVE_WAIT requests, that is, the requests are checked for successful

Chapter 66. VTAM LU6.2 527

completion, examined to determine whether data, a command, or a response
has been received, and parameters indicating what has been received are then
returned to the caller.

Data received
When data is received, DFHZRLP:
1. Sets the bracket and chain state machines, and returns indicators to DFHZARL

according to the DFC flags received with the data:
v Response type
v CD
v EC
v CEB
v FMH

2. If more data is required, DFHZRLP recalls DFHZRVL via the activate scan
routine (DFHZACT) to reissue the RECEIVE, for example when:
v End-chain has not yet been received, and there is still room in the receive

buffer. If the minimum length requested has already been received, the type
of RECEIVE is altered from RECEIVE_WAIT to RECEIVE_IMMEDIATE
resulting in a READ_AHEAD call in anticipation of there being more data
available, and any data already in the VTAM buffer is processed by
DFHZRLP before returning to the caller.

v The original request was for data, and what has been received and processed
is a command (only LUSTAT or BIS can validly be processed by DFHZRLP).

3. Returns control to DFHZARL when:
v Sufficient data has been received for a BUFFER or LL type request.
v End-chain has been received because of CD, RQD2, or CEB.
v FMH has been received.
v The call was incomplete, but insufficient space remains in the receive buffer

for further data.

If the data was received with RQD1, a response is sent synchronously by
DFHZRLP using the receive RPL.

Command received
When a command is received, the actions of DFHZRLP depend on the command:
v For LUSTAT6 received, the command is treated as data. If BB is included, then

an exception response is sent (sense X'0813' or X'0814').
v For BIS received, CLSDST is requested and the receive re-driven.

All other commands are incorrect.

Response received
When a response is received, DFHZRLP:
1. Carries out checks:
v Does the sequence number match the number of the BB request?
v If it is a definite response, was it expected?
v If it is an exception response, was it a session-level error?

2. Sets the state machines.
3. Passes back the return code to the caller.

528 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZSDL
This module issues the SEND request to VTAM to transmit data, commands, and
responses on LU6.2 sessions.

DFHZSDL transmits:
v Data from a send buffer or an application area
v The commands:

– LUSTAT
– RTR
– BIS

v Responses.

Data transmission
If a SEND LAST command is issued, any outstanding completed receive RPL is
first processed by queuing the TCTTE for RECEIVE processing by DFHZRLP, and
any incomplete receive RPL is canceled via RESETSR.

For data transmission, DFHZSDL uses:

LMPEO
Large message performance enhancement outbound. VTAM slices large
messages into RUs.

BUFFLST
Buffer list. VTAM accepts data from non-contiguous buffers.

USERRH
User request header. The request header is passed in BUFFLST.

A maximum of two buffer list entries are used. The first buffer list entry addresses
the data in the send buffer, and the second the data in the application area.

The request header is built in the first buffer list entry using parameters passed
from DFHZARL. If an implicit send was requested, then CD, RQD2, and CEB are
not checked. The first-in-chain (FIC) indicator is set after checking the chain state
machine, and last-in-chain (LIC) is set whenever CD, RQD2, or CEB is included.
Null data sent only-in-chain (OIC) is converted to an LUSTAT6 command. The
address of the send exit DFHZSLX is stored in the send RPL, and the VTAM SEND
macro is issued. On completion of the SEND request, the bracket and chain state
machines are set according to the DFC indicators. These state machines are used
extensively by DFHZERH to determine the state of the session before executing an
error request.

Command transmission
The LUSTAT6 command is sent with:
v CEB to terminate the BIND_in_bracket state
v Null data for OIC
v CB, RQD1 to BID for bracket.

The RTR command requests BB after a BID request is rejected with sense code
X'0814'.

The BIS command shows bracket termination before CLSDST.

Chapter 66. VTAM LU6.2 529

On completion of the SEND request, the exit DFHZSLX is invoked. LUSTAT causes
the bracket and chain state machines to be set as for normal data flow.

Response transmission
DFHZSDL transmits ER1 and DR2 responses. The sequence number associated
with the response is that of the path information unit (PIU) that initiated the
current bracket. DFHZSDL uses the receive RPL (RPL_B) to send responses thus
ensuring that the RU is returned with the response, unless the response is an
ISSUE_ERROR request, in which case the send RPL is used. The response is sent
synchronously, and POST=SCHED is included in the VTAM command, so that an
exit routine is not involved. On return from VTAM, DFHZSDL sets the bracket and
chain state machines accordingly.

DFHZSLX
The DFHZSLX module is the VTAM exit that is driven on completion of a SEND
request. If the request completed successfully, the bracket and chain state machines
are set to show the new state of the session. If the SEND request was data DR1,
DFHZRVL is invoked via DFHZACT to receive the response.

DFHZRLX
The DFHZRLX module is the VTAM exit that is scheduled on completion of an
LU6.2 RECEIVE_SPECIFIC request. DFHZRLX queues the completed RPL to a
chain anchored from TCTVRLPQ in the TCT prefix. DFHZDSP dequeues the RPLs
for further processing by DFHZRLP.

DFHCLS3
In the local CICS system, DFHCLS3 is invoked using the DFHLUS macro, which
issues a DFHIC TYPE=PUT macro to start the appropriate transaction (CLS3) with
data recorded on temporary storage indicating the requested operation.

The DFHLUS operations can be:
SIGNOFF

Sign off a user on the other LU
TIMEOUT

Time out users.

The SIGNOFF and TIMEOUT operations apply to persistent verification signons
only.

DFHCLS3 retrieves the temporary-storage record.

The SIGNOFF and TIMEOUT operations are performed directly by DFHCLS3.
These operations are supported outbound only.

For SIGNOFF, DFHCLS3 is started by DFHZCUT when a user on the other LU
must be signed off.

For TIMEOUT, DFHCLS3 is started by DFHZCUT during time-out processing of a
persistent verification signed-on-from list, also known to CICS as a local userid
table (LUIT).

DFHCLS3 performs the following actions:
1. Calls DFHZCUT to find a userid that needs to be timed out
2. Makes a sign-off call to the other LU

530 CICS TS for z/OS 4.1: Diagnosis Reference

3. Calls DFHZCUT to remove the userid from the LUIT.

This sequence is repeated until there are no more userids to be timed out.

If DFHCLS3 abends during time-out processing, control passes to a SETXIT routine
in DFHCLS3, which calls DFHZCUT to tidy up the relevant LUIT.

DFHZLS1
DFHZLS1 is the main program for the CICS implementation of the CNOS SNA
service transaction. When acting as the initiator of a CNOS request (the CNOS
source), it is invoked by the DFHZLS1M macro issuing a DFHIC TYPE=PUT for
transaction id CLS1. The possible commands on the CNOS source system are:-
v INITIALIZE_SESSION_LIMIT

Acquire the specified connection, using the MAXIMUM values from the RDO
SESSIONS definitions (for the required session limit and number of winner
sessions) on the CNOS command for each modegroup.

v CHANGE_SESSION_LIMIT
Negotiate a change of the current session limit for a specified modegroup.

v RESET_SESSION_LIMIT
Release the connection, negotiating all modegroups to a session limit of zero.

When acting as the receiver of a CNOS request (the CNOS target), DFHZLS1 is
invoked by an attach FMH for TPN X'06F1' sent from the CNOS source system,
which is not necessarily CICS. The CNOS command sent with the attach FMH
requests changes to the sessions in specified modegroups. In SNA terms, DFHZLS1
is handling a PROCESS_SESSION_LIMIT command. It issues a DFHLUC RECEIVE
for the CNOS GDS that contains the details of the required command.

DFHZLS1 passes the parameters for each of the above commands through to
DFHZGCN, where the detailed processing takes place.

DFHZGCN
DFHZGCN is an AP domain subroutine. It handles the four architected CNOS
functions, as described below.

INITIALIZE_SESSION_LIMIT
This is a two pass function in CICS. First time through, DFHZGCN initiates the
bind of the SNASVCMG winner session and returns. The bind processing
eventually causes the “session started” routine in DFHZNAC to run. This re-issues
the DFHZLS1M INITIALIZE_SESSION_LIMIT request, and the CNOS negotiation
can then take place.

DFHZGCN performs the following actions:
1. Does a ‘privileged’ allocate (for a SNASVCMG session).
2. Builds an attach header.
3. Completes the building of the CNOS command, using MAXIMUM values in

the TCTME.
4. Issues a SEND INVITE WAIT.
5. Issues a RECEIVE LLID.
6. Analyzes the responses to the command; SNA decrees that the CNOS source

must accept the values returned.
7. Calls DFHZGCA to action the new values.

Chapter 66. VTAM LU6.2 531

8. Sends messages DFHZC4900 and DFHZC4901 as appropriate.
9. Frees the session.

The above steps are repeated for each user modegroup in the connection.

RESET_SESSION_LIMIT
A connection release request is passed via DFHZLS1 to DFHZGCN.

DFHZGCN performs the following actions:
1. Does a ‘privileged’ allocate.
2. Builds an attach header.
3. Completes the building of one CNOS command, setting MAX, WIN, and LOS

values to zero, and mode names affected to ALL.
4. Issues SEND INVITE WAIT.
5. Issues RECEIVE LLID.
6. Analyzes the response to the command; the CNOS target must accept zero

sessions (DRAIN can be changed from ALL to NONE).
7. Calls DFHZGCA to action the new values.
8. Sends message DFHZC4900.
9. Frees the session.

CHANGE_SESSION_LIMIT
DFHZLS1 is started from the EXEC API or CEMT via DFHEIQSM to change the
session limit for a specific modegroup.

DFHZGCN performs the following actions:
1. Does a ‘privileged’ allocate.
2. Builds an attach header.
3. Completes the building of one CNOS command, setting MAX and WIN values.
4. Issues SEND INVITE WAIT.
5. Issues RECEIVE LLID.
6. Analyzes the responses to the command; SNA decrees that the CNOS source

must accept the values returned.
7. Calls DFHZGCA to action the new values.
8. Sends messages DFHZC4900 and DFHZC4901 as appropriate.
9. Frees the session.

PROCESS_SESSION_LIMIT
DFHZLS1 is attached, and calls DFHZGCN.

DFHZGCN performs the following actions:
1. Addresses the CNOS command that DFHZLS1 passed.
2. For each mode group specified, determines whether the values for session limit,

source contention winners and source contention losers are acceptable. If not,
the values are adjusted (negotiated) according to rules laid down by SNA.

3. If this system is currently performing shutdown, negotiates down to session
limit zero.

4. Calls DFHZGCA to action the new values.
5. Sends the CNOS reply containing the negotiated values.
6. Sends messages DFHZC4900 and DFHZC4901 as appropriate.

532 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZGCA
DFHZGCA is an AP domain subroutine. It has three separate functions, as
described below.

ACTION_CNOS_AND_CONNECT
After a CNOS negotiation DFHZGCA is responsible for changing the state of a
specified modegroup to reflect the new values. There are three types of action
required.
1. Put sessions in/out of service for session limit increase/decrease.
2. Set sessions to winner/loser in line with negotiated values.
3. Bind/unbind sessions for session limit decrease, autoconnect processing or

contention polarity switch.

SET_NEGOTIATED_VALUES
This function is used by DFHZGPC during persistent sessions restart to set the
saved CNOS values in the modegroup without any binding/unbinding of sessions.

ENSURE_SESSIONS_BOUND
DFHZXRE0 invokes this function during persistent sessions restart because
recovery processing can lead to LU6.2 sessions becoming unbound. It is important
to ensure that they are re-bound in accordance with the autoconnect setting.

Exits
No global user exit points are provided for this function.

Trace
All of the above mentioned modules have entry and exit trace points. Several of
them also have exception and level 2 trace points. All of these trace points are from
the AP domain and have ids in the range FB00-FCFF.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 66. VTAM LU6.2 533

534 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 67. VTAM persistent sessions support

This diagnosis information describes in detail how CICS handles VTAM persistent
sessions support. When persistent sessions support is exploited by a CICS region,
sessions can be recovered if CICS, VTAM, or z/OS fails, depending on the type of
support.

For an introduction to this topic from the VTAM point of view, see the VTAM
Network Implementation Guide.

Design overview
CICS support of persistent sessions includes the support of all LU-LU sessions,
except LU0 pipeline and LU6.1 sessions. With multinode persistent sessions
support, if VTAM fails, LU62 synclevel 1 sessions are restored, but LU62 synclevel
2 sessions are not restored.

The CICS system initialization parameter PSTYPE specifies the type of persistent
sessions support for a CICS region:

SNPS, single-node persistent sessions
Persistent sessions support is available, so that VTAM sessions can be
recovered after a CICS failure and restart. This setting is the default.

MNPS, multinode persistent sessions
In addition to the SNPS support, VTAM sessions can also be recovered
after a VTAM or z/OS failure in a sysplex.

NOPS, no persistent sessions
Persistent sessions support is not required for the CICS region. For
example, a CICS region that is used only for development or testing might
not require persistent sessions.

The time specified by the PSDINT system initialization parameter for the region
determines how long the sessions are retained. If CICS, VTAM, or z/OS fails, if a
connection to VTAM is reestablished within this time, CICS can use the retained
sessions immediately; there is no need for network flows to rebind them.

You can change the persistent sessions delay interval using the CEMT SET VTAM
command, or the EXEC CICS SET VTAM command. The changed interval is not
stored in the CICS global catalog, and therefore is not restored in an emergency
restart.

If CICS fails or undergoes immediate shutdown (by means of a PERFORM SHUTDOWN
IMMEDIATE command), VTAM holds the CICS LU-LU sessions in recovery pending
state, and they can be recovered during startup by a newly starting CICS region.
With multinode persistent sessions support, sessions can also be recovered if
VTAM or z/OS fails in a sysplex.

During an emergency restart of CICS, CICS restores those sessions pending
recovery from the CICS global catalog and the CICS system log to an in-session
state. This process of persistent sessions recovery takes place when CICS opens its
VTAM ACB. With multinode persistent sessions support, if VTAM or z/OS fails,
sessions are restored when CICS reopens its VTAM ACB, either automatically by

© Copyright IBM Corp. 1997, 2011 535

|
|
|
|

the COVR transaction, or by a CEMT or EXEC CICS SET VTAM OPEN command.
Although sessions are recovered, any transactions inflight at the time of the failure
are abended and not recovered.

Subsequent processing depends on the LU. Cleanup and recovery for non-LU6
persistent sessions is similar to that for non-LU6 backup sessions under XRF.
Cleanup and recovery for LU6.2 persistent sessions maintains the bound session
when possible, but in some cases it might be necessary to unbind and rebind the
sessions, for example, where CICS fails during a session resynchronization.

When a terminal user enters data during persistent sessions recovery, CICS appears
to hang. The screen that was displayed at the time of the failure remains on
display until persistent sessions recovery is complete. You can use options on the
TYPETERM and SESSIONS resource definitions for the CICS region to customize
CICS so that either a successful recovery can be transparent to terminal users, or
terminal users can be notified of the recovery, allowing them to take the
appropriate actions.

If APPC sessions are active at the time of the CICS, VTAM or z/OS failure,
persistent sessions recovery appears to APPC partners as CICS hanging. VTAM
saves requests issued by the APPC partner, and passes them to CICS when
recovery is complete. When CICS reestablishes a connection with VTAM, recovery
of terminal sessions is determined by the settings for the PSRECOVERY option of
the CONNECTION resource definition and the RECOVOPTION option of the
SESSIONS resource definition. You must set the PSRECOVERY option of the
CONNECTION resource definition to the default value SYSDEFAULT for sessions
to be recovered. The alternative, NONE, means that no sessions are recovered. If
you have selected the appropriate recovery options and the APPC sessions are in
the correct state, CICS performs an ISSUE ABEND to inform the partner that the
current conversation has been abnormally ended.

Situations in which sessions are not reestablished
When VTAM persistent sessions support is in use for a CICS region, CICS does not
always reestablish sessions that are being held by VTAM in a recovery pending
state. In the situations listed here, CICS or VTAM unbinds and does not rebind
recovery pending sessions.
v If CICS does not restart within the persistent sessions delay interval, as specified

by the PSDINT system initialization parameter.
v If you perform a COLD start after a CICS failure.
v If CICS restarts with XRF=YES, when the failed CICS was running with

XRF=NO.
v If CICS cannot find a terminal control table terminal entry (TCTTE) for a session;

for example, because the terminal was autoinstalled with AIRDELAY=0
specified.

v If a terminal or session is defined with the recovery option (RECOVOPTION) of
the TYPETERM or SESSIONS resource definition set to RELEASESESS,
UNCONDREL or NONE.

v If a connection is defined with the persistent sessions recovery option
(PSRECOVERY) of the CONNECTION resource definition set to NONE.

v If CICS determines that it cannot recover the session without unbinding and
rebinding it.

The result in each case is as if CICS has restarted following a failure without
VTAM persistent sessions support.

536 CICS TS for z/OS 4.1: Diagnosis Reference

In some other situations APPC sessions are unbound. For example, if a bind was in
progress at the time of the failure, sessions are unbound.

With multinode persistent sessions support, if a VTAM or z/OS failure occurs and
the TPEND failure exit is driven, the autoinstalled terminals that are normally
deleted at this point are retained by CICS. If the session is not reestablished and
the terminal is not reused within the AIRDELAY interval, CICS deletes the TCTTE
when the AIRDELAY interval expires after the ACB is reopened successfully.

Situations in which VTAM does not retain sessions
When VTAM persistent sessions support is in use for a CICS region, in some
circumstances VTAM does not retain LU-LU sessions.
v If you close VTAM with any of the following CICS commands:

– SET VTAM FORCECLOSE

– SET VTAM IMMCLOSE

– SET VTAM CLOSED

v If you close the CICS node with the VTAM command VARY NET INACT ID=applid.
v If your CICS system performs a normal shutdown, with a PERFORM SHUTDOWN

command.

If single-node persistent sessions support (SNPS), which is the default, is specified
for a CICS region, sessions are not retained after a VTAM or z/OS failure. If
multinode persistent sessions support (MNPS) is specified, sessions are retained
after a VTAM or z/OS failure.

Persistent sessions restart flow
Diagnostic information about the process of persistent sessions recovery.

Enabling of persistence
CICS requests persistent sessions support when it opens the VTAM ACB.

Summary
1. VTAM ACB opened with PARM=PERSIST=YES
2. VTAM levels checked.
3. VTAM SETLOGON OPTCD=PERSIST or NPERSIST

More detail

Persistence is enabled as follows:
1. The VTAM ACB is opened with PARM=PERSIST=YES, specified in

DFHTCTPX.
2. DFHZSLS calls DFHZGSL to issue SETLOGON OPTCD=PERSIST/NPERSIST.

DFHZSLS copies 8 bytes of VTAM information into the TCT prefix. These bytes
contain details of the VTAM level and the functions that it supports. Releases
of CICS that did not support persistent sessions copied only 4 bytes of VTAM
data.

The use of persistent sessions depends on the level of VTAM being at least V3R4.1
for single-node persistent sessions support. This level of VTAM returns more
function bit data to CICS than previous versions and supports the use of persistent
sessions. Checks are made by CICS of the current VTAM level and the VTAM level
against which the TCT was generated. If either level is not high enough,

Chapter 67. VTAM persistent sessions support 537

parameters relating to the use of persistent sessions are not used when macros are
called.

Sessions that persist at CICS startup
These tasks and modules are involved when VTAM persistent sessions are restored
on a CICS restart.

Summary
1. Task CGRP runs DFHZCGRP.
2. DFHZCGRP calls DFHZGRP.
3. DFHZGRP issues VTAM INQUIRE.
4. DFHZGRP performs one of these actions:
v Terminates session via DFHZGUB issuing CLSDST/TERMSESS.
v Restores the session with OPNDST TYPE=RESTORE.

5. DFHZGRP queues restored sessions for further processing.
6. DFHZGRP issues RECEIVE_ANY commands.
7. DFHZGRP does some CNOS work.
8. DFHZGRP does some URD work.
9. Queued sessions are restored.

More detail

Sessions that persist at startup time are processed in this way:
1. Attach task CGRP - program DFHZCGRP in DFHSII1 after TCRP is attached.
2. DFHZCGRP calls DFHZGRP with a START_TYPE of one of the following:
v COLD
v WARM
v EMER_XRF
v EMER

3. DFHZGRP issues VTAM INQUIREs in 'chunks'; that is, VTAM is passed an
area with a size defined in the TCT prefix.
The area is filled with NIBs by VTAM. DFHZGRP scans the NIBs and
determines whether to UNBIND or OPNDST each session.
For COLD, WARM, and EMER_XRF, all sessions are unbound.
For EMER, some sessions are unbound and some restored depending on the
circumstances.

4. Restored sessions are queued to DFHZACT for further processing by
DFHZXRC or DFHZXPS.

5. RECEIVE_ANY initialization done.
6. CNOS records are processed by making calls to DFHZGPC.
7. URDS are reset to AWAITING RE_SYNCHRONIZATION for EMER only.
8. DFHZACT calls DFHZXRC or DFHZXPS for each session queued by

DFHZGRP.

Task and module flow diagram
-> indicates an ATTACH

 TASK
 TCRP
 1 TCP III CSSY CGRP

538 CICS TS for z/OS 4.1: Diagnosis Reference

--- --- ---- ----
 .
 .
 SII1->ZCSTP
 ZDSP
 .ZSLS
 . ZGSL
 Spin on
 TCTV_RA_DONE
 .
 SII1---------->SII1 --->TCRP
 SII1-----------------> ZCGRP
 . . . install .ZGRP
 . . . TCTTEs . INQUIRE on
 . . . etc . persistent sessions
 wait on TCTVCECB (EMER)
 . . . Post TCTVCECB
 . . task end .
 . . . process persistent
 . . . sessions
 . . . RECEIVE_ANY processing
 ZDSP continues <------------------- set TCTV_RA_DONE
 . post TCTV_ZGRP_FIN_ECB
 . task end
 . Wait on
 . TCTV_ZGRP_FIN_ECB
 SIJ1
 . SETLOGON START
 . Start CXRE task
 . Control is Given to CICS
 ZACT
 . ZXRC
 . ZXPS

Task and module flow: more detail
 1. Startup runs as normal until DFHSII1 has started the TCP (CSTP) task and

DFHZDSP runs.
 2. DFHZDSP calls DFHZSLS.

v If VTAM is at least V3R4.1, DFHZSLS calls DFHZGSL to issue SETLOGON
OPTCD=PERSIST if the value of the system initialization parameter
PSDINT is a valid nonzero value.

v If the VTAM level is V3R4.0 or PSDINT is 0 or defaulted with higher levels
of VTAM, DFHZSLS calls DFHZGSL to issue SETLOGON
OPTCD=NPERSIST.

v If the VTAM level is lower than V3R4.0, the SETLOGON OPTCD call is not
made because PERSIST and NPERSIST are not supported for these VTAM
releases.

DFHZSLS does not issue RECEIVE OPTCD=ANY. It returns to DFHZDSP,
which "spins" until TCTV_RA_DONE is set by DFHZGRP when the
RECEIVE_ANY commands have been successfully issued.

 3. DFHSII1 attaches the III task which continues to run code in DFHSII1.
 4. DFHSII1 (III) attaches and calls DFHTCRP as a system task and then attaches

task CGRP, which runs program DFHZCGRP which calls ZGRP.
 5. DFHZGRP calls DFHZGUB if there are any sessions to unbind.
 6. DFHZGRP queues any sessions to be restored to DFHZACT.
 7. DFHZGRP sets TCTV_RA_DONE after issuing RECEIVE_ANY commands to

allow DFHZDSP to continue.
 8. DFHZGRP posts TCTV_ZGRP_FIN_ECB.

Chapter 67. VTAM persistent sessions support 539

9. When DFHZGRP finishes, control is returned to code in DFHZCGRP.
DFHZCGRP checks the RESPONSE and REASON code. It sets
TCTV_ZGRP_FAILED off if RESPONSE(OK) or RESPONSE(EXCEPTION)
with REASON(ACB_CLOSED|INQUIRE_FAILED). Otherwise, it sets
TCTV_ZGRP_FAILED on.

10. DFHSII1 waits on TCTV_ZGRP_FIN_ECB and checks if TCTV_ZGRP_FAILED
was set on by DFHSII1.
If TCTV_ZGRP_FAILED is off, DFHSII1 continues. Otherwise, it sets
INITDERR, which causes CICS to stop when the other tasks have finished.

11. Just before CONTROL IS GIVEN to CICS, DFHSIJ1 attaches the CXRE task to
run DFHZXRE0, which does some additional PRSS processing.

12. DFHZXRC or DFHZXPS are then called to process any TCTTEs queued to
DFHZACT.

13. DFHZXRC is called by DFHZACT to process non-APPC sessions that have
not been unbound by DFHZGRP. It takes one of the following actions
depending on the state of the session, the terminal type, and how the
TYPETERM for the session has been defined to CICS:
v Send END_BRACKET.
v Send CLEAR (followed by START_DATA_TRAFFIC for SNA devices which

support it).
v Unbind.
For those devices for which the cleanup action is not to unbind, the TCTTE is
queued to DFHZNAC and message DFHZC0146 is issued for the session.
As part of the processing for message DFHZC0146, any recovery notification
requested for the session is initiated:
v If the requested recovery notification is MESSAGE, DFHZNCA sends a BMS

map to the terminal.
v If the requested recovery notification is TRANSACTION, DFHZNCA

initiates the requested transaction.
14. DFHZXPS is called by DFHZACT to process APPC sessions.

DFHZXPS takes one of the following courses of action depending on the
setting of TCTE_PRSS on entry.
v Examines the data pointed to by TCTV_PRSS_CV29_PTR to determine the

state of the session at system failure.
a. If a task is attached, calls DFHZGDA to issue DEALLOCATE,ABEND

for the task still running on the partner.
b. If no task is attached but there is further recovery to be done, for

example, bid recovery or outstanding responses, sets the TCTTE to a
state which allows this further recovery to proceed. If the existing
mechanism will carry out the recovery without further intervention by
DFHZXPS, removes the TCTTE from the DFHZACT queue; otherwise,
requeues the TCTTE to DFHZACT and DFHZXPS will be recalled at a
later stage to finish recovery processing.

c. If no task is attached and there is no further recovery to be done,
removes the TCTTE from the DFHZACT queue because recovery is now
complete.

v Recalls DFHZGDA to continue with DEALLOCATE,ABEND or
REJECT_ATTACH processing.

v Requeues the TCTTE to DFHZACT if a SEND (for example, of an
outstanding response), which was set in motion by an earlier instance of
DFHZXPS, is still in progress.

540 CICS TS for z/OS 4.1: Diagnosis Reference

v Issues CLSDST for the session if an error has occurred during the recovery
process.

v Carries out further recovery as described above, if required, following
successful completion of DEALLOCATE,ABEND processing.

v Removes the TCTTE from the DFHZACT queue when all recovery has
completed.

Sessions that persist when CICS opens the VTAM ACB
These tasks and modules are involved when the VTAM ACB is dynamically
opened by a SET VTAM OPEN command from a running CICS system. With
single-node persistent sessions support (SNPS), if VTAM fails but CICS continues
to run, sessions no longer exist.

Summary

With multinode persistent sessions support (MNPS), sessions do persist if VTAM
or z/OS fails. CICS does not delete the autoinstalled resources, and resets all the
terminal and connection sessions to unopened state.
 1. CEMT SET VTAM OPEN.
 2. DFHEIQVT calls DFHZOPA.
 3. DFHZOPA calls DFHZSLS.
 4. DFHZSLS call DFHZGSL.
 5. DFHZGSL issues SETLOGON PERSIST or NPERSIST.
 6. DFHZOPA calls DFHZGRP.
 7. DFHZGRP issues INQUIRE PERSESS.
 8. DFHZGRP terminates the session by means of DFHZGUB issuing

CLSDST/TERMSESS. However, if MNPS is in use, the sessions are restored
using OPNDST RESTORE instead.

 9. DFHZGRP issues RECEIVE_ANY commands.
10. DFHZGRP deletes CNOS catalog records.
11. DFHZOPA issues SETLOGON START.

More detail

Sessions that persist after the ACB has been opened using a SET VTAM OPEN
command are processed in this way:
 1. CICS is running with the VTAM ACB closed. CEMT SET VTAM OPEN or EXEC

CICS SET VTAM OPEN is issued.
 2. DFHEIQVT calls DFHZOPA to open the ACB.
 3. DFHZOPA calls DFHZSLS.
 4. DFHZSLS calls DFHZGSL.
 5. DFHZGSL issues VTAM macro calls dependent on the VTAM level and

PSDINT value.
v If VTAM is at least V3R4.1, DFHZGSL issues SETLOGON OPTCD=PERSIST

if the value of the PSDINT system initialization parameter is a valid nonzero
value.

v If the VTAM level is V3R4.0 or PSDINT is 0 or defaulted with higher levels
of VTAM, DFHZGSL issues SETLOGON OPTCD=NPERSIST.

v If the VTAM level is lower than V3R4.0, the SETLOGON OPTCD call is not
made because PERSIST and NPERSIST are not supported for these VTAM
releases.

Chapter 67. VTAM persistent sessions support 541

6. DFHZOPA calls DFHZGRP with startup type of DYNOPEN.
 7. DFHZGRP issues INQUIRE PERSESS with a storage area that will take up to

about 400 sessions. INQUIRE PERSESS is reissued until all the NIBs have
been obtained from VTAM.

 8. DFHZGRP calls DFHZGUB if there are any sessions to unbind. For MNPS,
DFHZGRP instead issues OPNDST RESTORE for each session that persists.

 9. DFHZGRP issues RECEIVE_ANY commands.
10. DFHZGRP calls DFHZGCC to delete CNOS records.
11. If ZGRP returns RESPONSE(OK) or RESPONSE(EXCEPTION) with

REASON(ACB_CLOSED|INQUIRE_FAILED), DFHZOPA issues SETLOGON
OPTCD=START. Otherwise, it causes DFHZSHU to close the VTAM ACB and
then returns to DFHEIQVT.

TCB concurrency
When DFHZGRP is working on persistent sessions recovery, it switches to use the
concurrent TCB if there are enough NIBs to process during an emergency start.

Summary

If SUBTSKS = 1 is specified as a system initialization parameter, this processing
takes place:
v DFHZGRP switches to concurrent TCB if enough NIBs to process.
v INQUIRE PERSESS work done concurrently with TCRP ZC INSTALL.
v DFHZGUB switches to concurrent TCB if enough NIBs to process. (Emergency

start only).
v OPNDST RESTORE and CLSDST/TERMSESS done concurrently.

More detail

During startup, DFHZGRP is attached as a task and runs at the same time as other
startup tasks such as DFHTCRP and DFHRCRP. However, DFHZGRP also switches
to use the CONCURRENT TCB if there are enough NIBs to process during an
emergency start.

The use of the CONCURRENT TCB allows DFHZGRP to issue INQUIRE
OPTCD=PERSESS as many times as is necessary, concurrently with the TCTTEs
being restored by DFHTCRP.

When DFHZGRP finishes issuing INQUIRE OPTCD=PERSESS, it waits for
DFHTCRP to finish before matching each persisting NIB with the restored TCTTEs.

Each NIBLIST is then restored using the OPNDST OPTCD=RESTORE command
and while this command is running asynchronously DFHZGUB is called to run
under the concurrent TCB if there are enough NIBs to be unbound in the NIBLIST.

Persistent sign-on under persistent sessions
If CICS has persistent verification defined, the sign-on is not active under
persistent sessions until the first input is received by CICS from the terminal.
1. After the persistent session has been recovered, the TCTTE is marked to

indicate that the sign-on will persist.
2. The RECOVNOTIFY message or transaction is processed. Because

RECOVNOTIFY is processed before persistent sign-on is recovered, only the

542 CICS TS for z/OS 4.1: Diagnosis Reference

first transaction specified in the RMTRAN system initialization parameter is
processed; the second transaction specified cannot be processed because
security has not yet been restored.

3. The user presses an Attention IDentifier (AID) key.
4. CICS runs the CPSS transaction to recover the sign-on.

Modules
These modules are involved in VTAM persistent sessions recovery.

ZC (terminal control) together with the following modules:

 Module Function

DFHZCGRP Program initiated by task CGRP to set up the start type and to call
DFHZGRP during initialization. It then analyses the response from
DFHZGRP and decides if CICS can continue or not.

DFHZGCA Sets the appropriate ZC control blocks to reflect the currently agreed
Change Number Of Session (CNOS) values for an LU6.2 connection.

DFHZGCC Performs catalog and retrieval of CNOS data.

This module is called when CICS needs either to store or to recover
CNOS values. During a CICS run, all CNOS values are written to the
global catalog. Under normal circumstances they are not needed.
However, if a persistent sessions restart is performed, it is necessary to
recover the CNOS values that were in operation at the time of the CICS
failure. This recovery is achieved by having a record on the global
catalog that can be read in during PRSS restart and used to restore the
sessions to their state before failure.

This module handles the maintenance of the CNOS records during
normal CICS operation and the recovery of the records during PRSS
recovery.

DFHZGCN Handles the process of LU6.2 Change Number Of Sessions (CNOS)
negotiation, acting as either the source or target end of the conversation,
and calls DFHZGCA to action the resulting changes.

DFHZGDA Takes control of APPC conversations that have persisted across a CICS
failure, and ensures that they are ended cleanly, by issuing a
Deallocate(Abend) informing the partner LU that the CICS transaction
has abended.

If DFHZGDA is working correctly the CICS failure and restart is
transparent to the partner LU, which understands only that the CICS
transaction with which it was communicating has ended.

DFHZGDA also performs REJECT_ATTACH processing for synclevel 2
conversations that are started by the partner before Exchange Lognames
has been done after a persistent sessions restart.

DFHZGPC Performs recovery of CNOS values for modegroups.

This module is called when CICS is performing a persistent sessions
(PRSS) restart. When a PRSS restart is performed, it is not enough to
recover the sessions. It is also necessary to recover the CNOS state that
the sessions had before the CICS failure. DFHZGCC will have
maintained a record of the CNOS state on the global catalog. This record
is now used in this module in an attempt to restore CNOS values.

Chapter 67. VTAM persistent sessions support 543

Module Function

DFHZGPR The role of DFHZGPR is to update the global catalog whenever it is
necessary to add, delete, or test for a record indicating that an APPC
connection has a Persistent Resource associated with it.

A Persistent Resource can be defined as some session state, or piece of
work upon which the partner LU depends, and which will be lost if
CICS fails. The only Persistent Resource so far identified is a shipped
AID.

Before persistent sessions, the failure of the APPC session tells the
partner that these resources have been lost, and drives his recovery. With
the advent of persistent sessions, it is necessary for a persisting CICS to
know that an APPC session had a Persistent Resource associated with it,
so that the connection can be unbound (to drive the partner's cleanup)
and then rebound.

DFHZGRP Initialize VTAM persistent sessions.

DFHZGRP is a domain subroutine but is called by DFHZCGRP (task
CGRP) during initialization.

DFHZGRP is called during ZC initialization or when the VTAM ACB is
opened dynamically by CEMT SET VTAM OPEN or EXEC CICS SET
VTAM OPEN by DFHEIQVT.

The module performs these tasks:

1. OPNDST RESTOREs or CLSDST/TERMSESS any session that VTAM
has held persisting, depending on startup type and session
parameters.

2. It calls DFHZGPC to reinstate CNOS records during an emergency
restart, or calls DFHZGCC to delete CNOS catalog records.

3. It initializes the RECEIVE_ANY RPLs and issues the
RECEIVE_ANYs.

DFHZGSL Informs VTAM whether sessions are to persist or not.

This module is called when CICS needs to set, unset, or change the
Persistent Sessions PSTIMER value.

DFHZGUB Issue CLSDST or TERMSESS for individual NIBs in a NIBLIST.

This module is called by DFHZGRP to unbind NIBs in a NIBLIST in two
ways:

v Unbind the entire NIBLIST for COLD, WARM, EMER+XRF and
dynamic open.

v Unbind only the NIBs with NIBUSER = 0 for EMER starts.

544 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHZXPS DFHZXPS handles Persistent Sessions recovery for APPC sessions. It
does not deal with non-APPC sessions, which are dealt with by
DFHZXRC.

DFHZXPS is called by DFHZACT after OPNDST OPTCD=RESTORE has
been issued successfully for a persisting APPC session. Both single and
parallel APPC sessions are dealt with, but there is no difference in the
processing.

The task of DFHZXPS is to examine VTAM session tracking data which
was hung off TCTE_PRSS_CV29_PTR by DFHZGRP following a
Persistent Sessions restart, and, if possible, to update the TCTTE to allow
work to continue on the session.

If it is not possible to determine the state of the session before system
failure, or the session was not in a state which allows it to be recovered,
the session is unbound.

DFHZXRC DFHZXRC analyses the Session State Vector data that is hung off
TCTE_PRSS_CV29_PTR by DFHZGRP during an emergency restart, for
each persisting session. The necessary action to clean up and recover the
session is then initiated.

Diagnosing persistent sessions problems
Consult this data when diagnosing problems with VTAM persistent sessions
support.
v Trace, TC level 1, 2, and exception in the range of AP FB10-FBFF.
v CEMT INQUIRE VTAM showing the PSTYPE and PSDINT values. The setting

NOPS for PSTYPE means that persistent sessions support was not requested at
startup of the CICS region. A zero setting for PSDINT means that sessions are
not retained.

v Console and CSNE logs:
– Persistent session messages (DFHZC0001 to DFHZC0162)
– Information produced by DFHZNAC

v Dumps taken by some of the above messages. If a NIBLIST was present at the
time the dump was taken, you can examine it by printing the TCP section of the
dump.

v Last flow information, that is, the CV29, FMH5, BIS, and BID information, is
useful if a session is in the wrong state after a persistent session restart. This
might have been diagnosed by an error message, or maybe missed and message
DFHZC0146 or DFHZC0156 issued.
TCTE_PRSS_CV29_PTR points to the CV29, FMH5, BIS, and BID information
which was created by DFHZGRP and used by DFHZXPS or DFHZXRC. It is
freed when DFHZNAC issues message DFHZC0146 or DFHZC0156. Otherwise,
it is freed when the session is unbound.
The last flow information is traced by DFHZXPS as a TC level 1 trace. If you
have a dump, but no trace level 1 available, it is dumped in the TCP section for
each TCTTE for which it still exists.

v The contents of byte TCTE_PRSS are useful. Values other than X'00' and X'FF'
indicate that something went wrong during the PRSS recovery. The possible
values are listed in the CICS Data Areas. If a value is left in this byte, the
meaning can indicate where the recovery went wrong. The values are described
in “Persistent sessions status byte (TCTE_PRSS)” on page 547.

Chapter 67. VTAM persistent sessions support 545

|
|
|
|

v The contents of the state machines are useful.
– TCTECNTS, contention state machine
– TCTEBKTS, bracket state machine
– TCTECHSS, chain state machine
– TCTEUSRS, user state machine

v The contents of TCTE_BID_STATUS are useful. They are described in “Bid status
byte (TCTE_BID_STATUS)” on page 550.

Here are some possible problems:
v DFHZGRP can cause CICS to stop during initialization for the following reasons:

– DFHZGRP has been called with invalid parameters.
– DFHZGRP cannot complete the receive any process.
– DFHZGRP has had a loop or abend.
– DFHZGRP cannot switch back to the QR TCB.
– DFHZGRP has failed before any NIBs have been obtained from VTAM (with

INQUIRE OPTCD=PERSESS).
– DFHZGRP or DFHZGUB has issued a VTAM request that failed to respond

within 5 minutes. Issued with message DFHZC0128 and a system dump.

In each case DFHZGRP or a function it has called issues a message giving a
reason for the failure.

v Sessions might be unbound by DFHZGRP for the following reasons:
– The restart is COLD, WARM, or EMER + XRF.
– The open of the ACB is dynamic, for example, CEMT SET VTAM OPEN.

However, if MNPS is in use, sessions are normally restored at this point.
– The TCTTE has not been found, probably because it has not been cataloged.

Either the terminal was autoinstalled with AIRDELAY=0, or it was an APPC
clone. No message is written because this state is considered to be normal.

– CICS does not support recovery for LU61 or pipeline sessions.
– The TCTTE does not match the NIB, possibly because of an operational

failure. Has the correct global catalog data set been used?
– A terminal or session had RECOVOPT UNCONDREL|NONE specified.
– A connection had PSRECOVERY NONE specified.
– A matching mode group was not found. Have you got the right global

catalog data set?
– A suitable session was not found, perhaps because the CNOS values created

many “up for grabs” sessions which were in use when CICS failed. This
situation would occur if the session limit was high and the contention
winners was low. The situation might also occur if CICS was in the process of
CNOSing from a high session limit to a low session limit at the time CICS
failed. Message DFHZC0111 is issued in this case.

– An URD was found for the session so the entire connection is unbound to
allow the connection to recover correctly.

v APPC Sessions might be unbound by DFHZXPS for the following reasons. Some
of the reasons are known states for which the session cannot be recovered.
Others are unexpected errors.
Known states for which the session cannot be recovered are as follows:
– The last flow was a positive response to a bid with data.
– Exchange log names (transaction CLS2) was running when the system failed.

546 CICS TS for z/OS 4.1: Diagnosis Reference

– A bind or bind security had not completed when the system failed.
– Because of the last thing to flow, for example, SIGNAL, the state of the

session at the time of system failure cannot be determined.
Unexpected errors are as follows:
– A bad return code was received from a call to DFGZGDA.
– An attempt to reset the session from CS mode to CA mode or vice versa

failed.
– The TCTE_PRSS byte contained an unexpected value on entry to DFHZXPS.
– The BIS, BID, or CV29 data pointed to by TCTV_PRSS_CV29_PTR contained

an unknown value or was inconsistent.
– An error occurred during some other part of the recovery process.
– An internal logic error occurred in DFHZXPS.

v Sessions might be unbound by DFHZGDA for the following reasons:
– A SEND issued as part of Deallocate(Abend) processing has failed.
– A RECEIVE issued as part of Deallocate(Abend) processing has failed.
– A logic error is detected during Deallocate(Abend) processing.

v Sessions might be unbound by DFHZXRC for the following reasons:
– The user has specified RECOVOPT(RELEASESESS) and the session was in

bracket at the time CICS failed.
– End-Bracket and Clear/SDT cannot be used to clean up the session.
– Cold Start has been requested for the session.

v Message DFHZC0124 can be issued with inconsistent counts if these conditions
occur::
– DFHZGRP loops or abends.
– The ACB is closed by VTAM operator commands while DFHZGRP is in

control.
v LU6.2 connections, which might be expected to persist, might be unbound if a

persistent resource is associated with the connection when CICS fails (that is,
there was an asynchronous processing request in progress at the time CICS
failed).

v Following a persistent sessions restart, LU6.2 partners might experience a series
of unexpected abends with sense code 08640001 from the persisting CICS. This
condition can occur either because there was a conversation in progress at the
time CICS failed, and CICS has ended the conversation with this code, or for
synclevel 2 conversations, the partner has attempted to initiate a conversation
before Exchange Lognames has run following a persistent sessions restart.

v Some APPC sessions might hang following a persistent sessions restart because
CICS has determined that it was in RECEIVE state at the time of the CICS
failure, and issued a RECEIVE for the expected data, but the partner has not
sent the expected data; the RECEIVE will not time out in this situation, because
RTIMOUT does not apply to sends issued by DFHZGDA.

Persistent sessions status byte (TCTE_PRSS)
The byte TCTE_PRSS in the TCTTE tracks the stage reached in the persistent
sessions recovery of a session. If, for some reason, persistent sessions recovery does
not complete, this field can give a useful indication of the stage reached in
recovery when the problem occurred.

Chapter 67. VTAM persistent sessions support 547

TCTE_NO_PRSS_RECOVERY (X'00')
X'00' is the value that TCTE_PRSS normally contains. It means one of the
following:
v Persistent sessions are not being used.
v The session was successfully recovered following a persistent sessions

restart.
v The session has been closed using CLSDST and restarted since a

persistent sessions restart.
v The session was started after any persistent sessions restart.

If this session was a persisting VTAM session, TCTE_PRSS has been set to
this value on completion of recovery notification for non-LU6.2 (see
NAPES84 and NAPES83 routines), or in the session restarted logic of
NAPES51 for LU6.2 sessions.

TCTE_NIB_MATCHED (X'01')
Placed in TCTE_PRSS by DFHZGRP after a TCTTE has been found which
matches the NIB of a persisting VTAM session. This value is a transient
value, because the OPNDST OPTCD=RESTORE is issued soon after, which
causes TCTE_PRSS to be updated.

TCTE_OPNDST_RESTORE_COMPLETED (X'02')
Placed in TCTE_PRSS after an OPNDST OPTCD=RESTORE has been
successfully issued for a VTAM Session by DFHZGRP. After this value has
been placed in TCTE_PRSS, the TCTTE is put onto the activate scan queue
to await processing by DFHZXRC or DFHZXPS.

TCTE_ZXRC_CLEANUP (X'20')
Placed in TCTE_PRSS by DFHZXRC when it begins processing a TCTTE.
All TCTE_PRSS values relating to DFHZXRC processing are X'2x'. This
value remains in TCTE_PRSS until the TCTTE is queued to DFHZNAC for
the issuing of message DFHZC0146. If, for some reason, the TCTTE is not
recovered and TCTE_PRSS contains this value, DFHZXRC might have a
problem.

TCTE_ZXRC_ISSUE_RECOVERY_MSG (X'21')
DFHZXRC has identified the cleanup and recovery actions required, and
has queued the TCTTE to DFHZNAC for recovery message processing
(message DFHZC0146). If any problem occurs with the recovery
notification processing in DFHZNCA, TCTE_PRSS is likely to contain this
value; possibly, the TCTTE has been taken off the DFHZACT or
DFHZNAC queues for an unexpected reason.

TCTE_ZXPS_CLEANUP (X'30')
All TCTE_PRSS values beginning (X'3x') indicate that DFHZXPS is doing
its recovery and cleanup processing for this TCTTE. TCTE_PRSS is
updated to this value on entering DFHZXPS for the first time. DFHZXPS
only processes LU6.2 sessions.

TCTE_ZXPS_DEALLOCATE_ABEND (X'31')
DFHZXPS places this value into TCTE_PRSS before calling DFHZGDA for
the first time. It indicates that DFHZXPS has determined that an APPC
conversation was taking place at the time CICS failed, and that DFHZXPS
is calling DFHZGDA to stop that conversation. Again, this value is
transient, because DFHZGDA updates TCTE_PRSS as it proceeds with its
DEALLOCATE(ABEND) processing.

TCTE_ZXPS_SEND_IN_PROGRESS (X'32')
DFHZXPS has determined that bidding activity was taking place at the

548 CICS TS for z/OS 4.1: Diagnosis Reference

time CICS failed, and that some kind of SEND is required to complete the
bid flows. If the session hangs with this value in TCTE_PRSS, a problem
might have occurred with unexpected bid flows taking place.

TCTE_ZXPS_ISSUE_RECOVERY_MSG (X'33')
When DFHZXPS has completed recovery and cleanup for the session, it
puts this value into TCTE_PRSS before queueing the TCTTE to DFHZNAC
for recovery message processing.

TCTE_ZGDA_FMH7_SEND (X'41')
All TCTE_PRSS values with X'4x' indicate that DFHZGDA is stopping the
APPC conversation that was in progress on the session at the time CICS
failed. This value indicates that DFHZGDA is in the process of issuing a
SEND for the FMH7 that is to stop the conversation.

TCTE_ZGDA_FMH7_COMP (X'42')
DFHZGDA has completed its Deallocate(Abend) processing. This value in
TCTE_PRSS indicates to DFHZXPS that it can continue with any
outstanding recovery and cleanup processing of its own.

TCTE_ZGA_FMH7_REC (X'43')
DFHZGDA has determined that CICS was in RECEIVE state at the time
CICS failed, and has issued a RECEIVE for the RU expected from the
partner. This value might appear in sessions that appear to be in an
endless loop following a persistent sessions restart. If the partner does not
issue the expected SEND, the RECEIVE is not run. Because this RECEIVE
is issued under the TCP task, the RECEIVE is not subject to any
RTIMEOUT.

TCTE_ZGDA_REC_EOC (X'44')
Placed in TCTE_PRSS if the first RECEIVE of the DFHZGDA module
following the persistent sessions reveals that the partner is in the middle of
sending a chain of RUs. If TCTE_PRSS contains this value, DFHZGDA has
issued a RECEIVE_PURGE for the session. Again, depending on how
quickly the partner sends the expected data, this session might appear to
stop.

TCTE_ZGDA_SEND_RESP (X'45')
Placed in TCTE_PRSS if DFHZGDA has to issue a SEND for a response
during Deallocate(Abend) processing.

TCTE_PRSS_CLSDST_SCHEDULED (X'FF')
This value is placed in TCTE_PRSS if an error occurs, or if, in the course of
persistent sessions recovery, it is decided to stop the persisting session for
one of a number of reasons:
v An error occurred issuing a SEND or RECEIVE during persistent

sessions recovery.
v RECOVOPT(NONE) or RECOVOPT(UNCONDREL) was specified for

the session.
v The only recovery action that DFHZXRC could take was to end the

session.

The X'FF' value remains in TCTE_PRSS as an indicator that the session was
ended during PRSS recovery. Only when the session is restarted is the
value overwritten with X'00'.

Chapter 67. VTAM persistent sessions support 549

Bid status byte (TCTE_BID_STATUS)
DFHZXPS uses a byte in the TCTTE, TCTE_BID_STATUS, to track the various
stages of recovery. You can examine this byte to determine the stage of recovery
reached by DFHZXPS.

The byte values have the following meanings:
v X'00'

This session has not been processed by DFHZXPS.
v X'01' TCTE_SEND_POSITIVE_RESPONSE

A positive response is to be sent to a bid that was received before system failure.
This value is changed to X'07' TCTE_SENT_POSITIVE_RESPONSE before the
TCTTE is requeued to DFHZACT for the SEND and so is only seen if DFHZXPS
abends. When the response is sent DFHZXPS is recalled.

v X'02' TCTE_SEND_NEGATIVE_RESPONSE
A negative response is to be sent to a bid with data that was sent before system
failure. This response must be followed by RTR and so the status byte is
changed to X'03' SEND_RTR before the TCTTE is requeued to DFHZACT for the
SEND. This value is seen only if DFHZXPS abends. DFHZXPS is recalled when
the response has been sent.

v X'03' TCTE_SEND_RTR
Recovery is complete apart from the need to send RTR. This send is done by
DFHZDET and DFHZXPS is not recalled.

v X'04' TCTE_SENT_RTR
RTR was sent before system failure. No recovery is required. DFHZXPS is not
recalled.

v X'05' TCTE_SEND_LUSTAT_EB
Either a positive response to a bid was received, or a positive response was sent
to RTR before the system failed. The bid now must be canceled. DFHZDET
performs the cancellation and DFHZXPS is not recalled.

v X'06' TCTE_AWAITING_BB_RESPONSE
A bid was sent before the system failed. No further recovery is required. When
the response arrives from the partner, the bid is canceled. DFHZXPS is not
recalled.

v X'07' TCTE_SENT_POSITIVE_RESPONSE
Either a positive response has been sent to a bid or one is about to be sent (see
TCTE_SEND_POSITIVE_RESPONSE). In the former case, DFHZXPS is not
recalled, in the latter case, it is.

v X'08' TCTE_0814_RECEIVED
A negative response was sent to a bid before the system failed. Any further
recovery is carried out by DFHZDET and DFHZXPS will not be recalled.

v X'09' TCTE_0813_RECEIVED
As for TCTE_0814_RECEIVED, except that no RTR is expected in this case. No
further recovery processing is needed from either DFHZXPS or DFHZDET.

v X'0A' TCTE_SEND_RECOVERY_MESSAGE
All recovery is now complete.

v X'0B' TCTE_DR1_OUTSTANDING

550 CICS TS for z/OS 4.1: Diagnosis Reference

The last flow was inbound with CEB,RQD1 and so, although there is no task to
ABEND, a response is still expected by the partner. DFHZSDL sends the
response and any further recovery processing is done by DFHZDET. DFHZXPS
is not recalled.

v X'0C' TCTE_DR1_EXPECTED
As for TCTE_DR1_OUTSTANDING except that the last flow was inbound.
DFHZDET arranges for the response to be received. DFHZXPS is not recalled.

TCTE_BID_STATUS must be used with TCTE_PRSS to determine the state of the
recovery. If TCTE_PRSS is set to TCTE_ZXPS_ISSUE_RECOVERY_MESSAGE, or to
a state that indicates that recovery is complete, DFHZXPS has finished processing.
If not, DFHZXPS is recalled at a later stage.

Summary of persistent session waits
The DFHDSSRM waits are summarized here. They are all posted by DFHZGRP
apart from PSUNBECB.
Module Type Resource_name Resource_type ECB

DFHSII1 MVS ZGRPECB AP_INIT TCTV_ZGRP_FIN_ECB

DFHZGUB OLDC PSUNBECB ZC_ZGUB WAIT_RPL_ECB

DFHZGRP MVS PSOP1ECB ZC_ZGRP OPNDST_ECB

DFHZGRP MVS PSOP2ECB ZC_ZGRP OPNDST_ECB

DFHZGRP MVS PSINQECB ZC_ZGRP INQUIRE_ECB

DFHZGRP OLDC TCTVCECB ZC_ZGRP TCTVCECB

where the waits are issued for the following reasons:
ZGRPECB

Wait for DFHZGRP to complete.
PSUNBECB

Wait for free unbind RPL from RPL pool anchored from
TCTV_PRSS_RPL_POOL_PTR.

PSOP1ECB
Wait for OPNDST RESTORE to complete.

PSOP2ECB
Wait for OPNDST RESTORE to complete after UNBINDs have failed.

PSINQECB
Wait for INQUIRE PERSESS to complete.

TCTVCECB
Wait for TCTTEs to finish installing (DFHTCRP).

VTAM exits
The VTAM exits SYNAD (DFHZSYX) or LERAD (DFHZLEX) might be driven
during persistent sessions recovery.

In DFHZGRP, before INQUIRE OPTCD=PERSIST is issued, or in DFHZGUB before
CLSDST or TERMSESS are issued, CICS sets the RPL user field to -2 to indicate to
the exits that they must do no processing at all, because these macros might be
issued under the concurrent TCB.

Chapter 67. VTAM persistent sessions support 551

In DFHZGRP, before OPNDST OPTCD=RESTORE is issued, CICS sets the RPL
user field to -1 to indicate to the exits that they must try minimum recovery; that
is, they set the return code to TCZSYXPR if an error can be retried, or TCZSYXCF
if it is a permanent error.

If an error occurs in DFHZGSL for SETLOGON OPTCD=PERSIST, DFHZSYX
returns immediately (as for RPL user field = -2).

If MNPS is in use and VTAM crashes, DFHZTPX is driven with a code of 8. If the
system initialization parameter PSTYPE=MNPS was specified, DFHZTPX does not
schedule the autoinstalled TCTTEs for deletion. They are scheduled for CLSDST
CLEANUP instead by DFHZSHU.

See OS/390 eNetwork Communications Server: SNA Programming for general VTAM
exit information.

Trace
The trace point IDs AP FB10 through AP FBFF, for which the trace levels are TC 1
and TC 2, are provided for persistent sessions recovery.

These trace point IDs relate to the persistent sessions recovery modules
DFHZGCA, DFHZGCC, DFHZGCN, DFHZGDA, DFHZGPC, DFHZGPR,
DFHZGRP, DFHZGSL, DFHZGUB, DFHZCGRP, DFHZXPS, and DFHZXRC.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Statistics
The following statistics are produced by DFHZGRP. They are treated in the same
way as other terminal control VTAM statistics.
A03_PRSS_NIB_COUNT

The number of active VTAM sessions when INQUIRE OPTCD=COUNTS
was issued; this value represents the number of persisting sessions.

A03_PRSS_INQUIRE_COUNT
The number of times DFHZGRP issues INQURE OPTCD=PERSESS. Each
INQUIRE is given about 400 sessions.

A03_PRSS_UNBIND_COUNT
The number of times CLSDST or TERMSESS were issued by DFHZGUB.

A03_PRSS_OPNDST_COUNT
The number of sessions that OPNDST RESTORE restored successfully.

A03_PRSS_ERROR_COUNT
The number of sessions, with NIBUSER=tctte address, that VTAM failed to
restore with OPNDST RESTORE. This value is incremented if VTAM
operator commands are issued while DFHZGRP is in control and sessions
are closed as a result.

552 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 68. WTO and WTOR

Design overview
The DFHSUWT module provides the following support for executing MVS WTO
and WTOR SVCs:
SEND supports Write To Operator (WTO):

v A single-line message up to 113 characters, or a multiline message
consisting of a control line and up to nine lines of 69 characters

v Route code specification (route code list of 1 through 28 numbers, each
in the range 1 through 28)

v Descriptor code specification (descriptor code list of 1 through 16
numbers, each in the range 1 through 16).

CONVERSE
supports Write To Operator With Reply (WTOR):
v A single-line message up to 121 characters
v Route code specification (route code list of 1 through 28 numbers, each

in the range 1 through 28)
v Descriptor code specification (descriptor code list of 1 through each in

the range 1 through 28) 16 numbers, each in the range 1 through 16)
v A reply with maximum length of 119 characters.

The DFHWTO macro may be used to send a message, normally to the system
operator, when neither the CICS message domain nor the old message program
(DFHMGP) can be used. The message domain cannot be used during certain
phases of initialization and XRF processing, because it requires a kernel stack
environment. DFHMGP cannot be used during initialization, nor during any sort
of abend or dump processing, because it uses task LIFO storage and may therefore
invoke the storage control program.

The DFHWTO macro may also be used to terminate CICS abnormally or to request
a reply from the operator.

Any WTO or WTOR macros that are issued by CICS might be intercepted by the
console message handling facility described under “Console message handling” on
page 389. This service optionally inserts the CICS region’s applid into CICS
messages before they are displayed on the console.

Modules
DFHSUWT and DFHWTO

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP FF0x, for which the trace levels are AP 1 and Exc.

© Copyright IBM Corp. 1997, 2011 553

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

554 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 69. CICS Web support and the CICS business logic
interface

CICS Web support is a collection of CICS services that enable a CICS region to act
both as an HTTP server, and as an HTTP client. When CICS is an HTTP server,
Web clients can use transaction processing services by calling CICS programs or by
running CICS transactions. When CICS is an HTTP client, a user application
program in CICS can initiate a request to an HTTP server, and receive a response
from it. Web clients use TCP/IP to communicate with CICS Web support.

The CICS business logic interface allows other external users to use transaction
processing services.

Control blocks
Figure 106 on page 556 shows the control blocks used by CICS Web support for
3270 display applications.

© Copyright IBM Corp. 1997, 2011 555

Modules
CICS Web support includes modules used for:
1. Initialization
2. Web attach processing
3. Default analyzer program
4. Alias transaction

X’14’

X’10’

CSAOPFL

.

.

.

.

.

WBSTA_ANCHOR_BLOCK

WBSTA_DIRECTORY_TOKEN

CSAWEBAN

WBAB_STATE_ANCHOR_PTR

Directory
Manager

X’38’

X’38’

X’38’

WBSTH_STATE_BLOCK

WBSTH_STATE_BLOCK

WBAB_WEB_ANCHOR_BLOCK

WBSTH_STATE_BLOCK

WBSTU_STATE_DATA

WBSTU_STATE_DATA

WBSTU_STATE_DATA

Figure 106. Web support module list

556 CICS TS for z/OS 4.1: Diagnosis Reference

5. Web error program
6. HTTP client processing
7. CICS business logic interface
8. CICS Web 3270 support
9. Unescaping function

Initialization, DFHWBIP
DFHWBIP initializes the Web environment at CICS startup.

Web attach processing, DFHWBXN
DFHWBXN is the Web attach processing module. It is the initial program invoked
for transaction CWXN (or an alias of CWXN), which is attached for a new sockets
connection received on a port associated with a TCPIPSERVICE definition with
PROTOCOL(HTTP). It is also invoked for transaction CWXU (or alias), which is
attached when the TCPIPSERVICE definition specifies PROTOCOL(USER). It calls
the Web domain WBSR gate to process the incoming data.

Default analyzer program, DFHWBAAX
DFHWBAAX is the default analyzer program for a TCPIPSERVICE definition that
specifies PROTOCOL(HTTP). It does not carry out further processing when a
matching URIMAP definition has been found for the request, even if the URIMAP
specifies ANALYZER(YES). It tests for the presence of a URIMAP definition, and if
the result is positive, returns without performing any analysis on the request URL.
This means that the settings specified in the URIMAP definition for the alias
transaction, converter program and application program are automatically accepted
and used to determine subsequent processing stages.

If no matching URIMAP definition is found, DFHWBAAX gives control to the
user-replaceable Web error application program DFHWBERX to produce an error
response. This is achieved by setting DFHWBERX as the application program to
handle the request.

An alternative analyzer program that has been specified on the TCPIPSERVICE
definition, such as the CICS-supplied sample analyzer program DFHWBADX,
might carry out analysis on the request and specify alternative settings for the alias
transaction, converter program and application program.

When the TCPIPSERVICE definition specifies PROTOCOL(USER), an analyzer
program is always required to determine processing for requests (which are treated
as non-HTTP requests). DFHWBAAX is not suitable for PROTOCOL(USER). The
CICS-supplied sample analyzer program DFHWBADX or a customized analyzer
program must be used instead. URIMAP definitions are not used with
PROTOCOL(USER).

Alias transaction, DFHWBA
DFHWBA is the alias program. An alias transaction is started by Web attach
processing for each request received from TCP/IP. The transaction ID can be
selected by a URIMAP definition or an analyzer program, and the default is
CWBA. For CICS Web support, DFHWBA calls the user application program that
is specified to process the request. This application program could be specified in a
URIMAP definition, or by an analyzer program or converter program. For the
CICS business logic interface, DFHWBA calls the CICS business logic interface
program.

Chapter 69. CICS Web support and the CICS business logic interface 557

HTTP client processing, DFHWBCL
DFHWBCL is the HTTP client processing module. It is called by the command
interface DFHEIWB (when EXEC CICS WEB commands with the SESSTOKEN
option are used in application programs), and the COMMAREA interface
DFHWBCLI, to handle outbound HTTP functions, such as opening a session and
writing a request to the socket.

CICS business logic interface, DFHWBBLI
DFHWBBLI is the CICS business logic interface program. The interface to the CICS
business logic interface program is described in .

The CICS business logic interface program is called by DFHWBA. It calls the
Decode function of a converter program, a CICS application program, or the
Encode function of a converter program, according to what is specified in its
parameter list, and passes the data back to the caller.

DFHWBA1 is the business logic compatibility interface program. In earlier releases,
it was the business logic interface program, but it is now a compatibility layer on
DFHWBBLI. It accepts data from an old-format business logic interface parameter
list, copies it to the new format parameter list, then links to DFHWBBLI.

CICS Web support for 3270 display applications
The modules used by CICS Web support for handling 3270 display applications
(sometimes referred to as the CICS Web bridge) are:

DFHWBGB
Removes redundant state data from the system.

DFHWBST
Manages the state data.

DFHWBTC
Performs conversion between 3270 and HTML.

DFHWBTTA
The Web terminal translation application, which sets up the parameters for
bridging to transactions from CICS Web support. The program has two
aliases, DFHWBTTB and DFHWBTTC.

DFHWBLT
The CICS Web bridge exit.

Unescaping function, DFHWBUN
DFHWBUN provides an unescaping function for data which has been transmitted
to CICS in its escaped form, but which the application needs to manipulate in its
unescaped form.

Exits
Three global user exit points are provided in CICS Web support for HTTP client
requests:

XWBAUTH, HTTP client send exit
XWBAUTH is called during processing of an EXEC CICS WEB SEND or
EXEC CICS WEB CONVERSE command. It allows you to specify basic
authentication credentials (username and password) for a target server.

558 CICS TS for z/OS 4.1: Diagnosis Reference

XWBAUTH passes these to CICS on request, to create an Authorization
header. The host name and path information are passed to the user exit,
with an optional qualifying realm.

XWBOPEN, HTTP client open exit
XWBOPEN is called during processing of an EXEC CICS WEB OPEN or
EXEC CICS INVOKE SERVICE command. It allows you to specify proxy
servers that should be used for HTTP requests by CICS as an HTTP client,
and to apply a security policy to the host name specified for those
requests.

XWBSNDO, HTTP client send exit
XWBSNDO is called during processing of an EXEC CICS WEB SEND or
EXEC CICS WEB CONVERSE command. It allows you to specify a security
policy for HTTP requests, in particular for the path component of the
request.

Trace
The trace point IDs for this function are of the form WB xxxx. The trace levels are
WB 1, WB 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more
information about using traces in problem determination, see the CICS Problem
Determination Guide.

Chapter 69. CICS Web support and the CICS business logic interface 559

560 CICS TS for z/OS 4.1: Diagnosis Reference

Part 3. CICS domains

A description of the domains into which CICS is organized, and the functions
within these domains.

© Copyright IBM Corp. 1997, 2011 561

562 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 70. Application Manager Domain (AP)

The principal components of the application domain are described in Application
domain.

Application Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the AP domain.

ABAB gate, CREATE_ABEND_RECORD function
The CREATE_ABEND_RECORD function of the ABAB gate is used to create an
abend record (TACB).

Input Parameters
ABEND_CODE

Optional parameter

 The four-character transaction abend code.
ACCESS_REGISTERS

Optional parameter

 The contents of the access registers at the time of a program check or operating
system abend.

ALET
Optional parameter

 The access list entry token (ALET) at the time of a program check or operating
system abend.

ALL_FP_REGISTERS
Optional parameter

 The contents of the floating point register values in the order 0-15 at the time
of a program check or operating system abend.

BEAR
Optional parameter

 Contains the value of the Breaking Event Address at the time of a program
check or operating system abend.

CURRENT_ACCESS_VALUES
Optional parameter

 The current access register values are saved in the TACB.
CURRENT_FP_VALUES

Optional parameter

 The current FP register values are saved in the TACB. If the task has not used
the additional FP registers only the original FP registers are saved in the TACB.
If any of the additional FP registers have been used by the task all the FP
registers (0-15) and the FPC register are saved in the TACB.

ERROR_MESSAGE
Optional parameter

 The error message sent from the remote system if the abend was raised by
DFHZAND.

ERROR_OFFSET
Optional parameter

© Copyright IBM Corp. 1997, 2011 563

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

The offset of a program check or operating system abend in the failing
application program or CICS(R) AP domain program.

EXECUTION_KEY
Optional parameter

 A code indicating the execution key at the time the abend was issued, or at the
time the operating system abend or program check occurred.

FAILING_PROGRAM
Optional parameter

 The name of the program in which the abend occurred.
FAILING_RESOURCE

Optional parameter

 The name of the system TCTTE (the connection) if the abend was raised by
DFHZAND.

FLOATING_POINT_REGISTERS
Optional parameter

 The contents of the original floating point registers at the time of a program
check or operating system abend.

FPC_REGISTER
Optional parameter

 Contains the value of the floating point control register at the time of a
program check or operating system abend.

GENERAL_REGISTERS
Optional parameter

 The contents of the general purpose registers at the time of a program check or
operating system abend.

GENERAL64_REGISTERS
Optional parameter

 The contents of the 64-bit general purpose registers at the time of a program
check or operating system abend. This is an alternative parameter to
GENERAL_REGISTERS. H64G_REGISTERS parameter cannot be used if
GENERAL64_REGISTERS is specified.

GREG_ORDER
Optional parameter

 An indication of the order of the registers passed in the
GENERAL_REGISTERS and GENERAL64_REGISTERS parameters. DFHSRP
saves the registers in the abend record in the order 0-15, and
INQUIRE_ABEND_RECORD will always return them in this order.

Values for the parameter are:
 R0TOR15
 R14TOR13

H64G_REGISTERS
Optional parameter

 The contents of the high order words of the 64-bit general purpose registers at
the time of a program check or operating system abend.
GENERAL64_REGISTERS parameter can not be used if H64G_REGISTERS is
specified.

INTERRUPT_DATA
Optional parameter

 The interrupt code and instruction length code etc, at the time of a program
check or operating system abend.

564 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

PSW
Optional parameter

 The contents of the PSW at the time of a program check or operating system
abend.

REMOTE_SYSTEM
Optional parameter

 The name of the remote system if the abend was raised in the client
transaction to reflect an abend occurring in the DPL server.

REQUEST_ID
Optional parameter

 The request ID from the TCTTE for a terminal-oriented task.
SENSE_BYTES

Optional parameter

 The SNA sense bytes if the abend was raised by DFHZAND.
SPACE

Optional parameter

 An indication whether the task was in SUBSPACE or BASESPACE mode at the
time of a program check or operating system abend.

Values for the parameter are:
 BASESPACE
 NOSPACE
 SUBSPACE

STATUS_FLAGS
Optional parameter

 The status flags at the time of the abend.
STOKEN

Optional parameter

 The subspace token (STOKEN) at the time of a program check or operating
system abend.

STORAGE_TYPE
Optional parameter

 A code indicating the storage hit on an OC4.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

ABEND_TOKEN
The token allocated by ABAB for this abend. The token must be passed on
subsequent UPDATE_ABEND_RECORD and START_ABEND requests to
ABAB. The token is no longer valid after a START_ABEND request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABAB gate, INQUIRE_ABEND_RECORD function
The INQUIRE_ABEND_RECORD function of the ABAB gate is used to inquire
about an abend record (TACB).

Chapter 70. Application Manager Domain (AP) 565

Input Parameters
ABEND_TYPE

Optional parameter

 Indicates which abend record the information is to be extracted from.

Values for the parameter are:
 FIRST
 LASTASRA
 LATEST

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 NO_ABEND_RECORD

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional parameter

 The four-character transaction abend code.
ACCESS_REGISTERS

Optional parameter

 The contents of the access registers at the time of a program check or operating
system abend.

ALET
Optional parameter

 The access list entry token (ALET) at the time of a program check or operating
system abend.

ALL_FP_REGISTERS
Optional parameter

 The contents of the floating point register values in the order 0-15 at the time
of a program check or operating system abend.

BEAR
Optional parameter

 Contains the value of the Breaking Event Address at the time of a program
check or operating system abend.

DUMP
Optional parameter

 Indicates whether a dump was requested for this abend.

Values for the parameter are:
 NO
 YES

ERROR_MESSAGE
Optional parameter

 The error message sent from the remote system if the abend was raised by
DFHZAND.

ERROR_OFFSET
Optional parameter

566 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|
|

|
|

The offset of a program check or operating system abend in the failing
application program or CICS(R) AP domain program.

EXECUTION_KEY
Optional parameter

 A code indicating the execution key at the time the abend was issued, or at the
time the operating system abend or program check occurred.

FAILING_PROGRAM
Optional parameter

 The name of the program in which the abend occurred.
FAILING_RESOURCE

Optional parameter

 The name of the system TCTTE (the connection) if the abend was raised by
DFHZAND.

FLOATING_POINT_REGISTERS
Optional parameter

 The contents of the original floating point registers at the time of a program
check or operating system abend.

FPC_REGISTER
Optional parameter

 Contains the value of the floating point control register at the time of a
program check or operating system abend.

GENERAL_REGISTERS
Optional parameter

 The contents of the general purpose registers at the time of a program check or
operating system abend.

GENERAL64_REGISTERS
Optional parameter

 The contents of the 64-bit general purpose registers at the time of a program
check or operating system abend.

H64G_REGISTERS
Optional parameter

 The contents of the high order words of the 64-bit general purpose registers at
the time of a program check or operating system abend.

IGNORE_HANDLES
Optional parameter

 indicates whether this abend should be passed to any EXEC CICS HANDLE
routines that are active. IGNORE_HANDLES(YES) results in EXEC CICS
HANDLE being ignored at all levels of the program stack.

Values for the parameter are:
 NO
 YES

INTERRUPT_DATA
Optional parameter

 The interrupt code and instruction length code etc, at the time of a program
check or operating system abend.

PSW
Optional parameter

 The contents of the PSW at the time of a program check or operating system
abend.

Chapter 70. Application Manager Domain (AP) 567

|
|

|
|
|
|

|
|

|
|

|
|

REMOTE_SYSTEM
Optional parameter

 The name of the remote system if the abend was raised in the client
transaction to reflect an abend occurring in the DPL server.

REQUEST_ID
Optional parameter

 The request ID from the TCTTE for a terminal-oriented task.
SENSE_BYTES

Optional parameter

 The SNA sense bytes if the abend was raised by DFHZAND.
SPACE

Optional parameter

 An indication whether the task was in SUBSPACE or BASESPACE mode at the
time of a program check or operating system abend.

Values for the parameter are:
 BASESPACE
 NOSPACE
 SUBSPACE

STATUS_FLAGS
Optional parameter

 The status flags at the time of the abend.
STOKEN

Optional parameter

 The subspace token (STOKEN) at the time of a program check or operating
system abend.

STORAGE_TYPE
Optional parameter

 A code indicating the storage hit on an OC4.

ABAB gate, START_ABEND function
The START_ABEND function of the ABAB gate is used to start transaction abend
processing.

Input Parameters
ABEND_TOKEN

is the token allocated by ABAB for this abend (on a preceding
CREATE_ABEND_RECORD request).

DUMP
Optional parameter

 indicates whether a transaction dump should be produced for this abend.

Values for the parameter are:
 NO
 YES

IGNORE_HANDLES
Optional parameter

 indicates whether this abend should be passed to any EXEC CICS HANDLE
routines that are active. IGNORE_HANDLES(YES) results in EXEC CICS
HANDLE being ignored at all levels of the program stack.

Values for the parameter are:

568 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRY_ADDRESS
If an XPCTA exit requests retry, control returns to the point of invocation of
start_abend, passing the retry address. This address includes the AMODE
indicator in the first bit; it can be used as the target address in a DFHAM
TYPE=BRANCH by the caller of START_ABEND GENERAL_REGISTERS is
also set to point to the list of registers to be used for the retry, and SPACE to
indicate the subspace. START_ABEND GENERAL64_REGISTERS and
H64G_REGISTERS are also set to point to the list of registers to be used for the
retry if this information is available.

GENERAL_REGISTERS
Optional parameter

 The contents of the general purpose registers at the time of a program check or
operating system abend.

GENERAL64_REGISTERS
Optional parameter

 The contents of the 64-bit general purpose registers at the time of a program
check or operating system abend.

H64G_REGISTERS
Optional parameter

 The contents of the high order words of the 64-bit general purpose registers at
the time of a program check or operating system abend.

SPACE
Optional parameter

 An indication whether the task was in SUBSPACE or BASESPACE mode at the
time of a program check or operating system abend.

Values for the parameter are:
 BASESPACE
 NOSPACE
 SUBSPACE

ABAB gate, TAKE_TRANSACTION_DUMP function
The TAKE_TRANSACTION_DUMP function of the ABAB gate is used to take a
transaction dump.

The TRANSACTION resource definition must specify dump and DUMP(YES) must
be specified or defaulted on the associated START_ABEND call.

A transaction dump is not taken if any of the following is true:

Chapter 70. Application Manager Domain (AP) 569

|
|
|
|
|
|
|
|
|

|
|

|
|

v The application is going to handle the abend; that is, there is an active handle at
this level and IGNORE_HANDLES(NO) is specified or defaulted on the
associated START_ABEND call.

v The application is Language Environment/370 enabled, in which case the
language interface deals with the abend.

v A transaction dump is currently in progress.

Input parameters

None

Output parameters

None

ABAB gate, UPDATE_ABEND_RECORD function
The UPDATE_ABEND_RECORD function of the ABAB gate is used to update an
abend record (TACB).

Input Parameters
ABEND_TOKEN

is the token allocated by ABAB for this abend (on a preceding
CREATE_ABEND_RECORD request).

ABEND_CODE
Optional parameter

 The four-character transaction abend code.
ACCESS_REGISTERS

Optional parameter

 The contents of the access registers at the time of a program check or operating
system abend.

ALET
Optional parameter

 The access list entry token (ALET) at the time of a program check or operating
system abend.

ALL_FP_REGISTERS
Optional parameter

 The contents of the floating point register values in the order 0-15 at the time
of a program check or operating system abend.

BEAR
Optional parameter

 Contains the value of the Breaking Event Address at the time of a program
check or operating system abend.

CURRENT_ACCESS_VALUES
Optional parameter

 The current access register values are saved in the TACB.
CURRENT_FP_VALUES

Optional parameter

 The current FP register values are saved in the TACB. If the task has not used
the additional FP registers only the original FP registers are saved in the TACB.
If any of the additional FP registers have been used by the task all the FP
registers (0-15) and the FPC register are saved in the TACB.

570 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

ERROR_OFFSET
Optional parameter

 The offset of a program check or operating system abend in the failing
application program or CICS(R) AP domain program.

EXECUTION_KEY
Optional parameter

 A code indicating the execution key at the time the abend was issued, or at the
time the operating system abend or program check occurred.

FAILING_PROGRAM
Optional parameter

 The name of the program in which the abend occurred.
FLOATING_POINT_REGISTERS

Optional parameter

 The contents of the original floating point registers at the time of a program
check or operating system abend.

FPC_REGISTER
Optional parameter

 Contains the value of the floating point control register at the time of a
program check or operating system abend.

GENERAL_REGISTERS
Optional parameter

 The contents of the general purpose registers at the time of a program check or
operating system abend.

GENERAL64_REGISTERS
Optional parameter

 The contents of the 64-bit general purpose registers at the time of a program
check or operating system abend. This is an alternative parameter to
GENERAL_REGISTERS. H64G_REGISTERS parameter cannot be used if
GENERAL64_REGISTERS is specified.

GREG_ORDER
Optional parameter

 A indication of the order of the registers passed in the GENERAL_REGISTERS
GENERAL64_REGISTERS parameters. DFHSRP saves the registers in the
abend record in the order 0-15, and INQUIRE_ABEND_RECORD will always
return them in this order.

Values for the parameter are:
 R0TOR15
 R14TOR13

H64G_REGISTERS
Optional parameter

 The contents of the high order words of the 64-bit general purpose registers at
the time of a program check or operating system abend.
GENERAL64_REGISTERS cannot be used if H64G_REGISTERS is specified.

INTERRUPT_DATA
Optional parameter

 The interrupt code and instruction length code etc, at the time of a program
check or operating system abend.

PSW
Optional parameter

Chapter 70. Application Manager Domain (AP) 571

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

The contents of the PSW at the time of a program check or operating system
abend.

REMOTE_SYSTEM
Optional parameter

 The name of the remote system if the abend was raised in the client
transaction to reflect an abend occurring in the DPL server.

REQUEST_ID
Optional parameter

 The request ID from the TCTTE for a terminal-oriented task.
SPACE

Optional parameter

 An indication whether the task was in SUBSPACE or BASESPACE mode at the
time of a program check or operating system abend.

Values for the parameter are:
 BASESPACE
 NOSPACE
 SUBSPACE

STATUS_FLAGS
Optional parameter

 The status flags at the time of the abend.
STOKEN

Optional parameter

 The subspace token (STOKEN) at the time of a program check or operating
system abend.

STORAGE_TYPE
Optional parameter

 A code indicating the storage hit on an OC4.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APAC gate, REPORT_CONDITION function
This function reports exceptional conditions encountered during transaction
execution either to the principal facility terminal or to the CSMT destination or to
both, as appropriate.

Input Parameters
CONDITION

Optional Parameter

 The nature of the exceptional condition.

Values for the parameter are:
 ROLLBACK
 ROLLBACK_TERMINATE

572 CICS TS for z/OS 4.1: Diagnosis Reference

ROLLBACK_NOT_SUPPORTED
 LOCAL_NO_VOTE
 REMOTE_NO_VOTE
 REMOTE_NO_DECISION
 INDOUBT_FAILURE
 HEURISTIC_COMMIT
 HEURISTIC_BACKOUT
 COMMIT_FAILURE
 BACKOUT_FAILURE
 REMOTE_COMMIT_ABENDED
 HEURISTIC_READONLY_COMMIT
 HEURISTIC_READONLY_BACKOUT
 LINKS_INVALID

CONTINUE
Optional Parameter

 This parameter is not used.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 TRANSACTION_ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional Parameter

 The abend code issued for the condition specified.

APAP gate, TRANSFER_SIT function
The TRANSFER_SIT function of the APAP gate is used to transfer the address of
DFHSIT to the AP domain after a GET_PARAMETERS call from this domain to the
parameter manager domain.

Input Parameters
SIT

specifies the address and length of the system initialization table (DFHSIT).

Output Parameters
REASON

The values for the parameter are:
 INCONSISTENT_RELEASE
 INVALID_ADDRESS
 INVALID_FUNCTION
 INVALID_SIT_LENGTH

Chapter 70. Application Manager Domain (AP) 573

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APCR gate, ESTIMATE_ALL function
The ESTIMATE_ALL function of the APCR gate is used to estimate the size of
terminal input/output area (TIOA) needed to ship a channel.

Input Parameters
CHANNEL_NAME

is the name of the channel.
CHANNEL_TOKEN

is a token referencing the channel.
COMMAND

is the type of API command that caused the channel to be shipped.

 Values for the parameter are:
 LINK
 RETURN
 START_ISC
 START_MRO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR

BYTES_NEEDED
is the total size, in bytes, of the exported channel, including channel and
container headers and the overall length of the data in the containers. This
total includes all bytes for all containers.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CHANNEL_TOKEN_OUT
Optional Parameter

 contains, if CHANNEL_NAME was specified on input, a token referencing the
channel.

APCR gate, ESTIMATE_CHANGED function
The ESTIMATE_CHANGED function of the APCR gate is used to obtain the size of
the channel data structure that will be used to ship the containers that have been
modified since the IMPORT_ALL call. Only new, modified, or deleted containers
are shipped, with deleted containers being shipped as container headers only.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel.
COMMAND

is the type of API command that caused the channel to be shipped.

 Values for the parameter are:
 LINK
 RETURN
 START_ISC
 START_MRO

574 CICS TS for z/OS 4.1: Diagnosis Reference

CONTAINER_LIST
is a list of all the containers in the channel, obtained from an earlier
IMPORT_ALL call.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR

BYTES_NEEDED
is the total size, in bytes, of the exported channel, including channel and
container headers and the overall length of the data in the containers. This
total includes all bytes for all containers.

NEW_CONTAINER_LIST
is a list of all the containers in the channel that have been created, modified, or
deleted since the last IMPORT_ALL call. This list must be passed to a
subsequent EXPORT_CHANGED call.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APCR gate, EXPORT_ALL function
The EXPORT_ALL function of the APCR gate is used to export the complete
contents of a channel.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel.
COMMAND

is the type of API command that caused the channel to be shipped.

 Values for the parameter are:
 LINK
 RETURN
 SIBUS
 START_ISC
 START_MRO

CORRELATION_ID
Optional Parameter

 If CORRELATION_ID is specified, the channel is exported from an AOR by
request streams. (RZTA SEND_REPLY is used.)

TERMINAL_TOKEN
Optional Parameter

 is a token referencing the terminal with which the channel is associated. If
TERMINAL_TOKEN is specified, CICS terminal control is used to export the
channel.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR
 TERMINAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 70. Application Manager Domain (AP) 575

TC_ABEND
Optional Parameter

 is the terminal control abend code.
TC_RESPONSE

Optional Parameter

 is the terminal control response code.
TC_SENSE

Optional Parameter

 is the terminal sense code.

APCR gate, EXPORT_CHANGED function
The EXPORT_CHANGED function of the APCR gate is used to return only those
parts of a channel that have changed since IMPORT_ALL was issued.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel.
COMMAND

is the type of API command that caused the channel to be shipped.

 Values for the parameter are:
 LINK

CONTAINER_LIST
is a list of all the containers in the channel, obtained from an earlier
IMPORT_ALL call.

TERMINAL_TOKEN
is a token referencing the terminal with which the channel is associated. If
TERMINAL_TOKEN is specified, CICS terminal control is used to export the
channel.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR
 DATA_ERROR
 TERMINAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TC_ABEND
is the terminal control abend code.

TC_RESPONSE
is the terminal control response code.

TC_SENSE
is the terminal sense code.

APCR gate, IMPORT_ALL function
The IMPORT_ALL function of the APCR gate is used to import the complete
contents of a channel.

Input Parameters
COMMAND

is the type of API command that caused the channel to be shipped.

576 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 LINK
 RETURN
 SIBUS
 START_ISC
 START_MRO

CHANNEL_TOKEN_IN
Optional Parameter

 is a token referencing an existing channel into which the channel data is to be
imported.

DATA_START
Optional Parameter

 is the position of the beginning of the channel data in the inbound TIOA.
RS_TOKEN

Optional Parameter

 is a token referencing the request stream with which the channel is associated.
If RS_TOKEN is specified, the channel is exported from a listener region by
request streams. (RZSO SEND_REQUEST is used).

TERMINAL_TOKEN
Optional Parameter

 is a token referencing the terminal with which the channel is associated. If
TERMINAL_TOKEN is specified, CICS terminal control is used to export the
channel.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATA_ERROR
 TERMINAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CHANNEL_NAME
Optional Parameter

 is the name of the channel that has been created.
CHANNEL_TOKEN

Optional Parameter

 is a token referencing the channel that has been created.
CONTAINER_LIST

Optional Parameter

 is the address of a control block that identifies the initial state of the channel. It
can be passed to a subsequent EXPORT_CHANGED call, when it is used to
identify what changes have been made by comparing the initial state of the
channel to the current state. This allows CICS to re-export only the changed
containers.

CORRELATION_ID
Optional Parameter

 DATA_END
Optional Parameter

 SIZE
Optional Parameter

Chapter 70. Application Manager Domain (AP) 577

TC_ABEND
Optional Parameter

 is the terminal control abend code.
TC_RESPONSE

Optional Parameter

 is the terminal control response code.
TC_SENSE

Optional Parameter

 is the terminal sense code.

APCR gate, IMPORT_CHANGED function
The IMPORT_CHANGED function of the APCR gate is used to import those parts
of a channel that have been modified since an EXPORT_ALL call. Any modified
containers are either replaced or deleted. New containers are added. Unchanged
containers are not received on the connection.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel.
COMMAND

is the type of API command that caused the channel to be shipped.

 Values for the parameter are:
 LINK

DATA_START
is the position of the beginning of the channel data in the inbound TIOA.

TERMINAL_TOKEN
is a token referencing the terminal with which the channel is associated. If
TERMINAL_TOKEN is specified, CICS terminal control is used to export the
channel.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR
 DATA_ERROR
 TERMINAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TC_ABEND
is the terminal control abend code.

TC_RESPONSE
is the terminal control response code.

TC_SENSE
is the terminal sense code.

DATA_END
Optional Parameter

 SIZE
Optional Parameter

 APEX gate, INVOKE_USER_EXIT function
The INVOKE_USER_EXIT function of the APEX gate is used to invoke the user
exit at a specified exit point.

578 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
EXIT_POINT

is the name of the exit.
TRACE

indicates whether or not user exits are to be traced.

 Values for the parameter are:
 NO
 YES

EXIT_PARAMETER_n
Optional Parameter

 is the parameter (number n) required by the exit. The nature of the parameter
varies from one exit to another.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CHANGE_MODE_FAILURE
 EXIT_PROGRAM_FAILURE

The following values are returned when RESPONSE is INVALID:
 INVALID_EXIT_POINT
 INVALID_FUNCTION

EXIT_RETURN_CODE
is the return code, if any, issued by the exit.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APID gate, PROFILE function
The PROFILE function of the APID gate extracts information from the AP domain
profile for timeout.

Input Parameters
NAME

Optional Parameter

 is the name of the profile

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 TM_LOCATE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RTIMEOUT
Optional Parameter

 is the read timeout value.

Chapter 70. Application Manager Domain (AP) 579

APID gate, QUERY_NETNAME function
The PROFILE function of the APID gate extracts information from the AP domain
profile for timeout.

Input Parameters
SYSID

is the name of the sysid

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 TM_LOCATE_FAILED

NETNAME
is the value of the netname for the given sysid.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APIQ gate, INQ_APPLICATION_DATA function
The INQ_APPLICATION_DATA function of the APIQ gate is used to inquire about
application data owned by the application domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQ_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DPL_PROGRAM
 NO_TRANSACTION_ENVIRONMENT
 TRANSACTION_DOMAIN_ERROR
 USXM_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACEE
Optional Parameter

 is the address of the access control environment element (ACEE)
DSA

Optional Parameter

 is the address of the head of the chain of dynamic storage for reentrant
programs.

EIB
Optional Parameter

 is the address of the EXEC Interface Block.
RSA

Optional Parameter

 is the address of the apllication's register save area.
SYSEIB

Optional Parameter

580 CICS TS for z/OS 4.1: Diagnosis Reference

is the address of the System EXEC Interface Block.
TCTUA

Optional Parameter

 is the address of the Task Control Table User Area.
TCTUASIZE

Optional Parameter

 is the length (in bytes) of the Task Control Table User Area.
TWA

Optional Parameter

 is the address of the Task Work Area.
TWASIZE

Optional Parameter

 is the length (in bytes) of the Task Work Area.

APIQ gate, INQ_SIT_PARM function
Return the value of a system initialization parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

INFOCENTER
Optional Parameter

 The value of the INFOCENTER system initialization parameter.

APJC gate, WRITE_JOURNAL_DATA function
The WRITE_JOURNAL_DATA function of the APJC gate is used to write a single
record into a named journal.

Input Parameters
FROM

is the address of the record.
JOURNAL_RECORD_ID

is the system type record identifier.
JOURNALNAME

is the journal identifier name.
WAIT

specifies whether or not CICS is to wait until the record is written to auxiliary
storage before returning control to the exit program.

 Values for the parameter are:
 NO
 YES

RECORD_PREFIX
Optional Parameter

 is the journal record user prefix.

Chapter 70. Application Manager Domain (AP) 581

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 IO_ERROR
 JOURNAL_NOT_FOUND
 JOURNAL_NOT_OPEN
 LENGTH_ERROR
 STATUS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APLI gate, ESTABLISH_LANGUAGE function
The ESTABLISH_LANGUAGE function of the APLI gate is used to establish the
language of a conventional compiled program.

Input Parameters
DATA_LOCATION

defines whether the program can handle only 24-bit addresses (data located
below the 16MB line) can handle 31-bit addresses (data located above or below
the 16MB line).

 Values for the parameter are:
 ANY
 BELOW

DEFINED_LANGUAGE
is the language defined for the program.

 Values for the parameter are:
 ASSEMBLER
 COBOL
 C370
 LE370
 NOT_DEFINED
 PLI

ENTRY_POINT
is the entry point address of the program.

EXECUTION_KEY
is a code indicating the execution key at the time the abend was issued, or at
the time the operating system abend or program check occurred.

 Values for the parameter are:
 CICS
 USER

LANGUAGE_BLOCK
is a token identifying the current language block for the program.

LOAD_POINT
is the load point address of the program.

PROGRAM
is the 8-character name of the program whose language is to be determined

PROGRAM_LENGTH
is the length of the program.

582 CICS TS for z/OS 4.1: Diagnosis Reference

REQUEST_TYPE
identifies the call of establish language. If the caller has a request type of link
and establish language fails, then abend. Do not abend for a request type of
load.

 Values for the parameter are:
 LINK
 LOAD

THREADSAFE
indicates whether whether the program is quasi-reentrant (and must execute
on the QR TCB) or threadsafe (and can execute on the QR TCB or an OPEN
TCB).

 Values for the parameter are:
 NO
 OPENAPI
 YES

JVM_CLASS_PTR
Optional Parameter

 is a token addressing the JVM class name length and value.
JVM_DEBUG

Optional Parameter

 An enumerated type indicating whether JVM debug is to be used

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 TRANSACTION_ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

CICSVAR_THREADSAFE
is the threadsafe value established for the program.

 Values for the parameter are:
 CICSVAR_NO
 CICSVAR_OPENAPI
 CICSVAR_YES
 NOT_DEFINED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional Parameter

 is the four-character transaction abend code.
LANGUAGE_ESTABLISHED

Optional Parameter

 is the language established for the program.

Chapter 70. Application Manager Domain (AP) 583

Values for the parameter are:
 ASSEMBLER
 ASSEMBLER_CICS
 COBOL
 COBOL2
 C370
 JVM
 LE370
 MVSLE370
 NOT_DEFINED
 PLI

NEW_BLOCK
Optional Parameter

 is a new token identifying the new language block for the program.
RUNTIME_ENVIRONMENT

Optional Parameter

 is the runtime environment established for the program.

Values for the parameter are:
 JVM_RUNTIME
 LE370_RUNTIME
 NON_LE370_RUNTIME
 XPLINK_RUNTIME

APLI gate, START_PROGRAM function
The START_PROGRAM function of the APLI gate is used to start a program.

Input Parameters
CEDF_STATUS

indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF).

 Values for the parameter are:
 CEDF
 NOCEDF

COMMAREA
is an optional token identifying the communications area for the program.

EXECUTION_SET
indicates whether you want CICS to link to and run the program as if it were
running in a remote CICS region (with or without the API restrictions of a DPL
program).

 Values for the parameter are:
 DPLSUBSET
 FULLAPI

LANGUAGE_BLOCK
is a token identifying the current language block for the program.

LINK_LEVEL
is the 16-bit value indicating the link-level of the program.

PROGRAM
is the 8-character name of the program whose language is to be determined

DEFERRED_ABEND_FOR_XCTL
Optional Parameter

 indicates whether a Runaway type abend should be started on completion of
the current START_PROGRAM.

584 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

ENVIRONMENT_TYPE
Optional Parameter

 is the environment type of the program.

Values for the parameter are:
 EXEC
 GLUE
 PLT
 SYSTEM
 TRUE
 URM

JVM_PROG
Optional Parameter

 indicates whether the request is for establish language for a JVM program.

Values for the parameter are:
 NO
 YES

PARMLIST_PTR
Optional Parameter

 is an optional token identifying the parameter list for the program.
SYNCONRETURN

Optional Parameter

 defines whether or not a syncpoint is to be taken on return from the linked
program.

Values for the parameter are:
 NO
 YES

SYSEIB_REQUEST
Optional Parameter

 indicates whether or not an EXEC CICS LINK or EXEC CICS XCTL had the
SYSEIB translator option specified.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AUTOSTART_DISABLED
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 SYSTEM_PROPERTIES_NOT_FND
 TRANSACTION_ABEND
 USER_CLASS_NOT_FOUND

Chapter 70. Application Manager Domain (AP) 585

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional Parameter

 is the four-character transaction abend code.
IGNORE_PENDING_XCTL

Optional Parameter

 indicates whether or not a pending XCTL should be ignored by program
manager.

Values for the parameter are:
 NO
 YES

APLJ gate, PIPI_CALL_SUB function
Provides an interface to the Language Environment preinitialization programming
interface (PIPI) call_sub function.

Input Parameters
EXECUTION_KEY

The execution key used when a program runs in this PIPI environment.

 Values for the parameter are:
 CICS
 USER

PIPI_CALL_PARAMETERS
The address of the parameter list to be passed to the called program.

PIPI_TABLE_INDEX
The row number in the PIPI table of the program to be called.

PIPI_TOKEN
A token returned by Language Environment's init_sub_dp function. The token
identifies the PIPI environment, and is used on the PIPI call_sub and term
functions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 TRANSACTION_ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPI_RETURN_CODE
Optional Parameter

 The return code from the Language Environment function.
PIPI_SUB_FEEDBACK

Optional Parameter

586 CICS TS for z/OS 4.1: Diagnosis Reference

The Language Environment feedback code
PIPI_SUB_RETURN_CODE

Optional Parameter

 The Language Environment subroutine return code

APLI gate, PIPI_INIT_SUB_DP function
Provides an interface to the Language Environment preinitialization programming
interface (PIPI) init_sub_dp function.

Input Parameters
EXECUTION_KEY

The execution key used when a program runs in this PIPI environment.

 Values for the parameter are:
 CICS
 USER

PIPI_RUNTIME_OPTIONS
Address of the Language Environment runtime options to be used for the
pre-initialized environment.

PIPI_SERVICE_RTNS
Address of the vector of service routines which CICS provides for the PIPI
environment (LOAD, DELETE, GETSTORE, FREESTORE).

PIPI_TABLE_ADDRESS
Address of the PIPI table of routines to be executed in the PIPI environment.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 TRANSACTION_ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

PIPI_TOKEN
A token returned by Language Environment's init_sub_dp function. The token
identifies the PIPI environment, and is used on the PIPI call_sub and term
functions.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPI_RETURN_CODE
Optional Parameter

 The return code from the Language Environment function.

APLI gate, PIPI_TERM function
Provides an interface to the Language Environment preinitialization programming
interface (PIPI) term function.

Input Parameters
EXECUTION_KEY

The execution key used when a program runs in this PIPI environment.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 587

CICS
 USER

PIPI_TOKEN
A token returned by Language Environment's init_sub_dp function. The token
identifies the PIPI environment, and is used on the PIPI call_sub and term
functions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 TRANSACTION_ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPI_RETURN_CODE
Optional Parameter

 The return code from the Language Environment function.

APLX gate, NOTIFY_REFRESH function
Notify AP domain that a program has been replaced by a new copy. AP domain
cleans us some of its resources.

Input Parameters
PROGRAM

The 8-character name of the program that has been refreshed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 TRANSACTION_ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional Parameter

 The four-character abend code which is to be issued by CICS when an
exception response is given and the cause of the exception is a transaction
abend.

588 CICS TS for z/OS 4.1: Diagnosis Reference

APRA gate, RELAY_TERMINAL_REQUEST function
The RELAY_TERMINAL_REQUEST function of the APRA gate relays an API
request, which has a surrogate TCTTE in use as the principal facility, to the routing
region.

Input Parameters
MESSAGE_DATA

Contains the inbound message.

Output Parameters
SURROGATE

A token containing a pointer to the surrogate TCTTE.
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRA gate, REMOTE_ATTACH function
The REMOTE_ATTACH function of the APRA gate attaches a transaction for a
transaction routing session in the application region.

Input Parameters
MESSAGE_DATA

Contains the inbound message.

Output Parameters
SURROGATE

A token containing a pointer to the surrogate TCTTE.
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRA gate, REMOTE_DETACH function
The REMOTE_DETACH function of the APRA gate detaches a transaction for a
transaction routing session in the application region.

Input Parameters
SURROGATE

A token containing a pointer to the surrogate TCTTE.

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRD gate, END_ATOMS function
Commit outstanding atoms of recovery.

Input Parameters
DIRECTION

Indicates whether the atoms of recovery are committed or backed out.

Chapter 70. Application Manager Domain (AP) 589

|

|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|

|

Values for the parameter are:
 BACKWARD
 FORWARD

LOG
A bjnary value that indicates whether changes are to be logged.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is EXCEPTION:
 PERCOLATE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RESULT
The result of the commit request.

 Values for the parameter are:
 NO
 READ_ONLY
 YES

APRD gate, INITIALISE function
Perform the second stage of initialization of resource definition recovery.

Input Parameters
START

The type of CICS startup.

 Values for the parameter are:
 COLD
 EMER
 WARM

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is EXCEPTION:
 PERCOLATE_ERROR
 RECOVER_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

590 CICS TS for z/OS 4.1: Diagnosis Reference

APRD gate, PRE_INITIALISE function
Perform the first stage of initialization of resource definition recovery.
v Build the resource definition anchor block (RDAB)
v Load TBSS and TONR
v Initialize the suspend tokens
v Tell RM about the APRD recovery gate address

Input Parameters
STORE_TOKEN

A token that identifies the storage subpool in which the anchor block is
created.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is EXCEPTION:
 PERCOLATE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRR gate, IPIC_ROUTE_TRANSACTION function
The IPIC_ROUTE_TRANSACTION function of the APRR gate routes a transaction
for a transaction routing session in the routing region.

Input Parameters
IPCONN

Is the name of the IPCONN resource.
TRANS_REMOTENAME

Is the REMOTENAME attribute of the TRANSACTION resource

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRS gate, ACQUIRE_SURROGATE function
The ACQUIRE_SURROGATE function of the APRS gate acquires a surrogate
TCTTE for a remote terminal definition.

Input Parameters
OWNER_NETNAME

The NETNAME resource attribute of the terminal-owning region (TOR).
TERMID_IN_OWNER

The TERMID resource attribute of the terminal-owning region (TOR).

Chapter 70. Application Manager Domain (AP) 591

|

|
|

|
|
|
|
|

|
|
|
|
|

|

Output Parameters
SURROGATE

A token containing a pointer to the surrogate TCTTE.
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRS gate, RELEASE_SURROGATE function
The RELEASE_SURROGATE function of the APRS gate releases a surrogate TCTTE
for a remote terminal definition.

Input Parameters
SURROGATE

A token containing a pointer to the surrogate TCTTE.

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRT gate, ROUTE_TRANSACTION function
The ROUTE_TRANSACTION function of the APRT gate is used to dynamically
route transactions (which are defined to be dynamic and not automatically
initiated) based on decisions made by the dynamic transaction routing program.
For transactions which are automatically initiated or are defined to be remote and
not dynamic, DFHAPRT will statically route such transactions.

Input Parameters
DTRTRAN

indicates whether or not dynamic transaction routing is available.

 Values for the parameter are:
 NO
 YES

DYNAMIC
indicates whether or not the transaction is defined as dynamic.

 Values for the parameter are:
 NO
 YES

REMOTE
indicates whether or not the transaction is defined as remote.

 Values for the parameter are:
 NO
 YES

REMOTE_NAME
is the four-character transaction identifier by which this transaction is to be
known on the remote CICS region.

REMOTE_SYSTEM
is the name of the remote system if the abend was raised in the client
transaction to reflect an abend occurring in the DPL server.

592 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ALL_SESSIONS_BUSY
 DTRTRAN_REJECTED
 ISC_DISABLED
 NOTAUTH
 PROGRAM_NOT_FOUND
 REMOTE_CONN_OOS
 REMOTE_CONN_OOS_SYS_CHGD
 ROUTE_FAILED
 TRANSACTION_ABEND

ABEND_CODE
is the four-character transaction abend code.

RAN_LOCALLY
indicates whether or not the transaction ran on the local CICS region (that is,
was not routed to a remote CICS region).

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRX gate, FLATTEN_REQUEST function
The FLATTEN_REQUEST function of the APRX gate flattens a transaction routing
request message that is transmitted from a routing region to an application region.

Input Parameters
XTSTG

Token containing a pointer to the transformer parameter list, DFHXTSTG.
FLAT_DATA

Buffer for flattened message data.

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRX gate, FLATTEN_RESPONSE function
The FLATTEN_RESPONSE function of the APRX gate flattens a transaction routing
response message that is transmitted from an application region to a routing
region.

Input Parameters
XTSTG

Token containing a pointer to the transformer parameter list, DFHXTSTG.
FLAT_DATA

Buffer for flattened message data.

Chapter 70. Application Manager Domain (AP) 593

|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRX gate, UNFLATTEN_REQUEST function
The UNFLATTEN_REQUEST function of the APRX gate unflattens a transaction
routing request message that is transmitted from a routing region to an application
region.

Input Parameters
XTSTG

Token containing a pointer to the transformer parameter list, DFHXTSTG.
FLAT_DATA

Buffer for flattened message data.

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APRX gate, UNFLATTEN_RESPONSE function
The UNFLATTEN_RESPONSE function of the APRX gate unflattens a transaction
routing response message that is transmitted from an application region to a
routing region.

Input Parameters
XTSTG

Token containing a pointer to the transformer parameter list, DFHXTSTG.
FLAT_DATA

Buffer for flattened message data.

Output Parameters
REASON
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTC gate, CANCEL function
The CANCEL function of the APTC gate invalidates the listening function.

Input Parameters
TOKEN

is the token for the session TCTTE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TC_ERROR
 TOKEN_UNKNOWN

594 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTC gate, CLOSE function
The CLOSE function of the APTC gate is used in cleanup.

Input Parameters
TOKEN

is the token for the session TCTTE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TC_ERROR
 TOKEN_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTC gate, EXTRACT_PROCESS function
The EXTRACT_PROCESS function of the APTC gate extracts information for the
request.

Input Parameters
TOKEN

Optional Parameter

 is the token for the session TCTTE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TC_ERROR
 TOKEN_UNKNOWN

CONVID
is the conversation id (which is the session tctte termid).

PIPDATA
Applicable only for LU6.2 conversations

PIPDATA_LEN
Applicable only for LU6.2 conversations

PROCESS_NAME
is the name of the process to be invoked

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SYNCLEVEL
is the synclevel of the conversation

APTC gate, LISTEN function
The LISTEN function of the APTC gate is used to update the TCTTE with the user
token.

Chapter 70. Application Manager Domain (AP) 595

Input Parameters
TOKEN

is the token for the session TCTTE
USER_TOKEN

is the token supplied the the person who is to be notified.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TC_ERROR
 TOKEN_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTC gate, OPEN function
The OPEN function of the APTC gate is used to allocate a session to the specified
AOR.

Input Parameters
SYSID

is the name of the sysid
TRANID

is the transaction name to be attached in the AOR.
NETNAME

Optional Parameter

 specifies the netname or applid of the AOR.
QUEUE

Optional Parameter

 is the queue option specified by the routing program.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOKEN
ERROR_CODE

Optional Parameter

 The code passed back from the allocate procedure.

APTC gate, RECEIVE function
The RECEIVE function of the APTC gate is used to receive data.

Input Parameters
RECEIVE_BUFFER

is the buffer into which the reply is to be placed.

596 CICS TS for z/OS 4.1: Diagnosis Reference

TOKEN
is the token for the session TCTTE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TCTTE
 RECEIVE_BUFFER_TOO_SMALL
 TC_ERROR
 TOKEN_UNKNOWN

LAST
is an indicator to indicate if this is the last flow.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTC gate, SEND function
The SEND function of the APTC gate is used to send the request to the AOR.

Input Parameters
LAST

is an indicator to indicate if this is the last flow.

 Values for the parameter are:
 NO
 YES

SEND_BLOCK
is the block data with the length and send data pointer.

TOKEN
is the token for the session TCTTE

PREFIX_AREA
Optional Parameter

 specifies the requeststreams information.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TCTTE
 TC_ERROR
 TOKEN_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTC gate, SET_SESSION function
The SET_SESSION function of the APTC gate is used to send the request to the
AOR.

Input Parameters
RECOVERY_STATUS

indicates if recovery is necessary.

Chapter 70. Application Manager Domain (AP) 597

Values for the parameter are:
 NECESSARY
 UNNECESSARY

TOKEN
is the token for the session TCTTE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TC_ERROR
 TOKEN_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTD gate, DELETE_TRANSIENT_DATA function
The DELETE_TRANSIENT_DATA function of the APTD gate is used to delete the
specified transient data queue.

Input Parameters
QUEUE

is the queue option specified by the routing program.
DISCARDING_DEFINITION

Optional Parameter

 states whether this DELETEQ request is part of an attempt by Transient Data
to discard a transient data queue definition.

Values for the parameter are:
 NO
 YES

RSL_CHECK
Optional Parameter

 states whether resource-level checking is to be carried out.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CSM_ERROR
 DCT_ERROR
 DIRECTORY_MGR_ERROR
 INVALID_RSL_CHECK
 IO_ERROR
 JCP_ERROR
 LOCKED
 LOGIC_ERROR
 NO_RECOVERY_TABLE
 QUEUE_DISABLED
 QUEUE_EXTRA
 QUEUE_NOT_AUTH
 QUEUE_NOT_FOUND
 QUEUE_OMITTED

598 CICS TS for z/OS 4.1: Diagnosis Reference

QUEUE_REMOTE
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTD gate, INITIALISE_TRANSIENT_DATA function
The INITIALISE_TRANSIENT_DATA function of the APTD gate is invoked as part
of the initialization process for the transient data facility.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CSM_ERROR
 DCT_ERROR
 DIRECTORY_MGR_ERROR
 JCP_ERROR
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 LOCKED
 NO_RECOVERY_TABLE

The following values are returned when RESPONSE is EXCEPTION:
 IO_ERROR
 LENGTH_ERROR
 NO_SPACE
 QUEUE_BUSY
 QUEUE_DISABLED
 QUEUE_EMPTY
 QUEUE_EXTRA
 QUEUE_FULL
 QUEUE_INDIRECT
 QUEUE_INTRA
 QUEUE_NOT_AUTH
 QUEUE_NOT_FOUND
 QUEUE_NOT_INPUT
 QUEUE_NOT_OPEN
 QUEUE_NOT_OUTPUT
 QUEUE_REMOTE

The following values are returned when RESPONSE is INVALID:
 FROM_LIST_OMITTED
 INTO_OMITTED
 INVALID_DATA_LOC
 INVALID_FORMAT
 INVALID_FROM_LIST_N
 INVALID_FROM_LIST_P
 INVALID_FROM_N
 INVALID_FROM_P
 INVALID_FUNCTION
 INVALID_INTO_N
 INVALID_INTO_P
 INVALID_RSL_CHECK
 INVALID_SUSPEND
 QUEUE_OMITTED

Chapter 70. Application Manager Domain (AP) 599

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTD gate, READ_TRANSIENT_DATA function
The READ_TRANSIENT_DATA function of the APTD gate is used to read a single
record from a named transient data queue.

Input Parameters
INTO

specifies a piece of storage into which the record is placed.
QUEUE

is the queue option specified by the routing program.
SUSPEND

specifies whether the caller wants to wait if the record to be read has not been
committed to the queue yet.

 Values for the parameter are:
 NO
 YES

DATA_KEY
Optional Parameter

 if this is a READ TD SET rather than an INTO, DATA_KEY specifies whether
Transient Data should obtain the required SET storage from CICS key or user
key storage.

Values for the parameter are:
 CICS
 USER

DATA_LOC
Optional Parameter

 if this is a READ TD SET rather than an INTO, DATA_LOC specifies whether
Transient Data should obtain the required SET storage from above or below the
16MB line.

Values for the parameter are:
 ANY
 BELOW

RSL_CHECK
Optional Parameter

 states whether resource-level checking is to be carried out.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CSM_ERROR
 DCT_ERROR
 DIRECTORY_MGR_ERROR
 INTO_OMITTED
 INVALID_DATA_LOC
 INVALID_INTO_N
 INVALID_INTO_P

600 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_RSL_CHECK
 INVALID_SUSPEND
 IO_ERROR
 JCP_ERROR
 LENGTH_ERROR
 LOCKED
 LOGIC_ERROR
 NO_RECOVERY_TABLE
 QUEUE_BUSY
 QUEUE_DISABLED
 QUEUE_EMPTY
 QUEUE_NOT_AUTH
 QUEUE_NOT_FOUND
 QUEUE_NOT_INPUT
 QUEUE_NOT_OPEN
 QUEUE_OMITTED
 QUEUE_REMOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTD gate, RESET_TRIGGER_LEVEL function
The RESET_TRIGGER_LEVEL function of the APTD gate is used to reset a
transient data queue so that another trigger transaction can be attached. Sometimes
it is necessary to include the RESET_TRIGGER_LEVEL function if a trigger
transaction abends.

Input Parameters
QUEUE

is the queue option specified by the routing program.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APTD gate, WRITE_TRANSIENT_DATA function
The WRITE_TRANSIENT_DATA function of the APTD gate is used to write a
single record (or multiple records) to a named transient data queue.

Input Parameters
FROM_LIST

is a list specifying the address and the length of each record that is to be
written to the specified queue.

QUEUE
is the queue option specified by the routing program.

RSL_CHECK
Optional Parameter

 states whether resource-level checking is to be carried out.

Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 601

NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CSM_ERROR
 DCT_ERROR
 DIRECTORY_MGR_ERROR
 FROM_LIST_OMITTED
 INVALID_FROM_LIST_N
 INVALID_FROM_LIST_P
 INVALID_FROM_N
 INVALID_FROM_P
 INVALID_RSL_CHECK
 IO_ERROR
 JCP_ERROR
 LENGTH_ERROR
 LOCKED
 LOGIC_ERROR
 NO_RECOVERY_TABLE
 NO_SPACE
 QUEUE_DISABLED
 QUEUE_FULL
 QUEUE_NOT_AUTH
 QUEUE_NOT_FOUND
 QUEUE_NOT_OPEN
 QUEUE_NOT_OUTPUT
 QUEUE_OMITTED
 QUEUE_REMOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TD_MAX_LENGTH
Optional Parameter

 indicates the maximum allowable length of a transient data record if a
RESPONSE of EXCEPTION, and a REASON of LENGTH_ERROR is returned.

TD_MIN_LENGTH
Optional Parameter

 indicates the minimum allowable length of a transient data record if a
RESPONSE of EXCEPTION, and a REASON of LENGTH_ERROR is returned.

TD_RECORD
Optional Parameter

 indicates the number of records that were successfully written to the transient
data queue.

APXM gate, BIND_XM_CLIENT function
This function is called from the transaction manager domain during transaction
initialization. The AP domain sets its recovery manager token to a non-zero value
to ensure it will be invoked at syncpoint.

602 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APXM gate, INIT_XM_CLIENT function
Called from the transaction manager domain during transaction initialization. The
AP domain allocates the AP domain transaction lifetime control blocks, and
anchors them with the AP domain's transaction token.

Input Parameters
LOCATE_PROFILE

Indicates whether the TCA should be initialized with values from the
transaction's profile, if it exists.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 GETMAIN_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APXM gate, RELEASE_XM_CLIENT function
Called from the transaction manager domain during transaction termination. AP
domain transaction lifetime resources are released.

Output Parameters
REASON

The values for the parameter are:
 FREEMAIN_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APXM gate, RMI_START_OF_TASK function
The RMI_START_OF_TASK function of the APXM gate is called from transaction
manager domain to the AP Domain during transaction initialization. The AP
domain invokes any task-related user exits enabled for start of task.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BRAT gate, ATTACH function
The ATTACH function of the BRAT gate is called to attach a transaction with a
bridge primary client.

Chapter 70. Application Manager Domain (AP) 603

Input Parameters
FACILITYTOKEN

Facility token which references the BFB.
MESSAGE_TYPE

An indication that the bridge mechanism will use an architected message type.
A CICS subroutine is used in place of the bridge exit.

 Values for the parameter are:
 BRIH

STATE_TOKEN
The message state token passed between the caller and the bridge subroutines
responsible for the architected message.

TRANSACTION_ID
The 4 byte transaction id of the user transaction to be attached.

BRDATA
Optional Parameter

 The address and length of a block of storage containing data to be passed to
the bridge exit. This is used as part of the primary client data.

BREXIT
Optional Parameter

 The name of the program to be used as the bridge exit. If this is not specified,
DFHBRAT will get the default value from transaction manager. If there is no
default bridge exit, an error is returned.

PRIORITY
Optional Parameter

 Transaction manager priority of the transaction.
USERID

Optional Parameter

 The USERID that should be signed-on to the terminal. This is only set when no
facility token is passed.

Output Parameters
REASON

The values for the parameter are:
 DISABLED
 GETMAIN_FAILED
 NO_BREXIT
 NO_STORAGE
 NO_XM_STORAGE
 NOT_ENABLED_FOR_SHUTDOWN
 NOT_FOUND
 STATE_SYSTEM_ATTACH
 USERID_NOT_AUTH_BREXIT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BRIQ gate, INQUIRE_CONTEXT function
The INQUIRE_CONTEXT of the BRIQ gate is called to inquire on bridge state
data.

Input Parameters
TRANSACTION_TOKEN

Optional Parameter

604 CICS TS for z/OS 4.1: Diagnosis Reference

The XM transaction token for the task to be inquired upon.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 BAD_TOKEN
 NO_TRANSACTION_ENVIRONMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BFB_TOKEN
Optional Parameter

 The address of the BFB that was constructed or is to be re-used to satisfy this
allocate.

BRDATA
Optional Parameter

 Data passed to the bridge exit during attach.
BRIDGE_ENVIRONMENT

Optional Parameter

 Indicates whether the task was started with a bridge facility.

Values for the parameter are:
 NO
 YES

BRIDGE_EXIT_PROGRAM
Optional Parameter

 The name of the bridge exit program (if CONTEXT is BRIDGE or BREXIT).
BRIDGE_FORMATTER_PROGRAM

Optional Parameter

 If CONTEXT(BREXIT) or CONTEXT(BRIDGE) is specified, the name of the
bridge formatter user-replaceable program which is used to handle API
commands emulated by the bridge.

BRIDGE_TRANSACTION_ID
Optional Parameter

 The transaction that started the task running in a bridge environment.
CALL_EXIT_FOR_SYNC

Optional Parameter

 Indicates if the bridge exit will be called for processing an explicit or implicit
syncpoint

Values for the parameter are:
 NO
 YES

CONTEXT
Optional Parameter

 The current program link level

Chapter 70. Application Manager Domain (AP) 605

Values for the parameter are:
 BREXIT: a bridge exit or formatter is in control
 BRIDGE: a task with a bridge exit is in control
 NORMAL: the task is not running in a bridge environment.

FACILITYTOKEN
Optional Parameter

 The 8 byte token used to represent the bridge session
IDENTIFIER

Optional Parameter

 Data created by the bridge exit for problem determination purposes.
START_CODE

Optional Parameter

 The emulated startcode of the user transaction
START_TYPE

Optional Parameter

 Indicates how the task was started in the bridge environment.

Values for the parameter are:
 LINK: the task was started using the Link3270 bridge.
 START: the task was started using the START BREXIT mechanism.

CCNV gate, CONVERT_ADS function
Convert an application data structure (ADS) between a client and server code
page.

Input Parameters
ADS_1

The application data structure to be converted.
RESOURCE_NAME

The name of the resource to be converted.
RESOURCE_TYPE

The type of resource to be converted.

 Values for the parameter are:
 FC
 IC
 PC
 TD
 TS

TARGET
The target code page for the data conversion.

 Values for the parameter are:
 ASCII
 EBCDIC

ADS_2
Optional Parameter

 A second application data structure to be converted, used only when
RESOURCE_TYPE(FC) is specified.

BINARY_FORMAT
Optional Parameter

 The binary format in which numeric data is represented.

Values for the parameter are:

606 CICS TS for z/OS 4.1: Diagnosis Reference

BIG_ENDIAN
 LITTLE_ENDIAN

CLIENT_CCSID
Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used by the
client.

CLIENT_INDEX
Optional Parameter

 Specifies the conversion table associated with the CLIENT_CCSID parameter.
CNV_ENTRY_TOKEN

Optional Parameter

 A pointer to a DFHCNV TYPE=ENTRY record.
CNV_TABLE_TOKEN

Optional Parameter

 The address at which DFHCNV is loaded.
SERVER_CCSID

Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used by the
server.

SERVER_INDEX
Optional Parameter

 Specifies the conversion table associated with the SERVER_CCSID parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED

Chapter 70. Application Manager Domain (AP) 607

SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCNV gate, CONVERT_DATA function
Convert a block of data between a client and server code page.

Input Parameters
SEGMENTED

A binary value that indicates whether the data to be converted is segmented or
in a single buffer.

 Values for the parameter are:
 NO
 YES

CONVERSION_TOKEN
Optional Parameter

 A token that represents the server and client code page conversion tables.
SOURCE_BUFFER

A pointer to the buffer containing the data to be converted.
SOURCE_CCSID

Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used to encode
the source data.

SOURCE_ORIGIN
Optional Parameter

 Contains 64-bit origin address for the SOURCE_BUFFER parameter.
TARGET_BUFFER

A pointer to the buffer which will contain the converted data.
TARGET_CCSID

Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used to encode
the target data.

608 CICS TS for z/OS 4.1: Diagnosis Reference

TARGET_ORIGIN
Optional Parameter

 Contains 64-bit origin address for the TARGET_BUFFER parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

Chapter 70. Application Manager Domain (AP) 609

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONVERSION_TOKEN_OUT
Optional Parameter

 A token that represents the server and client code page conversion tables.
SUBSTITUTION

Optional Parameter

 A binary value that indicates whether substitution characters were present in
the input data.

Values for the parameter are:
 NO
 YES

CCNV gate, CREATE_CONVERSION_TOKEN function
Create a conversion token that represents the Coded Character Set Identifier
(CCSID) of the source data and of the target data.

Input Parameters
SOURCE_CCSID

The CCSID of the source data.
TARGET_CCSID

The CCSID of the target data.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED

610 CICS TS for z/OS 4.1: Diagnosis Reference

SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

CONVERSION_TOKEN
A token that represents the CCSIDs of both source and target data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCNV gate, EXTRACT_ADS function
Obtain an application data structure (ADS) for data conversion.

Input Parameters
ADS_1

The application data structure to be converted.
RESOURCE_NAME

The name of the resource to be converted.
RESOURCE_TYPE

The type of resource to be converted.

 Values for the parameter are:
 FC
 IC
 PC
 TD
 TS

TARGET
The target code page for the data conversion.

 Values for the parameter are:
 ASCII
 EBCDIC

ADS_2
Optional Parameter

 A second application data structure to be converted, used only when
RESOURCE_TYPE(FC) is specified.

BINARY_FORMAT
Optional Parameter

 The binary format in which numeric data is represented.

Chapter 70. Application Manager Domain (AP) 611

Values for the parameter are:
 BIG_ENDIAN
 LITTLE_ENDIAN

CNV_ENTRY_TOKEN
Optional Parameter

 A pointer to a DFHCNV TYPE=ENTRY record.
CNV_TABLE_TOKEN

Optional Parameter

 The address at which DFHCNV is loaded.
SERVER_INDEX

Optional Parameter

 Specifies the conversion table associated with the SERVER_CCSID parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID

612 CICS TS for z/OS 4.1: Diagnosis Reference

CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CLIENT_CCSID
Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used by the
client.

SERVER_CCSID
Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used by the
server.

CCNV gate, FREE_CONVERSION_TOKEN function
Free a conversion token

Input Parameters
C32_TOKEN

The 3270 data conversion token to be freed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN

Chapter 70. Application Manager Domain (AP) 613

SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCNV gate, GET_CONVERSION_TOKEN function
Retrieve a conversion token.

Input Parameters
C32_TOKEN

The 3270 data conversion token.
CGCSGID_CP

Optional Parameter

 The server code page
CGCSGID_CS

Optional Parameter

 The server character set.
CICS_CCSID

Optional Parameter

 The CICS code page.
CLIENT_INDEX

Optional Parameter

 The client conversion table to use.
IBM_CCSID

Optional Parameter

 The IBM-assigned number of a Coded Character Set Identifier (CCSID).
SERVER_INDEX

Optional Parameter

 The server conversion table to use.

614 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCNV gate, INITIALISE function
Initialize code page conversion services.

Chapter 70. Application Manager Domain (AP) 615

Input parameters

None.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

616 CICS TS for z/OS 4.1: Diagnosis Reference

CCNV gate, INQUIRE_CONVERSION_SIZE function
Determine the size of the buffer that is required to receive the output from a data
conversion operation.

Input Parameters
SEGMENTED

A binary value that indicates whether the data to be converted is segmented or
in a single buffer.

 Values for the parameter are:
 NO
 YES

SOURCE_BUFFER
A pointer to the buffer containing the data to be converted.

CONVERSION_TOKEN
Optional Parameter

 A token that represents the server and client code page conversion tables.
SOURCE_CCSID

Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used to encode
the source data.

SOURCE_ORIGIN
Optional Parameter

 Contains 64-bit origin address for the SOURCE_BUFFER parameter.
TARGET_CCSID

Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used to encode
the target data.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN

Chapter 70. Application Manager Domain (AP) 617

INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SIZE
The size of the buffer that is required to receive the output from a data
conversion operation.

CONVERSION_TOKEN_OUT
Optional Parameter

 A token that represents the server and client code page conversion tables.

CCNV gate, VERIFY_CGCSGID function
Verify that server code page and character set identifiers are valid.

Input Parameters
CGCSGID_CP

Optional Parameter

 The server code page
CGCSGID_CS

Optional Parameter

 The server character set.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP

618 CICS TS for z/OS 4.1: Diagnosis Reference

MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CLIENT_INDEX
Optional Parameter

 The client conversion table to use.
IBM_CCSID

Optional Parameter

 The IBM-assigned number of a Coded Character Set Identifier (CCSID).
SERVER_INDEX

Optional Parameter

 The server conversion table to use.

Chapter 70. Application Manager Domain (AP) 619

CCNV gate, VERIFY_CICS_CCSID function
Verify that a CICS Coded Character Set Identifier (CCSID) is valid.

Input Parameters
CICS_CCSID

Optional Parameter

 The CICS code page.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED

620 CICS TS for z/OS 4.1: Diagnosis Reference

TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CLIENT_INDEX
Optional Parameter

 The client conversion table to use.
IBM_CCSID

Optional Parameter

 The IBM-assigned number of a Coded Character Set Identifier (CCSID).
SERVER_INDEX

Optional Parameter

 The server conversion table to use.

CCNV gate, VERIFY_IANA_CCSID function
Verify that an IANA Coded Character Set Identifier (CCSID) is valid.

Input Parameters
IANA_CCSID

The IANA CCSID to be verified.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP
 CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID

Chapter 70. Application Manager Domain (AP) 621

SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CLIENT_INDEX
Optional Parameter

 The client conversion table to use.
IBM_CCSID

Optional Parameter

 The IBM-assigned number of a Coded Character Set Identifier (CCSID).
SERVER_INDEX

Optional Parameter

 The server conversion table to use.

CCNV gate, VERIFY_IBM_CCSID function
Verify that an IBM Coded Character Set Identifier (CCSID) is valid.

Input Parameters
IBM_CCSID

Optional Parameter

 The IBM-assigned number of a Coded Character Set Identifier (CCSID).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 KEDD_ERROR
 LMLM_ERROR
 LOCK_FAILURE
 LOOP
 MULTI_ERROR
 SMAD_ERROR
 SMGF_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADS_1_OMITTED
 ADS_2_NOT_SUPP

622 CICS TS for z/OS 4.1: Diagnosis Reference

CGCSGID_NOT_SUPP
 CICS_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_KNOWN
 CLIENT_CCSID_NOT_SUPP
 COMBINATION_UNSUPPORTED
 CONVERSION_NOT_REQUIRED
 CONVERSION_NOT_SUPP
 IANA_CCSID_NOT_KNOWN
 IANA_CCSID_NOT_SUPP
 IBM_CCSID_NOT_KNOWN
 INSUFFICIENT_STORAGE
 INTERNAL_CONVERSION_ERROR
 SERVER_CCSID_NOT_KNOWN
 SERVER_CCSID_NOT_SUPP
 SERVER_UNSUPPORTED
 SERVICE_NOT_AVAILABLE
 SOURCE_CCSID_INVALID
 SOURCE_DATA_INCOMPLETE
 TARGET_BUFFER_EXHAUSTED
 TARGET_CCSID_INVALID
 ZOS_CONVERSION_ERROR

The following values are returned when RESPONSE is INVALID:
 BINARY_FORMAT_INVALID
 CNV_ENTRY_TOKEN_INVALID
 CNV_TABLE_NOT_LOADED
 CNV_TABLE_NOT_VALID
 CNV_TABLE_TOKEN_INVALID
 INVALID_FORMAT
 INVALID_FUNCTION
 RESOURCE_TYPE_INVALID
 CONV_TOKEN_OMITTED
 SOURCE_CCSID_OMITTED
 TARGET_CCSID_OMITTED
 TARGET_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CLIENT_INDEX
Optional Parameter

 The client conversion table to use.
DBCS_CODE

Optional Parameter

 A binary value indicating whether the CCSID represent a double byte character
set.

Values for the parameter are:
 NO
 YES

SERVER_INDEX
Optional Parameter

 The server conversion table to use.

CQCQ gate, CLOSE_MVS_CIB_QUEUE function
Close the MVS console interface block (CIB) queue.

Chapter 70. Application Manager Domain (AP) 623

Input Parameters
CLOSE

Specifies whether the queue should be closed immediately.

 Values for the parameter are:
 IMMEDIATE
 NORMAL

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, DEFER_CIB function
This function moves the first CICS console interface block (CIB) from the QR TCB
processed_n CIB queue to the QR TCB deferred CIB queue.

The function is invoked if a definition for the console has to be autoinstalled and
the definition for another console is currently being autoinstalled.

CICS CIBs on the QR TCB deferred CIB queue will be returned to the QR TCB
processed_n CIB queue at a time of the caller's choosing.

Input Parameters
CIB_TOKEN

The address of the first CICS CIB on the QR TCB processed_n queue.
MVS_CIB

The address of the MVS CIB embedded in the first CICS CIB on the QR TCB
processed_n queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CIB_TOKEN_INVALID
 MVS_CIB_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, GET_CIB function
This function returns a pointer to the MVS console interface block (CIB) embedded
in the first CICS CIB on the QR TCB processed_n CIB queue.

If the queue is empty then any CICS CIBs on the CQ TCB processed_n CIB queue
are moved to the QR TCB processed_n CIB queue. If the queue is still empty then
an exception response, either reason CIB_QUEUE_EMPTY or reason
CIB_QUEUE_CLOSED is returned.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CIB_QUEUE_CLOSED
 CIB_QUEUE_EMPTY

CIB_TOKEN
The address of the first CICS CIB on the QR TCB processed_n queue.

624 CICS TS for z/OS 4.1: Diagnosis Reference

MVS_CIB
The address of the MVS CIB embedded in the first CICS CIB on the QR TCB
processed_n queue.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, GET_PROCESSED_CIB function
Return a pointer to the MVS console interface block (CIB) embedded in the first
CICS CIB on the CQ TCB processed CIB queue.

If the queue is empty then any CICS CIBs on the QR TCB processed CIB queue are
moved to the CQ TCB processed CIB queue.

If the queue is still empty then an exception response, either CIB_QUEUE_EMPTY
or CIB_QUEUE_CLOSED, is returned.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CIB_QUEUE_EMPTY

MVS_CIB
The address of the MVS CIB embedded in the first CICS CIB on the QR TCB
processed_n queue.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, INITIALIZE function
This function initializes the CQ component.

Initialization consists of the following steps:
v Allocate storage for the anchor block for the CQ component
v Set the address of the anchor block in the CSA optional features list
v Allocate storage for 254 CICS console interface blocks (CIBs); MVS supports a

maximum of 255 concurrent CIBS, however one CIB is effectively reserved for
CEKL

v Attach the CQ TCB
v Attach the CQ system task, progam DFHCQSY

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 SMAD_ERROR
 SMGF_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, MERGE_CIB_QUEUES function
Concatenates the QR TCB deferred console interface block (CIB) queue and the QR
TCB processed_n CIB queue to form an updated QR TCB processed_n CIB queue.

Chapter 70. Application Manager Domain (AP) 625

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, PUT_CIB function
Removes the first CICS console interface block (CIB) from the CQ TCB free CIB
queue, create the CICS CIB from the MVS CIB, and add the CICS CIB to the head
of the CQ TCB processed_n queue.

Input Parameters
MVS_CIB

The address of the MVS CIB embedded in the first CICS CIB on the QR TCB
processed_n queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CICS_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, PUT_PROCESSED_CIB function
Move the first CICS console interface block (CIB) from the QR TCB processed_n
CIB queue to the QR TCB processed_y CIB queue.

Input Parameters
CIB_TOKEN

The address of the first CICS CIB on the QR TCB processed_n queue.
MVS_CIB

The address of the MVS CIB embedded in the first CICS CIB on the QR TCB
processed_n queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CIB_TOKEN_INVALID
 MVS_CIB_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CQCQ gate, TRACE_PUT_CQ function
Makes an entry in the CQ trace table. CQ trace entries are fixed length as the CQ
trace table is held in main storage. Each trace entry can contain up to 128 bytes,
the current limit, of data.

Input Parameters
MVS_CIB

The address of the MVS CIB embedded in the first CICS CIB on the QR TCB
processed_n queue.

POINT_ID
The trace point identifier.

626 CICS TS for z/OS 4.1: Diagnosis Reference

DATA1
Optional Parameter

 The data to be traced.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, DISCARD_EVENTBINDING function
DISCARD_EVENTBINDING removes the definition of an event binding identified
by the name passed by eb_name from the CICS system, so that the system no
longer has access to the resource. The event binding must be disabled before it can
be discarded.

Input Parameters
EB_NAME

The name of the event binding.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 IN_USE
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, END_BROWSE_CAPTURESPEC function
END_BROWSE_CAPTURESPEC ends a browse of capture specifications.

Input Parameters
CS_BROWSE_TOKEN

The token that identifies the browse operation.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, END_BROWSE_EVENTBINDING function
END_BROWSE_EVENTBINDING of the ECIS gate ends a browse of event
bindings.

Chapter 70. Application Manager Domain (AP) 627

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|
|

Input Parameters
EB_BROWSE_TOKEN

The token that identifies the browse operation.

Output Parameters
REASON

The following value is returned when RESPONSE is DISASTER:
 UNKNOWN_DIRECTORY

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, GET_NEXT_CAPTURESPEC function
GET_NEXT_CAPTURESPEC returns information about the next capture
specification in the browse.

Input Parameters
CS_BROWSE_TOKEN

The token that identifies the current browse operation.

Output Parameters
CS_NAME

The name of the capture specification.
<CAPTURE_TYPE>

The capture point type.

 The values of this parameter are:
 PRECOMMAND
 POSTCOMMAND
 PROGRAMINIT

<CAPTURE_POINT>
The verb or adverb associated with this command or blank.

<EVENT_NAME>
The name of the event binding.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 BROWSE_END_EARLY

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, GET_NEXT_EVENTBINDING function
GET_NEXT_EVENTBINDING returns information about the next event binding in
the browse.

628 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

Input Parameters
EB_BROWSE_TOKEN

The token that identifies the current browse object.

Output Parameters
EB_NAME

The name of the event binding.
<EB_STATUS>

The status of the event binding.

 The values of this parameter are:
 DISABLED
 ENABLED

<EB_USERTAG>
The current usertag of the event binding.

 REASON
The following value is returned when RESPONSE is DISASTER:
 UNKNOWN_DIRECTORY

The following value is returned when RESPONSE is EXCEPTION:
 BROWSE_END

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, INQ_CAPTURESPEC function
INQ_CAPTURESPEC retrieves information about a specified capture specification.

Input Parameters
CS_NAME

The name of the capture specification.
EB_NAME

The name of the event binding to be browsed for the associated capture
specifications.

Output Parameters
<CAPTURE_TYPE>

The capture point type.

 The values of this parameter are:
 PRECOMMAND
 POSTCOMMAND
 PROGRAMINIT

<CAPTURE_POINT>
The verb or adverb associated with this command or blank.

<EVENT_NAME>
The name of the event binding.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CS_NOT_FOUND
 EB_NOT_FOUND

The following values are returned when RESPONSE is INVALID:

Chapter 70. Application Manager Domain (AP) 629

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, INQ_EVENTBINDING function
INQ_EVENTBINDING retrieves information about a specified event binding.

Input Parameters
EB_NAME

The name of the event binding.

Output Parameters
<EB_STATUS>

The status of the event binding.

 The values of this parameter are:
 ENABLED
 DISABLED

<EB_USERTAG>
The usertag of the event binding.

REASON
The following value is returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, INQ_EVENTPROCESS function
INQ_EVENTPROCESS retrieves the status of event processing.

Output Parameters
EP_STATUS

The current status of event processing.

 The values of this parameter are:
 DRAINING
 STARTED
 STOPPED

REASON
The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, SET_EVENTPROCESS function
SET_EVENTPROCESS sets the status of event processing.

630 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

Input Parameters
EP_STATUS

The new status of event processing.

 The values of this parameter are:
 DRAIN
 DRAINEND
 START
 STOP

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 ALREADY_DRAINING

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, SET_EVENTBINDING function
SET_EVENTBINDING sets the status of the specified event binding.

Input Parameters
EB_NAME

The name of the event binding.
EB_STATUS

The new status of the event binding.

 The values of this parameter are:
 ENABLED
 DISABLED

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, START_BROWSE_CAPTURESPEC function
START_BROWSE_CAPTURESPEC starts a browse of capture specifications.

Input Parameters
EB_NAME

The name of the event binding to be browsed for the associated capture
specifications.

Chapter 70. Application Manager Domain (AP) 631

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|

Output Parameters
CS_BROWSE_TOKEN

The token that identifies the browse operation.
REASON

The following value is returned when RESPONSE is EXCEPTION:
 EB_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECIS gate, START_BROWSE_EVENTBINDING function
The START_BROWSE function of ECIS gate starts a browse of event bindings.

Input Parameters

Output Parameters
EB_BROWSE_TOKEN

The token that identifies the browse operation.
REASON

The following value is returned when RESPONSE is DISASTER:
 UNKNOWN_DIRECTORY

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ECSE gate, SIGNAL_EVENT function
SIGNAL_EVENT identifies a place in an application program where one or more
events can be emitted.

Input Parameters
EVENT

The name of the event.
<CHANNEL>

A channel name containing the source of the event data. It is optional and
must not be used with the data parameter.

<DATA>
An address and a length of the area containing the source of the event data. It
is optional and must not be used with the channel parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 EVENT_ERROR
 CHANNEL_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT

632 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

INVALID_FUNCTION
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCAT gate, INQ_BASEDSNAME function
This function is used only when the DSNB has not yet been validated.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
BASEDSNAME

The 44–character name of the base data set.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATASET_NOT_KNOWN
 DATASET_NOT_VSAM
 SHOWCAT_ERROR
 SHOWCAT_AIX_ERROR
 ASSOC_NOT_FOUND
 UNKNOWN_PATH_TYPE
 LOCATE_ERROR
 BASE_DATASET_NOT_KNOWN
 DATASET_MIGRATED

The following value is returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, INQ_CATALOG_QUIESCESTATE function
This function returns the quiesce state of the data set.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
QUIESCESTATE

The quiesce state of the data set.

 Values for the parameter are:
 QUIESCED
 UNQUIESCED

Chapter 70. Application Manager Domain (AP) 633

|
|
|
|

|

REASON
The following values are returned when RESPONSE is EXCEPTION:
 DATASET_NOT_KNOWN
 BDAM_OR_PATH
 IOERR
 SYSTEM_BACK_LEVEL

The following value is returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, INQ_CATALOG_RECOV_REQD function
This function inquires on the catalog recovery required flag.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
RECOV_REQD

The state of the catalog recovery required flag.

 Values for the parameter are:
 YES
 NO

REASON
The following values are returned when RESPONSE is EXCEPTION:
 DATASET_NOT_KNOWN
 BDAM_OR_PATH
 IOERR
 SYSTEM_BACK_LEVEL

The following value is returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

634 CICS TS for z/OS 4.1: Diagnosis Reference

FCAT gate, INQ_DATASET_STATE function
This function returns the state of the backup-while-open (BWO) bits for a named
data set; the state is either fuzzy or sharp.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
STATE

The state of the backup-while-open (BWO) bits for the data set.

 Values for the parameter are:
 FUZZY
 SHARP

REASON
The following values are returned when RESPONSE is EXCEPTION:
 FORWARD_RECOVERY_NEEDED
 RESTORE_AND_FRECOV_NEEDED

The following values are returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, SET_BWO_BITS_DISABLED function
This function sets the backup-while-open (BWO) bits to indicate that a data set is
no longer eligible for fuzzy image copy.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 SYSTEM_BACK_LEVEL

The following values are returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED
 SET_BWO_DISABLED_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION

Chapter 70. Application Manager Domain (AP) 635

DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, SET_BWO_BITS_ENABLED function
This function sets the backout-while-open (BWO) bits to indicate that a data set is
eligible for fuzzy image copy.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATASET_NOT_KNOWN
 FORWARD_RECOVERY_NEEDED
 RESTORE_AND_FRECOV_NEEDED
 SYSTEM_BACK_LEVEL
 HSMDSS_BACK_LEVEL

The following value is returned when RESPONSE is DISASTER:
 INQ_BWO_ENABLED_FAILED
 RECOVERY_ENTERED
 SET_BWO_ENABLED_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, SET_CATALOG_RECOV_POINT function
This function updates the recovery point in the catalog for a named data set.

Input Parameters
DSNAME

The 44-character name of the data set.
RECOVERY_POINT

The 8-character recovery point.

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 SYSTEM_BACK_LEVEL

The following values are returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED
 SET_CATALOG_RECOV_FAILED

636 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, SET_CATALOG_RECOV_REQD function
This function sets the recovery required flag in the catalog.

Input Parameters
DSNAME

The 44-character name of the data set.
RECOV_REQD

The catalog recovery required flag.

 Values for the parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 IOERR
 SYSTEM_BACK_LEVEL

The following value is returned when RESPONSE is DISASTER:
 RECOVERY_ENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCAT gate, SET_CATALOG_RECOVERED function
This function sets the backup-while-open (BWO) bits of the catalog to a forward
recovered state for a named data set.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATASET_NOT_KNOWN

Chapter 70. Application Manager Domain (AP) 637

SYSTEM_BACK_LEVEL

The following values are returned when RESPONSE is DISASTER:
 INQ_SMS_MANAGED_FAILED
 RECOVERY_ENTERED
 SET_CATALOG_RECOV_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, CHECK function
This function returns the results of the previous operation.

Input Parameters
CHECK_TOKEN

The token that was returned on the previous request for which the results are
being checked.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
CONFLICTING_QUIESCE

Indicates the type of quiesce that conflicts with this request. Values for the
parameter are:
 QUIESCE
 UNQUIESCE
 NONBWO_END
 BWO_END
 NONBWO_START
 BWO_START

REASON
The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

638 CICS TS for z/OS 4.1: Diagnosis Reference

FCCA gate, COLD_START_RLS function
This function performs a cold start for the control access method control block
(ACB).

This request is issued as part of CICS cold start processing. CICS issues an
IDARECOV TYPE=COLDSTART call to SMSVSAM to release all record-level
sharing (RLS) locks owned by this CICS and to clear the lost locks status and the
non-RLS update-permitted state, for all data sets in this CICS region.

Input Parameters
SUBSYSNM

A pointer to an IFGSYSNM structure.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, DRAIN_CONTROL_ACB function
This function drains the control access method control block (ACB) when file
control detects that an instance of the SMSVSAM server has failed.

DFHFCCA sets an indicator in file control static storage so that no other
record-level sharing (RLS) activity can proceed and then DFHFCCA drains all
existing RLS access. The server sequence number in file control static storage is
incremented, all RLS ACBs are closed, and the control ACB is unregistered.

Input Parameters

None.

Output Parameters

REASON
The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATION

 ABEND

Chapter 70. Application Manager Domain (AP) 639

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

 EXCEPTION

 DISASTER

 INVALID

 KERNERROR

 PURGED

FCCA gate, INQUIRE_RECOVERY function
This function inquires on the record-level sharing (RLS) recovery state; it is issued
as part of CICS startup processing. CICS makes an IDAINQRC request to VSAM to
obtain the information necessary to determine the RLS recovery actions that are
required by CICS.

Input Parameters
AREA_PTR

A fullword pointer to the address of the area where the IFGINQRC
information is to be returned.

AREA_LENGTH
A fullword binary field indicating the length of the supplied area.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REQUIRED_LENGTH

A fullword binary field containing the length of the IFGINQRC area to be
returned, if its length exceeds the length of the supplied area.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 AREA_TOO_SMALL
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, LOST_LOCKS_COMPLETE function
This function informs VSAM that lost locks (LL) recovery is complete.

640 CICS TS for z/OS 4.1: Diagnosis Reference

CICS issues an IDARECOV TYPE=LL request to SMSVSAM when it has completed
recovery processing for a data set that is in lost locks status. SMSVSAM resets the
state of the data set in the sharing control data set to indicate that the data set is
no longer in lost locks state with respect to this CICS.

Input Parameters
DATASET

The 44-character name of the base data set for which CICS has completed lost
locks recovery.

RESTART
Optional Parameter

 Indicates whether the call was issued by file control restart. Values for the
parameter are:
 YES
 NO

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, QUIESCE_COMPLETE function
Quiesce processing is complete. When CICS has completed the processing required
for a quiesce request from SMSVSAM, it issues an IDAQUIES call to SMSVSAM
with a quiesce type of QUICMP.

Input Parameters
DATASET

The 44-character name of the base data set that has completed quiesce
processing.

VSAM_QUIESCE_TOKEN
A token used to relate quiesce completion to the quiesce request that has been
completed. This token is supplied by SMSVSAM when the quiesce request is
received by CICS.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.

Chapter 70. Application Manager Domain (AP) 641

REASON
The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, QUIESCE_REQUEST function
This function issues a record-level sharing (RLS) quiesce request.

DFHFCCA issues quiesce requests to SMSVSAM on behalf of the quiesce
component of CICS; it issues IDAQUIES calls of the following types:
v QUICLOSE to request SMSVSAM to notify all CICS systems that have ACBs

open against this data set that these ACBs are to be closed. In addition, the data
set is marked in the VSAM catalog as being quiesced after these ACBs have
been closed.

v QUIOPEN to request SMSVSAM to mark the data set as no longer quiesced; that
is, it is unquiesced. In addition, QUIOPEN will cancel a QUICLOSE that is in
progress.

v QUIBEND to request SMSVSAM to cancel a BWO backup of a data set that is in
progress.

v QUICEND to request SMSVSAM to cancel a non-BWO backup of a data set that
is in progress.

Input Parameters
DATASET

The 44-character name of the base data set to be quiesced.
IMMEDIATE

Optional Parameter

 This parameter applies only when the QUIESCE_TYPE parameter is set to
QUIESCE. This parameter indicates whether the quiesce will force files to close
immediately, or will allow inflight units of work to reach sync point. Values for
the parameter are:
 YES
 NO

QUIESCE_TYPE
The type of quiesce. Values for the parameter are:
 QUIESCE
 UNQUIESCE
 NONBWO_END
 BWO_END

642 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
CHECK_TOKEN

A token that will be used on the CHECK request.
CONFLICTING_QUIESCE

Indicates the type of quiesce that conflicts with this request. Values for the
parameter are:
 QUIESCE
 UNQUIESCE
 NONBWO_END
 BWO_END
 NONBWO_START
 BWO_START

REASON
The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, REGISTER_CONTROL_ACB function
This function registers the control access method control block (ACB). The control
ACB is opened using an IDAREGP request to SMSVSAM. The control ACB must
be registered before CICS can open any other ACBs for record-level sharing (RLS)
access.

Input Parameters

None.

Output Parameters
VSAM_RETURN_CODE

A fullword return code from VSAM.
VSAM_REASON_CODE

A fullword 32-bit reason code from VSAM.
VSAM_ERROR_DATA

An 8-byte field containing error data returned by VSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATION

Chapter 70. Application Manager Domain (AP) 643

ABEND
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, RELEASE_LOCKS function
This function releases all locks for the unit of work (UOW). CICS issues an
IDALKREL request to SMSVSAM as part of commit processing at the end of every
UOW. This request causes VSAM to release all locks owned by that UOW.

Input Parameters
LUWID

A fullword pointer to an IFGLUWID structure containing the ID for the unit of
work.

RESTART
Optional Parameter

 Indicates whether the call was issued by file control restart. Values for the
parameter are:
 YES
 NO

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, RESET_NONRLS_BATCH function
Resets the state of the data set in the sharing control data set to indicate that the
batch override, or non-RLS update permitted, state no longer needs to be reported
to CICS when it opens the data set.

644 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
DATASET

The 44-character name of the base data set that is going to have its state
cleared.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, RETAIN_DATASET_LOCKS function
Retains all the locks for the data set in this unit of work (UOW).

CICS issues an IDARETLK TYPE=SS call to SMSVSAM when a UOW has suffered
a backout failure on a data set. This call requests SMSVSAM to mark all locks
against the data set owned by the UOW for conversion into retained locks on a
subsequent IDALKREL call.

Input Parameters
LUWID

A fullword pointer to an IFGLUWID structure containing the ID for the unit of
work.

DATASET
The 44-character name of the base data set that has had a backout failure.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 645

OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, RETAIN_UOW_LOCKS function
Retains all the locks in this unit of work (UOW).

CICS issues an IDARETLK TYPE=IND call to SMSVSAM when a UOW has
encountered an indoubt failure. This call requests VSAM to mark all locks owned
by the UOW for conversion into retained locks on a subsequent IDALKREL call.

Input Parameters
LUWID

A pointer to an IFGLUWID structure containing the ID for the unit of work.

Output Parameters
ACCMETH_RETURN_CODE

A 2-byte code returned by SMSVSAM.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following value is returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCA gate, UNREGISTER_CONTROL_ACB function
This function is used to unregister the control access method control block (ACB).
The record-level sharing (RLS) control ACB is closed using an IDAUNRP request
to SMSVSAM. The control ACB cannot be unregistered while any other ACBs are
open for RLS access.

Input Parameters

None.

Output Parameters
VSAM_RETURN_CODE

A fullword return code from VSAM.
VSAM_REASON_CODE

A fullword reason code from VSAM.

646 CICS TS for z/OS 4.1: Diagnosis Reference

REASON
The following values are returned when RESPONSE is EXCEPTION:
 VSAM_REQUEST_ERROR
 RLS_FAILURE

The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATION
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCI gate, INQUIRE function
FCCI is the parameter list used by file control to communicate with the coupling
facility data table (CFDT) cross-memory server, DFHCFMN, for the table inquire
function.

Input Parameters
BROWSE

Optional Parameter

 This parameter specifies whether the inquire is for a single table or for the first
or next table in a browse. If this parameter is omitted, a single table inquire is
performed. The FIRST option indicates a search for a table greater than or
equal to the specified name, and NEXT indicates a search for a table greater than
the specified name.

Values for the parameter are:
 FIRST
 NEXT

TABLE NAME
16-character table name; this name is typically the CICS file name padded with
trailing blanks.

TRANSACTION_NUMBER
Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.

Output Parameters

ACCESS_MODE
Returned as EXCLUSIVE if the table is open for exclusive access; otherwise,
SHARED.

 This parameter can take the following values:
 EXCLUSIVE
 SHARED

AVAILABLE
Indicates whether new opens are currently allowed.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 647

YES

 NO

CURRENT_RECORDS
This fullword binary field indicates the number of records in the table the last
time the current server accessed the table.

CURRENT_USERS
This fullword binary field indicates the number of user opens that are
currently active against the table.

INITIAL_LOAD
Specifies whether initial load is required. If not, the first open creates an empty
table.

 Values for the parameter are:
 YES

 NO

KEY_LENGTH
This fullword binary field specifies the table key length in bytes, in the range 1
- 16.

LOADED
Indicates whether the table has been loaded. If the table was created as empty
this is set to YES as if loading had already been done. If not, the value is set to
YES using the SET function when loading is complete.

 Values for the parameter are:
 YES

 NO

MAXIMUM_RECORDS
This fullword binary field specifies the maximum number of records that can
be stored in the table. If no maximum limit is required, the maximum positive
number (hex 7FFFFFFF) can be specified.

OPEN_MODE
Indicates whether the table is currently open and, if so, whether it is open for
read-only or read/write access.

 This parameter can take the following values:
 NONE
 READ_ONLY
 READ_WRITE

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 TABLE_NOT_FOUND
 CF_ACCESS_ERROR

RECORD_LENGTH
This fullword binary field specifies the table maximum record length, in the
range 1 - 32767.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHARED ACCESS
If the table is currently open for exclusive access, this parameter indicates the

648 CICS TS for z/OS 4.1: Diagnosis Reference

level of shared access permitted by the exclusive user. If the table is not open
for exclusive access, this parameter normally indicates that read and write
sharing is allowed.

 Values for the parameter are:
 NONE
 READ_ONLY
 READ_WRITE

TABLE_NAME
The 16-character table name; this name is typically the CICS file name padded
with trailing blanks.

UPDATE_MODEL
Specifies the method to be used for updating the table. This parameter takes
one of the following values:
CONTENTION

Indicates that version compare and swap is used for updating the table.
LOCKING

Indicates that normal update locking is used for updating the table.
RECOVERABLE

Indicates that backout support is included with normal update locking.

FCCR gate, DELETE function
This function deletes a record from a coupling facility data table (CFDT) following
a read for update.

Input Parameters
KEY

The 16-byte key of the record to be deleted.
KEY_COMPARISON

The comparison condition; this parameter can take the following values:
 LT
 LTEQ
 EQ
 GTEQ
 GT

KEY_MATCH_LENGTH
The key match length for generic key operations.

SUSPEND
Specifies whether to wait if the requested record is locked by an active lock.
Values for the parameter are:
 YES
 NO

TABLE_NAME
This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

UPDATE_TOKEN
The token returned by the preceding read for update.

Chapter 70. Application Manager Domain (AP) 649

Output Parameters
KEY

The 16-byte key of the deleted record.
LOCK_OWNER_SYSTEM

This 8-character string identifies the MVS system from which the record lock
was acquired for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is
also set when the wait exit is taken for a lock wait.

LOCK_OWNER_APPLID
This 8-character string identifies the applid of the region that owns the record
lock for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set
when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
This 8-character string identifies the unit of work that owns the record lock for
a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set when the
wait exit is taken for a lock wait.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 RECORD_CHANGED
 RECORD_BUSY
 RECORD_LOCKED
 TABLE_LOADING
 INVALID_REQUEST
 UPDATE_TOKEN_INVALID
 INCOMPLETE_UPDATE
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 UOW_FAILED
 UOW_NOT_IN_FLIGHT
 UOW_TOO_LARGE
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, DELETE_MULTIPLE function
This function deletes records from a coupling facility data table, subject to key
match conditions, until no more records match or an exception occurs.

Input Parameters
KEY

The 16-byte key of the record to be deleted.
KEY_COMPARISON

The comparison condition; this parameter can take the following values:
 LT
 LTEQ

650 CICS TS for z/OS 4.1: Diagnosis Reference

EQ
 GTEQ
 GT

KEY_MATCH_LENGTH
The key match length for generic key operations.

SUSPEND
Specifies whether to wait if the requested record is locked by an active lock.
Values for the parameter are:
 YES
 NO

TABLE_NAME
This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

Output Parameters
DELETED_RECORD_COUNT

The number of records successfully deleted by the DELETE_MULTIPLE
function.

KEY
The 16-byte key of the last record deleted.

LOCK_OWNER_APPLID
This 8-character string identifies the applid of the region that owns the record
lock for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set
when the wait exit is taken for a lock wait.

LOCK_OWNER_SYSTEM
This 8-character string identifies the MVS system from which the record lock
was acquired for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is
also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
This 8-character string identifies the unit of work that owns the record lock for
a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set when the
wait exit is taken for a lock wait.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 RECORD_CHANGED
 RECORD_BUSY
 RECORD_LOCKED
 TABLE_LOADING
 INVALID_REQUEST
 UPDATE_TOKEN_INVALID
 INCOMPLETE_UPDATE
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 UOW_FAILED
 UOW_NOT_IN_FLIGHT
 UOW_TOO_LARGE

Chapter 70. Application Manager Domain (AP) 651

POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, HIGHEST function
This function returns the highest key in a coupling facility data table (CFDT), if
there is one.

Input Parameters
TABLE_NAME

This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

Output Parameters
KEY

Returns the 16-byte key of the highest record.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 TABLE_LOADING
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, LOAD function
This function adds a record to a coupling facility data table (CFDT) during
loading.

652 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
TABLE_NAME

This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

KEY
The 16-byte key of the record to be loaded.

DATA
The address and length of the record data to be loaded.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 DUPLICATE_RECORD
 MAXIMUM_RECORDS_REACHED
 NO_SPACE_IN_POOL
 INVALID_REQUEST
 INVALID_LENGTH
 RECORD_NOT_FOUND
 TABLE_LOADING
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, POINT function
This function locates a record in a coupling facility data table (CFDT).

Input Parameters
KEY

The 16-byte key of the record to be accessed. For approximate key operations,
this parameter specifies the start key and is updated on successful completion
to contain the key of the record accessed.

KEY_COMPARISON
The comparison condition; this parameter can take the following values:
 LT
 LTEQ
 EQ
 GTEQ
 GT

Chapter 70. Application Manager Domain (AP) 653

KEY_MATCH_LENGTH
The key match length for generic key operations.

TABLE_NAME
This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

Output Parameters
KEY

Returns the 16-byte key of the located record.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 TABLE_LOADING
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, READ function
This function reads a record in a coupling facility data table (CFDT) and,
optionally, updates it.

Input Parameters
BUFFER

The input buffer for read requests.
KEY

The 16-byte key of the record to be accessed. For approximate key operations,
this parameter specifies the start key and is updated on successful completion
to contain the key of the record accessed.

KEY_COMPARISON
The comparison condition; this parameter can take the following values:
 LT
 LTEQ
 EQ
 GTEQ
 GT

654 CICS TS for z/OS 4.1: Diagnosis Reference

KEY_MATCH_LENGTH
The key match length for generic key operations.

SUSPEND
Specifies whether to wait if the requested record is locked by an active lock.
Values for the parameter are:
 YES
 NO

TABLE_NAME
This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

Output Parameters
KEY

Returns the 16-byte key of the record.
LOCK_OWNER_APPLID

This 8-character string identifies the applid of the region that owns the record
lock for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set
when the wait exit is taken for a lock wait.

LOCK_OWNER_SYSTEM
This 8-character string identifies the MVS system from which the record lock
was acquired for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is
also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
This 8-character string identifies the unit of work that owns the record lock for
a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set when the
wait exit is taken for a lock wait.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 RECORD_BUSY
 RECORD_LOCKED
 TABLE_LOADING
 INVALID_REQUEST
 INCOMPLETE_UPDATE
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 UOW_FAILED
 UOW_NOT_IN_FLIGHT
 UOW_TOO_LARGE
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

Chapter 70. Application Manager Domain (AP) 655

EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

UPDATE_TOKEN
Returns a token on a read for update.

FCCR gate, READ_DELETE function
The READ_DELETE function reads and deletes a record from a coupling facility
data table. It is not used by CICS.

FCCR gate, REWRITE function
This function rewrites an existing record in a coupling facility data table (CFDT),
following a read for update.

Input Parameters
DATA

The address and length of the record data to be rewritten.
KEY

The 16-byte key of the record to be rewritten.
SUSPEND

Specifies whether to wait if the requested record is locked by an active lock.
Values for the parameter are:
 YES
 NO

TABLE_NAME
This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

UPDATE_TOKEN
The token returned by the preceding read for update.

Output Parameters
LOCK_OWNER_APPLID

This 8-character string identifies the applid of the region that owns the record
lock for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set
when the wait exit is taken for a lock wait.

LOCK_OWNER_SYSTEM
This 8-character string identifies the MVS system from which the record lock
was acquired for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is
also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
This 8-character string identifies the unit of work that owns the record lock for
a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set when the
wait exit is taken for a lock wait.

REASON
The following values are returned when RESPONSE is EXCEPTION:

656 CICS TS for z/OS 4.1: Diagnosis Reference

SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 RECORD_CHANGED
 RECORD_BUSY
 RECORD_LOCKED
 MAXIMUM_RECORDS_REACHED
 NO_SPACE_IN_POOL
 TABLE_LOADING
 INVALID_REQUEST
 INVALID_LENGTH
 UPDATE_TOKEN_INVALID
 INCOMPLETE_UPDATE
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 UOW_FAILED
 UOW_NOT_IN_FLIGHT
 UOW_TOO_LARGE
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, UNLOCK function
This function unlocks a record previously read for update in a coupling facility
data table (CFDT).

Input Parameters
BUFFER

The input buffer for read requests.
KEY

The 16-byte key of the record to be unlocked.
TABLE_NAME

This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

UPDATE_TOKEN
The token returned by the preceding read for update.

Chapter 70. Application Manager Domain (AP) 657

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECORD_NOT_FOUND
 RECORD_CHANGED
 TABLE_LOADING
 INVALID_REQUEST
 UPDATE_TOKEN_INVALID
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 UOW_NOT_IN_FLIGHT
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCR gate, WRITE function
This function writes a new record to a coupling facility data table (CFDT).

Input Parameters
DATA

The address and length of the record data to be added.
KEY

The 16-byte key of the record to be added.
SUSPEND

Specifies whether to wait if the requested record is locked by an active lock.
Values for the parameter are:
 YES
 NO

TABLE_NAME
This 16-character field contains the 8-character name of the CFDT and is
padded with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that open table.

TRANSACTION_NUMBER
This 4-character string identifies the requesting task in the debug trace, if used.

UOW_ID
This 8-character string specifies the unit of work ID. The unit of work ID is
required when updating using the locking model.

Output Parameters
LOCK_OWNER_APPLID

This 8-character string identifies the applid of the region that owns the record
lock for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set
when the wait exit is taken for a lock wait.

658 CICS TS for z/OS 4.1: Diagnosis Reference

LOCK_OWNER_SYSTEM
This 8-character string identifies the MVS system from which the record lock
was acquired for a RECORD_BUSY or RECORD_LOCKED condition. This parameter is
also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
This 8-character string identifies the unit of work that owns the record lock for
a RECORD_BUSY or RECORD_LOCKED condition. This parameter is also set when the
wait exit is taken for a lock wait.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 DUPLICATE_RECORD
 RECORD_BUSY
 RECORD_LOCKED
 MAXIMUM_RECORDS_REACHED
 NO_SPACE_IN_POOL
 TABLE_LOADING
 INVALID_REQUEST
 INVALID_LENGTH
 UPDATE_TOKEN_INVALID
 INCOMPLETE_UPDATE
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 UOW_FAILED
 UOW_NOT_IN_FLIGHT
 UOW_TOO_LARGE
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCT gate, CLOSE function
Ends the connection to the specified table.

Input Parameters
TABLE_NAME

16-character table name. This name is typically the CICS file name padded
with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that table.

TRANSACTION_NUMBER
Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.

Chapter 70. Application Manager Domain (AP) 659

Output Parameters

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

 EXCEPTION

 DISASTER

 INVALID

 KERNERROR

 PURGED

FCCT gate, DELETE function
This function deletes a table if the table is not currently open. A security check for
table access is performed.

Input Parameters
TABLE_NAME

16-character table name. This name is typically the CICS file name padded
with trailing blanks.

TRANSACTION_NUMBER
Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.

Output Parameters

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 ACCESS_NOT_ALLOWED
 TABLE_NOT_FOUND
 EXCLUSIVE_ACCESS_CONFLICT
 TABLE_DESTROYED
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

 EXCEPTION

 DISASTER

 INVALID

 KERNERROR

660 CICS TS for z/OS 4.1: Diagnosis Reference

PURGED

FCCT gate, EXTRACT_STATISTICS function
This function returns information about a table that is currently open, with the
option to reset the statistics.

Input Parameters
RESET_STATISTICS

Optional Parameter

 Specifies whether to reset the statistics. Values for the parameter are:
 YES
 NO

TABLE_NAME
16-character table name. This name is typically the CICS file name padded
with trailing blanks.

TABLE_TOKEN
The token returned by the OPEN function, which must be passed on all
subsequent requests against that table.

TRANSACTION_NUMBER
Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.

Output Parameters

CONTENTION_COUNT
Optional Parameter

 This fullword binary field indicates the number of times a rewrite or delete
failed because of a mismatched version (for the contention model) or the
number of times that a lock was found to be unavailable (for the locking or
recoverable models) since the last statistics reset.

CURRENT_RECORDS
This fullword binary field indicates the number of records in the table the last
time that the current server accessed the table.

CURRENT_USERS
This fullword binary field indicates the number of explicit opens that are
currently active against the table, not including internal recoverable opens
issued by the server.

HIGHEST_RECORDS
Optional Parameter

 This fullword binary field indicates the highest number of records in the table
as seen by the current server at any time since the last statistics reset.

MAXIMUM_RECORDS
Optional Parameter

 This fullword binary field specifies the maximum number of records that can
be stored in the table. If no maximum limit is required, the maximum positive
number (hex 7FFFFFFF) can be specified.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 TABLE_TOKEN_INVALID

Chapter 70. Application Manager Domain (AP) 661

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

 EXCEPTION

 DISASTER

 INVALID

 KERNERROR

 PURGED

FCCT gate, OPEN function
This function defines a table and establishes a connection to it. A security check is
performed for access to the table name. If the table does not exist, it is implicitly
created.

Input Parameters
TABLE_NAME

16-character table name. This name is typically the CICS file name padded
with trailing blanks.

RECORD_LENGTH
This fullword binary field specifies the table maximum record length, in the
range 1 - 32767.

KEY_LENGTH
This fullword binary field specifies the table key length in bytes, in the range 1
- 16.

MAXIMUM_RECORDS
Optional Parameter

 This fullword binary field specifies the maximum number of records that can
be stored in the table. If no maximum limit is required, the maximum positive
number (hex 7FFFFFFF) can be specified.

UPDATE_MODEL
Specifies the method to be used for updating the table. Values for the
parameter are:
CONTENTION

Indicates that version compare and swap is used for updating the table.
LOCKING

Indicates that normal update locking is used for updating the table.
RECOVERABLE

Indicates that backout support is included with normal update locking.
INITIAL_LOAD

Optional Parameter

 Specifies whether initial load is required. If not, the first open creates an empty
table. Values for the parameter are:
 YES
 NO

OPEN_MODE
Optional Parameter

 Specifies the mode in which the file is opened. Values for the parameter are:
 READ_ONLY
 READ_WRITE

662 CICS TS for z/OS 4.1: Diagnosis Reference

The default value for this parameter is READ_WRITE.
ACCESS_MODE

Optional Parameter

 Specifies whether the table is being opened for exclusive or shared use. Values
for the parameter are:
 EXCLUSIVE
 SHARED
 PREFER_SHARED

Only one user at a time can have an exclusive open active. If the table requires
loading and is not yet being loaded, it can be opened only in exclusive mode.
The PREFER_SHARED option means that the table will be opened in exclusive
mode if loading is required; otherwise, it will be opened in shared mode. The
default value for this parameter is SHARED.

SHARED_ACCESS
Optional Parameter

 Specifies for an exclusive mode open whether other users are allowed shared
access to the file at the same time. Values for the parameter are:
 NONE
 READ_ONLY
 READ_WRITE

The default value for this parameter is READ_WRITE.
TRANSACTION_NUMBER

Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.

Output Parameters

ACCESS_MODE
Optional Parameter

 Specifies whether the table is being opened for exclusive or shared use. Values
for the parameter are:
 EXCLUSIVE

 SHARED

 PREFER_SHARED

Only one user at a time can have an exclusive open active. If the table requires
loading and is not yet being loaded, it can be opened only in exclusive mode.
The PREFER_SHARED option means that the table will be opened in exclusive
mode if loading is required; otherwise, it will be opened in shared mode. The
default value for this parameter is SHARED.

CURRENT_RECORDS
This fullword binary field indicates the number of records in the table the last
time that the current server accessed the table.

CURRENT_HIGH_KEY
Optional Parameter

 This 16-character string indicates the key of the last record in the table at the
time of the request.

CURRENT_USERS
This fullword binary field indicates the number of user opens that are
currently active against the table.

Chapter 70. Application Manager Domain (AP) 663

INITIAL_LOAD
Specifies whether initial load is required. If not, the first open creates an empty
table.

 Values for the parameter are:
 YES

 NO

KEY_LENGTH
This fullword binary field specifies the table key length in bytes, in the range 1
- 16.

LOADED
Optional Parameter

 Indicates whether the table has been loaded. If the table was created as empty,
this parameter is set to YES as if loading had already taken place. If not, this
parameter is set to YES using the SET function when loading is complete.

This parameter takes one of the following values:
 YES

 NO

MAXIMUM_RECORDS
Optional Parameter

 This fullword binary field specifies the maximum number of records that can
be stored in the table. If no maximum limit is required, the maximum positive
number (hex 7FFFFFFF) can be specified.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 TABLE_NOT_FOUND
 CF_ACCESS_ERROR

RECORD_LENGTH
This fullword binary field specifies the table maximum record length, in the
range 1 - 32767.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

 EXCEPTION

 DISASTER

 INVALID

 KERNERROR

 PURGED

TABLE_TOKEN
Token returned by the OPEN function which must be passed on all subsequent
requests against that open table.

UPDATE_MODEL
Specifies the method to be used for updating the table. Values for the
parameter are:

664 CICS TS for z/OS 4.1: Diagnosis Reference

CONTENTION
Indicates that version compare and swap is used for updating the table.

LOCKING
Indicates that normal update locking is used for updating the table.

RECOVERABLE
Indicates that backout support is included with normal update locking.

FCCT gate, SET function
This function is used to change the attributes of a table. The maximum number of
records can be changed, the open mode can be changed to indicate that loading is
no longer taking place, and the access mode can be changed from exclusive to
shared.

Input Parameters
ACCESS_MODE

Optional Parameter

 Specifies whether the table is being opened for exclusive or shared use. Values
for the parameter are:
 EXCLUSIVE
 SHARED
 PREFER_SHARED

Only one user at a time can have an exclusive open active. If the table requires
loading and is not yet being loaded, it can be opened only in exclusive mode.
The PREFER_SHARED option means that the table will be opened in exclusive
mode if loading is required; otherwise, it will be opened in shared mode. The
default value for this parameter is SHARED.

AVAILABLE
Optional Parameter

 Indicates whether new open requests are currently allowed for this table.
Values for the parameter are:
 YES
 NO

LOADED
Optional Parameter

 Indicates whether the table has been loaded. If the table was created as empty
this parameter is set to YES as if loading had already taken place. Values for
the parameter are:
 YES
 NO

MAXIMUM_RECORDS
Optional Parameter

 This fullword binary field specifies the maximum number of records that can
be stored in the table. If no maximum limit is required, the maximum positive
number (hex 7FFFFFFF) can be specified.

SHARED_ACCESS
Optional Parameter

 Specifies for an exclusive open mode whether other users are allowed shared
access to the file at the same time. Values for the parameter are:
 NONE
 READ_ONLY
 READ_WRITE

The default value for this parameter is READ_WRITE.

Chapter 70. Application Manager Domain (AP) 665

TABLE_NAME
16-character table name. This name is typically the CICS file name padded
with trailing blanks.

TABLE_TOKEN
Optional Parameter

 Token returned by the OPEN function, which must be passed on all
subsequent requests against that open table. If the table is currently open, the
table token must be specified. If no table token is specified, a security check for
table access is performed.

TRANSACTION_NUMBER
Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.

Output Parameters

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 ACCESS_NOT_ALLOWED
 TABLE_NOT_FOUND
 SHARED_ACCESS_CONFLICT
 EXCLUSIVE_ACCESS_CONFLICT
 ALREADY_SET
 INCORRECT_STATE
 OPTION_NOT_SUPPORTED
 TABLE_TOKEN_INVALID
 TABLE_DESTROYED
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

 EXCEPTION

 DISASTER

 INVALID

 KERNERROR

 PURGED

FCCU gate, BACKOUT function
This function backs out the changes made by an active unit of work and releases
the locks before returning control to the caller.

Input Parameters
TRANSACTION_NUMBER

Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.
UOW_ID

This 8-character string combines the subsystem name with the unit of work
identification in the client region to form the fully qualified unit of work
identifier.

666 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCU gate, COMMIT function
This function commits the changes made by a unit of work and releases all locks
before returning control to the caller.

Input Parameters
TRANSACTION_NUMBER

Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.
UOW_ID

This 8-character string combines the subsystem name with the unit of work
identification in the client region to form the fully qualified unit of work
identifier.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 UOW_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Chapter 70. Application Manager Domain (AP) 667

FCCU gate, INQUIRE function
This function returns information about the status of an active unit of work.

Input Parameters
BROWSE

Optional Parameter

 Specifies whether the inquire is for a single unit of work or for the first or next
unit of work in a browse. If this parameter is omitted, the inquire is assumed
to be a single unit of work inquire. Values for the parameter are:
 FIRST
 NEXT

The FIRST option indicates a search for a UOW ID greater than or equal to the
specified UOW ID, and NEXT indicates a search for a UOW ID greater than the
specified UOW ID.

TRANSACTION_NUMBER
Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.
UOW_ID

This 8-character string combines the subsystem name with the unit of work
identification in the client region to form the fully qualified unit of work
identifier.

UOW_RESTARTED
Optional Parameter

 Specifies that the function must select only units of work that have or have not
been through restart processing. Values for the parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

UOW_ID
The 8-character unit of work identification.

UOW_RESTARTED
Indicates whether the unit of work has been through restart. Values for the
parameter are:
 YES
 NO

668 CICS TS for z/OS 4.1: Diagnosis Reference

UOW_RETAINED
Indicates whether the locks for the unit of work have been marked as retained,
either explicitly in the current connection or implicitly by a restart. Values for
the parameter are:
 YES
 NO

UOW_STATE
Indicates the state of an active unit of work. Values for the parameter are:
IN_FLIGHT

The unit of work has made changes but has not yet reached the stage of
prepare to commit.

IN_DOUBT
The unit of work has been prepared but not committed or backed out.

IN_COMMIT
Commit processing has started.

IN_BACKOUT
Backout processing has started.

When commit or backout processing completes, the unit of work is deleted.

FCCU gate, PREPARE function
This function marks a unit of work as prepared to be committed. The PREPARE
function is required to support 2-phase commit protocols and is ignored if the unit
of work is already in a prepared or retained state.

Input Parameters
TRANSACTION_NUMBER

Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.
UOW_ID

This 8-character string combines the subsystem name with the unit of work
identification in the client region to form the fully qualified unit of work
identifier.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 UOW_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

Chapter 70. Application Manager Domain (AP) 669

PURGED

FCCU gate, RESTART function
This function establishes recovery status at startup. Recoverable operations for the
client region are enabled and state information relating to any unresolved units of
work is rebuilt.

Input Parameters
TRANSACTION_NUMBER

Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.
UOW_SUBSYSTEM_NAME

Optional Parameter

 The 8-character subsystem name to be used at the first part of the unit of work
identifier for units of work relating to the client region. For a CICS client
region, this parameter is ignored and the CICS applid is used. For a non-CICS
client region, if this parameter is omitted, or specified as spaces, the MVS job
name is used instead.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 SUBSYSTEM_ALREADY_ACTIVE
 RESTART_ALREADY_ACTIVE
 TABLE_OPEN_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCCU gate, RETAIN function
This function marks any locks relating to the named unit of work as retained.

Input Parameters
TRANSACTION_NUMBER

Optional Parameter

 This 4-character string identifies the requesting task in the debug trace if used.
UOW_ID

This 8-character string combines the subsystem name with the unit of work
identification in the client region to form the fully qualified unit of work
identifier.

670 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 UOW_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCDN gate, CATALOG_DSNB function
This function catalogs data set name (DSN) blocks.

Input Parameters
FILE_NAME

The 8-character name of the file.
TYPE_OF_CONNECTION

Specifies whether the connection is being made to a base or an object.

 Values for the parameter are:
 OBJ
 BASE

FILE_NAME
The 8-character name of the file.

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND

The following value is returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 PURGED

FCDN gate, COMMIT_DSNREFS function
This function commits data set name (DNS) block references.

Chapter 70. Application Manager Domain (AP) 671

Input Parameters
TOKEN

A token passed to the COMMIT_DNSREFS function.

Output Parameters
REASON

The following value is returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID
 PURGED

FCDN gate, CONNECT_DSNB function
This function connects a file control table entry (FCTE) to a data set name (DSN)
block. If the DSN block does not already exist, DFHFCDN creates a new block
before connecting it.

Input Parameters
CATALOG_CONNECTION

Values for the parameter are:
 YES
 NO

DSNAME
The 44-character name of the data set.

FILE_NAME
The 8-character name of the file.

TYPE_OF_CONNECTION
Specifies whether the connection is being made to a base or an object.

 Values for the parameter are:
 OBJ
 BASE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 DO_NOT_REALLOCATE
 FILE_NOT_CLOSED
 FILE_NOT_DISABLED

The following value is returned when RESPONSE is INVALID:
 INVALID_TOKEN

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 GETMAIN_FAILED
 TM_ADD_FAILED
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED

672 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 PURGED

FCDN gate, DELETE_DSNB function
This function checks to ensure that the data set name (DSN) block can be deleted.
If the deletion can proceed, the table manager is called to delete the DSN from the
DSN index, and the storage domain is called to free the storage.

Input Parameters
DSNAME

The 44-character name of the data set.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DSNB_INUSE
 DSNB_NOT_FOUND
 DSNB_LOCK_HELD

The following values are returned when RESPONSE is DISASTER:
 CATALOG_DELETE_FAILED
 FIND_RETAINED_FAILED
 FREEMAIN_FAILED
 TM_DELETE_FAILED
 TM_QUIESCE_FAILED
 TM_UNQUIESCE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 PURGED

FCDN gate, DISCONNECT_DSNB function
This function breaks the connection between the file control table entry (FCTE) and
the data set name (DSN) block. The DSN block remains even if no other FCT
entries are connected to it. The request is rejected if uncommitted updates (retained
locks) exist for the file.

Input Parameters
DECREMENT_FLAG

Optional Parameter

 Flag to indicate that the number of files connected to the DSN block is reduced
by one.

Chapter 70. Application Manager Domain (AP) 673

FILE_NAME
The 8-character name of the file.

TYPE_OF_CONNECTION
Specifies whether the connection is being made to a base or an object.

 Values for the parameter are:
 OBJ
 BASE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 DO_NOT_REALLOCATE
 DSNB_NOT_FOUND
 FILE_NOT_CLOSED
 FILE_NOT_DISABLED

The following value is returned when RESPONSE is INVALID:
 INVALID_TOKEN

The following value is returned when RESPONSE is DISASTER:
 CATALOG_DELETE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 PURGED

FCDN gate, END_DSNB_BROWSE function
This function ends the browse of the data set name (DSN) blocks.

Input Parameters
BROWSE_TOKEN

The token returned from the START_DSNB_BROWSE function.

Output Parameters
REASON

The following value is returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

The following value is returned when RESPONSE is DISASTER:
 FREEMAIN_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID
 PURGED

674 CICS TS for z/OS 4.1: Diagnosis Reference

FCDN gate, GET_NEXT_DSNB function
This function browses the next data set name (DSN) block and returns the
attributes to the caller.

Input Parameters
BROWSE_TOKEN

The token returned from the START_DSNB_BROWSE function.
OBTAIN_VSAM_CATALOG_DATA

Optional Parameter

 Values for the parameter are:
 YES
 NO

Output Parameters
ACCMETH

Specifies the access method.

 Values for the parameter are:
 VSAM
 BDAM
 NOT_APPLICABLE

AVAILABILITY
Specifies the availability of the data set.

 Values for the parameter are:
 AVAILABLE
 UNAVAILABLE
 NOT_APPLICABLE

BASEDSNAME
The 44-character name of the base data set.

DSNB_TYPE
Specifies the data set name block type.

 Values for the parameter are:
 PATH
 BASE
 NOT_APPLICABLE

DSNB_VALID_STATUS
Specifies the status of the DSN block.

 Values for the parameter are:
 YES
 NO

FILECOUNT
This halfword binary field specifies the file count.

FWDRECOVLOG
This halfword binary field specifies the log ID to which the after images for
forward recovery are written.

FWDRECOVLSN
This 26-character string specifies the forward recovery log stream name (LSN).

IMAGE
Indicates whether backup images are to be fuzzy or sharp. Values for the
parameter are:
 FUZZY
 SHARP
 NOT_APPLICABLE

Chapter 70. Application Manager Domain (AP) 675

LOSTLOCKS
Returns the lost locks status of the data set. Values for the parameter are:
 REMLOSTLOCKS
 RECOVERLOCKS
 NOT_APPLICABLE
 NOLOSTLOCKS

REASON
The following value is returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

The following values are returned when RESPONSE is EXCEPTION:
 DATASET_MIGRATED
 DSNB_NOT_FOUND
 INQ_DATASET_NOT_KNOWN
 VSAM_ERROR
 END_OF_LIST

The following values are returned when RESPONSE is DISASTER:
 DISASTER_PERCOLATE
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED
 TM_GETNEXT_FAILED
 VSAM_CATALOG_ERROR

RECOV_VALID_STATUS
Values for the parameter are:
 YES
 NO
 NOT_APPLICABLE

RECOVSTATUS
Specifies the recovery status for the data set. Values for the parameter are:
 FWD_RECOV
 RECOV
 NOT_APPLICABLE
 NOT_RECOV

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 INVALID
 EXCEPTION
 DISASTER

FCDN gate, INQUIRE_DSNB function
This function returns the attributes stored in the data set name (DSN) block to the
caller.

Input Parameters
DSNAME

The 44-character name of the data set.
OBTAIN_VSAM_CATALOG_DATA

Optional Parameter

 Values for the parameter are:
 YES
 NO

676 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
ACCMETH

Specifies the access method.

 Values for the parameter are:
 VSAM
 BDAM
 NOT_APPLICABLE

AVAILABILITY
Specifies the availability of the data set.

 Values for the parameter are:
 AVAILABLE
 UNAVAILABLE
 NOT_APPLICABLE

BASEDSNAME
The 44-character name of the base data set.

DSNB_TYPE
Specifies the data set name block type.

 Values for the parameter are:
 PATH
 BASE
 NOT_APPLICABLE

DSNB_VALID_STATUS
Specifies the status of the DSN block.

 Values for the parameter are:
 YES
 NO

FILECOUNT
This halfword binary field specifies the file count.

FWDRECOVLOG
This halfword binary field specifies the log ID to which the after images for
forward recovery are written.

FWDRECOVLSN
This 26-character string specifies the forward recovery log stream name (LSN).

IMAGE
Indicates whether backup images are to be fuzzy or sharp. Values for the
parameter are:
 FUZZY
 SHARP
 NOT_APPLICABLE

LOSTLOCKS
Returns the lost locks status of the data set. Values for the parameter are:
 REMLOSTLOCKS
 RECOVERLOCKS
 NOT_APPLICABLE
 NOLOSTLOCKS

REASON
The following values are returned when RESPONSE is EXCEPTION:
 DATASET_MIGRATED
 DSNB_NOT_FOUND
 INQ_DATASET_NOT_KNOWN
 INQ_BASEDSNAME_ERROR
 VSAM_ERROR

The following values are returned when RESPONSE is DISASTER:

Chapter 70. Application Manager Domain (AP) 677

DISASTER_PERCOLATE
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED
 VSAM_CATALOG_ERROR

RECOV_VALID_STATUS
Values for the parameter are:
 YES
 NO
 NOT_APPLICABLE

RECOVSTATUS
Specifies the recovery status for the data set. Values for the parameter are:
 FWD_RECOV
 RECOV
 NOT_APPLICABLE
 NOT_RECOV

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER

FCDN gate, RESET_ALL_QUIESCE_STATUS function
DFHFCRD calls this function. The data set name (DSN) block table is scanned and
the quiesce status is reset to normal in each DSN block.

Input Parameters

None.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 TM_GETNEXT_FAILED
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID
 PURGED

FCDN gate, SET_CATALOG_RECOVERED function
This function causes a named data set to be set to the forward recovered state.

Input Parameters
DSNAME

The 44-character name of the data set.

678 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATASET_NOT_KNOWN
 DSNB_BDAM_OR_PATH
 DSNB_INVREQ
 DSNB_NOT_FOUND
 FILES_OPEN_AGAINST_DATASET
 NO_FUZZY_SUPPORT

The following values are returned when RESPONSE is DISASTER:
 SET_CAT_REC_FAILED
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 PURGED

FCDN gate, SET_DSNB function
This function sets the availability of the named data set.

Input Parameters
AVAILABILITY

Specifies the availability of the data set. Values for the parameter are:
 AVAILABLE
 UNAVAILABLE

DSNAME
The 44-character name of the data set.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATASET_MIGRATED
 DSNB_BDAM_OR_PATH
 DSNB_INVREQ
 DSNB_NOT_FOUND
 VSAM_ERROR

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 DISASTER_PERCOLATE
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED
 VSAM_CATALOG_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK

Chapter 70. Application Manager Domain (AP) 679

EXCEPTION
 DISASTER
 PURGED

FCDN gate, START_DSNB_BROWSE function
This function starts a browse of the data set name (DSN) block.

Input Parameters

None.

Output Parameters
BROWSE_TOKEN

The token returned from the START_DSNB_BROWSE function.
REASON

The following value is returned when RESPONSE is DISASTER:
 GETMAIN_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 PURGED

FCDN gate, UPDATE_RECOVERY_POINTS function
This function updates the recovery point location.

Input Parameters
RECOVERY_POINT

This 8-character field specifies the new location of the recovery point. The
recovery point is the place where a forward-recovery utility starts applying log
records.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 SET_RECOVERY_POINT_FAILED
 TM_GETNEXT_FAILED
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID
 PURGED

FCDS gate, DISCONNECT_CFDT_POOLS function
This function causes CICS to disconnect from any coupling facility data table pools
to which it is connected.

680 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters

None.

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 CFDT_DISCONNECT_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCDS gate, EXTRACT_CFDT_STATS function
This function causes statistics relating to coupling facility data table usage to be
extracted from the coupling facility data tables server.

Input Parameters
FCTE_POINTER

The address of the FCTE entry of the file for which CFDT statistics are to be
extracted.

RESET_STATISTICS
Indicates whether the statistics fields are to be reset to zero or not. Values for
the parameter are:
 YES
 NO

TRANSACTION_NUMBER
Optional Parameter

 4-digit transaction number, which is passed to the CFDT server for inclusion in
trace messages.

Output Parameters
CONTENTION_COUNT

Optional Parameter

 This fullword parameter returns the number of contentions that have been
detected, for a coupling facility data table that uses the contention update
model.

CURRENT_RECORDS
Optional Parameter

Chapter 70. Application Manager Domain (AP) 681

This fullword parameter returns the current number of records in the coupling
facility data table.

CURRENT_USERS
Optional Parameter

 This fullword parameter returns the current number of users of the coupling
facility data table; that is, the number of opens issued against it.

HIGHEST_RECORDS
Optional Parameter

 This fullword parameter returns the highest number of records that have been
in this coupling facility data table since it was last created.

MAXIMUM_RECORDS
Optional Parameter

 This fullword parameter returns the current value of the MAXNUMRECS limit
for the data table.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR
 CFDT_REOPEN_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_STATS_ERROR
 CFDT_SYSIDERR
 CFDT_TABLE_GONE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 POOL_ELEMENT_NOT_FOUND
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCDU gate, BACKOUT function
This function calls the coupling facility data table (CFDT) server to back out a unit
of work (UOW) that has made recoverable updates to one or more CFDTs.

Input Parameters
POOL_ELEM_ADDR

The address of the pool element that identifies the CFDT pool for which the
backout is to be issued. One or more of the CFDTs updated by the UOW reside
in this pool. The backout call is issued to the CFDT server for this pool.

682 CICS TS for z/OS 4.1: Diagnosis Reference

POOL_NAME
The name of the CFDT pool. The pool name is included for diagnostic
purposes.

UOW_ID
The identifier for the unit of work that is going to be backed out.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 POOL_STATE_ERROR
 CF_ACCESS_ERROR
 CFDT_SYSIDERR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR
 RESYNC_RETRY_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCDU gate, COMMIT function
This function calls the coupling facility data table (CFDT) server to commit a unit
of work (UOW) that has made recoverable updates to one or more CFDTs.

Input Parameters
POOL_ELEM_ADDR

The address of the pool element that identifies the CFDT pool for which the
backout is to be issued. One or more of the CFDTs updated by the UOW reside
in this pool. The backout call is issued to the CFDT server for this pool.

POOL_NAME
The name of the CFDT pool. The pool name is included for diagnostic
purposes.

UOW_ID
The identifier for the unit of work that is going to be committed.

Chapter 70. Application Manager Domain (AP) 683

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 UOW_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR
 CFDT_SYSIDERR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR
 RESYNC_RETRY_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCDU gate, INQUIRE function
This function issues an INQUIRE to the coupling facility data table (CFDT) to
obtain information about the status of an active unit of work (UOW).

Input Parameters
BROWSE

Optional Parameter

 Specifies whether the inquire is for a single UOW or for the first or next UOW
in a browse. Values for the parameter are:
 FIRST
 NEXT

If the BROWSE parameter is omitted, the request is treated as a single UOW
inquire. Setting the BROWSE parameter to FIRST indicates a search for a UOW ID
greater than or equal to the specified UOW ID. Setting the BROWSE parameter to
NEXT indicates a search for a UOW ID greater than the specified UOW ID.

POOL_ELEM_ADDR
The address of the pool element that identifies the CFDT pool for which the
backout is to be issued. One or more of the CFDTs updated by the UOW reside
in this pool. The backout call is issued to the CFDT server for this pool.

684 CICS TS for z/OS 4.1: Diagnosis Reference

POOL_NAME
The name of the CFDT pool. The pool name is included for diagnostic
purposes.

UOW_ID
This 8-character string identifies the UOW for which status information is
being requested or gives the ID for the previous UOW in the browse.

UOW_RESTARTED
Optional Parameter

 Indicates whether the inquire will select only UOWs that have been through
restart processing. Values for the parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 CF_ACCESS_ERROR
 CFDT_SYSIDERR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR
 RESYNC_RETRY_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

RETURNED_UOW_ID
This 8-character string specifies the UOW for which the browse is returning
status information.

UOW_RESTART_STATE
Indicates whether the UOW has been through restart processing. Values for the
parameter are:
 YES
 NO

UOW_RETAINED
Indicates whether the locks for the UOW have been retained. Values for the
parameter are:
 YES

Chapter 70. Application Manager Domain (AP) 685

NO
UOW_STATE

Indicates the state of the UOW. Values for the parameter are:
 IN_FLIGHT
 IN_DOUBT
 IN_COMMIT
 IN_BACKOUT

FCDU gate, PREPARE function
This function calls the coupling facility data table (CFDT) server to prepare a unit
of work that has made recoverable updates to one or more coupling facility data
tables.

Input Parameters
POOL_ELEM_ADDR

The address of the pool element that identifies the CFDT pool for which the
prepare is going to be issued. One or more of the CFDTs updated by the unit
of work reside in this pool.

POOL_NAME
The name of the CFDT pool. The pool name is included for diagnostic
purposes.

UOW_ID
The identifier for the unit of work that is to be prepared.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 UOW_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR
 CFDT_SYSIDERR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR
 RESYNC_RETRY_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION

686 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID
 KERNERROR
 PURGED

FCDU gate, RESTART function
This function establishes recovery status for a coupling facility data table (CFDT)
pool when a CICS region has successfully connected to it.

Input Parameters
POOL_ELEM_ADDR

The address of the pool element that identifies the CFDT pool for which
recovery status is to be established.

POOL_NAME
The name of the CFDT pool. The pool name is included for diagnostic
purposes.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 SUBSYSTEM_ALREADY_ACTIVE
 RESTART_ALREADY_ACTIVE
 TABLE_OPEN_FAILED
 NO_SPACE_IN_POOL
 CF_ACCESS_ERROR
 CFDT_SYSIDERR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

RETURNED_UOW_ID
The unit of work for which the browse is returning status information.

UOW_RESTART_STATE
Indicates whether the unit of work has been through restart processing.

UOW_RETAINED
Indicates whether the locks for the unit of work have been retained.

UOW_STATE
Indicates the state of the unit of work. Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 687

IN_FLIGHT
 IN_DOUBT
 IN_COMMIT
 IN_BACKOUT

FCDU gate, RETAIN function
This function calls the coupling facility data table (CFDT) server to convert locks
held by the unit of work against recoverable CFDTs into retained locks.

Input Parameters
POOL_ELEM_ADDR

The address of the pool element that identifies the CFDT pool for which the
retain is to be issued. One or more of the coupling facility data tables updated
by the unit of work reside in this pool. The retain call will be issued to the
CFDT server for this pool.

POOL_NAME
The name of the CFDT pool. The pool name is included for diagnostic
purposes.

UOW_ID
The identifier for the unit of work for which the locks are going to be retained.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SERVER_CONNECTION_FAILED
 RECOVERY_NOT_ENABLED
 UOW_NOT_FOUND
 UOW_MADE_NO_CHANGES
 UOW_FAILED
 NO_SPACE_IN_POOL
 POOL_STATE_ERROR
 CF_ACCESS_ERROR
 CFDT_SYSIDERR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_CONNECT_ERROR
 CFDT_DISCONNECT_ERROR
 RESYNC_RETRY_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

688 CICS TS for z/OS 4.1: Diagnosis Reference

FCDY gate, RESYNC_CFDT_LINK function
This function causes a link between a unit of work and a coupling facility data
table pool to be resynchronized.

Input Parameters
POOL_NAME

The 8-character name of the coupling facility data table pool for which the link
is to be resynchronized.

UOW_ID
This 8-character string identifies the link to be resynchronized.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INITIATE_RECOVERY_FAILED
 TERMINATE_RECOVERY_FAILED
 CFDT_SERVER_CALL_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCDY gate, RESYNC_CFDT_POOL function
This function causes a coupling facility data table pool to be resynchronized.

Input Parameters
POOL_NAME

The 8-character name of the coupling facility data table pool that is to be
resynchronized.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INITIATE_RECOVERY_FAILED
 TERMINATE_RECOVERY_FAILED
 CFDT_SERVER_CALL_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:

Chapter 70. Application Manager Domain (AP) 689

ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCDY gate, RETURN_CFDT_ENTRY_POINTS function
This function causes module DFHFCDY to return the entry point addresses of the
other modules with which it is link-edited.

Input Parameters

None.

Output Parameters
CFDT_EP_DFHFCDW

The entry point address of module DFHFCDW.
CFDT_EP_DFHFCDU

The entry point address of module DFHFCDU.
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 KERNERROR
 PURGED

FCFL gate, END_UOWDSN_BROWSE function
After a browse of all the data set failures in a unit of work, the
END_UOWDSN_BROWSE function releases the storage that was used for a
snapshot of the failures.

Input Parameters
BROWSE_TOKEN

The token that was used for the browse.

690 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following value is returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID
 PURGED

FCFL gate, FIND_RETAINED function
This function looks for any file lasting access blocks associated with the specified
data set that are flagged as retained, indicating that retained locks are associated
with the data set.

Input Parameters
DSNAME

The 44-character name of the data set for which associated retained locks are to
be found.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

RETLOCKS
Indicates whether retained locks are associated with the data set. Values for the
parameter are:
 RETAINED
 NORETAINED

FCFL gate, FORCE_INDOUBTS function
The CEMT and EXEC CICS SET DSNAME()
UOWACTION(COMMIT|BACKOUT|FORCE) commands use this function.
Shunted indoubt units of work are forced to complete in the specified direction.

Chapter 70. Application Manager Domain (AP) 691

Input Parameters
DSNAME

The 44-character name of the data set for which shunted indoubt units of work
are to be forced to complete.

DIRECTION
The direction that the units of work are to complete. Values for the parameter
are:
 FORWARD
 BACKWARD
 HEURISTIC

'A value of FORWARD commits the units of work, a value of BACKWARD backs out
the units of work, and a value of HEURISTIC uses the action specified on the
transaction definition.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCFL gate, GET_NEXT_UOWDSN function
This function returns the failure information for the next data set that has a failure
in the unit of work being browsed.

Input Parameters
BROWSE_TOKEN

The token for the browse that was returned by a START_UOWDSN_BROWSE
call.

Output Parameters
DSNAME

The 44-character name of the data set for which failure information is returned.
RLSACCESS

Optional Parameter

 Indicates whether the data set was last open in RLS or non-RLS access mode.
Values for the parameter are:
 RLS
 NOTRLS

CAUSE
Optional Parameter

 Indicates the cause of the failure. Values for the parameter are:
 CACHE
 RLSSERVER

692 CICS TS for z/OS 4.1: Diagnosis Reference

CONNECTION
 DATASET
 UNDEFINED

RETAIN_REASON
Optional Parameter

 Indicates the reason for the failure. Values for the parameter are:
 RLSGONE
 COMMITFAIL
 IOERROR
 DATASETFULL
 INDEXRECFULL
 OPENERROR
 DELEXITERROR
 DEADLOCK
 BACKUPNONBWO
 LOCKSTRUCFULL
 FAILEDBKOUT
 NOTAPPLIC
 RR_COMMITFAIL
 RR_INDOUBT

REASON
The following value is returned when RESPONSE is EXCEPTION:
 END_OF_LIST

The following value is returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID

FCFL gate, RESET_BFAILS function
The CEMT and EXEC CICS SET DSNAME() ACTION(RESETLOCKS) commands
use this function. Shunted unit of work log records, which hold backout-failure or
commit-failure locks on the specified data set, are purged and locks are released.

Input Parameters
DSNAME

The 44-character name of the data set for which backout and commit failures
are to be reset.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 REMOVE_FAILURE

Chapter 70. Application Manager Domain (AP) 693

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCFL gate, RETRY function
The CEMT and EXEC CICS SET DSNAME() UOWACTION(RETRY) commands use
this function. The RETRY function retries any failed backouts and commits for the
specified data set by informing DFHFCRR that the failed resource is now available.

Input Parameters
DSNAME

The 44-character name of the data set for which backout and commits are to be
retried.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 RESOURCE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCFL gate, START_UOWDSN_BROWSE function
This function starts a browse of the data set failures in a unit of work. A snapshot
of the failed data sets for the UOW and the reasons for the failures is collected in
an in-storage table to be browsed by the GET_NEXT_UOWDSN function.

Input Parameters
UOW

The 8-byte local unit of work identifier.

Output Parameters
BROWSE_TOKEN

A token used during the browse.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UOW_NOT_FOUND
 NO_FLABS_FOUND

694 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 PURGED

FCFL gate, TEST_USER function
This function is used to test if the task has updated a record and established itself
as a file user, either for any data set or for a specified data set. It can be used
either as a domain subroutine call or as an inline macro.

Input Parameters
ENVIRONMENT

Optional Parameter

 A fullword environment identifier. If specified, the function tests whether the
task is a user of any files in that environment.

DSNAME
Optional Parameter

 Specifies that a particular data set is to be tested.

Output Parameters
FLAB_PTR

The address of a file lasting access block (FLAB) that was found by the test.
The return of a non-zero value indicates that the user is a task.

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCFR gate, CLEAR_ENVIRONMENT function
Scan the FRTE chain and find all FRTEs for the specified Environment. Clean up
the file control state for this environment.

Cleaning up the file control state consists of the following steps:
1. Issue END_BROWSE for any active START_BROWSE.
2. Issue UNLOCK for any active READ_UPDATE or WRITE_MASSINSERT.

Chapter 70. Application Manager Domain (AP) 695

Input Parameters
ENVIRONMENT_IDENTIFIER

A token that identifies the caller's environment.
CLEAR_AFTER_ABEND

Optional Parameter

 A binary value that indicates whether the request follows a transaction abend,
and that the environment must be cleared.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is EXCEPTION:
 CLEAR_ENVIRONMENT_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCFR gate, DELETE function
Delete a record from a file.

Input Parameters
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

696 CICS TS for z/OS 4.1: Diagnosis Reference

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BASE_RECORD_ID_ADDRESS
Optional Parameter

 The address of the base record identifier.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_DELETE
 BDAM_KEY_CONVERSION
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 DATASET_BEING_COPIED
 DEADLOCK_DETECTED
 DELETE_AFTER_READ_UPDATE
 ESDS_DELETE
 FILE_DISABLED
 FILE_NOT_OPEN
 FULL_KEY_WRONG_LENGTH

Chapter 70. Application Manager Domain (AP) 697

GENERIC_DELETE_NOT_KSDS
 GENERIC_KEY_TOO_LONG
 IO_ERROR
 KEY_LENGTH_NEGATIVE
 LOADING
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NOSUSPEND_NOT_RLS
 NOT_IN_SUBSET
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RESTART_FAILED
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 STORE_FAIL
 SYSIDERR
 TIMEOUT
 TOO_MANY_CFDTS_IN_UOW
 UPDATE_NOT_AUTHORISED
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DELETED_RECORD_COUNT
The number of records deleted by the request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:

698 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

FCFR gate, END_BROWSE function
End a browse operation on a file.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

CFDT_LOAD
Optional Parameter

 A binary value that indicates whether the request is part of the browse
operation used to read records from the source data set during loading of a
coupling facility data table.

Values for the parameter are:
 NO
 YES

CLEAR_AFTER_ABEND
Optional Parameter

 A binary value that indicates whether the request follows a transaction abend,
and that the environment must be cleared.

Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

Chapter 70. Application Manager Domain (AP) 699

CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 CACHE_FAILURE
 CFDT_TABLE_GONE
 CLEAR_ABENDED
 FILENOTFOUND
 ISC_NOT_SUPPORTED
 ISCINVREQ
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 REMOTE_INVREQ
 RLS_DISABLED
 RLS_FAILURE
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 UNKNOWN_REQID_ENDBR
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, FREE_UNUSED_BUFFERS function
Free any file control buffers that are not in use.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

700 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCFR gate, PREPARE_FILE_REQUEST function
Prepare to commit file changes made in a unit of work.

Input Parameters
FILE_NAME

The name of the FILE resource.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is EXCEPTION:
 PREPARE_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, PREPARE_TO_BACKOUT function
Prepare to back out file changes made in a unit of work.

Input Parameters
FILE_NAME

The name of the FILE resource.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

Chapter 70. Application Manager Domain (AP) 701

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, READ_INTO function
Read a file record into a buffer provided by the caller.

Input Parameters
BUFFER_ADDRESS

The address of the caller's buffer.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

KEY_COMPARISON
A value that specifies whether the search can be satisfied only by a record
having the same key as that specified in the record identification field
parameter, or by a record having a greater key.

 Values for the parameter are:
 EQUAL
 GTEQ

READ_INTEGRITY
Specifies the degree of read integrity for the request.

 Values for the parameter are:
 CR
 FCT_VALUE
 NRI
 RR

702 CICS TS for z/OS 4.1: Diagnosis Reference

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BASE_RECORD_ID_ADDRESS
Optional Parameter

 The address of the base record identifier.
BUFFER_LENGTH

Optional Parameter

 The length of the caller's buffer.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
SUPPRESS_LENGERR

Optional Parameter

 A binary value that indicates whether length error indications are to be
suppressed.

Values for the parameter are:
 NO
 YES

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 CACHE_FAILURE

Chapter 70. Application Manager Domain (AP) 703

CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CR_NOT_RLS
 FILE_DISABLED
 FILE_NOT_OPEN
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOADING
 LOCKED
 LOST_LOCKS
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOT_IN_SUBSET
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 READ_NOT_AUTHORISED
 RECORD_BUSY
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 RR_NOT_RLS
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIP
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

704 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

FCFR gate, READ_NEXT_INTO function
During a file browse, read the next record, and return the record into a buffer
provided by the caller.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BUFFER_ADDRESS

The address of the caller's buffer.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

Chapter 70. Application Manager Domain (AP) 705

READ_INTEGRITY
Specifies the degree of read integrity for the request.

 Values for the parameter are:
 CR
 FCT_VALUE
 NRI
 RR

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BUFFER_LENGTH
Optional Parameter

 The length of the caller's buffer.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
SUPPRESS_LENGERR

Optional Parameter

 A binary value that indicates whether length error indications are to be
suppressed.

Values for the parameter are:
 NO
 YES

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

706 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 BDAM_READ_PREVIOUS
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CR_NOT_RLS
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOCKED
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECORD_BUSY
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 RR_NOT_RLS
 SELF_DEADLOCK_DETECTED
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

Chapter 70. Application Manager Domain (AP) 707

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

FCFR gate, READ_NEXT_SET function
During a file browse, read the next record, and return a pointer to a buffer
containing the data.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

708 CICS TS for z/OS 4.1: Diagnosis Reference

FILE_NAME
The name of the FILE resource.

READ_INTEGRITY
Specifies the degree of read integrity for the request.

 Values for the parameter are:
 CR
 FCT_VALUE
 NRI
 RR

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

CFDT_LOAD
Optional Parameter

 A binary value that indicates whether the request is part of the browse
operation used to read records from the source data set during loading of a
coupling facility data table.

Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

Chapter 70. Application Manager Domain (AP) 709

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 BDAM_READ_PREVIOUS
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CR_NOT_RLS
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOCKED
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECORD_BUSY
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 RR_NOT_RLS
 SELF_DEADLOCK_DETECTED
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

710 CICS TS for z/OS 4.1: Diagnosis Reference

RECORD_ADDRESS
The address of the target record.

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, READ_NEXT_UPDATE_INTO function
During a file browse, read the previous record for updating, and return the record
into a buffer provided by the caller.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BUFFER_ADDRESS

The address of the caller's buffer.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 711

DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BUFFER_LENGTH
Optional Parameter

 The length of the caller's buffer.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
SUPPRESS_LENGERR

Optional Parameter

 A binary value that indicates whether length error indications are to be
suppressed.

Values for the parameter are:
 NO
 YES

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_UPD_NOT_RLS
 CACHE_FAILURE
 DATASET_BEING_COPIED
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 KEY_LENGTH_NEGATIVE
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS

712 CICS TS for z/OS 4.1: Diagnosis Reference

NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO

Chapter 70. Application Manager Domain (AP) 713

YES
TERMINATE_STRING

A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCFR gate, READ_NEXT_UPDATE_SET function
During a file browse, read the next record for updating, and return a pointer to a
buffer containing the data.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.

714 CICS TS for z/OS 4.1: Diagnosis Reference

RECORD_ID_LENGTH
Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_UPD_NOT_RLS
 CACHE_FAILURE
 DATASET_BEING_COPIED
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 KEY_LENGTH_NEGATIVE
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT

Chapter 70. Application Manager Domain (AP) 715

INVALID_FUNCTION
ACCMETH_RETURN_CODE

The return code from the file access method for request.
DUPLICATE_KEY

When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

RECORD_ADDRESS
The address of the target record.

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCFR gate, READ_PREVIOUS_INTO function
During a file browse, read the previous record, and return the record into a buffer
provided by the caller.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BUFFER_ADDRESS

The address of the caller's buffer.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO

716 CICS TS for z/OS 4.1: Diagnosis Reference

YES
CONDITIONAL

A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

READ_INTEGRITY
Specifies the degree of read integrity for the request.

 Values for the parameter are:
 CR
 FCT_VALUE
 NRI
 RR

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BUFFER_LENGTH
Optional Parameter

 The length of the caller's buffer.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
SUPPRESS_LENGERR

Optional Parameter

 A binary value that indicates whether length error indications are to be
suppressed.

Values for the parameter are:
 NO

Chapter 70. Application Manager Domain (AP) 717

YES
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 BDAM_READ_PREVIOUS
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CR_NOT_RLS
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOCKED
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECORD_BUSY
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 RR_NOT_RLS
 SELF_DEADLOCK_DETECTED
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT

718 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FUNCTION
ACCMETH_RETURN_CODE

The return code from the file access method for request.
DUPLICATE_KEY

When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

FCFR gate, READ_PREVIOUS_SET function
During a file browse, read the previous record, and return a pointer to a buffer
containing the data.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 719

NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

READ_INTEGRITY
Specifies the degree of read integrity for the request.

 Values for the parameter are:
 CR
 FCT_VALUE
 NRI
 RR

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR

720 CICS TS for z/OS 4.1: Diagnosis Reference

DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 BDAM_READ_PREVIOUS
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CR_NOT_RLS
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOCKED
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECORD_BUSY
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 RR_NOT_RLS
 SELF_DEADLOCK_DETECTED
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

Chapter 70. Application Manager Domain (AP) 721

FULL_RECORD_ID_LENGTH
The length of the record key.

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

RECORD_ADDRESS
The address of the target record.

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, READ_PREVIOUS_UPDATE_INTO function
During a file browse, read the previous record for updating, and return the record
into a buffer provided by the caller.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BUFFER_ADDRESS

The address of the caller's buffer.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ID_ADDRESS
The address of the record identification field.

722 CICS TS for z/OS 4.1: Diagnosis Reference

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BUFFER_LENGTH
Optional Parameter

 The length of the caller's buffer.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
SUPPRESS_LENGERR

Optional Parameter

 A binary value that indicates whether length error indications are to be
suppressed.

Values for the parameter are:
 NO
 YES

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_UPD_NOT_RLS
 CACHE_FAILURE
 DATASET_BEING_COPIED
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 KEY_LENGTH_NEGATIVE

Chapter 70. Application Manager Domain (AP) 723

LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

724 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCFR gate, READ_PREVIOUS_UPDATE_SET function
During a file browse, read the previous record for updating, and return a pointer
to a buffer containing the data.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

FCTE_POINTER
Optional Parameter

Chapter 70. Application Manager Domain (AP) 725

The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_UPD_NOT_RLS
 CACHE_FAILURE
 DATASET_BEING_COPIED
 END_OF_FILE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 KEY_LENGTH_NEGATIVE
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NOSUSPEND_NOT_RLS
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 READPREV_IN_GENERIC_BROWSE
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_READPREV
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:

726 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

FULL_RECORD_ID_LENGTH
The length of the record key.

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

RECORD_ADDRESS
The address of the target record.

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCFR gate, READ_SET function
Read a record, and return a pointer to a buffer containing the data.

Input Parameters
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is

Chapter 70. Application Manager Domain (AP) 727

holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

KEY_COMPARISON
A value that specifies whether the search can be satisfied only by a record
having the same key as that specified in the record identification field
parameter, or by a record having a greater key.

 Values for the parameter are:
 EQUAL
 GTEQ

READ_INTEGRITY
Specifies the degree of read integrity for the request.

 Values for the parameter are:
 CR
 FCT_VALUE
 NRI
 RR

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BASE_RECORD_ID_ADDRESS
Optional Parameter

 The address of the base record identifier.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.

728 CICS TS for z/OS 4.1: Diagnosis Reference

REMOTE_SYSTEM
Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CR_NOT_RLS
 FILE_DISABLED
 FILE_NOT_OPEN
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOADING
 LOCKED
 LOST_LOCKS
 NOSUSPEND_NOT_RLS
 NOT_IN_SUBSET
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 READ_NOT_AUTHORISED
 RECORD_BUSY
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 RR_NOT_RLS
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIP
 SHIPPED_SECURITY_FAILURE
 SYSIDERR

Chapter 70. Application Manager Domain (AP) 729

TIMEOUT
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

RECORD_ADDRESS
The address of the target record.

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, READ_UPDATE_INTO function
Read a record for update into a buffer provided by the caller.

Input Parameters
BACKOUT_TYPE

A value that indicates:
v whether the request is for a backout request
v whether the request is to processing a write-add log record or a read-update

log record
v for write requests, whether the write is direct or sequential.

Values for the parameter are:
 NOT_BACKOUT
 READ_UPD
 WRITE_DIRECT
 WRITE_SEQUENTIAL

730 CICS TS for z/OS 4.1: Diagnosis Reference

BUFFER_ADDRESS
The address of the caller's buffer.

BYPASS_SECURITY_CHECK
A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

KEY_COMPARISON
A value that specifies whether the search can be satisfied only by a record
having the same key as that specified in the record identification field
parameter, or by a record having a greater key.

 Values for the parameter are:
 EQUAL
 GTEQ

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

BASE_RECORD_ID_ADDRESS
Optional Parameter

 The address of the base record identifier.
BUFFER_LENGTH

Optional Parameter

Chapter 70. Application Manager Domain (AP) 731

The length of the caller's buffer.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
RECORD_LOCK_ONLY

Optional Parameter

 A binary value that indicates whether the purpose of the request is solely to
lock the record.

Values for the parameter are:
 NO
 YES

REMOTE_FILE_NAME
Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
SUPPRESS_LENGERR

Optional Parameter

 A binary value that indicates whether length error indications are to be
suppressed.

Values for the parameter are:
 NO
 YES

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 DATASET_BEING_COPIED
 DEADLOCK_DETECTED
 DUPLICATE_READ_UPDATE
 FILE_DISABLED
 FILE_NOT_OPEN

732 CICS TS for z/OS 4.1: Diagnosis Reference

FILE_NOT_RECOVERABLE
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 IO_ERROR
 KEY_LENGTH_NEGATIVE
 LOADING
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOT_IN_SUBSET
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 READ_NOT_AUTHORISED
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RESTART_FAILED
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 TOO_MANY_CFDTS_IN_UOW
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RECORD_LENGTH
Optional Parameter

 The length of the record.

Chapter 70. Application Manager Domain (AP) 733

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCFR gate, READ_UPDATE_SET function
Read a record for updating, and return a pointer to a buffer containing the data.

Input Parameters
BACKOUT_TYPE

A value that indicates:
v whether the request is for a backout request
v whether the request is to processing a write-add log record or a read-update

log record
v for write requests, whether the write is direct or sequential.

Values for the parameter are:
 NOT_BACKOUT
 READ_UPD
 WRITE_DIRECT
 WRITE_SEQUENTIAL

BYPASS_SECURITY_CHECK
A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

734 CICS TS for z/OS 4.1: Diagnosis Reference

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

KEY_COMPARISON
A value that specifies whether the search can be satisfied only by a record
having the same key as that specified in the record identification field
parameter, or by a record having a greater key.

 Values for the parameter are:
 EQUAL
 GTEQ

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

BASE_RECORD_ID_ADDRESS
Optional Parameter

 The address of the base record identifier.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
RECORD_LOCK_ONLY

Optional Parameter

 A binary value that indicates whether the purpose of the request is solely to
lock the record.

Values for the parameter are:
 NO
 YES

REMOTE_FILE_NAME
Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

Chapter 70. Application Manager Domain (AP) 735

The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 DATASET_BEING_COPIED
 DEADLOCK_DETECTED
 DUPLICATE_READ_UPDATE
 FILE_DISABLED
 FILE_NOT_OPEN
 FILE_NOT_RECOVERABLE
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 IO_ERROR
 KEY_LENGTH_NEGATIVE
 LOADING
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NOSUSPEND_NOT_RLS
 NOT_IN_SUBSET
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 READ_NOT_AUTHORISED
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RESTART_FAILED
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 TOO_MANY_CFDTS_IN_UOW
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:

736 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

DUPLICATE_KEY
When the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, a binary value that indicates whether further
records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

RECORD_ADDRESS
The address of the target record.

RECORD_LENGTH
Optional Parameter

 The length of the record.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCFR gate, REPLACE function
Replace a file control record.

Input Parameters
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

Chapter 70. Application Manager Domain (AP) 737

Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ADDRESS
The address of the target record.

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

RECORD_ID_LENGTH
Optional Parameter

 The length of the record identifier.
RECORD_LENGTH

Optional Parameter

 The length of the record.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_LENGTH_CHANGE
 CACHE_FAILURE
 CFDT_CONNECT_ERROR

738 CICS TS for z/OS 4.1: Diagnosis Reference

CFDT_INVALID_CONTINUATION
 CFDT_POOL_FULL
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CHANGED
 DEADLOCK_DETECTED
 DUPLICATE_RECORD
 INSUFFICIENT_SPACE
 IO_ERROR
 KEY_STOLEN
 LOCK_STRUCTURE_FULL
 LOCKED
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 PREVIOUS_RLS_FAILURE
 RECORD_BUSY
 RECORD_NOT_FOUND
 REPLACE_BEFORE_READ_UPDATE
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 STORE_FAIL
 SYSIDERR
 TIMEOUT
 UPDATE_NOT_AUTHORISED
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_UPDATE_TOKEN

ACCMETH_RETURN_CODE
The return code from the file access method for request.

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO

Chapter 70. Application Manager Domain (AP) 739

YES
TERMINATE_STRING

A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, REPLACE_DELETE function
Delete and replace a file control record.

Input Parameters
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

RECORD_ID_LENGTH
Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

740 CICS TS for z/OS 4.1: Diagnosis Reference

The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_LENGTH_CHANGE
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_INVALID_CONTINUATION
 CFDT_POOL_FULL
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CHANGED
 DEADLOCK_DETECTED
 DELETE_BEFORE_READ_UPDATE
 DUPLICATE_RECORD
 INSUFFICIENT_SPACE
 IO_ERROR
 KEY_STOLEN
 LOCK_STRUCTURE_FULL
 LOCKED
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 PREVIOUS_RLS_FAILURE
 RECORD_BUSY
 RECORD_NOT_FOUND
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 STORE_FAIL
 SYSIDERR
 TIMEOUT
 UPDATE_NOT_AUTHORISED
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_UPDATE_TOKEN

ACCMETH_RETURN_CODE
The return code from the file access method for request.

Chapter 70. Application Manager Domain (AP) 741

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, RESET_BROWSE function
Reset the position of a browse operation in a file or data table.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

KEY_COMPARISON
A value that specifies whether the search can be satisfied only by a record
having the same key as that specified in the record identification field
parameter, or by a record having a greater key.

 Values for the parameter are:
 EQUAL
 GTEQ

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA

742 CICS TS for z/OS 4.1: Diagnosis Reference

RRN
BASE_RECORD_ID_ADDRESS

Optional Parameter

 The address of the base record identifier.
FCTE_POINTER

Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 ILLEGAL_KEY_TYPE_CHANGE
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 READ_NOT_AUTHORISED
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DISABLED
 RLS_FAILURE

Chapter 70. Application Manager Domain (AP) 743

SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 UNKNOWN_REQID_RESETBR
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, RESTART_FILE_CONTROL function
Restart file control's interface with VSAM.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCFR gate, REWRITE function
Rewrite a file record.

Input Parameters
BACKOUT

A binary value that indicates whether the request is issued during transaction
backout.

 Values for the parameter are:
 NO
 YES

744 CICS TS for z/OS 4.1: Diagnosis Reference

BYPASS_SECURITY_CHECK
A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

RECORD_ADDRESS
The address of the target record.

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_LENGTH

Optional Parameter

 The length of the record.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION

Chapter 70. Application Manager Domain (AP) 745

SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_LENGTH_CHANGE
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_INVALID_CONTINUATION
 CFDT_POOL_FULL
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CHANGED
 DEADLOCK_DETECTED
 DUPLICATE_RECORD
 INSUFFICIENT_SPACE
 IO_ERROR
 KEY_STOLEN
 LOCK_STRUCTURE_FULL
 LOCKED
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 PREVIOUS_RLS_FAILURE
 RECORD_BUSY
 RECORD_NOT_FOUND
 REWRITE_BEFORE_READ_UPDATE
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 STORE_FAIL
 SYSIDERR
 TIMEOUT
 TOO_MANY_CFDTS_IN_UOW
 UPDATE_NOT_AUTHORISED
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_UPDATE_TOKEN

ACCMETH_RETURN_CODE
The return code from the file access method for request.

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

746 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, REWRITE_DELETE function
Delete a record and then rewrite it.

Input Parameters
BACKOUT

A binary value that indicates whether the request is issued during transaction
backout.

 Values for the parameter are:
 NO
 YES

BYPASS_SECURITY_CHECK
A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.

Chapter 70. Application Manager Domain (AP) 747

REMOTE_FILE_NAME
Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_DELETE
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_INVALID_CONTINUATION
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 CHANGED
 DEADLOCK_DETECTED
 DELETE_BEFORE_READ_UPDATE
 ESDS_DELETE
 IO_ERROR
 LOCK_STRUCTURE_FULL
 LOCKED
 NOSUSPEND_NOT_RLS
 PREVIOUS_RLS_FAILURE
 RECLEN_EXCEEDS_LOGGER_BFSZ
 RECORD_BUSY
 RECORD_NOT_FOUND
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIPPED_SECURITY_FAILURE
 STORE_FAIL
 SYSIDERR
 TIMEOUT
 TOO_MANY_CFDTS_IN_UOW
 UPDATE_NOT_AUTHORISED

748 CICS TS for z/OS 4.1: Diagnosis Reference

VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_UPDATE_TOKEN

ACCMETH_RETURN_CODE
The return code from the file access method for request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, START_BROWSE function
Start atrt a browse operation

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

GENERIC
A binary value that specifies whether the search key is a generic key.

 Values for the parameter are:
 NO
 YES

KEY_COMPARISON
A value that specifies whether the search can be satisfied only by a record
having the same key as that specified in the record identification field
parameter, or by a record having a greater key.

 Values for the parameter are:
 EQUAL
 GTEQ

PRIVILEGED_REQUEST
A binary parameter that indicates whether the request is privileged.

Chapter 70. Application Manager Domain (AP) 749

Values for the parameter are:
 NO
 YES

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

BASE_RECORD_ID_ADDRESS
Optional Parameter

 The address of the base record identifier.
CFDT_LOAD

Optional Parameter

 A binary value that indicates whether the request is part of the browse
operation used to read records from the source data set during loading of a
coupling facility data table.

Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE
 TABLE_TOKEN_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 CACHE_FAILURE

750 CICS TS for z/OS 4.1: Diagnosis Reference

CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 DUPLICATE_REQID
 FILE_DISABLED
 FILE_NOT_OPEN
 FILENOTFOUND
 FULL_KEY_WRONG_LENGTH
 GENERIC_KEY_TOO_LONG
 IO_ERROR
 ISC_NOT_SUPPORTED
 ISCINVREQ
 KEY_LENGTH_NEGATIVE
 LOADING
 NOT_IN_SUBSET
 NOTAUTH
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 READ_NOT_AUTHORISED
 RECORD_NOT_FOUND
 REMOTE_INVREQ
 RLS_DISABLED
 RLS_FAILURE
 SERVREQ_VIOLATION
 SHIP
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 TIMEOUT
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, TEST_FILE_USER function
Determine whether the current task is the user of a file.

Chapter 70. Application Manager Domain (AP) 751

Input Parameters
FILE_NAME

The name of the FILE resource.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

FILE_USER
A binary value that indicates whether the current task is the current user of a
file.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCFR gate, UNLOCK function
Release the lock on a file record.

Input Parameters
BYPASS_SECURITY_CHECK

A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

TOKEN_REQUEST
A binary value that indicates whether a token is supplied with the request.

 Values for the parameter are:
 NO
 YES

CLEAR_AFTER_ABEND
Optional Parameter

 A binary value that indicates whether the request follows a transaction abend,
and that the environment must be cleared.

Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
REMOTE_FILE_NAME

Optional Parameter

752 CICS TS for z/OS 4.1: Diagnosis Reference

The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

WORK_ELEMENT_ADDRESS
Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 CACHE_FAILURE
 CLEAR_ABENDED
 IO_ERROR
 PREVIOUS_RLS_FAILURE
 READ_NOT_AUTHORISED
 RLS_DISABLED
 RLS_FAILURE
 SHIPPED_SECURITY_FAILURE
 SYSIDERR
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_UPDATE_TOKEN

ACCMETH_RETURN_CODE
The return code from the file access method for request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCFR gate, WRITE function
Write to a file.

Chapter 70. Application Manager Domain (AP) 753

Input Parameters
BACKOUT

A binary value that indicates whether the request is issued during transaction
backout.

 Values for the parameter are:
 NO
 YES

BYPASS_SECURITY_CHECK
A binary value that indicates that security checking can be omitted for the
current request.

 Values for the parameter are:
 NO
 YES

CONDITIONAL
A binary value that indicates whether the request should wait if VSAM is
holding an active lock against the record, including records locked as the result
of a DEADLOCK. CONDITIONAL(YES) corresponds to option NOSUSPEND on the
CICS API.

 Values for the parameter are:
 NO
 YES

ENVIRONMENT_IDENTIFIER
A token that identifies the caller's environment.

FILE_NAME
The name of the FILE resource.

MASS_INSERT
A binary parameter that specifies whether the WRITE request is part of a
mass-insert operation.

 Values for the parameter are:
 NO
 YES

PRIVILEGED_REQUEST
A binary parameter that indicates whether the request is privileged.

 Values for the parameter are:
 NO
 YES

RECORD_ADDRESS
The address of the target record.

RECORD_ID_ADDRESS
The address of the record identification field.

RECORD_ID_TYPE
The type of data contained in the record identification field.

 Values for the parameter are:
 DEBKEY
 DEBREC
 KEY
 RBA
 RRN

CFDT_LOAD
Optional Parameter

754 CICS TS for z/OS 4.1: Diagnosis Reference

A binary value that indicates whether the request is part of the browse
operation used to read records from the source data set during loading of a
coupling facility data table.

Values for the parameter are:
 NO
 YES

FCTE_POINTER
Optional Parameter

 The address of the file control table entry (FCTE) for the file.
RECORD_ID_LENGTH

Optional Parameter

 The length of the record identifier.
RECORD_LENGTH

Optional Parameter

 The length of the record.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WORK_ELEMENT_ADDRESS

Optional Parameter

 The address of the current file request thread element (FRTE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CFDT_REOPEN_ERROR
 DISASTER_PERCOLATION
 SECURITY_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 BDAM_KEY_CONVERSION
 BDAM_WRITE_MASS_INSERT
 CACHE_FAILURE
 CFDT_CONNECT_ERROR
 CFDT_POOL_FULL
 CFDT_POOL_FULL
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 CFDT_TABLE_GONE
 DATASET_BEING_COPIED
 DEADLOCK_DETECTED
 DUPLICATE_RECORD
 FILE_DISABLED
 FILE_NOT_OPEN
 FULL_KEY_WRONG_LENGTH
 INSUFFICIENT_SPACE
 IO_ERROR
 KEY_LENGTH_NEGATIVE

Chapter 70. Application Manager Domain (AP) 755

KEY_STOLEN
 LOADING
 LOCK_STRUCTURE_FULL
 LOCKED
 LOST_LOCKS
 NO_VARIABLE_LENGTH
 NOSUSPEND_NOT_RLS
 NOT_IN_SUBSET
 PREVIOUS_RLS_FAILURE
 RBA_ACCESS_TO_RLS_KSDS
 RECORD_BUSY
 RECORD_NOT_FOUND
 RESTART_FAILED
 RIDFLD_KEY_NOT_RECORD_KEY
 RLS_DEADLOCK_DETECTED
 RLS_DISABLED
 RLS_FAILURE
 SELF_DEADLOCK_DETECTED
 SERVREQ_VIOLATION
 SHIP
 SHIPPED_SECURITY_FAILURE
 STORE_FAIL
 SUPPRESSED
 SYSIDERR
 TABLE_FULL
 TIMEOUT
 TOO_MANY_CFDTS_IN_UOW
 UPDATE_NOT_AUTHORISED
 VSAM_REQUEST_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ACCMETH_RETURN_CODE
The return code from the file access method for request.

LENGTH_ERROR_CODE
A value that provides details of a length error that occurred when processing
the request.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REMOTE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

756 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

FCFS gate, CANCEL_CLOSE_FILE function
This function cancels the command to close a file.

Input Parameters
FCTE_POINTER

Optional Parameter

 A pointer to the file control table entry (FCTE).
FILE_NAME

Optional Parameter

 The 8-character name of the file.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 FILE_NOT_CLOSING
 EXIT_SUPPRESSED_REQUEST

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 TM_UNLOCK_FAILED
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 INVALID
 EXCEPTION
 DISASTER
 PURGED

FCFS gate, CLOSE_FILE function
This function closes a named file.

Input Parameters
ACTION

Values for the parameter are:
 WAIT
 DONT_WAIT
 FORCE
 FORCE_OTHERS

CFDT_LOAD
Optional Parameter

 Values for the parameter are:
 YES
 NO

Chapter 70. Application Manager Domain (AP) 757

CLOSE_QUALIFIER
Optional Parameter

 Values for the parameter are:
 CLOSE_PENDING
 END_LOAD_MODE
 END_TABLE_LOAD
 CLEAR_IOERROR
 SHUTDOWN
 IMMEDIATE_CLOSE
 IMMEDIATE_CLOSE_PENDING
 QUIESCE
 END_FAILED_TABLE_LOAD

FCTE_POINTER
Optional Parameter

 A pointer to the file control table entry (FCTE).
FILE_NAME

Optional Parameter

 The 8-character name of the file.
TABLE_STATS

Optional Parameter

 A pointer to the table statistics.

Output Parameters
FCN_RETURN_CODE

The FCN return code.
R15_RETURN_CODE

The R15 return code.
VSAM_RETURN_CODE

The VSAM return code.
REASON

The following value is returned when RESPONSE is INVALID:
 INVALID_CLOSE_QUALIFIER

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 FILE_IN_USE
 CLOSE_ERROR
 EXIT_SUPPRESSED_REQUEST
 DT_DISCONNECT_FAILED
 CFDT_CLOSE_ERROR
 CFDT_REOPEN_ERROR
 CFDT_STATS_ERROR
 CFDT_SERVER_ERROR
 CFDT_SET_ERROR
 CFDT_SYSIDERR
 CFDT_TABLE_GONE

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 DISPATCHER_WAIT_FAILED
 SERIOUS_OPEN_CLOSE_ERROR
 DISASTER_PERCOLATION
 FCFR_RETURNED_ERROR
 TM_UNLOCK_FAILED
 ABEND

758 CICS TS for z/OS 4.1: Diagnosis Reference

LOOP
 DFHFCQI_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 INVALID
 EXCEPTION
 DISASTER
 PURGED

FCFS gate, DISABLE_FILE function
This function disables a named file and sets its state to unenabled.

Input Parameters

ACTION
Values for the parameter are:
 WAIT

 DONT_WAIT

 FORCE

 FORCE_OTHERS

FCTE_POINTER
Optional Parameter

 A pointer to the file control table entry (FCTE).

FILE_NAME
Optional Parameter

 The 8-character name of the file.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 FILE_IN_USE
 EXIT_SUPPRESSED_REQUEST

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 DISPATCHER_WAIT_FAILED
 FCFR_RETURNED_ERROR
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 INVALID
 EXCEPTION
 DISASTER
 PURGED

Chapter 70. Application Manager Domain (AP) 759

FCFS gate, ENABLE_FILE function
This function updates files that need to be reset to the enabled state.

Input Parameters

CATALOG_FILE
Specifies whether to catalog the state change. Values for the parameter are:
 YES

 NO

FCTE_POINTER
Optional Parameter

 A pointer to the file control table entry (FCTE).

FILE_NAME
Optional Parameter

 The 8-character name of the file.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 FILE_DISABLING
 EXIT_SUPPRESSED_REQUEST

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 INVALID
 EXCEPTION
 DISASTER
 PURGED

FCFS gate, OPEN_FILE function
This function opens a named file.

Input Parameters
CURRENT_HIGH_KEY

Optional Parameter

 The 16-character string that specifies the current high key.
FCTE_POINTER

Optional Parameter

 A pointer to the file control table entry (FCTE).
FILE_NAME

Optional Parameter

 The 8-character name of the file.
LOADER_ID

Optional Parameter

760 CICS TS for z/OS 4.1: Diagnosis Reference

The fullword binary field that specifies the ID of the loader.
OPEN_OPTIONS

Optional Parameter

 Values for the parameter are:
 OPEN_BASE
 OPEN_FOR_BACKOUT

Output Parameters
FCN_RETURN_CODE

The FCN return code.
R15_RETURN_CODE

The R15 return code.
VSAM_RETURN_CODE

The VSAM return code.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_FOUND
 FILE_DISABLING
 OPEN_ERROR
 CFDT_OPEN_ERROR
 CFDT_NO_DSNAME
 CFDT_NOT_KSDS
 CFDT_NO_READ_SERVREQS
 CFDT_OPEN_MISMATCH
 CFDT_SERVER_ERROR
 CFDT_SERVER_NOT_AVAILABLE
 CFDT_CONNECT_ERROR
 CFDT_SERVER_NOT_FOUND
 CFDT_SYSIDERR
 EXIT_SUPPRESSED_REQUEST
 SYSTEM_ID_ERROR
 DT_INIT_FAILED
 DT_CONNECT_FAILED
 DATASET_UNAVAILABLE
 DATASET_QUIESCING
 DATASET_BEING_COPIED
 DATASET_QUIESCED
 DATASET_QUIESCED_LOST
 RECOVERY_REQUIRED
 RLS_NOT_SUPPORTED
 COEXISTENCE_ERROR
 NO_DSNAME

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 LOADER_ACQUIRE_FAILED
 LOADER_DEFINE_FAILED
 DISPATCHER_WAIT_FAILED
 SERIOUS_OPEN_CLOSE_ERROR
 FCN_RETURNED_DISASTER
 FCM_RETURNED_DISASTER
 DISASTER_PERCOLATION
 TM_UNLOCK_FAILED
 DT_FAILED
 DT_INVALID
 ABEND

Chapter 70. Application Manager Domain (AP) 761

LOOP
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 INVALID
 EXCEPTION
 DISASTER
 PURGED

FCIN gate, INITIALISE_FILE_CONTROL function
This function initializes file control and starts the file control restart task.

Input Parameters

None.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID

FCIN gate, WAIT_FOR_FILE_CONTROL function
Waits for the file control restart task to complete,

Input Parameters

None.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID

FCLJ gate, DATASET_COPY function
This function is called when DFSMSdss initiates a copy of an RLS data set using
the VSAM RLS quiesce mechanism. A tie-up record is written to the log of logs if
the data set is forward recoverable or if autojournalling has been specified in the
file definition. If applicable, a record is also written to the forward recovery log.

Input Parameters
FCTE_ADDRESS

The address of the file control table entry for the file associated with a data set
being copied.

762 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, FILE_CLOSE function
This function is called when a file is closed and causes a file_close log record to be
written to the forward recovery log, if the file or associated data set, is forward
recoverable, or to the autojournal if autojournalling is specified for the file.

Input Parameters
FCTE_ADDRESS

A pointer to the address of the file control table entry for the file being closed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, FILE_OPEN function
This function is called when a file is opened and causes a tie-up record to be
written to the forward recovery log, if the file or associated data set is forward
recoverable, or to the autojournal if autojournalling is specified for the file.

Input Parameters
FCTE_ADDRESS

A pointer to the address of the file control table entry for the file being opened.

Chapter 70. Application Manager Domain (AP) 763

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, READ_ONLY function
This function causes a read_only log record to be written to an autojournal, if
read-only autojournalling is specified on the file definition. The log record is built
using the input parameters.

Input Parameters
BASE_ESDS_RBA

The relative byte address (RBA) of the record being read if the file is an
extended entry-sequenced data set (ESDS).

FCTE_ADDRESS
The address of the file control table entry for the file being read.

KEY_ADDRESS
The address of the key of the record being read.

KEY_LENGTH
The key length of the record being read.

RECORD_ADDRESS
The address of the record being read.

RECORD_LENGTH
The length of the record being read.

SHUNTED
Indicates whether the unit of work has ever been shunted. Values for the
parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR
 RM_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

764 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, READ_UPDATE function
This function causes a read_update log record to be written to the system log if the
file is recoverable and if the DESTINATION parameter specifies either LOG or BOTH.
This function causes a read_update log record to be written to the autojournal if
journaling of read updates is specified on the file definition and if the DESTINATION
parameter specifies either JOURNAL or BOTH.

Input Parameters
BASE_ESDS_RBA

The relative byte address (RBA) of the record being read for update, if the file
is an extended entry-sequenced data set (ESDS).

DESTINATION
Specifies whether the log record is to be written to the autojournal, the system
log, or both. It is used to suppress writing records that are otherwise requested
by the file definition. Values for the parameter are:
 JOURNAL
 LOG
 BOTH

FCTE_ADDRESS
The address of the file control table entry for the file being read for update.

KEY_ADDRESS
The address of the key of the record being read for update.

KEY_LENGTH
The key length of the record being read for update.

RECORD_ADDRESS
The address of the record being read for update.

RECORD_LENGTH
The length of the record being read for update.

SHUNTED
Indicates whether the unit of work has ever been shunted. Values for the
parameter are:
 YES
 NO

SYNCHRONIZE_LOG
Indicates whether the system log is to be synchronized when the log record is
written. Values for the parameter are:
 YES
 NO

Output Parameters
LOG_TOKEN

Optional Parameter

 This parameter is returned if SYNCHRONIZE(NO) was specified. It contains a
token to be used when subsequently synchronizing the system log.

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR

Chapter 70. Application Manager Domain (AP) 765

RM_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, SYNCHRONISE_READ_UPDATE function
This function causes any log records previously written to the system log for this
file to be synchronized.

Input Parameters
FCTE_ADDRESS

The address of the file control table entry for the file being read for update.
LOG_TOKEN

The token returned on a previous call.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 RM_RETURNED_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID
 PURGED

FCLJ gate, TAKE_KEYPOINT function
If BWO copy is supported by this CICS (indicated by a flag in file control static
storage), this function performs a scan of the file control table and, unless it has
been called within the last half hour, writes a tie-up record for each file open for
update in non-RLS mode that is BWO-eligible and forward recoverable to the
forward recovery log.

Input Parameters

None.

Output Parameters
KEYPOINT_TAKEN

Indicates whether the set of tie-up records was successfully written. Values for
the parameter are:
 YES

766 CICS TS for z/OS 4.1: Diagnosis Reference

NO
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR
 TM_GETNEXT_FCTE_FAILED

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, WRITE_ADD function
This function causes a write_add log record to be written to the system log if the
file is recoverable and if the DESTINATION parameter specifies BOTH. It causes a
write_add log record to be written to the autojournal if journaling of write adds
was specified on the file definition.

Input Parameters
BACKOUT

Indicates whether the call is made as part of transaction backout processing.
Values for the parameter are:
 YES
 NO

BASE_ESDS_RBA
The relative byte address (RBA) of the record being added, if the file is an
extended entry-sequenced data set (ESDS).

DESTINATION
Specifies whether the log record is to be written to the autojournal only, or to
both the autojournal and the system log. It is used to suppress writing records
that are otherwise requested by the file definition. Values for the parameter are:
 JOURNAL
 BOTH

FCTE_ADDRESS
The address of the file control table entry for the file being written to.

KEY_ADDRESS
The address of the key of the record being added.

KEY_LENGTH
The key length of the record being written to.

MASSINSERT
Indicates whether the record is being added as part of a mass insert. Values for
the parameter are:
 YES
 NO

RECORD_ADDRESS
The address of the record being added.

RECORD_LENGTH
The length of the record being added.

Chapter 70. Application Manager Domain (AP) 767

SHUNTED
Indicates whether the unit of work has ever been shunted. Values for the
parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR
 RM_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, WRITE_ADD_COMPLETE function
This function causes a write_add_complete log record to be written to the forward
recovery log, if the file or associated data set is forward recoverable, and to the
autojournal if write_add_complete journaling is specified on the file definition.

If the file is a recoverable ESDS accessed in non-RLS mode, this function causes a
truncated write_add_complete log record to be written to the system log. If the
MASSINSERT parameter is set to YES and the MASSINSERT_STAGE is set to LAST, only
the system log record is written and not the forward recovery log or autojournal
record.

Input Parameters
BACKOUT

Indicates whether the call is made as part of transaction backout processing.
Values for the parameter are:
 YES
 NO

BASE_ESDS_RBA
The relative byte address (RBA) of the record that has been added, if the file is
an extended entry-sequenced data set (ESDS).

FCTE_ADDRESS
The address of the file control table entry for the file that has been written to.

KEY_ADDRESS
The address of the key of the record that has been added.

KEY_LENGTH
The key length for the file that has been written to.

MASSINSERT
Indicates whether the record was added as part of a mass insert. Values for the
parameter are:
 YES

768 CICS TS for z/OS 4.1: Diagnosis Reference

NO
MASSINSERT_STAGE

Optional Parameter

 Indicates whether the record is the first or last record added during a mass
insert sequence. Values for the parameter are:
 FIRST
 LAST

RECORD_ADDRESS
The address of the record that has been added.

RECORD_LENGTH
The length of the record that has been added.

SHUNTED
Indicates whether the unit of work has ever been shunted. Values for the
parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR
 RM_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, WRITE_DELETE function
This function causes a write_delete log record to be written to the forward
recovery log, if the file or associated data set is forward recoverable, and to the
autojournal if journaling of write_deletes is specified on the file definition.

Input Parameters
BACKOUT

Indicates if the call is made as part of transaction backout processing. Values
for the parameter are:
 YES
 NO

BASE_ESDS_RBA
The relative byte address (RBA) of the record being deleted, if the file is an
extended entry-sequenced data set (ESDS).

BASE_KEY_ADDRESS
The address of the base key of the record being deleted, this key is used if the
data set is being accessed from a path.

FCTE_ADDRESS
The address of the file control table entry for the file.

Chapter 70. Application Manager Domain (AP) 769

KEY_ADDRESS
The address of the key of the record being deleted.

KEY_LENGTH
The key length for the file.

SHUNTED
Indicates whether the unit of work has ever been shunted. Values for the
parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR
 RM_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCLJ gate, WRITE_UPDATE function
This function causes a write_update log record to be written to the forward
recovery log, if the file or associated data set is forward recoverable, and to the
autojournal if journaling of write updates is specified on the file definition. A
write_update log record represents the completion of a file REWRITE request.

Input Parameters
BACKOUT

Indicates whether the call is made as part of transaction backout processing.
Values for the parameter are:
 YES
 NO

BASE_ESDS_RBA
The relative byte address (RBA) of the record being rewritten, if the file is an
extended entry-sequenced data set (ESDS).

FCTE_ADDRESS
The address of the file control table entry for the file being rewritten to.

KEY_ADDRESS
The address of the key of the record being rewritten.

KEY_LENGTH
The key length of the record being rewritten to.

RECORD_ADDRESS
The address of the record being rewritten.

RECORD_LENGTH
The length of the record being rewritten.

770 CICS TS for z/OS 4.1: Diagnosis Reference

SHUNTED
Indicates whether the unit of work has ever been shunted. Values for the
parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LG_RETURNED_ERROR
 RM_RETURNED_ERROR

The following value is returned when RESPONSE is EXCEPTION:
 JOURNAL_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 EXCEPTION
 INVALID
 PURGED

FCMT gate, ADD_FILE function
This function builds a new FCT entry for a VSAM file or data table.

Input Parameters
ADD

A binary parameter that indicates whether records can be added to the file.

 Values for the parameter are:
 NO
 YES

BROWSE
A binary parameter that indicates whether records can be retrieved
sequentially from the file.

 Values for the parameter are:
 NO
 YES

CATALOG_FCTE
A binary parameter that indicates whether the file definition should be written
to the catalog.

 Values for the parameter are:
 NO
 YES

DELETE
A binary parameter that indicates whether records can be deleted from the file.

 Values for the parameter are:
 NO
 YES

DSN_SHARING
Specifies whether VSAM data set name sharing is used for the VSAM file.

Chapter 70. Application Manager Domain (AP) 771

Values for the parameter are:
 ALL_REQUESTS
 MODIFY_REQUESTS

FILE_NAME
The name of the FILE resource.

FILE_TYPE
The location of the file.

 Values for the parameter are:
 LOCAL
 REMOTE

IMAGE
Indicates whether backup images are to be fuzzy or sharp.

 Values for the parameter are:
 FUZZY
 SHARP

JOURNAL_ID
The identifier of the journal used for automatic journaling records.

JOURNAL_READ_ONLY
A binary parameter that indicates whether READ ONLY operations, and not
READ UPDATE operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_READ_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for READ operations are to be written synchronously.

 Values for the parameter are:
 NO
 YES

JOURNAL_READ_UPDATE
A binary parameter that indicates whether READ UPDATE operations, and not
READ ONLY operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_AFTER
A binary parameter that indicates whether new records are to be written to the
journal before they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_BEFORE
A binary parameter that indicates whether new records are to be written to the
journal after they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for WRITE operations are to be written synchronously.

 Values for the parameter are:
 NO

772 CICS TS for z/OS 4.1: Diagnosis Reference

YES
JOURNAL_WRITE_UPDATE

A binary parameter that indicates whether the automatic journaling records
that are written for REWRITE and DELETE operations are to be written
synchronously.

 Values for the parameter are:
 NO
 YES

LSR_POOL_ID
The identity of the local shared resource (LSR) pool.

OPEN_TIME
Specifies whether the file is opened immediately after CICS initialization, or on
first reference.

 Values for the parameter are:
 ASAP
 FIRST_REFERENCE

READ
A binary parameter that indicates whether records on this file can be read.

 Values for the parameter are:
 NO
 YES

READ_INTEGRITY
Specifies the level of read integrity required for RLS files.

 Values for the parameter are:
 CR
 NRI
 RR

RECORD_FORMAT
The format (fixed- or variable-length) of records on the file.

 Values for the parameter are:
 FIXED
 VARIABLE

RECOVERY
The type of recovery required for the file.

 Values for the parameter are:
 ALL
 BACKOUT_ONLY
 NONE

RLS
A binary parameter that indicates whether CICS is to open the file in RLS
mode.

 Values for the parameter are:
 NO
 YES

STRING_NUMBER
The number of concurrent requests that can be processed against the file.

UPDATE
A binary parameter that indicates whether records on this file can be updated.

 Values for the parameter are:
 NO
 YES

Chapter 70. Application Manager Domain (AP) 773

BASE_NAME
Optional Parameter

 The name of the VSAM base cluster.
CF_LOAD

Optional Parameter

 A binary parameter that indicates whether a coupling facility data table load is
required.

Values for the parameter are:
 NO
 YES

CF_POOL
Optional Parameter

 The name of the coupling facility data table pool containing the table defined
by this file definition.

CF_UPDATE_MODEL
Optional Parameter

 The type of update model to be used for a coupling facility data table.

Values for the parameter are:
 CONTENTION
 LOCKING

DATA_BUFFERS
Optional Parameter

 The number of buffers to be used for data.
DISPOSITION

Optional Parameter

 The disposition of this file.

Values for the parameter are:
 OLD
 SHARE

DT_NAME
Optional Parameter

 The name of the coupling facility data table that is accessed through this file
definition.

ENABLE_STATUS
Optional Parameter

 Indicates that the initial state of the file is unenabled.

Values for the parameter are:
 UNENABLED

FORWARD_RECOVERY_LOG
Optional Parameter

 The journal that corresponds to the MVS system logger log stream that is to be
used for forward recovery.

INDEX_BUFFERS
Optional Parameter

 The number of buffers to be used for the index.
KEY_LENGTH

Optional Parameter

774 CICS TS for z/OS 4.1: Diagnosis Reference

The length in bytes of the logical key of records in remote files, and in
coupling facility data tables that are not loaded when they are first loaded.

OBJECT_NAME
Optional Parameter

 When the file is associated with a data set that is a VSAM base, the name of
the base data set.

RECORD_SIZE
Optional Parameter

 The maximum length in bytes of records in a remote file or a coupling facility
data table.

REMOTE_NAME
Optional Parameter

 The name by which the file is known in the remote region.
REMOTE_SYSTEM

Optional Parameter

 The name of the remote system where the file is located.
TABLE_SIZE

Optional Parameter

 The maximum number of records (entries) to be accommodated in the data
table.

TABLE_TYPE
Optional Parameter

 The type of data table.

Values for the parameter are:
 CFDT
 CICS
 NOT_TABLE
 USER

VSAM_PASSWORD
Optional Parameter

 The VSAM password for the file.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 CONNECT_DSNB_FAILED
 GETMAIN_FAILED
 TM_ADD_FAILED
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_FILE_NAME

The following values are returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 70. Application Manager Domain (AP) 775

FCMT gate, COMMIT_FILES function
This function is used during cold start of CICS to catalog all FCT entries in one go
using sequential writes to the catalog. This will reduce the number of I/Os
incurred writing to the catalog and so improve file control cold start performance.

Input Parameters
TOKEN

A token that identifies the catalog.
TOKEN

A token that identifies the catalog.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 TM_GET_NEXT_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCMT gate, DELETE_FILE function
Delete a file or data table.

Input Parameters
FILE_NAME

The name of the FILE resource.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_DELETE_FAILED
 DISCONNECT_DSNB_FAILED
 FREEMAIN_FAILED
 TM_DELETE_FAILED
 TM_QUIESCE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 DO_NOT_REALLOCATE
 FCT_ENTRY_IN_USE
 FILE_ENABLED
 FILE_NAME_NOT_FOUND
 FILE_OPEN

The following values are returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCMT gate, END_BROWSE_FILE function
End a browse operation on the set of installed FILE definitions.

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

776 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 FREEMAIN_FAILED
 TM_UNLOCK_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCMT gate, GET_NEXT_FILE function
In a browse operation on the set of installed FILE definitions, return information
about the next file.

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 TM_GET_NEXT_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 END_OF_LIST

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS_METHOD
Optional Parameter

 The access method used for the file.

Values for the parameter are:
 BDAM
 VSAM

ACTIVE_STRINGS
Optional Parameter

 The current number of concurrent requests against the file.
ADD

A binary parameter that indicates whether records can be added to the file.

 Values for the parameter are:
 NO
 YES

BASE_NAME
Optional Parameter

 The name of the VSAM base cluster.
BASE_OBJECT_NAME

Optional Parameter

 When the file is associated with a data set that is a VSAM base, the name of
the base data set.

Chapter 70. Application Manager Domain (AP) 777

BLOCK_FORMAT
Optional Parameter

 Indicates whether records on the file are blocked or unblocked.

Values for the parameter are:
 BLOCKED
 UNBLOCKED

BLOCK_KEY_LENGTH
Optional Parameter

 The physical block key length for the file.
BLOCK_SIZE

Optional Parameter

 The length in bytes of a block. If the blocks are of variable length or are
undefined, the value returned is the maximum.

BROWSE
A binary parameter that indicates whether records can be retrieved
sequentially from the file.

 Values for the parameter are:
 NO
 YES

CF_LOAD
Optional Parameter

 A binary parameter that indicates whether a coupling facility data table load is
required.

Values for the parameter are:
 NO
 YES

CF_POOL
Optional Parameter

 The name of the coupling facility data table pool containing the table defined
by this file definition.

CF_UPDATE_MODEL
Optional Parameter

 The type of update model to be used for a coupling facility data table.

Values for the parameter are:
 CONTENTION
 LOCKING

DATA_BUFFERS
Optional Parameter

 The number of buffers to be used for data.
DELETE

A binary parameter that indicates whether records can be deleted from the file.

 Values for the parameter are:
 NO
 YES

DISPOSITION
Optional Parameter

 The disposition of this file.

Values for the parameter are:
 OLD

778 CICS TS for z/OS 4.1: Diagnosis Reference

SHARE
DSN_SHARING

Specifies whether VSAM data set name sharing is used for the VSAM file.

 Values for the parameter are:
 ALL_REQUESTS
 MODIFY_REQUESTS

DT_NAME
Optional Parameter

 The name of the coupling facility data table that is accessed through this file
definition.

EMPTY_STATUS
Optional Parameter

 Indicates whether the object associated with this file is to be set to empty when
the file is opened.

Values for the parameter are:
 EMPTY_REQUESTED
 NO_EMPTY_REQUESTED

ENABLE_STATUS
Optional Parameter

 Indicates that the initial state of the file is unenabled.

Values for the parameter are:
 UNENABLED

EXCLUSIVE_CONTROL
Optional Parameter

 A binary value that indicates whether records on this file are to be placed
under exclusive control when a read for update is issued.

Values for the parameter are:
 NO
 YES

FILE_NAME
The name of the FILE resource.

FILE_TYPE
The location of the file.

 Values for the parameter are:
 LOCAL
 REMOTE

FORWARD_RECOVERY_LOG
Optional Parameter

 The journal that corresponds to the MVS system logger log stream that is to be
used for forward recovery.

INDEX_BUFFERS
Optional Parameter

 The number of buffers to be used for the index.
JOURNAL_ID

The identifier of the journal used for automatic journaling records.
JOURNAL_READ_ONLY

A binary parameter that indicates whether READ ONLY operations, and not
READ UPDATE operations, are to be written to the journal.

 Values for the parameter are:
 NO

Chapter 70. Application Manager Domain (AP) 779

YES
JOURNAL_READ_SYNC

A binary parameter that indicates whether the automatic journaling records
that are written for READ operations are to be written synchronously.

 Values for the parameter are:
 NO
 YES

JOURNAL_READ_UPDATE
A binary parameter that indicates whether READ UPDATE operations, and not
READ ONLY operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_AFTER
A binary parameter that indicates whether new records are to be written to the
journal before they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_BEFORE
A binary parameter that indicates whether new records are to be written to the
journal after they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for WRITE operations are to be written synchronously.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_UPDATE
A binary parameter that indicates whether the automatic journaling records
that are written for REWRITE and DELETE operations are to be written
synchronously.

 Values for the parameter are:
 NO
 YES

KEY_LENGTH
Optional Parameter

 The length in bytes of the logical key of records in remote files, and in
coupling facility data tables that are not loaded when they are first loaded.

KEY_POSITION
Optional Parameter

 The starting position of the key field in each record relative to the beginning of
the record.

LSR_POOL_ID
The identity of the local shared resource (LSR) pool.

OBJECT
Optional Parameter

780 CICS TS for z/OS 4.1: Diagnosis Reference

Indicates whether the file is associated with a data set (a VSAM KSDS, ESDS,
or RRDS, or an alternate index used directly) or a VSAM path that links an
alternate index to its base cluster.

Values for the parameter are:
 BASE
 PATH

OBJECT_NAME
Optional Parameter

 When the file is associated with a data set that is a VSAM base, the name of
the base data set.

OPEN_STATUS
Optional Parameter

 Indicates whether the file is open, closed, or in a transitional state.

Values for the parameter are:
 CLOSED
 CLOSING
 OPEN
 OPENING

READ
A binary parameter that indicates whether records on this file can be read.

 Values for the parameter are:
 NO
 YES

READ_INTEGRITY
Specifies the level of read integrity required for RLS files.

 Values for the parameter are:
 CR
 NRI
 RR

RECORD_FORMAT
The format (fixed- or variable-length) of records on the file.

 Values for the parameter are:
 FIXED
 VARIABLE

RECORD_SIZE
Optional Parameter

 The maximum length in bytes of records in a remote file or a coupling facility
data table.

RECOVERY
The type of recovery required for the file.

 Values for the parameter are:
 ALL
 BACKOUT_ONLY
 NONE

RELATIVE_ADDR
Optional Parameter

 Indicating whether relative or absolute addressing is used to access the file and
the type of relative addressing.

Values for the parameter are:
 BLOCK

Chapter 70. Application Manager Domain (AP) 781

DECIMAL
 HEX
 NONE

REUSE
Optional Parameter

 This parameter is no longer used.

Values for the parameter are:
 NO
 YES

RLS
A binary parameter that indicates whether CICS is to open the file in RLS
mode.

 Values for the parameter are:
 NO
 YES

STRING_NUMBER
The number of concurrent requests that can be processed against the file.

TABLE_SIZE
Optional Parameter

 The maximum number of records (entries) to be accommodated in the data
table.

TABLE_TYPE
Optional Parameter

 The type of data table.

Values for the parameter are:
 CFDT
 CICS
 NOT_TABLE
 USER

TYPE
Optional Parameter

 The type of data set that corresponds to the file

Values for the parameter are:
 ESDS
 KEYED
 KSDS
 NOT_KEYED
 RRDS
 VRRDS

UPDATE
A binary parameter that indicates whether records on this file can be updated.

 Values for the parameter are:
 NO
 YES

USING_LSR
Optional Parameter

 A binary value that indicates if the file is using a local shared resource (LSR)
pool.

Values for the parameter are:
 NO

782 CICS TS for z/OS 4.1: Diagnosis Reference

YES
VSAM_PASSWORD

Optional Parameter

 The VSAM password for the file.

FCMT gate, INQUIRE_FILE function
Return information about the current state of a FILE resource.

Input Parameters
FILE_NAME

The name of the FILE resource.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NAME_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS_METHOD
Optional Parameter

 The access method used for the file.

Values for the parameter are:
 BDAM
 VSAM

ACTIVE_STRINGS
Optional Parameter

 The current number of concurrent requests against the file.
ADD

A binary parameter that indicates whether records can be added to the file.

 Values for the parameter are:
 NO
 YES

BASE_NAME
Optional Parameter

 The name of the VSAM base cluster.
BASE_OBJECT_NAME

Optional Parameter

 When the file is associated with a data set that is a VSAM base, the name of
the base data set.

BLOCK_FORMAT
Optional Parameter

 Indicates whether records on the file are blocked or unblocked.

Values for the parameter are:
 BLOCKED

Chapter 70. Application Manager Domain (AP) 783

UNBLOCKED
BLOCK_KEY_LENGTH

Optional Parameter

 The physical block key length for the file.
BLOCK_SIZE

Optional Parameter

 The length in bytes of a block. If the blocks are of variable length or are
undefined, the value returned is the maximum.

BROWSE
A binary parameter that indicates whether records can be retrieved
sequentially from the file.

 Values for the parameter are:
 NO
 YES

CF_LOAD
Optional Parameter

 A binary parameter that indicates whether a coupling facility data table load is
required.

Values for the parameter are:
 NO
 YES

CF_POOL
Optional Parameter

 The name of the coupling facility data table pool containing the table defined
by this file definition.

CF_UPDATE_MODEL
Optional Parameter

 The type of update model to be used for a coupling facility data table.

Values for the parameter are:
 CONTENTION
 LOCKING

DATA_BUFFERS
Optional Parameter

 The number of buffers to be used for data.
DELETE

A binary parameter that indicates whether records can be deleted from the file.

 Values for the parameter are:
 NO
 YES

DISPOSITION
Optional Parameter

 The disposition of this file.

Values for the parameter are:
 OLD
 SHARE

DSN_SHARING
Specifies whether VSAM data set name sharing is used for the VSAM file.

 Values for the parameter are:
 ALL_REQUESTS

784 CICS TS for z/OS 4.1: Diagnosis Reference

MODIFY_REQUESTS
DT_NAME

Optional Parameter

 The name of the coupling facility data table that is accessed through this file
definition.

EMPTY_STATUS
Optional Parameter

 Indicates whether the object associated with this file is to be set to empty when
the file is opened.

Values for the parameter are:
 EMPTY_REQUESTED
 NO_EMPTY_REQUESTED

ENABLE_STATUS
Optional Parameter

 Indicates that the initial state of the file is unenabled.

Values for the parameter are:
 UNENABLED

EXCLUSIVE_CONTROL
Optional Parameter

 A binary value that indicates whether records on this file are to be placed
under exclusive control when a read for update is issued.

Values for the parameter are:
 NO
 YES

FILE_NAME
The name of the FILE resource.

FILE_TYPE
The location of the file.

 Values for the parameter are:
 LOCAL
 REMOTE

FORWARD_RECOVERY_LOG
Optional Parameter

 The journal that corresponds to the MVS system logger log stream that is to be
used for forward recovery.

INDEX_BUFFERS
Optional Parameter

 The number of buffers to be used for the index.
JOURNAL_ID

The identifier of the journal used for automatic journaling records.
JOURNAL_READ_ONLY

A binary parameter that indicates whether READ ONLY operations, and not
READ UPDATE operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_READ_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for READ operations are to be written synchronously.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 785

NO
 YES

JOURNAL_READ_UPDATE
A binary parameter that indicates whether READ UPDATE operations, and not
READ ONLY operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_AFTER
A binary parameter that indicates whether new records are to be written to the
journal before they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_BEFORE
A binary parameter that indicates whether new records are to be written to the
journal after they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for WRITE operations are to be written synchronously.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_UPDATE
A binary parameter that indicates whether the automatic journaling records
that are written for REWRITE and DELETE operations are to be written
synchronously.

 Values for the parameter are:
 NO
 YES

KEY_LENGTH
Optional Parameter

 The length in bytes of the logical key of records in remote files, and in
coupling facility data tables that are not loaded when they are first loaded.

KEY_POSITION
Optional Parameter

 The starting position of the key field in each record relative to the beginning of
the record.

LSR_POOL_ID
The identity of the local shared resource (LSR) pool.

OBJECT
Optional Parameter

 Indicates whether the file is associated with a data set (a VSAM KSDS, ESDS,
or RRDS, or an alternate index used directly) or a VSAM path that links an
alternate index to its base cluster.

Values for the parameter are:
 BASE
 PATH

786 CICS TS for z/OS 4.1: Diagnosis Reference

OBJECT_NAME
Optional Parameter

 When the file is associated with a data set that is a VSAM base, the name of
the base data set.

OPEN_STATUS
Optional Parameter

 Indicates whether the file is open, closed, or in a transitional state.

Values for the parameter are:
 CLOSED
 CLOSING
 OPEN
 OPENING

READ
A binary parameter that indicates whether records on this file can be read.

 Values for the parameter are:
 NO
 YES

READ_INTEGRITY
Specifies the level of read integrity required for RLS files.

 Values for the parameter are:
 CR
 NRI
 RR

RECORD_FORMAT
The format (fixed- or variable-length) of records on the file.

 Values for the parameter are:
 FIXED
 VARIABLE

RECORD_SIZE
Optional Parameter

 The maximum length in bytes of records in a remote file or a coupling facility
data table.

RECOVERY
The type of recovery required for the file.

 Values for the parameter are:
 ALL
 BACKOUT_ONLY
 NONE

RELATIVE_ADDR
Optional Parameter

 Indicating whether relative or absolute addressing is used to access the file and
the type of relative addressing.

Values for the parameter are:
 BLOCK
 DECIMAL
 HEX
 NONE

REMOTE_NAME
Optional Parameter

 The name by which the file is known in the remote region.

Chapter 70. Application Manager Domain (AP) 787

REMOTE_SYSTEM
Optional Parameter

 The name of the remote system where the file is located.
RLS

A binary parameter that indicates whether CICS is to open the file in RLS
mode.

 Values for the parameter are:
 NO
 YES

STRING_NUMBER
The number of concurrent requests that can be processed against the file.

TABLE_SIZE
Optional Parameter

 The maximum number of records (entries) to be accommodated in the data
table.

TABLE_TYPE
Optional Parameter

 The type of data table.

Values for the parameter are:
 CFDT
 CICS
 NOT_TABLE
 USER

TYPE
Optional Parameter

 The type of data set that corresponds to the file

Values for the parameter are:
 ESDS
 KEYED
 KSDS
 NOT_KEYED
 RRDS
 VRRDS

UPDATE
A binary parameter that indicates whether records on this file can be updated.

 Values for the parameter are:
 NO
 YES

USING_LSR
Optional Parameter

 A binary value that indicates if the file is using a local shared resource (LSR)
pool.

Values for the parameter are:
 NO
 YES

VSAM_PASSWORD
Optional Parameter

 The VSAM password for the file.

788 CICS TS for z/OS 4.1: Diagnosis Reference

FCMT gate, START_BROWSE_FILE function
STart a browse operation on installed FILE definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 GETMAIN_FAILED

BROWSE_TOKEN
See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCMT gate, UPDATE_FILE function
Update the attributes of an installed FILE definition.

Input Parameters
FILE_NAME

The name of the FILE resource.
ADD

A binary parameter that indicates whether records can be added to the file.

 Values for the parameter are:
 NO
 YES

BASE_NAME
Optional Parameter

 The name of the VSAM base cluster.
BROWSE

A binary parameter that indicates whether records can be retrieved
sequentially from the file.

 Values for the parameter are:
 NO
 YES

CF_LOAD
Optional Parameter

 A binary parameter that indicates whether a coupling facility data table load is
required.

Values for the parameter are:
 NO
 YES

CF_POOL
Optional Parameter

 The name of the coupling facility data table pool containing the table defined
by this file definition.

CF_UPDATE_MODEL
Optional Parameter

 The type of update model to be used for a coupling facility data table.

Values for the parameter are:
 CONTENTION
 LOCKING

Chapter 70. Application Manager Domain (AP) 789

DATA_BUFFERS
Optional Parameter

 The number of buffers to be used for data.
DELETE

A binary parameter that indicates whether records can be deleted from the file.

 Values for the parameter are:
 NO
 YES

DISPOSITION
Optional Parameter

 The disposition of this file.

Values for the parameter are:
 OLD
 SHARE

DSN_SHARING
Specifies whether VSAM data set name sharing is used for the VSAM file.

 Values for the parameter are:
 ALL_REQUESTS
 MODIFY_REQUESTS

DT_NAME
Optional Parameter

 The name of the coupling facility data table that is accessed through this file
definition.

FORWARD_RECOVERY_LOG
Optional Parameter

 The journal that corresponds to the MVS system logger log stream that is to be
used for forward recovery.

EMPTY_STATUS
Optional Parameter

 Indicates whether the object associated with this file is to be set to empty when
the file is opened.

Values for the parameter are:
 EMPTY_REQUESTED
 NO_EMPTY_REQUESTED

ENABLE_STATUS
Optional Parameter

 Indicates that the initial state of the file is unenabled.

Values for the parameter are:
 UNENABLED

EXCLUSIVE_CONTROL
Optional Parameter

 A binary value that indicates whether records on this file are to be placed
under exclusive control when a read for update is issued.

Values for the parameter are:
 NO
 YES

FILE_TYPE
The location of the file.

 Values for the parameter are:

790 CICS TS for z/OS 4.1: Diagnosis Reference

LOCAL
 REMOTE

FORWARD_RECOVERY_LOG
Optional Parameter

 The journal that corresponds to the MVS system logger log stream that is to be
used for forward recovery.

INDEX_BUFFERS
Optional Parameter

 The number of buffers to be used for the index.
JOURNAL_ID

The identifier of the journal used for automatic journaling records.
JOURNAL_READ_ONLY

A binary parameter that indicates whether READ ONLY operations, and not
READ UPDATE operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_READ_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for READ operations are to be written synchronously.

 Values for the parameter are:
 NO
 YES

JOURNAL_READ_UPDATE
A binary parameter that indicates whether READ UPDATE operations, and not
READ ONLY operations, are to be written to the journal.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_AFTER
A binary parameter that indicates whether new records are to be written to the
journal before they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_NEW_BEFORE
A binary parameter that indicates whether new records are to be written to the
journal after they are written to the VSAM file.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_SYNC
A binary parameter that indicates whether the automatic journaling records
that are written for WRITE operations are to be written synchronously.

 Values for the parameter are:
 NO
 YES

JOURNAL_WRITE_UPDATE
A binary parameter that indicates whether the automatic journaling records
that are written for REWRITE and DELETE operations are to be written
synchronously.

Chapter 70. Application Manager Domain (AP) 791

Values for the parameter are:
 NO
 YES

KEY_LENGTH
Optional Parameter

 The length in bytes of the logical key of records in remote files, and in
coupling facility data tables that are not loaded when they are first loaded.

LSR_POOL_ID
The identity of the local shared resource (LSR) pool.

OBJECT_NAME
Optional Parameter

 When the file is associated with a data set that is a VSAM base, the name of
the base data set.

OPEN_TIME
Specifies whether the file is opened immediately after CICS initialization, or on
first reference.

 Values for the parameter are:
 ASAP
 FIRST_REFERENCE

READ
A binary parameter that indicates whether records on this file can be read.

 Values for the parameter are:
 NO
 YES

READ_INTEGRITY
Specifies the level of read integrity required for RLS files.

 Values for the parameter are:
 CR
 NRI
 RR

RECORD_FORMAT
The format (fixed- or variable-length) of records on the file.

 Values for the parameter are:
 FIXED
 VARIABLE

RECORD_SIZE
Optional Parameter

 The maximum length in bytes of records in a remote file or a coupling facility
data table.

RECOVERY
The type of recovery required for the file.

 Values for the parameter are:
 ALL
 BACKOUT_ONLY
 NONE

RLS
A binary parameter that indicates whether CICS is to open the file in RLS
mode.

 Values for the parameter are:
 NO
 YES

792 CICS TS for z/OS 4.1: Diagnosis Reference

STRING_NUMBER
The number of concurrent requests that can be processed against the file.

TABLE_SIZE
Optional Parameter

 The maximum number of records (entries) to be accommodated in the data
table.

TABLE_TYPE
Optional Parameter

 The type of data table.

Values for the parameter are:
 CFDT
 CICS
 NOT_TABLE
 USER

UPDATE
A binary parameter that indicates whether records on this file can be updated.

 Values for the parameter are:
 NO
 YES

VSAM_PASSWORD
Optional Parameter

 The VSAM password for the file.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED
 CONNECT_DSNB_FAILED
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 DO_NOT_REALLOCATE
 FILE_ENABLED
 FILE_NAME_NOT_FOUND
 FILE_OPEN

The following values are returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FCQI gate, COMPLETE_QUIESCE function
This function issues the IDAQUIES QUICMP macro to SMSVSAM.

When CICS has completed processing a VSAM QUICLOSE (quiesce), QIOCOPY
(non-BWO backup), or QUIBWO (BWO backup) request, SMSVSAM must be
notified with an IDAQUIES QUICMP .

Input Parameters
DSNAME

The 44-character name of the base data set that has had quiesce processing
completed by CICS.

Chapter 70. Application Manager Domain (AP) 793

QUIESCE_TOKEN
The token that was supplied by SMSVSAM when it drove the quiesce exit for
the original quiesce request. This token must be returned on the IDAQUIES
QUICMP.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 IOERR
 SERVER_FAILURE

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCQI gate, INITIATE_QUIESCE function
This function takes a quiesce request and creates a file control quiesce send
element (FCQSE) to describe the request.

Input Parameters
BUSY

Indicates whether DFHFCQI is to wait for the quiesce to complete, or is to
return immediately to the caller. Values for the parameter are:
 WAIT
 NOWAIT

DSNAME
The 44-character name of the base data set to be quiesced.

SOURCE
Indicates whether the source of the quiesce request was CICS or a user. Values
for the parameter are:
 CICS
 USER

QUIESCE_TYPE
The type of quiesce being initiated. Values for the parameter are:
 QUIESCE
 IMMQUIESCE
 UNQUIESCE
 NONBWO_CANCEL
 BWO_CANCEL
 QUIESCE_CANCEL

Output Parameters
REASON

The following value is returned when RESPONSE is INVALID:
 INVALID_QUIESCE_TYPE

794 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 NOT_SUPPORTED
 UNKNOWN_VSAM_DATASET
 QUIESCE_NOT_POSSIBLE
 UNQUIESCE_NOT_POSSIBLE
 CANCELLED
 TIMED_OUT
 IOERR
 SERVER_FAILURE
 DATASET_MIGRATED

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_ERROR
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCQI gate, INQUIRE_QUIESCE function
This function returns the quiesce state of a data set as QUIESCED, UNQUIESCED,
or QUIESCING.

Input Parameters
DSNAME

The 44-character name of the base data set on which the quiesce state
information is being inquired.

Output Parameters
QUIESCESTATE

Indicates the quiesce state of the data set. Values for the parameter are:
 QUIESCED
 UNQUIESCED
 QUIESCING

REASON
The following values are returned when RESPONSE is EXCEPTION:
 NOT_SUPPORTED
 UNKNOWN_VSAM_DATASET
 IOERR

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_ERROR
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:

Chapter 70. Application Manager Domain (AP) 795

OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCQR gate, RECEIVE_QUIESCES function
This function receives quiesce requests and calls the PROCESS_QUIESCE function.

This function consists of a forever loop around a dispatcher wait on an event
control block (ECB). It receives work from the CICS RLS quiesce exit DFHFCQX
whenever SMSVSAM requires CICS to perform processing for a quiesce request.
DFHFCQX queues the request to DFHFCQR by adding an FC Quiesce Receive
Element (FCQRE) to a chain anchored in file control static storage and by posting
the ECB associated with the chain, also in FC static.

The posting of the ECB initiates the CFQR transaction, which runs the code in
DFHFCQR. The FCQREs on the chain are processed, and DFHFCQU is called with
function PROCESS_QUIESCE to perform the work. The ECB might also be posted
to inform DFHFCQR that CICS is stopping. When DFHFCQU has finished
processing, DFHFCQR unchains and frees the FCQRE.

Input Parameters

None.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 PROCESS_QUIESCE_ERROR
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCQS gate, SEND_QUIESCES function
This function sends a quiesce request to SMSVSAM.

This function consists of a forever loop around a dispatcher wait on a list of event
control blocks (ECBs). Work is received from tasks that want to send a quiesce
request to SMSVSAM. Such tasks call DFHFCQI with function
INITIATE_QUIESCE, which queues the request to DFHFCQS by adding an FC
Quiesce Send Element (FCQSE) to the chain anchored in file control static storage
and by posting an ECB associated with the chain, also in FC static.

796 CICS TS for z/OS 4.1: Diagnosis Reference

When the ECB is posted, it initiates the CFQS transaction, which runs the code in
DFHFCQS. The FCQSEs on the chain are processed, and DFHFCCA is called with
function QUIESCE_REQUEST to issue the appropriate type of IDAQUIES macro to
SMSVSAM. This operation is asynchronous and SMSVSAM returns the address of
an ECB that will be posted when the IDAQUIES completes. The addresses
returned by SMSVSAM are saved in the FCQSE.

DFHFCQS then returns to its dispatcher wait for a list of ECBs, the ECB for the
chain plus an ECB for each IDAQUIES request. It starts and processes the chain
whenever one of these ECBs is posted. The wait also specifies a timeout interval so
that IDAQUIES requests that are in an endless loop can be detected. When
DFHFCQS starts up, there might be new work on the chain, or a quiesce request
has completed, or a quiesce request has timed out, or CICS is stopping. When a
quiesce request has completed or timed out, DFHFCQS will resume the initiating
task if it is waiting, after issuing appropriate messages and calling global user exit
XFCQUIS if active.

Input Parameters

None.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 TIMEOUT_CANCEL_ERROR
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCQU gate, PROCESS_QUIESCE function
This function is called when a quiesce request is received from VSAM RLS. The
quiesce exit, DFHFCQX, queues requests to the CFQR system transaction,
DFHFCQR, which calls DFHFCQU to process each one in turn. The
PROCESS_QUIESCE function is also called to implement a non-RLS variant of
QUIESCE called NON_RLS_CLOSE.

Input Parameters
QUIESCE_TYPE

The type of quiesce being requested. Values for the parameter are:
QUIESCE

Corresponds to an SMSVSAM QUICLOSE. All files open against the data
set are closed, the file state of each file is set to unenabled with a flag that
says reenable on QUIOPEN, and a QUICMP is issued for the QUICLOSE
back to VSAM RLS to indicate that QUICLOSE processing is complete. The
IMMEDIATE parameter governs how file closes are to be performed. If the
IMMEDIATE parameter is set to NO, or omitted, files will be closed when all

Chapter 70. Application Manager Domain (AP) 797

UOWs using the data set have completed normally. If the IMMEDIATE
parameter is set to YES, all such UOWs will be force purged to speed up
file closure.

UNQUIESCE
Corresponds to an SMSVSAM QUIOPEN. All files associated with the data
set are checked to see if their file state requires resetting back to enabled
because it had been set unenabled by a QUICLOSE.

NONBWO_START
Corresponds to an SMSVSAM QUICOPY. CICS prepares for a non-BWO
backup of the data set by preventing new units of work from updating the
data set, allowing existing UOWs to finish updating the data set, and
issuing a QUICMP for the QUICOPY back to SMSVSAM to indicate that
QUICOPY processing is complete. The files involved are not closed.

NONBWO_END
Corresponds to an SMSVSAM QUICEND. All files associated with the data
set are checked to see if their file state requires resetting to enabled because
it had been set unenabled by an OPEN failure, and a set of ’tie up records’
is written for the data set.

BWO_START
Corresponds to an SMSVSAM QUIBWO. CICS prepares for a BWO backup
of the data set by writing a set of ’tie up records’ allowing existing units of
work to finish updating the data set and issuing a QUICMP for the
QUIBWO back to SMSVSAM to indicate that QUIBWO processing is
complete. The files involved are not closed, and updates are not prevented.

BWO_END
Corresponds to an SMSVSAM QUIBEND. The only processing involved is
to stop an existing BWO quiesce if one is in progress.

LOCKS_RECOVERY_COMPLETE
Corresponds to an SMSVSAM QUILLRC. CICS is notified that lost locks
recovery has been completed for the data set throughout the sysplex.
DFHFCRR is called with the LOST_LOCKS_RECOVERED function to
process the availability of the data set.

FORWARD_RECOVERY_COMPLETE
Corresponds to an SMSVSAM QUIFRC. CICS is notified that forward
recovery has been completed for the data set. DFHFCRR is called with the
RESOURCE_AVAILABLE function to process the availability of the data
set.

CACHE_AVAILABLE
Corresponds to an SMSVSAM QUICA. CICS is notified that a previously
failed cache structure is now available. DFHFCRR is called with the
RESOURCE_AVAILABLE function to process the availability of the cache.

NON_RLS_CLOSE
Processes a non-RLS variant of type CLOSE called NON_RLS_CLOSE. All
ACBs open against the specified non-RLS data set are closed.
NON_RLS_CLOSE is used internally by CICS and does not run under the
CFQR system transaction. Each quiesce request type is processed in a
different way by DFHFCQU.

DSNAME|CACHE_NAME
Specifies either the 44-character name of the data set to which the quiesce
request applies, or when the value of the QUIESCE_TYPE parameter is
CACHE_AVAILABLE, the 16-character name of the cache structure that has
become available.

IMMEDIATE
This parameter applies only when the value of the QUIESCE_TYPE parameter is
QUIESCE or NON_RLS_CLOSE, and indicates whether units of work that have

798 CICS TS for z/OS 4.1: Diagnosis Reference

updated the data set will be forced to complete immediately, or whether the
request will wait for those units of work to complete naturally. Values for the
parameter are:
 YES
 NO

CONCURRENT
This parameter applies only when the value of the QUIESCE_TYPE parameter is
NONBWO_START or BWO_START, This parameter indicates whether the
concurrent copy technique is being used and has no effect on the processing.
Values for the parameter are:
 YES
 NO

QUIESCE_TOKEN
This token is supplied by SMSVSAM when certain quiesce requests are
initiated and must be passed back when the quiesce complete is issued.

Output Parameters
REASON

The following value is returned when RESPONSE is INVALID:
 INVALID_QUIESCE_TYPE

The following value is returned when RESPONSE is EXCEPTION:
 DSNB_NOT_FOUND

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION
 DFHFCRR_ERROR
 DFHFCQI_ERROR
 DFHFCFS_ERROR
 DFHTM_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCRF gate, BROWSE function
Browse a file in a remote system.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
READ_BUFFER

The buffer that receives the file record data that is returned from the remote
system.

RECORD_ID
Optional Parameter

 The record identifier.

Chapter 70. Application Manager Domain (AP) 799

REMOTE_FILE_NAME
Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_DUPLICATE_KEY
When the data set is being accessed in the remote system by way of an
alternate index path that allows non-unique alternate keys, a binary value that
indicates whether further records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

BACKEND_LENGTH_ERR_CODE
A value that provides details of a length error that occurred when processing
the request in the remote system.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

FULL_RECORD_ID_LENGTH
The length of the record key.

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

800 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCRF gate, DELETE function
Delete a record from a file in a remote system.

Input Parameters
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
RECORD_ID

Optional Parameter

 The record identifier.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_DUPLICATE_KEY
When the data set is being accessed in the remote system by way of an
alternate index path that allows non-unique alternate keys, a binary value that
indicates whether further records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

DELETED_RECORD_COUNT
The number of records deleted by the request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 70. Application Manager Domain (AP) 801

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, END_BROWSE function
End a browse operation on a remote file.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO

802 CICS TS for z/OS 4.1: Diagnosis Reference

YES

FCRF gate, READ function
Read a remote file.

Input Parameters
READ_BUFFER

The buffer that receives the file record data that is returned from the remote
system.

RECORD_ID
Optional Parameter

 The record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_DUPLICATE_KEY
When the data set is being accessed in the remote system by way of an
alternate index path that allows non-unique alternate keys, a binary value that
indicates whether further records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

BACKEND_LENGTH_ERR_CODE
A value that provides details of a length error that occurred when processing
the request in the remote system.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

MAXIMUM_RECORD_LENGTH
The length of the longest record in the data set.

Chapter 70. Application Manager Domain (AP) 803

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

UPDATE_TOKEN
Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

FCRF gate, REPLACE function
Replace a file record in a remote system.

Input Parameters
RECORD_ID

Optional Parameter

 The record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WRITE_RECORD

The record to be written in the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

804 CICS TS for z/OS 4.1: Diagnosis Reference

BACKEND_LENGTH_ERR_CODE
A value that provides details of a length error that occurred when processing
the request in the remote system.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, REPLACE_DELETE function
Delete and replace a file control record in a remote system.

Input Parameters
RECORD_ID

Optional Parameter

 The record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

Chapter 70. Application Manager Domain (AP) 805

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_DUPLICATE_KEY
When the data set is being accessed in the remote system by way of an
alternate index path that allows non-unique alternate keys, a binary value that
indicates whether further records exist with the same alternate key.

 Values for the parameter are:
 NO
 YES

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

DELETED_RECORD_COUNT
The number of records deleted by the request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, RESET_BROWSE function
Reset the start of a browse operation on a remote file.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
RECORD_ID

Optional Parameter

 The record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

806 CICS TS for z/OS 4.1: Diagnosis Reference

ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, REWRITE function
Rewrite a record in a remote file.

Input Parameters
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WRITE_RECORD

The record to be written in the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

Chapter 70. Application Manager Domain (AP) 807

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_LENGTH_ERR_CODE
A value that provides details of a length error that occurred when processing
the request in the remote system.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, START_BROWSE function
Start a browse operation on a remote file.

Input Parameters
BROWSE_IDENTIFIER

A token that identifies the browse operation.
RECORD_ID

Optional Parameter

 The record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:

808 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, UNLOCK function
Unlock a file record in a remote system.

Input Parameters
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
UPDATE_TOKEN

Optional Parameter

 A token that identifies an update request, and allows subsequent requests to
refer to it.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_REASON
The reason code from the file control request in the remote system.

BACKEND_RESPONSE
The response code from the file control request in the remote system.

Chapter 70. Application Manager Domain (AP) 809

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRF gate, WRITE function
Write a record in a remote file.

Input Parameters
RECORD_ID

Optional Parameter

 The record identifier.
REMOTE_FILE_NAME

Optional Parameter

 The file name in the remote system.
REMOTE_SYSTEM

Optional Parameter

 The SYSID of the remote system.
WRITE_RECORD

The record to be written in the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BACKEND_ACCMETH_RETURN_CODE
The return code from the file access method in the remote system.

BACKEND_LENGTH_ERR_CODE
A value that provides details of a length error that occurred when processing
the request in the remote system.

 Values for the parameter are:
 BUFFER_LEN_NOT_FILE_LEN
 BUFFER_LEN_TOO_SMALL
 LENGTH_OK
 RECORD_LEN_NOT_FILE_LEN
 RECORD_LEN_TOO_LARGE

BACKEND_REASON
The reason code from the file control request in the remote system.

810 CICS TS for z/OS 4.1: Diagnosis Reference

BACKEND_RESPONSE
The response code from the file control request in the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINATE_REQUEST
A binary value that indicates whether a remote file request should be
terminated.

 Values for the parameter are:
 NO
 YES

TERMINATE_STRING
A binary value that indicates whether the FRTE string should be terminated.

 Values for the parameter are:
 NO
 YES

FCRL gate, COMMIT_POOLS function
This function catalogs all the shared resources control (SHRCTL) blocks in one
operation and is used only during cold start initialization.

Input Parameters
TOKEN

An 8-character token.

Output Parameters
REASON

The following value is returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID

FCRL gate, SET_POOL function
This function updates the attributes in the VSAM local shared resource (LSR) pool.

Input Parameters

POOL_ID
This binary field specifies the ID of the pool to be updated, in the range 1 - 8.

CATALOG_SHRCTL_BLOCK
This parameter indicates whether to catalog the shared resources control
(SHRCTL) block. Values for the parameter are:
 YES

 NO

MAXIMUM_KEY_LENGTH
Optional Parameter

 This binary field specifies the maximum length of the key, in the range 0 - 255.

Chapter 70. Application Manager Domain (AP) 811

SHARE_LIMIT
Optional Parameter

 This binary field specifies the resource share limit, in the range 1 - 100.

STRING_NUMBER
Optional Parameter

 This binary field specifies the number of concurrent requests that can be
processed, in the range 0 -255.

BUFFERS_ARRAY
Optional Parameter

 A pointer to a SHRCTL block containing buffer counts.

Output Parameters
REASON

The following value is returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED

The following value is returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 DISASTER
 INVALID

FCRP gate, RESTART_FILE_CONTROL function
This function restarts file control.

Input Parameters

None.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_READ_SHRCTL_FAILED
 CATALOG_SHRCTL_NOT_FOUND
 DCB_NOT_ON_CATALOG
 DSNB_NOT_FOUND
 DFP_LEVEL_INVALID
 FCBP_RETURNED_DISASTER
 FCT_LEVEL_INVALID
 FCTE_NOT_FOUND
 GATE_NOT_ADDED
 IGWARLS_LOAD_FAILED
 IGWARLS_NOT_FOUND
 INQUIRE_SYSID_FAILED
 LISTEN_FAILED
 PGDD_FAILED
 RCEX_LINK_FAILED
 RLS_RESTART_FAILED
 SET_GATE_FAILED

812 CICS TS for z/OS 4.1: Diagnosis Reference

TM_ADD_FCT_FAILED
 TM_ADD_DSN_FAILED
 TM_ADD_DSNA_FAILED
 TM_CREATE_FCT_I_FAILED
 TM_CREATE_DSN_I_FAILED
 TM_CREATE_DSNA_I_FAILED
 TM_LOCATE_DSNB_FAILED
 XMAT_FAILED
 XMXD_FAILED
 IGGCSI00_LOAD_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCRR gate, LOST_LOCKS_RECOVERED function
The LOST_LOCKS_RECOVERED function is called when lost locks recovery for a
data set has been completed by all the CICS regions that were sharing it. This
function causes the flag in the DSNB, which indicates that the data set is in lost
locks state, to be cleared.

Input Parameters
RESOURCE_NAME

The 44-character field containing the name of the data set that has completed
lost locks recovery.

Output Parameters
REASON

The following value is returned when RESPONSE is INVALID:
 INVALID_FUNCTION

The following value is returned when RESPONSE is EXCEPTION:
 SPHERE_UNKNOWN

The following values are returned when RESPONSE is DISASTER:
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Chapter 70. Application Manager Domain (AP) 813

FCRR gate, RESOURCE_AVAILABLE function
This function causes the CICS recovery manager to be notified of the availability of
the specified resource.

Input Parameters
RESOURCE_TYPE

The type of resource that has become available. Values for the parameter are:
 DSET
 CACHE
 OTHER

When the RESOURCE_TYPE parameter is set to DSET, an RMRE AVAIL call is
issued for the specified data set. When the RESOURCE_TYPE parameter is set to
CACHE, an RMRE AVAIL call is issued for every data set that has outstanding
work shunted, because of either a cache failure or a general file backout
failure. When the RESOURCE_TYPE parameter is set to OTHER, an RMRE AVAIL
call is issued for the specified resource.

RESOURCE_NAME
The 44-character field containing the name of the resource that has become
available.

RESOURCE_NAME_LENGTH
A halfword binary field containing the length of the resource name.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DISASTER_PERCOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCRR gate, RESTART_RLS function
This function performs a restart of the record-level sharing (RLS) component of file
control. The exact processing depends on the type of restart being performed: cold,
initial, warm, emergency, or dynamic.

COLD and INITIAL

The RLS control ACB is registered and RLS is cold started; both processes are
initiated through calls to DFHFCCA.

814 CICS TS for z/OS 4.1: Diagnosis Reference

WARM and EMERGENCY

The RLS control ACB is registered and recovery information is inquired upon from
SMSVSAM; both processes are initiated through calls to DFHFCCA. If the recovery
information indicates that some data sets are in lost locks status, the corresponding
DSNBs are marked as being in lost locks state and preparation for lost locks
recovery is carried out. Any orphan locks are eliminated.

DYNAMIC

This type of restart occurs when a new instance of the SMSVSAM server becomes
available following a previous server failure.

Having waited for file control restart to complete, if it was still in progress, and for
any in-progress dynamic RLS restarts to complete, RLS access is drained if
necessary, the control ACB is registered, and recovery information is inquired upon
from SMSVSAM. All three of these processes are initiated through calls to
DFHFCCA.

If the recovery information indicates that some data sets are in lost locks status, the
corresponding DSNBs are marked as being lost locks, and preparation for lost
locks recovery is carried out. Any orphan locks are eliminated.

The CICS recovery manager is called to recover any shunted units of work that are
backout-failed because of the SMSVSAM server failure or a general file backout
failure and any units of work that are commit-failed because of the SMSVSAM
server failure.

Input Parameters
TYPE_OF_RESTART

Indicates the type of RLS restart being performed. Values for the parameter
are:
 COLD
 WARM
 EMERGENCY
 DYNAMIC

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 INVALID_RESTART_TYPE

The following values are returned when RESPONSE is EXCEPTION:
 REGISTER_CTL_ACB_FAILED
 COLD_START_RLS_FAILED
 DRAIN_RLS_FAILED
 LOST_LOCKS_INFO_LOST
 INQUIRE_RECOVERY_FAILED
 LOST_LOCKS_COMPLETE_FAILED
 ORPHAN_RELEASE_FAILED

The following values are returned when RESPONSE is DISASTER:
 DSSR_FAILED
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED
 ABEND

Chapter 70. Application Manager Domain (AP) 815

DISASTER_PERCOLATION
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCSD gate, TERMINATE function
This function closes all the files, either through an immediate or a warm
shutdown.

Input Parameters
SHUTDOWN

Specifies the type of shutdown that occurs. Values for the parameter are:
 IMMEDIATE
 WARM

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CLOSE_ERROR
 RECOVERY_ENTERED
 TM_GETNEXT_FCTE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCST gate, COLLECT_FILE_STATISTICS function
Returns the statistics for the named file.

Input Parameters
FILE_NAME

The 8–character name of the file.
FC_CONNECT_TOKEN

Optional Parameter

 This field is an ETOKEN.
STATISTICS_RECORD

Optional Parameter

 Specifies the buffer for the output data.
RESET

Values for the parameter are:

816 CICS TS for z/OS 4.1: Diagnosis Reference

YES
 NO

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 FILE_NAME_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FC_CONNECT_TOKEN
 INVALID_RESET
 NO_FILE_NAME
 NO_RESET
 BAD_BUFF_PTR
 BAD_BUFF_LEN
 BROWSE_TOKEN_NOT_REQD
 POOL_ID_NOT_REQD

The following values are returned when RESPONSE is DISASTER:
 TM_LOCATE_FAILED
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCST gate, COLLECT_POOL_STATISTICS function
Returns statistics for the named local shared resources (LSR) pool.

Input Parameters
POOL_ID

The 8-digit binary ID of the LSR pool.
STATISTICS_RECORD

Optional Parameter

 Specifies the buffer for the output data.
RESET

Values for the parameter are:
 YES
 NO

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 POOL_NOT_BUILT

The following values are returned when RESPONSE is INVALID:
 INVALID_POOL_ID
 INVALID_RESET
 NO_POOL_ID
 BAD_BUFF_PTR

Chapter 70. Application Manager Domain (AP) 817

BAD_BUFF_LEN
 BROWSE_TOKEN_NOT_REQD
 FILE_NAME_NOT_REQD

The following value is returned when RESPONSE is DISASTER:
 SHRCTL_BLOCK_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCST gate, END_FILE_IN_POOL_BROWSE function
Terminates the browse of files for the named local shared resources (LSR) pool.

Input Parameters
BROWSE_TOKEN

Token returned from the previous browse operation.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 NO_BROWSE_TOKEN
 CONNECT_TOKEN_NOT_REQD
 FILE_NAME_NOT_REQD
 STATS_RECORD_NOT_REQD
 POOL_ID_NOT_REQD
 RESET_NOT_REQD

The following value is returned when RESPONSE is DISASTER:
 FREEMAIN_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCST gate, GET_NEXT_FILE_IN_POOL function
Returns statistics for the next file in the named local shared resources (LSR) pool.

Input Parameters
BROWSE_TOKEN

Token returned from the previous browse operation.

818 CICS TS for z/OS 4.1: Diagnosis Reference

RESET
Values for the parameter are:
 YES
 NO

STATISTICS_RECORD
Optional Parameter

 Specifies the buffer for the output data.

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 END_OF_LIST

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 NO_BROWSE_TOKEN
 NO_RESET
 BAD_BUFF_PTR
 BAD_BUFF_LEN
 CONNECT_TOKEN_NOT_REQD
 FILE_NAME_NOT_REQD
 POOL_ID_NOT_REQD

The following values are returned when RESPONSE is DISASTER:
 TM_GETNEXT_FAILED
 TM_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCST gate, START_FILE_IN_POOL_BROWSE function
Initiates the browse of files for the named local shared resources (LSR) pool.

Input Parameters
POOL_ANY

Optional Parameter

 Values for the parameter are:
 YES
 NO

POOL_ID
The 8-digit binary ID of the LSR pool.

Output Parameters
BROWSE_TOKEN

Token returned that describes the state of the browse operation.
REASON

The following value is returned when RESPONSE is EXCEPTION:
 FILE_NAME_NOT_FOUND

Chapter 70. Application Manager Domain (AP) 819

The following values are returned when RESPONSE is INVALID:
 INVALID_POOL_ID
 INVALID_RESET
 NO_POOL_ID
 NO_RESET
 CONNECT_TOKEN_NOT_REQD
 BROWSE_TOKEN_NOT_REQD
 FILE_NAME_NOT_REQD
 STATS_RECORD_NOT_REQD
 RESET_NOT_REQD

The following value is returned when RESPONSE is DISASTER:
 GETMAIN_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FCVC gate, INQUIRE_CATALOG function
This function issues a call to IGGCSI00 to obtain catalog information.

Input Parameters
DSNAME

The 44-character name of the data set on which the inquiry is being made.

Output Parameters
EXTENDED

Indicates whether the data set supports extended addressing. Values for the
parameter are:
 YES
 NO

HIGH_XRBA
The highest extended relative byte address (XRBA) used, if the data set
supports extended content.

REASON
The following value is returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

820 CICS TS for z/OS 4.1: Diagnosis Reference

ICXM gate, INQUIRE_FACILITY function
The INQUIRE_FACILITY function of the ICXM gate is used to inquire about the
interval control facilities that support facility management calls from the
transaction management domain.

Input Parameters
FACILITY_TOKEN

Optional Parameter

 The token identifying the transaction that has been trigger-level attached.

Output Parameters
FACILITY_NAME

The four-character name of the transaction that has been trigger-level attached.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LEPT gate, CREATE_LE_ENCLAVE function
The CREATE_LE_ENCLAVE function is used to create a Language Environment
enclave.

Input Parameters
RUNOPTS

Optional Parameter

 A block that contains run time options for Language Environment's
preinitialization services (CEEPIPI).

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CEEPIPI_ERROR
 ENQUEUE_ERROR
 IPT_ATTACH_ERROR
 LOOP

CEEPIPI_RESPONSE
The return code from Language Environment's preinitialization services
(CEEPIPI).

ENCLAVE_TOKEN
A token that identifies the Language Environment enclave.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LEPT gate, CREATE_PTHREAD function
Create a pthread in a Language Environment enclave.

Input Parameters
ENCLAVE_TOKEN

A token that identifies the Language Environment enclave.
KERNEL_INFORMATION

A vector that is used to pass kernel information to a pthread.

Chapter 70. Application Manager Domain (AP) 821

Output Parameters
CEEPIPI_RESPONSE

The return code from Language Environment's preinitialization services
(CEEPIPI).

LEPT gate, INVOKE_PTHREAD function
Dispatch a nominated Language Environment function routine under the pthread
associated with the current kernel mode.

Input Parameters
ACTIVITY

The desired LE function.
FUNCTION_PARAMETERS

Optional Parameter

 Parameters used by the Language Environment function
REMARK

Optional Parameter

 A text string that identifies the function.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NO_PTHREAD
 PTHREAD_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FUNCTION_RESPONSE
Optional Parameter

 The response from the requested function.

LEPT gate, PTHREAD_REPLY function
The PTHREAD_REPLY function is used to invoke initialization under a pthread.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NO_PTHREAD
 PTHREAD_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LEPT gate, TERMINATE_LE_ENCLAVE function
Terminate a Language Environment enclave.

Input Parameters
ENCLAVE_TOKEN

A token that identifies the Language Environment enclave.

822 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CEEPIPI_ERROR
 LOOP

CEEPIPI_RESPONSE
The return code from Language Environment's preinitialization services
(CEEPIPI).

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LEPT gate, TERMINATE_PTHREAD function
Terminate the current pthread in a Language Environment enclave.

Output Parameters
CEEPIPI_RESPONSE

The return code from Language Environment's preinitialization services
(CEEPIPI).

SAIQ gate, INQUIRE_SYSTEM function
The INQUIRE_SYSTEM function of the SAIQ gate is used to inquire upon system
data values owned by the application domain.

Input Parameters
GMMTEXT

Optional Parameter

 A token identifying the text of the "good-morning" message.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQ_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LENGTH_ERROR
 UNKNOWN_DATA

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CICSREL
Optional Parameter

 The CICS release and modification number
CICSSTATUS

Optional Parameter

 The initialization or termination status of the CICS system.

Values for the parameter are:
 ACTIVE
 FINALQUIESCE
 FIRSTQUIESCE

Chapter 70. Application Manager Domain (AP) 823

INITIALIZING
CICSSYS

Optional Parameter

 A character that indicates the system for which this system was built. Only set
by CICS for MVS.

CICSTSLEVEL
Optional Parameter

 The level of CICS Transaction server.
COLDSTATUS

Optional Parameter

 An indication of whether CICS was started with a COLD or INITIAL start.

Values for the parameter are:
 COLD
 INITIAL
 NOTCOLD

CWA
Optional Parameter

 The address of the common work area.
CWALENGTH

Optional Parameter

 The length of the common work area.
DATE

Optional Parameter

 The date represented as a packed decimal number integer of the form 0cyyddds
where
v yy is the year
v ddd is the day
v c is the century, where 0 indicates 1900-1999, 1 indicates 2000-2099, and 2

indicates 2100-2199.
v s is a positive sign

DTRPRGRM
Optional Parameter

 The name of the dynamic routing program.
GMMLENGTH

Optional Parameter

 the length of the "good-morning" message text.
GMMTRANID

Optional Parameter

 The transaction that generates the "good morning" message.
INITSTATUS

Optional Parameter

 The status or phase of initialization.

Values for the parameter are:
 FIRSTINIT
 INITCOMPLETE
 SECONDINIT
 THIRDINIT

JOBNAME
Optional Parameter

824 CICS TS for z/OS 4.1: Diagnosis Reference

The eight-character MVS job name for the local CICS region.
OPREL

Optional Parameter

 The release number of the operating system currently running. The value is ten
times the formal release number. For example, "21" represents Release 2.1.

OPSYS
Optional Parameter

 A one-character identifier indicating the type of operating system currently
running. A value of "X" represents MVS.

OSLEVEL
Optional Parameter

 The version, release and modification of OS/390 that is running, each in
character form, two bytes each.

PLTPI
Optional Parameter

 The two-character suffix of the program list table, which contains a list of
programs to be run in the final stages of system initialization.

SDTRAN
Optional Parameter

 The shutdown transaction.
SECURITYMGR

Optional Parameter

 Indicates whether an external security manager (such as RACF) is active in the
CICS region, or whether no security is being used.

Values for the parameter are:
 EXTSECURITY
 NOSECURITY

SHUTSTATUS
Optional Parameter

 The shutdown status of the local CICS region.

Values for the parameter are:
 CANCELLED
 CONTROLSHUT
 NOTSHUTDOWN
 SHUTDOWN

STARTUP
Optional Parameter

 The type of startup used for the local CICS region.

Values for the parameter are:
 AUTOSTART
 COLDSTART
 EMERGENCY
 STANDBY
 WARMSTART

STARTUPDATE
Optional Parameter

 A four-character packed-decimal value indicating the date on which the local
CICS region was started.

TERMURM
Optional Parameter

Chapter 70. Application Manager Domain (AP) 825

The eight-character name of the terminal autoinstall program.
TIMEOFDAY

Optional Parameter

 A four-character packed-decimal value indicating the time at which the local
CICS region was started (hhmmsstc, where hh=hours, mm=minutes, ss=seconds, c
is the sign).

XRFSTATUS
Optional Parameter

 Indicates whether the local CICS region is a PRIMARY (active) or TAKEOVER
(alternate) XRF CICS region, or has no XRF support.

Values for the parameter are:
 NOXRF
 PRIMARY
 TAKEOVER

SAIQ gate, SET_SYSTEM function
The SET_SYSTEM function of the SAIQ gate is used to set system data values
owned by the application domain.

Input Parameters
DTRPRGRM

Optional Parameter

 The 8-character name of the program controlling the dynamic routing of
transactions.

GMMLENGTH
Optional Parameter

 The length of the "good-morning" message text.
GMMTEXT

Optional Parameter

 Token identifying the text of the "good-morning" message.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 SET_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 LENGTH_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDOC gate, CLOSE_ALL_EXTRA_TD_QUEUES function
The CLOSE_ALL_EXTRA_TD_QUEUES function of the TDOC gate closes all
extrapartition transient data queues which are currently open in the system. The
CLOSE_ALL_EXTRA_TD_QUEUES function is usually invoked as part of a warm
shutdown.

826 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 DCT_ERROR
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDOC gate, CLOSE_TRANSIENT_DATA function
The CLOSE_TRANSIENT_DATA function of the TDOC gate is used to close an
extrapartition transient data queue.

Input Parameters
QUEUE

The name of the extrapartition transient data queue to be closed.
TD_QUEUE_TOKEN

Can be specified instead of QUEUE. The token uniquely identifies the
extrapartition queue to be closed.

Output Parameters
REASON

The values for the parameter are:
 DCT_ERROR
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR
 QUEUE_CLOSED
 QUEUE_FULL
 QUEUE_INTRA
 QUEUE_NOT_CLOSED
 QUEUE_NOT_FOUND
 QUEUE_OMITTED
 QUEUE_REMOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDOC gate, OPEN_TRANSIENT_DATA function
The OPEN_TRANSIENT_DATA function of the TDOC gate is used to open an
extrapartition transient data queue.

Input Parameters
QUEUE

The name of the extrapartition transient data queue to be closed.
TD_QUEUE_TOKEN

Can be specified instead of QUEUE. The token uniquely identifies the
extrapartition queue to be closed.

BLOCK_LENGTH
Optional Parameter

 For blocked data sets, the block length.
BLOCKED

Optional Parameter

Chapter 70. Application Manager Domain (AP) 827

The block format of the data set. Indicates if the data set is blocked or
unblocked.

Values for the parameter are:
 NO
 YES

BUFFER_NUMBER
Optional Parameter

 The number of data buffers.
CONTROL_CHAR

Optional Parameter

 The control characters used in the data set.

Values for the parameter are:
A ASA control characters.
M Machine control characters.

DDNAME
Optional Parameter

 The DD name by which the data set is referred to in the startup JCL.
RECORD_FORMAT

Optional Parameter

 The record format of the data set.

Values for the parameter are:
F Fixed records
U Unblocked records
V Variable records

RECORD_LENGTH
Optional Parameter

 The record length in bytes.
TYPE_FILE

Optional Parameter

 The type of data set with which the queue is associated.

Values for the parameter are:
 INPUT
 LEAVE
 OUTPUT
 RDBACK
 REREAD

Output Parameters
REASON

The values for the parameter are:
 DCT_ERROR
 DDNAME_NOT_FOUND
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR
 QUEUE_INTRA
 QUEUE_NOT_FOUND
 QUEUE_NOT_OPENED
 QUEUE_OMITTED
 QUEUE_OPEN
 QUEUE_REMOTE

828 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDTM gate, ADD_REPLACE_TDQDEF function
Install a transient data queue definition.

Input Parameters
CATALOG_TDQ

Indicates whether to catalog the queue when it is installed.

 Values for the parameter are:
 NO
 YES

QUEUE_NAME
The name of the queue to be installed.

TD_QUEUE_TOKEN
Can be specified instead of QUEUE. The token uniquely identifies a DCT entry
that has already been built, but needs to be installed.

BLOCK_LENGTH
Optional Parameter

 The block length of an extrapartition queue.
BUFFER_NUMBER

Optional Parameter

 The number of buffers to be associated with an extrapartition queue.
DDNAME

Optional Parameter

 The DDNAME to be associated with an extrapartition queue.
DISPOSITION

Optional Parameter

 The disposition of the data set to be associated with an extrapartition queue.

Values for the parameter are:
 MOD
 OLD
 SHR

DSNAME
Optional Parameter

 The DSNAME of the data set to be associated with an extrapartition queue.
ERROR_OPTION

Optional Parameter

 The action to be taken in the event of an I/O error. This input parameter
applies to extrapartition queues only.

Values for the parameter are:
 IGNORE
 SKIP

FACILITY
Optional Parameter

 The facility associated with this intrapartition queue when a trigger transaction
is attached.

Values for the parameter are:
 FILE

Chapter 70. Application Manager Domain (AP) 829

SYSTEM
 TERMINAL

FACILITY_ID
Optional Parameter

 Specified together with the FACILITY option, FACILITY_ID identifies the
facility that the trigger transaction should be associated with.

INDIRECT_DEST
Optional Parameter

 The destination queue if this queue is an indirect queue.
OPEN_TIME

Optional Parameter

 Specifies whether this extrapartition queue should be opened as part of
installation processing.

Values for the parameter are:
 DEFERRED
 INITIAL

RECORD_FORMAT
Optional Parameter

 The format of records held in an extrapartition queue.

Values for the parameter are:
 FIXBLK
 FIXBLKA
 FIXBLKM
 FIXUNB
 FIXUNBA
 FIXUNBM
 UNSPECIFIED
 VARBLK
 VARBLKA
 VARBLKM
 VARUNB
 VARUNBA
 VARUNBM

RECORD_LENGTH
Optional Parameter

 The record length of an extrapartition queue in bytes.
RECOVERY

Optional Parameter

 The recovery type of an intrapartition queue.

Values for the parameter are:
 LG
 NO
 PH

REMOTE_NAME
Optional Parameter

 The remote name of the queue if this is a remote queue definition.
REMOTE_SYSTEM

Optional Parameter

 The remote system identifier (SYSID) if this is a remote queue definition.

830 CICS TS for z/OS 4.1: Diagnosis Reference

REWIND
Optional Parameter

 For extrapartition queues only, where the tape is positioned in relation to the
end of the data set.

Values for the parameter are:
 LEAVE
 REREAD

SYSOUTCLASS
Optional Parameter

 The SYSOUT class to be used for the associated output extrapartition queue.
TD_TYPE

Optional Parameter

 The queue type.

Values for the parameter are:
 EXTRA
 INDIRECT
 INTRA
 REMOTE

TERMINAL_ID
Optional Parameter

 The terminal associated with a transaction that is invoked when the trigger
level is reached.

TRANSACTION_ID
Optional Parameter

 The ATI transaction to be invoked when the trigger level is reached.
TRIGGER_LEVEL

Optional Parameter

 The trigger level of the intrapartition queue.
TYPE_FILE

Optional Parameter

 indicates whether this queue is:
v an input queue
v an output queue
v to be read backwards.

Values for the parameter are:
 INPUT
 OUTPUT
 RDBACK

USERID
Optional Parameter

 The userid to be associated with a trigger-level attached transaction.
WAIT

Optional Parameter

 Specifies whether this logically recoverable intrapartition queue can wait for
the resolution of an indoubt failure.

Values for the parameter are:
 NO
 YES

Chapter 70. Application Manager Domain (AP) 831

WAIT_ACTION
Optional Parameter

 The action to be taken if this logically recoverable intrapartition queue suffers
an indoubt failure.

Values for the parameter are:
 QUEUE
 REJECT

Output Parameters
REASON

The values for the parameter are:
 CATALOG_WRITE_FAILED
 COLD_START_IN_PROGRESS
 DDNAME_NOT_FOUND
 DFHINTRA_NOT_OPENED
 DIRECTORY_MGR_ERROR
 DISABLE_PENDING
 DUPLICATE
 INSUFFICIENT_STORAGE
 INVALID_FUNCTION
 LOGIC_ERROR
 NOT_CLOSED
 NOT_DISABLED
 NOT_SAME_TYPE
 QUEUE_NOT_OPENED
 SECURITY_FAILURE
 USERID_NOTAUTHED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDTM gate, COMMIT_TDQDEFS function
Catalog all installed transient data queue definitions as part of cold start
processing.

Input Parameters
TOKEN

The catalog to which the queue definitions are to be written.

Output Parameters
REASON

The values for the parameter are:
 CATALOG_WRITE_FAILED
 DIRECTORY_MGR_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDTM gate, DISCARD_TDQDEF function
The DISCARD_TDQDEF function of the TDTM gate deletes an installed transient
data queue definition and removes it from the catalog. A DELETEQ command is
issued as part of the discard process.

832 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
QUEUE_NAME

The queue to be discarded.
TD_QUEUE_TOKEN

Can be specified instead of QUEUE_NAME. TD_QUEUE_TOKEN identifies
the queue to be discarded.

Output Parameters
REASON

The values for the parameter are:
 CATALOG_DELETE_FAILED
 DIRECTORY_MGR_ERROR
 DISABLE_PENDING
 LOGIC_ERROR
 NAME_STARTS_WITH_C
 NOT_CLOSED
 NOT_DISABLED
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDTM gate, END_BROWSE_TDQDEF function
The END_BROWSE_TDQDEF function of the TDTM gate terminates a browse
session.

Input Parameters
BROWSE_TOKEN

Identifies the browse session.

Output Parameters
REASON

The values for the parameter are:
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDTM gate, GET_NEXT_TDQDEF function
The GET_NEXT_TDQDEF function of the TDTM gate returns information about a
queue as part of a browse operation.

Input Parameters
BROWSE_TOKEN

Identifies the browse session.

Output Parameters
REASON

The values for the parameter are:
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR
 NO_MORE_DATA_AVAILABLE

QUEUE_NAME
The name of the queue.

Chapter 70. Application Manager Domain (AP) 833

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ATI_FACILITY
Optional Parameter

 The facility associated with this intrapartition queue when a trigger transaction
is attached.

Values for the parameter are:
 NOTERM
 TERM

ATI_TERMID
Optional Parameter

 Specified together with the FACILITY option, FACILITY_ID identifies the
facility that the trigger transaction should be associated with.

ATI_TRANID
Optional Parameter

 The ATI transaction to be invoked when the trigger level is reached.
ATI_USERID

Optional Parameter

 The USERID associated with the ATI transaction that is invoked when the
trigger level is reached.

BLOCK_LENGTH
Optional Parameter

 The block length of an extrapartition queue.
BUFFER_NUMBER

Optional Parameter

 The number of buffers to be associated with an extrapartition queue.
DDNAME

Optional Parameter

 The DDNAME associated with an extrapartition queue.
DISPOSITION

Optional Parameter

 The disposition of the data set associated with an extrapartition queue.

Values for the parameter are:
 MOD
 OLD
 SHR

DSNAME
Optional Parameter

 The DSNAME of the data set associated with the extrapartition queue.
EMPTY_STATUS

Optional Parameter

 Indicates whether the queue contains any records, and whether the queue is
full. This option applies to extrapartition queues only.

Values for the parameter are:
 EMPTY
 FULL
 NOTEMPTY

834 CICS TS for z/OS 4.1: Diagnosis Reference

ENABLE_STATUS
Optional Parameter

 The status of the queue.

Values for the parameter are:
 DISABLED
 DISABLING
 ENABLED

ERROR_OPTION
Optional Parameter

 The action is to be taken in the event of an I/O error. This option applies to
extrapartition queues only.

Values for the parameter are:
 IGNORE
 SKIP

INDIRECT_DEST
Optional Parameter

 The destination queue if this queue is an indirect queue.
MEMBER

Optional Parameter

 The member name when a PDS member is used for an extrapartition queue.
NUM_ITEMS

Optional Parameter

 The number of committed items in the queue.
OPEN_STATUS

Optional Parameter

 Indicates whether the queue is open.

Values for the parameter are:
 CLOSED
 OPEN

RECORD_FORMAT
Optional Parameter

 The format of the records held on the extrapartition queue.

Values for the parameter are:
 FIXBLK
 FIXBLKA
 FIXBLKM
 FIXUNB
 FIXUNBA
 FIXUNBM
 UNDEFINED
 VARBLK
 VARBLKA
 VARBLKM
 VARUNB
 VARUNBA
 VARUNBM

RECORD_LENGTH
Optional Parameter

 The record length of the extrapartition queue.

Chapter 70. Application Manager Domain (AP) 835

RECOVERY
Optional Parameter

 The recovery type of an intrapartition queue.

Values for the parameter are:
 LG
 NO
 PH

REMOTE_NAME
Optional Parameter

 The remote name of the queue if this is a remote queue definition.
REMOTE_SYSTEM

Optional Parameter

 The remote system identifier (SYSID) for a remote queue definition.
REWIND

Optional Parameter

 Where the tape is positioned in relation to the end of the data set. This
parameter applies to extrapartition queues only.

Values for the parameter are:
 LEAVE
 REREAD

SYSOUTCLASS
Optional Parameter

 The SYSOUT class to be used for the associated output extrapartition queue.
TD_TYPE

Optional Parameter

 The queue type.

Values for the parameter are:
 EXTRA
 INDIRECT
 INTRA
 REMOTE

TERMINAL_ID
Optional Parameter

 The terminal associated with a transaction that is invoked when the trigger
level is reached.

TRANSACTION_ID
Optional Parameter

 The ATI transaction to be invoked when the trigger level is reached.
TRIGGER_LEVEL

Optional Parameter

 The trigger level of the intrapartition queue.
TYPE_FILE

Optional Parameter

 specifies whether this queue is:
v an input queue
v an output queue
v a queue that is to be read backwards.

Values for the parameter are:
 INPUT

836 CICS TS for z/OS 4.1: Diagnosis Reference

OUTPUT
 RDBACK

USERID_TOKEN
Optional Parameter

 A token for the USERID that was specified for this intrapartition queue.
WAIT

Optional Parameter

 Specifies whether this logically recoverable intrapartition queue can wait for
the resolution of an indoubt failure.

Values for the parameter are:
 NO
 YES

WAIT_ACTION
Optional Parameter

 The action to be taken if this logically recoverable intrapartition queue suffers
an indoubt failure.

Values for the parameter are:
 QUEUE
 REJECT

TDTM gate, INQUIRE_TDQDEF function
The INQUIRE_TDQUEUE function of the TDTM gate is used to inquire on a
specified queue.

Input Parameters
QUEUE_NAME

The name of the queue.

Output Parameters
REASON

The values for the parameter are:
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ATI_FACILITY
Optional Parameter

 The facility associated with this intrapartition queue when a trigger transaction
is attached.

Values for the parameter are:
 NOTERM
 TERM

ATI_TERMID
Optional Parameter

 Specified together with the FACILITY option, FACILITY_ID identifies the
facility that the trigger transaction should be associated with.

ATI_TRANID
Optional Parameter

 The ATI transaction to be invoked when the trigger level is reached.

Chapter 70. Application Manager Domain (AP) 837

BLOCK_LENGTH
Optional Parameter

 The block length of an extrapartition queue.
BUFFER_NUMBER

Optional Parameter

 The number of buffers to be associated with an extrapartition queue.
DDNAME

Optional Parameter

 The DDNAME associated with an extrapartition queue.
DISPOSITION

Optional Parameter

 The disposition of the data set associated with an extrapartition queue.

Values for the parameter are:
 MOD
 OLD
 SHR

DSNAME
Optional Parameter

 The DSNAME of the data set associated with the extrapartition queue.
EMPTY_STATUS

Optional Parameter

 Indicates whether the queue contains any records, and whether the queue is
full. This option applies to extrapartition queues only.

Values for the parameter are:
 EMPTY
 FULL
 NOTEMPTY

ENABLE_STATUS
Optional Parameter

 The status of the queue.

Values for the parameter are:
 DISABLED
 DISABLING
 ENABLED

ERROR_OPTION
Optional Parameter

 The action is to be taken in the event of an I/O error. This option applies to
extrapartition queues only.

Values for the parameter are:
 IGNORE
 SKIP

INDIRECT_DEST
Optional Parameter

 The destination queue if this queue is an indirect queue.
MEMBER

Optional Parameter

 The member name when a PDS member is used for an extrapartition queue.
NUM_ITEMS

Optional Parameter

838 CICS TS for z/OS 4.1: Diagnosis Reference

The number of committed items in the queue.
OPEN_STATUS

Optional Parameter

 Indicates whether the queue is open.

Values for the parameter are:
 CLOSED
 OPEN

RECORD_FORMAT
Optional Parameter

 The format of the records held on the extrapartition queue.

Values for the parameter are:
 FIXBLK
 FIXBLKA
 FIXBLKM
 FIXUNB
 FIXUNBA
 FIXUNBM
 UNDEFINED
 VARBLK
 VARBLKA
 VARBLKM
 VARUNB
 VARUNBA
 VARUNBM

RECORD_LENGTH
Optional Parameter

 The record length of the extrapartition queue.
RECOVERY

Optional Parameter

 The recovery type of an intrapartition queue.

Values for the parameter are:
 LG
 NO
 PH

REMOTE_NAME
Optional Parameter

 The remote name of the queue if this is a remote queue definition.
REMOTE_SYSTEM

Optional Parameter

 The remote system identifier (SYSID) for a remote queue definition.
REWIND

Optional Parameter

 Where the tape is positioned in relation to the end of the data set. This
parameter applies to extrapartition queues only.

Values for the parameter are:
 LEAVE
 REREAD

SYSOUTCLASS
Optional Parameter

 The SYSOUT class to be used for the associated output extrapartition queue.

Chapter 70. Application Manager Domain (AP) 839

TD_QUEUE_TOKEN
Optional Parameter

 The token associated with the queue.
TD_TYPE

Optional Parameter

 The queue type.

Values for the parameter are:
 EXTRA
 INDIRECT
 INTRA
 REMOTE

TERMINAL_ID
Optional Parameter

 The terminal associated with a transaction that is invoked when the trigger
level is reached.

TRANSACTION_ID
Optional Parameter

 The ATI transaction to be invoked when the trigger level is reached.
TRIGGER_LEVEL

Optional Parameter

 The trigger level of the intrapartition queue.
TYPE_FILE

Optional Parameter

 specifies whether this queue is:
v an input queue
v an output queue
v a queue that is to be read backwards.

Values for the parameter are:
 INPUT
 OUTPUT
 RDBACK

USERID_TOKEN
Optional Parameter

 A token for the USERID that was specified for this intrapartition queue.
WAIT

Optional Parameter

 Specifies whether this logically recoverable intrapartition queue can wait for
the resolution of an indoubt failure.

Values for the parameter are:
 NO
 YES

WAIT_ACTION
Optional Parameter

 The action to be taken if this logically recoverable intrapartition queue suffers
an indoubt failure.

Values for the parameter are:
 QUEUE
 REJECT

840 CICS TS for z/OS 4.1: Diagnosis Reference

TDTM gate, SET_TDQDEF function
The SET_TDQUEUE function of the TDTM gate updates attributes of an installed
transient data queue.

Input Parameters
QUEUE_NAME

The name of the queue.
ATI_FACILITY

Optional Parameter

 The facility associated with this intrapartition queue when a trigger transaction
is attached.

Values for the parameter are:
 NOTERM
 TERM

ATI_TERMID
Optional Parameter

 Specified together with the FACILITY option, FACILITY_ID identifies the
facility that the trigger transaction should be associated with.

ATI_TRANID
Optional Parameter

 The ATI transaction to be invoked when the trigger level is reached.
ATI_USERID

Optional Parameter

 The USERID associated with the ATI transaction that is invoked when the
trigger level is reached.

ENABLE_STATUS
Optional Parameter

 The status of the queue.

Values for the parameter are:
 DISABLED
 DISABLING
 ENABLED

TRIGGER_LEVEL
Optional Parameter

 The trigger level of the intrapartition queue.
USERID_TOKEN

Optional Parameter

 A token for the USERID that was specified for this intrapartition queue.

Output Parameters
REASON

The values for the parameter are:
 CATALOG_WRITE_FAILED
 DIRECTORY_MGR_ERROR
 DISABLE_PENDING
 IS_CXRF
 LOGIC_ERROR
 NOT_CLOSED
 NOT_DISABLED
 QUEUE_IS_INDOUBT
 QUEUE_NOT_FOUND

Chapter 70. Application Manager Domain (AP) 841

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OLD_USER_TOKEN
Optional Parameter

 The token associated with a previous USERID.

TDTM gate, START_BROWSE_TDQDEF function
The START_BROWSE_TDQDEF function of the TDTM gate initiates a browse from
a specified queue, or from the start of the DCT.

Input Parameters
START_AT

Optional Parameter

 The queue from which the browse should start.

Output Parameters
REASON

The values for the parameter are:
 DIRECTORY_MGR_ERROR
 LOGIC_ERROR

BROWSE_TOKEN
A token that uniquely identifies the browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDXM gate, BIND_SECONDARY_FACILITY function
The BIND_FACILITY function of the TDXM gate is used to associate a transaction
with the definition for the transient data queue that caused the transaction to be
trigger-level attached, where the principal facility is the queue itself (that is there is
no terminal associated with the queue).

Output Parameters
REASON

The values for the parameter are:
 ABEND

FACILITY_NAME
The name of the transient data queue that is associated with the transaction as
its principal facility.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TDXM gate, INQUIRE_TRAN_DATA_FACILITY function
Return attributes of a transient data queue.

Input Parameters
TRANSIENT_DATA_TOKEN

Optional Parameter

 A token that represents the transient data queue.

842 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
FACILITY_NAME

The name of the transient data queue that is associated with the transaction as
its principal facility.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, ALLOCATE function
The ALLOCATE function of the TFAL gate is used to allocate a terminal for a
transaction.

Input Parameters
REQUEST_ID

The four-character transaction identifier initiating the attach.
SYSTEM_TOKEN

The token identifying the CICS region to which the terminal is to be attached.
MODE_NAME

Optional Parameter

 The eight-character mode-name of the terminal to be attached.
NON_PURGEABLE

Optional Parameter

 Indicates whether or not the terminal is to be purgeable.

Values for the parameter are:
 NO
 YES

PRIVILEGED
Optional Parameter

 Indicates whether or not the terminal is to be attached as a privileged terminal.

Values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMINAL_TOKEN
A token identifying the terminal that has been attached.

TFAL gate, CANCEL_AID function
The CANCEL_AID function of the TFAL gate is used to cancel a
terminal-transaction AID.

Input Parameters
TERM_OWNER_NETNAME

The APPLID of the CICS region that owns the terminal.
TERMID

The four-character terminal identifier.
TRANID

The four-character transaction identifier.

Chapter 70. Application Manager Domain (AP) 843

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, CANCEL_AIDS_FOR_CONNECTION function
The CANCEL_AIDS_FOR_CONNECTION function of the TFAL gate is used to
cancel AIDs for the given CICS region.

Input Parameters
CALLER

The method used to call this function.

 Values for the parameter are:
 API
 BUILDER

FACILITY
The facility type associated with the AIDs.

 Values for the parameter are:
 CONNECTION
 TERMINAL

FORCE
Indicates whether or not system AIDs are to be canceled.

 Values for the parameter are:
 NO
 YES

SYSTEM_TOKEN
The token identifying the CICS region.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AIDS_CANCELLED
Optional Parameter

 Indicates whether or not AIDs were canceled as a result of this request.

Values for the parameter are:
 NO
 YES

TFAL gate, CANCEL_AIDS_FOR_TERMINAL function
The CANCEL_AIDS_FOR_TERMINAL function of the TFAL gate is used to cancel
all AIDs for the given terminal.

Input Parameters
CALLER

The method used to call this function.

 Values for the parameter are:
 API
 BUILDER
 BUILDER_REMDEL

FACILITY
The facility type associated with the AIDs.

844 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 CONNECTION
 TERMINAL

TERMID
The four-character terminal identifier.

TERMINAL_TOKEN
The token identifying the terminal.

BMSONLY
Optional Parameter

 Indicates whether to cancel BMS AIDs only.

Values for the parameter are:
 NO
 YES

FORCE
Optional Parameter

 Indicates whether or not system AIDs are to be canceled.

Values for the parameter are:
 NO
 YES

TERM_OWNER_NETNAME
Optional Parameter

 The netname of the terminal owner.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AIDS_CANCELLED
Optional Parameter

 Indicates whether or not AIDs were canceled as a result of this request.

Values for the parameter are:
 NO
 YES

TFAL gate, CANCEL_SPECIFIC_AID function
Cancel a single, specified AID.

Input Parameters
AID_TOKEN

A token for the AID that is to be canceled.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, CHECK_TRANID_IN_USE function
The CHECK_TRANID_IN_USE function of the TFAL gate is used to check whether
any of the AID chains contain ferrences to the given TRANID.

Chapter 70. Application Manager Domain (AP) 845

Input Parameters
TRANID

The four-character transaction identifier.

Output Parameters
IN_USE

Indicates whether or not the transaction identifier specified by the TRANID
parameter is in use.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, DISCARD_AIDS function
The DISCARD_AIDS function of the TFAL gate is used to attach a task which will
release start data and free the AIDs in the chain addressed by the AID_TOKEN.

Input Parameters
AID_TOKEN

The token identifying the chain of AIDs.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, FIND_TRANSACTION_OWNER function
The FIND_TRANSACTION_OWNER function of the TFAL gate is used to
determine the CICS region that owns the given transaction (that is, at which the
transaction instance originated).

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal.
TRANID

The four-character transaction identifier.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRAN_OWNER_SYSID
The four-character system identifier for the CICS region that owns the
transaction instance.

TFAL gate, GET_MESSAGE function
The GET_MESSAGE function of the TFAL gate is used to get a message from a
terminal.

Input Parameters
PREVIOUS_AID_TOKEN

The AID token identifying the previous transaction that ran at this terminal.

846 CICS TS for z/OS 4.1: Diagnosis Reference

TERMINAL_TOKEN
The token identifying the terminal.

Output Parameters
AID_TOKEN

The AID token identifying the current transaction for which the message was
got.

BMS_TITLE_PRESENT
Indicates whether or not a BMS title is present on the terminal.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSQUEUE_NAME
the eight-character name of the temporary storage queue name of the message
whose BMS AID was found.

TFAL gate, INITIALIZE_AID_POINTERS function
The INITIALIZE_AID_POINTERS function of the TFAL gate is used to initialize
the AID pointers for the given CICS region.

Input Parameters
SYSTEM_TOKEN

The token identifying the CICS region.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, INQUIRE_ALLOCATE_AID function
The INQUIRE_ALLOCATE_AID function of the TFAL gate is used to inquire about
the AIDs allocated for the given CICS region.

Input Parameters
SYSTEM_TOKEN

The token identifying the CICS region.
PRIVILEGED

Optional Parameter

 indicates whether or not to inquire only about privileged ISC type AIDs.

Values for the parameter are:
 NO
 YES

Output Parameters
EXISTS

Indicates whether or not the AID exists.

 Values for the parameter are:
 NO
 YES

Chapter 70. Application Manager Domain (AP) 847

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, LOCATE_AID function
The LOCATE_AID function of the TFAL gate is used for automatic transaction
initiation to determine the AID for the specified terminal, and if found, to use the
transaction identifier from the AID to attach the task.

Input Parameters
TERMID

The four-character terminal-identifier.
TYPE

Optional Parameter

 The type of AID to be located.

Values for the parameter are:
 BMS
 INT
 ISC
 PUT
 REMDEL
 TDP

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANID
Optional Parameter

 Te four-character transaction identifier associated with the specified terminal.

TFAL gate, LOCATE_REMDEL_AID function
The LOCATE_REMDEL_AID function of the TFAL gate is used to determine the
AID (for a delete remote TERMINAL definition request) for the specified system
(SYSTEM_TOKEN specified) or after the given (PREVIOUS_AID_TOKEN
specified).

Input Parameters
PREVIOUS_AID_TOKEN

The AID token identifying the previous transaction that ran at this terminal.
SYSTEM_TOKEN

The token identifying the CICS region.

Output Parameters
AID_TOKEN

The AID token identifying the transaction to be deleted.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TARGET_SYSID
The four-character system identifier for the target CICS system.

TERM_OWNER_NETNAME
The eight-character netname from the REMDEL AID.

848 CICS TS for z/OS 4.1: Diagnosis Reference

TERMID
The four-character terminal identifier from the REMDEL AID.

TFAL gate, LOCATE_SHIPPABLE_AID function
The LOCATE_SHIPPABLE_AID function of the TFAL gate is used to determine an
AID (for a delete remote TERMINAL definition request or for a remote terminal
request) to be shipped to the specified system.

Input Parameters
SYSTEM_TOKEN

The token identifying the CICS region.

Output Parameters
AID_TOKEN

the AID token identifying the transaction to be deleted.
LAST

Indicates that:
v there is a single qualifying AID or all qualifying AIDs have the same

AIDTRMID (YES)
v or in addition to the AID returned there are other qualifying AIDs (NO).

Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, MATCH_TASK_TO_AID function
The MATCH_TASK_TO_AID function of the TFAL gate is used to inquire about
AIDs for the given terminal and transaction.

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal
TRANID

The four-character transaction identifier.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, PURGE_ALLOCATE_AIDS function
The PURGE_ALLOCATE_AIDS function of the TFAL gate is used to delete
purgeable allocate AIDs for a given connection after user exit XZIQUE in DFHZISP
has issued return code 8 (delete all) or return code 12 (delete all for given
modegroup).

Input Parameters
SYSTEM_TOKEN

The token identifying the CICS region.
MODE_NAME

Optional Parameter

Chapter 70. Application Manager Domain (AP) 849

The name of the modegroup. If this parameter is omitted, the default is all
modegroups.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ALLOCATES_PURGED
Optional Parameter

 The number of ALLOCATE AIDs purged.

TFAL gate, RECOVER_START_DATA function
The RECOVER_START_DATA function of the TFAL gate is used to retrieve a
PUT-type AID stored in a DWE and rechain it onto the TCTSE in front of the first
AID for the terminal.

Input Parameters
AID_TOKEN

The AID token identifying the transaction to be recovered.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, REMOTE_DELETE function
The REMOTE_DELETE function of the TFAL gate is used to chain a REMOTE
DELETE (REMDEL) AID onto the system entry of the specified target CICS region.
The REMDEL AID tells the target region to delete its shipped definition of the
specified terminal.

Input Parameters
TARGET_SYSID

the four-character system identifier for the target CICS region.
TERM_OWNER_NETNAME

Is the VTAM APPLID of the CICS region that "owns" the terminal.

Note: The terminal identifier can either be specified as TERMID and
TERM_OWNER_NETNAME (where TERMID is the name known in the
terminal owning system), or it can be specified by TERMINAL_TOKEN if the
TCTTE address is known.

TERMID
The four-character terminal identifier for the terminal associated with the
transaction.

TERMINAL_TOKEN
The token identifying the terminal.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

850 CICS TS for z/OS 4.1: Diagnosis Reference

TFAL gate, REMOVE_EXPIRED_AID function
The REMOVE_EXPIRED_AID function of the TFAL gate is used to search all AID
chains for a BMS AID that has yet to be initiated and which matches the eligibility
parameters. Unchain the first such AID found, copy details from the AID into the
caller's parameter list, and freemain the AID.

Input Parameters
ADJUSTED_EXPIRY_TIME

Optional Parameter

 The adjusted threshold time
LDC

Optional Parameter

 The logical device code.

Note: If MSGID and LDC are specified, the expiry time is not checked.
MSGID

Optional Parameter

 The BMS message identifier
NORMAL_EXPIRY_TIME

Optional Parameter

 The normal threshold time

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TERMID
The four-character terminal identifier for the terminal associated with the
transaction.

TRANID
The four-character transaction identifier associated with the specified terminal.

TSQUEUE_NAME
The eight-character name of the temporary storage queue name of the message
whose BMS AID was found.

TFAL gate, REMOVE_EXPIRED_REMOTE_AID function
Search for an uninitiated remote AID which is older than the expiry time specified
by the caller. Unchain the AID and cleanup any associated resources.

Input Parameters
ADJUSTED_EXPIRY_TIME

The adjusted threshold time
NORMAL_EXPIRY_TIME

The normal threshold time

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHIPPED
Identifies whether the AID has been shipped.

TERM_OWNER_SYSID
The system identifier of the CICS region that "owns" the terminal.

Chapter 70. Application Manager Domain (AP) 851

TERMID
The four-character terminal identifier for the terminal associated with the
transaction.

TRANID
The four-character transaction identifier associated with the terminal.

TFAL gate, REMOVE_MESSAGE function
The REMOVE_MESSAGE function of the TFAL gate is used to find an uninitiated
BMS AID for the specified terminal; unchain and freemain the AID, provided that
the AID security fields match those of the currently signed-on operator; and return
the TS queue name from the AID.

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal.
MSGID

Optional Parameter

 The BMS message identifier

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSQUEUE_NAME
The eight-character name of the temporary storage queue name for the
message whose BMS AID was found.

TFAL gate, REMOVE_REMOTE_DELETES function
The REMOVE_REMOTE_DELETES function of the TFAL gate is used to unchain
and freemain all REMDEL AIDs from the AID chain of the specified system entry.
Optional parameters TERMID and TERM_OWNER_NETNAME may be specified;
in which case only those REMDEL AIDs which match the specified values are
removed.

Input Parameters
SYSTEM_TOKEN

is the token identifying the CICS region.

Note: Specify either the TARGET_SYSID parameter or the SYSTEM_TOKEN
parameter, not both.

TARGET_SYSID
The four-character system identifier for the target CICS region.

TERM_OWNER_NETNAME
Optional Parameter

 The netname of the region that "owns" the terminal.
TERMID

Optional Parameter

 The four-character terminal identifier for the terminal associated with the
transaction.

852 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, REROUTE_SHIPPABLE_AIDS function
The REROUTE_SHIPPABLE_AIDS function of the TFAL gate is used to redirect
AIDs for remote terminals from one remote system to another.

Input Parameters
ORIGINAL_SYSTEM_TOKEN

The token identifying the remote system which was the AIDs' original target.
PREV_TERM_OWNER_NETNAME

The APPLID of the CICS region that previously owned the terminal.
TARGET_SYSTEM_TOKEN

The token identifying the remote system which is the AIDs' new target.
TERM_OWNER_NETNAME

The APPLID of the CICS region that owns the terminal.
TERMINAL_NETNAME

The eight-character NETNAME which identifies the terminal whose AIDs are
to be rerouted.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, RESCHEDULE_BMS function
The RESCHEDULE_BMS function of the TFAL gate is used to build a BMS AID
and chain it to the front of the AID queue.

Input Parameters
BMS_TIMESTAMP

The time stamp for a BMS AID that is used to test if AID is older than
specified EXPIRY_TIME.

TERMINAL_TOKEN
The token identifying the terminal.

TRANID
The four-character transaction identifier associated with the specified terminal.

TSQUEUE_NAME
The eight-character name of the temporary storage queue name of the message
whose BMS AID was found.

BMS_TITLE_PRESENT
Optional Parameter

 Indicates if there is a title in the message control record

Values for the parameter are:
 NO
 YES

OPCLASS
Optional Parameter

 Identifies the operator class.

Chapter 70. Application Manager Domain (AP) 853

Note: You can specify either the OPIDENT parameter or the OPCLASS
parameter, not both.

OPIDENT
Optional Parameter

 Identifies the operator.

Note: You can specify either the OPIDENT parameter or the OPCLASS
parameter, not both.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, RESET_AID_QUEUE function
The RESET_AID_QUEUE function of the TFAL gate is used to give DFHALP an
opportunity to reset the AID queue when a transaction ends, and to bid for the use
of the terminal if ATI tasks are waiting.

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, RESTORE_FROM_KEYPOINT function
The RESTORE_FROM_KEYPOINT function of the TFAL gate is used to reschedule
a chain of AIDs that we restored from the catalog during CICS system
initialization.

Input Parameters
AID_TOKEN

A token denoting the chain of AIDs which are to be rescheduled.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, RETRIEVE_START_DATA function
The RETRIEVE_START_DATA function of the TFAL gate is used to return the AID
address and temporary storage queue name associated with the start data for the
specified transaction and terminal.

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal.
TRANID

The four-character transaction identifier associated with the specified terminal.

854 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSQUEUE_NAME
The eight-character name of the temporary storage queue name of the message
whose BMS AID was found.

TFAL gate, SCHEDULE_BMS function
The SCHEDULE_BMS function of the TFAL gate is used to schedule a BMS AID.

Input Parameters
BMS_TIMESTAMP

The timestamp for the BMS AID. This is used to test if the AID is older than its
EXPIRY_TIME.

TERMID
The four-character terminal identifier for the terminal associated with the
transaction.

TRANID
The four-character transaction identifier associated with the specified terminal.

TSQUEUE_NAME
The eight-character name of the temporary storage queue name of the message
whose BMS AID was found.

BMS_TITLE_PRESENT
Optional Parameter

 Indicates if the title is in the message control record.

Values for the parameter are:
 NO
 YES

OPCLASS
Optional Parameter

 Identifies the operator class.

Note: You can specify either the OPIDENT parameter or the OPCLASS
parameter, not both.

OPIDENT
Optional Parameter

 Identifies the operator.

Note: You can specify either the OPIDENT parameter or the OPCLASS
parameter, not both.

TERMINAL_NETNAME
Optional Parameter

 The eight-character NETNAME which identifies the terminal.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 70. Application Manager Domain (AP) 855

TFAL gate, SCHEDULE_START function
The SCHEDULE_START function of the TFAL gate is used to schedule a PUT or
INT type AID

Input Parameters
TERMID

The four-character terminal identifier for the terminal associated with the
transaction.

TRANID
the four-character transaction identifier associated with the specified terminal.

CHANNEL_TOKEN
Optional Parameter

 A token for the channel associated with the START request.
DYNAMIC_TRAN

Optional Parameter

 Indicates if the transaction is dynamically routed.

Values for the parameter are:
 NO
 YES

FEPI
Optional Parameter

 Indicates whether this is a FEPI START request.

Values for the parameter are:
 NO
 YES

IN_DOUBT
Optional Parameter

 Indicates whether the Unit of Work making the request is in doubt, and, if so,
that the request should not be scheduled until the Unit of Work is committed.

Values for the parameter are:
 NO
 YES

MODE_NAME
Optional Parameter

 The mode name to be used.
RECOVERABLE_DATA

Optional Parameter

 Indicates whether the request is associated with recoverable data.

Values for the parameter are:
 NO
 YES

ROUTABLE_START
Optional Parameter

 Indicates if the START request can be routed.

Values for the parameter are:
 NO
 YES

ROUTED_FROM_TERMID
Optional Parameter

856 CICS TS for z/OS 4.1: Diagnosis Reference

The four-character terminal identifier for the terminal from which a task was
transaction-routed to issue this START request.

SHIPPED_VIA_SESSID
Optional Parameter

 The identifier of the session via which this START request was function
shipped.

SHIPPED_VIA_SYSID
Optional Parameter

 Identifies the connection via which this request was function shipped or
transaction routed.

START_DATA_LEN
Optional Parameter

 The length of the data associated with the START request.
TERM_OWNER_NETNAME

Optional Parameter

 The system identifier of the CICS region to which the request should be
shipped.

Note: You can specify either the TERM_OWNER_SYSID parameter or
TERM_OWNER_NETNAME parameter, not both.

TERM_OWNER_SYSID
Optional Parameter

 The system identifier of the CICS region to which the request should be
shipped.

Note: You can specify either the TERM_OWNER_SYSID parameter or
TERM_OWNER_NETNAME parameter, not both.

TERMINAL_NETNAME
Optional Parameter

 The eight-character NETNAME of the terminal associated with the transaction.
TERMINAL_TOKEN

Optional Parameter

 The token identifying the terminal.
TOR_NETNAME

Optional Parameter

 The netname of the CICS region that owns the terminal.
TRAN_OWNER_SYSID

Optional Parameter

 The system identifier of the CICS region that “owns” the transaction.
TSQUEUE_NAME

Optional Parameter

 The name of the temporary storage queue which contains the data associated
with the START request.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 70. Application Manager Domain (AP) 857

TFAL gate, SCHEDULE_TDP function
The SCHEDULE_TDP function of the TFAL gate is used to schedule a TDP type
AID.

Input Parameters
TDQUEUE_NAME

The destination identifier for the TD queue.
TERMID

The four-character terminal identifier for the terminal associated with the
transaction.

TRANID
The four-character transaction identifier associated with the specified terminal.

TERMINAL_NETNAME
Optional Parameter

 The eight-character NETNAME of the terminal associated with the transaction.

Output Parameters
AID_TOKEN

The AID token identifying the transaction to be scheduled.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, SLOWDOWN_PURGE function
The SLOWDOWN_PURGE function of the TFAL gate is used to search the
specified system entry's AID chain for the first allocate-type AID associated with a
stall-purgeable task, and cancel the identified transaction.

Input Parameters
SYSTEM_TOKEN

The four-character terminal identifier for the terminal associated with the
transaction.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, TAKE_KEYPOINT function
The TAKE_KEYPOINT function of the TFAL gate is used to return a chain of AIDs
which are to be written to the global catalog.

Output Parameters
AID_TOKEN

The token identifying the chain of AIDs.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, TERM_AVAILABLE_FOR_QUEUE function
The TERM_AVAILABLE_FOR_QUEUE function of the TFAL gate is used, when a
terminal becomes available for allocation, to give DFHALP the chance to attach or
resume a task which requires this terminal.

858 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, TERMINAL_NOW_UNAVAILABLE function
The TERMINAL_NOW_UNAVAILABLE function of the TFAL gate is used to
perform required actions when a terminal or connection becomes unavailable.

Input Parameters
TERMINAL_TOKEN

The token identifying the terminal.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, UNCHAIN_AID function
The UNCHAIN_AID function of the TFAL gate is used to unchain and optionally
freemain the specified AID.

Input Parameters
AID_TOKEN

The AID token identifying the transaction to be deleted.
FREEMAIN

Indicates whether freemain is wanted.

 Values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFAL gate, UPDATE_TRANNUM_FOR_RESTART function
The UPDATE_TRANNUM_FOR_RESTART function of the TFAL gate is used to
update the AID's TRANNUM to that of the restarted task.

Input Parameters
NEW_TRANNUM

The new TRANNUM to be set in the AID.
ORIGINAL_TRANNUM

The TRANNUM set in the AID when original task was attached.
TERMINAL_TOKEN

The token identifying the terminal.

Chapter 70. Application Manager Domain (AP) 859

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFBF gate, BIND_FACILITY function
The BIND_FACILITY function of the TFBF gate is used to associate a transaction
with the terminal.

Input Parameters
PARTITIONSET

Indicates if a partition set is to be used for the terminal facility.

 The values for the parameter are:
 NONE
 NAME
 OWN
 KEEP

PARTITIONSET_NAME
Optional Parameter

 The eight-character name of a partition set. This parameter is used only if the
value of PARTITIONSET is NAME.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 NO_TERMINAL
 REMOTE_SCHEDULE_FAILURE
 SECURITY_FAILURE
 TABLE_MANAGER_FAILURE
 TRANSACTION_ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFIQ gate, INQUIRE_MONITOR_DATA function
Return monitoring data for a terminal facility.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TERMINAL

The following values are returned when RESPONSE is INVALID:
 INVALID_TERMINAL_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS_METHOD
Optional Parameter

 A value that indicates the access method for the terminal.

860 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 ACC_NOTAPPLIC
 BGAM
 BSAM
 BTAM
 CONSOLE
 TCAM
 TCAMSNA
 VTAM

CONNECTION_NAME
Optional Parameter

 The name of the connection that is associated with the terminal facility. If the
facility is a surrogate, the value of the parameter is the name of the connection
associated with the relay session entry. If the facility is a session, the value of
the parameter is the name of the connection associated with the session.

DEVICE
Optional Parameter

 The type of device represented by the terminal facility.
FACILITY_NAME

Optional Parameter

 The four-character name of the terminal facility.
FACILITY_TYPE

Optional Parameter

 The terminal facility type.

Values for the parameter are:
 IRC
 IRC_XCF
 IRC_XM
 LU61
 LU62
 OTHER

INPUT_MESSAGE_LENGTH
Optional Parameter

 The length of the current input message for the terminal facility.
NATURE

Optional Parameter

 Indicates the nature of the terminal facility.

Values for the parameter are:
 MODEL
 SESSION
 SURROGATE
 TERMINAL

NETID
Optional Parameter

 The network identifier of the terminal facility.
NETNAME

Optional Parameter

 The network name of the terminal facility.
REAL_NETNAME

Optional Parameter

Chapter 70. Application Manager Domain (AP) 861

The real network name if a network qualified name has been received from
VTAM.

SESSION_TYPE
Optional Parameter

 The type of session represented by the terminal facility.

Values for the parameter are:
 APPCPARALLEL
 APPCSINGLE
 LU61
 TYPE_NOTAPPLIC

TNADDR_PORT
Optional Parameter

 The port number for a Telnet resource
TNADDR_TPADDR

Optional Parameter

 The IP address for a Telnet resource.

TFIQ gate, INQUIRE_TERMINAL_FACILITY function
The INQUIRE_TERMINAL_FACILITY function of the TFIQ gate is used to inquire
about attributes of a named terminal facility.

Input Parameters
TERMINAL_TOKEN

Optional Parameter

 A token identifying a terminal.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TERMINAL

The following values are returned when RESPONSE is INVALID:
 INVALID_TERMINAL_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CHANNEL_TOKEN
Optional Parameter

 A token that identifies a channel that is to be associated with the terminal.
DEVICE

Optional Parameter

 The type of device represented by the terminal facility.
FACILITY_NAME

Optional Parameter

 The four-character name of the terminal facility.
FREE_REQUIRED

Optional Parameter

 A binary value that indicates that the terminal facility is ready to be freed.

Values for the parameter are:
 NO
 YES

862 CICS TS for z/OS 4.1: Diagnosis Reference

INSPECT_DATA
Optional Parameter

 A token indicating the Language Environment runtime options for the terminal
facility.

NATIONAL_LANGUAGE_IN_USE
Optional Parameter

 The three-character code indicating the national language in use for the
terminal facility.

NATURE
Optional Parameter

 Indicates the nature of the terminal facility.

Values for the parameter are:
 MODEL
 SESSION
 SURROGATE
 TERMINAL

NETNAME
Optional Parameter

 The eight-character netname of the terminal facility.
OPERATOR_ID

Optional Parameter

 The operator identifier associated with the terminal facility.
PSEUDO_CONV_COMMAREA

Optional Parameter

 A block into which the communications area for a pseudo-conversational
transaction is copied.

STORAGE_FREEZE
Optional Parameter

 Indicates whether or not storage normally freed during the processing of a
transaction for the terminal facility is to be frozen. The frozen storage is not
freed until the end of the transaction.

Values for the parameter are:
 NO
 YES

TERMINAL_TRAFFIC_READ
Optional Parameter

 Indicates whether or not reading is supported.

Values for the parameter are:
 NO
 YES

TERMINAL_TRAFFIC_WRITE
Optional Parameter

 Indicates whether or not writing is supported.

Values for the parameter are:
 NO
 YES

TERMINAL_USER_AREA
Optional Parameter

 A block into which the terminal user area is copied.

Chapter 70. Application Manager Domain (AP) 863

TFIQ gate, SET_TERMINAL_FACILITY function
The SET_TERMINAL_FACILITY function of the TFIQ gate is used to set attributes
of a named terminal facility.

Input Parameters
CHANNEL_TOKEN

Optional Parameter

 A token that identifies a channel that is to be associated with the terminal.
COUNT_STORAGE_VIOLATION

Optional Parameter

 Indicates whether or not storage violations are to be counted for this terminal
facility.

Values for the parameter are:
 NO
 YES

INPUTMSG
Optional Parameter

 A block into which the input message for a pseudo-conversational transaction
is copied.

INSPECT_DATA
Optional Parameter

 Data used by the Inspect tool.
NATIONAL_LANGUAGE_IN_USE

Optional Parameter

 The three-character code indicating the national language in use for the
terminal facility.

PSEUDO_CONV_COMMAREA
Optional Parameter

 A block into which the communications area for a pseudo-conversational
transaction is copied.

PSEUDO_CONV_IMMEDIATE
Optional Parameter

 A binary value that indicates whether the terminal is to be set into a pseudo
conversation.

Values for the parameter are:
 NO
 YES

PSEUDO_CONV_NEXT_TRANSID
Optional Parameter

 The four-character identifier of the transaction to which control is passed on a
normal return from a pseudo-conversational transaction (to which the
pseudo_conversational data is passed).

STORAGE_FREEZE
Optional Parameter

 Indicates whether or not storage normally freed during the processing of a
transaction for the terminal facility is to be frozen. (The frozen storage is not
freed until the end of the transaction.)

Values for the parameter are:
 NO

864 CICS TS for z/OS 4.1: Diagnosis Reference

YES
TERMINAL_TOKEN

Optional Parameter

 A token identifying a terminal.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TERMINAL
 PERMANENT_TRANSID

The following values are returned when RESPONSE is INVALID:
 INVALID_TERMINAL_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TFRF gate, RELEASE_FACILITY function
Release a transaction's principal facility.

Input Parameters
RESTART

Specifies whether to restart the transaction.

 Values for the parameter are:
 NO
 YES

TERMINATION_TYPE
Specifies whether transaction termination is normal or abnormal.

 Values for the parameter are:
 ABNORMAL
 NORMAL

TF_TOKEN
A token representing the terminal facility.

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 RESTART_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSWM gate, XRF_GET function
This function reads security rebuild records from the CAVM data set. A response of
OK indicates that a security rebuild is required in the Alternate. A response of
EXCEPTION and a reason of END_OF_DATA indicates that tracking has finished and
that takeover is beginning.

Output Parameters
REASON

The values for the parameter are:
 END_OF_DATA

Chapter 70. Application Manager Domain (AP) 865

INVALID_DATA
 SHUTDOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSWM gate, XRF_PUT function
This function writes security rebuild records to the CAVM data set. This informs
the Alternate that a security rebuild is required.

Output Parameters
REASON

The values for the parameter are:
 NOT_THERE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Application domain's call-back gates

Table 30 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 30. Application domain's call-back gates

Gate Trace Function Format

APRD AP D610
AP D611

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY
DELIVER_FORGET

RMDE

APRD AP D610
AP D611

TAKE_KEYPOINT RMKP

APRD AP D610
AP D611

PERFORM_COMMIT
PERFORM_PREPARE
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

BRXM AP 2860
AP 2861

INIT_XM_CLIENT
BIND_XM_CLIENT
TRANSACTION_HANG
ABEND_TERMINATE
RELEASE_XM_CLIENT

XMAC

ECRL EC 3570
EC 3571

CREATE
DISCARD
INQUIRE
SET

RLCB

ICRC DELIVER_IC_RECOVERY_DATA
SOLICIT_INQUIRES

TSIC

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following call-back formats:

 “Resource life-cycle domain's call-back formats” on page 1547

866 CICS TS for z/OS 4.1: Diagnosis Reference

“Recovery manager domain call-back formats” on page 1599
 “Temporary Storage domain call-back formats” on page 1834
 “Transaction Manager domain's callback formats” on page 1996

Application Manager Domain's generic gates

Table 31 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 31. Application Manager Domain's generic gates

Gate Trace Function Format

APDM AP 0900
AP 0901

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

APDS AP 0500
AP 0501

TASK_REPLY
PURGE_INHIBIT_QUERY

DSAT

APST AP D400
AP D401

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

APSM AP F110
AP F111

STORAGE_NOTIFY SMNT

APTI AP F300
AP F301

NOTIFY TISR

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Dispatcher domain's generic formats” on page 1031
 “Statistics domain's generic formats” on page 1777
 “Storage manager domain generic formats” on page 1709
 “Timer domain's generic formats” on page 1790

Application Manager Domain's generic formats

Table 32 describes the generic formats owned by the application domain and
shows the functions performed on the calls.

 Table 32. Application Manager Domain's generic formats

Format Calling module Function

APUE DFHUEM SET_EXIT_STATUS

Note: In the descriptions of the formats that follow, the input parameters are input
not to the application domain, but to the domain being called by the application
domain. Similarly, the output parameters are output by the domain that was called
by the application domain, in response to the call.

APUE gate, SET_EXIT_STATUS function
Enable or disable a user exit point.

Chapter 70. Application Manager Domain (AP) 867

Input Parameters
EXIT_POINT

Identifies the user exit to be enabled or disabled
EXIT_STATUS

The desired status of the exit.

 Values for the parameter are:
 ACTIVE
 INACTIVE

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_EXIT_POINT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

868 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 71. Business Application Manager Domain (BA)

The business application manager domain (also sometimes known as business
application manager) is responsible for managing CICS business transaction services
(BTS) processes, process types and activities. It deals with the hardening of the
associated data to BTS repository files. Along with scheduler services domain and
event manager domain it forms the CICS BTS function.

Business Application Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the BA domain.

BAAC gate, ACQUIRE_ACTIVITY function
The ACQUIRE_ACTIVITY function of the BAAC gate is used to acquire the
specified activity.

Input Parameters
ACTIVITYID

the buffer containing the activity identifier.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_ALREADY_ACQUIRED
 ACTIVITY_NOT_FOUND
 READ_FAILURE
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, ADD_ACTIVITY function
The ADD_ACTIVITY function of the BAAC gate is used to define a new activity in
response to an EXEC CICS DEFINE ACTIVITY call.

Input Parameters
ACTIVITY_NAME

the 16-character activity name.
COMPLETION_EVENT

the 16-character completion event.
TRANID

the 4-character transaction id.
ACTIVITYID

Optional Parameter

 the buffer containing the activity identifier.
PROGRAM

Optional Parameter

 the 8-character program name associated with the root activity.
USERID

Optional Parameter

© Copyright IBM Corp. 1997, 2011 869

the 8-character userid.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_ACTIVITY_NAME
 INVALID_NAME
 NO_CURRENT_ACTIVITY
 UNKNOWN_TRANSACTION_ID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, ADD_REATTACH_ACQUIRED function
The ADD_REATTACH_ACQUIRED function of the BAAC gate is used to reattach
an activity.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_ACQUIRED_ACTIVITY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, ADD_TIMER_REQUEST function
The ADD_TIMER_REQUEST function of the BAAC gate is used to add a delayed
request to BAM domain in response to an EXEC CICS DEfINE TIMER call.

Input Parameters
DATETIME

the time at which the timer expires.
EVENT_VERSION

the version of the event.
REQUEST_TOKEN

the token representing the request.
TIMER_EVENT

the timer event name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_CURRENT_ACTIVITY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, CANCEL_ACTIVITY function
The CANCEL_ACTIVITY function of the BAAC gate is used to synchronously
cancel the named child activity or the acquired activity.

Input Parameters
ACTIVITY_NAME

Optional Parameter

870 CICS TS for z/OS 4.1: Diagnosis Reference

the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 FILE_NOT_AUTH
 INVALID_ACTIVITYID
 INVALID_MODE
 NO_CURRENT_ACTIVITY
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_BUFFER_LENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, CHECK_ACTIVITY function
The CHECK_ACTIVITY function of the BAAC gate is used to establish how the
named child activity or acquired activity completed.

Input Parameters
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 NO_CURRENT_ACTIVITY
 READ_FAILURE
 RECORD_BUSY

ABEND_CODE
the 4-character abend code.

ABEND_PROG
the 8-character name of the program which abended.

ACTMODE
the active mode of the process.

 Values for the parameter are:
 ACTIVE
 CANCELLING
 COMPLETE
 DORMANT
 INITIAL

COMPLETION_STATUS
is the completion status of the process.

 Values for the parameter are:
 ABENDED
 FORCEDCOMPLETE
 INCOMPLETE
 NORMAL

Chapter 71. Business Application Manager Domain (BA) 871

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUSPENDED
indicates whether the process is suspended.

 Values for the parameter are:
 NO
 YES

BAAC gate, DELETE_ACTIVITY function
The DELETE_ACTIVITY function of the BAAC gate is used to delete the named
child activity from the repository.

Input Parameters
ACTIVITY_NAME

the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 INVALID_MODE
 NO_CURRENT_ACTIVITY
 READ_FAILURE
 RECORD_BUSY

ACTMODE
the active mode of the process.

 Values for the parameter are:
 ACTIVE
 CANCELLING
 COMPLETE
 DORMANT
 INITIAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, LINK_ACTIVITY function
The LINK_PROCESS function of the BAAC gate is used to invoke the named child
activity or acquired activity synchronously, without a context switch.

Input Parameters
INPUT_EVENT

the 16-character name of the input event.
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 AUTOINSTALL_FAILED

872 CICS TS for z/OS 4.1: Diagnosis Reference

AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 INVALID_EVENT
 INVALID_MODE
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 NO_COMPLETION_EVENT
 NO_CURRENT_ACTIVITY
 NO_EVENTS_PROCESSED
 PENDING_ACTIVITY_EVENTS
 PROGRAM_NOT_AUTHORISED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 READ_FAILURE
 RECORD_BUSY
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 USER_CLASS_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, RESET_ACTIVITY function
The RESET_ACTIVITY function of the BAAC gate is used to reset the state of the
named child activity to initial, so it may be run again.

Input Parameters
ACTIVITY_NAME

the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 FILE_NOT_AUTH
 INVALID_MODE
 NO_CURRENT_ACTIVITY
 READ_FAILURE
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, RESUME_ACTIVITY function
The RESUME_ACTIVITY function of the BAAC gate is used to resume a
previously suspended activity.

Chapter 71. Business Application Manager Domain (BA) 873

Input Parameters
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 INVALID_MODE
 NO_ACQUIRED_ACTIVITY
 READ_FAILURE
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, RETURN_END_ACTIVITY function
The RETURN_END_ACTIVITY function of the BAAC gate is used to indicate the
completion of the current activity and so raise the completion event.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_CURRENT_ACTIVITY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, RUN_ACTIVITY function
The RUN_ACTIVITY function of the BAAC gate is used to execute the named
child activity or the acquired activity either asynchronously or synchronously i.e.
with a context switch.

Input Parameters
INPUT_EVENT

the 16-character name of the input event.
MODE

Indicates if the activity should run asynchronously or synchronously.

 Values for the parameter are:
 ASYNC
 SYNC

ACTIVITY_NAME
Optional Parameter

 the 16-character activity name.
FACILITY_TOKEN

Optional Parameter

 the 8-character facility token.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND

874 CICS TS for z/OS 4.1: Diagnosis Reference

ACTIVITY_SUSPENDED
 INVALID_EVENT
 INVALID_EVENT
 INVALID_MODE
 NO_COMPLETION_EVENT
 NO_CURRENT_ACTIVITY
 READ_FAILURE
 RECORD_BUSY
 REMOTE_PROGRAM
 REMOTE_TRAN
 RUN_SYNC_ABENDED
 TRAN_NOT_AUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAAC gate, SUSPEND_ACTIVITY function
The SUSPEND_ACTIVITY function of the BAAC gate is used to suspend the
named child activity or the acquired activity.

Input Parameters
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 INVALID_MODE
 NO_ACQUIRED_ACTIVITY
 READ_FAILURE
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, COMMIT_BROWSE function
The COMMIT_BROWSE function of the BABR gate is used to release any CICS
BTS browses associated with this UOW.

Input Parameters
CHAIN_HEAD

pointer to the head of the browse chain.

BABR gate, ENDBR_ACTIVITY function
The ENDBR_ACTIVITY function of the BABR gate is used to end the specified
activity browse.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Chapter 71. Business Application Manager Domain (BA) 875

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN
 INVALID_BROWSE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, ENDBR_CONTAINER function
The ENDBR_CONTAINER function of the BABR gate is used to end the specified
container browse.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN
 INVALID_BROWSE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, ENDBR_PROCESS function
The ENDBR_PROCESS function of the BABR gate is used to end the specified
process browse.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN
 INVALID_BROWSE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, GETNEXT_ACTIVITY function
The GETNEXT_ACTIVITY function of the BABR gate is used to return the next
activity in the specified browse.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.
RETURNED_ACTIVITYID

Optional Parameter

 is a buffer containing the activity identifier.

876 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN
 INVALID_BROWSE_TYPE
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_BUFFER_LENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTIVITY_NAME
Optional Parameter

 is the 16-character activity name.
LEVEL

Optional Parameter

 is the level into the activity tree.

BABR gate, GETNEXT_CONTAINER function
The GETNEXT_CONTAINER function of the BABR gate is used to return the next
container in the specified browse.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN
 INVALID_BROWSE_TYPE
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_NAME
Optional Parameter

 is the 16-character container name.

BABR gate, GETNEXT_PROCESS function
The GETNEXT_PROCESS function of the BABR gate is used to return the next
process in the specified browse.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.
RETURNED_ACTIVITYID

Optional Parameter

 is a buffer containing the activity identifier.

Chapter 71. Business Application Manager Domain (BA) 877

RETURNED_PROCESS_NAME
Optional Parameter

 is a buffer containing the returned process name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN
 INVALID_BROWSE_TYPE
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_BUFFER_LENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, INQUIRE_ACTIVATION function
The INQUIRE_ACTIVATION function of the BABR gate is used to obtain
information about the activation associated with a running transaction, if there is
one.

Input Parameters
RETURNED_ACTIVITYID

is a buffer containing the activity identifier.
RETURNED_PROCESS_NAME

is a buffer containing the returned process name.
TRANSACTION_TOKEN

is a token representing an instance of a transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_BUFFER_LENGTH

ACTIVITY_NAME
is the 16-character activity name.

PROCESS_TYPE
is the 8-character process type.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, INQUIRE_ACTIVITY function
The INQUIRE_ACTIVITY function of the BABR gate is used to obtain information
about the specified activity.

Input Parameters
ACTIVITYID

Optional Parameter

 the buffer containing the activity identifier.

878 CICS TS for z/OS 4.1: Diagnosis Reference

RETURNED_ACTIVITYID
Optional Parameter

 is a buffer containing the activity identifier.
RETURNED_PROCESS_NAME

Optional Parameter

 is a buffer containing the returned process name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 FILE_NOT_AUTH
 NO_CURRENT_ACTIVITY
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_ACTIVITYID_LEN
 INVALID_BUFFER_LENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional Parameter

 the 4-character abend code.
ABEND_PROGRAM

Optional Parameter

 the 8-character name of the program which abended.
ACTIVITY_NAME

Optional Parameter

 is the 16-character activity name.
COMPLETION_STATUS

Optional Parameter

 is the completion status of the process.

Values for the parameter are:
 ABENDED
 FORCED
 INCOMPLETE
 NORMAL

EVENT_NAME
Optional Parameter

 is the 16-character event name.
INIT_TRANSID

Optional Parameter

 is the 4-character transaction identifier of the transaction under which the
activity was initiated.

MODE
Optional Parameter

 is the mode of the activity.

Values for the parameter are:
 ACTIVE
 CANCELLING

Chapter 71. Business Application Manager Domain (BA) 879

COMPLETE
 DORMANT
 INITIAL

PROCESS_TYPE
Optional Parameter

 is the 8-character process type.
PROGRAM

Optional Parameter

 is the 8-character program name.
SUSPENDED

Optional Parameter

 indicates whether the process is suspended.

Values for the parameter are:
 NO
 YES

TRANSID
Optional Parameter

 is the 4-character transaction identifier.
USERID

Optional Parameter

 is the 8-character userid.

BABR gate, INQUIRE_CONTAINER function
The INQUIRE_CONTAINER function of the BABR gate is used to obtain
information about the specified container.

Input Parameters
CONTAINER_NAME

the 16-character container name.
ACTIVITYID

Optional Parameter

 the buffer containing the activity identifier.
PROCESS_NAME

Optional Parameter

 the 36-character process name.
PROCESS_TYPE

Optional Parameter

 is the 8-character process type.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 FILE_NOT_AUTH
 NO_CURRENT_ACTIVITY
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:

880 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_ACTIVITYID_LEN
 INVALID_PROCESSNAME_LEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DATA_ADDRESS
Optional Parameter

 is the address of the container data.
DATA_LENGTH

Optional Parameter

 is the length of the container data.

BABR gate, INQUIRE_PROCESS function
The INQUIRE_PROCESS function of the BABR gate is used to obtain information
about the specified process.

Input Parameters
PROCESS_NAME

the 36-character process name.
PROCESS_TYPE

is the 8-character process type.
RETURNED_ACTIVITYID

Optional Parameter

 is a buffer containing the activity identifier.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_BUFFER_LENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, STARTBR_ACTIVITY function
The STARTBR_ACTIVITY function of the BABR gate is used to initiate a browse of
activities from the specified activity identifier or from the root activity of the
specified process.

Input Parameters
ACTIVITYID

Optional Parameter

 the buffer containing the activity identifier.
PROCESS_NAME

Optional Parameter

 the 36-character process name.
PROCESS_TYPE

Optional Parameter

Chapter 71. Business Application Manager Domain (BA) 881

is the 8-character process type.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 FILE_NOT_AUTH
 NO_CURRENT_ACTIVITY
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_ACTIVITYID_LEN
 INVALID_PROCESSNAME_LEN

BROWSE_TOKEN
is the token used to identify this browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BABR gate, STARTBR_CONTAINER function
The STARTBR_CONTAINER function of the BABR gate is used to initiate a browse
of containers associated with a specified activity or process.

Input Parameters
ACTIVITYID

Optional Parameter

 the buffer containing the activity identifier.
PROCESS_NAME

Optional Parameter

 the 36-character process name.
PROCESS_TYPE

Optional Parameter

 is the 8-character process type.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 FILE_NOT_AUTH
 NO_CURRENT_ACTIVITY
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

The following values are returned when RESPONSE is INVALID:
 INVALID_ACTIVITYID_LEN
 INVALID_PROCESSNAME_LEN

BROWSE_TOKEN
is the token used to identify this browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

882 CICS TS for z/OS 4.1: Diagnosis Reference

BABR gate, STARTBR_PROCESS function
The STARTBR_PROCESS function of the BABR gate is used to initiate a browse of
the processes of a certain type.

Input Parameters
PROCESS_TYPE

is the 8-character process type.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 FILE_UNAVAILABLE
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

BROWSE_TOKEN
is the token used to identify this browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BACR gate, COPY_CONTAINER function
Copy a container from one activity to another.

Input Parameters
CONTAINER_NAME

is the 16-character source container name.
ACTIVITY_NAME

Optional Parameter

 is the 16-character name of the activity with which the source container is
associated.

AS_CONTAINER
Optional Parameter

 is the 16-character destination container name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of the source container.

Values for the parameter are:
 ACQUIRED_ACTIVITY
 ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

TO_ACTIVITY
Optional Parameter

 s the 16-character activity name of the activity with which the destination
container is associated.

TO_PROCESS
Optional Parameter

 is a value indicating if the destination container is to be a process container
rather than an activity container.

Chapter 71. Business Application Manager Domain (BA) 883

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_READONLY
 INVALID_CONTAINER_NAME
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 NO_CURRENT_PROCESS
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BACR gate, DELETE_CONTAINER function
The DELETE_CONTAINER function of the BACR gate is used to delete a named
container and its associated data.

Input Parameters
CONTAINER_NAME

the 16-character container name.
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of this container.

Values for the parameter are:
 ACQUIRED_ACTIVITY
 ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_READONLY
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 NO_CURRENT_PROCESS
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

884 CICS TS for z/OS 4.1: Diagnosis Reference

BACR gate, GET_CONTAINER_INTO function
The GET_CONTAINER_INTO function of the BACR gate is used to place the data
in a named container into an area provided by the caller.

Input Parameters
CONTAINER_NAME

the 16-character container name.
ITEM_BUFFER

is the buffer into which the container data is placed.
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of this container.

Values for the parameter are:
 ACQUIRED_ACTIVITY
 ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 LENGTH_ERROR
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 NO_CURRENT_PROCESS
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BACR gate, GET_CONTAINER_LENGTH function
The GET_CONTAINER_LENGTH function of the BACR gate is used to query the
length of application data in a named container.

Input Parameters
CONTAINER_NAME

the 16-character container name.
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of this container.

Values for the parameter are:
 ACQUIRED_ACTIVITY

Chapter 71. Business Application Manager Domain (BA) 885

ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 INVALID_CONTAINER_NAME
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 NO_CURRENT_PROCESS
 RECORD_BUSY

CONTAINER_LENGTH
is the fullword length of the application data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BACR gate, GET_CONTAINER_SET function
The GET_CONTAINER_SET function of the BACR gate is used to place the data in
a named container into an area provided by BAM domain and return this area to
the caller.

Input Parameters
CONTAINER_NAME

the 16-character container name.
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of this container.

Values for the parameter are:
 ACQUIRED_ACTIVITY
 ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 NO_CURRENT_PROCESS
 RECORD_BUSY

886 CICS TS for z/OS 4.1: Diagnosis Reference

ITEM_DATA
a block holding the named container's data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BACR gate, MOVE_CONTAINER function
The MOVE_CONTAINER function of the BACM gate is used to move a container
between activities. If a container of the same name as the destination container
name already exists in the destination activity then it is overwritten.

Input Parameters
CONTAINER_NAME

is the 16-character source container name.
ACTIVITY_NAME

Optional Parameter

 is the 16-character name of the activity with which the source container is
associated.

AS_CONTAINER
Optional Parameter

 is the 16-character destination container name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of the source container.

Values for the parameter are:
 ACQUIRED_ACTIVITY
 ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

TO_ACTIVITY
Optional Parameter

 is the 16-character activity name of the activity with which the destination
container is associated.

TO_PROCESS
Optional Parameter

 is a value indicating if the destination container is to be a process container
rather than an activity container.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_READONLY
 INVALID_CONTAINER_NAME
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY

Chapter 71. Business Application Manager Domain (BA) 887

NO_CURRENT_PROCESS
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BACR gate, PUT_CONTAINER function
The PUT_CONTAINER function of the BACR gate is used to place data into a
named container.

Input Parameters
CONTAINER_NAME

the 16-character container name.
ITEM_DATA

a block holding the data to be placed in the named container.
ACTIVITY_NAME

Optional Parameter

 the 16-character activity name.
CONTAINER_SCOPE

Optional Parameter

 identifies the scope of this container.

Values for the parameter are:
 ACQUIRED_ACTIVITY
 ACQUIRED_PROCESS
 ACTIVITY
 CHILD_ACTIVITY
 PROCESS

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACTIVITY_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_READONLY
 INVALID_CONTAINER_NAME
 LENGTH_ERROR
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 NO_CURRENT_PROCESS
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, ACQUIRE_PROCESS function
The ACQUIRE_PROCESS function of the BAPR gate is used to acquire the named
process.

Input Parameters
PROCESS_NAME

the 36-character process name.

888 CICS TS for z/OS 4.1: Diagnosis Reference

PROCESSTYPE
the 8-character process type.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 OTHER_PROCESS_CURRENT
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, ADD_PROCESS function
The ADD_PROCESS function of the BAPR gate is used to define a new process in
reponse to an EXEC CICS(R) DEFINE PROCESS call.

Input Parameters
PROCESS_NAME

the 36-character process name.
PROCESSTYPE

the 8-character process type.
TRANID

the 4-character transaction id.
CHECK_UNIQUE

Optional Parameter

 a Boolean value indicating whether a check should be made to ensure that the
process name is unique within the scope of the process-type.

Values for the parameter are:
 NO
 YES

PROGRAM
Optional Parameter

 the 8-character program name associated with the root activity.
USERID

Optional Parameter

 the 8-character userid.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_PROCESS_NAME
 FILE_NOT_AUTH
 PROCESS_ALREADY_ACQUIRED
 PROCESSTYPE_NOT_ENABLED
 PROCESSTYPE_NOT_FOUND
 WRITE_FAILED

PROCESS_TOKEN
a token representing this process internally.

Chapter 71. Business Application Manager Domain (BA) 889

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, CANCEL_PROCESS function
The CANCEL_PROCESS function of the BAPR gate is used to synchronously
cancel the acquired process.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, CHECK_PROCESS function
The CHECK_PROCESS function of the BAPR gate is used to establish how the
acquired process completed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 PROCESS_NOT_FOUND
 RECORD_BUSY

ABEND_CODE
the 4-character abend code.

ABEND_PROG
the 8-character name of the program which abended.

ACTMODE
the active mode of the process.

 Values for the parameter are:
 ACTIVE
 CANCELLING
 COMPLETE
 DORMANT
 INITIAL

COMPLETION_STATUS
is the completion status of the process.

 Values for the parameter are:
 ABENDED
 FORCEDCOMPLETE
 INCOMPLETE
 NORMAL

RESPONSE
is the domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER

890 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID
 KERNERROR
 PURGED

SUSPENDED
indicates whether the process is suspended.

 Values for the parameter are:
 NO
 YES

BAPR gate, LINK_PROCESS function
The LINK_PROCESS function of the BAPR gate is used to invoke the acquired
process synchronously, without a context switch.

Input Parameters
INPUT_EVENT

Optional Parameter

 the 16-character name of the input event.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 INVALID_EVENT
 INVALID_MODE
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 NO_EVENTS_PROCESSED
 OTHER_PROCESS_CURRENT
 PENDING_ACTIVITY_EVENTS
 PROCESS_NOT_FOUND
 PROCESS_SUSPENDED
 PROCESSTYPE_NOT_FOUND
 PROGRAM_NOT_AUTHORISED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 USER_CLASS_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, RESET_PROCESS function
The RESET_PROCESS function of the BAPR gate is used to reset the state of the
acquired root activity to initial, so it may be run again.

Chapter 71. Business Application Manager Domain (BA) 891

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 INVALID_MODE
 PROCESS_NOT_FOUND
 PROCESSTYPE_NOT_FOUND
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, RESUME_PROCESS function
The RESUME_PROCESS function of the BAPR gate is used to resume a previously
suspended process.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 PROCESS_NOT_FOUND
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, RUN_PROCESS function
The RUN_PROCESS function of the BAPR gate is used to execute the acquired
process (invoke the root activity), either asynchronously or synchronously i.e. with
a context switch.

Input Parameters
MODE

Indicates if the process should run asynchronously or synchronously.

 Values for the parameter are:
 ASYNC
 SYNC

FACILITY_TOKEN
Optional Parameter

 the 8-character facility token.
INPUT_EVENT

Optional Parameter

 the 16-character name of the input event.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 INVALID_EVENT
 INVALID_MODE

892 CICS TS for z/OS 4.1: Diagnosis Reference

JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 OTHER_PROCESS_CURRENT
 PROCESS_NOT_FOUND
 PROCESS_SUSPENDED
 PROCESSTYPE_NOT_FOUND
 PROGRAM_NOT_AUTHORISED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 RECORD_BUSY
 REMOTE_PROGRAM
 REMOTE_TRAN
 RUN_SYNC_ABENDED
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 TRAN_NOT_AUTH
 USER_CLASS_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAPR gate, SUSPEND_PROCESS function
The SUSPEND_PROCESS function of the BAPR gate is used to suspend the
acquired process.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 PROCESS_NOT_FOUND
 RECORD_BUSY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, ADD_REPLACE_PROCESSTYPE function
The ADD_REPLACE_PROCESSTYPE function of the BATT gate is used to add a
new process type definition or replace an existing process type definition. Process
types are defined using RDO.

Input Parameters
AUDITLEVEL

determines the level of auditing to be undertaken for this process type.

 Values for the parameter are:
 ACTIVITY
 FULL
 OFF
 PROCESS

AUDITLOG_NAME
is an 8-character name of the audit log to be associated with this process type.
The log is defined using RDO.

Chapter 71. Business Application Manager Domain (BA) 893

CATALOG_PTDEF
indicates whether the definition should be written to the global catalog.

 Values for the parameter are:
 NO
 YES

FILE_NAME
is an 8-character name of the repository file to be associated with this process
type. The file is defined using RDO.

PROCESSTYPE_NAME
is an 8-character name.

STATUS
indicates whether the process type definition should be installed in a disabled
or enabled state.

 Values for the parameter are:
 DISABLED
 ENABLED

USERRECORDS
indicates whether user audit records are to be written to the log.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 NOT_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, COMMIT_PROCESSTYPE_TABLE function
The COMMIT_PROCESSTYPE_TABLE function of the BATT gate is used to
commit the process type definitions to the global catalog.

Input Parameters
TOKEN

is the token identifying the table of process type definitions.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, DISCARD_PROCESSTYPE function
The DISCARD_PROCESSTYPE function of the BATT gate is used to discard the
named processtype definition.

Input Parameters
PROCESSTYPE_NAME

is an 8-character name.

894 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ENTRY_NOT_FOUND
 NOT_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, END_BROWSE_PROCESSTYPE function
The END_BROWSE_PROCESSTYPE function of the BATT gate is used to end the
browse identified by the browse token.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, GET_NEXT_PROCESSTYPE function
The GET_NEXT_PROCESSTYPE function of the BATT gate is used to return the
name of the next process type in the browse, identified by the browse token.

Input Parameters
BROWSE_TOKEN

is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_MORE_DATA_AVAILABLE

PROCESSTYPE_NAME
the 8-character process type name.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, INQUIRE_PROCESSTYPE function
The INQUIRE_PROCESSTYPE function of the BATT gate is used to return
information on the named process type.

Input Parameters
PROCESSTYPE_NAME

is an 8-character name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ENTRY_NOT_FOUND

Chapter 71. Business Application Manager Domain (BA) 895

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AUDITLEVEL
Optional Parameter

 identifies the level of auditing for this process type.

Values for the parameter are:
 ACTIVITY
 FULL
 OFF
 PROCESS

AUDITLOG_NAME
Optional Parameter

 is an 8-character name of the audit log associated with this process type.
FILE_NAME

Optional Parameter

 is the 8-character name of the repository file associated with this process type.
STATUS

Optional Parameter

 indicates the status of the process type.

Values for the parameter are:
 DISABLED
 ENABLED

USERRECORDS
Optional Parameter

 indicates whether user audit records are to being written to the log.

Values for the parameter are:
 NO
 YES

BATT gate, SET_PROCESSTYPE function
The SET_PROCESSTYPE function of the BATT gate is used to alter the named
processtype definition.

Input Parameters
PROCESSTYPE_NAME

is an 8-character name.
AUDITLEVEL

Optional Parameter

 determines the level of auditing to be undertaken for this process type.

Values for the parameter are:
 ACTIVITY
 FULL
 OFF
 PROCESS

STATUS
Optional Parameter

 indicates whether the process type definition should be installed in a disabled
or enabled state.

896 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 DISABLED
 ENABLED

USERRECORDS
Optional Parameter

 indicates whether user audit records are to be written to the log.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ENTRY_NOT_FOUND
 NOT_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BATT gate, START_BROWSE_PROCESSTYPE function
The START_BROWSE_PROCESSTYPE function of the BATT gate is used to initiate
a browse of the process types known to this region.

Output Parameters
BROWSE_TOKEN

is the token used to identify this browse.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BAXM gate, BIND_ACTIVITY_REQUEST function
The BIND_ACTIVITY_REQUEST function of the BAXM gate is used to make the
current UOW an activation of the activity specified in the activity request. This
activation could be used to mark the activity complete abended because the
previous activation failed, hence the abend information.

Input Parameters
REQUEST_BLOCK

a block used to hold the request data.
ABEND_CODE

Optional Parameter

 the 4-character abend code.
ABEND_MSG

Optional Parameter

 the 6-character abend message number.
ABEND_PROG

Optional Parameter

 the 8-character abend program name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:

Chapter 71. Business Application Manager Domain (BA) 897

ACTIVITY_NOT_FOUND
 READ_FAILURE
 TIMEOUT

PROGRAM
is the 8-character program name.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RUN_PROGRAM
is used to indicate if a program is to be invoked on the program manager
INITIAL_LINK.

 Values for the parameter are:
 NO
 YES

BAXM gate, INIT_ACTIVITY_REQUEST function
The INIT_ACTIVITY_REQUEST function of the BAXM gate is used when the
transaction requires a 3270 bridge facility, in which case the named bridge exit
program is invoked.

Input Parameters
BRIDGE_EXIT

the 8-character name of the bridge exit program.
REQUEST_BLOCK

a block used to hold the request data.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Business Application Manager Domain's generic gates

Table 33 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 33. Business Application Manager Domain's generic gates

Gate Trace Function Format

APUE BA 0180
BA 0181

SET_EXIT_STATUS APUE

DMDM BA 0101
BA 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Application Manager Domain's generic formats” on page 867
 “Domain Manager domain's generic formats” on page 956

898 CICS TS for z/OS 4.1: Diagnosis Reference

Business application manager domain's call-back gates

Table 34 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 34. Business application manager domain's call-back gates

Gate Trace Function Format

RMDE BA 0140
BA 0141

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

RMKP BA 0140
BA 0141

TAKE_KEYPOINT RMKP

RMRO BA 0140
BA 0141

PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following call-back formats:

 “Recovery manager domain call-back formats” on page 1599

Business application manager domain's generic formats

Table 35 describes the generic formats owned by the domain and shows the
functions performed on the calls.

 Table 35. Business application manager domain's generic formats

Format Calling module Function

BAGD INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN

Note: In the descriptions of the formats that follow, the input parameters are input
not to the business application manager domain, but to the domain being called by
the business application manager domain. Similarly, the output parameters are
output by the domain that was called by the business application manager
domain, in response to the call.

Chapter 71. Business Application Manager Domain (BA) 899

Modules
 Module Function

DFHBAAC DFHBAAC is the gate module for the following requests:
 ADD_ACTIVITY
 RUN_ACTIVITY
 CHECK_ACTIVITY
 RETURN_END_ACTIVITY
 DELETE_ACTIVITY
 SUSPEND_ACTIVITY
 RESUME_ACTIVITY
 CANCEL_ACTIVITY
 sliNK_ACTIVITY
 ACQUIRE_ACTIVITY
 RESET_ACTIVITY
 ADD_TIMER_REQUEST
 ADD_REATTACH_ACQUIRED

DFHBAAC0 Implements general activity class methods.

DFHBAAC1 Initializes the activity class.

DFHBAAC2 Implements the prepare method of the activity class.

DFHBAAC3 Implements the commit method of the activity class.

DFHBAAC4 Implements the delete method of the activity class.

DFHBAAC5 Implements the set_complete method of the activity class.

DFHBAAC6 Implements the invoke_exit method of the activity class.

DFHBAAR1 Intialises the audit class.

DFHBAAR2 Implements the write method of the audit class.

DFHBAA10 Implements the read_activity method of the activity class.

DFHBAA11 Implements the get_activity_instance method of the activity class.

DFHBAA12 Implements the run_sync method of the activity class.

DFHBABR DFHBABR is the gate module for the following requests:
 STARTBR_ACTIVITY
 GETNEXT_ACTIVITY
 ENDBR_ACTIVITY
 INQUIRE_ACTIVITY
 STARTBR_CONTAINER
 GETNEXT_CONTAINER
 ENDBR_CONTAINER
 INQUIRE_CONTAINER
 STARTBR_PROCESS
 GETNEXT_PROCESS
 ENDBR_PROCESS
 INQUIRE_PROCESS
 INQUIRE_ACTIVATION
 COMMIT_BROWSE

DFHBABU1 Initializes the buffer class.

DFHBACO1 Initialization of the BAAC class: obtains and initializes the class data and
sets its address into the BADM object.

DFHBACR DFHBACR is the gate module for the following requests:
 DELETE_CONTAINER
 GET_CONTAINER_INTO
 GET_CONTAINER_SET
 PUT_CONTAINER

900 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHBADM DFHBADM is the gate module for the following requests:
 PRE_INITIALISE
 INITIALISE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHBADUF Formats the BAM domain control blocks

DFHBADU1 Formats the BAM domain control blocks

DFHBALR2 Implements the create_key method of the logical record class.

DFHBALR3 Implements the write_buffer method of the logical record class.

DFHBALR4 Implements the read_key method of the logical record class.

DFHBALR5 Implements the read_record method of the logical record class.

DFHBALR6 Implements the delete_record method of the logical record class.

DFHBALR7 Implements the get_browse_token method of the logical record class.

DFHBALR8 Implements the read_next_record method of the logical record class.

DFHBALR9 Implements the release_browse_token method of the logical record class.

DFHBAOFI Initialises the object factory class.

DFHBAPR DFHBAPR is the gate module for the following requests:
 ADD_PROCESS
 RUN_PROCESS
 CHECK_PROCESS
 SUSPEND_PROCESS
 RESUME_PROCESS
 CANCEL_PROCESS
 LINK_PROCESS
 ACQUIRE_PROCESS
 RESET_PROCESS

DFHBAPR0 Implements general process class methods.

DFHBAPT1 Initialises the processtype class.

DFHBAPT2 Implements the rebuild_table method of the processtype class.

DFHBAPT3 Implements the purge_catalog method of the processtype class.

DFHBARUC The BTS repository utility program.

DFHBARUD The BTS repository utility program.

DFHBARUP The BTS repository utility program.

DFHBASP DFHBASP is the gate module for the following requests:
 PERFORM_PREPARE
 PERFORM_COMMIT
 PERFORM_SHUNT
 PERFORM_UNSHUNT
 START_BACKOUT
 DELIVER_BACKOUT_DATA
 END_BACKOUT
 START_RECOVERY
 DELIVER_RECOVERY
 END_RECOVERY
 TAKE_KEYPOINT

DFHBATRI Interprets BAM domain trace entries

Chapter 71. Business Application Manager Domain (BA) 901

Module Function

DFHBATT DFHBATT is the gate module for the following requests:
 ADD_REPLACE_PROCESSTYPE
 INQUIRE_PROCESSTYPE
 START_BROWSE_PROCESSTYPE
 GET_NEXT_PROCESSTYPE
 END_BROWSE_PROCESSTYPE
 DISCARD_PROCESSTYPE
 COMMIT_PROCESSTYPE_TABLE

DFHBAUE DFHBAUE is the gate module for the following requests:
 SET_EXIT_STATUS

DFHBAVP1 Initialises the variable length subpool class.

DFHBAXM DFHBAXM is the gate module for the following requests:
 INIT_ACTIVITY_REQUEST
 BIND_ACTIVITY_REQUEST

Exits
There are two user exit points in BAM domain, XRSINDI and XBADEACT. See the
CICS Customization Guide for further details.

902 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 72. CICS Catalog Domain (CC)

The catalog domain manages the global and local catalog.

CICS Catalog Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the CC domain.

CCCC gate, ADD function
The ADD function of the CCCC gate is used to add a record.

Input Parameters
DATA_IN

is the data to be added to the record.
NAME

is used to construct a record key, together with the domain and the type.
TYPE

identifies a block of data.

Output Parameters
REASON

The values for the parameter are:
 CATALOG_FULL
 DUPLICATE
 INVALID_DATA_LENGTH
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, DELETE function
The DELETE function of the CCCC gate is used to delete a record.

Input Parameters
NAME

is used to construct a record key, together with the domain and the type.
TYPE

identifies a block of data.
WRITE_TOKEN

Optional Parameter

 is an optional token corresponding to a START_WRITE. This avoids the need
for additional connects or disconnects.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 IO_ERROR
 RECORD_NOT_FOUND

© Copyright IBM Corp. 1997, 2011 903

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, END_BROWSE function
The END_BROWSE function of the CCCC gate is used to end a browse session.

Input Parameters
BROWSE_TOKEN

is the token identifying this browse session.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, END_WRITE function
The END_WRITE function of the CCCC gate is used to end a write session.

Input Parameters
WRITE_TOKEN

is an optional token corresponding to a START_WRITE. This avoids the need
for additional connects or disconnects.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, GET function
The GET function of the CCCC gate is used to get a record.

Input Parameters
DATA_OUT

If the response is OK, this contains a copy of the specified record.
NAME

is used to construct a record key, together with the domain and the type.
TYPE

identifies a block of data.

Output Parameters
REASON

The values for the parameter are:
 INVALID_DATA_LENGTH
 IO_ERROR
 RECORD_NOT_FOUND

904 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, GET_NEXT function
The GET_NEXT function of the CCCC gate is used to get the next record.

Input Parameters
BROWSE_TOKEN

is the token identifying this browse session.
DATA_OUT

If the response is OK, this contains a copy of the specified record.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 BROWSE_END
 INVALID_DATA_LENGTH
 IO_ERROR

NAME_OUT
The name that was supplied when the record was created.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, GET_UPDATE function
The GET_UPDATE function of the CCCC gate is used to get a record and to
establish a thread. This thread, identified by a token, is used in a corresponding
PUT_REPLACE.

Input Parameters
DATA_OUT

If the response is OK, this contains a copy of the specified record.
NAME

is used to construct a record key, together with the domain and the type.
TYPE

identifies a block of data.

Output Parameters
REASON

The values for the parameter are:
 INVALID_DATA_LENGTH
 IO_ERROR
 RECORD_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UPDATE_TOKEN
Token to be used by the corresponding PUT_REPLACE.

CCCC gate, PUT_REPLACE function
The PUT_REPLACE function of the CCCC gate is used to replace a record.

Chapter 72. CICS Catalog Domain (CC) 905

Input Parameters
DATA_IN

is the data to be added to the record.
UPDATE_TOKEN

is the token obtained from a previous GET_UPDATE, used to identify an
existing record in the catalog.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 CATALOG_FULL
 INVALID_DATA_LENGTH
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, START_BROWSE function
The START_BROWSE function of the CCCC gate is used to start a browse session.

Input Parameters
TYPE

identifies a block of data.

Output Parameters
REASON

The values for the parameter are:
 IO_ERROR

BROWSE_TOKEN
is the token identifying this browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, START_WRITE function
The START_WRITE function of the CCCC gate is used to start a write session.

Output Parameters
REASON

The values for the parameter are:
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WRITE_TOKEN
is the token identifying a unique file string (thread).

CCCC gate, STARTUP_CLOSE function
Close the thread that is used for catalog domain requests during startup.

Output Parameters
REASON

The values for the parameter are:

906 CICS TS for z/OS 4.1: Diagnosis Reference

NO_STARTUP_OPEN
 NOT_FOR_LCD

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, STARTUP_OPEN function
Open a thread that is used for catalog domain requests during startup.

Output Parameters
REASON

The values for the parameter are:
 NOT_FOR_LCD
 THREAD_IN_USE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, TYPE_PURGE function
The TYPE_PURGE function of the CCCC gate is used to purge records. This
deletes all records within the specified TYPE block for that domain.

Input Parameters
TYPE

identifies a block of data.

Output Parameters
REASON

The values for the parameter are:
 IO_ERROR
 TYPE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, WRITE function
The WRITE function of the CCCC gate is used to write a record.

Input Parameters
DATA_IN

is the data to be added to the record.
NAME

is used to construct a record key, together with the domain and the type.
TYPE

identifies a block of data.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 CATALOG_FULL
 INVALID_DATA_LENGTH
 IO_ERROR

Chapter 72. CICS Catalog Domain (CC) 907

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCCC gate, WRITE_NEXT function
The WRITE_NEXT function of the CCCC gate is used to write the next record.

Input Parameters
DATA_IN

is the data to be added to the record.
NAME

is used to construct a record key, together with the domain and the type.
TYPE

identifies a block of data.
WRITE_TOKEN

is an optional token corresponding to a START_WRITE. This avoids the need
for additional connects or disconnects.

Output Parameters
REASON

The values for the parameter are:
 BAD_TOKEN
 CATALOG_FULL
 INVALID_DATA_LENGTH
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CICS Catalog Domain's generic gates

Table 36 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 36. CICS Catalog Domain's generic gates

Gate Trace Function Format

DMDM Global catalog
domain:

 GC 1010
GC 1040

Local catalog
domain

 LC 1010
LC 1040

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

In preinitialization processing, the local catalog domain opens the CICS local
catalog, DFHLCD. There is no preinitialization processing for the global catalog
domain.

908 CICS TS for z/OS 4.1: Diagnosis Reference

In initialization processing, the global catalog domain opens the CICS global
catalog, DFHGCD.

In quiesce processing, the local and global catalog domains close their respective
catalog data sets.

In termination processing, the CICS catalog domains perform no termination
processing. They do not close either the local catalog or the global catalog; the
operating system closes these data sets.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956

Modules
 Module Function

DFHCCCC Handles the following functions:
 ADD
 DELETE
 GET
 WRITE
 GET_UPDATE
 PUT_REPLACE
 START_BROWSE
 GET_NEXT
 END_BROWSE
 TYPE_PURGE
 START_WRITE
 WRITE_NEXT
 END_WRITE

DFHCCDM Handles the initialization and termination of the CICS catalog domains.

DFHCCDUF Catalog dump formatting routine.

DFHCCTRI Trace interpreter routine for the catalog domains.

DFHCCUTL Offline utility to initialize the local catalog.

Chapter 72. CICS Catalog Domain (CC) 909

910 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 73. Directory manager domain (DD)

The directory manager domain manages directories of named tokens.

Directory manager domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the DD domain.

DDAP gate, BIND_LDAP function
The BIND_LDAP function of the DDAP gate establishes a session with an LDAP
server.

Input Parameters
CACHE_SIZE

Optional parameter

 a fullword that specifies the number of bytes available for caching LDAP
search results. A value of zero indicates an unlimited cache size. If
CACHE_SIZE is specified, CACHE_TIME_LIMIT must also be specified. If
neither parameter is specified, results will not be cached.

CACHE_TIME_LIMIT
Optional parameter

 a fullword that specifies the amount of time (in seconds) that LDAP search
results are cached. A value of zero indicates an unlimited cache time limit.

DISTINGUISHED_NAME
specifies the location of the LDAP distinguished name, of the user permitted to
bind to the chosen server. The block-descriptor is two fullwords of data, in
which the first word contains the address of the data, and the second word
contains the length in bytes of the data.

LDAP_BIND_PROFILE
specifies the location of the name of a RACF profile in the LDAPBIND class
that contains the URL and credentials for the LDAP server being accessed. The
block-descriptor is two fullwords of data, in which the first word contains the
address of the data, and the second word contains the length in bytes of the
data.

LDAP_SERVER_URL
specifies the location of the LDAP URL (in the format ldap://server:port) of
the LDAP server being accessed. If the colon and port number are omitted, the
port defaults to 389. The block-descriptor is two fullwords of data, in which
the first word contains the address of the data, and the second word contains
the length in bytes of the data.

PASSWORD
specifies the location of the password for the user identified in the
DISTINGUISHED_NAME input. The block-descriptor is two fullwords of data,
in which the first word contains the address of the data, and the second word
contains the length in bytes of the data.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOTAUTH

© Copyright IBM Corp. 1997, 2011 911

NOTFOUND
 LDAP_INACTIVE
 INVALID_LDAP_URL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

 specifies the return code that is sent by the LDAP API, in response to receiving
URL and user credentials.

LDAP_SESSION_TOKEN
the name of the fullword token that specifies the LDAP connection.

DDAP gate, END_BROWSE_RESULTS function
The END_BROWSE_RESULTS function of the DDAP gate allows you to end the
browse session that was started by the START_BROWSE_RESULTS call.

Input Parameters
SEARCH_TOKEN

the name of the fullword token that is returned by the SEARCH_LDAP
function.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN
 NOTFOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

 specifies the return code that is sent by the LDAP API.

DDAP gate, FLUSH_LDAP_CACHE function
The FLUSH_LDAP_CACHE function of the DDAP gate removes the contents of all
cached search responses for the specified LDAP connection.

Input Parameters
LDAP_SESSION_TOKEN

the name of the fullword token that was returned by the BIND_LDAP
function.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN
 LDAP_INACTIVE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

912 CICS TS for z/OS 4.1: Diagnosis Reference

specifies the return code that is sent by the LDAP API.

DDAP gate, FREE_SEARCH_RESULTS function
The FREE_SEARCH_RESULTS function of the DDAP gate releases all storage held
by the SEARCH_LDAP function.

Input Parameters
SEARCH_TOKEN

the name of the fullword token that is returned by the SEARCH_LDAP
function.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

 specifies the return code that is sent by the LDAP API.

DDAP gate, GET_ATTRIBUTE_VALUE function
The GET_ATTRIBUTE_VALUE function of the DDAP gate allows you to retrieve
the value associated with an attribute returned by the SEARCH_LDAP call.

Input Parameters
ATTRIBUTE_TYPE

Optional parameter

 specifies the keyword CHARACTER or BINARY, indicating the format of the
attribute. If this parameter is not specified, a value of CHARACTER is
assumed.

LDAP_ATTRIBUTE_NAME
specifies the location of the LDAP attribute name. The block-descriptor is two
fullwords of data, in which the first word contains the address of the attribute
name, and the second word contains the length in bytes of the attribute name.
For more information on block-descriptors, see XPI syntax.

LDAP_ATTRIBUTE_VALUE
indicates the buffer where you want the attribute value returned. A group of
three fullwords are specified for the buffer-descriptor:
v The address where the result is returned.
v The maximum size in bytes, of the data returned.
v The actual length in bytes of the result. This can be specified as *, and the

length is then returned in DDAP_LDAP_ATTRIBUTE_VALUE_N.

For more information on buffer-descriptors, see XPI syntax.
SEARCH_TOKEN

the name of the fullword token that is returned by the SEARCH_LDAP
function.

VALUE_ARRAY_POSITION
Optional parameter

 specifies the position of the requested value, in the value array for the current
attribute. This parameter is only required if multiple values are expected.
Array indexing starts at position 1.

Chapter 73. Directory manager domain (DD) 913

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN
 NOTFOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

 specifies the return code that is sent by the LDAP API.

DDAP gate, GET_NEXT_ATTRIBUTE function
The GET_NEXT_ATTRIBUTE function of the DDAP gate allows you to get the next
attribute in a series, from an entry returned by the SEARCH_LDAP call.

Input Parameters
LDAP_ATTRIBUTE_NAME

indicates the buffer where you want the attribute name returned. A group of
three fullwords are specified for the buffer-descriptor:
v The address where the data is returned.
v The maximum size in bytes, of the data returned.
v The actual length in bytes of the data. This can be specified as *, and the

length is then returned in DDAP_LDAP_ATTRIBUTE_NAME_N.

For more information on buffer-descriptors, see XPI syntax.
SEARCH_TOKEN

the name of the fullword token that is returned by the SEARCH_LDAP
function.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_TOKEN
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

 specifies the return code that is sent by the LDAP API.
VALUE_COUNT

Optional parameter

 a fullword containing the number of values returned for this attribute. There is
usually one value returned.

DDAP gate, GET_NEXT_ENTRY function
The GET_NEXT_ENTRY function of the DDAP gate allows you to get the next
entry, from a series of entries returned by the SEARCH_LDAP call.

Input Parameters
DISTINGUISHED_NAME

Optional parameter

914 CICS TS for z/OS 4.1: Diagnosis Reference

indicates the buffer where you want the distinguished name of the next entry
in the search returned. A group of three fullwords are specified for the
buffer-descriptor:
v The address where the data is returned.
v The maximum size in bytes, of the data is returned.
v The actual length in bytes of the data. This can be specified as *, and the

length is then returned in DDAP_DISTINGUISHED_NAME_N.

For more information on buffer-descriptors, see XPI syntax.
SEARCH_TOKEN

the name of the fullword token that is returned by the SEARCH_LDAP
function.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN
 BROWSE_END

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ATTRIBUTE_COUNT
Optional parameter

 specifies the number of attributes in the retrieved entry.
LDAP_RESPONSE

Optional parameter

 specifies the return code that is sent by the LDAP API.

DDAP gate, SEARCH_LDAP function
The SEARCH_LDAP function of the DDAP gate sends a search request to a
specified LDAP server.

Input Parameters
DISTINGUISHED_NAME

specifies the location of the LDAP distinguished name. The block-descriptor is
two fullwords of data, in which the first word contains the address of the data,
and the second word contains the length in bytes of the data. For more
information on block-descriptors, see XPI syntax.

FILTER
Optional parameter

 specifies the location of an LDAP filter string that limits the search. If this
parameter is not specified or is zero, the search filter is set to (objectClass=*).
The block-descriptor is two fullwords of data, in which the first word contains
the address of the data, and the second word contains the length in bytes of
the data. For more information on block-descriptors, see XPI syntax.

LDAP_SESSION_TOKEN
the name of the fullword token that was returned by the BIND_LDAP
function.

 SEARCH_TIME_LIMIT
Optional parameter

 specifies the time limit for the search (in seconds). If the search is not
successful within this time limit, the search is abandoned. If this parameter is
not specified or is zero, the search time is unlimited.

Chapter 73. Directory manager domain (DD) 915

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN
 NOTFOUND
 TIMED_OUT
 LDAP_INACTIVE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ENTRY_COUNT
Optional parameter

 the number of LDAP entries returned by the search.
LDAP_RESPONSE

Optional parameter

 specifies the return code that is sent by the LDAP API.
SEARCH_TOKEN

the name of the fullword token that identifies and holds the current position in
the search.

DDAP gate, START_BROWSE_RESULTS function
The START_BROWSE_RESULTS function of the DDAP gate allows you to browse
the results (attributes or entries) returned by the SEARCH_LDAP call.

Input Parameters
DISTINGUISHED_NAME

Optional parameter

 indicates the buffer where you want the distinguished name of the first, or
only located result returned. A group of three fullwords are specified for the
buffer-descriptor:
v The address where the data is returned.
v The length of the buffer in bytes, where the data is returned.
v The maximum length in bytes of the data. This can be specified as *, and the

length is then returned in DDAP_DISTINGUISHED_NAME_N.

For more information on buffer-descriptors, see XPI syntax.
SEARCH_TOKEN

the name of the fullword token that is returned by the SEARCH_LDAP
function.

 Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ENTRY_COUNT
Optional parameter

 a fullword indicating the number of attributes that can be browsed in the
current entry.

LDAP_RESPONSE
Optional parameter

916 CICS TS for z/OS 4.1: Diagnosis Reference

specifies the return code that is sent by the LDAP API.

DDAP gate, UNBIND_LDAP function
The UNBIND_LDAP function of the DDAP gate terminates a session with an
LDAP server.

Input Parameters
LDAP_SESSION_TOKEN

the name of the fullword token that was returned by the BIND_LDAP
function.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TOKEN
 LDAP_INACTIVE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDAP_RESPONSE
Optional parameter

 specifies the return code that is sent by the LDAP API.

DDBR gate, END_BROWSE function
The END_BROWSE function of the DDBR gate is used to end a browse on a
directory.

Input Parameters
BROWSE_TOKEN

is the token for the browse.
DIRECTORY_TOKEN

is the token for the directory.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE
 INVALID_DIRECTORY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DDBR gate, GET_NEXT_ENTRY function
The GET_NEXT_ENTRY function of the DDBR gate is used to get the next entry
name in alphabetical order in a directory.

Input Parameters
BROWSE_TOKEN

is the token for the browse.
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME

is the address of the entry name. The length is fixed for the directory.

Chapter 73. Directory manager domain (DD) 917

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE
 INVALID_DIRECTORY
 INVALID_NAME

DATA_TOKEN
is the data associated with the entry name when it was deleted.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DDBR gate, START_BROWSE function
The START_BROWSE function of the DDBR gate is used to start an alphabetical
browse through all of the entries in a directory.

Input Parameters
DIRECTORY_TOKEN

is the token for the directory.
AT_NAME

Optional Parameter

 is the address of an entry name at which the browse is to start. The first name
found will be the first which is greater than or equal to this in alphabetical
order.

TASK_RELATED
Optional Parameter

 is an optional parameter which indicates whether the browse will end at task
end.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_DIRECTORY

BROWSE_TOKEN
is the token for this browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DDDI gate, ADD_ENTRY function
The ADD_ENTRY function of the DDDI gate is used to add an entry to a directory.

Input Parameters
DATA_TOKEN

is the data to be associated with the entry name in the directory.
DIRECTORY_TOKEN

is the token for the directory.

918 CICS TS for z/OS 4.1: Diagnosis Reference

ENTRY_NAME
is the address of the entry name. The length is fixed for the directory.

SUSPEND
indicates whether Storage Manager GETMAIN requests should be conditional
or unconditional.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is INVALID:
 INVALID_DIRECTORY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUPLICATE_DATA_TOKEN
Optional Parameter

 is the data currently associated with the entry name if it already exists in the
directory.

DDDI gate, CREATE_DIRECTORY function
The CREATE_DIRECTORY function of the DDDI gate is used to create a new
directory with entry names of a given length.

Input Parameters
DIRECTORY_NAME

is the four_character name of the directory to be created.
NAME_LENGTH

is the length of entry names in the directory. This value must be a multiple of
four, and less than 256.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 DUPLICATE_DIRECTORY
 INVALID_NAME_LEN

DIRECTORY_TOKEN
is the directory token

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DDDI gate, DELETE_ENTRY function
The DELETE_ENTRY function of the DDDI gate is used to delete an entry from a
directory.

Input Parameters
DIRECTORY_TOKEN

is the token for the directory.

Chapter 73. Directory manager domain (DD) 919

ENTRY_NAME
is the address of the entry name. The length is fixed for the directory.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DIRECTORY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DATA_TOKEN
Optional Parameter

 is the data associated with the entry name when it was deleted.

DDDI gate, REPLACE_DATA function
The REPLACE_DATA function of the DDDI gate is used to replace the data
associated with an existing entry name in a directory.

Input Parameters
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME

is the address of the entry name. The length is fixed for the directory.
NEW_DATA_TOKEN

is the new data to be associated with the entry name.
PRIOR_DATA_TOKEN

Optional Parameter

 is an optional parameter that indicates the data expected to be associated with
the entry name just before it being replaced.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DATA_CHANGED
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DIRECTORY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DDLO gate, LOCATE function
The LOCATE function of the DDLO gate is used to locate the data associated with
an existing entry name in a directory.

Input Parameters
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME

is the address of the entry name. The length is fixed for the directory.

920 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DIRECTORY

DATA_TOKEN
is the data associated with the entry name when it was deleted.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Directory manager domain's generic gates

Table 37 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 37. Directory manager domain's generic gates

Gate Trace Functions Format

DDDM DD 0101
DD 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956

Chapter 73. Directory manager domain (DD) 921

922 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 74. Document Handler Domain (DH)

The document handler domain manages CICS Documents.

Document Handler Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the DH domain.

DHDH gate, CREATE_DOCUMENT function
The CREATE_DOCUMENT function of the DHDH gate is used to create a new
CICS document.

Input Parameters
BINARY

Optional Parameter

 is a buffer containing a block of binary data to be added to the document.
HOST_CODEPAGE

Optional Parameter

 is the character encoding for the block of data being added to the document.
This parameter is taken into account for the TEXT and TEMPLATE_BUFFER
options and ignored for all other options.

PRIVATE_DATA
Optional Parameter

 indicates that the block of data is private, and should not be exposed in trace
records.

Values for the parameter are:
 NO
 YES

RETRIEVED_DOCUMENT
Optional Parameter

 is a buffer containing a document in a retrieved format which is to be added to
the document.

SOURCE_DOCUMENT
Optional Parameter

 is the document token of an existing document created by the same CICS task
which is to be added to the document.

SYMBOL_DELIMITER
Optional Parameter

 is the character used to delimit symbol name-value pairs.
SYMBOL_LIST

Optional Parameter

 is a buffer containing a list of symbols to be added to the symbol table of the
document.

TEMPLATE_BUFFER
Optional Parameter

 is a buffer containing a template to be added to the document.

© Copyright IBM Corp. 1997, 2011 923

TEMPLATE_IN_ERROR
Optional Parameter

 is a buffer which is used by the Document Handler domain to return the name
of a DOCTEMPLATE in which an error has been detected. This parameter is
only meaningful when specified with the TEMPLATE_NAME option or the
TEMPLATE_BUFFER option where the template in the TEMPLATE_BUFFER
option contains an embedded template.

TEMPLATE_NAME
Optional Parameter

 is the name of an RDO defined DOCTEMPLATE which is to be added to the
document.

TEXT
Optional Parameter

 is a buffer containing a block of text to be added to the document.
UNESCAPED_DATA

Optional Parameter

 indicates if CICS should unescape symbol values in the data.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CODEPAGE_NOT_SPECIFIED
 EMBED_DEPTH_EXCEEDED
 INVALID_HOST_CODEPAGE
 INVALID_RETRIEVE_FORMAT
 INVALID_SYMBOL_LIST_LENGTH
 INVALID_TEMPLATE_LENGTH
 INVALID_TEMPLATE_SYNTAX
 IO_ERROR
 SOURCE_DOC_NOT_FOUND
 SYMBOL_NAME_INVALID
 SYMBOL_VALUE_INVALID
 TEMPLATE_NOT_FOUND
 TEMPLATE_NOT_USABLE

DOCUMENT_TOKEN
is the token identifying the newly created document.

ERROR_OFFSET
is the offset into a template where a syntax error has been detected.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DOCUMENT_SIZE
Optional Parameter

 is the size of the data in a document.
RETRIEVE_SIZE

Optional Parameter

 is the maximum size in bytes that a retrieved copy of the document can be.

924 CICS TS for z/OS 4.1: Diagnosis Reference

DHDH gate, DELETE_BOOKMARK function
The DELETE_BOOKMARK function of the DHDH gate is used to delete a
bookmark in an existing document.

Input Parameters
BOOKMARK_NAME

is the 16 byte name of a bookmark to be added to the document.
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.

Output Parameters
REASON

The values for the parameter are:
 BOOKMARK_NOT_FOUND
 DOCUMENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRIEVE_SIZE
is the maximum size in bytes that a retrieved copy of the document can be.

DHDH gate, DELETE_DATA function
The DELETE_DATA function of the DHDH gate is used to delete the data between
2 bookmarks in an existing document.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
FROM_BOOKMARK

is the name of a bookmark which identifies the start of the data which is to be
replaced.

FROM_POSITION
identifies the beginning or end of the document as the start of the data which
is to be replaced in the document.

TO_BOOKMARK
is the name of a bookmark which identifies the end of the data which is to be
replaced.

TO_POSITION
identifies the beginning or end of the document as the end of the data which is
to be replaced in the document.

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 FROM_BOOKMARK_NOT_FOUND
 INVALID_BOOKMARK_SEQUENCE
 TO_BOOKMARK_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRIEVE_SIZE
is the maximum size in bytes that a retrieved copy of the document can be.

Chapter 74. Document Handler Domain (DH) 925

DHDH gate, DELETE_DOCUMENT function
The DELETE_DOCUMENT function of the DHDH gate is used to delete a
document.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHDH gate, INQUIRE_DOCUMENT function
The INQUIRE_DOCUMENT function of the DHDH gate is used to obtain
information about the document.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DOCUMENT_SIZE
Optional Parameter

 is the size of the data in a document.
RETRIEVE_SIZE

Optional Parameter

 is the maximum size in bytes that a retrieved copy of the document can be.

DHDH gate, INSERT_BOOKMARK function
The INSERT_BOOKMARK function of the DHDH gate is used to insert a
bookmark into an existing document.

Input Parameters
BOOKMARK_NAME

is the 16 byte name of a bookmark to be added to the document.
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
INSERT_AT

is the name of a bookmark which identifies the position at which the data
should be inserted.

INSERT_POINT
identifies the beginning or end as the position at which data should be inserted
into a document.

926 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 DUPLICATE_BOOKMARK
 INSERTPOINT_NOT_FOUND
 INVALID_BOOKMARK_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRIEVE_SIZE
is the maximum size in bytes that a retrieved copy of the document can be.

DHDH gate, INSERT_DATA function
The INSERT_DATA function of the DHDH gate is used to insert a block of data
into an existing document.

Input Parameters
BINARY

is a buffer containing a block of binary data to be added to the document.
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
INSERT_AT

is the name of a bookmark which identifies the position at which the data
should be inserted.

INSERT_POINT
identifies the beginning or end as the position at which data should be inserted
into a document.

RETRIEVED_DOCUMENT
is a buffer containing a document in a retrieved format which is to be added to
the document.

SOURCE_DOCUMENT
is the document token of an existing document created by the same CICS task
which is to be added to the document.

SYMBOL
is the name of a symbol defined in the symbol table. The value associated with
the symbol will be added to the document.

TEMPLATE_BUFFER
is a buffer containing a template to be added to the document.

TEMPLATE_NAME
is the name of an RDO defined DOCTEMPLATE which is to be added to the
document.

TEXT
is a buffer containing a block of text to be added to the document.

HOST_CODEPAGE
Optional Parameter

 is the character encoding for the block of data being added to the document.
This parameter is taken into account for the TEXT and TEMPLATE_BUFFER
options and ignored for all other options.

PRIVATE_DATA
Optional Parameter

 indicates that the block of data is private, and should not be exposed in trace
records.

Values for the parameter are:

Chapter 74. Document Handler Domain (DH) 927

NO
 YES

TEMPLATE_IN_ERROR
Optional Parameter

 is a buffer which is used by the Document Handler domain to return the name
of a DOCTEMPLATE in which an error has been detected. This parameter is
only meaningful when specified with the TEMPLATE_NAME option or the
TEMPLATE_BUFFER option where the template in the TEMPLATE_BUFFER
option contains an embedded template.

Output Parameters
REASON

The values for the parameter are:
 CODEPAGE_NOT_SPECIFIED
 DOCUMENT_NOT_FOUND
 EMBED_DEPTH_EXCEEDED
 INSERTPOINT_NOT_FOUND
 INVALID_HOST_CODEPAGE
 INVALID_RETRIEVE_FORMAT
 INVALID_TEMPLATE_LENGTH
 INVALID_TEMPLATE_SYNTAX
 IO_ERROR
 SOURCE_DOC_NOT_FOUND
 SYMBOL_NOT_FOUND
 TEMPLATE_NOT_FOUND
 TEMPLATE_NOT_USABLE

ERROR_OFFSET
is the offset into a template where a syntax error has been detected.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRIEVE_SIZE
is the maximum size in bytes that a retrieved copy of the document can be.

DHDH gate, REPLACE_DATA function
The REPLACE_DATA function of the DHDH gate is used to replace the data
between 2 bookmarks in an existing document.

Input Parameters
BINARY

is a buffer containing a block of binary data to be added to the document.
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
FROM_BOOKMARK

is the name of a bookmark which identifies the start of the data which is to be
replaced.

FROM_POSITION
identifies the beginning or end of the document as the start of the data which
is to be replaced in the document.

RETRIEVED_DOCUMENT
is a buffer containing a document in a retrieved format which is to be added to
the document.

SOURCE_DOCUMENT
is the document token of an existing document created by the same CICS task
which is to be added to the document.

928 CICS TS for z/OS 4.1: Diagnosis Reference

SYMBOL
is the name of a symbol defined in the symbol table. The value associated with
the symbol will be added to the document.

TEMPLATE_BUFFER
is a buffer containing a template to be added to the document.

TEMPLATE_NAME
is the name of an RDO defined DOCTEMPLATE which is to be added to the
document.

TEXT
is a buffer containing a block of text to be added to the document.

TO_BOOKMARK
is the name of a bookmark which identifies the end of the data which is to be
replaced.

TO_POSITION
identifies the beginning or end of the document as the end of the data which is
to be replaced in the document.

HOST_CODEPAGE
Optional Parameter

 is the character encoding for the block of data being added to the document.
This parameter is taken into account for the TEXT and TEMPLATE_BUFFER
options and ignored for all other options.

PRIVATE_DATA
Optional Parameter

 Indicates that the block of data is private, and should not be exposed in trace
records.

Values for the parameter are:
 NO
 YES

TEMPLATE_IN_ERROR
Optional Parameter

 is a buffer which is used by the Document Handler domain to return the name
of a DOCTEMPLATE in which an error has been detected. This parameter is
only meaningful when specified with the TEMPLATE_NAME option or the
TEMPLATE_BUFFER option where the template in the TEMPLATE_BUFFER
option contains an embedded template.

Output Parameters
REASON

The values for the parameter are:
 CODEPAGE_NOT_SPECIFIED
 DOCUMENT_NOT_FOUND
 EMBED_DEPTH_EXCEEDED
 FROM_BOOKMARK_NOT_FOUND
 INVALID_HOST_CODEPAGE
 INVALID_RETRIEVE_FORMAT
 INVALID_TEMPLATE_LENGTH
 INVALID_TEMPLATE_SYNTAX
 IO_ERROR
 SOURCE_DOC_NOT_FOUND
 SYMBOL_NOT_FOUND
 SYMBOL_NOT_FOUND
 TEMPLATE_NOT_FOUND
 TEMPLATE_NOT_USABLE
 TO_BOOKMARK_NOT_FOUND

Chapter 74. Document Handler Domain (DH) 929

ERROR_OFFSET
is the offset into a template where a syntax error has been detected.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRIEVE_SIZE
is the maximum size in bytes that a retrieved copy of the document can be.

DHDH gate, RETRIEVE_WITH_CTLINFO function
The RETRIEVE_WITH_CTLINFO function of the DHDH gate is used to retrieve a
copy of an existing document. The retrieved copy will contain embedded control
information.

Input Parameters
DOCUMENT_BUFFER

is a buffer into which the Document Handler domain will place the copy of the
document.

DOCUMENT_TOKEN
is the token which identifies the document into which the data will be inserted.

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 OUTPUT_BUFFER_OVERFLOW

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHDH gate, RETRIEVE_WITHOUT_CTLINFO function
The RETRIEVE_WITHOUT_CTLINFO function of the DHDH gate is used to
retrieve a copy of an existing document. The retrieved copy will only contain the
data in the document.

Input Parameters
DOCUMENT_BUFFER

is a buffer into which the Document Handler domain will place the copy of the
document.

DOCUMENT_TOKEN
is the token which identifies the document into which the data will be inserted.

CLIENT_CODEPAGE
Optional Parameter

 is the character encoding that the retrieved document should be converted to
when it is placed in the buffer.

Output Parameters
REASON

The values for the parameter are:
 CCSID_CONVERSION_ERROR
 DOCUMENT_NOT_FOUND
 INVALID_CCSID_COMBINATION
 INVALID_CLIENT_CODEPAGE
 INVALID_HOST_CODEPAGE
 OUTPUT_BUFFER_OVERFLOW

930 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHDH gate, SET_PARAMETERS function
Set document handler domain parameters.

Input Parameters
DEFAULT_CODEPAGE

The default code page used by the document handler domain.

Output Parameters
REASON

The values for the parameter are:
 INVALID_HOST_CODEPAGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHFS gate, DELETE_HFS_FILE function
The DELETE_HFS_FILE function is used to remove a link to a z/OS UNIX file.
The link may be the pathname to the file. If this is the only remaining link to the
file, the file is deleted.

Input Parameters
PATHNAME

The path of the z/OS UNIX file.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NOT_FOUND
 NOTAUTH
 UNLINK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, END_BROWSE_DIRECTORY function
The END_BROWSE_DIRECTORY function terminates the browse of the z/OS
UNIX directory.

Input Parameters
BROWSE_TOKEN

A token representing the browse session.

Output Parameters
REASON

The values for the parameter are:

Chapter 74. Document Handler Domain (DH) 931

ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, GET_NEXT_IN_DIRECTORY function
The GET_NEXT_IN_DIRECTORY function returns the next file entry in the current
directory buffer. If there are no file entries left, a new directory block is read in. If
the number of entries read in is then zero, this indicates the end of the directory,
and EXCEPTION/BROWSE_END is returned.

Input Parameters
BROWSE_TOKEN

A token representing the browse session.
FILENAME

A buffer in which the file name is returned.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BROWSE_END
 INVALID_BROWSE_TOKEN
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, INQUIRE_HFS_FILE function
The INQUIRE_HFS_FILE routine finds the attributes of a z/OS UNIX file without
opening it.

Input Parameters
PATHNAME

The path of the z/OS UNIX file.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FILE_TOO_LARGE
 LOOP
 NOT_FOUND
 NOTAUTH
 STAT_FAILED

932 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LAST_MODIFIED_ABSTIME
Optional Parameter

 The date and time the file was last modified, expressed in CICS ABSTIME
format.

SIZE
Optional Parameter

 The size of the file in bytes.
TYPE

Optional Parameter

 Indicates if the PATHNAME specifies a file or a directory.

Values for the parameter are:
 DIRECTORY
 FILE

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, MAKE_HFS_DIRECTORY function
Create a directory in z/OS UNIX.

Input Parameters
PATHNAME

The path of the z/OS UNIX directory to be created.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ALREADY_EXISTS
 LOOP
 NOTAUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, READ_HFS_FILE function
The READ_HFS_FILE function is used to read an entire z/OS UNIX file into a
user-specified buffer.

Input Parameters
CONTENT

A buffer into which the file is to be read.
PATHNAME

The path to the file.
CONVERT_NEWLINE

Optional Parameter

Chapter 74. Document Handler Domain (DH) 933

Specifies the character to which all EBCDIC newline characters ('15'x) are
converted. It is typically used before converting the file to ASCII, where a
newline character is not valid.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FILE_TOO_LARGE
 LOOP
 NOT_FOUND
 NOTAUTH
 OPEN_FAILED
 READ_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LAST_MODIFIED_ABSTIME
Optional Parameter

 The date and time the file was last modified, expressed in CICS ABSTIME
format.

SIZE
Optional Parameter

 The size of the file in bytes.
TYPE

Optional Parameter

 Indicates if the PATHNAME specifies a file or a directory.

Values for the parameter are:
 DIRECTORY
 FILE

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, START_BROWSE_DIRECTORY function
The START_BROWSE_DIRECTORY function starts a browse of the filenames
recorded in the z/OS UNIX directory

Input Parameters
PATHNAME

The path of the z/OS UNIX directory to be browsed.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NOT_DIRECTORY
 NOT_FOUND
 NOTAUTH
 OPEN_FAILED
 READ_ERROR

934 CICS TS for z/OS 4.1: Diagnosis Reference

BROWSE_TOKEN
A token representing the browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

DHFS gate, WRITE_HFS_FILE function
:p.The WRITE_HFS_FILE function is used to write an entire z/OS UNIX file from a
single user-specified buffer.

Input Parameters
CONTENT

A buffer from which the file is to written.
PATHNAME

The path to the file.
APPEND

Optional Parameter

 Specifies whether data is to be appended to the existing file. The default is NO:
any existing data is overwritten.

Values for the parameter are:
 NO
 YES

CREATE_DIRECTORY
Optional Parameter

 Specifies whether the directory into which the file is being written should be
created if it does not exist. The default is NO: if the directory is missing, a
NOT_FOUND exception is returned.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NOT_FOUND
 NOTAUTH
 OPEN_FAILED
 READ_ONLY
 WRITE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USS_RESPONSE
Optional Parameter

 The response from UNIX System Services.

Chapter 74. Document Handler Domain (DH) 935

DHSL gate, ADD_SYMBOL_LIST function
The ADD_SYMBOL_LIST function of the DHSL gate is used to add a list of
symbols to the symbol table at one time.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
SYMBOL_LIST

is a buffer containing a list of symbols to be added to the symbol table of the
document.

PRIVATE_DATA
Optional Parameter

 indicates that the symbols contain private data that should not be exposed in
trace records.

Values for the parameter are:
 NO
 YES

SYMBOL_DELIMITER
Optional Parameter

 is the character used to delimit symbol name-value pairs.
UNESCAPED_DATA

Optional Parameter

 indicates if CICS should unescape symbol values in the data.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 FREEMAIN_ERROR
 GETMAIN_ERROR
 INVALID_LENGTH
 SYMBOL_NAME_INVALID
 SYMBOL_VALUE_INVALID

ERROR_OFFSET
is the offset into a template where a syntax error has been detected.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHSL gate, EXPORT_SYMBOL_LIST function
The EXPORT_SYMBOL_LIST function of the DHSL gate is used to export all the
symbols in the symbol table in a form that can be re-imported with
IMPORT_SYMBOL_LIST.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
SYMBOL_LIST_BUFFER

is a buffer that is to contain the exported symbol list.

936 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 INVALID_LENGTH
 OUTPUT_BUFFER_OVERFLOW

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHSL gate, IMPORT_SYMBOL_LIST function
The IMPORT_SYMBOL_LIST function of the DHSL gate is used to import all the
symbols in the symbol table that were exported with EXPORT_SYMBOL_LIST.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
SYMBOL_LIST

is a buffer containing a list of symbols to be added to the symbol table of the
document.

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHSL gate, SET_SYMBOL_VALUE_BY_API function
The SET_SYMBOL_VALUE_BY_API function of the DHSL gate is used to set the
value of a symbol in the symbol table. If the symbol does not exist in the table, it
will be added. If the symbol does exist in the table, it will always be replaced.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
SYMBOL_NAME

is the name of the symbol in the symbol table.
VALUE

is the value to be associated with the symbol.
PRIVATE_DATA

Optional Parameter

 indicates that the symbol value is private, and should not be exposed in trace
records.

Values for the parameter are:
 NO
 YES

UNESCAPED_DATA
Optional Parameter

 indicates if CICS should unescape symbol values in the data.

Values for the parameter are:
 NO

Chapter 74. Document Handler Domain (DH) 937

YES

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 FREEMAIN_ERROR
 GETMAIN_ERROR
 INVALID_LENGTH
 SYMBOL_NAME_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHSL gate, SET_SYMBOL_VALUE_BY_SSI function
The SET_SYMBOL_VALUE_BY_SSI function of the DHSL gate is used to set the
value of a symbol in the symbol table. If the symbol does not exist in the table, it
will be added. If the symbol does exist in the table, it will only be replaced if it
was previously set using the SET_SYMBOL_VALUE_BY_SSI function.

Input Parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
SYMBOL_NAME

is the name of the symbol in the symbol table.
VALUE

is the value to be associated with the symbol.

Output Parameters
REASON

The values for the parameter are:
 DOCUMENT_NOT_FOUND
 FREEMAIN_ERROR
 GETMAIN_ERROR
 INVALID_LENGTH
 SYMBOL_NAME_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHTM gate, ADD_REPLACE_DOCTEMPLATE function
The ADD_REPLACE_DOCTEMPLATE function of the DHTM gate is used to
install a document template into the currently executing CICS system.

Input Parameters
APPENDCRLF

specifies whether CICS is to delete trailing blanks from and append
carriage-return line-feed to each logical record of the template .

 Values for the parameter are:
 NO
 YES

CATALOG_DOC
Specifies if the changes to the doucment template are to be added to the
catalog.

938 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

DOCTEMPLATE
is the name of the DOCTEMPLATE resource that is to be added.

HFSPATH
When the template resides in a z/OS UNIX System Services file, the fully
qualified (absolute) or relative name of the file.

RESOURCE_NAME
is the name of the resource containing the DOCTEMPLATE.

RESOURCE_TYPE
specifies the type of resource containing the DOCTEMPLATE.

 Values for the parameter are:
 EXITPGM
 FILE
 HFSFILE
 PDS_MEMBER
 PROGRAM
 TDQUEUE
 TSQUEUE

TEMPLATE_NAME
is the name of an RDO defined DOCTEMPLATE which is to be added to the
document.

TYPE
specifies the format of the contents of the template.

 Values for the parameter are:
 BINARY
 EBCDIC

DDNAME
Optional Parameter

 is the DDNAME of the PDS containing the DOCTEMPLATE resource if the
resource resides on a PDS.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT

Chapter 74. Document Handler Domain (DH) 939

INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DATASET
Optional Parameter

 is the dataset name of the PDS containing the DOCTEMPLATE resource if the
resource resides on a PDS.

DOCTEMPLATE_IN_USE
Optional Parameter

 is the name of the DOCTEMPLATE definition that uses the same
TEMPLATE_NAME as the resource being defined.

DHTM gate, DELETE_DOCTEMPLATE function
The DELETE_DOCTEMPLATE function of the DHTM gate deletes a previously
installed DOCTEMPLATE.

Input Parameters
DOCTEMPLATE

is the name of the DOCTEMPLATE resource that is to be added.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHTM gate, END_BROWSE function
The END_BROWSE function of the DHTM gate is used to terminate a browse of
installed DOCTEMPLATE definitions.

940 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BROWSE_TOKEN

is the token identifying this browse of the DOCTEMPLATE definitions.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHTM gate, GET_NEXT function
The GET_NEXT function of the DHTM gate returns information about the next
installed DOCTEMPLATE in the browse.

Input Parameters
BROWSE_TOKEN

is the token identifying this browse of the DOCTEMPLATE definitions.

Output Parameters
REASON

The values for the parameter are:
 BROWSE_END
 INVALID_BROWSE_TOKEN

APPENDCRLF
specifies whether CICS is to delete trailing blanks from and append
carriage-return line-feed to each logical record of the template .

 Values for the parameter are:
 NO
 YES

DATASET
is the dataset name of the PDS containing the DOCTEMPLATE resource if the
resource resides on a PDS.

DDNAME
is the DDNAME of the template PDS if the RESOURCE_TYPE indicates a PDS.

DOCTEMPLATE
is the name of the DOCTEMPLATE resource as it is known to RDO.

HFSPATH
When the template resides in a z/OS UNIX System Services file, the fully
qualified (absolute) or relative name of that file.

RESOURCE_NAME
is the name of the CICS or non-CICS resource.

RESOURCE_TYPE
is the CICS or non-CICS resource type associated with the template.

 Values for the parameter are:
 EXITPGM
 FILE
 HFSFILE
 PDS_MEMBER
 PROGRAM
 TDQUEUE
 TSQUEUE

Chapter 74. Document Handler Domain (DH) 941

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TEMPLATE_NAME
is the full name of the template as known outside RDO.

TYPE
specifies the format of the contents of the template.

 Values for the parameter are:
 BINARY
 EBCDIC

DHTM gate, INITIALIZE_DOCTEMPLATES function
The INITIALIZE_DOCTEMPLATES function of the DHSL gate is used to initialize
the state required by the template manager.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHTM gate, INQUIRE_DOCTEMPLATE function
The INQUIRE_DOCTEMPLATE function of the DHTM gate returns information
about a previously installed document template.

Input Parameters
DOCTEMPLATE

is the name of the DOCTEMPLATE resource that is to be added.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

942 CICS TS for z/OS 4.1: Diagnosis Reference

DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

APPENDCRLF
specifies whether CICS is to delete trailing blanks from and append
carriage-return line-feed to each logical record of the template .

 Values for the parameter are:
 NO
 YES

DATASET
is the dataset name of the PDS containing the DOCTEMPLATE resource if the
resource resides on a PDS.

DDNAME
is the DDNAME of the template PDS if the RESOURCE_TYPE indicates a PDS.

HFSPATH
When the template resides in a z/OS UNIX System Services file, the fully
qualified (absolute) or relative name of the z/OS UNIX file.

RESOURCE_NAME
is the name of the CICS or non-CICS resource.

RESOURCE_TYPE
is the CICS or non-CICS resource type associated with the template.

 Values for the parameter are:
 EXITPGM
 FILE
 HFSFILE
 PDS_MEMBER
 PROGRAM
 TDQUEUE
 TSQUEUE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TEMPLATE_NAME
is the full name of the template as known outside RDO.

TYPE
specifies the format of the contents of the template.

 Values for the parameter are:
 BINARY

Chapter 74. Document Handler Domain (DH) 943

EBCDIC

DHTM gate, INQUIRE_TEMPLATE_STATUS function
The INQUIRE_TEMPLATE_STATUS function of the DHTM gate is used to inquire
the install status of one or more templates.

Input Parameters
TEMPLATE_NAME_LIST

A list of template names whose install status is sought.
TEMPLATE_STATUS_LIST

is a list of install status indicators for the templates named in the
TEMPLATE_NAME_LIST

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DHTM gate, READ_TEMPLATE function
The READ_TEMPLATE function of the DHTM gate is used to read a named
template into a buffer provided by the caller.

Input Parameters
TEMPLATE_BUFFER

is a buffer containing a template to be added to the document.
TEMPLATE_NAME

is the name of an RDO defined DOCTEMPLATE which is to be added to the
document.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

944 CICS TS for z/OS 4.1: Diagnosis Reference

DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DOCTEMPLATE
Optional Parameter

 is the name of the DOCTEMPLATE resource as it is known to RDO.
TYPE

Optional Parameter

 specifies the format of the contents of the template.

Values for the parameter are:
 BINARY
 EBCDIC

DHTM gate, START_BROWSE function
The START_BROWSE function of the DHTM gate is used to initiate a browse of
installed DOCTEMPLATE definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DDNAME_NOT_FOUND
 FREEMAIN_FAILED
 GETMAIN_FAILED
 IO_ERROR
 MEMBER_NOT_FOUND
 NAME_IN_USE
 NOT_FOUND
 NOT_USABLE
 TRUNCATED

Chapter 74. Document Handler Domain (DH) 945

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_RESOURCE_TYPE

BROWSE_TOKEN
is a token identifying this DOCTEMPLATE browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Document handler domain's generic gates

Table 38 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 38. Document handler domain's generic gates

Gate Trace Functions Format

APUE DH 0D01
DH 0D02
DH 0D03
DH 0D04
DH 0D05
DH 0D06
DH 0D07
DH 0D08

SET_EXIT_STATUS APUE

DDDM DD 0101
DD 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Application Manager Domain's generic formats” on page 867
 “Domain Manager domain's generic formats” on page 956

Document handler domain's call-back gates

Table 39 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the call-back formats for calls to the gates.

 Table 39. Document handler domain's call-back gates

Gate Trace Functions Format

RMDE DH 0301
DH 0302
DH 0303
DH 0304
DH 0306
DH 0308

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

946 CICS TS for z/OS 4.1: Diagnosis Reference

Table 39. Document handler domain's call-back gates (continued)

Gate Trace Functions Format

RMKP DH 0301
DH 0302
DH 0303
DH 0304
DH 0307
DH 0308

TAKE_KEYPOINT RMKP

RMRO DH 0301
DH 0302
DH 0303
DH 0304
DH 0305
DH 0308

PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
END_BACKOUT

RMRO

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following call-back formats:

 “Recovery manager domain call-back formats” on page 1599

Modules
 Module Function

DFHDHDH Handles the following requests:

 CREATE_DOCUMENT

 INSERT_DATA

 INSERT_BOOKMARK

 REPLACE_DATA

 DELETE_DOCUMENT

 DELETE_DATA

 DELETE_BOOKMARK

 RETRIEVE_WITH_CTLINFO

 RETRIEVE_WITHOUT_CTLINFO

 INQUIRE_DOCUMENT

DFHDHDM Handles the following requests:

 INITIALIZE_DOMAIN

 QUIESCE_DOMAIN

 TERMINATE_DOMAIN

DFHDHDUF DH domain offline dump formatting routine

DFHDHPB Processes data supplied on the BINARY parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of
DFHDHDH.

DFHDHPD Processes data supplied on the SOURCE_DOCUMENT parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of
DFHDHDH.

DFHDHPM Processes data supplied on the TEMPLATE_NAME parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of
DFHDHDH.

DFHDHPR Reads templates held as member's of partitioned datasets.

DFHDHPS Processes data supplied on the SYMBOL parameter of INSERT_DATA
and REPLACE_DATA calls of DFHDHDH.

Chapter 74. Document Handler Domain (DH) 947

Module Function

DFHDHPT Processes data supplied on the TEXT parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of
DFHDHDH.

DFHDHPU Processes data supplied on the TEMPLATE_BUFFER parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of
DFHDHDH.

DFHDHPX Processes data supplied on the RETRIEVED_DOCUMENT parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of
DFHDHDH.

DFHDHRM Handles the following requests:

 PERFORM_PREPARE

 PERFORM_COMMIT

 PERFORM_SHUNT

 PERFORM_UNSHUNT

 START_BACKOUT

 END_BACKOUT

 START_DELIVERY

 DELIVER_RECOVERY

 END_DELIVERY

 TAKE_KEYPOINT

DFHDHSL Handles the following requests:

 SET_SYMBOL_VALUE_BY_API,

 SET_SYMBOL_VALUE_BY_SSI,

 ADD_SYMBOL_LIST

 EXPORT_SYMBOL_LIST

 IMPORT_SYMBOL_LIST

DFHDHTM Handles the following requests:

 INITIALIZE_DOCTEMPLATES

 ADD_REPLACE_DOCTEMPLATE

 DELETE_DOCTEMPLATE

 INQUIRE_DOCTEMPLATE

 INQUIRE_TEMPLATE_STATUS

 START_BROWSE

 GET_NEXT

 END_BROWSE

 READ_TEMPLATE

DFHDHTRI Interprets DH domain trace entries

DFHDHUE Handles the following requests:

 SET_EXIT_STATUS

948 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 75. Domain Manager Domain (DM)

The domain manager domain maintains permanent information about other
domains.

Domain Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the DM domain.

DMDM gate, ADD_DOMAIN function
The ADD_DOMAIN function of the DMDM gate adds a new domain to the DM
table (on the CICS(R) catalog) of all domains. Because the add is placed on the
catalog, it survives system failure. A delete is required to remove the entry.

Input Parameters
DOMAIN_ID

is the unique character pair, usually an abbreviated form of the domain name.
DOMAIN_NAME

is a unique string, 1 through 8 characters, which is the name of the domain.
DOMAIN_TOKEN

is the unique index that corresponds to the new table entry for the domain.
PROGRAM_NAME

is a unique string, 1 through 8 characters, which is the name of the
initialization module for the specified domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOADER_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 INSUFFICIENT_STORAGE
 PROGRAM_NOT_FOUND

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMDM gate, QUIESCE_SYSTEM function
The QUIESCE_SYSTEM function of the DMDM gate is used to call the domain
manager to cause a normal shutdown of the system.

© Copyright IBM Corp. 1997, 2011 949

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 LOOP

The following values are returned when RESPONSE is INVALID:
 SYSTEM_INITIALISING

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMDM gate, SET_PHASE function
When a domain issues SET_PHASE during initialization, it is declaring that it is
now prepared to support a given set of services.

Input Parameters
PHASE

specifies the set of services that are to be available.
STATUS

is either ACTIVE or INACTIVE.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_PHASE
 SYSTEM_NOT_INITIALISING
 SYSTEM_NOT_QUIESCING

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMDM gate, WAIT_PHASE function
The WAIT_PHASE function of the DMDM gate is used to wait until the services
required to carry on the work are available.

Input Parameters
PHASE

specifies the set of services that are to be available.

950 CICS TS for z/OS 4.1: Diagnosis Reference

STATUS
is either ACTIVE or INACTIVE.

DOMAIN_TOKEN
Optional Parameter

 is the unique index that corresponds to the new table entry for the domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_TOKEN_NOT_ACTIVE

The following values are returned when RESPONSE is INVALID:
 INVALID_PHASE
 SYSTEM_NOT_INITIALISING
 SYSTEM_NOT_QUIESCING

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMEN gate, DELETE function
The DELETE function of the DMEN gate is used to deregister an interest in an
ENF event.

Input Parameters
EVENT

is the event in which the caller is registering an interest

 Values for the parameter are:
 SMSVSAM_OPERATIONAL

LISTEN_GATE
is the gate number of the gate at which the caller wants to be notified when
the event occurs.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 LISTEN_NOT_ACTIVE

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Chapter 75. Domain Manager Domain (DM) 951

DMEN gate, LISTEN function
The LISTEN function of the DMEN gate is issued to register an interest in an event
notification facility (ENF) event. The MVS(TM) event notification facility is a
generalized communication facility which allows subsystems to broadcast
notification of events.

Input Parameters
EVENT

is the event in which the caller is registering an interest.

 Values for the parameter are:
 SMSVSAM_OPERATIONAL

LISTEN_GATE
is the gate number of the gate at which the caller wants to be notified when
the event occurs.

Output Parameters
REASON

The values for the parameter are:
 DUPLICATE_LISTEN
 UNKNOWN_EVENT

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

DMIQ gate, END_BROWSE function
The END_BROWSE function of the DMIQ gate is used to release the browse thread
at any time.

Input Parameters
BROWSE_TOKEN

is the token identifying this browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 BROWSE_TOKEN_NOT_FOUND

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

952 CICS TS for z/OS 4.1: Diagnosis Reference

DMIQ gate, GET_NEXT function
The GET_NEXT function of the DMIQ gate is used to return the next available
record or an END indication.

Input Parameters
BROWSE_TOKEN

is the token identifying this browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 END_LIST

The following values are returned when RESPONSE is INVALID:
 BROWSE_TOKEN_NOT_FOUND

DOMAIN_ID
is the unique character pair, usually an abbreviated form of the domain name.

DOMAIN_NAME
is a unique string, 1 through 8 characters, which is the name of the domain.

DOMAIN_PHASE
is the current phase level for that domain.

DOMAIN_STATUS
is ACTIVE or INACTIVE.

DOMAIN_TOKEN
is the unique index that corresponds to the new table entry for the domain.

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMIQ gate, INQ_DOMAIN_BY_ID function
The INQ_DOMAIN_BY_ID function of the DMIQ gate is used to get the domain's
token, name, status, and phase for the specified domain ID.

Input Parameters
DOMAIN_ID

is the unique character pair, usually an abbreviated form of the domain name.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 DOMAIN_ID_NOT_FOUND

DOMAIN_NAME
is a unique string, 1 through 8 characters, which is the name of the domain.

Chapter 75. Domain Manager Domain (DM) 953

DOMAIN_PHASE
is the current phase level for that domain.

DOMAIN_STATUS
is ACTIVE or INACTIVE.

DOMAIN_TOKEN
is the unique index that corresponds to the new table entry for the domain.

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMIQ gate, INQ_DOMAIN_BY_NAME function
The INQ_DOMAIN_BY_NAME function of the DMIQ gate is used to get the
domain's token, ID, status, and phase for the specified domain name.

Input Parameters
DOMAIN_NAME

is a unique string, 1 through 8 characters, which is the name of the domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 DOMAIN_NAME_NOT_FOUND

DOMAIN_ID
is the unique character pair, usually an abbreviated form of the domain name.

DOMAIN_PHASE
is the current phase level for that domain.

DOMAIN_STATUS
is ACTIVE or INACTIVE.

DOMAIN_TOKEN
is the unique index that corresponds to the new table entry for the domain.

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMIQ gate, INQ_DOMAIN_BY_TOKEN function
The INQ_DOMAIN_BY_TOKEN function of the DMIQ gate is used to get the
domain's name, ID, status, and phase for the specified domain token.

954 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
DOMAIN_TOKEN

is the unique index that corresponds to the new table entry for the domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 DOMAIN_TOKEN_NOT_FOUND

DOMAIN_ID
is the unique character pair, usually an abbreviated form of the domain name.

DOMAIN_NAME
is a unique string, 1 through 8 characters, which is the name of the domain.

DOMAIN_PHASE
is the current phase level for that domain.

DOMAIN_STATUS
is ACTIVE or INACTIVE.

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

DMIQ gate, START_BROWSE function
The START_BROWSE function of the DMIQ gate is used to create a browse thread.
The GET_NEXT function request issued after this command returns the first
domain in the active domain list.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

BROWSE_TOKEN
is the token identifying this browse session.

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

Chapter 75. Domain Manager Domain (DM) 955

Domain manager domain's generic gates

Table 40 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 40. Domain manager domain's generic gates

Gate Trace Functions Format

DSAT none TASK_REPLY DSAT

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Dispatcher domain's generic formats” on page 1031

Domain Manager domain's generic formats

Table 41 describes the generic formats owned by the domain and shows the
functions performed on the calls.

 Table 41. Domain Manager domain's generic formats

Format Calling module Function

DMDM DFHKETCB
DFHDMDS
DFHDMDS
DFHKETCB

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

Note: In the descriptions of the formats, the input parameters are input not to the
Domain Manager domain, but to the domain being called by the application
domain. Similarly, the output parameters are output by the domain that was called
by the Domain Manager domain, in response to the call.

DMDM gate, INITIALISE_DOMAIN function
A generic function which the domain manager domain uses to call other domains
to perform initialization.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 LOOP

The following values are returned when RESPONSE is INVALID:
 ALREADY_INITIALISED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DMDM gate, PRE_INITIALISE function
A generic function which the domain manager domain uses to call other domains
to perform the early stages of initialization.

956 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 LOOP

DUMP_REQUIRED
A binary value that indicates whether a dump is required if pre-initialization
failed.

 Values for this parameter are
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DMDM gate, QUIESCE_DOMAIN function
A generic function which the domain manager domain uses to call other domains
when the system is required to shut down normally.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DMDM gate, TERMINATE_DOMAIN function
A generic function which the domain manager domain uses to call other domains
when the system is required to shut-down quickly. The call is always made under
the job step TCB.

Input Parameters
CANCEL

A binary value that indicates that the request is being issued as a result of an
operator cancel. This means that attached subtasks are no longer dispatchable.

 Values for the parameter are:
 NO
 YES

CLEAN_UP
A binary value that indicates that the request is being issued under a clean-up
only ESTAE exit. This implies restrictions for terminate logic, specifically that
ATTACH cannot be issued.

 Values for the parameter are:
 NO
 YES

TERMINATION_TYPE
Indicates whether the domain is to be terminated immediately or quiesced.

 Values for the parameter are:
 IMMEDIATE

Chapter 75. Domain Manager Domain (DM) 957

QUIESCE

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Domain Manager domain call-back formats
The Domain Manager domain call-back formats enable the domain to call other
domains using a format provided by the Domain Manager domain.

DMEN gate, NOTIFY_SMSVSAM_OPERATIONAL function
Domains that have registered their interest in ENF events are invoked at their
identified listen gates when the ENF event occurs. A unique DMEN notify function
is provided for each event to allow event specific parameters to be specified in a
meaningful way.

Input Parameters
NOTIFY_PLIST

is a parameter list specific to the ENF event being notified, which was supplied
by the subsystem issuing the ENF signal.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RESTART_RLS_FAILED

RESPONSE
is DFHDMEN's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Modules
 Module Function

DFHDMDM Handles the following requests:
 INITIALIZE_DOMAIN
 PRE_INITIALIZE
 QUIESCE_DOMAIN
 QUIESCE_SYSTEM
 TERMINATE_DOMAIN
 SET_PHASE
 WAIT_PHASE
 ADD_DOMAIN

DFHDMDS Handles the TASK_REPLY request

958 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHDMDUF Formats the DM domain control blocks in a CICS system dump

DFHDMEN Handles LISTEN, DELETE, NOTIFY_SMSVSAM_OPERATIONAL

DFHDMENF Broadcasts ENF events to interested domains

DFHDMIQ Handles the following requests:
 START_BROWSE
 GET_NEXT
 END_BROWSE
 INQUIRE_DOMAIN_BY_ID
 INQUIRE_DOMAIN_BY_NAME
 INQUIRE_DOMAIN_BY_TOKEN

DFHDMSVC Provides authorized services for the DM ENF support

DFHDMTRI Interprets DM domain trace entries

DFHDMWQ Handles the following requests:
 INITIALIZE
 SET_UP_WAIT
 RESUME_WAITERS
 RESUME_DOMAIN_WAITERS
 RESUME_PHASE_WAITERS

Chapter 75. Domain Manager Domain (DM) 959

960 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 76. Debugging profile domain (DP)

The Debugging profile domain manages debugging profiles.

Debugging profile domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the DP domain.

DPFM gate, ACTIVATE_DEBUG_PROFILE function
Activate a debugging profile.

Input Parameters
CURRENT_USERID

The userid of the user making the request
OWNER_USERID

The userid of the debugging profile's owner
PROFILE_NAME

The name of the debugging profile
SESSION_TYPE

The session type specified in the debugging profile.

 Values for the parameter are:
 LU3270
 TCP

IP_NAME_OR_ADDR_BLOCK
Optional Parameter

 A block of storage containing the IP name or IP address
LU_3270_DISPLAY

Optional Parameter

 The 3270 display terminal specified in the debugging profile to be used by
Debug Tool

PORT
Optional Parameter

 The port number specified in the debugging profile
SOCKET_TYPE

Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ALREADY_ACTIVE
 DISASTER_PERCOLATION
 FILE_ERROR

© Copyright IBM Corp. 1997, 2011 961

FILE_FULL
 INTERNAL_ERROR
 PROFILE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PATTERN_MATCH_NUMBER
Optional Parameter

 A metric computed from the contents of the debugging profile, which is
compared with the pattern match number form other profiles to determine
which of the profiles is the best match for a program instance.

DPFM gate, DELETE_DEBUG_PROFILE function
Delete a debugging profile from the debugging profile data set.

Input Parameters
CURRENT_USERID

The userid of the user making the request
OWNER_USERID

The userid of the debugging profile's owner
PROFILE_NAME

The name of the debugging profile

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 PROFILE_ACTIVE
 PROFILE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPFM gate, END_PM_BROWSE function
End the browse for pattern matching.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPFM gate, GET_DEBUG_PROFILE function
Retrieve a debugging profile from the debugging profile data set.

962 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
OWNER_USERID

The userid of the debugging profile's owner
PROFILE_NAME

The name of the debugging profile
BEAN_BLOCK

Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

 A block of storage containing the class name
IP_NAME_OR_ADDR_BLOCK

Optional Parameter

 A block of storage containing the IP name or IP address
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
METHOD_BLOCK

Optional Parameter

 A block of storage containing the method name

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 PROFILE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTIVATE_USERID
Optional Parameter

 For an active debugging profile, the user ID of the user who made it active.
APPLID

Optional Parameter

 The Applid specified in the debugging profile
COMMAND_FILE

Optional Parameter

 The command file specified in the debugging profile
COMP_UNIT

Optional Parameter

 The compile unit name specified in the debugging profile
JVM_PROFILE

Optional Parameter

 The JVM profile specified in the debugging profile
LU_3270_DISPLAY

Optional Parameter

 The 3270 display terminal to be used by Debug Tool

Chapter 76. Debugging profile domain (DP) 963

NETNAME
Optional Parameter

 The terminal's network name specified in the debugging profile
PATTERN_MATCH_NUMBER

Optional Parameter

 A metric computed from the contents of the debugging profile, which is
compared with the pattern match number form other profiles to determine
which of the profiles is the best match for a program instance.

PORT
Optional Parameter

 The port number specified in the debugging profile
PREFERENCE_FILE

Optional Parameter

 The preference file specified in the debugging profile
PROGRAM

Optional Parameter

 The program name specified in the debugging profile
PROMPT

Optional Parameter

 The prompt specified in the debugging profile
SESSION_TYPE

Optional Parameter

 The session type specified in the debugging profile.

Values for the parameter are:
 LU3270
 TCP

SOCKET_TYPE
Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

STATUS
Optional Parameter

 The status of the debugging profile.

Values for the parameter are:
 ACTIVE
 INACTIVE

TERMID
Optional Parameter

 The terminal ID specified in the debugging profile
TEST_LEVEL

Optional Parameter

 The test level specified in the debugging profile.

Values for the parameter are:
 ALL
 ERROR

964 CICS TS for z/OS 4.1: Diagnosis Reference

NONE
TRANID

Optional Parameter

 The transaction ID specified in the debugging profile
TYPE

Optional Parameter

 The type of debugging profile.

Values for the parameter are:
 C
 E
 J
 LE

USERID
Optional Parameter

 The user ID specified in the debugging profile

DPFM gate, INACTIVATE_DEBUG_PROFILE function
Inactivate a debug_profile on the debugging profile data set.

Input Parameters
CURRENT_USERID

The userid of the user making the request
OWNER_USERID

The userid of the debugging profile's owner
PROFILE_NAME

The name of the debugging profile

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ALREADY_INACTIVE
 DISASTER_PERCOLATION
 FILE_ERROR
 FILE_FULL
 INTERNAL_ERROR
 PROFILE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPFM gate, READNEXT_PM_PROFILE function
Read the next profile on the debugging profile data set for pattern match.

Input Parameters
BEAN_BLOCK

Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

 A block of storage containing the class name

Chapter 76. Debugging profile domain (DP) 965

IP_NAME_OR_ADDR_BLOCK
Optional Parameter

 A block of storage containing the IP name or IP address
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
MANGLED_METHOD_BLOCK

Optional Parameter

 A block of storage containing the mangled method name

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 END_OF_PROFILES
 FILE_ERROR
 INTERNAL_ERROR

APPLID
The Applid specified in the debugging profile

COMMAND_FILE
The command file specified in the debugging profile

COMP_UNIT
The compile unit name specified in the debugging profile

JVM_PROFILE
The JVM profile specified in the debugging profile

LU_3270_DISPLAY
The 3270 display terminal to be used by Debug Tool

NETNAME
The terminal's network name specified in the debugging profile

OWNER_USERID
The userid of the profile's owner

PATTERN_MATCH_NUMBER
A metric computed from the contents of the debugging profile, which is
compared with the pattern match number form other profiles to determine
which of the profiles is the best match for a program instance.

PORT
The port number specified in the debugging profile

PREFERENCE_FILE
The preference file specified in the debugging profile

PROFILE_NAME
The name of the debugging profile

PROGRAM
The program name specified in the debugging profile

PROMPT
The prompt specified in the debugging profile

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SESSION_TYPE
The session type specified in the debugging profile.

 Values for the parameter are:
 LU3270
 TCP

966 CICS TS for z/OS 4.1: Diagnosis Reference

SOCKET_TYPE
Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

 Values for the parameter are:
 MULTIPLE
 SINGLE

TERMID
The terminal ID specified in the debugging profile

TEST_LEVEL
The test level specified in the debugging profile.

 Values for the parameter are:
 ALL
 ERROR
 NONE

TRANID
The transaction ID specified in the debugging profile

TYPE
The type of debugging profile.

 Values for the parameter are:
 C
 E
 J
 LE

USERID
The user ID specified in the debugging profile

ACTIVATE_USERID
Optional Parameter

 For an active debugging profile, the user ID of the user who made it active.

DPFM gate, REPLACE_DEBUG_PROFILE function
Replace a debug_profile on the debugging profile data set.

Input Parameters
OWNER_USERID

The userid of the debugging profile's owner
PROFILE_NAME

The name of the debugging profile
APPLID

Optional Parameter

 The Applid specified in the debugging profile
BEAN_BLOCK

Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

 A block of storage containing the class name
COMMAND_FILE

Optional Parameter

 The command file specified in the debugging profile
COMP_UNIT

Optional Parameter

Chapter 76. Debugging profile domain (DP) 967

The compile unit name specified in the debugging profile
IP_NAME_OR_ADDR_BLOCK

Optional Parameter

 A block of storage containing the IP name or IP address
JVM_PROFILE

Optional Parameter

 The JVM profile specified in the debugging profile
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
LU_3270_DISPLAY

Optional Parameter

 The 3270 display terminal specified in the debugging profile to be used by
Debug Tool

METHOD_BLOCK
Optional Parameter

 A block of storage containing the method name
NETNAME

Optional Parameter

 The terminal's network name specified in the debugging profile
PORT

Optional Parameter

 The port number specified in the debugging profile
PREFERENCE_FILE

Optional Parameter

 The preference file specified in the debugging profile
PROGRAM

Optional Parameter

 The program name specified in the debugging profile
PROMPT

Optional Parameter

 The prompt specified in the debugging profile
SESSION_TYPE

Optional Parameter

 The session type specified in the debugging profile.

Values for the parameter are:
 LU3270
 TCP

SOCKET_TYPE
Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

TERMID
Optional Parameter

 The terminal ID specified in the debugging profile

968 CICS TS for z/OS 4.1: Diagnosis Reference

TEST_LEVEL
Optional Parameter

 The test level specified in the debugging profile.

Values for the parameter are:
 ALL
 ERROR
 NONE

TRANID
Optional Parameter

 The transaction ID specified in the debugging profile
TYPE

Optional Parameter

 The type of debugging profile.

Values for the parameter are:
 C
 E
 J
 LE

USERID
Optional Parameter

 The user ID specified in the debugging profile

Output Parameters
REASON

The values for the parameter are:
 ABEND
 APPLID_INVALID
 BEAN_INVAL_FOR_TYPE_C
 BEAN_INVAL_FOR_TYPE_J
 BEAN_INVALID
 CLASS_INVAL_FOR_TYPE_E
 CLASS_INVALID
 CMD_FILE_INVALID
 COMP_UNIT_INVALID
 DISASTER_PERCOLATION
 FILE_ERROR
 FILE_FULL
 INTERNAL_ERROR
 JVM_PROFILE_INVALID
 METHOD_INVAL_FOR_TYPE_J
 METHOD_INVALID
 NETNAME_INVALID
 PREF_FILE_INVALID
 PROFILE_NAME_BLANK
 PROFILE_NAME_INVALID
 PROGRAM_INVALID
 PROMPT_INVALID
 TERMID_INVALID
 TRANID_INVALID
 USERID_INVALID

NEW_PROFILE_CREATED
Indicates whether a new profile was created.

Chapter 76. Debugging profile domain (DP) 969

Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MANGLE_CODE
Optional Parameter

 Indicates how a bean, method, or class name was mangled.

Values for the parameter are:
 IDL_KEYWORD
 MANGLED_TO_SELF
 PROPERTY_ACC
 UNDERSCORE

DPFM gate, SAVE_DEBUG_PROFILE function
Save a debug profile on the debug profile data set.

Input Parameters
OWNER_USERID

The userid of the debugging profile's owner
PROFILE_NAME

The name of the debugging profile
APPLID

Optional Parameter

 The Applid specified in the debugging profile
BEAN_BLOCK

Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

 A block of storage containing the class name
COMMAND_FILE

Optional Parameter

 The command file specified in the debugging profile
COMP_UNIT

Optional Parameter

 The compile unit name specified in the debugging profile
IP_NAME_OR_ADDR_BLOCK

Optional Parameter

 A block of storage containing the IP name or IP address
JVM_PROFILE

Optional Parameter

 The JVM profile specified in the debugging profile
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
LU_3270_DISPLAY

Optional Parameter

970 CICS TS for z/OS 4.1: Diagnosis Reference

The 3270 display terminal specified in the debugging profile to be used by
Debug Tool

METHOD_BLOCK
Optional Parameter

 A block of storage containing the method name
NETNAME

Optional Parameter

 The terminal's network name specified in the debugging profile
PORT

Optional Parameter

 The port number specified in the debugging profile
PREFERENCE_FILE

Optional Parameter

 The preference file specified in the debugging profile
PROGRAM

Optional Parameter

 The program name specified in the debugging profile
PROMPT

Optional Parameter

 The prompt specified in the debugging profile
SESSION_TYPE

Optional Parameter

 The session type specified in the debugging profile.

Values for the parameter are:
 LU3270
 TCP

SOCKET_TYPE
Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

TERMID
Optional Parameter

 The terminal ID specified in the debugging profile
TEST_LEVEL

Optional Parameter

 The test level specified in the debugging profile.

Values for the parameter are:
 ALL
 ERROR
 NONE

TRANID
Optional Parameter

 The transaction ID specified in the debugging profile
TYPE

Optional Parameter

Chapter 76. Debugging profile domain (DP) 971

The type of debugging profile.

Values for the parameter are:
 C
 E
 J
 LE

USERID
Optional Parameter

 The user ID specified in the debugging profile

Output Parameters
REASON

The values for the parameter are:
 ABEND
 APPLID_INVALID
 BEAN_INVAL_FOR_TYPE_C
 BEAN_INVAL_FOR_TYPE_J
 BEAN_INVALID
 CLASS_INVAL_FOR_TYPE_E
 CLASS_INVALID
 CMD_FILE_INVALID
 COMP_UNIT_INVALID
 DISASTER_PERCOLATION
 DUPLICATE_PROFILE
 FILE_ERROR
 FILE_FULL
 INTERNAL_ERROR
 JVM_PROFILE_INVALID
 METHOD_INVAL_FOR_TYPE_J
 METHOD_INVALID
 NETNAME_INVALID
 PREF_FILE_INVALID
 PROFILE_NAME_BLANK
 PROFILE_NAME_INVALID
 PROGRAM_INVALID
 PROMPT_INVALID
 TERMID_INVALID
 TRANID_INVALID
 USERID_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MANGLE_CODE
Optional Parameter

 Indicates how a bean, method, or class name was mangled.

Values for the parameter are:
 IDL_KEYWORD
 MANGLED_TO_SELF
 PROPERTY_ACC
 UNDERSCORE

DPFM gate, START_PM_BROWSE function
Start a browse for pattern matching.

972 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
MATCH_TYPE

Optional Parameter

 The type of debugging profile to match during the browse operation.

Values for the parameter are:
 TYPE_J
 TYPE_LE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 NO_PROFILES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPIQ gate, INQUIRE_DEBUG_TASK function
Inquire DP domain debug settings.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DEBUG_TASK
Optional Parameter

 Specifies whether Debug Tool is to be used to debug an application.

Values for the parameter are:
 NO
 YES

DPIQ gate, INQUIRE_PARAMETERS function
Inquire DP domain parameters.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DEBUGTOOL
Optional Parameter

 The value of the DEBUGTOOL system initialization parameter.

Chapter 76. Debugging profile domain (DP) 973

Values for the parameter are:
 DEBUGTOOL_NO
 DEBUGTOOL_YES

DTLEVEL
Optional Parameter

 Specifies whether the level of Debug Tool supports the CADP transaction.

Values for the parameter are:
 DTNEW_NO
 DTNEW_YES

DPIQ gate, SET_DEBUG_PROFILE function
Set DP domain parameters.

Input Parameters
DEBUG_PROFILE

Optional Parameter

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPIQ gate, SET_DEBUGGING function
Sets the state of the debugging profile domain.

Input Parameters
DOMAIN_STATE

The desired state of the domain.

 Values for the parameter are:
 DISABLED
 ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPIQ gate, SET_PARAMETERS function
Set DP domain parameters.

974 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
DEBUGTOOL

Optional Parameter

 The value of the DEBUGTOOL system initialization parameter.

Values for the parameter are:
 DEBUGTOOL_NO
 DEBUGTOOL_YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPLM gate, ENDBR_DEBUG_PROFILES function
End the browse for pattern matching.

Input Parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_PAGE
Optional Parameter

 Specifies which page of the list of profiles is currently displayed

DPLM gate, READNEXT_DEBUG_PROFILE function
Returns one profile to the caller for display on the screen. Largely for the benefit of
the 3270 version of CADP, the readnext can optionally position itself based on a
page size parameter so that it is possible to easily implement scrolling up and
down. The default if no position is specified is to return the next profile.

Input Parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
BEAN_BLOCK

Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

Chapter 76. Debugging profile domain (DP) 975

A block of storage containing the class name
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
MANGLED_METHOD_BLOCK

Optional Parameter

 A block of storage containing the mangled method name
METHOD_BLOCK

Optional Parameter

 A block of storage containing the method name
PAGE_SIZE

Optional Parameter

 The number of profiles which can be shown on a page of the display
POSITION

Optional Parameter

 Specifies the position in the list of the next profile to be read.

Values for the parameter are:
 NEXT_PROFILE
 PAGE_BACK
 PAGE_FORWARD
 TOP
 TOP_CURRENT_PAGE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ALREADY_AT_BOTTOM
 ALREADY_AT_TOP
 DISASTER_PERCOLATION
 END_OF_PROFILES
 INTERNAL_ERROR

APPLID
The Applid specified in the debugging profile

COMMAND_FILE
The command file specified in the debugging profile

COMP_UNIT
The compile unit name specified in the debugging profile

INPUT
The action specified for the profile.

 Values for the parameter are:
 ACTIVATE
 CLEAR
 COPY
 DELETE
 INACTIVATE

JVM_PROFILE
The JVM profile specified in the debugging profile

NETNAME
The terminal's network name specified in the debugging profile

OWNER_USERID
The userid of the profile's owner

976 CICS TS for z/OS 4.1: Diagnosis Reference

PREFERENCE_FILE
The preference file specified in the debugging profile

PROFILE_NAME
The name of the debugging profile

PROGRAM
The program name specified in the debugging profile

PROMPT
The prompt specified in the debugging profile

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
The status of the debugging profile.

 Values for the parameter are:
 ACTIVE
 INACTIVE

TERMID
The terminal ID specified in the debugging profile

TEST_LEVEL
The test level specified in the debugging profile.

 Values for the parameter are:
 ALL
 ERROR
 NONE

TRANID
The transaction ID specified in the debugging profile

TYPE
The type of debugging profile.

 Values for the parameter are:
 C
 E
 J
 N

USERID
The user ID specified in the debugging profile

ACTIVATE_USERID
Optional Parameter

 For an active debugging profile, the user ID of the user who made it active.
CURRENT_PAGE

Optional Parameter

 Specifies which page of the list of profiles is currently displayed
INVALID_INPUT

Optional Parameter

 Whatever was (invalidly) typed as an input
PATTERN_MATCH_NUMBER

Optional Parameter

 A metric computed from the contents of the debugging profile, which is
compared with the pattern match number form other profiles to determine
which of the profiles is the best match for a program instance.

PROFILE_NUMBER
Optional Parameter

 The position of the current profile in the list

Chapter 76. Debugging profile domain (DP) 977

DPLM gate, READNEXT_INPUT function
When inputs are typed in against profiles they are saved with the profile in the
linked list so that they are still retrievable for redisplay after scrolling up and
down. READNEXT_INPUT allows easy retrieval of just those profiles with inputs
against them so that they can be processed when enter is pressed. All the data in
the profile is returned as it is required if the input to be processed is COPY.

Input Parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
INPUT_FILTER

Specifies profiles of interest, based on any actions that have been specified for
the profile.

 Values for the parameter are:
 ACTIVATES
 ALL_INPUTS
 COPIES
 DELETES
 INACTIVATES

BEAN_BLOCK
Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

 A block of storage containing the class name
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
MANGLED_METHOD_BLOCK

Optional Parameter

 A block of storage containing the mangled method name
METHOD_BLOCK

Optional Parameter

 A block of storage containing the method name
POSITION

Optional Parameter

 Specifies the position in the list of the next profile to be read.

Values for the parameter are:
 NEXT_PROFILE
 TOP

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 END_OF_INPUTS
 INTERNAL_ERROR

APPLID
The Applid specified in the debugging profile

978 CICS TS for z/OS 4.1: Diagnosis Reference

COMMAND_FILE
The command file specified in the debugging profile

COMP_UNIT
The compile unit name specified in the debugging profile

INPUT
The action specified for the profile.

 Values for the parameter are:
 ACTIVATE
 CLEAR
 COPY
 DELETE
 INACTIVATE

JVM_PROFILE
The JVM profile specified in the debugging profile

NETNAME
The terminal's network name specified in the debugging profile

OWNER_USERID
The userid of the profile's owner

PREFERENCE_FILE
The preference file specified in the debugging profile

PROFILE_NAME
The name of the debugging profile

PROGRAM
The program name specified in the debugging profile

PROMPT
The prompt specified in the debugging profile

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
The status of the debugging profile.

 Values for the parameter are:
 ACTIVE
 INACTIVE

TERMID
The terminal ID specified in the debugging profile

TEST_LEVEL
The test level specified in the debugging profile.

 Values for the parameter are:
 ALL
 ERROR
 NONE

TRANID
The transaction ID specified in the debugging profile

TYPE
The type of debugging profile.

 Values for the parameter are:
 C
 E
 J
 N

USERID
The user ID specified in the debugging profile

Chapter 76. Debugging profile domain (DP) 979

ACTIVATE_USERID
Optional Parameter

 For an active debugging profile, the user ID of the user who made it active.
CURRENT_PAGE

Optional Parameter

 Specifies which page of the list of profiles is currently displayed
INVALID_INPUT

Optional Parameter

 Whatever was (invalidly) typed as an input
PATTERN_MATCH_NUMBER

Optional Parameter

 A metric computed from the contents of the debugging profile, which is
compared with the pattern match number form other profiles to determine
which of the profiles is the best match for a program instance.

DPLM gate, RESTARTBR_DEBUG_PROFILES function
Resume browsing a list of debugging profiles.

Input Parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
CURRENT_USERID

The userid of the user making the request

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 NO_PROFILES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_PAGE
Optional Parameter

 Specifies which page of the list of profiles is currently displayed
NUMBER_IN_LIST

Optional Parameter

 The number of profiles in the list

DPLM gate, STARTBR_DEBUG_PROFILES function
Start browsing a list of debug profiles.

Input Parameters
CURRENT_USERID

The userid of the user making the request
FILTER_ACTIVE

Specifies whether the list contains active profiles only, or active and inactive
profiles.

980 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 ACTIVE_P
 ALL_P

FILTER_USER
Specifies whether the list contains profiles for just the current user, or all users.

 Values for the parameter are:
 ALL_U
 CURRENT_USER

SORT_TYPE
Specifies the field used to sort the list.

 Values for the parameter are:
 APPL
 COMP_U
 NAME
 NETN
 OWNER
 PROG
 STAT
 TERM
 TRAN
 TYP
 USER

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 NO_PROFILES

BROWSE_LIST_TOKEN
A token which uniquely identifies the list of profiles.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_PAGE
Optional Parameter

 Specifies which page of the list of profiles is currently displayed
NUMBER_IN_LIST

Optional Parameter

 The number of profiles in the list

DPLM gate, UPDATE_PROFILE_IN_LIST function
Update the specified in-memory linked list element with the input supplied so that
it may be kept until ready to process later. CLEAR may be used to clear an input
that has been handled.

Input Parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
INPUT

The action specified for the profile.

Chapter 76. Debugging profile domain (DP) 981

Values for the parameter are:
 ACTIVATE
 CLEAR
 COPY
 DELETE
 INACTIVATE

OWNER_USERID
The userid of the debugging profile's owner

PROFILE_NAME
The name of the debugging profile

INVALID_INPUT
Optional Parameter

 An invalid action character that cannot be interpreted as one of the values of
the INPUT parameter.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 INTERNAL_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_PAGE
Optional Parameter

 Specifies which page of the list of profiles is currently displayed

DPPM gate, PATTERN_MATCH_PROFILE function
Determines if an active debugging profile matches the parameters supplied.

Input Parameters
MATCH_TYPE

The type of debugging profile.

 Values for the parameter are:
 LE
 NON_LE

APPLID
Optional Parameter

 The Applid specified in the debugging profile
BEAN_BLOCK

Optional Parameter

 A block of storage containing the bean name
CLASS_BLOCK

Optional Parameter

 A block of storage containing the class name
COMP_UNIT

Optional Parameter

 The compile unit name specified in the debugging profile
IP_NAME_OR_ADDR_BLOCK

Optional Parameter

982 CICS TS for z/OS 4.1: Diagnosis Reference

A block of storage containing the IP name or IP address
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
MANGLED_METHOD_BLOCK

Optional Parameter

 A block of storage containing the mangled method name
NETNAME

Optional Parameter

 The terminal's network name specified in the debugging profile
PROGRAM

Optional Parameter

 The program name specified in the debugging profile
TERMID

Optional Parameter

 The terminal ID specified in the debugging profile
TRANID

Optional Parameter

 The transaction ID specified in the debugging profile
USERID

Optional Parameter

 The user ID specified in the debugging profile

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 NO_MATCH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COMMAND_FILE
Optional Parameter

 The command file specified in the debugging profile
JVM_PROFILE

Optional Parameter

 The JVM profile specified in the debugging profile
LU_3270_DISPLAY

Optional Parameter

 The 3270 display terminal to be used by Debug Tool
PORT

Optional Parameter

 The port number specified in the debugging profile
PREFERENCE_FILE

Optional Parameter

 The preference file specified in the debugging profile

Chapter 76. Debugging profile domain (DP) 983

PROFILE_APPLID
Optional Parameter

 The Applid specified in the matching profile
PROFILE_COMP_UNIT

Optional Parameter

 The compile unit name specified in the matching profile
PROFILE_NETNAME

Optional Parameter

 The terminal's network name specified in the matching profile
PROFILE_PROGRAM

Optional Parameter

 The program name specified in the matching profile
PROFILE_TERMID

Optional Parameter

 The terminal ID specified in the matching profile
PROFILE_TRANID

Optional Parameter

 The transaction ID specified in the matching profile
PROFILE_USERID

Optional Parameter

 The user ID specified in the matching profile
PROMPT

Optional Parameter

 The prompt specified in the debugging profile
SESSION_TYPE

Optional Parameter

 The session type specified in the debugging profile.

Values for the parameter are:
 LU3270
 TCP

SOCKET_TYPE
Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

TEST_LEVEL
Optional Parameter

 The test level specified in the debugging profile.

Values for the parameter are:
 ALL
 ERROR
 NONE

DPPM gate, PATTERN_MATCH_TASK function
Determines if an active debugging profile matches the parameters supplied.

984 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
APPLID

The Applid specified in the debugging profile
NETNAME

The terminal's network name specified in the debugging profile
TERMID

The terminal ID specified in the debugging profile
TRANID

The transaction ID specified in the debugging profile
USERID

The user ID specified in the debugging profile

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR
 NO_MATCH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPUM gate, GET_USER_DEFAULTS function
Get user defaults. If none already, returns global defaults.

Input Parameters
CURRENT_SESSION_TYPE

The session type specified for the current user.

 Values for the parameter are:
 LU3270
 TCP

CURRENT_USERID
The userid of the user making the request

CURRENT_TERMID
Optional Parameter

 The TERMID of the terminal making the request.
IP_NAME_OR_ADDR_BLOCK

Optional Parameter

 A block of storage containing the IP name or IP address
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

Chapter 76. Debugging profile domain (DP) 985

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COMMAND_FILE
Optional Parameter

 The command file specified in the debugging profile
FILTER_ACTIVE

Optional Parameter

 Specifies whether the list contains active profiles only, or active and inactive
profiles.

Values for the parameter are:
 ACTIVE_P
 ALL_P

FILTER_USER
Optional Parameter

 Specifies whether the list contains profiles for just the current user, or all users.

Values for the parameter are:
 ALL_U
 CURRENT_USER

JVM_PROFILE
Optional Parameter

 The JVM profile specified in the debugging profile
LU_3270_DISPLAY

Optional Parameter

 The 3270 display terminal to be used by Debug Tool
PORT

Optional Parameter

 The port number specified in the debugging profile
PREFERENCE_FILE

Optional Parameter

 The preference file specified in the debugging profile
PROMPT

Optional Parameter

 The prompt specified in the debugging profile
SESSION_TYPE

Optional Parameter

 The session type specified in the debugging profile.

Values for the parameter are:
 LU3270
 TCP

SOCKET_TYPE
Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

SORT_TYPE
Optional Parameter

986 CICS TS for z/OS 4.1: Diagnosis Reference

Specifies the field used to sort the list.

Values for the parameter are:
 APPL
 COMP_U
 NAME
 NETN
 OWNER
 PROG
 STAT
 TERM
 TRAN
 TYP
 USER

SUPPRESS_PANEL
Optional Parameter

 Specifies whether the debugging device panel is to be suppressed.

Values for the parameter are:
 NOSUPPRESS
 SUPPRESS

TEST_LEVEL
Optional Parameter

 The test level specified in the debugging profile.

Values for the parameter are:
 ALL
 ERROR
 NONE

TYPE
Optional Parameter

 The type of debugging profile.

Values for the parameter are:
 C
 E
 J
 LE

DPUM gate, SAVE_USER_DEFAULTS function
Save user defaults. Never returns duplicate response - saves or updates.

Input Parameters
CURRENT_USERID

The userid of the user making the request
COMMAND_FILE

Optional Parameter

 The command file specified in the debugging profile
FILTER_ACTIVE

Optional Parameter

 Specifies whether the list contains active profiles only, or active and inactive
profiles.

Values for the parameter are:
 ACTIVE_P

Chapter 76. Debugging profile domain (DP) 987

ALL_P
FILTER_USER

Optional Parameter

 Specifies whether the list contains profiles for just the current user, or all users.

Values for the parameter are:
 ALL_U
 CURRENT_USER

IP_NAME_OR_ADDR_BLOCK
Optional Parameter

 A block of storage containing the IP name or IP address
JVM_PROFILE

Optional Parameter

 The JVM profile specified in the debugging profile
LE_OPTIONS_BLOCK

Optional Parameter

 A block of storage containing Language Environment options
LU_3270_DISPLAY

Optional Parameter

 The 3270 display terminal specified in the debugging profile to be used by
Debug Tool

PORT
Optional Parameter

 The port number specified in the debugging profile
PREFERENCE_FILE

Optional Parameter

 The preference file specified in the debugging profile
PROMPT

Optional Parameter

 The prompt specified in the debugging profile
SESSION_TYPE

Optional Parameter

 The session type specified in the debugging profile.

Values for the parameter are:
 LU3270
 TCP

SOCKET_TYPE
Optional Parameter

 Specifies whether the debugging client and debugging server will
communicate using a single socket or more than one socket.

Values for the parameter are:
 MULTIPLE
 SINGLE

SORT_TYPE
Optional Parameter

 Specifies the field used to sort the list.

Values for the parameter are:
 APPL
 COMP_U

988 CICS TS for z/OS 4.1: Diagnosis Reference

NAME
 NETN
 OWNER
 PROG
 STAT
 TERM
 TRAN
 TYP
 USER

SUPPRESS_PANEL
Optional Parameter

 Specifies whether the debugging device panel is to be suppressed.

Values for the parameter are:
 NOSUPPRESS
 SUPPRESS

TEST_LEVEL
Optional Parameter

 The test level specified in the debugging profile.

Values for the parameter are:
 ALL
 ERROR
 NONE

TYPE
Optional Parameter

 The type of debugging profile.

Values for the parameter are:
 C
 E
 J
 LE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CMD_FILE_INVALID
 DISASTER_PERCOLATION
 FILE_ERROR
 FILE_FULL
 INTERNAL_ERROR
 IP_BLANK
 IP_INVALID
 JVM_PROFILE_INVALID
 PORT_BLANK
 PORT_INVALID
 PREF_FILE_INVALID
 PROMPT_INVALID
 3270_DISPLAY_BLANK
 3270_DISPLAY_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 76. Debugging profile domain (DP) 989

DPWD gate, PROCESS_PAGE function
Process a request for an html page in the following format:

Input Parameters
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

PAGE
The page to be processed

MSG_INSERT1
Optional Parameter

 An insert for the message. If this field is null there is no first insert.
MSG_INSERT2

Optional Parameter

 An insert for the message. If this field is null there is no second insert.
MSG_NUM

Optional Parameter

 The message number of a message to be displayed when the page is formatted.
MSG_TYPE

Optional Parameter

 The type of message to be displayed when the page is formatted, in the
absence of a more serious message. If this value is not present then by default
no message is displayed.

Values for the parameter are:
 ERROR
 INFO

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPWD gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page
processor from ITOKEN. The page processor will generate an output page request
in OTOKEN.

Input Parameters
BUTTON

The action button used to submit the form.
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

990 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPWE gate, PROCESS_PAGE function
Process a request for an html page in the following format:

Input Parameters
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

PAGE
The page to be processed

MSG_INSERT1
Optional Parameter

 An insert for the message. If this field is null there is no first insert.
MSG_INSERT2

Optional Parameter

 An insert for the message. If this field is null there is no second insert.
MSG_NUM

Optional Parameter

 The message number of a message to be displayed when the page is formatted.
MSG_TYPE

Optional Parameter

 The type of message to be displayed when the page is formatted, in the
absence of a more serious message. If this value is not present then by default
no message is displayed.

Values for the parameter are:
 ERROR
 INFO

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 76. Debugging profile domain (DP) 991

DPWE gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page
processor from ITOKEN. The page processor will generate an output page request
in OTOKEN.

Input Parameters
BUTTON

The action button used to submit the form.
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPWJ gate, PROCESS_PAGE function
Process a request for an html page in the following format:

Input Parameters
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

PAGE
The page to be processed

MSG_INSERT1
Optional Parameter

 An insert for the message. If this field is null there is no first insert.
MSG_INSERT2

Optional Parameter

 An insert for the message. If this field is null there is no second insert.
MSG_NUM

Optional Parameter

 The message number of a message to be displayed when the page is formatted.
MSG_TYPE

Optional Parameter

 The type of message to be displayed when the page is formatted, in the
absence of a more serious message. If this value is not present then by default
no message is displayed.

Values for the parameter are:
 ERROR
 INFO

992 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPWJ gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page
processor from ITOKEN. The page processor will generate an output page request
in OTOKEN.

Input Parameters
BUTTON

The action button used to submit the form.
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPWL gate, PROCESS_PAGE function
Process a request for an html page in the following format:

Input Parameters
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

PAGE
The page to be processed

MSG_INSERT1
Optional Parameter

 An insert for the message. If this field is null there is no first insert.
MSG_INSERT2

Optional Parameter

 An insert for the message. If this field is null there is no second insert.

Chapter 76. Debugging profile domain (DP) 993

MSG_NUM
Optional Parameter

 The message number of a message to be displayed when the page is formatted.
MSG_TYPE

Optional Parameter

 The type of message to be displayed when the page is formatted, in the
absence of a more serious message. If this value is not present then by default
no message is displayed.

Values for the parameter are:
 ERROR
 INFO

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPWL gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page
processor from ITOKEN. The page processor will generate an output page request
in OTOKEN.

Input Parameters
BUTTON

The action button used to submit the form.
ITOKEN

A token representing a chain of input values. These are name-value pairs from
either the page options, or from the form.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISASTER_PERCOLATION
 FILE_ERROR
 INTERNAL_ERROR

OTOKEN
A token representing a chain of output html tags.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPXM gate, BIND_XM_CLIENT function
The BIND_XM_CLIENT call flows from the transaction manager to the DP Domain
during transaction initialization after Recovery Manager initialisation is complete.

994 CICS TS for z/OS 4.1: Diagnosis Reference

The DP domain does a scan of the active debugging profiles to determine if it is
possible that debugging could be required in this transaction. If it is not then DP
domain is not invoked again until transaction termination.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPXM gate, INIT_XM_CLIENT function
The INIT_XM_CLIENT call flows from the transaction manager to the DP Domain
during transaction initialization. The DP domain allocates the DP domain
transaction lifetime control block, and anchors it in the AP domain's transaction
token.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DPXM gate, RELEASE_XM_CLIENT function
The RELEASE_XM_CLIENT call is made from the transaction manager to the DP
Domain during transaction termination. DP domain transaction lifetime resources
are released.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 76. Debugging profile domain (DP) 995

Debugging profile domain's generic gates

Table 42 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 42. Debugging profile domain's generic gates

Gate Trace Functions Format

DPDM DP 0101
DP 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DPDM

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956

996 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 77. Dispatcher Domain (DS)

The dispatcher domain is concerned with the attaching, running, and detaching of
tasks, and the posting of TCBs.

The domain posts TCBs with the following modes:

 CO Concurrent RP ONC/RPC-owning

D2 DB2 SO Sockets

EP Event processing SL Sockets listener

FO File-owning S8 Secure sockets key 8

J8 JVM CICS key SP SSL pool owner

J9 JVM user key SZ secondary LU usage

JM Shared class cache TP JVM server thread
pool owner

L8 CICS key OPENAPI
programs

T8 JVM server threads

L9 User key OPENAPI
programs

X8 XPLINK CICS key

QR Quasi-reentrant X9 XPLINK user key

RO Resource-owning

Dispatcher Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the DS domain.

DSAT gate, ATTACH function
The ATTACH function of the DSAT gate is used to attach a new task.

Input Parameters
PRIORITY

affects a task's dispatching precedence. It can have a value in the range 0 (low
priority) through 255 (high priority).

TYPE
is the type of task.

 Values for the parameter are:
 NON_SYSTEM
 SYSTEM

USER_TOKEN
is the token by which the task to be attached is known to the caller.

MODE
Optional Parameter

 specifies the mode in which the task is to run.

Values for the parameter are:
 CO
 FO

© Copyright IBM Corp. 1997, 2011 997

QR
 RO
 RP
 SZ

SPECIAL_TYPE
Optional Parameter

 identifies the special task SMSY.

Values for the parameter are:
 SMSY

TASK_REPLY_GATE_INDEX
Optional Parameter

 is used when a gate other than the attaching domain's default gate is to receive
a resultant TASK_REPLY.

TIMEOUT
Optional Parameter

 is the deadlock time-out interval, in milliseconds.
TRANSACTION_TOKEN

Optional Parameter

 identifies the transaction associated with the attached task.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 USER_TASK_SLOT_UNAVAILABLE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TASK_TOKEN
is the token by which the attached task is known to the dispatcher.

DSAT gate, CANCEL_TASK function
The CANCEL_TASK function of DSAT gate causes a specified task to be canceled.
The task is cancelled when in a suitable suspend or when a deferred abend can be
delivered to the task.

Input Parameters
CANCEL_TYPE

Specifies when the task can be canceled having regard to system integrity and
data integrity.

 Values for the parameter are:
 FORCE_CANCEL
 KILL_CANCEL
 NORMAL_CANCEL

DEFERRED_ABEND_CODE
is the abend code to be used when the task is abended during deferred abend
processing.

TASK_TOKEN
identifies the task whose priority is to be changed.

998 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CANCEL_INHIBITED
 INVALID_STATE
 INVALID_STATE_PURGE
 INVALID_TASK_TOKEN
 NOT_PURGEABLE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, CHANGE_MODE function
The CHANGE_MODE function of DSAT gate is used to move a task from one
CICS-managed TCB to another, or to select the mode in which the task is to run.

Input Parameters
MODE

specifies the mode in which the task is to run:
CO concurrent mode
FO file-owning mode
QR quasi-reentrant mode
RO resource-owning mode
RP ONC/RPC-owning mode
SZ secondary LU usage mode

MODENAME
2-character mode name.

MODENAME_TOKEN
token representing modename. More efficient than using MODENAME. The
token is returned by ACTIVATE_MODE and by CHANGE_MODE (see
OLD_MODENAME_TOKEN below)

TCB_TOKEN
token representing the TCB instance to which to switch. The token is returned
by CHANGE_MODE (see OLD_TCB_TOKEN below)

CONDITIONAL
Optional Parameter

 states whether the CHANGE_MODE should be conditional on the current load
on the CPU.

Values for the parameter are:
 NO
 YES

DISASSOCIATE_TCB
Optional Parameter

 indicates whether to disassociate the task from the TCB from which the switch
is made.

Values for the parameter are:
 NO
 YES

FRESH_TCB
Optional Parameter

 indicates whether a fresh TCB is required.

Values for the parameter are:

Chapter 77. Dispatcher Domain (DS) 999

NO
 YES

MATCH_STRATEGY
Optional Parameter

 the strategy to be followed if a TCB instance that satisfies the
PRIMARY_MATCH and SECONDARY_MATCH values is not found.

Values for the parameter are:
 EXACT_THEN_NEW_THEN_BEST

PRIMARY_MATCH
Optional Parameter

 an 8-byte token to be used to search for a matching free TCB instance to which
to switch.

SECONDARY_MATCH
Optional Parameter

 an 8-byte token to be used to search for a matching free TCB instance to which
to switch.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACTIVATE_MODE_FAILED
 ADD_TCB_FAILED
 LOCK_FAILED
 SUSPEND_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 MODE_NOT_ACTIVE
 NO_TCBS_ACTIVE
 NOT_OPEN_MODE_TCB
 TCB_FAILED
 TOO_FEW_TCBS

The following values are returned when RESPONSE is INVALID:
 INVALID_FRESH_TCB_USAGE
 INVALID_MODENAME
 INVALID_MODENAME_TOKEN
 INVALID_TCB_TOKEN

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MATCH_RESULT
Optional Parameter

 indicates the level of success of the matching process.

Values for the parameter are:
 EXACT_MATCH
 NO_MATCH
 NOT_APPLIC
 PRIM_NOT_SEC_MATCH

1000 CICS TS for z/OS 4.1: Diagnosis Reference

NEW_TCB_TOKEN
Optional Parameter

 token representing the TCB instance returned by the matching process.
OLD_MODE

Optional Parameter

 is the mode used by the task when the CHANGE_MODE request was issued.

Values for the parameter are:
 CO
 FO
 QR
 RO
 RP
 SZ

OLD_MODENAME
Optional Parameter

 is the mode used by the task when the CHANGE_MODE request was issued.
It can have the same values as OLD_MODE. OLD_MODENAME is preferred
to OLD_MODE.

OLD_MODENAME_TOKEN
Optional Parameter

 is a token representing the mode used by the task when the CHANGE_MODE
request was issued.

OLD_TCB_TOKEN
Optional Parameter

 is a token representing the TCB used by the task when the CHANGE_MODE
request was issued.

DSAT gate, CHANGE_PRIORITY function
The CHANGE_PRIORITY function of DSAT gate has two effects:

Input Parameters
PRIORITY

Optional Parameter

 affects a task's dispatching precedence. It can have a value in the range 0 (low
priority) through 255 (high priority).

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 ABEND
 ACTIVATE_MODE_FAILED
 ADD_TCB_FAILED
 CANCEL_INHIBITED
 INSUFFICIENT_STORAGE
 INVALID_FORMAT
 INVALID_FRESH_TCB_USAGE
 INVALID_FUNCTION

Chapter 77. Dispatcher Domain (DS) 1001

INVALID_MODENAME
 INVALID_MODENAME_TOKEN
 INVALID_STATE
 INVALID_STATE_PURGE
 INVALID_TASK_TOKEN
 INVALID_TCB_TOKEN
 LOCK_FAILED
 LOOP
 MODE_NOT_ACTIVE
 NO_TCBS_ACTIVE
 NOT_OPEN_MODE_TCB
 NOT_PURGEABLE
 NOT_SUBSPACE_ELIGIBLE
 SUSPEND_FAILED
 TASK_CANCELLED
 TCB_FAILED
 TCB_NOT_OWNED
 TIMED_OUT
 TOO_FEW_TCBS
 USER_TASK_SLOT_UNAVAILABLE

OLD_PRIORITY
Optional Parameter

 is the task's former priority. It can have a value in the range 0 (low priority)
through 255 (high priority).

DSAT gate, CLEAR_MATCH function
The CLEAR_MATCH function of the DSAT gate causes all match tokens associated
with the calling TCB to be discarded.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, DELETE_SUBSPACE_TCBS function
The DELETE_SUBSPACE_TCBS function of DSAT gate deletes any open TCBs
associated with the given subspace.

Input Parameters
SUBSPACE_TOKEN

indicates the subspace whose associated open TCBs are to be deleted

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 TOO_FEW_TCBS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1002 CICS TS for z/OS 4.1: Diagnosis Reference

DSAT gate, FREE_SUBSPACE_TCBS function
The FREE_SUBSPACE_TCBS function of DSAT gate releases any open subspace
TCBs owned by the task, and makes them available for use by another task
executing with the same subspace, or deletes the TCBs if the task is 'unclean'.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOCK_FAILED

The following values are returned when RESPONSE is INVALID:
 NOT_SUBSPACE_ELIGIBLE

OPEN_TCBS_USED_AND_KEPT
is a bit string indicating which TCB modes were used by the task, of and are
now available to other tasks

OPEN_TCBS_USED_AND_LOST
is a bit string indicating which TCB modes were used by the task, of and have
now been deleted because the task was 'unclean'

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, RELEASE_OPEN_TCB function
The RELEASE_OPEN_TCB function of DSAT gate frees the TCB from the calling
task's ownership.

Input Parameters
TCB_TOKEN

token representing the TCB instance to which to switch. The token is returned
by CHANGE_MODE (see OLD_TCB_TOKEN below)

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOCK_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_TCB_TOKEN
 TCB_NOT_OWNED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, SET_PRIORITY function
The SET_PRIORITY function of DSAT gate changes the priority of the issuing task,
or the task specified by the TASK_TOKEN parameter.

Input Parameters
PRIORITY

affects a task's dispatching precedence. It can have a value in the range 0 (low
priority) through 255 (high priority).

SPECIAL_TYPE
Optional Parameter

 identifies the special task IMMEDIATE_SHUTDOWN_TASK.

Chapter 77. Dispatcher Domain (DS) 1003

Values for the parameter are:
 IMMEDIATE_SHUTDOWN_TASK

TASK_TOKEN
Optional Parameter

 identifies the task whose priority is to be changed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OLD_PRIORITY
Optional Parameter

 is the task's former priority. It can have a value in the range 0 (low priority)
through 255 (high priority).

DSAT gate, SET_TRANSACTION_TOKEN function
The SET_TRANSACTION_TOKEN function of DSAT gate sets the XM domain
transaction token of the transaction associated with the currently dispatched task.

Input Parameters
TRANSACTION_TOKEN

identifies the transaction associated with the attached task.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 ABEND
 ACTIVATE_MODE_FAILED
 ADD_TCB_FAILED
 CANCEL_INHIBITED
 INSUFFICIENT_STORAGE
 INVALID_FORMAT
 INVALID_FRESH_TCB_USAGE
 INVALID_FUNCTION
 INVALID_MODENAME
 INVALID_MODENAME_TOKEN
 INVALID_STATE
 INVALID_STATE_PURGE
 INVALID_TASK_TOKEN
 INVALID_TCB_TOKEN
 LOCK_FAILED
 LOOP
 MODE_NOT_ACTIVE
 NO_TCBS_ACTIVE
 NOT_OPEN_MODE_TCB
 NOT_PURGEABLE
 NOT_SUBSPACE_ELIGIBLE

1004 CICS TS for z/OS 4.1: Diagnosis Reference

SUSPEND_FAILED
 TASK_CANCELLED
 TCB_FAILED
 TCB_NOT_OWNED
 TIMED_OUT
 TOO_FEW_TCBS
 USER_TASK_SLOT_UNAVAILABLE

DSAT gate, TCB_POOL_MANAGEMENT function
The TCB_POOL_MANAGEMENT function of DSAT gate deletes unallocated TCBs
which are excess to current requirements.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSBR gate, END_BROWSE function
The END_BROWSE function of DSBR gate ends a browse session with the
dispatcher.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse session to be ended.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSBR gate, GET_NEXT function
The GET_NEXT function of DSBR gate returns information about the next task.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse session to be ended.

Output Parameters
REASON

The values for the parameter are:
 END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DOMAIN_INDEX
Optional Parameter

Chapter 77. Dispatcher Domain (DS) 1005

is the 2-character index identifying the domain that made the ATTACH call for
the task.

ESSENTIAL_TCB
Optional Parameter

 indicates whether the TCB is an essential TCB or not.

Values for the parameter are:
 ESSENTIAL_NO
 ESSENTIAL_YES

KERNEL_TOKEN
Optional Parameter

 is the token by which the task is known to the kernel.
MODE

Optional Parameter

 is the mode in which the task is to run.

Values for the parameter are:
 CO
 FO
 QR
 RO
 RP
 SZ

OPEN_MODES
Optional Parameter

 is a 32-bit string which indicates which modes of open TCBs were used by this
task.

PRIORITY
Optional Parameter

 is the task's dispatch priority. It can have a value in the range 0 (low priority)
through 255 (high priority).

RESOURCE_NAME
Optional Parameter

 is the name of the resource that the task is waiting for, if the task is suspended.
RESOURCE_TIME

Optional Parameter

 is the interval of time that has passed since the task last issued a suspend or
wait.

RESOURCE_TYPE
Optional Parameter

 is the type of resource that the task is waiting for, if the task is suspended.
STATE

Optional Parameter

 is the state of the task.

Values for the parameter are:
 READY
 RUNNING
 SUSPENDED

SUSPEND_TOKEN
Optional Parameter

1006 CICS TS for z/OS 4.1: Diagnosis Reference

is the token by which the dispatcher recognizes a task to be suspended or
resumed.

TASK_TOKEN
Optional Parameter

 is the token by which the attached task is known to the dispatcher.
TCB_TOKEN

Optional Parameter

 is the TCB token associated with the task.
TCB_TYPE

Optional Parameter

 is the type of TCB that the task is executing on.

Values for the parameter are:
 CKOPEN_TCB
 INTERNAL_TCB
 QR_TCB
 UKOPEN_TCB

TYPE
Optional Parameter

 is the type of task.

Values for the parameter are:
 NON_SYSTEM
 SYSTEM

USER_TOKEN
Optional Parameter

 is the token by which the task is known to the caller that made the ATTACH
request for the task.

DSBR gate, INQUIRE_TASK function
The INQUIRE_TASK function of DSBR gate returns information about a specified
task.

Input Parameters
INPUT_TASK_TOKEN

Optional Parameter

 is the token for the task to be inquired on.

Output Parameters
REASON

The values for the parameter are:
 INVALID_TASK_TOKEN
 NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CANCEL_PENDING
Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 CLEARED
 FORCE

Chapter 77. Dispatcher Domain (DS) 1007

KILL
 NONE
 NORMAL

DEFERRED_ABEND_CODE
Optional Parameter

 Not supported by domain gate function.
DOMAIN_INDEX

Optional Parameter

 is the 2-character index identifying the domain that made the ATTACH call for
the task.

ESSENTIAL_TCB
Optional Parameter

 indicates whether the TCB is an essential TCB or not.

Values for the parameter are:
 ESSENTIAL_NO
 ESSENTIAL_YES

KERNEL_TOKEN
Optional Parameter

 is the token by which the task is known to the kernel.
MODE

Optional Parameter

 is the mode in which the task is to run.

Values for the parameter are:
 CO
 FO
 QR
 RO
 RP
 SZ

OPEN_MODES
Optional Parameter

 is a 32-bit string which indicates which modes of open TCBs were used by this
task.

PRIORITY
Optional Parameter

 is the task's dispatch priority. It can have a value in the range 0 (low priority)
through 255 (high priority).

RESOURCE_NAME
Optional Parameter

 is the name of the resource that the task is waiting for, if the task is suspended.
RESOURCE_TIME

Optional Parameter

 is the interval of time that has passed since the task last issued a suspend or
wait.

RESOURCE_TYPE
Optional Parameter

 is the type of resource that the task is waiting for, if the task is suspended.
STATE

Optional Parameter

1008 CICS TS for z/OS 4.1: Diagnosis Reference

is the state of the task.

Values for the parameter are:
 READY
 RUNNING
 SUSPENDED

SUSPEND_TOKEN
Optional Parameter

 is the token by which the dispatcher recognizes a task to be suspended or
resumed.

TASK_TOKEN
Optional Parameter

 is the token by which the attached task is known to the dispatcher.
TCB_TOKEN

Optional Parameter

 is the TCB token associated with the task.
TCB_TYPE

Optional Parameter

 is the type of TCB that the task is executing on.

Values for the parameter are:
 CKOPEN_TCB
 INTERNAL_TCB
 QR_TCB
 UKOPEN_TCB

TYPE
Optional Parameter

 is the type of task.

Values for the parameter are:
 NON_SYSTEM
 SYSTEM

USER_TOKEN
Optional Parameter

 is the token by which the task is known to the caller that made the ATTACH
request for the task.

DSBR gate, INQUIRE_TCB function
The INQUIRE_TCB function of the DSBR gate returns the AP TCB-related token
associated with the specified DS TCB_TOKEN. If the AP token has not yet been set
by SET_TCB, then the function returns an AP_TCB_TOKEN value of zero.

Input Parameters
TCB_TOKEN

Optional Parameter

 token representing the TCB instance to which to switch. The token is returned
by CHANGE_MODE (see OLD_TCB_TOKEN below)

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_TCB_TOKEN

Chapter 77. Dispatcher Domain (DS) 1009

OWNER_TCB_TOKEN
token, provided by the TCB's owning domain, associated with the TCB
instance defined by TCB_TOKEN.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSBR gate, SET_TASK function
The SET_TASK function of DSBR gate marks the task as "unclean" so that open
TCBs will be freed at task termination.

Input Parameters
ABTERM_ALLOWED

Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 ABTERM_NO
 ABTERM_YES

CANCEL_STATE
Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 FORCE
 KILL
 NONE
 NORMAL

CLEANLINESS
Optional Parameter

 specifies that the task is to be marked "unclean".

Values for the parameter are:
 UNCLEAN

CLEAR_CANCEL_PENDING
Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 YES

INPUT_TASK_TOKEN
Optional Parameter

 is the token for the task to be inquired on.
WAIT

Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 WAIT_NO
 WAIT_YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TASK_TOKEN

1010 CICS TS for z/OS 4.1: Diagnosis Reference

NOT_SUPPORTED
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTION
Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 ACTION_ABEND
 ACTION_ABTERM
 ACTION_NONE

CANCEL_PENDING
Optional Parameter

 Not supported by domain gate function.

Values for the parameter are:
 CLEARED
 FORCE
 KILL
 NONE
 NORMAL

DEFERRED_ABEND_CODE
Optional Parameter

 Not supported by domain gate function.

DSBR gate, SET_TCB function
The SET_TCB function of the DSBR gate sets the AP TCB-related token to be
associated with the running TCB.

Input Parameters
OWNER_TCB_TOKEN

token, provided by the TCB's owning domain, to be associated with the
running TCB.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 ABEND
 END
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_TASK_TOKEN
 INVALID_TCB_TOKEN
 LOOP
 NOT_SUPPORTED

Chapter 77. Dispatcher Domain (DS) 1011

DSBR gate, START_BROWSE function
The START_BROWSE function of DSBR gate starts a browse session with the
dispatcher.

Output Parameters
BROWSE_TOKEN

is the token representing this browse session.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSIT gate, ACTIVATE_MODE function
The ACTIVATE_MODE function creates a mode to which TCBs can be added (by
ADD_TCB) so that tasks can CHANGE_MODE to the TCBs.

Input Parameters
ESSENTIAL_TCB

indicates whether CICS is to be brought down if a TCB in this mode suffers a
non recoverable abend.

 Values for the parameter are:
 ESSENTIAL_NO
 ESSENTIAL_YES

EXEC_CAPABLE
indicates whether TCBs in this mode are to be set up to support the use of
EXEC CICS commands by code running on them.

 Values for the parameter are:
 EXEC_NO
 EXEC_YES

IDENTITY
is the name of the mode to be activated. It is a two byte character string.

INHERIT_SUBSPACE
indicates whether TCBs in this mode will be able to run application code in a
subspace.

 Values for the parameter are:
 INHERIT_NO
 INHERIT_YES

LE_ENVIRONMENT
indicates whether Language Environment is to run in native MVS mode or in
CICS mode on TCBs in this mode.

 Values for the parameter are:
 LE_CICS
 LE_MVS

MODE
specifies the mode in which the task is to run.

MODENAME
2-character mode name.

MULTIPLE_TCBS
indicates whether this mode allows more than one TCB.

 Values for the parameter are:
 MULTIPLE_NO
 MULTIPLE_YES

1012 CICS TS for z/OS 4.1: Diagnosis Reference

OPEN
indicates whether TCBs in this mode are to be managed by the Dispatcher
domain as "Open TCBs".

 Values for the parameter are:
 OPEN_NO
 OPEN_YES

PARENT_MODENAME
the mode of the TCB that issued the request.

PRTY_RELATIVE_TO_QR
allows TCBs in this mode to have a different priority to that of the QR TCB.

TCB_KEY
indicates the key to be specified on ATTACHes of TCBs in this mode.

 Values for the parameter are:
 KEY8
 KEY9

DEPENDENT_ON
Optional Parameter

 indicates that TCBs of the mode being activated depend on the existence of
TCBs of another mode.

NOTIFY_DELETE
Optional Parameter

 indicates which domain, if any, to notify when a DELETE_TCB is issued. It is
the binary domain index for the domain.

OPEN_POOL_NUMBER
Optional Parameter

 is the number of the open TCB pool which is to contain TCBs of the
newly-activated mode.

PTHREAD
Optional Parameter

 indicates whether to create a protected thread.

Values for the parameter are:
 PTHREAD_NO
 PTHREAD_YES

SZERO
Optional Parameter

 indicates whether TCBs of the new mode should be attached with SZERO(YES)
or SZERO(NO).

Values for the parameter are:
 SZERO_NO
 SZERO_YES

WAIT_FOR_MATCH
Optional Parameter

 indicates if a CHANGE_MODE should consider waiting for a suitable TCB
rather than using a free TCB.

Values for the parameter are:
 NEVER
 NO_MODE
 NO_PRIMARY

Chapter 77. Dispatcher Domain (DS) 1013

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 MODE_ALREADY_ACTIVE
 MODE_LIMIT_REACHED
 MODENAME_ALREADY_ACTIVE
 RESERVED_MODENAME
 TOO_MANY_MULTI

The following values are returned when RESPONSE is INVALID:
 INVALID_MODE
 INVALID_POOL_NUMBER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MODENAME_TOKEN
Optional Parameter

 is a token that identifies this modename.

DSIT gate, ADD_TCB function
The ADD_TCB function adds a TCB to a particular mode.

Input Parameters
IDENTITY

is the name of the mode to be activated. It is a two byte character string.
MODENAME

2-character mode name.
MODENAME_TOKEN

token representing modename. More efficient than using MODENAME. The
token is returned by ACTIVATE_MODE and by CHANGE_MODE (see
OLD_MODENAME_TOKEN below)

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 MODE_LIMIT_REACHED
 MODE_NOT_ACTIVE
 RESERVED_MODENAME

The following values are returned when RESPONSE is INVALID:
 INVALID_MODENAME
 INVALID_MODENAME_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCB_TOKEN
is the TCB token associated with the task.

DSIT gate, DELETE_ALL_OPEN_TCBS function
DELETE_ALL_OPEN_TCBS schedules the termination of all open TCBs with a
given modename. For TCBs that are currently in use, the termination will occur
when the owning task terminates. The function does not prevent new TCBs of the
given mode from being created.

1014 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
MODENAME

2-character mode name.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 MODE_NOT_ACTIVE

The following values are returned when RESPONSE is INVALID:
 INVALID_MODENAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSIT gate, DELETE_OPEN_TCB function
DELETE_OPEN_TCB schedules the termination of an open TCB. If the TCB is
currently in use, the termination will occur when the owning task terminates.

Input Parameters
TCB_TOKEN

is a token provided by DS that uniquely identifies the TCB.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_TCB_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSIT gate, DELETE_TCB function
The DELETE_TCB function is used by the caller to tell the Dispatcher that the TCB
is to be shutdown and that the associated control blocks can be freed. If an attempt
is made to shut down an essential TCB, an EXCEPTION response is returned with
a reason of NOT_SUPPORTED.

Input Parameters
TCB_TOKEN

token representing the TCB instance to which to switch. The token is returned
by CHANGE_MODE (see OLD_TCB_TOKEN below)

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_SUPPORTED
 TCB_IN_USE

The following values are returned when RESPONSE is INVALID:
 INVALID_TCB_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 77. Dispatcher Domain (DS) 1015

DSIT gate, FREE_TCB function
The FREE_TCB function is issued by the Kernel and tells the Dispatcher that a
given TCB has terminated and been DETACHed.

Input Parameters
TCB_TOKEN

token representing the TCB instance to which to switch. The token is returned
by CHANGE_MODE (see OLD_TCB_TOKEN below)

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TCB_TOKEN
 TASK_NOT_TERMINATED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSIT gate, INQUIRE_DISPATCHER function
The INQUIRE_DISPATCHER function of DSIT gate returns information about the
current state of the dispatcher.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTJVMTCBS
Optional Parameter

 is the number of TCBs in the JVM TCB pool which are being used by current
tasks.

ACTOPENTCBS
Optional Parameter

 is the number of TCBs in the TCB pool known as the open pool which are being
used by current tasks.

ACTSSLTCBS
Optional Parameter

 is the number of TCBs in the SSL TCB pool which are being used by current
tasks.

ACTXPTCBS
Optional Parameter

 is the number of TCBs in the XPLINK TCB pool which are being used by
current tasks.

MAXIMUM_WAIT_INTERVAL
Optional Parameter

 is the maximum delay before terminal control is dispatched.
MAXJVMTCBS

Optional Parameter

 is the maximum number of TCBs in the JVM TCB pool.
MAXOPENTCBS

Optional Parameter

 is the maximum number of TCBs in the TCB pool known as the open pool.

1016 CICS TS for z/OS 4.1: Diagnosis Reference

MAXSSLTCBS
Optional Parameter

 is the maximum number of TCBs in the SSL TCB pool.
MAXXPTCBS

Optional Parameter

 is the maximum number of TCBs in the XPLINK TCB pool.
NUMBER_OF_SUBTASKS

Optional Parameter

 is the number of subtasks for concurrent mode.
PRIORITY_MULTIPLIER

Optional Parameter

 determines how the priority of new tasks is to be penalized in 'storage getting
short' and 'storage critical' situations.

QR_BATCHING_VALUE
Optional Parameter

 is the number of POSTs for BATCH=YES waits in quasi-reentrant mode.
RP_TCB_ATTACHED

Optional Parameter

 indicates whether or not the RP TCB is attached.

Values for the parameter are:
 NO
 YES

SCAN_DELAY_INTERVAL
Optional Parameter

 is the delay before terminal control is dispatched after a terminal is posted by
the access method.

SZ_TCB_ATTACHED
Optional Parameter

 indicates whether or not the SZ TCB is attached.

Values for the parameter are:
 NO
 YES

DSIT gate, PROCESS_DEAD_TCBS function
The PROCESS_DEAD_TCBS function is issued by the SM system task each time it
runs to tell the Dispatcher to process any TCBs it finds on its dead TCB chain.
Such TCBs will be in an MVS WAIT issued by their ESTAE exit after suffering a
non recoverable abend.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_FUNCTION
 MAXJVMTCBS_OUT_OF_RANGE
 MAXOPENTCBS_OUT_OF_RANGE
 MAXSSLTCBS_OUT_OF_RANGE
 MAXWAIT_LESSTHAN_SCANDELAY
 MAXXPTCBS_OUT_OF_RANGE
 MODE_ALREADY_ACTIVE

Chapter 77. Dispatcher Domain (DS) 1017

MODE_LIMIT_REACHED
 MODE_NOT_ACTIVE
 MODENAME_ALREADY_ACTIVE
 NOT_SUPPORTED
 RESERVED_MODENAME
 TASK_NOT_TERMINATED
 TCB_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 TOO_LATE_TO_SET_SUBTASKS
 TOO_MANY_MULTI

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT

The following values are returned when RESPONSE is INVALID:
 EXEC_LE_CLASH
 INVALID_MODE
 INVALID_MODENAME
 INVALID_MODENAME_TOKEN
 INVALID_POOL_NUMBER
 INVALID_TCB_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSIT gate, SET_DISPATCHER function
The SET_DISPATCHER function of DSIT gate sets the state of the dispatcher.

Input Parameters
MAXIMUM_WAIT_INTERVAL

Optional Parameter

 is the maximum delay before terminal control is dispatched.
MAXJVMTCBS

Optional Parameter

 is the maximum number of TCBs in the JVM TCB pool.
MAXOPENTCBS

Optional Parameter

 is the maximum number of TCBs in the TCB pool known as the open pool.
MAXSSLTCBS

Optional Parameter

 is the maximum number of TCBs in the SSL TCB pool.
MAXXPTCBS

Optional Parameter

 is the maximum number of TCBs in the XPLINK TCB pool.
NUMBER_OF_SUBTASKS

Optional Parameter

 is the number of subtasks for concurrent mode.
PRIORITY_MULTIPLIER

Optional Parameter

 determines how quickly a task's priority increases as it waits to be dispatched.
The faster it increases the less likely a low priority task is to be held up for
long periods by higher priority tasks in a busy system.

1018 CICS TS for z/OS 4.1: Diagnosis Reference

QR_BATCHING_VALUE
Optional Parameter

 is the number of POSTs for BATCH=YES waits in quasi reentrant mode.
SCAN_DELAY_INTERVAL

Optional Parameter

 is the delay before terminal control is dispatched after a terminal is posted by
the access method.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 MAXJVMTCBS_OUT_OF_RANGE
 MAXOPENTCBS_OUT_OF_RANGE
 MAXSSLTCBS_OUT_OF_RANGE
 MAXWAIT_LESSTHAN_SCANDELAY
 MAXXPTCBS_OUT_OF_RANGE
 TOO_LATE_TO_SET_SUBTASKS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSMT gate, END_BROWSE_MVSTCB function
End a browse operation on the MVS TCBs

Input Parameters
BROWSE_TOKEN

The token that represents the browse session.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSMT gate, GET_NEXT_MVSTCB function
During a browse session, return information about an MVS TCB.

Input Parameters
BROWSE_TOKEN

The token that represents the browse session.
ELEMENT_BUFFER

Optional Parameter

 a buffer in which the dispatcher domain returns a list of the addresses of all
areas of private storage owned by this TCB.

LENGTH_BUFFER
Optional Parameter

 a buffer in which the dispatcher domain returns a list of the lengths of all areas
of private storage owned by this TCB.

Chapter 77. Dispatcher Domain (DS) 1019

SUBPOOL_BUFFER
Optional Parameter

 a buffer in which the dispatcher domain returns a list of the subpools of all
areas of private storage owned by this TCB.

Output Parameters
REASON

The values for the parameter are:
 BUFFER_NOT_BIG_ENOUGH
 END_OF_BROWSE
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCB_ADDRESS
The address of the MVS TCB.

TCB_NAME
The name of the MVS TCB.

NUMBER_OF_ELEMENTS
Optional Parameter

 The number of elements in the three lists of information about the private
storage owned by this TCB.

DSMT gate, INQUIRE_MVSTCB function
Return information about an MVS TCB.

Input Parameters
TCB_ADDRESS

The address of the MVS TCB.
ELEMENT_BUFFER

Optional Parameter

 a buffer in which the dispatcher domain returns a list of the addresses of all
areas of private storage owned by this TCB.

LENGTH_BUFFER
Optional Parameter

 a buffer in which the dispatcher domain returns a list of the lengths of all areas
of private storage owned by this TCB.

SUBPOOL_BUFFER
Optional Parameter

 a buffer in which the dispatcher domain returns a list of the subpools of all
areas of private storage owned by this TCB.

Output Parameters
REASON

The values for the parameter are:
 BUFFER_NOT_BIG_ENOUGH
 INVALID_FORMAT
 INVALID_FUNCTION
 NOT_FOUND

1020 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCB_NAME
The name of the MVS TCB.

NUMBER_OF_ELEMENTS
Optional Parameter

 The number of elements in the three lists of information about the private
storage owned by this TCB.

DSMT gate, SNAPSHOT_MVSTCBS function
Take a snapshot of the state of all MVS TCBs in the CICS address space.

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TASK_STG_USED
Optional Parameter

 indicates if the snapshot was captured in task storage.

Values for the parameter are:
 TASK_STG_NO
 TASK_STG_YES

DSMT gate, START_BROWSE_MVSTCB function
Start a browse operation on the MVS TCBs

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION

BROWSE_TOKEN
A token that represents the browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSSR gate, ADD_SUSPEND function
The ADD_SUSPEND function of DSSR gate returns a suspend token which is used
to identify a task to be suspended or resumed.

Input Parameters
RESOURCE_NAME

Optional Parameter

 is the name of the resource that the task is suspended on.
RESOURCE_TYPE

Optional Parameter

Chapter 77. Dispatcher Domain (DS) 1021

is the type of resource that the task is suspended on.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 INSUFFICIENT_STORAGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUSPEND_TOKEN
is the token by which the dispatcher recognizes a task to be suspended or
resumed.

DSSR gate, DELETE_SUSPEND function
The DELETE_SUSPEND function of DSSR gate discards a suspend token.

Input Parameters
SUSPEND_TOKEN

is the suspend token to be deleted.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_SUSPEND_TOKEN
 SUSPEND_TOKEN_IN_USE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSSR gate, RESUME function
The RESUME function of DSSR gate causes a suspended task to be resumed.

Input Parameters
SUSPEND_TOKEN

is the suspend token to be deleted.
COMPLETION_CODE

Optional Parameter

 is a completion code to be passed from the resumed task to the suspended
task.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TASK_CANCELLED
 TIMED_OUT

The following values are returned when RESPONSE is INVALID:
 ALREADY_RESUMED
 INVALID_SUSPEND_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1022 CICS TS for z/OS 4.1: Diagnosis Reference

DSSR gate, SUSPEND function
The SUSPEND function of DSSR gate causes a running task to be suspended.

Input Parameters
PURGEABLE

is the purgeable status of the task.

 Values for the parameter are:
 NO
 YES

SUSPEND_TOKEN
is the suspend token to be deleted.

DEADLOCK_ACTION
Optional Parameter

 describes whether the suspended task should be purged if deadlock is
detected, and if so, how it should be purged.

DELAY
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) during which the task is
not dispatched if CICS has other work to do.

DISPATCH_BEFORE_WAIT
Optional Parameter

 Indicates if the suspended task is prepared to wait across a partition exit

Values for the parameter are:
 NO
 YES

INTERVAL
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) after which the task is
given back control if it has not been resumed by a DSSR RESUME call.

RESOURCE_NAME
Optional Parameter

 is the name of the resource that the task is suspended on.
RESOURCE_TYPE

Optional Parameter

 is the type of resource that the task is suspended on.
RETRY

Optional Parameter

 indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation.

Values for the parameter are:
 NO
 YES

TEMP_HIGH_PRIORITY
Optional Parameter

 indicates if the task is to get a temporary priority boost at the completion of
the suspend.

Values for the parameter are:
 NO
 YES

Chapter 77. Dispatcher Domain (DS) 1023

TIME_UNIT
Optional Parameter

 identifies the time units specified on the INTERVAL and DELAY parameters
where present.

Values for the parameter are:
 MILLI_SECOND
 SECOND

WLM_WAIT_TYPE
Optional Parameter

 indicates the reason for task's wait state to the MVS workload manager.

Values for the parameter are:
 CMDRESP
 CONV
 DISTRIB
 IDLE
 IO
 LOCK
 MISC
 OTHER_PRODUCT
 SESS_LOCALMVS
 SESS_NETWORK
 SESS_SYSPLEX
 TIMER

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 ALREADY_SUSPENDED
 CLEAN_UP_PENDING
 INVALID_SUSPEND_TOKEN

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COMPLETION_CODE
Optional Parameter

 is a completion code supplied by the resumed task.

DSSR gate, WAIT_MVS function
The WAIT_MVS function of DSSR gate causes a task to wait on an ECB, or list of
ECBs, to be posted via the MVS POST service.

Input Parameters
ECB_ADDRESS

is the address of the ECB for the task.
ECB_LIST_ADDRESS

is the address of a list of ECBs for the task.
PURGEABLE

is the purgeable status of the task.

 Values for the parameter are:

1024 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

BATCH
Optional Parameter

 states whether requests are to be batched.

Values for the parameter are:
 NO
 YES

DEADLOCK_ACTION
Optional Parameter

 describes whether the suspended task should be purged if deadlock is
detected, and if so, how it should be purged.

DELAY
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) during which the task is
not dispatched if CICS has other work to do.

DISPATCH_BEFORE_WAIT
Optional Parameter

 indicates if the suspended task is prepared to wait across a partition exit

Values for the parameter are:
 NO
 YES

INTERVAL
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) after which the task is
given back control if it has not been resumed by a DSSR RESUME call.

RESOURCE_NAME
Optional Parameter

 is the name of the resource that the task is suspended on.
RESOURCE_TYPE

Optional Parameter

 is the type of resource that the task is suspended on.
RETRY

Optional Parameter

 indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation.

Values for the parameter are:
 NO
 YES

TEMP_HIGH_PRIORITY
Optional Parameter

 indicates if the task is to get a temporary priority boost at the completion of
the suspend.

Values for the parameter are:
 NO
 YES

TIME_UNIT
Optional Parameter

Chapter 77. Dispatcher Domain (DS) 1025

identifies the time units specified on the INTERVAL and DELAY parameters
where present.

Values for the parameter are:
 MILLI_SECOND
 SECOND

WLM_WAIT_TYPE
Optional Parameter

 indicates the reason for task's wait state to the MVS workload manager.

Values for the parameter are:
 CMDRESP
 CONV
 DISTRIB
 IDLE
 IO
 LOCK
 MISC
 OTHER_PRODUCT
 SESS_LOCALMVS
 SESS_NETWORK
 SESS_SYSPLEX
 TIMER

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 ALREADY_WAITING
 INVALID_ECB_ADDR

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSSR gate, WAIT_OLDC function
The WAIT_OLDC function of DSSR gate causes a task to wait on an ECB that must
be posted by setting the X'40' bit rather than via the MVS POST service. This is
supported only in QR mode.

Input Parameters
ECB_ADDRESS

is the address of the ECB for the task.
PURGEABLE

is the purgeable status of the task.

 Values for the parameter are:
 NO
 YES

DEADLOCK_ACTION
Optional Parameter

 describes whether the suspended task should be purged if deadlock is
detected, and if so, how it should be purged.

1026 CICS TS for z/OS 4.1: Diagnosis Reference

DELAY
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) during which the task is
not dispatched if CICS has other work to do.

DISPATCH_BEFORE_WAIT
Optional Parameter

 Indicates if the suspended task is prepared to wait across a partition exit

Values for the parameter are:
 NO
 YES

INTERVAL
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) after which the task is
given back control if it has not been resumed by a DSSR RESUME call.

RESOURCE_NAME
Optional Parameter

 is the name of the resource that the task is suspended on.
RESOURCE_TYPE

Optional Parameter

 is the type of resource that the task is suspended on.
RETRY

Optional Parameter

 indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation.

Values for the parameter are:
 NO
 YES

TEMP_HIGH_PRIORITY
Optional Parameter

 indicates if the task is to get a temporary priority boost at the completion of
the suspend.

Values for the parameter are:
 NO
 YES

TIME_UNIT
Optional Parameter

 identifies the time units specified on the INTERVAL and DELAY parameters
where present.

Values for the parameter are:
 MILLI_SECOND
 SECOND

WLM_WAIT_TYPE
Optional Parameter

 indicates the reason for task's wait state to the MVS workload manager.

Values for the parameter are:
 CMDRESP
 CONV
 DISTRIB
 IDLE

Chapter 77. Dispatcher Domain (DS) 1027

IO
 LOCK
 MISC
 OTHER_PRODUCT
 SESS_LOCALMVS
 SESS_NETWORK
 SESS_SYSPLEX
 TIMER

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 ALREADY_WAITING
 INVALID_ECB_ADDR
 INVALID_MODE

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSSR gate, WAIT_OLDW function
The WAIT_OLDW function of DSSR gate causes a task to wait on an ECB, or list of
ECBs, that may be posted via the MVS POST service or by setting the POST bit
(X'40' in the first byte). This is supported only in QR mode.

Input Parameters
ECB_ADDRESS

is the address of the ECB for the task.
ECB_LIST_ADDRESS

is the address of a list of ECBs for the task.
PURGEABLE

is the purgeable status of the task.

 Values for the parameter are:
 NO
 YES

DEADLOCK_ACTION
Optional Parameter

 describes whether the suspended task should be purged if deadlock is
detected, and if so, how it should be purged.

DELAY
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) during which the task is
not dispatched if CICS has other work to do.

DISPATCH_BEFORE_WAIT
Optional Parameter

 Indicates if the suspended task is prepared to wait across a partition exit.

Values for the parameter are:
 NO
 YES

1028 CICS TS for z/OS 4.1: Diagnosis Reference

INTERVAL
Optional Parameter

 is an interval (in units as specified by TIME_UNIT) after which the task is
given back control if it has not been resumed by a DSSR RESUME call.

RESOURCE_NAME
Optional Parameter

 is the name of the resource that the task is suspended on.
RESOURCE_TYPE

Optional Parameter

 is the type of resource that the task is suspended on.
RETRY

Optional Parameter

 indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation.

Values for the parameter are:
 NO
 YES

SPECIAL_TYPE
Optional Parameter

 Identifies the special task CSTP.

Values for the parameter are:
 CSTP

TEMP_HIGH_PRIORITY
Optional Parameter

 indicates if the task is to get a temporary priority boost at the completion of
the suspend.

Values for the parameter are:
 NO
 YES

TIME_UNIT
Optional Parameter

 identifies the time units specified on the INTERVAL and DELAY parameters
where present.

Values for the parameter are:
 MILLI_SECOND
 SECOND

WLM_WAIT_TYPE
Optional Parameter

 indicates the reason for task's wait state to the MVS workload manager.

Values for the parameter are:
 CMDRESP
 CONV
 DISTRIB
 IDLE
 IO
 LOCK
 MISC
 OTHER_PRODUCT
 SESS_LOCALMVS

Chapter 77. Dispatcher Domain (DS) 1029

SESS_NETWORK
 SESS_SYSPLEX
 TIMER

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 ALREADY_WAITING
 INVALID_ECB_ADDR
 INVALID_MODE

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Dispatcher domain's generic gates

Table 43 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 43. Dispatcher domain's generic gates

Gate Trace Functions Format

APUE DS 0121
DS 0122

SET_EXIT_STATUS APUE

DMDM DS 0006
DS 0007

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

KEDS DS 0012
DS 0013

TCB_REPLY
TASK_REPLY

KEDS

SMNT DS 0145
DS 0113

STORAGE_NOTIFY SMNT

STST DS 0020
DS 0021

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Application Manager Domain's generic formats” on page 867
 “Domain Manager domain's generic formats” on page 956
 “Kernel domain generic formats” on page 1244
 “Storage manager domain generic formats” on page 1709
 “Statistics domain's generic formats” on page 1777

1030 CICS TS for z/OS 4.1: Diagnosis Reference

Dispatcher domain's generic formats

Table 44 describes the generic formats owned by the domain and shows the
functions performed on the calls.

 Table 44. Dispatcher domain's generic formats

Format Calling modules Functions

DSAT DFHDSKE
DFHDSDS4
DFHSJIN
DFHSMVN

TASK_REPLY
PURGE_INHIBIT_QUERY
FORCE_PURGE_INHIBIT_QUERY
NOTIFY_DELETE_TCB

Note: In the descriptions of the formats, the input parameters are input not to the
dispatcher domain, but to the domain being called by the dispatcher domain.
Similarly, the output parameters are output by the domain that was called by the
dispatcher domain, in response to the call.

DSAT gate, TASK_REPLY function
The TASK_REPLY function of DSAT format is used to notify the domain that
attached a task that the task has had its first dispatch.

Input Parameters
SUSPEND_TOKEN

is the suspend token that the task can be suspended against by default.
TASK_TOKEN

is the token by which the task that has been dispatched is known to the
dispatcher.

USER_TOKEN
is the token by which the task that has been dispatched is known to the called
domain.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, PURGE_INHIBIT_QUERY function
The PURGE_INHIBIT_QUERY function of DSAT format is used by the dispatcher
to see if a task selected for purge can be purged. Its main purpose is to find out
from the AP domain whether the task is currently purgeable by the system.

Input Parameters
TASK_TOKEN

is the token by which the task that has been dispatched is known to the
dispatcher.

USER_TOKEN
is the token by which the task that has been dispatched is known to the called
domain.

Output Parameters
PURGE_INHIBITED_RESPONSE

states whether the task can be purged.

 Values for the parameter are:

Chapter 77. Dispatcher Domain (DS) 1031

NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, FORCE_PURGE_INHIBIT_QUERY function
The FORCE_PURGE_INHIBIT_QUERY function of DSAT format is used by the
dispatcher to see if a task selected for purge can be force purged. Its main purpose
is to find out from the AP domain whether the task is currently purgeable by the
system.

Input Parameters
TASK_TOKEN

is the token by which the task that has been dispatched is known to the
dispatcher.

USER_TOKEN
is the token by which the task that has been dispatched is known to the called
domain.

Output Parameters
PURGE_INHIBITED_RESPONSE

states whether the task can be purged.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSAT gate, NOTIFY_DELETE_TCB function
The NOTIFY_DELETE function of DSAT format notifies the interested domain (as
specified in the NOTIFY_DELETE parameter on the DSIT ACTIVATE_MODE
request for the mode) that a DELETE_TCB request is in progress.

Input Parameters
TCB_TOKEN

The DS token representing the TCB instance for which notification is required
when deleted.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHDSAT Handles the following requests:
 ATTACH
 CHANGE_MODE
 CHANGE_PRIORITY
 SET_PRIORITY
 CANCEL_TASK

1032 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHDSBR Handles the following requests:
 START_BROWSE
 GET_NEXT
 END_BROWSE
 INQUIRE_TASK

DFHDSDM Handles the following requests:
 DMDM PRE_INITIALISE
 DMDM INITIALISE_DOMAIN
 DMDM QUIESCE_DOMAIN
 DMDM TERMINATE_DOMAIN

DFHDSIT Handles the following requests:
 INQUIRE_DISPATCHER
 SET_DISPATCHER

DFHDSKE Handles kernel DS requirements, and handles the following requests:
 KEDS TCB_REPLY
 KEDS TASK_REPLY

DFHDSSM Receives the STORAGE_NOTIFY call from the storage manager domain.

DFHDSSR Handles the following requests:
 ADD_SUSPEND
 DELETE_SUSPEND
 INQUIRE_SUSPEND_TOKEN
 SUSPEND
 RESUME
 WAIT_MVS
 WAIT_OLDW
 WAIT_OLDC

DFHDSST Receives statistics calls from the ST domain

DFHDSUE Receives the user exit gate call from the AP domain

Exits
There are two global user exit points in the dispatcher domain, XDSAWT and
XDSBWT. See the CICS Customization Guide for further details.

Chapter 77. Dispatcher Domain (DS) 1033

1034 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 78. Dump Domain (DU)

The dump domain is responsible for producing storage dumps and for handling
the associated data sets and status.

Dump Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the DU domain.

DUDT gate, ADD_SYSTEM_DUMPCODE function
The ADD_SYSTEM_DUMPCODE function of the DUDT gate is invoked to add a
new dump code to the system dump table.

Input Parameters
DAEOPTION

states whether a dump produced for this dumpcode is eligible for suppression
by the MVS Dump Analysis and Elimination (DAE) component.

 Values for the parameter are:
 NO
 YES

DUMPSCOPE
indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
is the maximum number of times the dump code action can be taken.

SYSTEM_DUMP
states whether a system dump is required for this dump code.

 Values for the parameter are:
 NO
 YES

SYSTEM_DUMPCODE
is the system dump code.

TERMINATE_CICS
states whether CICS is to be terminated for this dump code.

 Values for the parameter are:
 NO
 YES

© Copyright IBM Corp. 1997, 2011 1035

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_FULL
 DUPLICATE_DUMPCODE
 INSUFFICIENT_STORAGE
 INVALID_DUMPCODE
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, ADD_TRAN_DUMPCODE function
The ADD_TRAN_DUMPCODE function of the DUDT gate is invoked to add a
new dump code to the transaction dump table.

Input Parameters
DUMPSCOPE

indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
is the maximum number of times the dump code action can be taken.

SYSTEM_DUMP
states whether a system dump is required for this dump code.

 Values for the parameter are:
 NO
 YES

TERMINATE_CICS
states whether CICS is to be terminated for this dump code.

 Values for the parameter are:
 NO
 YES

TRANSACTION_DUMP
states whether a transaction dump is required for this dump code.

 Values for the parameter are:
 NO
 YES

TRANSACTION_DUMPCODE
is the transaction dump code.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:

1036 CICS TS for z/OS 4.1: Diagnosis Reference

CATALOG_FULL
 DUPLICATE_DUMPCODE
 INSUFFICIENT_STORAGE
 INVALID_DUMPCODE
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, DELETE_SYSTEM_DUMPCODE function
The DELETE_SYSTEM_DUMPCODE function of the DUDT gate is invoked to
delete an existing dump code from the system dump table.

Input Parameters
SYSTEM_DUMPCODE

is the system dump code.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUMPCODE_NOT_FOUND
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, DELETE_TRAN_DUMPCODE function
The DELETE_TRAN_DUMPCODE function of the DUDT gate is invoked to delete
an existing dump code from the transaction dump table.

Input Parameters
TRANSACTION_DUMPCODE

is the transaction dump code.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUMPCODE_NOT_FOUND
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, ENDBR_SYSTEM_DUMPCODE function
The ENDBR_SYSTEM_DUMPCODE function of the DUDT gate is invoked to end
a browse on the system dump table.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:

Chapter 78. Dump Domain (DU) 1037

INVALID_BROWSE_TOKEN
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, ENDBR_TRAN_DUMPCODE function
The ENDBR_TRAN_DUMPCODE function of the DUDT gate is invoked to end a
browse session on the transaction dump table.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, GETNEXT_SYSTEM_DUMPCODE function
The GETNEXT_SYSTEM_DUMPCODE function of the DUDT gate is invoked in a
browse session to get the next entry in the system dump table.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 END_BROWSE

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COUNT
Optional Parameter

 is the number of times the dump code action has been taken.
DAEOPTION

Optional Parameter

 states whether a dump produced for this dumpcode is eligible for suppression
by the MVS Dump Analysis and Elimination (DAE) component.

Values for the parameter are:
 NO
 YES

DUMPSCOPE
indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

1038 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
Optional Parameter

 is the maximum number of times the dump code action can be taken.
SYSTEM_DUMP

Optional Parameter

 states whether a system dump is required for this dump code.

Values for the parameter are:
 NO
 YES

SYSTEM_DUMPCODE
Optional Parameter

 is the system dump code.
TERMINATE_CICS

Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

DUDT gate, GETNEXT_TRAN_DUMPCODE function
The GETNEXT_TRAN_DUMPCODE function of the DUDT gate is invoked in a
browse session to get the next entry in the transaction dump table.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 END_BROWSE

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COUNT
Optional Parameter

 is the number of times the dump code action has been taken.
DUMPSCOPE

indicates whether an SDUMP request is to be sent to all MVS images in the

Chapter 78. Dump Domain (DU) 1039

sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
Optional Parameter

 is the maximum number of times the dump code action can be taken.
SYSTEM_DUMP

Optional Parameter

 states whether a system dump is required for this dump code.

Values for the parameter are:
 NO
 YES

TERMINATE_CICS
Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

TRANSACTION_DUMP
Optional Parameter

 states whether a transaction dump is required for this dump code.

Values for the parameter are:
 NO
 YES

TRANSACTION_DUMPCODE
Optional Parameter

 is the transaction dump code.

DUDT gate, INQUIRE_SYSTEM_DUMPCODE function
The INQUIRE_SYSTEM_DUMPCODE function of the DUDT gate is invoked to
inquire on a dump code in the system dump table.

Input Parameters
SYSTEM_DUMPCODE

is the system dump code.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUMPCODE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1040 CICS TS for z/OS 4.1: Diagnosis Reference

COUNT
Optional Parameter

 is the number of times the dump code action has been taken.
DAEOPTION

Optional Parameter

 states whether a dump produced for this dumpcode is eligible for suppression
by the MVS Dump Analysis and Elimination (DAE) component.

Values for the parameter are:
 NO
 YES

DUMPSCOPE
indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
Optional Parameter

 is the maximum number of times the dump code action can be taken.
SYSTEM_DUMP

Optional Parameter

 states whether a system dump is required for this dump code.

Values for the parameter are:
 NO
 YES

TERMINATE_CICS
Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

DUDT gate, INQUIRE_TRAN_DUMPCODE function
The INQUIRE_TRAN_DUMPCODE function of the DUDT gate is invoked to
inquire on a dump code in the transaction dump table.

Input Parameters
TRANSACTION_DUMPCODE

is the transaction dump code.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUMPCODE_NOT_FOUND

Chapter 78. Dump Domain (DU) 1041

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COUNT
Optional Parameter

 is the number of times the dump code action has been taken.
DUMPSCOPE

indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
Optional Parameter

 is the maximum number of times the dump code action can be taken.
SYSTEM_DUMP

Optional Parameter

 states whether a system dump is required for this dump code.

Values for the parameter are:
 NO
 YES

TERMINATE_CICS
Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

TRANSACTION_DUMP
Optional Parameter

 states whether a transaction dump is required for this dump code.

Values for the parameter are:
 NO
 YES

DUDT gate, SET_SYSTEM_DUMPCODE function
The SET_SYSTEM_DUMPCODE function of the DUDT gate is invoked to set
options for a dump code in the system dump table.

Input Parameters
SYSTEM_DUMPCODE

is the system dump code.
DAEOPTION

Optional Parameter

1042 CICS TS for z/OS 4.1: Diagnosis Reference

states whether a dump produced for this dumpcode is eligible for suppression
by the MVS Dump Analysis and Elimination (DAE) component.

Values for the parameter are:
 NO
 YES

DUMPSCOPE
indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
Optional Parameter

 is the maximum number of times the dump code action can be taken.
RESET_COUNT

Optional Parameter

 states whether COUNT is to be reset to zero.

Values for the parameter are:
 NO
 YES

SYSTEM_DUMP
Optional Parameter

 states whether a system dump is required for this dump code.

Values for the parameter are:
 NO
 YES

TERMINATE_CICS
Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_FULL
 DUMPCODE_NOT_FOUND
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 78. Dump Domain (DU) 1043

DUDT gate, SET_TRAN_DUMPCODE function
The SET_TRAN_DUMPCODE function of the DUDT gate is invoked to set options
for a dump code in the transaction dump table.

Input Parameters
TRANSACTION_DUMPCODE

is the transaction dump code.
DUMPSCOPE

indicates whether an SDUMP request is to be sent to all MVS images in the
sysplex which are running CICS systems connected via XCF/MRO to the
system on which the command is issued.

 Values for the parameter are:
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex
which are running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request
is sent to all MVS images in the sysplex which are running one or more
CICS systems connected via XCF/MRO to the CICS on which the SDUMP
is initiated.

MAXIMUM_DUMPS
Optional Parameter

 is the maximum number of times the dump code action can be taken.
RESET_COUNT

Optional Parameter

 states whether COUNT is to be reset to zero.

Values for the parameter are:
 NO
 YES

SYSTEM_DUMP
Optional Parameter

 states whether a system dump is required for this dump code.

Values for the parameter are:
 NO
 YES

TERMINATE_CICS
Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

TRANSACTION_DUMP
Optional Parameter

 states whether a transaction dump is required for this dump code.

Values for the parameter are:
 NO
 YES

1044 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_FULL
 DUMPCODE_NOT_FOUND
 IO_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, STARTBR_SYSTEM_DUMPCODE function
The STARTBR_SYSTEM_DUMPCODE function of the DUDT gate is invoked to
start a browse session on the system dump table.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

BROWSE_TOKEN
is the token identifying the browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDT gate, STARTBR_TRAN_DUMPCODE function
The STARTBR_TRAN_DUMPCODE function of the DUDT gate is invoked to start
a browse session on the transaction dump table.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

BROWSE_TOKEN
is the token identifying the browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUDU gate, SYSTEM_DUMP function
The SYSTEM_DUMP function of the DUDU gate is invoked to take a system
dump.

Input Parameters
SYSTEM_DUMPCODE

is the system dump code.
CALLER

Optional Parameter

 specifies the address and length of a character string to appear as the caller of
this dump.

INDIRECT_CALL
Optional Parameter

 states whether the call is indirect, that is, whether the actual requester of the
dump is not the immediate caller of the dump domain.

Chapter 78. Dump Domain (DU) 1045

Values for the parameter are:
 NO
 YES

MESSAGE_TEXT
Optional Parameter

 specifies the address and length of the message text associated with this
system dump.

SYMPTOM_RECORD
Optional Parameter

 specifies the address and length of the symptom record associated with this
dump.

SYMPTOM_STRING
Optional Parameter

 specifies the address and length of the symptom string associated with this
dump.

TERMINATE_CICS
Optional Parameter

 states whether CICS is to be terminated for this dump code.

Values for the parameter are:
 NO
 YES

TITLE
Optional Parameter

 specifies the address and length of a title to be associated with this dump.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FESTAE_FAILED
 INSUFFICIENT_STORAGE
 INVALID_DUMPCODE
 IWMWQWRK_FAILED
 NO_DATASET
 PARTIAL_SYSTEM_DUMP
 SDUMP_BUSY
 SDUMP_FAILED
 SDUMP_NOT_AUTHORIZED
 SUPPRESSED_BY_DUMPOPTION
 SUPPRESSED_BY_DUMPTABLE
 SUPPRESSED_BY_USEREXIT

The following values are returned when RESPONSE is INVALID:
 INVALID_PROBDESC
 INVALID_SVC_CALL

DUMPID
is a character string of the form "rrrr/cccc" giving a unique identification to
this dump request. "rrrr" is the run number of this CICS instance. Leading
zeros are removed. The run number is incremented every time CICS is
initialized. "cccc" is the count of this dump request within this CICS run.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1046 CICS TS for z/OS 4.1: Diagnosis Reference

DUDU gate, TRANSACTION_DUMP function
The TRANSACTION_DUMP function of the DUDU gate is invoked to take a
transaction dump.

Input Parameters
TRANSACTION_DUMPCODE

is the transaction dump code.
CSA

Optional Parameter

 - common system area

Values for the parameter are:
 NO
 YES

DCT
Optional Parameter

 - destination control table.

Values for the parameter are:
 NO
 YES

FCT
Optional Parameter

 - file control table

Values for the parameter are:
 NO
 YES

INDIRECT_CALL
Optional Parameter

 states whether the call is indirect, that is, whether the actual requester of the
dump is not the immediate caller of the dump domain.

Values for the parameter are:
 NO
 YES

PCT
Optional Parameter

 - program control table

Values for the parameter are:
 NO
 YES

PPT
Optional Parameter

 - processing program table

Values for the parameter are:
 NO
 YES

PROGRAM
Optional Parameter

 - program storage

Values for the parameter are:

Chapter 78. Dump Domain (DU) 1047

NO
 YES

SEGMENT
Optional Parameter

 specifies the address and length of a single block of storage to be dumped.
SEGMENT_LIST

Optional Parameter

 specifies the address and length of a list of length-address pairs of storage
blocks to be dumped. SEGMENT and SEGMENT_LIST may not be specified
together.

SIT
Optional Parameter

 - system initialization table

Values for the parameter are:
 NO
 YES

TCA
Optional Parameter

 - task control area

Values for the parameter are:
 NO
 YES

TCT
Optional Parameter

 - terminal control table

Values for the parameter are:
 NO
 YES

TERMINAL
Optional Parameter

 - terminal-related storage areas

Values for the parameter are:
 NO
 YES

TRANSACTION
Optional Parameter

 - transaction-related storage areas

Values for the parameter are:
 NO
 YES

TRT
Optional Parameter

 - internal trace table

Values for the parameter are:
 NO
 YES

1048 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FESTAE_FAILED
 INSUFFICIENT_STORAGE
 INVALID_DUMPCODE
 IWMWQWRK_FAILED
 NOT_OPEN
 OPEN_ERROR
 PARTIAL_SYSTEM_DUMP
 PARTIAL_TRANSACTION_DUMP
 SDUMP_BUSY
 SDUMP_FAILED
 SDUMP_NOT_AUTHORIZED
 SUPPRESSED_BY_DUMPOPTION
 SUPPRESSED_BY_DUMPTABLE
 SUPPRESSED_BY_USEREXIT

The following values are returned when RESPONSE is INVALID:
 INVALID_PROBDESC
 INVALID_SVC_CALL

DUMPID
is a character string of the form "rrrr/cccc" giving a unique identification to
this dump request. "rrrr" is the run number of this CICS instance. Leading
zeros are removed. The run number is incremented every time CICS is
initialized. "cccc" is the count of this dump request within this CICS run.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUFT gate, DEREGISTER function
Deregister a feature with the dump domain

Input Parameters
COMPANY_NAME

The name of the company providing the feature.
FEATURE_LEVEL

The level number of the feature.
FEATURE_NAME

The name of the feature.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FEATURE_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUFT gate, INQUIRE_FEATURE function
Inquire about a feature that is registered with the dump domain.

Chapter 78. Dump Domain (DU) 1049

Input Parameters
COMPANY_NAME

The name of the company providing the feature.
FEATURE_LEVEL

The level number of the feature.
FEATURE_NAME

The name of the feature.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DEREGISTERED_FEATURE
 FEATURE_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUMP_FORMATTING_ROUTINE
Optional Parameter

 The dump formatting routine provided by the feature.
FEATURE_TOKEN

Optional Parameter

 The token that identifies the registered feature.
FEATURE_TRACE_TOKEN

The token that the feature uses to identify itself to the CICS trace domain.
TRACE_ABBREVIATED_NAME

Optional Parameter

 The abbreviated name that the feature uses in the trace.
TRACE_FORMATTING_ROUTINE

Optional Parameter

 The trace formatting routine provided by the feature.

DUFT gate, REGISTER function
Register a feature with the dump domain.

Input Parameters
COMPANY_NAME

The name of the company providing the feature.
FEATURE_LEVEL

The level number of the feature.
FEATURE_NAME

The name of the feature.
DUMP_FORMATTING_ROUTINE

Optional Parameter

 The dump formatting routine provided by the feature.
FEATURE_TOKEN

Optional Parameter

 The token that identifies the registered feature.
TRACE_ABBREVIATED_NAME

Optional Parameter

1050 CICS TS for z/OS 4.1: Diagnosis Reference

The abbreviated name that the feature uses in the trace.
TRACE_FORMATTING_ROUTINE

Optional Parameter

 The trace formatting routine provided by the feature.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_DUMP_ROUTINE
 DUPLICATE_FEATURE
 DUPLICATE_TRACE_ROUTINE
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

FEATURE_TRACE_TOKEN
The token that the feature uses to identify itself to the CICS trace domain.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUFT gate, UPDATE_FEATURE function
Update information about a feature that is registered with the dump domain.

Input Parameters
COMPANY_NAME

The name of the company providing the feature.
FEATURE_LEVEL

The level number of the feature.
FEATURE_NAME

The name of the feature.
DUMP_FORMATTING_ROUTINE

Optional Parameter

 The dump formatting routine provided by the feature.
FEATURE_TOKEN

Optional Parameter

 The token that identifies the registered feature.
TRACE_ABBREVIATED_NAME

Optional Parameter

 The abbreviated name that the feature uses in the trace.
TRACE_FORMATTING_ROUTINE

Optional Parameter

 The trace formatting routine provided by the feature.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DEREGISTERED_FEATURE
 DUPLICATE_DUMP_ROUTINE
 DUPLICATE_TRACE_ROUTINE
 FEATURE_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

Chapter 78. Dump Domain (DU) 1051

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, CROSS_SYSTEM_DUMP_AVAIL function
The CROSS_SYSTEM_DUMP_AVAIL function of the DUSR gate is used to inform
the dump domain about the DUMP_AVAIL token which links CICS with the MVS
workload manager.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, DUMPDS_CLOSE function
The DUMPDS_CLOSE function of the DUSR gate is invoked to close the CICS
dump data set.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, DUMPDS_OPEN function
The DUMPDS_OPEN function of the DUSR gate is invoked to open the CICS
dump data set.

Output Parameters
REASON

The values for the parameter are:
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, DUMPDS_SWITCH function
The DUMPDS_SWITCH function of the DUSR gate is invoked to switch to the
alternate CICS dump data set.

Output Parameters
REASON

The values for the parameter are:
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1052 CICS TS for z/OS 4.1: Diagnosis Reference

DUSR gate, INQUIRE_CURRENT_DUMPDS function
The INQUIRE_CURRENT_DUMPDS function of the DUSR gate returns the name
of the current dump data set.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

CURRENT_DUMPDS
is the name of the current dump data set.

 Values for the parameter are:
 DFHDMPA
 DFHDMPB

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, INQUIRE_DUMPDS_AUTOSWITCH function
The INQUIRE_DUMPDS_AUTOSWITCH function of the DUSR gate returns an
indication of whether autoswitching is active or not.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

AUTOSWITCH
is the dump data set autoswitch status.

 Values for the parameter are:
 OFF
 ON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, INQUIRE_DUMPDS_OPEN_STATUS function
The INQUIRE_DUMPDS_OPEN_STATUS function of the DUSR gate returns an
indication of whether the current dump data set is open or closed.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

OPEN_STATUS
is the open status of the current dump data set.

 Values for the parameter are:
 CLOSED
 OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 78. Dump Domain (DU) 1053

DUSR gate, INQUIRE_INITIAL_DUMPDS function
The INQUIRE_INITIAL_DUMPDS function of the DUSR gate returns the setting of
the initial dump data set.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

INITIAL_DUMPDS
is the initial dump data set.

 Values for the parameter are:
 AUTO
 DFHDMPA
 DFHDMPB

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, INQUIRE_RETRY_TIME function
The INQUIRE_RETRY_TIME function of the DUSR gate returns the value of the
SDUMP retry time.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RETRY_TIME
is the value in seconds of the time interval for which CICS should retry
SDUMP requests that fail because another SDUMP is in progress within the
MVS system. The SDUMP is retried at intervals of five seconds for the
specified total time.

DUSR gate, INQUIRE_SYSTEM_DUMP function
The INQUIRE_SYSTEM_DUMP function of the DUSR gate returns the setting of
the system dump suppression flag.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SYSTEM_DUMP
states whether a system dump is required for this dump code.

 Values for the parameter are:
 NO

1054 CICS TS for z/OS 4.1: Diagnosis Reference

YES

DUSR gate, SET_DUMPDS_AUTOSWITCH function
The SET_DUMPDS_AUTOSWITCH function of the DUSR gate is used to set
autoswitching on or off.

Input Parameters
AUTOSWITCH

is the dump data set autoswitch status.

 Values for the parameter are:
 OFF
 ON

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, SET_DUMPTABLE_DEFAULTS function
The SET_DUMPTABLE_DEFAULTS function of the DUSR gate is invoked during
system initialization tp update the DUA with the DAE option specified in a SIT or
as a SIT override.

Input Parameters
DAE_DEFAULT

Optional Parameter

 indicates whether temporary dump table entries added by CICS will indicate
DAE (dump eligible for DAE suppression) or NODAE (dump will not be
suppressed by DAE).

Values for the parameter are:
 DAE
 NODAE

SYDUMAX_DEFAULT
Optional Parameter

 is taken from system initialization parameter (SIT=SYDUMAX), which specifies
the maximum number of system dumps which can be taken per dump table
entry.

TRDUMAX_DEFAULT
Optional Parameter

 is taken from system initialization parameter (SIT=TRDUMAX), which specifies
the maximum number of transaction dumps which can be taken per dump
table entry.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

Chapter 78. Dump Domain (DU) 1055

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, SET_INITIAL_DUMPDS function
The SET_INITIAL_DUMPDS function of the DUSR gate is used to change the
setting of the initial dump data set.

Input Parameters
INITIAL_DUMPDS

is the initial dump data set.

 Values for the parameter are:
 AUTO
 DFHDMPA
 DFHDMPB

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, SET_RETRY_TIME function
The SET_RETRY_TIME function of the DUSR gate is invoked to set the SDUMP
retry time.

Input Parameters
RETRY_TIME

is the value in seconds of the time interval for which CICS should retry
SDUMP requests that fail because another SDUMP is in progress within the
MVS system. The SDUMP is retried at intervals of five seconds for the
specified total time.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, SET_SYSTEM_DUMP function
The SET_SYSTEM_DUMP function of the DUSR gate is used to change the setting
of the system dump suppression flag.

Input Parameters
SYSTEM_DUMP

states whether a system dump is required for this dump code.

 Values for the parameter are:

1056 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, SET_TRANTABLESIZE function
Set the size of the transaction dump trace table.

Input Parameters
TRAN_TABLE_SIZE

the desired size of the transaction dump trace table.

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUSR gate, SET_TRANTABLETYPE function
Specify which trace entries should be copied from the internal trace table to the
transaction dump trace table.

Input Parameters
TRAN_TABLE_TYPE

indicates which trace entries should be copied.

 Values for the parameter are:
 ALL
 TRAN

Output Parameters
REASON

The values for the parameter are:
 NOT_OPEN
 OPEN_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 78. Dump Domain (DU) 1057

Dump domain's generic gates

Table 45 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 45. Dump domain's generic gates

Gate Trace Functions Format

APUE DU 0301
DS 0302

SET_EXIT_STATUS APUE

DMDM DU 0001
DU 0002

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST DS 0500
DS 0501

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Application Manager Domain's generic formats” on page 867
 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777

Initialization and termination

In preinitialization processing, the dump domain establishes the initial dumping
status:
v System dumping is enabled or suppressed, as required.
v The next transaction dump data set to be used is flagged.
v The transaction dump data set autoswitch status is set on or off, as required.
v The dump retry interval is established.
v The system dump table is initialized to empty.

For a cold start, the information comes from the system initialization parameters;
for any other type of start, the information comes from the local catalog, but is
then modified by any relevant system initialization parameters.

In initialization processing, the dump domain loads the transaction dump table
and the system dump table from the global catalog. In quiesce processing, the
dump domain performs only internal routines.

In termination processing, the dump domain closes the transaction dump data set.

DMDM PRE_INITIALIZE function

The PRE_INITIALIZE function of the DMDM gate performs the following
functions:
1. Issue MVS(TM) GETMAIN for DU anchor block (DUA) and initialize it.
2. Read DU state record from the local catalog and set values in the DUA.
3. Initialize to empty the system dump table.
4. Issue MVS GETMAIN for DU statistics buffer.

1058 CICS TS for z/OS 4.1: Diagnosis Reference

5. Acquire startup information from the parameter manager (PA) domain and set
it in the DUA.

6. Inform the kernel that DU system dump is available by issuing KEDD
ADD_GATE for the DFHDUDU gate.

DMDM INITIALIZE_DOMAIN function

The INITIALIZE_DOMAIN function of the DMDM gate performs the following
functions:
1. Load the system dump table from the global catalog.
2. Load the transaction dump table from the global catalog.
3. Issue LMLM ADD_LOCK for the dump data set lock (DUDATSET).
4. Issue LMLM ADD_LOCK for the dump table lock (DUTABLE).
5. Issue LMLM UNLOCK for DUTABLE lock.
6. Issue KEDD ADD_GATE for the DU STST, DUDT, and APUE gates.
7. Initialize transaction dump, including loading DFHDUIO, and indicate that the

dump table is available to the DUDU TRANSACTION_DUMP function.
8. Update DU state record on catalog.
9. Issue LMLM UNLOCK for DUDATSET lock, thereby making the transaction

dump function available.

DMDM QUIESCE_DOMAIN function

The QUIESCE_DOMAIN function of the DMDM gate issues a DMDM
WAIT_PHASE function request to ensure all statistics are collected.

DMDM TERMINATE_DOMAIN function

The TERMINATE_DOMAIN function of the DMDM gate issues a DUSU CLOSE
request to close the transaction dump data set.

APUE SET_EXIT_STATUS function

The SET_EXIT_STATUS function of the APUE gate sets the exit status flag in the
DUA for the specified exit.

STST COLLECT_STATISTICS function

The COLLECT_STATISTICS function of the STST gate is called from the statistics
domain. The process flow is:
1. Issue LMLM LOCK for DUTABLE lock on the transaction dump table.
2. Acquire KE system dump lock.
3. Issue STST COLLECT_STATISTICS call to DFHDUTM.

If the COLLECT_STATISTICS parameters requested DATA, the following
statistics records are written to the statistics domain:
a. If the RESOURCE_TYPE is not specified or is SYSDUMP, a DFHSDGPS

global system dump statistics record is created, using global system dump
counts (taken and suppressed) from the DUA. The KE system lock is
released while a STATS_PUT request is made to the statistics domain. The
lock is obtained again on successful completion of the STATS_PUT.

b. If the RESOURCE_TYPE is not specified or is TRANDUMP, a DFHTDGPS
global transaction dump statistics record is created, using global transaction

Chapter 78. Dump Domain (DU) 1059

dump counts (taken and suppressed) from the DUA. The DUTABLE lock is
released while a RECORD_STATISTICS request is made to the statistics
domain. The lock is obtained again on successful completion of the
RECORD_STATISTICS.

c. If the RESOURCE_TYPE is not specified or is SYSDUMP, a DFHSDRPS
statistics detail record is written for every dump code found on the system
dump table. The records contain the statistics for that dump code held on
the dump table entry. The DFHSDRPS records are buffered and full buffers
are written out using a RECORD_STATISTICS call to the statistics domain.

d. If the RESOURCE_TYPE is not specified or is TRANDUMP, a DFHTDRPS
statistics detail record is written for every dump code found on the
transaction dump table. The records contain the statistics for that dump
code held on the dump table entry. The DFHTDRPS records are buffered
and full buffers are written out using a RECORD_STATISTICS call to the
statistics domain.

The global system and transaction dump counts (taken and suppressed) in the
DUA are also reset to zero. The last_reset_time is also updated in the DUA at
this time.

4. Release DUTABLE lock and system dump lock.

STST COLLECT_RESOURCE_STATS function

The COLLECT_RESOURCE_STATS function of the STST gate is called from an
EXEC CICS command. The process flow is:
1. Issue LMLM LOCK for DUTABLE lock on the transaction dump table.
2. Acquire KE system dump lock.
3. Issue STST COLLECT_RESOURCE_STATS call to DFHDUTM.

a. Validate RESOURCE_TYPE for either SYSDUMP or TRANDUMP. Perform
error processing and return INVALID to the caller if it is neither of these.

b. If the RESOURCE_ID has not been passed, format a global statistics record,
using counts of dumps taken and suppressed from the DUA, for either
system or transaction dumps, depending on the RESOURCE_TYPE. Return
this record to the caller in the RESOURCE_STATISTICS_DATA parameter.

c. If the RESOURCE_ID is present, it should contain a dump code. Search the
relevant dump table (depending on RESOURCE_TYPE). Return
ID_NOT_FOUND exception to the caller if the dump code cannot be found.
If the dump code is found, format either a DFHTDRPS or a DFHSDRPS
statistics record using the dumps taken and suppressed statistics on the
dump table entry. This record is formatted in the next available space in the
RESOURCE_STATISTICS_DATA buffer.

4. Release DUTABLE lock and system dump lock.

Modules
 Module Function

DFHDUDM Processes requests to the DMDM gate of the dump domain

DFHDUDT Processes requests to the DUDT gate of the dump domain

DFHDUDU Processes requests to the DUDU gate of the dump domain

DFHDUIO Processes domain subroutine requests of format DUIO

DFHDUPH Writes line to dump index for each dump header record encountered.
On first entry, opens the index file DFHTINDX.

1060 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHDUPM Invoked for each module index entry found to save information.
Invoked when dump trailer record found to format and print the
complete module index.

DFHDUPP Is responsible for all access to the print file DFHPRINT, namely for
OPEN, CLOSE, and PUT requests.

DFHDUPR Controlling routine, responsible for reading information from the dump
data set DFHDMPDS.

DFHDUPS Receives the address of a dump header record from the dump data set,
and decides whether this dump fulfils the criteria for printing. On first
entry, reads and stores the selective print parameters from SYSIN.

DFHDUSR Processes requests to the DUSR and APUE gates of the dump domain

DFHDUSU Processes domain subroutine requests of format DUSU

DFHDUSVC System dump

DFHDUTM Dump table manager

DFHDUXD Invoked by DFHDUDU with a DUDD format parameter list to control
the transaction dump process

DFHDUXW Processes domain subroutine requests of format DUXW

Transaction dump formatting routines

The following routines are invoked by DFHDUXD to dump the storage areas
associated with a particular CICS component. They are passed a DUXF format
parameter list. They are all part of the DFHSIP load module.

 Module Function

DFHDLXDF DL/I related areas

DFHFCXDF File control related areas

DFHPCXDF Program related areas

DFHSAXDF Common areas such as CSA, TCA, and so on

DFHSMXDF Task subpools

DFHTCXDF Terminal control related areas

DFHTRXDF The internal trace table

DFHXDXDF Information such as register contents, headers, and so on

DFHXRXDF XRF related areas

Exits
There are four user exit points in the dump domain, XDUCLSE, XDUOUT,
XDUREQ and XDUREQC. See the CICS Customization Guide for further details.

Chapter 78. Dump Domain (DU) 1061

1062 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 79. Enterprise Java Domain (EJ)

The Enterprise Java Domain manages CorbaServers, DJars and Beans.

The Enterprise Java (EJ) domain is logically divided into three parts:
v Elements, which covers the manipulation of the EJ Resources of CorbaServers

(EJCG), DJars (EJDG) and Beans (EJBJ)
v Object Stores, used to store stateful Session Beans, and to hold the EJB Directory

(EJOS and EJOB)
v Directory, used to record the association of OTS transactions and object instances

with Request Processors (EJDI).

Enterprise Java Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the EJ domain.

EJBB gate, END_BROWSE function
The END_BROWSE function of the EJBB gate ends the browse operation and
deletes the browsetoken. This operation is available from EJJO and so the
definitions must be consistent.

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_BROWSE_TOKEN
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJBB gate, GET_NEXT function
The GET_NEXT function of the EJBB gate returns the next Bean Control Block in
the list of Beans that meets the selection criteria. The ordering of Beans returned is
not specified (the order is not alpha order but LastIn-FirstOut for Browse
purposes). This operation is available from EJJO and so the definitions must be
consistent.

© Copyright IBM Corp. 1997, 2011 1063

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

POINTAT
Optional Parameter

 Indicates whether to advance the browse pointer to point to the next item in
the chain. NORMAL will return the next item in the chain, whereas PRIOR
will always return the same item, unless that item has been deleted. The
POINTAT parameter is used to enable a Browse to proceed when the aim of
the Browse is to locate a Bean to be deleted.
v POINTAT(NORMAL) should be used in all cases by the SPI layers and

general users (and is the default).
v POINTAT(PRIOR) shows the deletion intent. POINTAT(PRIOR) should never

be coded in normal circumstances and may result in an infinite loop if used
without a delete.

Values for the parameter are:
 NORMAL
 PRIOR

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BROWSE_BROKEN
 EJB_INACTIVE
 END_OF_BROWSE
 INVALID_BROWSE_TOKEN
 INVALID_POINTAT
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

BEAN
Name of the Bean

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CORBASERVER
Optional Parameter

 Name of the CorbaServer for this DJar
DDLEN

Optional Parameter

 Length of the deployment/meta data area. Used particularly to contain the
length of the data if the size is larger than the maximum length for ddareaforin
block

DJAR
Optional Parameter

 Name of DJar for this Bean
STATUS

Optional Parameter

1064 CICS TS for z/OS 4.1: Diagnosis Reference

The state of the Bean being Browsed (NORMAL or TEMPORARY). Indicates
that a Bean has been confirmed

Values for the parameter are:
 NORMAL
 TEMPORARY

EJBB gate, START_BROWSE function
The START_BROWSE function of the EJBB gate initiates the browse upon the chain
of Beans. Positioning of the start of the Browse is not supported. Selection by Bean
is not provided, but selection by owning CorbaServer and owning DJar is. The
end_browse condition is not returned if there are no suitable Beans (this is
postponed until the get_next). The returned browsetoken must be used for
subsequent GET_NEXT operations. This operation is available from EJJO and so
the definitions must be consistent.

Input Parameters
BROWSEMODE

Optional Parameter

 Controls which Beans are to be selected for Bean Browse.
v BROWSEMODE(ALL) selects all Beans (setting not usually used)
v BROWSEMODE(VALIDONLY) selects the Beans whose status has been

confirmed (those which are not temporarily present during the install of all
the Beans from a DJar). This is the usual (and default) setting. This setting
should be used by the SPI-layers.

v BROWSEMODE(INDOUBTONLY) selects the Beans whose status is
temporary (those which are temporarily present during the install of all the
Beans from a DJar).

Values for the parameter are:
 ALL
 INDOUBTONLY
 VALIDONLY

CORBASERVER
Optional Parameter

 Name of the CorbaServer to be browsed
DJAR

Optional Parameter

 Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_BROWSEMODE
 INVALID_CORBASERVER
 INVALID_DJAR
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

Chapter 79. Enterprise Java Domain (EJ) 1065

BROWSETOKEN
The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJBG gate, ADD_BEAN function
The ADD_BEAN function of the EJBG gate:

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be browsed
DDAREAFORIN

Block for Bean deployment/meta data input
DJAR

Name of the DJar for this Bean
ADDMODE

Optional Parameter

 The type of create done for the Bean

Values for the parameter are:
 HARDENED
 NORMAL

MESSAGE
Optional Parameter

 Controls whether a message is issued when a CorbaServer is created

Values for the parameter are:
 MSG
 NOMSG

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ALREADY_PRESENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DDAREAFORIN_ABSENT
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 INVALID_BEAN
 INVALID_CORBASERVER
 INVALID_DD_ZERO_LENGTH
 INVALID_DD_ZERO_POINTER
 INVALID_DDAREAFORIN
 INVALID_DJAR
 LOCK_ERROR
 LOOP
 NAMESPACE_CONFLICT
 NO_ERROR

1066 CICS TS for z/OS 4.1: Diagnosis Reference

PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJBG gate, ADD_BEAN_STATS function
The ADD_BEAN_STATS function of the EJBG gate increments the EJ domain's
statistics counters for a specific enterprise bean.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer
ACTIVATES

Optional Parameter

 The number of times this bean has been activated
CREATES

Optional Parameter

 The number of times this bean has been created
METHOD_CALLS

Optional Parameter

 The number of method calls (other than the above) made against this bean
PASSIVATES

Optional Parameter

 The number of times this bean has been passivated
REMOVES

Optional Parameter

 The number of times this bean has been removed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 79. Enterprise Java Domain (EJ) 1067

EJBG gate, CONFIRM_ALL_BEANS function
The CONFIRM_ALL_BEANS function of the EJBG gate hardens all Beans
associated with the given DJar within the relevant CorbaServer namespace. This
just switches the state of a suitable Bean from temporary to normal. This will run
when all Beans in the DJar have been correctly installed. The key is CS+DJar for
this multiple status changing.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed
DJAR

Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJBG gate, DELETE_ALL_BEANS function
The DELETE_ALL_BEANS function of the EJBG gate is executed when all of the
Beans within the DJar did not install or when the owning DJar itself is deleted. All
relevant Bean Control Blocks (whatever their state) are deleted. This works via the
usual Browse mechanism (BROWSEMODE(ALL)) with POINTAT(PRIOR) enabled
to delete each individual Bean. The key of CS+DJar+Bean is required.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed
DJAR

Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 BROWSE_ERROR
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

1068 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJBG gate, DELETE_BEAN function
The DELETE_BEAN function of the EJBG gate deletes the Bean Control Block. The
XRSINDI exit is also called to notify the removal. The full key of CS+DJar+Bean is
required.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be Browsed
DJAR

Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJBG gate, GET_BEAN_DD function
The GET_BEAN_DD function of the EJBG gate returns the saved
Deployment/Meta Data for the Bean (key is CS+Bean) in a buffer. This operation is
available via EJJO and so parameters should be kept consistent.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be browsed
DDAREAFORUPD

A buffer for the Bean deployment/meta data update area

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DD_AREA_TOO_SMALL
 DDAREAFORUPD_ABSENT

Chapter 79. Enterprise Java Domain (EJ) 1069

DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 INVALID_DD_ZERO_LENGTH
 INVALID_DD_ZERO_POINTER
 INVALID_DDAREAFORUPD
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DDLEN
Optional Parameter

 Length of the deployment/meta data area. Used particularly to contain the
length of the data if the size is larger than the maximum length for ddareaforin
block

DJAR
Optional Parameter

 Name of DJar for this Bean

EJBG gate, INQUIRE_BEAN function
The INQUIRE_BEAN function of the EJBG gate extracts information from the
named Bean Control Block (key is CS+Bean). Note that the length of the
Deployment/Meta Data is returned, but this XML is obtained via get_bean_dd.
This function can be used to determine the DJar which sourced the Bean.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTIVATES
Optional Parameter

 The activate count for the bean.
CREATES

Optional Parameter

1070 CICS TS for z/OS 4.1: Diagnosis Reference

The create count for the bean.
DDLEN

Optional Parameter

 Length of the deployment/meta data area. Used particularly to contain the
length of the data if the size is larger than the maximum length for ddareaforin
block

DJAR
Optional Parameter

 Name of DJar for this Bean
METHOD_CALLS

Optional Parameter

 The method call count for the bean.
PASSIVATES

Optional Parameter

 The passivate count for the bean.
REMOVES

Optional Parameter

 The removes count for the bean.
RESET

Optional Parameter

 Indicates whether to reset the bean counters.

Values for the parameter are:
 NO
 YES

STATUS
Optional Parameter

 The state of the Bean being Browsed (NORMAL or TEMPORARY). Indicates
that a Bean has been confirmed

Values for the parameter are:
 NORMAL
 TEMPORARY

EJBG gate, RESET_BEAN_STATS function
The RESET_BEAN_STATS function of the EJBG gate sets the EJ domain's statistics
counters, for a specific enterprise bean, to zero.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_ABSENT
 DJAR_INVALID_STATE

Chapter 79. Enterprise Java Domain (EJ) 1071

EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCB gate, END_BROWSE function
The END_BROWSE function of the EJCB gate ends the browse operation and
deletes the browsetoken.

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_BROWSE_TOKEN
 LOCK_ERROR
 LOOP
 NO_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCB gate, GET_NEXT function
The GET_NEXT function of the EJCB gate returns the next CorbaServer Control
Block in the list of CorbaServers. The ordering of CorbaServers returned is not
specified (the order is not alpha order but Last-FirstOut for Browse purposes). The
POINTAT parameter is used to enable a Browse to proceed when the aim of the
Browse is to locate a CorbaServer to be deleted.

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

DJARDIR_BUFF
Optional Parameter

 a buffer in which the name of the deployed JAR file directory is returned.
HOST_BUFF

Optional Parameter

 a buffer in which the TCP/IP host name or dotted decimal TCP/IP address is
returned.

JNDIPREFIX_BUFF
Optional Parameter

1072 CICS TS for z/OS 4.1: Diagnosis Reference

a buffer in which the JNDI prefix is returned.
POINTAT

Optional Parameter

 Indicates whether to advance the browse pointer to point to the next item in
the chain (NORMAL|PRIOR). NORMAL will return the next item in the chain,
whereas PRIOR will always return the same item, unless that item has been
deleted

Values for the parameter are:
 NORMAL
 PRIOR

SHELF_BUFF
Optional Parameter

 a buffer in which the name of the HFS shelf directory is returned.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BROWSE_BROKEN
 EJB_INACTIVE
 END_OF_BROWSE
 INVALID_BROWSE_TOKEN
 INVALID_POINTAT
 LOCK_ERROR
 LOOP
 NO_ERROR
 SETUP_ERROR

CORBASERVER
Name of the CorbaServer for this DJar

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ASSERTED_TCPIPSERVICE
Optional Parameter

 the 8-character name of a TCPIPSERVICE resource that defines the
characteristics of the port which is used for inbound IIOP with asserted
identity authentication.

AUTO_PUBLISH
Optional Parameter

 indicates whether enterprise beans are to be automatically published to the
JNDI namespace when the deployed JAR file that contains them is successfully
installed in the CorbaServer.

Values for the parameter are:
 NO
 YES

BASIC_TCPIPSERVICE
Optional Parameter

 the 8-character name of a TCPIPSERVICE resource that defines the
characteristics of the port which is used for inbound IIOP with basic
authentication.

CERTIFICATE_LABEL
Optional Parameter

Chapter 79. Enterprise Java Domain (EJ) 1073

the label of the certificate within the key ring that is used as a client certificate
in the SSL handshake for outbound IIOP connections.

CIPHER_COUNT
Optional Parameter

 the number of cipher suites that are available to negotiate with clients during
the SSL handshake.

CIPHER_SUITES
Optional Parameter

 the list of cipher suites that is used to negotiate with clients during the SSL
handshake.

CLIENTCERT_TCPIPSERVICE
Optional Parameter

 the 8-character name of a TCPIPSERVICE resource that defines the
characteristics of the port which is used for inbound IIOP with SSL client
certificate authentication.

ENABLE_STATE
Optional Parameter

 the current state of the CorbaServer.

Values for the parameter are:
 DISABLED
 DISABLING
 DISCARDING
 ENABLED
 ENABLING

OUTPRIVACY
Optional Parameter

 the level of SSL encryption that is used for outbound connections from this
CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SCANINTERVAL
Optional Parameter

 The interval between repeated scans of the CorbaServer chain.
SSLUNAUTH_TCPIPSERVICE

Optional Parameter

 the 8-character name of a TCPIPSERVICE resource that defines the
chracteristics of the port which is used for inbound IIOP with SSL but no client
authentication.

STATE
Optional Parameter

 Indicates the current Resolution State and whether it is available for use or not.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING

1074 CICS TS for z/OS 4.1: Diagnosis Reference

UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMEOUT
Optional Parameter

 The elapsed time period (in seconds) of inactivity after which a session Bean
can be discarded

UNAUTH_TCPIPSERVICE
Optional Parameter

 the 8-character name of a TCPIPSERVICE resource that defines the
characteristics of the port which is used for inbound IIOP with no
authentication.

EJCB gate, START_BROWSE function
The START_BROWSE function of the EJCB gate initiates the browse upon the chain
of CorbaServers. Positioning of the start of the Browse is not supported. Selection
by CorbaServer is not provided. The end_browse condition is not returned if there
are no suitable CorbaServers (this is postponed until the get_next). The returned
browsetoken must be used for subsequent GET_NEXT operations.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 SETUP_ERROR
 STORAGE_ERROR

BROWSETOKEN
The pointer set up by START_BROWSE which points to the first DJar in the
chain to be Browsed

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, ACTION_CORBASERVER function
The ACTION_CORBASERVER function of the EJCG gate is a gate which tells
another party that something is to be done on the CorbaServer. The implemented
actions are to manipulate the External Namespace for the named CorbaServer.

Input Parameters
ACTIONMODE

the action to perform on the CorbaServer.

 Values for the parameter are:
 DJAR_SCAN
 PUBLISH
 RETRACT

CORBASERVER
Name of the CorbaServer to be Browsed

Chapter 79. Enterprise Java Domain (EJ) 1075

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_INVALID_STATE
 DJAR_SCAN_ERROR
 EJB_INACTIVE
 INVALID_ACTION
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 PUBLISH_ERROR
 RETRACT_ERROR
 SCAN_IN_PROGRESS
 SCAN_NOT_ALLOWED
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, ADD_CORBASERVER function
The ADD_CORBASERVER function creates a CorbaServer control block in memory,
chains it appropriately, and saves an entry in the Global Catalog for Warm restart
purposes. The XRSINDI exit is called to notify the creation of this element.

Input Parameters
ASSERTED_TCPIPSERVICE

The TCPIPSERVICE named in the ASSERTED attribute of the CORBASERVER.
BASIC_TCPIPSERVICE

The TCPIPSERVICE named in the BASIC attribute of the CORBASERVER.
CERTIFICATE_LABEL

The label of an X.509 certificate that is used as a client certificate during the
SSL handshake for outbound IIOP connections.

CLIENTCERT_TCPIPSERVICE
The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL client certificate authentication.

CORBASERVER
The name of the CorbaServer to be added.

DJARDIR
The fully-qualified name of the deployed JAR file directory (also known as the
pickup directory) on z/OS UNIX.

ENABLE_STATE
The initial state of the Corbaserver.

 Values for the parameter are:
 DISABLED
 DISABLING
 DISCARDING
 ENABLED
 ENABLING

1076 CICS TS for z/OS 4.1: Diagnosis Reference

HOST
The TCP/IP hostname or the dotted decimal TCP/IP address included in IORs
exported from this CorbaServer

JNDIPREFIX
The prefix to use at runtime when publishing to JNDI

OUTPRIVACY
The level of SSL encryption required for inbound connections to this service.

 Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SCANINTERVAL
The interval between repeated scans of the CorbaServer chain.

SHELF
The fully qualified name of a directory (a 'shelf' for 'jars') on z/OS UNIX

SSLUNAUTH_TCPIPSERVICE
The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL but no client authentication.

STATE
Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMEOUT
The elapsed time (in seconds) of inactivity after which a session Bean can be
discarded

UNAUTH_TCPIPSERVICE
The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with no authentication.

ADDMODE
Optional Parameter

 The type of create done for the Bean. The ADDMODE parameter controls the
scope of this operation for restart purposes (this defaults to NORMAL which
does both creation of the Control Block and its cataloging). Usage of this verb
via the SPI/RDO layers should always code ADDMODE(NORMAL).

Values for the parameter are:
 CATALOGONLY
 CBONLY
 NORMAL
 SINGLE

AUTO_PUBLISH
Optional Parameter

 Specifies whether the contents of a deployed JAR file should be automatically
published to the namespace when the DJAR definition is successfully installed
into this CorbaServer.

Chapter 79. Enterprise Java Domain (EJ) 1077

Values for the parameter are:
 NO
 YES

CIPHER_COUNT
Optional Parameter

 The number of cipher suites that are available to negotiate with clients during
the SSL handshake.

CIPHER_SUITES
Optional Parameter

 The list of cipher suites that is used to negotiate with clients during the SSL
handshake.

MESSAGE
Optional Parameter

 Controls whether a message is issued when a CorbaServer is created

Values for the parameter are:
 MSG
 NOMSG

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ATTACH_ERROR
 CATALOG_ERROR
 CERTIFICATE_ERROR
 CORBASERVER_ALREADY_THERE
 EJB_INACTIVE
 INVALID_CERTIFICATE_LABEL
 INVALID_CORBASERVER
 INVALID_HOST
 INVALID_JNDIPREFIX
 INVALID_SCANINTERVAL
 INVALID_SHELF
 INVALID_STATE
 INVALID_TIMEOUT
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CERTIFICATE_STATUS
Optional Parameter

 The status of the X.509 certificate identified with the CERTIFICATE-LABEL
parameter.

Values for the parameter are:
 EXPIRED
 NOT_CURRENT
 NOT_OWNED
 NOT_TRUSTED

1078 CICS TS for z/OS 4.1: Diagnosis Reference

OK

EJCG gate, AMEND_CORBASERVER function
The AMEND_CORBASERVER function of the EJCG gate changes information held
within the CorbaServer Control Block. It does not harden this information over a
CICS restart, nor does the change get communicated to the executing JVMs.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed
ASSERTED_TCPIPSERVICE

Optional Parameter

 The TCPIPSERVICE named in the ASSERTED attribute of the CORBASERVER.
AUTO_PUBLISH

Optional Parameter

 Specifies whether the contents of a deployed JAR file should be automatically
published to the namespace when the DJAR definition is successfully installed
into this CorbaServer.

Values for the parameter are:
 NO
 YES

BASIC_TCPIPSERVICE
The TCPIPSERVICE named in the BASIC attribute of the CORBASERVER.

CLIENTCERT_TCPIPSERVICE
Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL client certificate authentication.

CURRENT_STATE
Optional Parameter

 Used as a check, must match the existing state of the CorbaServer.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

ENABLE_STATE
Optional Parameter

 The state of the Corbaaserver.

Values for the parameter are:
 DISABLED
 DISABLING
 DISCARDING
 ENABLED
 ENABLING

FORCE_TRANS
Optional Parameter

Chapter 79. Enterprise Java Domain (EJ) 1079

A binary parameter indicating whether the requested ENABLE_STATE is to be
forced.

Values for the parameter are:
 NO
 YES

OUTPRIVACY
Optional Parameter

 The level of SSL encryption required for inbound connections to this service.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SCAN_RUNNING
Optional Parameter

 A binary parameter indicating whether a scan of the CorbaServer chain is
running.

Values for the parameter are:
 NO
 YES

SCANINTERVAL
Optional Parameter

 The interval between repeated scans of the CorbaServer chain.
SSLUNAUTH_TCPIPSERVICE

Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL but no client authentication.

STATE
Optional Parameter

 Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMEOUT
Optional Parameter

 The elapsed time (in seconds) of inactivity after which a session Bean can be
discarded

UNAUTH_TCPIPSERVICE
Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with no authentication.

1080 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 CORBASERVER_STATE_CHANGED
 EJB_INACTIVE
 EJDI_ERROR
 EJOS_ERROR
 INVALID_SCANINTERVAL
 INVALID_STATE
 INVALID_STATE_CHANGE
 INVALID_TIMEOUT
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SCAN_IN_PROGRESS
 SETUP_ERROR
 TIMER_NOTIFY_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, DELETE_CORBASERVER function
The DELETE_CORBASERVER function of the EJCG gate removes a CorbaServer.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_DELETING
 DELDJAR_ERROR
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, ESTABLISH function
The ESTABLISH function of the EJCG gate associates a CorbaServer with the
current task. It sets the task's Recovery Manager work token to reference the
CorbaServer.

Chapter 79. Enterprise Java Domain (EJ) 1081

Input Parameters
CORBASERVER

The name of the CorbaServer to be associated with the task.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_DELETING
 CORBASERVER_INVALID_STATE
 DELDJAR_ERROR
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, INQUIRE_CORBASERVER function
The INQUIRE_CORBASERVER function of the EJCG gate extracts information
from the named CorbaServer Control Block. It is also executed indirectly from the
EJJO gate.

Input Parameters
CORBASERVER

The name of the CorbaServer
DJARDIR_BUFF

Optional Parameter

 A buffer for the fully-qualified name of the deployed JAR file directory (also
known as the pickup directory) on z/OS UNIX.

HOST_BUFF
Optional Parameter

 A buffer for the TCP/IP hostname or the dotted decimal TCP/IP address
included in IORs exported from this CorbaServer

JNDIPREFIX_BUFF
Optional Parameter

 A buffer for the prefix that is used at runtime when publishing to JNDI
SHELF_BUFF

Optional Parameter

 A buffer for the fully qualified name of the shelf directory on z/OS UNIX

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 EJB_INACTIVE

1082 CICS TS for z/OS 4.1: Diagnosis Reference

LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ASSERTED_TCPIPSERVICE
Optional Parameter

 The TCPIPSERVICE named in the ASSERTED attribute of the CORBASERVER.
AUTO_PUBLISH

Optional Parameter

 Specifies whether the contents of a deployed JAR file should be automatically
published to the namespace when the DJAR definition is successfully installed
into this CorbaServer.

Values for the parameter are:
 NO
 YES

BASIC_TCPIPSERVICE
The TCPIPSERVICE named in the BASIC attribute of the CORBASERVER.

CERTIFICATE_LABEL
The label of an X.509 certificate that is used as a client certificate during the
SSL handshake for outbound IIOP connections.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites that are available to negotiate with clients during
the SSL handshake.

CIPHER_SUITES
Optional Parameter

 The list of cipher suites that is used to negotiate with clients during the SSL
handshake.

CLIENTCERT_TCPIPSERVICE
The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL client certificate authentication.

ENABLE_STATE
Optional Parameter

 The state of the Corbaserver.

Values for the parameter are:
 DISABLED
 DISABLING
 DISCARDING
 ENABLED
 ENABLING

OUTPRIVACY
Optional Parameter

 The level of SSL encryption required for inbound connections to this service.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

Chapter 79. Enterprise Java Domain (EJ) 1083

SCANINTERVAL
Optional Parameter

 The interval between repeated scans of the CorbaServer chain.
SSLUNAUTH_TCPIPSERVICE

Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL but no client authentication.

STATE
Optional Parameter

 Indicates the current Resolution State and whether it is available for use or not.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMEOUT
Optional Parameter

 The elapsed time period (in seconds) of inactivity after which a session Bean
can be discarded

UNAUTH_TCPIPSERVICE
Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with no authentication.

EJCG gate, RELINQUISH function
The RELINQUISH function of the EJCG gate ends an association between a
CorbaServer and the calling task. It sets the task's Recovery Manager work token
to blank.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed
ALLOC_COUNT

Optional Parameter

 The allocation number of the CorbaServer (used to prevent the accidental
relinquishing of CorbaServers that have been freed and reallocated).

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_DELETING
 DELDJAR_ERROR
 EJB_INACTIVE
 LOCK_ERROR

1084 CICS TS for z/OS 4.1: Diagnosis Reference

LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, RESOLVE_CORBASERVER function
The RESOLVE_CORBASERVER function of the EJCG gate makes the CorbaServer
available for use by Resolution (called by the CEJR transaction). The Java layers are
informed that the CorbaServer has been created.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BAD_STATE_SET
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_SCAN_ERROR
 EJB_INACTIVE
 EJDI_ERROR
 EJOS_ERROR
 IILS_ERROR
 INVALID_AUTHENTICATION
 INVALID_CORBASERVER
 INVALID_TCPIPSERVICE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

DID_STAGE
The output from Resolve function which indicates which stage of resolution
was done (STAGE1 or STAGE2)

 Values for the parameter are:
 STAGE1
 STAGE2

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, SET_ALL_STATE function
The SET_ALL_STATE function sets the state of all the CorbaServers.

Chapter 79. Enterprise Java Domain (EJ) 1085

Input Parameters
STATE

Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJCG gate, WAIT_FOR_CORBASERVER function
The WAIT_FOR_CORBASERVER function of the EJCG gate will wait until the
CorbaServer enters the required state.

Input Parameters
CORBASERVER

The name of the CorbaServer that the task will wait on.
STATE

Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

Output Parameters
REASON

The values for the parameter are:

1086 CICS TS for z/OS 4.1: Diagnosis Reference

ABEND
 CORBASERVER_ABSENT
 CORBASERVER_UNRESOLVED
 CORBASERVER_UNUSABLE
 EJB_INACTIVE
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 WAIT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDB gate, END_BROWSE function
The END_BROWSE function of the EJDB gate ends the browse operation and
deletes the browsetoken.

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_BROWSE_TOKEN
 LOCK_ERROR
 LOOP
 NO_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDB gate, GET_NEXT function
The GET_NEXT function of the EJDB gate returns the next DJar Control Block in
the list of DJars that meets the selection criteria. The ordering of DJars returned is
not specified (the order is not alpha order but LastIn-FirstOut for Browse
purposes). The POINTAT parameter is used to enable a Browse to proceed when
the aim of the browse is to locate a DJar to be deleted.

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

POINTAT
Optional Parameter

Chapter 79. Enterprise Java Domain (EJ) 1087

Indicates whether to advance the browse pointer to point to the next item in
the chain (NORMAL|PRIOR). NORMAL will return the next item in the chain,
whereas PRIOR will always return the same item, unless that item has been
deleted

Values for the parameter are:
 NORMAL
 PRIOR

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BROWSE_BROKEN
 EJB_INACTIVE
 END_OF_BROWSE
 INVALID_BROWSE_TOKEN
 INVALID_POINTAT
 LOCK_ERROR
 LOOP
 NO_ERROR
 SETUP_ERROR

DJAR
Name of DJar for this Bean

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CORBASERVER
Optional Parameter

 Name of the CorbaServer for this DJar
DATESTAMP

Optional Parameter

 The date when the deployed JAR file on z/OS UNIX was last updated
EASYINSTALL

Optional Parameter

 Binary value indicating if the DJar is installed the “easy” way (i.e. using the
scanning mechanism).

Values for the parameter are:
 NO
 YES

HFSFILE
Optional Parameter

 The fully qualified name of the deployed jar file on z/OS UNIX.
STATE

Optional Parameter

 Indicates the current Resolution State and whether it is available for use or not.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING

1088 CICS TS for z/OS 4.1: Diagnosis Reference

UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMESTAMP
Optional Parameter

 The time when the deployed JAR file on z/OS UNIX was last updated
VERSION

Optional Parameter

 The version of the DJar.

EJDB gate, START_BROWSE function
The START_BROWSE function of the EJDB gate initiates the browse upon the
chain of DJars. Positioning of the start of the Browse is not supported. Selection by
DJars is not provided, but selection by owning CorbaServer is. The end_browse
condition is not returned if there are no suitable DJars (this is postponed until the
get_next). The returned browsetoken must be used for subsequent GET_NEXT
operations.

Input Parameters
CORBASERVER

Optional Parameter

 Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_CORBASERVER
 LOCK_ERROR
 LOOP
 NO_ERROR
 SETUP_ERROR
 STORAGE_ERROR

BROWSETOKEN
The pointer set up by START_BROWSE which points to the first DJar in the
chain to be Browsed

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, ACTION_DJAR function
The ACTION_DJAR function of the EJDG gate tells another party that something is
to be done on the DJar. The implemented actions are to manipulate the External
Namespace for the named DJar.

Input Parameters
ACTIONMODE

the action to perform on the CorbaServer.

 Values for the parameter are:
 PUBLISH
 RETRACT

Chapter 79. Enterprise Java Domain (EJ) 1089

DJAR
Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 INVALID_ACTION
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 PUBLISH_ERROR
 RETRACT_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, ADD_DJAR function
The ADD_DJAR function of the EJDG gate creates a DJar Control Block.

Input Parameters
CORBASERVER

Name of the CorbaServer to which the DJAR is added.
DJAR

Name of the DJar for this Bean
HFSFILE

The fully qualified name of the jar file to be installed. The name must be a
valid z/OS UNIX filename and must not have any trailing blanks.

STATE
Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

ADDMODE
Optional Parameter

 The type of create done for the Bean

Values for the parameter are:
 CATALOGONLY
 CBONLY
 NORMAL

1090 CICS TS for z/OS 4.1: Diagnosis Reference

EASYINSTALL
Optional Parameter

 A binary value indicating whether the DJar was installed the “easy” way, i.e.
using the scanning mechanism.

Values for the parameter are:
 NO
 YES

MESSAGE
Optional Parameter

 Controls whether a message is issued when a CorbaServer is created

Values for the parameter are:
 MSG
 NOMSG

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ATTACH_ERROR
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_ALREADY_THERE
 EJB_INACTIVE
 HFSFILE_ALREADY_THERE
 INVALID_CORBASERVER
 INVALID_DJAR
 INVALID_HFSNAME
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, AMEND_DJAR function
The AMEND_DJAR function of the EJDG gate alters the DJar Control Block, but
does not catalog the change or tell Java about the amendment.

Input Parameters
DJAR

Name of the DJar for this Bean
CURRENT_STATE

Optional Parameter

 Used as a check, must match the existing state of the CorbaServer.

Values for the parameter are:
 DELETING
 INITING

Chapter 79. Enterprise Java Domain (EJ) 1091

INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

DATESTAMP
Optional Parameter

 The date when the deployed JAR file on z/OS UNIX was last updated
STATE

Optional Parameter

 Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMESTAMP
Optional Parameter

 The time when the deployed JAR file on z/OS UNIX was last updated
VERSION

Optional Parameter

 The version number of the DJar.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BAD_STATE_CHANGE
 DJAR_ABSENT
 DJAR_STATE_CHANGED
 EJB_INACTIVE
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, CALL_EVENT_URM function
Invoke the user-replaceable EJB event program.

1092 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
CORBASERVER

The 4-byte name of the CorbaServer for which this event is relevant.
EVENTCODE

The 1-byte code of the event that has occurred.
EVENTTYPE

The type of event that has occurred.

 Values for the parameter are:
 EVENT_TYPE_ERROR
 EVENT_TYPE_INFO
 EVENT_TYPE_WARNING

BEANNAME
Optional Parameter

 The name of the bean involved in this event. For some events (for example, the
discard of a DJAR) there is no bean name.

DJAR
Optional Parameter

 The name of the DJAR resource to which this event applies. For some events
(for example, the start of a scan of a CorbaServer's deployed JAR file directory)
there is no specific DJAR associated with the event.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, COUNT_FOR_CS function
The COUNT_FOR_CS function of the EJDG gate totals the number of DJars in each
state for the owning CorbaServer

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

Chapter 79. Enterprise Java Domain (EJ) 1093

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NDELETING
Optional Parameter

 The number of DJars which are in deleting state in the CorbaServer
NDJARS

Optional Parameter

 The number of DJars in this Corbaserver
NINITING

Optional Parameter

 The number of DJars which are in initing state in the CorbaServer
NINSERV

Optional Parameter

 The number of DJars which are in inservice state in the CorbaServer
NPENDINIT

Optional Parameter

 The number of DJars which are in pendinit state in the CorbaServer
NPENDRESOLV

Optional Parameter

 The number of DJars which are in pendresolve state in the CorbaServer
NRESOLVING

Optional Parameter

 The number of DJars which are in resolving state in the CorbaServer
NUNRESOLVED

Optional Parameter

 The number of DJars which are in unresolved state in the CorbaServer
NUNUSABLE

Optional Parameter

 The number of DJars which are in unusable state in the CorbaServer

EJDG gate, DELETE_ALL_DJARS function
The DELETE_ALL_DJARS function of the EJDG gate is called when the owning
CorbaServer is deleted which forces the cascaded deletion of all the DJars
associated with the CorbaServer. This gate eventually uses EJDG.DELETE_DJAR
with DELMODE(CASCADE) as part of its operation.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BROWSE_ERROR
 CORBASERVER_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR

1094 CICS TS for z/OS 4.1: Diagnosis Reference

PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, DELETE_DJAR function
The DELETE_DJAR function of the EJDG gate deletes the DJar Control Block and
removes the saved entry in the Global Catalog. The XRSINDI exit is also called to
notify the removal.

The Java layers are informed that the DJar has been deleted. However, this
notification is not done if the deletion has been initiated by the deletion of the
owning CorbaServer (this is notified by the delmode parameter -
DELMODE(CASCADE) showing this CorbaServer initiated deletion and
DELMODE(NORMAL) showing that the deletion has been initiated from the
SPI/CEMT layers). This operation has a side effect in that all Beans associated with
the DJar are also deleted.

Input Parameters
DELMODE

Indicates what type of deletion is being done:
v DELMODE(CASCADE) indicates an owning CorbaServer initiated the

deletion of this DJar
v DELMODE(NORMAL) indicated deletion is for SPI/CEMT delete DJar

request

Values for the parameter are:
 CASCADE
 NORMAL

DJAR
Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CATALOG_ERROR
 DJAR_ABSENT
 DJAR_DELETING
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, INQUIRE_DJAR function
The INQUIRE_DJAR function of the EJDG gate extracts information from the
named DJar Control Block

Chapter 79. Enterprise Java Domain (EJ) 1095

Input Parameters
DJAR

Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DJAR_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CORBASERVER
Optional Parameter

 Name of the CorbaServer for this DJar
DATESTAMP

Optional Parameter

 The date when the deployed JAR file on z/OS UNIX was last updated
EASYINSTALL

Optional Parameter

 A binary value indicating whether the DJar was installed the "easy" way, i.e.
with the scanning mechanism.

Values for the parameter are:
 NO
 YES

HFSFILE
Optional Parameter

 The fully qualified name of the deployed jar file on z/OS UNIX.
STATE

Optional Parameter

 Indicates the current Resolution State and whether it is available for use or not.

Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

TIMESTAMP
Optional Parameter

 The time when the deployed JAR file on z/OS UNIX was last updated
VERSION

Optional Parameter

1096 CICS TS for z/OS 4.1: Diagnosis Reference

The version of the DJar.

EJDG gate, RESOLVE_DJAR function
Copy a deployed JAR file to the z/OS UNIX shelf directory and parse the
information it contains.

Input Parameters
DJAR

The DJar to be resolved.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BAD_STATE_SET
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 INVALID_DJAR
 JAVA_ERROR
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

DID_STAGE
The stage at which the DJar was resolved.

 Values for the parameter are:
 IGNORED
 STAGE1
 STAGE2

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, SCAN_DJARS function
Scan a CorbaServer's deployed JAR file directory for new or updated deployed
JAR files.

Input Parameters
CORBASERVER

The name of the Corbaserver.
DJARSINFO

A buffer containing information about the DJars.
NDJARS

The number of DJars whose information is provided in the DJARSINFO
parameter.

Chapter 79. Enterprise Java Domain (EJ) 1097

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ATTACH_ERROR
 CATALOG_ERROR
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_ALREADY_THERE
 EJB_INACTIVE
 HFSFILE_ALREADY_THERE
 INVALID_CORBASERVER
 INVALID_DJAR
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, SET_ALL_STATE function
The SET_ALL_STATE function of the EJDG gate sets the state of all the DJars.

Input Parameters
STATE

Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

1098 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, WAIT_FOR_DJAR function
The WAIT_FOR_DJAR function of the EJDG gate waits until the DJars enter the
required state.

Input Parameters
DJAR

Name of the DJar for this Bean
STATE

Indicates the current resolution state of the CorbaServer and whether it is
available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DJAR_ABSENT
 DJAR_UNRESOLVED
 DJAR_UNUSABLE
 EJB_INACTIVE
 INVALID_STATE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 WAIT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDG gate, WAIT_FOR_USABLE_DJARS function
The WAIT_FOR_USABLE_DJARS function of the EJDG gate waits until all the
DJars associated with a CorbaServer are INSERV.

Input Parameters
CORBASERVER

The name of the CorbaServer for whose DJars the task is to wait.

Chapter 79. Enterprise Java Domain (EJ) 1099

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 CORBASERVER_ERROR
 CORBASERVER_INVALID_STATE
 COUNT_ERROR
 DJAR_ABSENT
 DJAR_UNRESOLVED
 DJAR_UNUSABLE
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 WAIT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDI gate, ADD_ENTRY function
The ADD_ENTRY function of the EJDI gate adds a new entry to the Directory
partition for the specified LogicalServer. No entry with the same name should exist
in the specified LogicalServer partition. In the case of a transaction entry, no
existing entry should refer to the same request stream, but this is not checked.

Input Parameters
ENTRY_KEY

The key (OTS or Object Key) for the entry
ENTRY_TYPE

Indicates whether this is a transaction or object_key entry

 Values for the parameter are:
 OBJECT
 TRANSACTION

LOGICALSERVER
Name of the LogicalServer for which the entry is to be added

REQUEST_STREAM_ID
Public ID of the request stream to be put in the entry

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_ENTRY
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_FULL_ERROR
 FILE_IO_ERROR
 STORE_NOT_OPEN

The following values are returned when RESPONSE is INVALID:
 INVALID_KEYLENGTH

1100 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDI gate, INITIALISE function
The INITIALIZE function of the EJDI gate is called when a store_not_open has
been detected.

Input Parameters
LOGICALSERVER

Name of the LogicalServer for which the entry is to be added

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 CICS_TERMINATING
 CTL_REC_FULL_ERROR
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_FULL_ERROR
 FILE_IO_ERROR
 FILE_NOT_FOUND
 FILE_RECOVERY_ERROR
 FILE_RECOVERY_UNKNOWN

The following values are returned when RESPONSE is INVALID:
 INVALID_KEYLENGTH
 INVALID_RECORD_SIZE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDI gate, LOOKUP_ENTRY function
The LOOKUP_ENTRY function of the EJDI gate looks up the given OTS
transaction or object key / LogicalServer pair and returns the associated Request
Stream if found.

Input Parameters
ENTRY_KEY

The key (OTS or Object Key) for the entry
ENTRY_TYPE

Indicates whether this is a transaction or object_key entry

 Values for the parameter are:
 OBJECT
 TRANSACTION

LOGICALSERVER
Name of the LogicalServer for which the entry is to be added

REQUEST_STREAM_BUFFER
Caller supplied buffer to contain the request stream id

Chapter 79. Enterprise Java Domain (EJ) 1101

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_TOO_SMALL
 ENTRY_NOT_FOUND
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 OBJECT_CORRUPT
 STORE_NOT_FOUND
 STORE_NOT_OPEN

The following values are returned when RESPONSE is INVALID:
 INVALID_KEYLENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDI gate, REMOVE_ENTRY function
The REMOVE_ENTRY function of the EJDI gate removes a transaction or object
key for a given LogicalServer.

Input Parameters
ENTRY_KEY

The key (OTS or Object Key) for the entry
ENTRY_TYPE

Indicates whether this is a transaction or object_key entry

 Values for the parameter are:
 OBJECT
 TRANSACTION

LOGICALSERVER
Name of the LogicalServer for which the entry is to be added

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ENTRY_NOT_FOUND
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 STORE_NOT_OPEN

The following values are returned when RESPONSE is INVALID:
 INVALID_KEYLENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1102 CICS TS for z/OS 4.1: Diagnosis Reference

EJDU gate, DUMP_DATA function
The DUMP_DATA function of the EJDU gate is used to collect data from a
dumping class. It will be placed in the chain of data collected by EJDU and
formatted out when a CICS dump occurs.

Input Parameters
DATA

A pointer and length pair containing the data to be stored for inclusion in a
dump.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INSUFFICIENT_STORAGE
 INTERNAL_ERROR
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDU gate, DUMP_STACK function
The DUMP_STACK function of the EJDU gate is used to collect the stack of a
running JVM. The stack is passed as a string to EJDU and will be formatted out
separately from the other data collected by EJDU's DUMP_DATA function. This
function should be called before DUMP_DATA as it will free any existing data
gathered for the running task.

Input Parameters
DATA

A pointer and length pair containing the data to be stored for inclusion in a
dump.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INSUFFICIENT_STORAGE
 INTERNAL_ERROR
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJDU gate, INQUIRE_TRACE_FLAGS function
The INQUIRE_TRACE_FLAGS function of the EJDU gate is used to return the
current settings of all the trace flags. It takes into account the master trace flag
setting when returning the result. The trace flags are returned as a continuous
block of storage with 2 bytes for each flag, in domain order.

Chapter 79. Enterprise Java Domain (EJ) 1103

Input Parameters
TRACE_DATA

A block of data containing the trace flags in domain order, where each trace
flag takes up 2 bytes

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BAD_DOMAIN_TOKEN
 INTERNAL_ERROR
 INVALID_FORMAT
 INVALID_FUNCTION
 TRACE_BUFFER_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AUX_ON
Optional Parameter

 Indicates whether auxiliary trace is turned on.

Values for the parameter are:
 NO
 YES

EJGE gate, INITIALISE function
The INITIALIZE function of the EJGE gate creates the various things in the EJE
Anchor Block (Locks, Store Subpools, Statii etc.) and then sets up the initial chains
of CorbaServer, DJar and Bean Control Blocks (and the Browse equivalents). These
chains all start with a dummy X'00' element and end with another dummy X'FF'
element. This permits easy chaining and detection of end-of-lists. However, more
importantly, this technique enables multi-TCB operations to proceed as there are
never any EJ Element wide-locks - all locks are at the CorbaServer, DJar or Bean
level. After the EJE anchor block has been setup it is never subsequently amended.

Input Parameters
STARTTYPE

The startup type for this CICS system.

 Values for the parameter are:
 COLD
 WARM

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CATALOG_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1104 CICS TS for z/OS 4.1: Diagnosis Reference

EJGE gate, QUIESCE function
The QUIESCE function of the EJGE gate runs when a CEMT P SHUT is executed.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJGE gate, TERMINATE function
The TERMINATE function of the EJGE gate runs when a CEMT P IMMED is
executed.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJIO gate, RESOLVE function
The RESOLVE function of the EJIO gate controls the operation of Resolution
processing. It is called by the CEJR transaction.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ADD_ERROR
 CATALOG_ERROR
 EJB_INACTIVE
 ENV_ERROR
 LOOP
 MULTIUSE
 NO_ERROR
 OBJECTSTORE_ERROR
 PARMS_STORAGE_ERROR
 PRIORFAIL
 RESC_BAD_STB
 RESC_GETNEXT_ERROR
 RESD_BAD_STB

Chapter 79. Enterprise Java Domain (EJ) 1105

RESD_GETNEXT_ERROR
 RESOLV_FAIL_CS
 RESOLV_FAIL_DJAR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJIO gate, RESOLVE_CSERVERS function
The RESOLVE_CSERVERS function of the EJIO gate scans all existing CorbaServer
control blocks that have not been fully processed and issues a
EJCG.RESOLVE_CORBASERVER on the first such CorbaServer (both Stage one
'copying the DJar to the Shelf' and Stage two 'Opening Object Stores' Resolution
Processing).

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ADD_ERROR
 CATALOG_ERROR
 EJB_INACTIVE
 ENV_ERROR
 LOCK_ERROR
 LOOP
 NO_ERROR
 OBJECTSTORE_ERROR
 PARMS_STORAGE_ERROR
 RESC_BAD_STB
 RESC_GETNEXT_ERROR
 SETUP_ERROR
 STORAGE_ERROR

NUMBER_RESOLVED
The number of CorbaServer control blocks that were resolved.

NUMBER_UNUSABLE
The number of CorbaServer control blocks that were found to be unusable.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJIO gate, RESOLVE_DJARS function
The RESOLVE_DJARS function of the EJIO gate scans all existing DJar control
blocks that have not been fully processed and issues a EJDG.RESOLVE_DJAR on
the first such DJar (both Stage one 'copying the DJar to the Shelf' and Stage two
'Bean loading' Resolution Processing).

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ADD_ERROR
 CATALOG_ERROR
 EJB_INACTIVE
 ENV_ERROR

1106 CICS TS for z/OS 4.1: Diagnosis Reference

LOCK_ERROR
 LOOP
 NO_ERROR
 OBJECTSTORE_ERROR
 PARMS_STORAGE_ERROR
 RESD_BAD_STB
 RESD_GETNEXT_ERROR
 SETUP_ERROR
 STORAGE_ERROR

NUMBER_RESOLVED
The number of DJar control blocks that were resolved.

NUMBER_UNUSABLE
The number of DJar control blocks that were found to be unusable.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJIO gate, SET_RSTATE function
Set the run state of the CorbaServer resolution transaction.

Input Parameters
RSTATE

Indicates whether the transaction can run.

 Values for the parameter are:
 NOTRUN
 RUN

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ADD_ERROR
 CATALOG_ERROR
 EJB_INACTIVE
 ENV_ERROR
 LOCK_ERROR
 LOOP
 MULTIUSE
 NO_ERROR
 NO_OBJECTSTORE
 OBJECTSTORE_ERROR
 PARMS_STORAGE_ERROR
 PRIORFAIL
 RESC_BAD_STB
 RESC_GETNEXT_ERROR
 RESD_BAD_STB
 RESD_GETNEXT_ERROR
 RESOLV_FAIL_CS
 RESOLV_FAIL_DJAR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 79. Enterprise Java Domain (EJ) 1107

EJJO gate, ADD_BEAN function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The ADD_BEAN
function is a wrapper for the ADD_BEAN function of the EJBG gate.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be browsed
DDAREAFORIN

Block for Bean deployment/meta data input
DJAR

Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ALREADY_PRESENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DDAREAFORIN_ABSENT
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 INVALID_BEAN
 INVALID_CORBASERVER
 INVALID_DD_ZERO_LENGTH
 INVALID_DD_ZERO_POINTER
 INVALID_DDAREAFORIN
 INVALID_DJAR
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NAMESPACE_CONFLICT
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, END_BEAN_BROWSE function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
END_BEAN_BROWSE function is a wrapper for the END_BROWSE function of
the EJBB gate.

1108 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 EJB_INACTIVE
 INVALID_BROWSE_TOKEN
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, ESTABLISH function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The ESTABLISH
function is a wrapper for the ESTABLISH function of the EJCG gate.

Input Parameters
CORBASERVER

The name of the CorbaServer to be associated with the task.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, GET_BEAN_DD function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
GET_BEAN_DD function is a wrapper for the GET_BEAN_DD function of the
EJBG gate.

Chapter 79. Enterprise Java Domain (EJ) 1109

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be browsed
DDAREAFORUPD

A buffer for the Bean deployment/meta data update area

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DD_AREA_TOO_SMALL
 DDAREAFORUPD_ABSENT
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 INVALID_DD_ZERO_LENGTH
 INVALID_DD_ZERO_POINTER
 INVALID_DDAREAFORUPD
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

DDLEN
Optional Parameter

 Length of the deployment/meta data area. Used particularly to contain the
length of the data if the size is larger than the maximum length for ddareaforin
block

DJAR
Optional Parameter

 Name of DJar for this Bean
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, GET_NEXT_BEAN function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
GET_NEXT_BEAN function is a wrapper for the GET_NEXT function of the EJBB
gate.

Input Parameters
BROWSETOKEN

The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

1110 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BROWSE_BROKEN
 EJB_INACTIVE
 END_OF_BROWSE
 INVALID_BROWSE_TOKEN
 INVALID_POINTAT
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

BEAN
Name of the Bean

CORBASERVER
Optional Parameter

 Name of the CorbaServer for this DJar
DDLEN

Optional Parameter

 Length of the deployment/meta data area. Used particularly to contain the
length of the data if the size is larger than the maximum length for ddareaforin
block

DJAR
Optional Parameter

 Name of DJar for this Bean
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, INQUIRE_CORBASERVER function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
INQUIRE_CORBASERVER function is a wrapper for the
INQUIRE_CORBASERVER function of the EJCG gate.

Input Parameters
CORBASERVER

The name of the CorbaServer

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR

Chapter 79. Enterprise Java Domain (EJ) 1111

SETUP_ERROR
AUTO_PUBLISH

Optional Parameter

 Specifies whether the contents of a deployed JAR file should be automatically
published to the namespace when the DJAR definition is successfully installed
into this CorbaServer.

Values for the parameter are:
 NO
 YES

CERTIFICATE_LABEL
The label of an X.509 certificate that is used as a client certificate during the
SSL handshake for outbound IIOP connections.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites that are available to negotiate with clients during
the SSL handshake.

CIPHER_SUITES
Optional Parameter

 The list of cipher suites that is used to negotiate with clients during the SSL
handshake.

CORBASERVER_STATE
Indicates the current Resolution State and whether it is available for use or not.

 Values for the parameter are:
 DELETING
 INITING
 INSERV
 PENDINIT
 PENDRESOLV
 RESOLVING
 UNKNOWN
 UNRESOLVED
 UNUSABLE

DJARDIR
The fully-qualified name of the deployed JAR file directory (also known as the
pickup directory) on z/OS UNIX.

ENABLE_STATE
Optional Parameter

 The state of the Corbaserver.

Values for the parameter are:
 DISABLED
 DISABLING
 DISCARDING
 ENABLED
 ENABLING

HOST
The TCP/IP hostname or the dotted decimal TCP/IP address included in IORs
exported from this CorbaServer

JNDIPREFIX
The prefix that is used at run time when publishing to JNDI

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1112 CICS TS for z/OS 4.1: Diagnosis Reference

SCANINTERVAL
Optional Parameter

 The interval between repeated scans of the CorbaServer chain.
SHELF

The fully qualified name of the shelf directory on z/OS UNIX
TIMEOUT

Optional Parameter

 The elapsed time period (in seconds) of inactivity after which a session Bean
can be discarded

ASSERTED_TCPIPSERVICE
Optional Parameter

 The TCPIPSERVICE named in the ASSERTED attribute of the CORBASERVER.
BASIC_TCPIPSERVICE

The TCPIPSERVICE named in the BASIC attribute of the CORBASERVER.
CLIENTCERT_TCPIPSERVICE

The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL client certificate authentication.

OUTPRIVACY
Optional Parameter

 The level of SSL encryption required for inbound connections to this service.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SSLUNAUTH_TCPIPSERVICE
Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL but no client authentication.

SSLUNAUTH_TCPIPSERVICE
Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with SSL but no client authentication.

UNAUTH_TCPIPSERVICE
Optional Parameter

 The 8-character name of a TCPIPSERVICE that defines the characteristics of the
port which is used for inbound IIOP with no authentication.

EJJO gate, SET_BEAN_STATS function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
SET_BEAN_STATS function is a wrapper for the ADD_BEAN_STATS function of
the EJBG gate.

Input Parameters
ACTIVATES

Optional Parameter

 The number of times this bean has been activated
BEAN

Name of the Bean to be added

Chapter 79. Enterprise Java Domain (EJ) 1113

CORBASERVER
Name of the CorbaServer

CREATES
Optional Parameter

 The number of times this bean has been created
METHOD_CALLS

Optional Parameter

 The number of method calls (other than the above) made against this bean
PASSIVATES

Optional Parameter

 The number of times this bean has been passivated
REMOVES

Optional Parameter

 The number of times this bean has been removed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BEAN_ABSENT
 CORBASERVER_ABSENT
 CORBASERVER_INVALID_STATE
 DJAR_ABSENT
 DJAR_INVALID_STATE
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, START_BEAN_BROWSE function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
START_BEAN_BROWSE function is a wrapper for the START_BROWSE function
of the EJBB gate.

Input Parameters
CORBASERVER

Optional Parameter

 Name of the CorbaServer to be browsed
DJAR

Optional Parameter

 Name of the DJar for this Bean

Output Parameters
REASON

The values for the parameter are:

1114 CICS TS for z/OS 4.1: Diagnosis Reference

ABEND
 EJB_INACTIVE
 INVALID_BROWSEMODE
 INVALID_CORBASERVER
 INVALID_DJAR
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

BROWSETOKEN
The pointer set up by START_BROWSE which points to the first DJar in the
chain to be browsed

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, WAIT_FOR_CORBASERVER function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The
WAIT_FOR_CORBASERVER function is a wrapper for the
WAIT_FOR_CORBASERVER function of the EJCG gate.

Input Parameters
CORBASERVER

The name of the CorbaServer that the task will wait on.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 CORBASERVER_UNRESOLVED
 CORBASERVER_UNUSABLE
 EJB_INACTIVE
 INVALID_STATE
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 WAIT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJJO gate, WAIT_FOR_USABLE_DJARS function
The EJJO gate insulates functions for the Elements part of the EJ Domain, which is
concerned with the manipulation of CorbaServers, DJars and Beans and which is
required for access within the Java layers, from the rest of CICS. The

Chapter 79. Enterprise Java Domain (EJ) 1115

WAIT_FOR_USABLE_DJARS function is a wrapper for the
WAIT_FOR_USABLE_DJARS function of the EJDG gate.

Input Parameters
CORBASERVER

The name of the CorbaServer for whose DJars the task is to wait.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 CORBASERVER_ERROR
 CORBASERVER_INVALID_STATE
 COUNT_ERROR
 DJAR_ABSENT
 DJAR_UNRESOLVED
 DJAR_UNUSABLE
 EJB_INACTIVE
 LOCK_ERROR
 LOOP
 MAPPING_ERROR
 NO_ERROR
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 WAIT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJMI gate, ADD_BEAN function
The ADD_BEAN function of the EJMI gate adds the named Bean within the named
CorbaServer to the EJMI state. A duplicate_bean exception is returned if there is
already a Bean of that name within the given CorbaServer, and the DJar must be
discarded before the Bean can be added again.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be Browsed
DJAR

Name of the DJar for this Bean

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_BEAN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJMI gate, ADD_METHOD function
The ADD_METHOD function of the EJMI gate adds the information for the named
method within the given Bean and CorbaServer.

1116 CICS TS for z/OS 4.1: Diagnosis Reference

An unknown_bean exception is returned if there the given Bean and CorbaServer
combination is not present in the EJMI state.

A duplicate_method exception is returned if there is already a method of that
name within the given Bean and CorbaServer combination.

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be Browsed
METHOD

The name of the method
XCOORD

Indicates whether an external OTS transaction coordinator, if there is one, is
respected for determining transaction commit or rollback.

 Values for the parameter are:
 IGNORED
 RESPECTED

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_METHOD
 UNKNOWN_BEAN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJMI gate, DISCARD_METHOD_INFO function
The DISCARD_METHOD_INFO function of the EJMI gate removes from the given
CorbaServer all the information about Beans with the given DJar name. If no DJar
name is specified all Beans are removed.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed
DJAR

Optional Parameter

 Name of the DJar for this Bean

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_CORBASERVER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJMI gate, GET_METHOD_INFO function
The GET_METHOD_INFO function of the EJMI gate returns the information about
the named method within the named Bean and CorbaServer. An unknown_method
exception is returned if the method is not found within the Bean and CorbaServer
combination.

Chapter 79. Enterprise Java Domain (EJ) 1117

Input Parameters
BEAN

Name of the Bean to be added
CORBASERVER

Name of the CorbaServer to be Browsed
METHOD

The name of the method

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_BEAN
 UNKNOWN_CORBASERVER
 UNKNOWN_METHOD

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XCOORD
Indicates whether an external OTS transaction coordinator, if there is one, is
respected for determining transaction commit or rollback

 Values for the parameter are:
 IGNORED
 RESPECTED

EJMI gate, INITIALISE function
The INITIALIZE function of the EJMI gate initializes the EJMI state in the EJ
anchor block.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOB gate, END_BROWSE_OBJECT function
The END_BROWSE_OBJECT function of the EJOB gate is called after
START_BROWSE_OBJECT to end the Browse of a file or object_store.

Input Parameters
BROWSE_TOKEN

The token returned by START_BROWSE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOB gate, GET_NEXT_OBJECT function
The GET_NEXT_OBJECT function of the EJOB gate is called after
START_BROWSE_OBJECT to return the next object in the file or object_store.

1118 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BROWSE_TOKEN

The token returned by START_BROWSE
KEY_BUFFER

Optional Parameter

 A buffer in which the next object key is returned
OBJECT_BUFFER

Optional Parameter

 A buffer in which the next object is returned

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BUFFER_TOO_SMALL
 END_BROWSE
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 INVALID_TOKEN
 OBJECT_CORRUPT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTIVE_TIMEOUT
Optional Parameter

 A full-word giving the number of seconds after which Objects in the Active
state may be automatically deleted from the store.

FILE_NAME
Optional Parameter

 The 8-character name of the file containing the Object Store.
LAST_UPDATED

Optional Parameter

 The time in STCK seconds when the object was last stored or activated.
OBJECT_SIZE

Optional Parameter

 The size of the object being inquired.
PASSIVE_TIMEOUT

Optional Parameter

 A full-word giving the number of seconds after which Objects in the Passive
state may be automatically deleted from the store.

STATUS
Optional Parameter

 The state of the Bean being Browsed (NORMAL or TEMPORARY). Indicates
that a Bean has been confirmed

Values for the parameter are:
 ACTIVE
 PASSIVE

Chapter 79. Enterprise Java Domain (EJ) 1119

STORE_NAME
Optional Parameter

 The 8-character name of the Object Store.

EJOB gate, INQUIRE_OBJECT function
The INQUIRE_OBJECT function of the EJOB gate is called to return the Object data
and attributes associated with the given key.

Input Parameters
KEY_BLOCK

A block giving the key of the Object being inquired
STORE_NAME

The 8-character name of the Object Store
OBJECT_BUFFER

Optional Parameter

 A buffer in which the next object is returned

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BUFFER_TOO_SMALL
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 INVALID_KEYLENGTH
 OBJECT_CORRUPT
 OBJECT_NOT_FOUND
 STORE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTIVE_TIMEOUT
Optional Parameter

 A full-word giving the number of seconds after which Objects in the Active
state may be automatically deleted from the store.

FILE_NAME
Optional Parameter

 The 8-character name of the file containing the Object Store.
LAST_UPDATED

Optional Parameter

 The time in STCK seconds when the object was last stored or activated.
OBJECT_SIZE

Optional Parameter

 The size of the object being inquired.
PASSIVE_TIMEOUT

Optional Parameter

 A full-word giving the number of seconds after which Objects in the Passive
state may be automatically deleted from the store.

1120 CICS TS for z/OS 4.1: Diagnosis Reference

STATUS
Optional Parameter

 The state of the Bean being Browsed (NORMAL or TEMPORARY). Indicates
that a Bean has been confirmed

Values for the parameter are:
 ACTIVE
 PASSIVE

EJOB gate, INQUIRE_STORES function
The INQUIRE_STORES function of the EJOB gate is called to return a list of the
Object Store names associated with the given file. The list is returned as an array
of 8-character store names.

Input Parameters
OBJECT_BUFFER

A buffer in which the next object is returned
SUBPOOL

A storage subpool from which to getmain the object block.
FILE_NAME

Optional Parameter

 The optional 8-character name of the file to be inquired. If omitted then the
default file 'DFHEJOS' will be used.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BUFFER_TOO_SMALL
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 FILE_REC_SIZE_ERROR
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STORE_COUNT
The number of store names being returned

OBJECT_BLOCK
Optional Parameter

 A block containing the array of 8-character store names. If specified then
SUBPOOL must also be specified.

EJOB gate, RETRIEVE_STATISTICS function
The RETRIEVE_STATISTICS function of the EJOB gate is called by statistics to
return the statistics associated with a supplied store key.

Input Parameters
STORE_NAME

The 8-character name of the Object Store

Chapter 79. Enterprise Java Domain (EJ) 1121

DATA
Optional Parameter

 A pointer and length pair containing the data to be stored for inclusion in a
dump.

Values for the parameter are:
 NO
 YES

OBJECT_BUFFER
Optional Parameter

 A buffer in which the next object is returned
RESET

Optional Parameter

 A flag indicating that the statistics fields must be reset

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BUFFER_NOT_SUPPLIED
 BUFFER_TOO_SMALL
 STORE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOB gate, START_BROWSE_OBJECT function
The START_BROWSE_OBJECT function of the EJOB gate is called to browse an
object store.

Input Parameters
FILE_NAME

Optional Parameter

 The optional 8-character name of the file to be inquired. If omitted then the
default file 'DFHEJOS' will be used.

STORE_NAME
Optional Parameter

 The 8-character name of the Object Store. If STORE_NAME is omitted then all
Objects in the file are browsed.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 FILE_REC_SIZE_ERROR

1122 CICS TS for z/OS 4.1: Diagnosis Reference

STORE_NOT_FOUND
BROWSE_TOKEN

A token required by GET_NEXT and END_BROWSE
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOS gate, ACTIVATE_OBJECT function
The ACTIVATE_OBJECT function of the EJOS gate is called to Activate an Object
instance.

Input Parameters
DELETE

YES means the Object is to be deleted from the while and NO means the
Object is to be marked ACTIVE in the file.

 Values for the parameter are:
 NO
 YES

KEY_BLOCK
A block giving the key of the Object being inquired

OBJECT_BUFFER
A buffer in which the next object is returned

STORE_NAME
The 8-character name of the Object Store

Output Parameters
REASON

The values for the parameter are:
 ABEND
 BUFFER_TOO_SMALL
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 INVALID_KEYLENGTH
 OBJECT_CORRUPT
 OBJECT_IS_ACTIVE
 OBJECT_NOT_FOUND
 STORE_NOT_OPEN

OBJECT_SIZE
The size of the object being inquired.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOS gate, CLOSE_OBJECT_STORE function
The CLOSE_OBJECT_STORE function of the EJOS gate is called to Close an Object
Store in the local system. If an Object Store is open with a non-zero timeout value,
then a task is scheduled to sweep the store periodically, deleting timed-out Objects.
It will, therefore, improve CICS performance if stores are closed when not
required.

Chapter 79. Enterprise Java Domain (EJ) 1123

Input Parameters
STORE_NAME

The 8-character name of the Object Store

Output Parameters
REASON

The values for the parameter are:
 STORE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOS gate, OPEN_OBJECT_STORE function
The OPEN_OBJECT_STORE function of the EJOS gate is called to Open a new or
existing Object Store in the local system.

An Object Store must be opened in each region wishing to use it. Many object
stores can use the same CICS file, or they can each specify a different file.

If an Object Store of the same name is already open in that region, the existing
definition is replaced, and the new file name and timeout values are then used. As
timeout values are stored with the object, changes to the store definition will not
affect objects already stored.

Input Parameters
ACTIVE_TIMEOUT

A full-word giving the number of seconds after which Objects in the Active
State may be automatically deleted from the store.

PASSIVE_TIMEOUT
A full-word giving the number of seconds after which Objects in the Passive
State may be automatically deleted from the store

RECOVERY
YES indicates that the file should be recoverable. If it is not,
FILE_RECOVERY_ERROR is returned. NO indicates that the file should not be
recoverable. If it is then FILE_RECOVERY_ERROR is returned. If CICS is
unable to determine whether the file is recoverable then
FILE_RECOVERY_UNKNOWN is returned

 Values for the parameter are:
 NO
 YES

STORE_NAME
The 8-character name of the Object Store

FILE_NAME
Optional Parameter

 The optional 8-character name of the file to be inquired. If omitted then the
default file 'DFHEJOS' will be used.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CICS_TERMINATING
 CTL_REC_FULL_ERROR
 FILE_CONNECT_ERROR

1124 CICS TS for z/OS 4.1: Diagnosis Reference

FILE_CORRUPT_ERROR
 FILE_FULL_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 FILE_REC_SIZE_ERROR
 FILE_RECOVERY_ERROR
 FILE_RECOVERY_UNKNOWN
 INVALID_OBJECT_TIMEOUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOS gate, REMOVE_OBJECT function
The REMOVE_OBJECT function of the EJOS gate is called to remove an object
instance from the specified object store.

Input Parameters
KEY_BLOCK

A block giving the key of the Object being inquired
STORE_NAME

The 8-character name of the Object Store

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 INVALID_KEYLENGTH
 OBJECT_NOT_FOUND
 STORE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOS gate, REMOVE_STORE function
The REMOVE_STORE function of the EJOS gate is called to Remove one or all
Object Stores from the specified file. When a Store is removed, it should be
removed or closed in every region in which it is open. If not, then data may be
lost.

Input Parameters
ALL

Specifies that all Object Stores should be removed. Specify the ALL or the
STORE_NAME parameter, but not both.

STORE_NAME
The 8-character name of the Object Store

FILE_NAME
Optional Parameter

Chapter 79. Enterprise Java Domain (EJ) 1125

The optional 8-character name of the file to be inquired. If omitted then the
default file 'DFHEJOS' will be used.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND
 STORE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJOS gate, STORE_OBJECT function
The STORE_OBJECT function of the EJOS gate is called to Store an Object instance.

The Object is identified by a KEY of from 1 to (recordsize - 64) bytes, and the Object
can be of any size. If no Object with that key exists in the store then one is created
in the Passive state. If an Object with the same key already exists in the Store, then
the action depends on the value of the REPLACE parameter. An exception
OBJECT_IS_ACTIVE or OBJECT_IS_PASSIVE indicates why an object was not
replaced.

Input Parameters
KEY_BLOCK

A block giving the key of the Object being inquired
OBJECT_BLOCK

A block containing the Object data to be stored
REPLACE

Yes means that an Object with the same key will be replaced. NO means that
an Object with the same key will not be replaced. ACTIVE means that an
ACTIVE Object with the same key is replaced. PASSIVE means that a PASSIVE
Object with the same key is replaced.

 Values for the parameter are:
 ACTIVE
 NO
 PASSIVE
 YES

STORE_NAME
The 8-character name of the Object Store

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FILE_CONNECT_ERROR
 FILE_CORRUPT_ERROR
 FILE_FULL_ERROR
 FILE_IO_ERROR
 FILE_KEY_LENGTH_ERROR
 FILE_NOT_FOUND

1126 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_KEYLENGTH
 OBJECT_IS_ACTIVE
 OBJECT_IS_PASSIVE
 STORE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJSO gate, AMEND_CORBASERVER function
The AMEND_CORBASERVER function of the EJSO gate is used by the EJ domain
to update TCPIP parameters that are also kept in the corba server after resolution
time. This function is only used by DFHEJCG RESOLVE_CORBASERVER.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed
ASSERTED_HASH

Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the ASSERTED attribute of the CORBASERVER.. It is used to check
that the TCPIPSERVICE in the listener region has the same attributes as the
one in the AOR.

ASSERTED_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
ASSERTED attribute of the CORBASERVER.

ASSERTED_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the ASSERTED
attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

ASSERTED_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the ASSERTED
attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH

BASIC_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the BASIC attribute of the CORBASERVER. It is used to check that
the TCPIPSERVICE in the listener region has the same attributes as the one in
the AOR.

BASIC_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
BASIC attribute of the CORBASERVER.

Chapter 79. Enterprise Java Domain (EJ) 1127

BASIC_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the BASIC
attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

BASIC_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the BASIC
attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH
 YES

CLIENTCERT_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the CLIENTCERT attribute of the CORBASERVER. It is used to
check that the TCPIPSERVICE in the listener region has the same attributes as
the one in the AOR.

CLIENTCERT_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

CLIENTCERT_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

CLIENTCERT_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH

SSLUNAUTH_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the SSLUNAUTH attribute of the CORBASERVER. It is used to
check that the TCPIPSERVICE in the listener region has the same attributes as
the one in the AOR.

SSLUNAUTH_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

1128 CICS TS for z/OS 4.1: Diagnosis Reference

SSLUNAUTH_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SSLUNAUTH_SSL
Optional Parameter

 An enumerated type of clientauth taken from the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH
 YES

UNAUTH_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the UNAUTH attribute of the CORBASERVER. It is used to check
that the TCPIPSERVICE in the listener region has the same attributes as the
one in the AOR.

UNAUTH_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
UNAUTH attribute of the CORBASERVER.

UNAUTH_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the UNAUTH
attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

UNAUTH_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the UNAUTH
attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 SETUP_ERROR

Chapter 79. Enterprise Java Domain (EJ) 1129

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EJSO gate, INQUIRE_CORBASERVER function
The INQUIRE_CORBASERVER function of the EJSO gate is used by the EJ domain
to find any TCPIP parameters that are also kept in the corba server after resolution
time. This function is used by JAVA code and normal CICS code.

Input Parameters
CORBASERVER

Name of the CorbaServer to be Browsed

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CORBASERVER_ABSENT
 EJB_INACTIVE
 LOCK_ERROR
 SETUP_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ASSERTED_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the ASSERTED attribute of the CORBASERVER.. It is used to check
that the TCPIPSERVICE in the listener region has the same attributes as the
one in the AOR.

ASSERTED_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
ASSERTED attribute of the CORBASERVER.

ASSERTED_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the ASSERTED
attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

ASSERTED_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the ASSERTED
attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH

BASIC_HASH
Optional Parameter

1130 CICS TS for z/OS 4.1: Diagnosis Reference

A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the BASIC attribute of the CORBASERVER. It is used to check that
the TCPIPSERVICE in the listener region has the same attributes as the one in
the AOR.

BASIC_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
BASIC attribute of the CORBASERVER.

BASIC_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the BASIC
attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

BASIC_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the BASIC
attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH
 YES

CLIENTCERT_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the CLIENTCERT attribute of the CORBASERVER. It is used to
check that the TCPIPSERVICE in the listener region has the same attributes as
the one in the AOR.

CLIENTCERT_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

CLIENTCERT_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

CLIENTCERT_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH

SSLUNAUTH_HASH
Optional Parameter

Chapter 79. Enterprise Java Domain (EJ) 1131

A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the SSLUNAUTH attribute of the CORBASERVER. It is used to
check that the TCPIPSERVICE in the listener region has the same attributes as
the one in the AOR.

SSLUNAUTH_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

SSLUNAUTH_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SSLUNAUTH_SSL
Optional Parameter

 An enumerated type of clientauth taken from the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH
 YES

UNAUTH_HASH
Optional Parameter

 A fullword created by the sockets domain to represent the TCPIPSERVICE
named in the UNAUTH attribute of the CORBASERVER. It is used to check
that the TCPIPSERVICE in the listener region has the same attributes as the
one in the AOR.

UNAUTH_PORT
Optional Parameter

 A fullword containing the port number of the TCPIPSERVICE named in the
UNAUTH attribute of the CORBASERVER.

UNAUTH_PRIVACY
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the UNAUTH
attribute of the CORBASERVER.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

UNAUTH_SSL
Optional Parameter

 An enumerated type taken from the TCPIPSERVICE named in the UNAUTH
attribute of the CORBASERVER.

Values for the parameter are:
 CLIENTAUTH
 NO
 YES

1132 CICS TS for z/OS 4.1: Diagnosis Reference

Enterprise Java domain's generic gates

Table 46 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 46. Enterprise Java domain's generic gates

Gate Trace Functions Format

EJDM EJ 01nn INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

EJST EJ 04nn COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777

Modules
 Module Function

DFHEJBB Bean Browse EJBB Gate

DFHEJBG Bean General EJBG Gate

DFHEJCB CorbaServer Browse EJCB Gate

DFHEJCG CorbaServer General EJCG Gate

DFHEJCP Command Processor functions EJCP Gate

DFHEJDB DJar Browse EJDB Gate

DFHEJDG DJar General EJDG Gate

DFHEJDI EJB Directory EJDI Gate

DFHEJDM EJ Initialize/Terminate EJDM Gate

DFHEJDU EJ Dump Interface EJDU Gate

DFHEJGE EJ General Initialization/Termination functions EJGE Gate

DFHEJIO CEJR Resolution EJIO Gate

DFHEJJO Jave Interface EJJO Gate

DFHEJMI Method Information function EJMI Gate

DFHEJOB Object Store Browse EJOB Gate

DFHEJOS Object Store General EJOS Gate

DFHEJST Statistics General EJST Gate

Chapter 79. Enterprise Java Domain (EJ) 1133

1134 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 80. Event Manager Domain (EM)

The event manager domain manages event and timer objects created within CICS
BTS activities.

For further information regarding these objects see CICS Business Transaction
Services.

Event Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the EM domain.

EMBR gate, END_BROWSE_EVENT function
The END_BROWSE_EVENT function ends the event browse identified by the
browse token.

Input Parameters
BROWSE_TOKEN

is a token which identifies the browse.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMBR gate, END_BROWSE_TIMER function
The END_BROWSE_TIMER function ends the timer browse identified by the
browse token.

Input Parameters
BROWSE_TOKEN

is a token which identifies the browse.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMBR gate, GET_NEXT_EVENT function
The GET_NEXT_EVENT function returns the next name in the browse specified by
the browse token, and returns the attributes associated with the event.

© Copyright IBM Corp. 1997, 2011 1135

Input Parameters
BROWSE_TOKEN

is a token which identifies the browse.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

EVENT
is the name of the retrieved reattach event.

EVENT_TYPE
is the type of the retrieved reattach event.

 Values for the parameter are:
 ACTIVITY
 COMPOSITE
 INPUT
 SYSTEM
 TIMER

FIRED
returns the fire status of the event.

 Values for the parameter are:
 NO
 YES

PARENT
is the name of the parent (if the event is a subevent).

PREDICATE
is the predicate type (for composite events only).

 Values for the parameter are:
 AND
 OR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_NAME
is the name of the associated timer (if the event is of type timer).

EMBR gate, GET_NEXT_TIMER function
The GET_NEXT_TIMER function returns the next name in the browse specified by
the browse token, and returns the attributes associated with the timer.

Input Parameters
BROWSE_TOKEN

is a token which identifies the browse.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

ABSTIME
returns the timer's expiry time in ABSTIME format.

EVENT
is the name of the retrieved reattach event.

1136 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_NAME
is the name of the associated timer (if the event is of type timer).

TIMER_STATUS
returns the status of the timer.

 Values for the parameter are:
 EXPIRED
 FORCED
 UNEXPIRED

EMBR gate, INQUIRE_EVENT function
The INQUIRE_EVENT function returns information about the named event.

Input Parameters
EVENT

is the name of the composite event.
ACTIVITY_ID

Optional Parameter

 is an optional activity id for the activity whose event pool is to be browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 EVENT_NOT_FOUND
 FILE_NOT_AUTH
 FILE_UNAVAILABLE
 INVALID_ACTIVITY_ID
 NO_CURRENT_ACTIVITY
 READ_FAILURE

EVENT_TYPE
is the type of the retrieved reattach event.

 Values for the parameter are:
 ACTIVITY
 COMPOSITE
 INPUT
 SYSTEM
 TIMER

FIRED
returns the fire status of the event.

 Values for the parameter are:
 NO
 YES

PARENT
is the name of the parent (if the event is a subevent).

PREDICATE
is the predicate type (for composite events only).

 Values for the parameter are:
 AND
 OR

Chapter 80. Event Manager Domain (EM) 1137

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_NAME
is the name of the associated timer (if the event is of type timer).

EMBR gate, INQUIRE_TIMER function
The INQUIRE_TIMER function returns information about the named timer.

Input Parameters
TIMER_NAME

is the name of the timer.
ACTIVITY_ID

Optional Parameter

 is an optional activity id for the activity whose event pool is to be browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 FILE_UNAVAILABLE
 INVALID_ACTIVITY_ID
 NO_CURRENT_ACTIVITY
 READ_FAILURE
 TIMER_NOT_FOUND

ABSTIME
returns the timer's expiry time in ABSTIME format.

EVENT
is the name of the retrieved reattach event.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_STATUS
returns the status of the timer.

 Values for the parameter are:
 EXPIRED
 FORCED
 UNEXPIRED

EMBR gate, START_BROWSE_EVENT function
The START_BROWSE_EVENT function starts an event browse and returns a token
to be used for the browse.

Input Parameters
ACTIVITY_ID

Optional Parameter

 is an optional activity id for the activity whose event pool is to be browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 FILE_UNAVAILABLE

1138 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_ACTIVITY_ID
 NO_CURRENT_ACTIVITY
 READ_FAILURE

BROWSE_TOKEN
returns a token which is used to identify the browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMBR gate, START_BROWSE_TIMER function
The START_BROWSE_TIMER function starts a timer browse and returns a token to
be used for the browse.

Input Parameters
ACTIVITY_ID

Optional Parameter

 is an optional activity id for the activity whose event pool is to be browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FILE_NOT_AUTH
 FILE_UNAVAILABLE
 INVALID_ACTIVITY_ID
 NO_CURRENT_ACTIVITY
 READ_FAILURE

BROWSE_TOKEN
returns a token which is used to identify the browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, ADD_SUBEVENT function
The ADD_SUBEVENT function adds a subevent to an existing composite event.

Input Parameters
EVENT

is the name of the composite event.
SUBEVENT

is the name of the subevent.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 EVENT_NOT_FOUND
 INVALID_EVENT_TYPE
 INVALID_SUBEVENT
 NO_CURRENT_ACTIVITY
 SUBEVENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 80. Event Manager Domain (EM) 1139

EMEM gate, CHECK_TIMER function
The CHECK_TIMER function returns the status of a timer.

Input Parameters
TIMER_NAME

is the name of the timer.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_CURRENT_ACTIVITY
 TIMER_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_STATUS
returns the status of the timer.

 Values for the parameter are:
 EXPIRED
 FORCED
 UNEXPIRED

EMEM gate, DEFINE_ATOMIC_EVENT function
The DEFINE_ATOMIC_EVENT function defines an atomic event of type
ACTIVITY or INPUT.

Input Parameters
EVENT

is the name of the composite event.
EVENT_TYPE

is the type of the event.

 Values for the parameter are:
 ACTIVITY
 INPUT

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_EVENT
 INVALID_EVENT_NAME
 NO_CURRENT_ACTIVITY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, DEFINE_COMPOSITE_EVENT function
The DEFINE_COMPOSITE_EVENT function defines a composite event with an
associated predicate which may be AND or OR. Up to eight subevents may be
provided.

Input Parameters
EVENT

is the name of the composite event.

1140 CICS TS for z/OS 4.1: Diagnosis Reference

PREDICATE
is the predicate type.

 Values for the parameter are:
 AND
 OR

SUBEVENT_LIST
Optional Parameter

 is an optional list of up to 8 subevents.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_EVENT
 INVALID_EVENT_NAME
 INVALID_SUBEVENT
 NO_CURRENT_ACTIVITY
 SUBEVENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBEVENT_IN_ERROR
returns the number of the first subevent which is in error (if any).

EMEM gate, DEFINE_TIMER function
The DEFINE_TIMER function defines a timer.

Input Parameters
TIMER_NAME

is the name of the timer.
AFTER

Optional Parameter

 indicates whether or not the timer is an interval.

Values for the parameter are:
 NO
 YES

AT Optional Parameter

 indicates whether or not the timer is a time.

Values for the parameter are:
 NO
 YES

DAYOFMONTH
Optional Parameter

 is the day of the month.
DAYOFYEAR

Optional Parameter

 is the day of the year.
DAYS

Optional Parameter

 is the number of days for an interval.
EVENT

Optional Parameter

Chapter 80. Event Manager Domain (EM) 1141

is the name of the composite event.
HOURS

Optional Parameter

 is the number of hours for an interval or time.
MINUTES

Optional Parameter

 is the number of minutes for an interval or time.
MONTH

Optional Parameter

 is the month.
ON Optional Parameter

 indicates whether or not a date has been specified.

Values for the parameter are:
 NO
 YES

SECONDS
Optional Parameter

 is the number of seconds for an interval or time.
YEAR

Optional Parameter

 is the year.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_EVENT
 DUPLICATE_TIMER
 INVALID_EVENT_NAME
 INVALID_INTERVAL
 INVALID_TIME
 INVALID_TIMER_NAME
 NO_CURRENT_ACTIVITY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, DELETE_EVENT function
The DELETE_EVENT function deletes an event.

Input Parameters
EVENT

is the name of the composite event.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 EVENT_NOT_FOUND
 INVALID_EVENT_TYPE
 NO_CURRENT_ACTIVITY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1142 CICS TS for z/OS 4.1: Diagnosis Reference

EMEM gate, DELETE_TIMER function
The DELETE_TIMER function deletes a timer.

Input Parameters
TIMER_NAME

is the name of the timer.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_CURRENT_ACTIVITY
 TIMER_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, FIRE_EVENT function
The FIRE_EVENT function causes an event to fire.

Input Parameters
EVENT

is the name of the composite event.
EVENT_VERSION

Optional Parameter

 is an optional version number for the event.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_FIRED
 EVENT_NOT_FOUND
 INVALID_EVENT_TYPE
 NO_CURRENT_ACTIVITY
 VERSION_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, FORCE_TIMER function
The FORCE_TIMER function causes a timer to expire early.

Input Parameters
TIMER_NAME

is the name of the timer.
ACQUIRED_ACTIVITY

Optional Parameter

 indicates whether or not the timer to be forced is owned by the acquired
activity.

Values for the parameter are:
 NO
 YES

ACQUIRED_PROCESS
Optional Parameter

Chapter 80. Event Manager Domain (EM) 1143

indicates whether or not the timer to be forced is owned by the acquired
process.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ACTIVITY
 NO_ACQUIRED_ACTIVITY
 NO_ACQUIRED_PROCESS
 NO_CURRENT_ACTIVITY
 TIMER_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, INQUIRE_STATUS function
The INQUIRE_STATUS function returns the status of the event pool for the current
activity.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_CURRENT_ACTIVITY

EVENTS_PROCESSED
indicates whether any events were processed during this activation.

 Values for the parameter are:
 NO
 YES

PENDING_ACTIVITY_EVENTS
indicates whether any activity events are pending.

 Values for the parameter are:
 NO
 YES

PENDING_EVENTS
indicates whether any events are pending.

 Values for the parameter are:
 NO
 YES

REATTACH
indicates whether the task should be reattached.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1144 CICS TS for z/OS 4.1: Diagnosis Reference

EMEM gate, REMOVE_SUBEVENT function
The REMOVE_SUBEVENT function removes a subevent from the named
composite event.

Input Parameters
EVENT

is the name of the composite event.
SUBEVENT

is the name of the subevent.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 EVENT_NOT_FOUND
 INVALID_EVENT_TYPE
 INVALID_SUBEVENT
 NO_CURRENT_ACTIVITY
 SUBEVENT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, RETRIEVE_REATTACH_EVENT function
The RETRIEVE_REATTACH_EVENT function retrieves the next event from the
current activity's reattach queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 END_EVENTS
 NO_CURRENT_ACTIVITY

EVENT
is the name of the retrieved reattach event.

EVENT_TYPE
is the type of the retrieved reattach event.

 Values for the parameter are:
 ACTIVITY
 COMPOSITE
 INPUT
 SYSTEM
 TIMER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EMEM gate, RETRIEVE_SUBEVENT function
The RETRIEVE_SUBEVENT function retrieves the next event from the named
composite event's subevent queue.

Input Parameters
EVENT

is the name of the composite event.

Chapter 80. Event Manager Domain (EM) 1145

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 END_SUBEVENTS
 EVENT_NOT_FOUND
 INVALID_EVENT_TYPE
 NO_CURRENT_ACTIVITY
 NO_SUBEVENTS

EVENT_TYPE
is the type of the retrieved reattach event.

 Values for the parameter are:
 ACTIVITY
 INPUT
 TIMER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBEVENT
is the name of the subevent.

EMEM gate, TEST_EVENT function
The TEST_EVENT function returns the fire status of the named event.

Input Parameters
EVENT

is the name of the composite event.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 EVENT_NOT_FOUND
 NO_CURRENT_ACTIVITY

FIRED
returns the fire status of the event.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Event manager domain's generic gates

Table 47 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 47. Event manager domain's generic gates

Gate Trace Functions Format

DMDM EM 0101
EM 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

1146 CICS TS for z/OS 4.1: Diagnosis Reference

Table 47. Event manager domain's generic gates (continued)

Gate Trace Functions Format

EMBA EM 0401
EM 0402

INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN

BAGD

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Business application manager domain's generic formats” on page 899

Modules
 Module Function

DFHEMBA Handles the following requests:
 INQUIRE_DATA_LENGTH
 GET_DATA
 DESTROY_TOKEN

DFHEMBR Handles the following requests:
 INQUIRE_EVENT
 START_BROWSE_EVENT
 GET_NEXT_EVENT
 END_BROWSE_EVENT
 INQUIRE_TIMER
 START_BROWSE_TIMER
 GET_NEXT_TIMER
 END_BROWSE_TIMER

DFHEMDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHEMDUF Formats the EM domain control blocks

DFHEMEM Handles the following requests:

 ADD_SUBEVENT

 CHECK_TIMER

 DEFINE_ATOMIC_EVENT

 DEFINE_COMPOSITE_EVENT

 DEFINE_TIMER

 DELETE_EVENT

 DELETE_TIMER

 FIRE_EVENT

 FORCE_TIMER

 INQUIRE_STATUS

 REMOVE_SUBEVENT

 RESET_EVENT

 RETRIEVE_REATTACH_EVENT

 RETRIEVE_SUBEVENT

 TEST_EVENT

DFHEMTRI Interprets EM domain trace entries

Chapter 80. Event Manager Domain (EM) 1147

1148 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 81. Event processing domain (EP)

The Event processing domain manages events captured as a result of an installed
event binding.

Event processing domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the EP domain.

EPAS gate, FORMAT_EVENT function
FORMAT_EVENT formats a CICS event object, in the form passed to an EP
adapter by the EP dispatcher, into the EP event_format required. The formatted
event is returned to the caller in one (or more in the case of CCE events) containers
in the out_pool provided by the caller.

Input Parameters
event_format

The parameter which controls how the event is formatted.

 The values of this parameter are:
 WBE
 CBE
 CBER
 CCE
 CFE

in_pool_token
a container pool containing the CICS Event Object

out_pool_token
a container pool to contain the formatted event

container_name
The name of the data container, if applicable, in the formatted event container
pool. This is not set for CCE events where the container pool IS the formatted
event.

Output Parameters
REASON

The following value is returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EPEV gate, PUT_EVENT function
PUT_EVENT puts an event on the event processing queue.

Input Parameters
ADAPTER_TYPE

Specifies the type of adapter for the event.

© Copyright IBM Corp. 1997, 2011 1149

|

|

|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

The values of this parameter are:
 TSQ
 CUSTOM
 WMQ
 XACTION
 HTTP

CHANNEL_TOKEN
A token for the channel associated with the PUT_EVENT request.

CORRELATION_FACTOR
The unit of work ID (UOWID) used to correlate transactional events.

PRIORITY
Specifies the priority of the event.

 The values of this parameter are:
 HIGH
 NORMAL

TRANSACTIONAL
Specifies whether the event is transactional, or not.

 The values of this parameter are:
 NO
 YES

<TRANID>
The transaction ID for a custom adapter.

<USERID>
The user ID under which a custom adapter runs.

Output Parameters
REASON

The following value is returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EPEV gate, SYNC_EVENT function
SYNC_EVENT performs commit processing for transactional events.

Input Parameters
ACTION

Specifies the type of SYNC_EVENT.

 The values of this parameter are:
 BACKOUT
 COMMIT

CORRELATION_FACTOR
The unit of work ID (UOWID) used to correlate transactional events.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

EPIS gate, SET_EVENT_PROCESSING function
SET_EVENT_PROCESSING sets the status of event processing.

1150 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

Input Parameters
STATUS

Sets the status of event processing to be either enabled or disabled.

 The values of this parameter are:
 ACTIVE
 INACTIVE

<ACTION>
Instructs the EP domain to either phase out or purge the events on the event
queue.

 The values of this parameter are:
 PHASEOUT
 PURGE

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Event processing domain's generic gates

Table 48 summarizes the Event processing domain's generic gates. It shows the
level-1 trace point IDs of the modules providing the functions for the gate, the
functions provided by the gate, and the generic format for calls to the gate.

 Table 48. Event processing domain's generic gates

Gate Trace Function Format

EPDM
 EP 0100
EP 0101

 INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

Modules
 Module Function

DFHEPAS EP domain adapter services

DFHEPDM Domain initialization and termination program

DFHEPDS EP dispatcher program

DFHEPDUF EP domain dump formatting program

DFHEPIS EP domain inquire and set program

DFHEPSS EP domain statistics and monitoring program

DFHEPSY EP queue manager program

DFHEPTRI EP domain trace formatting program

Chapter 81. Event processing domain (EP) 1151

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

||

||||

|
|
|
|
|
|

|

|

|
|

|||

||

||

||

||

||

||

||

||
|
|

1152 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 82. IP ECI (IE) domain

The IP ECI domain provides services that are used by the CICS EPI protocol over
IP connections.

IP ECI domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the IE domain.

IEIE gate, PROCESS_ECI_FLOW function
Initiates processing of a flow from an ECI client, either by attaching a new mirror
task, or by posting an existing mirror task.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FREEMAIN_FAILURE
 INSTALL_FAILED
 INVALID_FLOW
 INVALID_FORMAT
 INVALID_FUNCTION
 NOT_INSTALLED
 RECEIVE_FAILURE
 SEND_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IEIE gate, RECEIVE function
Receives input from an ECI client.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CLIENT_NOT_RESPONDING
 FREEMAIN_FAILURE
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_REQUEST
 REQUEST_PURGED
 WAIT_FAILURE

BINARY_FORMAT
Optional Parameter

 The binary format in which numeric data is represented.

Values for the parameter are:
 BIG_ENDIAN
 LITTLE_ENDIAN

© Copyright IBM Corp. 1997, 2011 1153

CLIENT_CCSID
Optional Parameter

 The Coded Character Set Identifier (CCSID) of the code page used by the
client.

CLIENT_INDEX
Optional Parameter

 Specifies the conversion table associated with the CLIENT_CCSID parameter.
CODEPAGE

The code page of the request
DATA_ADDRESS

The address of the buffer containing the data received.
DATA_LENGTH

The length of the data received.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IEIE gate, SEND function
Sends a reply to an ECI client.

Input Parameters
DATA_ADDRESS

The address of the buffer containing the data to be sent. DATA_LENGTH.
DATA_LENGTH

The length of the data to be sent.
LAST

This is the last send in this conversation, or not.

 Values for the parameter are:
 LAST_NO
 LAST_YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FREEMAIN_FAILURE
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_REQUEST
 REQUEST_PURGED
 SEND_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IEIE gate, SEND_ERROR function
Sends an FMH7 to an ECI client.

Input Parameters
MESSAGE_NUMBER

The number of the IE component message to be sent to the client.
INSERT1

Optional Parameter

1154 CICS TS for z/OS 4.1: Diagnosis Reference

The first message insert
INSERT2

Optional Parameter

 The second message insert
INSERT3

Optional Parameter

 The third message insert
INSERT4

Optional Parameter

 The fourth message insert

Output Parameters
REASON

The values for the parameter are:
 ABEND
 FREEMAIN_FAILURE
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_REQUEST
 SEND_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IP ECI domain's generic gates

Table 49 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 49. IP ECI domain's generic gates

Gate Trace Functions Format

DMDM IE 0100
IE 0101

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956

Modules
 Module Function

DFHIEDM IE domain initialization and termination.

DFHIEIE The main part of IE domain. Processes all DFHIEIE_GATE functions.

Chapter 82. IP ECI (IE) domain 1155

1156 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 83. IIOP domain (II)

The IIOP domain represents the non-Java portion of the IIOP EJB support,
encompassing the request receiver, request handler, request processor, request
models, and command processor.

IIOP domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the II domain.

IICP gate, ABSTRACT function
The purpose of this function is to link to DFJIIRQ passing the incoming parameter
list.

The parameter list contains:
v The “normal” domain parameter list
v The address of the parameter list
v The length of the entire parameter list (including the address, this length field,

and any following blocks and buffers
v The contents of any blocks and buffers.

Input Parameters
LOGICAL_SERVER

The 4–character name of the logical server

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, ADD_LOGICAL_SERVER function
Add a new logical server to the II domain and catalogs it. If a definition with the
same name already exists it is replaced.

There is no cross checking between logical servers; we allow two or more logical
servers to have the same attributes, provided they are valid.

The function is called by the RDO install code.

Input Parameters
LOGICAL_SERVER

The 4–character name of the logical server
SHELF

The 1–255 character fully-qualified name of a directory (a shelf, primarily for
deployed JAR files)

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SHELF_ACCESS_ERROR

© Copyright IBM Corp. 1997, 2011 1157

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, DELETE_LOGICAL_SERVER function
Deletes an installed logical server definition from the II domain and from the
Catalog.

This function is called by the SPI Exec Interface layer as part of discard
EJBContainer processing.

Input Parameters
LOGICAL_SERVER

The 4–character name of the logical server
SHELF

The 1–255 character fully-qualified name of a directory (a shelf, primarily for
deployed JAR files)

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND
 SHELF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, DISCARD_DJAR function
Remove the definition of a specified deployed JAR file from the system, together
with any associated beans.

Input Parameters
CORBASERVER

The 1-4 character name of the CorbaServer in which the DJAR is installed
DJAR

The 8-character name of the DJAR

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 SHELF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, DJAR_SCAN function
Scan a CorbaServer’s deployed JAR file directory (also known as the pickup
directory) for new or updated deployed JAR files.

1158 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
CORBASERVER

The 1–4 character name of the CorbaServer

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DJARDIR_ACCESS_ERROR
 HFS_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, INSTALL_DJAR function
Install a deployed Java archive (DJAR)

Input Parameters
CORBASERVER

The 1-4 character name of the CorbaServer in which the DJAR is installed
DJAR

The 8-character name of the DJAR
HFSFILE

The 1-255 character fully-qualified file name of the DJAR in the UNIX file
system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_ERROR
 HFS_ACCESS_ERROR
 HFSFILE_NOT_FOUND
 SHELF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, PRE_INSTALL_DJAR function
This function is called by the EJ domain code when a deployed Java archive
(DJAR) is installed. It copies the HFSFILE that contains the DJAR onto the shelf.

The Java Container should create a copy of the DJAR file on the shelf for the
associated CORBASERVER.

When the EJ domain makes this call, it expects to be called back on its EJJO gate
with the INQUIRE_CORBASERVER and INQUIRE_DJAR functions. Accordingly,
the DJAR must be available for inquiries.

Chapter 83. IIOP domain (II) 1159

Input Parameters
CORBASERVER

The 1-4 character name of the CorbaServer in which the DJAR is installed
DJAR

The 8-character name of the DJAR
HFSFILE

The 1-255 character fully-qualified file name of the DJAR in the UNIX file
system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_ERROR
 HFS_ACCESS_ERROR
 HFSFILE_NOT_FOUND
 SHELF_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, PUBLISH_CORBASERVER function
Publish the beans installed in a CorbaServer.

Input Parameters
CORBASERVER

The 4–character name of the CorbaServer.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_ERROR
 HFS_ACCESS_ERROR
 JNDI_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, PUBLISH_DJAR function
Publish the beans installed from a deployed Java archive (DJAR).

Input Parameters
CORBASERVER

The 1-4 character name of the CorbaServer in which the DJAR is installed
DJAR

The 8-character name of the DJAR

1160 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_ERROR
 HFS_ACCESS_ERROR
 JNDI_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, PUBLISH_LOGICAL_SERVER function
Publish the beans installed in a logical server.

Input Parameters
LOGICAL_SERVER

The 4–character name of the logical server

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 JNDI_ERROR
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, RETRACT_CORBASERVER function
Retract all the beans installed in a CorbaServer.

Input Parameters
CORBASERVER

The 4–character name of the CorbaServer.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 HFS_ACCESS_ERROR
 JNDI_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, RETRACT_DJAR function
Retract all the beans installed in a deployed Java archive (DJAR).

Chapter 83. IIOP domain (II) 1161

Input Parameters
CORBASERVER

The 1-4 character name of the CorbaServer in which the DJAR is installed
DJAR

The 8-character name of the DJAR

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 HFS_ACCESS_ERROR
 JNDI_ACCESS_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IICP gate, RETRACT_LOGICAL_SERVER function
Retract all the beans installed in a logical server.

Input Parameters
LOGICAL_SERVER

The 4–character name of the logical server

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 JNDI_ERROR
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIMM gate, ADD_REPLACE_RQMODEL function
The ADD_REPLACE_RQMODEL function of the IIMM gate is used to install or
delete and install a request model.

Input Parameters
CATALOG

Indicates if the request model is to be added to the catalog.

 Values for the parameter are:
 NO
 YES

CORBASERVER
Name of the corbaserver for this request model.

MODEL_TYPE
The type of request model.

 Values for the parameter are:
 CORBA
 EJB
 GENERIC

1162 CICS TS for z/OS 4.1: Diagnosis Reference

OPERATION_PATTERN
A name that matches the IDL operation or a Java-to-IDL mangled
representation of the bean or CORBA stateless object's method signature.

RQMODEL_NAME
The name of the request model

TRANID
The name of the CICS transaction to be used when a new request processor
transaction instance is required to process a method request matching the
specification of the REQUESTMODEL.

BEAN_PATTERN
Optional Parameter

 A name that matches the name of the enterprise bean in the XML deployment
descriptor.

INTERFACE_PATTERN
Optional Parameter

 A name that matches the IDL interface name.
INTERFACE_TYPE

Optional Parameter

 The Java interface type for this REQUESTMODEL.

Values for the parameter are:
 BOTH
 HOME
 REMOTE

MODULE_PATTERN
Optional Parameter

 A name that matches the IDL module name (which defines the name scope of
the interface and operation).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_PATTERN
 INVALID_NAME

DUPLICATE_MODEL_NAME
If RESPONSE(EXCEPTION), REASON(DUPLICATE_PATTERN) is returned, this
parameter returns the name of the existing model that has the same matching
pattern.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIMM gate, COMMIT_RQMODELS function
The COMMIT_RQMODELS function of the IIMM gate is used to commit the
request model to the catalog.

Input Parameters
COMMIT_TOKEN

Token for catalog writes.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED

Chapter 83. IIOP domain (II) 1163

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIMM gate, DELETE_RQMODEL function
The DELETE_RQMODEL function of the IIMM gate is used to delete an installed
request model.

Input Parameters
RQMODEL_NAME

The name of the request model to be deleted.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRH gate, FIND_REQUEST_STREAM function
The FIND_REQUEST_STREAM function of the IIRH gate is used to examine the
incoming GIOP request and to find a new or existing request stream using request
models and the directory.

Input Parameters
REQUEST_BLOCK

Address and length of the GIOP Request - the block must contain the whole of
the request header. It need not contain the body.

AUTHENTICATION_TYPE
Optional Parameter

 An enumerated type containing the TCPIPSERVICE AUTHENTICATION value
- in other words, what sort of security context is expected.

Values for the parameter are:
 ASSERTED
 BASIC
 CERTIFICATE
 KERBEROS
 NONE
 SSLUNAUTH

FORCE_CREATE
Optional Parameter

 YES indicates that IIRH must CREATE a new request stream. NO indicates that
normal logic is used to see if a request stream exists and to JOIN it if it does or
CREATE a new one if it does not.

Values for the parameter are:
 NO
 YES

URM_COMMAREA_BLOCK
Optional Parameter

 Storage used as input to the security user-replaceable program.

1164 CICS TS for z/OS 4.1: Diagnosis Reference

URMNAME
Optional Parameter

 The name of the security user-replaceable program.
USERID

Optional Parameter

 The userid to be used by the ORB.
VAULT_PTR_ADDR

Optional Parameter

 The address of the start of the vault chain. The vault contains sessionID to
userid mappings and is added to, looked up in if the security context is
BASIC.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ADDRDISP
 INVALID_OBJECT_KEY
 NO_OBJECT_KEY
 NO_SECURITY_CONTEXT
 NO_TAGGED_PROFILE
 OTTID_NULL_COORD
 REQUEST_ERROR
 SECURITY_CHECK_FAILED
 SERVICE_NOT_AVAILABLE
 URM_DENIED_PERMISSION
 URM_USERID_NOTAUTH

REQUEST_STREAM_TOKEN
The token, representing the request stream, to be used as input for the
SEND_REQUEST.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RESULT
Indicates whether the request stream was joined or created.

 Values for the parameter are:
 CREATED
 JOINED

LOGICAL_SERVER
Optional Parameter

 The logical server (CorbaServer) that the request stream will use
SECURITY_CONTEXT

Optional Parameter

 The security context specified in the GIOP request
SERVICE_CONTEXTS

Optional Parameter

 The service contexts specified in the GIOP request
STRING

Optional Parameter

Chapter 83. IIOP domain (II) 1165

If an exception response is returned, STRING contains an enumerated type to
be used in the STRING section of the system exception written to the client by
DFHIIRR: for example, if the STRING returned is NO_PERMISSION, then the
string NO_PERMISSION is added to the system_exception reply.

Values for the parameter are:
 INTERNAL
 MARSHAL
 NO_PERMISSION

TARGET_APPLID
Optional Parameter

 The APPLID of the CICS region to which the request is routed.

IIRH gate, PARSE function
The PARSE function of the IIRH gate is used to examine the incoming GIOP
request or reply and to return selected information in the output parameters.

Input Parameters
REQUEST_BLOCK

Address and length of the GIOP Request/reply - the block must contain the
whole of the request/reply header. It need not contain the body.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ADDRDISP
 INVALID_OBJECT_KEY
 REQUEST_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CODESET_CONTEXT
Optional Parameter

 This is a block containing a pointer to and the length of the named context if it
exists within the request or reply. The pointer and length are set to 0 if the
context does not exist.

CONNECTION_CONTEXT
Optional Parameter

 This is a block containing a pointer to and the length of the named context if it
exists within the request or reply. The pointer and length are set to 0 if the
context does not exist.

REDIRECTION_CONTEXT
Optional Parameter

 This is a block containing a pointer to and the length of the named context if it
exists within the request or reply. The pointer and length are set to 0 if the
context does not exist.

REPLY_STATUS
Optional Parameter

 The reply status extracted from a reply header.

Values for the parameter are:

1166 CICS TS for z/OS 4.1: Diagnosis Reference

LOC_NEEDS_ADDRESSING
 LOC_SYSTEM_EXCEPTION
 LOCATION_FORWARD
 LOCATION_FORWARD_PERM
 NEEDS_ADDRESSING_MODE
 NO_EXCEPTION
 OBJECT_FORWARD
 OBJECT_FORWARD_PERM
 OBJECT_HERE
 SYSTEM_EXCEPTION
 UNKNOWN_OBJECT
 USER_EXCEPTION

REQUESTID
Optional Parameter

 The requestId extracted from the request or reply header.
RESPONSE_EXPECTED

Optional Parameter

 Indicates if the response_expected bit is on in the request header.

Values for the parameter are:
 NO
 YES

SENDING_CONTEXT
Optional Parameter

 This is a block containing a pointer to and the length of the named context if it
exists within the request or reply. The pointer and length are set to 0 if the
context does not exist.

SERVICE_CONTEXTS
Optional Parameter

 The service contexts specified in the GIOP request
TRACKING_CONTEXT

Optional Parameter

 This is a block containing a pointer to and the length of the named context if it
exists within the request or reply. The pointer and length are set to 0 if the
context does not exist.

IIRP gate, GET_INITIAL_DATA function
The GET_INITIAL_DATA function of the IIRP gate is used by the ORB program
DFJIIRP (or its CICS-key equivalent DFJIIRQ) to set up an environment to allow it
to issue further IIRP requests and to return the output parameters below.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ERROR_REENTERED

The following values are returned when RESPONSE is EXCEPTION:
 NO_PUBLIC_ID
 NO_SERVER_DATA
 REQUEST_STREAM_NOT_CURRENT

PUBLIC_ID
The public_id that identifies the request stream for the incoming request.

Chapter 83. IIOP domain (II) 1167

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RP_TOKEN
A token to allow further calls for the same Request Processor

SERVER_NAME
The name of the CORBA server held by the request stream for the incoming
request.

IIRP gate, INITIALISE function
The INITIALISE function of the IIRP gate is used by the ORB program DFJIIRP (or
its CICS-key equivalent DFJIIRQ) to set up an environment to allow it to issue
further IIRP requests. This is used during COMMAND PROCESSING. For example
when DFJIIRQ is processing an ADD_CORBASERVER command.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ERROR_REENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RP_TOKEN
A token to allow further calls for the same Request Processor.

IIRP gate, INVOKE function
The INVOKE function of the IIRP gate is used by the ORB program DFJIIRP (or its
CICS-key equivalent DFJIIRQ) to send an outbound request and to receive its
reply.

Input Parameters
CONTINUE

YES | NO - YES is set if RECEIVE_REQUEST is to listen for a further request.

 Values for the parameter are:
 NO
 YES

REQUEST_BUF
A buffer, into which the received request is to be placed.

RP_TOKEN
Token supplied by GET_INITIAL_DATA or INITIALISE representing state
storage.

RS_TOKEN
Token representing the outbound request stream.

REPLY_BUF
Optional Parameter

 A buffer, into which the reply is to be placed.
TARGET_APPLID

Optional Parameter

 The APPLID of the outbound request's target system.

1168 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LISTEN_FAILED
 REQUEST_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_TOO_SMALL
 GIOP_CLOSE_CONN_RECEIVED
 GIOP_FRAGMENT_EXPECTED
 GIOP_FRAGMENT_INVALID
 GIOP_FRAGMENT_NOT_EXPECTED
 GIOP_INVALID_MESSAGE_TYPE
 GIOP_INVALID_VERSION
 GIOP_MESSAGE_ERROR_RCVD
 GIOP_REP_HEADER_INVALID
 MESSAGE_NOT_RECEIVABLE
 RECEIVE_REPLY_FAILED
 REDIRECTION_RECEIVED
 REQUEST_RECEIVED
 SEND_REQUEST_FAILED
 TIMEOUT_NOTIFIED

The following values are returned when RESPONSE is INVALID:
 INVALID_RP_TOKEN

BYTES_AVAILABLE
Set if BUFFER_TOO_SMALL is set. It contains the actual size of the buffer
needed for the reply which is obtained from the GIOP reply header received
by INVOKE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRP gate, RECEIVE_REPLY function
The RECEIVE_REPLY function of the IIRP gate is used by the ORB program
DFJIIRP (or its CICS-key equivalent DFJIIRQ) to receive an outbound reply to an
outbound request. It is used, following INVOKE, if INVOKE indicated that a
further request was ready before the reply was available (loopback) or if the reply
buffer supplied by INVOKE was too small.

Input Parameters
RECEIVE_TYPE

FULL is set for the first receive_request. OVERFLOW is set if the buffer
supplied to the first receive_request was too small.

 Values for the parameter are:
 FULL
 OVERFLOW

REPLY_BUF
A buffer, into which the reply is to be placed.

RP_TOKEN
Token supplied by GET_INITIAL_DATA or INITIALISE representing state
storage.

RS_TOKEN
Token representing the outbound request stream.

Chapter 83. IIOP domain (II) 1169

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_TOO_SMALL
 GIOP_CLOSE_CONN_RECEIVED
 GIOP_FRAGMENT_EXPECTED
 GIOP_FRAGMENT_INVALID
 GIOP_FRAGMENT_NOT_EXPECTED
 GIOP_INVALID_MESSAGE_TYPE
 GIOP_INVALID_VERSION
 GIOP_MESSAGE_ERROR_RCVD
 GIOP_REP_HEADER_INVALID
 MESSAGE_NOT_RECEIVABLE
 RECEIVE_REPLY_FAILED
 REDIRECTION_RECEIVED
 REQUEST_RECEIVED
 TIMEOUT_NOTIFIED

The following values are returned when RESPONSE is INVALID:
 INVALID_RP_TOKEN

BYTES_AVAILABLE
Set if BUFFER_TOO_SMALL is set. It contains the actual size of the buffer
needed for the reply which is obtained from the GIOP reply header received
by INVOKE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRP gate, RECEIVE_REQUEST function
The RECEIVE_REQUEST function of the IIRP gate is used by the ORB program
DFJIIRP (or its CICS-key equivalent DFJIIRQ) to receive a request via a request
stream from a Request Receiver. This is for INBOUND requests.

Input Parameters
CONTINUE

YES | NO - YES is set if RECEIVE_REQUEST is to listen for a further request.

 Values for the parameter are:
 NO
 YES

RECEIVE_TYPE
FULL | OVERFLOW - FULL is set for the first receive_request. OVERFLOW is
set if the buffer supplied to the first receive_request was too small.

 Values for the parameter are:
 FULL
 OVERFLOW

REQUEST_BUF
A buffer, into which the received request is to be placed.

RP_TOKEN
Token supplied by GET_INITIAL_DATA or INITIALISE representing state
storage.

1170 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ERROR_REENTERED
 LISTEN_FAILED
 REQUEST_INVALID

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_TOO_SMALL
 GIOP_REQ_HEADER_INVALID
 MESSAGE_NOT_RECEIVABLE
 RECEIVE_REQUEST_FAILED
 TIMEOUT_NOTIFIED

The following values are returned when RESPONSE is INVALID:
 INVALID_RP_TOKEN

BYTES_AVAILABLE
Set if BUFFER_TOO_SMALL is set. It contains the actual size of the buffer
needed for the reply which is obtained from the GIOP reply header received
by INVOKE

CORRELATION_ID
The correlation id returned by the request stream receive_request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRP gate, SEND_REPLY function
The SEND_REPLY function of the IIRP gate is used by the ORB program DFJIIRP
(or its CICS-key equivalent DFJIIRQ) to send a reply via a request stream to an
inbound request.

Input Parameters
CORRELATION_ID

of the request returned by IIRP RECEIVE_REQUEST.
REPLY_BUF

A buffer, into which the reply is to be placed.
RP_TOKEN

Token supplied by GET_INITIAL_DATA or INITIALISE representing state
storage.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 SEND_REPLY_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_RP_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 83. IIOP domain (II) 1171

IIRP gate, TERMINATE function
The TERMINATE function of the IIRP gate is used by the ORB program DFJIIRP
(or its CICS-key equivalent DFJIIRQ) in normal and command processing mode to
free any storage obtained by GET_INITIAL_DATA or INITIALISE. If necessary, it
will also leave the request stream.

Input Parameters
RP_TOKEN

Token supplied by GET_INITIAL_DATA or INITIALISE representing state
storage.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ERROR_REENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRP gate, UPDATE_WORKREQUEST function
Update the target applid to contain a TCP/IP address and port number. It is called
when a bean goes outbound over TCPIP instead of over MRO.

Input Parameters
TARGET_TCPIP_ADDR

The target TCP/IP address of the target.
TARGET_TCPIP_PORT

The target TCP/IP port.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ERROR_REENTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRQ gate, END_BROWSE function
The END_BROWSE function of the IIMM gate is used to end the browse session.

Input Parameters
BROWSE_TOKEN

The token created by start_browse.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1172 CICS TS for z/OS 4.1: Diagnosis Reference

IIRQ gate, GET_NEXT function
The GET_NEXT function of the IIMM gate is used to pass back the output
parameters for the next request model.

Input Parameters
BROWSE_TOKEN

The token created by start_browse.
BEAN_PATTERN

Optional Parameter

 A name that matches the name of the enterprise bean in the XML deployment
descriptor.

INTERFACE_PATTERN
Optional Parameter

 A name that matches the IDL interface name.
MODULE_PATTERN

Optional Parameter

 A name that matches the IDL module name (which defines the name scope of
the interface and operation).

OPERATION_PATTERN
A name that matches the IDL operation or a Java-to-IDL mangled
representation of the bean or CORBA stateless object's method signature.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RQMODEL_NAME
The name of the request model

CORBASERVER
Optional Parameter

 Name of the corbaserver for this request model.
INTERFACE_TYPE

Optional Parameter

 The Java interface type for this REQUESTMODEL.

Values for the parameter are:
 BOTH
 HOME
 REMOTE

MODEL_TYPE
Optional Parameter

 The type of request model.

Values for the parameter are:
 CORBA
 EJB
 GENERIC

TRANID
Optional Parameter

Chapter 83. IIOP domain (II) 1173

The name of the CICS transaction to be used when a new request processor
transaction instance is required to process a method request matching the
specification of the REQUESTMODEL.

IIRQ gate, INQUIRE_RQMODEL function
The INQUIRE_RQMODEL function of the IIRQ gate is used to inquire on a
particular model, returning the output parameters below.

Input Parameters
RQMODEL_NAME

Name of the request model for which information is needed.
BEAN_PATTERN

Optional Parameter

 A name that matches the name of the enterprise bean in the XML deployment
descriptor.

INTERFACE_PATTERN
Optional Parameter

 A name that matches the IDL interface name.
MODULE_PATTERN

Optional Parameter

 A name that matches the IDL module name (which defines the name scope of
the interface and operation).

OPERATION_PATTERN
A name that matches the IDL operation or a Java-to-IDL mangled
representation of the bean or CORBA stateless object's method signature.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CORBASERVER
Optional Parameter

 Name of the corbaserver for this request model.
INTERFACE_TYPE

Optional Parameter

 The Java interface type for this REQUESTMODEL.

Values for the parameter are:
 BOTH
 HOME
 REMOTE

MODEL_TYPE
Optional Parameter

 The type of request model.

Values for the parameter are:
 CORBA
 EJB
 GENERIC

1174 CICS TS for z/OS 4.1: Diagnosis Reference

TRANID
Optional Parameter

 The name of the CICS transaction to be used when a new request processor
transaction instance is required to process a method request matching the
specification of the REQUESTMODEL.

IIRQ gate, MATCH_RQMODEL function
The MATCH_RQMODEL function of the IIRQ gate is used to find the most
specific request model that matches the input parameters.

Input Parameters
CORBASERVER

Name of the corbaserver for this request model.
OPERATION_BLOCK

A block for the IDL operation or a Java-to-IDL mangled representation of the
bean or CORBA stateless object's method signature.

BEAN_NAME_BLOCK
Optional Parameter

 A block for the name of the enterprise bean in the XML deployment descriptor.
INTERFACE_NAME_BLOCK

Optional Parameter

 A block for the IDL interface name.
INTERFACE_TYPE

Optional Parameter

 The Java interface type for the REQUESTMODEL.

Values for the parameter are:
 HOME
 REMOTE

MODULE_NAME_BLOCK
Optional Parameter

 A block for the IDL module name (which defines the name scope of the
interface and operation).

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANID
The name of the CICS transaction to be used when a new request processor
transaction instance is required to process a method request.

IIRQ gate, START_BROWSE function
The START_BROWSE function of the IIMM gate is used to return a token to allow
all the request models to be browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 NOT_FOUND

BROWSE_TOKEN
A token that represents the browse session.

Chapter 83. IIOP domain (II) 1175

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIRR gate, PROCESS_REQUESTS function
The PROCESS_REQUESTS function of the IIRR gate is used to receive a GIOP
request from a socket, find a request stream, send the request over the request
stream, optionally receive a reply and send the reply to the socket. This process
continues until the socket is closed or no further data is available.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ERROR_REENTERED

The values for the parameter are:
 GIOP_CLOSE_CONN_RECEIVED
 GIOP_FRAGMENT_INVALID
 GIOP_FRAGMENT_NOT_EXPECTED
 GIOP_FRAGS_NOT_SUPPORTED
 GIOP_INVALID_HEADER
 GIOP_INVALID_MESSAGE_TYPE
 GIOP_INVALID_VERSION
 GIOP_MESSAGE_ERROR_RCVD
 GIOP_REPLY_RECEIVED
 IIRH_FIND_EXCEPTION
 NO_PERMISSION
 RESCHEDULE
 SOCK_RECEIVE_EXCEPTION
 SOCK_RECEIVE_TIMEOUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IIOP domain's generic gates

Table 50 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 50. IIOP domain's generic gates

Gate Trace Functions Format

IIDM IE 0000
IE 0001

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

IIST II 0600
II 0601

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

IIXM AP 09E0
AO 09E1

INIT_XM_CLIENT BIND_XM_CLIENT
TRANSACTION_HANG ABEND_TERMINATE
RELEASE_XM_CLIENT

XMAC

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

1176 CICS TS for z/OS 4.1: Diagnosis Reference

“Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777
 “Transaction manager domain's generic formats” on page 1999

Modules
 Module Function

DFHIICP II domain command processor DFHIICP provides a common mechanism
for the following OT and EJ requests to call JAVA ORB code.
 RESYNC_COORDINATOR
 RESYNC_SUBORDINATE
 PUBLISH_CORBASERVER
 RETRACT_CORBASERVER
 PRE_INSTALL_DJAR
 INSTALL_DJAR
 DISCARD_DJAR
 PUBLISH_DJAR
 RETRACT_DJAR

DFHIIDM Handles the following requests:
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHIIDUF II domain offline dump formatting routine

DFHIILS Handles the following requests via DFHIICP:
 ADD_LOGIGICAL_SERVER
 DELETE_LOGIGICAL_SERVER
 PUBLISH_LOGIGICAL_SERVER
 RETRACT_LOGIGICAL_SERVER

DFHIIMM Handles the following requests:
 ADD_REPLACE_RQMODEL
 DELETE_RQMODEL
 COMMIT_RQMODELS

DFHIIRH Handles the following requests:
 FIND_REQUEST_STREAM
 PARSE

DFHIIRP Handles the following requests:
 GET_INITIAL_DATA
 RECEIVE_REQUEST
 INVOKE
 SEND_REPLY
 RECEIVE_REPLY
 INITIALISE
 TERMINATE

DFHIIRQ Handles the following requests:
 INQUIRE_RQMODEL
 START_BROWSE
 GET_NEXT
 END_BROWSE
 MATCH_RQMODEL

DFHIIRR Handles the following requests:
 PROCESS_REQUESTS

DFHIIST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

Chapter 83. IIOP domain (II) 1177

Module Function

DFHIITRI Interprets II domain trace entries

DFHIIXM Handles the following requests:
 INIT_XM_CLIENT
 BIND_XM_CLIENT
 TRANSACTION_HANG
 ABEND_TERMINATE
 RELEASE_XM_CLIENT

Exits
There is one user-replaceable program, DFHXOPUS, which is called by DFHIIRR
during Request Receiver processing.

1178 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 84. Inter-system (IS) domain

The IS domain manages the resources, and the sending and receiving of requests
and responses for IP interconnectivity (IPIC) connections.

IS domain specific gates
The specific gates provide access for other domains to functions that are provided
by the IS domain.

ISCO gate, ACQUIRE_CONNECTION function
Acquire a connection to the partner CICS system named in the IPCONN
parameter. It opens a web session, sends a capability exchange to the partner and
waits for a response before setting the IPCONN connstatus to ACQUIRED. The
IPCONN must be INS, REL before this function is called.

Input Parameters
IPCONN

Optional Parameter

 The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

TCPIPSERVICE
Optional Parameter

 The name of the PROTOCOL(IPIC) TCPIPSERVICE definition that defines the
attributes of the inbound processing for this connection.

Output Parameters
REASON

 The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_IPCONN_STATE
 IPCONN_NOT_FOUND
 ISCER_BAD_RESPONSE
 ISCER_ERROR
 ISCER_HTTP_ERROR
 ISCER_TIMED_OUT
 NO_IPCONN
 SESSION_OPEN_FAILED
 SHUTDOWN
 TCPIP_CLOSED
 TCPIPSERVICE_NOT_FOUND
 TCPIPSERVICE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER

© Copyright IBM Corp. 1997, 2011 1179

INVALID
 KERNERROR
 PURGED

ISCO gate, INITIALIZE_CONNECTION function
Accept an incoming connection from a partner CICS system. Called by the
TCPIPSERVICE transaction, which is attached in response to a new
PROTOCOl(IPIC) connection.

CICS reads the initial capability exchange, locates or creates an IPCONN to service
further incoming IPIC requests from the partner and sends a response.

If a callback port is specified in the capability exchange, a connection is first made
back to the client to allow outbound IPIC requests from this CICS system.

Output Parameters
REASON

The values for the parameter are:
 AUTOINSTALL_FAILED
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_IPCONN_STATE
 INVALID_PARTNER_STATE
 IPCONN_NOT_FOUND
 ISCE_BAD_RECOV
 ISCE_ERROR
 ISCE_INVALID_APPLID
 ISCE_TIMED_OUT
 ISCER_BAD_RESPONSE
 ISCER_ERROR
 ISCER_HTTP_ERROR
 ISCER_TIMED_OUT
 NO_IPCONN
 ONE_WAY_IPCONN
 SESSION_OPEN_FAILED
 SHUTDOWN
 TCPIP_CLOSED
 TCPIPSERVICE_MISMATCH
 TCPIPSERVICE_NOT_FOUND
 TCPIPSERVICE_NOT_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISCO gate, RELEASE_CONNECTION function
Rejects new work for the named IPCONN.

1180 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
DRAIN

Optional Parameter

 Values for the parameter are:
YES

When YES, CICS performs the following actions:
 Notifies the partner to do likewise.
 Waits for work in progress, and queued work, to complete but will not

allow new work to the partner to be initiated. Work for which an
allocate_send has completed or is queued is allowed to complete but
new allocate requests are rejected.

NO

 When NO, queued work is cancelled and the partner is only notified when
it attempts to send new work to this IPCONN.

When all work associated with the server is complete, the server web
session is closed.

The client is normally closed by the partner by passing a session_closed
notification.

Once both client and server are released, the IPCONN is released.

For JCA, where there is no server session with which to notify the partner
of the need to drain, incoming new work is rejected and, once the last
work in progress (as indicated by the presence of an active receive session)
is complete, the client session is closed.

IPCONN
Optional Parameter

 The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.
If neither IPCONN nor TCPIPSERVICE is specified, all IPCONNs are released.

TCPIPSERVICE
Optional Parameter

 The name of the PROTOCOL(IPIC) TCPIPSERVICE definition that defines the
attributes of the inbound processing for this connection.
If specified, any IPCONNs referencing the given TCPIPSERVICE are released.
If neither IPCONN nor TCPIPSERVICE is specified, all IPCONNs are released.

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_IPCONN_STATE
 IPCONN_NOT_FOUND
 NO_IPCONN
 TCPIPSERVICE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER

Chapter 84. Inter-system (IS) domain 1181

INVALID
 KERNERROR
 PURGED

ISCO gate, TERMINATE_CONNECTION function
Release the IPCONN web sessions immediately, without waiting for any work in
progress to complete. Used for error processing or when it is known that IS
sessions (ISSBs) are no longer active.

Input Parameters
IPCONN

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

SESSION_TYPE
Optional Parameter

 Restricts the command to the client or the server.

Values for the parameter are:
 CLIENT
 SERVER

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISIC gate, ADD_IPCONN function
Create and install an IPCONN in the running system.

Input Parameters
HOST

The host name of the remote system (for example, abc.example.com), or its
dotted decimal IP address (for example, 9.20.181.3)

INSTALL_TYPE
IPCONN installation method.

 Values for the parameter are:
 GRPLIST
 ONLINE
 WARM_AUTOINSTALLED
 WARM_EXPLICIT

IPCONN
The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

1182 CICS TS for z/OS 4.1: Diagnosis Reference

PORTNUMBER
The port number used for outbound requests on this connection; that is, the
number of the port on which the remote system will listen.

TCPIPSERVICE
The name of the TCPIPSERVICE that defines the attributes of the inbound
processing for this connection.

APPLID
Optional Parameter

 The application identifier (applid) of the remote system. (If the remote system
is a CICS region, its applid is specified on the APPLID parameter of its system
initialization table.)

AUTOCONNECT
Optional Parameter

 Values for the parameter are:
 AUTOCONNECT_NO
 AUTOCONNECT_YES

CERTIFICATE
Optional Parameter

 CIPHER_LIST
Optional Parameter

 INSERVICE
Optional Parameter

 Values for the parameter are:
 INSERVICE_NO
 INSERVICE_YES

MAXQTIME
Optional Parameter

 The maximum time, in seconds, for which allocate requests may be queued on
this connection.

NETWORKID
Optional Parameter

 The network ID of the remote system.
QUEUELIMIT

Optional Parameter

 The maximum number of allocate requests that can be queued for this
connection.

RECEIVECOUNT
Optional Parameter

 The number of receive sessions for this connection
SECURITYNAME

Optional Parameter

 The security name of the remote system.
SENDCOUNT

Optional Parameter

 The number of send sessions for this connection
SSLTYPE

Optional Parameter

 Whether to use secure socket layer (SSL) authentication.

Values for the parameter are:
 SSL_NO

Chapter 84. Inter-system (IS) domain 1183

SSL_YES
USERAUTH

Optional Parameter

 Type of user authentication to use.

Values for the parameter are:
 CERTIFICAUTH
 IDENTIFY
 LOCAL
 USERAUTH_NO
 VERIFY

XLNACTION
Optional Parameter

 Values for the parameter are:
 FORCE
 KEEP

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 UNLOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 CERTIFICATE_ERROR
 CIPHER_LIST_REDUCED
 CIPHER_LIST_REJECTED
 CONNECTION_MISMATCH
 DUPLICATE_APPLID
 IN_USE
 NO_DEFAULT_CERTIFICATE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISIC gate, AUTOINSTALL_IPCONN function
Attempt to create an IPCONN to an unknown NETWORKID or APPLID. This
function always runs on the QR TCB.

Input Parameters
APPLID

The application identifier (applid) of the remote system. (If the remote system
is a CICS region, its applid is specified on the APPLID parameter of its system
initialization table.)

1184 CICS TS for z/OS 4.1: Diagnosis Reference

HOST
The host name of the remote system (for example, abc.example.com), or its
dotted decimal IP address (for example, 9.20.181.3).

NETWORKID
The network ID of the remote system.

PORTNUMBER
The port number used for outbound requests on this connection; that is, the
number of the port on which the remote system is to listen.

RECOVERY
Recovery method.

 Values for the parameter are:
 CICS
 NON_CICS

REQUESTED_SESSIONS
The number of sessions for this connection.

TCPIPSERVICE
The name of the PROTOCOL(IPIC) TCPIPSERVICE definition that defines the
attributes of the inbound processing for this connection

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUP_ABENDED
 AUP_AMODE_ERROR
 AUP_NOT_AVAILABLE
 AUP_NOT_KNOWN
 AUP_NOT_SPECIFIED
 AUP_VETO
 CONNECTION_MISMATCH
 DUPLICATE_APPLID
 NAME_IN_USE
 NAME_INVALID
 PORT_INVALID
 TEMPLATE_NOT_FOUND
 TEMPLATE_OUTSERVICE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

IPCONN
The name of the IPCONN definition; that is, the name of the remote system.

ISCB_TOKEN
ISCB token for this connection.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Chapter 84. Inter-system (IS) domain 1185

ISIC gate, DISCARD_IPCONN function
Remove an IPCONN from the system, if it is in an appropriate state.

Input Parameters
IPCONN

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 IN_USE
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISIC gate, ENDBROWSE_IPCONN function
End an IPCONN browse.

Input Parameters
BROWSE_TOKEN

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TOKEN_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

1186 CICS TS for z/OS 4.1: Diagnosis Reference

ISIC gate, GETNEXT_IPCONN function
Get the next IPCONN for browse.

Input Parameters
BROWSE_TOKEN

Dispatcher domain browse token.
CERTIFICATE

Optional Parameter

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 INVALID_BROWSE_TOKEN

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

IPCONN
The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

APPLID
Optional Parameter

 Application identifier.
AUTOCONNECT

Optional Parameter

 Autoconnect.

Values for the parameter are:
 AUTOCONNECT_NO
 AUTOCONNECT_YES

CIPHER_COUNT
Optional Parameter

 CIPHER_SUITES
Optional Parameter

 CONNSTATUS
Optional Parameter

 Values for the parameter are:
 ACQUIRED
 FREEING
 OBTAINING
 RELEASED

Chapter 84. Inter-system (IS) domain 1187

HOST
Optional Parameter

 Host name.
MAXQTIME

Optional Parameter
 NETWORKID

Optional Parameter

 Network identifier.
PENDSTATUS

Optional Parameter

 Indicates whether work is pending.

Values for the parameter are:
 NOTPENDING
 PENDING

PORTNUMBER
Optional Parameter

 Port number.
QUEUELIMIT

Optional Parameter

 Queue limit.
RECEIVECOUNT

Optional Parameter

 Number of receives.
RECOVSTATUS

Optional Parameter

 Recovery status.

Values for the parameter are:
 NORECOVDATA
 NRS
 RECOVDATA

SECURITYNAME
Optional Parameter

 SENDCOUNT
Optional Parameter

 Number of sends.
SERVSTATUS

Optional Parameter

 Service status.

Values for the parameter are:
 INSERV
 OUTSERV

SSLTYPE
Optional Parameter

 SSL type.

Values for the parameter are:
 SSL_NO
 SSL_YES

TCPIPSERVICE
Optional Parameter

1188 CICS TS for z/OS 4.1: Diagnosis Reference

TCPIPSERVICE name.
USERAUTH

Optional Parameter

 User authentication method.

Values for the parameter are:
 CERTIFICAUTH
 IDENTIFY
 LOCAL
 USERAUTH_NO
 VERIFY

ISIC gate, INQUIRE_IPCONN function
Get information about an IPCONN.

Input Parameters
IPCONN

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

CERTIFICATE
Optional Parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

APPLID
Optional Parameter

 The application identifier (applid) of the remote system. (If the remote system
is a CICS region, its applid is specified on the APPLID parameter of its system
initialization table.)

AUTOCONNECT
Optional Parameter

 Values for the parameter are:
 AUTOCONNECT_NO
 AUTOCONNECT_YES

CIPHER_COUNT
Optional Parameter

 The number of cipher suites that are available to negotiate with clients during
the SSL handshake.

Chapter 84. Inter-system (IS) domain 1189

CIPHER_SUITES
Optional Parameter

 The list of cipher suites that is used to negotiate with clients during the SSL
handshake.

CONNSTATUS
Optional Parameter

 The current status of the connection.

Values for the parameter are:
 ACQUIRED
 FREEING
 OBTAINING
 RELEASED

HOST
Optional Parameter

 The host name of the remote system (for example, abc.example.com), or its
dotted decimal IP address (for example, 9.20.181.3).

MAXQTIME
Optional Parameter

 The maximum time, in seconds, for which allocate requests may be queued on
this connection.

NETWORKID
Optional Parameter

 The network ID of the remote system.
PENDSTATUS

Optional Parameter

 Indicates whether there are any pending units of work for this connection.

Values for the parameter are:
 NOTPENDING
 PENDING

PORTNUMBER
Optional Parameter

 The port number used for outbound requests on this connection; that is, the
number of the port on which the remote system is listening.

QUEUELIMIT
Optional Parameter

 The maximum number of allocate requests that can be queued for this
connection.

RECEIVECOUNT
Optional Parameter

 The number of receive sessions defined for this connection.
RECOVSTATUS

Optional Parameter

 Recovery status of the remote connection.

Values for the parameter are:
 NORECOVDATA
 NRS
 RECOVDATA

SECURITYNAME
Optional Parameter

1190 CICS TS for z/OS 4.1: Diagnosis Reference

Link userid used for this connection.
SENDCOUNT

Optional Parameter

 The number of send sessions defined for this connection.
SERVSTATUS

Optional Parameter

 Service status.

Values for the parameter are:
 INSERV
 OUTSERV

SSLTYPE
Optional Parameter

 Indicates whether the Secure Sockets Layer (SSL) is being used to secure
communications for this transaction.

Values for the parameter are:
 SSL_NO
 SSL_YES

TCPIPSERVICE
Optional Parameter

 The name of the PROTOCOL(IPIC) TCPIPSERVICE definition that defines the
attributes of the inbound processing for this connection.

USERAUTH
Optional Parameter

 The level of attach-time user security used for the connection.

Values for the parameter are:
 CERTIFICAUTH
 IDENTIFY
 LOCAL
 USERAUTH_NO
 VERIFY

ISIC gate, INQUIRE_IPCONN_BY_APPLID function
Get information about an IPCONN with the given APPLID.

Input Parameters
APPLID

The application identifier (applid) of the remote system. If the remote system is
a CICS region, its applid is specified on the APPLID parameter of its system
initialization table.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

Chapter 84. Inter-system (IS) domain 1191

Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

AUTOCONNECT
Optional Parameter

 Values for the parameter are:
 AUTOCONNECT_NO
 AUTOCONNECT_YES

CONNSTATUS
Optional Parameter

 The current status of the connection.

Values for the parameter are:
 ACQUIRED
 FREEING
 OBTAINING
 RELEASED

HOST
Optional Parameter

 The host name of the remote system (for example, abc.example.com), or its
dotted decimal IP address (for example, 9.20.181.3).

IPCONN
The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

MAXQTIME
Optional Parameter

 The maximum time, in seconds, for which allocate requests may be queued on
this connection.

NETWORKID
Optional Parameter

 The network ID of the remote system.
PENDSTATUS

Optional Parameter

 Indicates whether there are any pending units of work for this connection.

Values for the parameter are:
 NOTPENDING
 PENDING

PORTNUMBER
Optional Parameter

 The port number used for outbound requests on this connection; that is, the
number of the port on which the remote system is listening.

QUEUELIMIT
Optional Parameter

 The maximum number of allocate requests that can be queued for this
connection.

RECEIVECOUNT
Optional Parameter

1192 CICS TS for z/OS 4.1: Diagnosis Reference

The number of receive sessions defined for this connection.
RECOVSTATUS

Optional Parameter

 Recovery status of the remote connection.

Values for the parameter are:
 NORECOVDATA
 NRS
 RECOVDATA

SECURITYNAME
Optional Parameter

 Link userid used for this connection.
SENDCOUNT

Optional Parameter

 The number of send sessions defined for this connection.
SERVSTATUS

Optional Parameter

 Service status.

Values for the parameter are:
 INSERV
 OUTSERV

TCPIPSERVICE
Optional Parameter

 The name of the PROTOCOL(IPIC) TCPIPSERVICE definition that defines the
attributes of the inbound processing for this connection.

ISIC gate, SET_IPCONN function
Change the attributes of an IPCONN or cancel outstanding AIDs.

Input Parameters
IPCONN

Name of the IPCONN.
CONNSTATUS

Optional Parameter

 Connection status.

Values for the parameter are:
 ACQUIRED
 RELEASED

PENDSTATUS
Optional Parameter

 Indicates whether work is pending on this connection.

Values for the parameter are:
 PENDING

PURGETYPE
Optional Parameter

 Specifies the conditions for CICS to purge the task.

Values for the parameter are:
 CANCEL
 FORCECANCEL
 FORCEPURGE

Chapter 84. Inter-system (IS) domain 1193

KILL
 PURGE

RECOVSTATUS
Optional Parameter

 Recovery status for this conection.

Values for the parameter are:
 NORECOVDATA

SERVSTATUS
Optional Parameter

 Service status for this connection.

Values for the parameter are:
 INSERV
 OUTSERV

UOWACTION
Optional Parameter

 Normal resynchronization process is to be partially overridden: decisions are
taken for any units of work that are indoubt because of a failure of the
IPCONN; but the decisions are recorded and any data inconsistencies are
reported when the connection is next acquired.

Values for the parameter are:
 BACKOUT
 COMMIT
 FORCEUOW
 RESYNC

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ACQUIRED_ONE_WAY
 ACQUIRED_WHEN_FREEING
 NOT_FOUND
 NOTPENDING_ERROR
 RECOVSTATUS_INVALID
 SERVSTATUS_ERROR
 UNSUCCESSFUL_BACKOUT

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ALLOCATES_CANCELLED
Optional Parameter

 Indicates whether allocates are cancelled.

1194 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 CANCELLED_NO
 CANCELLED_YES

ISIC gate, STARTBROWSE_IPCONN function
Start a browse operation on IPCONN resources.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BROWSE_TOKEN
The browse token for the browse operation.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISIF gate, GET_IPFACILITY_LIST function

Input Parameters
TASK_NUMBER
IP_FACILITY_LIST

Optional Parameter

 Name of list to get.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_NOT_BIG_ENOUGH
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

LIST_SIZE
Size of retrieved list.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Chapter 84. Inter-system (IS) domain 1195

ISIF gate, INQUIRE_IPFACILITY function
Retrieve information about an IPCONN facility.

Input Parameters
FACILITY_TOKEN

IPCONN facility token.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

IPCONN
Optional Parameter

 The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

IPFACILITY_TYPE
Optional Parameter

 Values for the parameter are:
 ALTERNATE
 PRINCIPAL

ISIS gate, ALLOCATE_SEND function
Allocate a session on the named IPIC connection.

Input Parameters
IPCONN

The name of the IPCONN resource that is used to route the transaction to the
remote CICS region.

QUEUE
Flag indicating whether to queue if no sessions are immediately available.

 Values for the parameter are:
 YES
 NO

FUNCTION_AREA
Indicates the CICS functional areas for which the session is being used. This
parameter is passed to the user exit.

 Value for the parameter is:
 transaction_routing

1196 CICS TS for z/OS 4.1: Diagnosis Reference

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

TRAN_REMOTENAME
Name of the transaction to be routed. This parameter is passed to the user exit
(for UEPTRANR).

Output Parameters
SESSION

Pointer to the ISSB for the link to the remote CICS region.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ISIS_NOT_FOUND
 ISIS_CAPABILITIES_UNKNOWN
 ISIS_NOT_IN_SERVICE
 ISIS_ALLOCATE_REJECTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 INVALID

ISIS gate, BIND_RECEIVER function
Sets the IPCONN to be the BIND receiver

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISIS gate, CONVERSE function
Send a request to a partner system using an IPCONN.

Input Parameters
EXEC_ARGS

Specifies the argument string being passed.
IPCONN

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

QUEUE
Indicates whether the request is queued.

 Values for the parameter are:
 NO
 YES

XFSTG
Transform storage area.

Chapter 84. Inter-system (IS) domain 1197

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

ABEND_CODE
EXEC abend code.

EIBRCODE
EIB reason code.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

WLMRCODE
Workload manager response code.

ISIS gate, INITIALIZE_RECEIVER function
Check that the inbound message is consistent with the IPCONN USERAUTH
attribute and return an error response if it is inconsistent.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 SECURITY_INACTIVE
 SECURITY_VIOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

1198 CICS TS for z/OS 4.1: Diagnosis Reference

PURGED
SET_USER_TOKEN

Indicactes whether a user token is be used to identify the inbound message
sender.

 Values for the parameter are:
 NO
 YES

USER_TOKEN
User token associated with the inbound message sender.

ISIS gate, INQUIRE_FACILITY function
Expose web session token

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

IPCONN
Optional Parameter

 The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

Chapter 84. Inter-system (IS) domain 1199

WB_SESSION
Optional Parameter

 Web session identifier.

ISIS gate, RECEIVE_BUFFER function
Receive the next buffer on the specified session. This function is used when the
channel being transmitted does not fit into the first buffer.

Input Parameters
BUFFER_TYPE

Specifies whether this buffer is for a request or a response.

 Values for the parameter are:
 REQ
 RESP

SESSION
Session name.

Output Parameters
LAST_IN_CHAIN

Indicates whether the buffer is last in chain.

 Values for the parameter are:
 LIC
 NOT_LIC

DATA_BUFFER
Optional parameter.

 Address and length of the data.
CONTINUE

Flag indicating whether the conversation ends after a request has been
processed.

 Values for the parameter are:
 YES
 NO

CONDITION
Indicates the action if CONTINUE is set to NO.

 Values for the parameter are:
 NORMAL
 END
 SYNCPOINT
 ROLLBACK
 ABENDED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

REASON
The following values are returned when RESPONSE is DISASTER:

1200 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|
|
|
|
|

|
|
|
|
|
|

ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

ISIS gate, RECEIVE_REQUEST function
Receive a complete request from the request stream domain.

Input Parameters
EXEC_ARGS

Argument string
XFSTG

Transform.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:

Chapter 84. Inter-system (IS) domain 1201

INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

INVOKING_PROGRAM
Name of the program that invoked this function.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

TRANSID
Transaction identifier.

CONDITION
Optional Parameter

 Values for the parameter are:
 ABENDED
 NORMAL
 ROLLBACK
 SYNCPOINT

CONTINUE
Optional Parameter

 Indicates whether this function should listen for the next request .

Values for the parameter are:
 NO
 YES

ISIS gate, ROUTING_CONVERSE function
Send data that is already transformed to the remote CICS region and receive the
response data.

Input Parameters
SESSION_TOKEN

Pointer to the ISSB for the link to the remote CICS region, as returned by the
ISIS gate, ALLOCATE_SEND function.

BUFFER_TYPE
Specifies whether this buffer is for a request or a response.

 Values for the parameter are:
 REQ
 RESP

CHAINING
Specifies whether this request or response is one of a chain of requests or
responses from the remote CICS region.

 Values for the parameter are:
 CHAIN
 NOT_CHAIN

1202 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

Output Parameters
LAST_IN_CHAIN

Flag indicating whether more data is to be transferred from the CICS remote
region. If this flag is set to YES, the ISIS gate, RECEIVE_BUFFER, is used to
retrieve the remaining data.

 Values for the parameter are:
 YES
 NO

CONTINUE
Flag indicating whether the conversation ends after a request has been
processed.

 Values for the parameter are:
 YES
 NO

CONDITION
Indicates the action if CONTINUE is set to NO.

 Values for the parameter are:
 NORMAL
 END
 SYNCPOINT
 ROLLBACK
 ABENDED

REASON
The following values are returned when RESPONSE is EXCEPTION:
 ISIS_CONVERSATION_FAILURE
 ISIS_TPN_NOT_RECOGNISED
 ISIS_NOT_FOUND
 ISIS_TRANSACTION_DISABLED
 ISIS_REMOTE_SYSTEM_QUIESCING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 INVALID
 PURGED

ISIS gate, SEND_BUFFER function
Send the current buffer of the specified session. This function is used when the
channel being transmitted is too large for the first buffer.

Input Parameters
BUFFER_TYPE

Specifies whether this buffer is for a request or a response.

 Values for the parameter are:
 REQ
 RESP

DATA_BUFFER
Address and size of the buffer.

CHAINING
Specifies whether the buffer is chained.

Chapter 84. Inter-system (IS) domain 1203

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

Values for the parameter are:
 CHAIN
 NOT_CHAIN

SESSION
Session name

LAST_IN_CHAIN
Optional parameter.

 Specifies whether the buffer is last in chain.

Values for the parameter are:
 LIC
 NOT_LIC

LAST
Flag indicating whether this message is the last for this transaction.

 Values for the parameter are:
 YES
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

1204 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|

ISIS gate, SEND_ERROR function
Issue a CICS message based on the sense code and, if the session is in the correct
state, send an IS7 error message back to the client.

Input Parameters
SENSE

Sense code.
ABEND_CODE

Optional Parameter

 Abend code.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISIS gate, SEND_RESPONSE function
Sends the response data back to the caller.

Input Parameters
EIBRCODE

EIB reason code.

Chapter 84. Inter-system (IS) domain 1205

EXEC_ARGS
Argument string.

XFSTG
Transform storage area.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

WLMRCODE
Workload Manger response code.

ISIS gate, SET_PARAMETERS function
Modify parameters for the IS domain obtained by Parameter Manager .

Input Parameters
CONFDATA

Optional Parameter

 Specifies whether CICS is to suppress (hide) user data that might otherwise
appear in CICS trace entries or in dumps.

Values for the parameter are:
 HIDETC

1206 CICS TS for z/OS 4.1: Diagnosis Reference

SHOW
NETWORKID

Optional Parameter

 Network identifier.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 ALLOCATE_REJECTED
 CONVERSATION_FAILURE
 FACILITY_NOT_ISSESSION
 MESSAGE_MISMATCH_IDENTIFY
 MESSAGE_MISMATCH_LOCAL
 MESSAGE_MISMATCH_VERIFY
 NO_DATA
 NO_SESSION
 NOT_FOUND
 NOT_IN_SERVICE
 PROGRAM_ABEND
 RESOURCE_UNAVAILABLE
 SECURITY_INACTIVE
 SECURITY_VIOLATION
 UNSUPPORTED_REQUEST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SYNCONRETURN
 INVALID_TRANSID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRE gate, CICS_RESYNC function
Respond to messages from a partner CICS region that is attempting to
resynchronize work after a connection is reestablished over IPCONNs.

When communication is reestablished between a pair of CICS regions over
IPCONNs, one region assumes responsibility for a resync attempt, while the other
calls the CICS_RESYNC function and waits for instructions from its partner. The
CICS_RESYNC function responds to any messages that the partner sends it until
the resync attempt is completed.

Chapter 84. Inter-system (IS) domain 1207

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRE gate, FORCE_LINKS function
Help force UOWs following an Exchange Log Name (XLN) failure during Acquire.

This function is called under the following circumstances to force indoubt and
shunted UOWs associated with an IPCONN to complete heuristically:
v Following an Exchange Log Name (XLN) failure during Acquire, when the

IPCONN is defined with XLNACTION(FORCE).
v In response to SET IPCONN() NOTPENDING, when the connection is acquired

service and has pending work.
v In response to SET IPCONN() NORECOVDATA, when the connection is

released and has outstanding work associated with it.

Input Parameters
IPCONN_NAME

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRE gate, KEEP_LINKS function
Looks for any outstanding UOWs that are either indoubt and shunted, or
committed and awaiting forget, following an Exchange Log Name (XLN) failure.

This function is called when the connection is being acquired and an XLN failure
is detected, and the local IPCONN is configured with XLNACTION(KEEP). If any
outstanding UOWs are found, then a message is issued for each one indicating that
a resync attempt could not be carried out because of the XLN failure, and the
PENDING condition is raised for the IPCONN.

1208 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
IPCONN_NAME

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRE gate, RESYNC_LINKS function
Attempt to resynchronize links following reestablishment of an IPCONN.

When communication is reestablished between a pair of regions over IPCONNs,
one region assumes responsibility for an attempt to resynchronize links, and calls
this function to initiate it.

The function looks for units of work on the local system associated with the
IPCONN resource that are either indoubt and shunted, or committed and awaiting
forget, and attempts to drive them to completion. When it has processed its own
work, the function passes control to the partner region to carry out the same
activity there.

When the function has completed, both regions know the outcome of the resync
attempt, and can either put their end of the connection into service, or mark it to
show that there is still further resync work to be carried out.

Input Parameters
IPCONN_NAME

The name of the IPCONN definition; that is, the name by which CICS knows
the remote system.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 COMBINED_FAILURE
 LOCAL_FAILURE
 REMOTE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
reference.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR

Chapter 84. Inter-system (IS) domain 1209

PURGED

ISRE gate, XA_RESYNC function
Resynchronize XA links in response to a request from an XA client.

An XA client can make one of two types of resync requests into CICS:
1. A request for a list of XIDs to be returned to the client, for all outstanding units

of work that are associated with a connection that are indoubt and shunted.
2. A request to schedule a resync attempt for a specific unit of work based upon

its associated XID.

CICS uses the XA_RESYNC function to respond to either of these requests.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRR gate, NOTIFY function
Notify the system of an event on an IPCONN.

Input Parameters
ACTION

Event being performed.

 Values for the parameter are:
 DATA
 ERROR
 SERVICE_CLOSING
 SERVICE_OPENED
 SESSION_CANCELLED
 SESSION_CLOSED
 TIMEOUT

SESSION_TOKEN
IPCONN Sesstion Token.

USER_TOKEN
User token associated with the session token.

Output Parameters
REASON

The values for the parameter are:
 INVALID_ACTION
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_USER_TOKEN
 UNEXPECTED_EXCEPTION

1210 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRR gate, NOTIFY_SERVICE function
Notifiy the system of an event relating to an IPIC TCPIPSERVICE.

Input Parameters
ACTION

The event being performed by the TCPIPSERVICE.

 Values for the parameter are:
 DATA
 ERROR
 SERVICE_CLOSING
 SERVICE_OPENED
 SESSION_CANCELLED
 SESSION_CLOSED
 TIMEOUT

TCPIPSERVICE
Optional Parameter

 The name of the PROTOCOL(IPIC) TCPIPSERVICE definition that defines the
attributes of the inbound processing for this connection.

If no TCPIPSERVICE name is supplied, the action relates to all connections in
the system with TCPIPSERVICE(IPIC).

Output Parameters
REASON

The values for the parameter are:
 ATTACH_FAILED
 INVALID_ACTION
 INVALID_FORMAT
 INVALID_FUNCTION
 UNEXPECTED_EXCEPTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Chapter 84. Inter-system (IS) domain 1211

ISRR gate, PROCESS_ERROR_QUEUE function
Handle errors that require error processing, message processing, or both.

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 SHUTDOWN
 UNEXPECTED_EXCEPTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRR gate, PROCESS_INPUT_QUEUE function
Handle inbound requests and responses for all IPCONNs.

Output Parameters
REASON

The values for the parameter are:
 BAD_INPUT_QUEUE
 INVALID_FORMAT
 INVALID_FUNCTION
 SHUTDOWN
 UNEXPECTED_EXCEPTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ISRR gate, TERMINATE_INPUT function
Terminate the handling of the request/response input queue at CICS termination.

Output Parameters
REASON

The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 UNEXPECTED_EXCEPTION

1212 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

IS domain modules
 Module Function

DFHISAIP Autoinstall user program to allow tailoring of autoinstalled IPCONN
resources.

Assembler user replaceable module. Default configuration.

DFHISCIP Autoinstall user program to allow tailoring of autoinstalled IPCONN
resources.

COBOL version of DFHISAIP.

DFHISDIP Autoinstall user program to allow tailoring of autoinstalled IPCONN
resources.

C version of DFHISAIP.

DFHISPIP Autoinstall user program to allow tailoring of autoinstalled IPCONN
resources.

PL/I version of DFHISAIP.

DFHISAL IPCONN resource session management

DFHISBU Returns the entry points of the ISCU, and ISJU gates, which process the
calls issued to RMCs during syncpoint.

DFHISCO Basic connectivity functions for IPCONN resources.

DFHISCOP The initial program for the IS domain connectivity transactions.

DFHISCU Performs the processing for CICS to CICS communication using IPIC,
and for JCA to CICS (respectively) during UOW syncpoint.

DFHISDM IS initialization and termination

DFHISDUF IS Domain dump formatting

DFHISEM IPIC errors and messages

DFHISIC IPCONN resource management

DFHISIF IS Inquire IP Facilities data gate

DFHISIS IPIC main functions

DFHISJU Entry points for ISCU and ISJU.

DFHISRE ISRE gate module

DFHISREX IPCONN resource resync recovery for XA

DFHISRE1 IPCONN resource resync recovery for CICS

DFHISRR IPIC inbound request and response

DFHISRRP IPIC receiver

Chapter 84. Inter-system (IS) domain 1213

Module Function

DFHISSR IPIC inbound request and response

DFHISTRI IS Domain Trace Interpretation

DFHISUE IS Domain User Exit Control

DFHISXF IS Request Transformers

DFHISXFT IS Transformers

DFHISXM IS XM Attach client

DFHISZA IS Domain Request Logic

1214 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 85. Kernel Domain (KE)

The kernel domain provides a consistent linkage and recovery environment for
CICS.

Kernel Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the KE domain.

KEAR gate, DEREGISTER function
The DEREGISTER function of the KEAR gate is used when performing a normal
shutdown (and optionally at an immediate shutdown) to deregister CICS(R) from
the MVS(TM) automatic restart manager.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEAR gate, READY function
The READY function of the KEAR gate is used at the end of CICS initialization to
indicate to the MVS automatic restart manager. that this CICS region is ready for
work.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEAR gate, REGISTER function
The REGISTER function of the KEAR gate is used very early in CICS initialization
to register CICS with the MVS automatic restart manager.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEAR gate, WAITPRED function
The WAITPRED function of the KEAR gate is used to wait on predecessors in the
restart policy for this CICS region, to ensure that prerequisite subsystems are
available to CICS.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

© Copyright IBM Corp. 1997, 2011 1215

KEDD gate, ADD_DOMAIN function
The ADD_DOMAIN function of the KEDD gate is used to add a new domain to
the domain table.

Input Parameters
DOMAIN_NAME

is the 8-character domain name for the new domain to be added.
DOMAIN_TOKEN

is the 31-bit constant that uniquely identifies the domain, for example,
DFHSM_DOMAIN for storage manager domain.

ENTRY_POINT
is the 31-bit address of the entry point for that domain, for example,
A(X'80000000' + DFHSMDM) for storage manager domain.

DOMAIN_AFFINITY
Optional Parameter

 is the TCB that the domain has affinity with for TERMINATE_DOMAIN.

Values for the parameter are:
 CO
 FO
 QR
 RO
 STEP

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, ADD_GATE function
The ADD_GATE function of the KEDD gate is used to update the domain table to
add a new gate to the calling domain's gate table.

Input Parameters
ENTRY_POINT

is the 31-bit address of the entry point for that domain, for example,
A(X'80000000' + DFHSMDM) for storage manager domain.

GATE_INDEX
is the 31-bit constant that uniquely identifies the gate in the domain's gate
table.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_GATE_INDEX

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

1216 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_ENTRY_POINT
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, DELETE_GATE function
The DELETE_GATE function of the KEDD gate is used to delete an existing gate
from the calling domain's gate table.

Input Parameters
GATE_INDEX

is the 31-bit constant that uniquely identifies the gate in the domain's gate
table.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, INQUIRE_ANCHOR function
The INQUIRE_ANCHOR function of the KEDD gate is used to return the specified
domain's global storage pointer to the caller. If the domain token is omitted, the
calling domain is assumed.

Input Parameters
DOMAIN_TOKEN

Optional Parameter

 is the 31-bit constant that uniquely identifies the domain, for example,
DFHSM_DOMAIN for storage manager domain.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_TOKEN_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

ANCHOR
is the 31-bit address of the domain's global storage.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, INQUIRE_DOMAIN_BY_NAME function
The INQUIRE_DOMAIN_BY_NAME function of the KEDD gate is used to return
the domain token for a given domain name.

Chapter 85. Kernel Domain (KE) 1217

Input Parameters
DOMAIN_NAME

is the 8-character domain name for the new domain to be added.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND

DOMAIN_TOKEN
is the 31-bit constant that uniquely identifies the domain.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, INQUIRE_DOMAIN_BY_TOKEN function
The INQUIRE_DOMAIN_BY_TOKEN function of the KEDD gate is used to return
the domain name for a specified domain token.

Input Parameters
DOMAIN_TOKEN

is the 31-bit constant that uniquely identifies the domain, for example,
DFHSM_DOMAIN for storage manager domain.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_TOKEN_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

DOMAIN_NAME
is the 8-character domain name for the new domain to be added.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, INQUIRE_DOMAIN_TRACE function
The INQUIRE_DOMAIN_TRACE function of the KEDD gate is used to return the
value of the specified domain's trace flags to the caller. If the domain token is
omitted, the calling domain is assumed.

Input Parameters
DOMAIN_TOKEN

Optional Parameter

 is the 31-bit constant that uniquely identifies the domain, for example,
DFHSM_DOMAIN for storage manager domain.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_TOKEN_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

1218 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SPECIAL_TRACE_FLAGS
Optional Parameter

 is the set of 32 bits which determines selectivity of tracing within the domain
for special tasks.

STANDARD_TRACE_FLAGS
Optional Parameter

 is the set of 32 bits which determines selectivity of tracing within the domain
for standard tasks.

KEDD gate, INQUIRE_GLOBAL_TRACE function
The INQUIRE_GLOBAL_TRACE function of the KEDD gate is used to return the
value of the global trace flags to the caller.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND
 DOMAIN_TOKEN_NOT_FOUND
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 DUPLICATE_GATE_INDEX

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT
 INVALID_FUNCTION
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MASTER_TRACE_FLAG
Optional Parameter

 determines whether tracing, for any of the trace destinations, is active.

Values for the parameter are:
 OFF
 ON

SYSTEM_TRACE_FLAG
Optional Parameter

 determines whether tracing is allowed for tasks for which standard tracing is
in effect.

Values for the parameter are:
 OFF
 ON

Chapter 85. Kernel Domain (KE) 1219

KEDD gate, INQUIRE_TASK_TRACE function
The INQUIRE_TASK_TRACE function of the KEDD gate is used to return the
value of the calling task's trace flag to the caller.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND
 DOMAIN_TOKEN_NOT_FOUND
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 DUPLICATE_GATE_INDEX

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT
 INVALID_FUNCTION
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRACE_TYPE
Optional Parameter

 determines whether standard, special, or no tracing is required for this task.

Values for the parameter are:
 SPECIAL
 STANDARD
 SUPPRESSED

KEDD gate, PERFORM_SYSTEM_ACTION function
The PERFORM_SYSTEM_ACTION function of the KEDD gate is used in
exceptional circumstances either to terminate CICS (with or without a dump) or to
take an MVS SDUMP.

Input Parameters
DUMP_SYSTEM

Optional Parameter

 Specifies whether an MVS SDUMP is to be taken or not.

Values for the parameter are:
 NO
 YES

NORMAL_TERMINATION
Optional Parameter

 Specifies whether CICS is being terminated normally. Normal termination
includes controlled and immediate shutdowns.

Values for the parameter are:
 NO
 YES

1220 CICS TS for z/OS 4.1: Diagnosis Reference

TERMINATE_SYSTEM
Optional Parameter

 Specifies whether CICS is to be terminated or not.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND
 DOMAIN_TOKEN_NOT_FOUND
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 DUPLICATE_GATE_INDEX

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT
 INVALID_FUNCTION
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_ANCHOR function
The SET_ANCHOR function of the KEDD gate is used to establish the calling
domain's global storage pointer.

Input Parameters
ANCHOR

is the 31-bit address of the domain's global storage.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_DEFAULT_RECOVERY function
The SET_DEFAULT_RECOVERY function of the KEDD gate is used to establish the
calling domain's default recovery routine. Used by the Application domain to
identify DFHSRP as its default recovery routine.

Input Parameters
ENTRY_POINT

is the 31-bit address of the entry point for that domain, for example,
A(X'80000000' + DFHSMDM) for storage manager domain.

Chapter 85. Kernel Domain (KE) 1221

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_DOMAIN_TRACE function
The SET_DOMAIN_TRACE function of the KEDD gate is used to store the value
of the specified domain's trace flags in the kernel. If the domain token is omitted,
the calling domain is assumed.

Input Parameters
DOMAIN_TOKEN

Optional Parameter

 is the 31-bit constant that uniquely identifies the domain, for example,
DFHSM_DOMAIN for storage manager domain.

SPECIAL_TRACE_FLAGS
Optional Parameter

 is the set of 32 bits which determines selectivity of tracing within the domain
for special tasks.

STANDARD_TRACE_FLAGS
Optional Parameter

 is the set of 32 bits which determines selectivity of tracing within the domain
for standard tasks.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_TOKEN_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_GLOBAL_TRACE function
The SET_GLOBAL_TRACE function of the KEDD gate is used to store the value of
the global trace flags within the kernel.

Input Parameters
MASTER_TRACE_FLAG

Optional Parameter

 determines whether tracing, for any of the trace destinations, is active.

Values for the parameter are:
 OFF
 ON

SYSTEM_TRACE_FLAG
Optional Parameter

1222 CICS TS for z/OS 4.1: Diagnosis Reference

determines whether tracing is allowed for tasks for which standard tracing is
in effect.

Values for the parameter are:
 OFF
 ON

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND
 DOMAIN_TOKEN_NOT_FOUND
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 DUPLICATE_GATE_INDEX

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT
 INVALID_FUNCTION
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_TASK_TRACE function
The SET_TASK_TRACE function of the KEDD gate is used to store the value of the
task trace flag in the current task's task table entry. A task table is a logical block of
tasks, allocated together by the Kernel domain, and used to simplify the process of
dynamically adding new tasks. Task tables are chained together, and vary in
number.

Input Parameters
TRACE_TYPE

determines whether standard, special, or no tracing is required for this task.

 Values for the parameter are:
 SPECIAL
 STANDARD
 SUPPRESSED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND
 DOMAIN_TOKEN_NOT_FOUND
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 DUPLICATE_GATE_INDEX

Chapter 85. Kernel Domain (KE) 1223

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT
 INVALID_FUNCTION
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_TRAP_OFF function
The SET_TRAP_OFF function of the KEDD gate is used to reset the kernel global
trap point.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DOMAIN_NAME_NOT_FOUND
 DOMAIN_TOKEN_NOT_FOUND
 DUPLICATE_DOMAIN_NAME
 DUPLICATE_DOMAIN_TOKEN
 DUPLICATE_GATE_INDEX

The following values are returned when RESPONSE is INVALID:
 INVALID_DOMAIN_TOKEN
 INVALID_ENTRY_POINT
 INVALID_FUNCTION
 INVALID_GATE_INDEX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDD gate, SET_TRAP_ON function
The SET_TRAP_ON function of the KEDD gate is used to set a kernel global trap
point.

Input Parameters
ENTRY_POINT

is the 31-bit address of the entry point for that domain, for example,
A(X'80000000' + DFHSMDM) for storage manager domain.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_ENTRY_POINT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, ABNORMALLY_TERMINATE_TASK function
The ABNORMALLY_TERMINATE_TASK function of the KEDS gate identifies the
task which is to be abnormally terminated.

1224 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
DUMP

A binary value indicating whether CICS should take a dump when the task
terminates.

 Values for the parameter are:
 DUMP_NO
 DUMP_YES

RETRY
A binary value indicating whether the task should be retried.

 Values for the parameter are:
 RETRY_NO
 RETRY_YES

TASK_TOKEN
identifies the task which is to be abnormally terminated.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TERMINATE_FAILED

The following values are returned when RESPONSE is INVALID:
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, ADD_CRITICAL_MODULE function
Adds the module address to the vector of modules in which a runaway condition
will be deferred.

Input Parameters
MODULE_ADDR

The address of the module to be added to the vector.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 VECTOR_FULL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, ADD_CRITICAL_WINDOW function
Adds the window address to the vector of windows in modules in which the
Runaway condition will be deferred. Within such windows Runaway will not be
deferred.

Input Parameters
WINDOW_END

The end address of the window.
WINDOW_START

The start address of the window.

Chapter 85. Kernel Domain (KE) 1225

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 VECTOR_FULL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, CREATE_TASK function
The CREATE_TASK function of the KEDS gate is used to allocate a new executable
task from the task table. A task table is a logical block of tasks, allocated together
by the Kernel domain, and used to simplify the process of dynamically adding
new tasks. Task tables are chained together, and vary in number.

Input Parameters
ALLOCATION

indicates whether or not the returned task should be allocated from those tasks
pre-allocated for MXT.

 Values for the parameter are:
 DYNAMIC
 STATIC

ATTACH_TOKEN
is the 31-bit token that uniquely identifies the request. This token is returned
on the corresponding TASK_REPLY to identify the request.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 INQUIRE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ADD_TASK_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TASK_TOKEN
is the 31-bit token that uniquely identifies the newly created task.

KEDS gate, CREATE_TCB function
The CREATE_TCB function of the KEDS gate creates the default task for a new
MVS TCB, and MVS posts the TCB to start execution. The default task is the task,
associated with the TCB, that executes the dispatcher loop which chooses the next
CICS task (system or non-system) to be dispatched, or if no CICS task is to be
dispatched, issues an MVS WAIT.

Input Parameters
ATTACH_TOKEN

is the 31-bit token that uniquely identifies the request. This token is returned
on the corresponding TASK_REPLY to identify the request.

ESSENTIAL_TCB
indicates whether CICS is to be terminated if a TCB in this mode has its
ESTAE exit driven for a non recoverable error.

 Values for the parameter are:
 ESSENTIAL_NO

1226 CICS TS for z/OS 4.1: Diagnosis Reference

ESSENTIAL_YES
EXEC_CAPABLE

indicates whether support should be provided under the new TCB for CICS
API commands.

 Values for the parameter are:
 EXEC_NO
 EXEC_YES

INHERIT_SUBSPACE
indicates whether TCBs in this mode are to inherit the subspace of the
attaching TCB.

 Values for the parameter are:
 INHERIT_NO
 INHERIT_YES

LE_ENVIRONMENT
indicates whether CICS should tell Language Environment that it is running in
a CICS environment under this TCB. If LE_CICS is specified, Language
Environment will issue CICS API commands.

 Values for the parameter are:
 LE_CICS
 LE_MVS

MODENAME
specifies the mode of the new TCB.

PARENT_MODENAME
identifies the mode of the TCB that is to ATTACH the new TCB.

PRTY_RELATIVE_TO_QR
gives the priority of this TCB relative to QR.

TCB_KEY
specifies the key to be specified on the ATTACH of TCBs in this mode. The
value ends up in TCBPKF.

 Values for the parameter are:
 KEY8
 KEY9

DEPENDENT_ON
Optional Parameter

 specifies that the TCB is dependent on the named parent TCB mode. This
parameter is used to ensure that in the case of an immediate shutdown,
worker JVMs (which are built on J8 or J9 mode TCBs) are terminated before
master JVMs (which are built on JM mode TCBs).

PTHREAD
Optional Parameter

 A binary value that indicates if a pthread is to be created.

Values for the parameter are:
 NO
 YES

SZERO
Optional Parameter

 gives the value (YES or NO) of the SZERO parameter for the ATTACH request.
If TCB_KEY(USERKEY) is specified, SZERO(NO) is assumed.

Values for the parameter are:
 SZERO_NO
 SZERO_YES

Chapter 85. Kernel Domain (KE) 1227

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 INQUIRE_ERROR
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 INVALID_CALLING_MODE

MVS_TCB_ADDRESS
The address of the newly created MVS TCB.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TASK_TOKEN
is the 31-bit token that uniquely identifies the newly created task.

KEDS gate, DETACH_TERMINATED_OWN_TCBS function
The DETACH_TERMINATED_OWN_TCBS function of the KEDS gate detaches
any terminated TCBs which were attached by the TCB on which this function is
invoked.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, END_TASK function
The END_TASK function of the KEDS gate is used to free any resources that have
been acquired by the kernel domain during the lifetime of the current task and
need freeing before the end of the task.

1228 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, FREE_TCBS function
The FREE_TCBS function of the KEDS gate conditionally frees control blocks, in
collaboration with the Dispatcher for re-use, associated with any detached TCBs.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

Chapter 85. Kernel Domain (KE) 1229

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, INQUIRE_MVSTCB function
Retrieve information about an MVS TCB.

Input Parameters
MVS_TCB_ADDRESS

The address of the TCB.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCA_TASK_NUMBER
The task number.

TCB_ID
The TCB identifier.

KEDS gate, INQUIRE_TCB function
Retrieve the kernel task token for the current TCB.

Input Parameters
DEFAULT_TASK_TOKEN

The retrieved task token.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CANNOT_ACCESS_TCB
 TCB_NOT_WAITING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, POP_TASK function
Given a TCB executing the current CICS task, the POP_TASK function of the KEDS
gate is used to make it execute its default task instead.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR

1230 CICS TS for z/OS 4.1: Diagnosis Reference

ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, PROCESS_KETA_ERROR function
The PROCESS_KETA_ERROR function of the KEDS gate is used to handle any
errors for the DFHKETA module. (The DFHKETA module handles the performance
sensitive KEDS functions, and calls the DFHKEDS module when its recovery
routine is invoked.)

Input Parameters
ERROR_DATA

address of the error data that describes the error that has occurred in the
DFHKETA module.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, PUSH_TASK function
Given a TCB executing its default task, the PUSH_TASK function of the KEDS gate
is used to make it execute a CICS task instead.

Input Parameters
TASK_TOKEN

identifies the task which is to be abnormally terminated.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT

Chapter 85. Kernel Domain (KE) 1231

INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TASK_CPU_INTERVAL
Optional Parameter

 The CPU time used by the task.

KEDS gate, READ_TIME function
The READ_TIME function of the KEDS gate is used to obtain the total CPU time
that the current task has taken so far and the accumulated CPU time for the
current TCB.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCUM_TIME
Optional Parameter

 A doubleword containing the accumulated CPU time used so far by the
current TCB.

TASK_CPU_ACCUM
Optional Parameter

1232 CICS TS for z/OS 4.1: Diagnosis Reference

The accumulated CPU time used by the task.
TASK_CPU_INTERVAL

Optional Parameter

 The CPU time used by the task.

KEDS gate, RESET_TIME function
The RESET_TIME function of the KEDS gate is used to reset the total CPU time
that the current task has taken so far.

Input Parameters
TASK_TOKEN

Optional Parameter

 identifies the task which is to be abnormally terminated.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TASK_CPU_ACCUM
Optional Parameter

 The accumulated CPU time used by the task.
TASK_CPU_INTERVAL

Optional Parameter

 The CPU time used by the task.

KEDS gate, RESTORE_STIMER function
The RESTORE_STIMER function of the KEDS gate is used to restore the kernel's
STIMER exit after MVS requests that use the MVS STIMER macro internally.

Chapter 85. Kernel Domain (KE) 1233

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, SEND_DEFERRED_ABEND function
The SEND_DEFERRED_ABEND function of the KEDS gate is used by the
transaction manager to implement the deferred purge function. If a purge request
is made against a task that is not in a suitable state to be purged, this function
defers the abend of that task until the task is no longer protected against purge.

Input Parameters
ERROR_CODE

The abend code that CICS issues when the task is eventually purged.
DS_TASK_TOKEN

Optional Parameter

 is the 31-bit dispatcher token that identifies the CICS task to be abended. If not
supplied, DS_TASK_TOKEN defaults to the current task.

FORCE
Optional Parameter

 indicates whether or not the deferred abend is to be forced.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION

1234 CICS TS for z/OS 4.1: Diagnosis Reference

LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, START_FORCE_PURGE_PROTECT function
The START_PURGE_PROTECTION function of the KEDS gate is used to inhibit
force-purge for the current task.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, START_PURGE_PROTECTION function
The START_PURGE_PROTECTION function of the KEDS gate is used to inhibit
purge, but not force-purge, for the current task.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, START_RUNAWAY_TIMER function
The START_RUNAWAY_TIMER function of the KEDS gate is used to resume
runaway timing for the current task. This reduces the stop runaway count by one.
The timer is resumed only when all outstanding STOP_RUNAWAY_TIMER
requests have been canceled.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

Chapter 85. Kernel Domain (KE) 1235

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, STOP_FORCE_PURGE_PROTECT function
The STOP_FORCE_PURGE_PROTECTION function of the KEDS gate is used to
enable again force purge for the current task after force purge has been suspended
by a previous START_FORCE_ PURGE_PROTECTION function call.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, STOP_PURGE_PROTECTION function
The STOP_PURGE_PROTECTION function of the KEDS gate is used to enable
again purge for the current task after purge has been suspended by a previous
START_PURGE_PROTECTION function call.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, STOP_RUNAWAY_TIMER function
The STOP_RUNAWAY_TIMER function of the KEDS gate is used to inhibit
runaway detection for the current task. The remaining runaway interval is
preserved until a START_RUNAWAY_TIMER request is issued. The stop runaway
count is incremented by one; this allows STOP_RUNAWAY_TIMER requests to be
nested.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

1236 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEGD gate, INQUIRE_KERNEL function
The INQUIRE_KERNEL function of the KEGD gate is used to obtain the global
data maintained by the kernel.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ALTERNATE_XRF_IDS
Optional Parameter

 is the 8-character name of the recoverable service table used if the CICS region
is running with XRF and DBCTL.

CICS_SVC_NUMBER
Optional Parameter

 is the 8-bit CICS service SVC number.
CPU_MONITORING

Optional Parameter

 specifies whether the kernel is to perform CPU monitoring.

Values for the parameter are:
 NO
 YES

DUMP_RETRY_TIME
Optional Parameter

 specifies the total time that CICS is to continue trying to obtain a system dump
using the SDUMP macro.

GENERIC_APPLID
Optional Parameter

 is the 8-character generic applid that identifies the active and alternate CICS
systems to VTAM in an XRF environment.

Chapter 85. Kernel Domain (KE) 1237

HPO
Optional Parameter

 specifies whether CICS is to use the VTAM high performance option.

Values for the parameter are:
 NO
 YES

ISC
Optional Parameter

 specifies whether ISC support is included in this CICS region.

Values for the parameter are:
 NO
 YES

OP_REL
Optional Parameter

 is the 2-byte operating system release and modification level.
OP_SYS

Optional Parameter

 is the 1-character operating system identifier, for example, 'B' = MVS.
OP_VER

Optional Parameter

 is the 1-byte operating system version.
OS_PARMS

Optional Parameter

 is the 8-byte block containing the 31-bit address and 31-bit length of the MVS
parameters.

SIT_NAME
Optional Parameter

 is the 8-character SIT name.
SPECIFIC_APPLID

Optional Parameter

 is the 8-character specific applid that identifies the CICS system in the VTAM
network.

SYSID
Optional Parameter

 is the 4-character ZCP system entry name.
SYSTEM_RUNAWAY_LIMIT

Optional Parameter

 the ICVR time to be used by all tasks that have been defined to have the
default runaway limit in the system.

USS_PROCESS
Optional Parameter

 specifies whether the kernel successfully issued a Unix System Services
SET_DUB_DEFAULT DUBPROCESS command during CICS initialization.

Values for the parameter are:
 NO
 YES

XRF
Optional Parameter

1238 CICS TS for z/OS 4.1: Diagnosis Reference

specifies whether ISC support is included in this CICS region.

Values for the parameter are:
 NO
 YES

XRF_COMMAND_LIST
Optional Parameter

 is the 8-character name of the command list table used by the XRF alternate
CICS region.

KEGD gate, SET_KERNEL function
The SET_KERNEL function of the KEGD gate is used to change the global data
maintained by the kernel.

Input Parameters
ALTERNATE_XRF_IDS

Optional Parameter

 is the 8-character name of the recoverable service table used if the CICS region
is running with XRF and DBCTL.

CICS_SVC_NUMBER
Optional Parameter

 is the 8-bit CICS service SVC number.
CPU_MONITORING

Optional Parameter

 specifies whether the kernel is to perform CPU monitoring.

Values for the parameter are:
 NO
 YES

DUMP_RETRY_TIME
Optional Parameter

 specifies the total time that CICS is to continue trying to obtain a system dump
using the SDUMP macro.

GENERIC_APPLID
Optional Parameter

 is the 8-character generic applid that identifies the active and alternate CICS
systems to VTAM in an XRF environment.

HPO
Optional Parameter

 specifies whether CICS is to use the VTAM high performance option.

Values for the parameter are:
 NO
 YES

ISC
Optional Parameter

 specifies whether ISC support is included in this CICS region.

Values for the parameter are:
 NO
 YES

SIT_NAME
Optional Parameter

Chapter 85. Kernel Domain (KE) 1239

is the 8-character name of the system initialization table.
SPECIFIC_APPLID

Optional Parameter

 is the 8-character specific applid that identifies the CICS system in the VTAM
network.

SYSID
Optional Parameter

 is the 4-character ZCP system entry name.
SYSTEM_RUNAWAY_LIMIT

Optional Parameter

 the ICVR time to be used by all tasks that have been defined to have the
default runaway limit in the system.

TERMINATE_FO
Optional Parameter

 specifies whether the FO TCB can be normally terminated on an immediate
shutdown.

Values for the parameter are:
 NO
 YES

XRF
Optional Parameter

 specifies whether XRF support is included in the CICS region.

Values for the parameter are:
 NO
 YES

XRF_COMMAND_LIST
Optional Parameter

 is the 8-character name of the command list table used by the XRF alternate
CICS region.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 WRONG_SVC_NUMBER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, ADJUST_STCK_TO_LOCAL function
Perform local time adjustment on a STCK value

Input Parameters
GMT_STCK

The STCK value to be adjusted.

Output Parameters
LOCAL_STCK

The adjusted STCK value.

1240 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, CONVERT_TO_DECIMAL_TIME function
The CONVERT_TO_DECIMAL_TIME function of the KETI gate is used to convert
dates and times in the internal store clock (STCK) format to decimal format.

Input Parameters
STCK_TIME

is a doubleword containing a date and time in STCK format.
LOCAL_ADJUST

Optional Parameter

 Specifies whether to adjust the STCK value to local time.

Values for the parameter are:
 NO
 YES

Output Parameters
DECIMAL_DATE

is an 8-character date in the format determined by FULL_DATE_FORMAT.
DECIMAL_MICROSECONDS

is the 6-character microseconds portion of DECIMAL_TIME.
DECIMAL_TIME

is the current local decimal time in the format HHMMSS.
FULL_DATE_FORMAT

is the current full date format determined by the default date format of the
timer domain.

 Values for the parameter are:
 DDMMYYYY
 MMDDYYYY
 YYYYMMDD

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, CONVERT_TO_STCK_FORMAT function
The CONVERT_TO_STCK_FORMAT function of the KETI gate is used to convert
times and dates to STCK format.

Input Parameters
DECIMAL_TIME

is the current local decimal time in the format HHMMSS.
DECIMAL_DATE

Optional Parameter

 is an optional 8-character date in the format determined either by
FULL_DATE_FORMAT or by the default for the timer domain if
FULL_DATE_FORMAT is omitted.

FULL_DATE_FORMAT
Optional Parameter

 is the current full date format.

Values for the parameter are:

Chapter 85. Kernel Domain (KE) 1241

DDMMYYYY
 MMDDYYYY
 YYYYMMDD

INSTANCE
Optional Parameter

 is required only if DECIMAL_DATE is omitted.

Values for the parameter are:
 LAST
 NEXT
 TODAY

LOCAL_ADJUST
Optional Parameter

 Specifies whether to apply a local time adjustment.

Values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STCK_TIME
is a doubleword containing the STCK value corresponding to the input local
time.

KETI gate, INQ_LOCAL_DATETIME_DECIMAL function
The INQ_LOCAL_DATETIME_DECIMAL function of the KETI gate is used to
return the local date, and the local time in decimal format.

Output Parameters
DECIMAL_DATE

is an 8-character date in the format determined by FULL_DATE_FORMAT.
DECIMAL_MICROSECONDS

is the 6-character microseconds portion of DECIMAL_TIME.
DECIMAL_TIME

is the current local decimal time in the format HHMMSS.
FULL_DATE_FORMAT

is the current full date format determined by the default date format of the
timer domain.

 Values for the parameter are:
 DDMMYYYY
 MMDDYYYY
 YYYYMMDD

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, INQUIRE_DATE_FORMAT function
The INQUIRE_DATE_FORMAT function of the KETI gate is used to return the
current date format.

1242 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
DATE_FORMAT

is the current default date format for the timer domain.

 Values for the parameter are:
 DDMMYY
 MMDDYY
 YYMMDD

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, REQUEST_NOTIFY_OF_A_RESET function
The REQUEST_NOTIFY_OF_A_RESET function of the KETI gate requests a
shoulder tap from KETI whenever the local time is reset.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, RESET_LOCAL_TIME function
The RESET_LOCAL_TIME function of the KETI gate is used by the AP domain to
inform KETI that a local time reset has occurred.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KETI gate, SET_DATE_FORMAT function
The SET_DATE_FORMAT function of the KETI gate is used to set the date format
for the timer domain.

Input Parameters
DATE_FORMAT

is the format to be set as the default for the timer domain.

 Values for the parameter are:
 DDMMYY
 MMDDYY
 YYMMDD

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEXM gate, TRANSACTION_INITIALISATION function
The TRANSACTION_INITIALISATION function of the KEXM gate is used to
perform kernel initialisation during XM task-reply.

Chapter 85. Kernel Domain (KE) 1243

Input Parameters
TRANSACTION_TOKEN

is a token identifying the transaction for which kernel initialization is to be
performed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Kernel domain generic formats

Table 51 describes the generic formats owned by the domain and shows the
functions performed on the calls.

 Table 51. Kernel domain generic formats

Format Calling module Function

KEDS DFHKETA
DFHKETCB

TASK_REPLY
TCB_REPLY

KETI DFHKETI NOTIFY_RESET

Note: In the descriptions of the formats, the input parameters are input not to the
Kernel domain, but to the domain being called by the Kernel domain. Similarly,
the output parameters are output by the domain that was called by the Kernel
domain, in response to the call.

KEDS gate, TASK_REPLY function
The TASK_REPLY function of the KEDS format is issued by the kernel to the issuer
of CREATE_TASK, under the new task.

Input Parameters
ATTACH_TOKEN

is the 31-bit token that uniquely identifies the corresponding CREATE_TASK
request.

TASK_TOKEN
is the 31-bit token that uniquely identifies the new task.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:

1244 CICS TS for z/OS 4.1: Diagnosis Reference

ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEDS gate, TCB_REPLY function
The TCB_REPLY function of the KEDS format is issued by the kernel to the issuer
of CREATE_TCB, under the new TCB's default task.

Input Parameters
ATTACH_TOKEN

is the 31-bit token that uniquely identifies the corresponding CREATE_TCB
request.

TASK_TOKEN
is the 31-bit token that uniquely identifies the new TCB's task.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INQUIRE_ERROR
 INVALID_FUNCTION
 LOOP
 VECTOR_FULL

The following values are returned when RESPONSE is EXCEPTION:
 ADD_KTCB_ERROR
 ADD_TASK_ERROR
 ATTACH_KTCB_ERROR
 CANNOT_ACCESS_TCB
 DEFERRED_ABEND_NOT_SENT
 INVALID_CALLING_MODE
 TCB_NOT_WAITING
 TERMINATE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_INPUT_COMB
 INVALID_TASK_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 85. Kernel Domain (KE) 1245

KETI gate, NOTIFY_RESET function
The NOTIFY_RESET function of the KETI format is used by KETI itself to inform
domains that a RESET has occurred.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHKEAR Implements KEAR service requests.

DFHKEDCL Implements domain call requests.

DFHKEDD Services KEDD-format requests.

DFHKEDRT Implements domain return requests.

DFHKEDS Services KEDS-format requests.

DFHKEDUF Offline dump formatting routine to format the kernel domain control
blocks.

DFHKEEDA Handles deferred abends

DFHKEGD Services KEGD-format requests.

DFHKEIN Implements kernel domain initialization.

DFHKELCL Implements LIFO Push.

DFHKELOC Offline dump formatting routine to locate the kernel domain anchor
blocks.

DFHKELRT Implements LIFO Pop.

DFHKERCD Constructs the kernel domain error data for error handling routines.

DFHKERER Updates the kernel domain error table for error handling routines.

DFHKERET Implements RESET_ADDRESS requests.

DFHKERKE Handles KERNERROR responses for domain call requests which cannot
handle them.

DFHKERPC Implements recovery percolation both from RECOVERY_PERCOLATE
requests and also other recovery events that, because of the existing
environment, must be percolated.

DFHKERRI Responsible for passing control to a recovery routine.

DFHKERRQ Implements RECOVERY_REQUEST requests.

DFHKERRU Implements runaway task error handling.

DFHKERRX Implements RECOVERY_EXIT requests.

DFHKESCL Implements subroutine call requests.

DFHKESFM Handles freeing of stack segments.

DFHKESGM Handles allocation of new stack segments.

DFHKESIP Receives control from and returns control to MVS.

DFHKESRT Implements subroutine return requests.

DFHKESTX The CICS ESTAE exit which passes control to the appropriate level of
recovery routine.

DFHKESVC Provides authorized services for kernel domain functions.

1246 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHKETA Implements KEDS CREATE_TASK requests.

DFHKETCB Receives control from MVS for a kernel domain TCB.

DFHKETI Provides service time functions at the KETI gate.

DFHKETIX Performs task CPU monitoring functions and task runaway detection.

DFHKETRI Offline trace formatting routine for kernel domain trace entries.

DFHKETXR Allows an attaching TCB to detemine that a TCB (but not a specific
TCB) which it attached, has terminated. This allows for the possibility of
initiating a more timely detach of TCBs which have terminated normally,
and to detect TCBs which have prematurely terminated.

DFHKEXM Implements KEXM_FORMAT requests.

Chapter 85. Kernel Domain (KE) 1247

1248 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 86. Loader Domain (LD)

The loader domain is used to obtain access to storage-resident copies of nucleus
and application programs, maps, and tables. The loader domain uses the operating
system interfaces to load programs into the CICS dynamic storage areas (DSAs),
and to scan the link pack area (LPA).

Loader domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the LD domain.

LDLB gate, ADD_REPLACE_LIBRARY function
The ADD_REPLACE_LIBRARY function of the LDLB gate is used to install a new
LIBRARY resource into the CICS system, or to replace an installed disabled
LIBRARY resource of the same name.

Input Parameters
LIBRARY_NAME

specifies the name of the LIBRARY to be installed or replaced.
CRITICAL

Optional parameter

 specifies whether the LIBRARY is to be installed as critical (must be available
at CICS startup) or non-critical (does not have to be available at CICS startup).

Values for the parameter are:
 CRITICAL_YES
 CRITICAL_NO

DSNAME01
Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME02

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME03

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME04

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME05

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME06

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME07

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.

© Copyright IBM Corp. 1997, 2011 1249

DSNAME08
Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME09

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME10

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME11

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME12

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME13

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME14

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME15

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
DSNAME16

Optional Parameter

 specifies the name of a data set in the LIBRARY concatenation.
ENABLE_STATUS

Optional Parameter

 specifies whether the LIBRARY is to be installed as enabled (participates in the
search order) or disabled (does not participate in the search order).

Values for the parameter are:
 DISABLED
 ENABLED

RANKING
Optional Parameter

 specifies the ranking value to be assigned to this LIBRARY, which is used to
determine its position within the search order.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_WRITE_FAILED
 CATALOG_DELETE_FAILED
 LIBRARY_LOCK_ERROR
 LIBRARY_NAME_ERROR
 LIBRARY_CHAIN_ERROR
 LOOP
 DSNAME_ARRAY_ERROR

1250 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 ALLOCATE_FAILED_ENABLE
 CONCATENATE_FAILED_ENABLE
 OPEN_FAILED_ENABLE
 NOT_DISABLED
 SECURITY_FAILURE
 USERID_NOTAUTHED
 MVS_ABEND_CONDITION
 SERIOUS MVS ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLB gate, DISCARD_LIBRARY function
The DISCARD_LIBRARY function of the LDLB gate is used to remove a LIBRARY
resource from the CICS system.

Input Parameters
LIBRARY_NAME

specifies the name of the LIBRARY to be discarded.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_DELETE_FAILED
 LIBRARY_LOCK_ERROR
 LIBRARY_NAME_ERROR
 LIBRARY_CHAIN_ERROR
 LOOP
 DSNAME_ARRAY_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 LIBRARY_NOT_FOUND
 NOT_DISABLED
 CLOSE_FAILED
 DECONCATENATE_FAILED
 UNALLOCATE_FAILED
 LIBRARY_DELETE_ERROR
 MVS_ABEND_CONDITION
 SERIOUS MVS ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 86. Loader Domain (LD) 1251

LDLB gate, END_BROWSE_LIBRARY function
The END_BROWSE_LIBRARY function of the LDLB gate is used to end a browse
session of the LIBRARY resources installed in the CICS system.

Input Parameters
BROWSE_TOKEN

is a token which identifies this browse session of LIBRARY resources.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLB gate, GET_NEXT_LIBRARY function
The GET_NEXT_LIBRARY function of the LDLB gate is used to get information
about the next LIBRARY in the current browse session of LIBRARY resources
currently installed in the CICS system. The browse is in ranking order, and in
install-time order within ranking.

Input Parameters
BROWSE_TOKEN

is a token which identifies this browse of LIBRARY resources.
LIBRARY_DSNAMES

Optional parameter

 specifies buffer storage in which the list of all data sets within the LIBRARY is
to be returned.

Output Parameters
LIBRARY_NAME

returns the name of the next LIBRARY in the browse of LIBRARY resources.
CRITICAL

Optional parameter

 specifies whether the LIBRARY is to be installed as critical (must be available
at CICS startup) or non-critical (does not have to be available at CICS startup).

Values for the parameter are:
 CRITICAL_YES
 CRITICAL_NO

DSNAME01
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME02
Optional Parameter

1252 CICS TS for z/OS 4.1: Diagnosis Reference

returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME03
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME04
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME05
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME06
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME07
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME08
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME09
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME10
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME11
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME12
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME13
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME14
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

Chapter 86. Loader Domain (LD) 1253

DSNAME15
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME16
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

ENABLE_STATUS
Optional Parameter

 returns a value which indicates whether the LIBRARY is currently enabled
(participates in the search order) or disabled (does not participate in the search
order)

Values for the parameter are:
 DISABLED
 ENABLED

RANKING
Optional Parameter

 returns the ranking value currently assigned to this LIBRARY, which is used to
determine its position within the search order.

SEARCH_POSITION
Optional Parameter

 returns the actual current position of this LIBRARY in the overall LIBRARY
search order (zero if the LIBRARY is disabled).

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LIBRARY_NOT_FOUND
 NO_MORE_DATA_AVAILABLE
 BUFFER_TOO_SMALL

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLB gate, INQUIRE_LIBRARY function
The INQUIRE_LIBRARY function of the LDLB gate is used to get information
about the specified LIBRARY.

Input Parameters
LIBRARY_NAME

specifies the name of the required LIBRARY.
LIBRARY_DSNAMES

Optional parameter

 specifies buffer storage in which the list of all data sets within the LIBRARY is
to be returned.

1254 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
CRITICAL

Optional parameter

 specifies whether the LIBRARY is defined as critical (must be available at CICS
startup) or non-critical (does not have to be available at CICS startup).

Values for the parameter are:
 CRITICAL_YES
 CRITICAL_NO

DSNAME01
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME02
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME03
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME04
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME05
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME06
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME07
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME08
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME09
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME10
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME11
Optional Parameter

Chapter 86. Loader Domain (LD) 1255

returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME12
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME13
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME14
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME15
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

DSNAME16
Optional Parameter

 returns the name of a data set in the LIBRARY concatenation. This name can
be blank.

ENABLE_STATUS
Optional Parameter

 returns a value which indicates whether the LIBRARY is currently enabled
(participates in the search order) or disabled (does not participate in the search
order)

Values for the parameter are:
 DISABLED
 ENABLED

RANKING
Optional Parameter

 returns the ranking value currently assigned to this LIBRARY, which is used to
determine its position within the search order.

SEARCH_POSITION
Optional Parameter

 returns the actual current position of this LIBRARY in the overall LIBRARY
search order (zero if the LIBRARY is disabled).

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LIBRARY_NOT_FOUND
 BUFFER_TOO_SMALL

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

1256 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLB gate, LOG_LIBRARY_ORDER function
The LOG_LIBRARY_ORDER function of the LDLB gate is used to log the current
configuration of installed enabled LIBRARY resources in the CICS system as part
of an audit trail.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLB gate, SET_LIBRARY function
The SET_LIBRARY function of the LDLB gate is used to set attributes of the
specified LIBRARY. The specified LIBRARY must be installed in the CICS system.

Input Parameters
LIBRARY_NAME

specifies the name of the LIBRARY to be updated.
CRITICAL

Optional parameter

 specifies whether the LIBRARY is defined as critical (must be available at CICS
startup) or non-critical (does not have to be available at CICS startup).

Values for the parameter are:
 CRITICAL_YES
 CRITICAL_NO

ENABLE_STATUS
Optional Parameter

 specifies whether the LIBRARY is to be enabled (participates in the search
order) or disabled (does not participate in the search order).

Values for the parameter are:
 DISABLED
 ENABLED

RANKING
Optional Parameter

 specifies the ranking value to be assigned to this LIBRARY, which is used to
determine its position within the search order.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_WRITE_FAILED

Chapter 86. Loader Domain (LD) 1257

LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LIBRARY_NOT_FOUND
 ALLOCATE_FAILED_ENABLE
 CONCATENATE_FAILED_ENABLE
 OPEN_FAILED_ENABLE
 CLOSE_FAILED
 DECONCATENATE_FAILED
 UNALLOCATE_FAILED
 MVS_ABEND_CONDITION

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLB gate, START_BROWSE_LIBRARY function
The START_BROWSE_LIBRARY function of the LDLB gate is used to start a
browse session through the LIBRARY resources currently installed in the CICS
system. It is used to obtain a browse token for use with a subsequent
GET_NEXT_LIBRARY or END_BROWSE_LIBRARY call.

Output Parameters
BROWSE_TOKEN

returns a token used to refer to this browse session on subsequent LIBRARY
browse requests

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLD gate, ACQUIRE_PROGRAM function
The ACQUIRE_PROGRAM function of the LDLD gate is used to obtain the entry
point and load point addresses and the length of a usable copy of the named
program. The program must previously have been identified to the system in a
DEFINE request, either during this session or in a previous session, if the catalog is
in use.

Input Parameters
PROGRAM_NAME

specifies the name of the required program.
PROGRAM_TOKEN

is a valid program-identifying token as returned by a previous DEFINE or
ACQUIRE request for the same program name.

SUSPEND
Optional Parameter

1258 CICS TS for z/OS 4.1: Diagnosis Reference

indicates whether the caller expects to receive control with an exception
response if the loader encounters a shortage of virtual storage, or other
transient error conditions. If there is insufficient storage to satisfy the request,
SUSPEND(YES) causes the caller to be suspended until the request can be
satisfied, and SUSPEND(NO) causes an exception response (reason
NO_STORAGE) to be returned to the caller.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LIBRARY_IO_ERROR
 LOOP
 OS_STORAGE_SHORTAGE

The following values are returned when RESPONSE is EXCEPTION:
 NO_STORAGE

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_PROGRAM_TOKEN

ENTRY_POINT
is the address of the entry point of the program instance.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COPY_STATUS
Optional Parameter

 indicates whether this request resulted in a physical load of the program into
storage, and is used by the program manager domain to recognize that a
COBOL program requires initialization.

Values for the parameter are:
 NEW_COPY
 OLD_COPY

FETCH_TIME
Optional Parameter

 is the time taken to load the program from the DFHRPL or dynamic LIBRARY
concatenation. This is represented as the middle 4 bytes of a doubleword
stored clock (STCK) value. If the acquired program resides in the MVS link
pack area (LPA) or has already been loaded into one of the CICS dynamic
storage areas (DSAs), the returned value is zero.

LOAD_POINT
Optional Parameter

 is the address of the load point of the program instance.
LOCATION

Optional Parameter

 determines where the program instance for which the LOAD_POINT and
ENTRY_POINT have been returned resides.

Chapter 86. Loader Domain (LD) 1259

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE
 RDSA
 SDSA

NEW_PROGRAM_TOKEN
Optional Parameter

 is the identifying token that may be used on subsequent ACQUIRE or
RELEASE calls for this program name.

PROGRAM_ATTRIBUTE
Optional Parameter

 reflects the program attribute from the program definition, and is used by the
program manager domain to recognize RELOAD programs.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_LENGTH
Optional Parameter

 is the length of the program instance in bytes.

LDLD gate, CATALOG_PROGRAMS function
The CATALOG_PROGRAMS function of the LDLD gate is used at the end of CICS
initialization to request the loader domain to catalog all the program definitions
that need cataloging. The call is issued by the DFHSIJ1 module.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLD gate, CONVERT_NAME function
Obtain the primary member name for a long alias name from the cache if known,
otherwise from the DFHRPL or dynamic LIBRARY concatenation.

Input Parameters
LONG_NAME

Optional Parameter

1260 CICS TS for z/OS 4.1: Diagnosis Reference

the alias name to be converted.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LIBRARY_IO_ERROR
 NO_STORAGE
 OS_STORAGE_SHORTAGE
 PROGRAM_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PROGRAM_NAME
Optional Parameter

 The primary member name corresponding to the alias name.

LDLD gate, DEFINE_PROGRAM function
The DEFINE_PROGRAM function of the LDLD gate is used to introduce a new
program to the CICS system or to update the details of an existing program.

Input Parameters
PROGRAM_NAME

specifies the name of the required program.
CATALOG_MODULE

Optional Parameter

 indicates whether the program definition should be written to one of the
catalogs.

Values for the parameter are:
 NO
 YES

EXECUTION_KEY
Optional Parameter

 is the execution key for the program. This is used to determine which DSA the
program instance resides in.

Values for the parameter are:
 CICS
 USER

PROGRAM_ATTRIBUTE
Optional Parameter

 is a residency attribute to be associated with the program.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_TYPE
Optional Parameter

Chapter 86. Loader Domain (LD) 1261

is the type of program copy to be used.

Values for the parameter are:
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 defines whether the program is part of the CICS nucleus, or is an application
program defined by the user. This determines whether the program definition
is written to the local catalog or to the global catalog.

Values for the parameter are:
 APPLICATION
 NUCLEUS

REQUIRED_AMODE
Optional Parameter

 is the addressing mode required by CICS for the program. A program that
does not have the required residency mode is not loaded.

Values for the parameter are:
 AMODE_ANY
 24
 31

REQUIRED_RMODE
Optional Parameter

 is the residency mode required by CICS for the program. A program that does
not have the required mode requirements is not loaded.

Values for the parameter are:
 RMODE_ANY
 24

UPDATE
Optional Parameter

 indicates whether the loader domain should update the program definition if
the loader domain already has a program definition for the program. If
UPDATE(NO) is specified, and the loader domain already has a program
definition for the specified program, PROGRAM_ALREADY_DEFINED is
returned.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL
 INVALID_PROGRAM_NAME
 PROGRAM_ALREADY_DEFINED

The following values are returned when RESPONSE is INVALID:

1262 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_MODE_COMBINATION
 INVALID_TYPE_ATTRIB_COMBIN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEW_PROGRAM_TOKEN
Optional Parameter

 is the identifying token that may be used on subsequent ACQUIRE or
RELEASE calls for this program name.

LDLD gate, DELETE_PROGRAM function
The DELETE_PROGRAM function of the LDLD gate is used to remove a program
from the CICS system. All subsequent ACQUIRE requests for the named program
fail with a reason of PROGRAM_NOT_DEFINED. Any instance of the program in
use at the time the DELETE is received continue to exist until a RELEASE request
reduces the use count to zero, at which time the instance is removed from memory.

Input Parameters
PROGRAM_NAME

specifies the name of the required program.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_NOT_DEFINED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLD gate, END_BROWSE function
The END_BROWSE function of the LDLD gate is used to end a browse session.

Input Parameters
BROWSE_TOKEN

is a valid browse token as returned by the preceding START_BROWSE request.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLD gate, GET_NEXT_INSTANCE function
The GET_NEXT_INSTANCE function of the LDLD gate is used to browse the
current program instances in ascending load point address sequence.

Chapter 86. Loader Domain (LD) 1263

Input Parameters
BROWSE_TOKEN

is a valid browse token as returned by the preceding START_BROWSE request.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 END_LIST

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS
Optional Parameter

 is the type of storage that the program resides in.

Values for the parameter are:
 CICS
 NONE
 READ_ONLY
 USER

ENTRY_POINT
Optional Parameter

 is the address of the entry point of the program instance.
EXECUTION_KEY

Optional Parameter

 is the execution key for the program.

Values for the parameter are:
 CICS
 USER

INSTANCE_USE_COUNT
Optional Parameter

 is the current number of users of this instance.
LOAD_POINT

Optional Parameter

 is the address of the load point of the program instance.
LOCATION

Optional Parameter

 determines where the program instance for which the LOAD_POINT and
ENTRY_POINT have been returned resides.

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA

1264 CICS TS for z/OS 4.1: Diagnosis Reference

NONE
 RDSA
 SDSA

PROGRAM_ATTRIBUTE
Optional Parameter

 reflects the program attribute from the program definition, and is used by the
program manager domain to recognize RELOAD programs.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_LENGTH
Optional Parameter

 is the length of the program instance in bytes.
PROGRAM_NAME

Optional Parameter

 is the name of the program whose attributes have been returned.
PROGRAM_TYPE

Optional Parameter

 is the current program copy type.

Values for the parameter are:
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 is the current usage definition.

Values for the parameter are:
 APPLICATION
 NUCLEUS

SPECIFIED_AMODE
Optional Parameter

 is the addressing mode required by CICS for the program. A program that
does not have the required residency mode is not loaded. If
REQUIRED_AMODE was omitted when the program was defined,
AMODE_NOT_SPECIFIED is returned.

Values for the parameter are:
 AMODE_ANY
 AMODE_NOT_SPECIFIED
 24
 31

SPECIFIED_RMODE
Optional Parameter

 is the residency mode required by CICS for the program. A program that does
not have the required residency mode is not loaded. If REQUIRED_RMODE
was omitted when the program was defined, RMODE_NOT_SPECIFIED is
returned.

Values for the parameter are:

Chapter 86. Loader Domain (LD) 1265

RMODE_ANY
 RMODE_NOT_SPECIFIED
 24

LDLD gate, GET_NEXT_PROGRAM function
The GET_NEXT_PROGRAM function of the LDLD gate is used to perform an
INQUIRE function for the next program in the alphabetic sequence of programs in
the current browse session.

Input Parameters
BROWSE_TOKEN

is a valid browse token as returned by the preceding START_BROWSE request.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 END_LIST

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS
Optional Parameter

 is the type of storage that the program resides in.

Values for the parameter are:
 CICS
 NONE
 READ_ONLY
 USER

ENTRY_POINT
Optional Parameter

 is the address of the entry point of the program instance.
EXECUTION_KEY

Optional Parameter

 is the execution key for the program.

Values for the parameter are:
 CICS
 USER

LIBRARY
Optional parameter

 is the name of the LIBRARY concatenation from which the program was
loaded.

LIBRARYDSN
Optional parameter

 is the name of the data set within the LIBRARY concatenation from which the
program was loaded.

1266 CICS TS for z/OS 4.1: Diagnosis Reference

LOAD_POINT
Optional Parameter

 is the address of the load point of the program instance.
LOCATION

Optional Parameter

 determines where the program instance for which the LOAD_POINT and
ENTRY_POINT have been returned resides.

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE
 RDSA
 SDSA

PROGRAM_ATTRIBUTE
Optional Parameter

 reflects the program attribute from the program definition, and is used by the
program manager domain to recognize RELOAD programs.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_LENGTH
Optional Parameter

 is the length of the program instance in bytes.
PROGRAM_NAME

Optional Parameter

 is the name of the program whose attributes have been returned.
PROGRAM_TYPE

Optional Parameter

 is the current program copy type.

Values for the parameter are:
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 is the current usage definition.

Values for the parameter are:
 APPLICATION
 NUCLEUS

PROGRAM_USE_COUNT
Optional Parameter

 is the cumulative use count of the program.

Chapter 86. Loader Domain (LD) 1267

PROGRAM_USER_COUNT
Optional Parameter

 is the current number of users of the program.
SPECIFIED_AMODE

Optional Parameter

 is the addressing mode required by CICS for the program. A program that
does not have the required residency mode is not loaded. If
REQUIRED_AMODE was omitted when the program was defined,
AMODE_NOT_SPECIFIED is returned.

Values for the parameter are:
 AMODE_ANY
 AMODE_NOT_SPECIFIED
 24
 31

SPECIFIED_RMODE
Optional Parameter

 is the residency mode required by CICS for the program. A program that does
not have the required residency mode is not loaded. If REQUIRED_RMODE
was omitted when the program was defined, RMODE_NOT_SPECIFIED is
returned.

Values for the parameter are:
 RMODE_ANY
 RMODE_NOT_SPECIFIED
 24

LDLD gate, IDENTIFY_PROGRAM function
The IDENTIFY_PROGRAM function of the LDLD gate is used to locate the
program instance which contains the specified address.

Input Parameters
ADDRESS

is a storage address.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSTANCE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS
Optional Parameter

 is the type of storage that the program resides in.

Values for the parameter are:
 CICS
 NONE
 READ_ONLY
 USER

1268 CICS TS for z/OS 4.1: Diagnosis Reference

CSECT_NAME
Optional Parameter

 is the name of the CSECT within the module which contains the address. If no
CSECT is available, the module name is returned.

ENTRY_POINT
Optional Parameter

 is the address of the entry point of the program instance.
EXECUTION_KEY

Optional Parameter

 is the execution key for the program.

Values for the parameter are:
 CICS
 USER

INSTANCE_USE_COUNT
Optional Parameter

 is the current number of users of this instance.
LOAD_POINT

Optional Parameter

 is the address of the load point of the program instance.
LOCATION

Optional Parameter

 determines where the program instance for which the LOAD_POINT and
ENTRY_POINT have been returned resides.

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE
 RDSA
 SDSA

OFFSET_INTO_CSECT
Optional Parameter

 is the offset of the address within the CSECT. If no CSECT is available, the
module name is returned.

PROGRAM_ATTRIBUTE
Optional Parameter

 reflects the program attribute from the program definition, and is used by the
program manager domain to recognize RELOAD programs.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_LENGTH
Optional Parameter

 is the length of the program instance in bytes.

Chapter 86. Loader Domain (LD) 1269

PROGRAM_NAME
Optional Parameter

 is the name of the program whose attributes have been returned.
PROGRAM_TYPE

Optional Parameter

 is the current program copy type.

Values for the parameter are:
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 is the current usage definition.

Values for the parameter are:
 APPLICATION
 NUCLEUS

SPECIFIED_AMODE
Optional Parameter

 is the addressing mode required by CICS for the program. A program that
does not have the required residency mode is not loaded. If
REQUIRED_AMODE was omitted when the program was defined,
AMODE_NOT_SPECIFIED is returned.

Values for the parameter are:
 AMODE_ANY
 AMODE_NOT_SPECIFIED
 24
 31

SPECIFIED_RMODE
Optional Parameter

 is the residency mode required by CICS for the program. A program that does
not have the required residency mode is not loaded. If REQUIRED_RMODE
was omitted when the program was defined, RMODE_NOT_SPECIFIED is
returned.

Values for the parameter are:
 RMODE_ANY
 RMODE_NOT_SPECIFIED
 24

LDLD gate, INQUIRE_OPTIONS function
The INQUIRE_OPTIONS function of the LDLD gate is used to return loader global
options.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1270 CICS TS for z/OS 4.1: Diagnosis Reference

SHARED_PROGRAMS
Optional Parameter

 indicates whether the loader is utilizing LPA-resident programs to satisfy
ACQUIRE requests.

Values for the parameter are:
 NO
 YES

STORAGE_FACTOR
Optional Parameter

 indicates the percentage of system free storage that may be occupied by
program instances that have a zero use count.

LDLD gate, INQUIRE_PROGRAM function
The INQUIRE_PROGRAM function of the LDLD gate is used to return the details
of a specific program.

Input Parameters
PROGRAM_NAME

specifies the name of the required program.
PROGRAM_TOKEN

is a valid program-identifying token as returned by a previous DEFINE or
ACQUIRE request for the same program name.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_NOT_DEFINED

The following values are returned when RESPONSE is INVALID:
 INVALID_PROGRAM_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS
Optional Parameter

 is the type of storage that the program resides in.

Values for the parameter are:
 CICS
 NONE
 READ_ONLY
 USER

ENTRY_POINT
Optional Parameter

 is the address of the entry point of the program instance.
EXECUTION_KEY

Optional Parameter

 is the execution key for the program.

Values for the parameter are:

Chapter 86. Loader Domain (LD) 1271

CICS
 USER

LIBRARY
Optional parameter

 is the name of the LIBRARY concatenation from which the program was
loaded.

LIBRARYDSN
Optional parameter

 is the name of the data set within the LIBRARY concatenation from which the
program was loaded.

LOAD_POINT
Optional Parameter

 is the address of the load point of the program instance.
LOCATION

Optional Parameter

 determines where the program instance for which the LOAD_POINT and
ENTRY_POINT have been returned resides.

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE
 RDSA
 SDSA

NEW_PROGRAM_TOKEN
Optional Parameter

 is the identifying token that may be used on subsequent ACQUIRE or
RELEASE calls for this program name.

PROGRAM_ATTRIBUTE
Optional Parameter

 reflects the program attribute from the program definition, and is used by the
program manager domain to recognize RELOAD programs.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_LENGTH
Optional Parameter

 is the length of the program instance in bytes.
PROGRAM_TYPE

Optional Parameter

 is the current program copy type.

Values for the parameter are:
 PRIVATE
 SHARED

1272 CICS TS for z/OS 4.1: Diagnosis Reference

TYPE_ANY
PROGRAM_USAGE

Optional Parameter

 is the current usage definition.

Values for the parameter are:
 APPLICATION
 NUCLEUS

PROGRAM_USE_COUNT
Optional Parameter

 is the cumulative use count of the program.
PROGRAM_USER_COUNT

Optional Parameter

 is the current number of users of the program.
SPECIFIED_AMODE

Optional Parameter

 is the addressing mode required by CICS for the program. A program that
does not have the required residency mode is not loaded. If
REQUIRED_AMODE was omitted when the program was defined,
AMODE_NOT_SPECIFIED is returned.

Values for the parameter are:
 AMODE_ANY
 AMODE_NOT_SPECIFIED
 24
 31

SPECIFIED_RMODE
Optional Parameter

 is the residency mode required by CICS for the program. A program that does
not have the required residency mode is not loaded. If REQUIRED_RMODE
was omitted when the program was defined, RMODE_NOT_SPECIFIED is
returned.

Values for the parameter are:
 RMODE_ANY
 RMODE_NOT_SPECIFIED
 24

LDLD gate, REFRESH_PROGRAM function
The REFRESH_PROGRAM function of the LDLD gate is used to inform the loader
domain that a new version of the program has been cataloged, and that this
version of the named program should be used for all future ACQUIRE requests.

Input Parameters
PROGRAM_NAME

specifies the name of the required program.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LIBRARY_IO_ERROR
 LOOP
 OS_STORAGE_SHORTAGE

Chapter 86. Loader Domain (LD) 1273

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEW_VERSION_FOUND
Optional Parameter

 indicates whether a new version of the program has been found.

Values for the parameter are:
 NO
 YES

LDLD gate, RELEASE_PROGRAM function
The RELEASE_PROGRAM function of the LDLD gate is used to inform the loader
domain that use of a copy of the named program is no longer required. The use
count of the specified program instance is decremented; if the use count reaches
zero, and the program is eligible to be removed from memory, it is removed from
memory.

Input Parameters
ENTRY_POINT

specifies the address of the entry point of the module.
PROGRAM_NAME

specifies the name of the required program.
PROGRAM_TOKEN

is a valid program-identifying token as returned by a previous DEFINE or
ACQUIRE request for the same program name.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_IN_USE

The following values are returned when RESPONSE is INVALID:
 INVALID_ENTRY_POINT
 INVALID_PROGRAM_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LOAD_POINT
Optional Parameter

 is the address of the load point of the program instance.
LOCATION

Optional Parameter

 determines where the program instance for which the LOAD_POINT and
ENTRY_POINT have been returned resides.

Values for the parameter are:
 CDSA

1274 CICS TS for z/OS 4.1: Diagnosis Reference

ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE
 RDSA
 SDSA

PROGRAM_LENGTH
Optional Parameter

 is the length of the program instance in bytes.

LDLD gate, SET_OPTIONS function
The SET_OPTIONS function of the LDLD gate is used to set loader global options.

Input Parameters
LLACOPY

Optional Parameter

 indicates whether the loader is to use the MVS macro LLACOPY or BLDL to
locate programs.

Values for the parameter are:
 NEWCOPY
 NO
 YES

PRVMOD
Optional Parameter

 is a list of the names of modules that are not to be used from the MVS link
pack area (LPA), but instead are to be loaded as private copies from the
DFHRPL or dynamic program LIBRARY.

SHARED_PROGRAMS
Optional Parameter

 indicates whether the loader is to use LPA-resident programs to satisfy
ACQUIRE requests.

Values for the parameter are:
 NO
 YES

STORAGE_FACTOR
Optional Parameter

 indicates the percentage of system free storage that may be occupied by
program instances that have a zero use count.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL

The following values are returned when RESPONSE is INVALID:
 INVALID_STORAGE_FACTOR

Chapter 86. Loader Domain (LD) 1275

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LDLD gate, START_BROWSE function
The START_BROWSE function of the LDLD gate is used to start a browse session.

Input Parameters
ENTRY_POINT

Optional Parameter

 specifies the address of the entry point of the module.
PROGRAM_NAME

Optional Parameter

 specifies the name of the required program.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

BROWSE_TOKEN
is a token used to refer to this browse session on subsequent browse requests.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Loader domain's generic gates

Table 52 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 52. Loader domain's generic gates

Gate Trace Functions Format

DMDM LD 6001
LD 6002

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

SMNT LD 4001
LD 4002

STORAGE_NOTIFY SMNT

STST LD 5001
LD 5002

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Storage manager domain generic formats” on page 1709
 “Statistics domain's generic formats” on page 1777

1276 CICS TS for z/OS 4.1: Diagnosis Reference

Modules
 Module Function

DFHLDDM Handles the following requests:
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHLDDMI Reinstates any program resources and dynamic LIBRARY resources
defined during previous runs of CICS. It is called by DFHLDDM.

DFHLDDUF Formats the loader domain control blocks in a CICS system.

DFHLDLD Directs the following requests to DFHLDLD1, DFHLDLD2, or
DFHLDLD3, as appropriate:
 ACQUIRE_PROGRAM
 RELEASE_PROGRAM
 REFRESH_PROGRAM
 DEFINE_PROGRAM
 DELETE_PROGRAM
 INQUIRE_PROGRAM
 START_BROWSE
 GET_NEXT_PROGRAM
 GET_NEXT_INSTANCE
 END_BROWSE
 IDENTIFY_PROGRAM
 SET_OPTIONS
 INQUIRE_OPTIONS
 CATALOG_OPTIONS

DFHLDLD1 Handles the following requests:
 ACQUIRE_PROGRAM
 RELEASE_PROGRAM
 REFRESH_PROGRAM

DFHLDLD2 Handles the following requests:
 DEFINE_PROGRAM
 DELETE_PROGRAM

DFHLDLD3 Handles the following requests:
 INQUIRE_PROGRAM
 START_BROWSE
 GET_NEXT_PROGRAM
 GET_NEXT_INSTANCE
 END_BROWSE
 IDENTIFY_PROGRAM
 SET_OPTIONS
 INQUIRE_OPTIONS
 CATALOG_OPTIONS

Chapter 86. Loader Domain (LD) 1277

Module Function

DFHLDLB Handles the following request:
 LOG_LIBRARY_ORDER

and directs the following requests to DFHLDLB2 or DFHLDLB3 as
appropriate:

 ADD_REPLACE_LIBRARY

 DISCARD_LIBRARY

 SET_LIBRARY

 INQUIRE_LIBRARY

 START_BROWSE_LIBRARY

 GET_NEXT_LIBRARY

 END_BROWSE_LIBRARY

DFHLDLB2 Handles the following requests:
 ADD_REPLACE_LIBRARY
 DISCARD_LIBRARY

DFHLDLB3 Handles the following requests:
 SET_LIBRARY
 INQUIRE_LIBRARY
 START_BROWSE_LIBRARY
 GET_NEXT_LIBRARY
 END_BROWSE_LIBRARY

DFHLDNT Handles the following request:
 STORAGE_NOTIFY

DFHLDST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHLDSVC Provides authorized services for loader domain functions that involve
MVS load facilities.

DFHLDTRI Provides a loader domain trace interpretation routine for CICS dumps
and traces.

1278 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 87. Log manager domain (LG)

The log manager domain (also sometimes known as "log manager" or "logger")
provides facilities for Recovery Manager to write records to the CICS system log,
read records from the CICS system log, and maintain the system log deleting
obsolete records and shunting old, but still needed, records to a secondary system
log.

The log manager also provides facilities to:
v Write user journal, forward recovery and auto journals records to MVS system

logger logstreams or the MVS SMF log
v Install, discard and inquire for Journalmodel resource definitions
v Auto-install, discard, inquire and set for Journal definitions
v Connect, disconnect and define for MVS system logger logstreams
v Collect statistics for Journal and Logstream usage.

Log manager domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the LG domain.

LGBA gate, BROWSE_ALL_GET_NEXT function
Returns the next record in the browse all object.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_DATA
is the address of the record just read from the system log.

USER_DATA_LEN
is the length of the record just read from the system log.

USER_TOKEN
is a user token that was passed in by RESTORE_CHAIN_TOKEN.

LGBA gate, END_BROWSE_ALL function
Destroys the browse all object.

© Copyright IBM Corp. 1997, 2011 1279

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGBA gate, START_BROWSE_ALL function
Creates a browse all object for the CICS system log.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCB gate, CHAIN_BROWSE_GET_NEXT function
Creates a browse object for the chain denoted by CHAIN_TOKEN.

Input Parameters
CHAIN_TOKEN

is a chain token.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA

1280 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_DATA
is the address of the record just read from the system log.

USER_DATA_LEN
is the length of the record just read from the system log.

LGCB gate, END_CHAIN_BROWSE function
Destroys the chain browse object denoted by CHAIN_TOKEN.

Input Parameters
CHAIN_TOKEN

is a chain token.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCB gate, START_CHAIN_BROWSE function
Creates a browse object for the chain denoted by CHAIN_TOKEN.

Input Parameters
CHAIN_TOKEN

is a chain token.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT

Chapter 87. Log manager domain (LG) 1281

INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, BROWSE_CHAINS_GET_NEXT function
Returns the next chain token and moves the browse cursor position to the next
chain.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

CHAIN_TOKEN
is a new chain token token, which can be used as input to
RELEASE_CHAIN_TOKEN, RESTORE_CHAIN_TOKEN,
START_CHAIN_BROWSE, CHAIN_BROWSE_GET_NEXT,
END_CHAIN_BROWSE, MOVE_CHAIN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_TOKEN
is a user token that was passed in by RESTORE_CHAIN_TOKEN.

LGCC gate, CREATE_CHAIN_TOKEN function
Creates a CHAIN TOKEN.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE

1282 CICS TS for z/OS 4.1: Diagnosis Reference

WRITE_FAILURE
CHAIN_TOKEN

is a new chain token token, which can be used as input to
RELEASE_CHAIN_TOKEN, RESTORE_CHAIN_TOKEN,
START_CHAIN_BROWSE, CHAIN_BROWSE_GET_NEXT,
END_CHAIN_BROWSE, MOVE_CHAIN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, DELETE_ALL function
Deletes all of the data on both log streams of the CICS system log.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, DELETE_HISTORY function
Deletes all blocks of data, for both log streams of the CICS system log, that are
older than the corresponding history point saved during a call of SET_HISTORY.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 87. Log manager domain (LG) 1283

LGCC gate, END_BROWSE_CHAINS function
Destroys the browse chains object.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, INQUIRE_DEFER_INTERVAL function
Returns the number of millisecoonds for which a forced log write will be deferred.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

DEFER_INTERVAL
is the number of millisecoonds for which a forced log write will be deferred.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, INQUIRE_KEYPOINT_FREQUENCY function
Returns the activity keypoint frequency value in KEYPOINT_FREQUENCY.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF

1284 CICS TS for z/OS 4.1: Diagnosis Reference

BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

KEYPOINT_FREQUENCY
is the current keypoint frequency value.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, INQUIRE_KEYPOINT_STATS function
Return the number of keypoints that have occurred since the count was last reset.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

KEYPOINT_COUNT
is the number of keypoints that have occurred since the count was last reset.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, RELEASE_CHAIN_TOKEN function
Destroys the chain token in CHAIN_TOKEN

Input Parameters
CHAIN_TOKEN

is a chain token.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS

Chapter 87. Log manager domain (LG) 1285

END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, RESET_KEYPOINT_STATS function
Reset the count of the number of keypoints.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, RESTORE_CHAIN_TOKEN function
Creates a chain token and adds the last record (viewed as a chain element) read
from the system log during a BROWSE_ALL_GET_NEXT

Input Parameters
USER_TOKEN

is a user token that is returned by BROWSE_CHAINS_GET_NEXT and
BROWSE_ALL_GET_NEXT.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP

1286 CICS TS for z/OS 4.1: Diagnosis Reference

OUT_OF_RANGE
 WRITE_FAILURE

CHAIN_TOKEN
is a new chain token token, which can be used as input to
RELEASE_CHAIN_TOKEN, RESTORE_CHAIN_TOKEN,
START_CHAIN_BROWSE, CHAIN_BROWSE_GET_NEXT,
END_CHAIN_BROWSE, MOVE_CHAIN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, SET_DEFER_INTERVAL function
Sets the log defer interval.

Input Parameters
DEFER_INTERVAL

is the number of milliseconds for which a forced log write will be deferred.
The maximum value that may be specified is 65535 milliseconds.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, SET_HISTORY function
Evaluates and saves the current history point for both log streams of the CICS
system log. The history point of a log stream is the oldest block id that CICS
knows of on the log stream.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED

Chapter 87. Log manager domain (LG) 1287

LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, SET_KEYPOINT_FREQUENCY function
Sets the activity frequency to KEYPOINT_FREQUENCY.

Input Parameters
KEYPOINT_FREQUENCY

 How often, in terms of physical writes to the system log, activity keypoints
should be initiated. A value of zero indicates that activity keypoints should not
be initiated.

Non-zero values outside the range from 200 to 65535 inclusive are invalid and
cause the OUT_OF_RANGE exception to be returned.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, START_BROWSE_CHAINS function
Creates a chains browse object and initializes the browse cursor position.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE

1288 CICS TS for z/OS 4.1: Diagnosis Reference

WRITE_FAILURE
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGCC gate, SYSINI function
Creates a primary and secondary log stream objects of type MVS(TM) that comprises
the CICS system log.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGGL gate, CLOSE function
Invalidates the LOG_TOKEN, on the last usage of a log stream disconnects from
the log stream

Input Parameters
LOG_TOKEN

The token returned by OPEN

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 WRITE_ERROR

The following values are returned when RESPONSE is INVALID:
 UNKNOWN_LOG_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGGL gate, FORCE function
Ensures that the previously written records have been flushed from the buffer and
hardened on the chosen log stream

Input Parameters
LOG_TOKEN

The token returned by OPEN

Chapter 87. Log manager domain (LG) 1289

FORCE_TOKEN
Optional Parameter

 Token returned by WRITE to indicate a specific record to be written. If omitted
all records are forced.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 WRITE_ERROR

The following values are returned when RESPONSE is INVALID:
 UNKNOWN_LOG_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGGL gate, FORCE_JNL function
Ensures that the previously written records have been hardened on the chosen log.

Input Parameters
JNL_NAME

The 8-byte journal name to be opened
FORCE_TOKEN

Optional Parameter

 Token returned by WRITE to indicate a specific record to be written. If omitted
all records are forced.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 LOG_HAS_FAILED
 LOG_IS_DISABLED
 LOG_IS_NOT_ACTIVE
 LOG_IS_SYSTEM_LOG
 WRITE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGGL gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGGL gate, OPEN function
Opens a general log and returns a log token. The log token is used by the WRITE,
FORCE and CLOSE operations.

Input Parameters
COMPONENT

Identifies the component (e.g. FC) opening this stream

1290 CICS TS for z/OS 4.1: Diagnosis Reference

JNL_NAME
The 8-byte journal name to be opened

STREAM_NAME
The 26-byte log stream name to be opened

ERROR_GATE
Optional Parameter

 The domain gate number that the logger should call using ERROR if an error
occurs accessing the log stream.

USER_TOKEN
Optional Parameter

 is a user token that is returned by BROWSE_CHAINS_GET_NEXT and
BROWSE_ALL_GET_NEXT.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ERROR_OPENING_LOG
 INVALID_JNL_NAME
 LOG_HAS_FAILED
 LOG_IS_DISABLED
 LOG_IS_SYSTEM_LOG
 LOG_NOT_DEFINED

The following values are returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

LOG_TOKEN
The token to be used on subsequent WRITE, FORCE, CLOSE requests.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

JNL_STREAM
Optional Parameter

 The MVS logstream name associated with the journal being opened
LOG_TYPE

Optional Parameter

 The associated log stream type.

Values for the parameter are:
 DUMMY
 MVS
 SMF

LGGL gate, UOW_TIME function
Returns the oldest active transactions first log write time for use in calculating the
recovery time for Backup while open.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UOW_TIME_STAMP
The 8-byte STCK format time of the oldest active transaction that has written
log records with the FORCE_AT_SYNC option, or current time if there are no
active transactions.

Chapter 87. Log manager domain (LG) 1291

LGGL gate, WRITE function
Write a record to a general log identified by a token from a previous OPEN.

Input Parameters
DATA

The address of a reusable Iliffe vector describing the items of data to be
written to the log stream.

LOG_TOKEN
The token returned by OPEN

FORCE_AT_SYNC
Optional Parameter

 Indicates that the caller wants the log stream to be forced when the associated
transaction reaches Syncpoint. FORCE_AT_SYNC can be used in conjunction
with FORCE_NOW. This is needed by File control for ESDS writes which have
to be forced immediately but which also need the UOW structure to allow the
calculation of Fuzzy backup recovery times.

Values for the parameter are:
 NO
 YES

FORCE_NOW
Optional Parameter

 Indicates that the caller wants to wait until the data has been successfully
written to the log stream.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_LENGTH_ERROR
 WRITE_ERROR

The following values are returned when RESPONSE is INVALID:
 UNKNOWN_LOG_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FORCE_TOKEN
Optional Parameter

 A token to be used on a subsequent FORCE to ensure that a specific records
and any prior records have been hardened

LGGL gate, WRITE_JNL function
Write a record to a general log identified by a journal name

Input Parameters
COMPONENT

Identifies the component (e.g. FC) opening this stream
DATA

The address of a reusable Iliffe vector describing the items of data to be
written to the log stream.

1292 CICS TS for z/OS 4.1: Diagnosis Reference

JNL_NAME
The 8-byte journal name to be opened

FORCE_AT_SYNC
Optional Parameter

 Indicates that the caller wants the log stream to be forced when the associated
transaction reaches Syncpoint. FORCE_AT_SYNC can be used in conjunction
with FORCE_NOW. This is needed by File control for ESDS writes which have
to be forced immediately but which also need the UOW structure to allow the
calculation of Fuzzy backup recovery times.

Values for the parameter are:
 NO
 YES

FORCE_NOW
Optional Parameter

 Indicates that the caller wants to wait until the data has been successfully
written to the log stream.

Values for the parameter are:
 NO
 YES

SUSPEND
Optional Parameter

 Supported for compatibility with old EXEC interface. Causes BUFFER_FULL
exception to be raised if there is no space rather than waiting for space. The
task may still be suspended for many other reasons.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 ERROR_OPENING_LOG
 INVALID_JNL_NAME
 LOG_HAS_FAILED
 LOG_IS_DISABLED
 LOG_IS_SYSTEM_LOG
 LOG_NOT_DEFINED
 WRITE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FORCE_TOKEN
Optional Parameter

 A token to be used on a subsequent FORCE to ensure that a specific records
and any prior records have been hardened

LGJN gate, DISCARD function
Remove a journal from the set of known journals to clean up the catalog or to
allow it to be reinstalled with a new set of attributes.

Chapter 87. Log manager domain (LG) 1293

Input Parameters
JNL_NAME

The 8-byte journal name to be opened

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 LOG_IS_SYSTEM_LOG
 UNKNOWN_JNL_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGJN gate, END_BROWSE function
Terminate browse and invalidate browse token

Input Parameters
BROWSE_TOKEN

Token returned by START_BROWSE

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGJN gate, EXPLICIT_OPEN function
Inquire on a journal and if the journal does not already exist in the set of known
journals perform the autoinstall process to define it.

Input Parameters
JNL_NAME

The 8-byte journal name to be opened
SYSTEM_LOG

Whether or not this journal is to be used as a system log

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ERROR_OPENING_LOG
 INVALID_JNL_NAME
 JNL_HAS_FAILED
 JNL_IS_DISABLED
 SYSTEM_LOG_CONFLICT
 UNABLE_TO_CREATE_JNL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1294 CICS TS for z/OS 4.1: Diagnosis Reference

STREAM_TOKEN
The log stream token if the journal is currently connected to an MVS log
stream or the logbuf token for an SMF journal.

 If specified the stream shared lock will be acquired and it its the callers
responsibility to free the lock when they have finished with the stream token.

JNL_STATUS
Optional Parameter

 The associated log stream status. Status will always appear as disconnected for
journals that have not been used as user journals (i.e. system logs, forward
recovery logs, fc auto journals) even though they may be in use

Values for the parameter are:
 CONNECTED
 DISABLED
 DISCONNECTED
 FAILED
 FLUSH

LOG_TOKEN
Optional Parameter

 The token to be used on subsequent WRITE, FORCE, CLOSE requests.
LOG_TYPE

Optional Parameter

 The associated log stream type.

Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_NAME
Optional Parameter

 The associated MVS log stream name. Blank for SMF or DUMMY
STRUCTURE_NAME

Optional Parameter

 is the 16 byte name of the coupling facility structure of the log stream.

LGJN gate, GET_NEXT function
Return information for next Journal.

Input Parameters
BROWSE_TOKEN

Token returned by START_BROWSE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_MORE_DATA_AVAILABLE

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

JNL_NAME
The next 8-byte Journal name found

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 87. Log manager domain (LG) 1295

JNL_STATUS
Optional Parameter

 The associated log stream status. Status will always appear as disconnected for
journals that have not been used as user journals (i.e. system logs, forward
recovery logs, fc auto journals) even though they may be in use.

Values for the parameter are:
 CONNECTED
 DISABLED
 DISCONNECTED
 FAILED

LOG_TYPE
Optional Parameter

 The associated log stream type.

Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_NAME
Optional Parameter

 The associated MVS log stream name. Blank for SMF or DUMMY
SYSTEM_LOG

Optional Parameter

 Whether or not the journal is a system log.

Values for the parameter are:
 NO
 YES

LGJN gate, IMPLICIT_OPEN function
Inquire on a journal and if the journal does not already exist in the set of known
journals perform the autoinstall process to define it. If the associated log stream
has not been opened then it is opened and the stream token returned.

Input Parameters
JNL_NAME

The 8-byte journal name to be opened
SYSTEM_LOG

Whether or not this journal is to be used as a system log.

 Values for the parameter are:
 NO
 YES

FORCE
Optional Parameter

 Indicates that a force of the data in the buffer has been requested. This is used
to indicate when the stats field in the journal info, which records the number
of flushes, needs incrementing.

Values for the parameter are:
 NO
 YES

WRITE_BYTES
Optional Parameter

1296 CICS TS for z/OS 4.1: Diagnosis Reference

The number of bytes of data being written, as a 64 bit value. This field is used
to update the bytes counter in the stats information for a journal, and also
indicates that the writes counter also needs incrementing.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ERROR_OPENING_LOG
 INVALID_JNL_NAME
 JNL_HAS_FAILED
 JNL_IS_DISABLED
 SYSTEM_LOG_CONFLICT
 UNABLE_TO_CREATE_JNL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STREAM_TOKEN
The log stream token if the journal is currently connected to an MVS log
stream or the logbuf token for an SMF journal. If specified the stream shared
lock will be acquired and it its the caller's responsibility to free the lock when
it has finished with the stream token.

JNL_STATUS
Optional Parameter

 The associated log stream status. Status will always appear as disconnected for
journals that have not been used as user journals (i.e. system logs, forward
recovery logs, fc auto journals) even though they may be in use.

Values for the parameter are:
 CONNECTED
 DISABLED
 DISCONNECTED
 FAILED
 FLUSH

LOG_TYPE
Optional Parameter

 The associated log stream type.

Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_NAME
Optional Parameter

 The associated MVS log stream name. Blank for SMF or DUMMY

LGJN gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 87. Log manager domain (LG) 1297

LGJN gate, INQUIRE function
Returns information about the current state of a user journal

Input Parameters
JNL_NAME

The 8-byte journal name to be opened
FORCE

Optional Parameter

 Indicates that a force of the data in the buffer has been requested. This is used
to indicate when the stats field in the journal info, which records the number
of flushes, needs incrementing.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_JNL_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

JNL_STATUS
Optional Parameter

 The associated log stream status. Status will always appear as disconnected for
journals that have not been used as user journals (i.e. system logs, forward
recovery logs, fc auto journals) even though they may be in use.

Values for the parameter are:
 CONNECTED
 DISABLED
 DISCONNECTED
 FAILED

LOG_TYPE
Optional Parameter

 Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_NAME
Optional Parameter

 The associated MVS log stream name. Blank for SMF or DUMMY
STREAM_TOKEN

Optional Parameter

 The log stream token if the journal is currently connected to an MVS log
stream or the logbuf token for an SMF journal. If specified the stream shared
lock will be acquired and it its the callers responsibility to free the lock when
they have finished with the stream token.

SYSTEM_LOG
Optional Parameter

 Whether or not the journal is a system log.

Values for the parameter are:

1298 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

LGJN gate, PROCESS_STATISTICS function
Deal with the various types of requests for journal statistics using the information
in the STST parameter list.

Input Parameters
STATS_PARMS

The address of the STST parameter list.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_JOURNALS_DEFINED
 UNKNOWN_JNL_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGJN gate, SET function
Update the status of the Journal.

Input Parameters
JNL_NAME

The 8-byte journal name to be opened
JNL_STATUS

The new status for the journal.

 Values for the parameter are:
 CONNECTED
 DISABLED
 DISCONNECTED
 FAILED
 FLUSH

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ERROR_OPENING_LOG
 INVALID_JNL_NAME
 JNL_ALREADY_IN_REQ_STATE
 JNL_HAS_FAILED
 JNL_IS_NOT_ACTIVE
 LOG_IS_SYSTEM_LOG
 SYSTEM_LOG_CONFLICT
 UNABLE_TO_CREATE_JNL
 UNKNOWN_JNL_NAME
 WRITE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGJN gate, START_BROWSE function
Initialize browse token for subsequent GET_NEXT requests

Chapter 87. Log manager domain (LG) 1299

Output Parameters
BROWSE_TOKEN

Token for use on subsequent GET_NEXT requests
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGJN gate, STREAM_FAIL function
Marks all journals that have used the failing log stream as failed, issues a message,
and closes the stream connection. This ensures that all subsequent activity for the
log stream is rejected until either CICS is restarted or the operator explicitly
reactivates the journal

Input Parameters
STREAM_NAME

The 26-byte log stream name to be opened
STREAM_TOKEN

The token of the log stream that has failed

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLB gate, CONNECT function
Creates a log stream object and if of type MVS, a connection is made to the log
stream, denoted by its name, through the MVS logger.

Input Parameters
JOURNAL_NAME

is the journal name associated with the log stream on this request.
LOG_TYPE

is the log stream type.

 Values for the parameter are:
 MVS
 SMF

STREAM_NAME
The 26-byte log stream name to be opened

SYSTEM_LOG
Whether or not this journal is to be used as a system log.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA

1300 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

LOGBUF_TOKEN
is the token denoting the connected log stream, which can be used as input to
GL_WRITE, GL_FORCE and DISCONNECT.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STRUCTURE_NAME
Optional Parameter

 is the 16 byte name of the coupling facility structure of the log stream.

LGLB gate, DISCONNECT function
Destroys the log stream object and if it is of type MVS, disconnects from the MVS
logger.

Input Parameters
LOGBUF_TOKEN

is the token of the log stream created during a call of CONNECT.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLB gate, DISCONNECT_ALL function
Ensures that any data in the output buffer has been written to the physical media
before the stream connection is destroyed for all connected streams.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE

Chapter 87. Log manager domain (LG) 1301

END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLB gate, GL_FORCE function
Ensures that the output buffer denoted by FORCE_TOKEN for the log stream
denoted by LOGBUF_TOKEN has been written to the physical media.

Input Parameters
FORCE_TOKEN

Token returned by WRITE to indicate a specific record to be written. If omitted
all records are forced.

LOGBUF_TOKEN
is the token of the log stream created during a call of CONNECT.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLB gate, GL_WRITE function
Writes a record to a general log denoted by LOGBUF_TOKEN.

Input Parameters
COMPONENT

Identifies the component (e.g. FC) opening this stream
DATA

The address of a reusable Iliffe vector describing the items of data to be
written to the log stream.

JOURNAL_NAME
is the journal name associated with the log stream on this request.

LOGBUF_TOKEN
is the token of the log stream created during a call of CONNECT.

1302 CICS TS for z/OS 4.1: Diagnosis Reference

SUSPEND
Supported for compatibility with old EXEC interface. Causes BUFFER_FULL
exception to be raised if there is no space rather than waiting for space. The
task may still be suspended for many other reasons.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

FORCE_TOKEN
A token to be used on a subsequent FORCE to ensure that a specific records
and any prior records have been hardened

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLD gate, DISCARD function
Remove a JournalModel from the set of defined JournalModels

Input Parameters
JOURNALMODEL_NAME

The 8-byte JournalModel name to be inquired upon

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_JOURNALMODEL_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLD gate, END_BROWSE function
Terminate browse and invalidate browse token

Input Parameters
BROWSE_TOKEN

Token returned by START_BROWSE

Chapter 87. Log manager domain (LG) 1303

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLD gate, GET_NEXT function
Return information for next JournalModel entry

Input Parameters
BROWSE_TOKEN

Token returned by START_BROWSE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_MORE_DATA_AVAILABLE

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

JOURNALMODEL_NAME
The next 8-byte JournalModel name

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

JNL_TEMPLATE
Optional Parameter

 The associated journal name template
LOG_TYPE

Optional Parameter

 The associated log stream type.

Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_PROTOTYPE
Optional Parameter

 The associated MVS log stream name prototype

LGLD gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGLD gate, INQUIRE function
Returns information about the current state of a JournalModel

1304 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
JOURNALMODEL_NAME

The 8-byte JournalModel name to be inquired upon

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_JOURNALMODEL_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

JNL_TEMPLATE
Optional Parameter

 The associated journal name template
LOG_TYPE

Optional Parameter

 The associated log stream type.

Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_PROTOTYPE
Optional Parameter

 The associated MVS log stream name prototype

LGLD gate, INSTALL function
Create/replace JournalModel entry

Input Parameters
JNL_TEMPLATE

The associated journal name template
JOURNALMODEL_NAME

The 8-byte JournalModel name to be inquired upon
LOG_TYPE

is the log stream type.

 Values for the parameter are:
 DUMMY
 MVS
 SMF

STREAM_PROTOTYPE
The associated MVS log stream name prototype

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_JNL_TEMPLATE
 INVALID_STREAM_PROTOTYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 87. Log manager domain (LG) 1305

LGLD gate, MATCH function
Find JournalModel entry that best matches a journal name. Variables in the stream
name prototype are resolved and the resultant stream name is returned.

Input Parameters
JNL_NAME

The 8-byte journal name to be opened

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_JNL_NAME

LOG_TYPE
The associated log stream type.

 Values for the parameter are:
 DUMMY
 MVS
 SMF

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STREAM_NAME
The associated MVS log stream name. Blank for SMF or DUMMY

LGLD gate, START_BROWSE function
Initialize browse token for subsequent GET_NEXT requests

Output Parameters
BROWSE_TOKEN

Token for use on subsequent GET_NEXT requests
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGMV gate, MOVE_CHAIN function
Destroys the chain browse object denoted by CHAIN_TOKEN.

Input Parameters
CHAIN_TOKEN

is a chain token.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 DUMMY_SECONDARY_LOG
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED

1306 CICS TS for z/OS 4.1: Diagnosis Reference

LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGPA gate, INQUIRE_PARAMETERS function
Inquire logger domain parameters.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DEFER_INTERVAL
Optional Parameter

 is the number of millisecoonds for which a forced log write will be deferred.
KEYPOINT_FREQUENCY

Optional Parameter

 is the current keypoint frequency value.

LGPA gate, SET_PARAMETERS function
Set logger domain parameters.

Input Parameters
DEFER_INTERVAL

Optional Parameter

 is the number of milliseconds for which a forced log write will be deferred.
The maximum value that may be specified is 65535 milliseconds.

KEYPOINT_FREQUENCY
Optional Parameter

 How often, in terms of physical writes to the system log, activity keypoints
should be initiated. A value of zero indicates that activity keypoints should not
be initiated.
Non-zero values outside the range from 200 to 65535 inclusive are invalid and
cause the OUT_OF_RANGE exception to be returned.

Output Parameters
REASON

The values for the parameter are:
 OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGSR gate, LOGSTREAM_STATS function
Collects, and resets if required, the log stream statistics of either the log stream
denoted by LOGSTREAM_NAME or of all log streams known to the log manager.

Chapter 87. Log manager domain (LG) 1307

Input Parameters
ALL

if specified then the request is for all log streams of type MVS known to the
log manager.

 Values for the parameter are:
 NO
 YES

DATA
The address of a reusable Iliffe vector describing the items of data to be
written to the log stream.

 Values for the parameter are:
 NO
 YES

LOGSTREAM_NAME
if specified then this is a log stream name, which must be of type MVS.

RESET
is a request qualifier.

 Values for the parameter are:
 NO
 YES

STATS_BUFFER_ADDR
is the address of a buffer to put the log stream statistics record(s).

STATS_BUFFER_LENGTH
is the length of the buffer.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 OUT_OF_RANGE
 WRITE_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGST gate, CONNECT function
Connect to an MVS log stream, or increment use count on subsequent call.

Input Parameters
STREAM_NAME

The 26-byte log stream name to be opened
SYSTEM_LOG

Whether or not this journal is to be used as a system log.

 Values for the parameter are:

1308 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CONNECT_FAILURE
 DEFINE_FAILURE
 LOG_HAS_FAILED
 SYSTEM_LOG_CONFLICT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STREAM_TOKEN
The log stream token if the journal is currently connected to an MVS log
stream or the logbuf token for an SMF journal.

 If specified the stream shared lock will be acquired and it its the callers
responsibility to free the lock when they have finished with the stream token.

STRUCTURE_NAME
Optional Parameter

 is the 16 byte name of the coupling facility structure of the log stream.

LGST gate, DISCONNECT function
Decrement the stream use count and disconnect from the MVS logger on last use

Input Parameters
STREAM_TOKEN

The token of the log stream that has failed

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGST gate, END_BROWSE function
Terminate browse and invalidate browse token

Input Parameters
BROWSE_TOKEN

Token returned by START_BROWSE

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGST gate, GET_NEXT function
Return information for next stream entry

Chapter 87. Log manager domain (LG) 1309

Input Parameters
BROWSE_TOKEN

Token returned by START_BROWSE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_MORE_DATA_AVAILABLE

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STREAM_NAME
The associated MVS log stream name. Blank for SMF or DUMMY

FAILED
Optional Parameter

 The MVS log stream has failed

Values for the parameter are:
 NO
 YES

SYSTEM_LOG
Optional Parameter

 Whether or not the journal is a system log.

Values for the parameter are:
 NO
 YES

USE_CT
Optional Parameter

 The current number of users of the stream

LGST gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGST gate, INQUIRE function
Returns information about the current state of a stream name

Input Parameters
STREAM_NAME

The 26-byte log stream name to be opened

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_STREAM_NAME

1310 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FAILED
Optional Parameter

 The MVS log stream has failed

Values for the parameter are:
 NO
 YES

SYSTEM_LOG
Optional Parameter

 Whether or not the journal is a system log.

Values for the parameter are:
 NO
 YES

USE_CT
Optional Parameter

 The current number of users of the stream

LGST gate, START_BROWSE function
Initialize browse token for subsequent GET_NEXT requests

Output Parameters
BROWSE_TOKEN

Token for use on subsequent GET_NEXT requests
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGWF gate, FORCE_DATA function
Ensures that the output buffer denoted by FORCE_TOKEN has been written to the
physical media.

Input Parameters
FORCE_TOKEN

Token returned by WRITE to indicate a specific record to be written. If omitted
all records are forced.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE
 END_OF_CHAINS
 END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP

Chapter 87. Log manager domain (LG) 1311

WRITE_FAILURE
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LGWF gate, WRITE function
Writes a record to the CICS system log.

Input Parameters
CHAIN_TOKEN

is a chain token.
DATA

The address of a reusable Iliffe vector describing the items of data to be
written to the log stream.

FORCE

 Indicates that a force of the data in the buffer has been requested.

This is used to indicate when the statistics field in the journal information,
which records the number of flushes, needs incrementing.

Values for the parameter are:
 NO
 YES

RAISE_LENGERR
is a request qualifier. RAISE_LENGERR(YES) indicates that if the data length is
too large to fit into the output buffer then an EXCEPTION condition is
returned to the caller.

 Values for the parameter are:
 NO
 YES

SUSPEND
Supported for compatibility with old EXEC interface. Causes BUFFER_FULL
exception to be raised if there is no space rather than waiting for space. The
task may still be suspended for many other reasons.

 Values for the parameter are:
 NO
 YES

MOVE_NEEDED
Optional Parameter

 Binary value indicating whether existence records are to be moved to the shunt
log on each activity keypoint.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AKP_KICK_OFF
 BUFFER_FULL
 BUFFER_LENGTH_ERROR
 CONNECT_FAILURE
 END_OF_CHAINS

1312 CICS TS for z/OS 4.1: Diagnosis Reference

END_OF_DATA
 INVALID_FORMAT
 INVALID_FUNCTION
 LOG_NOT_DEFINED
 LOOP
 WRITE_FAILURE

FORCE_TOKEN
A token to be used on a subsequent FORCE to ensure that a specific records
and any prior records have been hardened

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Logger manager domain's generic gates

Table 53 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 53. Log manager domain's generic gates

Gate Trace Function Format

APUE LG 0101
LG 0102

SET_EXIT_STATUS APUE

DMDM LG 0101
LG 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST LG 0101
LG 0102

COLLECT_STATISTICS
COLLECT_RESOURCE_STATISTICS

STST

In Initialization processing, the log manager domain retrieves Journal and
Journalmodel information from the catalog and initializes the system log except on
a cold start when system log initialization occurs after group list install has
completed.

In Quiesce processing, the log manager disconnects from MVS(TM) log streams
after all transactions have completed.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Application Manager Domain's generic formats” on page 867
 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777

Chapter 87. Log manager domain (LG) 1313

Log manager domain's call-back gates

Table 54 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 54. Log manager domain's call-back gates

Gate Trace Function Format

RMRO LG 0201
LG 0202

PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

For PERFORM_PREPARE, PERFORM_COMMIT, END_BACKOUT the log manager
forces any log buffers written using the FORCE_AT_SYNCH option of the LGGL
WRITE gate to the MVS system logger. For the other RMRO gate functions the log
manager does nothing.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following call-back formats:
 “Recovery manager domain call-back formats” on page 1599

Log manager domain's call-back formats

Table 55 describes the call-back formats owned by the domain and shows the
functions performed on the calls.

 Table 55. Log manager domain's call-back formats

Format Calling module Function

LGGL DFHLGGL ERROR

Note: In the descriptions of the formats, the input parameters are input not to the
log manager domain, but to the domain being called by the log manager domain.
Similarly, the output parameters are output by the domain that was called by the
log manager domain, in response to the call.

LGGL gate, ERROR function
This is a back-to-front or outbound function. The logger will call the domain that
issued OPEN, using the gate number specified in ERROR_GATE, when a long
term error condition is detected on the opened log stream.

Input Parameters
COMPONENT

The 2-byte component id supplied on OPEN
ERROR_TYPE

Indicates the severity of the error.

 Values for the parameter are:
 LONG_TERM
 RECOVERED

1314 CICS TS for z/OS 4.1: Diagnosis Reference

LOG_TOKEN
The token returned by OPEN

STREAM_NAME
The 26-byte name of the failing log stream name

USER_TOKEN
The 8-byte token supplied on OPEN, this allows the opening domain to
determine what resource (eg DSNB) this open is associated with.

JNL_NAME
Optional Parameter

 The 8-byte journal name if the open was by journal name

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHLGDM Log manager domain initialization and termination. Also handles exit
activation for XLGSTRM and XRSINDI.

Handles the DMDM and APUE gate functions

DFHLGDUF A routine to format system dump information

DFHLGGL Handles the LGGL and RMRO gate functions

DFHLGHB Assesses the availability of the MVS system logger

DFHLGICV Log record conversion for SSI exit

DFHLGIGT Log record get routine for SSI exit

DFHLGILA Lexical analysis for SSI exit

DFHLGIMS Message composer for SSI exit

DFHLGIPA Parser for SSI exit

DFHLGIPI Parse interface for SSI exit

DFHLGISM Parse message exit for SSI exit

DFHLGJN Handles the LGJN gate functions

DFHLGLD Handles the LGLD gate functions

DFHLGPA Handles the LGPA gate functions

DFHLGSC Handles the STST gate functions

DFHLGSSI Handles the batch QSAM access to CICS(R) logstreams via the DD
SUBSYS=(LOGR...) SSI interface

DFHLGST Handles the LGST gate functions

DFHLGTRI A routine to format trace points

DFHL2DM Initializes the 'L2' part of the Log Manager Domain

DFHL2TRI A routine to format the 'L2' trace points

DFHL2LB Handles the LGLB gate functions

DFHL2SR Handles the LGSR gate functions

DFHL2WF Handles the LGWF gate functions

DFHL2CC Handles the LGCC gate functions

Chapter 87. Log manager domain (LG) 1315

Module Function

DFHL2CB Handles the LGCB gate functions

DFHL2BA Handles the LGBA gate functions

DFHL2MV Handles the LGMV gate functions

DFHL2BL1 Initializes the Block class data

DFHL2BL2 Retrieves the current block on the CICS system log

DFHL2BS1 Initializes the BrowseableStream class data

DFHL2BS2 Creates a BrowseableStream class instance

DFHL2BS33 Destroys a BrowseableStream class instance

DFHL2BS4 Destroys all BrowseableStream class instance

DFHL2CH1 Initializes the Chain class data

DFHL2CH2 Creates a Chain class instance

DFHL2CH3 Handles start chain browse

DFHL2CH4 Handles chain browse get next

DFHL2CH5 Handles end chain browse

DFHL2CHA Handles start browse all

DFHL2CHN Handles browse all get next

DFHL2CHL Handles end browse all

DFHL2CHH Handles start browse chains

DFHL2CHG Handles browse chains get next

DFHL2CHI Handles end browse chains

DFHL2CHR Handles chain restore

DFHL2CHS handles set history point

DFHL2CHE Handles delete at history point

DFHL2CHM Handles move chain

DFHL2HS2 Handles the log stream connect request to the MVS logger

DFHL2HS3 Handles the log stream disconnect request to the MVS logger

DFHL2HS4 Handles the log stream delete all request to the MVS logger

DFHL2HS5 Handles the log stream delete history request to the MVS logger

DFHL2HS6 Handles the log stream start browse block request to the MVS logger

DFHL2HS7 Handles the log stream start browse cursor request to the MVS logger

DFHL2HS8 Handles the log stream read browse cursor request to the MVS logger

DFHL2HS9 Handles the log stream end browse cursor request to the MVS logger

DFHL2HSG Handles the log stream read browse block request to the MVS logger

DFHL2HSJ Handles the log stream end browse block request to the MVS logger

DFHL2OFI Initializes the ObjectFactory instance data

DFHL2SL1 Initializes the SystemLog class data

DFHL2SLN Handles system log log stream open request

DFHL2SLE Handles system log log stream failure notification

DFHL2SR1 Initializes the Stream class data

DFHL2SR2 Creates a Stream class instance

DFHL2SR3 Destroys a Stream class instance

1316 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHL2SR4 Collect and resets Stream statistics

DFHL2SR5 Destroys all Stream class instances

DFHL2VPX Initializes the VariablePool class data

Exits

Two global user exit points are provided in this domain.

XLGSTRM
This exit is called before defining a new log stream to the MVS system
logger

XRSINDI
This exit is called when a Journal or Journalmodel is installed or discarded.
It is also called when CICS connects or disconnects an MVS system logger
logstream.

See the CICS Customization Guide for further details.

Chapter 87. Log manager domain (LG) 1317

1318 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 88. Lock Manager Domain (LM)

The lock manager domain provides locking and associated queuing facilities for
CICS resources. Before using these facilities, a resource must add a named lock for
itself. This lock can then be requested as either exclusive or shared. If an exclusive
lock is obtained, no other task may obtain the lock with that name; if a shared lock
is obtained, multiple tasks may obtain that lock, and the exclusive lock with that
name cannot be acquired.

Lock Manager domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the LM domain.

LMLM gate, ADD_LOCK function
The ADD_LOCK function of the LMLM gate is used to add a named lock to LM's
state.

Input Parameters
LOCK_NAME

is an 8-character name.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 LOOP

LOCK_TOKEN
is the 8-character token that uniquely identifies the lock, returned to the caller
on the this call.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LMLM gate, DELETE_LOCK function
The DELETE_LOCK function of the LMLM gate is used to delete the named lock
from LM's state.

Input Parameters
LOCK_TOKEN

is the token returned to the caller on the ADD_LOCK call.
OWNER_TOKEN

Optional Parameter

 defines the owner of the lock.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

© Copyright IBM Corp. 1997, 2011 1319

The following values are returned when RESPONSE is EXCEPTION:
 LOCK_TOKEN_NOT_FOUND
 NOT_LOCK_OWNER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LMLM gate, LOCK function
The LOCK function of the LMLM gate is used to request the lock.

Input Parameters
LOCK_TOKEN

is the token returned to the caller on the ADD_LOCK call.
MODE

defines the type of lock.

 Values for the parameter are:
 EXCLUSIVE
 SHARED

WAIT
Optional Parameter

 indicates whether a task is suspended (CICS) or a LOCK_BUSY is to be
returned as a reason output parameter (NO).

Values for the parameter are:
 CICS
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_LOCK_OWNER
 LOCK_BUSY
 LOCK_TOKEN_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LMLM gate, TEST_LOCK_OWNER function
The TEST_LOCK_OWNER function of the LMLM gate is used to test the owner of
a lock for self.

Input Parameters
LOCK_TOKEN

is the token returned to the caller on the ADD_LOCK call.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

1320 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 LOCK_TOKEN_NOT_FOUND
 NOT_LOCK_OWNER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LMLM gate, UNLOCK function
The UNLOCK function of the LMLM gate is used to release the lock.

Input Parameters
LOCK_TOKEN

is the token returned to the caller on the ADD_LOCK call.
MODE

defines the type of lock.

 Values for the parameter are:
 EXCLUSIVE
 SHARED

OWNER_TOKEN
Optional Parameter

 defines the owner of the lock.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LOCK_TOKEN_NOT_FOUND
 NOT_LOCK_OWNER
 SHARED_LOCK_FREE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Lock manager domain's generic gates

Table 56 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 56. Lock manager domain's generic gates

Gate Trace Functions Format

DMDM LM 0001
LM 0002

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

DSNT LM 0005
LM 0006

DISPATCHER_NOTIFY DSNT

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956

Chapter 88. Lock Manager Domain (LM) 1321

“Dispatcher domain's generic formats” on page 1031

Modules
 Module Function

DFHLMDM Handles the following requests:
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHLMDS Handles transaction manager domain MXT_CHANGE_NOTIFY requests.

DFHLMDUF Formats the LM domain control blocks

DFHLMLM Handles the following requests:
 ADD_LOCK
 DELETE_LOCK
 LOCK
 TEST_LOCK_OWNER
 UNLOCK

DFHLMTRI Interprets LM domain trace entries

1322 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 89. Message Domain (ME)

The message domain acts as a repository for CICS messages, and handles the
sending of messages to transient data destinations or to the console. It also
provides an interface for returning the text of a message to the caller.

Message Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the ME domain.

MEBM gate, INQUIRE_MESSAGE_DEFINITION function
The INQUIRE_MESSAGE_DEFINITION function of the MEBM gate is used to
return the action and severity codes of a message.

Input Parameters
MESSAGE_NUMBER

is the numeric message identifier.
MESSAGE_TABLE

is a table containing all the message definitions for the message domain.
COMPONENT_ID

Optional Parameter

 is the component identifier for the message.

Output Parameters
REASON

The values for the parameter are:
 MESSAGE_CANNOT_BE_FOUND

ACTION_CODE
is the action code for the message.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SEVERITY_CODE
is the severity of the message.

MEBM gate, INQUIRE_MESSAGE_LENGTH function
The INQUIRE_MESSAGE_LENGTH function of the MEBM gate is used to find the
length of the message in order to obtain the appropriate sized buffer to retrieve the
message.

Input Parameters
MESSAGE_NUMBER

is the numeric message identifier.
MESSAGE_TABLE

is a table containing all the message definitions for the message domain.
COMPONENT_ID

Optional Parameter

 is the component identifier for the message.
INSERTn

Optional Parameter

© Copyright IBM Corp. 1997, 2011 1323

A user-supplied insert, if required by the message definition.

Output Parameters
REASON

The values for the parameter are:
 MESSAGE_CANNOT_BE_FOUND

MESSAGE_LENGTH
is the length of the message being inquired on.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MEBM gate, RETRIEVE_MESSAGE function
The RETRIEVE_MESSAGE function of the MEBM gate is used to retrieve the
message text and build the message into a buffer.

Input Parameters
MESSAGE_BUFFER

is the buffer to receive the message text.
MESSAGE_NUMBER

is the numeric message identifier.
MESSAGE_TABLE

is a table containing all the message definitions for the message domain.
COMPONENT_ID

Optional Parameter

 is the component identifier for the message.
INSERTn

Optional Parameter

 A user-supplied insert, if required by the message definition.
MODULE_NAME

Optional Parameter

 is the name of the module in error, supplied as data for the symptom string.
MODULE_PTF

Optional Parameter

 is the PTF level of the module in error, supplied as data for the symptom
string.

SUPPRESS_SRBUILD
Optional Parameter

 indicates whether or not a symptom record build is suppressed.

Values for the parameter are:
 NO
 YES

SYMPTOM_BUFFER
Optional Parameter

 is the buffer to receive a symptom string for the message.
UPPERCASE

Optional Parameter

 determines whether or not messages should be converted to uppercase.

Values for the parameter are:
 NO
 YES

1324 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 MESSAGE_CANNOT_BE_PRODUCED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MEME gate, CONVERSE function
The CONVERSE function of the MEME gate is used to send a message and receive
a reply.

Input Parameters
MESSAGE_NUMBER

is the numeric message identifier.
REPLY_FORMAT

indicates the format of the reply.

 Values for the parameter are:
 TEXT
 TEXT_OR_VALUE
 VALUE

COMPONENT_ID
Optional Parameter

 is the component identifier for the message.
INSERTn

Optional Parameter

 A user-supplied insert, if required by the message definition.
NETNAME

Optional Parameter

 is the network name to be used to override the netname obtained by the
message domain.

PRODUCT
Optional Parameter

 is an optional product identifier.
REPLY_BUFFER

Optional Parameter

 is the buffer into which the text reply is to be returned.
TERMID

Optional Parameter

 is the terminal identifier to be used to override the termid obtained by the
message domain.

TRANID
Optional Parameter

 is the transaction identifier to be used to override the tranid obtained by the
message domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE

Chapter 89. Message Domain (ME) 1325

INVALID_MODULE_PTR
 INVALID_TEMPLATE
 MAX_REPLIES_EXCEEDED

The following values are returned when RESPONSE is EXCEPTION:
 REPLY_BUFFER_TOO_SMALL

The following values are returned when RESPONSE is INVALID:
 INVALID_COMPONENT_TYPE
 INVALID_DESTINATION
 INVALID_FUNCTION
 INVALID_INSERT
 INVALID_REPLY_BUFFER
 MESSAGE_NOT_FOUND
 MESSAGE_SET_NOT_FOUND
 MISSING_INSERT
 OPT_INSERT_NOT_FOUND
 REPLY_BUFFER_REQUIRED
 REPLY_INDEX_REQUIRED
 RETRY_MSG_LOCATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REPLY_INDEX
Optional Parameter

 is the number of the template reply option that matches the user's reply text.

MEME gate, INQUIRE_MESSAGE function
The INQUIRE_MESSAGE function of the MEME gate is used to find the system
default language as a one-character CICS language suffix and a three-character
IBM standard national language code.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

DEFAULT_LANGUAGE_CODE
is the three-character code for the default language.

DEFAULT_LANGUAGE_SUFFIX
is the one-character suffix for the default language.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MEME gate, INQUIRE_MESSAGE_LENGTH function
The INQUIRE_MESSAGE_LENGTH function of the MEME gate is used to find the
length of the message in order to obtain the appropriate size buffer to retrieve the
message.

Input Parameters
MESSAGE_NUMBER

is the numeric message identifier.

1326 CICS TS for z/OS 4.1: Diagnosis Reference

COMPONENT_ID
Optional Parameter

 is the component identifier for the message.
INSERTn

Optional Parameter

 A user-supplied insert, if required by the message definition.
LANGUAGE

Optional Parameter

 is an optional language code.
MSGTABLE

Optional Parameter

 indicates that the feature message table is to be used.
NETNAME

Optional Parameter

 is the network name to be used to override the netname obtained by the
message domain.

PRODUCT
Optional Parameter

 is an optional product identifier.
TERMID

Optional Parameter

 is the terminal identifier to be used to override the termid obtained by the
message domain.

TRANID
Optional Parameter

 is the transaction identifier to be used to override the tranid obtained by the
message domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 INVALID_MODULE_PTR
 INVALID_TEMPLATE

The following values are returned when RESPONSE is INVALID:
 INVALID_COMPONENT_TYPE
 INVALID_FUNCTION
 INVALID_INSERT
 MESSAGE_NOT_FOUND
 MESSAGE_SET_NOT_FOUND
 MISSING_INSERT
 OPT_INSERT_NOT_FOUND
 RETRY_MSG_LOCATE

MESSAGE_LENGTH
is the length of the message being inquired on.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 89. Message Domain (ME) 1327

MEME gate, RETRIEVE_MESSAGE function
The RETRIEVE_MESSAGE function of the MEME gate is used to retrieve a
message text.

Input Parameters
MESSAGE_BUFFER

is the buffer to receive the message text.
MESSAGE_NUMBER

is the numeric message identifier.
COMPONENT_ID

Optional Parameter

 is the component identifier for the message.
INSERTn

Optional Parameter

 A user-supplied insert, if required by the message definition.
LANGUAGE

Optional Parameter

 is an optional language code.
MSGTABLE

Optional Parameter

 indicates that the feature message table is to be used.
NETNAME

Optional Parameter

 is the network name to be used to override the netname obtained by the
message domain.

PRODUCT
Optional Parameter

 is an optional product identifier.
SUPPRESS_DUMP

Optional Parameter

 Indicates whether dumps have been suppressed.

Values for the parameter are:
 NO
 YES

TERMID
Optional Parameter

 is the terminal identifier to be used to override the termid obtained by the
message domain.

TRANID
Optional Parameter

 is the transaction identifier to be used to override the tranid obtained by the
message domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 INVALID_MODULE_PTR
 INVALID_TEMPLATE

1328 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 MSG_BUFFER_TOO_SMALL
 REPLY_BUFFER_TOO_SMALL

The following values are returned when RESPONSE is INVALID:
 INVALID_COMPONENT_TYPE
 INVALID_FUNCTION
 INVALID_INSERT
 INVALID_MESSAGE_BUFFER
 MESSAGE_NOT_FOUND
 MESSAGE_SET_NOT_FOUND
 MISSING_INSERT
 OPT_INSERT_NOT_FOUND
 RETRY_MSG_LOCATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MEME gate, SEND_MESSAGE function
The SEND_MESSAGE function of the MEME gate is used to send a message to
one or more destinations.

Input Parameters
MESSAGE_NUMBER

is the numeric message identifier.
COMPONENT_ID

Optional Parameter

 is the component identifier for the message.
IGNORE_EXCEPTIONS

Optional Parameter

 specifies whether the caller requests that a failure sending a message to a
transient data destination is to be ignored.

INSERTn
Optional Parameter

 A user-supplied insert, if required by the message definition.
MSGTABLE

Optional Parameter

 indicates that the feature message table is to be used.
NETNAME

Optional Parameter

 is the network name to be used to override the netname obtained by the
message domain.

NOREROUTE
Optional Parameter

 Indicates that the message cannot be rerouted.
PRODUCT

Optional Parameter

 is an optional product identifier.
RESTART_CICS

Optional Parameter

 specifies whether the caller requests CICS to be restarted.

Chapter 89. Message Domain (ME) 1329

Values for the parameter are:
 NO
 YES

SYSTEM_DUMPCODE
Optional Parameter

 is the dump code to be used when the message domain requests a dump on
behalf of its caller.

TDQUEUES
Optional Parameter

 A block containing the names of the message destinations.
TERMID

Optional Parameter

 is the terminal identifier to be used to override the terminal identifier obtained
by the message domain.

TERMINATE_CICS
Optional Parameter

 specifies whether the caller requests CICS to be terminated.

Values for the parameter are:
 NO
 YES

TRANID
Optional Parameter

 is the transaction identifier to be used to override the transaction identifier
obtained by the message domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE
 INVALID_MODULE_PTR
 INVALID_TEMPLATE
 NO_STORAGE_FOR_WTO

The following values are returned when RESPONSE is INVALID:
 INVALID_COMPONENT_TYPE
 INVALID_DBCS_FORMAT
 INVALID_DESTINATION
 INVALID_FUNCTION
 INVALID_INSERT
 INVALID_MEFO_RESPONSE
 MESSAGE_NOT_FOUND
 MESSAGE_SET_NOT_FOUND
 MISSING_INSERT
 OPT_INSERT_NOT_FOUND
 RETRY_MSG_LOCATE

The following values are returned when RESPONSE is PURGED:
 TDQ_PURGED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RESP2
Optional Parameter

1330 CICS TS for z/OS 4.1: Diagnosis Reference

Second response code.
SEVERITY

Optional Parameter

 The message severity.

MEME gate, VALIDATE_LANGUAGE_CODE function
The VALIDATE_LANGUAGE_CODE function of the MEME gate is used to
determine whether a specific three-letter IBM standard national language code is
valid. If it is valid, this function returns the equivalent one-character CICS
language suffix.

Input Parameters
LANGUAGE_CODE

is the three-character national language code to be validated. The IBM standard
three-character codes, and their corresponding one-character CICS language
suffices, are listed in “Languages and their codes.”

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 LANGUAGE_CODE_INVALID
 LANGUAGE_NOT_SUPPORTED

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LANGUAGE_SUFFIX
Optional Parameter

 is the one-character CICS language suffix that corresponds to the input
LANGUAGE_CODE.

Languages and their codes

 NATLANG code NLS code Language

A ENG Alternative English
Q ARA Arabic
1 BEL Byelorussian
L BGR Bulgarian
B PTB Brazilian Portuguese
T DBCS CHT Traditional Chinese
C DBCS CHS Simplified Chinese
2 CSY Czech
D DAN Danish
G DEU German
O ELL Greek
S ESP Spanish
W FIN Finnish
F FRA French
X HEB Hebrew

Chapter 89. Message Domain (ME) 1331

NATLANG code NLS code Language

3 HRV Croatian
4 HUN Hungarian
J ISL Icelandic
I ITA Italian
H DBCS KOR Korean
M MKD Macedonian
9 NLD Dutch
N NOR Norwegian
5 PLK Polish
P PTG Portuguese
6 ROM Romanian
R RUS Russian
Y SHC Serbo-Croatian (Cyrillic)
7 SHL Serbo-Croatian (Latin)
V SVE Swedish
Z THA Thai
8 TRK Turkish
U UKR Ukrainian

Notes:

1. DBCS denotes Double-Byte Character Set languages.
2. Code letter A means alternative English to distinguish your edited English

message tables from the default US English message tables supplied by CICS.
The default US English tables are designated by the language code letter E.

3. The NATLANG code for the selected language is used as the suffix of your
edited message data sets that you can create using the message editing utility.
For more information about the message editing utility, see the CICS Operations
and Utilities Guide.

MEME gate, VALIDATE_LANGUAGE_SUFFIX function
The VALIDATE_LANGUAGE_SUFFIX function of the MEME gate is used to
determine whether a specific one-character CICS language suffix is valid. If it is
valid, this function returns the equivalent three-character IBM standard national
language code.

Input Parameters
LANGUAGE_SUFFIX

is the one-character CICS language code to be validated. The IBM standard
three-character codes, and their corresponding one-character CICS language
suffices, are listed in “Languages and their codes” on page 1331.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

The following values are returned when RESPONSE is EXCEPTION:
 LANGUAGE_NOT_SUPPORTED
 LANGUAGE_SUFFIX_INVALID

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

1332 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LANGUAGE_CODE
Optional Parameter

 is the three-character CICS language suffix that corresponds to the input
LANGUAGE_SUFFIX.

MESR gate, SET_MESSAGE_OPTIONS function
The SET_MESSAGE_OPTIONS function of the MESR gate is used to set the
various message options specified by the system initialization parameters
MSGCASE, MSGLVL, and NATLANG.

Input Parameters
LANGUAGES_USED

Optional Parameter

 is a list of the languages used in the system.
MESSAGE_CASE

Optional Parameter

 is either MIXED for mixed-case messages, or UPPER for messages to be folded
to uppercase.

Values for the parameter are:
 MIXED
 UPPER

MESSAGE_LEVEL
Optional Parameter

 can be 0 or 1. 0 means that information messages do not appear (are
suppressed) at the console.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Message domain's generic gates

Table 57 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 57. Message domain's generic gates

Gate Trace Functions Format

DMDM ME 0101
ME 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

Chapter 89. Message Domain (ME) 1333

In preinitialization processing, the message domain sets the following message
options:
v The national languages to be supported during this CICS run
v The message level for initialization messages
v The message case.

For a cold start, the information comes from the system initialization parameters;
for any other type of start, the information comes from the local catalog, but is
then modified by any relevant system initialization parameters.

The message domain does no quiesce processing or termination processing.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956

Modules
 Module Function

DFHCMAC Displays messages and codes online for the CMAC transaction

DFHMEBM Is executed in an offline environment, and is provided for use by batch
utility programs

DFHMEBU Builds a message into a buffer, and also builds a symptom string when
required

DFHMEDM Performs the necessary domain manager functions; that is, preinitialize,
initialize, quiesce, and terminate for the message domain

DFHMEDUF ME domain offline dump formatting routine

DFHMEFO Formats a long message into lines of specified length

DFHMEIN Provides all the data required to build a message

DFHMEME Handles the following functions:
SEND_MESSAGE

sends a message to any individual or combination of
MVS/MCS consoles, or CICS TD queues.

CONVERSE
sends a message to any individual or combination of
MVS/MCS consoles and receives a reply from one of them.

RETRIEVE_MESSAGE
builds a message and places it in a buffer passed by the caller.

INQUIRE_MESSAGE_LENGTH
returns the length of a terminal end user message.

INQUIRE_MESSAGE
returns the requested data, held by the ME domain (for
example, Default_Language).

VALIDATE_LANGUAGE_CODE
checks whether a three-character language code is valid.

VALIDATE_LANGUAGE_SUFFIX
checks whether a one-character language suffix is valid.

DFHMESR Collects the system initialization parameter overrides for a particular
CICS start

DFHMETRI ME domain offline trace interpretation routine

DFHMEWS Writes a symptom record containing a symptom string to SYS1.LOGREC
by using the MVS SYMRBLD macro

DFHMEWT Provides support to execute the MVS WTOR SVC

1334 CICS TS for z/OS 4.1: Diagnosis Reference

Exits
There is one global user exit point in the message domain: XMEOUT. See the CICS
Customization Guide for further details.

Chapter 89. Message Domain (ME) 1335

1336 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 90. Markup language domain (ML)

The Markup language domain (ML) processes markup languages.

Markup language domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the ML domain.

MLPC gate, PARSE_CONTAINER function
Parse the contents of a container.

Input parameters
CCSID

The fullword binary CCSID value. This value is used for header value input
and output parameters.

CHANNEL_TOKEN
A token referencing the channel.

CONTAINER_NAME
The 16-character container name.

Output parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE
 PARSE_FAILED

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED

The following values are returned when RESPONSE is EXCEPTION:
 NOT_WELL_FORMED
 RESOURCE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLTF gate, PARSE_XSDBIND_FILE function
Parse the XML binding file.

Input parameters
XSDBIND_BLOCK

A block that contains the XML binding.
XMLSCHEMA

Optional parameter

 A buffer for the XML schema.

© Copyright IBM Corp. 1997, 2011 1337

|

|

|

|
|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|

XMLTRANSFORM
The 32-byte name of the XMLTRANSFORM resource.

Output parameters
XSDBIND_TOKEN

A token that represents the XML binding, which contains the metadata for
transforming the XML to and from application data.

CCSID
Optional parameter

 The fullword binary CCSID value.
MAPPINGLEVEL

Optional parameter

 The 8-byte character string of the mapping level that was used to generate the
XML binding.

MAPPINGVNUM
Optional parameter

 The fullword binary value of the version number for the mapping level that
was used when generating the XML binding.

MAPPINGRNUM
The fullword binary value of the release number for the mapping level that
was used when generating the XML binding.

MINRUNLEVEL
An 8-byte character string of the minimum runtime level that is required to
install the XMLTRANSFORM resource in CICS.

MINRUNVNUM
The fullword binary value of the version number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

MINRUNRNUM
The fullword binary value of the release number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 XSDBIND_BAD_RUN_LVL
 XSDBIND_CONVERSION_ERROR
 XSDBIND_INPUT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLTF gate, QUERY_XML function
Query a fragment of XML.

Input parameters
CHANNEL_NAME

The 16-byte name of the current channel.
CHANNEL_TOKEN

A token that represents the current channel.

1338 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

ELEMENT_NAME
Optional parameter

 A buffer for the XML element name.
ELEMENT_NAMESPACE

Optional parameter

 A buffer for the XML element namespace.
NAMESPACE_CONTAINER

Optional parameter

 A list of XML namespace prefix declarations that are processed as in scope for
the XML.

TYPE_NAME
Optional parameter

 A buffer for the name of the XML global data type.
TYPE_NAMESPACE

Optional parameter

 A buffer for the namespace of the XML global data type.
XML_CONTAINER

The 16-byte name of the container that has the XML that CICS will transform
into application data.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND_XML
 CONTAINER_NOT_FOUND_NS
 CONTAINER_NOT_TEXT_MODE
 ELEMENT_NAME_BUFF_OVERFLOW
 ELEMENT_NMSP_BUFF_OVERFLOW
 EMPTY_XML_CONTAINER
 EMPTY_XML_DATA
 TYPE_NAME_BUFF_OVERVIEW
 TYPE_NMSP_BUFF_OVERVIEW
 XML_CONVERSION_ERROR
 XML_INPUT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLTF gate, RELEASE_XSDBIND function
Release the XML binding token after the XML transformation or query has
completed.

Input parameters
XSDBIND_TOKEN

A token that represents the XML binding, which contains the metadata for
transforming the XML to and from application data.

Chapter 90. Markup language domain (ML) 1339

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

Output parameters

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 XSDBIND_TOKEN_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLTF gate, TRANSFORM_STRUCTURE_TO_XML function
Transform application data to XML.

Input parameters
CHANNEL_NAME

The 16-byte name of the current channel.
CHANNEL_TOKEN

A token that represents the current channel.
DATA_CONTAINER

The 16-byte name of the container in which CICS puts the application data.
ELEMENT_NAME

Optional parameter

 A buffer for the XML element name.
ELEMENT_NAMESPACE

Optional parameter

 A buffer for the XML element namespace.
TYPE_NAME

Optional parameter

 A buffer for the name of the XML global data type.
TYPE_NAMESPACE

Optional parameter

 A buffer for the namespace of the XML global data type.
VALIDATE

Optional parameter

 The parameter is set to Yes or No depending on whether validation is required.
XML_CONTAINER

The 16-byte name of the container that has the XML that CICS will transform
into application data.

XMLSCHEMA
Optional parameter

 A buffer for the XML schema.
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.
XSDBIND_TOKEN

A token that represents the XML binding, which contains the metadata for
transforming the XML to and from application data.

1340 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|
|
|
|
|

|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_DATATYPE_ERR
 CONTAINER_NOT_BIT_MODE
 CONTAINER_NOT_FOUND_DATA
 CONTAINER_NOT_FOUND_OTHER
 DATA_CONVERSION_ERROR
 DATA_INTPUT_ERROR
 ELEMENT_NOT_SUPPORTED
 METADATA_NOT_FOUND
 TYPE_NOT_SUPPORTED
 VALIDATION_FAILURE
 VENDOR_CONVERTER_FAILURE
 XSDBIND_TOKEN_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLTF gate, TRANSFORM_XML_TO_STRUCTURE function
Transform XML to application data.

Input parameters
CHANNEL_NAME

The 16-byte name of the current channel.
CHANNEL_TOKEN

A token that represents the current channel.
DATA_CONTAINER

The 16-byte name of the container in which CICS puts the application data.
ELEMENT_NAME

Optional parameter

 A buffer for the XML element name.
ELEMENT_NAMESPACE

Optional parameter

 A buffer for the XML element namespace.
TYPE_NAME

Optional parameter

 A buffer for the name of the XML global data type.
TYPE_NAMESPACE

Optional parameter

 A buffer for the namespace of the XML global data type.
TYPE_NAME_OVERRIDE

Optional parameter

 A block that sets the xsi:type that is assumed when parsing the XML.

Chapter 90. Markup language domain (ML) 1341

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

TYPE_NAMESPACE_OVERRIDE
Optional parameter

 A block that sets the xsi:type that is assumed when parsing the XML.
VALIDATE

Optional parameter

 The parameter is set to Yes or No depending on whether validation is required.
XML_CONTAINER

The 16-byte name of the container that has the XML that CICS will transform
into application data.

XMLSCHEMA
Optional parameter

 A buffer for the XML schema.
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.
XSDBIND_TOKEN

A token that represents the XML binding, which contains the metadata for
transforming the XML to and from application data.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_DATATYPE_ERR
 CONTAINER_NOT_FOUND_XML
 CONTAINER_NOT_FOUND_NS
 CONTAINER_NOT_TEXT_MODE
 CONTAINER_DATATYPE_ERR
 DATA_CONVERSION_ERROR
 DATA_INTPUT_ERROR
 ELEMENT_NAME_BUFF_OVERFLOW
 ELEMENT_NMSP_BUFF_OVERFLOW
 ELEMENT_NOT_SUPPORTED
 EMPTY_XML_CONTAINER
 EMPTY_XML_DATA
 METADATA_NOT_FOUND
 TYPE_NAME_BUFF_OVERVIEW
 TYPE_NMSP_BUFF_OVERVIEW
 TYPE_NOT_SUPPORTED
 VALIDATION_FAILURE
 VENDOR_CONVERTER_FAILURE
 XML_CONVERSION_ERROR
 XML_INPUT_ERROR
 XSDBIND_TOKEN_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLXT gate, INSTALL_XMLTRANSFORM function
Install an XMLTRANSFORM resource.

1342 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

Input parameters
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.
XSDBIND_CONTENT

A block for the content of the XML binding.
XSDBIND_FILENAME

A buffer for the name of the XML binding file.
RESOURCE_SIGNATURE

The resource signature of the XMLTRANSFORM resource.
BUNDLE

The name of the BUNDLE resource that created the XMLTRANSFORM
resource. Either this parameter or the ATOMSERVICE parameter is used.

ATOMSERVICE
The name of the ATOMSERVICE resource that created the XMLTRANSFORM
resource. Either this parameter or the BUNDLE parameter is used.

Output parameters
CCSID

Optional parameter

 The fullword binary CCSID value.
MAPPINGLEVEL

Optional parameter

 The 8-byte character string of the mapping level that was used to generate the
XML binding.

MAPPINGVNUM
Optional parameter

 The fullword binary value of the version number for the mapping level that
was used when generating the XML binding.

MAPPINGRNUM
The fullword binary value of the release number for the mapping level that
was used when generating the XML binding.

MINRUNLEVEL
An 8-byte character string of the minimum runtime level that is required to
install the XMLTRANSFORM resource in CICS.

MINRUNVNUM
The fullword binary value of the version number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

MINRUNRNUM
The fullword binary value of the release number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 INSTALL_FAILED
 INSTALLED_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 90. Markup language domain (ML) 1343

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

MLXT gate, DISCARD_XMLTRANSFORM function
Discard an XMLTRANSFORM resource.

Input parameters
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 XMLTRANSFORM_NOT_FOUND
 INVALID_STATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLXT gate, INQUIRE_XMLTRANSFORM function
Inquire about an XMLTRANSFORM resource.

Input parameters
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.
RESOURCE_SIGNATURE

Optional parameter

 The resource signature of the XMLTRANSFORM resource.
XMLSCHEMA_FILENAME

Optional parameter

 A buffer for the name of the XML schema file.
XSDBIND_FILENAME

Optional parameter

 A buffer for the name of the XML binding file.

Output parameters
ATOMSERVICE

Optional parameter

 The name of the ATOMSERVICE resource that is associated with the
XMLTRANSFORM resource.

BUNDLE
Optional parameter

 The name of the BUNDLE resource that created the XMLTRANSFORM
resource.

CCSID
Optional parameter

 The fullword binary CCSID value.
MAPPINGLEVEL

Optional parameter

1344 CICS TS for z/OS 4.1: Diagnosis Reference

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

The 8-byte character string of the mapping level that was used to generate the
XML binding.

MAPPINGVNUM
Optional parameter

 The fullword binary value of the version number for the mapping level that
was used when generating the XML binding.

MAPPINGRNUM
The fullword binary value of the release number for the mapping level that
was used when generating the XML binding.

MINRUNLEVEL
An 8-byte character string of the minimum runtime level that is required to
install the XMLTRANSFORM resource in CICS.

MINRUNVNUM
The fullword binary value of the version number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

MINRUNRNUM
The fullword binary value of the release number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

STATUS
Optional parameter

 The status of the XMLTRANSFORM resource.
TOTAL_USE_COUNT

The number of times the XMLTRANSFORM resource has been used by CICS.
VALIDATION

The status of validation for the XMLTRANSFORM resource.
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 XMLTRANSFORM_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLXT gate, SET_XMLTRANSFORM function
Set the attributes on the XMLTRANSFORM resource.

Input parameters
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.
RESOURCE_SIGNATURE

Optional parameter

 The resource signature of the XMLTRANSFORM resource.
STATUS

Optional parameter

 The status of the XMLTRANSFORM resource, either ENABLED or DISABLED.
VALIDATION

Optional parameter

 The status of validation for the XMLTRANSFORM resource.

Chapter 90. Markup language domain (ML) 1345

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|

|

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_STATE
 XMLTRANSFORM_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLXT gate, START_BROWSE_XMLTRANSFORM function
Start the browse session for XMLTRANSFORM resources.

Input parameters

There are no input parameters.

Output parameters

BROWSE_TOKEN
A token to browse XMLTRANSFORM resources.

MLXT gate, GET_NEXT_XMLTRANSFORM function
Get the next XMLTRANSFORM resource.

Input parameters
BROWSE_TOKEN

The browse token that was returned by the
START_BROWSE_XMLTRANSFORM function.

RESET
Optional parameter

 A parameter that indicates whether the statistics for the XMLTRANSFORM are
to be reset.

RESOURCE_SIGNATURE
Optional parameter

 The resource signature of the XMLTRANSFORM resource.
XMLSCHEMA_FILENAME

Optional parameter

 A buffer for the name of the XML schema file.
XSDBIND_FILENAME

Optional parameter

 A buffer for the name of the XML binding file.

Output parameters
XMLTRANSFORM

The 32-byte name of the XMLTRANSFORM resource.
ATOMSERVICE

Optional parameter

1346 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

The name of the ATOMSERVICE resource that is associated with the
XMLTRANSFORM resource.

BUNDLE
Optional parameter

 The name of the BUNDLE resource that created the XMLTRANSFORM
resource.

CCSID
Optional parameter

 The fullword binary CCSID value.
MAPPINGLEVEL

Optional parameter

 The 8-byte character string of the mapping level that was used to generate the
XML binding.

MAPPINGVNUM
Optional parameter

 The fullword binary value of the version number for the mapping level that
was used when generating the XML binding.

MAPPINGRNUM
The fullword binary value of the release number for the mapping level that
was used when generating the XML binding.

MINRUNLEVEL
An 8-byte character string of the minimum runtime level that is required to
install the XMLTRANSFORM resource in CICS.

MINRUNVNUM
The fullword binary value of the version number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

MINRUNRNUM
The fullword binary value of the release number for the minimum runtime
level that is required to install the XMLTRANSFORM resource in CICS.

STATUS
Optional parameter

 The status of the XMLTRANSFORM resource.
TOTAL_USE_COUNT

The number of times the XMLTRANSFORM resource has been used by CICS.
VALIDATION

The status of validation for the XMLTRANSFORM resource.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MLXT gate, END_BROWSE_XMLTRANSFORM function
End the browse session for XMLTRANSFORM resources.

Input parameters
BROWSE_TOKEN

The browse token that was returned by the
START_BROWSE_XMLTRANSFORM function.

Chapter 90. Markup language domain (ML) 1347

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

Output parameters

REASON
The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHMLDM Domain initialization and termination program

DFHMLDUF ML domain dump formatting program

DFHMLPC ML domain parse container program

DFHMLTF Transformation engine for XML

DFHMLTRI ML domain trace formatting program

DFHMLXT XMLTRANSFORM resource manager

1348 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|
|

|
|
|

|
|

|||

||

||

||

||

||

||
|
|

Chapter 91. Monitoring Domain (MN)

The monitoring domain is responsible for all monitoring functions within CICS.
These functions enable the user to measure the amount of CPU, storage,
temporary-storage requests, and so on used per task, and hence charge customers
for computing services and help review the performance of a CICS system.

Monitoring Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the II domain.

MNMN gate, ACCUMULATE_RMI_TIME function
The ACCUMULATE_RMI_TIME function of the MNMN gate is used to
accumulate all of the appropriate performance class DFHRMI timing fields.

Input Parameters
TRUE_NAME

is the name of the CICS resource manager being used by your transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_MONITORING_TOKEN
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNMN gate, EXCEPTION_DATA_PUT function
The EXCEPTION_DATA_PUT function of the MNMN gate is used to produce an
exception record at the completion of an EXCEPTION condition.

Input Parameters
EXCEPTION_START

is the start time of the exception in stored clock (STCK) format.
EXCEPTION_STOP

is the stop time of the exception in STCK format.
EXCEPTION_TYPE

is the type of exception to be recorded.

 Values for the parameter are:
 BUFFER_WAIT
 STRING_WAIT
 WAIT

RESOURCE_ID
is the identifier of the resource for which the exception data is to be recorded.

RESOURCE_TYPE
is the type of resource for which the exception data is to be recorded.

© Copyright IBM Corp. 1997, 2011 1349

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_MONITORING_TOKEN
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_RESOURCE_ID_LENGTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNMN gate, INQUIRE_MONITORING_DATA function
The INQUIRE_MONITORING_DATA function of the MNMN gate is used to access
a transaction's monitoring information.

Input Parameters
DATA_BUFFER

specifies the address and length of a buffer for the monitoring data.
CURRENT_DATA_BUFFER

Optional Parameter

 specifies the address and length of a buffer for the current monitoring data.
TRANSACTION_NUMBER

Optional Parameter

 is the transaction number for which monitoring data is required.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LENGTH_ERROR
 MONITOR_DATA_UNAVAILABLE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNMN gate, INQUIRE_RESOURCE_DATA function
The INQUIRE_RESOURCE_DATA function of the MNMN gate is used to access a
transaction's resource data when transaction resource monitoring is active.

Input Parameters
RESOURCE_DATA_BUFFER

specifies the address and length of a buffer for the transaction resource data.
TRANSACTION_NUMBER

Optional Parameter

 is the transaction number for which monitoring data is required.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

1350 CICS TS for z/OS 4.1: Diagnosis Reference

ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 LENGTH_ERROR
 MONITOR_DATA_UNAVAILABLE
 RESOURCE_DATA_UNAVAILABLE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNMN gate, MONITOR function
The MONITOR function of the MNMN gate is called to process a user
event-monitoring point (EMP).

Input Parameters
POINT

is a value in the range 0 through 255 corresponding to a monitoring point
identifier defined in the monitoring control table (MCT).

DATA1
Optional Parameter

 supplies 4 bytes of data to be used in the operations performed by this user's
EMP.

DATA2
Optional Parameter

 supplies 4 bytes of data to be used in the operations performed by this user's
EMP.

ENTRYNAME
Optional Parameter

 is an ID qualifier, 1 through 8 bytes, corresponding to an entry name specified
in the MCT.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_MONITORING_TOKEN
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 DATA1_NOT_SPECIFIED
 DATA2_NOT_SPECIFIED
 INVALID_DATA1_VALUE
 INVALID_DATA2_VALUE
 POINT_NOT_DEFINED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNMN gate, PERFORMANCE_DATA_PUT function
The PERFORMANCE_DATA_PUT function of the MNMN gate is used to produce
a performance record and reset task monitoring information for a conversational
task or a syncpoint.

Chapter 91. Monitoring Domain (MN) 1351

Input Parameters
RECORD_TYPE

is the reason for the record to be output.

 Values for the parameter are:
 CONVERSE
 DELIVER
 SYNCPOINT

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_MONITORING_TOKEN
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNSR gate, INQ_MONITORING function
The INQ_MONITORING function of the MNSR gate is used to enquire on the
monitoring classes and the monitoring options.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

APPLICATION_NAMING
Indicates whether application naming support is enabled in the CICS region.

 Values for the parameter are:
 NO
 YES

COMPRESSION
Iindicates whether monitoring record compression is active.

 Values for the parameter are:
 NO
 YES

CONVERSE
Indicates if a transaction performance class record is to be produced for
conversational tasks for each pair of terminal control I/O requests.

 Values for the parameter are:
 NO
 YES

DPL_LIMIT
Specifies the maximum number of distributed program links for which you
want CICS to perform transaction resource monitoring. It can have a value in
the range 0 - 64.

EXCEPTION_STATUS
Indicates whether exception class monitoring is active.

 Values for the parameter are:
 OFF
 ON

1352 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|

FILE_LIMIT
Specifies the maximum number of files for which you want CICS to perform
transaction resource monitoring. It can have a value in the range 0 - 64.

FREQUENCY
Is the interval for which monitoring automatically produces a transaction
performance class record for any long-running transaction. Frequency times are
0, or in the range 000100 - 240000. The default frequency value is 0, which
means that frequency monitoring is inactive.

MONITORING_STATUS
Indicates whether monitoring is active.

 Values for the parameter are:
 OFF
 ON

PERFORMANCE_STATUS
Indicates whether performance class monitoring is active.

 Values for the parameter are:
 OFF
 ON

RESOURCE_STATUS
Indicates whether transaction resource class monitoring is active.

 Values for the parameter are:
 OFF
 ON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMI_STATUS
Indicates whether additional monitoring performance class data is required for
the resource managers used by your transaction.

 Values for the parameter are:
 NO
 YES

SYNCPOINT
Indicates if a transaction performance class record is to be produced when a
transaction takes an explicit or implicit sync point (unit-of-work).

 Values for the parameter are:
 NO
 YES

TIME
Indicates whether the monitoring time-stamp fields returned on the
INQUIRE_MONITORING_DATA function are to be in GMT or local time.

 Values for the parameter are:
 GMT
 LOCAL

TSQUEUE_LIMIT
Specifies the maximum number of temporary storage queues for which you
want CICS to perform transaction resource monitoring. It can have a value in
the range 0 - 64.

MNSR gate, SET_MCT_SUFFIX function
The SET_MCT_SUFFIX function of the MNSR gate is used to identify to the
monitoring domain the suffix of the monitoring control table (MCT).

Chapter 91. Monitoring Domain (MN) 1353

Input Parameters
SUFFIX

is the 2-character MCT suffix.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 MCT_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNSR gate, SET_MONITORING function
The SET_MONITORING function of the MNSR gate is used to set the monitoring
classes on or off and to change the monitoring options.

Input Parameters
COMPRESSION

Optional Parameter

 Alters the monitoring record compression setting.

Values for the parameter are:
 NO
 YES

CONVERSE
Optional Parameter

 Indicates if a transaction performance class record is to be produced for
conversational tasks for each pair of terminal control I/O requests.

Values for the parameter are:
 NO
 YES

DPL_LIMIT
Optional Parameter

 Indicates the number of distributed program links for which you want CICS to
perform transaction resource monitoring. The value must be in the range 0 -
64.

EXCEPTION_STATUS
Optional Parameter

 Indicates the exception class monitoring setting.

Values for the parameter are:
 OFF
 ON

FILE_LIMIT
Optional Parameter

 Indicates the number of files for which you want CICS to perform transaction
resource monitoring. The value must be in the range 0 - 64.

FREQUENCY
Optional Parameter

1354 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|

|
|

|
|

Is the interval for which monitoring automatically produces a transaction
performance class record for any long-running transaction. Frequency times are
0, or in the range 000100 - 240000. The default frequency value is 0, which
means that frequency monitoring is inactive.

MONITORING_STATUS
Optional Parameter

 Indicates the monitoring status setting.

Values for the parameter are:
 OFF
 ON

PERFORMANCE_STATUS
Optional Parameter

 Indicates the performance class monitoring setting.

Values for the parameter are:
 OFF
 ON

RESOURCE_STATUS
Optional Parameter

 Indicates the transaction resource class monitoring setting.

Values for the parameter are:
 OFF
 ON

SYNCPOINT
Optional Parameter

 Indicates if a transaction performance class record is to be produced when a
transaction takes an explicit or implicit sync point (unit-of-work).

Values for the parameter are:
 NO
 YES

TIME
Optional Parameter

 Indicates whether the monitoring time-stamp fields returned on the
INQUIRE_MONITORING_DATA function are to be in GMT or local time.

Values for the parameter are:
 GMT
 LOCAL

TSQUEUE_LIMIT
Optional Parameter

 Indicates the maximum number of temporary storage queues for which you
want CICS to perform transaction resource monitoring. The value must be in
the range 0 - 64.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following value is returned when RESPONSE is EXCEPTION:
 INVALID_FREQUENCY
 FILE_LIMIT_OUT_OF_RANGE

Chapter 91. Monitoring Domain (MN) 1355

|
|

|
|
|

TSQUEUE_LIMIT_OUT_OF_RANGE
 DPL_LIMIT_OUT_OF_RANGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNXM gate, TRANSACTION_INITIALISATION function
The TRANSACTION_INITIALISATION function of the MNXM gate is used to
inform the monitoring domain of a transaction attach request so that the
monitoring domain can allocate task monitoring storage.

Input Parameters
INITIAL_DISPATCH_TIME

is the time when this task was first dispatched after attach.
MXT_DELAY_TIME

is the time this task was delayed due to the maximum user task limit (MXT)
being reached.

TASK_ATTACH_TIME
is the time when this task was attached.

TCLASS_DELAY_TIME
is the time this task was delayed due to the transaction class (if any) limit for
this transaction being reached.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MNXM gate, TRANSACTION_TERMINATION function
The TRANSACTION_TERMINATION function of the MNXM gate is used to
inform the monitoring domain of a transaction detach request, so that the
monitoring domain can report on task monitoring information and then release the
storage.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_MONITORING_TOKEN
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1356 CICS TS for z/OS 4.1: Diagnosis Reference

Monitoring domain's generic gates

Table 58 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 58. Monitoring domain's generic gates

Gate Trace Functions Format

APUE MN 0601
MN 0602

SET_EXIT_STATUS APUE

DMDM MN 0101
MN 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST MN 0401
MN 0402

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

TISR MN 0801
MN 0802

NOTIFY TISR

XMNT MN 0901
MN 0902

MXT_CHANGE_NOTIFY XMNT

In initialization processing, the monitoring domain sets the initial monitoring
options:
v Monitoring control table suffix
v Initial monitoring status
v Initial exception class monitoring status
v Initial performance class monitoring status
v Initial transaction resource class monitoring status
v Initial converse option
v Initial syncpoint option
v Initial time option
v Initial frequency option
v Initial subsystem id.

For a cold start, the information comes from the system initialization parameters;
for any other type of start, the information comes from the global catalog, but is
then modified by any relevant system initialization parameters.

In addition:
v If necessary, the monitoring control table (MCT) is loaded and initialized.
v If performance class monitoring is active, CPU timing is started.
v The monitoring domain user exit gate is enabled.
v Messages are sent to the console to indicate whether monitoring is active, and

what MCT suffix (if any) is being used.

In quiesce processing, the monitoring domain waits for all transactions that it is
monitoring to terminate. Then the final data in the performance class buffer and
the transaction resource class buffer, if any, is written to SMF.

The monitoring domain does no termination processing.

Chapter 91. Monitoring Domain (MN) 1357

For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Application Manager Domain's generic formats” on page 867
 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777
 “Timer domain's generic formats” on page 1790
 “Transaction manager domain's generic formats” on page 1999

Modules
 Module Function

DFHMNDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHMNDUF Formats the MN domain control blocks in a CICS system dump

DFHMNMN Handles the following requests:
 EXCEPTION_DATA_PUT
 PERFORMANCE_DATA_PUT
 INQUIRE_MONITORING_DATA
 MONITOR
 INQUIRE_RESOURCE_DATA
 ACCUMULATE_RMI_TIME

DFHMNNT Handles the following request:
 MXT_CHANGE_NOTIFY

DFHMNSR Handles the following requests:
 SET_MCT_SUFFIX
 SET_MONITORING
 INQ_MONITORING

DFHMNST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHMNSU Handles monitoring domain subroutine requests of format MNSU:
 UPDATE_CATALOGUE
 MONITORING_DATASET_PUT
 WLM_CONNECT
 WLM_DISCONNECT
 WLM_REPORT
 WLM_NOTIFY
 PB_ALLOCATE
 PB_DELETE

DFHMNSVC Provides SMFEWTM, WLM_CONNECT, WLM_DISCONNECT,
WLM_REPORT, WLM_NOTIFY, WLM_PB_CREATE, and
WLM_PB_DELETE authorized services with GTF tracing (GTRACE)

DFHMNTI Handles the following request:
 NOTIFY

DFHMNTRI Provides a trace interpretation routine for CICS dumps and traces

DFHMNUE Provides a SET_EXIT_STATUS (services user exit) routine to enable or
disable an exit

DFHMNXM Handles the following requests:
 TRANSACTION_INITIALIZATION
 TRANSACTION_TERMINATION

1358 CICS TS for z/OS 4.1: Diagnosis Reference

Exits
There is one global user exit point in the monitoring domain: XMNOUT. See the
CICS Customization Guide for further details.

Chapter 91. Monitoring Domain (MN) 1359

1360 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 92. Enqueue Domain (NQ)

The NQ domain provides UOW based locking services. This is provided to the
local clients FC, TD and TS. It also services the ENQ and DEQ application
programming commands.

Enqueue Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the NQ domain.

NQED gate, DEQUEUE function
This functions releases an active enqueue owned by the current UOW from the
specified enqueue pool.

Input Parameters
ENQUEUE_NAME1

Optional Parameter

 A block (addr,len) identifying the name of the enqueue being released. Or
alternatively identifies the prefix of the enqueue name which when combined
with the ENQUEUE_NAME2 parameter forms the name of the enqueue being
released.

ENQUEUE_NAME2
Optional Parameter

 A block (addr,len) identifying the second half of the enqueue name.
ENQUEUE_TOKEN

Token representing the enqueue that is to be released. Slightly better
performance is achieved for callers that use the token method for releasing
their enqueues.

MAX_LIFETIME
Optional Parameter

 Indicates the maximum duration of the enqueue being released.
DISPATCHER_TASK

The enqueue will be released if it is held when a DEQUEUE_ALL request
is issued by the owning dispatcher task. This is the only value permitted
when POOL_TOKEN is not supplied on the call.

TRANSACTION
The enqueue was acquired with a duration of the last UOW of the current
transaction.

UOW
The enqueue was acquired with a duration of the current UOW. This is the
default value when not supplied on the call.

Values for the parameter are:
 DISPATCHER_TASK
 TRANSACTION
 UOW

POOL_TOKEN
Optional Parameter

 Token representing enqueue pool from which the enqueue is to be released.

© Copyright IBM Corp. 1997, 2011 1361

Output Parameters
REASON

The values for the parameter are:
 ENQUEUE_LOCKED
 ENQUEUE_NOT_OWNED
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQED gate, ENQUEUE function
This functions obtains an enqueue from the specified enqueue pool in active state.

Input Parameters
ENQUEUE_NAME1

Optional Parameter

 A block (addr,len) identifying the name of the enqueue being released. Or
alternatively identifies the prefix of the enqueue name which when combined
with the ENQUEUE_NAME2 parameter forms the name of the enqueue being
released.

ENQUEUE_NAME2
Optional Parameter

 A block (addr,len) identifying the second half of the enqueue name.
MAX_LIFETIME

Optional Parameter

 Indicates the maximum duration of the enqueue.
DISPATCHER_TASK

The enqueue will be released if it is held when a DEQUEUE_ALL request
is issued by the owning dispatcher task. This is the only value permitted
when POOL_TOKEN is not supplied on the call.

TRANSACTION
The enqueue will be acquired with a duration of the last UOW of the
current transaction.

UOW
The enqueue will be acquired with a duration of the current UOW. This is
the default value when not supplied on the call.

Values for the parameter are:
 DISPATCHER_TASK
 TRANSACTION
 UOW

POOL_TOKEN
Optional Parameter

 Token representing enqueue pool from which the enqueue is to be allocated.
PURGEABLE

Optional Parameter

 Indicates if the task is purgeable.

Values for the parameter are:
 NO
 YES

SHUNT_ACTION
Optional Parameter

1362 CICS TS for z/OS 4.1: Diagnosis Reference

Indicates the action that is to be performed if this UOW is shunted whilst it
owns the enqueue. This parameter acts as an override, if not supplied then the
default shunt action specified when the pool was created is assumed for this
enqueue request.
The shunt action is only applicable to UOW lifetime enqueues. An error is
diagnosed if this parameter is supplied on a request for a transaction lifetime
enqueue. The possible overrides are as follows:
 RELEASE

 The enqueue will be released if the UOW is shunted.
RETAIN

The enqueue will be retained if the UOW is shunted.
IGNORE

The shunt will be ignored. The enqueue will remain in the same state as it
is currently held in.

Values for the parameter are:
 IGNORE
 RELEASE
 RETAIN

WAIT
Optional Parameter

 Indicates whether the caller wants to wait if the requested enqueue is currently
held in the pool by a different UOW. The possible values are as follows:
NO The ENQUEUE_BUSY exception is returned to the caller if the enqueue is

busy.
YES

The caller will be suspended if the enqueue is busy. This is the default
value when not supplied on the call.

Note that callers specifying WAIT(NO) should still expect to suspend for the
NQ domain lock.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ENQUEUE_BUSY
 ENQUEUE_DISABLED
 ENQUEUE_LOCKED
 INVALID_PHASE
 INVALID_PHASE
 INVALID_POOL_TOKEN
 LIMIT_EXCEEDED
 SHUNT_ACTION_NOT_EXPECTED
 SYSENQ_FAILURE
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUPLICATE_REQUEST
Optional Parameter

Chapter 92. Enqueue Domain (NQ) 1363

When RESPONSE(OK) is returned, indicates whether the caller already owned
the enqueue or not:

Values for the parameter are:
 NO
 YES

ENQUEUE_TOKEN
Optional Parameter

 A token returned to represent the enqueue that has been successfully returned.
The token can then be used on the corresponding DEQUEUE request.

NQIB gate, END_BROWSE_ENQUEUE function
This functions terminates a browse of the enqueues.

Input Parameters
BROWSE_TOKEN

The token for the browse that is to be terminated.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQIB gate, GET_NEXT_ENQUEUE function
This functions returns information about the next enqueue owner or waiter in a
browse.

Input Parameters
BROWSE_TOKEN

The token for the current browse.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Values for the parameter are:
 ABEND
 LOOP
 BROWSE_END
 INVALID_BROWSE_TOKEN

ENQUEUE_NAME_OUT
A buffer into which the enqueue name is returned. The caller specifies the
address and maximum length of the data area into which the enqueue name
will be returned. If the enqueue name is too big for the buffer then the data is
truncated and an OK response is returned. The actual length of the name is
returned in enqueue_name_out_n.

ENQUEUE_NAME2_LENGTH

 The length of the second part of the enqueue name if the enqueue was
originally specified in two parts (i.e. ENQUEUE_NAME1 and
ENQUEUE_NAME2).

1364 CICS TS for z/OS 4.1: Diagnosis Reference

If the ENQUEUE_NAME2 parameter wasn't originally specified for this
enqueue then zero will be returned.

ENQUEUE_TOKEN
Token returned only when the enqueue is owned by the caller. Parameter is set
to zero for all other enqueues returned on the browse.

INTERPRETER_ADDRESS

 The address of a routine which should be called with the
INTERPRET_ENQUEUE function in order to interpret the enqueue for the
EXEC CICS INQUIRE UOWENQ command.

If a zero address is returned then the enqueue isn't to be returned by the
INQUIRE UOWENQ command.

RESOURCE_FILTER
The resource filter as specified in the RESOURCE option on the ENQUIRE
UOWENQ command.

RESOURCE_FILTER_LEN
The length of the RESOURCE_FILTER parameter.

LOCAL_UOWID
The local UOWID of the UOW which owns or is waiting for the enqueue.

NUM_LOCKED_FAILURES
Returns the number of failed requests for this enqueue whilst it is held in
retained state.

NUM_WAITERS
The number of transactions waiting for this enqueue.

POOL_NAME
The name of the pool containing the enqueue.

POOL_TOKEN
Token which identifies the pool which the enqueue owner or waiter belongs.

RELATION
Indicates whether the data being returned is associated with owner or a UOW
waiting for the enqueue.
OWNER

The data is associated with the owner of the returned enqueue.
WAITER

The data is associated with a waiter of the returned enqueue.
SHUNT_ACTION

The action that would be performed to this enqueue should its owning UOW
be shunted. The possible values are as follows:
RELEASE

The enqueue will be released.
RETAIN

The enqueue will be retained.
IGNORE

The shunt will be ignored and the enqueue will remain in the same state.
STATE

The state that the enqueue is held in.
ACTIVE

The enqueue is held in active state.
RETAINED

The enqueue is held in retained state.
TRANSACTION_LIFETIME

 For an enqueue returned with RELATION(OWNER) the number of times it is
held with TRANSACTION lifetime.

For an enqueue returned with RELATION(WAITER) a count of one indicates
that the enqueue was requested with TRANSACTION lifetime.

Chapter 92. Enqueue Domain (NQ) 1365

UOW_LIFETIME

 For an enqueue returned with RELATION(OWNER) the number of times it is
held with UOW lifetime.

For an enqueue returned with RELATION(WAITER) a count of one indicates
that the enqueue was requested with UOW lifetime.

NQIB gate, INQUIRE_ENQUEUE function
This functions returns information about a particular enqueue. Note that the pool
containing the enqueue must be passed since it is a logical extension to the
enqueue name.

Input Parameters
POOL_TOKEN

The token identifying the pool from which the enqueue being inquired about
belongs.

ENQUEUE_TOKEN
Token representing the enqueue that is being inquired upon.

ENQUEUE_NAME1
A block (addr,len) identifying the name of the enqueue be inquired upon. Or
alternatively identifies the prefix of the enqueue name which when combined
with the ENQUEUE_NAME2 parameter forms the name of the enqueue being
inquired upon.

ENQUEUE_NAME2
Optional Parameter

 A block (addr,len) identifying the second half of the enqueue name.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Values for the parameter are:
 ABEND
 LOOP
 ENQUEUE_NOT_FOUND
 INVALID_BROWSE_TOKEN

ENQUEUE_NAME_OUT

 A buffer into which the enqueue name is returned. The caller specifies the
address and maximum length of the data area into which the enqueue name
will be returned. If the enqueue name is too big for the buffer then the data is
truncated and an OK response is returned. The actual length of the name is
returned in enqueue_name_out_n.

Typically this parameter will only be of interest to callers inquiring by enqueue
token.

LOCAL_UOWID
The local UOWID of the UOW which owns or is waiting for the enqueue.

NUM_LOCKED_FAILURES
Returns the number of failed requests for this enqueue whilst it is held in
retained state.

NUM_WAITERS
The number of transactions waiting for this enqueue.

POOL_NAME
The name of the pool containing the enqueue.

1366 CICS TS for z/OS 4.1: Diagnosis Reference

TRANSACTION_LIFETIME
The number of times the enqueue is held with TRANSACTION lifetime.

STATE
The state that the enqueue is held in.
ACTIVE

The enqueue is held in active state.
RETAINED

The enqueue is held in retained state.
UOW_LIFETIME

The number of times the enqueue is held with UOW lifetime.

NQIB gate, START_BROWSE_ENQUEUE function
This function initiates a browse of all enqueues currently in the system or currently
associated with a given UOW.

The browse returns both enqueue owners and enqueue waiters. The RELATION
output parameter on GET_NEXT_ENQUEUE indicates whether the data being
returned is associated with the enqueue owner or a UOW waiting for that
enqueue.

When a system wide browse is initiated the first enqueue in the system is returned
with RELATION(OWNER). If the enqueue has any waiters then the same enqueue
will be returned again for each of the waiters but this time with
RELATION(WAITER). The data returned will be that associated with that
particular waiter. After the last waiter has been returned the next owned enqueue
will be returned.

If the browse is restricted to only a particular UOW then only the enqueues that
UOW owns will be returned. If the UOW is waiting for an enqueue this will also
be returned.

The order in which the enqueues are returned is undefined, however enqueue
waiters are always returned consecutively after their enqueue owner.

As with other types of CICS browses the state isn't locked for the duration of the
browse. Thus for example, there is no guarantee that the owner returned on a
previous GET_NEXT_ENQUEUE is still the owner by the time each of its waiters
are returned.

Input Parameters
ENQSCOPE

Optional Parameter

 For sysplex scope enqueues, the 4-character scope name that qualifies all
ENQUEUE requests issued by this CICS region.

ENQUEUE_NAME1
Optional Parameter

 The first part of a two-part enqueue name.
LOCAL_UOWID

Optional Parameter

 Identifies the unit of work if the browse is to be restricted to only those
enqueues owned and being waited for by a particular UOW.
If omitted then browse will return all enqueue owners and waiters in the
system.

Chapter 92. Enqueue Domain (NQ) 1367

STABLE_ENQUEUES
Optional Parameter

 Specifies that the caller will complete the browse without issuing any further
ENQ or DEQ requests. Applies only if LOCAL_UOWID is also specified and
names the caller's own UOWID.

Output Parameters
REASON

The values for the parameter are:
 NO_UOW_ENVIRONMENT

BROWSE_TOKEN
Token to be used by the caller on subsequent operations associated with this
browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQNQ gate, CREATE_ENQUEUE_POOL function
This function creates a separate enqueue pool for the caller. A token is returned
which the caller specifies on all requests associated with that pool.

Input Parameters
ERROR_LEVEL

Indicates the severity of the error response that is to be returned for the
following errors made while using this pool:
v DEQUEUE

– Enqueue_not_owned
– Enqueue_locked

v REACQUIRE_ENQUEUE
– Enqueue_locked
– Enqueue_active

v DEACTIVATE
– Enqueue_not_owned
– Enqueue_not_active

The possible values for ERROR_LEVEL are as follows:
EXCEPTION_RESPONSE

The above errors are to be returned with an exception response.
INVALID_RESPONSE

The above errors are to be returned with an invalid response. (i.e. FFDC is
to be performed).

Note: It is expected that only the EXEC and the KC enqueue pools will specify
EXCEPTION_RESPONSE since the DFHKC service previously used by them
allowed these sorts of error to go by undetected.

Values for the parameter are:
 EXCEPTION_RESPONSE
 INVALID_RESPONSE

EXEC_INTERPRETER
Indicates how enqueues belonging to the enqueue pool are to be interpreted by
the EXEC CICS INQUIRE UOWENQ command. The possible values are as follows:
NONE

No interpreter has been supplied so enqueues belonging to this pool will
be ignored by the INQUIRE UOWENQ command.

1368 CICS TS for z/OS 4.1: Diagnosis Reference

DEFAULT
Enqueues are to be returned by the INQUIRE UOWENQ command. The
default NQ domain interpreter will be called to perform the interpretation.
This will map the outputs of the INQUIRE UOWENQ command as
follows:
TYPE

Will be the CVDA corresponding to the ENQUEUE_TYPE parameter
supplied on this call.

RESOURCE
Will be ENQUEUE_NAME1 as supplied on the NQED_ENQUEUE
function.

QUALIFIER
Will be ENQUEUE_NAME2 if supplied on the NQED_ENQUEUE
function. If not then no QUALIFIER data will be returned.

OWN
Enqueues are to be returned by the INQUIRE UOWENQ command. A
routine provided by the pool owner will perform the interpretation. In this
case the entry point of the routine must be passed in the
INTERPRETER_ADDR parameter.

Note: The routine will be called by a kernel subroutine call, not by a
domain call. Consequently it will execute in the domain of the caller (i.e.
AP domain).

 Values for the parameter are:
 DEFAULT
 NONE
 OWN

EXPECTED_NAME_LENGTH

 The expected length for enqueue names in the pool.
v For pools with fixed length enqueue names this should be the length of the

names that are going to be enqueued upon.
v For pools that are to contain variable length enqueue names this should be a

length that would satisfy most of the requests to be made in the pool.

Note that there is no maximum length for enqueue names. However, requests
will only be handled inline if the length of the enqueue name is less than or
equal to the EXPECTED_NAME_LENGTH. The inline macro only copes with
names of less than or equal to 256 characters. For this reason an error will be
diagnosed if a value of greater than 256 is specified for this parameter.

POOL_NAME
The eight character name of the new enqueue pool.

SHUNT_ACTION

 Indicates the default action that is to be performed to UOW lifetime enqueues
in this pool if their owning UOW is shunted. Note that most enqueue pools
will require the same action to be performed for all enqueues in that pool.
However, the ENQUEUE function allows this default to be overridden for
particular enqueue requests.

The possible values are as follows:
RELEASE

The enqueue(s) will be released if the owning UOW is shunted.
RETAIN

The enqueue(s) will be retained if the owning UOW is shunted.

Chapter 92. Enqueue Domain (NQ) 1369

IGNORE
The shunt will be ignored. The enqueue(s) will remain in the same state as
currently held in.

Transaction lifetime enqueues are automatically released when a shunt occurs.

Values for the parameter are:
 IGNORE
 RELEASE
 RETAIN

ENQUEUE_TYPE
Optional Parameter

 The enqueue type that is to be returned by the default interpreter. Should only
be supplied for pools which specify a value of DEFAULT for the
EXEC_INTERPRETER parameter. The possible values map onto the CVDA
values for the TYPE field as detailed under the EXEC CICS INQUIRE UOWENQ
command.

Values for the parameter are:
 DATASET
 DISPATCHER
 EXECENQ
 EXECENQADDR
 EXECENQPLEX
 FILE
 TDQUEUE
 TSQUEUE

OWN_INTERPRETER_ADDRESS
Optional Parameter

 Entry point of interpreter routine for this pool. Should only be supplied for
pools which specify a value of OWN for the EXEC_INTERPRETER parameter.

Output Parameters
REASON

The values for the parameter are:
 DUPLICATE_POOL_NAME
 ENQUEUE_TYPE_EXPECTED
 INTERPRETER_ADDR_EXPECTED
 INVALID_NAME_LENGTH

POOL_TOKEN
Token returned which identifies the newly created enqueue pool.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQNQ gate, DEACTIVATE function
This function converts an active enqueue into retained state. The caller must
already own the enqueue.

Input Parameters
POOL_TOKEN

Token representing enqueue pool from which the enqueue is to be deactivated.
ENQUEUE_TOKEN

Token representing the enqueue that is to be deactivated. Slightly better
performance is achieved for callers that use the token method for this function.

1370 CICS TS for z/OS 4.1: Diagnosis Reference

ENQUEUE_NAME1
A block (addr,len) identifying the name of the enqueue to be deactivated. Or
alternatively identifies the prefix of the enqueue name which when combined
with the ENQUEUE_NAME2 parameter forms the name of the enqueue to be
deactivated.

ENQUEUE_NAME2
Optional Parameter

 A block (addr,len) identifying the second half of the enqueue name.

Output Parameters
REASON

The values for the parameter are:
 ENQUEUE_NOT_ACTIVE
 ENQUEUE_NOT_OWNED
 INVALID_POOL_TOKEN
 TRANSACTION_ENQUEUE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQNQ gate, DEQUEUE_TASK function
Dequeue a task that was previously enqueued.

Input Parameters
ENQUEUE_TOKEN

The token that was returned on the corresponding ENQUEUE request.

Output Parameters
REASON

The values for the parameter are:
 ENQUEUE_NOT_OWNED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQNQ gate, INTERPRET_ENQUEUE function
This function interprets the passed enqueue before it being returned by the EXEC
CICS INQUIRE UOWENQ command. The function takes the enqueue to be
interpreted as input and returns ENQUEUE_TYPE, RESOURCE and QUALIFIER to
the caller (EXEC layer).

Each enqueue pool can either
v not have an interpreter and consequently not have its enqueues returned by the

INQUIRE UOWENQ command
v rely upon a default interpreter supplied by NQ domain, (DFHNQIE)
v supply its own interpreter routine.

This is specified when the pool is created.

Input Parameters
ENQUEUE_NAME

A block (addr,len) identifying the full name of the enqueue to be interpreted.
ENQUEUE_NAME2_LENGTH

The length of the second part of the enqueue name if the enqueue was

Chapter 92. Enqueue Domain (NQ) 1371

originally specified in two parts (i.e. ENQUEUE_NAME1 and
ENQUEUE_NAME2). If the ENQUEUE_NAME2 parameter wasn't originally
specified for this enqueue then this will contain zero.

POOL_NAME
Name of the pool containing the enqueue to be interpreted. Note that an
interpreter may interpret enqueues from more than one pool.

POOL_TOKEN
Token corresponding to the pool containing the enqueue to be interpreted

QUALIFIER_BUFFER

 A buffer into which the data for the QUALIFIER field is returned. The caller
specifies the address and maximum length of the data area into which the
QUALIFIER data will be returned. If the data is too big for the buffer then the
data is truncated and an OK response is returned. The actual length of the
name is returned in qualifer_buffer_n.

If there is no QUALIFIER data then no data should be returned and the length
of the data (qualifier_buffer_n) should be returned as zero.

RESOURCE_BUFFER
A buffer into which the data for the RESOURCE field is returned. The caller
specifies the address and maximum length of the data area into which the
RESOURCE data will be returned. If the data is too big for the buffer then the
data is truncated and an OK response is returned. The actual length of the
name is returned in resource_buffer_n.

Output Parameters
REASON

The values for the parameter are:
 INVALID_ENQUEUE

ENQUEUE_TYPE
The TYPE of the enqueue being returned. The values map onto the CVDA
values for the TYPE field as detailed under the EXEC CICS INQUIRE
UOWENQ command.

 Values for the parameter are:
 DATASET
 DISPATCHER
 EXECENQ
 EXECENQADDR
 EXECENQPLEX
 FILE
 TDQUEUE
 TSQUEUE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQNQ gate, REACQUIRE_ENQUEUE function
NQ domain doesn't recover enqueues over a CICS restart. Instead resource owners
use this function to reacquire enqueues that were held by inflight and indoubt
UOWs.

The enqueue can be reacquired in either active or retained state. The calling UOW
must currently be shunted.

No MAX_LIFETIME input is provided since such enqueues are only ever
associated with a single UOW.

1372 CICS TS for z/OS 4.1: Diagnosis Reference

The same rules as documented for the mainline ENQUEUE function apply to the
shunt action that will be associated with the reacquired enqueue.

Input Parameters
POOL_TOKEN

Token representing enqueue pool from which the enqueue is to be allocated.
STATE

The state that the enqueue is to be reacquired in.

 Values for the parameter are:
 ACTIVE
 RETAINED

ENQUEUE_NAME2
Optional Parameter

 A block (addr,len) identifying the second half of the enqueue name.
SHUNT_ACTION

Optional Parameter

 Indicates the action that is to be performed if the UOW reacquiring the
enqueue is shunted again. This parameter acts as an override, if not supplied
then the default shunt action specified when the pool was created is assumed
for this request.

Values for the parameter are:
RELEASE

The enqueue will be released if the UOW is shunted again.
RETAIN

The enqueue will be retained if the UOW is shunted again.
IGNORE

The shunt will be ignored. The enqueue will remain in the same state as it
is currently held in.

Output Parameters
REASON

The values for the parameter are:
 CALLER_NOT_SHUNTED
 ENQUEUE_ACTIVE
 ENQUEUE_LOCKED
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ENQUEUE_TOKEN
Optional Parameter

 Token returned to represent the enqueue that has been successfully reacquired.

NQNQ gate, SET_NQRNAME_LIST function
This function is called from three places in DFHNQRN.

The function is called at the following points.

discard_enqmodel
If nqrmodel delete is set, then the specified nqrmodel is removed from
nqrname_list

Chapter 92. Enqueue Domain (NQ) 1373

add_replace_enqmodel
If nqrmodel add is set then the specified nqrmodel is added to
nqrname_list.

set_nqrmodel
if neither delete or add is set then the specified nqrmodel is set disabled.

Input Parameters
MODEL_TOKEN

The address of the nqrmodel to be set or added to nqrname_list.
POOL_TOKEN

The pool to be searched for matching enqueues
POOL_TWO

Optional Parameter

 An optional second pool to be searched for matching enqueues

Output Parameters
REASON

The values for the parameter are:
 FREE_NQRMODEL
 NQRMODEL_NOT_FOUND

FREE_TOKEN
Address of Model being removed.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, ADD_REPLACE_ENQMODEL function
This function adds an enqmodel definition to both the NQRN directory (keyed by
enqmodel name, and to the NQRNAME_LIST (keyed by the variable length
NQRNAME).

If the enqmodel already exists the entry is replaced. The replace is a discard then
add operation.

If an attempt is made to create a deep enqmodel nesting, or if another enqmodel
with the same nqrname is already installed, then message NQ0106 is issued and a
'DUPLICATE_NQRNAME' exception is returned.

Input Parameters
CALLER

COLDINST, RDOINST or RESTART indicating A cold start, An online install or
The input is in the MODEL_TOKEN respectively.

 Values for the parameter are:
 COLDINST
 RDOINST
 RESTART

CATALOG
indicates whether the record should be cataloged.

 Values for the parameter are:
 NO
 YES

ENQMODEL
The 8-character identifier of the resource to be added.

1374 CICS TS for z/OS 4.1: Diagnosis Reference

MODEL_TOKEN
The address of the record obtained from the catalog to be restored.

NQRNAME
Optional Parameter

 A buffer giving the 1 - 255 character name and length of the ENQ name or
stem* to be added.

SCOPE
Optional Parameter

 The 4-character scope identifier for the resource. If omitted or specified as
blanks, matching ENQs will have LOCAL scope.

STATE
Optional Parameter

 The state in which to install the enqmodel. If omitted, ENABLED is assumed.

Values for the parameter are:
 DISABLED
 ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACQUIRE_LOCK_FAILED
 CATALOG_WRITE_FAILED
 DIRECTORY_ADD_FAILED
 DIRECTORY_DELETE_FAILED
 GETMAIN_FAILED
 RELEASE_LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_ENABLED
 DUPLICATE_NQRNAME

The following values are returned when RESPONSE is INVALID:
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ENQMODEL_OUT
Optional Parameter

 The name of an existing resource that is already installed, and not disabled,
that prevents the successful completion of this operation.

NQRN gate, COMMIT_ENQMODEL function
Commit the ENQMODEL to the catalog.

Input Parameters
COMMIT_TOKEN

Token for catalog writes.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_WRITE_FAILED

Chapter 92. Enqueue Domain (NQ) 1375

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, DISCARD_ENQMODEL function
Remove an enqmodel definition from both the NQRN directory and from the
NQRNAME_LIST.

If the enqmodel is not installed, an 'ENQMODEL_NOT_FOUND' exception is
returned.

The ENQMODEL is put into the WAITING state until there are no enqueues in the
local system which match the ENQNAME pattern. It is then removed from the
local system.

Input Parameters
ENQMODEL

The 8-character identifier of the resource to be discarded.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACQUIRE_LOCK_FAILED
 CATALOG_DELETE_FAILED
 RELEASE_LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ENQMODEL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, END_BROWSE_ENQMODEL function
End a browse operation on a set of ENQMODEL resources.

Input Parameters
BROWSE_TOKEN

A token that identifies the browse operation. See “The BROWSE_TOKEN parameter
on domain interfaces” on page 9.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DIRECTORY_END_BROWSE_ERR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, GET_NEXT_ENQMODEL function
In a browse operation, retrieve the next ENQMODEL

Input Parameters
BROWSE_TOKEN

Browse token returned by the START_BROWSE function.

1376 CICS TS for z/OS 4.1: Diagnosis Reference

NQRNAME
Optional Parameter

 A buffer giving the 1 to 255 character name and length of the ENQ name or
stem.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACQUIRE_LOCK_FAILED
 DIRECTORY_GET_NEXT_ERR
 RELEASE_LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NO_MORE_DATA

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ENQMODEL
Optional Parameter

 The 4-character scope identifier for the resource.
SCOPE

Optional Parameter

 The 4-character scope identifier for the resource.
STATE

Optional Parameter

 The current state of the ENQMODEL.

NQRN gate, INQUIRE_ENQMODEL function
Uses directory DDLO_LOCATE to retrieve information about a specified enqmodel
definition in the NQRN directory.

If found, it returns the 1 to 255 character NQRNAME, the 4-character SCOPE
name, the enqmodel STATE and ann OK RESPONSE. Otherwise it returns an
EXCEPTION REASON(ENQMODEL_NOT_FOUND).

Input Parameters
ENQMODEL

The 8-character identifier of the entry to be returned.
NQRNAME

Optional Parameter

 A buffer returning the 1 to 255 character name and length of the ENQ name or
generic stem*

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACQUIRE_LOCK_FAILED
 DIRECTORY_LOCATE_FAILED
 RELEASE_LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ENQMODEL_NOT_FOUND

Chapter 92. Enqueue Domain (NQ) 1377

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SCOPE
Optional Parameter

 Returns the 4-character scope identifier for the resource. Four blanks indicates
that the enqueue has local scope.

STATE
Optional Parameter

 Values for the parameter are:
ENABLED

Matching ENQ/DEQ requests should be processed.
DISABLED

Matching ENQ/DEQ requests should be rejected, and the issuing task
abended abcode ENQ_DISABLED.

WAITING
There are INSTALL, CREATE, or DISCARD requests waiting to be
processed. Matching ENQ/DEQ requests should be rejected, and the
issuing task abended abcode ENQ_DISABLED.

NQRN gate, INQUIRE_NQRNAME function
Determine if an enqueue name entry exists.

Input Parameters
MSG0105

A binary value that indicates whether message DFHNQ0105 is to be issued if
the matching enqmodel is disabled or in the waiting state.

 Values for the parameter are:
 YES
 NO

NQRNAME
The name of the enqueue name entry

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACQUIRE_LOCK_FAILED
 RELEASE_LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NQRNAME_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SCOPE
The 4-character scope identifier for the resource.

STATE
The current state of the ENQMODEL

 Values for the parameter are:
 ENABLED
 DISABLED

1378 CICS TS for z/OS 4.1: Diagnosis Reference

NQRN gate, REMOVE_ENQMODEL function
Remove an ENQMODEL object.

Input Parameters
MODEL_TOKEN

A token that represents the ENQMODEL to be removed.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, RESTORE_DIRECTORY function
Restore the NQRN directory from the global catalog.

Input Parameters
COLD_START

A binary parameter indicating whether the request is made in cold start
processing.

 The values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_PURGE_FAILED
 CATALOG_READ_FAILED
 DIRECTORY_ADD_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, SET_ENQMODEL function
This function uses directory DDLO_LOCATE to see if an enqmodel entry exists in
the NQRN directory. If found, it calls SET_ENQMODEL to enable or disable the
entry. Otherwise it returns an EXCEPTION REASON(ENQMODEL_NOT_FOUND).

Enqmodels forming nested generic nqrnames must be enabled in order, from the
most to the least specific. I.e. A more specific enqmodel may not be enabled if a
less specific enqmodel is enabled. If attempted, msg NQ0107 is issued and
EXCEPTION 'DUPLICATE_ENABLED' is returned to the caller.

You cannot enable/disable an enqmodel which is in the waiting state. If attempted,
EXCEPTION 'ENQMODEL_WAITING' is returned to the caller.

Input Parameters
ENQMODEL

The 8-character identifier of the entry to be enabled/disabled.
STATE

The desired state of the ENQMODEL.

 Values for the parameter are:
 DISABLED

Chapter 92. Enqueue Domain (NQ) 1379

ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACQUIRE_LOCK_FAILED
 CATALOG_UPDATE_FAILED
 DIRECTORY_LOCATE_FAILED
 RELEASE_LOCK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_ENABLED
 ENQMODEL_NOT_FOUND
 ENQMODEL_WAITING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NQRN gate, START_BROWSE_ENQMODEL function
Start a browse operation on a set of ENQMODEL objects.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DIRECTORY_START_BROWSE_ERR

BROWSE_TOKEN
See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Enqueue Domain's generic gates

Table 59 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 59. Enqueue Domain's generic gates

Gate Trace Function Format

DMDM NQ 0101
NQ 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST NQ 0501
NQ 0502

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

The Domain Manager gates perform normal internal state initialization and
termination functions.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777

1380 CICS TS for z/OS 4.1: Diagnosis Reference

Enqueue domain's call-back gates

Table 60 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 60. Enqueue domain's call-back gates

Gate Trace Function Format

RMRO NQ 0201
NQ 0202

PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

PERFORM_PREPARE is a no-op. PERFORM_COMMIT releases enqueues.
PERFORM_SHUNT make active enqueues retained. PERFORM_UNSHUNT makes
retained enquires active.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following call-back formats:
 “Recovery manager domain call-back formats” on page 1599

Modules
 Module Function

DFHNQDM Handles the following requests:
 INITIALISE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHNQDUF Formats the NQ domain control blocks in a CICS system.

DFHNQED Handles the following requests:
 ENQUEUE
 DEQUEUE

DFHNQEDI Inline version of DFHNQED

DFHNQIB Handles the following requests:
 INQUIRE_ENQUEUE
 START_BROWSE_ENQUEUE
 GET_NEXT_ENQUEUE
 END_BROWSE_ENQUEUE

DFHNQIE Handles the following requests:
 INTERPRET_ENQUEUE

DFHNQNQ Handles the following requests:
 CREATE_ENQUEUE_POOL
 REACQUIRE_ENQUEUE
 DEACTIVATE
 SET_NQRNAME_LIST
 DEQUEUE_TASK

Chapter 92. Enqueue Domain (NQ) 1381

Module Function

DFHNQRN Handles the following requests:
 INQUIRE_NQRNAME
 ADD_REPLACE_ENQMODEL
 DISCARD_ENQMODEL
 REMOVE_ENQMODEL
 INQUIRE_ENQMODEL
 START_BROWSE_ENQMODEL
 GET_NEXT_ENQMODEL
 END_BROWSE_ENQMODEL
 SET_ENQMODEL
 COMMIT_ENQMODEL
 RESTORE_DIRECTORY

DFHNQST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHNQTRI Provides a trace interpretation routine for CICS dumps and traces.

Exits
The XNQEREQ and XNQEREQC global user exit points are invoked respectively
before and after each EXEC ENQ or DEQ request to the NQ domain.

1382 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 93. Object transaction service domain (OT)

The object transaction service domain provides services to manage OTS
transactions.

Object transaction service domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the OT domain.

OTCO gate, FORGET function
The FORGET function of the OTCO gate is used signal the fact that the obligation
to the coordinator has been discharged.

Input Parameters
COORDINATOR_TOKEN

Token representing the coordinator OTS resource.
UOWID

identification of the local logical unit of work managing the OTS transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTCO gate, RESYNC function
Resynchronize an OTS transaction.

Input Parameters
DECISION

Specifies whether the transaction should be committed or rolled back.

 Values for the parameter are:
 COMMIT
 ROLLBACK

UOWID
The unit-of-work ID of the transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 COORDINATOR_NOT_FOUND

HEURISTIC
A binary value indicating whether a heuristic decision has been taken for the
transaction.

 Values for the parameter are:
 NO
 YES

© Copyright IBM Corp. 1997, 2011 1383

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTCO gate, SET_COORDINATOR function
Designate a CORBA object as the coordinator of this part of an OTS transaction.

Input Parameters
HOST_BLOCK

Block containing the name of the TCPIP host where the coordinator OTS
resource resides.

IOR_BLOCK
Block containing the CORBA IOR of the OTS Resource that is being added as a
coordinator in the OTS transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 HOST_TOO_LONG
 IOR_TOO_LONG

COORDINATOR_TOKEN
A token representing the coordinator.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTCO gate, SET_LAST_AGENT function
Designate a CORBA object as the last agent of this part of an OTS transaction.

Input Parameters
COORDINATOR_TOKEN

The token that represents the coordinator of the transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTCP gate, RESYNC_COORDINATOR function
Resynchronize with the coordinator in an OTS transaction.

Input Parameters
IOR_BLOCK

Block containing the CORBA IOR of the OTS resource
LOGICAL_SERVER

The logical server (CorbaServer)
PUBLIC_ID

The OTS public ID of the transaction
UOW_ID

The unit-of-work ID of the transaction.

1384 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 COMM_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTCP gate, RESYNC_SUBORDINATE function
Resynchronize with the subordinate in an OTS transaction.

Input Parameters
DECISION

The commit or roll back decision for the transaction

 Values for the parameter are:
 COMMIT
 ROLLBACK

IOR_BLOCK
Block containing the CORBA IOR of the OTS resource

LOGICAL_SERVER
The logical server (CorbaServer) associated wit the request.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 COMM_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTRS gate, FORGET_TRANSACTION function
Initiate forget processing for an OTS resource.

Input Parameters
IOR_BLOCK

Block containing the CORBA IOR of the OTS resource

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTRS gate, PERFORM_RESYNC function
Resynchronize all OTS resources.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_IN_RESYNC

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 93. Object transaction service domain (OT) 1385

OTRS gate, SET_REMOTE_STATUS function
Set the status of a remote OTS resource.

Input Parameters
IOR_BLOCK

Block containing the CORBA IOR of the OTS resource
STATUS

The desired status of the remote object.

 Values for the parameter are:
 COMMIT
 HEURISTIC_COMMIT
 HEURISTIC_HAZARD
 HEURISTIC_MIXED
 HEURISTIC_ROLLBACK
 ROLLBACK

Output Parameters
ALREADY_HEURISTIC

Indicates whether the remote object has already subject to a heuristic decision
to commit or roll back.

 Values for the parameter are:
 COMMIT
 NO
 ROLLBACK

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTSU gate, ADD_SUBORDINATE function
The ADD_SUBORDINATE function of the OTSU gate is used add a subordinate
participant to the OTS transaction.

Input Parameters
HOST_BLOCK

Block containing the name of the TCPIP host where the subordinate OTS
resource resides.

IOR_BLOCK
Block containing the CORBA IOR of the OTS Resource that is being added as a
subordinate participant in the OTS transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ADD_LINK_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 HOST_TOO_LONG
 IOR_TOO_LONG

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBORDINATE_TOKEN
token representing the added Resource.

1386 CICS TS for z/OS 4.1: Diagnosis Reference

OTSU gate, FORGET function
The FORGET function of the OTSU gate is used signal the fact that the obligation
to the subordinate resource has been discharged.

Input Parameters
SUBORDINATE_TOKEN

Token representing the subordinate OTS resource.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 INBOUND_FLOW_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_SUBORDINATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTSU gate, RESYNC function
The RESYNC function of the OTSU gate is used to initiate the resynchronisation
protocol with the subordinate resource identified by the given IOR.

Input Parameters
IOR_BLOCK

Block containing the CORBA IOR of the OTS Resource that is being added as a
subordinate participant in the OTS transaction.

UOWID
identification of the local logical unit of work managing the OTS transaction.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UOW_STATUS
The status of the unit of work.

 Values for the parameter are:
 COMMITTED
 IN_DOUBT
 IN_FLIGHT
 ROLLED_BACK

OTSU gate, SET_VOTE function
The SET_VOTE function of the OTSU gate is used record the vote that results from
a PREPARE method being invoked on the OTS Resource represented by the given
SUBORDINATE_TOKEN.

Input Parameters
SUBORDINATE_TOKEN

Token representing the subordinate OTS resource.
VOTE

The vote resulting from the first phase of syncpoint on the subordinate
resource.

 Values for the parameter are:

Chapter 93. Object transaction service domain (OT) 1387

HEURISTIC_COMMIT
 HEURISTIC_HAZARD
 HEURISTIC_MIXED
 HEURISTIC_ROLLBACK
 NO
 READ_ONLY
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 RECORD_VOTE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_VOTE
 UNKNOWN_SUBORDINATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTTR gate, BEGIN_TRAN function
The BEGIN_TRAN function of the OTTR gate is used to create a new OTS
transaction.

Input Parameters
LOGICAL_SERVER

The name of the logical server within which the transaction is executing.
PUBLIC_ID

The Request Stream public identifier associated with the transaction.
TID_BUFFER_OUT

The OTS transaction identifier (TID) of the transaction created.
TIMEOUT

Optional Parameter

 The OTS transaction timeout value.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TID_TOO_LONG
 UOW_ROLLEDBACK

BQUAL_LEN
The batch qualifer length of the OTS transaction.

FORMAT_ID
The OTS transactions format identifier.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UOW_ID
The identifier of the logical unit of work into which the OTS transaction was
imported.

DEFAULT_TIMEOUT
Optional Parameter

 The default OTS transaction timeout value.

1388 CICS TS for z/OS 4.1: Diagnosis Reference

OTTR gate, COMMIT function
The COMMIT function of the OTTR gate is used to perform the second phase of
the syncpoint of an OTS transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UOW_ROLLEDBACK

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTTR gate, COMMIT_ONE_PHASE function
The COMMIT_ONE_PHASE function of the OTTR gate is used to attempt to
commit the current OTS transaction.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
The outcome of the OTS transaction.

 Values for the parameter are:
 COMMITTED
 ROLLEDBACK

OTTR gate, IMPORT_TRAN function
The IMPORT_TRAN function of the OTTR gate is used to import an OTS
transaction to a task.

Input Parameters
BQUAL_LEN

The batch qualifer length of the OTS transaction.
FORMAT_ID

The OTS transactions format identifier.
LOGICAL_SERVER

The name of the logical server within which the transaction is executing.
PUBLIC_ID

The Request Stream public identifier associated with the transaction.
TID_BLOCK_IN

The OTS transaction identifier (TID) of the transaction being imported.
TIMEOUT

The OTS transaction timeout value.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OTS_TRAN_ALREADY
 TID_TOO_LONG

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 93. Object transaction service domain (OT) 1389

UOW_ID
The identifier of the logical unit of work into which the OTS transaction was
imported.

OTTR gate, PREPARE function
The PREPARE function of the OTTR gate is used to perform the first phase of the
syncpoint of an OTS transaction.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

VOTE
The vote from first phase of syncpoint.

 Values for the parameter are:
 HEURISTIC_MIXED
 NO
 READ_ONLY
 YES

OTTR gate, ROLLBACK function
Roll back an OTS transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UOW_COMMITTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

OTTR gate, SET_ROLLBACK_ONLY function
The SET_ROLLBACK_ONLY function of the OTTR gate is used to ensure that the
OTS transaction will rollback when it comes to syncpoint.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHOTCO Handles requests on the OTCO gate.

DFHOTDM Domain initialization and termination.
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHOTDUF OT domain offline dump formatting routine

DFHOTRM Handles the following requests:
 ATTACH

1390 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHOTSU Handles requests on the OTSU gate.

DFHOTTR Handles requests on the OTTR gate.

DFHOTTRI Interprets OT domain trace entries

Chapter 93. Object transaction service domain (OT) 1391

1392 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 94. Parameter Manager Domain (PA)

The parameter manager domain informs CICS domains of system parameters
during CICS initialization. These system initialization parameters are specified in
the system initialization table (SIT), and as temporary override parameters read
from the SYSIN data stream or specified interactively at the system console.

Parameter Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the PA domain.

PAGP gate, FORCE_START function
The FORCE_START function of the PAGP gate is used to override the type of start
requested by the START system initialization parameter. It is currently used to
force START=AUTO if the MVS(TM) automatic restart manager indicates that CICS(R)

is being automatically restarted with the original startup JCL (so that CICS does
not get a COLD start that the original JCL might have asked for).

Input Parameters
START_TYPE

specifies the type of CICS start to be forced.

 Values for the parameter are:
 AUTO
 COLD

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_POSSIBLE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PAGP gate, GET_PARAMETERS function
The GET_PARAMETERS function of the PAGP gate is used to get the initialization
parameters for a requesting domain.

Input Parameters
FORCE_ALL

specifies whether all parameters are required, even on a non-cold start.

 Values for the parameter are:
 NO
 YES

SKIP_EARLY_BOUND_PARMS
Optional Parameter

 Indicates whether early-bound parameters (which cannot be changed beyond a
certain stage of initialization) should be skipped.

Values for the parameter are:
 NO

© Copyright IBM Corp. 1997, 2011 1393

YES

Output Parameters
PARAMETERS_TRANSFERRED

indicates to the calling domain whether any system parameters were
transferred successfully by the parameter manager domain.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PAGP gate, INQUIRE_PARM function
The INQUIRE_PARM function of the PAGP gate is used to inquire on a parameter
in the current system initialization table (SIT), or from a specified location.

Input Parameters
LOCATION

Indicates one of the following parameter locations:
LOAD_MODULE

The original version of the SIT with no overrides.
JCL_PARMS

SIT overrides found in the CICS JCL
SYSIN

SIT overrides found in the SYSIN data set.
CONSOLE

SIT overrides specified from a console.

If a location is not specified, the current SIT is examined. This table might have
been modified with override parameters when it was built.

PARM_BUFFER
A 255-byte buffer for the requested parameter values.

Output parameters
LOCATED

Indicates one of the following parameter locations:
LOAD_MODULE

The original version of the SIT with no overrides.
JCL_PARMS

SIT overrides found in the CICS JCL
SYSIN

SIT overrides found in the SYSIN data set.
CONSOLE

SIT overrides specified from a console.
REASON

The following values are returned when the RESPONSE is EXCEPTION:
 NOT_FOUND
 BUFFER_TOO_SMALL

The following values are returned when the RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_LOCATION

1394 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PAGP gate, INQUIRE_START function
The INQUIRE_START function of the PAGP gate is used to find out the type of
start that CICS is to perform. This information is used to determine whether
domains need to perform a cold or warm start.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

START
specifies the type of start CICS is to perform.

 Values for the parameter are:
 COLD
 WARM

ALL
Optional Parameter

 Indicates if the ALL option was specified on the START system initialization
parameter.

Values for the parameter are:
 NO
 YES

INITIAL_START
Optional Parameter

 Indicates if this is an INITIAL start.

Values for the parameter are:
 NO
 YES

Parameter manager domain's generic gates

Table 61 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 61. Parameter manager domain's generic gates

Gate Trace Functions Format

DMDM PA 0201
PA 0202

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

In preinitialization processing, the parameter manager domain reads system
initialization (override) parameters from the startup job stream and, if requested,
from the SYSIN data set and the console.

Chapter 94. Parameter Manager Domain (PA) 1395

|
|
|

|

If a system initialization table (SIT) has been specified, that is loaded into storage.
Otherwise, the default SIT is loaded. The override parameters are applied to the
SIT, and related parameters are checked for consistency. Errors are reported, but no
action is taken.

The parameter manager domain also provides services to other domains as they
pre-initialize. It informs them of the type of start (cold or auto), and supplies
information as required from the SIT.

In initialization processing, the parameter manager domain waits for all the other
domains to complete their initialization, and then writes a warm start record to the
catalog.

The parameter manager domain does no quiesce processing or termination
processing.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956

Modules
 Module Function

DFHPADM Parameter manager domain initialization and termination

DFHPADUF An offline routine to format system dump information

DFHPAGP Passes initialization parameters to domains requesting
GET_PARAMETERS

DFHPAIO Communicates with the SYSIN data set and operator console

DFHPASY System initialization override parameter checker and syntax parser

DFHPATRI An offline routine to format trace points

1396 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 95. Program Manager Domain (PG)

The program manager domain provides a variety of functions for managing
programs in CICS.

The functions provided by the program manager domain include:
v Program control functions invoked by the following application programming

commands:
 LINK
 XCTL
 LOAD
 RELEASE
 RETURN

v Transaction ABEND and condition handling functions invoked by the following
commands:
 ABEND
 HANDLE ABEND
 HANDLE CONDITION
 HANDLE AID

v Management of user-replaceable programs, global user exits, and task-related
user exits

v Autoinstall for programs, mapsets, and partitionsets.

Program Manager domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the PG domain.

PGAQ gate, INQUIRE_AUTOINSTALL function
The INQUIRE_AUTOINSTALL function of the PGAQ gate is used to inquire about
attributes of the program autoinstall function.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AUTOINSTALL_CATALOG
Optional Parameter

 identifies if program autoinstall events are cataloged.

Values for the parameter are:
 ALL
 MODIFY
 NONE

AUTOINSTALL_EXIT_NAME
Optional Parameter

 is the name of the program autoinstall exit program.

© Copyright IBM Corp. 1997, 2011 1397

AUTOINSTALL_STATE
Optional Parameter

 is the state of the program autoinstall function.

Values for the parameter are:
 ACTIVE
 INACTIVE

PGAQ gate, SET_AUTOINSTALL function
The SET_AUTOINSTALL function of the PGAQ gate is used to set attributes of the
program autoinstall function.

Input Parameters
AUTOINSTALL_CATALOG

Optional Parameter

 identifies if program autoinstall events are cataloged.

Values for the parameter are:
 ALL
 MODIFY
 NONE

AUTOINSTALL_EXIT_NAME
Optional Parameter

 is the name of the program autoinstall exit program.
AUTOINSTALL_STATE

Optional Parameter

 is the state of the program autoinstall function.

Values for the parameter are:
 ACTIVE
 INACTIVE

LANGUAGES_AVAILABLE
Optional Parameter

 Indicates if Language Environment is active.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGAQ gate, SET_SYSTEM function
Set system data values owned by the program manager domain.

Input Parameters
DEFAULT_CCSID

Optional Parameter

 The coded character set identifer used by the program manager domain.

1398 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, BIND_CHANNEL function
The BIND_CHANNEL function of the PGCH gate is used to make the specified
channel the channel used on the initial link.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL

The following values are returned when RESPONSE is INVALID:
 CHANNEL_ALREADY_SET
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, COPY_CHANNEL function
The COPY_CHANNEL function of the PGCH gate is used to take a copy of a
channel and all its containers. The copy has the same name as the original, but is
not on any chain. This function is required by the START command.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

COPIED_CHANNEL_TOKEN
A token referencing a copy of the specified channel (used on START and
RETURN commands).

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, CREATE_CHANNEL function
The CREATE_CHANNEL function of the PGCH gate is used to create a channel.

Input Parameters
CHANNEL_NAME

is the 16-character name of the channel to be created.

Chapter 95. Program Manager Domain (PG) 1399

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in this
channel.

CURRENT_CHANNEL
Optional Parameter

 whether or not the created channel is to be the current channel of the current
link level.

Values for the parameter are:
 NO
 YES

LINK_LEVEL
Optional Parameter

 whether the channel is to be created on the current chain, the previous link
level's chain, or on no chain (NONE). NONE is used when creating a channel
for transfer on a START or RETURN command.

Values for the parameter are:
 CURRENT
 NONE
 PREVIOUS

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 CCSID_INVALID
 CHANNEL_ALREADY_EXISTS
 CHANNEL_ALREADY_SET
 INVALID_CHANNEL_NAME

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CHANNEL_TOKEN
Optional Parameter

 is a token referencing the newly-created channel.
CONTAINER_POOL_TOKEN

Optional Parameter

 is a token to access a pool of containers.

PGCH gate, DELETE_CHANNEL function
The DELETE_CHANNEL function of the PGCH gate is used to delete a channel.
This command can be used to delete channels when they are bound to principal
facilities, but not to PLCBs.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

1400 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ATTACHED

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, DELETE_OWNED_CHANNELS function
The DELETE_OWNED_CHANNELS function of the PGCH gate is used to delete
all channels from the channel chain. If the current channel is owned by this link
level, it is deleted as well. The container pool associated with each channel is also
deleted. This ends any browse in progress and deletes all containers.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, DETACH_CHANNEL function
The DETACH_CHANNEL function of the PGCH gate is used to detach a channel.
The channel may be the current channel, or on the PLCB chain. The channel's
containers are only deleted if DELETE(YES) is specified. It is implied that a
SET_CURRENT_CHANNEL will be done with this channel at some time.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.
DELETE

Optional Parameter

 whether the channel's containers should be deleted.

Values for the parameter are:
 NO
 YES

FREE_SET_STORAGE
Optional Parameter

 whether the channel's storage should be freed.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL

Chapter 95. Program Manager Domain (PG) 1401

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, INQUIRE_BOUND_CHANNEL function
The INQUIRE_BOUND_CHANNEL function of the PGCH gate is used to get
information about the channel that is bound to the current transaction. This may or
may not be the current channel. This request may be issued outside a program
manager environment.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CHANNEL_NAME
Optional Parameter

 is the name of the bound channel.
CHANNEL_TOKEN

Optional Parameter

 is a token referencing the newly-created channel.
CONTAINER_POOL_TOKEN

Optional Parameter

 is a token to access a pool of containers.

PGCH gate, INQUIRE_CHANNEL function
The INQUIRE_CHANNEL function of the PGCH gate is used to retrieve the
properties of a named channel, including its address (returned as a token). To find
the named channel, CICS scans the channels accessible from the specified link
level.

Input Parameters
CHANNEL_NAME

is the 16-character name of the channel to be created.
LINK_LEVEL

Optional Parameter

 whether the channel is to be created on the current chain, the previous link
level's chain, or on no chain (NONE). NONE is used when creating a channel
for transfer on a START or RETURN command.

Values for the parameter are:
 CURRENT
 PREVIOUS

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND

The following values are returned when RESPONSE is INVALID:

1402 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_LINK_LEVEL
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

CHANNEL_TOKEN
Optional Parameter

 is a token referencing the newly-created channel.
CONTAINER_POOL_TOKEN

Optional Parameter

 is a token to access a pool of containers.
CURRENT_CHANNEL

Optional Parameter

 whether the named channel is the current channel.

Values for the parameter are:
 NO
 YES

OWNER
Optional Parameter

 whether the named channel is owned by the specified link level.

Values for the parameter are:
 NO
 YES

PGCH gate, INQUIRE_CHANNEL_BY_TOKEN function
The INQUIRE_CHANNEL_BY_TOKEN function is used to retrieve the properties
of a channel (which is specified by token).

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

CHANNEL_NAME
Optional Parameter

Chapter 95. Program Manager Domain (PG) 1403

is the name of the bound channel.
CONTAINER_POOL_TOKEN

Optional Parameter

 is a token to access a pool of containers.
CURRENT_CHANNEL

Optional Parameter

 whether the named channel is the current channel.

Values for the parameter are:
 NO
 YES

OWNER
Optional Parameter

 whether the named channel is owned by the specified link level.

Values for the parameter are:
 NO
 YES

PGCH gate, INQUIRE_CURRENT_CHANNEL function
The INQUIRE_CURRENT_CHANNEL function of the PGCH gate is used to
retrieve the properties of the current channel.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

CHANNEL_NAME
Optional Parameter

 is the name of the bound channel.
CHANNEL_TOKEN

Optional Parameter

 is a token referencing the newly-created channel.
CONTAINER_POOL_TOKEN

Optional Parameter

 is a token to access a pool of containers.
OWNER

Optional Parameter

 whether the named channel is owned by the specified link level.

Values for the parameter are:
 NO
 YES

1404 CICS TS for z/OS 4.1: Diagnosis Reference

PGCH gate, RENAME_CHANNEL function
The RENAME_CHANNEL function of the PGCH gate is used to rename a channel.

Input Parameters
CHANNEL_NAME

is the 16-character name of the channel to be created.
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 CHANNEL_ALREADY_EXISTS
 INVALID_CHANNEL_NAME

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCH gate, SET_CURRENT_CHANNEL function
The SET_CURRENT_CHANNEL function of the PGCH gate is used to make the
specified channel the current channel for the current link level.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.
OWNER

Optional Parameter

 whether the specified channel is owned by the current link level. If
OWNER(YES) is specified, the channel is added to the current link level's
chain.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ALREADY_EXISTS

The following values are returned when RESPONSE is INVALID:
 INVALID_LINK_LEVEL

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCP gate, COPY_CONTAINER_POOL function
The COPY_CONTAINER_POOL function of the PGCP gate is used to copy all the
containers in a container pool to another container pool.

Chapter 95. Program Manager Domain (PG) 1405

Input Parameters
POOL_TOKEN

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_POOL_TOKEN

COPIED_POOL_TOKEN
is a token that maps to the pool to which all containers have been copied from
the pool referenced by POOL_TOKEN.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCP gate, CREATE_CONTAINER_POOL function
The CREATE_CONTAINER_POOL function of the PGCP gate is used to create a
container pool.

Input Parameters
CCSID

Optional Parameter

 is the default coded character set identifier (CCSID) for character data in this
channel.

Output Parameters
POOL_TOKEN

is a token that references the container pool that has been created.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCP gate, DELETE_CONTAINER_POOL function
The DELETE_CONTAINER_POOL function of the PGCP gate is used to delete a
container pool.

Input Parameters
POOL_TOKEN

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCP gate, INQUIRE_CONTAINER_POOL function
The INQUIRE_CONTAINER_POOL function of the PGCP gate is used to inquire
about the attributes of a container pool.

1406 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
POOL_TOKEN

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

NUMBER_OF_CONTAINERS
Optional Parameter

 is the number of containers that the pool contains.
POOL_SIZE

Optional Parameter

 is the size, in bytes, of the data in the pool.

PGCR gate, COPY_CONTAINER function
The COPY_CONTAINER function of the PGCR gate is used to copy a container
from one container pool to another. Both pools must already have been created.

Input Parameters
AS_CONTAINER_NAME

Optional Parameter

 is the name by which the copied container is to be known in the target
container pool.

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
POOL_TOKEN

Optional Parameter

 is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TO_POOL_TOKEN
Optional Parameter

 is a token referencing the target container pool (that is, the pool to which the
container is to be copied).

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:

Chapter 95. Program Manager Domain (PG) 1407

CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_NOT_FOUND
 INVALID_AS_CONTAINER_NAME

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN
 INVALID_TO_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_TOKEN_OUT
Optional Parameter

 is a token representing the new copy of the container.
GENERATION_NUMBER

Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

PGCR gate, DELETE_CONTAINER function
The DELETE_CONTAINER function of the PGCR gate is used to delete a container
and its data. The container is identified using its name, the container pool to which
it belongs, and its type.

Input Parameters
CALLER

Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
POOL_TOKEN

Optional Parameter

1408 CICS TS for z/OS 4.1: Diagnosis Reference

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_NOT_FOUND
 READONLY_CONTAINER

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCR gate, ENDBR_CONTAINER function
The ENDBR_CONTAINER function of the PGCR gate is used to end a browse of
containers.

Input Parameters
BROWSE_TOKEN

is a browse token referencing the next container in the container pool being
browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCR gate, GET_CONTAINER_INTO function
The GET_CONTAINER function of the PGCR gate is used to get the data from a
container into an area provided by the caller. The container is identified using a
pool token, together with the container's name and type. Note that
LENGTH_ERROR indicates that as much data as possible has been copied.

Input Parameters
ITEM_BUFFER

On input, ITEM_BUFFER_P is a pointer to a receiving area of length
ITEM_BUFFER_M. On output, the value ITEM_BUFFER_N is set to the actual
length returned.

CALLER
Optional Parameter

 is the call part of an API call.

Chapter 95. Program Manager Domain (PG) 1409

Values for the parameter are:
 EXEC
 SYSTEM

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in this
channel.

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
CONVERT

Optional Parameter

 whether the data in the container should be converted.

Values for the parameter are:
 NO
 YES

DATA_TOKEN_IN
Optional Parameter

 A token referencing the data in the container. The value returned in
DATA_TOKEN_OUT on one GET_CONTAINER_INTO call must be specified
on the next call as DATA_TOKEN_IN. (The first GET_CONTAINER_INTO call
for this container doesn't have a DATA_TOKEN_IN.)

POOL_TOKEN
Optional Parameter

 A token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_IGNORED
 CCSID_INVALID
 CCSID_PAIR_UNSUPPORTED
 CCSID_PARTIAL_CONVERSION
 CONTAINER_NOT_FOUND
 INVALID_DATA_TOKEN_IN
 LENGTH_ERROR
 MORE_DATA

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS

1410 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_POOL_TOKEN
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_CCSID
Optional Parameter

 is the coded character set identifier of the extracted data.
DATA_TOKEN_OUT

Optional Parameter

 A token referencing the data in the container.
The value returned in DATA_TOKEN_OUT on one GET_CONTAINER_INTO
call must be specified on the next call as DATA_TOKEN_IN. (The first
GET_CONTAINER_INTO call for this container doesn't have a
DATA_TOKEN_IN.)

DATATYPE
Optional Parameter

 is the format of the data.

Values for the parameter are:
 BIT
 CHAR

GENERATION_NUMBER
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

PGCR gate, GET_CONTAINER_LENGTH function
The GET_CONTAINER_LENGTH function of the PGCR gate is used to discover
the length, in bytes, of the data in a container.

Input Parameters
CALLER

Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

CCSID
Optional Parameter

Chapter 95. Program Manager Domain (PG) 1411

is the default coded character set identifier (CCSID) for character data in this
channel.

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
POOL_TOKEN

Optional Parameter

 is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_IGNORED
 CCSID_INVALID
 CCSID_PAIR_UNSUPPORTED
 CCSID_PARTIAL_CONVERSION
 CONTAINER_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_CCSID
Optional Parameter

 is the coded character set identifier of the extracted data.
DATA_LENGTH

Optional Parameter

 is the length, in bytes, of the data in the container. If the container holds
character data that has been converted from one CCSID to another, this is the
length of the converted data.

DATATYPE
Optional Parameter

 is the format of the data.

Values for the parameter are:
 BIT
 CHAR

GENERATION_NUMBER
Optional Parameter

1412 CICS TS for z/OS 4.1: Diagnosis Reference

Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

PGCR gate, GET_CONTAINER_SET function
The GET_CONTAINER_SET function of the PGCR gate is used to get the data
from a container and copy it into an area provided by the CICS program domain.
The container is identified using a pool token, together with its name and type.

Input Parameters
CALLER

Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in this
channel.

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
CONVERT

Optional Parameter

 whether the data in the container should be converted.

Values for the parameter are:
 NO
 YES

POOL_TOKEN
Optional Parameter

 is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TYPE
Optional Parameter

Chapter 95. Program Manager Domain (PG) 1413

whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_IGNORED
 CCSID_INVALID
 CCSID_PAIR_UNSUPPORTED
 CCSID_PARTIAL_CONVERSION
 CONTAINER_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN

ITEM_DATA
The address and length of the SET storage returned.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_CCSID
Optional Parameter

 is the coded character set identifier of the extracted data.
DATATYPE

Optional Parameter

 is the format of the data.

Values for the parameter are:
 BIT
 CHAR

GENERATION_NUMBER
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

1414 CICS TS for z/OS 4.1: Diagnosis Reference

PGCR gate, GETNEXT_CONTAINER function
The GETNEXT_CONTAINER function of the PGCR gate is used to get the next
container in a browse of containers.

Input Parameters
BROWSE_TOKEN

is a browse token referencing the next container in the container pool being
browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

CONTAINER_NAME
Optional Parameter

 is the name of the container.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container.
DATA_LENGTH

Optional Parameter

 is the length, in bytes, of the data in the container. If the container holds
character data that has been converted from one CCSID to another, this is the
length of the converted data.

DATATYPE
Optional Parameter

 is the format of the data.

Values for the parameter are:
 BIT
 CHAR

GENERATION_NUMBER
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Chapter 95. Program Manager Domain (PG) 1415

Values for the parameter are:
 CICS
 USER

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

PGCR gate, INQUIRE_BROWSE_CONTEXT function
The INQUIRE_BROWSE__CONTEXT function of the PGCR gate is used to

Input Parameters
BROWSE_TOKEN

is a browse token referencing the next container in the container pool being
browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCR gate, INQUIRE_CONTAINER function
The INQUIRE_CONTAINER function of the PGCR gate is used to retrieve the
attributes of a container.

Input Parameters
CONTAINER_NAME

is the name of the container to be copied.
POOL_TOKEN

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

CALLER
Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:

1416 CICS TS for z/OS 4.1: Diagnosis Reference

CONTAINER_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

CONTAINER_TOKEN
Optional Parameter

 is a token referencing the container.
DATA_LENGTH

Optional Parameter

 is the length, in bytes, of the data in the container. If the container holds
character data that has been converted from one CCSID to another, this is the
length of the converted data.

DATATYPE
Optional Parameter

 is the format of the data.

Values for the parameter are:
 BIT
 CHAR

GENERATION_NUMBER
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

PGCR gate, INQUIRE_CONTAINER_BY_TOKEN function
The INQIRE_CONTAINER_BY_TOKEN function of the PGCR gate is used to
retrieve the attributes of a container by means of a token.

Input Parameters
CONTAINER_TOKEN

is a token referencing the container to be copied.

Chapter 95. Program Manager Domain (PG) 1417

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in the
named channel.

CONTAINER_NAME
Optional Parameter

 is the name of the container.
DATA_LENGTH

Optional Parameter

 is the length, in bytes, of the data in the container. If the container holds
character data that has been converted from one CCSID to another, this is the
length of the converted data.

DATATYPE
Optional Parameter

 is the format of the data.

Values for the parameter are:
 BIT
 CHAR

GENERATION_NUMBER
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

1418 CICS TS for z/OS 4.1: Diagnosis Reference

PGCR gate, MOVE_CONTAINER function
The MOVE_CONTAINER function of the PGCR gate is used to move a container
from one container pool to another. Both pools must already have been created. If
the TO_POOL_TOKEN is not specified, the container is not moved to a different
pool but is renamed to the value of AS_CONTAINER_NAME.

Input Parameters
AS_CONTAINER_NAME

Optional Parameter

 is the name by which the copied container is to be known in the target
container pool.

CALLER
Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
POOL_TOKEN

Optional Parameter

 is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TO_POOL_TOKEN
Optional Parameter

 is a token referencing the target container pool (that is, the pool to which the
container is to be copied).

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_NOT_FOUND
 INVALID_AS_CONTAINER_NAME
 READONLY_AS_CONTAINER
 READONLY_CONTAINER

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN
 INVALID_TO_POOL_TOKEN

Chapter 95. Program Manager Domain (PG) 1419

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_TOKEN_OUT
Optional Parameter

 is a token representing the new copy of the container.
GENERATION_NUMBER

Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

PGCR gate, PUT_CONTAINER function
The PUT_CONTAINER function of the PGCR gate is used to put data into a
container from an area provided by the caller.

Input Parameters
ITEM_DATA

The address and length of the put data.
CALLER

Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

CCSID
Optional Parameter

 is the default coded character set identifier (CCSID) for character data in this
channel.

CONTAINER_NAME
Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
CONVERT

Optional Parameter

 whether the data in the container should be converted.

Values for the parameter are:
 NO
 YES (default)

DATATYPE
Optional Parameter

 is the format of the data.

1420 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 BIT
 CHAR

POOL_TOKEN
Optional Parameter

 is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

PUT_TYPE
Optional Parameter

 whether the PUT data should be appended to the current contents of the
container or replace the current contents.

Values for the parameter are:
 APPEND
 REPLACE

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_INVALID
 DATATYPE_CHANGE
 INVALID_CONTAINER_NAME
 LENGTH_ERROR
 READONLY_CONTAINER

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER_TOKEN_OUT
Optional Parameter

 is a token representing the new copy of the container.
GENERATION_NUMBER

Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was last changed.

Chapter 95. Program Manager Domain (PG) 1421

INITIAL_GENERATION
Optional Parameter

 Every time a container in a container pool is changed or created the pool
generation number is incremented. This number is the number for the
container when the container was created.

PGCR gate, SET_CONTAINER function
The SET_CONTAINER function of the PGCR gate is used to change the attributes
of a container.

Input Parameters
CONTAINER_NAME

Optional Parameter

 is the name of the container to be copied.
CONTAINER_TOKEN

Optional Parameter

 is a token referencing the container to be copied.
POOL_TOKEN

Optional Parameter

 is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

TYPE
Optional Parameter

 whether the container is visible only to CICS, or to user programs as well.

Values for the parameter are:
 CICS
 USER

USERACCESS
Optional Parameter

 whether USER containers can be updated by API commands.

Values for the parameter are:
 ANY
 READONLY

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CONTAINER_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_CONTAINER_TOKEN
 INVALID_PARAMETERS
 INVALID_POOL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCR gate, STARTBR_CONTAINER function
The STARTBR_CONTAINER function of the PGCR gate is used to initiate a browse
of the containers in a specified container pool.

1422 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
POOL_TOKEN

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies
the container pool to be copied.

CALLER
Optional Parameter

 is the call part of an API call.

Values for the parameter are:
 EXEC
 SYSTEM

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_POOL_TOKEN

BROWSE_TOKEN
is a browse token referencing a container in the container pool. This container
is the first in the browse list.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGCR gate, TRACE_CONTAINERS function
The TRACE_CONTAINER function of the PGCR gate is used to initiate a trace of
the containers in a specified channel.

Input Parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_CHANNEL_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGDD gate, DEFINE_PROGRAM function
The DEFINE_PROGRAM function of the PGDD gate is used to define a program
resource.

Input Parameters
CATALOG_ADDRESS

is the token identifying the program resource to be defined.
INSTALL_TYPE

indicates how the program resource is defined and installed.

 Values for the parameter are:
 AUTO
 CATALOG
 GROUPLIST
 MANUAL
 RDO

Chapter 95. Program Manager Domain (PG) 1423

SYSAUTO
PROGRAM_NAME

is the name of the program resource to be defined.
AVAIL_STATUS

Optional Parameter

 defines whether (ENABLED) or not (DISABLED) the program can be used.

Values for the parameter are:
 DISABLED
 ENABLED

CEDF_STATUS
Optional Parameter

 indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF).

Values for the parameter are:
 CEDF
 NOCEDF

CONCURRENCY
Optional Parameter

 indicates whether the program is threadsafe or only quasi-reentrant.

Values for the parameter are:
 QUASIRENT
 THREADSAFE

DATA_LOCATION
Optional Parameter

 defines whether the program can handle only 24-bit addresses (data located
below the 16MB line) can handle 31-bit addresses (data located above or below
the 16MB line). The DATALOCATION options are independent from the
addressing mode of the link-edited program.

Values for the parameter are:
 ANY
 BELOW

DYNAMIC_STATUS
Optional Parameter

 indicates whether or not a request to LINK to the program may be
dynamically routed.

Values for the parameter are:
 DYNAMIC
 NOTDYNAMIC

EXECUTION_KEY
Optional Parameter

 is the key in which CICS gives control to the program, and determines
whether the program can modify CICS-key storage. If the program is
link-edited with the RENT attribute and the RMODE(ANY) mode statement,
CICS loads the program into extended the read-only DSA(ERDSA), regardless
of the EXECKEY option. The ERDSA is allocated from read-only extended
storage only if RENTPGM=PROTECT is specified as a system initialization
parameter.

Values for the parameter are:
 CICS
 USER

1424 CICS TS for z/OS 4.1: Diagnosis Reference

EXECUTION_SET
Optional Parameter

 indicates whether you want CICS to link to and run the program as if it were
running in a remote CICS region (with or without the API restrictions of a DPL
program).

Values for the parameter are:
 DPLSUBSET
 FULLAPI

HOTPOOL
Optional Parameter

 indicates whether or not the Java program object is to be run in a preinitialized
Language Environment enclave reused by multiple invocations of the program,
under control of an H8 TCB. This parameter is obsolete and is ignored.

Values for the parameter are:
 NO
 YES

JVM
Optional Parameter

 indicates whether or not the program is to be executed under the control of a
JVM (Java Virtual Machine).

Values for the parameter are:
 NO
 YES

JVM_CLASS
Optional Parameter

 is the name of the main class in a Java program to be run under the control of
a JVM.

JVM_PROFILE
Optional Parameter

 specifies the name of the data set member that contains the JVM profile.. The
named profile provides the attributes of the JVM that is needed to execute the
program.

LANGUAGE_DEFINED
Optional Parameter

 is the language to be defined for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 C370
 LE370
 NOT_DEFINED
 PLI

MODULE_TYPE
Optional Parameter

 is the type of program resource to be defined.

Values for the parameter are:
 MAPSET
 PARTITIONSET
 PROGRAM

Chapter 95. Program Manager Domain (PG) 1425

MULTITCB
Optional Parameter

 is reserved for future use

Values for the parameter are:
 NO
 YES

OPENAPI
Optional Parameter

 is reserved for future use

Values for the parameter are:
 NO
 YES

PROGRAM_ATTRIBUTE
Optional Parameter

 defines the residence status of the program, and when the storage for this
program is released.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_TYPE
Optional Parameter

 is the type of program.

Values for the parameter are:
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 defines whether the program is to be used as a CICS nucleus program or as a
user application program.

Values for the parameter are:
 APPLICATION
 NUCLEUS

REMOTE_PROGID
Optional Parameter

 is the name by which the program is known in the remote CICS region. If you
specify REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID
parameter defaults to the same name as the local name (that is, the
PROGRAM_NAME value).

REMOTE_SYSID
Optional Parameter

 is the name of a remote CICS region if you want CICS to ship a distributed
program link (DPL) request to another CICS region.

REMOTE_TRANID
Optional Parameter

1426 CICS TS for z/OS 4.1: Diagnosis Reference

is the name of the transaction you want the remote CICS to attach, and under
which it is to run the remote program.

REQUIRED_AMODE
Optional Parameter

 is the addressing mode of the program.

Values for the parameter are:
 AMODE_ANY
 24
 31

REQUIRED_RMODE
Optional Parameter

 is the residence mode of the program.

Values for the parameter are:
 RMODE_ANY
 24

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL
 INSUFFICIENT_STORAGE
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_ALREADY_DEFINED
 PROGRAM_HAS_HOTPOOL
 PROGRAM_IN_USE

The following values are returned when RESPONSE is INVALID:
 INVALID_CATALOG_ADDRESS
 INVALID_MODE_COMBINATION
 INVALID_PROGRAM_NAME
 INVALID_TYPE_ATTRIB_COMBIN

The values for the parameter are:
 NO_REASON

NEW_PROGRAM_TOKEN
is the token assigned to program.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGDD gate, DELETE_PROGRAM function
The DELETE_PROGRAM function of the PGDD gate is used to delete a program
resource.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

Chapter 95. Program Manager Domain (PG) 1427

ABEND
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_IN_USE
 PROGRAM_IS_URM
 PROGRAM_NAME_STARTS_DFH
 PROGRAM_NOT_DEFINED

The values for the parameter are:
 NO_REASON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGEX gate, INITIALIZE_EXIT function
The INITIALIZE_EXIT function of the PGEX gate is used to initialize an exit
program.

Input Parameters
LOAD_PROGRAM

defines whether or not the program is to be loaded when initialized.

 Values for the parameter are:
 NO
 YES

PROGRAM_NAME
is the name of the program resource to be defined.

SYSTEM_AUTOINSTALL
defines whether CICS is to autoinstall the program if there is no associated
PROGRAM resource definition.

 Values for the parameter are:
 NO
 YES

LPA_ELIGIBLE
Optional Parameter

 defines whether or not the program can be loaded into the link pack area
(LPA).

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 INVALID_FUNCTION
 INVALID_INITIALIZE_REQUEST
 JVM_PROGRAM
 LOOP
 PROGRAM_NOT_AUTHORIZED

1428 CICS TS for z/OS 4.1: Diagnosis Reference

PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM

PROGRAM_TOKEN
is the token assigned to program.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ENTRY_POINT
Optional Parameter

 is the token defining the entry point of the program.

PGEX gate, TERMINATE_EXIT function
The TERMINATE_EXIT function of the PGEX gate is used to terminate an exit
program.

Input Parameters
PROGRAM_TOKEN

is the token identifying the program to be terminated.
RELEASE_PROGRAM

defines whether or not the program is to be released when terminated.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_FUNCTION
 INVALID_PROGRAM_TOKEN
 LOOP
 PROGRAM_NOT_AUTHORIZED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_IN_USE
 PROGRAM_NOT_LOADED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGHM gate, CLEAR_LABELS function
The CLEAR_LABELS function of the PGHM gate is invoked by CICS during XCTL
processing and frees all storage relating to the Handle State for that program
(except for the initial default state) and removes all user-defined label handles.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:

Chapter 95. Program Manager Domain (PG) 1429

INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FASTPATH_FLAGS
Optional Parameter

 identifies the fastpath flag settings for the following conditions handled by the
user: RDATT, WRBRK, EOF, NOSPACE, QBUSY, NOSTG, ENQBUSY,
NOJBUFSP, SIGNAL, OVERFLOW, SYSBUSY, SESSBUSY.

PGHM gate, FREE_HANDLE_TABLES function
The FREE_HANDLE_TABLES function of the PGHM gate is invoked by CICS
during program termination processing and frees all storage relating to the Handle
State for that program level.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGHM gate, IGNORE_CONDITIONS function
The IGNORE_CONDITIONS function of the PGHM gate is used to ignore the
conditions for user EXEC CICS IGNORE CONDITION commands.

Input Parameters
IDENTIFIERS

is the token identifying the conditions to be handled.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FASTPATH_FLAGS
Optional Parameter

 identifies the fastpath flag settings for the following conditions handled by the
user: RDATT, WRBRK, EOF, NOSPACE, QBUSY, NOSTG, ENQBUSY,
NOJBUFSP, SIGNAL, OVERFLOW, SYSBUSY, SESSBUSY.

1430 CICS TS for z/OS 4.1: Diagnosis Reference

PGHM gate, INQ_ABEND function
The INQ_ABEND function of the PGHM gate is invoked when an abend has
occurred, and returns to the caller details of the handle abend for user EXEC CICS
HANDLE AID commands.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
identifies the status of the condition.

 Values for the parameter are:
 HANDLED
 SYSTEM_DEFAULT

CURRENT_EXECUTION_KEY
Optional Parameter

 is an 8-bit value indicating the current program execution key (at the time the
EXEC CICS HANDLE CONDITION command was issued).

GOTOL
Optional Parameter

 is the token identifying the condition label within the program to be branched
to if the condition is ignored.

HANDLE_COUNT
Optional Parameter

 is the number of times that this abend code has been handled.
HANDLE_TYPE

Optional Parameter

 indicates whether control should be passed to a label or a program when the
abend occurs.

Values for the parameter are:
 LBL
 PGM

LABEL
Optional Parameter

 is the token identifying the condition label within the program to be branched
to if the condition occurs.

LANGUAGE
Optional Parameter

 is the program language.

Values for the parameter are:
 ASSEMBLER
 COBOL
 CPP

Chapter 95. Program Manager Domain (PG) 1431

C370
 PLI

PROGRAM
Optional Parameter

 is the name of the program to which control was passed when the abend
occurred.

PROGRAM_MASK
Optional Parameter

 identifies the program mask at the time the HANDLE CONDITION command
was executed.

USERS_RSA_POINTER
Optional Parameter

 is the address of the user program Register Save Area into which the
program's registers are saved at each EXEC CICS command execution.

PGHM gate, INQ_AID function
The INQ_AID function of the PGHM gate is invoked when an aid has occurred,
and returns to the caller details of the handle aid for user EXEC CICS HANDLE
AID commands.

Input Parameters
AID

is an 8-bit value identifying the aid.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
identifies the status of the condition.

 Values for the parameter are:
 HANDLED
 SYSTEM_DEFAULT

CURRENT_EXECUTION_KEY
Optional Parameter

 is an 8-bit value indicating the current program execution key (at the time the
EXEC CICS HANDLE CONDITION command was issued).

GOTOL
Optional Parameter

 is the token identifying the condition label within the program to be branched
to if the condition is ignored.

LABEL
Optional Parameter

1432 CICS TS for z/OS 4.1: Diagnosis Reference

is the token identifying the condition label within the program to be branched
to if the condition occurs.

LANGUAGE
Optional Parameter

 is the program language.

Values for the parameter are:
 ASSEMBLER
 COBOL
 CPP
 C370
 PLI

PROGRAM_MASK
Optional Parameter

 identifies the program mask at the time the HANDLE CONDITION command
was executed.

USERS_RSA_POINTER
Optional Parameter

 is the address of the user program Register Save Area into which the
program's registers are saved at each EXEC CICS command execution.

PGHM gate, INQ_CONDITION function
The INQ_CONDITION function of the PGHM gate is invoked when a condition
has occurred, and returns to the caller about details of the condition for user EXEC
CICS HANDLE CONDITION commands.

Input Parameters
CONDITION

is an 8-bit value identifying the condition.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
identifies the status of the condition.

 Values for the parameter are:
 HANDLED
 IGNORED
 SYSTEM_DEFAULT

ABEND_CODE
Optional Parameter

 is the four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

CURRENT_EXECUTION_KEY
Optional Parameter

Chapter 95. Program Manager Domain (PG) 1433

is an 8-bit value indicating the current program execution key (at the time the
EXEC CICS HANDLE CONDITION command was issued).

GOTOL
Optional Parameter

 is the token identifying the condition label within the program to be branched
to if the condition is ignored.

LABEL
Optional Parameter

 is the token identifying the condition label within the program to be branched
to if the condition occurs.

LANGUAGE
Optional Parameter

 is the program language.

Values for the parameter are:
 ASSEMBLER
 COBOL
 CPP
 C370
 PLI

PROGRAM_MASK
Optional Parameter

 identifies the program mask at the time the HANDLE CONDITION command
was executed.

USERS_RSA_POINTER
Optional Parameter

 is the address of the user program Register Save Area into which the
program's registers are saved at each EXEC CICS command execution.

PGHM gate, POP_HANDLE function
The POP_HANDLE function of the PGHM gate is invoked for a user EXEC CICS
POP command.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 NO_PREVIOUS_PUSH

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FASTPATH_FLAGS
Optional Parameter

 identifies the fastpath flag settings for the following conditions handled by the
user: RDATT, WRBRK, EOF, NOSPACE, QBUSY, NOSTG, ENQBUSY,
NOJBUFSP, SIGNAL, OVERFLOW, SYSBUSY, SESSBUSY.

1434 CICS TS for z/OS 4.1: Diagnosis Reference

PGHM gate, PUSH_HANDLE function
The PUSH_HANDLE function of the PGHM gate is invoked for a user EXEC CICS
PUSH command.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FASTPATH_FLAGS
Optional Parameter

 identifies the fastpath flag settings for the following conditions handled by the
user: RDATT, WRBRK, EOF, NOSPACE, QBUSY, NOSTG, ENQBUSY,
NOJBUFSP, SIGNAL, OVERFLOW, SYSBUSY, SESSBUSY.

PGHM gate, SET_ABEND function
The SET_ABEND function of the PGHM gate is invoked in response to a user
EXEC CICS HANDLE ABEND command, and saves the details of the handle into
the current abend Handle Table.

Input Parameters
OPERATION

identifies what is to be done if the abend occurs.

 Values for the parameter are:
 CANCEL
 HANDLE
 RESET

AMODE
Optional Parameter

 is the addressing mode (24-bit or 31-bit) of the program at the time the handle
command was driven.

Values for the parameter are:
 AMODE24
 AMODE31

CURRENT_EXECUTION_KEY
Optional Parameter

 is an 8-bit value indicating the current program execution key (at the time the
EXEC CICS HANDLE CONDITION command was issued).

LABEL
Optional Parameter

 is the token identifying the condition label within the program to be branched
to if the abend occurs. Specify either the LABEL parameter or the PROGRAM
parameter, not both.

LANGUAGE
Optional Parameter

Chapter 95. Program Manager Domain (PG) 1435

is the program language.

Values for the parameter are:
 ASSEMBLER
 COBOL
 CPP
 C370
 PLI

PROGRAM
Optional Parameter

 is the name of the program to which control will be passed if the abend occurs.
Specify either the LABEL parameter or the PROGRAM parameter, not both.

USERS_RSA_POINTER
Optional Parameter

 is the address of the user program Register Save Area into which the
program's registers are saved at each EXEC CICS command execution.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGHM gate, SET_AIDS function
The SET_AIDS function of the PGHM gate is invoked in response to a user EXEC
CICS HANDLE AID command, and saves the details of the handle into the current
aid Handle Table.

Input Parameters
IDENTIFIERS

is the token identifying the conditions to be handled.
LABELS_FLAGS

is the token identifying the number of conditions in this command that have
associated labels.

AMODE
Optional Parameter

 is the addressing mode (24-bit or 31-bit) of the program at the time the handle
command was driven.

Values for the parameter are:
 AMODE24
 AMODE31

CURRENT_EXECUTION_KEY
Optional Parameter

 is an 8-bit value indicating the current program execution key (at the time the
EXEC CICS HANDLE CONDITION command was issued).

LABELS
Optional Parameter

1436 CICS TS for z/OS 4.1: Diagnosis Reference

is the token identifying the condition labels (the locations within the program
to be branched to if the condition occurs).

LANGUAGE
Optional Parameter

 is the program language.

Values for the parameter are:
 ASSEMBLER
 COBOL
 CPP
 C370
 PLI

USERS_RSA_POINTER
Optional Parameter

 is the address of the user program Register Save Area into which the
program's registers are saved at each EXEC CICS command execution.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGHM gate, SET_CONDITIONS function
The SET_CONDITIONS function of the PGHM gate is used to process for user
EXEC CICS HANDLE CONDITION commands, and to save the details of the
condition into the current condition handle table.

Input Parameters
IDENTIFIERS

is the token identifying the conditions to be handled.
LABELS_FLAGS

is the token identifying the number of conditions in this command that have
associated labels.

AMODE
Optional Parameter

 is the addressing mode (24-bit or 31-bit) of the program at the time the handle
command was driven.

Values for the parameter are:
 AMODE24
 AMODE31

CURRENT_EXECUTION_KEY
Optional Parameter

 is an 8-bit value indicating the current program execution key (at the time the
EXEC CICS HANDLE CONDITION command was issued).

LABELS
Optional Parameter

Chapter 95. Program Manager Domain (PG) 1437

is the token identifying the condition labels (the locations within the program
to be branched to if the condition occurs).

LANGUAGE
Optional Parameter

 is the program language.

Values for the parameter are:
 ASSEMBLER
 COBOL
 CPP
 C370
 PLI

USERS_RSA_POINTER
Optional Parameter

 is the address of the user program Register Save Area into which the
program's registers are saved at each EXEC CICS command execution.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION
 MISSING_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FASTPATH_FLAGS
Optional Parameter

 identifies the fastpath flag settings for the following conditions handled by the
user: RDATT, WRBRK, EOF, NOSPACE, QBUSY, NOSTG, ENQBUSY,
NOJBUFSP, SIGNAL, OVERFLOW, SYSBUSY, SESSBUSY.

PGIS gate, END_BROWSE_PROGRAM function
The END_BROWSE_PROGRAM function of the PGIS gate is used to end browsing
through program definitions.

Input Parameters
BROWSE_TOKEN

is a browse token referencing the next container in the container pool being
browsed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

The values for the parameter are:
 NO_REASON

1438 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGIS gate, GET_NEXT_PROGRAM function
The GET_NEXT_PROGRAM function of the PGIS gate is used to get the next
program definition to be browse.

Input Parameters
BROWSE_TOKEN

is a browse token referencing the next container in the container pool being
browsed.

JVM_CLASS
Optional Parameter

 is the name of the main class in a Java program to be run under the control of
a JVM.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 END_LIST
 INVALID_BROWSE_TOKEN
 PROGRAM_NOT_DEFINED_TO_LD

The values for the parameter are:
 NO_REASON

PROGRAM_NAME
is the name of the program.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS
Optional Parameter

 is the type of access for the program.

Values for the parameter are:
 CICS
 NONE
 READ_ONLY
 USER

APIST
Optional Parameter

 Indicates if the program is restricted to use of the CICS permitted application
programming interfaces only.

Values for the parameter are:
 CICSAPI
 OPENAPI

AVAIL_STATUS
Optional Parameter

 defines whether (ENABLED) or not (DISABLED) the program can be used.

Chapter 95. Program Manager Domain (PG) 1439

Values for the parameter are:
 DISABLED
 ENABLED

CEDF_STATUS
Optional Parameter

 indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF).

Values for the parameter are:
 CEDF
 NOCEDF
 NOT_APPLIC

CONCURRENCY
Optional Parameter

 indicates whether the program is threadsafe or only quasi-reentrant.

Values for the parameter are:
 QUASIRENT
 THREADSAFE

DATA_LOCATION
Optional Parameter

 defines whether the program can handle only 24-bit addresses (data located
below the 16MB line) can handle 31-bit addresses (data located above or below
the 16MB line). The DATALOCATION options are independent from the
addressing mode of the link-edited program.

Values for the parameter are:
 ANY
 BELOW
 NOT_APPLIC

DYNAMIC_STATUS
Optional Parameter

 indicates whether or not a request to LINK to the program may be
dynamically routed.

Values for the parameter are:
 DYNAMIC
 NOTDYNAMIC

ENTRY_POINT
Optional Parameter

 is the token defining the entry point of the program.
EXECUTION_KEY

Optional Parameter

 is the key in which CICS gives control to the program, and determines
whether the program can modify CICS-key storage. If the program is
link-edited with the RENT attribute and the RMODE(ANY) mode statement,
CICS loads the program into extended the read-only DSA(ERDSA), regardless
of the EXECKEY option. The ERDSA is allocated from read-only extended
storage only if RENTPGM=PROTECT is specified as a system initialization
parameter.

Values for the parameter are:
 CICS
 NOT_APPLIC
 USER

1440 CICS TS for z/OS 4.1: Diagnosis Reference

EXECUTION_SET
Optional Parameter

 indicates whether you want CICS to link to and run the program as if it were
running in a remote CICS region (with or without the API restrictions of a DPL
program).

Values for the parameter are:
 DPLSUBSET
 FULLAPI
 NOT_APPLIC

HOLD_STATUS
Optional Parameter

 is the hold status of the program (that is, for how long the program is to be
loaded).

Values for the parameter are:
 CICS_LIFE
 NOT_APPLIC
 TASK_LIFE

INSTALL_TYPE
Optional Parameter

 is the method used to install the PROGRAM resource definition.

Values for the parameter are:
 AUTO
 CATALOG
 GROUPLIST
 MANUAL
 RDO
 SYSAUTO

JVM
Optional Parameter

 indicates whether or not the program is to be executed under the control of a
JVM (Java Virtual Machine).

Values for the parameter are:
 NO
 YES

JVM_PROFILE
Optional Parameter

 specifies the name of the JVM profile. The named profile provides the
attributes of the JVM that is needed to execute the program.

JVMPROGRAM_USE_COUNT
Optional Parameter

 For Java programs to be run under the control of a JVM, the number of times
the program has been used.

LANGUAGE_DEDUCED
Optional Parameter

 is the language deduced by CICS for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 COBOL2
 C370

Chapter 95. Program Manager Domain (PG) 1441

JAVA
 LE370
 NOT_APPLIC
 NOT_DEDUCED
 PLI

LANGUAGE_DEFINED
Optional Parameter

 is the language defined for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 C370
 LE370
 NOT_APPLIC
 NOT_DEFINED
 PLI

LANGUAGE_TOKEN
Optional Parameter

 is a token representing the AP domain language block for the program.
LIBRARY

Optional Parameter

 is the name of the LIBRARY concatenation from which the program was
loaded.

LIBRARYDSN
Optional Parameter

 is the name of the data set within the LIBRARY concatenation from which the
program was loaded.

LOAD_POINT
Optional Parameter

 is the load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

LOAD_STATUS
Optional Parameter

 is the load status of the program (that is, whether or not the program can be
loaded).

Values for the parameter are:
 LOADABLE
 NOT_APPLIC
 NOT_LOADABLE
 NOT_LOADED

LOCATION
Optional Parameter

 defines where the program resides.

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE

1442 CICS TS for z/OS 4.1: Diagnosis Reference

RDSA
 SDSA

MODULE_TYPE
Optional Parameter

 is the type of program resource to be defined.

Values for the parameter are:
 MAPSET
 PARTITIONSET
 PROGRAM

NEW_PROGRAM_TOKEN
Optional Parameter

 is the token assigned to program.
PROGRAM_ATTRIBUTE

Optional Parameter

 defines the residence status of the program, and when the storage for this
program is released.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_LENGTH
Optional Parameter

 is the length of the program. returned by the loader domain on the
ACQUIRE_PROGRAM call.

PROGRAM_TYPE
Optional Parameter

 is the type of program.

Values for the parameter are:
 NOT_APPLIC
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 defines whether the program is to be used as a CICS nucleus program or as a
user application program.

Values for the parameter are:
 APPLICATION
 NUCLEUS

PROGRAM_USE_COUNT
Optional Parameter

 is the number of times that the program has been used.
PROGRAM_USER_COUNT

Optional Parameter

 is the number of different users that have invoked the program.
REMOTE_DEFINITION

Optional Parameter

Chapter 95. Program Manager Domain (PG) 1443

indicates whether the program is defined as remote or local.

Values for the parameter are:
 LOCAL
 REMOTE

REMOTE_PROGID
Optional Parameter

 is the name by which the program is known in the remote CICS region. If you
specify REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID
parameter defaults to the same name as the local name (that is, the
PROGRAM_NAME value.

REMOTE_SYSID
Optional Parameter

 is the name of a remote CICS region if you want CICS to ship a distributed
program link (DPL) request to another CICS region.

REMOTE_TRANID
Optional Parameter

 is the name of the transaction you want the remote CICS to attach, and under
which it is to run the remote program.

RUNTIME_ENVIRONMENT
Optional Parameter

 indicates the runtime environment used for the execution of this program.

Values for the parameter are:
 JVM_RUNTIME
 LE370_RUNTIME
 NON_LE370_RUNTIME
 NOT_APPLIC
 UNKNOWN_RUNTIME
 XPLINK_RUNTIME

SPECIFIED_AMODE
Optional Parameter

 is the addressing mode of the program.

Values for the parameter are:
 AMODE_ANY
 AMODE_NOT_SPECIFIED
 24
 31

SPECIFIED_RMODE
Optional Parameter

 is the residence mode of the program.

Values for the parameter are:
 RMODE_ANY
 RMODE_NOT_SPECIFIED
 24

PGIS gate, INQUIRE_CURRENT_PROGRAM function
The INQUIRE_CURRENT_PROGRAM function of the PGIS gate is used to inquire
about the current attributes of a program (for the current invocation of the
program).

1444 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
PROGRAM_TOKEN

Optional parameter

 A token identifying the program to be terminated.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 NO_CURRENT_PROGRAM

The values for the parameter are:
 NO_REASON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AVAIL_STATUS
Optional parameter

 Indicates whether or not the program can be used.

Values for the parameter are:
 DISABLED
 ENABLED

CEDF_STATUS
Optional parameter

 Indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF)

Values for the parameter are:
 CEDF
 NOCEDF
 NOT_APPLIC

CURRENT_AMODE
Optional parameter

 The addressing mode of the program.

Values for the parameter are:
 24
 31

CURRENT_CEDF_STATUS
Optional parameter

 Indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF).

Values for the parameter are:
 CEDF
 NOCEDF

CURRENT_ENTRY_POINT
Optional parameter

 The current entry point address of the program returned by the loader domain
on the ACQUIRE_PROGRAM call.

CURRENT_ENVIRONMENT
Optional parameter

Chapter 95. Program Manager Domain (PG) 1445

Indicates the current environment in which the program is running.

Values for the parameter are:
 EXEC
 GLUE
 PLT
 SYSTEM
 TRUE
 URM

CURRENT_EXECUTION_SET
Optional parameter

 Indicates whether the program is running with or without the API restrictions
of a DPL program.

Values for the parameter are:
 DPLSUBSET
 FULLAPI

CURRENT_LOAD_POINT
Optional parameter

 The current load point address of the program returned by the loader domain
on the ACQUIRE_PROGRAM call.

CURRENT_PROGRAM_LENGTH
Optional parameter

 The length of the current program in bytes, as returned by the Loader Domain
on the AQUIRE_PROGRAM call.

CURRENT_PROGRAM_NAME
Optional parameter

 The current name of the program.
DATA_LOCATION

Optional parameter

 Indicates whether the program can handle only 24-bit addresses (data located
below the 16MB line) can handle 31-bit addresses (data located above or below
the 16MB line). The DATALOCATION options are independent from the
addressing mode of the link-edited program.

Values for the parameter are:
 ANY
 BELOW
 NOT_APPLIC

DYNAMIC_STATUS
Optional parameter

 Indicates whether or not a request to LINK to the program may be
dynamically routed.

Values for the parameter are:
 DYNAMIC
 NOTDYNAMIC

EXECUTION_KEY
Optional parameter

 The key in which CICS gives control to the program, and determines whether
the program can modify CICS-key storage. If the program is link-edited with
the RENT attribute and the RMODE(ANY) mode statement, CICS loads the
program into extended the read-only DSA(ERDSA), regardless of the

1446 CICS TS for z/OS 4.1: Diagnosis Reference

EXECKEY option. The ERDSA is allocated from read-only extended storage
only if RENTPGM=PROTECT is specified as a system initialization parameter.

Values for the parameter are:
 CICS
 NOT_APPLIC
 USER

EXECUTION_SET
Optional parameter

 Indicates whether you want CICS to link to and run the program as if it were
running in a remote CICS region (with or without the API restrictions of a DPL
program).

Values for the parameter are:
 DPLSUBSET
 FULLAPI
 NOT_APPLIC

HOLD_STATUS
Optional parameter

 The hold status of the program (that is, for how long the program is to be
loaded).

Values for the parameter are:
 CICS_LIFE
 NOT_APPLIC
 TASK_LIFE

IGNORE_EXITS
Optional parameter

 Indicates whether global user exit programs and task-related user exit
programs are ignored when returning information about the program invoking
this program and to which control will be returned.

Values for the parameter are:
 YES
 NO

INSTALL_TYPE
Optional parameter

 The method used to install the PROGRAM resource definition.

Values for the parameter are:
 AUTO
 CATALOG
 GROUPLIST
 MANUAL
 RDO
 SYSAUTO

INVOKING_ENVIRONMENT
Optional parameter

 The environment in which the program invoking this program was executing.

Values for the parameter are:
 EXEC
 GLUE
 PLT
 SYSTEM
 TRUE

Chapter 95. Program Manager Domain (PG) 1447

URM
INVOKING_PROGRAM_NAME

Optional parameter

 The name of the program invoking this program.
LANGUAGE_DEDUCED

Optional parameter

 The language deduced by CICS for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 COBOL2
 C370
 JAVA
 LE370
 NOT_APPLIC
 NOT_DEDUCED
 PLI

LANGUAGE_DEFINED
Optional parameter

 The language defined for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 C370
 LE370
 NOT_APPLIC
 NOT_DEFINED
 PLI

LIBRARY
Optional parameter

 The name of the LIBRARY concatenation from which the program was loaded.
LIBRARYDSN

Optional parameter

 The name of the data set within the LIBRARY concatenation from which the
program was loaded.

LOAD_STATUS
Optional parameter

 The load status of the program (that is, whether or not the program can be
loaded).

Values for the parameter are:
 LOADABLE
 NOT_APPLIC
 NOT_LOADABLE
 NOT_LOADED

MODULE_TYPE
Optional parameter

 The type of program resource to be defined.

Values for the parameter are:
 MAPSET
 PARTITIONSET

1448 CICS TS for z/OS 4.1: Diagnosis Reference

PROGRAM
NEW_PROGRAM_TOKEN

Optional parameter

 The token assigned to program.
REMOTE_DEFINITION

Optional parameter

 Indicates whether the program is defined as remote or local.

Values for the parameter are:
 LOCAL
 REMOTE

REMOTE_PROGID
Optional parameter

 The name by which the program is known in the remote CICS region. If you
specify REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID
parameter defaults to the same name as the local name (that is, the
PROGRAM_NAME value).

REMOTE_SYSID
Optional parameter

 The name of a remote CICS region if you want CICS to ship a distributed
program link (DPL) request to another CICS region.

REMOTE_TRANID
Optional parameter

 The name of the transaction you want the remote CICS to attach, and under
which it is to run the remote program.

RETURN_PROGRAM_NAME
Optional parameter

 The name of the program to which control will be returned when this program
has ended.

PGIS gate, INQUIRE_PROGRAM function
The INQUIRE_PROGRAM function of the PGIS gate is used to inquire about
attributes of a program.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
PROGRAM_TOKEN

is the token identifying the program to be terminated.
JVM_CLASS

Optional Parameter

 is the name of the main class in a Java program to be run under the control of
a JVM.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_NOT_DEFINED_TO_LD
 PROGRAM_NOT_DEFINED_TO_PG

Chapter 95. Program Manager Domain (PG) 1449

The following values are returned when RESPONSE is INVALID:
 INVALID_PROGRAM_TOKEN

The values for the parameter are:
 NO_REASON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS
Optional Parameter

 is the type of access for the program.

Values for the parameter are:
 CICS
 NONE
 READ_ONLY
 USER

APIST
Optional Parameter

 Indicates if the program is restricted to use of the CICS permitted application
programming interfaces only.

Values for the parameter are:
 CICSAPI
 OPENAPI

AVAIL_STATUS
Optional Parameter

 defines whether (ENABLED) or not (DISABLED) the program can be used.

Values for the parameter are:
 DISABLED
 ENABLED

CEDF_STATUS
Optional Parameter

 indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF).

Values for the parameter are:
 CEDF
 NOCEDF
 NOT_APPLIC

CONCURRENCY
Optional Parameter

 indicates whether the program is threadsafe or only quasi-reentrant.

Values for the parameter are:
 QUASIRENT
 THREADSAFE

DATA_LOCATION
Optional Parameter

 defines whether the program can handle only 24-bit addresses (data located
below the 16MB line) can handle 31-bit addresses (data located above or below
the 16MB line). The DATALOCATION options are independent from the
addressing mode of the link-edited program.

Values for the parameter are:

1450 CICS TS for z/OS 4.1: Diagnosis Reference

ANY
 BELOW
 NOT_APPLIC

DYNAMIC_STATUS
Optional Parameter

 indicates whether or not a request to LINK to the program may be
dynamically routed.

Values for the parameter are:
 DYNAMIC
 NOTDYNAMIC

ENTRY_POINT
Optional Parameter

 is the token defining the entry point of the program.
EXECUTION_KEY

Optional Parameter

 is the key in which CICS gives control to the program, and determines
whether the program can modify CICS-key storage. If the program is
link-edited with the RENT attribute and the RMODE(ANY) mode statement,
CICS loads the program into extended the read-only DSA(ERDSA), regardless
of the EXECKEY option. The ERDSA is allocated from read-only extended
storage only if RENTPGM=PROTECT is specified as a system initialization
parameter.

Values for the parameter are:
 CICS
 NOT_APPLIC
 USER

EXECUTION_SET
Optional Parameter

 indicates whether you want CICS to link to and run the program as if it were
running in a remote CICS region (with or without the API restrictions of a DPL
program).

Values for the parameter are:
 DPLSUBSET
 FULLAPI
 NOT_APPLIC

HOLD_STATUS
Optional Parameter

 is the hold status of the program (that is, for how long the program is to be
loaded).

Values for the parameter are:
 CICS_LIFE
 NOT_APPLIC
 TASK_LIFE

INSTALL_TYPE
Optional Parameter

 is the method used to install the PROGRAM resource definition.

Values for the parameter are:
 AUTO
 CATALOG
 GROUPLIST

Chapter 95. Program Manager Domain (PG) 1451

MANUAL
 RDO
 SYSAUTO

JVM
Optional Parameter

 indicates whether or not the program is to be executed under the control of a
JVM (Java Virtual Machine).

Values for the parameter are:
 NO
 YES

JVM_PROFILE
Optional Parameter

 specifies the name of the JVM profile. The named profile provides the
attributes of the JVM that is needed to execute the program.

JVMPROGRAM_USE_COUNT
Optional Parameter

 For Java programs to be run under the control of a JVM, the number of times
the program has been used.

LANGUAGE_DEDUCED
Optional Parameter

 is the language deduced by CICS for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 COBOL2
 C370
 JAVA
 LE370
 NOT_APPLIC
 NOT_DEDUCED
 PLI

LANGUAGE_DEFINED
Optional Parameter

 is the language defined for the program.

Values for the parameter are:
 ASSEMBLER
 COBOL
 C370
 LE370
 NOT_APPLIC
 NOT_DEFINED
 PLI

LANGUAGE_TOKEN
Optional Parameter

 is a token representing the AP domain language block for the program.
LIBRARY

Optional Parameter

 is the name of the LIBRARY concatenation from which the program was
loaded.

LIBRARYDSN
Optional Parameter

1452 CICS TS for z/OS 4.1: Diagnosis Reference

is the name of the data set within the LIBRARY concatenation from which the
program was loaded.

LOAD_POINT
Optional Parameter

 is the load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

LOAD_STATUS
Optional Parameter

 is the load status of the program (that is, whether or not the program can be
loaded).

Values for the parameter are:
 LOADABLE
 NOT_APPLIC
 NOT_LOADABLE
 NOT_LOADED

LOADER_TOKEN
Optional Parameter

 The token that the loader domain uses to identify the program.
LOCATION

Optional Parameter

 defines where the program resides.

Values for the parameter are:
 CDSA
 ECDSA
 ELPA
 ERDSA
 ESDSA
 LPA
 NONE
 RDSA
 SDSA

MODULE_TYPE
Optional Parameter

 is the type of program resource to be defined.

Values for the parameter are:
 MAPSET
 PARTITIONSET
 PROGRAM

NEW_PROGRAM_TOKEN
Optional Parameter

 is the token assigned to program.
PROGRAM_ATTRIBUTE

Optional Parameter

 defines the residence status of the program, and when the storage for this
program is released.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST

Chapter 95. Program Manager Domain (PG) 1453

TRANSIENT
PROGRAM_LENGTH

Optional Parameter

 is the length of the program. returned by the loader domain on the
ACQUIRE_PROGRAM call.

PROGRAM_TYPE
Optional Parameter

 is the type of program.

Values for the parameter are:
 NOT_APPLIC
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 defines whether the program is to be used as a CICS nucleus program or as a
user application program.

Values for the parameter are:
 APPLICATION
 NUCLEUS

PROGRAM_USE_COUNT
Optional Parameter

 is the number of times that the program has been used.
PROGRAM_USER_COUNT

Optional Parameter

 is the number of different users that have invoked the program.
REMOTE_DEFINITION

Optional Parameter

 indicates whether the program is defined as remote or local.

Values for the parameter are:
 LOCAL
 REMOTE

REMOTE_PROGID
Optional Parameter

 is the name by which the program is known in the remote CICS region. If you
specify REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID
parameter defaults to the same name as the local name (that is, the
PROGRAM_NAME value.

REMOTE_SYSID
Optional Parameter

 is the name of a remote CICS region if you want CICS to ship a distributed
program link (DPL) request to another CICS region.

REMOTE_TRANID
Optional Parameter

 is the name of the transaction you want the remote CICS to attach, and under
which it is to run the remote program.

RUNTIME_ENVIRONMENT
Optional Parameter

 indicates the runtime environment used for the execution of this program.

1454 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 JVM_RUNTIME
 LE370_RUNTIME
 NON_LE370_RUNTIME
 NOT_APPLIC
 UNKNOWN_RUNTIME
 XPLINK_RUNTIME

SPECIFIED_AMODE
Optional Parameter

 is the addressing mode of the program.

Values for the parameter are:
 AMODE_ANY
 AMODE_NOT_SPECIFIED
 24
 31

SPECIFIED_RMODE
Optional Parameter

 is the residence mode of the program.

Values for the parameter are:
 RMODE_ANY
 RMODE_NOT_SPECIFIED
 24

PGIS gate, REFRESH_PROGRAM function
The REFRESH_PROGRAM function of the PGIS gate is used to inform the loader
domain that a new copy of a named program is now available for use in the
relocatable program library.

Input Parameters
COPY

indicates whether a NEWCOPY or PHASEIN function is required.

 Values for the parameter are:
 NEWCOPY
 PHASEIN

PROGRAM_NAME
is the name of the program resource to be defined.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 PROGRAM_IN_USE
 PROGRAM_LOADED_CICS_LIFE
 PROGRAM_NOT_DEFINED_TO_LD
 PROGRAM_NOT_DEFINED_TO_PG
 PROGRAM_NOT_FOUND
 REMOTE_PROGRAM

The values for the parameter are:
 NO_REASON

Chapter 95. Program Manager Domain (PG) 1455

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

VERSION
Optional Parameter

 is the version of the program after the REFRESH_PROGRAM function call.

Values for the parameter are:
 NEW
 OLD

PGIS gate, SET_PROGRAM function
The SET_PROGRAM function of the PGIS gate is used to set the characteristics of
a program when it is loaded.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
PROGRAM_TOKEN

is the token identifying the program to be terminated.
AVAIL_STATUS

Optional Parameter

 defines whether (ENABLED) or not (DISABLED) the program can be used.

Values for the parameter are:
 DISABLED
 ENABLED

CEDF_STATUS
Optional Parameter

 indicates whether or not the EDF diagnostic screens are displayed when the
program is running under the control of the execution diagnostic facility (EDF).

Values for the parameter are:
 CEDF
 NOCEDF

EXECUTION_KEY
Optional Parameter

 is the key in which CICS gives control to the program, and determines
whether the program can modify CICS-key storage. If the program is
link-edited with the RENT attribute and the RMODE(ANY) mode statement,
CICS loads the program into extended the read-only DSA(ERDSA), regardless
of the EXECKEY option. The ERDSA is allocated from read-only extended
storage only if RENTPGM=PROTECT is specified as a system initialization
parameter.

Values for the parameter are:
 CICS
 USER

EXECUTION_SET
Optional Parameter

 indicates whether you want CICS to link to and run the program as if it were
running in a remote CICS region (with or without the API restrictions of a DPL
program).

Values for the parameter are:

1456 CICS TS for z/OS 4.1: Diagnosis Reference

DPLSUBSET
 FULLAPI

JVM
Optional Parameter

 indicates whether or not the program is to be executed under the control of a
JVM (Java Virtual Machine).

Values for the parameter are:
 NO
 YES

JVM_CLASS
Optional Parameter

 is the name of the main class in a Java program to be run under the control of
a JVM.

JVM_PROFILE
Optional Parameter

 specifies the name of the data set member that contains the JVM profile.. The
named profile provides the attributes of the JVM that is needed to execute the
program.

PROGRAM_ATTRIBUTE
Optional Parameter

 defines the residence status of the program, and when the storage for this
program is released.

Values for the parameter are:
 RELOAD
 RESIDENT
 REUSABLE
 TEST
 TRANSIENT

PROGRAM_TYPE
Optional Parameter

 is the type of program.

Values for the parameter are:
 PRIVATE
 SHARED
 TYPE_ANY

PROGRAM_USAGE
Optional Parameter

 defines whether the program is to be used as a CICS nucleus program or as a
user application program.

Values for the parameter are:
 APPLICATION
 NUCLEUS

REQUIRED_AMODE
Optional Parameter

 is the addressing mode of the program.

Values for the parameter are:
 AMODE_ANY
 24
 31

Chapter 95. Program Manager Domain (PG) 1457

REQUIRED_RMODE
Optional Parameter

 is the residence mode of the program.

Values for the parameter are:
 RMODE_ANY
 24

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CATALOG_ERROR
 CATALOG_NOT_OPERATIONAL
 INSUFFICIENT_STORAGE
 LOCK_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 CEDF_STATUS_NOT_FOR_MAPSET
 CEDF_STATUS_NOT_FOR_PTNSET
 CEDF_STATUS_NOT_FOR_REMOTE
 DEBUG_BUT_NO_JVM
 EXEC_KEY_NOT_FOR_MAPSET
 EXEC_KEY_NOT_FOR_PTNSET
 EXEC_KEY_NOT_FOR_REMOTE
 EXEC_SET_NOT_FOR_MAPSET
 EXEC_SET_NOT_FOR_PTNSET
 EXEC_SET_NOT_FOR_REMOTE
 JVM_BUT_NO_JVMCLASS
 PROG_TYPE_NOT_FOR_REMOTE
 PROGRAM_NOT_DEFINED_TO_LD
 PROGRAM_NOT_DEFINED_TO_PG
 PROGRAM_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_MODE_COMBINATION
 INVALID_PROGRAM_NAME
 INVALID_PROGRAM_TOKEN
 INVALID_TYPE_ATTRIB_COMBIN

The values for the parameter are:
 NO_REASON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGIS gate, START_BROWSE_PROGRAM function
The START_BROWSE_PROGRAM function of the PGIS gate is used to start
browsing through program definitions, optionally starting at the given program
definition.

Input Parameters
PROGRAM_NAME

Optional Parameter

 is the name of the program resource to be defined.

1458 CICS TS for z/OS 4.1: Diagnosis Reference

TASK_RELATED
Optional Parameter

 indicates whether or not the browse is task-related. If it is task-related, storage
will be obtained from the CICS storage class rather than the directory browse
subpool. The default is YES.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_DIRECTORY
 LOCK_ERROR

The values for the parameter are:
 NO_REASON

BROWSE_TOKEN
is a browse token referencing a container in the container pool. This container
is the first in the browse list.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLD gate, LOAD function
The LOAD function of the PGLD gate is used to load a program in response to a
CICS internal load request.

Input Parameters
HOLD_LIFETIME

determines for how long the program is to be loaded; that is, for the life-time
of CICS (or until explicitly deleted) or for the lifetime of the task (unless
explicitly deleted by the task).

 Values for the parameter are:
 CALLER_MANAGED
 CICS_LIFE
 TASK_LIFE

MODULE_TYPE
is the type of program resource to be defined.

 Values for the parameter are:
 MAPSET
 PARTITIONSET
 PROGRAM

PROGRAM_NAME
is the name of the program resource to be defined.

SYSTEM_AUTOINSTALL
defines whether CICS is to autoinstall the program if there is no associated
PROGRAM resource definition.

 Values for the parameter are:
 NO
 YES

Chapter 95. Program Manager Domain (PG) 1459

LPA_ELIGIBLE
Optional Parameter

 defines whether or not the program can be loaded into the MVS link pack area
(LPA).

Values for the parameter are:
 NO
 YES

SUSPEND
Optional Parameter

 This option is passed to the LDLD call, and thence to SMGF. It specifies the
action in the event of a storage shortage.YES, the default value, means that the
task will be suspended until storage is available. NO means that the task will
be abended.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 JVM_PROGRAM
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ENTRY_POINT
is the token defining the entry point of the program.

LOAD_POINT
is the load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

PROGRAM_LENGTH
is the length of the program. returned by the loader domain on the
ACQUIRE_PROGRAM call.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLD gate, LOAD_EXEC function
The LOAD_EXEC function of the PGLD gate is used to load a program in response
to an EXEC CICS LOAD command.

Input Parameters
HOLD_LIFETIME

determines for how long the program is to be loaded; that is, for the life-time
of CICS (or until explicitly deleted) or for the lifetime of the task (unless
explicitly deleted by the task).

1460 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 CALLER_MANAGED
 CICS_LIFE
 TASK_LIFE

PROGRAM_NAME
is the name of the program resource to be defined.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 JVM_PROGRAM
 NOT_AUTHORIZED
 NOT_INITIALIZED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ENTRY_POINT
is the token defining the entry point of the program.

LOAD_POINT
is the load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

PROGRAM_LENGTH
is the length of the program. returned by the loader domain on the
ACQUIRE_PROGRAM call.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LANGUAGE_TOKEN
Optional Parameter

 is a token representing the AP domain language block for the program.

PGLD gate, RELEASE function
The RELEASE function of the PGLD gate is used by CICS internal modules to
release a program in response previously loaded by a PGLD LOAD request.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
ENTRY_POINT

Optional Parameter

 must be provided on RELEASE_EXEC by the caller for a program loaded with
caller-managed lifetime.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 JVM_PROGRAM

Chapter 95. Program Manager Domain (PG) 1461

PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_IN_USE
 PROGRAM_NOT_LOADED
 PROGRAM_RELOAD_YES
 REMOTE_PROGRAM

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLD gate, RELEASE_EXEC function
The RELEASE_EXEC function of the PGLD gate is used to release a program in
response to an EXEC CICS RELEASE command.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
ENTRY_POINT

Optional Parameter

 must be provided on RELEASE_EXEC by the caller for a program loaded with
caller-managed lifetime.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 JVM_PROGRAM
 NOT_AUTHORIZED
 NOT_INITIALIZED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_IN_USE
 PROGRAM_NOT_LOADED
 PROGRAM_RELOAD_YES
 RELEASE_ISSUING_PROGRAM
 REMOTE_PROGRAM

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLE gate, LINK_EXEC function
The LINK_EXEC function of the PGLE gate is used to link to a program in
response to a user EXEC CICS LINK command.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
CHANNEL

Optional Parameter

 is the optional channel to be made available to the linked program.

1462 CICS TS for z/OS 4.1: Diagnosis Reference

COMMAREA
Optional Parameter

 is the optional communications area to be made available to the linked
program.

FORCE_LOCAL
Optional Parameter

 indicates whether the program must execute locally.

Values for the parameter are:
 NO
 YES

HANDLE_ABEND_PGM
Optional Parameter

 defines whether or not the program is to run as an abend handler program.

Values for the parameter are:
 NO
 YES

INPUTMSG
Optional Parameter

 is a data area to be supplied to the linked program on its first execution of an
EXEC CICS RECEIVE command.

SYNCONRETURN
Optional Parameter

 defines whether or not a syncpoint is to be taken on return from the linked
program.

Values for the parameter are:
 NO
 YES

SYSEIB_REQUEST
Optional Parameter

 Specifies whether the EXEC CICS LINK had the SYSEIB translator option
specified.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 DESTRUCTIVE_OVERLAP
 DYNAMIC_PGM
 INVALID_CHANNEL_NAME
 INVALID_COMMAREA_ADDR
 INVALID_COMMAREA_LEN
 INVALID_INPUTMSG_LEN
 INVALID_KEYWORDS
 INVALID_TERMINAL_TYPE

Chapter 95. Program Manager Domain (PG) 1463

JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 NO_TERMINAL
 NOT_INITIALIZED
 PROGRAM_NOT_AUTHORISED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 TRANSACTION_ABEND
 USER_CLASS_NOT_FOUND

ABEND_CODE
is the four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

REMOTE_PROGRAM_NAME
is the name by which the program is known in the remote CICS region. If you
specify REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID
parameter defaults to the same name as the local name (that is, the
PROGRAM_NAME value).

REMOTE_SYSID
is the name of a remote CICS region if you want CICS to ship a distributed
program link (DPL) request to another CICS region.

REMOTE_TRANID
is the name of the transaction you want the remote CICS to attach, and under
which it is to run the remote program.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLK gate, LINK function
The LINK function of the PGLK gate is used by CICS internal modules to link to a
program.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
SYSTEM_AUTOINSTALL

defines whether CICS is to autoinstall the program if there is no associated
PROGRAM resource definition.

 Values for the parameter are:
 NO
 YES

LPA_ELIGIBLE
Optional Parameter

 defines whether or not the program can be loaded into the link pack area
(LPA).

Values for the parameter are:
 NO
 YES

1464 CICS TS for z/OS 4.1: Diagnosis Reference

PARMLIST_PTR
Optional Parameter

 is the address of a parameter list passed by the CICS program initiating the
PGLK link to the new program.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 TRANSACTION_ABEND
 USER_CLASS_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ABEND_CODE
is the four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLK gate, LINK_PLT function
The LINK_PLT function of the PGLK gate is used by CICS internal modules to link
to a program in the program list table.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
SYSTEM_AUTOINSTALL

defines whether CICS is to autoinstall the program if there is no associated
PROGRAM resource definition.

 Values for the parameter are:
 NO
 YES

LPA_ELIGIBLE
Optional Parameter

 defines whether or not the program can be loaded into the link pack area
(LPA).

Values for the parameter are:
 NO

Chapter 95. Program Manager Domain (PG) 1465

YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 TRANSACTION_ABEND
 USER_CLASS_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ABEND_CODE
is the four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGLU gate, LINK_URM function
The LINK_URM function of the PGLU gate is used by CICS internal modules to
link to a user-replaceable program.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.
SYSTEM_AUTOINSTALL

defines whether CICS is to autoinstall the program if there is no associated
PROGRAM resource definition.

 Values for the parameter are:
 NO
 YES

CALLER_THREADSAFE
Optional Parameter

 indicates that the caller of the user-replaceable program is threadsafe, and so
execution can continue on any TCB on return from the program: there is no
need for PGLU to issue change_mode.

Values for the parameter are:
 NO
 YES

1466 CICS TS for z/OS 4.1: Diagnosis Reference

COMMAREA
Optional Parameter

 is the optional communications area to be made available to the linked
program.

LPA_ELIGIBLE
Optional Parameter

 defines whether or not the program can be loaded into the link pack area
(LPA).

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AMODE_ERROR
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 DESTRUCTIVE_OVERLAP
 INVALID_COMMAREA_ADDR
 INVALID_COMMAREA_LEN
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 URM_ABEND
 USER_CLASS_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ABEND_CODE
is the four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGPG gate, INITIAL_LINK function
The INITIAL_LINK function of the PGPG gate is used to link to the first program
of a transaction.

Input Parameters
PROGRAM_NAME

is the name of the program resource to be defined.

Chapter 95. Program Manager Domain (PG) 1467

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 AUTOSTART_DISABLED
 JVM_PROFILE_NOT_FOUND
 JVM_PROFILE_NOT_VALID
 JVMPOOL_DISABLED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 SECOND_H8_PROGRAM
 SECOND_JVM_PROGRAM
 SYSTEM_PROPERTIES_NOT_FND
 TRANSACTION_ABEND
 USER_CLASS_NOT_FOUND

ABEND_CODE
is the four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGRE gate, PREPARE_RETURN_EXEC function
The PREPARE_RETURN_EXEC function of the PGRE gate is used to process the
communications area, inputmsg data, and transaction identifier from a user EXEC
CICS RETURN command.

Input Parameters
CHANNEL

Optional Parameter

 is the optional channel to be made available to the linked program.
COMMAREA

Optional Parameter

 is the optional communications area to be made available to the linked
program.

ENDACTIVITY
Optional Parameter

 indicates that a BTS activity is to be ended.

Values for the parameter are:
 YES

IMMEDIATE
Optional Parameter

 Indicates whether or not the transaction specified in TRANSID is to be
attached as the next transaction regardless of any other transactions enqueued
by ATI for this terminal.

Values for the parameter are:
 YES

1468 CICS TS for z/OS 4.1: Diagnosis Reference

INPUTMSG
Optional Parameter

 is a data area to be supplied to the linked program on its first execution of an
EXEC CICS RECEIVE command.

TRANSID
Optional Parameter

 is the four-character transaction identifier.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_CHANNEL_NAME
 INVALID_COMMAREA_ADDR
 INVALID_COMMAREA_LEN
 INVALID_INPUTMSG_LEN
 INVALID_KEYWORDS
 INVALID_REQUEST_FROM_EXIT
 INVALID_RETURN_REQUEST
 INVALID_TERMINAL_TYPE
 NO_TERMINAL
 NOT_INITIALIZED
 TRANSID_NO_TERMINAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGXE gate, PREPARE_XCTL_EXEC function
The PREPARE_XCTL_EXEC function of the PGXE gate processes the
communications area, inputmsg data, and transaction identifier from a user EXEC
CICS XCTL command.

Input Parameters
PROGRAM_NAME

The name of the program resource to be defined.
CHANNEL

Optional Parameter

 The optional channel to be made available to the linked program.
COMMAREA

Optional Parameter

 The optional communications area to be made available to the linked program.
INPUTMSG

Optional Parameter

 A data area to be supplied to the linked program on its first execution of an
EXEC CICS RECEIVE command.

SECURITY
Optional Parameter

 Indicates whether Program Manager must check security authorization for the
target program

Values for the parameter are:
 NO
 YES

Chapter 95. Program Manager Domain (PG) 1469

SYSEIB_REQUEST
Optional Parameter

 Specifies whether the EXEC CICS LINK had the SYSEIB translator option
specified.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AUTOINSTALL_FAILED
 AUTOINSTALL_INVALID_DATA
 AUTOINSTALL_MODEL_NOT_DEF
 AUTOINSTALL_URM_FAILED
 DESTRUCTIVE_OVERLAP
 INVALID_CHANNEL_NAME
 INVALID_COMMAREA_ADDR
 INVALID_COMMAREA_LEN
 INVALID_INPUTMSG_LEN
 INVALID_KEYWORDS
 INVALID_REQUEST_FROM_EXIT
 INVALID_TERMINAL_TYPE
 NO_TERMINAL
 NOT_INITIALIZED
 PROGRAM_NOT_AUTHORISED
 PROGRAM_NOT_DEFINED
 PROGRAM_NOT_ENABLED
 PROGRAM_NOT_LOADABLE
 REMOTE_PROGRAM
 TRANSACTION_ABEND

ABEND_CODE
The four-character abend code to be issued if CICS drives the system default,
which is to abend the transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGXM gate, INITIALIZE_TRANSACTION function
The INITIALIZE_TRANSACTION function of the PGXM gate is used to initialize a
transaction, and set up storage for the transaction.

Output Parameters
REASON

The values for the parameter are:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PGXM gate, TERMINATE_TRANSACTION function
The TERMINATE_TRANSACTION function of the PGXM gate is used to terminate
a transaction, and clean up the transaction-related storage at task termination.

1470 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Program manager domain's generic gates

Table 62 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 62. Program manager domain's generic gates

Gate Trace Functions Format

PGDM PG 0101
PG 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

PGST PG 0F01
PG 0F02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

PGUE PG 1001
PG 1002

SET_EXIT_STATUS APUE

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777
 “Application Manager Domain's generic formats” on page 867

INITIALISE_DOMAIN

There are two phases to initialization of the program manager domain:
1. The DFHPGDM module creates the PG domain anchor block, the PPT

directory, and the PG Lock. It also adds subpools and gates, determines
whether a cold, warm, or emergency start is needed, and waits for the global
catalog to be available.

2. For a warm or emergency start, the DFHPGDM module rebuilds the PPT and
restores the program autoinstall system initialization parameters from the
global catalog entries. (It calls the parameter manager to obtain other system
initialization parameter values.)
For a cold start, the DFHPGDM module purges all the PPT entries from the
global catalog.

QUIESCE_DOMAIN

In quiesce processing, the program manager domain:
1. Sets the PG state to quiescing.
2. Ensures that the statistics domain has gathered the PG statistics by issuing a

WAIT_PHASE for STATISTICS_UNAVAILABLE. This also ensures
synchronization with the AP domain quiesce activity.

3. Sets the PG state to quiesced.

Chapter 95. Program Manager Domain (PG) 1471

During quiesce porcessing, the program manager does not:
v Delete the PG gates. PG functions remain available, but the use of programs

after this point does not appear in statistics (DFHSTP issues a PC LINK/ PGLK
LINK to DFHWKP after AP domain waits for STATISTICS_UNAVAILABLE).

v Write PPT entries to the global catalog. PPT entries are written to the catalog
only when they are installed or changed.

TERMINATE_DOMAIN
In terminate processing, the program manager domain sets the PG state to
terminated, and makes the program manager domain unavailable to EXEC CICS
commands.

Modules
 Module Function

DFHPGAI A kernel subroutine called internally from the Program Manager to
support the autoinstall for programs function.

DFHPGAQ Handles the following requests:
 INQUIRE_AUTOINSTALL
 SET_AUTOINSTALL

DFHPGDD Handles the following requests:
 DEFINE_PROGRAM
 DELETE_PROGRAM

DFHPGDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHPGDUF PG domain offline dump formatting routine

DFHPGEX Handles the following requests:
 INITIALIZE_EXIT
 TERMINATE_EXIT

DFHPGHM Handles the following requests:
 SET_CONDITIONS
 IGNORE_CONDITIONS
 INQ_CONDITION
 SET_AIDS
 INQ_AID
 SET_ABEND
 INQ_ABEND
 PUSH_HANDLE
 POP_HANDLE
 FREE_HANDLE_TABLES
 CLEAR_LABELS

DFHPGIS Handles the following requests:
 INQUIRE_PROGRAM
 INQUIRE_CURRENT_PROGRAM
 SET_PROGRAM
 START_BROWSE_PROGRAM
 GET_NEXT_PROGRAM
 END_BROWSE_PROGRAM
 REFRESH_PROGRAM

1472 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHPGLD Handles the following requests:
 LOAD_EXEC
 LOAD
 RELEASE_EXEC
 RELEASE

DFHPGLE Handles the following requests:
 LINK_EXEC

DFHPGLK Handles the following requests:
 LINK
 LINK_PLT

DFHPGLU Handles the following requests:
 LINK_URM

DFHPGPG Handles the following requests:
 INITIAL_LINK

DFHPGRE Handles the following requests:
 PREPARE_RETURN_EXEC

DFHPGRP Program manager domain recovery program, responsible for recovering
program definitions from the global catalog.

DFHPGST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHPGTRI Interprets PG domain trace entries

DFHPGUE Handles program manager domain service requests.

DFHPGXE Handles the following requests:
 PREPARE_XCTL_EXEC

DFHPGXM Handles the following requests:
 INITIALIZE_TRANSACTION
 TERMINATE_TRANSACTION

Chapter 95. Program Manager Domain (PG) 1473

1474 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 96. Pipeline Manager Domain (PI)

The Pipeline Manager domain manages the processing of SOAP messages in a
CICS pipeline.

Pipeline Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the PI domain.

PIAT gate, CREATE_CONTEXT function
Creates a WSAT coordination context SOAP header.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, CREATE_CONTEXT_RESP function
Create a null context response, which is returned when a WSAT participant send
back its output.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the
header, and where the populated dfhheader container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL

© Copyright IBM Corp. 1997, 2011 1475

PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, CREATE_NON_TERMINAL_MSG function
Create a non-terminal SOAP message used in WS-AtomicTransaction two-phase
commit protocol processing. Non-terminal messages anticipate a response. They
are used to convey the following function requests: Prepare, Commit, Rollback,
and Replay.

Input Parameters
NOTIFICATION_TYPE

Values for the parameter are:
 COMMIT
 PREPARE
 ROLLBACK

POOL_TOKEN
A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, CREATE_REGISTER_REQUEST function
Create a WSAT registration request SOAP message.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT

1476 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, CREATE_REGISTER_RESP function
Create a WSAT registration response SOAP message.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, CREATE_TERMINAL_MSG function
Create a terminal SOAP message used in WS-AtomicTransaction two-phase commit
protocol processing. Terminal messages do not anticipate a response. They are used
to convey the following function requests: Prepared, Committed, Aborted, and
Readonly.

Input Parameters
NOTIFICATION_TYPE

Values for the parameter are:
 ABORTED
 COMMITTED
 PREPARED
 READONLY

POOL_TOKEN
A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Chapter 96. Pipeline Manager Domain (PI) 1477

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, PROCESS_CONTEXT function
Process a WS-AtomicTransaction coordination context header.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, PROCESS_CONTEXT_RESP function
Process a context coordination response.

Input Parameters
POOL_TOKEN

A token to the current container pool

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION

1478 CICS TS for z/OS 4.1: Diagnosis Reference

LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIAT gate, PROCESS_MSG function
Process a WS-AtomicTransaction message. This can be a Register Request, a
Register Response, a Non Terminal message, or a Terminal Message.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the
header, and where the populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NO_CHANNEL
 PGCR_GET_ERROR
 PGCR_PUT_ERROR
 SMGF_ERROR
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PICC gate, FIND_SIGNATURE function
Determine an operation from its signature

Input Parameters
OUTPUT_DATA

A pointer to the operation in the internal COMMAREA or container model
(ICM)

XML_BODY_STRING
The incoming SOAP message

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 HEAP_INIT_FAILURE
 INSUFFICIENT_STORAGE
 INTERNAL_FAILURE
 INVALID_PARSE_STATE
 SAXHANDLER_LINK_FAILURE

Chapter 96. Pipeline Manager Domain (PI) 1479

The following values are returned when RESPONSE is EXCEPTION:
 FIXED_ELEMENT_COUNT
 HEAP_ALLOCATE_FAILURE
 HEAP_RELEASE_FAILURE
 ICM_ENTRY_NOT_FOUND
 INQUIRE_CHANNEL_FAILED
 OUTPUT_BUFFER_OVERFLOW
 PUT_CONTAINER_FAILED
 SOAP_FAULT

The following values are returned when RESPONSE is EXCEPTION:
 COMMAREA_LENGTH
 INVALID_FUNCTION
 INVALID_ICM_TYPE
 INVALID_INPUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PICC gate, HANDLE_PARSE_EVENT function
Handle an XML parse event when located by the PL/I SAX parser

Input Parameters
EVENT_TOKEN

A pointer to the event token provided by the XML parser.
EVENT_TOKEN_LENGTH

The length of the event token.
EVENT_TYPE

A BIN(31) value indicating what event has been signaled by the parser.
HANDLER_WORK_TOKEN

A pointer to the DFHPICC work area.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 HEAP_INIT_FAILURE
 INSUFFICIENT_STORAGE
 INTERNAL_FAILURE
 INVALID_PARSE_STATE
 SAXHANDLER_LINK_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 FIXED_ELEMENT_COUNT
 HEAP_ALLOCATE_FAILURE
 HEAP_RELEASE_FAILURE
 ICM_ENTRY_NOT_FOUND
 INQUIRE_CHANNEL_FAILED
 OUTPUT_BUFFER_OVERFLOW
 PUT_CONTAINER_FAILED
 SOAP_FAULT

The following values are returned when RESPONSE is INVALID:
 COMMAREA_LENGTH
 INVALID_FUNCTION
 INVALID_INPUT

1480 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PICC gate, PERFORM_XML_PARSE function
Parse a SOAP body and convert the data elements into a COMMAREA format.

Input Parameters
ICM_ADDRESS

The address of the internal COMMAREA or container model (ICM) which is to
be used for the SOAP to COMMAREA conversion.

OUTPUT_DATA
A pointer to, and length of, the COMMAREA into which the SOAP body has
been mapped.

XML_BODY_STRING
A pointer to the incoming SOAP body.

CHANNEL_NAME
The name of the channel which contains the SOAP body.

XML_HEADER_NS
Optional Parameter

 A pointer to the XML namespace information for the SOAP body.
XML_OPERATION

Optional Parameter

 The operation name for which the SOAP body is intended.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 HEAP_INIT_FAILURE
 INSUFFICIENT_STORAGE
 INTERNAL_FAILURE
 INVALID_PARSE_STATE
 SAXHANDLER_LINK_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 FIXED_ELEMENT_COUNT
 HEAP_ALLOCATE_FAILURE
 HEAP_RELEASE_FAILURE
 ICM_ENTRY_NOT_FOUND
 INQUIRE_CHANNEL_FAILED
 OUTPUT_BUFFER_OVERFLOW
 PUT_CONTAINER_FAILED
 SOAP_FAULT

The following values are returned when RESPONSE is INVALID:
 COMMAREA_LENGTH
 INVALID_FUNCTION
 INVALID_INPUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIII gate, PARSE_ICM function
Convert an outbound COMMAREA or container into a SOAP body.

Chapter 96. Pipeline Manager Domain (PI) 1481

Input Parameters
CHANNEL_NAME

Optional parameter

 The name of the channel which holds the container with the SOAP body.
INPUT_COMMAREA

The address and length of the COMMAREA or container to convert.
OUTPUT_ICM_ADDRESS

The address of the internal COMMAREA or container model (ICM) that
defines how to map the COMMAREA or container to a SOAP body.

OUTPUT_XML
The address of the SOAP body.

Output Parameters
REASON

Values for the parameter are:
 ABEND
 BUFFER_OVERFLOW
 CONTAINER_GET_FAILURE
 FREEMAIN_FAILURE
 GETMAIN_FAILURE
 HEAP_INIT_FAILURE
 ICM_NOT_FOUND
 INPUT_ERROR
 INSUFFICIENT_STORAGE
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_ICM_DATATYPE
 MALLOC_FAILURE
 NOT_AUTHORIZED
 RELEASE_FAILURE
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIIW gate, INVOKE_WEBSERVICE function
This function supports the INVOKE WEBSERVICE API where CICS is acting as
Web Service Requester. Depending upon the attributes specified in the
WEBSERVICE resource, it calls the Pipeline Manager (DFHPIPM) to start the
pipeline, or it links directly to an application program directly.

Input Parameters
CHANNEL

The name of a channel which holds the container in which data is passed to
the target WEBSERVICE.

OPERATION
The name of the operation which is to be invoked.

WEBSERVICE
The name of the WEBSERVICE resource.

URI
Optional Parameter

 The URI of the target Web service. If this parameter is omitted, the
WEBSERVICE resource must specify an endpoint or a program.

1482 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

Values for the parameter are:
 CHANNEL_NOT_FOUND
 CHANNEL_ERROR
 CONTAINER_DATATYPE_ERR
 CONTAINER_NOT_FOUND
 ENDPOINT_NOT_PROVIDED
 INVALID_CHANNEL_NAME
 INVALID_FUNCTION
 INVALID_OPERATION
 INVALID_URI
 INVALID_WSBIND_FORMAT
 OPERATION_NOT_FOUND
 PARSE_CONVERSION_ERROR
 PARSE_INPUT_ERROR
 PIPELINE_MODE_MISMATCH
 PIPELINE_NOT_ACTIVE
 PIPELINE_NOT_FOUND
 PROGRAM_LINK_FAILED
 SOAP_FAULT_BUILT
 UNHANDLED_PIPELINE_ERROR
 VENDOR_LINK_FAILED
 WEBSERVICE_NOT_FOUND
 WEBSERVICE_NOT_INSERVICE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOAP_FAULT_RESP1
The response that was returned from the SOAP message handler's fault
processing in the DFHWS-RESPCODES container.

SOAP_FAULT_RESP2
The reason that was returned from the SOAP message handler's fault
processing in the DFHWS-RESPCODES container.

PIMM gate, BUILD_CONTENT_TYPE function
Builds a Content-Type header value from the media type and selected parameter
values.

Input Parameters
ACTION

Optional parameter

 A buffer for the value of the action parameter for the Content-Type header in
the specified CCSID. This value always includes the surrounding quotes.

BOUNDARY
Optional parameter

 A buffer for the value of the boundary parameter on the Content-Type header
in the specified CCSID. This value does not have surrounding quotes.

CCSID
The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHARSET
Optional parameter

Chapter 96. Pipeline Manager Domain (PI) 1483

A buffer for the value of the charset parameter on the Content-Type header in
the specified CCSID. This value does not have surrounding quotes.

CONTENT_TYPE
A buffer for the Content-Type header value in the specified CCSID.

MEDIA_TYPE
Optional parameter

 A buffer for the value of the media-type field for the Content-Type header in
the specified CCSID. For example, multipart/related.

START
Optional parameter

 A buffer for the value of the start parameter on the Content-Type header in
the specified CCSID. This value does not have surrounding quotes.

START_INFO
Optional parameter

 A buffer for the value of the start-info parameter on the Content-Type header
in the specified CCSID. This value does not have surrounding quotes.

TYPE
Optional parameter

 A buffer for the value of the type parameter in the Content-Type header in the
specified CCSID. This value does not have surrounding quotes.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_NOT_SUPPORTED
 MIME_HEADER_ERROR
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, BUILD_MIME_HEADERS function
Creates MIME headers from selected header values and stored them in a specific
headers container.

Input Parameters
CCSID

The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

CONTENT_DESCRIPTION
Optional parameter

 A buffer for the Content-Description header value in the specified CCSID.
CONTENT_ID

Optional parameter

 A buffer for the Content-ID value in the specified CCSID.
CONTENT_TRAN_ENCODING

Optional parameter

1484 CICS TS for z/OS 4.1: Diagnosis Reference

A buffer for the Content-Transfer-Encoding header value in the specified
CCSID. This is the value specified on the header, without any white space or
comments.

CONTENT_TYPE
Optional parameter

 A buffer for the Content-Type header value in the specified CCSID.
HEADERS_CONTAINER

The 16-byte name of the headers container in the specified channel. This
should be a container of DATATYPE(CHAR) that contains the MIME headers.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_NOT_SUPPORTED
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 CONTAINER_NAME_INVALID
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, BUILD_MIME_MESSAGE function
Combines the contents of the headers container and the body container to create a
message container.

Input Parameters

The headers container and the message container are accessed using the CCSID
819. The body container is accessed using the CCSID determined from the charset
parameter on the Content-type header.
BODY_CONTAINER

The 16-byte name of the body container in the specified channel that contains
XOP or XML data. This is a container of DATATYPE(CHAR), unless it contains
a binary attachment.

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

HEADERS_CONTAINER
The 16-byte name of the headers container in the specified channel. This is a
container of DATATYPE(CHAR) that contains the MIME headers.

MESSAGE_CONTAINER
The 16-byte name of the message container in the specified channel. This is a
container of DATATYPE(CHAR) that contains the MIME headers and the body
of the message.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND

Chapter 96. Pipeline Manager Domain (PI) 1485

CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 CONTAINER_NAME_INVALID
 HEADER_SYNTAX_ERROR
 MIME_HEADER_ERROR
 ENCODING_NOT_SUPPORTED
 CHARSET_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, BUILD_MULTIPART_RELATED function
Builds a MIME Multipart/Related message from the headers and body of the root
document, and the list of binary attachments. The MIME message headers and
body replace the root document and headers in the specified containers.

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container in the specified channel that contains the
binary attachments list.

BODY_CONTAINER
The 16-byte name of the body container in the specified channel that contains
XOP or XML data. This should be a container of DATATYPE(CHAR).

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

HEADERS_CONTAINER
The 16-byte name of the headers container in the specified channel. This
should be a container of DATATYPE(CHAR) that contains the MIME headers.

Output Parameters

ATTACHMENTS_COUNT
Optional parameter

 The number of <xop:Include> elements that were processed. If the number is
0, the original body container does not include any XOP elements and has not
been modified.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 HEADER_SYNTAX_ERROR
 MIME_HEADER_ERROR
 ENCODING_NOT_SUPPORTED
 CHARSET_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1486 CICS TS for z/OS 4.1: Diagnosis Reference

PIMM gate, CONVERT_CID_TO_CONTENT_ID function
Converts a content-ID in the CID URI format cid:addr-spec to the MIME format
<addr-spec>.

Input Parameters
CCSID

The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CID
A buffer for the CID URI in the specified CCSID. This should be in the format
cid:addr-spec.

CONTENT_ID
A buffer for the Content-ID in the specified CCSID. The value should be in the
format <addr-spec>.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_NOT_SUPPORTED
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, CONVERT_CONTENT_ID_TO_CID function
Converts a content-ID in the MIME format <addr-spec> to the CID URI format
cid:addr-spec.

Input Parameters
CCSID

The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CID
A buffer for the CID URI in the specified CCSID. This should be in the format
cid:addr-spec.

CONTENT_ID
A buffer for the Content-ID in the specified CCSID. The value should be in the
format <addr-spec>.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_NOT_SUPPORTED
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, DELETE_ATTACHMENTS function
Deletes any header and body containers for binary attachments that are listed in
the attachments container, and then deletes the attachments container itself.

Chapter 96. Pipeline Manager Domain (PI) 1487

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container in the specified channel that contains the
binary attachments list.

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_WRONG_TYPE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, GENERATE_CONTENT_ID function
Generates a unique content ID value, consisting of a locally unique value based on
a timestamp and a supplied domain. The result can be obtained in both content-ID
format, <addr-spec>, and in CID format, cid:addr-spec.

Input Parameters
CCSID

The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

CID
Optional parameter

 A buffer for the CID URI in the specified CCSID. This should be in the format
cid:addr-spec.

CID_DOMAIN_CHARACTER
The 16-byte name of the container in the specified channel that contains the
domain name. This string is used as the last part of a content-ID to identify the
sysplex within which the locally unique value applies.

CONTENT_ID
Optional parameter

 A buffer for the Content-ID in the specified CCSID. The value should be in the
format <addr-spec>.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_NOT_SUPPORTED
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1488 CICS TS for z/OS 4.1: Diagnosis Reference

PIMM gate, GET_ATTACHMENT function
Retrieves the container names for the headers and body of the binary attachment
with the specified Content-ID or CID.

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container in the specified channel that contains the
binary attachments list.

CCSID
The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

CID
A buffer for the CID URI in the specified CCSID. This should be in the format
cid:addr-spec. Either CID or CONTENT_ID can be used as input.

CONTENT_ID
A buffer for the Content-ID in the specified CCSID. The value should be in the
format <addr-spec>. Either CID or CONTENT_ID can be used as input.

Output Parameters
BODY_CONTAINER

The 16-byte name of the body container in the specified channel. This is a
container of DATATYPE(BIT), as it contains a binary attachment.

HEADERS_CONTAINER
The 16-byte name of the headers container in the specified channel. This is a
container of DATATYPE(CHAR) that contains the MIME headers.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CCSID_NOT_SUPPORTED
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 ATTACHMENT_NOT_FOUND
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, PARSE_CONTENT_TYPE function
Parses the Content-Type header and picks out selected fields as requested,
including the media type and specific parameters. The media type field and
charset parameter are converted to lower case if necessary.

Input Parameters
ACTION

Optional parameter

 A buffer for the value of the action parameter for the Content-Type header in
the specified CCSID. This value always includes the surrounding quotes.

BOUNDARY
Optional parameter

Chapter 96. Pipeline Manager Domain (PI) 1489

A buffer for the value of the boundary parameter on the Content-Type header
in the specified CCSID. This value does not have surrounding quotes.

CCSID
The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHARSET
Optional parameter

 A buffer for the value of the charset parameter on the Content-Type header in
the specified CCSID. This value does not have surrounding quotes.

CONTENT_TYPE
A buffer for the Content-Type header value in the specified CCSID.

MEDIA_TYPE
Optional parameter

 A buffer for the value of the media type field for the Content-Type header in
the specified CCSID. For example, multipart/related.

START
Optional parameter

 A buffer for the value of the start parameter on the Content-Type header in
the specified CCSID. This value does not have surrounding quotes.

START_INFO
Optional parameter

 A buffer for the value of the start-info parameter on the Content-Type header
in the specified CCSID. This value does not have surrounding quotes.

TYPE
Optional parameter

 A buffer for the value of the type parameter in the Content-Type header in the
specified CCSID. This value does not have surrounding quotes.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_NOT_SUPPORTED
 MIME_HEADER_ERROR
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, PARSE_MIME_HEADERS function
Retrieves selected MIME header values from a MIME headers container or a MIME
message container. The results are edited into a standard format, removing excess
white space and comments, and converting case-insensitive keywords to lower
case.

Input Parameters
CCSID

The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHANNEL_NAME
Optional parameter

1490 CICS TS for z/OS 4.1: Diagnosis Reference

The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

CONTENT_DESCRIPTION
Optional parameter

 A buffer for the Content-Description header value in the specified CCSID.
CONTENT_ID

Optional parameter

 A buffer for the Content-ID header value in the specified CCSID.
CONTENT_TRAN_ENCODING

Optional parameter

 A buffer for the Content-Transfer-Encoding header value in the specified
CCSID. This is the value specified on the header, without any white space or
comments.

CONTENT_TYPE
Optional parameter

 A buffer for the Content-Type header value in the specified CCSID.
HEADERS_CONTAINER

The 16-byte name of the headers container in the specified channel. This
should be a container of DATATYPE(CHAR) that contains the MIME headers.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_NOT_SUPPORTED
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 HEADER_SYNTAX_ERROR
 MIME_HEADER_ERROR
 INVALID_CHARACTER
 ENCODING_NOT_SUPPORTED
 CHARSET_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, PARSE_MIME_MESSAGE function
Splits the message into headers, which are stored in a headers container, and a
body which is stored in a body container.

Input Parameters

The message container and headers container are accessed using CCSID 819. The
body container is accessed using the CCSID determined from the charset
parameter on the Content-type header.
BODY_CONTAINER

The 16-byte name of the body container in the specified channel that is created
to contain XOP or XML data. This is a container of DATATYPE(CHAR).

CHANNEL_NAME
Optional parameter

Chapter 96. Pipeline Manager Domain (PI) 1491

The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

HEADERS_CONTAINER
The 16-byte name of the headers container in the specified channel that is
created to contain the MIME headers. This is a container of
DATATYPE(CHAR).

MESSAGE_CONTAINER
The 16-byte name of the message container in the specified channel. This
should be a container of DATATYPE(CHAR) that contains the MIME headers
and the body of the message.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 CONTAINER_NAME_INVALID
 HEADER_SYNTAX_ERROR
 MIME_HEADER_ERROR
 ENCODING_NOT_SUPPORTED
 CHARSET_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, PARSE_MULTIPART_RELATED function
Parses a MIME MultipartRrelated message, splitting out the root document and the
binary attachments. The root document and headers replace the contents of the
original message in the container, and any binary attachments are stored in
separate containers. The list of attachments is stored in the attachments list
container.

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container in the specified channel that contains the
binary attachments list.

BODY_CONTAINER
The 16-byte name of the body container in the specified channel that contains
XOP or XML data. This should be a container of DATATYPE(CHAR).

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

HEADERS_CONTAINER
The 16-byte name of the headers container in the specified channel. This
should be a container of DATATYPE(CHAR) that contains the MIME headers.

Output Parameters
ATTACHMENTS_COUNT

Optional parameter

1492 CICS TS for z/OS 4.1: Diagnosis Reference

The number of <xop:Include> elements that were processed. If the number is
0, the original body container does not include any XOP elements and has not
been modified.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 NOT_MULTIPART_RELATED
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 CONTAINER_NAME_INVALID
 HEADER_SYNTAX_ERROR
 MIME_HEADER_ERROR
 MIME_BOUNDARY_ERROR
 ROOT_PART_NOT_FOUND
 ENCODING_NOT_SUPPORTED
 CHARSET_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIMM gate, PUT_ATTACHMENT function
Adds the names of the headers and body containers for the binary attachment with
the given content-ID or CID to the attachments container.

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container in the specified channel that contains the
binary attachments list.

BODY_CONTAINER
The 16-byte name of the body container in the specified channel. This is a
container of DATATYPE(BIT), as it always contains a binary attachment.

CCSID
The fullword binary CCSID value. This is used for header value input and
output parameters such as CONTENT_ID.

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

CID
A buffer for the CID URI in the specified CCSID. This should be in the format
cid:addr-spec. Either CID or CONTENT_ID can be used as input.

CONTENT_ID
A buffer for the Content-ID in the specified CCSID. The value should be in the
format <addr-spec>. Either CID or CONTENT_ID can be used as input.

HEADERS_CONTAINER
The 16-byte name of the headers container in the specified channel. This
should be a container of DATATYPE(CHAR) that contains the MIME headers.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CCSID_NOT_SUPPORTED
 CONTAINER_NAME_INVALID

Chapter 96. Pipeline Manager Domain (PI) 1493

DUPLICATE_ATTACHMENT
 INVALID_CHARACTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, ADD_PIPELINE function
Add a PIPELINE definition to the system.

Input Parameters
CONFIGFILE

The fully qualified name of the XML pipeline configuration file on z/OS
UNIX.

PIPELINE
The name of the PIPELINE.

SHELF
The fully qualified name of a directory (or shelf) primarily for WSBIND and
WSDL files.

STATUS
The initial state of the PIPELINE.

 Values for the parameter are:
 DISABLED
 ENABLED

WSDIR
Optional Parameter

 The fully qualified name of the WSBIND directory on z/OS UNIX.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 DIRECTORY_ERROR
 INVALID_HFSNAME
 INVALID_NAME
 INVALID_SHELF
 INVALID_STATUS
 INVALID_WSDIR
 NOT_AUTHORIZED
 NOT_DISABLED
 WSDIR_INACCESIBLE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, COMPLETE_PIPELINE function
Complete the installation of a PIPELINE. PIPELINEs are installed in two phases:
this is the second, called after CICS initialization is complete. This function reads
data from the files in z/OS UNIX and builds the internal control blocks.

Input Parameters
PIPELINE

The name of the PIPELINE.

1494 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 DIRECTORY_ERROR
 INVALID_HFSNAME
 INVALID_NAME
 INVALID_SHELF
 INVALID_STATUS
 INVALID_WSDIR
 NOT_AUTHORIZED
 NOT_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, DISCARD_PIPELINE function
Discard a PIPELINE.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 DISCARD_IN_PROGRESS
 INVALID_BROWSE_TOKEN
 NOT_AUTHORIZED
 NOT_DISABLED
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, END_BROWSE_PIPELINE function
End the browse operation on the PIPELINE resources that are installed in the
system.

Input Parameters
BROWSETOKEN

A token that represents the browse operation on subsequent
GET_NEXT_PIPLINE and END_BROWSE requests.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 INVALID_BROWSE_TOKEN
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 96. Pipeline Manager Domain (PI) 1495

PIPL gate, ESTABLISH_PIPELINE function
Check that a PIPELINE is in a state in which it can be used, and increment its use
count.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 INVALID_STATUS
 NOT_AUTHORIZED
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, GET_NEXT_PIPELINE function
During a browse operation, extract information about the next PIPELINE.

Input Parameters
BROWSETOKEN

The browse token that was returned by the START_BROWSE_PIPELINE
function.

CONFIGFILE_BUFF
Optional Parameter

 A buffer in which the fully qualified name of the XML pipeline configuration
file on z/OS UNIX is returned.

RESET
Optional Parameter

 A parameter indicating whether the statistics for the PIPELINE are to be reset.

Values for the parameter are:
 NO
 YES

SHELF_BUFF
Optional Parameter

 A buffer in which the fully qualified name of the directory (or shelf) for
WSBIND and WSDL files is returned.

WSDIR_BUFF
Optional Parameter

 A buffer in which the fully qualified name of the WSBIND directory on z/OS
UNIX is returned.

Output Parameters
PIPELINE

The name of the PIPELINE.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 BROWSE_END

1496 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_BROWSE_TOKEN
 LOCK_ERROR
 LOOP
 PARMS_STORAGE_ERROR
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS
Optional Parameter

 The current status of the PIPELINE.

Values for the parameter are:
 DISABLING
 DISABLED
 DISCARDING
 ENABLED
 ENABLING

TOTAL_USE_COUNT
Optional Parameter

 The current use count of the PIPELINE.

PIPL gate, INQUIRE_PIPELINE function
Inquire on the attributes, state and associated resources of a PIPELINE.

Input Parameters
PIPELINE

The name of the PIPELINE.
CONFIGFILE_BUFF

Optional Parameter

 A buffer in which the fully qualified name of the XML pipeline configuration
file on z/OS UNIX is returned.

DERIVED_SHELF_BUFF
Optional Parameter

 A buffer in which the fully qualified name of the z/OS UNIX file which
contains the WSDL for the PIPELINE is returned.

SHELF_BUFF
Optional Parameter

 A buffer in which the fully qualified name of the directory (or shelf) for
WSBIND and WSDL files is returned.

WSDIR_BUFF
Optional Parameter

 A buffer in which the fully qualified name of the WSBIND directory on z/OS
UNIXis returned.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_AUTHORIZED
 NOT_FOUND

Chapter 96. Pipeline Manager Domain (PI) 1497

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MODE
Optional Parameter

 The MODE of the PIPELINE.

Values for the parameter are:
 PROVIDER
 REQUESTER
 UNKNOWN

PIPELINE_TOKEN
Optional Parameter

 A token which can be used by other parts of the domain to refer to the
PIPELINE.

STATUS
Optional Parameter

 The current status of the PIPELINE.

Values for the parameter are:
 DISABLING
 DISABLED
 DISCARDING
 ENABLED
 ENABLING

TOTAL_USE_COUNT
Optional Parameter

 The current use count of the PIPELINE.

PIPL gate, PERFORM_PIPELINE function
Perform the specified action on a PIPELINE.

Input Parameters
ACTION

The only supported action is SCAN. The PIPELINE is scanned for WSBIND files
which are then installed.

 Values for the parameter are:
 SCAN

PIPELINE
The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 DUPLICATE
 INVALID_ACTION
 INVALID_STATUS
 LOOP
 NOT_AUTHORIZED
 NOT_FOUND
 PIPELINE_SCAN_ERROR
 SCAN_ALREADY_IN_PROGRESS
 WSDIR_INACCESSIBLE

1498 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, RELINQUISH_PIPELINE function
Relinquish the use of a PIPELINE. The use count is decremented, and if it is then
zero, and the PIPELINE's state is DISABLING, the status changes to DISABLED.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CATALOG_ERROR
 NOT_AUTHORIZED
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, RESOLVE_PIPELINE function
For each PIPELINE, start a transaction to complete PIPELINE installation. The
function is used at the end of domain initialization.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 LOOP
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, SET_PIPELINE function
Set a PIPELINE to DISABLED or ENABLED state.

Input Parameters
PIPELINE

The name of the PIPELINE.
STATUS

The state to be set.

 Values for the parameter are:
 DISABLED
 ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_STATE
 NOT_AUTHORIZED

Chapter 96. Pipeline Manager Domain (PI) 1499

NOT_FOUND
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPL gate, START_BROWSE_PIPELINE function
Start browsing the installed PIPELINE resources.

Input Parameters
PIPELINE

Optional Parameter

 The name of the PIPELINE at which the browse is to begin.

Output Parameters
BROWSETOKEN

A token that identifies the browse operation to subsequent
GET_NEXT_PIPELINE and END_BROWSE reqeusts.

REASON
Values for the parameter are:
 ABEND
 INVALID_PIPELINE
 LOCK_ERROR
 LOOP
 SETUP_ERROR
 STORAGE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPM gate, INVOKE_PROGRAM function
Invoke a PIPELINE's application programs. The function can change the
transaction's context, and the request can be routed to another region.

Input Parameters
CHANNEL

The channel to be passed to the target program.
PROGRAM

The program to be invoked.
APPLID

Optional Parameter

 The APPLID to be used for the execution of the application program.
RS_PUBLIC_ID

Optional Parameter

 The request stream public identifier to be associated with the transaction.
TRANSID

Optional Parameter

 The transaction identifier to be used to execute the application program.
USERID

Optional Parameter

 The user ID to be used for the execution of the application program.

1500 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR
 CONTEXT_SWITCH_FAILED
 NO_CHANNEL
 PIPELINE_MODE_MISMATCH
 PIPELINE_NOT_ACTIVE
 PIPELINE_NOT_FOUND
 RZ_CREATE_FAILURE
 RZ_TRANSPORT_ERROR
 TARGET_PROGRAM_UNAVAILABLE
 UNHANDLED_NODE_FAILURE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPM gate, INVOKE_STUB function
Invoke an application program remotely.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR
 CONTEXT_SWITCH_FAILED
 NO_CHANNEL
 PIPELINE_MODE_MISMATCH
 PIPELINE_NOT_ACTIVE
 PIPELINE_NOT_FOUND
 RZ_CREATE_FAILURE
 RZ_TRANSPORT_ERROR
 TARGET_PROGRAM_UNAVAILABLE
 UNHANDLED_NODE_FAILURE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED

Chapter 96. Pipeline Manager Domain (PI) 1501

TIMED_OUT
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPM gate, START_PIPELINE function
Start a requester or provider pipeline.

Input Parameters
MODE

Parameter indicating whether the pipeline is to be started for a service
requester or for a service provider.

 Values for the parameter are:
 PROVIDER
 REQUESTER

PIPELINE
The name of the PIPELINE resource.

CHANNEL
Optional Parameter

 The name of a channel holding containers to be passed to the pipeline.
TRANSPORT_NAME

Optional Parameter

 Depending upon the value of the TRANSPORT_TYPE parameter, the name of
a TCPIPSERVICE or an MQ queue to be passed to the pipeline.

TRANSPORT_TYPE
Optional Parameter

 Parameter indicating the type of transport.

Values for the parameter are:
 HTTP
 MQ

WEBSERVICE
Optional Parameter

 The name of the WEBSERVICE to be invoked for this pipeline.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_ERROR
 CONTEXT_SWITCH_FAILED
 NO_CHANNEL
 PIPELINE_MODE_MISMATCH
 PIPELINE_NOT_ACTIVE
 PIPELINE_NOT_FOUND
 RZ_CREATE_FAILURE
 RZ_TRANSPORT_ERROR
 TARGET_PROGRAM_UNAVAILABLE
 UNHANDLED_NODE_FAILURE

1502 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIRE gate, PERFORM_RESYNC function
Resynchronize any WS-AtomicTransaction units of work that are indoubt,
following a restart of CICS.

Input Parameters

None.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_IN_RESYNC

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISC gate, DYN_CREATE_WEBSERVICE function
This function dynamically creates a WEBSERVICE resource via a PIPELINE scan.

Input Parameters
PIPELINE

The name of the PIPELINE resource that owns the WEBSERVICE.
WSBIND

The fully qualified location of the Web service binding file in the pickup
directory in the z/OS UNIX file system.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CREATE_FAILED
 DISCARD_FAILED
 INQUIRE_FAILED
 INQUIRE_HFS_FAILED
 NAME_CLASH
 NO_UPDATE_NEEDED
 UPDATE_PENDING
 WSDL_NAME_TOO_LONG

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISC gate, UPDATE_WEBSERVICE function
This function completes the updating of a WEBSERVICE resource. It is invoked
when the use count for a WEBSERVICE which is in UPDATING state reaches zero.

Chapter 96. Pipeline Manager Domain (PI) 1503

Input Parameters
WEBSERVICE

The name of the WEBSERVICE whose update is to be completed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CREATE_FAILED
 DISCARD_FAILED
 INQUIRE_FAILED
 INQUIRE_HFS_FAILED
 NAME_CLASH
 NO_UPDATE_NEEDED
 UPDATE_PENDING
 WSDL_NAME_TOO_LONG

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISF gate, SOAPFAULT_ADD function
Add extra data to a SOAP fault created by the SOAPFAULT_CREATE function.

Input Parameters
FAULT_STRING

The description of the fault in a readable form.
SUBCODE_STRING

The value to put in the <subcode> element of a SOAP fault.
CCSID

Optional Parameter

 The CCSID of the input.
NATLANG

Optional Parameter

 The xml:lang value for the FAULT_STRING

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_INVALID
 CCSID_PARTIAL_CONVERSION
 CCSID_UNSUPPORTED
 INVALID_CODE
 INVALID_REQUEST
 NO_FAULT
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISF gate, SOAPFAULT_CREATE function
Create a SOAP fault in an internal format.

1504 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
FAULT_STRING

The description of the fault in a readable form.
FAULTCODE

The standard SOAP fault code to use
FAULTCODE_STRING

The value to use for the <faultcode> element instead of a standard one.
CCSID

Optional Parameter

 The CCSID of the input.
DETAIL

Optional Parameter

 XML containing detailed fault data.
FAULT_ACTOR

Optional Parameter

 The value to put in the <faultactor> element.
NATLANG

Optional Parameter

 The xml:lang value for the FAULT_STRING parameter.
ROLE

Optional Parameter

 The value to put in the <role> element.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_INVALID
 CCSID_PARTIAL_CONVERSION
 CCSID_UNSUPPORTED
 INVALID_CODE
 INVALID_REQUEST
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISF gate, SOAPFAULT_DELETE function
Delete the internal form of a SOAP fault.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_FAULT
 NOT_FOUND
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISN gate, SOAP_11 function
Start a message handler to process SOAP 1.1 messages.

Chapter 96. Pipeline Manager Domain (PI) 1505

Output Parameters
SOAPFAULT

indicates whether a SOAP fault has been built.

 Values for the parameter are:
 NONE
 FAULT_BUILT

REASON
The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 BAD_FAULT
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PISN gate, SOAP_12 function
Start a message handler to process SOAP 1.2 messages.

Output Parameters
SOAPFAULT

indicates whether a SOAP fault has been built.

 Values for the parameter are:
 NONE
 FAULT_BUILT

REASON
The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 BAD_FAULT
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITC gate, ISSUE function
Sends a request to the Security Token Service to issue a username token in
exchange for a security token from the WS-Security message header.

Input parameters
DESTINATION_URI_BLOCK

The URI of the Security Token Service endpoint on the network.
SERVICE_URI_BLOCK

The URI of the Web service that the Security Token should issue a token for to
CICS. This URI is taken from the appliesTo field.

TRUST_LEVEL
Optional parameter.

 The level of WS-Trust that CICS supports.
SECURITY_TOKEN_BLOCK

Optional parameter.

 The security token that the Security Token Service should exchange.
AUTHTOKEN_TYPE_BLOCK

The URI and localname of the token type that should be returned by the
Security Token Service.

1506 CICS TS for z/OS 4.1: Diagnosis Reference

RETURNED_SECTOK_BUFF
A buffer for the token that is returned by the Security Token Service.

RESPONSE_TOKEN
The token that is issued by the Security Token Service.

Output parameters
PASSWORD

Optional parameter.

 The password that is returned by the Security Token Service.
USERNAME

Optional parameter.

 The user name that is returned by the Security Token Service.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND
 BUFFER_TOO_SMALL
 CHANNEL_ERROR
 CONTAINER_ERROR
 INVALID_URI
 ENDPOINT_NOT_PROVIDED
 SOAP_FAULT_BUILT
 UNHANDLED_PIPELINE_ERROR
 TIMED_OUT
 NO_TRUST_REPLY
 TRUST_PARSE_FAILED
 TRUST_FAULT
 INVALID_TRUST_REPLY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITC gate, VALIDATE function
Sends a request to the Security Token Service to validate a security token from the
WS-Security message header.

Input parameters
DESTINATION_URI_BLOCK

The URI of the Security Token Service endpoint on the network.
TRUST_LEVEL

The level of WS-Trust that is supported in CICS.
SECURITY_TOKEN_BLOCK

The security token that should be validated by the Security Token Service.
RETURNED_SECTOK_BUFF

A buffer for the validation response that is returned by the Security Token
Service.

RESPONSE_TOKEN
A unique reference that identifies the request to CICS.

Output parameters
STATUS

The status of the security token that was passed to the Security Token Service
for verification. Values are:

Chapter 96. Pipeline Manager Domain (PI) 1507

TRUST_VALID
The Security Token Service has confirmed that the security token is
valid.

TRUST_INVALID
The Security Token Service has confirmed that the security token is
invalid.

TRUST_UNKNOWN
The Security Token Service was unable to verify the security token.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND
 BUFFER_TOO_SMALL
 CHANNEL_ERROR
 CONTAINER_ERROR
 INVALID_URI
 ENDPOINT_NOT_PROVIDED
 SOAP_FAULT_BUILT
 UNHANDLED_PIPELINE_ERROR
 TIMED_OUT
 NO_TRUST_REPLY
 TRUST_PARSE_FAILED
 TRUST_FAULT
 INVALID_TRUST_REPLY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITC gate, GET_RESPONSE function
Retrieves the response message from the Security Token Service.

Input parameters
RESPONSE_TOKEN

The security token that is issued by the Security Token Service.
RETURNED_SECTOK_BUFF

A buffer for the security token that is issued by the Security Token Service.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND
 BUFFER_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITC gate, TRUST_CLIENT function
Decides what security handler processing should take place in the pipeline.

Input parameters
WSSE_CONFIG

A pointer to the pipeline configuration file details that are stored in memory.
WSSE_PROGRAM

The name of the security handler program.

1508 CICS TS for z/OS 4.1: Diagnosis Reference

CHANNEL_TOKEN
The token for the current channel that is being used by the pipeline.

POOL_TOKEN
The token that identifies the pool of containers that is being used by the
current channel in the pipeline.

MODE
The mode of the pipeline, either a service requester or service provider.

DIRECTION
The direction for the message, either a request message or response message.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TRUST_FAULT
 INVALID_SECURITY_CONTENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITG gate, SEND_REQUEST function

Send a Web service request. This is a generic format for the PITH gate (HTML
transport), PITQ gate (WMQ transport), and PITS gate (CICS transport).

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_CODEPAGE
 SOCKET_ERROR
 UNKNOWN_HOST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITG gate, SEND_RESPONSE function

Send a Web service response. This is a generic format for the PITH gate (HTML
transport), PITQ gate (WMQ transport), and PITS gate (CICS transport).

Chapter 96. Pipeline Manager Domain (PI) 1509

|
|

|
|

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_CODEPAGE
 SOCKET_ERROR
 UNKNOWN_HOST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITG gate, CONVERSE function

Send a Web service request and receive the reply. This is a generic format for the
PITH gate (HTML transport), PITQ gate (WMQ transport), and PITS gate (CICS
transport).

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_CODEPAGE
 SOCKET_ERROR
 UNKNOWN_HOST

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1510 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

PITG gate, RECEIVE_REQUEST function

Receive a Web service request. This is a generic format for the PITH gate (HTML
transport), PITQ gate (WMQ transport), and PITS gate (CICS transport).

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CODEPAGE_NOT_FOUND
 CONNECTION_CLOSED
 SOCKET_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PITG gate, SEND_ERROR_RESPONSE function

Send a Web service error response. This is a generic format for the PITH gate
(HTML transport), PITQ gate (WMQ transport), and PITS gate (CICS transport).

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 96. Pipeline Manager Domain (PI) 1511

|
|

|
|

PITL gate, PROCESS_SOAP_REQUEST function
Process a SOAP body received on a SOAP pipeline

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 APP_FAULT
 CONV_FROM_SOAP_FAILED
 CONV_TO_SOAP_FAILED
 INBOUND_VALIDATION_FAILED
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NOT_AUTHORIZED
 OPERATION_NOT_FOUND
 OUTBOUND_VALIDATION_FAILED
 SEVERE_ERROR
 SOAP_BODY_CONTAINER_FAULT
 TARGET_ABENDED
 TARGET_LINK_FAILED
 VENDOR_LINK_FAILED
 WSBIND_FORMAT_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, CREATE_WEBSERVICE function
Create a new WEBSERVICE resource.

Input Parameters
PIPELINE

The pipeline which will own the WEBSERVICE.
WEBSERVICE

The name of the WEBSERVICE.
WSBIND_BUF

The location of the Web service binding file in the z/OS UNIX file system.
SCAN_MODE

Optional Parameter

 Indicates whether the WEBSERVICE is being scanned in or not.

Values for the parameter are:
 NO
 YES

VALIDATION
Optional Parameter

 Indicates whether validation is enabled for the WEBSERVICE.

Values for the parameter are:
 NO
 YES

WARM_RESTART
Optional Parameter

1512 CICS TS for z/OS 4.1: Diagnosis Reference

Indicates whether the WEBSERVICE is to be recovered from the catalog during
a warm restart.

Values for the parameter are:
 NO
 YES

WSDLFILE_BUF
Optional Parameter

 The location of the optional Web service description (WSDL) file in the z/OS
UNIX file system.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 DIRECTORY_ERROR
 INSUFFICIENT_STORAGE
 LOCK_FAILURE
 PIPELINE_ERROR
 PIPELINE_NON_EXISTANT
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, DECREMENT_USE_COUNT function
Decrement the current use count for a WEBSERVICE. When it reaches 0 and if the
WEBSERVICE is updating or discarding then the completion of the update or
discard operation will be triggered.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, DISCARD_WEBSERVICE function
This function discards a WEBSERVICE resource.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 NOT_AUTHORIZED

Chapter 96. Pipeline Manager Domain (PI) 1513

SEVERE_ERROR
 WEBSERVICE_IN_USE
 WEBSERVICE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, END_BROWSE_WEBSERVICE function
This function ends a browse operation for WEBSERVICE resources.

Input Parameters
BROWSE_TOKEN

The browse token for the browse operation.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, GET_NEXT_WEBSERVICE function
Get the next WEBSERVICE resource during a browse operation.

Input Parameters
BROWSE_TOKEN

The browse token for the browse operation.
BINDING_BUF

Optional Parameter

 A buffer in which the WSDL binding value is returned.
ENDPOINT_BUF

Optional Parameter

 A buffer in which the end point URI is returned.
RESET

Optional Parameter

 A flag that indicates if the use count is to be reset to zero.

Values for the parameter are:
 NO
 YES

WSBIND_BUF
Optional Parameter

 A buffer in which the location of the Webservice binding file in the z/OS
UNIX file system is returned.

WSDLFILE_BUF
Optional Parameter

 A buffer in which the location of the Web service description (WSDL) file in
the z/OS UNIX file system is returned.

Output Parameters
DATESTAMP

The date stamp of the Web service binding file

1514 CICS TS for z/OS 4.1: Diagnosis Reference

LASTMODTIME
The time at which the Web service binding file was last changed.

PGMINTERFACE
The type of interface used by the target program

 Values for the parameter are:
 CHANNEL
 COMMAREA

PIPELINE
The pipeline which owns the WEBSERVICE.

PROGRAM
The target program.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATE
The current state of the WEBSERVICE.

 Values for the parameter are:
 DISCARDING
 INITING
 INSERVICE
 UNUSABLE
 UPDATING

TIMESTAMP
The time stamp of the Web service binding file.

URIMAP
The name of the URIMAP that is associated with the WEBSERVICE.

VALIDATION
Indicates whether validation is enabled for the WEBSERVICE.

 Values for the parameter are:
 NO
 YES

WEBSERVICE
The name of the WEBSERVICE.

TOTAL_USE_COUNT
Optional Parameter

 The current use count for the WEBSERVICE.

PIWR gate, INCREMENT_USE_COUNT function
Increment the use count for the named WEBSERVICE.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 SEVERE_ERROR

Chapter 96. Pipeline Manager Domain (PI) 1515

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, INITIALISE_WEBSERVICE function
Resolve the z/OS UNIX parts of a WEBSERVICE. The function takes a
WEBSERVICE which is in INSTALLING state to either INSERVICE or UNUSABLE
state.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 EYECATCHER_ERROR
 FILE_NOT_FOUND
 INSUFFICIENT_STORAGE
 NOT_AUTHORIZED
 PIPELINE_ERROR
 PIPELINE_WRONG_MODE
 READ_ERROR
 SEVERE_ERROR
 SHELF_WRITE_ERROR
 VERSION_ERROR
 WEBSERVICE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, INQUIRE_WEBSERVICE function
Inquire on a WEBSERVICE resource.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.
BINDING_BUF

Optional Parameter

 A buffer in which the WSDL binding value is returned.
ENDPOINT_BUF

Optional Parameter

 A buffer in which the endpoint URI is returned.
WSBIND_BUF

Optional Parameter

 A buffer in which the location of the Web service binding file in z/OS UNIX is
returned.

WSDLFILE_BUF
Optional Parameter

 A buffer in which the location of the optional Web service description (WSDL)
file in z/OS UNIX is returned.

1516 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 NOT_AUTHORIZED
 SEVERE_ERROR
 WEBSERVICE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONTAINER
Optional Parameter

 The name of the container for the target program's data.
DATESTAMP

Optional Parameter

 The date stamp of the Web service binding file.
LASTMODTIME

Optional Parameter

 The time at which the Web service binding file was last changed.
PGMINTERFACE

Optional Parameter

 The type of interface used by the target program

Values for the parameter are:
 CHANNEL
 COMMAREA
 NOTAPPLIC

PGMINTERFACE
The type of interface used by the target program

 Values for the parameter are:
 CHANNEL
 COMMAREA
 NOTAPPLIC

PIPELINE
Optional Parameter

 The pipeline which owns the WEBSERVICE.
PROGRAM

Optional Parameter

 The target program.
STATE

Optional Parameter

 The current state of the WEBSERVICE.

Values for the parameter are:
 DISCARDING
 INITING
 INSERVICE
 UNUSABLE
 UPDATING

TIMESTAMP
Optional Parameter

 The time stamp of the Web service binding file.

Chapter 96. Pipeline Manager Domain (PI) 1517

TOTAL_USE_COUNT
Optional Parameter

 The total use count for the WEBSERVICE.
URIMAP

Optional Parameter

 The name of the URIMAP that is associated with the WEBSERVICE.
VALIDATION

Optional Parameter

 Indicates whether validation is enabled for the WEBSERVICE.

Values for the parameter are:
 NO
 YES

WSADDR
Optional Parameter

 The address of the WEBSERVICE control block.

PIWR gate, RESOLVE_ALL_WEBSERVICES function
Resolve all WEBSERVICE resources for a given pipeline that are in INITING state.

Input Parameters
PIPELINE

Optional Parameter

 The pipeline for which WEBSERVICE resources are to be resolved.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, SET_WEBSERVICE function
Change the state of a WEBSERVICE resource.

Input Parameters
VALIDATION

The new validation state for the WEBSERVICE.

 Values for the parameter are:
 NO
 YES

WEBSERVICE
The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 DUPLICATE
 NOT_AUTHORIZED

1518 CICS TS for z/OS 4.1: Diagnosis Reference

SEVERE_ERROR
 WEBSERVICE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIWR gate, START_BROWSE_WEBSERVICE function
Start a browse operation on WEBSERVICE resources.

Output Parameters
BROWSE_TOKEN

The browse token for the browse operation.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ABEND
 BROWSE_END
 DIRECTORY_ERROR
 DUPLICATE
 FILE_NOT_FOUND
 FREEMAIN_FAILURE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 INVALID_FORMAT
 INVALID_FUNCTION
 LOCK_FAILURE
 LOOP
 NO_WEBS_INSTALLED
 NOT_AUTHORIZED
 PIPELINE_ERROR
 PIPELINE_NON_EXISTANT
 PIPELINE_WRONG_MODE
 READ_ERROR
 SEVERE_ERROR
 SHELF_WRITE_ERROR
 WEBSERVICE_IN_USE
 WEBSERVICE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIXI gate, PARSE_XOP function
Converts the XOP message back to standard XML, by replacing any xop:Include
elements with the base64binary encoded data from the corresponding binary
attachment. If there are no XOP elements, nothing is changed.

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container in the specified channel that contains the
binary attachments list.

BODY_CONTAINER
The 16-byte name of the body container in the specified channel that contains
XOP or XML data. This should be a container of DATATYPE(CHAR).

CHANNEL_NAME
Optional parameter

Chapter 96. Pipeline Manager Domain (PI) 1519

The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

NAMESPACES_CONTAINER
Optional parameter

 The 16-byte name of the container in the specified channel that contains the list
of namespaces. The syntax is xmlns:prefix="value".

Output Parameters
ATTACHMENTS_COUNT

The number of <xop:Include> elements that were processed. If the number is
0, the original body container does not include any XOP elements and has not
been modified.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR
 CONTAINER_WRONG_TYPE
 ATTACHMENT_NOT_FOUND
 INPUT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIXO gate, BUILD_XOP function
Converts a standard XML message with base64binary encoded data into XOP
format with separate binary attachments.

Input Parameters
ATTACHMENTS_CONTAINER

The 16-byte name of the container that contains the attachments list in the
specified channel.

BODY_CONTAINER
The 16-byte name of the body container in the specified channel that contains
XOP or XML data. This should be a container of DATATYPE(CHAR).

CHANNEL_NAME
Optional parameter

 The 16-byte name of the channel for all referenced containers. If this parameter
is omitted, then the current channel is assumed.

CID_DOMAIN_CONTAINER
The 16-byte name of the container that contains the domain name string that
should be used as the last part of the content-ID, to identify the sysplex within
which the locally unique value applies.

Output Parameters
ATTACHMENTS_COUNT

The number of <xop:Include> elements that were processed. If the number is
0, the original body container does not include any XOP elements and has not
been modified.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CHANNEL_NOT_FOUND
 CONTAINER_NOT_FOUND
 CONTAINER_CCSID_ERROR

1520 CICS TS for z/OS 4.1: Diagnosis Reference

CONTAINER_WRONG_TYPE
 CONTAINER_NAME_INVALID
 INPUT_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Pipeline Manager domain's generic gates

Table 63 summarizes the Pipeline Manager domain's generic gates. It shows the
level-1 trace point IDs of the modules providing the functions for the gate, the
functions provided by the gate, and the generic format for calls to the gate.

 Table 63. Pipeline Manager domain's generic gates

Gate Trace Function Format

PIDM PI 0100
PI 0101

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

PIST PI 0200
PI 0201

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

Modules
 Module Function

DFHPIA1 Supports inbound and outbound WS-Addressed SOAP messages.

DFHPIAD Supports the WS-Addressing API.

DFHPIAP Remote stub program.

DFHPIAT Supports PI domain's atomic transactions functions.

DFHPICA CICS program for handling SCA composite resource type.

DFHPICC Marshal XML body to COMMAREA and channel data.

DFHPIDM Domain initialization and termination program.

DFHPIDSH The pipeline HTTP inbound router module. Starts a service provider
pipeline by issuing a DFHPIPM START_PIPELINE call to the pipeline
manager.

DFHPIDUF PI domain dump formatting program.

DFHPIII ICM interpreter.

DFHPIIT PI installation assist transaction program

DFHPIIW Pipeline manager support for PIIW gate.

DFHPILN Pipeline callback program

DFHPIMM MIME Multipart/Related module that parses inbound MIME messages
with binary attachments and builds outbound MIME messages.

DFHPIPA SOAP envelope SAX parser

DFHPIPL PIPL gate functions

DFHPIPM Pipeline manager domain gate

DFHPIRT The pipeline HTTP outbound router module. Starts a service requester
pipeline by issuing a DFHPIPM START_PIPELINE call to the pipeline
manager.

Chapter 96. Pipeline Manager Domain (PI) 1521

||

||

||

Module Function

DFHPISF SOAP fault API support.

DFHPISN SOAP node support.

DFHPISN1 SOAP 1.1 handler program.

DFHPISN2 SOAP 1.2 handler program.

DFHPIST Pipeline manager's statistics gate.

DFHPITC Trust handler client module

DFHPITH The pipeline HTTP transport management program which performs the
functions of the PITG gate.

DFHPITL Top level Web service module

DFHPITP PI domain's EXEC layer program

DFHPITQ WebSphere MQ (WMQ) transport.

DFHPITQ1 CICS SOAP WMQ Transport program.

DFHPITRI PI domain trace formatting program.

DFHPITS The pipeline transport management program

DFHPIWR WEBSERVICE resource functions.

DFHPIWT Work request manager.

DFHPIXI XOP parsing interface for handling inbound MIME Multipart/Related
messages in compatibility mode.

DFHPIXO XOP parsing interface for handling outbound MIME Multipart/Related
messages in compatibility mode.

1522 CICS TS for z/OS 4.1: Diagnosis Reference

||

Chapter 97. Partner Management Domain (PT)

The partner domain provides services to coordinate flows between two CICS tasks.

Partner Management Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the PT domain.

PTTW gate, BREAK_PARTNERSHIP function
Break an established partnership.

Input Parameters
STATE_TOKEN

The state_token used to manage the handshake
COMPLETION_CODE

Optional Parameter

 The completion code to be passed to the partner. The caller can use this to
notify partner why the partnership is being broken. Once read the completion
code is reset to zero. This is optional so that the caller can pass exactly one
completion code when calling trigger_partner followed by break_partnership.
The completion code is ignored if the resulting state is not_made.

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 NOT_PARTNER
 PARTNERSHIP_NOT_MADE

PARTNER_COMPLETION_CODE
The partner's completion code indicates why the partner broke the partnership.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEW_TRIGSTATE1
Optional Parameter

 The state of partner 1 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

NEW_TRIGSTATE2
Optional Parameter

 The state of partner 2 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED

© Copyright IBM Corp. 1997, 2011 1523

VALID
 WAITING

OLD_TRIGSTATE1
Optional Parameter

 The state of partner 1 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE2
Optional Parameter

 The state of partner 2 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

PTTW gate, CREATE_PARTNERSHIP function
Create a new state block to represent a partnership, and add it to the pool.

Input Parameters
POOL_TOKEN

The token of this pool

Output Parameters
REASON

The values for the parameter are:
 POOL_NOT_FOUND
 POOL_QUIESCING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATE_TOKEN
The state_token used to manage the handshake

PTTW gate, CREATE_POOL function
The CREATE_POOL function creates a pool for state_tokens.

Input Parameters
GARBAGE_COLLECTION

Whether or not garbage collection is to be performed for state_tokens in this
pool.

 Values for the parameter are:
 OFF
 ON

POOL_NAME
The eight character name of the pool. This name must be unique across all
pools. There is no enforced character set for this name.

1524 CICS TS for z/OS 4.1: Diagnosis Reference

FREE_USER_DATA_DOMAIN
Optional Parameter

 An optional callback routine that may be called to free any user data
addressed from the user_data_token associated with each state_token. This
callback must implement the PTFD FREE_USER_DATA gate.

FREE_USER_DATA_GATE
Optional Parameter

 An optional callback routine that may be called to free any user data
addressed from the user_data_token associated with each state_token. This
callback must implement the PTFD FREE_USER_DATA gate.

GARBAGE_COLLECT_INTERVAL
Optional Parameter

 The interval in milliseconds between collections of garbage for this pool. If
garbage collection is on, this parameter must be provided. If garbage collection
is off, this parameter is ignored.

Output Parameters
REASON

The values for the parameter are:
 BAD_CALLBACK
 NAME_NOT_UNIQUE

POOL_TOKEN
The token of this pool

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PTTW gate, DESTROY_PARTNERSHIP function
Remove a state block from its pool and delete it to destroy the partnership. If the
state token is still in use by the partner, it is flagged as deleted.

Input Parameters
STATE_TOKEN

The state_token used to manage the handshake

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 PARTNER_WAITING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEW_TRIGSTATE1
Optional Parameter

 The state of partner 1 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

Chapter 97. Partner Management Domain (PT) 1525

NEW_TRIGSTATE2
Optional Parameter

 The state of partner 2 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE1
Optional Parameter

 The state of partner 1 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE2
Optional Parameter

 The state of partner 2 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

PTTW gate, DESTROY_POOL function
Destroys a pool of state_tokens.

Input Parameters
DESTROY_OPTION

Specifies how the pool is destroyed.

 Values for the parameter are:
 FORCE
 MUST_BE_EMPTY
 QUIESCE

POOL_TOKEN
The token of this pool

Output Parameters
REASON

The values for the parameter are:
 POOL_NOT_EMPTY
 POOL_NOT_FOUND
 POOL_QUIESCING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1526 CICS TS for z/OS 4.1: Diagnosis Reference

PTTW gate, END_POOL_BROWSE function
End a browse of pools.

Input Parameters
POOL_CURSOR

The browse cursor returned from start_pool_browse

Output Parameters
REASON

The values for the parameter are:
 INVALID_CURSOR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PTTW gate, GET_NEXT_POOL function
Get the next pool

Input Parameters
POOL_CURSOR

The browse cursor returned from start_pool_browse

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 END_BROWSE
 INVALID_CURSOR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

POOL_NAME
Optional Parameter

 The eight character name of the pool. This name must be unique across all
pools. There is no enforced character set for this name.

POOL_TOKEN
Optional Parameter

 The token of this pool

PTTW gate, INQUIRE_GARBAGE_INTERVAL function
Get garbage collection interval.

Input Parameters
POOL_TOKEN

The token of this pool

Output Parameters
REASON

The values for the parameter are:
 POOL_NOT_FOUND

GARBAGE_COLLECT_INTERVAL
The interval in milliseconds between collections of garbage for this pool. If
garbage collection is on, this parameter must be provided. If garbage collection
is off, this parameter is ignored.

Chapter 97. Partner Management Domain (PT) 1527

GARBAGE_COLLECTION
Whether or not garbage collection is to be performed for state_tokens in this
pool.

 Values for the parameter are:
 OFF
 ON

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PTTW gate, INQUIRE_USER_TOKEN function
Get the user token in the state block.

Input Parameters
STATE_TOKEN

The state_token used to manage the handshake

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_TOKEN
The user token to be associated with the state token

PTTW gate, MAKE_PARTNERSHIP function
Establish a partnership with another task. The partner task may or may not have
previously made the partnership.

Input Parameters
ORDER

Specifies the order in which the partners make the partnership.

 Values for the parameter are:
 DONT_CARE
 ONLY
 SUBSEQUENT

STATE_TOKEN
The state_token used to manage the handshake

Output Parameters
REASON

The values for the parameter are:
 ALREADY_MADE
 ALREADY_PARTNER
 NOT_FOUND
 NOT_ONLY
 NOT_PARTNER
 NOT_SUBSEQUENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1528 CICS TS for z/OS 4.1: Diagnosis Reference

NEW_TRIGSTATE1
Optional Parameter

 The state of partner 1 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

NEW_TRIGSTATE2
Optional Parameter

 The state of partner 2 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE1
Optional Parameter

 The state of partner 1 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE2
Optional Parameter

 The state of partner 2 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

PTTW gate, QUERY_PARTNERSHIP function
Get the status of the partner task.

Input Parameters
STATE_TOKEN

The state_token used to manage the handshake

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 NOT_PARTNER

Chapter 97. Partner Management Domain (PT) 1529

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

POOL_TOKEN
Optional Parameter

 The token of this pool
STATE

Optional Parameter

 Describes whether the state token is not made, made or partially made and
who by.

Values for the parameter are:
 MADE
 MADE_BY_PARTNER
 MADE_BY_SELF
 NOT_MADE

STATUS_OF_PARTNER
Optional Parameter

 Describes whether partner is waiting or has been triggered.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

STATUS_OF_SELF
Optional Parameter

 Describes whether the caller has been triggered or not.

Values for the parameter are:
 TRIGGERED
 UNDEFINED
 VALID

XM_TOKEN
Optional Parameter

 The partner's transaction manager token.

PTTW gate, QUERY_POOL function
Query the attributes and state of a pool.

Input Parameters
POOL_NAME

The eight character name of the pool. This name must be unique across all
pools. There is no enforced character set for this name.

POOL_TOKEN
The token of this pool

Output Parameters
REASON

The values for the parameter are:
 POOL_NOT_FOUND

1530 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FREE_USER_DATA_DOMAIN
Optional Parameter

 An optional callback routine that may be called to free any user data
addressed from the user_data_token associated with each state_token. This
callback must implement the PTFD FREE_USER_DATA gate.

FREE_USER_DATA_GATE
Optional Parameter

 An optional callback routine that may be called to free any user data
addressed from the user_data_token associated with each state_token. This
callback must implement the PTFD FREE_USER_DATA gate.

GARBAGE_COLLECT_INTERVAL
Optional Parameter

 The interval in milliseconds between collections of garbage for this pool. If
garbage collection is on, this parameter must be provided. If garbage collection
is off, this parameter is ignored.

GARBAGE_COLLECTION
Optional Parameter

 Whether or not garbage collection is to be performed for state_tokens in this
pool.

Values for the parameter are:
 OFF
 ON

POOL_NAME_OUT
Optional Parameter

 The pool name is returned.
POOL_STATE

Optional Parameter

 The cureent state of the pool.

Values for the parameter are:
 EMPTY
 NOT_EMPTY
 QUIESCING

POOL_TOKEN_OUT
Optional Parameter

 The pool token is returned.

PTTW gate, SET_GARBAGE_INTERVAL function
Set garbage collection interval.

Input Parameters
GARBAGE_COLLECT_INTERVAL

The interval in milliseconds between collections of garbage for this pool. If
garbage collection is on, this parameter must be provided. If garbage collection
is off, this parameter is ignored.

POOL_TOKEN
The token of this pool

Chapter 97. Partner Management Domain (PT) 1531

Output Parameters
REASON

The values for the parameter are:
 GARBAGE_COLLECTION_OFF
 POOL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PTTW gate, SET_USER_TOKEN function
Change the user token in the state block.

Input Parameters
STATE_TOKEN

The state_token used to manage the handshake
USER_TOKEN

The user token to be associated with the state token

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PTTW gate, START_POOL_BROWSE function
Creates a pool cursor to browse pools.

Output Parameters
REASON

The values for the parameter are:
 NO_POOLS

POOL_CURSOR
The browse cursor returned from start_pool_browse

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PTTW gate, TRIGGER_PARTNER function
Notify a waiting partner. If the partner is not waiting when trigger is called, the
partner will be triggered when it next waits.

Input Parameters
COMPLETION_CODE

The completion code to be passed to the partner. The caller can use this to
notify partner why the partnership is being broken. Once read the completion
code is reset to zero. This is optional so that the caller can pass exactly one
completion code when calling trigger_partner followed by break_partnership.
The completion code is ignored if the resulting state is not_made.

PARTNER_EXISTENCE
Specifies whether the partner must exist for this request.

 Values for the parameter are:
 DONT_CARE

1532 CICS TS for z/OS 4.1: Diagnosis Reference

MUST_EXIST
STATE_TOKEN

The state_token used to manage the handshake

Output Parameters
REASON

The values for the parameter are:
 ALREADY_TRIGGERED
 NOT_FOUND
 NOT_PARTNER
 PARTNER_NOT_THERE
 PARTNERSHIP_NOT_MADE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEW_TRIGSTATE1
Optional Parameter

 The state of partner 1 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

NEW_TRIGSTATE2
Optional Parameter

 The state of partner 2 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE1
Optional Parameter

 The state of partner 1 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE2
Optional Parameter

 The state of partner 2 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

Chapter 97. Partner Management Domain (PT) 1533

PTTW gate, WAIT_FOR_PARTNER function
Wait to be notified by a partner or until the wait times out.

Input Parameters
PARTNER_EXISTENCE

Specifies whether the partner must exist for this request.

 Values for the parameter are:
 DONT_CARE
 MUST_EXIST

STATE_TOKEN
The state_token used to manage the handshake

PURGEABLE
Optional Parameter

 Specifies whether the wait can be purged.

Values for the parameter are:
 NO
 YES

TIMEOUT
Optional Parameter

 An optional maximum time to wait before waking up in milliseconds

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 NOT_PARTNER
 PARTNER_NOT_THERE
 PARTNER_WAITING
 PARTNERSHIP_NOT_MADE
 TIMED_OUT

PARTNER_COMPLETION_CODE
The partner's completion code indicates why the partner broke the partnership.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEW_TRIGSTATE1
Optional Parameter

 The state of partner 1 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

NEW_TRIGSTATE2
Optional Parameter

 The state of partner 2 after the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED

1534 CICS TS for z/OS 4.1: Diagnosis Reference

VALID
 WAITING

OLD_TRIGSTATE1
Optional Parameter

 The state of partner 1 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

OLD_TRIGSTATE2
Optional Parameter

 The state of partner 2 before the request.

Values for the parameter are:
 RESUMED
 TRIGGERED
 UNDEFINED
 VALID
 WAITING

Modules
 Module Function

DFHPTDM Domain initialisation and termination.
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHPTTW Handles the following requests:
 CREATE_POOL
 DESTROY_POOL
 QUERY_POOL
 START_POOL_BROWSE
 GET_NEXT_POOL
 END_POOL_BROWSE
 CREATE_PARTNERSHIP
 DESTROY_PARTNERSHIP
 SET_USER_TOKEN
 INQUIRE_USER_TOKEN
 MAKE_PARTNERSHIP
 BREAK_PARTNERSHIP
 TRIGGER_PARTNER
 WAIT_FOR_PARTNER
 QUERY_PARTNERSHIP
 SET_GARBAGE_INTERVAL
 INQUIRE_GARBAGE_INTERVAL

Chapter 97. Partner Management Domain (PT) 1535

1536 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 98. Resource life-cycle domain (RL)

The resource life-cycle domain handles the installation and life cycle of application
resources.

Resource life-cycle domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the RL domain.

RLPM gate, DISCARD_BUNDLE function
Discards a disabled BUNDLE resource, releasing the associated storage.

Input parameters
BUNDLE_NAME

Optional parameter

 An 8-byte character name of the bundle.
BUNDLE_TOKEN

Optional parameter

 An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLPM_CLIENT_FAILED
 RLPM_DUPLICATE_BUNDLE
 RLPM_INVALID_STATE
 RLPM_MANIFEST_INVALID
 RLPM_MANIFEST_NOT_FOUND
 RLPM_NOT_DISABLED
 RLPM_NOT_FOUND
 RLPM_RESOURCE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLPM gate, END_BROWSE_BUNDLE function
Ends a browse session on installed BUNDLE resources.

Input parameters
BROWSE_TOKEN

The browse token for the browse operation.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE
 INVALID_DIRECTORY

© Copyright IBM Corp. 1997, 2011 1537

|

|

|
|

|
|

|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLPM gate, GET_NEXT_BUNDLE function
Get the next installed BUNDLE resource to browse it.

Input parameters

BROWSE_TOKEN
The browse token for the browse operation.

RESOURCE_SIGNATURE
Optional parameter

 The resource signature of the resource.

INQUIRE_VENDOR
Optional parameter

 The bundle is provided by a vendor. The value of this parameter is YES or
NO.

ROOT_BUFF
Optional parameter

 A buffer for the root directory of the BUNDLE resource.

SCOPE_BUFF
Optional parameter

 A buffer for the scope of the bundle.

Output parameters
BUNDLE_TOKEN

Optional parameter

 An 8-byte token that represents the created bundle.
BUNDLE_NAME

An 8-byte character name of the bundle.
DEFINE_COUNT

Optional parameter

 The total number of dynamically created resources in the bundle.
ENABLED_COUNT

Optional parameter

 The number of current resources that were dynamically created by the bundle
and are enabled in the CICS region.

PART_COUNT
Optional parameter

 The total number of imports, exports, and definition statements that are
defined in the bundle manifest.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 RLPM_BROWSE_END
 RLPM_CLIENT_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1538 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

STATE
A 1–byte enumeration expressing whether the initial state of the BUNDLE
resource is enabled or disabled.

RLPM gate, INQUIRE_BUNDLE function
Inquire to find out if the BUNDLE resource is enabled or disabled.

Input parameters

BUNDLE_NAME
Optional parameter

 An 8-byte character name of the bundle.

BUNDLE_TOKEN
Optional parameter

 An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

INQUIRE_VENDOR
Optional parameter

 The bundle is provided by a vendor. The value of this parameter is YES or
NO.

ROOT_BUFF
Optional parameter

 Abuffer for the root path of the bundle.

RESOURCE_SIGNATURE
Optional parameter

 The resource signature of the resource.

SCOPE_BUFF
Optional parameter

 A buffer for the scope of the bundle.

Output parameters

DEFINE_COUNT
Optional parameter

 The total number of dynamically created resources in the bundle.

ENABLED_COUNT
Optional parameter

 The number of current resources that were dynamically created by the bundle
and are enabled in the CICS region.

PART_COUNT
Optional parameter

 The total number of imports, exports, and definition statements that are
defined in the bundle manifest.

STATE
A 1–byte enumeration expressing whether the initial state of the BUNDLE
resource is enabled or disabled.

Chapter 98. Resource life-cycle domain (RL) 1539

|
|
|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

REASON
The following values are returned when RESPONSE is EXCEPTION:
 RLPM_CLIENT_FAILED

 RLPM_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLPM gate, INSTALL_BUNDLE function
Creates a BUNDLE resource from a bundle that has been deployed into CICS.

Input parameters
BUNDLE_NAME

An 8-byte character name of the bundle.
CATALOGUE

Optional parameter

 Add the BUNDLE resource to the CICS catalog. This parameter value is YES or
NO.

RESOURCE_SIGNATURE
The resource signature of the resource.

ROOT
The fully qualified path of the root directory in the file system for the bundle.

SCOPE
Optional parameter.

 A character string that contains the scope of the bundle as a URL.
STATE

A 1–byte enumeration expressing whether the initial state of the BUNDLE
resource is enabled or disabled.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLPM_CLIENT_FAILED
 RLPM_DUPLICATE_BUNDLE
 RLPM_MANIFEST_INVALID
 RLPM_MANIFEST_NOT_FOUND
 RLPM_MANIFEST_NOT_AUTH
 RLPM_RESOURCE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLPM gate, SET_BUNDLE function
Set the status of the BUNDLE resource.

Input parameters
BUNDLE_NAME

Optional parameter

 An 8-byte character name of the bundle.
BUNDLE_TOKEN

Optional parameter

1540 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|

|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|

An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

STATE
A 1–byte enumeration expressing whether the initial state of the BUNDLE
resource is enabled or disabled.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLPM_BUNDLE_SET_FAILED
 RLPM_CLIENT_FAILED
 RLPM_DUPLICATE_BUNDLE
 RLPM_INVALID_STATE
 RLPM_MANIFEST_INVALID
 RLPM_MANIFEST_NOT_FOUND
 RLPM_RESOURCE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLPM gate, START_BROWSE_BUNDLE function
Start a browse session on installed BUNDLE resources.

Input parameters

None.

Output parameters
BROWSE_TOKEN

The browse token for the browse operation.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_DIRECTORY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, CREATED function
The CREATED function is called by the client domain after the BUNDLE resource
is created.

Input parameters
BUNDLE_TOKEN

An 8-byte token that represents the created BUNDLE resource.
CLIENT_TOKEN

An 8-byte token that represents the client domain's view of the resource.
RESOURCE_TOKEN

An 8-byte token that represents the resource.
STATE

A 1–byte enumeration that expresses whether the state of the resource is
enabled, disabled, or failed.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:

Chapter 98. Resource life-cycle domain (RL) 1541

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

BAD_TOKEN
 CATALOG_FULL
 INVALID_DATA_LENGTH
 IO_ERROR
 RL_NOT_REGISTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, DEREGISTER function
Deregister a resource type and its callback program.

Input parameters
TYPE

A character string that contains the URL for the type of resource.
CALLBACK_GATE

Optional parameter

 The CICS callback gate that handles creating the resource type.
CALLBACK_PROGRAM

Optional parameter

 The name of the program that handles creating the user resource type.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLRO_NOT_REGISTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, DISCARDED function
The DISCARDED function is called by the client domain after the resource is
discarded.

Input parameters
BUNDLE_TOKEN

An 8-byte token that represents the created BUNDLE resource.
RESOURCE_TOKEN

An 8-byte token that represents the resource.

Output parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, DRIVE_PENDING function
Complete the creation of a BUNDLE resource during CICS initialization.

Input parameters

None.

1542 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

Output parameters

None.

RLRO gate, END_BROWSE_BUNDLERES function
End a browse session on resources in an installed BUNDLE resource.

Input parameters
BROWSE_TOKEN

The browse token for the browse operation.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLRO_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, GET_NEXT_BUNDLERES function
Get the next resource from an installed BUNDLE to browse it.

Input parameters
BROWSE_TOKEN

The browse token for the browse operation.
FILE_BUFF

Optional parameter

 A buffer for the artifact that defines the resource.
NAME_BUFF

Optional parameter

 A buffer for the resource name.
TYPE_BUFF

Optional parameter

 A buffer for the resource type.

Output parameters
BUNDLE

The 8-byte character name of the BUNDLE resource.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLRO_NOT_FOUND

RESCLASS
Optional parameter

 The class of the resource. The value of this parameter is DEFINE, IMPORT, or
EXPORT.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATE
Optional parameter

 The state of the resource. This parameter can have one of the following values:
v Disabled

Chapter 98. Resource life-cycle domain (RL) 1543

|

|

|

|

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

v Disabling
v Discarding
v Enabled
v Enabling
v Failed

RLRO gate, NOTIFY function
The NOTIFY function is called by the client domain when the requested operation
has completed.

Input parameters
BUNDLE_TOKEN

An 8-byte token that represents the created BUNDLE resource.
RESOURCE_TOKEN

An 8-byte token that represents the resource.
STATE

A 1–byte enumeration that expresses whether the state of the resource is
enabled, disabled, or failed.

Output parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, REGISTER function
Register a resource type and its callback program or domain.

Input parameters
CALLBACK_GATE

Optional parameter

 The CICS callback gate that handles creating the resource type.
CALLBACK_PROGRAM

Optional parameter

 The name of the program that handles creating the user resource type.
DELEGATE_RECOVERY

Optional parameter

 Delegate the recovery of the resource. The value of this parameter is YES or
NO.

TYPE
A character string that contains the URL for the type of resource.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLRO_ALREADY_REGISTERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLRO gate, START_BROWSE_BUNDLERES function
Start a browse session on resources that were dynamically created by installing a
BUNDLE resource.

1544 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

Input parameters
BUNDLE

The 8-byte character name of the BUNDLE resource

Output parameters
BROWSE_TOKEN

The browse token for the browse operation.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 RLRO_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLXM gate, INQUIRE_SCOPE function
The INQUIRE_SCOPE function inquires on the SCOPE parameter on the INVOKE
SERVICE command.

Input parameters
SCOPE_BUFFER

A buffer for the scope of the service.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
v ABEND
v LOOP

The following value is returned when RESPONSE is EXCEPTION:
v LENGTH_ERROR
v NO_SCOPE

The following values are returned when RESPONSE is INVALID:
v INVALID_FORMAT
v INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLXM gate, POP_SCOPE function
The POP_SCOPE function removes the SCOPE parameter on the INVOKE SERVICE
command.

Input parameters

None.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
v ABEND
v LOOP

The following values are returned when RESPONSE is INVALID:
v INVALID_FORMAT
v INVALID_FUNCTION

Chapter 98. Resource life-cycle domain (RL) 1545

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|

|

|
|
|
|
|

|
|
|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLXM gate, PUSH_SCOPE function
The PUSH_SCOPE function saves the SCOPE parameter on the INVOKE SERVICE
command.

Input parameters
SCOPE_BUFFER

A buffer for the scope of the service.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
v ABEND
v LOOP

The following value is returned when RESPONSE is EXCEPTION:
v LENGTH_ERROR

The following values are returned when RESPONSE is INVALID:
v INVALID_FORMAT
v INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLXM gate, RELEASE_XM_CLIENT function
The RELEASE_XM_CLIENT function releases the XM client.

Input parameters

None.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
v ABEND
v LOOP

The following values are returned when RESPONSE is INVALID:
v INVALID_FORMAT
v INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Resource life-cycle domain's generic gates

Table 64 on page 1547 summarizes the Resource life-cycle domain's generic gates. It
shows the level-1 trace point IDs of the modules providing the functions for the
gate, the functions provided by the gate, and the generic format for calls to the
gate.

1546 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

Table 64. Resource life-cycle domain's generic gates

Gate Trace Function Format

RLDM RL 0100
RL 0101

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

RLST RL 0200
RL 0201

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

Resource life-cycle domain's call-back formats

Table 65 describes the call-back formats owned by the domain and shows the
functions performed on the calls.

 Table 65. Resource life-cycle domain's call-back formats

Format Calling module Function

RLCB CREATE
DISCARD
INQUIRE
SET

In the descriptions for the formats, the input parameters are input not to the
resource life-cycle domain, but to the domain being called by the recovery
life-cycle domain. Similarly, the output parameters are output by the domain that
was called by the resource life-cycle domain, in response to the call.

RLCB gate, CREATE function
The CREATE function is called on the client domain by the RL domain to create a
resource that is owned by the domain.

Input parameters
DATA

Contains the metadata for the resource.
BUNDLE_NAME

An 8-byte character name of the bundle.
BUNDLE_TOKEN

Optional parameter

 An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

RESOURCE_TOKEN
An 8-byte token that represents the resource.

ROOT
The fully qualified path of the root directory in the file system for the bundle.

SCOPE
Optional parameter.

 A character string that contains the scope of the bundle as a URL.
STATE

A 1–byte enumeration expressing whether the initial state of the BUNDLE
resource is enabled or disabled.

TYPE
A character string that contains the URL for the type of resource.

Chapter 98. Resource life-cycle domain (RL) 1547

||

||||

||
|
|
|
|

|

||
|
|
|
|

|

|
|

|
|

||

|||

|||
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLCB gate, DISCARD function
The DISCARD function is called on the client domain by the RL domain to request
that the resource is discarded by the client domain.

Input parameters
BUNDLE_TOKEN

Optional parameter

 An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

CLIENT_TOKEN
An 8-byte token that represents the client domain's view of the resource.

RESOURCE_TOKEN
An 8-byte token that represents the resource.

Output parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLCB gate, INQUIRE function
The INQUIRE function is called on the client domain by the RL domain to inquire
on the state of a resource that is owned by the domain.

Input parameters
BUNDLE_TOKEN

Optional parameter

 An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

CLIENT_TOKEN
An 8-byte token that represents the client domain's view of the resource.

RESOURCE_TOKEN
An 8-byte token that represents the resource.

Output parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATE
A 1–byte enumeration that expresses the state of the resource:
v Enabled
v Disabled
v Enabling
v Disabling
v Discarding

1548 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

RLCB gate, INQUIRE_BY_NAME function
Inquire on imports that are defined in the bundle.

Input parameters
TYPE

A character string that contains the URL for the type of resource.
NAME

An 8-byte character string that contains the name of the bundle.
SCOPE

A character string that contains the URL of the bundle.

Output parameters
STATE

A 1-byte enumeration that expresses the state of the resource:
v Enabled
v Disabled
v Enabling
v Disabling
v Discarding

REASON
The following values are returned when RESPONSE is EXCEPTION:

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RLCB gate, SET function
The SET function is called on the client domain by the RL domain to request that
an action is performed on a resource owned by the domain.

Input parameters
BUNDLE_TOKEN

Optional parameter

 An 8-byte token that represents the created bundle. Either the
BUNDLE_NAME or the BUNDLE_TOKEN is used, but not both.

CLIENT_TOKEN
An 8-byte token that represents the client domain's view of the resource.

RESOURCE_TOKEN
An 8-byte token that represents the resource.

STATE
A 1–byte enumeration expressing whether the initial state of the BUNDLE
resource is enabled or disabled.

Output parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHRLCB Callback handler

DFHRLDM Domain initialization and termination program

DFHRLDUF Dump formatting program

Chapter 98. Resource life-cycle domain (RL) 1549

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|||

||

||

||

Module Function

DFHRLMF Contains the data structures for processing bundle manifests

DFHRLPK Driven by DFHRLPM to manage bundles

DFHRLPM Bundle manager that drives DFHRLPK

DFHRLRG Resource type handler

DFHRLRO Bundle manager gate module

DFHRLRP RL resolution program

DFHRLRS Resource state and operations function

DFHRLSC Contains the schema for handling SCA composite resource types

DFHRLST Statistics manager

DFHRLTRI Trace formatting program

DFHRLVP Variable domain subpool allocate and free function

DFHRLXM RL domain XM attach client program

1550 CICS TS for z/OS 4.1: Diagnosis Reference

||

||

||

||

||

||

||

||

||

||

||

||

||
|
|

Chapter 99. Recovery Manager Domain (RM)

The Recovery Manager (RM) domain is responsible for ensuring that the resource
updates for a unit of work are all committed or all backed out, including updates
across multiple systems.

Recovery Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the RM domain.

RMCD gate, INQUIRE_CLIENT_DATA function
This function returns data associated with a Recovery Manager client.

Input Parameters
CLIENT_DATA_BUFFER

A buffer to contain the data returned.
CLIENT_NAME

Name of the communications protocol used on the link.

Output Parameters
REASON

The values for the parameter are:
 CLIENT_DATA_TOO_LONG
 UNKNOWN_CLIENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMCD gate, REGISTER function
This function is used to register a Recovery Manager client.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.
CLIENT_TYPE

Whether the client owns local (RO) or remote (RMC) resources.

 Values for the parameter are:
 RMC
 RO

GATE
Optional Parameter

 An optional parameter specifying the kernel gate that services the client's
callback functions.

Output Parameters
REASON

The values for the parameter are:
 ALREADY_REGISTERED
 TOO_LATE

© Copyright IBM Corp. 1997, 2011 1551

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMCD gate, SET_CLIENT_DATA function
This function associates some data with a Recovery Manager client.

Input Parameters
CLIENT_DATA_BUFFER

A buffer to contain the data returned.
CLIENT_NAME

Name of the communications protocol used on the link.

Output Parameters
REASON

The values for the parameter are:
 CLIENT_DATA_TOO_LONG
 UNKNOWN_CLIENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMCD gate, SET_GATE function
This function is used to inform Recovery Manager of the kernel gate that services a
Recovery Manager clients callback functions.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.
GATE

An optional parameter specifying the kernel gate that services the client's
callback functions.

Output Parameters
REASON

The values for the parameter are:
 GATE_ALREADY_SET
 UNKNOWN_CLIENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMDM gate, INQUIRE_LOCAL_LU_NAME function
This function inquires on the local LU name, that is used in the generation of
network UOWIDs by in this system.

Output Parameters
LOCAL_LU_NAME

The local LU name.
LOCAL_LU_NAME_LENGTH

The length of the local LU name
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1552 CICS TS for z/OS 4.1: Diagnosis Reference

RMDM gate, INQUIRE_STARTUP function
This function returns information about the type of system start being performed.

Output Parameters
ALL

A value specifying whether all components are cold starting.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STARTUP
The type of system start being performed.

 Values for the parameter are:
 COLD
 EMERGENCY
 WARM

INITIAL_START
Optional Parameter

 A value specifying whether the cold start is in fact an initial one.

Values for the parameter are:
 NO
 YES

LAST_COLD_START_TIME
Optional Parameter

 An 8 byte Store Clock representation of the last cold start time.
LAST_EMER_START_TIME

Optional Parameter

 An 8 byte Store Clock representation of the last emergency start time.
LAST_INIT_START_TIME

Optional Parameter

 An 8 byte Store Clock representation of the last initial start time.

RMDM gate, SET_LOCAL_LU_NAME function
This function sets the local LU name, that is used in the generation of network
UOWIDs by in this system.

Input Parameters
LOCAL_LU_NAME

A parameter specifying the local LU name.
LOCAL_LU_NAME_LENGTH

A parameter specifying the length of the local LU name.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 99. Recovery Manager Domain (RM) 1553

RMDM gate, SET_PARAMETERS function
This function is used only by Parameter Manager Domain to inform Recovery
Manager of initialization parameters.

Input Parameters
DELETE_LOG

Optional Parameter

 An optional parameter specifying whether an initial start has been requested in
the System Initialization Table, and so the contents of the system log should be
deleted.

Values for the parameter are:
 NO
 YES

STARTUP
Optional Parameter

 The type of start.

Values for the parameter are:
 EMERGENCY

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMDM gate, SET_STARTUP function
This function sets the type of start that will be performed when this system is next
restarted.

Input Parameters
STARTUP

The type of start.

 Values for the parameter are:
 COLD
 NORESTART

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, ADD_LINK function
This function adds a link to a remote system to a unit of work. The unit of work is
distributed across more than one system and Recovery Manager will manage the
syncpoint processing between systems.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.
RMC_TOKEN

A token to be passed to the client on all callback functions.
COORDINATOR

Optional Parameter

1554 CICS TS for z/OS 4.1: Diagnosis Reference

A parameter specifying whether the remote system is the coordinator of the
distributed unit of work.

Values for the parameter are:
 NO
 YES

INITIATOR
Optional Parameter

 A parameter specifying whether the remote system is the initiator of the
syncpoint.

Values for the parameter are:
 NO
 YES

LAST
Optional Parameter

 A parameter specifying whether the remote system supports the last agent
optimization.

Values for the parameter are:
 DESIRABLE
 MAYBE
 NO
 YES

LINK_ID_BUFFER
Optional Parameter

 A buffer containing the termid of the session to the remote system, or the
External Resource Manager qualifier.

LINK_ID_SOURCE
Optional Parameter

 An optional parameter specifying whether the local or remote system allocated
the session.

Values for the parameter are:
 LOCAL
 REMOTE

LOGNAME_BUFFER
Optional Parameter

 An optional parameter specifying a buffer containing the logname of the
remote system.

NO_RESYNC_OUTCOME
Optional Parameter

 A binary value indicating that the link will not provide a resolution to the
distributed unit-of-work during resynchronization.

Values for the parameter are:
 NO
 YES

OTS_HOSTNAME_BUFFER
Optional Parameter

 A buffer in which the TCP/IP host name is supplied.
OTS_IORSTRING_BUFFER

Optional Parameter

 A buffer containing the OTS IOR string.

Chapter 99. Recovery Manager Domain (RM) 1555

PRELOGGING
Optional Parameter

 A parameter specifying whether the client requires to be called with the
PERFORM_PRELOGGING callback function.

Values for the parameter are:
 NO
 YES

PRESUMPTION
Optional Parameter

 A parameter specifying whether the remote system assumes the presume abort
or presume nothing protocols.

Values for the parameter are:
 ABORT
 NOTHING

RECOVERY_STATUS
Optional Parameter

 A parameter specifying whether recoverable work has taken place as part of
the distributed unit of work on the remote system.

Values for the parameter are:
 NECESSARY
 SYNC_LEVEL_1
 UNNECESSARY

REMOTE_ACCESS_ID_BUFFER
Optional Parameter

 A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

SINGLE_UPDATER
Optional Parameter

 A parameter specifying whether the remote system supports the single updater
optimization.

Values for the parameter are:
 NO
 YES

UOW_ID
Optional Parameter

 An optional parameter specifying the network UOWID to be given to the unit
of work object. This parameter will be present if the unit of work being created
is part of a distributed unit of work that originated on another system.

VOLATILE
Optional Parameter

 A binary parameter indicating whether the link is volatile.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CLIENT_UNKNOWN
 INVALID_SYNCPOINT_STATE

1556 CICS TS for z/OS 4.1: Diagnosis Reference

UOW_UNKNOWN
LINK_TOKEN

A token that identifies the Recovery Manager Link object.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, DELETE_LINK function
This function removes a link to a remote system from a unit of work. The remote
system will not now be included in syncpoint processing for the current unit of
work.

Input Parameters
LINK_TOKEN

A token identifying the Recovery Manager Link object.

Output Parameters
REASON

The values for the parameter are:
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, END_LINK_BROWSE function
This function is used to terminate a browse of Recovery Manager Link objects.

Input Parameters
LINK_BROWSE_TOKEN

Optional Parameter

 A token identifying a browse of all the Recovery Manager Link objects
belonging to a particular Recovery Manager client.

UOW_BROWSE_TOKEN
Optional Parameter

 A token identifying a browse of all the Recovery Manager Link objects
belonging to a particular unit of work object.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, GET_NEXT_LINK function
This function returns information about the next Recovery Manager Link object in
a browse.

Input Parameters
LINK_BROWSE_TOKEN

Optional Parameter

Chapter 99. Recovery Manager Domain (RM) 1557

A token identifying a browse of all the Recovery Manager Link objects
belonging to a particular Recovery Manager client.

LINK_ID_BUFFER
Optional Parameter

 A buffer containing the termid of the session to the remote system, or the
External Resource Manager qualifier.

LOGNAME_BUFFER
Optional Parameter

 An optional parameter specifying a buffer containing the logname of the
remote system.

OTS_HOSTNAME_BUFFER
Optional Parameter

 A buffer in which the TCP/IP host name is returned.
OTS_IORSTRING_BUFFER

Optional Parameter

 A buffer containing the OTS IOR string.
REMOTE_ACCESS_ID_BUFFER

Optional Parameter

 A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

UOW_BROWSE_TOKEN
Optional Parameter

 A token identifying a browse of all the Recovery Manager Link objects
belonging to a particular unit of work object.

Output Parameters
REASON

The values for the parameter are:
 END_BROWSE
 INVALID_BROWSE
 UOW_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESSIBLE
Optional Parameter

 Whether the communications link to the remote system is active or not.

Values for the parameter are:
 NO
 SHUNTED
 YES

CLIENT_NAME
Optional Parameter

 The name of the Recovery Manager client that owns the resource that has
caused the unit of work to shunt.

COORDINATOR
Optional Parameter

 Whether the remote system is the coordinator of the distributed unit of work.

Values for the parameter are:
 NO

1558 CICS TS for z/OS 4.1: Diagnosis Reference

YES
FORGET

Optional Parameter

 Whether all obligations to the remote system with respect to recovery have
been discharged.

Values for the parameter are:
 NO
 YES

HEURISM
Optional Parameter

 Whether the unit of work should take a unilateral decision if a failure occurs in
the in doubt window.

Values for the parameter are:
 NO
 YES

INITIATOR
Optional Parameter

 Whether the remote system is the initiator of the syncpoint of the distributed
unit of work.

Values for the parameter are:
 NO
 YES

LAST
Optional Parameter

 Whether the remote system supports the last agent optimization.

Values for the parameter are:
 MAYBE
 NO
 YES

LINK_ID_SOURCE
Optional Parameter

 Whether the local or remote system allocated the session.

Values for the parameter are:
 LOCAL
 REMOTE

LINK_TOKEN
Optional Parameter

 A token identifying the new Recovery Manager Link object.
LOCAL_UOW_ID

Optional Parameter

 An optional parameter to receive the local UOWID.
LOGICAL_SERVER

Optional Parameter

 The logical server associated with the link.
MARK

Optional Parameter

 Whether the Recovery Manager Link object has been marked during
resynchronization.

Chapter 99. Recovery Manager Domain (RM) 1559

Values for the parameter are:
 NO
 YES

PRESUMPTION
Optional Parameter

 Whether the remote system assumes the presume abort or presume nothing
protocols.

Values for the parameter are:
 ABORT
 NOTHING

PUBLIC_ID
Optional Parameter

 The public identifier of the RequestStream associated with the link.
RECOVERY_STATUS

Optional Parameter

 Whether recoverable work has taken place as part of the distributed unit of
work on the remote system.

Values for the parameter are:
 NECESSARY
 SYNC_LEVEL_1
 UNNECESSARY

RESYNC_SCHEDULED
Optional Parameter

 Whether resynchronization activity has been scheduled.

Values for the parameter are:
 NO
 YES

RMC_TOKEN
Optional Parameter

 A token to be passed to the client on all callback functions.
SINGLE_UPDATER

Optional Parameter

 Whether the remote system supports the single updater optimization.

Values for the parameter are:
 NO
 YES

UNSHUNTED
Optional Parameter

 Whether the unit of work is not currently shunted.

Values for the parameter are:
 NO
 YES

UOW_TOKEN
Optional Parameter

 A token identifying the unit of work object.

1560 CICS TS for z/OS 4.1: Diagnosis Reference

RMLN gate, INBOUND_FLOW function
This function is used to notify Recovery Manager of the successful completion of
syncpoint processing on the remote system, or a communications failure with the
remote system.

Input Parameters
FLOW

A parameter specifying successful completion (DATA) or communication
failure (UNBIND).

 Values for the parameter are:
 DATA
 UNBIND

LINK_TOKEN
A token identifying the Recovery Manager Link object.

Output Parameters
REASON

The values for the parameter are:
 LINK_INACCESSIBLE
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, INITIATE_RECOVERY function
This function identifies a Recovery Manager Link object in an in doubt failed unit
of work and marks it as being resynchronized.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.
DIRECTION

Parameter specifying whether to commit (FORWARD), backout (BACKWARD)
or obey the ACTION attribute in the definition of the originating transaction.

 Values for the parameter are:
 INBOUND
 OUTBOUND

COORDINATOR_LINK
Optional Parameter

 A binary value indicating whether the remote system is the coordinator of the
distributed unit of work.

Values for the parameter are:
 YES

LINK_ID_BUFFER
Optional Parameter

 A buffer containing the termid of the session to the remote system, or the
External Resource Manager qualifier.

LINK_ID_SOURCE
Optional Parameter

 An optional parameter specifying whether the local or remote system allocated
the session.

Chapter 99. Recovery Manager Domain (RM) 1561

Values for the parameter are:
 LOCAL
 REMOTE

LOCAL_UOW_ID
Optional Parameter

 The local UOWID of the required unit of work.
OTS_IORSTRING_BUFFER

Optional Parameter

 A buffer containing the OTS IOR string.
REMOTE_ACCESS_ID_BUFFER

Optional Parameter

 A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

UOW_ID
Optional Parameter

 An optional parameter specifying the network UOWID to be given to the unit
of work object. This parameter will be present if the unit of work being created
is part of a distributed unit of work that originated on another system.

Output Parameters
REASON

The values for the parameter are:
 LINK_ACTIVE
 LINK_UNKNOWN
 RECOVERY_ALREADY_IN_PROG

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COORDINATOR
Optional Parameter

 Whether the remote system is the coordinator of the distributed unit of work.

Values for the parameter are:
 NO
 YES

FAILURE_TIME
Optional Parameter

 An 8 byte Store Clock representation of the in doubt failure time.
INITIATOR

Optional Parameter

 Whether the remote system is the initiator of the syncpoint of the distributed
unit of work.

Values for the parameter are:
 NO
 YES

LINK_TOKEN
Optional Parameter

 A token identifying the new Recovery Manager Link object.
PRESUMPTION

Optional Parameter

1562 CICS TS for z/OS 4.1: Diagnosis Reference

Whether the remote system assumes the presume abort or presume nothing
protocols.

Values for the parameter are:
 ABORT
 NOTHING

UOW_STATUS
Optional Parameter

 The status of the unit of work.

Values for the parameter are:
 BACKWARD
 FORWARD
 HEURISTIC_BACKWARD
 HEURISTIC_FORWARD
 INDOUBT

UOW_TOKEN
Optional Parameter

 A token identifying the unit of work object.

RMLN gate, INQUIRE_LINK function
This function returns information about a given Recovery Manager Link object.

Input Parameters
LINK_TOKEN

A token identifying the Recovery Manager Link object.
LINK_ID_BUFFER

Optional Parameter

 A buffer containing the termid of the session to the remote system, or the
External Resource Manager qualifier.

LOGNAME_BUFFER
Optional Parameter

 An optional parameter specifying a buffer containing the logname of the
remote system.

OTS_HOSTNAME_BUFFER
Optional Parameter

 A buffer in which the TCP/IP host name is returned.
OTS_IORSTRING_BUFFER

Optional Parameter

 A buffer containing the OTS IOR string.
REMOTE_ACCESS_ID_BUFFER

Optional Parameter

 A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

RESOLVE_TO_CURRENT_LINK
Optional Parameter

 Up to two Recovery Manager Link objects may be associated with a token.
This optional parameter specifies whether to return information about the most
recent or not.

Values for the parameter are:
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1563

Output Parameters
REASON

The values for the parameter are:
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESSIBLE
Optional Parameter

 Whether the communications link to the remote system is active or not.

Values for the parameter are:
 NO
 SHUNTED
 YES

CLIENT_NAME
Optional Parameter

 The name of the Recovery Manager client that owns the resource that has
caused the unit of work to shunt.

COORDINATOR
Optional Parameter

 Whether the remote system is the coordinator of the distributed unit of work.

Values for the parameter are:
 NO
 YES

CURRENT_TOKEN
Optional Parameter

 The link token of the current link.
FORGET

Optional Parameter

 Whether all obligations to the remote system with respect to recovery have
been discharged.

Values for the parameter are:
 NO
 YES

HEURISM
Optional Parameter

 Whether the unit of work should take a unilateral decision if a failure occurs in
the in doubt window.

Values for the parameter are:
 NO
 YES

INITIATOR
Optional Parameter

 Whether the remote system is the initiator of the syncpoint of the distributed
unit of work.

Values for the parameter are:
 NO
 YES

LAST
Optional Parameter

1564 CICS TS for z/OS 4.1: Diagnosis Reference

Whether the remote system supports the last agent optimization.

Values for the parameter are:
 MAYBE
 NO
 YES

LINK_ID_SOURCE
Optional Parameter

 Whether the local or remote system allocated the session.

Values for the parameter are:
 LOCAL
 REMOTE

LOCAL_UOW_ID
Optional Parameter

 An optional parameter to receive the local UOWID.
LOGICAL_SERVER

Optional Parameter

 The logical server associated with the link.
MARK

Optional Parameter

 Whether the Recovery Manager Link object has been marked during
resynchronization.

Values for the parameter are:
 NO
 YES

PRESUMPTION
Optional Parameter

 Whether the remote system assumes the presume abort or presume nothing
protocols.

Values for the parameter are:
 ABORT
 NOTHING

PUBLIC_ID
Optional Parameter

 The public identifier of the RequestStream associated with the link.
RECOVERY_STATUS

Optional Parameter

 Whether recoverable work has taken place as part of the distributed unit of
work on the remote system.

Values for the parameter are:
 NECESSARY
 SYNC_LEVEL_1
 UNNECESSARY

RESYNC_SCHEDULED
Optional Parameter

 Whether resynchronization activity has been scheduled.

Values for the parameter are:
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1565

RMC_TOKEN
Optional Parameter

 A token to be passed to the client on all callback functions.
SINGLE_UPDATER

Optional Parameter

 Whether the remote system supports the single updater optimization.

Values for the parameter are:
 NO
 YES

UNSHUNTED
Optional Parameter

 Whether the unit of work is not currently shunted.

Values for the parameter are:
 NO
 YES

UOW_TOKEN
Optional Parameter

 A token identifying the unit of work object.

RMLN gate, INSERT_LINK function
Insert a link into the link-set of the current unit of work.

Input Parameters
LINK_TOKEN

A token identifying the Recovery Manager Link object.

Output Parameters
REASON

The values for the parameter are:
 COORDINATOR_ALREADY
 LINK_UNKNOWN
 NOT_REMOVED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, ISSUE_PREPARE function
This function performs phase 1 of syncpoint processing on the specified Recovery
Manager Link object.

Input Parameters
CONTINUE

Is the task continuing into a following, new unit of work.

 Values for the parameter are:
 NO
 YES

LINK_TOKEN
A token identifying the Recovery Manager Link object.

1566 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 COORDINATOR_ALREADY
 INITIATOR_ALREADY
 LINK_UNKNOWN
 PREPARE_REJECTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

VOTE
The vote from the client owning the Recovery Manager Link object.

 Values for the parameter are:
 NO
 NO_CONTINUE
 READ_ONLY
 YES

RMLN gate, RECORD_VOTE function
Record a link's vote in a distributed syncpoint.

Input Parameters
HEURISM

A binary value indicating whether the vote is heuristic.

 Values for the parameter are:
 NO
 YES

LINK_TOKEN
A token identifying the Recovery Manager Link object.

VOTE
The link's vote.

 Values for the parameter are:
 NO
 NO_CONTINUE
 READ_ONLY
 YES

Output Parameters
REASON

The values for the parameter are:
 COORDINATOR_ALREADY
 INITIATOR_ALREADY
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, REMOVE_LINK function
This function remove a link to a remote system from a unit of work.

Input Parameters
LINK_TOKEN

A token that identifies the Recovery Manager Link object.

Chapter 99. Recovery Manager Domain (RM) 1567

Output Parameters
REASON

The values for the parameter are:
 ALREADY_REMOVED
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, REPORT_RECOVERY_STATUS function
This function is similar to SET_RECOVERY_STATUS but is applicable in the case
of Presumed Abort or Last Agent resynchronization where the coordinator has
backed out and has no record of the UOW. The participant may have gone
indoubt, and needs to resynchronize.

Input Parameters
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

REMOTE_UOW_STATUS
The status of the unit of work in the remote system.

 Values for the parameter are:
 HEURISTIC_BACKWARD
 HEURISTIC_FORWARD
 HEURISTIC_MIXED
 INDOUBT

UOW_ID
An optional parameter specifying the network UOWID to be given to the unit
of work object. This parameter will be present if the unit of work being created
is part of a distributed unit of work that originated on another system.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_REMOVED
 ALREADY_SET
 CLIENT_UNKNOWN
 COORDINATOR_ALREADY
 END_BROWSE
 INITIATOR_ALREADY
 INVALID_SYNCPOINT_STATE
 LINK_ACTIVE
 LINK_INACCESSIBLE
 LINK_UNKNOWN
 NO_FORGET_PENDING
 NOT_REMOVED
 PREPARE_REJECTED
 RECOVERY_ALREADY_IN_PROG
 RECOVERY_IN_PROGRESS
 RECOVERY_NOT_IN_PROGRESS
 SET_NOT_DONE
 UOW_UNKNOWN
 VOTED_ALREADY

The following values are returned when RESPONSE is INVALID:

1568 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_BROWSE
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, SET_LINK function
This function is used to set characteristics of a Recovery Manager Link object.

Input Parameters
LINK_TOKEN

A token identifying the Recovery Manager Link object.
ACCESSIBLE

Optional Parameter

 A parameter specifying that the communications link to the remote system has
failed.

Values for the parameter are:
 NO
 SHUNTED

COORDINATOR
Optional Parameter

 A parameter specifying whether the remote system is the coordinator of the
distributed unit of work.

Values for the parameter are:
 NO
 YES

FORGET
Optional Parameter

 A parameter specifying whether all obligations to the remote system with
respect to recovery have been discharged.

Values for the parameter are:
 NO
 YES

INITIATOR
Optional Parameter

 A parameter specifying whether the remote system is the initiator of the
syncpoint.

Values for the parameter are:
 NO
 YES

LINK_ID_BUFFER
Optional Parameter

 A buffer containing the termid of the session to the remote system, or the
External Resource Manager qualifier.

LINK_ID_SOURCE
Optional Parameter

 An optional parameter specifying whether the local or remote system allocated
the session.

Values for the parameter are:
 LOCAL
 REMOTE

Chapter 99. Recovery Manager Domain (RM) 1569

LOGNAME_BUFFER
Optional Parameter

 An optional parameter specifying a buffer containing the logname of the
remote system.

PRELOGGING
Optional Parameter

 A parameter specifying whether the client requires to be called with the
PERFORM_PRELOGGING callback function.

Values for the parameter are:
 NO
 YES

RECOVERY_STATUS
Optional Parameter

 A parameter specifying whether recoverable work has taken place as part of
the distributed unit of work on the remote system.

Values for the parameter are:
 NECESSARY
 SYNC_LEVEL_1
 UNNECESSARY

RESOLVE_TO_CURRENT_LINK
Optional Parameter

 Up to two Recovery Manager Link objects may be associated with a token.
This optional parameter specifies whether to return information about the most
recent or not.

Values for the parameter are:
 NO
 YES

RESYNC_SCHEDULED
Optional Parameter

 A parameter specifying whether resynchronization activity has been scheduled.

Values for the parameter are:
 NO
 YES

SINGLE_UPDATER
Optional Parameter

 A parameter specifying whether the remote system supports the single updater
optimization.

Values for the parameter are:
 NO
 YES

UNSHUNTED
Optional Parameter

 A parameter specifying whether the unit of work is not currently shunted.

Values for the parameter are:
 NO
 YES

1570 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 COORDINATOR_ALREADY
 INITIATOR_ALREADY
 INVALID_SYNCPOINT_STATE
 LINK_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, SET_MARK function
This function marks a Recovery Manager Link object during recovery.

Input Parameters
LINK_TOKEN

A token identifying the Recovery Manager Link object.
MARK

Optional Parameter

 Binary parameter indicating whether the links should be marked.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 LINK_ACTIVE
 LINK_UNKNOWN
 RECOVERY_IN_PROGRESS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLN gate, SET_RECOVERY_STATUS function
This function is used to notify an Recovery Manager Link object of the outcome of
a distributed unit of work which failed in the in doubt window. It results in the
shunted unit of work the Recovery Manager Link object belongs to unshunting
and committing or backing out its resource updates as appropriate.

Input Parameters
DIRECTION

Parameter specifying whether to commit (FORWARD), backout (BACKWARD)
or obey the ACTION attribute in the definition of the originating transaction.

 Values for the parameter are:
 INBOUND
 OUTBOUND

LINK_TOKEN
A token identifying the Recovery Manager Link object.

REMOTE_UOW_STATUS
Optional Parameter

 The status of the unit of work in the remote system.

Chapter 99. Recovery Manager Domain (RM) 1571

Values for the parameter are:
 BACKWARD
 COLD
 FORWARD
 HEURISTIC_BACKWARD
 HEURISTIC_FORWARD
 HEURISTIC_MIXED
 INDOUBT
 RESET
 UNKNOWN

TOLERATE_VIOLATIONS
Optional Parameter

 A parameter specifying the rules to be used to detect resynchronization
protocol violations.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ALREADY_SET
 LINK_UNKNOWN
 RECOVERY_NOT_IN_PROGRESS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UOW_STATUS
Optional Parameter

 The status of the unit of work.

Values for the parameter are:
 BACKWARD
 FORWARD
 HEURISTIC_BACKWARD
 HEURISTIC_FORWARD
 INDOUBT

RMLN gate, START_LINK_BROWSE function
This function starts a browse of Recovery Manager Link objects. The browse can
return either

Input Parameters
CLIENT_NAME

Optional Parameter

 Name of the communications protocol used on the link.
REMOTE_ACCESS_ID_BUFFER

Optional Parameter

 A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

1572 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 CLIENT_UNKNOWN
 UOW_UNKNOWN

LINK_BROWSE_TOKEN
A token to be used during a browse of all Recovery Manager Link objects for a
particular Recovery Manager client.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UOW_BROWSE_TOKEN
A token to be used during a browse of all Recovery Manager Link objects for a
particular unit of work object.

RMLN gate, TERMINATE_RECOVERY function

Input Parameters
DIRECTION

Parameter specifying whether to commit (FORWARD), backout (BACKWARD)
or obey the ACTION attribute in the definition of the originating transaction.

 Values for the parameter are:
 INBOUND
 OUTBOUND

FORGET
A parameter specifying whether all obligations to the remote system with
respect to recovery have been discharged.

 Values for the parameter are:
 NO
 YES

LINK_TOKEN
A token identifying the Recovery Manager Link object.

OPERATOR_INITIATED
A parameter specifying whether the function is the result of an explicit user
action.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 LINK_UNKNOWN
 RECOVERY_NOT_IN_PROGRESS
 SET_NOT_DONE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMNM gate, CLEAR_PENDING function
This function is used to remove Recovery Manager Link objects associated with a
specified remote system. Affected indoubt units of work will take a unilateral
decision to commit or backout their resource updates.

Chapter 99. Recovery Manager Domain (RM) 1573

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

ALL
Optional Parameter

 A parameter specifying whether only Recovery Manager Link objects with the
same logname as that currently associated with the remote system should be
removed or all Recovery Manager Link objects.

Values for the parameter are:
 NO
 YES

COLD
Optional Parameter

 A parameter specifying whether the remote system has a new log and so has
lost recovery information with respect to units of work in this system.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CLEAR_PENDING_IN_PROGRESS
 NOT_FOUND
 UNKNOWN_CLIENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMNM gate, INQUIRE_LOGNAME function
This function returns the logname and data associated with the specified remote
system being communicated with via the specified Recovery Manager client.

Input Parameters
LOGNAME_BUFFER

An optional parameter specifying a buffer containing the logname of the
remote system.

CLIENT_NAME
Optional Parameter

 Name of the communications protocol used on the link.
REMOTE_ACCESS_ID_BUFFER

Optional Parameter

 A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

RMC_DATA_BUFFER
Optional Parameter

 A buffer to be used to return data owned by the Recovery Manager client.

1574 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 UNKNOWN_CLIENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

IN_USE
Optional Parameter

 Whether there are any Recovery Manager Link object in the system associated
with the logname.

Values for the parameter are:
 NO
 YES

RMNM gate, SET_LOGNAME function
This function is used to associate a logname and some data with the netname of a
remote system for a specified Recovery Manager client.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.
LOGNAME_BUFFER

An optional parameter specifying a buffer containing the logname of the
remote system.

REMOTE_ACCESS_ID_BUFFER
A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

RMC_DATA_BUFFER
Optional Parameter

 A buffer to be used to return data owned by the Recovery Manager client.

Output Parameters
REASON

The values for the parameter are:
 UNKNOWN_CLIENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMOT gate, COMMIT function
Commit an Open Transaction Environment (OTE) transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UOW_ROLLEDBACK

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 99. Recovery Manager Domain (RM) 1575

RMOT gate, PREPARE function
Prepare an Open Transaction Environment (OTE) transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 INVALID_VOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

VOTE
The vote from the OTE transaction.

 Values for the parameter are:
 HEURISTIC_MIXED
 NO
 READ_ONLY
 YES

RMOT gate, ROLLBACK function
Roll back an Open Transaction Environment (OTE) transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 UOW_COMMITTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMOT gate, SET_OTS_UOW function
Set the properties of an Open Transaction Environment (OTE) transaction.

Input Parameters
BQUAL_LEN
FORMAT_ID
LOGICAL_SERVER
PUBLIC_ID
TID_BLOCK_IN

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRE gate, APPEND function
This function writes data to the system log. The data written is associated with the
current unit of work of the currently executing transaction if either
FORWARD_DATA(YES) or BACKWARD_DATA(YES) is specified.

Input Parameters
BACKWARD_DATA

A parameter specifying whether the data is used for backward recovery
purposes.

1576 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

CLIENT_NAME
Name of the communications protocol used on the link.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

DATA

 Address of an extended Iliffe vector. An extended Iliffe vector consists of a
linked list of at least one element. Each element of the linked list consists of a
variable length array of address length pairs. Each address and length field is
four bytes long. The top bit of each address is off except for the last which
may be on.

If an address is binary zero, then this terminates the element and the linked
list.

If an address has the top bit on, then it terminates the element and points to
the next element in the linked list.

An extended Iliffe vector represents the block of data formed by concatenating
all the blocks which are pointed to by address length pairs in the vector which
have the address top bit off. The order is from front to back of the linked list
and from low to high index within each array.

FORCE_DATA
A parameter specifying whether the data is forced out on to the non-volatile
log or can merely be written to the volatile log buffer.

 Values for the parameter are:
 NO
 YES

FORWARD_DATA
A parameter specifying whether the data is used for forward recovery
purposes.

 Values for the parameter are:
 NO

Chapter 99. Recovery Manager Domain (RM) 1577

YES
LOG_BUFFER_SUSPEND

Optional Parameter

 A binary value specifying whether the caller can tolerate the task suspending
to wait for space in a log buffer.

Values for the parameter are:
 NO
 YES

RAISE_INV_DATA_LENGTH
Optional Parameter

 An optional parameter specifying whether the caller wants to be informed of
there being to much data to be logged.

Values for the parameter are:
 NO
 YES

REMARK
Optional Parameter

 An optional parameter for the benefit of trace to describe the data being
logged.

RESOURCE_ID
Optional Parameter

 A parameter specifying the name of the resource with which the data to be
logged is associated.

Output Parameters
REASON

The values for the parameter are:
 INSUFFICIENT_BUFFER_SPACE
 INVALID_CLIENT_NAME
 INVALID_DATA_LENGTH
 INVALID_RESOURCE_ID
 NO_DATA

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FORCE_TOKEN
Optional Parameter

 A token that can be used to force the data on to the non-volatile log with the
FORCE function of the RMRE gate.

RMRE gate, AVAIL function
This function informs Recovery Manager that a local resource has become
available. It is used when either a backout failure or a commit failure has
previously occurred and the resource (or reason for the failure) has now cleared -
or there is now reason to believe it may have cleared.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.

 Values for the parameter are:
 APAL

1578 CICS TS for z/OS 4.1: Diagnosis Reference

APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

LOCAL_ACCESS_ID
An optional parameter specifying a buffer in which the local access ID of the
resource causing the unit of work to shunt will be returned.

GENERIC
Optional Parameter

 A binary value indicating if the local access ID is generic.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 LOCAL_ACCESS_ID_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRE gate, FORCE function
This function forces data written previously to a log buffer to the non-volatile log.

Input Parameters
FORCE_TOKEN

A token returned on a previous call to the APPEND function of the RMRE
gate.

Output Parameters
REASON

The values for the parameter are:
 INSUFFICIENT_BUFFER_SPACE
 INVALID_CLIENT_NAME
 INVALID_DATA_LENGTH
 INVALID_LOCAL_ACCESS_ID
 INVALID_RESOURCE_ID

Chapter 99. Recovery Manager Domain (RM) 1579

LOCAL_ACCESS_ID_UNKNOWN
 NO_DATA
 UOW_NOT_BACKWARDS
 UOW_NOT_SHUNTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRE gate, KEYPOINT_DATA function
Record keypoint data on the system log.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

DATA

 Address of an extended Iliffe vector. An extended Iliffe vector consists of a
linked list of at least one element. Each element of the linked list consists of a
variable length array of address length pairs. Each address and length field is
four bytes long. The top bit of each address is off except for the last which
may be on.

If an address is binary zero, then this terminates the element and the linked
list.

If an address has the top bit on, then it terminates the element and points to
the next element in the linked list.

An extended Iliffe vector represents the block of data formed by concatenating
all the blocks which are pointed to by address length pairs in the vector which
have the address top bit off. The order is from front to back of the linked list
and from low to high index within each array.

RAISE_INV_DATA_LENGTH
Optional Parameter

1580 CICS TS for z/OS 4.1: Diagnosis Reference

An optional parameter specifying whether the caller wants to be informed of
there being to much data to be logged.

Values for the parameter are:
 NO
 YES

REMARK
Optional Parameter

 An optional parameter for the benefit of trace to describe the data being
logged.

Output Parameters
REASON

The values for the parameter are:
 INVALID_CLIENT_NAME
 INVALID_DATA_LENGTH
 NO_DATA

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRE gate, REMOVE function
This function removes data logged by a Recovery Manager client and associated
with a particular local resource from a unit of work.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

LOCAL_ACCESS_ID
An optional parameter specifying a buffer in which the local access id of
resource causing the unit of work to shunt will be returned.

LOCAL_UOW_ID
The local UOWID of the required unit of work.

Chapter 99. Recovery Manager Domain (RM) 1581

UOW_ID
An optional parameter specifying the network UOWID to be given to the unit
of work object. This parameter will be present if the unit of work being created
is part of a distributed unit of work that originated on another system.

Output Parameters
REASON

The values for the parameter are:
 INVALID_CLIENT_NAME
 INVALID_LOCAL_ACCESS_ID
 UOW_NOT_BACKWARDS
 UOW_NOT_SHUNTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRE gate, REQUEST_FORGET function
This function associates a Recovery Manager client and a named local resource
with a requirement to engage in forget processing.

Input Parameters
CLIENT_NAME

Name of the communications protocol used on the link.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

LOCAL_ACCESS_ID
An optional parameter specifying a buffer in which the local access id of
resource causing the unit of work to shunt will be returned.

LOG_NEEDED
Optional Parameter

 Binary value that specifies whether the information is to be recorded in the
system log, for recovery at emergency restart.

Values for the parameter are:
 NO

1582 CICS TS for z/OS 4.1: Diagnosis Reference

YES

Output Parameters
REASON

The values for the parameter are:
 INVALID_CLIENT_NAME
 INVALID_LOCAL_ACCESS_ID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMSL gate, TAKE_ACTIVITY_KEYPOINT function
This function performs the activity associated with taking a keypoint.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, BACKOUT_UOW function
This function causes the changes in a unit of work to be backed out.

Input Parameters
CONTINUE

Is the task continuing into a following, new unit of work.

 Values for the parameter are:
 NO
 YES

RESTART
Optional Parameter

 This parameter is only applicable when CONTINUE(NO) is specified and
indicates whether or not transaction restart will be performed.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 BACKOUT_FAILURE
 COMMIT_FAILURE
 REMOTE_COMMIT_ABENDED
 ROLLBACK_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, BIND_UOW_TO_TXN function
Make the specified unit of work the current unit of work for the current
transaction.

Chapter 99. Recovery Manager Domain (RM) 1583

Input Parameters
UOW_TOKEN

An optional parameter specifying a token used to identify the unit of work
object being queried.

Output Parameters
REASON

The values for the parameter are:
 BACKOUT_FAILURE
 BROWSE_END
 COMMIT_FAILURE
 HEURISTIC_BACKOUT
 HEURISTIC_COMMIT
 HEURISTIC_READONLY_BACKOUT
 HEURISTIC_READONLY_COMMIT
 INDOUBT_FAILURE
 INVALID_BROWSE_TOKEN
 LINKS_INVALID
 LOCAL_NO_MARKED
 LOCAL_NO_VOTE
 NOT_FOUND
 NOT_SHUNTED
 REMOTE_COMMIT_ABENDED
 REMOTE_NO_DECISION
 REMOTE_NO_VOTE
 RESYNCH_IN_PROGRESS
 ROLLBACK
 ROLLBACK_NOT_SUPPORTED
 UOW_NOT_INDOUBT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, COMMIT_UOW function
This function attempts to commit the changes made in a unit of work.

Input Parameters
CONTINUE

Is the task continuing into a following, new unit of work.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 COMMIT_FAILURE
 HEURISTIC_BACKOUT
 HEURISTIC_COMMIT
 HEURISTIC_READONLY_BACKOUT
 HEURISTIC_READONLY_COMMIT
 INDOUBT_FAILURE
 LINKS_INVALID
 LOCAL_NO_MARKED
 LOCAL_NO_VOTE

1584 CICS TS for z/OS 4.1: Diagnosis Reference

REMOTE_COMMIT_ABENDED
 REMOTE_NO_DECISION
 REMOTE_NO_VOTE
 ROLLBACK

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, CREATE_NETWORK_UOWID function
Generate a unit-of-word ID (UOWID).

Input Parameters
UOW_ID

A block in which the generated UOWID is returned.

Output Parameters
REASON

The values for the parameter are:
 BACKOUT_FAILURE
 BROWSE_END
 COMMIT_FAILURE
 HEURISTIC_BACKOUT
 HEURISTIC_COMMIT
 HEURISTIC_READONLY_BACKOUT
 HEURISTIC_READONLY_COMMIT
 INDOUBT_FAILURE
 INVALID_BROWSE_TOKEN
 LINKS_INVALID
 LOCAL_NO_MARKED
 LOCAL_NO_VOTE
 NOT_FOUND
 NOT_SHUNTED
 REMOTE_COMMIT_ABENDED
 REMOTE_NO_DECISION
 REMOTE_NO_VOTE
 RESYNCH_IN_PROGRESS
 ROLLBACK
 ROLLBACK_NOT_SUPPORTED
 UOW_NOT_INDOUBT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, CREATE_UOW function
Create a unit of work object under the currently executing transaction.

Input Parameters
CHOICE

Optional Parameter

 Specifies whether the unit of work should commit or backout if requested to
take a unilateral decision.

Values for the parameter are:
 BACKWARD
 FORWARD

Chapter 99. Recovery Manager Domain (RM) 1585

HEURISM
Optional Parameter

 Specifies whether the unit of work should take a unilateral decision if a failure
occurs in the in doubt window.

Values for the parameter are:
 NO
 YES

INDOUBT_TIMEOUT_INTERVAL
Optional Parameter

 The period of time that the unit of work should be prepared to wait in doubt.
UOW_ID

Optional Parameter

 The network UOWID to be given to the unit of work object. This parameter
will be present if the unit of work being created is part of a distributed unit of
work that originated on another system.

USERID
Optional Parameter

 The userid associated with the currently executing transaction.

Output Parameters
REASON

The values for the parameter are:
 BACKOUT_FAILURE
 BROWSE_END
 COMMIT_FAILURE
 HEURISTIC_BACKOUT
 HEURISTIC_COMMIT
 HEURISTIC_READONLY_BACKOUT
 HEURISTIC_READONLY_COMMIT
 INDOUBT_FAILURE
 INVALID_BROWSE_TOKEN
 LINKS_INVALID
 LOCAL_NO_MARKED
 LOCAL_NO_VOTE
 NOT_FOUND
 NOT_SHUNTED
 REMOTE_COMMIT_ABENDED
 REMOTE_NO_DECISION
 REMOTE_NO_VOTE
 RESYNCH_IN_PROGRESS
 ROLLBACK
 ROLLBACK_NOT_SUPPORTED
 UOW_NOT_INDOUBT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, END_UOW_BROWSE function
This function is used at the end of a browse of the unit of work objects in the
system.

1586 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BROWSE_TOKEN

A token obtained from a previous START_UOW_BROWSE call.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, END_WORK_TOKEN_BROWSE function
This function is used at the end of a browse of the work token objects in the
system.

Input Parameters
BROWSE_TOKEN

A token obtained from a previous START_WORK_TOKEN_BROWSE call.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, FORCE_UOW function
This function forces an in doubt unit of work to unilaterally commit or backout its
changes rather than continue waiting for resynchronization with the coordinating
system.

Input Parameters
UOW_TOKEN

An optional parameter specifying a token used to identify the unit of work
object being queried.

DIRECTION
Optional Parameter

 Parameter specifying whether to commit (FORWARD), backout (BACKWARD)
or obey the ACTION attribute in the definition of the originating transaction.

Values for the parameter are:
 BACKWARD
 FORWARD
 HEURISTIC

HEURISTIC_CAUSE
Optional Parameter

 An indication of the reason a unilateral decision must be taken.

Values for the parameter are:
 OPERATOR
 OTHER_CAUSE
 TIMEOUT

Chapter 99. Recovery Manager Domain (RM) 1587

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND
 NOT_SHUNTED
 RESYNCH_IN_PROGRESS
 UOW_NOT_INDOUBT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, GET_NEXT_UOW function
This function returns information about the next unit of work object in the browse.

Input Parameters
BROWSE_TOKEN

A token obtained from a previous START_UOW_BROWSE call.
LINK_ID

Optional Parameter

 An optional parameter specifying a buffer in which the termid of the link to
the coordinating system will be returned.

LOCAL_ACCESS_ID
Optional Parameter

 An optional parameter specifying a buffer in which the local access id of
resource causing the unit of work to shunt will be returned.

LOGNAME
Optional Parameter

 An optional parameter specifying a buffer in which the log name of the
coordinating system will be returned.

OTS_TID
Optional Parameter

 REMOTE_ACCESS_ID
Optional Parameter

 An optional parameter specifying a buffer in which the netname of
coordinating system will be returned.

UOW_ID
Optional Parameter

 An optional parameter specifying the network UOWID to be given to the unit
of work object. This parameter will be present if the unit of work being created
is part of a distributed unit of work that originated on another system.

Output Parameters
REASON

The values for the parameter are:
 BROWSE_END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACCESS_ID_TYPE
Optional Parameter

 The type of resource that has caused the unit of work to shunt.

1588 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 LOCAL
 REMOTE

AWAITING_FORGET
Optional Parameter

 The unit of work might have completed syncpoint processing, and be merely
waiting for confirmation that subordinates have completed theirs.

Values for the parameter are:
 NO
 YES

CHOICE
Optional Parameter

 The choice of whether the unit of work should commit or backout if requested
to take a unilateral decision.

Values for the parameter are:
 BACKWARD
 FORWARD

CLIENT_NAME
Optional Parameter

 The name of the Recovery Manager client that owns the resource that has
caused the unit of work to shunt.

CREATION_TIME
Optional Parameter

 An 8 byte Store Clock representation of the time the unit of work was created.
DURATION

Optional Parameter

 An 8 byte Store Clock representation of the time the unit of work changed
state.

FIRST_UOW_FOR_TXN
Optional Parameter

 A binary value that indicates whether this is the first unit of work in the CICS
transaction.

Values for the parameter are:
 NO
 YES

HEURISM
Optional Parameter

 Whether the unit of work should take a unilateral decision if a failure occurs in
the in doubt window.

Values for the parameter are:
 NO
 YES

LOCAL_UOW_ID
Optional Parameter

 An optional parameter to receive the local UOWID.
OP_ID

Optional Parameter

 The Operator Id associated with the task that created the unit of work.

Chapter 99. Recovery Manager Domain (RM) 1589

OUT_UOW_TOKEN
Optional Parameter

 The token used to identify the unit of work object.
SHUNTED

Optional Parameter

 The unit of work may or may not be shunted.

Values for the parameter are:
 NO
 YES

TERMID
Optional Parameter

 The termid associated with the task that created the unit of work object.
TERMINAL_LUNAME

Optional Parameter

 The terminal LU name associated with the task that created the unit of work
object.

TRANID
Optional Parameter

 The tranid of the task that created the unit of work object.
TRANNUM

Optional Parameter

 The task number of the task that created the unit of work.
UOW_STATUS

Optional Parameter

 The status of the unit of work.

Values for the parameter are:
 BACKWARD
 FORWARD
 HEURISTIC_BACKWARD
 HEURISTIC_FORWARD
 IN_DOUBT
 IN_FLIGHT

USERID
Optional Parameter

 The userid associated with the task that created the unit of work object.

RMUW gate, GET_NEXT_WORK_TOKEN function
This function returns information about the next work token object in the browse.

Input Parameters
BROWSE_TOKEN

A token obtained from a previous START_WORK_TOKEN_BROWSE call.

Output Parameters
REASON

The values for the parameter are:
 BROWSE_END
 INVALID_BROWSE_TOKEN

1590 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WORK_TOKEN
The work token returned by the browse operation.

LOCAL_UOW_ID
Optional Parameter

 The local unit of work identifier for the unit of work associated with the work
token.

UOW_TOKEN
Optional Parameter

 The token for the unit of work associated with the work token.

RMUW gate, INQUIRE_UOW function
This function is used to query information about a particular unit of work.

Input Parameters
LINK_ID

Optional Parameter

 A buffer in which the termid of the link to the coordinating system will be
returned.

LOCAL_ACCESS_ID
Optional Parameter

 A buffer in which the local access id of resource causing the unit of work to
shunt will be returned.

LOG_CHAIN_TOKEN
Optional Parameter

 A token that identifies the log chain whose unit of work object is to be queried.
LOGNAME

Optional Parameter

 A buffer in which the log name of the coordinating system will be returned.
OTS_TID

Optional Parameter

 The Open Transaction Environment (OTE) identifier of the unit of work.
REMOTE_ACCESS_ID

Optional Parameter

 A buffer in which the netname of coordinating system will be returned.
TRANSACTION_TOKEN

Optional Parameter

 A token that identifies the transaction whose unit of work object is to be
queried.

UOW_ID
Optional Parameter

 A buffer in which the network UOWID will be returned.
UOW_TOKEN

Optional Parameter

 A token that identifies the unit of work object being queried.

Chapter 99. Recovery Manager Domain (RM) 1591

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

RESPONSE
The domian's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ACCESS_ID_TYPE
Optional Parameter

 The type of resource that has caused the unit of work to shunt.

Values for the parameter are:
 LOCAL
 REMOTE

AWAITING_FORGET
Optional Parameter

 Indicates that the unit of work has completed syncpoint processing, and is just
waiting for confirmation that subordinates have completed theirs.

Values for the parameter are:
 NO
 YES

CHOICE
Optional Parameter

 The choice that has been made as to whether the unit of work should commit
or backout if requested to take a unilateral decision.

Values for the parameter are:
 BACKWARD
 FORWARD

CLIENT_NAME
Optional Parameter

 The name of the Recovery Manager client that owns the resource that has
caused the unit of work to shunt.

CREATION_TIME
Optional Parameter

 An 8 byte Store Clock representation of the time the unit of work was created.
DURATION

Optional Parameter

 An 8 byte Store Clock representation of the time the unit of work changed
state.

FIRST_UOW_FOR_TXN
Optional Parameter

 A binary value indicating if this is the first unit of work for the transaction.

Values for the parameter are:
 NO
 YES

1592 CICS TS for z/OS 4.1: Diagnosis Reference

HEURISM
Optional Parameter

 Binary value indicating whether the unit of work should take a unilateral
decision if a failure occurs in the in doubt window.

Values for the parameter are:
 NO
 YES

LOCAL_UOW_ID
Optional Parameter

 The local unit of work id.
OP_ID

Optional Parameter

 The Operator Id associated with the task that created the unit of work.
OUT_UOW_TOKEN

Optional Parameter

 The token used to identify the unit of work object.
SHUNTED

Optional Parameter

 A binary value indicating if the unit of work has been shunted.

Values for the parameter are:
 NO
 YES

TERMID
Optional Parameter

 The termid associated with the task that created the unit of work object.
TERMINAL_LUNAME

Optional Parameter

 The terminal LU name associated with the task that created the unit of work
object.

TRANID
Optional Parameter

 The tranid of the task that created the unit of work object.
TRANNUM

Optional Parameter

 The transaction number of the task that created the unit of work.
UOW_STATUS

Optional Parameter

 The status of the unit of work.

Values for the parameter are:
 BACKWARD
 FORWARD
 HEURISTIC_BACKWARD
 HEURISTIC_FORWARD
 IN_DOUBT
 IN_FLIGHT

USERID
Optional Parameter

 The userid associated with the task that created the unit of work object.

Chapter 99. Recovery Manager Domain (RM) 1593

RMUW gate, INQUIRE_UOW_ID function
Return the network and local UOWIDs of the unit of work of the currently
executing transaction.

Input Parameters
UOW_ID

Optional Parameter

 An optional parameter specifying the network UOWID to be given to the unit
of work object. This parameter will be present if the unit of work being created
is part of a distributed unit of work that originated on another system.

Output Parameters
REASON

The values for the parameter are:
 BACKOUT_FAILURE
 BROWSE_END
 COMMIT_FAILURE
 HEURISTIC_BACKOUT
 HEURISTIC_COMMIT
 HEURISTIC_READONLY_BACKOUT
 HEURISTIC_READONLY_COMMIT
 INDOUBT_FAILURE
 INVALID_BROWSE_TOKEN
 LINKS_INVALID
 LOCAL_NO_MARKED
 LOCAL_NO_VOTE
 NOT_FOUND
 NOT_SHUNTED
 REMOTE_COMMIT_ABENDED
 REMOTE_NO_DECISION
 REMOTE_NO_VOTE
 RESYNCH_IN_PROGRESS
 ROLLBACK
 ROLLBACK_NOT_SUPPORTED
 UOW_NOT_INDOUBT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LOCAL_UOW_ID
Optional Parameter

 An optional parameter to receive the local UOWID.

RMUW gate, INQUIRE_UOW_TOKEN function
Return the token identifying the unit of work object with the specified local
UOWID.

Input Parameters
LOCAL_UOW_ID

The local UOWID of the required unit of work.

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

1594 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

UOW_TOKEN
A token identifying the unit of work object.

RMUW gate, INQUIRE_WORK_TOKEN function
Retrieve the work token that is associated with a client in a unit of work.

Input Parameters
CLIENT_NAME

The name of the client that is associated with the work token.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

UOW_TOKEN
Optional Parameter

 A token that identifies the unit of work. If this parameter is omitted, the
request is made against the current unit of work.

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WORK_TOKEN
The work token.

RMUW gate, REATTACH_REPLY function
This function gives control to Recovery Manager to do its unshunt processing
under a re-attached transaction.

Chapter 99. Recovery Manager Domain (RM) 1595

Input Parameters
UOW_TOKEN

An optional parameter specifying a token used to identify the unit of work
object being queried.

Output Parameters
REASON

The values for the parameter are:
 BACKOUT_FAILURE
 BROWSE_END
 COMMIT_FAILURE
 HEURISTIC_BACKOUT
 HEURISTIC_COMMIT
 HEURISTIC_READONLY_BACKOUT
 HEURISTIC_READONLY_COMMIT
 INDOUBT_FAILURE
 INVALID_BROWSE_TOKEN
 LINKS_INVALID
 LOCAL_NO_MARKED
 LOCAL_NO_VOTE
 NOT_FOUND
 NOT_SHUNTED
 REMOTE_COMMIT_ABENDED
 REMOTE_NO_DECISION
 REMOTE_NO_VOTE
 RESYNCH_IN_PROGRESS
 ROLLBACK
 ROLLBACK_NOT_SUPPORTED
 UOW_NOT_INDOUBT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, SET_UOW function
This function is used to set characteristics of the currently executing unit of work.

Input Parameters
HEURISM

Optional Parameter

 An optional parameter specifying whether the unit of work should take a
unilateral decision if a failure occurs in the in doubt window.

Values for the parameter are:
 YES

HEURISTIC_CAUSE
Optional Parameter

 An indication of the reason a unilateral decision must be taken.

Values for the parameter are:
 LU61_CLIENT
 MRO_CLIENT
 OTHER_CLIENT
 RMI_CLIENT
 TD_CLIENT

1596 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, SET_WORK_TOKEN function
Pass a work token to recovery manager, denoting a client's interest in the current
unit-of-work.

Input Parameters
CLIENT_NAME

The name of the client that is associated with the work token.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

WORK_TOKEN
The client's work token.

RMUW gate, START_UOW_BROWSE function
This function is used to start a browse of unit of work objects in the system.

Input Parameters
SHUNTED

Optional Parameter

 The browse can be of only shunted units of work, only non-shunted units of
work or all units of work.

Values for the parameter are:
 BOTH
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1597

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

BROWSE_TOKEN
A token to be used on subsequent GET_NEXT_UOW calls.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMUW gate, START_WORK_TOKEN_BROWSE function
Start a browse operation on the work tokens associated with a client.

Input Parameters
CLIENT_NAME

The name of the client that is associated with the work token.

 Values for the parameter are:
 APAL
 APIC
 APRD
 APSP
 APUS
 BAM
 BR
 DH
 EJ
 FC
 IRCO
 LGGL
 LT
 NQ
 OT
 RMIO
 RZ
 SH
 TDTR
 TS
 XFFR

Output Parameters
REASON

The values for the parameter are:
 NOT_FOUND

BROWSE_TOKEN
A token that identifies the browse operation.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1598 CICS TS for z/OS 4.1: Diagnosis Reference

Recovery manager domain call-back formats

Table 66 describes the call-back formats owned by the domain and shows the
functions performed on the calls.

 Table 66. Recovery manager domain call-back formats

Format Calling module Function

RMRO DFHRMUO
DFHRMUP
DFHRMUQ
DFHRMUW
DFHRMUO
DFHRMRO2
DFHRMRO3
DFHRMRO4
DFHRMROS
DFHRMROU

PERFORM_COMMIT

PERFORM_PREPARE
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMDE DFHRMR1S
DFHRMR1D
DFHRMR1E
DFHRMR1D

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY
DELIVER_FORGET

RMKP DFHRMR1K TAKE_KEYPOINT

RMLK DFHRMLSP
DFHRMLSP
DFHRMLSD
DFHRMLSD
DFHRMLSO
DFHRMLSS
DFHRMLSU

PERFORM_PRELOGGING
PERFORM_PREPARE
REPLY_DO_COMMIT
SEND_DO_COMMIT
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT

Note: In the descriptions of the formats, the input parameters are input not to the
Recovery manager domain, but to the domain being called by the Recovery
manager domain. Similarly, the output parameters are output by the domain that
was called by the Recovery manager domain, in response to the call.

RMRO gate, DELIVER_BACKOUT_DATA function
This function requires the Recovery Manager client process backout data from the
system log for the unit of work.

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.
DATA

A buffer containing the data previously logged with BACKWARD_DATA(YES)
via the APPEND function of the RMRE gate.

RESOURCE_ID
Optional parameter.

 The name of the resource with which the logged data is associated.
CONTINUE

A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO

Chapter 99. Recovery Manager Domain (RM) 1599

YES
FORWARD_DATA

A parameter specifying whether or not the data was originally logged as
FORWARD_DATA.

 The values for the parameter are:
 NO
 YES

REMOVE
A parameter specifying whether or not the backout is due to an invocation of
the REMOVE function of the RMRE gate.

 The values for the parameter are:
 NO
 YES

CLUSTER_ID
A buffer to receive a symbolic name identifying the resource.

LOCAL_ACCESS_ID
A buffer to receive the specific name of the resource

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

KEEP
A value specifying whether the backout action failed, implying the record
should be kept and not forgotten.

 The values for the parameter are:
 NO
 YES

RMRO gate, END_BACKOUT function
This function notifies the Recovery Manager client that backout processing has
completed for the unit of work.

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.
CONTINUE

A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

REMOVE
A parameter specifying whether or not the backout is due to an invocation of
the REMOVE function of the RMRE gate.

 The values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1600 CICS TS for z/OS 4.1: Diagnosis Reference

RMRO gate, PERFORM_COMMIT function
This function requires the Recovery Manager client to perform phase two of
syncpoint processing.

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.
CONTINUE

A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

UOW_STATUS
The status of the current unit of work.

 The values for the parameter are:
 BACKWARD
 FORWARD

RESTART
Optional parameter

 Specifies whether a backing out transaction will be restarted.

The values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FORGET_RECORD
A value specifying whether all obligations to this Recovery Manager client
have been discharged.

 The values for the parameter are:
 NO
 YES

RMRO gate, PERFORM_PREPARE function
This function requires the Recovery Manager client to perform phase one of
syncpoint processing.

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.
CONTINUE

A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1601

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

VOTE
A value specifying the Recovery Manager client's vote on the outcome of the
syncpointing unit of work.

 It can have any one of these values: YES|NO|NO_CONTINUE|READ_ONLY

The values for the parameter are:
 NO
 NO_CONTINUE
 READ_ONLY
 YES

RMRO gate, PERFORM_SHUNT function
This function notifies the Recovery Manager client that the unit of work is about to
shunt.

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.
CONTINUE

A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

Output Parameters
NEXT_WORK_TOKEN

A value for the Recovery Manager client's work token in the following unit of
work.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRO gate, PERFORM_UNSHUNT function
This function notifies the Recovery Manager client that the unit of work is
unshunting.

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMRO gate, START_BACKOUT function
This function notifies the Recovery Manager client that backout processing is about
to be performed for the unit of work.

1602 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
WORK_TOKEN

The Recovery Manager client's work token for the syncpointing unit of work.
CONTINUE

A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

REMOVE
A parameter specifying whether or not the backout is due to an invocation of
the REMOVE function of the RMRE gate.

 The values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMDE gate, DELIVER_FORGET function
This function notifies the Recovery Manager client that FORGET processing is
required for some resource in a unit of work.

Input Parameters
 LOCAL_ACCESS_ID

 A parameter specifying the name of the resource associated with the forget
processing.

UOW
A parameter with the fixed value YES.

UOW_STATUS
The status of the unit of work.

 The values for the parameter are:
 FORWARD
 BACKWARD
 IN_DOUBT
 IN_FLIGHT

LOCAL_UOW_ID
The local unit of work identifier.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMDE gate, DELIVER_RECOVERY function
This function requires the Recovery Manager client to process recovery data from
the system log.

Input Parameters
RESOURCE_ID

Optional parameter

Chapter 99. Recovery Manager Domain (RM) 1603

The name of the resource with which the logged data is associated.
DATA

A buffer containing the data previously logged with BACKWARD_DATA(YES)
via the APPEND function of the RMRE gate.

FORWARD_DATA
A parameter specifying whether or not the data was originally logged as
FORWARD_DATA. It can have any one of these values: YES|NO

 The values for the parameter are:
 NO
 YES

BACKWARD_DATA
A parameter specifying whether or not the data was originally logged as
BACKWARD_DATA.

 The values for the parameter are:
 NO
 YES

KEYPOINT
A parameter specifying whether or not the data was logged as part of a
keypoint.

 The values for the parameter are:
 NO
 YES

BACKED_OUT
A parameter specifying whether or not the update the data is associated with
backed out.

UOW
A parameter specifying whether the data is related to a particular unit of work.

 The values for the parameter are:
 NO
 YES

UOW_STATUS
Optional parameter

 Specifies the status of unit of work the data belongs to (if any).

The values for the parameter are:
 FORWARD
 BACKWARD
 IN_DOUBT
 IN_FLIGHT

 LOCAL_UOW_ID

 Optional parameter

Specifies the local UOWID of the unit of work the data belongs to (if any).

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMDE gate, END_DELIVERY function
This function notifies the Recovery Manager client that all recovery information
from the system log has been processed.

1604 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters

None

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMDE gate, START_DELIVERY function
This function notifies the Recovery Manager client that system recovery processing
is about to be performed.

Input Parameters

None

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMKP gate, TAKE_KEYPOINT function
This function requires the Recovery Manager client to perform keypoint
processing.

Input Parameters
SHUTDOWN

Specifies whether the keypoint is the warm keypoint taken during shutdown
or an activity keypoint.

 The values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RMLK gate, PERFORM_COMMIT function
This function requires the Recovery Manager client perform phase two of
syncpoint processing.

Input Parameters
RMC_TOKEN

The Recovery Manager client's token associated with the Recovery Manager
Link object.

CONTINUE
A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1605

SINGLE_UPDATER
A parameter specifying whether the single updater optimization is being
performed.

 The values for the parameter are:
 NO
 YES

UOW_STATUS
The status of the syncpointing unit of work.

 The values for the parameter are:
 BACKWARD
 FORWARD

RESTART
Optional parameter

 Specifies whether a backing out transaction will be restarted.

The values for the parameter are:
 NO
 YES

COORDINATOR
A parameter specifying whether the remote system is the coordinator of the
distributed unit of work.

 The values for the parameter are:
 NO
 YES

INITIATOR
A parameter specifying whether the remote system is the initiator of the
syncpoint.

 The values for the parameter are:
 NO
 YES

PRESUMPTION
A parameter specifying whether the remote system assumes the presume abort
or presume nothing protocols.

 The values for the parameter are:
 ABORT
 NOTHING

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of
the distributed unit of work on the remote system.

 The values for the parameter are:
 NECESSARY
 UNNECESSARY
 SYNC_LEVEL_1

Output Parameters
RESPONSE

is the Recovery Manager domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID

1606 CICS TS for z/OS 4.1: Diagnosis Reference

KERNERROR
 PURGED

ACCESSIBLE
A parameter specifying that the communications link to the remote system has
failed.

 The values for the parameter are:
 NO
 SHUNTED
 YES

FORGET
A parameter specifying whether all obligations to the remote system with
respect to recovery have been discharged.

 The values for the parameter are:
 NO
 YES

PASS
A parameter specifying whether an equivalent Recovery Manager Link object
should be created in the following unit of work.

 The values for the parameter are:
 NO
 YES

ABEND
A parameter specifying whether an abend occurred during the
PERFORM_COMMIT call-back.

 The values for the parameter are:
 NO
 YES

NEXT_RECOVERY_STATUS
A parameter specifying the initial RECOVERY_STATUS of the Recovery
Manager Link object created in the following unit of work as a result of
PASS(YES).

 The values for the parameter are:
 DEFAULT
 NECESSARY
 SYNC_LEVEL_1
 UNNECESSARY

RMLK gate, PERFORM_PRELOGGING function
This function notifies the Recovery Manager client that phase one of syncpoint
processing is about to occur.

Input Parameters
RMC_TOKEN

The Recovery Manager client's token associated with the Recovery Manager
Link object.

INITIATOR
A parameter specifying whether the remote system is the initiator of the
syncpoint.

 The values for the parameter are:
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1607

COORDINATOR
A parameter specifying whether the remote system is the coordinator of the
distributed unit of work.

 The values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

is the domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

RMLK gate, PERFORM_PREPARE function
This function requires the Recovery Manager client perform phase one of
syncpoint processing.

Input Parameters
RMC_TOKEN

The Recovery Manager client's token associated with the Recovery Manager
Link object.

CONTINUE
A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

SYSTEM
A parameter specifying whether the PERFORM_PREPARE call is part of a
syncpoint or the result of an EXEC CICS ISSUE PREPARE command.

 The values for the parameter are:
 NO
 YES

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of
the distributed unit of work on the remote system.

 The values for the parameter are:
 NECESSARY
 UNNECESSARY
 SYNC_LEVEL_1

Output Parameters
RESPONSE

is the Recovery Manager domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION

1608 CICS TS for z/OS 4.1: Diagnosis Reference

DISASTER
 INVALID
 KERNERROR
 PURGED

VOTE
A value specifying the Recovery Manager client's vote on the outcome of the
syncpointing unit of work.

 The values for the parameter are:
 HEURISTIC_MIXED
 NO
 NO_CONTINUE
 READ_ONLY
 YES

RMLK gate, PERFORM_SHUNT function
This function notifies the Recovery Manager client that the unit of work is
shunting. Input parameters

Input Parameters
RMC_TOKEN

The Recovery Manager client's token associated with the Recovery Manager
Link object.

CONTINUE
A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of
the distributed unit of work on the remote system.

 The values for the parameter are:
 NECESSARY
 UNNECESSARY
 SYNC_LEVEL_1

Output Parameters
RESPONSE

is the Recovery Manager domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

FORGET
A parameter specifying whether all obligations to the remote system with
respect to recovery have been discharged.

 The values for the parameter are:
 NO
 YES

Chapter 99. Recovery Manager Domain (RM) 1609

RMLK gate, PERFORM_UNSHUNT function
This function notifies the Recovery Manager client that the unit of work is
unshunting.

Input Parameters
LINK_TOKEN

A token identifying the Recovery Manager Link object to be unshunted.
LOGNAME_BUFFER

A buffer containing the logname of the remote system.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the
External Resource Manager.

LINK_ID_BUFFER
A buffer containing the termid of the session to the remote system, or the
External Resource Manager qualifier.

LINK_ID_SOURCE
An optional parameter specifying whether the local or remote system allocated
the session.

 The values for the parameter are:
 LOCAL
 REMOTE

Output Parameters
RESPONSE

is the Recovery Manager domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

RMLK gate, REPLY_DO_COMMIT function
This function requires the Recovery Manager client communicate the result of this
systems phase one syncpoint processing to the coordinating system, and obtain the
outcome of the distributed unit of work.

Input Parameters
RMC_TOKEN

The Recovery Manager client's token associated with the Recovery Manager
Link object.

CONTINUE
A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

SINGLE_UPDATER
A parameter specifying whether the single updater optimization is being
performed.

 The values for the parameter are:
 NO

1610 CICS TS for z/OS 4.1: Diagnosis Reference

YES

Output Parameters
RESPONSE

is the Recovery Manager domain's response to the call.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ACCESSIBLE
A value specifying whether communication with the remote system failed.

 The values for the parameter are:
 NO
 SUNTED
 YES

VOTE
A value specifying the Recovery Manager client's vote on the outcome of the
syncpointing unit of work.

 The values for the parameter are:
 HEURISTIC_MIXED
 NO
 NO_CONTINUE
 READ_ONLY
 YES

RMLK gate, SEND_DO_COMMIT function
This function requires the Recovery Manager client communicate the result of this
system's phase one syncpoint processing to the last agent system, and obtain the
outcome of the distributed unit of work.

Input Parameters
RMC_TOKEN

The Recovery Manager client's token associated with the Recovery Manager
Link object.

CONTINUE
A parameter specifying whether the current transaction will continue into a
following unit of work.

 The values for the parameter are:
 NO
 YES

SINGLE_UPDATER
A parameter specifying whether the single updater optimization is being
performed.

 The values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

is the Recovery Manager domain's response to the call.

Chapter 99. Recovery Manager Domain (RM) 1611

Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ACCESSIBLE
A value specifying whether communication with the remote system failed.

 The values for the parameter are:
 NO
 SUNTED
 YES

VOTE
A value specifying the Recovery Manager client's vote on the outcome of the
syncpointing unit of work.

 The values for the parameter are:
 HEURISTIC_MIXED
 NO
 NO_CONTINUE
 READ_ONLY
 YES

Modules
 Module Function

DFHRMCD Handles the functions of the RMCD gate.

DFHRMCD1 Initialises the Client Directory Class.

DFHRMCD2 Quiesces the Client Directory Class.

DFHRMCI2 Sets the callback gate of a Recovery Manager client.

DFHRMCI3 Waits for a registered Recovery Manager client to set its callback gate.

DFHRMCI4 Waits for a registered Recovery Manager client to set its callback gate
and calls it with a given parameter list.

DFHRMDM Recovery Manager domain initialization and termination. Handles the
DMDM and RMDM gate functions.

DFHRMDU0 Formats the Recovery Manager control blocks.

DFHRMDU2 Starts a browse of all Recovery Manager client work tokens during
dump formatting.

DFHRMDU3 Gets the next Recovery Manager client work token during dump
formatting.

DFHRMDU4 Ends a browse of all Recovery Manager client work tokens during dump
formatting.

DFHRMLKQ Quiesces the Recovery Manager Link Class.

DFHRMLK1 Initialises the Recovery Manager Link Class.

DFHRMLK2 Handles the INITIATE_RECOVERY function of the RMLN gate.

DFHRMLK3 Inquires whether a Logname is in-use by any Recovery Manager Link.

DFHRMLK4 Handles the CLEAR_PENDING function for a particular Recovery
Manager Link.

DFHRMLK5 Collects statistics from the Recovery Manager Link Class.

1612 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHRMLN Handles the functions of the RMLN gate.

DFHRMLSD Asks the coordinator Recovery Manager Link to decide the outcome of
the unit of work.

DFHRMLSF Determines the reason for a unit of work being in doubt.

DFHRMLSO Commits the Recovery Manager Links for a unit of work.

DFHRMLSP Prepares the Recovery Manager Links for a unit of work.

DFHRMLSS Shunts the Recovery Manager Links for a unit of work.

DFHRMLSU Unshunts the Recovery Manager Links for a unit of work.

DFHRML1D Reconstructs Recovery Manager Links from log records.

DFHRMNM Handles the functions of the RMNM gate.

DFHRMNM1 Initialises the Recovery Manager Lognames Class.

DFHRMNS1 Initialises the Recovery Manager Logname Set Class.

DFHRMNS2 Quiesces the Recovery Manager Logname Set Class.

DFHRMOFI Initialises a Recovery Manager Object Factory.

DFHRMRO Handles the functions of the RMRO gate.

DFHRMROO Handles FORGET processing for Recovery Manager Resource Owners.

DFHRMROS Shunts a Recovery Manager Resource Owner.

DFHRMROU Unshunts a Recovery Manager Resource Owner.

DFHRMROV Handles AVAIL processing for Recovery Manager Resource Owners.

DFHRMRO1 Initialises the Recovery Manager Resource Owner Class.

DFHRMRO2 Signals start_backout to a Recovery Manager Resource Owner.

DFHRMRO3 Delivers backout data to a Recovery Manager Resource Owner.

DFHRMRO4 Signals end_backout to a Recovery Manager Resource Owner.

DFHRMR1D Delivers recovery data to a Recovery Manager Resource Owner.

DFHRMR1E Signals end of recovery to a Recovery Manager Resource Owner.

DFHRMR1K Signals a keypoint to a Recovery Manager Resource Owner.

DFHRMR1S Signals start of recovery to a Recovery Manager Resource Owner.

DFHRMSL Handles the functions of the RMSL gate.

DFHRMSLF Forces the System Log.

DFHRMSLJ Checks for Chain independence during recovery.

DFHRMSLL Closes a Chain on the System Log.

DFHRMSLO Opens a Chain on the System Log.

DFHRMSLV Moves a Chain on the System Log.

DFHRMSLW Writes a record to a Chain on the System Log.

DFHRMSL1 Initialises the Recovery Manager System Log Class.

DFHRMSL2 Starts a browse of a Chain on the System Log.

DFHRMSL3 Reads a Record from a Chain on the System Log.

DFHRMSL4 Ends a browse of a Chain on the System Log.

DFHRMSL5 Performs restart processing for Recovery Manager System Log Class.

DFHRMSL6 Schedules keypoint activity.

DFHRMSL7 Performs keypoint processing.

Chapter 99. Recovery Manager Domain (RM) 1613

Module Function

DFHRMST Handles STST functions for Recovery Manager.

DFHRMST1 Initializes the Recovery Manager Statistics Class.

DFHRMTRI Formats Recovery Manager trace entries.

DFHRMUC Creates a RMUW (unit of work) object.

DFHRMUO Commits a unit of work.

DFHRMUTL Recovery Manager batch utility.

DFHRMUW Handles the functions of the RMUW gate.

DFHRMUWB Handles data during backout of a unit of work.

DFHRMUWE Handles activities when a unit of work is unshunted.

DFHRMUWF Forces log records for a unit of work.

DFHRMUWH Holds an RMUW object.

DFHRMUWJ Forces a unit of work to take a unilateral decision.

DFHRMUWL Handles notification that all remote remotes have finished processing.

DFHRMUWN Schedules a unit of work to be unshunted.

DFHRMUWP Handles notification that a local resource has become available.

DFHRMUWQ Handles commit or backout of an unshunted, in doubt unit of work.

DFHRMUWS Records the outcome of a unit of work during resynchronization.

DFHRMUWU Records the local LU name.

DFHRMUWV Handles notification that a local resource has become available.

DFHRMUWW Writes a record belonging to a unit of work to the System Log.

DFHRMUW0 Releases an RMUW object.

DFHRMUW1 Initializes the Recovery Manager Unit of Work Class.

DFHRMUW2 Collects the Recovery Manager Unit of Work Class Statistics.

DFHRMUW3 Handles the INQUIRE_UOW_TOKEN function.

DFHRMU1C Sets the Chain token for a unit of work.

DFHRMU1D Handles log records of units of work during recovery.

DFHRMU1E Signals that all records have been recovered from the System Log during
recovery.

DFHRMU1F Handles an in doubt wait timeout.

DFHRMU1J Inquires whether all unit of work chains are disjoint.

DFHRMU1K Keypoints a unit of work.

DFHRMU1L Handle XMPP_FORCE_PURGE_INHIBIT_QUERY.

DFHRMU1N Handle XMPP_FORCE_PURGE_INHIBIT_QUERY.

DFHRMU1Q Handle the NOTIFY function of the TISR gate.

DFHRMU1R Performs restart processing for Recovery Manager Unit of Work Class.

DFHRMU1S Signals that recovery of log records is about to be performed.

DFHRMU1U Process a unit of work after recovery.

DFHRMU1V Requests time out interval notification for a unit of work.

DFHRMU1W Cancels wait time out notification for a unit of work.

DFHRMVP1 Initializes the Recovery Manager Variable Length Subpool Class.

DFHRMXNE Reattaches a transaction to process an unshunted unit of work.

1614 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHRMXN2 Schedules a keypoint.

DFHRMXN3 The keypoint program

DFHRMXN4 Restarts the Recovery Manager Transaction Class.

DFHRMXN5 Increments Recovery Manager statistics for a Transaction.

Chapter 99. Recovery Manager Domain (RM) 1615

1616 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 100. Region status domain (RS)

The region status (RS) domain captures information about the status of a region
and records the status in a coupling facility data table (CFDT). Using RS domain
services, other CICS regions can enquire on this status, by reading the CFDT
record.

Region status domains specific gates
The specific gates provide access for other domains to functions that are provided
by the RS domain.

RSDU gate, END_SYSTEM_DUMP function
The END_SYSTEM_DUMP function is called from the dump domain to record the
end of a system dump (SDUMP).

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSDU gate, END_TRANSACTION_DUMP function
The END_TRANSACTION_DUMP function is called from the dump domain to
record the end of a transaction dump.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

© Copyright IBM Corp. 1997, 2011 1617

|

|

|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

RSDU gate, START_SYSTEM_DUMP function
The START_SYSTEM_DUMP function is called from the dump domain to record
the start of a system dump (SDUMP).

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSDU gate, START_TRANSACTION_DUMP function
The START_TRANSACTION_DUMP function is called from the dump domain to
record the start of a transaction dump.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSSR gate, DEREGISTER_INTEREST function
DEREGISTER_INTEREST deregisters interest in a target region.

Input parameters
FILE_NAME

Specifies a 16-character file name.
POOL_NAME

Specifies an 8-character pool name.
REGION_NAME

Specifies an 8-character region name.

1618 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|

|
|
|
|
|
|
|

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE

One of the following values is returned when RESPONSE is EXCEPTION:
 RECORDING_NOT_ACTIVE
 INCORRECT_POOL_NAME
 TARGET_NOT_KNOWN
 SERVER_FAILED

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 RECORDING_ACTIVE

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSSR gate, INQUIRE_TARGET_STATUS function
INQUIRE_TARGET_STATUS retrieves information about target region status.

Input parameters
FILE_NAME

Specifies a 16-character file name.
POOL_NAME

Specifies an 8-character pool name.
REGION_NAME

Specifies an 8-character region name.
<STATUS_BLOCK_TOKEN>

The token that identifies a status block where the region status is to be copied.

Output parameters
<SOS>

Specifies whether a target region is short-on-storage in the CICS environment.

 The values of this parameter are:
 NO
 YES

<MAXTASK>
Specifies whether a target region is at maxtask within the CICS environment.

 The values of this parameter are:
 NO
 YES

<SDUMPACTIVE>
Specifies whether a system dump is active in the target region.

 The values of this parameter are:
 NO
 YES

Chapter 100. Region status domain (RS) 1619

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

<TDUMPACTIVE>
Specifies whether a transaction dump is active in the target region.

 The values of this parameter are:
 NO
 YES

<CURRENT_TASK_COUNT>
The number of running tasks used to evaluate the load on the current routing
target.

<MAX_TASK_COUNT>
The defined maximum number of active tasks that can concurrently run in the
routing target.

<THRESHOLD_PERCENTAGE>
The threshold percentage of the target region, as a halfword binary value.

REASON
One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE

One of the following values is returned when RESPONSE is EXCEPTION:
 RECORDING_NOT_ACTIVE
 INCORRECT_POOL_NAME
 TARGET_NOT_KNOWN
 SERVER_FAILED

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 RECORDING_ACTIVE

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSSR gate, SET_THRESHOLD_PERCENTAGE function
SET_THRESHOLD_PERCENTAGE sets the threshold percentage, upper-tier
percentage, and the lower-tier percentage value.

Input parameters
FILE_NAME

Specifies a 16-character file name.
POOL_NAME

Specifies an 8-character pool name.
REGION_NAME

Specifies an 8-character region name.
THRESHOLD_PERCENTAGE

Specifies the threshold percentage, as a halfword binary value. The value
specified must be in the range 0 - 31.

<UPPER_TIER_PERCENTAGE>
Specifies the upper-tier percentage, as a halfword binary value. The value
specified must be in the range 0 - 31.

1620 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

<LOWER_TIER_PERCENTAGE>
Specifies the lower-tier percentage, as a halfword binary value. The value
specified must be in the range 0 - 31.

<STATUS_BLOCK_TOKEN>
The token that identifies a status block where the region status is to be copied.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE

One of the following values is returned when RESPONSE is EXCEPTION:
 RECORDING_NOT_ACTIVE
 INCORRECT_POOL_NAME
 TARGET_NOT_KNOWN
 SERVER_FAILED

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 RECORDING_ACTIVE

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSSR gate, START_RECORDING function
START_RECORDING starts the recording of region status data into a coupling
facility data table (CFDT).

Input parameters
FILE_NAME

Specifies a 16-character file name.
POOL_NAME

Specifies an 8-character pool name.
REGION_NAME

Specifies an 8-character region name.
THRESHOLD_PERCENTAGE

Specifies the threshold percentage, as a halfword binary value. The value
specified must be in the range 0 - 31.

<UPPER_TIER_PERCENTAGE>
Specifies the upper-tier percentage, as a halfword binary value. The value
specified must be in the range 0 - 31.

<LOWER_TIER_PERCENTAGE>
Specifies the lower-tier percentage, as a halfword binary value. The value
specified must be in the range 0 - 31.

<STATUS_BLOCK_TOKEN>
The token that identifies a status block where the region status is to be copied.

<FAILURE_ECB_PTR>
The token that identifies the address of an ECB to be posted when connection
to the CFDT server is lost.

Chapter 100. Region status domain (RS) 1621

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE

One of the following values is returned when RESPONSE is EXCEPTION:
 RECORDING_NOT_ACTIVE
 INCORRECT_POOL_NAME
 TARGET_NOT_KNOWN
 SERVER_FAILED

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 RECORDING_ACTIVE

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSSR gate, STOP_RECORDING function
STOP_RECORDING stops the recording of region status data into a coupling
facility data table (CFDT).

Input parameters
FILE_NAME

Specifies a 16-character file name.
POOL_NAME

Specifies an 8-character pool name.
REGION_NAME

Specifies an 8-character region name.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE

One of the following values is returned when RESPONSE is EXCEPTION:
 RECORDING_NOT_ACTIVE
 INCORRECT_POOL_NAME
 TARGET_NOT_KNOWN
 SERVER_FAILED

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 RECORDING_ACTIVE

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

1622 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSSR gate, TEST_CONNECTION function
TEST_CONNECTION tests the status of the region status (RS) domain connection
by attempting a read from the Coupling Facility (CF) for the pool name.

Input parameters
FILE_NAME

Specifies a 16-character file name.
POOL_NAME

Specifies an 8-character pool name.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 LOCK_FAILURE

One of the following values is returned when RESPONSE is EXCEPTION:
 RECORDING_NOT_ACTIVE
 INCORRECT_POOL_NAME
 TARGET_NOT_KNOWN
 SERVER_FAILED

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 RECORDING_ACTIVE

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSXM gate, END_TRANSACTION function
The END_TRANSACTION function is called at the end of each transaction to
update the number of active and queued transactions in the region.

Input parameters
ACTIVE_TXN_COUNT

Specifies the number of started transactions in the region.
QUEUED_TXN_COUNT

Specifies the number of transactions that are queued in the region because a
MAXTASK limit has been exceeded.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND

Chapter 100. Region status domain (RS) 1623

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|

LOOP

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

RSXM gate, START_TRANSACTION function
The START_TRANSACTION function is called at the start of each transaction to
update the number of active and queued transactions in the region.

Input parameters
ACTIVE_TXN_COUNT

Specifies the number of started transactions in the region.
QUEUED_TXN_COUNT

Specifies the number of transactions that are queued in the region because a
MAXTASK limit has been exceeded.

Output parameters
REASON

One of the following values is returned when RESPONSE is DISASTER:
 ABEND
 LOOP

One of the following values is returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following value is returned when RESPONSE is PURGED:
 TASK_CANCELLED

RESPONSE
Indicates whether the domain call was successful.

 For more information, see “The RESPONSE parameter on domain interfaces” on
page 9.

Region status domains generic gates
The generic gates provide access for other domains to functions that are provided
by the RS domain.

Table 67 summarizes the region status domain's generic gates. It shows the level-1
trace point IDs of the modules providing the functions for the gate, the functions
provided by the gate, and the generic format for calls to the gate.

 Table 67. Region status domain's generic gates

Gate Trace Function Format

RSDM RS 0101
RS 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

1624 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

||

||||

||
|
|
|
|

|

Table 67. Region status domain's generic gates (continued)

Gate Trace Function Format

RSSM RS 0300
RS 0301

STORAGE_NOTIFY SMNT

RSXM RS 0400
RS 0401

MXT_CHANGE_NOTIFY
MXT_NOTIFY

XMNT

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Storage manager domain generic formats” on page 1709
 “Transaction manager domain's generic formats” on page 1999

Modules
The RS domain modules handle requests to process, format or broadcast RS
domain data.

 Module Function

DFHMERSx RS domain messages

DFHRSDM RS domain initialization and termination program

DFHRSDU RS domain dump domain interface

DFHRSDUF RS domain dump formatting

DFHRSFD RS domain Create Region Status CFDT File

DFHRSSM RS domain storage notification handler

DFHRSSR RS domain request handler

DFHRSXM RS domain transaction manager interface and transaction manager
notification handler

DFHRSXRI RS domain trace formatting

Chapter 100. Region status domain (RS) 1625

|

||||

||
|
||

||
|
|
|
|

|

|
|

|

|

|

|
|

|
|

|||

||

||

||

||

||

||

||

||
|

||
|
|

1626 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 101. RRMS domain (RX)

The RRMS domain is responsible for managing interaction with OS/390
Recoverable Resource Management Services (RRMS) and in particular, Resource
Recovery Services (RRS) which is a component of RRMS.

RRMS domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the RX domain.

RXDM gate, INQUIRE_RRS function
The INQUIRE_RRS function of the RXDM gate is used to determine the status of
the interface with Recoverable Resource Management Services (RRMS).

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

OPEN
A binary value indicating if the interface is open.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RESTART_STATE
Optional Parameter

 The restart state of RRS

Values for the parameter are:
 COLD
 NOT_STARTED
 STARTING
 WARM

RXDM gate, SET_PARAMETERS function
The SET_PARAMETERS function of the RXDM gate is used to pass the values of
relevant System Initialization parameters to the domain.

Input Parameters
RRMS

A binary value that specifies whether CICS is to register as a resource manager
with recoverable resource management services (RRMS).

 Values for the parameter are:
 NO
 YES

© Copyright IBM Corp. 1997, 2011 1627

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RXUW gate, GET_CLIENT_REQUEST function
The GET_CLIENT_REQUEST function of the RXDM gate is used to suspend a
transaction until the PUT_CLIENT_REQUEST is issued for the same Unit of
Recovery.

Input Parameters
UR_TOKEN

is the token by which the UR associated with the request is known by the RX
domain.

TIMEOUT
Optional Parameter

 The time (in seconds) for which the transaction should be suspended. If this
parameter is omitted, the transaction will be suspended indefinitely.

Output Parameters
REASON

The values for the parameter are:
 BACKOUT
 RACE
 SYNCPOINT
 TASK_CANCELLED
 TIMED_OUT

CLIENT_TOKEN
A token representing the client of the UR.

CLIENT_TYPE
Indicates the type of client of the transaction.

 Values for the parameter are:
 TERMINAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RXUW gate, INQUIRE function
The INQUIRE function requests attributes of a Unit of Recovery

Input Parameters
UR_TOKEN

is the token by which the UR associated with the request is known by the RX
domain.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BACKOUT
 RACE
 RRS_UNAVAILABLE

1628 CICS TS for z/OS 4.1: Diagnosis Reference

SYNCPOINT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

URID
Optional Parameter

 The identifier of the Unit of Recovery used by RRMS.

RXUW gate, PUT_CLIENT_REQUEST function
The PUT_CLIENT_REQUEST function of the RXDM gate is used to associate a
request from a client with an RRS Unit of Recovery (UR).

Input Parameters
CLIENT_TOKEN

A token representing the client of the UR.
CLIENT_TYPE

Indicates the type of client of the transaction.

 Values for the parameter are:
 TERMINAL

CONNECTION
The connection on which the client request was received. This parameter is
used to identify the source of the request in any messages that are issued.

CONTEXT_TOKEN
The token representing the RRMS context for which the request is issued.

PASS_TOKEN
A token used to protect against unauthorised use of the context token and
URID.

TRANSACTION_ID
The transaction id associated with the request. This parmeter is used to
correlate succesive requests for the same transaction instance.

URID
The identifier of the RRS Unit of Recovery associated with the context.

USERID
The userid associated with the request. This parmeter is used to correlate
succesive requests for the same transaction instance.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BACKOUT
 RACE
 RRS_UNAVAILABLE
 SYNCPOINT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED

Chapter 101. RRMS domain (RX) 1629

TIMED_OUT
NEW_UR

Indicates whether a new UR has been created for this request.

 Values for the parameter are:
 YES
 NO_AND_READY
 NO_AND_NOT_READY
 NO_AND_NOTASK
YES

Indicates that a new UR has been created
NO_AND_READY

Indicates that the request was associated with an existing UR and that task
is ready to receive the request.

NO_AND_NOT_READY
Indicates that the request was associated with an existing UR but that task
is not ready to receive the request. This typically occurs when the original
request has timed out and another transactional EXCI request in the same
RU has been sent by the EXCI job.

NO_AND_NOTASK
Indicates that the request was associated with an existing UR but that task
has not yet expressed an interest in that UR. This can occur when the
original request has been held by MAXTASK or TRANCLASS (TCLASS)
limits and has timed out, and another transactional EXCI request in the
same RU has been sent by the EXCI job.

 RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANSACTION_NUMBER
The transaction number of the transaction associated with the request.

UR_TOKEN
is the token by which the UR associated with the request is known by the RX
domain.

RRMS domain's call-back gates

Table 68 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 68. RRMS domain's call-back gates

Gate Trace Function Format

RXXM RX 0401
RX 0402

INIT_XM_CLIENT
BIND_XM_CLIENT

XMAC

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following call-back formats:

 “Transaction Manager domain's callback formats” on page 1996

Modules
 Module Function

DFHRXDM RX domain management and global functions.

DFHRXUW RX domain unit-of-work related functions. .

1630 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHRXSVC RX domain SVC code for RRMS authorized interface.

DFHRXXRG RX domain Registration Services exits.

DFHRXXRM RX domain Resource Manager exits.

DFHRXDUF RX domain dump formatting.

DFHRXTRI RX domain trace interpretation

Chapter 101. RRMS domain (RX) 1631

1632 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 102. Request Streams Domain (RZ)

The RequestStream domain provides connectivity between elements of the
Corbaserver and EJB components in a sysplex to allow transfer of GIOP requests
from a requester to a request processor, and to permit appropriate workload
balancing of the deployment of those requests.

Request Streams Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the RZ domain.

RZRJ gate, PERFORM_JOIN function
This function reduces the calls necessary from the join task (in remote join
capability) to the RZ domain. It initiates the procedures necessary to pass an
attached RequestStream to a local processor.

Output Parameters
REASON

The values for the parameter are:
 JOIN_NOT_POSSIBLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZRT gate, SET_EXIT_PROGRAM function
The following defines the syntax of the SET_EXIT_PROGRAM function.

Input Parameters
PROGRAM_NAME

The name of the user-replaceable program for the Distributed Dynamic
Routing program.

LOCAL_SYSID
Optional Parameter

 The SYSID for the local CICS region to recognize it in routing user-replaceable
program responses.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZSO gate, CREATE function
Create a RequestStream and return a (local region) source RequestStream token for
it.

© Copyright IBM Corp. 1997, 2011 1633

The target process(or) is identified either by USERID and TRANID or by
HOST_IP_ADDRESS and PORT_NUMBER. Precisely one of these groups must be
provided. (The HOST_IP_ADDRESS is a character string as expected by the
internal sockets domain interfaces.)

The SERVER_DATA may be retrieved at the target (RZTA) interface and is copied
(and fixed) on this call.

The response is (exception, service_not_available) if it is not possible to resolve the
target, or to set up a connection to the target. (Success does not guarantee that this
exception will not occur on the SEND function.)

The response is (exception, target_unknown) if the HOST_IP_ADDRESS character
string is malformed (as detected by the sockets domain interfaces). The response is
invalid when the parameters are badly formed, in particular if there is not the right
combination of target identification parameters.

Input Parameters
CERTIFICATE_LABEL

Optional Parameter

 The label of an X.509 certificate that is used during the SSL handshake
CIPHER_COUNT

Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A binary representation of the cipher suites used to encrypt data.
DEBUG_BLOCK

Optional Parameter

 A block used to return debugging information.
HOST_IP_ADDRESS

Optional Parameter

 Identification of the target which is to process the requests.
PORT_NUMBER

Optional Parameter

 Further identification of the target.
PRIVACY

Optional Parameter

 Specifies the level of SSL encryption required.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

SERVER_BLOCK
Optional Parameter

 Data associated with the RequestStream available at the target end by the
server using the RZTA interface.

SSL_REQUIRED
Optional Parameter

 Whether to use SSL on a socket transport. Otherwise ignored.

1634 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

TRANID
Optional Parameter

 TranId of the transaction which runs the target processor.
USER_KEY_VERSION

Optional Parameter
USERID

Optional Parameter

 Userid under which the requests are to be processed.

Output Parameters
REASON

The values for the parameter are:
 SERVICE_NOT_AVAILABLE
 TARGET_UNKNOWN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RS_TOKEN
Token by which RequestStream is identified on all subsequent requests from
this task on this region.

APPLID
Optional Parameter

 The application ID of the target processor.

RZSO gate, JOIN function
Join a RequestStream identified by a public_id.

If the required transport mechanism is not available, or fails in use, the appropriate
exception is returned as for "create". If the RequestStream, identified by the
"public_id", does not exist (because the target end does not exist) then this call
does not detect this. Instead a new request processor will be created implicitly just
as for "create". The "userid" (if supplied) must match that used on the "create",
otherwise an error may occur later in (Request Processor) processing. This is not
detected at this call. The "tranid" and the "server_data" is supplied in case the
RequestStream is recreated on this call, otherwise they are ignored. They may be
omitted as in *create*. If the "public_id" is not valid, or cannot be interpreted then
the response "(exception, public_id_invalid)" will be returned. The "rs_token" for
the local source RequestStream is returned as result.

Input Parameters
PUBLIC_ID

The public RequestStream identifier, valid for all participating regions in the
logical server, of the target RequestStream, which may be in a separate region.

TRANID
The transaction identifier of the transaction which runs the target processor.

DEBUG_BLOCK
Optional Parameter

 A block used to return debugging information.
SERVER_BLOCK

Optional Parameter

Chapter 102. Request Streams Domain (RZ) 1635

Data associated with the RequestStream available at the target end by the
server using the RZTA interface.

USERID
Optional Parameter

 Userid under which the requests are to be processed.

Output Parameters
REASON

The values for the parameter are:
 INVALID_USERID
 PUBLIC_ID_INVALID
 SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RS_TOKEN
A token by which the RequestStream is identified on all subsequent requests
from this task on this region.

RZSO gate, LEAVE function
Remove this source from its RequestStream. The RequestStream is modified so that
the "rs_token" (which must denote a source end of the RequestStream) is no longer
valid. (A token value may or may not be reissued by "RZ" on another "create" or
"join" request - however the caller must not rely on its value after "leave".)

Input Parameters
RS_TOKEN

Token returned on CREATE by which RequestStream is identified.

Output Parameters
REASON

The values for the parameter are:
 RS_TOKEN_NOT_SOURCE
 RS_TOKEN_UNKNOWN
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZSO gate, RECEIVE_REPLY function
A reply is returned (blocks until one is available).

Input Parameters
RS_TOKEN

Token returned on CREATE by which RequestStream is identified.
MINIMUM_DATA_LENGTH

Optional Parameter

 Minimum amount of data to accept (multiple transfers may occur until this
amount is received).

REPLY_BUFFER
Optional Parameter

 Buffer in which reply bytes are assembled.

1636 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 INVALID_BUFFER
 REQUEST_PROCESSOR_FAILURE
 RS_TOKEN_UNKNOWN
 SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REPLY_DATA_LENGTH
Optional Parameter

 Total length of reply (even if not all received in one call).

RZSO gate, SEND_REQUEST function
The source RequestStream token and the request (coded as a RUEI or as a
contiguous data block) is passed as input. Either a RUEI or a block must be used,
not both. If this is not so then an invalid response is returned.

The request is deemed to be entire and may be presented to the target. Data may
be transported across the transport mechanism during this call. The request may
be of zero length, this does not imply that nothing is transported.

If the source RequestStream token does not exist (in the local region) the response
(exception, rs_token_unknown) is returned.

If a transport mechanism fails to respond, or is not functional, then the response
(exception, service_not_available) is returned. If it fails during transmission then
(exception, transport_failure) is returned. The distinction is that in the former case
there is no transport mechanism and in the latter there is still one (albeit
inoperational).

Input Parameters
RS_TOKEN

Token returned on CREATE by which RequestStream is identified.
LAST

Optional Parameter

 A binary value indicating if this is the last request.

Values for the parameter are:
 NO
 YES

REQUEST_BLOCK
Optional Parameter

 Request data to send described as a single block. Exclusive with
REQUEST_RUEI.

REQUEST_RUEI
Optional Parameter

 Reusable-extended-Iliffe Vector which describes contiguous bytes to send as a
request, supplied in possibly discontiguous blocks. Exclusive with
REQUST_BLOCK.

TARGET_PROGRAM
Optional Parameter

Chapter 102. Request Streams Domain (RZ) 1637

The name of the program in the target that will receive the request.

Output Parameters
REASON

The values for the parameter are:
 RS_TOKEN_UNKNOWN
 SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZSO gate, WEAK_JOIN function
Join a RequestStream when there is no public_id.

Input Parameters
APPLID

The application ID of the target.
TRANID

The transaction identifier of the transaction which runs the target processor.
USERID

The user identifier associated with the current task.
SERVER_BLOCK

Optional Parameter

 Data associated with the RequestStream available at the target end by the
server using the RZTA interface.

Output Parameters
REASON

The values for the parameter are:
 INVALID_USERID
 SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RS_TOKEN
A token by which the RequestStream is identified on all subsequent requests
from this task on this region.

RZTA gate, GET_CURRENT function
The token for the RequestStream for the current transaction is returned. If the "XM"
token is not set, or is set to an invalid value, then the response "(exception,
RequestStream_not_current)" is returned.

Output Parameters
REASON

The values for the parameter are:
 REQUESTSTREAM_NOT_CURRENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1638 CICS TS for z/OS 4.1: Diagnosis Reference

RS_TOKEN
Token by which RequestStream is identified on all subsequent requests from
this task on this region.

RZTA gate, GET_DEBUG_DATA function
The GET_DEBUG_DATA function returns debugging information about the current
request stream for use in end-to-end debugging.

Input Parameters
DEBUG_BLOCK

A block containing the debugging information returned by the domain.

Output Parameters
REASON

The values for the parameter are:
 REQUESTSTREAM_NOT_CURRENT
 SERVER_BLOCK_TOO_SMALL

DEBUG_DATA_LENGTH
The length of the debugging information returned.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZTA gate, GET_JOIN_DATA function
This is a utility function used by the join task which can thereby reduce the
number of domain calls to RZ when acting as intermediary to another task on
remote join.

Output Parameters
REASON

The values for the parameter are:
 REQUESTSTREAM_NOT_CURRENT

PUBLIC_ID
Public RequestStream Identifier -- valid for all participating regions in the
logical server -- of the current target RequestStream which must be attached to
this task/transaction.

REQUEST_DATA_LENGTH
The data length of the request to be passed to the processor to be joined.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANID
The transid of the request processor to be joined.

RZTA gate, GET_PUBLIC_ID function
The public identifier of the RequestStream for the current transaction is returned.
(If the target of the RequestStream is not internal to the plex there may not be a
public identifier, for example in the case of outbound RequestStreams. In this case
the response is "(exception, public_id_unknown)". However, this should never
happen on this interface, since such a RequestStream will never be set in the "RZ"
transaction manager token for a transaction instance.)

Chapter 102. Request Streams Domain (RZ) 1639

Output Parameters
REASON

The values for the parameter are:
 PUBLIC_ID_UNKNOWN
 REQUESTSTREAM_NOT_CURRENT

PUBLIC_ID
Public RequestStream Identifier -- valid for all participating regions in the
logical server -- of the current target RequestStream which must be attached to
this task/transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZTA gate, GET_SERVER_DATA function
Return the server data for the current RequestStream.

Input Parameters
SERVER_BLOCK

Data associated with the RequestStream available at the target end by the
server using the RZTA interface.

Output Parameters
REASON

The values for the parameter are:
 REQUESTSTREAM_NOT_CURRENT
 SERVER_BLOCK_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SERVER_DATA_LENGTH
The number of bytes of the server data, even if not all were returned.

RZTA gate, RECEIVE_REQUEST function
Get the next request. This call blocks if there is no request ready, and returns when
a request becomes available or if the RequestStream is destroyed while waiting
("terminate"d). This call will be satisfied without undue waiting if a "notify"
callback has been invoked.

Input Parameters
REQUEST_BUFFER

Buffer into which the request is received.
MINIMUM_DATA_LENGTH

Optional Parameter

 Minimum amount of data to accept (multiple transfers may occur until this
amount is received).

Output Parameters
REASON

The values for the parameter are:
 INVALID_BUFFER
 REQUESTSTREAM_NOT_CURRENT
 SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

1640 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CORRELATION_ID
Optional Parameter

 The identifier of the requester using this RequestStream. It is used when
replying to this request (using SEND_REPLY on this RequestStream) so as to
identify the source from which the request was issued. It is valid only while
this RequestStream is available to this transaction.

RZTA gate, SEND_REPLY function
Send a reply to a source identified by "correlation_id".

The "correlation_id" must be one returned by the "receive_request" function for the
current RequestStream, or else the exception "correlation_id_unknown" may be
returned. A reply may consist of the empty sequence of bytes in which case an
empty reply is sent. The usual exceptions are returned for transportation failures.

Input Parameters
CORRELATION_ID

The correlation id received on RECEIVE_REQUEST for the request to which
this is the reply.

REPLY_BLOCK
A block containing the complete contiguous reply.

LAST
Optional Parameter

 Indicates if this is the last request.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CORRELATION_ID_UNKNOWN
 REQUESTSTREAM_NOT_CURRENT
 SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RZTA gate, TERMINATE function
Terminate the current (target) RequestStream either normally or abnormally. After
this call the "XM" token in the transaction instance is cleared and no longer
denotes a RequestStream.

Output Parameters
REASON

The values for the parameter are:
 CANNOT_TERMINATE_NORMALLY
 REQUESTSTREAM_NOT_CURRENT
 RS_TOKEN_UNKNOWN

Chapter 102. Request Streams Domain (RZ) 1641

SERVICE_NOT_AVAILABLE
 TRANSPORT_FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHRZDUF Dump Formatting program

DFHRZIX XM Attach Client for InStore transports

DFHRZJN Join task program

DFHRZLN Listen and Notify calls

DFHRZNR2 Initialize rsnr class (notification object)

DFHRZOFI Initialize object factory class

DFHRZRG2 Initialize rsrg registration class

DFHRZRJ Perform join

DFHRZRM RM Resource Owner for RZ

DFHRZRS1 RM Resource Owner for RZ

DFHRZRT Set Routing Exit program name

DFHRZRT1 Initialize routing user-replaceable program class (rzrt)

DFHRZRT2 Invoke Routing user-replaceable program

DFHRZSO Source commands on RequestStreams (not Create/Join)

DFHRZSO1 Create and Join commands on Source RequestStreams

DFHRZTA Target commands on RequestStreams

DFHRZTCX XM Attach Client for MRO transports

DFHRZTRI Trace interpretation

DFHRZTR1 Initialize rztr class

DFHRZVP1 Initialize rzvp class

DFHRZXM XM Attach Client for RequestStreams

1642 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 103. Scheduler Services Domain (SH)

The scheduler services domain is used to harden schedule requests between the
end of one unit of work and the start of the next, and to route schedule requests to
a target region identified by the distributed routing exit program. A schedule
request is a request to undertake a piece of work, or execute a named transaction.
The domain is used by CICS business transaction services.

Scheduler Services Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the SH domain.

SHPR gate, ADD_PENDING_REQUEST function
The ADD_PENDING_REQUEST function of the SHPR gate is used to add a
pending schedule request to the scheduler services queue associated with this
UOW. The pending schedule requests are hardened to the scheduler services local
request queue (LRQ) as part of syncpoint processing.

Input Parameters
ACTIVITY_REQUEST_BLOCK

is a block containing the BAM domain activity request block.
BALANCE

indicates whether this schedule request is eligible for workload balancing.

 Values for the parameter are:
 NO
 YES

TOKEN
is a string of length 4, used to identify the pending queue.

TRANID
is an 4-character transaction id.

USERID
is an 8-character userid.

ACTIVITY_ID
Optional Parameter

 is a block containing the activity id.
ACTIVITY_NAME

Optional Parameter

 is the name of the activity.
PNAME

Optional Parameter

 is the 36-character process name.
PROCESS_ID

Optional Parameter

 is a block containing the process id.
PTYPE

Optional Parameter

 is the 8-character process type.

© Copyright IBM Corp. 1997, 2011 1643

TIME
Optional Parameter

 is a string of length 8, used when a request is delayed for a period time.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHPR gate, DELETE_PENDING_REQUEST function
The DELETE_PENDING_REQUEST of the SHPR gate is used to delete a pending
request queue.

Input Parameters
TOKEN

is a string of length 4, used to identify the pending queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 REQUEST_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHPR gate, SET_BOUND_REQUEST function
The SET_BOUND_REQUEST function of the SHPR gate is used to update the
schedule request to indicate that a process and/or activity has completed.

Input Parameters
ACTIVITY_COMPLETE

indicates whether the activity associated with this UOW has completed.

 Values for the parameter are:
 NO
 YES

PROCESS_COMPLETE
indicates whether the process associated with this UOW has completed.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 REQUEST_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHRQ gate, PERFORM_REGULAR_DREDGE function
The PERFORM_REGULAR_DREDGE function of the SHRQ gate initiates the
periodic dredging of expired schedule requests on the local request queue (LRQ).

1644 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
QUIESCE

A binary value indicating that whether the system is quuiescing.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHRQ gate, PERFORM_RESTART_DREDGE function
The PERFORM_RESTART_DREDGE of the SHRQ gate is used to initiate the
dredging of expired schedule requests on the local request queue (LRQ) after a
CICS system restart.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHRQ gate, PERFORM_SHUTDOWN function
The PERFORM_SHUTDOWN function of the SHRQ gate is used to stop dredging
of schedule requests on the local request queue (LRQ), preventing any further
CICS BTS work from being initiated.

Input Parameters
IMMEDIATE

Optional Parameter

 A binary value indicating if this is an immediate shutdowm.

Values for the parameter are:
 NO
 YES

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHRR gate, RECEIVE_REQUEST function
The RECIEVE_REQUEST function of the SHRR gate is used to receive a schedule
request once it has been routed to the target region.

Input Parameters
REQUEST_BLOCK

A block into which the request is received.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_REQUEST_RECEIVED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 103. Scheduler Services Domain (SH) 1645

SHRR gate, RETRY_REQUEST function
The RETRY_REQUEST function of the SHRR gate is used obtain another target
region if the initial attempt at routing the schedule request fails.

Input Parameters
REQUEST_BUFFER

is a buffer used to hold the schedule request which is to be routed.
ROUTE_ERROR

indicates the reason why the routing of the schedule request failed.

 Values for the parameter are:
 ALLOCATE_REJECTED
 FUNC_NOT_SUPPORTED
 INVREQ
 LENGERR
 NO_SESSIONS
 NOTAUTH
 PGMIDERR
 QUEUE_PURGED
 SYSID_NOT_FOUND
 SYSID_OUT_SERVICE
 TERMERR

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_REQUEST_FOUND
 NO_SYSTEM
 REQUEST_BUFFER_TOO_SMALL

ABEND_CODE
is the 4-character abend code.

LOCAL
indicates whether we should retry the schedule request on the local region.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SYSID
is the 4-character sysid of the region to which the schedule request should be
routed.

SHRR gate, ROUTE_REQUEST function
The ROUTE_REQUEST function of the SHRR gate is used to identify a target
region to which a schedule request should be routed.

Input Parameters
REQUEST_BUFFER

is a buffer used to hold the schedule request which is to be routed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_REQUEST_FOUND

1646 CICS TS for z/OS 4.1: Diagnosis Reference

NO_SYSTEM
 REQUEST_BUFFER_TOO_SMALL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SYSID
is the 4-character sysid of the region to which the schedule request should be
routed.

SHRT gate, INQUIRE_EXIT_PROGRAM function
The INQUIRE_EXIT_PROGRAM function of the SHRT gate is used to return the
name of the distributed routing exit program, initially named on the DSRTPGM
system initialisation parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

PROGRAM_NAME
The name of the distributed routing exit program.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SHRT gate, SET_EXIT_PROGRAM function
The SET_EXIT_PROGRAM function of the SHRT gate is used to alter the
distributed routing exit program, initially named on the DSRTPGM system
initialisation parameter. The sysid of the local system is passed during CICS(R)

initialisation.

Input Parameters
PROGRAM_NAME

is the 8-character exit program name.
LOCAL_SYSID

Optional Parameter

 is the 4-character local sysid.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 103. Scheduler Services Domain (SH) 1647

Scheduler Services Domain's generic gates

Table 69 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 69. Scheduler Domain's generic gates

Gate Trace Function Format

DMDM SH 0101
SH 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

XMAC SH 0121
SH 0122

INIT_XM_CLIENT
BIND_XM_CLIENT
RELEASE_XM_CLIENT

XMAC

TISR SH 0701
SH 0702

NOTIFY TISR

KETI SH 0701
SH 0702

NOTIFY_RESET KETI

When invoked for the DMDM INITIALIZE_DOMAIN function scheduler services
obtains its anchor block and initializes its various classes. This would include
starting the scheduler services system task , CSHY and obtaining the name of the
distributed routing exit program named on the DSRTPGM system initialization
parameter.

When invoked by transaction manager via the XMAC generic gate, for
INIT_XM_CLIENT SH domain obtains a user token in order to set up the correct
transaction environment. For BIND_XM_CLIENT SH domain initializes recoverable
resources, which includes setting the RM work token and logging a backout
request for this UOW. SH domain also determines the name of the program to be
invoked on the initial program link.

When invoked for the RMRO PERFORM_PREPARE function SH domain prepares
to commit the pending request for the UOW by adding them to the local request
queue (LRQ). On receipt of the RMRO PERFORM_COMMIT the schedule requests
for this UOW are committed or destroyed, depending upon whether we are
committing forwards or backwards.

When invoked for the RMDE DELIVER_RECOVERY function SH domain recreates
the pending request queues and in the case of inflight UOWs attempts to retry the
associated BTS activation.

Scheduler services makes use of the TISR functions, REQUEST_
NOTIFY_INTERVAL and NOTIFY to deal with delayed schedule requests i.e.
EXEC CICS(R) DEFINE TIMER calls.

The KETI interface is used when the time is adjusted, causing the time at which
delayed schedule requests are to expire to be recalculated.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Transaction manager domain's generic formats” on page 1999

1648 CICS TS for z/OS 4.1: Diagnosis Reference

“Timer domain's generic formats” on page 1790
 “Kernel domain generic formats” on page 1244

Scheduler domain's call-back gates

Table 70 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 70. Scheduler domain's call-back gates

Gate Trace Function Format

RMDE SH 0131
SH 0132

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

RMKP SH 0131
SH 0132

TAKE_KEYPOINT RMKP

RMRO SH 0131
SH 0132

PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

When invoked for the RMRO PERFORM_PREPARE function SH domain prepares
to commit the pending request for the UOW by adding them to the local request
queue (LRQ). On receipt of the RMRO PERFORM_COMMIT the schedule requests
for this UOW are committed or destroyed, depending upon whether we are
committing forwards or backwards.

When invoked for the RMDE DELIVER_RECOVERY function SH domain recreates
the pending request queues and in the case of inflight UOWs attempts to retry the
associated BTS activation.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following call-back formats:
 “Recovery manager domain call-back formats” on page 1599

Modules
 Module Function

DFHSHDM Handles the following requests:
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHSHDUF Formats the SH domain control blocks

DFHSHOFI Initializes the SH domain object factory class.

DFHSHPR Handles the following requests:
 ADD_PENDING_REQUEST
 DELETE_PENDING_REQUEST
 SET_BOUND_REQUEST

DFHSHRE1 Initializes the SH domain request class.

Chapter 103. Scheduler Services Domain (SH) 1649

Module Function

DFHSHRM Handles the following requests:
 PERFORM_PREPARE
 PERFORM_COMMIT
 START_BACKOUT
 DELIVER_BACKOUT
 END_BACKOUT
 PERFORM_SHUNT
 PERFORM_UNSHUNT
 TAKE_KEYPOINT
 START_DELIVERY
 DELIVER_RECOVERY
 END_DELIVERY

DFHSHRQ Handles the following requests:
 PERFORM_RESTART_DREDGE
 PERFORM_REGULAR_DREDGE
 PERFORM_SHUTDOWN

DFHSHRQ1 Initializes the SH domain request queue class.

DFHSHRR Handles the following requests:
 ROUTE_REQUEST
 RECEIVE_REUEST
 RETRY_REQUEST

DFHSHRRP The SH domain request receiving program, the back-end to SH domain
DPL requests.

DFHSHRSP The SH domain request sending program, the front-end to SH domain
DPL requests.

DFHSHRT Handles the following requests:
 SET_EXIT_PROGRAM
 INQUIRE_EXIT_PROGRAM

DFHSHRT1 Initializes the SH domain request routing class.

DFHSHRT2 Invokes the distributed routing exit program, named on the DSRTPGM
system initialization parameter.

DFHSHSY Implements the SH domain system task, CSHY.

DFHSHTI Handles the following requests:
 NOTIFY
 NOTIFY_RESET

DFHSHTRI Interprets SH domain trace entries

DFHSHVP1 Initializes the SH domain variable length storage class.

DFHSHXM Handles the following requests:
 INIT_XM_CLIENT
 BIND_XM_CLIENT
 RELEASE_XM_CLIENT

1650 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 104. Java Virtual Machine Domain (SJ)

The JVM domain provides services that are used by Java virtual machines in the
CICS environment.

Java Virtual Machine Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the SJ domain.

SJCC gate, ADD_TO_ACTIVE_JVMSET function
The ADD_TO_ACTIVE_JVMSET function of the SJCC gate is used to add a new
JVM to the set of JVMs that use the active shared class cache (the JVMset), and
also to automatically start the shared class cache if autostart is enabled and the
shared class cache is not started.

Input Parameters
SJTCB_TOKEN

The token of the TCB on which the new JVM is to be built.

Output Parameters
REASON

The values for the parameter are:
 AUTOSTART_DISABLED
 INVALID_CC_STATE

JVMSET_TOKEN
The token of the JVMset.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJCC gate, REGISTER_JAVA_VERSION function
The REGISTER_JAVA_VERSION function of the SJCC gate is called before the first
JVM runs in CICS, to register the version of Java in use.

Input Parameters
SJTCB_TOKEN

The token of the TCB on which the JVM is starting.

Output Parameters
REASON

The values for the parameter are:
 INVALID_JAVA_VERSION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJCC gate, RELOAD_CLASSCACHE function
The RELOAD_CLASSCACHE function of the SJCC gate is used to reload the
shared class cache.

© Copyright IBM Corp. 1997, 2011 1651

Input Parameters
CACHE_SIZE

Optional Parameter

 The size of the shared class cache.

Output Parameters
REASON

The values for the parameter are:
 INVALID_PROFILE_NAME
 NOT_STARTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJCC gate, START_CLASSCACHE function
The START_CLASSCACHE function of the SJCC gate is used to start the shared
class cache.

Input Parameters
CACHE_SIZE

Optional Parameter

 The size of the shared class cache.

Output Parameters
REASON

The values for the parameter are:
 INVALID_PROFILE_NAME
 NOT_STOPPED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJCC gate, STOP_CLASSCACHE function
The STOP_CLASSCACHE function of the SJCC gate is used to stop the shared
class cache.

Input Parameters
AUTOSTART

Optional Parameter

 The autostart status that is to be set for the shared class cache, to determine
whether or not it will restart automatically when a JVM requests its use.

Values for the parameter are:
 DISABLED
 ENABLED

TERMINATE
Optional Parameter

 The type of termination that is to be attempted for the shared class cache and
the JVMs that are using it. When PHASEOUT is specified, the supporting TCBs
for the JVMs will be marked for deletion at the termination of their current
task (if any). If PURGE or FORCEPURGE is specified, then premature
termination of those tasks is initiated. When all JVMs that are using the shared
class cache have been terminated, the shared class cache is also terminated.

1652 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 FORCEPURGE
 PHASEOUT
 PURGE

Output Parameters
REASON

The values for the parameter are:
 ALREADY_STOPPED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJDS gate, DELETE_THREADED_TCB function
The DELETE_THREADED_TCB function deletes a T8 TCB from the THRD pool.

Input parameters
TCB_TOKEN

A token that represents the TCB.
MODENAME

The mode of the TCB.

Output parameters

REASON
The following values are returned when RESPONSE is EXCEPTION:
 ERROR_TERMINATING_ENCLAVE

 TRANSACTION_ABENDED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, CREATE_JVMSERVER function
The CREATE_JVMSERVER function creates a JVMSERVER resource.

Input parameters

ENABLESTATUS
Optional parameter

 The status of the JVMSERVER resource.

JVMPROFILE
The JVM profile that the JVM server uses during initialization.

JVMSERVER
The name of the JVMSERVER resource.

LERUNOPTS
The program that defines the runtime options for the Language Environment
enclave.

RESOURCE_SIGNATURE
The resource signature of the JVMSERVER resource.

THREADLIMIT
Optional parameter

Chapter 104. Java Virtual Machine Domain (SJ) 1653

|

|

|
|
|
|
|

|

|
|

|

|

|
|
|

|

|

|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

The maximum number of threads that are allowed in the Language
Environment enclave.

WARM_RESTART
Optional parameter

 Indicates whether the JVMSERVER resource is to be recovered from the catalog
during a warm restart of CICS.

Output parameters

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND

 DIRECTORY_ERROR

 DUPLICATE

 INSUFFICIENT_STORAGE

 INSUFFICIENT_THREADS

 INTERNAL_ERROR

 SEVERE_ERROR

 THREADS_LIMITED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, COMPLETE_JVMSERVER function
The COMPLETE_JVMSERVER function completes the installation of the
JVMSERVER resource.

Input parameters
ENABLESTATUS

Optional parameter

 The status of the JVMSERVER resource.
JVMPROFILE

Optional parameter

 The JVM profile that the JVM server uses during initialization.
JVMSERVER

The name of the JVMSERVER resource.
LERUNOPTS

Optional parameter

 The program that defines the runtime options for the Language Environment
enclave.

RESOURCE_SIGNATURE
Optional parameter

 The resource signature of the JVMSERVER resource.
THREADLIMIT

Optional parameter

 The maximum number of threads that are allowed in the Language
Environment enclave.

1654 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ACTIVATE_TP_FAILED
 CREATE_ENCLAVE_FAILED
 DIRECTORY_ERROR
 INSUFFICIENT_STORAGE
 INTERNAL_ERROR
 LE_RUNOPTS_LOAD_ERROR
 LE_RUNOPTS_TOO_LONG
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 JVMSERVER_NOT_FOUND
 NOT_AUTHORIZED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, DISCARD_JVMSERVER function
The DISCARD_JVMSERVER function discards a JVMSERVER resource.

Input parameters
ENABLESTATUS

Optional parameter

 The status of the JVMSERVER resource.
JVMPROFILE

Optional parameter

 The JVM profile that the JVM server uses during initialization.
JVMSERVER

The name of the JVMSERVER resource.
LERUNOPTS

Optional parameter

 The program that defines the runtime options for the Language Environment
enclave.

RESOURCE_SIGNATURE
Optional parameter

 The resource signature of the JVMSERVER resource.
THREADLIMIT

Optional parameter

 The maximum number of threads that are allowed in the Language
Environment enclave.

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 INTERNAL_ERROR
 NOT_DISABLED
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:

Chapter 104. Java Virtual Machine Domain (SJ) 1655

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

JVMSERVER_NOT_FOUND
 NOT_AUTHORIZED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, END_BROWSE_JVMSERVER function
The END_BROWSE_JVMSERVER function ends the browse operation for
JVMSERVER resources.

Input parameters
BROWSE_TOKEN

The token for the browse operation.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, GET_NEXT_JVMSERVER function
The GET_NEXT_JVMSERVER function returns the next name in the browse
specified by the browse token and returns the attributes associated with the
JVMSERVER resource.

Input parameters
BROWSE_TOKEN

The token that identifies the requested browse of JVMSERVER resources.
RESET

Optional parameter

 Reset the browse operation.
RESOURCE_SIGNATURE

Optional parameter

 The resource signature of a JVMSERVER resource.

Output parameters

ENABLESTATUS
Optional parameter

 The status of the JVMSERVER resource.

JVMPROFILE
Optional parameter

 The JVM profile that the JVM server uses during initialization.

JVMSERVER
The name of a JVMSERVER resource.

LERUNOPTS
Optional parameter

 The program that defines the runtime options for the Language Environment
enclave.

1656 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|

|

|
|

|

|
|

|
|

|
|

REASON
The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

THREADLIMIT
Optional parameter

 The maximum number of threads that are allowed in the Language
Environment enclave.

SJJS gate, INQUIRE_JVMSERVER function
The INQUIRE_JVMSERVER function inquires on a JVMSERVER resource.

Input parameters
JVMSERVER

The name of the JVMSERVER resource.
RESOURCE_SIGNATURE

Optional parameter

 The resource signature of the JVMSERVER resource.

Output parameters
ENABLESTATUS

Optional parameter

 The status of the JVMSERVER resource.
JVMPROFILE

Optional parameter

 The JVM profile that the JVM server uses during initialization.
LERUNOPTS

Optional parameter

 The program that defines the runtime options for the Language Environment
enclave.

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 JVMSERVER_NOT_FOUND
 NOT_AUTHORIZED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

THREADLIMIT
Optional parameter

 The maximum number of threads that are allowed in the Language
Environment enclave.

Chapter 104. Java Virtual Machine Domain (SJ) 1657

|
|

|

|

|
|
|

|
|

|
|

|

|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

SJJS gate, MARK_THREAD_DELETED function
The MARK_THREAD_DELETED function deletes a thread when the CICS
dispatcher deletes the associated T8 TCB.

Input parameters

TCB_TOKEN
A token that represents the T8 TCB.

Output parameters

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, RESOLVE_ALL_JVMSERVERS function
The RESOLVE_ALL_JVMSERVERS function runs the CJSR transaction for all
JVMSERVER resources that are in the enabling state.

Input parameters
JVMSERVER

Optional parameter

 The name of the JVMSERVER resource.

Output parameters

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND

 CREATE_ENCLAVE_FAILED

 DIRECTORY_ERROR

 INTERNAL_ERROR

 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, SET_JVMSERVER function
The SET_JVMSERVER function sets the attributes of a JVMSERVER resource.

Input parameters
ENABLESTATUS

Optional parameter

 The status of the JVMSERVER resource.
JVMSERVER

The name of the JVMSERVER resource.
THREADLIMIT

Optional parameter

 The maximum number of threads that are allowed in the Language
Environment enclave.

1658 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|

|
|

|

|
|
|

|

|
|

|
|
|

|

|

|
|

|

|

|

|

|

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|

Output parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIRECTORY_ERROR
 INTERNAL_ERROR
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 JVMSERVER_NOT_FOUND
 NOT_AUTHORIZED
 WRONG_STATE
 INSUFFICIENT_THREADS
 THREADS_LIMITED
 CREATE_ENCLAVE_FAILED
 INVALID_THREADLIMIT
 JVMSERVER_IN_USE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJJS gate, START_BROWSE_JVMSERVER function
The START_BROWSE_JVMSERVER function starts to browse installed JVMSERVER
resources.

Input parameters

None.

Output parameters

BROWSE_TOKEN
The browse token for the browse operation.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIN gate, DESTROY_SHAREDCC function
The DESTROY_SHAREDCC function of the SJIN gate destroys a shared class
cache.

Input Parameters
GENERATION

The generation number of the Shared Class Cache to be destroyed.

Output Parameters
REASON

The values for the parameter are:
 JVM_PROFILE_INVALID
 JVM_PROFILE_MISSING
 JVM_START_FAILURE
 SYSTEM_PROPERTIES_INVALID
 SYSTEM_PROPERTIES_MISSING

Chapter 104. Java Virtual Machine Domain (SJ) 1659

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|
|
|

|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIN gate, INITIALIZE_JVM function
Initialize a new Java Virtual Machine without invoking a user program.

Input Parameters
EXEC_KEY

The values for the parameter are:
 CICS
 USER

JVM_PROFILE_NAME
The name of the JVM profile to be used to initialize the new JVM.

Output Parameters
REASON

The values for the parameter are:
 AUTOSTART_DISABLED
 JVM_POOL_DISABLED
 JVM_PROFILE_INVALID
 JVM_PROFILE_MISSING
 JVM_START_FAILURE
 SYSTEM_PROPERTIES_MISSING
 SYSTEM_PROPERTIES_INVALID

ABEND_CODE
The CICS abend code returned if an abend occurs.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIN gate, INITIALIZE_SHAREDCC function
The INITIALIZE_SHAREDCC function of the SJIN gate starts a new shared class
cache.

Input Parameters
SJVMS_TOKEN

The token of the SJVMS control block.

Output Parameters
REASON

The values for the parameter are:
 JVM_PROFILE_INVALID
 JVM_PROFILE_MISSING
 JVM_START_FAILURE
 SYSTEM_PROPERTIES_INVALID
 SYSTEM_PROPERTIES_MISSING

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIN gate, INVOKE_GC function
The INVOKE_GC function of the SJIN gate is used to invoke Garbage Collection in
the JVM via the System.gc() method.

1660 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
SJTCB_TOKEN

The token of the TCB for the JVM in which GC is to be invoked.

Output Parameters
REASON

The values for the parameter are:
 SJTCB_TOKEN_INVALID

ABEND_CODE
The CICS abend code returned if an abend occurs.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIN gate, INVOKE_JAVA_PROGRAM function
The INVOKE_JAVA_PROGRAM function of the SJIN gate is used to invoke a user
Java program.

Input Parameters
EXEC_KEY

The EXEC key of the JVM.

 Values for the parameter are:
 CICS
 USER

JVM_PROFILE_NAME
The name of the JVM profile to be used for the JVM.

PROGRAM
The program name of the program to be invoked.

TRANSACTION
The transaction id of the current transaction.

USER_CLASS
The name of the main class in the Java program that is to run in the JVM.

Output Parameters
REASON

The values for the parameter are:
 AUTOSTART_DISABLED
 JVM_POOL_DISABLED
 JVM_PROFILE_INVALID
 JVM_PROFILE_MISSING
 JVM_START_FAILURE
 SYSTEM_PROPERTIES_INVALID
 SYSTEM_PROPERTIES_MISSING
 TRANSACTION_ABENDED
 USER_CLASS_NOT_FOUND

ABEND_CODE
The CICS abend code returned if an abend occurs.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIN gate, UPDATE_JVMSERVER_PROFILE function
The UPDATE_JVMSERVER_PROFILE function updates the current profile for the
JVM server profile.

Chapter 104. Java Virtual Machine Domain (SJ) 1661

|

|
|

Input parameters
JVM_PROFILE_NAME

The name of the JVM profile that initializes the JVM server.
EXEC_KEY

The EXEC key of the JVM. The values for the parameter are CICS or USER.
REMOVE

Optional parameter

 Remove the JVM profile.

Output parameters

REASON
The following values are returned when RESPONSE is EXCEPTION:
 PROFILE_NOT_IN_USE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, DELETE_INACTIVE_JVMS function
The DELETE_INACTIVE_JVMS function of the SJIS gate is used when MVS
storage is constrained, and CICS needs to delete JVMs in the JVM pool that are not
currently in use, together with their TCBs.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, END_BROWSE_JVM function
The END_BROWSE_JVM function of the SJIS gate ends the browse of the JVMs in
the JVM pool.

Input Parameters
BROWSE_TOKEN

A pointer to the JVM_ID (JVM token) of the last JVM that was found by the
browse.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE

1662 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

|

INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, END_BROWSE_JVMPROFILE function
The END_BROWSE_JVMPROFILE function of the SJIS gate ends the browse of the
JVM profiles.

Input Parameters
BROWSE_TOKEN

A pointer to the JVM_ID (JVM token) of the last JVM that was found by the
browse.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, GET_NEXT_JVM function
The GET_NEXT_JVM function of the SJIS gate returns the next JVM in the JVM
pool. The JVMs are ordered by their JVM tokens.

Input Parameters
BROWSE_TOKEN

A pointer to the JVM_ID (JVM token) of the last JVM that was found by the
browse.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 104. Java Virtual Machine Domain (SJ) 1663

AGE
Optional Parameter

 The number of seconds since the JVM was initialized.
ALLOC_AGE

Optional Parameter

 The number of seconds for which the JVM has been allocated to its task (zero
if the JVM is not currently allocated to a task).

CLASSCACHE
Optional Parameter

 Indicates whether the JVM uses the shared class cache.

Values for the parameter are:
 NO
 YES

EXEC_KEY
Optional Parameter

 The EXEC key of the JVM.

Values for the parameter are:
 CICS
 USER

JVM_ID
Optional Parameter

 The JVM token, a value that identifies the JVM.
JVMPROFILE_NAME

Optional Parameter

 This parameter is obsolete from Java 5 onwards, and always returns a blank
field.

PHASING_OUT
Optional Parameter

 Indicates whether the JVM is being phased out (that is, it has been marked for
deletion, but is still being used by a task).

Values for the parameter are:
 NO
 YES

REUSE_STATUS
Optional Parameter

 The reuse characteristics of the JVM.

Values for the parameter are:
 NOREUSE
 RESET
 REUSE

TRANNUM
Optional Parameter

 The task to which the JVM is allocated (zero if the JVM is not currently
allocated to a task).

SJIS gate, GET_NEXT_JVMPROFILE function
The GET_NEXT_JVMPROFILE function of the SJIS gate returns the next JVM
profile. The JVM profiles are returned in alphabetical order.

1664 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BROWSE_TOKEN

A pointer to the JVM_ID (JVM token) of the last JVM that was found by the
browse.

JVMPROFILE_PATH_NAME
is a buffer which is used by the JVM domain to return the full path name of
the z/OS UNIX file for the JVM profile (up to 240 characters).

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INVALID_BROWSE_TOKEN

CLASSCACHE
Indicates whether the JVM uses the shared class cache.

 Values for the parameter are:
 NO
 YES

JVMPROFILE_NAME
This parameter is obsolete from Java 5 onwards, and always returns a blank
field.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REUSE_STATUS
The reuse characteristics of the JVM.

 Values for the parameter are:
 NOREUSE
 RESET
 REUSE

SJIS gate, INQUIRE_CLASSCACHE function
The INQUIRE_CLASSCACHE function of the SJIS gate is used to retrieve
information about the shared class cache in the CICS region.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTIVE_JVMS
Optional Parameter

Chapter 104. Java Virtual Machine Domain (SJ) 1665

The number of JVMs in the CICS region that are using the current shared class
cache or a shared class cache that is phasing out.

AUTOSTART
Optional Parameter

 The status of autostart for the shared class cache.

Values for the parameter are:
 DISABLED
 ENABLED

CACHE_FREE
Optional Parameter

 The amount of free space in the shared class cache.
CACHE_SIZE

Optional Parameter

 The size of the shared class cache, in bytes.
JVMPROFILE_NAME

Optional Parameter

 This parameter is obsolete from Java 5 onwards, and always returns a blank
field.

PHASINGOUT_JVMS
Optional Parameter

 The number of JVMs that are using an old shared class cache (or the current
shared class cache, if its status is STOPPED) and are being phased out.

PHASINGOUT_JVMSETS
Optional Parameter

 The number of old shared class caches that are still present in the region
because they are waiting for JVMs that are using them to be phased out
(including the current shared class cache, if its status is STOPPED).

REUSE_STATUS
Optional Parameter

 The reuse characteristics of the JVM.

Values for the parameter are:
 NOREUSE
 RESET
 REUSE
 UNKNOWN

START_ABSTIME
Optional Parameter

 The absolute date and time at which the current shared class cache was started
(ABSTIME format).

START_DATE
Optional Parameter

 The date on which the current shared class cache was started.
START_TIME

Optional Parameter

 The time at which the current shared class cache was started.
STARTED_STATUS

Optional Parameter

 The status of the current shared class cache (STARTING, STARTED,
RELOADING or STOPPED).

1666 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 RELOADING
 STARTED
 STARTING
 STOPPED

SJIS gate, INQUIRE_JVM function
The INQUIRE_JVM function of the SJIS gate is used to identify and retrieve
information about the JVMs in the JVM pool.

Input Parameters
JVM_ID

The JVM token, a value that identifies the JVM.

Output Parameters
REASON

The values for the parameter are:
 JVM_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

AGE
Optional Parameter

 The number of seconds since the JVM was initialized.
ALLOC_AGE

Optional Parameter

 The number of seconds for which the JVM has been allocated to its task (zero
if the JVM is not currently allocated to a task).

CLASSCACHE
Optional Parameter

 Indicates whether the JVM uses the shared class cache.

Values for the parameter are:
 NO
 YES

EXEC_KEY
Optional Parameter

 The EXEC key of the JVM.

Values for the parameter are:
 CICS
 USER

JVMPROFILE_NAME
Optional Parameter

 This parameter is obsolete from Java 5 onwards, and always returns a blank
field.

PHASING_OUT
Optional Parameter

 Indicates whether the JVM is being phased out (that is, it has been marked for
deletion, but is still being used by a task).

Values for the parameter are:
 NO
 YES

Chapter 104. Java Virtual Machine Domain (SJ) 1667

REUSE_STATUS
Optional Parameter

 The reuse characteristics of the JVM.

Values for the parameter are:
 NOREUSE
 RESET
 REUSE

TRANNUM
Optional Parameter

 The task to which the JVM is allocated (zero if the JVM is not currently
allocated to a task).

SJIS gate, INQUIRE_JVMPOOL function
The INQUIRE_JVMPOOL function of the SJIS gate is used to retrieve information
about the JVM pool.

Input Parameters
JVM_LEVEL0_TRACE_BUFFER

Optional parameter

 A buffer which is used by the JVM domain to return the JVM trace options
that have been set for JVM Level 0 trace (up to 240 characters).

JVM_LEVEL1_TRACE_BUFFER
Optional parameter

 A buffer which is used by the JVM domain to return the JVM trace options
that have been set for JVM Level 1 trace (up to 240 characters).

JVM_LEVEL2_TRACE_BUFFER
Optional parameter

 A buffer which is used by the JVM domain to return the JVM trace options
that have been set for JVM Level 2 trace (up to 240 characters).

JVM_USER_TRACE_BUFFER
Optional parameter

 A buffer which is used by the JVM domain to return the JVM trace options
that have been set for JVM User trace (up to 240 characters).

JVMPROFILE_DIR_BLOCK
Optional parameter

 A block that contains the name of the JVM profile directory.

Output Parameters
REASON

The following values for returned when RESPONSE is DISASTER:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is EXCEPTION:
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_USER_TRACE_OVERFLOW

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PHASINGOUT
Optional Parameter

1668 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|

The number of JVMs that are currently being phased out; that is, they have
been marked for deletion, but are still being used by a task.

STATUS
Optional Parameter

 The status of the JVM pool; that is, whether it can service new requests or not.

Values for the parameter are:
 DISABLED
 ENABLED

TOTAL
Optional Parameter

 The total number of JVMs in the JVM pool.

SJIS gate, INQUIRE_JVMPROFILE function
The INQUIRE_JVMPROFILE function of the SJIS gate is used to retrieve
information about JVM profiles that have been used during the lifetime of this
CICS region.

Input Parameters
JVMPROFILE_NAME

This parameter is obsolete from Java 5 onwards, and always returns a blank
field.

JVMPROFILE_PATH_NAME
is a buffer that is used by the JVM domain to return the full path name of the
z/OS UNIX file for the JVM profile (up to 240 characters).

Output Parameters
REASON

The values for the parameter are:
 JVMPROFILE_NOT_FOUND

CLASSCACHE
Indicates whether the JVM uses the shared class cache.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REUSE_STATUS
The reuse characteristics of the JVM.

 Values for the parameter are:
 NOREUSE
 RESET
 REUSE

SJIN gate, PERFORM_JVMPOOL function
The PERFORM_JVMPOOL function of the SJIS gate is used to initialize or
terminate Java virtual machines (JVM)s in the JVM pool.

Input Parameters
EXEC_KEY

Optional Parameter.

 For INITIALIZE, this is the EXEC key of the JVMs to be started.

Chapter 104. Java Virtual Machine Domain (SJ) 1669

The values for the parameter are:
 CICS
 USER

INITIALIZE
Optional Parameter.

 Initialize a number of new JVMs.

Values for the parameter are:
 START

JVMCOUNT
Optional Parameter.

 For INITIALIZE, this is the number of JVMs to be started.

JVMPROFILE_NAME
Optional Parameter

 This parameter is obsolete from Java 5 onwards.

TERMINATE
Optional Parameter

 Terminate the entire JVM pool, or a subset of it depending on the
JVMPROFILE parameter. When PHASEOUT is specified, the supporting TCBs
for the JVMs will be marked for deletion at the termination of their current
task (if any). If PURGE or FORCEPURGE is specified, then premature
termination of those tasks is initiated.

Values for the parameter are:
 FORCEPURGE
 PHASEOUT
 PURGE

Output Parameters
REASON

The values for the parameter are:
 CJPI_ATTACH_FAILED
 EXCESS_JVMCOUNT
 JVMPOOL_DISABLED
 PURGE_FAILED

ABEND_CODE
The CICS abend code returned if an abend occurs.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, SET_CLASSCACHE function
The SET_CLASSCACHE function of the SJIS gate is used to set attributes of the
shared class cache.

Input Parameters
AUTOSTART

Optional Parameter

 The autostart status that is to be set for the shared class cache, to determine
whether or not it will restart automatically when a JVM requests its use.

1670 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 DISABLED
 ENABLED

CACHE_SIZE
Optional Parameter

 The size of the shared class cache.
INITIAL_START

Optional Parameter

 Specifies whether or not the shared class cache will start automatically at CICS
initialization.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, SET_JVMPOOL function
The SET_JVMPOOL function of the SJIS gate is used to set the status of the JVM
pool, or to set JVM trace options for the JVM pool, or to terminate the JVM pool.

Input Parameters
JVM_LEVEL0_TRACE_BLOCK

Optional Parameter

 is a buffer containing the JVM trace options (up to 240 characters) that are to
be set for JVM Level 0 trace.

JVM_LEVEL1_TRACE_BLOCK
Optional Parameter

 is a buffer containing the JVM trace options (up to 240 characters) that are to
be set for JVM Level 1 trace.

JVM_LEVEL2_TRACE_BLOCK
Optional Parameter

 is a buffer containing the JVM trace options (up to 240 characters) that are to
be set for JVM Level 2 trace.

JVM_USER_TRACE_BLOCK
Optional Parameter

 is a buffer containing the JVM trace options (up to 240 characters) that are to
be set for JVM User trace.

Chapter 104. Java Virtual Machine Domain (SJ) 1671

STATUS
Optional Parameter

 The overall status of the JVM pool.

Values for the parameter are:
 DISABLED
 ENABLED

TERMINATE
Optional Parameter

 The type of termination that is to apply for all JVMs. When PHASEOUT is
specified, the supporting TCBs for the JVMs will be marked for deletion at the
termination of their current task (if any). If PURGE or FORCEPURGE is
specified, then premature termination of those tasks is initiated.

Values for the parameter are:
 FORCEPURGE
 PHASEOUT
 PURGE

Output Parameters
REASON

The values for the parameter are:
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, SET_JVMPROFILEDIR function
The SET_JVMPROFILEDIR function of the SJIS gate is used to set the z/OS UNIX
directory where CICS will look for JVM profiles.

Input Parameters
JVMPROFILE_DIR_BLOCK

is a buffer containing the full path of the z/OS UNIX directory where CICS
will look for JVM profiles (up to 240 characters).

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1672 CICS TS for z/OS 4.1: Diagnosis Reference

SJIS gate, START_BROWSE_JVM function
The START_BROWSE_JVM function of the SJIS gate starts a browse of the JVMs in
the JVM pool.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

BROWSE_TOKEN
A pointer to the JVM_ID (JVM token) of the first JVM that is to be browsed.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJIS gate, START_BROWSE_JVMPROFILE function
The START_BROWSE_JVMPROFILE function of the SJIS gate starts a browse of the
JVM profiles that have been used during the lifetime of this CICS region.

Output Parameters
REASON

The values for the parameter are:
 END_OF_BROWSE
 INSUFFICIENT_STORAGE
 INVALID_BROWSE_TOKEN
 JVM_LEVEL0_TRACE_OVERFLOW
 JVM_LEVEL1_TRACE_OVERFLOW
 JVM_LEVEL2_TRACE_OVERFLOW
 JVM_NOT_FOUND
 JVM_USER_TRACE_OVERFLOW
 JVMPROFILE_NOT_FOUND
 PURGE_FAILED

BROWSE_TOKEN
A pointer to the JVM_ID (JVM token) of the first JVM that is to be browsed.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SJTH gate, INVOKE_JAVA_PROGRAM function
The INVOKE_JAVA_PROGRAM function changes TCB mode to a T8 TCB and calls
the specified user Java class on a JVM server.

Input parameters
JVMSERVER

The name of a JVMSERVER resource.

Chapter 104. Java Virtual Machine Domain (SJ) 1673

|

|
|

|
|
|

JVM_TOKEN
Optional parameter

 A token that represents the JVM.
USER_CLASS

A user Java class.

Output parameters

ABEND_CODE
The CICS abend code that is returned if an abend occurs.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 ATTACH_THREAD_FAILED

 DETACH_THREAD_FAILED

 JVM_THREW_EXCEPTION

 JVMSERVER_NOT_ENABLED

 JVMSERVER_NOT_FOUND

 METHOD_NOT_FOUND

 TRANSACTION_ABENDED

 USER_CLASS_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

JVM domain's generic gates

Table 71 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 71. JVM domain's generic gates

Gate Trace Functions Format

SJDM SJ 0000
SJ 0001

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

SJIN SJ 0200
SJ 0201

NOTIFY_DELETE_TCB DSAT

SJSM SJ 0900
SJ 0901

MVS_STORAGE_NOTIFY SMNT

SJST SJ 0400
SJ 0401

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Dispatcher domain's generic formats” on page 1031
 “Storage manager domain generic formats” on page 1709
 “Statistics domain's generic formats” on page 1777

1674 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|

|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|

Modules
 Module Function

DFHSJCS An internal module which handles the following C subroutines called
by SJIN:
 sjcsbld (sjcs_build_jvm)
 sjcsdes (sjcs_destroy_jvm)
 sjcscall (sjcs_call_java_method)
 sjcsrset (sjcs_reset_jvm_output_streams)

DFHSJDM Handles requests associated with the DMDM generic gate.

DFHSJDS Handles the dispatcher callback to delete TCBs and pthreads.

DFHSJIN Handles requests associated with the SJIN gate.

DFHSJIS Handles requests associated with the SJIS gate.

DFHSJJS Handles JVMSERVER resources.

DFHSJPJP An internal module that handles the following C subroutine called by
SJIN:
 sjpjp_process_jvm_profile

DFHSJSM Handles MVS storage notifications and takes action to reduce the usage
of MVS storage if required.

DFHSJTH Handles JVM server threads.

Exits

Two user-replaceable programs are used by the SJ domain:
1. DFHJVMRO which is loaded by the SJ domain and used to set user-specified

options for an Language Environment enclave in which a JVM is to be started.
2. DFHJVMAT which can be called during the startup of a single-use JVM (one

with REUSE=NO or the older option Xresettable=NO in its JVM profile), and
allows users to interrogate and possibly alter environment variables in order to
modify the starting JVM's properties.

See the CICS Customization Guide for further details.

Chapter 104. Java Virtual Machine Domain (SJ) 1675

1676 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 105. Storage Manager Domain (SM)

The storage manager domain manages virtual storage requests.

Storage Manager Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the SM domain.

SMAD gate, ADD_SUBPOOL function
The ADD_SUBPOOL function of the SMAD gate is used to create a new subpool
with given attributes.

Input Parameters
BOUNDARY

is the boundary on which all elements within the subpool must be aligned.
The boundary must be a power of two in the range 8 through 4096.

ELEMENT_CHAIN
indicates whether a chain of the addresses and lengths of the elements is to be
kept.

 Values for the parameter are:
 NO
 YES

ELEMENT_TYPE
indicates whether the subpool elements are of fixed or variable length.

 Values for the parameter are:
 FIXED
 VARIABLE

INITIAL_FREE
is the size of the initial free storage area for the subpool.

LOCATION
specifies whether all elements within the subpool must be allocated below the
maximum 24-bit address, or may be allocated anywhere.

 Values for the parameter are:
 ANY
 BELOW

SUBPOOL_NAME
is the 8-character name by which the subpool is known.

USAGE
indicates whether the subpool is for task or domain use.

 Values for the parameter are:
 DOMAIN
 TASK

ACCESS
Optional Parameter

 The type of storage access required.

Values for the parameter are:
 CICS
 READ_ONLY

© Copyright IBM Corp. 1997, 2011 1677

USER
FIXED_LENGTH

Optional Parameter

 is the element length for a fixed-length subpool.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is to be controlled by a lock.

Values for the parameter are:
 NO
 YES

STORAGE_CHECK
Optional Parameter

 indicates whether storage zone checking is to be enabled for this subpool.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is INVALID:
 DUPLICATE_SUBPOOL_NAME
 INVALID_BOUNDARY
 INVALID_FIXED_LENGTH
 INVALID_INITIAL_FREE
 INVALID_SUBPOOL_NAME
 LOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBPOOL_TOKEN
is the token identifying the newly created subpool.

DSA_NAME
Optional Parameter

 is the name of the CICS dynamic storage area (DSA) in which the subpool
resides.

Values for the parameter are:
 CDSA
 ECDSA
 ERDSA
 ESDSA
 EUDSA
 RDSA
 SDSA
 UDSA

SMAD gate, DELETE_SUBPOOL function
The DELETE_SUBPOOL function of the SMAD gate is used to delete a subpool.

1678 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
SUBPOOL_TOKEN

is the token identifying the subpool to be deleted.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_SUBPOOL_TOKEN
 NOT_SUBPOOL_OWNER
 SUBPOOL_NOT_EMPTY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMAD gate, END_SUBPOOL_BROWSE function
The END_SUBPOOL_BROWSE function of the SMAD gate is used to end a browse
of the storage manager domain subpools.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse operation.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMAD gate, GET_NEXT_SUBPOOL function
The GET_NEXT_SUBPOOL function of the SMAD gate is used in a storage
manager domain subpool browse to get the next subpool.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse operation.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBPOOL_NAME
is name of the subpool returned by the browse.

DSA_NAME
Optional Parameter

 is the name of the CICS dynamic storage area (DSA) in which the subpool
resides.

Values for the parameter are:
 CDSA
 ECDSA
 ERDSA
 ESDSA
 EUDSA

Chapter 105. Storage Manager Domain (SM) 1679

RDSA
 SDSA
 UDSA

SMAD gate, INQUIRE_SUBPOOL function
The INQUIRE_SUBPOOL function of the SMAD gate is used to inquire about a
storage manager domain subpool.

Input Parameters
SUBPOOL_NAME

is the 8-character name by which the subpool is known.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SUBPOOL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSA_NAME
Optional Parameter

 is the name of the CICS dynamic storage area (DSA) in which the subpool
resides.

Values for the parameter are:
 CDSA
 ECDSA
 ERDSA
 ESDSA
 EUDSA
 RDSA
 SDSA
 UDSA

SMAD gate, START_SUBPOOL_BROWSE function
The START_SUBPOOL_BROWSE function of the SMAD gate is used to start a
browse of the storage manager domain subpools.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

BROWSE_TOKEN
is the token identifying the browse operation.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMAR gate, ALLOCATE_TRANSACTION_STG function
The ALLOCATE_TRANSACTION_STG function of the SMAR gate is used at task
initialization to add the four task lifetime storage subpools.

1680 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
ISOLATE

indicates whether CICS is to isolate the transaction's user-key task-lifetime
storage to provide application-to-application protection, as specified by the
ISOLATE attribute on the associated TRANSACTION resource definition.

 Values for the parameter are:
 NO
 YES

STORAGE_CLEAR
indicates whether task lifetime storage should be cleared to zeros when it is
freemained.

 Values for the parameter are:
 NO
 YES

STORAGE_FREEZE
indicates whether or not task-lifetime storage freemains should be delayed
until task termination.

 Values for the parameter are:
 NO
 YES

TASK_DATAKEY
indicates the storage key for the task-lifetime storage and program-related
storage (for all programs that run under the transaction) for the transaction, as
specified by the TASKDATAKEY attribute on the associated TRANSACTION
resource definition.

 Values for the parameter are:
 CICS
 USER

TASK_DATALOC
indicates the location of task data for the transaction, as specified by the
TASKDATALOC attribute on the associated TRANSACTION resource
definition.

 Values for the parameter are:
 ANY
 BELOW

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INSUFFICIENT_STORAGE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMAR gate, RELEASE_TRANSACTION_STG function
The RELEASE_TRANSACTION_STG function of the SMAR gate is used at task
termination to freemain all remaining task-lifetime storage and deletes the four
task lifetime subpools.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

Chapter 105. Storage Manager Domain (SM) 1681

ABEND
 DEACTIVATE_FAILURE
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is EXCEPTION:
 STORAGE_VIOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMCK gate, CHECK_STORAGE function
The CHECK_STORAGE function of the SMCK gate is used to check the storage
check zones of task lifetime storage and the storage accounting areas (SAAs) of
terminal storage for consistency.

Input Parameters
TASK_STORAGE

specifies whether the storage check zones of task lifetime storage are to be
checked for the current task or all tasks, or is not to be checked.

 Values for the parameter are:
 CURRENT_TASK
 NO

TP_STORAGE
specifies whether the SAAs of terminal storage are to be checked for the
current terminal, or is not to be checked.

 Values for the parameter are:
 CURRENT_TERMINAL
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_FUNCTION
 LOOP
 STORAGE_VIOLATION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMCK gate, RECOVER_STORAGE function
The RECOVER_STORAGE function of the SMCK gate is used to recover storage.

Input Parameters
TASK_STORAGE

specifies whether the storage check zones of task lifetime storage are to be
checked for the current task or all tasks, or is not to be checked.

 Values for the parameter are:
 CURRENT_TASK
 NO

TP_STORAGE
specifies whether the SAAs of terminal storage are to be checked for the
current terminal, or is not to be checked.

1682 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 CURRENT_TERMINAL
 NO

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INVALID_FUNCTION
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 STORAGE_NOT_RECOVERED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMGF gate, FREEMAIN function
The FREEMAIN function of the SMGF gate is used to release an element of storage
within a subpool.

Input Parameters
ADDRESS

is the address of the element to be released.
STORAGE_CLASS

Optional Parameter

 identifies the class of storage that is being released.

Values for the parameter are:
 CICS
 CICS24
 TASK
 TASK24
 TASK31
 USER
 USER24

SUBPOOL_TOKEN
Optional Parameter

 is a token identifying the subpool within which the element is to be allocated.
FREE_LENGTH

Optional Parameter

 is the length of the element to be released.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is controlled by a lock.

Values for the parameter are:
 NO
 YES

REMARK
Optional Parameter

Chapter 105. Storage Manager Domain (SM) 1683

is an optional 8-character field that is used to identify the FREEMAIN
operation for problem determination. This field is highlighted when the
FREEMAIN trace is interpreted. Typically, it is the name of the control block
whose storage is being obtained.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DEACTIVATE_FAILURE
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_ADDRESS
 INVALID_FREE_LENGTH
 INVALID_STORAGE_CLASS
 INVALID_SUBPOOL_TOKEN
 NO_FREE_LENGTH
 NOT_SUBPOOL_OWNER
 SUBPOOL_EMPTY
 SUBPOOL_LOCK_FAILED
 SUBPOOL_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMGF gate, GETMAIN function
The GETMAIN function of the SMGF gate is used to allocate an element of storage
from a subpool.

Input Parameters
STORAGE_CLASS

Optional Parameter

 identifies the class of storage that is being allocated.

Values for the parameter are:
 CICS
 CICS24
 TASK
 TASK24
 TASK31
 USER
 USER24

SUBPOOL_TOKEN
Optional Parameter

 is a token identifying the subpool within which the element is to be allocated.
SUSPEND

If there is insufficient storage to satisfy the request, SUSPEND(YES) causes the
caller to be suspended until the request can be satisfied, and SUSPEND(NO)
causes REASON to be set to INSUFFICIENT_STORAGE.

 Values for the parameter are:
 NO
 YES

GET_LENGTH
Optional Parameter

1684 CICS TS for z/OS 4.1: Diagnosis Reference

is the length of the storage requested.
INITIAL_IMAGE

Optional Parameter

 is an optional byte value to which every byte in the new element is set.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is to be controlled by a lock.

Values for the parameter are:
 NO
 YES

REMARK
Optional Parameter

 is an optional 8-character field that is used to identify the GETMAIN operation
for problem determination. This field is highlighted when the GETMAIN trace
is interpreted. Typically, it is the name of the control block whose storage is
being obtained.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ACTIVATE_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is INVALID:
 INVALID_GET_LENGTH
 INVALID_INITIAL_IMAGE
 INVALID_STORAGE_CLASS
 INVALID_SUBPOOL_TOKEN
 NO_GET_LENGTH
 NOT_SUBPOOL_OWNER
 SUBPOOL_LOCK_FAILED
 SUBPOOL_UNLOCK_FAILED

ADDRESS
is the address of the new element.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ELEMENT_LENGTH
Optional Parameter

 is the actual length of the new element (when it has been rounded up to a
multiple of the boundary for the subpool).

SMGF gate, INQUIRE_ELEMENT_LENGTH function
The INQUIRE_ELEMENT_LENGTH function of the SMGF gate is used to return
the length of an element of storage whose address is known.

Input Parameters
ADDRESS

is the address of the element under inquiry.

Chapter 105. Storage Manager Domain (SM) 1685

STORAGE_CLASS
Optional Parameter

 identifies the class of storage that is under inquiry.

Values for the parameter are:
 CICS
 CICS24
 TASK
 TASK24
 TASK31
 USER
 USER24

SUBPOOL_TOKEN
Optional Parameter

 is a token identifying the subpool within which the element is allocated.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is to be controlled by a lock.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_STORAGE_CLASS
 INVALID_SUBPOOL_TOKEN
 SUBPOOL_LOCK_FAILED
 SUBPOOL_UNLOCK_FAILED

ELEMENT_LENGTH
is the length of the element.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMMC gate, FREEMAIN function
The FREEMAIN function of the SMMC gate is used to release an element of
storage.

Input Parameters
ADDRESS

is the address of the element to be released.
CALLER

Optional Parameter

 Indicates the caller of the function.

Values for the parameter are:
 EXEC

1686 CICS TS for z/OS 4.1: Diagnosis Reference

MACRO
 SYSTEM

EXEC_KEY
Optional Parameter

 is the execution key of the program issuing the EXEC FREEMAIN request.

Values for the parameter are:
 CICS
 USER

REMARK
Optional Parameter

 is an optional 8-character field that is used to identify the GETMAIN operation
for problem determination. This field is highlighted when the GETMAIN trace
is interpreted. Typically, it is the name of the control block whose storage is
being obtained.

STORAGE_CLASS
Optional Parameter

 identifies the class of storage that is being allocated.

Values for the parameter are:
 CICS
 CICS24
 CICS24_SAA
 CONTROL
 LINE
 SHARED_CICS
 SHARED_CICS24
 SHARED_CICS24_SAA
 SHARED_USER
 SHARED_USER24
 TACLE
 TASK
 TASK24
 TEMPSTG
 TERMINAL
 TERMINAL24
 TRANSDATA
 USER
 USER24

TCTTE_ADDRESS
Optional Parameter

 is an optional field that must be specified for GETMAIN requests for the
TERMINAL storage class.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DEACTIVATE_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_EXEC_KEY

The following values are returned when RESPONSE is INVALID:
 INVALID_ADDRESS
 NO_TCTTE_ADDRESS

Chapter 105. Storage Manager Domain (SM) 1687

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMMC gate, FREEMAIN_ALL_TERMINAL function
The FREEMAIN_ALL_TERMINAL function of the SMMC gate is used to release
all terminal storage.

Input Parameters
TCTTE_ADDRESS

is an optional field that must be specified for GETMAIN requests for the
TERMINAL storage class.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ACTIVATE_FAILURE
 DEACTIVATE_FAILURE
 LOOP
 STORAGE_VIOLATION

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ADDRESS
 INVALID_EXEC_KEY
 INVALID_FUNCTION
 INVALID_GET_LENGTH
 INVALID_STORAGE_CLASS
 NO_TCTTE_ADDRESS

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_DSA_NAME
 NO_TRANSACTION_ENVIRONMENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMMC gate, GETMAIN function
The GETMAIN function of the SMMC gate is used to allocate an element of
storage.

Input Parameters
GET_LENGTH

is the length of the storage requested.
STORAGE_CLASS

identifies the class of storage that is being allocated.

 Values for the parameter are:
 CICS
 CICS24
 CICS24_SAA
 CONTROL
 LINE
 SHARED_CICS

1688 CICS TS for z/OS 4.1: Diagnosis Reference

SHARED_CICS24
 SHARED_CICS24_SAA
 SHARED_USER
 SHARED_USER24
 TACLE
 TASK
 TASK24
 TEMPSTG
 TERMINAL
 TERMINAL24
 TRANSDATA
 USER
 USER24

SUSPEND
If there is insufficient storage to satisfy the request, SUSPEND(YES) causes the
caller to be suspended until the request can be satisfied, and SUSPEND(NO)
causes REASON to be set to INSUFFICIENT_STORAGE.

 Values for the parameter are:
 NO
 YES

CALLER
Optional Parameter

 Indicates the caller of the function.

Values for the parameter are:
 EXEC
 MACRO
 SYSTEM

INITIAL_IMAGE
Optional Parameter

 is an optional byte value to which every byte in the new element is set.
REMARK

Optional Parameter

 is an optional 8-character field that is used to identify the GETMAIN operation
for problem determination. This field is highlighted when the GETMAIN trace
is interpreted. Typically, it is the name of the control block whose storage is
being obtained.

TCTTE_ADDRESS
Optional Parameter

 is an optional field that must be specified for GETMAIN requests for the
TERMINAL storage class.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ACTIVATE_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_GET_LENGTH

The following values are returned when RESPONSE is INVALID:
 INVALID_STORAGE_CLASS
 NO_TCTTE_ADDRESS

Chapter 105. Storage Manager Domain (SM) 1689

ADDRESS
is the address of the new element.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMMC gate, INITIALISE function
The INITIALIZE function of the SMMC gate is used to perform
macro-compatibility interface initialization.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ACTIVATE_FAILURE
 DEACTIVATE_FAILURE
 LOOP
 STORAGE_VIOLATION

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ADDRESS
 INVALID_EXEC_KEY
 INVALID_FUNCTION
 INVALID_GET_LENGTH
 INVALID_STORAGE_CLASS
 NO_TCTTE_ADDRESS

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_DSA_NAME
 NO_TRANSACTION_ENVIRONMENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMMC gate, INQUIRE_ELEMENT_LENGTH function
The INQUIRE_ELEMENT_LENGTH function of the SMMC gate is used to obtain
the start address and length of the storage element that contains the address that
was specified on the input to the call. This function only searches the current task's
task-lifetime storage for the required storage element.

Input Parameters
ADDRESS

is the address of the element to be released.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ADDRESS

ELEMENT_LENGTH
is the actual length of the new element (when it has been rounded up to a
multiple of the boundary for the subpool).

1690 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ELEMENT_ADDRESS
Optional Parameter

 is the start address of the element that contains the input address.

SMMC gate, INQUIRE_TASK_STORAGE function
The INQUIRE_TASK_STORAGE function of the SMMC gate is used to obtain
details of all the task-lifetime storage associated with the current task (if the input
parameter TRANSACTION_NUMBER is omitted from the call) or for the specified
task.

Input Parameters
ELEMENT_BUFFER

is a buffer in which the storage manager lists the start addresses of all the
specified task's task-lifetime storage.

LENGTH_BUFFER
is a buffer in which the storage manager lists the lengths of all the specified
task's task-lifetime storage.

DSA_NAME
Optional Parameter

 is the name of the DSA whose size is being inquired on.
TRANSACTION_NUMBER

Optional Parameter

 indicates the transaction that you want to obtain storage details about. If this
parameter is omitted, the current task is assumed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_NAME
 NO_TRANSACTION_ENVIRONMENT

NUMBER_OF_ELEMENTS
is the number of elements in each buffer.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, INQ_TRANSACTION_ISOLATION function
The INQUIRE_TRANSACTION_ISOLATION function of the SMSR gate is used to
inquire whether transaction isolation is active in the CICS region. This value is
initially set by the TRANISO system initialization parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT

Chapter 105. Storage Manager Domain (SM) 1691

INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANSACTION_ISOLATION
indicates if transaction isolation is active.

 Values for the parameter are:
 ACTIVE
 INACTIVE

SMSR gate, INQUIRE_ACCESS function
The INQUIRE_ACCESS function of the SMSR gate is used to return the access key
of an element of storage.

Input Parameters
ELEMENT_ADDRESS

The start address of the storage element.
ELEMENT_LENGTH

is the length of the storage element.
ACCESS_TOKEN

Optional Parameter

 The access token for the element of storage (returned by the
INQUIRE_ACCESS_TOKEN function).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_ELEMENT

ACCESS
The type of access for the storage element.

 Values for the parameter are:
 CICS
 READ_ONLY
 USER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSA_EXTENT_END
Optional Parameter

 The end address of the DSA extent that contains the input address.
DSA_EXTENT_START

Optional Parameter

 The start address of the DSA extent that contains the input address.
DSA_NAME

Optional Parameter

 The name of the dynamic storage area (DSA) in which the subpool resides.

Values for the parameter are:
 CDSA

1692 CICS TS for z/OS 4.1: Diagnosis Reference

ECDSA
 ERDSA
 ESDSA
 EUDSA
 RDSA
 SDSA
 UDSA

SMSR gate, INQUIRE_ACCESS_TOKEN function
The INQUIRE_ACCESS_TOKEN function of the SMSR gate is used to return the
access token for a storage element.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ACCESS_TOKEN
is the access token for the storage element.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, INQUIRE_DSA_LIMIT function
The INQUIRE_DSA_LIMIT function of the SMSR gate is used to return the DSA
storage limits above (EDSA) and below (DSA) the 16MB line. These limits are the
maximum amounts of storage that CICS can use for all the DSAs above and below
the 16MB line.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DSA_LIMIT
Optional Parameter

Chapter 105. Storage Manager Domain (SM) 1693

indicates the DSA storage limit.
EDSA_LIMIT

Optional Parameter

 indicates the EDSA storage limit.

SMSR gate, INQUIRE_DSA_SIZE function
The INQUIRE_DSA_SIZE function of the SMSR gate is used to return the size of
the CICS DSAs.

Input Parameters
DSA_NAME

is the name of the DSA whose size is being inquired on.

 Values for the parameter are:
 CDSA
 ECDSA
 ERDSA
 ESDSA
 EUDSA
 RDSA
 SDSA
 UDSA

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

DSA_SIZE
is the size of the DSA.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, INQUIRE_ISOLATION_TOKEN function
The INQUIRE_ISOLATION_TOKEN function of the SMSR gate is used to return
an isolation token which can be used on SWITCH_SUBSPACE calls.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT

1694 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

ISOLATION_TOKEN
an isolation token which can be used on SWITCH_SUBSPACE calls.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, INQUIRE_REENTRANT_PROGRAM function
The INQUIRE_REENTRANT_PROGRAM function of the SMSR gate is used to
return whether the read-only DSAs, RDSA and ERDSA, have been allocated from
read-only key-0 protected storage or CICS-key storage, as set by the RENTPGM
system initialization parameter.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

REENTRANT_PROGRAM
indicates whether the dynamic storage read-only DSAs have been allocated
from read-only key-0 protected storage

 Values for the parameter are:
 NOPROTECT
 PROTECT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, INQUIRE_SHORT_ON_STORAGE function
The INQUIRE_SHORT_ON_STORAGE function of the SMSR gate is used to return
whether or not CICS is currently short-on-storage.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

Chapter 105. Storage Manager Domain (SM) 1695

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOS_ABOVE_THE_LINE
indicates whether or not CICS is short-on-storage above the 16MB line.

 Values for the parameter are:
 NO
 YES

SOS_BELOW_THE_LINE
indicates whether or not CICS is short-on-storage below the 16MB line.

 Values for the parameter are:
 NO
 YES

SMSR gate, INQUIRE_STORAGE_PROTECT function
The INQUIRE_STORAGE_PROTECT function of the SMSR gate is used to return
the current value of the storage protection option.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STORAGE_PROTECT
is the current storage protection mode.

 Values for the parameter are:
 NO
 YES

SMSR gate, SET_DSA_LIMIT function
The SET_DSA_LIMIT function of the SMSR gate is used to set the DSA storage
limits above (EDSA) and below (DSA) the 16MB line. These limits are the
maximum amounts of storage that CICS can use for all the DSAs above and below
the 16MB line.

Input Parameters
DSA_LIMIT

Optional Parameter

 indicates the DSA storage limit required.

1696 CICS TS for z/OS 4.1: Diagnosis Reference

EDSA_LIMIT
Optional Parameter

 indicates the EDSA storage limit required.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, SET_DSA_SIZE function
The SET_DSA_SIZE function of the SMSR gate is used to set the size of the CICS
dynamic storage areas (DSAs).

Input Parameters
DSA_NAME

is the name of the DSA whose size is set.

 Values for the parameter are:
 CDSA
 ECDSA
 ERDSA
 ESDSA
 EUDSA
 RDSA
 SDSA
 UDSA

DSA_SIZE
is the size of the DSA.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_DSA_SIZE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, SET_REENTRANT_PROGRAM function
The SET_REENTRANT_PROGRAM function of the SMSR gate is used to set the
reentrant program option for the RDSA and the ERDSA.

Input Parameters
REENTRANT_PROGRAM

is the reentrant program option for the RDSA and the ERDSA.

 Values for the parameter are:
 NOPROTECT
 PROTECT

Chapter 105. Storage Manager Domain (SM) 1697

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, SET_STORAGE_PROTECT function
The SET_STORAGE_PROTECT function of the SMSR gate is used to set the storage
protection option.

Input Parameters
STORAGE_PROTECT

A binary value indicating if storage protection is required.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, SET_STORAGE_RECOVERY function
The SET_STORAGE_RECOVERY function of the SMSR gate is used to set the
storage recovery option.

Input Parameters
RECOVERY

is the value to which the storage recovery option is to be set.

 Values for the parameter are:
 NO

1698 CICS TS for z/OS 4.1: Diagnosis Reference

YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, SET_TRANSACTION_ISOLATION function
The SET_TRANSACTION_ISOLATION function of the SMSR gate is used to set
whether or not you want transaction isolation in your CICS region. This value is
initially set by the TRANISO system initialization parameter.

Input Parameters
TRANSACTION_ISOLATION

indicates whether or not transaction isolation is active in your CICS region.

 Values for the parameter are:
 ACTIVE
 INACTIVE

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, SWITCH_SUBSPACE function
The SWITCH_SUBSPACE function of the SMSR gate is used to change a task's
subspace.

Chapter 105. Storage Manager Domain (SM) 1699

Input Parameters
SPACE

indicates the type of subspace you want this task to execute in.

 Values for the parameter are:
 BASESPACE
 RESET_SPACE
 SUBSPACE

ISOLATION_TOKEN
Optional Parameter

 an isolation token which can be returned from an
INQUIRE_ISOLATION_TOKEN call.

TRANSACTION_TOKEN
Optional Parameter

 a transaction manager token (which can be returned from an XMIQ
INQUIRE_TRANSACTION_TOKEN call) that represents the task whose
subspace you want to change.

WORK_REGISTER
Optional Parameter

 a work register.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMSR gate, UPDATE_SUBSPACE_TCB_INFO function
The UPDATE_SUBSPACE_TCB_INFO function informs SM of the deletion of open
TCBs which are associated with subspaces.

Input Parameters
OPEN_TCBS_DELETED

is a 32-bit string indicating the mode(s) of deleted TCB(s).
SUBSPACE_TOKEN

indicates the subspace which is associated with the deleted TCBs.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:

1700 CICS TS for z/OS 4.1: Diagnosis Reference

INSUFFICIENT_STORAGE
 INVALID_DSA_LIMIT
 INVALID_DSA_SIZE
 INVALID_ELEMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

S2AD gate, ADD_SUBPOOL function
The ADD_SUBPOOL function of the S2AD gate is used to create a new subpool
with given attributes.

Input Parameters
ELEMENT_CHAIN

indicates whether a chain of the addresses and lengths of the elements is to be
kept.

 Values for the parameter are:
 NO
 YES

ELEMENT_TYPE
indicates whether the subpool elements are of fixed or variable length.

 Values for the parameter are:
 FIXED
 VARIABLE

INITIAL_FREE
is the size of the initial free storage area for the subpool.

LOCATION
specifies whether all elements within the subpool are private or shared.

 Values for the parameter are:
 PRIVATE
 SHARED

SUBPOOL_NAME
is the 8-character name by which the subpool is known.

USAGE
indicates whether the subpool is for task or domain use.

 Values for the parameter are:
 DOMAIN
 TASK

ACCESS
Optional Parameter

 The type of storage access required.

Values for the parameter are:
 CICS
 USER

FIXED_LENGTH
Optional Parameter

 is the element length for a fixed-length subpool.
LOCK_POOL

Optional Parameter

Chapter 105. Storage Manager Domain (SM) 1701

Indicates if access to the subpool is to be controlled by a lock.

Values for the parameter are:
 NO
 YES

STORAGE_CHECK
Optional Parameter

 indicates whether storage zone checking is to be enabled for this subpool.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is INVALID:
 DUPLICATE_SUBPOOL_NAME
 INVALID_FIXED_LENGTH
 INVALID_INITIAL_FREE
 INVALID_SUBPOOL_NAME
 LOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBPOOL_TOKEN
is the token identifying the newly created subpool.

DSA_NAME
Optional Parameter

 is the name of the CICS dynamic storage area (DSA) in which the subpool
resides.

Values for the parameter are:
 GCDSA

S2AD gate, DELETE_SUBPOOL function
The DELETE_SUBPOOL function of the S2AD gate is used to delete a subpool.

Input Parameters
SUBPOOL_TOKEN

is the token identifying the subpool to be deleted.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_SUBPOOL_TOKEN
 NOT_SUBPOOL_OWNER
 SUBPOOL_NOT_EMPTY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1702 CICS TS for z/OS 4.1: Diagnosis Reference

S2AD gate, END_SUBPOOL_BROWSE function
The END_SUBPOOL_BROWSE function of the S2AD gate is used to end a browse
of the storage manager domain subpools.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse operation.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

S2AD gate, GET_NEXT_SUBPOOL function
The GET_NEXT_SUBPOOL function of the S2AD gate is used in a storage manager
domain subpool browse to get the next subpool.

Input Parameters
BROWSE_TOKEN

is the token identifying the browse operation.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SUBPOOL_NAME
is name of the subpool returned by the browse.

DSA_NAME
Optional Parameter

 is the name of the CICS dynamic storage area (DSA) in which the subpool
resides.

Values for the parameter are:
 GCDSA

S2AD gate, INQUIRE_SUBPOOL function
The INQUIRE_SUBPOOL function of the S2AD gate is used to inquire about a
storage manager domain subpool.

Input Parameters
SUBPOOL_NAME

is the 8-character name by which the subpool is known.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 SUBPOOL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 105. Storage Manager Domain (SM) 1703

DSA_NAME
Optional Parameter

 is the name of the CICS dynamic storage area (DSA) in which the subpool
resides.

Values for the parameter are:
 GCDSA

S2AD gate, START_SUBPOOL_BROWSE function
The START_SUBPOOL_BROWSE function of the S2AD gate is used to start a
browse of the storage manager domain subpools.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

BROWSE_TOKEN
is the token identifying the browse operation.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

S2GF gate, FREEMAIN function
The FREEMAIN function of the S2GF gate is used to release an element of storage
within a subpool.

Input Parameters
ADDRESS

is the 64-bit address of the element to be released.
STORAGE_CLASS

Optional Parameter

 identifies the class of storage that is being released.

Values for the parameter are:
 CICS64
 TASK64
 USER64

SUBPOOL_TOKEN
Optional Parameter

 is a token identifying the subpool within which the element is to be allocated.
FREE_LENGTH

Optional Parameter

 is the length of the element to be released.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is controlled by a lock.

Values for the parameter are:
 NO
 YES

REMARK
Optional Parameter

1704 CICS TS for z/OS 4.1: Diagnosis Reference

is an optional 8-character field that is used to identify the FREEMAIN
operation for problem determination. This field is highlighted when the
FREEMAIN trace is interpreted. Typically, it is the name of the control block
whose storage is being released.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DEACTIVATE_FAILURE
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_ADDRESS
 INVALID_FREE_LENGTH
 INVALID_STORAGE_CLASS
 INVALID_SUBPOOL_TOKEN
 NO_FREE_LENGTH
 NOT_SUBPOOL_OWNER
 SUBPOOL_EMPTY
 SUBPOOL_LOCK_FAILED
 SUBPOOL_UNLOCK_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

S2GF gate, GETMAIN function
The GETMAIN function of the S2GF gate is used to allocate an element of storage
from a subpool.

Input Parameters
STORAGE_CLASS

Optional Parameter

 identifies the class of storage that is being allocated.

Values for the parameter are:
 CICS64
 TASK64
 USER64

SUBPOOL_TOKEN
Optional Parameter

 is a token identifying the subpool within which the element is to be allocated.
SUSPEND

If there is insufficient storage to satisfy the request, SUSPEND(YES) causes the
caller to be suspended until the request can be satisfied, and SUSPEND(NO)
causes REASON to be set to INSUFFICIENT_STORAGE.

 Values for the parameter are:
 NO
 YES

GET_LENGTH
Optional Parameter

 is the length of the storage requested.
INITIAL_IMAGE

Optional Parameter

Chapter 105. Storage Manager Domain (SM) 1705

is an optional byte value to which every byte in the new element is set.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is controlled by a lock.

Values for the parameter are:
 NO
 YES

REMARK
Optional Parameter

 is an optional 8-character field that is used to identify the GETMAIN operation
for problem determination. This field is highlighted when the GETMAIN trace
is interpreted. Typically, it is the name of the control block whose storage is
being obtained.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ACTIVATE_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE

The following values are returned when RESPONSE is INVALID:
 INVALID_GET_LENGTH
 INVALID_INITIAL_IMAGE
 INVALID_STORAGE_CLASS
 INVALID_SUBPOOL_TOKEN
 NO_GET_LENGTH
 NOT_SUBPOOL_OWNER
 SUBPOOL_LOCK_FAILED
 SUBPOOL_UNLOCK_FAILED

ADDRESS
is the 64-bit address of the new element.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ELEMENT_LENGTH
Optional Parameter

 is the length of the new element.

S2GF gate, INQUIRE_ELEMENT_LENGTH function
The INQUIRE_ELEMENT_LENGTH function of the S2GF gate is used to return
the length of an element of storage whose address is known.

Input Parameters
ADDRESS

is the 64-bit address of the element under inquiry.
STORAGE_CLASS

Optional Parameter

 identifies the class of storage that is under inquiry.

Values for the parameter are:

1706 CICS TS for z/OS 4.1: Diagnosis Reference

CICS64
 TASK64
 USER64

SUBPOOL_TOKEN
Optional Parameter

 is a token identifying the subpool within which the element is allocated.
LOCK_POOL

Optional Parameter

 Indicates if access to the subpool is controlled by a lock.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_STORAGE_CLASS
 INVALID_SUBPOOL_TOKEN
 SUBPOOL_LOCK_FAILED
 SUBPOOL_UNLOCK_FAILED

ELEMENT_LENGTH
is the length of the element.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

S2SR gate, COPY_ABOVE_BAR_TO_BELOW function
The COPY_ABOVE_BAR_TO_BELOW function of the S2SR gate is used to copy an
area of storage from 64-bit storage to 31-bit storage.

Input Parameters
ABOVE_BAR_SOURCE

is the 64-bit address of the copy source area.
BELOW_BAR_TARGET

is the 31-bit address of the copy target area.
COPY_LENGTH

is the number of bytes to be copied.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

S2SR gate, COPY_BELOW_BAR_TO_ABOVE function
The COPY_BELOW_BAR_TO_ABOVE function of the S2SR gate is used to copy an
area of storage from 31-bit storage to 64-bit storage.

Chapter 105. Storage Manager Domain (SM) 1707

Input Parameters
ABOVE_BAR_TARGET

is the 64-bit address of the copy target area.
BELOW_BAR_SOURCE

is the 31-bit address of the copy source area.
COPY_LENGTH

is the number of bytes to be copied.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Storage manager domain generic gates

Table 72 summarizes the generic gates in the domain. It shows the level-1 trace
point IDs of the modules providing the functions for the gates, the functions
provided by the gates, and the generic formats for calls to the gates.

 Table 72. Storage manager domain generic gates

Gate Trace Functions Format

DMDM SM 0101
SM 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

SMVN SM 1401
SM 1402

DSAT_TASK_REPLY
DSAT_PURGE_INHIBIT_QUERY

DSAT

STST SM 0A01
SM 0A02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

In preinitialization processing, the storage manager domain sets the initial storage
options:
v The amount of storage to be allocated to the dynamic storage area
v The amount of storage to be allocated to the extended dynamic storage area
v The storage recovery option
v The state of the storage protect, transaction isolation and the reentrant program

option.

For a cold start, the information comes from the system initialization parameters;
for any other type of start, the information comes from the local catalog, but is
then modified by any relevant system initialization parameters.

Storage manager domain also issues console messages during preinitialization to
report the amount of storage allocated above and below the line for DSA use.

In initialization, quiesce, and termination processing, the storage manager domain
performs only internal routines.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Dispatcher domain's generic formats” on page 1031
 “Statistics domain's generic formats” on page 1777

1708 CICS TS for z/OS 4.1: Diagnosis Reference

Storage manager domain generic formats

Table 73 describes the generic formats owned by the application domain and
shows the functions performed on the calls.

 Table 73. Storage manager domain generic formats

Format Calling module Function

SMNT DFHSMSY
DFHSJSM

STORAGE_NOTIFY
MVS_STORAGE_NOTIFY

Note: In the descriptions of the formats that follow, the input parameters are input
not to the Storage manager domain, but to the domain being called by the Storage
manager domain. Similarly, the output parameters are output by the domain that
was called by the Storage manager domain, in response to the call.

SMNT gate, MVS_STORAGE_NOTIFY function
The MVS_STORAGE_NOTIFY function of SMNT format is used to notify a domain
when MVS storage usage becomes excessive, so that the target domain can take
action to release MVS storage or to limit its future MVS storage requirements. It is
also used to notify the domain when MVS storage is no longer constrained, so the
domain can return to normal operation. There are different notifications for a
breach of the threshold value for MVS storage, and for a breach of the reserved
MVS storage cushion, the latter being a more serious condition.

Input Parameters
CUSHION

indicates the status of the reserved MVS storage cushion.

 Values for the parameter are:
 NEWLY_BREACHED
 NEWLY_RESTORED
 UNCHANGED

NEWLY_BREACHED indicates that the cushion has been partially freed to
satisfy requirements for MVS storage since the last time the SM domain issued
a MVS_STORAGE_NOTIFY. NEWLY_RESTORED indicates that CICS has
managed to reallocate the reserved storage cushion since the last time the SM
domain issued a MVS_STORAGE_NOTIFY. UNCHANGED indicates that since
the last time the SM domain issued a MVS_STORAGE_NOTIFY, no change has
occurred in the state of the cushion: it is still partially freed, or still intact.

THRESHOLD
indicates the relationship between MVS storage requirements and the threshold
value for MVS storage.

 Values for the parameter are:
 NEWLY_BREACHED
 NEWLY_RESTORED
 UNCHANGED

NEWLY_BREACHED indicates that MVS storage requirements have increased
above the threshold value since the last time the SM domain issued a
MVS_STORAGE_NOTIFY. NEWLY_RESTORED indicates that MVS storage
requirements have decreased below the threshold value since the last time the
SM domain issued a MVS_STORAGE_NOTIFY. UNCHANGED indicates that
since the last time the SM domain issued a MVS_STORAGE_NOTIFY, no
change has occurred in the MVS storage requirements relative to the threshold

Chapter 105. Storage Manager Domain (SM) 1709

value. That is, if the MVS storage requirements were previously above the
threshold, they are still above the threshold, and if they were previously below
the threshold, they are still below the threshold.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILED
 LOOP
 RESUME_FAILURE

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SMNT gate, STORAGE_NOTIFY function
The STORAGE_NOTIFY function of SMNT format is used to notify free storage
above and below the 16 MB line.

Input Parameters
ALMOST_SOS_ABOVE

A binary value indicating whether a DSA above 16 MB could go
short-on-storage (SOS) imminently; that is, a single GETMAIN could cause
SOS.

 Values for the parameter are:
 NO
 YES

DSAS_CONSTRAINED
indicates whether any DSA is currently constrained due to lack of free storage.

 Values for the parameter are:
 NO
 YES

FREE_BYTES_CDSA
is the largest free area available (in bytes) in the CICS DSA below the 16 MB
line (not including the cushion).

FREE_BYTES_ECDSA
is the largest free area available (in bytes) in the CICS DSA above the 16 MB
line (not including the cushion).

FREE_BYTES_ERDSA
is the largest free area available (in bytes) in the read-only DSA above the 16
MB line (not including the cushion).

FREE_BYTES_ESDSA
is the largest free area available (in bytes) in the shared user-key DSA above
the 16 MB line (not including the cushion).

FREE_BYTES_EUDSA
is the largest free area available (in bytes) in the user-key DSA above the 16
MB line (not including the cushion).

FREE_BYTES_RDSA
is the largest free area available (in bytes) in the read-only DSA below the 16
MB line (not including the cushion).

1710 CICS TS for z/OS 4.1: Diagnosis Reference

FREE_BYTES_SDSA
is the largest free area available (in bytes) in the shared user-key DSA below
the 16 MB line (not including the cushion).

FREE_BYTES_UDSA
is the largest free area available (in bytes) in the user-key DSA below the 16
MB line (not including the cushion).

CDSA_FIXED
Optional Parameter

 is a binary value indicating if the CICS DSA below the 16 MB line is fixed in
size.

Values for the parameter are:
 NO
 YES

ECDSA_FIXED
Optional Parameter

 is a binary value indicating if the CICS DSA above the 16 MB line is fixed in
size.

Values for the parameter are:
 NO
 YES

ERDSA_FIXED
Optional Parameter

 is a binary value indicating if the read-only CICS DSA above the 16 MB line is
fixed in size.

Values for the parameter are:
 NO
 YES

ESDSA_FIXED
Optional Parameter

 is a binary value indicating if shared user-key DSA above the 16 MB line is
fixed in size.

Values for the parameter are:
 NO
 YES

EUDSA_FIXED
Optional Parameter

 is a binary value indicating if the user-key DSA above the 16 MB line is fixed
in size.

Values for the parameter are:
 NO
 YES

RDSA_FIXED
Optional Parameter

 is a binary value indicating if the read-only CICS DSA below the 16 MB line is
fixed in size.

Values for the parameter are:
 NO
 YES

SDSA_FIXED
Optional Parameter

Chapter 105. Storage Manager Domain (SM) 1711

is a binary value indicating if the shared user-key DSA below the 16 MB line is
fixed in size.

Values for the parameter are:
 NO
 YES

UDSA_FIXED
Optional Parameter

 is a binary value indicating if the user-key DSA below the 16 MB line line is
fixed in size.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHSMAD Handles the following requests:
 ADD_SUBPOOL
 DELETE_SUBPOOL
 START_SUBPOOL_BROWSE
 GET_NEXT_SUBPOOL
 END_SUBPOOL_BROWSE
 INQUIRE_SUBPOOL

DFHSMAR Handles the following requests:
 ALLOCATE_TRANSACTION_STG
 RELEASE_TRANSACTION_STG

DFHSMCK Handles the following requests:
 CHECK_STORAGE
 RECOVER_STORAGE

DFHSMDM Handles the following requests:
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHSMDUF SM domain offline dump formatting routine

DFHSMGF Handles the following requests:
 GETMAIN
 FREEMAIN
 INQUIRE_ELEMENT_LENGTH

DFHSMMCI SM domain macro-compatibility interface INITIALISE function

1712 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHSMMC2 SM domain macro-compatibility interface which handles the following
requests:
 FREEMAIN_ALL_TERMINAL
 INQUIRE_ELEMENT_LENGTH
 INQUIRE_TASK_STORAGE

DFHSMMF SM domain macro-compatibility interface FREEMAIN function

DFHSMMG SM domain macro-compatibility interface GETMAIN function

DFHSMSR Handles the following requests:
 INQUIRE_ACCESS
 INQUIRE_ACCESS_TOKEN
 INQUIRE_DSA_LIMIT
 INQUIRE_DSA_SIZE
 INQUIRE_REENTRANT_PROGRAM
 INQUIRE_SHORT_ON_STORAGE
 INQUIRE_STORAGE_PROTECT
 INQUIRE_TRANSACTION_ISOLATION
 SET_DSA_LIMIT
 SET_REENTRANT_PROGRAM
 SET_STORAGE_RECOVERY
 SET_STORAGE_PROTECT
 SWITCH_SUBSPACE

DFHSMST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHSMSVC Gets DSAs

DFHSMSY SM domain system task--issues STORAGE_NOTIFY requests

DFHSMTRI Interprets SM domain trace entries

DFHSMVN SM domain system task -- issues MVS_STORAGE_NOTIFY requests

DFHSMVP Detects and manages MVS storage constraints

Chapter 105. Storage Manager Domain (SM) 1713

1714 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 106. Sockets Domain (SO)

The socket domain provides TCP/IP services to CICS. It includes a TCP/IP listener
system task, the TCPIPSERVICE RDO resource to manage the listener and domain
gates to operate on a TCP/IP connection.

Sockets Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the SO domain.

SOAD gate, ADD_REPLACE_TCPIPSERVICE function
The ADD_REPLACE_TCPIPSERVICE function is called at RDO time to install a
tcpipservice definition. If the status is OPEN then the service is also opened using
the SORD REGISTER function. A catalog entry is written to record the installed
resource.

Input Parameters
BACKLOG

is the value of the backlog parameter passed to the TCP/IP listen function for
this service. It specifies how many connection requests TCP/IP will queue for
this service.

IPADDRESS
is the specific IP address that the listener will bind to for this service.

MAXDATA_LENGTH
is the maximum length of data that may be received by CICS.

PORTNUMBER
is the port number to listen on.

SOCKETCLOSE
is the value of receive timeout for this service.

SSL
specifies whether or not connections to this service are to be secured using the
Secure Sockets Layer protcols.

 Values for the parameter are:
 CLIENTAUTH
 NO
 YES

STATUS
is either OPEN or CLOSED.

 Values for the parameter are:
 CLOSED
 OPEN

TCPIPSERVICE_NAME
is the name of the tcpipservice.

URM_NAME
is the name of the user-replaceable program.

ATTACHSEC
Optional Parameter

 is the level of attach-time security required for TCP/IP connections to CICS
Clients.

© Copyright IBM Corp. 1997, 2011 1715

AUTHENTICATION
Optional Parameter

 is the authentication and identification scheme to be used for inbound TCP/IP
connections

Values for the parameter are:
 ASSERTED
 AUTOMATIC
 AUTOREGISTER
 BASIC
 CERTIFICATE
 KERBEROS
 NONE

CERTIFICATE_LABEL
Optional Parameter

 is the name of a certificate within the keyfile that this service will use to
authenticate itself to clients with, if the SSL protocol is used.

CIPHER_SUITES
Optional Parameter

 a string of up to 56 hexadecimal digits that is interpreted as a list of up to 28
2-digit cipher suite codes.

DNSGROUP
Optional Parameter

 the group name with which CICS will register to Workload Manager, for
connection optimization.

GRPCRITICAL
Optional Parameter

 indicates if the service is a critical member of the DNS group.

Values for the parameter are:
 CRITICAL
 NONCRITICAL

NUMCIPHERS
Optional Parameter

 the number of cipher suites specified in the CIPHER_SUITES parameter.
PRIVACY

Optional Parameter

 indicates the level of SSL encryption required for inbound connections to this
service that is specified by the CIPHERS attribute.

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

PROTOCOL
Optional Parameter

 the application level protocol used on the TCP/IP port.
TRANSACTION

Optional Parameter

 is the tranid of the transaction to attach for each connection to this service.

1716 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 CATALOG_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 AUTHENTICATION_UNAVAILABLE
 CERTIFICATE_INVALID
 INVALID_NAME
 INVALID_STATUS
 PORT_IN_USE
 PORT_NOTAUTH
 SERVICE_OPEN
 SSL_NOT_AVAILABLE
 TCPIP_CLOSED
 TCPIP_INACTIVE
 UNKNOWN_IP_ADDRESS
 UNSUPPORTED_CIPHER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOAD gate, DELETE_TCPIPSERVICE function
The DELETE_TCPIPSERVICE function is called at RDO time to remove an
installed tcpipservice definition. If the status is OPEN then the tcpipservice is not
removed. The catalog entry is removed for the discarded resource.

Input Parameters
TCPIPSERVICE_NAME

is the name of the tcpipservice.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND
 SERVICE_OPEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, ACCEPT function
Accept a new connection on a listening socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

 On this function, the token identifies the listening socket.
LIFETIME

Optional Parameter

 The lifetime of the socket.

Values for the parameter are:
 PERSISTENT

Chapter 106. Sockets Domain (SO) 1717

SHARED
 TASK

TIMEOUT_VALUE
Optional Parameter

 The interval after which a request will time out.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

CLIENT_SOCKET_TOKEN
A token that is generated when a socket is created, and is used subsequently to
identify the socket.

 On this function, the token identifies the connection that has been accepted. On
subsequent requests, the token is passed on the SOCKET_TOKEN parameter.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1718 CICS TS for z/OS 4.1: Diagnosis Reference

SOCK gate, BIND function
Bind a socket to an IP address and port number.

Input Parameters
IP_ADDRESS

Optional Parameter

 The binary IP address of the target.
PORT

Optional Parameter

 The binary port number of the target.
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

MINIMUM_DATA_LENGTH
Optional Parameter

 The minimum amount of data that must be received before the request is
considered to be complete.

STRING_PORT
Optional Parameter

 The port number of the target, expressed as a string.
TIMEOUT_VALUE

Optional Parameter

 The interval after which a request will time out.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR

Chapter 106. Sockets Domain (SO) 1719

STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, CANCEL function
Cancel any outstanding asynchronous input or output on a socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:

1720 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, CLOSE function
The CLOSE function is called to close the socket connection to the TCP/IP client.

Input Parameters
CONDITIONAL

Optional Parameter

 A binary value indicating whether a request to close a socket is conditional. A
conditional request to close the socket will fail if the socket is in use.

Values for the parameter are:
 NO
 YES

SOCKET_TOKEN
A token that is generated when a socket is created, and is used subsequently to
identify the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR

Chapter 106. Sockets Domain (SO) 1721

TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, CONNECT function
Connect a socket to another host and port.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

CERTIFICATE_LABEL
Optional Parameter

 The label of an X.509 certificate that is used during the SSL handshake for the
connection.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A string of up to 56 hexadecimal digits that encodes a list of up to 28 2-digit
cipher suite codes.

IP_ADDRESS
Optional Parameter

 The binary IP address of the target.
PORT

Optional Parameter

 The binary port number of the target.
SSL

Optional Parameter

 A binary parameter that specifies whether the socket supports the secure
sockets layer (SSL).

Values for the parameter are:
 NO
 YES

MINIMUM_DATA_LENGTH
Optional Parameter

 The minimum amount of data that must be received before the request is
considered to be complete.

STRING_PORT
Optional Parameter

 The port number of the target, expressed as a string.

1722 CICS TS for z/OS 4.1: Diagnosis Reference

TIMEOUT_VALUE
Optional Parameter

 The interval after which a request will time out.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, CREATE function
This function creates a new socket.

Input Parameters
LIFETIME

Optional Parameter

 The lifetime of the socket.

Chapter 106. Sockets Domain (SO) 1723

Values for the parameter are:
 PERSISTENT
 SHARED
 TASK

QUEUE_TIMEOUT
Optional Parameter

 A parameter that indicates whether a request to create a socket will be queued
if no sockets can be created immediately, and whether the request will be
queued for ever or will time out.

Values for the parameter are:
 FOREVER
 NO
 YES

QUEUE_TIMEOUT
Optional Parameter

 A parameter that indicates whether a request to create a socket will be queued
if no sockets can be created immediately, and whether the request will be
queued for ever or will time out.

Values for the parameter are:
 FOREVER
 NO
 YES

TIMEOUT_VALUE
Optional Parameter

 The interval after which a request will time out.
TRANSPORT

Optional Parameter

 The type of IP transport supported by the socket.

Values for the parameter are:
 TCP
 UDP

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED

1724 CICS TS for z/OS 4.1: Diagnosis Reference

NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCKET_TOKEN
A token that is generated when a socket is created, and is used subsequently to
identify the socket.

SOCK gate, ESTABLISH function
This function associates the calling task with the socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

XM_STORE
Optional Parameter

 A binary parameter that indicates whether the socket token is to be stored in
the transaction's transaction manager block.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED

Chapter 106. Sockets Domain (SO) 1725

INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, GET_DATA_LENGTH function
Return the numbrr of bytes of data that can be read on the socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION

1726 CICS TS for z/OS 4.1: Diagnosis Reference

NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

BYTES_AVAILABLE
The number of bytes of data that are available to be read.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, GET_SOCKET_OPTS function
Return the attributes of a socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

LIFETIME
Optional Parameter

 The lifetime of the socket.

Values for the parameter are:
 PERSISTENT
 SHARED
 TASK

SO_LINGER
Optional Parameter

 A sockets parameter that controls socket shutdown behavior, allowing the
socket to shut down gracefully.

SO_REUSE_IP_ADDRESS
Optional Parameter

 A binary parameter that specifies whether the socket can reuse an IP address.

Values for the parameter are:
 NO
 YES

TCP_NODELAY
Optional Parameter

Chapter 106. Sockets Domain (SO) 1727

A binary parameter that specifies whether to send small messages on the
socket without buffering them first.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, LISTEN function
The LISTEN function is the main routine for the SO domain listener task CSOL.
When the listener task starts it branches into the LISTEN function of the SOCK
gate. This allows the listener code to be written at the domain level rather than the
task level.

1728 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BACKLOG

The value of the backlog parameter for the TCP/IP listen function for the
current TCPIPSERVICE. It specifies how many connection requests TCP/IP
will queue for the service.

SOCKET_TOKEN
A token that is generated when a socket is created, and is used subsequently to
identify the socket.

TIMEOUT_VALUE
Optional Parameter

 The interval after which a request will time out.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 106. Sockets Domain (SO) 1729

SOCK gate, RECEIVE function
The RECEIVE function receives a buffer of data from a TCP/IP connected client.

Input Parameters
CALLBACK_GATE

Optional Parameter

 The gate at which the domain that requested the function will be notified
when the request is complete.

IP_ADDRESS
Optional Parameter

 The binary IP address of the target.
STRING_IP_ADDRESS

Optional Parameter

 The IP address of the target, expressed as a string.
MINIMUM_DATA_LENGTH

Optional Parameter

 The minimum amount of data that must be received before the request is
considered to be complete.

PEEK
Optional Parameter

 A binary parameter that indicates whether the read request should look at data
without removing it from the socket's receive buffer.

Values for the parameter are:
 NO
 YES

PEEK_BUFFER
Optional Parameter

 The buffer in which peek data is returned when PEEK(YES) is specified.

Values for the parameter are:
 NO
 YES

PORT
Optional Parameter

 The binary port number of the target.
RECEIVE_BUFFER

The buffer that receives the data.
RECEIVE_TYPE

Optional Parameter

 A parameter that specifies whether a receive request is asynchronous or
synchronous.

Values for the parameter are:
 ASYNC
 SYNC

SOCKET_TOKEN
A token that is generated when a socket is created, and is used subsequently to
identify the socket.

STRING_IP_ADDRESS
Optional Parameter

 The IP address of the target, expressed as a string.

1730 CICS TS for z/OS 4.1: Diagnosis Reference

STRING_PORT
Optional Parameter

 The port number of the target, expressed as a string.
TIMEOUT

Optional Parameter

 Specifies how the timeout interval is determined. If the parameter is not
specified or TIMEOUT(SOCKETCLOSE) is specified then the timeout is taken
from the TCPIPSERVIEC definition. If TIMEOUT(DEFAULT) is specified then
the timeout is 30 seconds.

Values for the parameter are:
 DEFAULT
 SOCKETCLOSE

TIMEOUT_VALUE
Optional Parameter

 The interval after which a request will time out.
USER_TOKEN

Optional Parameter

 A token that the caller supplies to identify the request. The token is returned to
the user at the callback gate when the request is complete.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:

Chapter 106. Sockets Domain (SO) 1731

INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, RECEIVE_SSL_DATA function
The RECEIVE_SSL_DATA function is called to receive data from a connected
TCP/IP client if the connection is secured using SSL.

Input Parameters
RECEIVE_BUFFER

The buffer that receives the data.
SOCKET_ADDR

The address of the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

1732 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, RELINQUISH function
Relinquish a task's association with a persistent socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

Chapter 106. Sockets Domain (SO) 1733

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, RESERVE function
Reserve a task's association with a persistent socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

TRANNUM
The transaction number of the task.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1734 CICS TS for z/OS 4.1: Diagnosis Reference

SOCK gate, SCHEDULE_RECEIVER_TASK function
Schedule a new receiver task to be attached.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, SEND function
The SEND function sends a buffer of data to a connected TCP/IP client.

Chapter 106. Sockets Domain (SO) 1735

Input Parameters
SEND_BUFFER

The buffer of data to be sent.
IP_ADDRESS

Optional Parameter

 The binary IP address of the target.
PORT

Optional Parameter

 The binary port number of the target.
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

STRING_IP_ADDRESS
Optional Parameter

 The IP address of the target, expressed as a string.
STRING_PORT

Optional Parameter

 The port number of the target, expressed as a string.
TIMEOUT_VALUE

Optional Parameter

 The interval after which a request will time out.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

1736 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, SEND_SSL_DATA function
The SEND_SSL_DATA function is called to send data to a connected TCP/IP client
if the connection is secured using SSL.

Input Parameters
SEND_BUFFER

The buffer of data to be sent.
SOCKET_ADDR

The address of the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

Chapter 106. Sockets Domain (SO) 1737

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, SET_SOCKET_OPTS function
Set the attributes of a socket.

Input Parameters
SOCKET_TOKEN

A token that is generated when a socket is created, and is used subsequently to
identify the socket.

SO_LINGER
Optional Parameter

 A sockets parameter that controls socket shutdown behavior, allowing the
socket to shut down gracefully.

SO_REUSE_IP_ADDRESS
Optional Parameter

 A binary parameter that specifies whether the socket can reuse an IP address.

Values for the parameter are:
 NO
 YES

SSL
Optional Parameter

 A binary parameter that specifies whether the socket supports the secure
sockets layer (SSL).

Values for the parameter are:
 NO
 YES

TCP_NODELAY
Optional Parameter

 A binary parameter that specifies whether to send small messages on the
socket without buffering them first.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR

1738 CICS TS for z/OS 4.1: Diagnosis Reference

CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE
 INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCK gate, SURRENDER function
This function requests the owner of a dormant session table entry (STE) to
surrender control of it so that its resources can be used by another transaction. A
dormant STE is one that is between transactions: it is waiting for another client
interaction in a persistent connection.

Input Parameters
STE_PTR

The address of the session table entry (STE).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 SOCKET_IN_USE

The following values are returned when RESPONSE is EXCEPTION:
 ADDRESS_IN_USE
 ADDRESS_NOT_AVAILABLE
 ALREADY_ASSOCIATED
 CLIENT_ERROR
 CONNECTION_CLOSED
 CONNECTION_REFUSED
 INSUFFICIENT_STORAGE

Chapter 106. Sockets Domain (SO) 1739

INSUFFICIENT_THREADS
 INVALID_OPTION
 IO_ERROR
 MISSING_OPTION
 NEVER_ASSOCIATED
 NO_CONNECTION
 NO_SOCKET_AVAILABLE
 NOT_AUTHORIZED
 NOT_PENDING
 NOTIFICATION_UNAVAILABLE
 NOTIFIED
 SCHEDULED
 SSL_HANDSHAKE_ERROR
 STATE_ERROR
 TCP_NOT_ACTIVE
 UNKNOWN_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
 TASK_CANCELLED
 TIMED_OUT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOIS gate, DELETE_CERTIFICATE_DATA function
The DELETE_CERTIFICATE_DATA deletes certificate data from the sockets
repository.

Input Parameters
REPOSITORY_TOKEN

a token representing a certificate exported to the repository.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME

1740 CICS TS for z/OS 4.1: Diagnosis Reference

UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOIS gate, EXPORT_CERTIFICATE_DATA function
The EXPORT_CERTIFICATE_DATA function saves a certificate in the sockets
repository.

Input Parameters
CERTIFICATE_INFORMATION

is a block representing the certificate.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REPOSITORY_TOKEN
Optional Parameter

Chapter 106. Sockets Domain (SO) 1741

is a token that represents the saves certificate data.

SOIS gate, IMPORT_CERTIFICATE_DATA function
The IMPORT_CERTIFICATE_DATA imports certificate data from the sockets
repository.

Input Parameters
CERTIFICATE_INFORMATION

is a block representing the certificate.
REPOSITORY_TOKEN

Optional Parameter

 a token representing a certificate exported to the repository.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CERTIFICATE_USERID
Optional Parameter

 is the userid associated with the certificate.

SOIS gate, INITIALIZE_ENVIRONMENT function
The INITIALIZE_ENVIRONMENT function is called during SO domain startup to
create and initialize the CEEPIPI Language Environment pre-initialized
environment for invokcation of C functions.

1742 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOIS gate, INQUIRE function
The INQUIRE function is called by tasks that have been attached by the listener in
response to a new TCP/IP connection. It provides TCP/IP and socket information
about connection and the connected client.

Input Parameters
CLIENT_CERTIFICATE

Optional Parameter

 is a buffer in which the X.509 certificate presented by the client is returned to
the caller.

CLIENT_HOSTNAME
Optional Parameter

 is a buffer in which the full hostname of the client is returned to the caller.
GENERIC_HOSTNAME

Optional Parameter

 is a buffer in which the full generic hostname of the CICS region, as known to
the DNS in a connection optimization environment, is returned to the caller.

LISTEN_TOKEN
Optional Parameter

 is a token representing the opened tcpipservice.

Chapter 106. Sockets Domain (SO) 1743

LOCKHELD
Optional Parameter

 A binary value that specifies whether the caller already holds the lock for
searching the LTE chain.

Values for the parameter are:
 NO
 YES

SERVER_HOSTNAME
Optional Parameter

 is a buffer in which the full hostname of the CICS region is returned to the
caller.

SOCKET_ADDR
Optional Parameter

 The address of the socket.
SOCKET_TOKEN

Optional Parameter

 A token that represents the socket.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTSOCKETS
Optional Parameter

 The number of sockets that are currently active

1744 CICS TS for z/OS 4.1: Diagnosis Reference

ATTACHSEC
Optional Parameter

 The level of attach-time user security specified in the TCPIPSERVICE
definition.

Values for the parameter are:
 LOCAL
 VERIFY

AUTHENTICATION
Optional Parameter

 The authentication and identification scheme to be used for inbound TCP/IP
connections

Values for the parameter are:
 ASSERTED
 AUTOMATIC
 AUTOREGISTER
 BASIC
 CERTIFICATE
 KERBEROS
 NONE

CERTIFICATE_STATUS
Optional Parameter

 The status of the X.509 certificate associated with the connection.

Values for the parameter are:
 NONE
 REGISTERED
 UNREGISTERED
 UNTRUSTED

CERTIFICATE_USERID
Optional Parameter

 is the userid associated with the certificate.
CLIENT_BIN_IP_ADDRESS

Optional Parameter

 is the 32 bit binary IP address of the client.
CLIENT_IP_ADDRESS

Optional Parameter

 is the text representation of the IP address of the client.
CLIENT_IP_ADDRESS_LEN

Optional Parameter

 is the length of the text representation of the client IP address.
CLIENT_IPFAMILY

Optional Parameter

 is the format the client IP address.
CONNECTIONS

Optional Parameter

 is either the number of connections for the service represented by the supplied
LISTEN_TOKEN, or the total number of TCP/IP connections to all of of the
currently active services.

DNS_STATUS
Optional Parameter

Chapter 106. Sockets Domain (SO) 1745

The Domain Name System (DNS) registration status of the TCPIPSERVICE.

Values for the parameter are:
 DEREGERROR
 DEREGISTERED
 NOTAPPLIC
 REGERROR
 REGISTERED
 UNAVAILABLE
 UNREGISTERED

GROUP_NAME
Optional Parameter

 The name of the dynamic DNS group that is registered with the MVS Work
Load Manager for this service.

LISTENER_PORT
Optional Parameter

 is the port number that the connection was received on.
LISTENER_STATUS

Optional Parameter

 is the current status of the SO domain listener task.

Values for the parameter are:
 CLOSED
 CLOSING
 IMMCLOSE
 IMMCLOSING
 OPEN
 OPENING

MAXDATA_LENGTH
Optional Parameter

 The maximum length of data that CICS will receive when operating as an
HTTP server.

MAXSOCKETS
Optional Parameter

 The value of the MAXSOCKETS system initialization parameter.
PEER_BIN_IP_ADDRESS

Optional Parameter

 The binary IP address of the peer client or server.
PRIVACY

Optional Parameter

 The level of SSL encryption required for inbound connections to this
TCPIPSERVICE

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

PROTOCOL
Optional Parameter

 The application level protocol used on the TCP/IP port.

Values for the parameter are:
 ECI
 HTTP

1746 CICS TS for z/OS 4.1: Diagnosis Reference

IIOP
 USER

SERVER_BIN_IP_ADDRESS
Optional Parameter

 is the 32 bit binary IP address of the CICS region.
SERVER_IP_ADDRESS

Optional Parameter

 is the text representation of the IP address of the CICS region.
SERVER_IP_ADDRESS_LEN

Optional Parameter

 is the length of the text representation of the server IP address.
SERVER_IPFAMILY

Optional Parameter

 is the format the server IP address.
SSLTYPE

Optional Parameter

 returns whether or not SSL is being used to secure this connection.

Values for the parameter are:
 CLIENTAUTH
 NO
 YES

TCPIP_STATUS
Optional Parameter

 The status of TCP/IP in the CICS region.

Values for the parameter are:
 CLOSED
 CLOSING
 IMMCLOSE
 IMMCLOSING
 OPEN
 OPENING

TCPIPSERVICE_NAME
Optional Parameter

 is the name of the service that attached the task, or the name associated with
the supplied LISTEN_TOKEN.

TRANSID
Optional Parameter

 is the transaction ID associated with the service.
TSQ_PREFIX

Optional Parameter

 is the TS queue prefix specified on the tcpipservice definition for this
connection.

URM_NAME
Optional Parameter

 is the name of the user-replaceable program specified on the tcpipservice
definition for this connection.

USER_TOKEN
Optional Parameter

 The user token associated with the connection.

Chapter 106. Sockets Domain (SO) 1747

VALIDATION_HASH
Optional Parameter

 SOIS gate, INQUIRE_CONNECTION function
Return information about a TCP/IP connection.

Input Parameters
CLIENT_HOSTNAME

Optional Parameter

 is a buffer in which the full hostname of the client is returned to the caller.
SERVER_HOSTNAME

Optional Parameter

 is a buffer in which the full hostname of the CICS region is returned to the
caller.

SOCKET_TOKEN
The token that represents the connection.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CLIENT_BIN_IP_ADDRESS
Optional Parameter

 The binary IP address of the client.
CLIENT_BIN_PORT

Optional Parameter

1748 CICS TS for z/OS 4.1: Diagnosis Reference

The binary port number of the client.
CLIENT_IP_ADDRESS

Optional Parameter

 The IP address of the client.
CLIENT_IP_ADDRESS_LEN

Optional Parameter

 is the length of the text representation of the client IP address.
CLIENT_IPFAMILY

Optional Parameter

 is the format the client IP address.
CLIENT_PORT

Optional Parameter

 The port number of the client.
SERVER_BIN_IP_ADDRESS

Optional Parameter

 The binary IP address of the server.
SERVER_BIN_PORT

Optional Parameter

 The binary port number of the server.
SERVER_IP_ADDRESS

Optional Parameter

 The IP address of the server.
SERVER_IP_ADDRESS_LEN

Optional Parameter

 is the length of the text representation of the server IP address.
SERVER_IPFAMILY

Optional Parameter

 is the format the server IP address.
SERVER_PORT

Optional Parameter

 The port number of the server.

SOIS gate, INQUIRE_PARAMETERS function
Returns the current values of the parameters for the SO domain. The values might
have changed from their initial values specified in the system initialization
parameters.

Input Parameters
CIPHER_SUITES

Optional Parameter

 A binary representation of the cipher suites used to encrypt data.
CRL_PROFILE

Optional Parameter

 The current value of the CRLPROFILE system initialization parameter.

Output Parameters
REASON

The values for the parameter are:
 ABEND

Chapter 106. Sockets Domain (SO) 1749

INVALID_CIPHERS
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONFDATA
Optional Parameter

 The current value of the CONFDATA system initialization parameter.

Values for the parameter are:
 HIDETC
 SHOW

ENCRYPTION
Optional Parameter

 The current value of the ENCRYPTION system initialization parameter.

Values for the parameter are:
 MEDIUM
 STRONG
 WEAK

IIOPLISTENER
Optional Parameter

 The current value of the IIOPLISTENER system initialization parameter.

Values for the parameter are:
 NO
 YES

KEYRING
Optional Parameter

 The current value of the KEYRING system initialization parameter.
MAXSOCKETS

Optional Parameter

 The current value of the MAXSOCKETS system initialization parameter.
MAXSSLTCBS

Optional Parameter

 The current value of the MAXSSLTCBS system initialization parameter.
SESSION_CACHE

Optional Parameter

 The current value of the SSLCACHE system initialization parameter.

Values for the parameter are:
 CICS
 SYSPLEX

SSLDELAY
Optional Parameter

 The current value of the SSLDELAY system initialization parameter.
TCPIP

Optional Parameter

 The current value of the TCPIP system initialization parameter.

Values for the parameter are:
 NO

1750 CICS TS for z/OS 4.1: Diagnosis Reference

YES

SOIS gate, INQUIRE_SOCKET_TOKEN function
Return the socket token for the current task.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOCKET_TOKEN
The socket token for the current task.

SOIS gate, INQUIRE_STATISTICS function
The INQUIRE_STATISTICS function returns gathered statistics about an open
tcpipservice.

Input Parameters
LISTEN_TOKEN

is a token representing the opened tcpipservice.
RESET

is a value indicating if the statistics should be reset.

 Values for the parameter are:
 NO
 YES

Chapter 106. Sockets Domain (SO) 1751

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ATTACH_COUNT
Optional Parameter

 is the total number of tasks that have been attached to handle incoming
connections.

PEAK_CONNECTIONS
Optional Parameter

 is the high water mark for connections since that last reset.
RECV_BYTES

Optional Parameter

 is the number of bytes received from TCP/IP.
RECV_COUNT

Optional Parameter

 is the number of times TCP/IP receive has been called.
SEND_BYTES

Optional Parameter

 is the number of bytes that have been sent to TCP/IP.
SEND_COUNT

Optional Parameter

 is the number of times TCP/IP send has been called.

1752 CICS TS for z/OS 4.1: Diagnosis Reference

SOIS gate, SET function
The SET function is called to open, close or immediately close the SO domain
within a region. This is called in response to a SET TCPIP operator or SPI
command.

Input Parameters
ATTACHSEC

Optional Parameter

 The level of attach-time user security required for this connection

Values for the parameter are:
 LOCAL
 VERIFY

MAXSOCKETS
Optional Parameter

 The maximum number of IP sockets that can be managed by the CICS sockets
domain. Used with TCPIP_STATUS(OPEN)

TCPIP_STATUS
Optional Parameter

 The desired status of the domain.

Values for the parameter are:
 CLOSED
 IMMCLOSE
 OPEN

TRACE_SUPPRESSION
Optional Parameter

 A binary value indicating whether trace is to be suppressed.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN

Chapter 106. Sockets Domain (SO) 1753

UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

NEWMAXSOCKETS
Optional Parameter

 The actual value of MAXSOCKETS. If the userid under which the CICS job is
running does not have superuser authority, CICS might set the MAXSOCKETS
limit to a smaller value than requested.

SOIS gate, SET_PARAMETERS function
The SET_PARAMETERS function is called during CICS initialization when the SIT
is processed. It sets the startup parameters for the SO domain.

Input Parameters
CONFDATA

Optional Parameter

 The value of the CONFDATA system initialization parameter.

Values for the parameter are:
 HIDETC
 SHOW

CRL_PROFILE
Optional Parameter

 The value of the CRLPROFILE system initialization parameter.
ENCRYPTION

Optional Parameter

 The value of the ENCRYPTION system initialization parameter.
IIOPLISTENER

Optional Parameter

 The value of the IIOPLISTENER system initialization parameter.

Values for the parameter are:
 NO
 YES

KEYRING
Optional Parameter

 The value of the KEYRING system initialization parameter.
MAXSOCKETS

Optional Parameter

 The value of the MAXSOCKETS system initialization parameter.
MAXSSLTCBS

Optional Parameter

 The value of the MAXSSLTCBS system initialization parameter.
SESSION_CACHE

Optional Parameter

1754 CICS TS for z/OS 4.1: Diagnosis Reference

The value of the SSLCACHE system initialization parameter.

Values for the parameter are:
 CICS
 SYSPLEX

SSLDELAY
Optional Parameter

 The value of the SSLCACHE system initialization parameter.
TCPIP

Optional Parameter

 The value of the TCPIP system initialization parameter.

Values for the parameter are:
 YES
 NO

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_CIPHERS
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOIS gate, VALIDATE_CIPHERS function
This function accepts a string of cipher suites and removes any that are not
supported.

Input Parameters
CIPHER_SUITES

The list of cipher suites to be validated.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_CIPHERS
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOIS gate, VERIFY_IP_ADDRESS function
This function verifies the format and value of an IP address, returning if required
its char(16) value. It will return UNKNOWN_SERVER_ADDRESS is the input is
not a correct IPv4 or IPv6 address format.

Chapter 106. Sockets Domain (SO) 1755

Input Parameters
SERVER_HOSTNAME

Optional Parameter

 The host name of the target IP address.
SERVER_IP_ADDRESS

Optional Parameter

 The target IP address.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CEEPIPI_ERROR
 LISTENER_ATTACH_FAILURE
 LOCK_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 HOSTNAME_TRUNCATED
 IIOPLISTENER_NO
 IO_ERROR
 MAXSOCKETS_HARD_LIMIT
 REPOSITORY_ERROR
 TCPIP_ALREADY_CLOSED
 TCPIP_ALREADY_OPEN
 TCPIP_UNAVAILABLE
 UNKNOWN_CLIENT_ADDRESS
 UNKNOWN_CLIENT_HOSTNAME
 UNKNOWN_LISTEN_TOKEN
 UNKNOWN_SERVER_ADDRESS
 UNKNOWN_SERVER_HOSTNAME
 UNKNOWN_SESSION_TOKEN
 UNKNOWN_SOCKET_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SERVER_BIN_IP_ADDRESS
The binary form of the IP address.

SOLS gate, LISTEN function
This function listens for incoming connections. The ports to listen on are controlled
by installing and opening TCPIPSERVICE definitions. The function is called from
the system task CSOL that is attached by the socket domain at startup. It returns
when TCP/IP is closed or CICS shuts down.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE

1756 CICS TS for z/OS 4.1: Diagnosis Reference

LOOP

The following values are returned when RESPONSE is EXCEPTION:
 CONNECTION_CLOSED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SORD gate, DEREGISTER function
The DEREGISTER function is called to close a TCPIPSERVICE. The listener task
closes the listening socket and no more connections to the port are permitted. Any
tasks handling existing connections are allowed to end normally.

Input Parameters
LISTEN_TOKEN

is a token representing the opened tcpipservice.
DNSGROUPNAME

Optional Parameter

 The group name with which CICS registers to Workload Manager, for
connection optimization.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 UNKNOWN_POST_CODE

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 INSUFFICIENT_STORAGE
 NOT_PERMITTED_TO_BIND
 PORT_IN_USE
 TCPIP_CLOSED
 TCPIP_INACTIVE
 TCPIP_SERVICE_ERROR
 UNKNOWN_ADDRESS
 UNKNOWN_LISTEN_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SORD gate, IMMCLOSE function
The IMMCLOSE function is called to immediately close a TCP/IP service. The
listener task closes the listening socket and no more connections to the port are
permitted. All existing connections are closed and any tasks handling them are
abnormally ended.

Chapter 106. Sockets Domain (SO) 1757

Input Parameters
LISTEN_TOKEN

is a token representing the opened TCP/IP service.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 UNKNOWN_POST_CODE

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 INSUFFICIENT_STORAGE
 NOT_PERMITTED_TO_BIND
 PORT_IN_USE
 TCPIP_CLOSED
 TCPIP_INACTIVE
 TCPIP_SERVICE_ERROR
 UNKNOWN_ADDRESS
 UNKNOWN_LISTEN_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SORD gate, REGISTER function
The REGISTER function is called to open a tcpipservice. It registers all the
parameters of the service with the listener task.

Input Parameters
AUTHENTICATION

Optional Parameter

 The authentication and identification scheme to be used for inbound TCP/IP
connections

Values for the parameter are:
 ASSERTED
 AUTOMATIC
 AUTOREGISTER
 BASIC
 CERTIFICATE
 KERBEROS
 NONE

BACKLOG
Optional Parameter

 The value of the backlog parameter passed to the TCP/IP listen function for
this service. It specifies how many connection requests TCP/IP will queue for
this service.

IPADDRESS
is the specific IP address that the listener will bind to for this service.

1758 CICS TS for z/OS 4.1: Diagnosis Reference

PORT_NUMBER
is the TCP/IP port number to listen for new connection on.

RECV_TIMEOUT
specifies whether or not receives should timeout, and if so, after how long.

SERVICE_NAME
is the name of the tcpipservice.

SSL
specifies whether or not connections to this service are to be secured using the
Secure Sockets Layer protcols.

 Values for the parameter are:
 CLIENTAUTH
 NO
 YES

TRANID
is the transaction ID that is to be attached when a new connection is made to
the listening port.

URM
is the name of a user-replacable program that the handler transaction for this
service will invoke during request processing.

ATTACHSEC
Optional Parameter

 The level of attach-time user security specified in the TCPIPSERVICE
definition.

CERTIFICATE_LABEL
Optional Parameter

 is the name of a certificate within the keyfile that this service will use to
authenticate itself to clients with, if the SSL protocol is used.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A binary representation of the cipher suites used to encrypt data.
DNSGROUPNAME

Optional Parameter

 The group name with which CICS registers to Workload Manager, for
connection optimization.

DNSGRPCRITICAL
Optional Parameter

 A binary value indicating whether the TCPIPSERVICE is a critical member of
the DNS group. When a critical TCPIPSERVICE closes or fails, CICS deregisters
the group name from Workload Manager.

Values for the parameter are:
 CRITICAL
 NONCRITICAL

MAXDATA_LENGTH
Optional Parameter

 The maximum length of data that CICS will receive when operating as an
HTTP server.

PRIVACY
Optional Parameter

Chapter 106. Sockets Domain (SO) 1759

The level of SSL encryption required for inbound connections to this
TCPIPSERVICE

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

PROTOCOL
Optional Parameter

 The application level protocol used on the TCP/IP port.

Values for the parameter are:
 ECI
 HTTP
 IIOP
 USER

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 UNKNOWN_POST_CODE

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 INSUFFICIENT_STORAGE
 NOT_PERMITTED_TO_BIND
 PORT_IN_USE
 TCPIP_CLOSED
 TCPIP_INACTIVE
 TCPIP_SERVICE_ERROR
 UNKNOWN_ADDRESS
 UNKNOWN_LISTEN_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

LISTEN_TOKEN
is a token representing the opened tcpipservice. This is subsequently used to
close the service.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SORD gate, REGISTER_NOTIFICATION function
This function is called by a client domain of the SO domain. After the registration
call returns, the client domains SOCB notify gate may be driven asynchronously at
any time a new TCP/IP connection arrives for a TCPIPSERVICE which has the
PROTOCOL parameter set to the same as that registered by this call.

Input Parameters
CALLBACK_GATE

The gate at which the client domain is called back
PROTOCOL

The protocol for which the client domain wishes to be called back.

1760 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOCK_FAILURE
 LOOP
 UNKNOWN_POST_CODE

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 INSUFFICIENT_STORAGE
 NOT_PERMITTED_TO_BIND
 PORT_IN_USE
 TCPIP_CLOSED
 TCPIP_INACTIVE
 TCPIP_SERVICE_ERROR
 UNKNOWN_ADDRESS
 UNKNOWN_LISTEN_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SORL gate, UPDATE_REVOCATION_LIST function
Update a certificate revocation list (CRL) in the LDAP server that is specified in
the CRLPROFILE system initialization parameter.

Input Parameters
REVOCATION_LIST

The new certificate revocation list
LDAP_ADMIN_DN

Optional Parameter

 The LDAP administrator distinguished name
LDAP_ADMIN_PW

Optional Parameter

 The LDAP administrator password

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_CRL
 INVALID_FORMAT
 INVALID_FUNCTION
 LDAP_ERROR
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 106. Sockets Domain (SO) 1761

SOTB gate, END_BROWSE function
The END_BROWSE function is called by CEMT and the SPI to end browsing
tcpipservices.

Input Parameters
BROWSE_TOKEN

is a token representing the browse.

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOTB gate, GET_NEXT function
The GET_NEXT function is called by CEMT and the SPI for browsing
tcpipservices. It returns information about an installed tcpipservice.

Input Parameters
BROWSE_TOKEN

is a token representing the browse.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCPIPSERVICE_NAME
is the name of the service that attached the task, or the name associated with
the supplied LISTEN_TOKEN.

ATTACHSEC
Optional Parameter

 The level of attach-time user security specified in the TCPIPSERVICE
definition.

AUTHENTICATION
Optional Parameter

 The authentication and identification scheme to be used for inbound TCP/IP
connections

Values for the parameter are:
 ASSERTED
 AUTOMATIC
 AUTOREGISTER
 BASIC
 CERTIFICATE
 KERBEROS
 NONE

BACKLOG
Optional Parameter

1762 CICS TS for z/OS 4.1: Diagnosis Reference

is the backlog value associated with the service.
CERTIFICATE_LABEL

Optional Parameter

 is the certificate label associated with the service.
CIPHER_COUNT

Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A binary representation of the cipher suites used to encrypt data.
CONNECTIONS

Optional Parameter

 is either the number of connections for the service represented by the supplied
LISTEN_TOKEN, or the total number of TCP/IP connections to all of of the
currently active services.

DNSGROUP
Optional Parameter

 The group name with which CICS registers to Workload Manager, for
connection optimization.

DNSSTATUS
Optional Parameter

 The Domain Name System (DNS) registration status of the TCPIPSERVICE.

Values for the parameter are:
 DEREGERROR
 DEREGISTERED
 NOTAPPLIC
 REGERROR
 REGISTERED
 UNAVAILABLE
 UNREGISTERED

GRPCRITICAL
Optional Parameter

 A binary value indicating whether the TCPIPSERVICE is a critical member of
the DNS group. When a critical TCPIPSERVICE closes or fails, CICS deregisters
the group name from Workload Manager.

Values for the parameter are:
 CRITICAL
 NONCRITICAL

IPADDRESS
Optional Parameter

 is the IP address that the service is bound to.
MAXDATA_LENGTH

Optional Parameter

 The maximum length of data that CICS will receive when operating as an
HTTP server.

PORT
Optional Parameter

 is the port number associated with the service.
PRIVACY

Optional Parameter

Chapter 106. Sockets Domain (SO) 1763

The level of SSL encryption required for inbound connections to this
TCPIPSERVICE

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

PROTOCOL
Optional Parameter

 The application level protocol used on the TCP/IP port.

Values for the parameter are:
 ECI
 HTTP
 IIOP
 USER

SOCKETCLOSE
Optional Parameter

 is the receive timeout value associated with the service.
SSL

Optional Parameter

 is the SSL setting for the service.

Values for the parameter are:
 CLIAUTH
 NO
 YES

STATUS
Optional Parameter

 is the current status of the service.

Values for the parameter are:
 CLOSED
 CLOSING
 IMMCLOSING
 OPEN
 OPENING

TRANSID
Optional Parameter

 is the transaction ID associated with the service.
URM

Optional Parameter

 is the name of the user-replaceable program associated with the service.

SOTB gate, INQUIRE_TCPIPSERVICE function
The INQUIRE_TCPIPSERVICE function is called by CEMT and the SPI for an
INQUIRE TCPIPSERICE function. It returns information about an installed
tcpipservice.

Input Parameters
TCPIPSERVICE_NAME

is the name of the tcpipservice.

1764 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ATTACHSEC
Optional Parameter

 The level of attach-time user security specified in the TCPIPSERVICE
definition.

AUTHENTICATION
Optional Parameter

 The authentication and identification scheme to be used for inbound TCP/IP
connections

Values for the parameter are:
 ASSERTED
 AUTOMATIC
 AUTOREGISTER
 BASIC
 CERTIFICATE
 KERBEROS
 NONE

BACKLOG
Optional Parameter

 The value of the backlog parameter passed to the TCP/IP listen function for
this service. It specifies how many connection requests TCP/IP will queue for
this service.

CERTIFICATE_LABEL
Optional Parameter

 is the certificate label associated with the service.
CIPHER_COUNT

Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A binary representation of the cipher suites used to encrypt data.
CONNECTIONS

Optional Parameter

 is either the number of connections for the service represented by the supplied
LISTEN_TOKEN, or the total number of TCP/IP connections to all of of the
currently active services.

DNSGROUP
Optional Parameter

 The group name with which CICS registers to Workload Manager, for
connection optimization.

DNSSTATUS
Optional Parameter

 The Domain Name System (DNS) registration status of the TCPIPSERVICE.

Values for the parameter are:

Chapter 106. Sockets Domain (SO) 1765

DEREGERROR
 DEREGISTERED
 NOTAPPLIC
 REGERROR
 REGISTERED
 UNAVAILABLE
 UNREGISTERED

GRPCRITICAL
Optional Parameter

 A binary value indicating whether the TCPIPSERVICE is a critical member of
the DNS group. When a critical TCPIPSERVICE closes or fails, CICS deregisters
the group name from Workload Manager.

Values for the parameter are:
 CRITICAL
 NONCRITICAL

IPADDRESS
Optional Parameter

 is the IP address that the service is bound to.
MAXDATA_LENGTH

Optional Parameter

 The maximum length of data that CICS will receive when operating as an
HTTP server.

PORT
Optional Parameter

 is the port number associated with the service.
PRIVACY

Optional Parameter

 The level of SSL encryption required for inbound connections to this
TCPIPSERVICE

Values for the parameter are:
 NOTSUPPORTED
 REQUIRED
 SUPPORTED

PROTOCOL
Optional Parameter

 The application level protocol used on the TCP/IP port.

Values for the parameter are:
 ECI
 HTTP
 IIOP
 USER

SOCKETCLOSE
Optional Parameter

 is the receive timeout value associated with the service.
SSL

Optional Parameter

 is the SSL setting for the service.

Values for the parameter are:
 CLIAUTH
 NO

1766 CICS TS for z/OS 4.1: Diagnosis Reference

YES
STATUS

Optional Parameter

 is the current status of the service.

Values for the parameter are:
 CLOSED
 CLOSING
 IMMCLOSING
 OPEN
 OPENING

TRANSID
Optional Parameter

 is the transaction ID associated with the service.
URM

Optional Parameter

 is the name of the user-replaceable program associated with the service.
VALIDATION_HASH

Optional Parameter

 SOTB gate, SET_TCPIPSERVICE function
The SET_TCPIPSERVICE function is called by CEMT and the SPI to set
tcpipservice parameters.

Input Parameters
TCPIPSERVICE_NAME

is the name of the tcpipservice.
BACKLOG

Optional Parameter

 is the value of the backlog parameter passed to the TCP/IP listen function for
this service. It specifies how many connection requests TCP/IP will queue for
this service.

DNSSTATUS
Optional Parameter

 The state of the Workload Manager's Domain Name System (DNS) registration
of this TCPIPSERVICE.

Values for the parameter are:
 DEREGISTERED

MAXDATA_LENGTH
Optional Parameter

 The maximum length of data that CICS will receive when operating as an
HTTP server.

STATUS
Optional Parameter

 is either OPEN or CLOSED.

Values for the parameter are:
 CLOSED
 IMMCLOSED
 OPEN

URM
Optional Parameter

Chapter 106. Sockets Domain (SO) 1767

is the name of a user-replacable program that the handler transaction for this
service will invoke during request processing.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 IIOPLISTENER_NO
 INVALID_STATUS
 NOT_FOUND
 PORT_IN_USE
 PORT_NOT_AUTHORISED
 TCPIP_CLOSED
 TCPIP_INACTIVE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SOTB gate, START_BROWSE function
The START_BROWSE function is called by CEMT and the SPI for an browsing
tcpipservices.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 AT_MAXSOCKETS
 BROWSE_END
 IIOPLISTENER_NO
 INVALID_BROWSE_TOKEN
 INVALID_STATUS
 NOT_FOUND
 PORT_IN_USE
 PORT_NOT_AUTHORISED
 TCPIP_CLOSED
 TCPIP_INACTIVE
 UNKNOWN_IP_ADDRESS
 URM_NOT_POSSIBLE

BROWSE_TOKEN
is a token representing the browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Socket domain's generic gates

Table 74 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 74. Socket domain's generic gates

Gate Trace Functions Format

SODM SO 0101
SO 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

1768 CICS TS for z/OS 4.1: Diagnosis Reference

Table 74. Socket domain's generic gates (continued)

Gate Trace Functions Format

STST SO 0A01
SO 0A02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

SOXM SO 0901
SO 0902

NQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN

XMXM

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777
 “Transaction manager domain's generic formats” on page 1999

Modules
 Module Function

DFHSOAD Handles the following requests:
 ADD_REPLACE_TCPIPSERVICE
 DELETE_TCPIPSERVICE

DFHSOCK Handles the following requests:
 LISTEN
 SEND
 RECEIVE
 CLOSE
 SEND_SSL_DATA
 RECV_SSL_DATA

DFHSODM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHSODUF Formats the SO domain control blocks

DFHSOIS Handles the following requests:
 INITIALIZE_ENVIRONMENT
 INQUIRE
 SET_PARAMETERS
 INQUIRE_STATISTICS
 VERIFY
 EXPORT_CERTIFICATE_DATA
 IMPORT_CERTIFICATE_DATA
 DELETE_CERTIFICATE_DATA
 INET_PTON
 INET_NTOP

DFHSORD Handles the following requests:
 REGISTER
 DEREGISTER
 IMMCLOSE

Chapter 106. Sockets Domain (SO) 1769

|
|

Module Function

DFHSOSE Handles the following requests:
 INITIALIZE_SSL
 SECURE_SOC_INIT
 SECURE_SOC_READ
 SECURE_SOC_WRITE
 SECURE_SOC_CLOSE
 SECURE_SOC_RESET
 TERMINATE_SSL
 EXPORT_CERTIFICATE_DATA
 IMPORT_CERTIFICATE_DATA
 DELETE_CERTIFICATE_DATA

DFHSOTB Handles the following requests:
 INQUIRE_TCPIPSERVICE
 START_BROWSE
 GET_NEXT
 END_BROWSE
 SET_TCPIPSERVICE

DFHSOTRI Interprets SO domain trace entries

1770 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 107. Statistics Domain (ST)

The statistics domain controls the collection of resource statistics for a CICS system
(the monitoring domain collects task statistics). The statistics domain collects data
at user-specified intervals, at system quiesce or logical end of day, and when
requested by the user, and writes it to the statistics data sets in SMF format. This
can subsequently be used by the statistics offline utility to produce formatted
reports.

Statistics domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the ST domain.

STST gate, COLLECT_RESOURCE_STATS function
The COLLECT_RESOURCE_STATS function of the STST format is used by the
EXEC API to ask a domain to collect its monitoring data collection information.

Input Parameters
RESOURCE_STATISTICS_DATA

specifies the address and length of the area into which the requested statistics
are to be placed.

LONG_RESOURCE_ID_DATA
Optional Parameter

 specifies the address and length of the resource identifier.
RESID_TOKEN

Optional Parameter

 a token representing the resource id required.
RESOURCE_ID

Optional Parameter

 specifies the address and length of the resource identifier.
RESOURCE_ID_2

Optional Parameter

 specifies the address and length of the resource identifier.
RESOURCE_ID_3

Optional Parameter

 specifies the address and length of the resource identifier.
RESOURCE_TYPE

Optional Parameter

 is the type of resource on which statistics are required.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ID_NOT_FOUND
 NOT_AVAILABLE

© Copyright IBM Corp. 1997, 2011 1771

TYPE_NOT_FOUND
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LAST_RESET_TIME
Optional Parameter

 indicates the time at which the statistics fields were last reset.

STST gate, COLLECT_STATISTICS function
The COLLECT_STATISTICS function of the STST format is used by the statistics
domain to ask a domain to collect its statistics.

Input Parameters
DATA

indicates whether the domain being called is requested to return its statistics to
the caller.

 Values for the parameter are:
 NO
 YES

END_OF_DAY
indicates whether all statistics fields are to be reset.

 Values for the parameter are:
 NO
 YES

RESET
indicates whether certain statistics fields are to be reset.

 Values for the parameter are:
 NO
 YES

RESET_TIME
is the time of day to be used as the time at which the statistics fields were last
reset.

RESOURCE_TYPE
Optional Parameter

 indicates the resource in the AP domain on which statistics are to be collected.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INCOMPLETE_DATA
 NOT_AVAILABLE
 TYPE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STST gate, DISABLE_STATISTICS function
The DISABLE_STATISTICS function of the STST gate is used to disable statistics
interval collections.

1772 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STST gate, INQ_STATISTICS_OPTIONS function
The INQ_STATISTICS_OPTIONS function of the STST gate is used to return
information associated with the statistics domain options.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

COLLECT
indicates whether interval statistics are being collected (and their counts reset).

 Values for the parameter are:
 NO
 YES

EOD_TIME_OF_DAY
is the time of day at which end-of-day statistics are collected.

INTERVAL
is the interval at which statistics are being collected if COLLECT is YES.

NEXT_COLLECTION_TIME
is the time of the next collection of statistics. If COLLECT is YES, it is the
earlier of the next interval collection time and the logical end-of-day time; if
COLLECT is NO, it is the logical end-of-day time.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STST gate, RECORD_STATISTICS function
The RECORD_STATISTICS function of the STST gate is used to record statistics.

Input Parameters
STATISTICS_DATA

specifies the address and length of data requested.
STATISTICS_TYPE

indicates the type of statistics collection, either a normal collection or
unsolicited.

 Values for the parameter are:
 COLLECTION
 USS

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

Chapter 107. Statistics Domain (ST) 1773

The following values are returned when RESPONSE is INVALID:
 INVALID_DATA_FORMAT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STST gate, REQUEST_STATISTICS function
The REQUEST_STATISTICS function of the STST gate is used to request a
collection of statistics.

Input Parameters
REQUEST_TOKEN

uniquely identifies the collection of statistics requested by the caller.
RESET

indicates whether certain statistics fields are to be reset.

 Values for the parameter are:
 NO
 YES

DOMAIN_TOKEN
Optional Parameter

 identifies the domain from which the statistics are to be collected.
RESOURCE_TYPE

Optional Parameter

 indicates the resource in the AP domain on which statistics are to be collected.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INCOMPLETE_DATA
 NOT_AVAILABLE
 TYPE_NOT_FOUND

The following values are returned when RESPONSE is INVALID:
 INVALID_RESET

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STST gate, SET_STATISTICS_OPTIONS function
The SET_STATISTICS_OPTIONS function of the STST gate is used to set statistics
options.

Input Parameters
COLLECT

Optional Parameter

 indicates whether interval statistics are to be collected (and their counts reset).

Values for the parameter are:
 NO
 YES

1774 CICS TS for z/OS 4.1: Diagnosis Reference

COLLECT_UPDATE_ACTION
Optional Parameter

 is the action to be taken when changing the COLLECT option value from NO
to YES, or from YES to NO.

Values for the parameter are:
 NOACTION
 RECORD_RESETNOW
 RECORDNOW
 RESETNOW

EOD_TIME_OF_DAY
Optional Parameter

 is the time of day at which end-of-day statistics are to be collected.
INTERVAL

Optional Parameter

 is the interval at which statistics are to be collected if COLLECT is YES.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 COLL_ACTION_NO_UPDATE

The following values are returned when RESPONSE is INVALID:
 INV_COLL_UPDATE_ACTION
 INVALID_COLLECT
 INVALID_EOD_TIME_OF_DAY
 INVALID_INTERVAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STST gate, STATISTICS_COLLECTION function
The STATISTICS_COLLECTION function of the STST gate is used to initiate a
collection of statistics.

Input Parameters
COLLECTION_TYPE

indicates whether this is an interval collection or end-of-day collection of
statistics.

 Values for the parameter are:
 EOD
 INT

DATA
indicates whether the domain being called is requested to return its statistics to
the caller.

 Values for the parameter are:
 NO
 YES

END_OF_DAY
indicates whether all statistics fields are to be reset.

Chapter 107. Statistics Domain (ST) 1775

Values for the parameter are:
 NO
 YES

RESET
indicates whether certain statistics fields are to be reset.

 Values for the parameter are:
 NO
 YES

SYSTEM_TERMINATING
Optional Parameter

 indicates whether this is the last collection for the CICS run.
YES is used for the end-of-day collection that is taken when CICS is shut
down.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Statistics domain's generic gates

Table 75 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 75. Statistics domain's generic gates

Gate Trace Functions Format

DMDM ST 0001
ST 0002

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

TISR ST 0005
ST 0006

NOTIFY TISR

In initialization processing, the statistics domain sets the initial statistics options:
v Collecting interval
v Logical end of day
v Collecting status.

For a cold start, the collecting interval defaults to 3 hours, the logical end of day
defaults to midnight, and the collecting status defaults to ON; for any other type of
start, the information comes from the global catalog.

In quiesce processing, the statistics domain collects and records statistics from all
other domains.

1776 CICS TS for z/OS 4.1: Diagnosis Reference

In termination processing, the statistics domain collects and records end-of-day
statistics.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Timer domain's generic formats” on page 1790

Statistics domain's generic gates

Table 75 on page 1776 summarizes the domain's generic gates. It shows the level-1
trace point IDs of the modules providing the functions for the gates, the functions
provided by the gates, and the generic formats for calls to the gates.

 Table 76. Statistics domain's generic gates

Gate Trace Functions Format

DMDM ST 0001
ST 0002

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

TISR ST 0005
ST 0006

NOTIFY TISR

In initialization processing, the statistics domain sets the initial statistics options:
v Collecting interval
v Logical end of day
v Collecting status.

For a cold start, the collecting interval defaults to 3 hours, the logical end of day
defaults to midnight, and the collecting status defaults to ON; for any other type of
start, the information comes from the global catalog.

In quiesce processing, the statistics domain collects and records statistics from all
other domains.

In termination processing, the statistics domain collects and records end-of-day
statistics.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Timer domain's generic formats” on page 1790

Statistics domain's generic formats

Table 77 describes the generic formats owned by the domain and shows the
functions performed on the calls.

 Table 77. Statistics domain's generic formats

Format Calling module Function

STST DFHEIQMS
DFHSTST

COLLECT_RESOURCE_STATS
COLLECT_STATISTICS

Chapter 107. Statistics Domain (ST) 1777

Note: In the descriptions of the formats, the input parameters are input not to the
statistics domain, but to the domain being called by the statistics domain. Similarly,
the output parameters are output by the domain that was called by the statistics
domain, in response to the call.

STST gate, COLLECT_RESOURCE_STATS function
The COLLECT_RESOURCE_STATS function of the STST format is used by the
EXEC API to ask a domain to collect its monitoring data collection information.

Input Parameters
RESOURCE_STATISTICS_DATA

specifies the address and length of the area into which the requested statistics
are to be placed.

LONG_RESOURCE_ID_DATA
Optional Parameter

 specifies the address and length of the resource identifier.
RESID_TOKEN

Optional Parameter

 a token representing the resource id required.
RESOURCE_ID

Optional Parameter

 specifies the address and length of the resource identifier.
RESOURCE_ID_2

Optional Parameter

 specifies the address and length of the resource identifier.
RESOURCE_ID_3

Optional Parameter

 specifies the address and length of the resource identifier.
RESOURCE_TYPE

Optional Parameter

 is the type of resource on which statistics are required.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ID_NOT_FOUND
 NOT_AVAILABLE
 TYPE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LAST_RESET_TIME
Optional Parameter

 indicates the time at which the statistics fields were last reset.

STST gate, COLLECT_STATISTICS function
The COLLECT_STATISTICS function of the STST format is used by the statistics
domain to ask a domain to collect its statistics.

1778 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
DATA

indicates whether the domain being called is requested to return its statistics to
the caller.

 Values for the parameter are:
 NO
 YES

END_OF_DAY
indicates whether all statistics fields are to be reset.

 Values for the parameter are:
 NO
 YES

RESET
indicates whether certain statistics fields are to be reset.

 Values for the parameter are:
 NO
 YES

RESET_TIME
is the time of day to be used as the time at which the statistics fields were last
reset.

RESOURCE_TYPE
Optional Parameter

 indicates the resource in the AP domain on which statistics are to be collected.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INCOMPLETE_DATA
 NOT_AVAILABLE
 TYPE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHSTDBX Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHSTDUF Formats the ST domain control blocks in a CICS system dump

DFHSTST Handles the following requests:
 INQ_STATISTICS_OPTIONS
 RECORD_STATISTICS
 REQUEST_STATISTICS
 SET_STATISTICS_OPTIONS
 STATISTICS_COLLECTION
 DISABLE_STATISTICS

Chapter 107. Statistics Domain (ST) 1779

Module Function

DFHSTTI Handles the NOTIFY request

DFHSTTRI Interprets ST domain trace entries

DFHSTUE Provides a SET_EXIT_STATUS routine to enable or disable a user exit.

1780 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 108. Timer Domain (TI)

The timer domain provides interval timing and alarm clock services for CICS
domains. These are processes that cause an action to occur at some predetermined
future time. This service (called "notifying") can be performed after a specific
interval, at periodic intervals, at a specified time of day, or at a specific time of day
every day.

Timer Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the TI domain.

TIMF gate, CONVERT_TIME function
This function converts a time value in any of a number of formats into the CICS
ABSTIME format.

Input Parameters
DATE_STRING

A human-readable text string containing a date and time value in one of the
following formats:
v RFC3339
v RFC1123
v RFC1036
v asctime()

TODCLOCK
The time of day expressed in the format of the z/Series Time-of-Day clock.

UTCTIME
The time expressed in the UTCtime format that is used in X.509 certificates.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 DAYNUM_INVALID
 GMT_INCORRECT
 INVALID_ABSTIME
 MONTH_INVALID
 TIME_INVALID
 UNSUPPORTED_FORMAT
 WEEKDAY_INVALID
 YEAR_INVALID

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is INVALID:
 NO_INPUT_TIME

© Copyright IBM Corp. 1997, 2011 1781

ABSTIME
The time specified in ABSTIME format consisting of an eight-byte packed
decimal number containing the number of milliseconds since midnight on 1
January 1900. The parameter can be specified in the range -9435484800000 to
+255611289599999, corresponding to years from 1601 to 9999 respectively.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMF gate, FORMAT_TIME function
This function formats a time specified in ABSTIME format into one or more date or
time formats.

Input Parameters
ABSTIME

A time specified in ABSTIME format consisting of an eight-byte packed
decimal number containing the number of milliseconds since midnight on 1
January 1900. The parameter can be specified in the range -9435484800000 to
+255611289599999, corresponding to years from 1601 to 9999 respectively.

ZONE
Optional Parameter

 The time zone associated with the ABSTIME parameter.

Values for the parameter are:
 GMT
 LOCAL

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 DAYNUM_INVALID
 GMT_INCORRECT
 INVALID_ABSTIME
 MONTH_INVALID
 TIME_INVALID
 UNSUPPORTED_FORMAT
 WEEKDAY_INVALID
 YEAR_INVALID

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is INVALID:
 NO_INPUT_TIME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BINARY_DAY
Optional Parameter

 The day of the month, expressed as a binary number.

1782 CICS TS for z/OS 4.1: Diagnosis Reference

BINARY_DAY_OF_YEAR
Optional Parameter

 The day of the year, expressed as a binary number.
BINARY_HOUR

Optional Parameter

 The hours portion of the time in hh:mm:ss.ddd format, expressed as a binary
number.

BINARY_MILLISECOND
Optional Parameter

 The fractional seconds portion of the time in hh:mm:ss.ddd format, expressed
as a binary number.

BINARY_MINUTE
Optional Parameter

 The minute section of the time , expressed as a binary number.
BINARY_MONTH

Optional Parameter

 The month of the year, expressed as a binary number.
BINARY_SECOND

Optional Parameter

 The seconds portion of the time in hh:mm:ss.ddd format, expressed as a binary
number.

BINARY_YEAR
Optional Parameter

 The year, expressed as a binary number.
DAY

Optional Parameter

 The day of the month.
DAY_OF_YEAR

Optional Parameter

 The day of the year.
HOUR

Optional Parameter

 The hours portion of the time in hh:mm:ss.ddd format.
JULIAN_DATE

Optional Parameter

 The Julian date
MILLISECOND

Optional Parameter

 The fractional seconds portion of the time in hh:mm:ss.ddd format, expressed
as a binary number.

MINUTE
Optional Parameter

 The minutes portion of the time in hh:mm:ss.ddd format, expressed as a binary
number.

MONTH
Optional Parameter

 The month of the year
RFC1123_DATE

Optional Parameter

Chapter 108. Timer Domain (TI) 1783

The date in RFC1123 format.
RFC3339_DATE

Optional Parameter

 The date in RFC3339 format.
SECOND

Optional Parameter

 The whole seconds portion of the time in hh:mm:ss.ddd format, expressed as a
binary number.

TIMER_UNITS
Optional Parameter

 The time expressed in zSeries timer units (1/300 second).
WEEKDAY_NUMBER

Optional Parameter

 The index of the day within the week. Sunday has an index of 0.
YEAR

Optional Parameter

 The year.

TIMF gate, INQUIRE_TIME function
This function returns the current time in one or more formats.

Input Parameters
ZONE

Optional Parameter

 The time zone for which the time is to be returned.

Values for the parameter are:
 GMT
 LOCAL

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 SEVERE_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 DAYNUM_INVALID
 GMT_INCORRECT
 INVALID_ABSTIME
 MONTH_INVALID
 TIME_INVALID
 UNSUPPORTED_FORMAT
 WEEKDAY_INVALID
 YEAR_INVALID

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is INVALID:
 NO_INPUT_TIME

1784 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABSTIME
A time specified in ABSTIME format consisting of an eight-byte packed
decimal number containing the number of milliseconds since midnight on 1
January 1900. The parameter can be specified in the range -9435484800000 to
+255611289599999, corresponding to years from 1601 to 9999 respectively.

BINARY_DAY
Optional Parameter

 The day of the month, expressed as a binary number.
BINARY_DAY_OF_YEAR

Optional Parameter

 The day of the year, expressed as a binary number.
BINARY_HOUR

Optional Parameter

 The hours portion of the time in hh:mm:ss.ddd format, expressed as a binary
number.

BINARY_MILLISECOND
Optional Parameter

 The fractional seconds portion of the time in hh:mm:ss.ddd format, expressed
as a binary number.

BINARY_MINUTE
Optional Parameter

 The minute section of the time , expressed as a binary number.
BINARY_MONTH

Optional Parameter

 The month of the year, expressed as a binary number.
BINARY_SECOND

Optional Parameter

 The seconds portion of the time in hh:mm:ss.ddd format, expressed as a binary
number.

BINARY_YEAR
Optional Parameter

 The year, expressed as a binary number.
DAY

Optional Parameter

 The day of the month.
DAY_OF_YEAR

Optional Parameter

 The day of the year.
HOUR

Optional Parameter

 The hours portion of the time in hh:mm:ss.ddd format.
JULIAN_DATE

Optional Parameter

 The Julian date
MILLISECOND

Optional Parameter

Chapter 108. Timer Domain (TI) 1785

The fractional seconds portion of the time in hh:mm:ss.ddd format, expressed
as a binary number.

MINUTE
Optional Parameter

 The minutes portion of the time in hh:mm:ss.ddd format, expressed as a binary
number.

MONTH
Optional Parameter

 The month of the year
RFC1123_DATE

Optional Parameter

 The date in RFC1123 format.
RFC3339_DATE

Optional Parameter

 The date in RFC3339 format.
SECOND

Optional Parameter

 The whole seconds portion of the time in hh:mm:ss.ddd format, expressed as a
binary number.

TIMER_UNITS
Optional Parameter

 The time expressed in zSeries timer units (1/300 second).
TODCLOCK

Optional Parameter

 The time of day expressed in the format of the z/Series Time-of-Day clock.
WEEKDAY_NUMBER

Optional Parameter

 The index of the day within the week. Sunday has an index of 0.
YEAR

Optional Parameter

 The year.

TISR gate, CANCEL function
The CANCEL function of the TISR gate is used to cancel a timer request that has
already been initiated by one of these functions:

Input Parameters
TIMER_TOKEN

is the token that was returned when the timer request was made.

Output Parameters
REASON

The values for the parameter are:
 REQUEST_NOT_FOUND
 TOO_LATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1786 CICS TS for z/OS 4.1: Diagnosis Reference

TISR gate, INQUIRE_EXPIRATION_TOKEN function
The INQUIRE_EXPIRATION_TOKEN function of the TISR gate is used by the
dispatcher domain during its initialization.

Output Parameters
EXPIRATION_TOKEN

is a token used during initialization of the dispatcher domain.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TISR gate, REQUEST_NOTIFY_INTERVAL function
The REQUEST_NOTIFY_INTERVAL function of the TISR gate is used to request
the timer domain to notify the calling domain after a specified real interval of time.
The calling domain can request a NOTIFY on a one-off basis or periodically, and
can specify the type of NOTIFY to be expected.

Input Parameters
DOMAIN_TOKEN

is a token that is to be passed as a parameter on the NOTIFY call.
NOTIFY_TYPE

specifies whether the attached task or the timer task is to be used to notify the
calling domain after the specified interval of time.

 Values for the parameter are:
 ATTACHED_TASK
 TIMER_TASK

PERIODIC_NOTIFY
specifies whether the requested NOTIFY is to be repeated at the specified
interval until canceled (YES), or is to be just a one-off NOTIFY (NO).

 Values for the parameter are:
 NO
 YES

STCK_INTERVAL
specifies an interval as a doubleword binary interval in stored clock (STCK)
format, where bit 51 of the doubleword represents 1 microsecond.

ATTACH_MODE
Optional Parameter

 is the optional TCB mode in which the attached NOTIFY task is to run.

Values for the parameter are:
 CO
 FO
 QR
 RO

ATTACH_PRIORITY
Optional Parameter

 defines the priority, in the range 0 through 255, at which the requested
NOTIFY task is to be attached.

ATTACH_TASK_TIMEOUT
Optional Parameter

 defines the value, in seconds, of a wait in the attached task after which the
dispatcher causes a time-out.

Chapter 108. Timer Domain (TI) 1787

ORIGIN_DATE
Optional Parameter

 defines the date from which the timer domain is to start the interval timing for
this request. This parameter is mandatory if ORIGIN_TIME has been specified.
It holds the origin date as MMDDYYYY.

ORIGIN_TIME
Optional Parameter

 defines the local time of day from which the timer domain is to start the
interval timing for this request. The value in decimal digits is specified in the
form HHMMSS:
HH Hours in the range 00 through 23
MM Minutes in the range 00 through 59
SS Seconds in the range 00 through 59

Output Parameters
REASON

The values for the parameter are:
 INVALID_INTERVAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_TOKEN
is the token that is returned by the timer domain. The timer token may be
used to cancel the NOTIFY request.

TISR gate, REQUEST_NOTIFY_TIME_OF_DAY function
The REQUEST_NOTIFY_TIME_OF_DAY function of the TISR gate is used to
inform the timer domain that an alarm call is required from the timer domain (that
is, a NOTIFY) at the specified time of day. The calling domain can request a
NOTIFY on a one-off basis or daily, and the type of NOTIFY to be expected.

Input Parameters
DOMAIN_TOKEN

is a token that is to be passed as a parameter on the NOTIFY call.
NOTIFY_TYPE

specifies whether the attached task or the timer task is to be used to notify the
calling domain after the specified interval of time.

 Values for the parameter are:
 ATTACHED_TASK
 TIMER_TASK

PERIODIC_NOTIFY
specifies whether the requested NOTIFY is to be repeated at the specified
interval until canceled (YES), or is to be just a one-off NOTIFY (NO).

 Values for the parameter are:
 NO
 YES

REQUESTED_TIME
is the time of day at which the NOTIFY function is to be invoked. The value is
specified in the form HHMMSS.

ATTACH_MODE
Optional Parameter

 is the optional TCB mode in which the attached NOTIFY task is to run.

1788 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 CO
 FO
 QR
 RO

ATTACH_PRIORITY
Optional Parameter

 defines the priority, in the range 0 through 255, at which the requested
NOTIFY task is to be attached.

ATTACH_TASK_TIMEOUT
Optional Parameter

 defines the value, in seconds, of a wait in the attached task after which the
dispatcher causes a time-out.

Output Parameters
REASON

The values for the parameter are:
 TOO_LATE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TIMER_TOKEN
is the token that is returned by the timer domain. The timer token may be
used to cancel the NOTIFY request.

Timer domain's generic gates

Table 78 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 78. Timer domain's generic gates

Gate Trace Functions Format

DMDM TI 0001
TI 0002

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

In initialization and quiesce processing, the timer domain performs only internal
routines.

The timer domain does no termination processing.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956

Chapter 108. Timer Domain (TI) 1789

Timer domain's generic formats

Table 79 describes the generic formats owned by the application domain and
shows the functions performed on the calls.

 Table 79. Timer domain's generic formats

Format Calling module Function

TISR DFHTISR NOTIFY

Note: In the descriptions of the formats that follow, the input parameters are input
not to the timer domain, but to the domain being called by the timer domain.
Similarly, the output parameters are output by the domain that was called by the
timer domain, in response to the call.

TISR gate, NOTIFY function
The NOTIFY function of the TISR format is used by the timer domain itself to
notify a domain after its requested interval or time has expired.

Input Parameters
DOMAIN_TOKEN

is a token that is to be passed as a parameter on the NOTIFY call.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHTIDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHTIDUF Formats the timer domain's control blocks

DFHTISR Handles the following requests:
 REQUEST_NOTIFY_INTERVAL
 REQUEST_NOTIFY_TIME_OF_DAY
 CANCEL
 INQUIRE_EXPIRATION_TOKEN

DFHTITRI Interprets timer domain trace entries

1790 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 109. Trace Domain (TR)

The trace domain is used by CICS system code and user application programs to
record details of the sequence of events occurring in the system. The basic unit of
information created for this purpose is called a trace entry. The trace domain can
put trace entries to any combination of three possible destinations:

Trace Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the TR domain.

TRFT gate, TRACE_PUT function
This function is invoked to write a feature trace entry to the active trace
destinations.

Input Parameters
FEATURE_TRACE_TOKEN

A token that the feature uses to identify itself to the CICS trace domain.
POINT_ID

is a number, unique within the calling domain, that identifies the trace entries
made from this call.

DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7

Optional Parameter

 BLOCK descriptions of up to seven areas to be included in the data section of
the trace entry. They appear in numerical order in the entry, each preceded by
a 2-byte length field.
The maximum total length of data that can be traced in one call is as described
below:
Length of trace table block 4096
less length of trace table block header - 24
less length of trace entry header - 32

Maximum space for data + length fields 4040
For each DATA field specified, 2 bytes must be
subtracted to allow for the length field.
Maximum space for actual data = 4040 - (2 * n)
where ’n’ is the number of DATA fields specified.

EXCEPTION_TRACE
Optional Parameter

 A binary value indicating whether the trace entry is for an exception trace.

Values for the parameter are:
 NO
 YES

RETURN_ADDR
Optional Parameter

© Copyright IBM Corp. 1997, 2011 1791

is used by DFHTRP to give a return address in the trace entry from the calling
module rather than in DFHTRP.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 DEREGISTERED_FEATURE
 INV_FEATURE_TRACE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRPT gate, TRACE_PUT function
This function is invoked to write a trace entry to the active trace destinations.

Input Parameters
POINT_ID

is a number, unique within the calling domain, that identifies the trace entries
made from this call.

DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7

Optional Parameter

 are BLOCK descriptions of up to seven areas to be included in the data section
of the trace entry. They appear in numerical order in the entry, each preceded
by a 2-byte length field.
The maximum total length of data that can be traced in one call is as described
below:
Length of trace table block 4096
less length of trace table block header - 24
less length of trace entry header - 32

Maximum space for data + length fields 4040
For each DATA field specified, 2 bytes must be
subtracted to allow for the length field.
Maximum space for actual data = 4040 - (2 * n)
where ’n’ is the number of DATA fields specified.

DOMAIN_TOKEN
Optional Parameter

 A token that identifies the calling domain to the trace domain.
RETURN_ADDR

Optional Parameter

 is used by DFHTRP to give a return address in the trace entry from the calling
module rather than in DFHTRP.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1792 CICS TS for z/OS 4.1: Diagnosis Reference

TRSR gate, ACTIVATE_TRAP function
The ACTIVATE_TRAP function of the TRSR gate is used to activate the FE global
trap/trace exit (DFHTRAP).

Output Parameters
REASON

The values for the parameter are:
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRSR gate, DEACTIVATE_TRAP function
The DEACTIVATE_TRAP function of the TRSR gate is used to deactivate the FE
global trap/trace exit (DFHTRAP).

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

TRSR gate, INQUIRE_AUXILIARY_TRACE function
The INQUIRE_AUXILIARY_TRACE function of the TRSR gate is used to return the
current state of the auxiliary trace.

Output Parameters
AUTOSWITCH_STATUS

Indicates whether or not an automatic switch to the inactive CICS auxiliary
extent is to occur once only when the current extent fills up, or that such
automatic switching should occur "continuously" whenever the current extent
fills up.

 Values for the parameter are:
 CONTINUOUS
 OFF
 ONCE

AUXILIARY_STATUS
Indicates the current status of auxiliary trace.

 Values for the parameter are:
 PAUSED

Chapter 109. Trace Domain (TR) 1793

STARTED
 STOPPED

EXTENT
indicates the currently active CICS auxiliary trace extent; that is, the extent that
is already in use or is used if CICS auxiliary tracing is started.

 Values for the parameter are:
 DFHAUXT
 DFHBUXT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

TRSR gate, INQUIRE_GTF_TRACE function
The INQUIRE_GTF_TRACE function of the TRSR gate is used to return the current
state of the GTF trace.

Output Parameters
GTF_STATUS

indicates whether CICS tracing to GTF is active (STARTED) or inactive
(STOPPED).

 Values for the parameter are:
 STARTED
 STOPPED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

1794 CICS TS for z/OS 4.1: Diagnosis Reference

TRSR gate, INQUIRE_INTERNAL_TRACE function
The INQUIRE_INTERNAL_TRACE function of the TRSR gate is used to return the
status of the internal trace and the current size of the internal trace table.

Output Parameters
INTERNAL_STATUS

indicates whether internal trace is active (STARTED) or inactive (STOPPED).

 Values for the parameter are:
 STARTED
 STOPPED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TABLE_SIZE
is the size of the current internal trace table in KB (KB equals 1024 bytes).

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

TRSR gate, PAUSE_AUXILIARY_TRACE function
The PAUSE_AUXILIARY_TRACE function of the TRSR gate is used to stop
auxiliary tracing without closing the currently active extent.

Output Parameters
REASON

The values for the parameter are:
 AUX_TRACE_STOPPED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRSR gate, SET_AUX_TRACE_AUTOSWITCH function
The SET_AUX_TRACE_AUTOSWITCH function of the TRSR gate is used to allow
the autoswitch facility for the CICS auxiliary trace data set to be enabled or
disabled.

Input Parameters
AUTOSWITCH_STATUS

Indicates whether or not an automatic switch to the inactive CICS auxiliary
extent is to occur once only when the current extent fills up, or that such
automatic switching should occur "continuously" whenever the current extent
fills up.

 Values for the parameter are:

Chapter 109. Trace Domain (TR) 1795

CONTINUOUS
 OFF
 ONCE

Output Parameters
REASON

The values for the parameter are:
 INVALID_AUTOSWITCH_STATUS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRSR gate, SET_INTERNAL_TABLE_SIZE function
The SET_INTERNAL_TABLE_SIZE function of the TRSR gate is used to change the
size of the internal trace table during a CICS(R) run.

Input Parameters
TABLE_SIZE

is the required table size, specified as a number of KB (KB equals 1024 bytes).
This is rounded up to the nearest multiple of 4KB. The lower limit is 16KB.
The upper limit is set only by the amount of storage available. If the table is
being made larger, the existing table is freed and a variable MVS GETMAIN
issued for the required size. The actual length of the new table can be
determined by issuing an INQUIRE_INTERNAL_TRACE command. If the
table is being made smaller, part of the existing table is freed.

Output Parameters
REASON

The values for the parameter are:
 INVALID_TABLE_SIZE
 NO_SPACE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRSR gate, START_AUXILIARY_TRACE function
The START_AUXILIARY_TRACE function of the TRSR gate is used to open the
current auxiliary trace extent (if it is closed) and start tracing to it.

Output Parameters
REASON

The values for the parameter are:
 CANT_GET_AUX_BUFFER
 DFHTRAO_NOT_AVAILABLE
 OPEN_FAILED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRSR gate, START_GTF_TRACE function
The START_GTF_TRACE function of the TRSR gate is used to start the tracing of
CICS activity to GTF. It is the responsibility of the user to ensure that GTF has
been started in MVS with at least TRACE=USR. If it has not, CICS issues the GTF
calls but they are ignored by GTF.

1796 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The values for the parameter are:
 CANT_GET_GTF_BUFFER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRSR gate, START_INTERNAL_TRACE function
The START_INTERNAL_TRACE function of the TRSR gate is used to activate
tracing to the internal trace table.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

TRSR gate, STOP_AUXILIARY_TRACE function
The STOP_AUXILIARY_TRACE function of the TRSR gate is used to stop auxiliary
tracing and close the currently active auxiliary trace extent.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

Chapter 109. Trace Domain (TR) 1797

TRSR gate, STOP_GTF_TRACE function
The STOP_GTF_TRACE function of the TRSR gate is used to stop tracing of CICS
activity to GTF.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

TRSR gate, STOP_INTERNAL_TRACE function
The STOP_INTERNAL_TRACE function of the TRSR gate is used to deactivate
tracing to the internal trace table.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The values for the parameter are:
 AUX_TRACE_STOPPED
 CANT_GET_AUX_BUFFER
 CANT_GET_GTF_BUFFER
 DFHTRAO_NOT_AVAILABLE
 DFHTRAP_NOT_FOUND
 DFHTRAP_UNUSABLE
 INVALID_AUTOSWITCH_STATUS
 INVALID_TABLE_SIZE
 NO_SPACE
 OPEN_FAILED

TRSR gate, SWITCH_AUXILIARY_EXTENTS function
The SWITCH_AUXILIARY_EXTENTS function of the TRSR gate allows switching
from one auxiliary trace extent to the other.

Output Parameters
REASON

The values for the parameter are:
 OPEN_FAILED

1798 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Trace domain's generic gates

Table 80 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 80. Trace domain's generic gates

Gate Trace Functions Format

DMDM ST 0001
ST 0002

PRE_INITIALIZE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

KETI TR 0201
TR 0202

NOTIFY_RESET KETI

In preinitialization processing, the trace domain establishes the initial tracing
status:
v A suitably sized internal trace table is created.
v If internal tracing or GTF tracing is required, set on the trace master flag.
v If required, start internal tracing and CICS GTF tracing.
v As required, set the auxiliary tracing switch status to 'started' or 'stopped'.

The information always comes from the system initialization parameters - trace
domain is always cold started.

In initialization processing, the trace domain starts auxiliary tracing if it is
required.

The trace domain does no quiesce processing.

In termination processing, the trace domain stops auxiliary tracing if it is active.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Kernel domain generic formats” on page 1244

Modules
 Module Function

DFHTRDM Part of the DFHSIP load module. DFHTRPT DFHTRPX
Processes, within the calling domain, all TRACE_PUT requests that do
not require special handling. Part of the DFHSIP load module.
DFHTRSR Processes requests to the TRSR and KETI gates of the trace
domain. Part of the DFHSIP load module. DFHTRSU Processes domain
subroutine requests of format TRSU. Part of the DFHSIP load module.
DFHTRAO Auxiliary trace output subroutines for interfacing with
BSAM. Loaded separately below the 16MB line when auxiliary trace is
started. DFHTRAP FE global trap/trace exit program. Loaded separately
above the 16MB line when the trap is activated.

Chapter 109. Trace Domain (TR) 1799

Module Function

DFHTRAO Auxiliary trace output subroutines for interfacing with BSAM. Loaded
separately below the 16MB line when auxiliary trace is started.

DFHTRAP FE global trap/trace exit program. Loaded separately above the 16MB
line when the trap is activated.

DFHTRDM Processes requests to the DMDM gate of the trace domain. Part of the
DFHSIP load module.

DFHTRPT Processes requests to the TRPT gate of the trace domain. Part of the
DFHSIP load module.

DFHTRPX Processes, within the calling domain, all TRACE_PUT requests that do
not require special handling. Part of the DFHSIP load module.

DFHTRSR Processes requests to the TRSR and KETI gates of the trace domain. Part
of the DFHSIP load module.

DFHTRSU Processes domain subroutine requests of format TRSU. Part of the
DFHSIP load module.

1800 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 110. Temporary Storage Domain (TS)

The temporary storage domain manages temporary storage requests.

Temporary Storage Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the TS domain.

TSAD gate, ADD_REPLACE_TSMODEL function
Add or replace a temporary storage model

Input Parameters
MAIN

A binary value that specifies whether queues matching this model are to be
held in main storage. If MAIN(NO) is specified, the queues are held in auxiliary
main storage.

 Values for the parameter are:
 NO
 YES

PREFIX
The character string that is to be used as the prefix for this model. The prefix
may be up to 16 characters in length.

RECOVERABLE
A binary value that specifies whether queues matching this model are to be
recoverable.

 Values for the parameter are:
 NO
 YES

SECURITY
A binary value that specifies whether security checking is to be performed for
queues matching this model.

 Values for the parameter are:
 NO
 YES

TSMODEL_NAME
The name of the temporary storage model.

POOL_NAME
Optional Parameter

 The 8-character name of the shared TS pool associated with the model.
REMOTE_PREFIX

Optional Parameter

 The character string that is to be used as the prefix on the remote system. The
prefix may be up to 16 characters in length.

SYSID
Optional Parameter

 The name of the to the remote system where the temporary storage queue
resides.

© Copyright IBM Corp. 1997, 2011 1801

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_PREFIX
 INVALID_NAME
 INVALID_PREFIX
 INVALID_REMOTE_PREFIX
 RDO_DISABLED

DUPLICATE_PREFIX_NAME
When REASON(DUPLICATE_PREFIX) is returned, the name of the existing prefix
that clashes with the prefix for this model.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSAD gate, DELETE_TSMODEL function
Delete a temporary storage model.

Input Parameters
TSMODEL_NAME

The name of the model to be deleted.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND
 RDO_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSAD gate, INITIALISE function
Initialize temporary storage models from the catalog.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_PREFIX
 INVALID_NAME
 INVALID_PREFIX
 INVALID_REMOTE_PREFIX
 NOT_FOUND
 RDO_DISABLED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSBR gate, CHECK_PREFIX function
Checks whether there are any queues with the prefix provided.

Input Parameters
PREFIX

The queue prefix to be checked.

1802 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSBR gate, END_BROWSE function
Ends the browse.

Input Parameters
BROWSE_TOKEN

A token that identifies the browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DUPLICATE
 NOT_FOUND
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSBR gate, GET_NEXT function
Returns information about the next queue in the browse.

Input Parameters
BROWSE_TOKEN

A token that represents the browse session.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

QUEUE_NAME
is the name of the queue.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CREATION_TIME
Optional Parameter

 is the time at which the queue was created.
LAST_REFERENCED_TIME

Optional Parameter

 is the time at which the queue was last referenced.
MAXIMUM_ITEM_LENGTH

Optional Parameter

 is the length of the longest item in the queue.

Chapter 110. Temporary Storage Domain (TS) 1803

MINIMUM_ITEM_LENGTH
Optional Parameter

 is the length of the shortest item in the queue.
RECOVERABLE

Optional Parameter

 returns whether the queue is recoverable or not.

Values for the parameter are:
 NO
 YES

STORAGE_TYPE
Optional Parameter

 indicates whether the queue is held in main or auxiliary storage.

Values for the parameter are:
 AUXILIARY
 MAIN

TOTAL_ITEMS
Optional Parameter

 is the total number of items in the queue on completion of the operation.
TOTAL_LENGTH

Optional Parameter

 is the sum of the lengths of all the items in the queue.
TRANSID

Optional Parameter

 is the id of the transaction whcih created the queue.

TSBR gate, INQUIRE_QUEUE function

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CREATION_TIME
Optional Parameter

 is the time at which the queue was created.
LAST_REFERENCED_TIME

Optional Parameter

 is the time at which the queue was last referenced.
MAXIMUM_ITEM_LENGTH

Optional Parameter

 is the length of the longest item in the queue.
MINIMUM_ITEM_LENGTH

Optional Parameter

 is the length of the shortest item in the queue.

1804 CICS TS for z/OS 4.1: Diagnosis Reference

QUEUE_TYPE
Optional Parameter

 The type of queue.

Values for the parameter are:
 CICS
 USER

RECOVERABLE
Optional Parameter

 returns whether the queue is recoverable or not.

Values for the parameter are:
 NO
 YES

STORAGE_TYPE
Optional Parameter

 indicates whether the queue is held in main or auxiliary storage.

Values for the parameter are:
 AUXILIARY
 MAIN

TOTAL_ITEMS
Optional Parameter

 is the total number of items in the queue on completion of the operation.
TOTAL_LENGTH

Optional Parameter

 is the sum of the lengths of all the items in the queue.
TRANSID

Optional Parameter

 is the id of the transaction whcih created the queue.

TSBR gate, START_BROWSE function

Input Parameters
QUEUE_NAME

Optional Parameter

 is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 DUPLICATE
 NOT_FOUND
 QUEUE_NOT_FOUND

BROWSE_TOKEN
A token that represents the browse session.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSMB gate, END_BROWSE function
End the browse operation on the set of temporary storage models.

Chapter 110. Temporary Storage Domain (TS) 1805

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

Output Parameters
REASON

The values for the parameter are:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSMB gate, GET_NEXT function
In a browse operation, return information about a temporary storage model.

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSMODEL_NAME
The name of the temporary storage model.

MAIN
Optional Parameter

 A binary value that indicates whether the temporary storage queues that match
this model are to be held in main storage. If MAIN(NO) is specified, the
queues are held on auxiliary storage.

Values for the parameter are:
 NO
 YES

POOL_NAME
Optional Parameter

 The name of the shared temporary storage pool uses with the model.
PREFIX

Optional Parameter

 The character string used as a prefix for queues that match the temporary
storage model.

RECOVERABLE
Optional Parameter

 A binary value that indicates whether the queue is recoverable.

Values for the parameter are:
 NO
 YES

REMOTE_PREFIX
Optional Parameter

1806 CICS TS for z/OS 4.1: Diagnosis Reference

The character string used as a prefix on a remote system for queues that match
the temporary storage model.

SECURITY
Optional Parameter

 A binary value that indicates whether security checking is to be performed for
queues that match this model.

Values for the parameter are:
 NO
 YES

SYSID
Optional Parameter

 The name of the connection to the remote system where the temporary storage
queue resides.

TSMB gate, INQUIRE_TSMODEL function
Inquire on the attributes of a TS model.

Input Parameters
TSMODEL_NAME

The name of the temporary storage model.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MAIN
A binary value that specifies whether queues matching this model are to be
held in main storage. If MAIN(NO) is specified, the queues are held in auxiliary
main storage.

 Values for the parameter are:
 NO
 YES

POOL_NAME
Optional Parameter

 The 8-character name of the shared TS pool associated with the model.
PREFIX

The character string that is to be used as the prefix for this model. The prefix
may be up to 16 characters in length.

RECOVERABLE
A binary value that specifies whether queues matching this model are to be
recoverable.

 Values for the parameter are:
 NO
 YES

REMOTE_PREFIX
Optional Parameter

 The character string that is to be used as the prefix on the remote system. The
prefix may be up to 16 characters in length.

Chapter 110. Temporary Storage Domain (TS) 1807

SECURITY
A binary value that specifies whether security checking is to be performed for
queues matching this model.

 Values for the parameter are:
 NO
 YES

SYSID
Optional Parameter

 The name of the to the remote system where the temporary storage queue
resides.

TSMB gate, MATCH function
Find model which is the best match with the queue name provided.

Input Parameters
QUEUE_NAME

The name of the queue to be matched with temporary storage models.
SEARCH

Optional Parameter

 Specifies whether the search is confined to temporary storage models, or
extended to the cache of models for the current unit of work.

Values for the parameter are:
 MODELS_ONLY
 UOW_CACHE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

MAIN
Optional Parameter

 A binary value that indicates whether the temporary storage queues that match
this model are to be held in main storage. If MAIN(NO) is specified, the
queues are held on auxiliary storage.

Values for the parameter are:
 NO
 YES

POOL_NAME
Optional Parameter

 The name of the shared temporary storage pool uses with the model.
POOL_TOKEN

Optional Parameter

 A token that identifies the temporary storage pool associated with the pool
name.

PREFIX
Optional Parameter

1808 CICS TS for z/OS 4.1: Diagnosis Reference

The character string used as a prefix for queues that match the temporary
storage model.

RECOVERABLE
Optional Parameter

 A binary value that indicates whether the queue is recoverable.

Values for the parameter are:
 NO
 YES

REMOTE_NAME
Optional Parameter

 The name of the temporay storage queue on the remote system.
REMOTE_PREFIX

Optional Parameter

 The character string that is used as the prefix on the remote system.
SECURITY

Optional Parameter

 A binary value that indicates whether security checking is to be performed for
queues that match this model.

Values for the parameter are:
 NO
 YES

SYSID
Optional Parameter

 The name of the connection to the remote system where the temporary storage
queue resides.

TSMODEL_NAME
Optional Parameter

 The name of the matching temporary storage model.

TSMB gate, START_BROWSE function
Start a browse operation on temporary storage models.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 INVALID_BROWSE_TOKEN
 NOT_FOUND

BROWSE_TOKEN
See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSPT gate, GET function
This function retrieves the first item in a "put" queue.

Chapter 110. Temporary Storage Domain (TS) 1809

Input Parameters
ITEM_BUFFER

specifies the address (item_buffer_p) and maximum length (item_buffer_m) of
the data area into which the data will be read. The actual data length is
returned in item_buffer_n.

QUEUE_NAME
is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

TSPT gate, GET_RELEASE function
This function retrieves and deletes the first item in a "put" queue. If the queue has
one item, the queue is deleted.

Input Parameters
ITEM_BUFFER

specifies the address (item_buffer_p) and maximum length (item_buffer_m) of
the data area into which the data will be read. The actual data length is
returned in item_buffer_n.

QUEUE_NAME
is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 LOCKED
 QUEUE_DELETED
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:

1810 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

TSPT gate, GET_RELEASE_SET function
This function retrieves the first item in a "put" queue into set storage and then
deletes it. If the queue has one item, the queue is deleted.

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 LOCKED
 QUEUE_DELETED
 QUEUE_NOT_FOUND

ITEM_DATA
returns the address and length of the item data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

TSPT gate, GET_SET function
This function retrieves the first item in a "put" queue into a set storage area.

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 QUEUE_NOT_FOUND

ITEM_DATA
returns the address and length of the item data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

Chapter 110. Temporary Storage Domain (TS) 1811

indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

TSPT gate, PUT function
If the queue does not already exist, this function creates a queue with the single
item provided.

Input Parameters
ITEM_DATA

is the address and length of the item being written.
QUEUE_NAME

is the name of the queue being created or appended to.
SUSPEND

indicates whether or not the request will be suspended if there is insufficient
auxiliary storage to satisfy the request. This option is ignored if the queue is in
main storage.

 Values for the parameter are:
 NO
 YES

BMS
Optional Parameter

 indicates whether or not BMS owns this queue.

Values for the parameter are:
 NO
 YES

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

IC Optional Parameter

 this option indicates whether or not Interval Control owns this queue. If the
queue already exists and is an IC queue then IC(YES) must be specified on the
request. Otherwise an INVALID response is returned.

Values for the parameter are:
 NO
 YES

IC_DATA
Optional Parameter

 is the address and length of an optional ICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_NAME
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME

1812 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_QUEUE_TYPE
 IO_ERROR
 LOCKED
 QUEUE_DELETED
 QUEUE_FULL
 QUEUE_REMOTE

QUEUE_CREATION_TIME
returns the store clock time at which the queue was created.

RECOVERABLE
returns whether the queue is recoverable or not.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSPT gate, PUT_REPLACE function
If the queue does not exist, this function creates the queue with the item provided.
If the queue does exist, the first item in the queue is replaced by the item
provided.

Input Parameters
ITEM_DATA

is the address and length of the item being written.
QUEUE_NAME

is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 LOCKED
 QUEUE_DELETED
 QUEUE_REMOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSPT gate, RELEASE function
This function deletes a "put" queue.

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE

Chapter 110. Temporary Storage Domain (TS) 1813

LOCKED
 QUEUE_DELETED
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSQR gate, ALLOCATE_SET_STORAGE function
This function allocates set storage of the requested length.

Input Parameters
REQUESTED_LENGTH

The desired length of the storage to be allocated.
CALLER

Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 ITEM_NOT_FOUND
 LOCKED
 QUEUE_DELETED
 QUEUE_FULL
 QUEUE_NOT_FOUND
 QUEUE_REFERENCED
 QUEUE_REMOTE

ADDRESS
The address of the allocated storage.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACTUAL_LENGTH
Optional Parameter

 The actual length of the allocated storage.

TSQR gate, DELETE function
This function deletes the specified queue.

Input Parameters
QUEUE_NAME

The name of the queue to be deleted.
CALLER

Optional Parameter

1814 CICS TS for z/OS 4.1: Diagnosis Reference

Indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

LAST_REFERENCED_TIME
Optional Parameter

 The time of the last reference to the queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 LOCKED
 QUEUE_DELETED
 QUEUE_NOT_FOUND
 QUEUE_REFERENCED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSQR gate, READ_INTO function
This function reads the specified queue item into a buffer provided by the caller.
The read cursor for the queue is set to the item number provided. The caller
provides the address (item_buffer_p) and buffer length (item_buffer_m). The actual
length of the record is returned in item_buffer_n. If item_buffer_n is greater than
item_buffer_m, the data is truncated (but an OK response is returned).

Input Parameters
ITEM_BUFFER

specifies the address (item_buffer_p) and maximum length (item_buffer_m) of
the data area into which the data will be read. The actual data length is
returned in item_buffer_n.

ITEM_NUMBER
is the number of the item to be updated.

QUEUE_NAME
is the name of the queue being created or appended to.

CALLER
Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 ITEM_NOT_FOUND

Chapter 110. Temporary Storage Domain (TS) 1815

QUEUE_NOT_FOUND
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

TOTAL_ITEMS
Optional Parameter

 is the total number of items in the queue on completion of the operation.

TSQR gate, READ_NEXT_INTO function
This function increments the read cursor by one and reads that item number into
the buffer provided by the caller. The caller provides the address (item_buffer_p)
and buffer length (item_buffer_m). The actual length of the record is returned in
item_buffer_n. If item_buffer_n is greater than item_buffer_m, the data will have
been truncated.

Input Parameters
ITEM_BUFFER

specifies the address (item_buffer_p) and maximum length (item_buffer_m) of
the data area into which the data will be read. The actual data length is
returned in item_buffer_n.

QUEUE_NAME
is the name of the queue being created or appended to.

CALLER
Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO

1816 CICS TS for z/OS 4.1: Diagnosis Reference

YES
ITEM_NUMBER

Optional Parameter

 returns the number of the item just read.
TOTAL_ITEMS

Optional Parameter

 is the total number of items in the queue on completion of the operation.

TSQR gate, READ_NEXT_SET function
This function increments the queue's read cursor by one and reads that item
number into a storage area obtained by TS.

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.
CALLER

Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

SET_STORAGE_CLASS
Optional Parameter

 specifies the class of storage into which the item will be read. This may be
either TASK (the default) or TERMINAL. If TERMINAL is specified, the item is
read into a TIOA.

Values for the parameter are:
 TASK
 TERMINAL

TCTTE_ADDRESS
Optional Parameter

 is the address of the TCTTE - required if SET_STORAGE_CLASS(TERMINAL)
is specified.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND

ITEM_DATA
returns the address and length of the item data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Chapter 110. Temporary Storage Domain (TS) 1817

Values for the parameter are:
 NO
 YES

ITEM_NUMBER
Optional Parameter

 returns the number of the item just read.
TOTAL_ITEMS

Optional Parameter

 is the total number of items in the queue on completion of the operation.

TSQR gate, READ_SET function
This function reads the specified queue item into a storage area obtained by TS.
The read cursor for the queue is set to the input item number.

Input Parameters
ITEM_NUMBER

is the number of the item to be updated.
QUEUE_NAME

is the name of the queue being created or appended to.
CALLER

Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

SET_STORAGE_CLASS
Optional Parameter

 specifies the class of storage into which the item will be read. This may be
either TASK (the default) or TERMINAL. If TERMINAL is specified, the item is
read into a TIOA.

Values for the parameter are:
 TASK
 TERMINAL

TCTTE_ADDRESS
Optional Parameter

 is the address of the TCTTE - required if SET_STORAGE_CLASS(TERMINAL)
is specified.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND

ITEM_DATA
returns the address and length of the item data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1818 CICS TS for z/OS 4.1: Diagnosis Reference

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

TOTAL_ITEMS
Optional Parameter

 is the total number of items in the queue on completion of the operation.

TSQR gate, REWRITE function
This function updates the specified item in an existing queue. The read cursor is
unchanged.

Input Parameters
ITEM_DATA

is the address and length of the item being written.
ITEM_NUMBER

is the number of the item to be updated.
QUEUE_NAME

is the name of the queue being created or appended to.
SUSPEND

indicates whether or not the request will be suspended if there is insufficient
auxiliary storage to satisfy the request. This option is ignored if the queue is in
main storage.

 Values for the parameter are:
 NO
 YES

CALLER
Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 ITEM_NOT_FOUND

Chapter 110. Temporary Storage Domain (TS) 1819

LOCKED
 QUEUE_DELETED
 QUEUE_NOT_FOUND
 QUEUE_REMOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
Optional Parameter

 is the total number of items in the queue on completion of the operation.

TSQR gate, WRITE function
If the queue does not exist, this function creates a queue with the single item
provided, and the queue's "read cursor" is set to zero.

Input Parameters
ITEM_DATA

is the address and length of the item being written.
QUEUE_NAME

is the name of the queue being created or appended to.
STORAGE_TYPE

indicates whether the queue is to be created in main or auxiliary storage. Note
that this option is ignored if the queue already exists.

 Values for the parameter are:
 AUXILIARY
 MAIN

SUSPEND
indicates whether or not the request will be suspended if there is insufficient
auxiliary storage to satisfy the request. This option is ignored if the queue is in
main storage.

 Values for the parameter are:
 NO
 YES

BMS
Optional Parameter

 indicates whether or not BMS owns this queue.

Values for the parameter are:
 NO
 YES

CALLER
Optional Parameter

 indicates whether this request originated from an EXEC or macro call. The
default is MACRO.

Values for the parameter are:
 EXEC
 MACRO

FMH
Optional Parameter

 indicates whether the data contains an FMH.

Values for the parameter are:
 NO

1820 CICS TS for z/OS 4.1: Diagnosis Reference

YES

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 INVALID_QUEUE_TYPE
 IO_ERROR
 LOCKED
 QUEUE_DELETED
 QUEUE_FULL
 QUEUE_REMOTE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
Optional Parameter

 is the total number of items in the queue on completion of the operation.

TSRM gate, INQUIRE_QUEUE function
Determine whether a temporary storage queue exists.

Input Parameters
QUEUE_NAME

The name of the temporary storage queue.
QUEUE_CREATION_TIME

Optional Parameter

 The time the queue was created.

Output Parameters
QUEUE_EXISTS

A binary value indicating whether the named queue exists.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, ADD_POOL function
Create a temporary storage pool.

Input Parameters
POOL_NAME

The name of the pool.

Output Parameters
POOL_TOKEN

A token that identifies the new temporary storage pool.

Chapter 110. Temporary Storage Domain (TS) 1821

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, DELETE function
This function deletes the specified queue.

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.
POOL_TOKEN

Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 IO_ERROR
 QUEUE_NOT_FOUND
 SERVER_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, END_BROWSE function
End a browse operation on a set of temporary storage queues.

Input Parameters
BROWSE_TOKEN

A token that identifies the browse operation. See “The BROWSE_TOKEN parameter
on domain interfaces” on page 9.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 IO_ERROR
 QUEUE_NOT_FOUND
 SERVER_ERROR
 TSPOOL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, END_TSPOOL_BROWSE function
End a browse operation on temporary storage pools.

1822 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
BROWSE_TOKEN

A token that identifies the browse operation. See “The BROWSE_TOKEN parameter
on domain interfaces” on page 9

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 IO_ERROR
 QUEUE_NOT_FOUND
 SERVER_ERROR
 TSPOOL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, GET_NEXT function
Return the next temporary storage queue in a browse operation.

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 IO_ERROR
 SERVER_ERROR

QUEUE_NAME
The name of the temporary storage queue.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LAST_REFERENCED_TIME
Optional Parameter

 The time at which the temporary storage queue was last referenced.
MAXIMUM_ITEM_LENGTH

Optional Parameter

 The maximum size of an item in the temporary storage queue.
MINIMUM_ITEM_LENGTH

Optional Parameter

 The minimum size of an item in the temporary storage queue.
TOTAL_ITEMS

Optional Parameter

 The total number of items in the temporary storage queue.
TOTAL_LENGTH

Optional Parameter

 The length of the temporary storage queue.
TRANSID

Optional Parameter

Chapter 110. Temporary Storage Domain (TS) 1823

The identifier of the transaction that created the temporary storage queue.

TSSH gate, GET_NEXT_TSPOOL function
In a browse operation, return information about a temporary storage pool.

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

POOL_NAME
The name of the temporary storage pool.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONNECTED
Optional Parameter

 A binary value indicating whether the temporary storage pool is connected.

Values for the parameter are:
 NO
 YES

POOL_TOKEN
Optional Parameter

 A token that represents the temporary storage pool.

TSSH gate, INITIALISE function
Initialize the Shared TS interface.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 IO_ERROR
 ITEM_NOT_FOUND
 MAXIMUM_QUEUES_REACHED
 POOL_NAME_NOT_FOUND
 QUEUE_FULL
 QUEUE_NOT_FOUND
 SERVER_ERROR
 SYSID_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, INQUIRE_POOL_TOKEN function
Return a token for the pool corresponding to the SYSID provided.

1824 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
POOL_NAME

The name of the pool being inquired upon.
 SYSID

The name of the SYSID being inquired upon.
SYSID_TABLE_TOKEN

Optional Parameter

 A token that represents the SYSID table.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 POOL_NAME_NOT_FOUND
 SYSID_NOT_FOUND

POOL_TOKEN
A token for the shared TS pool.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, INQUIRE_QUEUE function
Inquire on the attributes of a temporary storage queue.

Input Parameters
QUEUE_NAME

The name of the queue.
KEY_COMPARISON

Optional Parameter

 Specifies the constraints on the inquiry.

Values for the parameter are:
 EQ
 GT
 GTEQ

POOL_TOKEN
Optional Parameter

 A token that identifies a pool containing the specified queue.
TRANSACTION_NUMBER

Optional Parameter

 The 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 IO_ERROR
 QUEUE_NOT_FOUND
 SERVER_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

LAST_REFERENCED_TIME
Optional Parameter

 The time at which the queue was last referenced.

Chapter 110. Temporary Storage Domain (TS) 1825

MAXIMUM_ITEM_LENGTH
Optional Parameter

 The length of the longest item in the queue.
MINIMUM_ITEM_LENGTH

Optional Parameter

 The length of the shortest item in the queue.
OUTPUT_QUEUE_NAME

Optional Parameter

 The name of the queue whose information is returned. Note that this might
differ from QUEUE_NAME unless KEY_COMPARISON(EQ) is specified.

TOTAL_ITEMS
Optional Parameter

 The total number of items in the queue.
TOTAL_LENGTH

Optional Parameter

 The sum of the lengths of all the items in the queue.
TRANSID

Optional Parameter

 The identifier of the transaction that created the queue.

TSSH gate, INQUIRE_SYSID_TABLE_TOKEN function
Returns the SYSID_TABLE_TOKEN for the region.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 IO_ERROR
 ITEM_NOT_FOUND
 MAXIMUM_QUEUES_REACHED
 POOL_NAME_NOT_FOUND
 QUEUE_FULL
 QUEUE_NOT_FOUND
 SERVER_ERROR
 SYSID_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SYSID_TABLE_TOKEN
The SYSID_TABLE_TOKEN.

TSSH gate, INQUIRE_TSPOOL function
Retrieve information about a shared temporary storage pool.

Input Parameters
POOL_NAME

The name of the shared temporary storage pool.

1826 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 TSPOOL_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CONNECTED
Optional Parameter

 A binary value indicating whether the pool is connected.

Values for the parameter are:
 NO
 YES

POOL_TOKEN
Optional Parameter

 A token that identifies the temporary storage pool.

TSSH gate, READ_INTO function
This function reads the specified queue item into a buffer provided by the caller.
The read cursor for the queue is set to the item number provided. The caller
provides the address (item_buffer_p) and buffer length (item_buffer_m). The actual
length of the record is returned in item_buffer_n. If item_buffer_n is greater than
item_buffer_m, the data is truncated (but an OK response is returned).

Input Parameters
ITEM_BUFFER

specifies the address (item_buffer_p) and maximum length (item_buffer_m) of
the data area into which the data will be read. The actual data length is
returned in item_buffer_n.

ITEM_NUMBER
is the number of the item to be updated.

QUEUE_NAME
is the name of the queue being created or appended to.

POOL_TOKEN
Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND
 SERVER_ERROR

FMH
indicates whether the data contains an FMH.

 Values for the parameter are:
 NO

Chapter 110. Temporary Storage Domain (TS) 1827

YES
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
is the total number of items in the queue on completion of the operation.

TSSH gate, READ_NEXT_INTO function
This function increments the read cursor by one and reads that item number into
the buffer provided by the caller. The caller provides the address (item_buffer_p)
and buffer length (item_buffer_m). The actual length of the record is returned in
item_buffer_n. If item_buffer_n is greater than item_buffer_m, the data will have
been truncated.

Input Parameters
ITEM_BUFFER

specifies the address (item_buffer_p) and maximum length (item_buffer_m) of
the data area into which the data will be read. The actual data length is
returned in item_buffer_n.

QUEUE_NAME
is the name of the queue being created or appended to.

POOL_TOKEN
Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND
 SERVER_ERROR

FMH
indicates whether the data contains an FMH.

 Values for the parameter are:
 NO
 YES

ITEM_NUMBER
returns the number of the item just read.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
is the total number of items in the queue on completion of the operation.

TSSH gate, READ_NEXT_SET function
This function increments the queue's read cursor by one and reads that item
number into a storage area obtained by TS.

1828 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
QUEUE_NAME

is the name of the queue being created or appended to.
POOL_TOKEN

Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME
 IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND
 SERVER_ERROR

FMH
indicates whether the data contains an FMH.

 Values for the parameter are:
 NO
 YES

ITEM_DATA
returns the address and length of the item data.

ITEM_NUMBER
returns the number of the item just read.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
is the total number of items in the queue on completion of the operation.

TSSH gate, READ_SET function
This function reads the specified queue item into a storage area obtained by TS.
The read cursor for the queue is set to the input item number.

Input Parameters
ITEM_NUMBER

is the number of the item to be updated.
QUEUE_NAME

is the name of the queue being created or appended to.
POOL_TOKEN

Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_QUEUE_NAME

Chapter 110. Temporary Storage Domain (TS) 1829

IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND
 SERVER_ERROR

FMH
indicates whether the data contains an FMH.

 Values for the parameter are:
 NO
 YES

ITEM_DATA
returns the address and length of the item data.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
is the total number of items in the queue on completion of the operation.

TSSH gate, REWRITE function
This function updates the specified item in an existing queue. The read cursor is
unchanged.

Input Parameters
FMH

indicates whether the data contains an FMH.

 Values for the parameter are:
 NO
 YES

ITEM_DATA
is the address and length of the item being written.

ITEM_NUMBER
is the number of the item to be updated.

QUEUE_NAME
is the name of the queue being created or appended to.

SUSPEND
indicates whether or not the request will be suspended if there is insufficient
auxiliary storage to satisfy the request. This option is ignored if the queue is in
main storage.

 Values for the parameter are:
 NO
 YES

POOL_TOKEN
Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME

1830 CICS TS for z/OS 4.1: Diagnosis Reference

IO_ERROR
 ITEM_NOT_FOUND
 QUEUE_NOT_FOUND
 SERVER_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
is the total number of items in the queue on completion of the operation.

TSSH gate, START_BROWSE function
Start browsing temporary storage queues.

Input Parameters
POOL_TOKEN

A token that identifies the temporary storage pool to be browsed.
QUEUE_NAME

Optional Parameter

 The name of the temporary storage queue.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 IO_ERROR
 QUEUE_NOT_FOUND
 SERVER_ERROR
 TSPOOL_NOT_FOUND

BROWSE_TOKEN
See “The BROWSE_TOKEN parameter on domain interfaces” on page 9.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, START_TSPOOL_BROWSE function
Start browsing the temporary storage pools.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 IO_ERROR
 QUEUE_NOT_FOUND
 SERVER_ERROR
 TSPOOL_NOT_FOUND

BROWSE_TOKEN
See “The BROWSE_TOKEN parameter on domain interfaces” on page 9.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSH gate, WRITE function
If the queue does not exist, this function creates a queue with the single item
provided, and the queue's "read cursor" is set to zero.

Chapter 110. Temporary Storage Domain (TS) 1831

Input Parameters
FMH

indicates whether the data contains an FMH.

 Values for the parameter are:
 NO
 YES

ITEM_DATA
is the address and length of the item being written.

QUEUE_NAME
is the name of the queue being created or appended to.

SUSPEND
indicates whether or not the request will be suspended if there is insufficient
auxiliary storage to satisfy the request. This option is ignored if the queue is in
main storage.

 Values for the parameter are:
 NO
 YES

POOL_TOKEN
Optional Parameter

 is a token for the shared TS pool.
TRANSACTION_NUMBER

Optional Parameter

 is the 4-byte transaction number (in packed-decimal format).
TRANSID

Optional Parameter

 is the id of the transaction which issued this request.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INSUFFICIENT_STORAGE
 INVALID_LENGTH
 INVALID_QUEUE_NAME
 IO_ERROR
 MAXIMUM_QUEUES_REACHED
 QUEUE_FULL
 SERVER_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOTAL_ITEMS
is the total number of items in the queue on completion of the operation.

TSSR gate, SET_BUFFERS function
Sets the number of TS buffers to be used.

Input Parameters
BUFFERS

the number of buffers required.

1832 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSR gate, SET_START_TYPE function

Input Parameters
START_TYPE

The desired start type.

 Values for the parameter are:
 AUTO
 COLD

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSSR gate, SET_STRINGS function
This function sets the number of strings to be used.

Input Parameters
STRINGS

the number of strings to be used.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Temporary Storage domain generic gates

Table 81 summarizes the generic gates in the domain. It shows the level-1 trace
point IDs of the modules providing the functions for the gates, the functions
provided by the gates, and the generic formats for calls to the gates.

 Table 81. Temporary Storage domain generic gates

Gate Trace Functions Format

DMDM TS 0101
TS 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST TS 0501
TS 0502

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

APUE TS 0601
TS 0602

SET_EXIT_STATUS APUE

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777
 “Application Manager Domain's generic formats” on page 867

Chapter 110. Temporary Storage Domain (TS) 1833

Temporary Storage domain call-back formats

Table 82 describes the call-back formats owned by the domain and shows the
functions performed on the calls.

 Table 82. Temporary Storage domain call-back formats

Format Calling module Function

TSIC DFHTSRM DELIVER_IC_RECOVERY_DATA
SOLICIT_INQUIRES

Note: In the descriptions of the formats, the input parameters are input not to the
Temporary Storage domain, but to the domain being called by the Temporary
Storage domain. Similarly, the output parameters are output by the domain that
was called by the Temporary Storage domain, in response to the call.

TSIC format, DELIVER_IC_RECOVERY_DATA function
The temporary storage domain uses this call-back format to deliver its recovery
information for a temporary storage queue to the interval control component of the
application domain.

Input Parameters
BMS

A binary value that indicates whether the queue was created by BMS.

 Values for the parameter are:
 NO
 YES

IC A binary value that indicates whether the queue was created by interval
control.

 Values for the parameter are:
 NO
 YES

QUEUE_CREATION_TIME
The time (in store clock format) at which the queue was created.

QUEUE_NAME
The name of the queue.

RECOVERABLE
A binary value that indicates whether the queue is recoverable.

 Values for the parameter are:
 NO
 YES

IC_DATA
Optional Parameter

 The address and length of the interval control element (ICE) that is associated
with the queue.

IN_DOUBT_OPERATION
Optional Parameter

 The operation corresponding to the data being delivered.

Values for the parameter are:
 GET_RELEASE
 PUT
 RELEASE

1834 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
DISCARD

A binary value that indicates whether the temporary storage domain should
delete the queue.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TSIC format, SOLICIT_INQUIRES function
Temporary storage domain uses this call-back format to advise the interval control
component in the AP domain that TS domain is ready to receive INQUIRE
requests.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHTSBR Handles the following requests:
 INQUIRE_QUEUE
 START_BROWSE
 GET_NEXT
 END_BROWSE
 CHECK_PREFIX

DFHTSDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHTSITR Interprets TS domain trace entries

DFHTSP Handles the following requests:
 PUT
 PUT_REPLACE
 GET
 GET_SET
 GET_RELEASE
 GET_RELEASE_SET
 RELEASE

DFHTSPT Handles the following requests:
 PUT
 PUT_REPLACE
 GET
 GET_SET
 GET_RELEASE
 GET_RELEASE_SET
 RELEASE

Chapter 110. Temporary Storage Domain (TS) 1835

Module Function

DFHTSQR Handles the following requests:

 WRITE
 REWRITE
 READ_INTO
 READ_SET
 READ_NEXT_INTO
 READ_NEXT_SET
 DELETE

DFHTSRM Handles the following requests:
 PERFORM_PREPARE
 PERFORM_COMMIT
 PERFORM_SHUNT
 PERFORM_UNSHUNT
 START_BACKOUT
 END_BACKOUT
 START_DELIVERY
 DELIVER_RECOVERY
 END_DELIVERY
 TAKE_KEYPOINT

DFHTSSH Handles the following requests:
 INITIALIZE
 INQUIRE_POOL_TOKEN
 INQUIRE_SYSID_TABLE_TOKEN
 WRITE
 REWRITE
 READ_INTO
 READ_NEXT_INTO
 READ_SET
 READ_NEXT_SET
 DELETE
 START_BROWSE
 GET_NEXT
 END_BROWSE
 INQUIRE_QUEUE

DFHTSSR Handles the following requests:
 SET_START_TYPE
 SET_BUFFERS
 SET_STRINGS
 SET_EXIT_STATUS

DFHTSST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATISTICS

Exits
The temporary storage domain has four global user exit points: XTSQRIN,
XTSQROUT, XTSPTIN and XTSPTOUT. See the CICS Customization Guide for
further details.

1836 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 111. User Domain (US)

The user domain manages CICS users and their security attributes.

User Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the US domain.

USAD gate, ADD_USER_WITH_PASSWORD function
The ADD_USER_WITH_PASSWORD function of the USAD gate is used to add a
user to the CICS(R) region and verify the associated password or oidcard.

Input Parameters
PASSWORD

is the current password, 1 through 10 alphanumeric characters, for the userid
specified by the USERID value.

SIGNON_TYPE
is the type of signon for the userid (specified by the USERID value).

 Values for the parameter are:
 ATTACH_SIGN_ON
 DEFAULT_SIGN_ON
 IRC_SIGN_ON
 LU61_SIGN_ON
 LU62_SIGN_ON
 NON_TERMINAL_SIGN_ON
 PRESET_SIGN_ON
 USER_SIGN_ON
 XRF_SIGN_ON

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

APPLID
Optional Parameter

 is the application identifier for the CICS region.
ENTRY_PORT_NAME

Optional Parameter

 is an optional name of an entry port, 1 through 8 alphanumeric characters, to
be assigned to the userid (specified by the USERID value).

ENTRY_PORT_TYPE
Optional Parameter

 is the type of the optional entry port to be assigned to the userid (specified by
the USERID value). This parameter is only valid if ENTRY_PORT_NAME is
also specified.

Values for the parameter are:
 TERMINAL
 CONSOLE

© Copyright IBM Corp. 1997, 2011 1837

GROUPID
Optional Parameter

 is an identifier, 1 through 10 alphanumeric characters, of a RACF® user group
to which the userid (specified by the USERID value) is to be assigned.

GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the GROUPID value. This parameter is only valid if
GROUPID is also specified.

NEW_PASSWORD
Optional Parameter

 is a new password, 1 through 10 alphanumeric characters, to be assigned to the
userid (specified by the USERID value). This parameter is only valid if
PASSWORD is also specified.

OIDCARD
Optional Parameter

 is an optional oidcard (operator identification card); a 65-byte field containing
further security data from a magnetic strip reader (MSR) on 32xx devices.

PASSWORD_TYPE
Optional Parameter

 specifies if the password is masked.
SCOPE_CHECK

Optional Parameter

 indicates whether or not scope checking is to be performed for this function
call.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DEL_TIMEOUT_ENTRY_FAILED
 EXTRACT_FAILED
 GETMAIN_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_SIGNED_ON
 APPLICATION_NOTAUTH
 ENQ_LIMIT_EXCEEDED
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GROUP_ACCESS_REVOKED
 INQUIRE_PW_DATA_FAILED
 INVALID_GROUPID
 INVALID_NEW_PASSWORD
 INVALID_OIDCARD
 INVALID_PASSWORD
 INVALID_USERID
 NEW_PASSWORD_REQUIRED
 OIDCARD_REQUIRED
 PASSWORD_REQUIRED
 SECLABEL_CHECK_FAILED

1838 CICS TS for z/OS 4.1: Diagnosis Reference

SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_TOKEN
is the token identifying the userid in the user domain.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

USAD gate, ADD_USER_WITHOUT_PASSWORD function
The ADD_USER_WITHOUT_PASSWORD function of the USAD gate is used to
add a user to the CICS region without verifying any password or oidcard.

Input Parameters
SIGNON_TYPE

is the type of signon for the userid (specified by the USERID value).

 Values for the parameter are:
 ATTACH_SIGN_ON
 DEFAULT_SIGN_ON
 IRC_SIGN_ON
 LU61_SIGN_ON
 LU62_SIGN_ON
 NON_TERMINAL_SIGN_ON
 PRESET_SIGN_ON
 USER_SIGN_ON
 XRF_SIGN_ON

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

APPLID
Optional Parameter

 is the application identifier for the CICS region.
ENTRY_PORT_NAME

Optional Parameter

 is an optional name of an entry port, 1 through 8 alphanumeric characters, to
be assigned to the userid (specified by the USERID value).

ENTRY_PORT_TYPE
Optional Parameter

Chapter 111. User Domain (US) 1839

is the type of the optional entry port to be assigned to the userid (specified by
the USERID value). This parameter is only valid if ENTRY_PORT_NAME is
also specified.

Values for the parameter are:
 CONSOLE
 TERMINAL

GROUPID
Optional Parameter

 is an optional identifier, 1 through 10 alphanumeric characters, of a RACF user
group to which the userid (specified by the USERID value) is to be assigned.

GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the GROUPID value. This parameter is only valid if
GROUPID is also specified.

SCOPE_CHECK
Optional Parameter

 indicates whether or not scope checking is to be performed for this function
call.

Values for the parameter are:
 NO
 YES

SUSPEND
Optional Parameter

 indicates whether a wait during add user processing is acceptable.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DEL_TIMEOUT_ENTRY_FAILED
 EXTRACT_FAILED
 GETMAIN_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_SIGNED_ON
 APPLICATION_NOTAUTH
 ENQ_LIMIT_EXCEEDED
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 INVALID_USERID
 SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USER_NOT_LOCATED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:

1840 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_TOKEN
is the token identifying the userid in the user domain.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

USAD gate, DELETE_USER function
The DELETE_USER function of the USAD gate is used to delete the user from the
CICS region.

Input Parameters
SIGNOFF_TYPE

is the type of signoff for the userid identified by the SECURITY_TOKEN value.

 Values for the parameter are:
 ATTACH_SIGN_OFF
 DEFERRED_SIGN_OFF
 DELETE_SIGN_OFF
 LINK_SIGN_OFF
 NON_TERMINAL_SIGN_OFF
 PRESET_SIGN_OFF
 TIMEOUT_SIGN_OFF
 USER_SIGN_OFF
 USRDELAY_SIGN_OFF
 XRF_SIGN_OFF

USER_TOKEN
is the token identifying the userid in the user domain.

DELETE_IMMEDIATE
Optional Parameter

 indicates whether the user should be deleted immediately.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ADD_TIMEOUT_ENTRY_FAILED
 FREEMAIN_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 DEFAULT_USER_TOKEN
 ESM_INACTIVE
 ESM_TRANQUIL
 INVALID_USER_TOKEN

Chapter 111. User Domain (US) 1841

SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

USAD gate, INQUIRE_DEFAULT_USER function
The INQUIRE_DEFAULT_USER function of the USAD gate is used to inquire
about the attributes of the default user (specified on the DFLTUSER system
initialization parameter).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ADD_TIMEOUT_ENTRY_FAILED
 DEL_EXPIRED_ENTRY_FAILED
 DEL_TIMEOUT_ENTRY_FAILED
 DIR_MANAGER_ADD_FAILED
 DIR_MANAGER_DELETE_FAILED
 DIR_MANAGER_LOCATE_FAILED
 EXTRACT_FAILED
 FREEMAIN_FAILED
 GETMAIN_FAILED
 INQUIRE_PW_DATA_FAILED
 LOOP
 SEC_DOMAIN_ADD_FAILED
 SEC_DOMAIN_DELETE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ACCOUNT_INVALID
 ALREADY_SIGNED_ON
 APPLICATION_NOTAUTH
 DEFAULT_USER_TOKEN
 ENQ_LIMIT_EXCEEDED
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 INVALID_NEW_PASSWORD
 INVALID_OIDCARD
 INVALID_PARAMETERS
 INVALID_PASSWORD
 INVALID_USER_TOKEN
 INVALID_USERID
 NEW_PASSWORD_REQUIRED
 OIDCARD_REQUIRED
 PASSWORD_REQUIRED

1842 CICS TS for z/OS 4.1: Diagnosis Reference

SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USER_NOT_LOCATED
 USERID_NOT_DEFINED
 USERID_NOT_DETERMINED
 USERID_NOT_FOUND
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACEE_PTR
Optional Parameter

 is a pointer to the access control environment element, the control block that is
generated by an external user (ESM) when the user signs on. If the user is not
signed on, the address of the CICS DFLTUSER's ACEEis returned. If an ACEE
does not exist, CICS sets the pointer reference to the null value, X'FF000000'.

CURRENT_GROUPID
Optional Parameter

 is the identifier, 1 through 10 alphanumeric characters, of the current RACF
user group to which the userid (specified by the SECURITY_TOKEN value) is
assigned.

CURRENT_GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the GROUPID value.
NATIONAL_LANGUAGE

Optional Parameter

 is a three-character code identifying the national language for the userid. It can
have any of the values in “National language codes (three-characters)” on page
2011.

OPERATOR_CLASSES
Optional Parameter

 identifies the operator classes to which the user belongs. This is a 24-bit value,
with each bit determining whether or not the user is a member of that class.

OPERATOR_IDENT
Optional Parameter

 is the operator identification code, 1 through 3 alphanumeric characters, for the
userid.

OPERATOR_PRIORITY
Optional Parameter

 is the operator priority value, in the range 0 through 255 (where 255 is the
highest priority), for the userid.

TIMEOUT
Optional Parameter

 is the number of minutes, in the range 0 through 60, that must elapse since the
user last used the terminal before CICS "times-out" the terminal:
1. CICS rounds values up to the nearest multiple of 5.

Chapter 111. User Domain (US) 1843

2. A TIMEOUT value of 0 means that the terminal is not timed out.
USERID

Optional Parameter

 is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
USERID_LENGTH

Optional Parameter

 is the length of the USERID value.
USERNAME

Optional Parameter

 is an optional buffer into which the attributes of the user are placed.
XRF_REFLECTABLE

Optional Parameter

 indicates whether or not you want CICS to sign off the userid following an
XRF takeover.

Values for the parameter are:
 NO
 YES

USAD gate, INQUIRE_USER function
The INQUIRE_USER function of the USAD gate is used to inquire about the
attributes of the user represented by the user token.

Input Parameters
USER_TOKEN

is the token identifying the userid in the user domain.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_USER_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACEE_PTR
Optional Parameter

 is a pointer to the access control environment element, the control block that is
generated by an external user (ESM) when the user signs on. If the user is not
signed on, the address of the CICS DFLTUSER's ACEEis returned. If an ACEE
does not exist, CICS sets the pointer reference to the null value, X'FF000000'.

CURRENT_GROUPID
Optional Parameter

 is the identifier, 1 through 10 alphanumeric characters, of the current RACF
user group to which the userid (specified by the SECURITY_TOKEN value) is
assigned.

CURRENT_GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the GROUPID value.
ENTRY_PORT_NAME

Optional Parameter

 is the name of the entry port assigned to the userid.

1844 CICS TS for z/OS 4.1: Diagnosis Reference

ENTRY_PORT_TYPE
Optional Parameter

 is the type of the entry port assigned to the userid. This parameter is only
valid if ENTRY_PORT_NAME is also specified.

Values for the parameter are:
 TERMINAL
 CONSOLE

NATIONAL_LANGUAGE
Optional Parameter

 is a three-character code identifying the national language for the userid. It can
have any of the values in “National language codes (three-characters)” on page
2011.

OPERATOR_CLASSES
Optional Parameter

 identifies the operator classes to which the user belongs. This is a 24-bit value,
with each bit determining whether or not the user is a member of that class.

OPERATOR_IDENT
Optional Parameter

 is the operator identification code, 1 through 3 alphanumeric characters, for the
userid.

OPERATOR_PRIORITY
Optional Parameter

 is the operator priority value, in the range 0 through 255 (where 255 is the
highest priority), for the userid.

TIMEOUT
Optional Parameter

 is the number of minutes, in the range 0 through 60, that must elapse since the
user last used the terminal before CICS "times-out" the terminal.
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

USERID
Optional Parameter

 is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
USERID_LENGTH

Optional Parameter

 is the length of the USERID value.
USERNAME

Optional Parameter

 is an optional buffer into which the attributes of the user are placed.
XRF_REFLECTABLE

Optional Parameter

 indicates whether or not you want CICS to sign off the userid following an
XRF takeover.

Values for the parameter are:
 NO
 YES

Chapter 111. User Domain (US) 1845

USAD gate, VALIDATE_USERID function
The VALIDATE_USERID function of the USAD gate is used to verify that the
specified userid is a valid userid.

Input Parameters
USERID

is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 GROUP_ACCESS_REVOKED
 SECURITY_INACTIVE
 USERID_NOT_DEFINED
 USERID_NOT_DETERMINED
 USERID_REVOKED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USAD gate, NOTIFY_USERID function
The NOTIFY_USERID function of the USAD gate is used to record that a user ID
should be removed when it is no longer in use or user details have changed.

Input Parameters
USERID

is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 GROUP_ACCESS_REVOKED
 SECURITY_INACTIVE
 USERID_NOT_DEFINED
 USERID_NOT_DETERMINED
 USERID_REVOKED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USAD gate, ADD_USER_VIA_ICRX function
The ADD_USER_VIA_ICRX function of the USAD gate provides the External
Security Manager with an ICRX that can be mapped to a user.

Input Parameters
ICRX

Is the extended identity context reference (ICRX) of the user.

1846 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

SUSPEND
Optional parameter.

 Indicates whether a wait during add user processing is acceptable.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 DEL_TIMEOUT_ENTRY_FAILED
 EXTRACT_FAILED
 GETMAIN_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_SIGNED_ON
 APPLICATION_NOTAUTH
 ENQ_LIMIT_EXCEEDED
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 INVALID_USERID
 SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USER_NOT_LOCATED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETERS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SAF_RESPONSE
Optional parameter.

 Is the optional 32-bit SAF response code to the call.
ESM_RESPONSE

Optional parameter.

 Is the optional 32-bit ESM response code to the call.
USERID_LENGTH

Optional parameter.

 Is the length of the user ID value.
USERID

Optional parameter.

 Is the identifier of the user (a 1- to 10-character alphanumeric user ID) added
to the security domain.

Chapter 111. User Domain (US) 1847

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

USAD gate, INQUIRE_ICRX function
The INQUIRE_ICRX function of the USAD gate obtains ICRX data from the
External Security Manager.

Input Parameters
USER_TOKEN

Optional parameter.

 Is the token identifying the user ID in the user domain.
OUT_ICRX

Optional parameter.

 Is the ICRX representing the user ID.
ICRX_TYPE

Optional parameter.

 Is the type of ICRX being requested.

Values for the parameter are:
 COMPLETE: returns a copy of the RACF-generated ICRX.
 PSEUDO: returns a pseudo ICRX.

RETRY
Optional parameter.

 Used if the buffer size specified for the ICRX in a prior call was insufficient.

RETRY(YES) returns a previously created ICRX. RETRY(NO) is the default.
DNAME

Optional parameter.

 The distinguished name associated with the ICRX-defined user ID.
REALM

Optional parameter.

 Is the realm associated with the ICRX-defined user ID.
IN_RETRY_TOKEN

Optional parameter.

 Used if the buffer size specified for the ICRX in a prior call was insufficient.

This parameter must be set to the value returned in the previous
OUT_RETRY_TOKEN.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ICRX_NOT_AVAILABLE
 INVALID_USER_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

OUT_RETRY_TOKEN
Optional parameter.

 Used if the buffer size specified for the ICRX in a prior call was insufficient.

1848 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

If the buffer size was insufficient and OUT_RETRY_YES is specified, this
parameter provides state data for the next call.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ICRX
Is the extended identity context reference (ICRX) of the user.

USAD gate, RELEASE_ICRX function
The RELEASE_ICRX function of the USAD gate tells the External Security Manager
to release the ICRX storage from cache.

Input Parameters
USER_TOKEN

Optional parameter.

 Is the token identifying the ICRX in the user domain.
STORAGE_TYPE

Indicates the ICRX storage location.

 The values are:
 BUFFER: for internal CICS buffer
 CACHE: for the RACF cache
 BOTH: to release both BUFFER and CACHE

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 FUNCTION_NOT_SUPPORTED
 ICRX_INVALID
 INVALID_USER_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USAD gate, ICRX_TO_USERID function
The ICRX_TO_USERID function of the USAD gate maps an ICRX to a user ID.

Input Parameters
ICRX

Is the extended identity context reference (ICRX) of the user.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 USERID_NOT_DETERMINED
 ICRX_INVALID
 ICRX_NOT_AVAILABLE
 SECURITY_INACTIVE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USERID_LENGTH
Is the length of the USERID value.

USERID
Is the user ID that is mapped to the ICRX.

Chapter 111. User Domain (US) 1849

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

USAD gate, GET_ASSOCIATED_DATA_LIST function
The GET_ASSOCIATED_DATA_LIST function of the USAD gate obtains a list of
tasks that match the supplied filters.

Input Parameters
TASK_LIST

Is the identifier of the list of tasks.
INPUT_LIST_SIZE

Optional parameter.

 Is the length of the input list.
DNAME

Optional parameter.

 Is the distinguished name.
REALM

Optional parameter.

 Is the realm associated with the distinguished name.
MERGE

Optional parameter.

 Indicates whether to merge. Has the following values:
 YES: an input list exists which is used for filtering.
 NO: the task list for the entire CICS region is used as the filter list.

MERGED_TASK_LIST
Optional parameter.

 Is the output array.

Output Parameters
OUTPUT_LIST_SIZE

Is the length of the output list.
REASON

The following value is returned when RESPONSE is DISASTER:
 ABEND

The following value is returned when RESPONSE is EXCEPTION:
 INVALID_DNAME_FILTER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USFL gate, FLATTEN_USER function
The FLATTEN_USER function of the USFL gate is used to flatten the user's
security state and place into the FLATTENED_USER buffer provided.

Input Parameters
FLATTENED_USER

is the buffer into which the flattened security state is placed.
USER_TOKEN

is the token identifying the userid in the user domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 DIR_MANAGER_LOCATE_FAILED

1850 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|

LOOP
 SEC_DOM_FLATTEN_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ESM_INACTIVE
 ESM_TRANQUIL
 INVALID_USER_TOKEN
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE

The following values are returned when RESPONSE is INVALID:
 INVALID_FLATTENED_BUFFER
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

USFL gate, TAKEOVER function
The TAKEOVER function of the USFL gate is used, when an XRF takeover occurs,
to obtain the SNSCOPE ENQ resources for those users who could not obtain it
during tracking, because the resources were already held by the active region.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USFL gate, UNFLATTEN_USER function
The UNFLATTEN_USER function of the USFL gate is used to unflatten the user
security state data in the FLATTENED_USER buffer, and add the userid to the user
domain.

Input Parameters
FLATTENED_USER

is the buffer into which the flattened security state is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND

Chapter 111. User Domain (US) 1851

DEL_TIMEOUT_ENTRY_FAILED
 DIR_MANAGER_ADD_FAILED
 DIR_MANAGER_DELETE_FAILED
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP
 SEC_DOM_UNFLATTEN_FAILED
 SEC_DOMAIN_DELETE_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_SIGNED_ON
 APPLICATION_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GROUP_ACCESS_REVOKED
 SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USERID_NOT_IN_GROUP
 USERID_REVOKED
 USERID_UNDEFINED

The following values are returned when RESPONSE is INVALID:
 INVALID_FLATTENED_BUFFER
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USER_TOKEN
is the token identifying the userid in the user domain.

USIS gate, SET_USER_DOMAIN_PARMS function
At CICS startup, loads information for the user domain from the system
initialization table (SIT) into the user state data.

Input Parameters
APPLID

is the application identifier for the CICS region.
DEFAULT_USERID

is the default userid, as 1 through 10 alphanumeric characters.
DIRECTORY_TIMEOUT_VALUE

is the intersystem refresh delay, in the range 0 through 10080 minutes (up to 7
days), for the default userid.

SIGNON_SCOPE
is the scope for which the default userid can be signed on.

 Values for the parameter are:
 CICS
 MVSIMAGE
 NONE
 SYSPLEX

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

1852 CICS TS for z/OS 4.1: Diagnosis Reference

ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USIS gate, INQUIRE_DOMAIN function
Allows other domains to inquire on the support provided by the user domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ICRX_SUPPORTED (YES|NO)
Indicates whether an ICRX (Extended Identity Context Reference) is supported.

USXM gate, ADD_TRANSACTION_USER function
The ADD_TRANSACTION_USER function of the USXM gate sets the user
characteristics (as security tokens) for a transaction.

Input Parameters
EDF_USER_TOKEN

Optional Parameter

 is the optional EDF user token representing the characteristics of the EDF user
of the transaction.

PRINCIPAL_USER_TOKEN
Optional Parameter

 is the optional principal user token representing the characteristics of the
principal user of the transaction.

SESSION_USER_TOKEN
Optional Parameter

 is the optional session user token representing the characteristics of the session
user of the transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ALREADY_SIGNED_ON
 DUPLICATE_USER
 INVALID_USER_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

Chapter 111. User Domain (US) 1853

|

|

|
|
|
|
|
|
|
|
|
|

|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USXM gate, DELETE_TRANSACTION_USER function
The DELETE_TRANSACTION_USER function of the USXM gate deletes the user
token of the specified token type for the transaction.

Input Parameters
TOKEN_TYPE

is the type of user token for the transaction.

 Values for the parameter are:
 EDF
 PRINCIPAL
 SESSION

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 NO_USER_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USXM gate, END_TRANSACTION function
The END_TRANSACTION function of the USXM gate deletes all the user token to
security token maps for the transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 FREEMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USXM gate, FLATTEN_TRANSACTION_USER function
The FLATTEN_TRANSACTION_USER function of the USXM gate creates the
contents of a FLAT_TRANSUSER buffer from the principal user of the current
transaction.

1854 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
FLAT_TRANSUSER

is the buffer to be created.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FLAT_TRANSUSER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USXM gate, INIT_TRANSACTION_USER function
The INIT_TRANSACTION_USER function of the USXM gate initializes the
transaction for the user characteristics identified by the PRINCIPAL_USER_TOKEN
value.

Input Parameters
PRINCIPAL_USER_TOKEN

is the optional principal user token representing the characteristics of the
principal user of the transaction.

EDF_USER_TOKEN
Optional Parameter

 is the optional EDF user token representing the characteristics of the EDF user
of the transaction.

SESSION_USER_TOKEN
Optional Parameter

 is the optional session user token representing the characteristics of the session
user of the transaction.

XMAT_CALL
Optional Parameter

 indicates whether the function is called while a transaction is being attached.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_USER_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

Chapter 111. User Domain (US) 1855

PRIORITY
is the priority value, in the range 0 through 255 (where 255 is the highest
priority), for the user with the token identified by the
PRINCIPAL_USER_TOKEN value.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USDOM_TRANSACTION_TOKEN
is the user token to be used for reference to user characteristics only. It is
treated as the principal user token until the next ADD_TRANSACTION_USER
call for the transaction.

USXM gate, INQUIRE_TRANSACTION_USER function
The INQUIRE_TRANSACTION_USER function of the USXM gate inquires about
the user characteristics associated with the transaction identified by the
USDOM_TRANSACTION_TOKEN value.

Input Parameters
USDOM_TRANSACTION_TOKEN

Optional Parameter

 is the user token to be used for reference to user characteristics only.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACEE_PTR
Optional Parameter

 is a pointer to the access control environment element, the control block that is
generated by an external user (ESM) when the user signs on. If the user is not
signed on, the address of the CICS DFLTUSER's ACEEis returned. If an ACEE
does not exist, CICS sets the pointer reference to the null value, X'FF000000'.

APPLID
Optional Parameter

 is the application identifier for the CICS region.
CURRENT_GROUPID

Optional Parameter

 is the identifier, 1 through 10 alphanumeric characters, of the current RACF
user group to which the userid (specified by the SECURITY_TOKEN value) is
assigned.

CURRENT_GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the CURRENT_GROUPID value.
ENTRY_PORT_NAME

Optional Parameter

1856 CICS TS for z/OS 4.1: Diagnosis Reference

is the name of the entry port assigned to the userid.
ENTRY_PORT_TYPE

Optional Parameter

 is the type of the entry port assigned to the userid. This parameter is only
valid if ENTRY_PORT_NAME is also specified.

Values for the parameter are:
 TERMINAL
 CONSOLE

GROUPID_LENGTH
Optional Parameter

 The length of the name of the RACF group to which the user was assigned at
signon.

NATIONAL_LANGUAGE
Optional Parameter

 is a three-character code identifying the national language for the userid. It can
have any of the values in “Languages and their codes” on page 1331.

OPERATOR_CLASSES
Optional Parameter

 identifies the operator classes to which the user belongs. This is a 24-bit value,
with each bit determining whether or not the user is a member of that class.

OPERATOR_IDENT
Optional Parameter

 is the operator identification code, 1 through 3 alphanumeric characters, for the
userid.

OPERATOR_PRIORITY
Optional Parameter

 is the operator priority value, in the range 0 through 255 (where 255 is the
highest priority), for the userid.

PRINCIPAL_USER_TOKEN
Optional Parameter

 is the token identifying the userid in the user domain.
TIMEOUT

Optional Parameter

 is the number of minutes, in the range 0 through 60, that must elapse since the
user last used the terminal before CICS "times-out" the terminal.
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

USERID
Optional Parameter

 is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
USERID_LENGTH

Optional Parameter

 is the length of the USERID value.
USERNAME

Optional Parameter

 is an optional buffer into which the attributes of the user are placed.
XRFSOFF

Optional Parameter

Chapter 111. User Domain (US) 1857

indicates whether or not you want CICS to sign off the user following an XRF
takeover.

Values for the parameter are:
 FORCE
 NOFORCE

USXM gate, TERM_TRANSACTION_USER function
The TERM_TRANSACTION_USER function of the USXM gate removes the state
information created by an INIT_TRANSACTION_USER function.

Input Parameters
USDOM_TRANSACTION_TOKEN

is the user token to be used for reference to user characteristics only.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 FREEMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USXM gate, UNFLATTEN_TRANSACTION_USER function
The UNFLATTEN_TRANSACTION_USER function of the USXM gate adds (by the
ADD_USER_WITHOUT_PASSWORD function of the USAD gate) the user defined
by the contents of the supplied FLAT_TRANSUSER buffer.

Input Parameters
FLAT_TRANSUSER

is the buffer to be created.
SUSPEND

Optional Parameter

 indicates whether a wait during add user processing is acceptable.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLICATION_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL

1858 CICS TS for z/OS 4.1: Diagnosis Reference

GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 INVALID_USERID
 SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USER_NOT_LOCATED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

PRINCIPAL_USER_TOKEN
is the token identifying the userid in the user domain.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

User domain's generic gates

Table 83 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 83. User domain's generic gates

Gate Trace Functions Format

DMDM US 0101
US 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST US 0601
US 0602

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

In initialization processing, performs internal routines to set up the user domain,
and gets the initial user options, as for the“USIS gate,
SET_USER_DOMAIN_PARMS function” on page 1852.

For a cold start, the user options come from the system initialization parameters;
for any other type of start, the information comes from the local catalog, but is
then modified by any relevant system initialization parameters.

User domain also issues console messages during initialization to report whether
or not security is active.

In quiesce and termination processing, the user domain performs only internal
routines.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777

Chapter 111. User Domain (US) 1859

Modules
 Module Function

DFHUSAD Handles the following requests:
 ADD_USER_WITH_PASSWORD
 ADD_USER_WITHOUT_PASSWORD
 DELETE_USER
 INQUIRE_USER
 INQUIRE_DEFAULT_USER
 VALIDATE_USERID
 NOTIFY_USERID
 ADD_USER_VIA_ICRX
 INQUIRE_ICRX
 RELEASE_ICRX
 ICRX_TO_USERID
 GET_ASSOCIATED_DATA_LIST

DFHUSDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHUSDUF US domain offline dump formatting routine

DFHUSFL Handles the following requests:
 FLATTEN_USER
 UNFLATTEN_USER
 TAKEOVER

DFHUSIS Handles the following requests:
 SET_USER_DOMAIN_PARMS
 INQUIRE_DOMAIN

DFHUSST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHUSTI Handles user timeout processing

DFHUSTRI Interprets US domain trace entries

DFHUSXM Handles the following requests:
 ADD_TRANSACTION_USER
 DELETE_TRANSACTION_USER
 END_TRANSACTION
 INIT_TRANSACTION_USER
 INQUIRE_TRANSACTION_USER
 FLATTEN_TRANSACTION_USER
 UNFLATTEN_TRANSACTION_USER

1860 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|
|
|
|
|
|

|

Chapter 112. Web Domain (WB)

The Web domain manages interaction between CICS and Web clients, or between
CICS as an HTTP client and servers on the Internet, with the exception of Atom
feeds, which are managed by the Web 2.0 (W2) domain.

For more information about CICS as an HTTP server and CICS as an HTTP client,
see theCICS Internet Guide.

Web Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the WB domain.

WBAP gate, END_BROWSE function
The END_BROWSE function defines the end of a browse of the HTTP headers
received for an HTTP request.

Input Parameters
DATA_TYPE

Indicates whether the request is a browse operation on HTTP forms data or
HTTP headers.

 Values for the parameter are:
 FORMFIELD
 HEADER

Output Parameters
REASON

The values for the parameter are:
 FORMFLD_BROWSE_NOT_ACTIVE
 HEADER_BROWSE_NOT_ACTIVE
 NON_WEB_TRANSACTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBAP gate, GET_HTTP_RESPONSE function
The GET_HTTP_RESPONSE function retrieves the HTTP Response which has been
constructed by a Web API application program.

Output Parameters
REASON

The values for the parameter are:
 NO_PREVIOUS_WEB_SEND
 NON_WEB_TRANSACTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DOCUMENT_TOKEN
Optional Parameter

© Copyright IBM Corp. 1997, 2011 1861

A token that identifies the copy of the document stored on the last EXEC CICS
WEB SEND command.

WBAP gate, GET_MESSAGE_BODY function
The GET_MESSAGE_BODY function retrieves the previously constructed body of
an HTTP response.

Input Parameters
CLIENT_CODEPAGE

Optional Parameter

 ASCII Code page into which the data is to be converted before being passed
back to the caller

CONTAINER_NAME
Optional Parameter

 The name of the container that will receive the message body.
CONTAINER_POOL

Optional Parameter

 The container pool of which the named container is a member.
CONVERT

Optional Parameter

 indicates whether or not data is to undergo code page conversion.

Values for the parameter are:
 DEFAULT
 NO
 YES

DATA_BUFFER
Optional Parameter

 The buffer into which the data is to be placed.
TRUNCATE

Optional Parameter

 A binary value that specifies how data that is not returned on the first call is
handled. TRUNCATE(NO) specifies that the rest of the data will be returned on
subsequent calls. TRUNCATE(YES) specifies that the extra data will be truncated
and will not be returned.

Values for the parameter are:
 NO
 YES

SERVER_CODEPAGE
Optional Parameter

 EBCDIC Code page of the data to be passed back

Output Parameters
REASON

The values for the parameter are:
 BODY_INCOMPLETE
 BODY_TRUNCATED
 BODY_TRUNCATED
 CHUNK_INCOMPLETE
 CLOSESTATUS_INVAL_NONHTTP
 INVALID_CLIENT_CODEPAGE
 INVALID_CLIENT_CODEPAGE

1862 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_CODEPAGE_COMBIN
 INVALID_MEDIATYPE
 INVALID_SERVER_CODEPAGE
 INVALID_SERVER_CODEPAGE
 NON_WEB_TRANSACTION
 PARTIAL_BODY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REQUEST_TYPE
Optional Parameter

 Indicates whether we are processing an HTTP Request.

Values for the parameter are:
 HTTP
 NON_HTTP

SET_BLOCK
Optional Parameter

 Address of a block of storage containing the message body

WBAP gate, INITIALIZE_TRANSACTION function
The INITIALIZE_TRANSACTION function is used to initialize a transaction whose
primary client is a WRB but whose code is not part of the WB component (such as
the Pipeline Manager). It verifies the Web environment and returns useful Web
state data.

Input Parameters
CLIENT_CODEPAGE

Optional Parameter

 The codepage used by the client.
MEDIATYPE

Optional Parameter

 The internet media type specified on the request.
URI

Optional Parameter

 The URI specified in the request.

Output Parameters
REASON

The values for the parameter are:
 INITIALIZATION_FAULT
 NON_WEB_TRANSACTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

PIPELINE
Optional Parameter

 The PIPELINE resource associated with the inbound request.
TCPIPSERVICE

Optional Parameter

 The TCPIPSERVICE resource associated with the inbound request.

Chapter 112. Web Domain (WB) 1863

WEBSERVICE
Optional Parameter

 The WEBSERVICE resource associated with the inbound request.

WBAP gate, INQUIRE function
The INQUIRE function passes back information pertaining to an HTTP request.

Input Parameters
CLIENT_NAME

Optional Parameter

 Buffer to contain TCP/IP name of client from which HTTP request was
received.

HOST_BUFFER
Optional Parameter

 HTTP_METHOD
Optional Parameter

 Buffer to contain HTTP method specified on the HTTP request
HTTP_VERSION

Optional Parameter

 Buffer to contain HTTP version specified on the HTTP request
QUERYSTRING

Optional Parameter

 Buffer to contain HTTP query string specified on the HTTP request
SERVER_NAME

Optional Parameter

 Buffer to contain TCP/IP name of CICS
URI

Optional Parameter

 Buffer to contain URI specified on the HTTP request

Output Parameters
REASON

The values for the parameter are:
 INVALID_REQUEST_FORMAT
 NON_WEB_TRANSACTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CERTIFICATE_TOKEN
Optional Parameter

 eight byte token identifying SSL certificate of client issuing this HTTP request
CLIENT_ADDR

Optional Parameter

 Fullword containing IP address of the client from which the HTTP request was
received

REQUEST_TYPE
Optional Parameter

 Indicates whether we are processing an HTTP Request.

Values for the parameter are:
 HTTP

1864 CICS TS for z/OS 4.1: Diagnosis Reference

NON_HTTP
SCHEME

Optional Parameter

 Values for the parameter are:
 HTTP
 HTTPS

SERVER_ADDR
Optional Parameter

 Fullword containing IP address of the TCP/IP stack on which the HTTP
request was received

SERVER_PORT
Optional Parameter

 Fullword containing port number on which the HTTP request was received
SSL_TYPE

Optional Parameter

 Indicates what level of SSL support applies to the incoming HTTP request.

Values for the parameter are:
 CLIENTAUTH
 NO
 YES

URIMAP
Optional Parameter

 WBAP gate, READ function
Retrieve either a specific HTTP header value from the TS queue containing the
HTTP request header data or a specific form field from the fields in the HTML
form for the current HTTP request.

Input Parameters
DATA_TYPE

Indicates whether the request is a browse operation on HTTP forms data or
HTTP headers.

 Values for the parameter are:
 FORMFIELD
 HEADER

HTTP_BUFFER_NAME
Optional Parameter

 A block containing a character string that contains the name of the header or
form field, and the length of that string.

HTTP_BUFFER_VALUE
The value of the header or form field.

CLIENT_CODEPAGE
Optional Parameter

 ASCII code page into which the data is to be converted before being passed
back to the caller

CONVERT
Optional Parameter

 Indicates whether or not data is to undergo code page conversion.

Values for the parameter are:
 DEFAULT

Chapter 112. Web Domain (WB) 1865

NO
 YES

PRIVATE_DATA
Optional Parameter

 A binary value indicating whether the data is private. Private data is not
exposed in trace entries.

Values for the parameter are:
 NO
 YES

SERVER_CODEPAGE
Optional Parameter

 EBCDIC code page of the data to be passed back

Output Parameters
REASON

The values for the parameter are:
 CLIENT_CODEPAGE_UNSUPP
 CODEPAGE_NOT_FOUND
 FORMFIELD_CANNOT_GET_BODY
 FORMFIELD_CORRUPT_HEADER
 FORMFIELD_NO_BOUNDARY_STR
 FORMFIELD_NO_CONTENT_HDR
 FORMFIELD_STRUCT_CORRUPT
 FORMFIELD_STRUCT_FORM_ERR
 FORMFIELD_UNKNOWN_FORMTYPE
 FORMFLD_NOT_FOUND
 FORMFLD_VALUE_LENGTH_ERROR
 HEADER_NOT_FOUND
 INVALID_CODEPAGE_COMBIN
 INVALID_REQUEST_FORMAT
 NO_CONVERT_PARM
 NO_FORMS_DATA
 NON_WEB_TRANSACTION
 SERVER_CODEPAGE_UNSUPP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SET_BLOCK
Optional Parameter

 A block for returning the pointer and data length when the SET option is
specified.

WBAP gate, READ_NEXT function
The READ_NEXT function returns the next HTTP header in a browse of HTTP
headers.

Input Parameters
DATA_TYPE

Indicates whether the request is a browse operation on HTTP forms data or
HTTP headers.

 Values for the parameter are:
 FORMFIELD
 HEADER

1866 CICS TS for z/OS 4.1: Diagnosis Reference

HTTP_BUFFER_NAME
Optional Parameter

 A block containing a character string that contains the name of the header or
form field, and the length of that string.

HTTP_BUFFER_VALUE
The value of the header or form field.

Output Parameters
REASON

The values for the parameter are:
 BROWSE_END
 FORMFIELD_CORRUPT_HEADER
 FORMFIELD_STRUCT_CORRUPT
 FORMFLD_BROWSE_NOT_ACTIVE
 FORMFLD_NAME_LENGTH_ERROR
 FORMFLD_VALUE_LENGTH_ERROR
 HEADER_BROWSE_NOT_ACTIVE
 HEADER_NAME_LENGTH_ERROR
 HEADER_VALUE_LENGTH_ERROR
 INVALID_FORMFLD
 INVALID_HEADER
 NO_CONVERT_PARM
 NO_FORMS_DATA
 NON_WEB_TRANSACTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBAP gate, SEND_RESPONSE function
The SEND_RESPONSE function identifies a CICS Document which is to be used as
the body of a HTTP response, and the HTTP reason code with which that response
is to be returned.

Input Parameters
ACTION

Optional Parameter

 Values for the parameter are:
 EVENTUAL
 IMMEDIATE

CHUNKING
Optional Parameter

 Specifies whether the data is to be chunked.

Values for the parameter are:
 YES
 NO
 END

CLIENT_CODEPAGE
Optional Parameter

 ASCII Code page into which the data is to be converted before being passed
back to the caller

CLOSESTATUS
Optional Parameter

Chapter 112. Web Domain (WB) 1867

Controls sending of the connect: close header. If the session is not to persist
then send the header. The default action is to not to send the connect: close
header unless the client has indicated that it wishes to close the connection
after the response has been received.

Values for the parameter are:
 CLOSE
 NOCLOSE

CONVERSION
Optional Parameter

 A binary parameter indicating whether the data is to undergo code page
conversion.

Values for the parameter are:
 NO
 YES

DOCUMENT_TOKEN
Optional Parameter

 The 8 byte field into which CICS places the document token identifying the
document which contains the body of the HTTP response.

FROM
Optional Parameter

 The block containing the data to be sent.
MEDIATYPE

Optional Parameter
 SERVER_CODEPAGE

Optional Parameter

 EBCDIC Code page of the data to be passed back
STATUS_CODE

Optional Parameter

 HTTP response code with which the HTTP response is returned
STATUS_TEXT

Optional Parameter

 Text to accompany HTTP response code with which the HTTP response is
returned.

Output Parameters
REASON

The values for the parameter are:
 CHUNK_INCOMPLETE
 CHUNKING_NOT_SUPPORTED
 CHUNKLENGTH_INVAL_HTTP10
 CHUNKLENGTH_INVAL_NONHTTP
 CLOSESTATUS_INVAL_NONHTTP
 CONNECTION_CLOSED
 DOCUMENT_NOT_FOUND
 HEADER_MISSED_THE_BUS
 INVALID_CHUNKSIZE
 INVALID_CODEPAGE_COMBIN
 INVALID_MEDIATYPE
 INVALID_SEND_SEQUENCE
 MSG_BODY_NOT_ALLOWED
 NON_WEB_TRANSACTION
 PREVIOUS_SEND_FAILED

1868 CICS TS for z/OS 4.1: Diagnosis Reference

SOCKETS_ERROR
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBAP gate, START_BROWSE function
The START_BROWSE function starts a browse of the HTTP headers or the HTML
forms data in an HTTP request.

Input Parameters
DATA_TYPE

Indicates whether the request is a browse operation on HTTP forms data or
HTTP headers.

 Values for the parameter are:
 FORMFIELD
 HEADER

CLIENT_CODEPAGE
Optional Parameter

 ASCII code page into which the data is to be converted before being passed
back to the caller

CONVERT
Optional Parameter

 Indicates whether or not data is to undergo code page conversion.

Values for the parameter are:
 DEFAULT
 NO
 YES

HTTP_BUFFER_NAME
Optional Parameter

 A block containing a character string that contains the name of the header or
form field, and the length of that string.

SERVER_CODEPAGE
Optional Parameter

 EBCDIC code page of the data to be passed back

Output Parameters
REASON

The values for the parameter are:
 CLIENT_CODEPAGE_UNSUPP
 FORMFIELD_CANNOT_GET_BODY
 FORMFIELD_CORRUPT_HEADER
 FORMFIELD_NO_BOUNDARY_STR
 FORMFIELD_NO_CONTENT_HDR
 FORMFIELD_STRUCT_CORRUPT
 FORMFIELD_STRUCT_FORM_ERR
 FORMFIELD_UNKNOWN_FORMTYPE
 FORMFLD_BROWSE_ACTIVE
 FORMFLD_NAME_LENGTH_ERROR
 HEADER_BROWSE_ACTIVE
 INVALID_CODEPAGE_COMBIN
 INVALID_FORMFLD
 INVALID_REQUEST_FORMAT

Chapter 112. Web Domain (WB) 1869

NO_CONVERT_PARM
 NO_FORMS_DATA
 NON_WEB_TRANSACTION
 SERVER_CODEPAGE_UNSUPP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBAP gate, WRITE_HEADER function
The WRITE_HEADER function causes a HTTP response header to be stored by
CICS.

Input Parameters
HTTP_BUFFER_NAME

Optional Parameter

 A block containing a character string that contains the name of the header or
form field, and the length of that string.

HTTP_BUFFER_VALUE
The value of the header.

Output Parameters
REASON

The values for the parameter are:
 INVALID_TRAILER_HEADER
 NON_WEB_TRANSACTION
 TRAILER_NOT_SUPPORTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, CLOSE_SESSION function
The CLOSE_SESSION function ends the connection to the server by closing the
socket and releasing the session control block.

Input Parameters
SESSION_TOKEN

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED

1870 CICS TS for z/OS 4.1: Diagnosis Reference

CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, END_BROWSE_HEADERS function
The END_BROWSE_HEADERS function ends a browse of the HTTP headers for an
HTTP response that has been received.

Input Parameters
SESSION_TOKEN

Chapter 112. Web Domain (WB) 1871

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR

1872 CICS TS for z/OS 4.1: Diagnosis Reference

URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, INQUIRE_SESSION function
The INQUIRE_SESSION function returns information about the specified
connection to a server, represented by the session token.

Input Parameters
SESSION_TOKEN
HOST_BUFFER

Optional Parameter
 PATH_BUFFER

Optional Parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST

Chapter 112. Web Domain (WB) 1873

INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

HTTP_RNUM
Optional Parameter

 HTTP_VNUM
Optional Parameter

 PORT
Optional Parameter

 SCHEME
Optional Parameter

 Values for the parameter are:
 HTTP
 HTTPS
 OTHER

BIN_IP_ADDRESS
Binary format IP address

 IP_ADDRESS
Character format IP address

 IP_ADDRESS_LEN
Length of IP_ADDRESS

 IP_ADDRESS_TYPE
Values for the parameter are:
 IPV4_HOST
 IPV6_HOST

1874 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|
|
|
|

HOSTTYPE
Values for the parameter are:
 IPV4_HOST
 IPV6_HOST

CHUNKED_REQUEST
Values for the parameter are:
 YES
 NO

URIMAP
Optional Parameter

 WBCL gate, OPEN_SESSION function
The OPEN_SESSION function opens a session with the HTTP server.

Input Parameters
HOST
PORT
SCHEME

 Values for the parameter are:
 HTTP
 HTTPS
 OTHER

CERTIFICATE_LABEL
Optional Parameter

 CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A string of up to 56 hexadecimal digits that encodes a list of up to 28 2-digit
cipher suite codes.

HOST_CODEPAGE
Optional Parameter

 PROXY_URL
Optional Parameter

 URIMAP
Optional Parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED

Chapter 112. Web Domain (WB) 1875

|
|
|
|
|
|
|
|

COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SESSION_TOKEN
HTTP_RNUM

Optional Parameter
 HTTP_VNUM

Optional Parameter

1876 CICS TS for z/OS 4.1: Diagnosis Reference

WBCL gate, PARSE_URL function
The PARSE_URL function parses a URL into its constituent components.

Input Parameters
URL

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED

Chapter 112. Web Domain (WB) 1877

TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

HOST
Optional Parameter

HOSTTYPE
Values for the parameter are:
 IPV4_HOST
 IPV6_HOST

PATH
Optional Parameter

PORT
Optional Parameter

QUERY_STRING
Optional Parameter

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SCHEME

 Values for the parameter are:
 HTTP
 HTTPS
 OTHER

BIN_IP_ADDRESS
Binary IP address

 SCHEME_NAME
Optional Parameter

 WBCL gate, READ_HEADER function
The READ_HEADER function reads a specific HTTP header from the HTTP
response that has been received.

Input Parameters
NAME
SESSION_TOKEN
VALUE_BUFFER

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED

1878 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|

LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

Chapter 112. Web Domain (WB) 1879

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, READ_NEXT_HEADER function
The READ_NEXT_HEADER function reads the next HTTP header in the browse
operation for an HTTP response that has been received.

Input Parameters
NAME_BUFFER
SESSION_TOKEN
VALUE_BUFFER

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED

1880 CICS TS for z/OS 4.1: Diagnosis Reference

NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, READ_RESPONSE function
The READ_RESPONSE function waits for and then reads the HTTP response that
is expected from the HTTP server.

Input Parameters
SESSION_TOKEN

An 8-byte binary value that uniquely identifies the connection between CICS
as an HTTP client, and an HTTP server.

BODY
Optional Parameter

 A buffer that will receive the HTTP response.
CONTAINER_NAME

Optional Parameter

 The name of the container that will receive the message body.
CONTAINER_POOL

Optional Parameter

 The container pool of which the named container is a member.
HOST_CODEPAGE

Optional Parameter
 MAX_DATA_LENGTH

Optional Parameter
 STATUS_TEXT

Optional Parameter

 Text to accompany HTTP response code with which the HTTP response is
returned.

TIME_OUT_VALUE
Optional Parameter

 TRANSLATE
Optional Parameter

Chapter 112. Web Domain (WB) 1881

Values for the parameter are:
 NO
 YES

TRUNCATE
Optional Parameter

 indicates whether or not data is to be truncated if the buffer is too small.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED

1882 CICS TS for z/OS 4.1: Diagnosis Reference

PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS_CODE
CHARSET

Optional Parameter
 MEDIATYPE

Optional Parameter
 SET_BUFFER

Optional Parameter

 WBCL gate, START_BROWSE_HEADERS function
The START_BROWSE_HEADERS function starts a browse of the HTTP headers for
a response that has been received.

Input Parameters
SESSION_TOKEN

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT

Chapter 112. Web Domain (WB) 1883

CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, WRITE_HEADER function
The WRITE_HEADER function adds one HTTP header to the HTTP request being
composed. It can be called multiple times to add multiple headers.

Input Parameters
NAME
SESSION_TOKEN

1884 CICS TS for z/OS 4.1: Diagnosis Reference

VALUE

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS
 ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_INVALID
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY

Chapter 112. Web Domain (WB) 1885

URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBCL gate, WRITE_REQUEST function
The WRITE_REQUEST function appends the request body to the HTTP request
being composed, and schedules it to be sent. It also handles sending a chunk of
data.

Input Parameters
METHOD

 Values for the parameter are:
 DELETE
 GET
 HEADS
 LINK
 OPTIONS
 POST
 PUT
 REQUEUE
 TRACE
 UNLINK

SESSION_TOKEN
ACTION

Optional Parameter

 Values for the parameter are:
 EVENTUAL
 EXPECT
 IMMEDIATE

ACTION_PARAMETER
Optional Parameter

 BODY
Optional Parameter

 A buffer that contains the HTTP request.
CHARSET

Optional Parameter
 CHUNK

Optional Parameter

 A block that contains chunked data.
CLOSE

Optional Parameter

 Values for the parameter are:
 NO

1886 CICS TS for z/OS 4.1: Diagnosis Reference

YES
CONTAINER_NAME

Optional Parameter

 The name of the container that contains the request.
CONTAINER_POOL

Optional Parameter

 The container pool of which the named container is a member.
CONVERSE

Optional Parameter

 Values for the parameter are:
 NO
 YES

DOCUMENT_TOKEN
Optional Parameter

 The 8 byte field into which CICS places the document token identifying the
document which contains the body of the HTTP response

HOST_CODEPAGE
Optional Parameter

 MEDIATYPE
Optional Parameter

 PATH
Optional Parameter

 QUERY_STRING
Optional Parameter

 TRANSLATE
Optional Parameter

 Values for the parameter are:
 NO
 YES

URIMAP
Optional Parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 EXIT_LINKAGE_ERROR
 FREEMAIN_FAILED
 GETMAIN_FAILED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BODY_NOT_ALLOWED
 BODY_REQUIRED
 BODY_TRUNCATED
 BROWSE_ERROR
 CHUNKING_ERROR
 CHUNKING_NOT_SUPPORTED
 COMBINATION_UNSUPPORTED
 CONNECT_FAILED
 CONNECTION_CLOSE_SENT
 CONNECTION_CLOSED
 CONTAINER_NOT_FOUND
 END_HEADERS

Chapter 112. Web Domain (WB) 1887

ESCAPE_ERROR
 EXPECT_REJECTED
 HEADER_NAME_LENGTH_ERROR
 HEADER_NOT_FOUND
 HEADER_VALUE_LENGTH_ERROR
 HTTP_ERROR
 INVALID_CHARSET
 INVALID_CHUNK
 INVALID_CLIENT_CERTIFICATE
 INVALID_DOCUMENT_TOKEN
 INVALID_HOST
 INVALID_HOST_CODEPAGE
 INVALID_MEDIATYPE
 INVALID_PATH
 INVALID_RESPONSE_HEADER
 INVALID_SCHEME
 INVALID_SESSION_TOKEN
 INVALID_URL
 MEDIATYPE_NOT_ALLOWED
 MEDIATYPE_REQUIRED
 METHOD_NOT_ALLOWED
 NO_RESPONSE_HEADERS
 NOT_AUTHORIZED
 PARTIAL_BODY
 PIPELINING_ERROR
 PROXY_ERROR
 SOCKET_ERROR
 STATUS_TEXT_TRUNCATED
 TIMED_OUT
 TRANSLATE_ERROR
 UNKNOWN_HOST
 UNKNOWN_PROXY
 URIMAP_DISABLED
 URIMAP_HOST_ERROR
 URIMAP_NOT_FOUND
 URIMAP_PATH_ERROR
 XWBOPEN_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 OMITTED_PARAMETER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBFM gate, PARSE_MULTIPART_FORM function
This function takes a form encoded as multipart form data (with media type
multipart/form-data) and converts it into a formfield structure.

Input parameters
SOURCE_DATA

This is the area containing the source data, consisting of a multipart/form-data
message body.

1888 CICS TS for z/OS 4.1: Diagnosis Reference

CLIENT_CCSID
Optional parameter. This is used to interpret the value strings for multipart
forms data.

SOURCE_CCSID
Optional parameter. This is the source CCSID in which the form boundary
string is provided. If omitted, it defaults to the client CCSID.

TARGET_CCSID
Optional parameter. This is the target CCSID in which output data is required.
If omitted, it defaults to the source CCSID.

FORM_BOUNDARY
This specifies the boundary string in the source CCSID. If the source CCSID is
not 819, the boundary string is copied and converted from the source CCSID to
CCSID 819 before being used to scan the message body.

SUBPOOL_TOKEN
Optional parameter. This specifies the token for the subpool from which the
form field structure storage is to be allocated. If this is omitted, the storage is
obtained from STORAGE_CLASS(TASK31).

Output Parameters
FORM_STRUCTURE

This is the returned address and length of the allocated form field structure.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_NOT_SUPPORTED
 FORMS_DECODE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBFM gate, PARSE_URL_ENCODED_FORM function
This function takes a URL-encoded forms data stream and converts it into a form
field structure.

Input parameters
SOURCE_DATA

This is the area containing the source data, consisting of URL-encoded forms
data.

CLIENT_CCSID
Optional parameter. This is used to interpret percent-encoded escape sequences
for URL-encoded data. If omitted, the default value is 819.

SOURCE_CCSID
Optional parameter. This is the source CCSID in which URL-encoded input
data is provided. If omitted, it defaults to the client CCSID.

Chapter 112. Web Domain (WB) 1889

TARGET_CCSID
Optional parameter. This is the target CCSID in which output data is required.
If omitted, it defaults to the source CCSID.

SUBPOOL_TOKEN
Optional parameter. This specifies the token for the subpool from which the
form field structure storage is to be allocated. If this is omitted, the storage is
obtained from STORAGE_CLASS(TASK31).

Output Parameters
FORM_STRUCTURE

This is the returned address and length of the allocated form field structure.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_NOT_SUPPORTED
 FORMS_DECODE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBFM gate, PARSE_URL_ENCODED_LIST function
This function takes a URL-encoded forms data stream and converts it into a form
field structure.

Input parameters
SOURCE_DATA

This is the area containing the source data, consisting of URL-encoded forms
data.

CLIENT_CCSID
Optional parameter. This is used to interpret percent-encoded escape sequences
for URL-encoded data. If omitted, the default value is 819.

SOURCE_CCSID
Optional parameter. This is the source CCSID in which URL-encoded input
data is provided. If omitted, it defaults to the client CCSID.

TARGET_CCSID
Optional parameter. This is the target CCSID in which output data is required.
If omitted, it defaults to the source CCSID.

NAME_DELIMITER
Optional parameter. This delimiter separates names from values in the source
CCSID. The default value is "=".

FIELD_DELIMITER
Optional parameter. This delimiter separates name-value pairs in the source
CCSID. The default value is "&".

PRIV_DELIMITER
Optional parameter. This is an alternative delimiter for name-value pairs in the
source CCSID. If omitted, no alternative delimiter is used.

1890 CICS TS for z/OS 4.1: Diagnosis Reference

UNESCAPE
Optional parameter. This specifies whether percent-encoded escape sequences
should be resolved during PARSE_URL_ENCODED_FORM processing. The
default value is YES.

SUBPOOL_TOKEN
Optional parameter. This specifies the token for the subpool from which the
form field structure storage is to be allocated. If this is omitted, the storage is
obtained from STORAGE_CLASS(TASK31).

Output Parameters
FORM_STRUCTURE

This is the returned address and length of the form field structure allocated for
forms requests.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 CCSID_CONVERSION_ERROR
 CCSID_NOT_SUPPORTED
 FORMS_DECODE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBFM gate, URL_DECODE function
This function processes a URL-encoded value in the source CCSID and converts it
to a standard character string in the target CCSID.

Input parameters
SOURCE_DATA

This is the area containing the source data, consisting of URL-encoded forms
data.

TARGET_BUFFER
This specifies the target buffer. If the specified buffer size is too small but other
processing is successful, an OUTPUT_BUFFER_OVERFLOW exception is
indicated and the required total size is returned as the actual length.

CLIENT_CCSID
Optional parameter. This is used to interpret percent-encoded escape sequences
for URL-encoded data. If omitted, the default value is 819.

SOURCE_CCSID
Optional parameter. This is the source CCSID in which URL-encoded input
data is provided. If omitted, it defaults to the client CCSID.

TARGET_CCSID
Optional parameter. This is the target CCSID in which output data is required.
If omitted, it defaults to the source CCSID.

Chapter 112. Web Domain (WB) 1891

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 OUTPUT_BUFFER_OVERFLOW
 CCSID_CONVERSION_ERROR
 CCSID_NOT_SUPPORTED
 FORMS_DECODE_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_PARAMETER

The following values are returned when RESPONSE is DISASTER:
 ABEND
 INTERNAL_ERROR
 FAILURE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBSR gate, RECEIVE function
The RECEIVE function receives an HTTP Request off a socket, and parses it in
order to determine what to do with it.

Input Parameters
INITIAL_RECEIVE

Indicates whether this is the first receive issued by the caller.

 Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ANALYZER_ABEND
 ANALYZER_DATALENG_ERROR
 ANALYZER_ERROR
 ANALYZER_LINK_ERROR
 BASIC_AUTHENTICATE_ERROR
 CHARACTERSET_ERROR
 CHUNKED_CONTENT_CONFLICT
 CLIENT_AUTHENTICATE_ERROR
 CLIENT_ERROR
 CODEPAGE_CONVERSION_ERROR
 CONNECTION_CLOSED
 DATA_LENGTH_EXCEEDED
 GETMAIN_FAILED
 HDR_LENGTH_ERROR
 HEADER_CONVERSION_ERROR
 HOSTCODEPAGE_ERROR
 HTTP10_INVALID_EXPECT
 INSUFFICIENT_THREADS

1892 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_CHUNK
 INVALID_CHUNK_SIZE_HEADER
 INVALID_EXPECT_HEADER
 INVALID_STATIC_TYPE
 METHOD_NOT_IMPLEMENTED
 NO_ANALYZER_SPECIFIED
 NO_DATA
 NO_HOST_HEADER
 NON_HTTP_DATA
 PRECONDITION_FAILED
 RECEIVE_ERROR
 REQUEST_TIMEOUT
 SEND_ERROR
 SSL_HANDSHAKE_ERROR
 STATIC_DATA_NOT_FOUND
 STATIC_DATA_NOTAUTH
 STATIC_DATA_READ_ERROR
 TRAILER_LENGTH_ERROR
 UNAVAILABLE
 USER_DATA_CONVERSION_ERROR
 VERSION_NOT_SUPPORTED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SESSION_TOKEN

ATTACH_TRANSID
Transaction ID of Web alias transaction to be attached to continue processing
the HTTP request.

CONNECTION_PERSIST
Indicates whether the HTTP Request included the HTTP 1.0 Keepalive header.

 Values for the parameter are:
 NO
 YES

FAILING_PROGRAM
Name of program which returned an error in the course of receiving the HTTP
request.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TOKEN
Token uniquely identifying the WebRequestBlock associated with this HTTP
request.

WBSR gate, SEND function
The SEND function returns the response constructed following receipt of an HTTP
request.

Input Parameters
TOKEN

Token identifying WebRequestBlock with which this SEND is associated

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

Chapter 112. Web Domain (WB) 1893

LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ANALYZER_ABEND
 ANALYZER_DATALENG_ERROR
 ANALYZER_ERROR
 ANALYZER_LINK_ERROR
 BASIC_AUTHENTICATE_ERROR
 CHARACTERSET_ERROR
 CHUNKED_CONTENT_CONFLICT
 CLIENT_AUTHENTICATE_ERROR
 CLIENT_ERROR
 CODEPAGE_CONVERSION_ERROR
 CONNECTION_CLOSED
 DATA_LENGTH_EXCEEDED
 GETMAIN_FAILED
 HDR_LENGTH_ERROR
 HEADER_CONVERSION_ERROR
 HOSTCODEPAGE_ERROR
 HTTP10_INVALID_EXPECT
 INSUFFICIENT_THREADS
 INVALID_CHUNK
 INVALID_CHUNK_SIZE_HEADER
 INVALID_EXPECT_HEADER
 INVALID_STATIC_TYPE
 METHOD_NOT_IMPLEMENTED
 NO_ANALYZER_SPECIFIED
 NO_DATA
 NO_HOST_HEADER
 NON_HTTP_DATA
 PRECONDITION_FAILED
 RECEIVE_ERROR
 REQUEST_TIMEOUT
 SEND_ERROR
 SSL_HANDSHAKE_ERROR
 STATIC_DATA_NOT_FOUND
 STATIC_DATA_NOTAUTH
 STATIC_DATA_READ_ERROR
 TRAILER_LENGTH_ERROR
 UNAVAILABLE
 USER_DATA_CONVERSION_ERROR
 VERSION_NOT_SUPPORTED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SESSION_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBSR gate, SEND_STATIC_RESPONSE function
The SEND_STATIC_RESPONSE function returns a static response specified by a
URIMAP definition following receipt of an HTTP request.

1894 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ANALYZER_ABEND
 ANALYZER_DATALENG_ERROR
 ANALYZER_ERROR
 ANALYZER_LINK_ERROR
 BASIC_AUTHENTICATE_ERROR
 CHARACTERSET_ERROR
 CHUNKED_CONTENT_CONFLICT
 CLIENT_AUTHENTICATE_ERROR
 CLIENT_ERROR
 CODEPAGE_CONVERSION_ERROR
 CONNECTION_CLOSED
 DATA_LENGTH_EXCEEDED
 GETMAIN_FAILED
 HDR_LENGTH_ERROR
 HEADER_CONVERSION_ERROR
 HOSTCODEPAGE_ERROR
 HTTP10_INVALID_EXPECT
 INSUFFICIENT_THREADS
 INVALID_CHUNK
 INVALID_CHUNK_SIZE_HEADER
 INVALID_EXPECT_HEADER
 INVALID_STATIC_TYPE
 METHOD_NOT_IMPLEMENTED
 NO_ANALYZER_SPECIFIED
 NO_DATA
 NO_HOST_HEADER
 NON_HTTP_DATA
 PRECONDITION_FAILED
 RECEIVE_ERROR
 REQUEST_TIMEOUT
 SEND_ERROR
 SSL_HANDSHAKE_ERROR
 STATIC_DATA_NOT_FOUND
 STATIC_DATA_NOTAUTH
 STATIC_DATA_READ_ERROR
 TRAILER_LENGTH_ERROR
 UNAVAILABLE
 USER_DATA_CONVERSION_ERROR
 VERSION_NOT_SUPPORTED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SESSION_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBSV gate, READ_REQUEST function
The READ_REQUEST function receives the HTTP message body.

Chapter 112. Web Domain (WB) 1895

Input parameters
SESSION_TOKEN

This is the Web server session token.
BODY_BUFFER

This is the buffer to be received as part of the HTTP message.

RECEIVE_TYPE
This is the type of receive. Values for the parameter are:
 SYNC
 ASYNC

TRUNCATE
Optional parameter. This specifies whether the HTTP message is to be
truncated. Values for the parameter are
 NO
 YES

:

TIME_OUT_VALUE
Optional parameter. This is the time-out period, in seconds, when receiving an
HTTP message.

Output parameters
MEDIATYPE

Optional parameter. This is the mediatype of the HTTP message.
CONTENT_LENGTH

Optional parameter. This is the length in the HTTP Content-Length header.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 PARTIAL_BODY
 BODY_TRUNCATED
 HEADERS_MAXLEN_EXCEEDED
 NO_CONTENT_LENGTH
 FIRST_LINE_INVALID
 SCHEDULED
 HEADERS_PARTLY_PEEKED
 ASYNC_TRUNCATE_INVALID
 BODY_ALREADY_RECEIVED
 TIMED_OUT
 INVALID_SESSION_TOKEN
 CONNECTION_CLOSED
 CONNECTION_CLOSED_ASYNC0
 SOCKET_ERROR
 SOCKET_ERROR_ASYNC0

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

1896 CICS TS for z/OS 4.1: Diagnosis Reference

WBSV gate, WRITE_RESPONSE function
The WRITE_RESPONSE function sends the HTTP message.

Input parameters
SESSION_TOKEN

This is the Web server session token.
BODY | BODY_LIST

This is the body list to be sent as the body of an HTTP message.
MEDIATYPE

This is the media type of the HTTP message.
STATUS_TEXT

This is the status text to be sent with the HTTP message. The default is "OK".
STATUS_CODE

This is the status code to be sent with the HTTP message. The default is 200.
HEADER1_NAME

This is the name of the first additional HTTP header to be sent with the HTTP
message.

HEADER2_NAME
This is the name of the second HTTP header to be sent with the HTTP
message.

HEADER2_VALUE
This is the value of the second HTTP header to be sent with the HTTP
message.

HEADER3_NAME
This is the name of the third HTTP header to be sent with the HTTP message.

HEADER3_VALUE
This is the value of the third HTTP header to be sent with the HTTP message.

HEADER_NAME_LIST
This is the list of header names to be sent with the HTTP message.

HEADER_VALUE_LIST
This is the list of header values to be sent with the HTTP message.

TIME_OUT_VALUE
This is the timeout value to be applied to the socket SEND for the response.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 HEADER1_NAME_NOTALLOWED
 HEADER2_NAME_NOTALLOWED
 HEADER3_NAME_NOTALLOWED
 HEADERLIST_NAME_NOTALLOWED
 MAX_LIST_SIZE_EXCEEDED
 NO_CLIENT_CHARSET
 HEADERS_MAXLEN_EXCEEDED
 INVALID_SESSION_TOKEN
 INVALID_MEDIATYPE
 CONNECTION_CLOSED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

Chapter 112. Web Domain (WB) 1897

|
|

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBSV gate, PEEK_HEADERS function
The PEEK_HEADERS function peeks the HTTP headers.

Input parameters
SESSION_TOKEN

This is the Web server session token.
HEADER1_NAME

Optional parameter. This is the name of the first additional HTTP header to be
sent with the HTTP message.

HEADER2_NAME
Optional parameter. This is the name of the second HTTP header to be sent
with the HTTP message.

HEADER3_NAME
Optional parameter. This is the name of the third HTTP header to be sent with
the HTTP message.

HEADER_NAME_LIST
Optional parameter. This is the list of header names to be sent with the HTTP
message.

HEADER_VALUE_LIST
This is the list of header values to be sent with the HTTP message.

HEADERS_OPTIONAL
Optional parameter. This specifies whether an exception response should be
suppressed if specified headers are missing. Values for the parameter are:
 YES
 NO

Output parameters
HEADER1_VALUE_SETBUF

Optional parameter. This is the block for HEADER1_VALUE_SETDATA. It sets
the buffer to be returned to the caller.

HEADER2_VALUE_SETBUF
Optional parameter. This is the block for HEADER2_VALUE_SETDATA. It sets
the buffer to be returned to the caller.

HEADER3_VALUE_SETBUF
Optional parameter. This is the block for HEADER3_VALUE_SETDATA. It sets
the buffer to be returned to the caller.

CONTENT_LENGTH
This is the length in the HTTP Content-Length header.

REASON
The following values are returned when RESPONSE is EXCEPTION:
 SCHEDULED
 HEADERS_MAXLEN_EXCEEDED
 NO_CONTENT_LENGTH
 NO_CONTENT_TYPE
 FIRST_LINE_INVALID
 NO_STORAGE_AVAILABLE
 HEADER1_TOO_LONG
 HEADER2_TOO_LONG

1898 CICS TS for z/OS 4.1: Diagnosis Reference

HEADER3_TOO_LONG
 UNSUPPORTED_VERSION
 INVALID_CONTENT_LENGTH
 NO_HEADER1
 NO_HEADER2
 NO_HEADER3
 METHOD_NOT_SUPPORTED
 HEADER1_INVALID
 HEADER2_INVALID
 HEADER3_INVALID
 HEADER1_EQ_HEADER2
 LAST_BODY_NOT_RECEIVED
 INVALID_SESSION_TOKEN
 CONNECTION_CLOSED
 CONNECTION_CLOSED_ASYNC0
 SOCKET_ERROR
 SOCKET_ERROR_ASYNC0
 INVALID_PARAMETERS
 LIST_HEADER_MISSING
 HEADER_NAME_TOO_LONG
 HEADER_INVALID

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

WBSV gate, INQUIRE_CURRENT_SESSION function
The INQUIRE_CURRENT_SESSION function inquires on the current session.

Output parameters
SESSION_TOKEN

Optional parameter. This is the Web server session token.
USER_TOKEN

Optional parameter. This is the ISC user token.
SERVER_BIN_IP_ADDRESS

Optional parameter. This is the server IP address returned by a
SOCKETS_INQUIRE.

SERVER_IP_ADDRESS
Optional parameter. This is the IP address of the server.

SERVER_IP_ADDRESS_LEN
Optional parameter. This is the length of the server IP address.

SERVER_IP_ADDRESS_TYPE
Optional parameter. This is address type of the server IP address.

CLIENT_BIN_IP_ADDRESS
Optional parameter. This is the binary form of the client IP address.

CLIENT_IP_ADDRESS
Optional parameter. This is the IP address of the client.

CLIENT_IP_ADDRESS_LEN
Optional parameter. This is the length of the client IP address.

Chapter 112. Web Domain (WB) 1899

|
|
|
|

CLIENT_IP_ADDRESS_TYPE
Optional parameter. This is address type of the client IP address.

TCPIPSERVICE_NAME
Optional parameter. This is the TCPIP service name returned by
SOCKETS_INQUIRE.

TRANSID
Optional parameter. This is the transaction ID returned by
SOCKETS_INQUIRE.

LISTENER_PORT
Optional parameter. This is the listener port number returned by
SOCKETS_INQUIRE.

SSLTYPE
Optional parameter. This is the SSL type returned by SOCKETS_INQUIRE.

PROTOCOL
Optional parameter. This is the protocol returned by SOCKETS_INQUIRE.

SOCKET_TOKEN
Optional parameter. This is the socket token returned by SOCKETS_INQUIRE.

CLUSTER_TYPE
Optional parameter. This is the cluster type returned by SOCKETS_INQUIRE.
Values for the parameter are:
 NONE
 SAME_SYSPLEX
 SAME_IMAGE
 SAME_STACK

REASON
The following values are returned when RESPONSE is EXCEPTION:
 NON_WEB_TRANSACTION
 SESSION_CLOSED
 INFO_NOT_AVAILABLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

WBSV gate, SET_SESSION function
The SET_SESSION function sets the current session.

Input parameters
SESSION_TOKEN

This is the Web server session token.
USER_TOKEN

Optional parameter. This is the ISC user token.
APPLDATA_SFX

Optional parameter. This is the Application Data Suffix.
TRACE_SUPPRESSION

Optional parameter. This specifies whether tracing of the HTTP body is to be
suppressed by the Socket Domain. Values for the parameter are:
 YES
 NO

1900 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

WBSV gate, CLOSE_SESSION function
The CLOSE_SESSION function sets the current session.

Input parameters
SESSION_TOKEN

This is the Web server session token.

Output parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

WBSV gate, INQUIRE_SESSION function
The INQUIRE_SESSION function inquires on the session.

Input parameters
SESSION_TOKEN

This is the Web server session token.

Output parameters
SOCKET_TOKEN

Optional parameter.
REASON

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_SESSION_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:

Chapter 112. Web Domain (WB) 1901

ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9

WBUR gate, ADD_REPLACE_URIMAP function
The ADD_REPLACE_URIMAP function adds or replaces a URIMAP resource into
the Web domain. The parameters correspond to attributes specified on the
URIMAP definition.

Input Parameters
HOST

The host name of the URI to which the URIMAP resource applies, or its IPv4
or IPv6 address.

PATH
The path component of the URI to which the URIMAP resource applies.

URIMAP
The name of the URIMAP resource.

ANALYZER
Optional Parameter

 A binary value that specifies whether an analyzer program is to be used in
processing HTTP requests.

Values for the parameter are:
 NO
 YES

CERTIFICATE_LABEL
Optional Parameter

 The label of the X.509 certificate that is to be used as the SSL client certificate
during the SSL handshake.

CHARACTERSET
Optional Parameter

 The character set into which CICS converts the entity body of the response that
is sent to the Web client.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A string of up to 56 hexadecimal digits that is interpreted as a list of up to 28
2-digit cipher suite codes.

CONVERTER
Optional Parameter

 The name of a converter program that is to be run to perform conversion or
other processing on the request and response.

HFSFILE
Optional Parameter

 The fully qualified or relative name of an HFS file that forms the body of the
static response which is sent to the HTTP request from the Web client.

HOSTCODEPAGE
Optional Parameter

1902 CICS TS for z/OS 4.1: Diagnosis Reference

The EBCDIC code page in which the text document that forms the static
response is encoded.

MEDIATYPE
Optional Parameter

 The media type of the static response that CICS provides to the HTTP request,
for example image/jpg, text/html, or text/xml.

PIPELINE_NAME
Optional Parameter

 The PIPELINE resource used by Web Service requests for the URIMAP.
PROGRAM

Optional Parameter

 The name of the user application program that composes the HTTP response
for the URIMAP.

REDIRECTION_LOCATION
Optional Parameter

 A URL to which the client's request should be redirected.
REDIRECTION_TYPE

Optional Parameter

 The type of redirection for requests that match the URIMAP resource. When
redirection is required, the REDIRECTION_LOCATION parameter specifies the
URL to which the request should be redirected.

Values for the parameter are:
 NONE
 PERMANENT
 TEMPORARY
NONE

Requests are not redirected.
TEMPORARY

Requests are redirected on a temporary basis. The URL specified by the
LOCATION attribute is used for redirection, and the status code used for
the response is 302 (Found).

PERMANENT
Requests are redirected permanently. The URL specified by the LOCATION
attribute is used for redirection, and the status code used for the response
is 301 (Moved Permanently).

SCHEME
Optional Parameter

 The scheme component of the URI to which the URIMAP resource applies.

Values for the parameter are:
 HTTP
 HTTPS
 WMQ

STATUS
Optional Parameter

 The enabled or disabled state of the URIMAP resource.

Values for the parameter are:
 DISABLED
 DISABLEDHOST
 ENABLED

TCPIPSERVICE
Optional Parameter

Chapter 112. Web Domain (WB) 1903

The name of the TCPIPSERVICE resource that defines the inbound port to
which the URIMAP resource relates.

TEMPLATENAME
Optional Parameter

 The name of a CICS document template that forms the body of the static
response that is sent to the HTTP request from the Web client.

TRANSACTION
Optional Parameter

 The name of an alias transaction that is to be used to run the user application
that composes the HTTP response, or to start the pipeline.

USAGE
Optional Parameter

 Specifies how the URIMAP resource is used.

Values for the parameter are:
 ATOM
 CLIENT
 PIPELINE
 SERVER

USERID
Optional Parameter

 The user ID under which requests for the URIMAP are initially processed.
WEBSERVICE_NAME

Optional Parameter

 The name of a WEBSERVICE resource associated with the URIMAP.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

1904 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

DUPLICATE_URIMAP
Optional Parameter

 WBUR gate, DELETE_URIMAP function
The DELETE_URIMAP function deletes a URIMAP definition from the Web
domain.

Input Parameters
URIMAP

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBUR gate, END_BROWSE_HOST function
The END_BROWSE_HOST function is used to end a browse of the virtual host
names in the Web domain.

Input Parameters
BROWSE_TOKEN

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

Chapter 112. Web Domain (WB) 1905

ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBUR gate, END_BROWSE_URIMAP function
The END_BROWSE_URIMAP function is used to end a browse through the
URIMAP resources in the Web domain.

Input Parameters
BROWSE_TOKEN

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION

1906 CICS TS for z/OS 4.1: Diagnosis Reference

NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBUR gate, GET_NEXT_HOST function
The GET_NEXT_HOST function is used to continue a browse through the virtual
host names in the Web domain.

Input Parameters
BROWSE_TOKEN
HOST

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS

 Values for the parameter are:
 DISABLED

Chapter 112. Web Domain (WB) 1907

DISABLEDHOST
 ENABLED

TCPIPSERVICE

WBUR gate, GET_NEXT_URIMAP function
The GET_NEXT_URIMAP function is used to continue a browse through the
URIMAP resources in the Web domain.

Input Parameters
BROWSE_TOKEN

See “The BROWSE_TOKEN parameter on domain interfaces” on page 9
HFSFILE

Optional Parameter

 The fully qualified or relative name of an HFS file that forms the body of the
static response which is sent to the HTTP request from the Web client.

HOST
The host name of the URI to which the URIMAP resource applies, or its IPv4
or IPv6 address.

PATH
The path component of the URI to which the URIMAP resource applies.

REDIRECTION_LOCATION
Optional Parameter

 A URL to which the client's request should be redirected.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

1908 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

URIMAP
The name of the URIMAP resource.

ANALYZER
Optional Parameter

 A binary value that specifies whether an analyzer program is to be used in
processing HTTP requests.

Values for the parameter are:
 NO
 YES

CERTIFICATE_LABEL
Optional Parameter

 The label of the X.509 certificate that is to be used as the SSL client certificate
during the SSL handshake.

CHARACTERSET
Optional Parameter

 The character set into which CICS converts the entity body of the response that
is sent to the Web client.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A string of up to 56 hexadecimal digits that is interpreted as a list of up to 28
2-digit cipher suite codes.

CONVERTER
Optional Parameter

 The name of a converter program that is to be run to perform conversion or
other processing on the request and response.

HOSTCODEPAGE
Optional Parameter

 The EBCDIC code page in which the text document that forms the static
response is encoded.

MEDIATYPE
Optional Parameter

 The media type of the static response that CICS provides to the HTTP request,
for example image/jpg, text/html, or text/xml.

PIPELINE_NAME
Optional Parameter

 The PIPELINE resource used by Web Service requests for the URIMAP.
PROGRAM

Optional Parameter

 The name of the user application program that composes the HTTP response
for the URIMAP.

REDIRECTION_TYPE
Optional Parameter

Chapter 112. Web Domain (WB) 1909

The type of redirection for requests that match the URIMAP resource. When
redirection is required, the REDIRECTION_LOCATION parameter specifies the
URL to which the request should be redirected.

Values for the parameter are:
 NONE
 PERMANENT
 TEMPORARY
NONE

Requests are not redirected.
TEMPORARY

Requests are redirected on a temporary basis. The URL specified by the
LOCATION attribute is used for redirection, and the status code used for
the response is 302 (Found).

PERMANENT
Requests are redirected permanently. The URL specified by the LOCATION
attribute is used for redirection, and the status code used for the response
is 301 (Moved Permanently).

SCHEME
Optional Parameter

 The scheme component of the URI to which the URIMAP resource applies.

Values for the parameter are:
 HTTP
 HTTPS
 WMQ

STATUS
Optional Parameter

 The enabled or disabled state of the URIMAP resource.

Values for the parameter are:
 DISABLED
 DISABLEDHOST
 ENABLED

TCPIPSERVICE
Optional Parameter

 The name of the TCPIPSERVICE resource that defines the inbound port to
which the URIMAP resource relates.

TEMPLATENAME
Optional Parameter

 The name of a CICS document template that forms the body of the static
response that is sent to the HTTP request from the Web client.

TRANSACTION
Optional Parameter

 The name of an alias transaction that is to be used to run the user application
that composes the HTTP response, or to start the pipeline.

USAGE
Optional Parameter

 Specifies how the URIMAP resource is used.

Values for the parameter are:
 ATOM
 CLIENT
 PIPELINE
 SERVER

1910 CICS TS for z/OS 4.1: Diagnosis Reference

USERID
Optional Parameter

 The user ID under which requests for the URIMAP are initially processed.
WEBSERVICE_NAME

Optional Parameter

 The name of a WEBSERVICE resource associated with the URIMAP.

WBUR gate, INITIALIZE_URIMAPS function
The INITIALIZE_URIMAPS function initializes the Web domain state required by
the URIMAP support.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBUR gate, INQUIRE_HOST function
The INQUIRE_HOST function is used to inquire on the attributes of a virtual host.

Input Parameters
HOST
TCPIPSERVICE

Optional Parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:

Chapter 112. Web Domain (WB) 1911

ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

STATUS

 Values for the parameter are:
 DISABLED
 DISABLEDHOST
 ENABLED

WBUR gate, INQUIRE_URIMAP function
The INQUIRE_URIMAP function is used to inquire on the attributes of a URIMAP
resource.

Input Parameters
URIMAP

The name of the URIMAP resource.
HFSFILE

Optional Parameter

 The fully qualified or relative name of an HFS file that forms the body of the
static response which is sent to the HTTP request from the Web client.

HOST
The host name of the URI to which the URIMAP resource applies, or its IPv4
or IPv6 address.

PATH
The path component of the URI to which the URIMAP resource applies.

REDIRECTION_LOCATION
Optional Parameter

 A URL to which the client's request should be redirected.

1912 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ANALYZER
Optional Parameter

 A binary value that specifies whether an analyzer program is to be used in
processing HTTP requests.

Values for the parameter are:
 NO
 YES

CERTIFICATE_LABEL
Optional Parameter

 The label of the X.509 certificate that is to be used as the SSL client certificate
during the SSL handshake.

CHARACTERSET
Optional Parameter

 The character set into which CICS converts the entity body of the response that
is sent to the Web client.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A string of up to 56 hexadecimal digits that is interpreted as a list of up to 28
2-digit cipher suite codes.

Chapter 112. Web Domain (WB) 1913

CONVERTER
Optional Parameter

 The name of a converter program that is to be run to perform conversion or
other processing on the request and response.

HOSTCODEPAGE
Optional Parameter

 The EBCDIC code page in which the text document that forms the static
response is encoded.

MEDIATYPE
Optional Parameter

 The media type of the static response that CICS provides to the HTTP request,
for example image/jpg, text/html, or text/xml.

PIPELINE_NAME
Optional Parameter

 The PIPELINE resource used by Web Service requests for the URIMAP.
PROGRAM

Optional Parameter

 The name of the user application program that composes the HTTP response
for the URIMAP.

REDIRECTION_TYPE
Optional Parameter

 The type of redirection for requests that match the URIMAP resource. When
redirection is required, the REDIRECTION_LOCATION parameter specifies the
URL to which the request should be redirected.

Values for the parameter are:
 NONE
 PERMANENT
 TEMPORARY
NONE

Requests are not redirected.
TEMPORARY

Requests are redirected on a temporary basis. The URL specified by the
LOCATION attribute is used for redirection, and the status code used for
the response is 302 (Found).

PERMANENT
Requests are redirected permanently. The URL specified by the LOCATION
attribute is used for redirection, and the status code used for the response
is 301 (Moved Permanently).

SCHEME
Optional Parameter

 The scheme component of the URI to which the URIMAP resource applies.

Values for the parameter are:
 HTTP
 HTTPS
 WMQ

STATUS
Optional Parameter

 The enabled or disabled state of the URIMAP resource.

Values for the parameter are:
 DISABLED

1914 CICS TS for z/OS 4.1: Diagnosis Reference

DISABLEDHOST
 ENABLED

TCPIPSERVICE
Optional Parameter

 The name of the TCPIPSERVICE resource that defines the inbound port to
which the URIMAP resource relates.

TEMPLATENAME
Optional Parameter

 The name of a CICS document template that forms the body of the static
response that is sent to the HTTP request from the Web client.

TRANSACTION
Optional Parameter

 The name of an alias transaction that is to be used to run the user application
that composes the HTTP response, or to start the pipeline.

USAGE
Optional Parameter

 Specifies how the URIMAP resource is used.

Values for the parameter are:
 ATOM
 CLIENT
 PIPELINE
 SERVER

USERID
Optional Parameter

 The user ID under which requests for the URIMAP are initially processed.
WEBSERVICE_NAME

Optional Parameter

 The name of a WEBSERVICE resource associated with the URIMAP.

WBUR gate, LOCATE_URIMAP function
The LOCATE_URIMAP function is used to locate a URIMAP definition associated
with a specified HOST and PATH.

Input Parameters
HOST
PATH
HFSFILE

Optional parameter
 PORT

Optional parameter
REDIRECTION_LOCATION

Optional parameter
 TCPIPSERVICE

Optional parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:

Chapter 112. Web Domain (WB) 1915

BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

URIMAP
ANALYZER

Optional parameter

 Values for the parameter are:
 NO
 YES

CERTIFICATE_LABEL
Optional parameter

 CHARACTERSET
Optional parameter

 CIPHER_COUNT
Optional parameter

 CIPHER_SUITES
Optional parameter

 CONVERTER
Optional parameter

 HOSTCODEPAGE
Optional parameter

 MEDIATYPE
Optional parameter

 PIPELINE_NAME
Optional parameter

 PROGRAM
Optional parameter

 REDIRECTION_TYPE
Optional parameter

 Values for the parameter are:
 NONE
 PERMANENT
 TEMPORARY

1916 CICS TS for z/OS 4.1: Diagnosis Reference

SCHEME
Optional parameter

 Values for the parameter are:
 HTTP
 HTTPS
 WMQ

STATUS
Optional parameter

 Values for the parameter are:
 DISABLED
 DISABLEDHOST
 ENABLED

TEMPLATENAME
Optional parameter

 TRANSACTION
Optional parameter

 UME_TOKEN
Optional parameter

 USAGE
Optional parameter

 Values for the parameter are:
 CLIENT
 PIPELINE
 SERVER

USERID
Optional parameter

 WEBSERVICE_NAME
Optional parameter

 WBUR gate, SET_HOST function
The SET_HOST function is used to set the attributes of a virtual host.

Input Parameters
HOST
STATUS

 Values for the parameter are:
 DISABLED
 DISABLEDHOST
 ENABLED

TCPIPSERVICE
Optional Parameter

 Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING

Chapter 112. Web Domain (WB) 1917

GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBUR gate, SET_URIMAP function
The SET_URIMAP function is used to set the attributes of a URIMAP resource.

Input Parameters
URIMAP

The name of the URIMAP resource.
ANALYZER

Optional Parameter

 A binary value that specifies whether an analyzer program is to be used in
processing HTTP requests.

Values for the parameter are:
 NO
 YES

CERTIFICATE_LABEL
Optional Parameter

 The label of the X.509 certificate that is to be used as the SSL client certificate
during the SSL handshake.

CHARACTERSET
Optional Parameter

 The character set into which CICS converts the entity body of the response that
is sent to the Web client.

CIPHER_COUNT
Optional Parameter

 The number of cipher suites encoded in the CIPHER_SUITES parameter.
CIPHER_SUITES

Optional Parameter

 A string of up to 56 hexadecimal digits that is interpreted as a list of up to 28
2-digit cipher suite codes.

CONVERTER
Optional Parameter

1918 CICS TS for z/OS 4.1: Diagnosis Reference

The name of a converter program that is to be run to perform conversion or
other processing on the request and response.

HFSFILE
Optional Parameter

 The fully qualified or relative name of an HFS file that forms the body of the
static response which is sent to the HTTP request from the Web client.

HOST
The host name of the URI to which the URIMAP resource applies, or its IPv4
or IPv6 address.

HOSTCODEPAGE
Optional Parameter

 The EBCDIC code page in which the text document that forms the static
response is encoded.

MEDIATYPE
Optional Parameter

 The media type of the static response that CICS provides to the HTTP request,
for example image/jpg, text/html, or text/xml.

PATH
The path component of the URI to which the URIMAP resource applies.

PIPELINE_NAME
Optional Parameter

 The PIPELINE resource used by Web Service requests for the URIMAP.
PROGRAM

Optional Parameter

 The name of the user application program that composes the HTTP response
for the URIMAP.

REDIRECTION_LOCATION
Optional Parameter

 A URL to which the client's request should be redirected.
REDIRECTION_TYPE

Optional Parameter

 The type of redirection for requests that match the URIMAP resource. When
redirection is required, the REDIRECTION_LOCATION parameter specifies the
URL to which the request should be redirected.

Values for the parameter are:
 NONE
 PERMANENT
 TEMPORARY
NONE

Requests are not redirected.
TEMPORARY

Requests are redirected on a temporary basis. The URL specified by the
LOCATION attribute is used for redirection, and the status code used for
the response is 302 (Found).

PERMANENT
Requests are redirected permanently. The URL specified by the LOCATION
attribute is used for redirection, and the status code used for the response
is 301 (Moved Permanently).

SCHEME
Optional Parameter

 The scheme component of the URI to which the URIMAP resource applies.

Chapter 112. Web Domain (WB) 1919

Values for the parameter are:
 HTTP
 HTTPS
 WMQ

STATUS
Optional Parameter

 The enabled or disabled state of the URIMAP resource.

Values for the parameter are:
 DISABLED
 DISABLEDHOST
 ENABLED

TCPIPSERVICE
Optional Parameter

 The name of the TCPIPSERVICE resource that defines the inbound port to
which the URIMAP resource relates.

TEMPLATENAME
Optional Parameter

 The name of a CICS document template that forms the body of the static
response that is sent to the HTTP request from the Web client.

TRANSACTION
Optional Parameter

 The name of an alias transaction that is to be used to run the user application
that composes the HTTP response, or to start the pipeline.

USAGE
Optional Parameter

 Specifies how the URIMAP resource is used.

Values for the parameter are:
 ATOM
 CLIENT
 PIPELINE
 SERVER

USERID
Optional Parameter

 The user ID under which requests for the URIMAP are initially processed.
WEBSERVICE_NAME

Optional Parameter

 The name of a WEBSERVICE resource associated with the URIMAP.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN

1920 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

WBUR gate, START_BROWSE_HOST function
The START_BROWSE_HOST function is used to begin a browse through the
virtual host names in the Web domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BROWSE_TOKEN
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 112. Web Domain (WB) 1921

WBUR gate, START_BROWSE_URIMAP function
The START_BROWSE_URIMAP function is used to begin a browse through the
URIMAP resources in the Web domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END
 CCNV_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 DUPLICATE_MAPPING
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 INVALID_CHARACTERSET
 INVALID_HOSTCODEPAGE
 INVALID_HOSTNAME
 INVALID_PATHNAME
 LOCATION_INVALID
 NO_REDIRECTION_LOCATION
 NOT_FOUND
 NOT_POSSIBLE
 SECURITY_FAILED
 SSL_INACTIVE
 URIMAP_ENABLED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

BROWSE_TOKEN
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Web domain's generic gates

Table 84 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 84. Web domain's generic gates

Gate Trace Functions Format

DMDM WB 0100
WB 0101

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

XMAC WB 0600
WB 0601

INIT_XM_CLIENT
BIND_XM_CLIENT
TRANSACTION_HANG
RELEASE_XM_CLIENT

XMAC

1922 CICS TS for z/OS 4.1: Diagnosis Reference

In initialization, quiesce, and termination processing, the Web domain performs
only internal routines.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956
 “Transaction manager domain's generic formats” on page 1999

Web domain's call-back gates

Table 85 summarizes the domain's call-back gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 85. Web domain's call-back gates

Gate Trace Function Format

WBXM WB 0600
WB 0601

INIT_XM_CLIENT
BIND_XM_CLIENT
RELEASE_XM_CLIENT

XMAC

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following call-back formats:

 “Transaction Manager domain's callback formats” on page 1996

Modules
 Module Function

DFHWBAP Handles the following requests:
 START_BROWSE
 READ_NEXT
 END_BROWSE
 GET_MESSAGE_BODY
 GET_HTTP_RESPONSE
 SEND_RESPONSE
 READ
 WRITE_HEADER
 INQUIRE

DFHWBAPF Handles forms processing for:
 START_BROWSE
 READ_NEXT
 END_BROWSE
 READ

DFHWBCL Functions for HTTP client processing.

DFHWBDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHWBQM Domain subroutine which writes Web data to TS. Handles the following
requests:
 PUT_QUEUE
 GET_QUEUE
 DELETE_QUEUE
 GET_TOKEN

DFHWBRP Web domain recovery program.

Chapter 112. Web Domain (WB) 1923

Module Function

DFHWBSR Handles the following requests:
 SEND
 RECEIVE
 SEND_STATIC_RESPONSE

DFHWBUR Functions for handling the URIMAP resource, including virtual hosts.

DFHWBXM Handles the following requests:
 INIT_XM_CLIENT
 BIND_XM_CLIENT
 TRANSACTION_HANG
 RELEASE_XM_CLIENT

Exits

Three global user exit points are provided in CICS Web support for HTTP client
requests:

XWBAUTH, HTTP client send exit
XWBAUTH is called during processing of an EXEC CICS WEB SEND or
EXEC CICS WEB CONVERSE command. It allows you to specify basic
authentication credentials (username and password) for a target server.
XWBAUTH passes these to CICS on request, to create an Authorization
header. The host name and path information are passed to the user exit,
with an optional qualifying realm.

XWBOPEN, HTTP client open exit
XWBOPEN is called during processing of an EXEC CICS WEB OPEN
command, which is used by an application program to open a connection
with a server. It allows you to specify proxy servers that should be used
for HTTP requests by CICS as an HTTP client, and to apply a security
policy to the host name specified for those requests.

XWBSNDO, HTTP client send exit
XWBSNDO is called during processing of an EXEC CICS WEB SEND or
EXEC CICS WEB CONVERSE command. It allows you to specify a security
policy for HTTP requests, in particular for the path component of the
request.

For more information on these exits, see the CICS Internet Guide.

1924 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 113. Web 2.0 Domain (W2)

The Web 2.0 domain manages Atom feeds that CICS serves to Web clients. The
other actions of CICS as an HTTP server and as an HTTP client are managed by
the Web (WB) domain.

For more information about Atom feeds from CICS, see the CICS Internet Guide.

Web 2.0 Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the W2 domain.

 Table 86. Web 2.0 Domain's specific gates

Gate Trace Function XPI

W2AT W2 0201
W2 0202
W2 0203
W2 0204
W2 0205
W2 0206

 ADD_ATOMSERVICE
 ADD_REPLACE_ATOMSERVICE
 DELETE_ATOMSERVICE
 END_BROWSE_ATOMSERVICE
 GET_NEXT_ATOMSERVICE
 INITIALIZE_ATOMSERVICES
 INQUIRE_ATOMSERVICE
 SET_ATOMSERVICE
 START_BROWSE_ATOMSERVICE

No
No
No
No
No
No
No
No
No

W2W2 W2 0401
W2 0402
W2 0403
W2 0404
W2 0405
W2 0406

 HANDLE_ATOM_REQUEST
 SET_PARAMETERS

No
No

W2AT gate, ADD_ATOMSERVICE function
The ADD_ATOMSERVICE function is used to add a new ATOMSERVICE resource
into the Web 2.0 domain. If an ATOMSERVICE resource with the same name
already exists, this function fails with reason code ATOMSERVICE_EXISTS.

Input Parameters
ATOM_TYPE

Type of Atom document associated with this ATOMSERVICE resource.

 Values for the parameter are:
 CATEGORY
 COLLECTION
 FEED
 SERVICE

ATOMSERVICE
Name of the ATOMSERVICE resource to be installed.

BINDFILE
Optional Parameter

 Name of the XSD bind file for this ATOMSERVICE resource.
CONFIGFILE

Optional Parameter

© Copyright IBM Corp. 1997, 2011 1925

|

|

|
|
|

|

|
|

|
|

||

||||

||
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

||
|
|
|
|
|

|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Name of the Atom configuration file for this ATOMSERVICE resource.
MESSAGE

Optional Parameter

 Specifies whether installation messages will be issued.

Values for the parameter are:
 NO
 YES

RESOURCE_NAME
Optional Parameter

 Name of the CICS resource associated with this ATOMSERVICE resource.
RESOURCE_SIGNATURE

Optional Parameter

 The INSTALL resource signature for the new ATOMSERVICE resource.
RESOURCE_TYPE

Optional Parameter

 The type of the CICS resource associated with this ATOMSERVICE resource.

Values for the parameter are:
 FILE
 PROGRAM
 TSQUEUE

STATUS
Optional Parameter

 Specifies the state in which the new ATOMSERVICE resource is installed.

Values for the parameter are:
 DISABLED
 ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT

1926 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2AT gate, ADD_REPLACE_ATOMSERVICE function
The ADD_REPLACE_ATOMSERVICE function is used to add or replace an
ATOMSERVICE resource in the Web 2.0 domain. If an ATOMSERVICE resource
with the same name already exists, it is replaced if it is disabled; otherwise, this
function fails with reason code ATOMSERVICE_ENABLED.

Input Parameters
ATOM_TYPE

Type of Atom document associated with this ATOMSERVICE resource.

 Values for the parameter are:
 CATEGORY
 COLLECTION
 FEED
 SERVICE

ATOMSERVICE
Name of the ATOMSERVICE resource to be installed.

RESOURCE_SIGNATURE
The INSTALL resource signature for the new ATOMSERVICE resource.

BINDFILE
Optional Parameter

 Name of the XSD bind file for this ATOMSERVICE resource.
CONFIGFILE

Optional Parameter

 Name of the Atom configuration file for this ATOMSERVICE resource.
MESSAGE

Optional Parameter

 Specifies whether installation messages will be issued.

Values for the parameter are:
 NO
 YES

RESOURCE_NAME
Optional Parameter

 Name of the CICS resource associated with this ATOMSERVICE resource.
RESOURCE_TYPE

Optional Parameter

 The type of the CICS resource associated with this ATOMSERVICE resource.

Values for the parameter are:
 FILE
 PROGRAM

Chapter 113. Web 2.0 Domain (W2) 1927

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|

|
|
|

TSQUEUE
STATUS

Optional Parameter

 Specifies the state in which the new ATOMSERVICE resource is installed.

Values for the parameter are:
 DISABLED
 ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2AT gate, DELETE_ATOMSERVICE function
The DELETE_ATOMSERVICE function is used to delete an ATOMSERVICE
resource from the Web 2.0 domain.

Input Parameters
ATOMSERVICE

Name of the ATOMSERVICE resource to be deleted.

1928 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2AT gate, END_BROWSE_ATOMSERVICE function
The END_BROWSE_ATOMSERVICE function is used to end a browse through the
ATOMSERVICE resources in the Web 2.0 Domain.

Input Parameters
BROWSE_TOKEN

Token representing the current browse in progress.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR

Chapter 113. Web 2.0 Domain (W2) 1929

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2AT gate, GET_NEXT_ATOMSERVICE function
The GET_NEXT_ATOMSERVICE function is used to continue a browse through the
ATOMSERVICE resources in the Web 2.0 Domain.

Input Parameters
BROWSE_TOKEN

Token representing the current browse in progress.
BINDFILE

Optional Parameter

 Name of the XSD bind file for this ATOMSERVICE resource.
CONFIGFILE

Optional Parameter

 Name of the Atom configuration file for this ATOMSERVICE resource.
RESOURCE_SIGNATURE

Optional Parameter

 The INSTALL resource signature for the new ATOMSERVICE resource.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS

1930 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

ATOMSERVICE
Name of the ATOMSERVICE resource located in the browse.

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ATOM_TYPE
Optional Parameter

 Type of Atom document associated with this ATOMSERVICE resource.

Values for the parameter are:
 CATEGORY
 COLLECTION
 FEED
 SERVICE

RESOURCE_NAME
Optional Parameter

 Name of the CICS resource associated with this ATOMSERVICE resource.
RESOURCE_TYPE

Optional Parameter

 The type of the CICS resource associated with this ATOMSERVICE resource.

Values for the parameter are:
 FILE
 PROGRAM
 TSQUEUE

STATUS
Optional Parameter

 Specifies the current state of the ATOMSERVICE resource.

Values for the parameter are:

Chapter 113. Web 2.0 Domain (W2) 1931

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|

DISABLED
 ENABLED

W2AT gate, INITIALIZE_ATOMSERVICES function
The INITIALIZE_ATOMSERVICES function is used to initialize the Web 2.0
domain state required by the ATOMSERVICE support.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2AT gate, INQUIRE_ATOMSERVICE function
The INQUIRE_ATOMSERVICE function is used to inquire on the attributes of an
ATOMSERVICE resource.

Input Parameters
ATOMSERVICE

The INQUIRE_ATOMSERVICE function is used to inquire on the attributes of
an ATOMSERVICE resource.

BINDFILE
Optional Parameter

1932 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

Name of the XSD bind file for this ATOMSERVICE resource.
CONFIGFILE

Optional Parameter

 Name of the Atom configuration file for this ATOMSERVICE resource.
RESOURCE_SIGNATURE

Optional Parameter

 The INSTALL resource signature for the new ATOMSERVICE resource.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

ATOM_TYPE
Optional Parameter

 Type of Atom document associated with this ATOMSERVICE resource.

Values for the parameter are:
 CATEGORY
 COLLECTION
 FEED
 SERVICE

Chapter 113. Web 2.0 Domain (W2) 1933

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

RESOURCE_NAME
Optional Parameter

 Name of the CICS resource associated with this ATOMSERVICE resource.
RESOURCE_TYPE

Optional Parameter

 The type of the CICS resource associated with this ATOMSERVICE resource.

Values for the parameter are:
 FILE
 PROGRAM
 TSQUEUE

STATUS
Optional Parameter

 Specifies the current state of the ATOMSERVICE resource.

Values for the parameter are:
 DISABLED
 ENABLED

W2AT gate, SET_ATOMSERVICE function
The SET_ATOMSERVICE function is used to set the attributes of an
ATOMSERVICE resource.

Input Parameters
ATOMSERVICE

Name of the ATOMSERVICE resource with the attributes that are being
changed.

STATUS
Specifies the required state of the ATOMSERVICE resource.

 Values for the parameter are:
 DISABLED
 ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND

1934 CICS TS for z/OS 4.1: Diagnosis Reference

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2AT gate, START_BROWSE_ATOMSERVICE function
The START_BROWSE_ATOMSERVICE function is used to start a browse through
the ATOMSERVICE resources in the Web 2.0 Domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ATOMSERVICE_ENABLED
 ATOMSERVICE_EXISTS
 BINDFILE_ERROR
 BINDFILE_NOT_FOUND
 BINDFILE_NOTAUTH
 BROWSE_END
 CONFIGFILE_NOT_FOUND
 CONFIGFILE_NOTAUTH
 CONFIGURATION_ERROR
 CONFLICTING_ATTRIBUTES
 DIRECTORY_ERROR
 GETMAIN_FAILED
 INVALID_BROWSE_TOKEN
 NOT_AUTH
 NOT_FOUND
 NOT_POSSIBLE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_SIGNATURE

BROWSE_TOKEN
Token representing the browse being started

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER

Chapter 113. Web 2.0 Domain (W2) 1935

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

INVALID
 KERNERROR
 PURGED

W2W2 gate, HANDLE_ATOM_REQUEST function
The HANDLE_ATOM_REQUEST function processes an inbound HTTP request for
an Atom document. It examines the request and calls an appropriate response
handling routine.

Input Parameters
CHECK_ACCESS

Optional Parameter

 Specifies whether the authority of the user to access the ATOMSERVICE
resource is to be checked.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DIRECTORY_ERROR
 INITIALIZATION_ERROR
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NON_WEB_TRANSACTION
 NOT_FOUND

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

W2W2 gate, SET_PARAMETERS function
The SET_PARAMETERS function specifies system initialization parameters for the
domain.

Input Parameters
HOME_DIRECTORY

The CICS home directory in the Unix System Services file system, as specified
by the USSHOME system initialization parameter.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DIRECTORY_ERROR

1936 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

INITIALIZATION_ERROR
 INVALID_FORMAT
 INVALID_FUNCTION
 LOOP
 NON_WEB_TRANSACTION
 NOT_FOUND

RESPONSE
Standard domain response values.

 Values for the parameter are:
 OK
 EXCEPTION
 DISASTER
 INVALID
 KERNERROR
 PURGED

Modules
The W2 domain modules handle requests for Atom documents.

 Module Function

DFHW2A Application program run for the CW2A transaction, which is the alias
transaction for servicing Atom requests.

DFHW2AC Reads and parses the Atom configuration file, as input for DFHW2AT.

DFHW2AS Atom stringid generator. Called by XMLSS to tokenize text strings.

DFHW2AT Manages the ATOMSERVICE resource.

DFHW2DM Handles initialization and termination of the W2 domain.

DFHW2DUF Dump formatter for the Web 2.0 domain.

DFHW2FD Main feed document handler. Receives the Atom HTTP requests and
forwards them to the appropriate service routine.

DFHW2FI Atom service routine for CICS file requests.

DFHW2FR Remote file handler. Communicates file requests to a File Owning
Region.

DFHW2RP ATOMSERVICE recovery program. Restores Atom feed support on CICS
restart.

DFHW2SD Atom Service Document handler. Returns Atom Publishing Protocol
service documents and category documents.

DFHW2ST Statistics manager.

DFHW2TRI Trace interpretation routine.

DFHW2TS Atom service routine for Temporary Storage requests.

DFHW2TT Translate tables.

DFHW2UE User exit manager.

DFHW2W2 Router module for Atom requests. Communicates between DFHW2A
and DFHW2FD or DFHW2SD.

Exits
The Web 2.0 domain (W2) has no specific global user exit points. The general
resource install and discard exit XRSINDI is called by the Web 2.0 domain to log
the installation and discarding of ATOMSERVICE resource definitions.

Chapter 113. Web 2.0 Domain (W2) 1937

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|||

||
|

||

||

||

||

||

||
|

||

||
|

||
|

||
|

||

||

||

||

||

||
|
|

|
|

|
|
|

1938 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 114. Transaction manager domain (XM)

The transaction manager domain (also sometimes known as "transaction manager")
provides transaction-related services.

The services provided by the domain are used to:
v Create tasks
v Terminates tasks
v Purge tasks
v Inquire on tasks
v Manage transaction definitions
v Manage tranclass definitions

The transaction manager domain also provides a transaction environment to enable
other CICS components to implement transaction-related services.

Transaction manager domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the XM domain.

XMAT gate, ATTACH function
The ATTACH function of the XMAT gate is used to attach a new transaction.

Input Parameters
RETURN_NOT_FOUND

Indicates whether the attacher wants to receive the NOT_FOUND exception.
Default is to attach CSAC in place of the requested transaction.

 Values for the parameter are:
 NO
 YES

TPNAME
Alternative means of specifying the transaction identifier to attach.

TRANSACTION_ID
The transaction identifier to attach.

ATTACH_PARMS
Optional Parameter

 Parameters to be passed to the attached transaction.
EXTERNAL_UOW_ID

Optional Parameter

 An externally created unit-of-work identifier to be associated with the attached
transaction.

FACILITY_TYPE
Optional Parameter

 The type of principal facility to be associated with the attached transaction.

Values for the parameter are:
 NONE
 TERMINAL

© Copyright IBM Corp. 1997, 2011 1939

|

PRIMARY_CLIENT_REQ_BLOCK
Optional Parameter

 A data block containing information associated with the primary client.
PRIMARY_CLIENT_TYPE

Optional Parameter

 The type of client for which the transaction is being attached.

Values for the parameter are:
 APPC_SESSION
 BRIDGE
 IIRR
 IP_ECI
 LU61_SESSION
 MRO_SESSION
 NONE
 RRS_UR
 RZ_INSTORE_TRPORT
 SCHEDULER
 SOCKET
 START
 START_TERMINAL
 TERMINAL
 TRANDATA
 WEB
 XM_RUN_TRANSACTION

PRIORITY
Optional Parameter

 Combined user and terminal priority to be added to that of the transaction
definition to determine the total priority of the attached transaction.

RESTART_COUNT
Optional Parameter

 If the attach is for a restarted transaction then this count indicates the number
of this restart attempt.

START_ATTACH
Optional Parameter

 Indicates if the attach is in response to a START command.

Values for the parameter are:
 YES

START_CODE
Optional Parameter

 Indicates the reason for the attach.

Values for the parameter are:
 C
 DF
 QD
 S
 SD
 SZ
 T
 TT

SUSPEND
Optional Parameter

1940 CICS TS for z/OS 4.1: Diagnosis Reference

Indicates whether the attacher is willing to suspend during the attach.

Values for the parameter are:
 NO
 YES

SYSTEM_ATTACH
Optional Parameter

 Indicates whether the transaction should be attached as a system transaction.

Values for the parameter are:
 YES

TD_TOKEN
Optional Parameter

 Token identifying a TDQ to be associated with the transaction.
TF_TOKEN

Optional Parameter

 Token identifying a terminal to be associated with the transaction.
TOTAL_PRIORITY

Optional Parameter

 The overriding priority to be associated with the attached transaction.
TRANSACTION_GROUP

Optional Parameter

 Indicates whether the newly attached transaction should be in the same
monitoring group as the current transaction.

Values for the parameter are:
 NEW
 SAME

US_TOKEN
Optional Parameter

 Token identifying a user to be associated with the transaction.
USE_DTRTRAN

Optional Parameter

 If the named transaction-id or tpname cannot be found then indicates whether
the DTRTRAN, if installed, should be used instead.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DISABLED
 INSUFFICIENT_STORAGE
 INVALID_FUNCTION
 INVALID_RETURN_NOT_FOUND
 INVALID_START_CODE
 INVALID_SYSTEM_ATTACH
 LOOP
 NOT_ENABLED_FOR_SHUTDOWN
 NOT_FOUND
 STATE_SYSTEM_ATTACH

Chapter 114. Transaction manager domain (XM) 1941

STATE_TASKDATAKEY
 STATE_TASKDATALOC

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANDEF_TOKEN
Optional Parameter

 The token representing the returned transaction definition.
TRANNUM

Optional Parameter

 Is the transaction number assigned to the newly attached transaction.
TRANSACTION_TOKEN

Optional Parameter

 Is the token identifying the newly attached transaction.

XMAT gate, REATTACH function
A variation of the ATTACH function that is used by Recovery Manager to attach a
task that will unshunt a specific UOW.

Input Parameters
FACILITY_TYPE

Optional Parameter

 The type of principal facility to be associated with the transaction.

Values for the parameter are:
 NONE

RETURN_NOT_FOUND
Indicates whether the attacher wants to receive the NOT_FOUND exception.
Default is to attach CSAC in place of the requested transaction.

 Values for the parameter are:
 NO
 YES

START_CODE
Optional Parameter

 Indicates the reason for the attach.

Values for the parameter are:
 C

TRANSACTION_ID
The transaction identifier to attach.

UOW_TOKEN
A token representing the unit of work that is to be unshunted.

PRIORITY
Optional Parameter

 Combined user and terminal priority to be added to that of the transaction
definition to determine the total priority of the attached transaction.

SUSPEND
Optional Parameter

 Indicates whether the attacher is willing to suspend during the attach.

Values for the parameter are:
 NO
 YES

1942 CICS TS for z/OS 4.1: Diagnosis Reference

SYSTEM_ATTACH
Optional Parameter

 Indicates whether the transaction should be attached as a system transaction.

Values for the parameter are:
 YES

TCLASS
Optional Parameter

 The transaction class of the attched transaction.

Values for the parameter are:
 NONE

TOTAL_PRIORITY
Optional Parameter

 The overriding priority to be associated with the attached transaction.
TRANSACTION_GROUP

Optional Parameter

 Indicates whether the newly attached transaction should be in the same
monitoring group as the current transaction.

Values for the parameter are:
 NEW
 SAME

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INSUFFICIENT_STORAGE
 INVALID_FUNCTION
 LOOP
 NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANNUM
Optional Parameter

 Is the transaction number assigned to the newly attached transaction.
TRANSACTION_TOKEN

Optional Parameter

 Is the token identifying the newly attached transaction.

XMBD gate, END_BROWSE_TRANDEF function
The END_BROWSE_TRANDEF function of the XMBD gate is used to terminate a
browse of installed transaction definitions.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

Chapter 114. Transaction manager domain (XM) 1943

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMBD gate, GET_NEXT_TRANDEF function
The GET_NEXT_TRANDEF function of the XMBD gate is used to return
information about the next transaction definition in the browse.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END_TRANDEF

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BREXIT
Optional Parameter

 The name of the default bridge exit associated with the transaction.
CMDSEC

Optional Parameter

 Whether command security checking is active.

Values for the parameter are:
 NO
 YES

CONFDATA
Optional Parameter

 The value of the CONFDATA attribute specified in the transaction definition.

Values for the parameter are:
 NO
 YES

DTIMEOUT
Optional Parameter

 The deadlock timeout value for the transaction.
DUMP

Optional Parameter

 Whether transaction dumps are to be taken.

Values for the parameter are:
 NO
 YES

1944 CICS TS for z/OS 4.1: Diagnosis Reference

DYNAMIC
Optional Parameter

 Whether the transaction is defined to be dynamic.

Values for the parameter are:
 NO
 YES

INDOUBT
Optional Parameter

 The action to take if work performed by the transaction becomes indoubt.

Values for the parameter are:
 BACKOUT
 COMMIT

INDOUBT_WAIT
Optional Parameter

 Indicates whether an indoubt unit of work (UOW) is to wait, pending recovery
from a failure that occurs after the UOW has entered the indoubt state.

Values for the parameter are:
 NO
 YES

INDOUBT_WAIT_TIME
Optional Parameter

 Indicates how long the transaction is to wait before taking an arbitrary decision
about an indoubt unit of work.

INITIAL_PROGRAM
Optional Parameter

 Initial program of transaction.
ISOLATE

Optional Parameter

 Whether the transaction runs in its own subspace.

Values for the parameter are:
 NO
 YES

LOCAL_QUEUING
Optional Parameter

 Whether the transaction is eligible to queue locally when it is started on the
remote system.

Values for the parameter are:
 NO
 YES

OTSTIMEOUT
Optional Parameter

 The value of the OTSTIMEOUT attribute in the transaction definition.
PARTITIONSET

Optional Parameter

 The partitionset defined for the transaction.

Values for the parameter are:
 KEEP
 NAMED

Chapter 114. Transaction manager domain (XM) 1945

NONE
 OWN

PARTITIONSET_NAME
Optional Parameter

 The name of the user defined partitionset used by the transaction.
PROFILE_NAME

Optional Parameter

 Profile of transaction.
REMOTE

Optional Parameter

 Whether the transaction is remote.

Values for the parameter are:
 NO
 YES

REMOTE_NAME
Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.
RESSEC

Optional Parameter

 Whether resource security checking is active.

Values for the parameter are:
 NO
 YES

RESTART
Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

ROUTABLE_STATUS
Optional Parameter

 Specifies whether, if the transaction is the subject of an eligible EXEC CICS
START command, it will be routed using the enhanced routing method.

Values for the parameter are:
 NOTROUTABLE
 ROUTABLE

RUNAWAY_LIMIT
Optional Parameter

 The runaway limit associated with the transaction.
SHUTDOWN

Optional Parameter

 Whether the transaction can be run during shutdown.

Values for the parameter are:
 DISABLED
 ENABLED

1946 CICS TS for z/OS 4.1: Diagnosis Reference

SPURGE
Optional Parameter

 Whether the transaction is system-purgeable.

Values for the parameter are:
 NO
 YES

STATUS
Optional Parameter

 The status of the transaction.

Values for the parameter are:
 DISABLED
 ENABLED

STORAGE_CLEAR
Optional Parameter

 Whether task-lifetime storage is to be cleared before it is freemained.

Values for the parameter are:
 NO
 YES

STORAGE_FREEZE
Optional Parameter

 Whether storage freeze is on for the transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_RUNAWAY
Optional Parameter

 Whether the transaction uses the default system runaway limit.

Values for the parameter are:
 NO
 YES

TASKDATAKEY
Optional Parameter

 The storage key that task-lifetime storage is allocated in.

Values for the parameter are:
 CICS
 USER

TASKDATALOC
Optional Parameter

 The location of task-lifetime storage.

Values for the parameter are:
 ANY
 BELOW

TCLASS
Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.

Chapter 114. Transaction manager domain (XM) 1947

TPURGE
Optional Parameter

 Whether the transaction can be purged after a terminal error.

Values for the parameter are:
 NO
 YES

TRACE
Optional Parameter

 The level of tracing associated with the transaction.

Values for the parameter are:
 SPECIAL
 STANDARD
 SUPPRESSED

TRAN_PRIORITY
Optional Parameter

 Transaction priority
TRAN_ROUTING_PROFILE

Optional Parameter

 Profile to be used to route a remote transaction to a remote system.
TRANSACTION_ID

Optional Parameter

 Transaction identifier
TWASIZE

Optional Parameter

 Size of Transaction Work Area.

XMBD gate, START_BROWSE_TRANDEF function
The START_BROWSE_TRANDEF function of the XMBD gate is used to initiate a
browse of installed transaction definitions.

Input Parameters
START_AT

Optional Parameter

 Identifies a transaction identifier that the browse is to start at.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

BROWSE_TOKEN
Token identifying this transaction definition browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMCL gate, ADD_REPLACE_TCLASS function
The ADD_REPLACE_TCLASS function of the XMCL gate is used to install a tclass
definition.

1948 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
MAX_ACTIVE

The max-active limit of the tclass.
TCLASS_NAME

The name of the tclass.
PURGE_THRESHOLD

Optional Parameter

 The purge-threshold limit of the tclass.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_MAX_ACTIVE
 INVALID_PURGE_THRESHOLD
 INVALID_TCLASS_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCLASS_TOKEN
Optional Parameter

 Token identifying the tclass.

XMCL gate, ADD_TCLASS function
The ADD_TCLASS function of the XMCL gate is used to add an internal tclass
definition.

Input Parameters
MAX_ACTIVE

The max-active limit of the tclass.
PURGE_THRESHOLD

Optional Parameter

 The purge-threshold limit of the tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 DUPLICATE_TCLASS_NAME
 INVALID_MAX_ACTIVE
 INVALID_PURGE_THRESHOLD
 INVALID_TCLASS_NAME

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCLASS_TOKEN
Token identifying the tclass.

Chapter 114. Transaction manager domain (XM) 1949

XMCL gate, DELETE_TCLASS function
The DELETE_TCLASS function of the XMCL gate is used to discard an installed
tclass definition.

Input Parameters
TCLASS_NAME

The name of the tclass.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 TCLASS_BUSY
 UNKNOWN_TCLASS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMCL gate, DEREGISTER_TCLASS_USAGE function
The DEREGISTER_TCLASS_USAGE function of the XMCL gate is used to
deregister usage of a tclass by a transaction definition.

Input Parameters
TCLASS_TOKEN

Token identifying tclass being inquired upon.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_TCLASS_TOKEN
 NOT_IN_USE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMCL gate, END_BROWSE_TCLASS function
The END_BROWSE_TCLASS function of the XMCL gate is used to terminate a
browse of installed tclass definitions.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

1950 CICS TS for z/OS 4.1: Diagnosis Reference

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMCL gate, GET_NEXT_TCLASS function
The GET_NEXT_TCLASS function of the XMCL gate is used to return information
about the next tclass definition in the browse.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END_TCLASS

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_ACTIVE
Optional Parameter

 The number of active transactions in the tclass.
CURRENT_QUEUED

Optional Parameter

 The number of queuing transactions in the tclass.
MAX_ACTIVE

Optional Parameter

 The max-active limit of the tclass.
PURGE_THRESHOLD

Optional Parameter

 The purge-threshold limit of the tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.

XMCL gate, INQUIRE_ALL_TCLASSES function
The INQUIRE_ALL_TCLASSES function of the XMCL gate is used to inquire about
the current state of all the tclasses in the system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 114. Transaction manager domain (XM) 1951

TOTAL_ACTIVE
Optional Parameter

 The number of transactions active in a tclass.
TOTAL_QUEUED

Optional Parameter

 The number of transactions queueing for a tclass.

XMCL gate, INQUIRE_TCLASS function
The INQUIRE_TCLASS function of the XMCL gate is used to inquire upon a tclass.

Input Parameters
INQ_TCLASS_NAME

The name of the tclass being inquired upon.
TCLASS_TOKEN

Token identifying tclass being inquired upon.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_TCLASS

The following values are returned when RESPONSE is INVALID:
 INVALID_TCLASS_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_ACTIVE
Optional Parameter

 The number of active transactions in the tclass.
CURRENT_QUEUED

Optional Parameter

 The number of queuing transactions in the tclass.
MAX_ACTIVE

Optional Parameter

 The max-active limit of the tclass.
PURGE_THRESHOLD

Optional Parameter

 The purge-threshold limit of the tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.

XMCL gate, LOCATE_AND_LOCK_TCLASS function
The LOCATE_AND_LOCK_TCLASS function of the XMCL gate is used to locate a
named tclass and lock it against delete.

Input Parameters
TCLASS_NAME

The name of the tclass.

1952 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_TCLASS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCLASS_TOKEN
Token identifying the tclass.

XMCL gate, REGISTER_TCLASS_USAGE function
The REGISTER_TCLASS_USAGE function of the XMCL gate is used to register
usage of a tclass by a transaction definition.

Input Parameters
TCLASS_NAME

The name of the tclass.
UNKNOWN_ACTION

Specifies the action to perform if the TCLASS hasn't been installed by the user.

 Values for the parameter are:
 CREATE
 ERROR

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_TCLASS

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TCLASS_TOKEN
Token identifying the tclass.

XMCL gate, SET_TCLASS function
The SET_TCLASS function of the XMCL gate is used to modify a tclass definition.

Input Parameters
TCLASS_NAME

The name of the tclass.
TCLASS_TOKEN

Token identifying tclass being inquired upon.
MAX_ACTIVE

Optional Parameter

 The max-active limit of the tclass.
PURGE_THRESHOLD

Optional Parameter

 The purge-threshold limit of the tclass.

Chapter 114. Transaction manager domain (XM) 1953

RESET_STATISTICS
Optional Parameter

 Indicates whether the statistics for the tclass are to be reset.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_MAX_ACTIVE
 INVALID_PURGE_THRESHOLD
 UNKNOWN_TCLASS

The following values are returned when RESPONSE is INVALID:
 INVALID_TCLASS_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMCL gate, START_BROWSE_TCLASS function
The START_BROWSE_TCLASS function of the XMCL gate is used to initiate a
browse of installed tclass definitions.

Input Parameters
START_AT

Optional Parameter

 Identifies a transaction identifier that the browse is to start at.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

BROWSE_TOKEN
Token identifying this transaction definition browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMCL gate, UNLOCK_TCLASS function
The UNLOCK_TCLASS function of the XMCL gate is used to unlock a previously
locked tclass.

Input Parameters
TCLASS_TOKEN

Token identifying tclass being inquired upon.
XM_LOCK_HELD

Optional Parameter

 A binary parameter that indicates whether the caller already holds the
transaction manager lock.

1954 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_TCLASS_TOKEN
 NOT_LOCKED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMDD gate, DELETE_TRANDEF function
The DELETE_TRANDEF function of the XMDD gate is used to discard an installed
transaction definition.

Input Parameters
TRANSACTION_ID

The transaction identifier to attach.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 AID_PENDING
 ICE_PENDING
 SIT_PARAMETER
 UNKNOWN_TRANSACTION_ID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMER gate, ABEND_TRANSACTION function
The ABEND_TRANSACTION function of the XMER gate is used abend a
transaction whose attach has failed.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_FUNCTION
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMER gate, INQUIRE_DEFERRED_ABEND function
The INQUIRE_DEFERRED_ABEND function of the XMER gate is used to retrieve
the abend that is to be issued for the transaction whose attach has failed.

Chapter 114. Transaction manager domain (XM) 1955

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DEFERRED_ABEND_NOT_FOUND
 INVALID_FUNCTION
 LOOP

DEFERRED_ABEND_CODE
The abend code.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANSACTION_DUMP
Optional Parameter

 Indicates whether a transaction dump is to be taken for the abend.

Values for the parameter are:
 NO
 YES

XMER gate, INQUIRE_DEFERRED_MESSAGE function
The INQUIRE_DEFERRED_MESSAGE function of the XMER gate is used to
retrieve the message that is to be issued which will indicate the cause of a
transaction attach failure.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_FUNCTION
 LOOP
 MESSAGE_NOT_FOUND

MESSAGE
The message that is to be issued.

 Values for the parameter are:
 ALL_SESSIONS_BUSY
 CONSOLE_AUTOINSTALL_FAILED
 CONSOLE_AUTOINSTALL_REJECT
 CONSOLE_NOT_DEFINED
 CONSOLE_SIGNON_FAILED
 CONV_RESTART_REQUESTED
 DBA_NOT_SUPPORTED
 INVALID_ASIF_LENGTH
 INVALID_ATTACH_PARAMETER
 INVALID_CONV_TYPE
 INVALID_FMH_LENGTH
 INVALID_SYNC_LEVEL
 INVALID_TERMINAL_FOR_TRANS
 INVALID_UOW_IN_ATTACH
 IO_ERROR_DURING_WRITE
 LAST_MESSAGE
 NULL_MESSAGE
 PROFILE_UNAVAILABLE
 PROGRAM_UNAVAILABLE
 REMOTE_CONN_OOS

1956 CICS TS for z/OS 4.1: Diagnosis Reference

REMOTE_CONN_OOS_SYS_CHGD
 SEC_VIOLATION_DETECTED
 SECURITY_NOT_VALID
 SECURITY_PROTOCOL_ERROR
 SYNC_LEVEL_NOT_SUPPORTED
 TRANID_NOT_FOUND
 TRANSACTION_DISABLED
 TRANSACTION_REMOTE
 TXN_UNAVAIL_DURING_QUIESCE
 UNRECOGNIZED_PIP
 USER_NOT_AUTHORISED
 XRF_RECOVERY_NOT_COMPLETE
 ZNAC_DETECTED_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMER gate, REPORT_MESSAGE function
The REPORT_MESSAGE function of the XMER gate is used send a deferred
message if the attach of a transaction has failed.

Input Parameters
MESSAGE

The message that is to be issued.

 Values for the parameter are:
 ALL_SESSIONS_BUSY
 CONSOLE_AUTOINSTALL_FAILED
 CONSOLE_AUTOINSTALL_REJECT
 CONSOLE_NOT_DEFINED
 CONSOLE_SIGNON_FAILED
 CONV_RESTART_REQUESTED
 DBA_NOT_SUPPORTED
 INVALID_ASIF_LENGTH
 INVALID_ATTACH_PARAMETER
 INVALID_CONV_TYPE
 INVALID_FMH_LENGTH
 INVALID_SYNC_LEVEL
 INVALID_TERMINAL_FOR_TRANS
 INVALID_UOW_IN_ATTACH
 IO_ERROR_DURING_WRITE
 LAST_MESSAGE
 NULL_MESSAGE
 PROFILE_UNAVAILABLE
 PROGRAM_UNAVAILABLE
 REMOTE_CONN_OOS
 REMOTE_CONN_OOS_SYS_CHGD
 SEC_VIOLATION_DETECTED
 SECURITY_NOT_VALID
 SECURITY_PROTOCOL_ERROR
 SYNC_LEVEL_NOT_SUPPORTED
 TRANID_NOT_FOUND
 TRANSACTION_DISABLED
 TRANSACTION_REMOTE
 TXN_UNAVAIL_DURING_QUIESCE
 UNRECOGNIZED_PIP

Chapter 114. Transaction manager domain (XM) 1957

USER_NOT_AUTHORISED
 XRF_RECOVERY_NOT_COMPLETE
 ZNAC_DETECTED_ERROR

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_FUNCTION
 LOOP
 TRANSACTION_ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMER gate, SET_DEFERRED_ABEND function
The SET_DEFERRED_ABEND function of the XMER gate is used to schedule an
abend to be issued if the attach of a transaction fails.

Input Parameters
DEFERRED_ABEND_CODE

The abend code that is to be used.
TRANSACTION_DUMP

Optional Parameter

 Indicates whether a transaction dump is to be taken for the abend.

Values for the parameter are:
 NO
 YES

TRANSACTION_TOKEN
Optional Parameter

 Optional token to identify the transaction that the message is to be sent to.
Defaults to the current transaction.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DEFERRED_ABEND_ALREADY_SET
 INVALID_ABEND_CODE
 INVALID_FUNCTION
 INVALID_TRANSACTION_TOKEN
 LOOP
 MESSAGE_ALREADY_SET

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMER gate, SET_DEFERRED_MESSAGE function
The SET_DEFERRED_MESSAGE function of the XMER gate is used to store a
message to be issued if the attach of a transaction fails.

1958 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
MESSAGE

The message that is to be issued.

 Values for the parameter are:
 ALL_SESSIONS_BUSY
 CONSOLE_AUTOINSTALL_FAILED
 CONSOLE_AUTOINSTALL_REJECT
 CONSOLE_NOT_DEFINED
 CONSOLE_SIGNON_FAILED
 CONV_RESTART_REQUESTED
 DBA_NOT_SUPPORTED
 INVALID_ASIF_LENGTH
 INVALID_ATTACH_PARAMETER
 INVALID_CONV_TYPE
 INVALID_FMH_LENGTH
 INVALID_SYNC_LEVEL
 INVALID_TERMINAL_FOR_TRANS
 INVALID_UOW_IN_ATTACH
 IO_ERROR_DURING_WRITE
 LAST_MESSAGE
 NULL_MESSAGE
 PROFILE_UNAVAILABLE
 PROGRAM_UNAVAILABLE
 REMOTE_CONN_OOS
 REMOTE_CONN_OOS_SYS_CHGD
 SEC_VIOLATION_DETECTED
 SECURITY_NOT_VALID
 SECURITY_PROTOCOL_ERROR
 SYNC_LEVEL_NOT_SUPPORTED
 TRANID_NOT_FOUND
 TRANSACTION_DISABLED
 TRANSACTION_REMOTE
 TXN_UNAVAIL_DURING_QUIESCE
 UNRECOGNIZED_PIP
 USER_NOT_AUTHORISED
 XRF_RECOVERY_NOT_COMPLETE
 ZNAC_DETECTED_ERROR

TRANSACTION_TOKEN
Optional Parameter

 Optional token to identify the transaction that the message is to be sent to.
Defaults to the current transaction.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 DEFERRED_ABEND_ALREADY_SET
 INVALID_FUNCTION
 INVALID_TRANSACTION_TOKEN
 LOOP
 MESSAGE_ALREADY_SET

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 114. Transaction manager domain (XM) 1959

XMFD gate, FIND_PROFILE function
The FIND_PROFILE function of the XMFD gate is used to check whether the given
profile is in use by a transaction definition.

Input Parameters
PROFILE_NAME

The profile that is to be found.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 PROFILE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANSACTION_ID
Optional Parameter

 Transaction identifier

XMIQ gate, END_BROWSE_TRANSACTION function
The END_BROWSE_TRANSACTION function of the XMIQ gate is used to
terminate a browse of all transactions in the system.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, END_BROWSE_TXN_TOKEN function
The END_BROWSE_TXN_TOKEN function of the XMIQ gate is used to terminate
a browse of transaction tokens.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

1960 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, GET_NEXT_TRANSACTION function
The GET_NEXT_TRANSACTION function of the XMIQ gate is used to inquire
upon the next transaction in a transaction browse.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.
ATTACH_PARMS

Optional Parameter

 Parameters to be passed to the attached transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ATTACH_TIME
Optional Parameter

 The time when the transaction was attached.
CICS_UOW_ID

Optional Parameter

 The CICS Unit Of Work Identifier associated with the transaction.
CONFDATA

Optional Parameter

 The value of the CONFDATA attribute specified in the transaction definition.

Values for the parameter are:
 NO
 YES

DS_TASK_TOKEN
Optional Parameter

 A token that identifies the dispatcher task associated with the transaction.
DTIMEOUT

Optional Parameter

 The deadlock timeout value for the transaction.
DYNAMIC

Optional Parameter

 Whether the transaction is defined to be dynamic.

Chapter 114. Transaction manager domain (XM) 1961

Values for the parameter are:
 NO
 YES

FACILITY_NAME
Optional Parameter

 The name of the principal facility associated with the transaction.
FACILITY_TOKEN

Optional Parameter

 A token that represents the principal facility associated with the transaction.
FACILITY_TYPE

Optional Parameter

 The type of the principal facility associated with the transaction.

Values for the parameter are:
 IPECI
 NONE
 START
 TD
 TERMINAL

INITIAL_PROGRAM
Optional Parameter

 Initial program of transaction.
NETNAME

Optional Parameter

 The network name of a terminal principal facility.
ORIGINAL_TRANSACTION_ID

Optional Parameter

 The transid that was used to attach the transaction.
OUT_TRANSACTION_TOKEN

Optional Parameter

 The token that represents this transaction.
PHASE

Optional Parameter

 The phase of the transaction.

Values for the parameter are:
 BIND
 INIT
 PRE_INIT
 TERM

PRIMARY_CLIENT_TOKEN
Optional Parameter

 A token representing the client for which the client was attached.
PRIMARY_CLIENT_TYPE

Optional Parameter

 The type of client for which the transaction was attached.

Values for the parameter are:
 APPC_SESSION
 BRIDGE
 IIRR
 IP_ECI

1962 CICS TS for z/OS 4.1: Diagnosis Reference

LU61_SESSION
 MRO_SESSION
 NONE
 RRS_UR
 RZ_INSTORE_TRPORT
 SCHEDULER
 SOCKET
 START
 START_TERMINAL
 TERMINAL
 TRANDATA
 WEB
 XM_RUN_TRANSACTION

RE_ATTACHED_TRANSACTION
Optional Parameter

 Indicates if the transaction was reattached.

Values for the parameter are:
 NO
 YES

REMOTE
Optional Parameter

 Whether the transaction is remote.

Values for the parameter are:
 NO
 YES

REMOTE_NAME
Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.
RESOURCE_NAME

Optional Parameter

 The name of a resource that a suspended transaction is waiting for.
RESOURCE_TYPE

Optional Parameter

 The type of resource that a suspended transaction is waiting for.
RESTART

Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

RESTART_COUNT
Optional Parameter

 Contains the number of times this transaction instance has been restarted.
SPURGE

Optional Parameter

 Whether the transaction is system-purgeable.

Chapter 114. Transaction manager domain (XM) 1963

Values for the parameter are:
 NO
 YES

START_CODE
Optional Parameter

 Indicates the reason for the attach of the transaction.

Values for the parameter are:
 C
 DF
 QD
 S
 SD
 SZ
 T
 TT

STATUS
Optional Parameter

 The status of the transaction.

Values for the parameter are:
 READY
 RUNNING
 SUSPENDED

SUSPEND_TIME
Optional Parameter

 Contains the length of time that the transaction has currently been suspended
for.

SYSTEM_TRANSACTION
Optional Parameter

 Whether the transaction has been attached by CICS.

Values for the parameter are:
 NO
 YES

TASK_PRIORITY
Optional Parameter

 The combined priority of the transaction.
TCLASS

Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.
TPURGE

Optional Parameter

 Whether the transaction can be purged after a terminal error.

Values for the parameter are:
 NO
 YES

TRAN_PRIORITY
Optional Parameter

1964 CICS TS for z/OS 4.1: Diagnosis Reference

Transaction priority
TRAN_ROUTING_PROFILE

Optional Parameter

 Profile to be used to route a remote transaction to a remote system.
TRANDEF_TOKEN

Optional Parameter

 The token representing the returned transaction definition.
TRANNUM

Optional Parameter

 Is the transaction number assigned to the newly attached transaction.
TRANSACTION_GROUP_ID

Optional Parameter

 The identifier of the transaction's monitoring group.
TRANSACTION_ID

Optional Parameter

 Transaction identifier
USERID

Optional Parameter

 The userid of the user associated with the transaction.

XMIQ gate, GET_NEXT_TXN_TOKEN function
The GET_NEXT_TXN_TOKEN function of the XMIQ gate is used to return the
transaction token associated with the next transaction in the system.

Input Parameters
BROWSE_TOKEN

Token identifying this browse of the transaction definitions.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BROWSE_END

The following values are returned when RESPONSE is INVALID:
 INVALID_BROWSE_TOKEN

OWNERS_TOKEN
The transaction token associated with the current transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANNUM
Optional Parameter

 Is the transaction number assigned to the newly attached transaction.

XMIQ gate, INQUIRE_TRANSACTION function
The INQUIRE_TRANSACTION function of the XMIQ gate is used to inquire upon
a particular transaction.

Chapter 114. Transaction manager domain (XM) 1965

Input Parameters
ATTACH_PARMS

Optional Parameter

 Parameters to be passed to the attached transaction.
TRANSACTION_NUMBER

Optional Parameter

 The number of the transaction being inquired upon.
TRANSACTION_TOKEN

Optional Parameter

 Optional token to identify the transaction that the message is to be sent to.
Defaults to the current transaction.

Output Parameters
ATTACH_TIME

Optional Parameter

 The time when the transaction was attached.
CICS_UOW_ID

Optional Parameter

 The CICS Unit Of Work Identifier associated with the transaction.
CONFDATA

Optional Parameter

 The value of the CONFDATA attribute specified in the transaction definition.

Values for the parameter are:
 NO
 YES

DS_TASK_TOKEN
Optional Parameter

 A token that identifies the dispatcher task associated with the transaction.
DTIMEOUT

Optional Parameter

 The deadlock timeout value for the transaction.
DYNAMIC

Optional Parameter

 Whether the transaction is defined to be dynamic.

Values for the parameter are:
 NO
 YES

FACILITY_NAME
Optional Parameter

 The name of the principal facility associated with the transaction.
FACILITY_TOKEN

Optional Parameter

 A token representing the principal facility associated with the transaction.
FACILITY_TYPE

Optional Parameter

 The type of the principal facility associated with the transaction.

Values for the parameter are:
 IPECI

1966 CICS TS for z/OS 4.1: Diagnosis Reference

NONE
 START
 TD
 TERMINAL

INITIAL_PROGRAM
Optional Parameter

 Initial program of transaction.
NETNAME

Optional Parameter

 The network name of a terminal principal facility.
ORIGINAL_TRANSACTION_ID

Optional Parameter

 The transid that was used to attach the transaction.
OUT_TRANSACTION_TOKEN

Optional Parameter

 The token that represents this transaction.
PHASE

Optional Parameter

 The phase of the transaction.

Values for the parameter are:
 BIND
 INIT
 PRE_INIT
 TERM

PRIMARY_CLIENT_TOKEN
Optional Parameter

 A token representing the client for which the client was attached.
PRIMARY_CLIENT_TYPE

Optional Parameter

 The type of client for which the transaction was attached.

Values for the parameter are:
 APPC_SESSION
 BRIDGE
 IIRR
 IP_ECI
 LU61_SESSION
 MRO_SESSION
 NONE
 RRS_UR
 RZ_INSTORE_TRPORT
 SCHEDULER
 SOCKET
 START
 START_TERMINAL
 TERMINAL
 TRANDATA
 WEB
 XM_RUN_TRANSACTION

RE_ATTACHED_TRANSACTION
Optional Parameter

 Indicates if the transaction was reattached.

Chapter 114. Transaction manager domain (XM) 1967

Values for the parameter are:
 NO
 YES

REASON
The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BUFFER_TOO_SMALL
 INVALID_TRANSACTION_TOKEN
 NO_TRANSACTION_ENVIRONMENT
 UNKNOWN_TRANSACTION_NUMBER

REMOTE
Optional Parameter

 Whether the transaction is remote.

Values for the parameter are:
 NO
 YES

REMOTE_NAME
Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.
RESOURCE_NAME

Optional Parameter

 The name of a resource that a suspended transaction is waiting for.
RESOURCE_TYPE

Optional Parameter

 The type of resource that a suspended transaction is waiting for.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

RESTART
Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

RESTART_COUNT
Optional Parameter

 Contains the number of times this transaction instance has been restarted.
SPURGE

Optional Parameter

 Whether the transaction is system-purgeable.

Values for the parameter are:
 NO
 YES

START_CODE
Optional Parameter

1968 CICS TS for z/OS 4.1: Diagnosis Reference

Indicates the reason for the attach of the transaction.

Values for the parameter are:
 C
 DF
 QD
 S
 SD
 SZ
 T
 TT

STATUS
Optional Parameter

 The status of the transaction.

Values for the parameter are:
 READY
 RUNNING
 SUSPENDED

SUSPEND_TIME
Optional Parameter

 Contains the length of time that the transaction has currently been suspended
for.

SYSTEM_TRANSACTION
Optional Parameter

 Whether the transaction has been attached by CICS.

Values for the parameter are:
 NO
 YES

TASK_PRIORITY
Optional Parameter

 The combined priority of the transaction.
TCLASS

Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.
TPURGE

Optional Parameter

 Whether the transaction can be purged after a terminal error.

Values for the parameter are:
 NO
 YES

TRAN_PRIORITY
Optional Parameter

 Transaction priority
TRAN_ROUTING_PROFILE

Optional Parameter

 Profile to be used to route a remote transaction to a remote system.

Chapter 114. Transaction manager domain (XM) 1969

TRANDEF_TOKEN
Optional Parameter

 The token representing the returned transaction definition.
TRANNUM

Optional Parameter

 Is the transaction number assigned to the newly attached transaction.
TRANSACTION_GROUP_ID

Optional Parameter

 The identifier of the transaction's monitoring group.
TRANSACTION_ID

Optional Parameter

 Transaction identifier
USERID

Optional Parameter

 The userid of the user associated with the transaction.

XMIQ gate, INQUIRE_TRANSACTION_TOKEN function
The INQUIRE_TRANSACTION_TOKEN function of the XMIQ gate is used to
return a transaction token that is associated with a specific transaction.

Input Parameters
TOKEN_OWNER

Identifies the transaction token to retrieve for the transaction.

 The parameter can take the following values:
 AD
 AP
 BR
 DD
 DP
 EJ
 IE
 IS
 LG
 MN
 PG
 PI
 RM
 RZ
 SM
 SO
 TD
 TF
 US
 WB
 XM
 XS

TRANSACTION_TOKEN
Optional Parameter

 An optional token that identifies the transaction to send the message to. The
default is the current transaction.

1970 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TRANSACTION_ENVIRONMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

OWNERS_TOKEN
The transaction token associated with the current transaction.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, PURGE_TRANSACTION function
The PURGE_TRANSACTION function of the XMIQ gate is used to purge a
particular transaction in the system.

Input Parameters
PURGE_TYPE

The type of purge that is to be attempted.

 Values for the parameter are:
 FORCE
 KILL
 NORMAL

TRANSACTION_NUMBER
The number of the transaction being inquired upon.

TRANSACTION_TOKEN
Optional token to identify the transaction that the message is to be sent to.
Defaults to the current transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 FORCEPURGE_NOT_ATTEMPTED
 INVALID_STATE
 INVALID_TRANSACTION_TOKEN
 PURGE_ABENDING_TRANSACTION
 PURGE_DEFERRED
 PURGE_INHIBITED
 PURGE_SYSTEM_TRANSACTION
 SPURGE_PROTECTED
 TRANSACTION_INITIALIZING
 TRANSACTION_TERMINATING
 UNKNOWN_TRANSACTION_NUMBER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, SET_TRANSACTION function
The SET_TRANSACTION function of the XMIQ gate is used to change some
attributes associated with a particular transaction.

Chapter 114. Transaction manager domain (XM) 1971

Input Parameters
FACILITY_TOKEN

Optional Parameter

 A token representing the principal facility associated with the transaction.
FACILITY_TYPE

Optional Parameter

 The type of principal facility to be associated with the attached transaction.

Values for the parameter are:
 IPECI
 NONE
 START
 TD
 TERMINAL

REMOTE_NAME
Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.
REPORT_CONDITION

Optional Parameter

 An indicator that provides a means of communicating the fact that an abend
message has already been reported to the principal facility terminal or
destination.

Values for the parameter are:
 NO
 YES

RESTART
Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

START_CODE
Optional Parameter

 Indicates the reason for the attach.

Values for the parameter are:
 C
 QD
 S
 SD
 SZ
 T
 TT

STORAGE_VIOLATIONS
Optional Parameter

 Set to indicate that the transaction has suffered a storage violation.

Values for the parameter are:
 INCREMENT

1972 CICS TS for z/OS 4.1: Diagnosis Reference

TASK_PRIORITY
Optional Parameter

 The combined priority of the transaction.
TCLASS_NAME

Optional Parameter

 The name of the tclass.
TRANSACTION_NUMBER

Optional Parameter

 The number of the transaction being inquired upon.
TRANSACTION_TOKEN

Optional Parameter

 Optional token to identify the transaction that the message is to be sent to.
Defaults to the current transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_TRANSACTION_TOKEN
 NO_TRANSACTION_ENVIRONMENT
 UNKNOWN_TCLASS
 UNKNOWN_TRANSACTION_NUMBER

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, SET_TRANSACTION_TOKEN function
The SET_TRANSACTION_TOKEN function of the XMIQ gate is used to modify a
transaction token that is associated with a specific transaction.

Input Parameters
OWNERS_TOKEN

The new value for the transaction token.
TOKEN_OWNER

Identifies the transaction token to set for the transaction.

 The parameter can take the following values:
 AD
 AP
 BR
 DD
 DP
 EJ
 IE
 IS
 LG
 MN
 PG
 PI
 RM
 RZ

Chapter 114. Transaction manager domain (XM) 1973

SM
 SO
 TD
 TF
 US
 WB
 XM
 XS

TRANSACTION_TOKEN
Optional Parameter

 An optional token that identifies the transaction to send the message to. The
default is the current transaction.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 NO_TRANSACTION_ENVIRONMENT

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, START_BROWSE_TRANSACTION function
The START_BROWSE_TRANSACTION function of the XMIQ gate is used to
initiate a browse of all transactions in the system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

BROWSE_TOKEN
Token identifying this transaction definition browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMIQ gate, START_BROWSE_TXN_TOKEN function
The START_BROWSE_TXN_TOKEN function of the XMIQ gate is used to initiate a
browse of a particular components transaction token in all transactions in the
system.

Input Parameters
TOKEN_OWNER

Identifies the particular transaction token that is to be browsed in the
transactions.

 Values for the parameter are:
 AD
 AP
 BR
 DD
 DP

1974 CICS TS for z/OS 4.1: Diagnosis Reference

EJ
 IE
 IS
 LG
 MN
 PG
 PI
 RM
 RZ
 SM
 SO
 TD
 TF
 US
 WB
 XM
 XS

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

BROWSE_TOKEN
Token identifying this transaction definition browse.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMLD gate, LOCATE_AND_LOCK_TRANDEF function
The LOCATE_AND_LOCK_TRANDEF function of the XMLD gate is used to locate
a particular transaction definition instance.

Input Parameters
TPNAME

Alternative means of specifying the transaction identifier to attach.
TRANSACTION_ID

The transaction identifier to attach.
USE_DTRTRAN

Optional Parameter

 If the named transaction-id or tpname cannot be found then indicates whether
the DTRTRAN, if installed, should be used instead.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 NOT_FOUND

The following values are returned when RESPONSE is INVALID:

Chapter 114. Transaction manager domain (XM) 1975

INVALID_TPNAME
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANDEF_TOKEN
The token representing the returned transaction definition.

PRIMARY_TRANSACTION_ID
Optional Parameter

 The primary transaction identifier of the returned transaction. definition.

XMLD gate, UNLOCK_TRANDEF function
The UNLOCK_TRANDEF function of the XMLD gate is used to unlock a
previously located transaction definition instance.

Input Parameters
TRANDEF_TOKEN

Transaction definition instance to unlock.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN
 NOT_LOCKED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMRU gate, RUN_TRANSACTION function
Run a BTS transaction.

Input Parameters
TRANID

The transaction identifier.
CLIENT_DATA_BLOCK

Optional Parameter

 Client data associated with the request.
CLIENT_TYPE

Optional Parameter

 A string that indicates the type of client.
PROGRAM

Optional Parameter

 The program associated with the transaction.
USERID

Optional Parameter

 the user ID under which the transaction runs.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BIND_FAILURE

1976 CICS TS for z/OS 4.1: Diagnosis Reference

NOTAUTH
 TASK_ABENDED
 TRANSACTION_HANG

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ABEND_CODE
Optional Parameter

 The abend code if an abend occurred in the BTS transaction.
ABEND_PROGRAM

Optional Parameter

 The name of the program that ended abnormally if an abend occurred in the
BTS transaction.

XMSR gate, INQUIRE_DTRTRAN function
The INQUIRE_DTRTRAN function of the XMSR gate returns the name of the
dynamic transaction routing transaction.

Output Parameters
DTRTRAN

The name of the dynamic transaction routing transaction definition.
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOGIC_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_MXT_LIMIT
 LIMIT_TOO_HIGH

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

XMSR gate, INQUIRE_MXT function
The INQUIRE_MXT function of the XMSR gate is used to inquire upon the state of
MXT in the system.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_ACTIVE
Optional Parameter

 The number of active transactions in the tclass.
MXT_LIMIT

Optional Parameter

Chapter 114. Transaction manager domain (XM) 1977

The maximum number of transactions in the transaction class that are allowed
to be active.

MXT_QUEUED
Optional Parameter

 The number of user transactions queued for MXT.
TCLASS_QUEUED

Optional Parameter

 The number of transactions queued for tclass membership.

XMSR gate, SET_DTRTRAN function
The SET_DTRTRAN function of the XMSR gate changes the dynamic transaction
routing transaction definition.

Input Parameters
DTRTRAN

The name of the dynamic transaction routing transaction definition.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REASON
Optional Parameter

 The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOGIC_ERROR
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_MXT_LIMIT
 LIMIT_TOO_HIGH

The following values are returned when RESPONSE is INVALID:
 INVALID_FUNCTION

XMSR gate, SET_MXT function
The SET_MXT function of the XMSR gate is used to change MXT in the system.

Input Parameters
MXT_LIMIT

The requested setting for MXT.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_MXT_LIMIT
 LIMIT_TOO_HIGH

MXT_LIMIT_SET
The MXT limit that could be set.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1978 CICS TS for z/OS 4.1: Diagnosis Reference

XMXD gate, ADD_REPLACE_TRANDEF function
The ADD_REPLACE_TRANDEF function of the XMXD gate is used to install a
transaction definition.

Input Parameters
PROFILE_NAME

The profile that is to be found.
TRAN_PRIORITY

Transaction priority
TRANSACTION_ID

The transaction identifier to attach.
ALIAS

Optional Parameter

 Alternative name for transaction definition.
BREXIT

Optional Parameter

 The name of the default bridge exit to be associated with this transaction.
CATALOGUED_EXTERNALS

Optional Parameter

 Block of data specified as an alternative to the above parameters when a
transaction definition is being installed from the catalog.

CMDSEC
Optional Parameter

 Whether command security checking is active.

Values for the parameter are:
 NO
 YES

CONFDATA
Optional Parameter

 The value of the CONFDATA attribute specified in the TRANSACTION
definition.

Values for the parameter are:
 NO
 YES

DTIMEOUT
Optional Parameter

 The deadlock timeout value for the transaction.
DUMP

Optional Parameter

 Whether transaction dumps are to be taken.

Values for the parameter are:
 NO
 YES

DYNAMIC
Optional Parameter

 Whether the transaction is defined to be dynamic.

Values for the parameter are:
 NO
 YES

Chapter 114. Transaction manager domain (XM) 1979

INDOUBT
Optional Parameter

 The action to take if work performed by the transaction becomes indoubt.

Values for the parameter are:
 BACKOUT
 COMMIT

INDOUBT_WAIT
Optional Parameter

 Indicates whether an indoubt unit of work (UOW) is to wait, pending recovery
from a failure that occurs after the UOW has entered the indoubt state.

Values for the parameter are:
 NO
 YES

INDOUBT_WAIT_TIME
Optional Parameter

 Indicates how long the transaction is to wait before taking an arbitrary decision
about an indoubt unit of work.

INITIAL_PROGRAM
Optional Parameter

 Initial program of transaction.
ISOLATE

Optional Parameter

 Whether the transaction runs in its own subspace.

Values for the parameter are:
 NO
 YES

LOCAL_QUEUING
Optional Parameter

 Whether the transaction is eligible to queue locally when it is started on the
remote system.

Values for the parameter are:
 NO
 YES

OTSTIMEOUT
Optional Parameter

 The value of the OTSTIMEOUT attribute in the transaction definition.
PARTITIONSET

Optional Parameter

 The partitionset defined for the transaction.
PARTITIONSET_NAME

Optional Parameter

 The name of the user defined partitionset used by the transaction.
REMOTE_NAME

Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.

1980 CICS TS for z/OS 4.1: Diagnosis Reference

RESSEC
Optional Parameter

 Whether resource security checking is active.

Values for the parameter are:
 NO
 YES

RESTART
Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

ROUTABLE_STATUS
Optional Parameter

 Specifies whether, if the transaction is the subject of an eligible EXEC CICS
START command, it will be routed using the enhanced routing method.

Values for the parameter are:
 NOTROUTABLE
 ROUTABLE

RUNAWAY_LIMIT
Optional Parameter

 The runaway limit associated with the transaction.
SHUTDOWN

Optional Parameter

 Whether the transaction can be run during shutdown.

Values for the parameter are:
 DISABLED
 ENABLED

SPURGE
Optional Parameter

 Whether the transaction is system-purgeable.

Values for the parameter are:
 NO
 YES

STATUS
Optional Parameter

 The status of the transaction.

Values for the parameter are:
 DISABLED
 ENABLED

STORAGE_CLEAR
Optional Parameter

 Whether task-lifetime storage is to be cleared before it is freemained.

Values for the parameter are:
 NO
 YES

STORAGE_FREEZE
Optional Parameter

Chapter 114. Transaction manager domain (XM) 1981

Whether storage freeze is on for the transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_DEFINITION
Optional Parameter

 A binary value that indicates whether the transaction is defined by the system.

Values for the parameter are:
 NO
 YES

SYSTEM_RUNAWAY
Optional Parameter

 Whether the transaction uses the default system runaway limit.
TASKDATAKEY

Optional Parameter

 The storage key that task-lifetime storage is allocated in.

Values for the parameter are:
 CICS
 USER

TASKDATALOC
Optional Parameter

 The location of task-lifetime storage.

Values for the parameter are:
 ANY
 BELOW

TASKREQ
Optional Parameter

 Alternative name for transaction definition so that it can be invoked by PF/PA
key, light pen, etc.

TCLASS
Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass.
TPNAME

Optional Parameter

 Alternative means of specifying the transaction identifier to attach.
TPURGE

Optional Parameter

 Whether the transaction can be purged after a terminal error.

Values for the parameter are:
 NO
 YES

TRACE
Optional Parameter

 The level of tracing associated with the transaction.

Values for the parameter are:

1982 CICS TS for z/OS 4.1: Diagnosis Reference

SPECIAL
 STANDARD
 SUPPRESSED

TRAN_ROUTING_PROFILE
Optional Parameter

 Profile to be used to route a remote transaction to a remote system.
TWASIZE

Optional Parameter

 Size of Transaction Work Area.
XTRANID

Optional Parameter

 Alternative name for transaction definition originally specified in hexadecimal
notation.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 ALIAS_INVALID
 RECOVERY_NOT_COMPLETE
 RUNAWAY_LIMIT_INVALID
 TASKREQ_INVALID
 TPNAME_INVALID
 TRANSACTION_ID_INVALID
 TWASIZE_INVALID
 XTRANID_INVALID

The following values are returned when RESPONSE is INVALID:
 INITIAL_PROGRAM_EXPECTED
 PARTITIONSET_NAME_EXPECTED
 REMOTE_NAME_EXPECTED
 REMOTE_SYSTEM_EXPECTED
 RUNAWAY_LIMIT_EXPECTED
 TCLASS_NAME_EXPECTED
 TRAN_ROUTING_PROF_EXPECTED

The values for the parameter are:
 ALIAS_EXISTS_AS_PRIMARY

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANDEF_TOKEN
Optional Parameter

 The token representing the returned transaction definition.

XMXD gate, INQUIRE_REMOTE_TRANDEF function
The INQUIRE_REMOTE_TRANDEF function of the XMXD gate is used to inquire
upon a remote transaction definition.

Input Parameters
REMOTENAME_KEY

Remote name of remote transaction definition to be found.

Chapter 114. Transaction manager domain (XM) 1983

REMOTESYSTEM_KEY
Remote system of remote transaction definition to be found.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 REMOTE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BREXIT
Optional Parameter

 The name of the default bridge exit to be associated with this transaction.
CMDSEC

Optional Parameter

 Whether command security checking is active.

Values for the parameter are:
 NO
 YES

CONFDATA
Optional Parameter

 The value of the CONFDATA attribute specified in the TRANSACTION
definition.

Values for the parameter are:
 NO
 YES

DTIMEOUT
Optional Parameter

 The deadlock timeout value for the transaction.
DTRTRAN

Optional Parameter

 The name of the dynamic transaction routing transaction definition.

Values for the parameter are:
 NO
 YES

DUMP
Optional Parameter

 Whether transaction dumps are to be taken.

Values for the parameter are:
 NO
 YES

DYNAMIC
Optional Parameter

 Whether the transaction is defined to be dynamic.

Values for the parameter are:
 NO
 YES

1984 CICS TS for z/OS 4.1: Diagnosis Reference

INDOUBT
Optional Parameter

 The action to take if work performed by the transaction becomes indoubt.

Values for the parameter are:
 BACKOUT
 COMMIT

INDOUBT_WAIT
Optional Parameter

 Indicates whether an indoubt unit of work (UOW) is to wait, pending recovery
from a failure that occurs after the UOW has entered the indoubt state.

Values for the parameter are:
 NO
 YES

INDOUBT_WAIT_TIME
Optional Parameter

 Indicates how long the transaction is to wait before taking an arbitrary decision
about an indoubt unit of work.

INITIAL_PROGRAM
Optional Parameter

 Initial program of transaction.
ISOLATE

Optional Parameter

 Whether the transaction runs in its own subspace.

Values for the parameter are:
 NO
 YES

LOCAL_QUEUING
Optional Parameter

 Whether the transaction is eligible to queue locally when it is started on the
remote system.

Values for the parameter are:
 NO
 YES

OTSTIMEOUT
Optional Parameter

 The value of the OTSTIMEOUT attribute in the transaction definition.
PARTITIONSET

Optional Parameter

 The partitionset defined for the transaction.

Values for the parameter are:
 KEEP
 NAMED
 NONE
 OWN

PARTITIONSET_NAME
Optional Parameter

 The name of the user defined partitionset used by the transaction.
PROFILE_NAME

Optional Parameter

Chapter 114. Transaction manager domain (XM) 1985

Profile of transaction.
REMOTE

Optional Parameter

 Whether the transaction is remote.

Values for the parameter are:
 NO
 YES

REMOTE_NAME
Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.
RESSEC

Optional Parameter

 Whether resource security checking is active.

Values for the parameter are:
 NO
 YES

RESTART
Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

ROUTABLE_STATUS
Optional Parameter

 Specifies whether, if the transaction is the subject of an eligible EXEC CICS
START command, it will be routed using the enhanced routing method.

Values for the parameter are:
 NOTROUTABLE
 ROUTABLE

RUNAWAY_LIMIT
Optional Parameter

 The runaway limit associated with the transaction.
SHUTDOWN

Optional Parameter

 Whether the transaction can be run during shutdown.

Values for the parameter are:
 DISABLED
 ENABLED

SPURGE
Optional Parameter

 Whether the transaction is system-purgeable.

Values for the parameter are:
 NO
 YES

1986 CICS TS for z/OS 4.1: Diagnosis Reference

STATUS
Optional Parameter

 The status of the transaction.

Values for the parameter are:
 DISABLED
 ENABLED

STORAGE_CLEAR
Optional Parameter

 Whether task-lifetime storage is to be cleared before it is freemained.

Values for the parameter are:
 NO
 YES

STORAGE_FREEZE
Optional Parameter

 Whether storage freeze is on for the transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_ATTACH
Optional Parameter

 Indicates whether the transaction should be attached as a system transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_RUNAWAY
Optional Parameter

 Whether the transaction uses the default system runaway limit.

Values for the parameter are:
 NO
 YES

TASKDATAKEY
Optional Parameter

 The storage key that task-lifetime storage is allocated in.

Values for the parameter are:
 CICS
 USER

TASKDATALOC
Optional Parameter

 The location of task-lifetime storage.

Values for the parameter are:
 ANY
 BELOW

TCLASS
Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.

Chapter 114. Transaction manager domain (XM) 1987

TPURGE
Optional Parameter

 Whether the transaction can be purged after a terminal error.

Values for the parameter are:
 NO
 YES

TRACE
Optional Parameter

 The level of tracing associated with the transaction.

Values for the parameter are:
 SPECIAL
 STANDARD
 SUPPRESSED

TRAN_PRIORITY
Optional Parameter

 Transaction priority
TRAN_ROUTING_PROFILE

Optional Parameter

 Profile to be used to route a remote transaction to a remote system.
TRANSACTION_ID

Optional Parameter

 Transaction identifier
TWASIZE

Optional Parameter

 Size of Transaction Work Area.

XMXD gate, INQUIRE_TRANDEF function
The INQUIRE_TRANDEF function of the XMXD gate is used to inquire upon a
named transaction definition.

Input Parameters
INQ_TRANSACTION_ID

Transaction-id to inquire upon.
TRANDEF_TOKEN

Transaction definition instance to unlock.
USE_DTRTRAN

Optional Parameter

 If the named transaction-id or tpname cannot be found then indicates whether
the DTRTRAN, if installed, should be used instead.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 UNKNOWN_TRANSACTION_ID

1988 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is INVALID:
 INVALID_TOKEN

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

BREXIT
Optional Parameter

 The name of the bridge exit defined by the BREXIT parameter of the
transaction resource definition.

CMDSEC
Optional Parameter

 Whether command security checking is active.

Values for the parameter are:
 NO
 YES

CONFDATA
Optional Parameter

 A binary value that indicates whether CICS should clear storage that is
released from a task executing this transaction, to prevent other tasks
accidentally viewing confidential data.

Values for the parameter are:
 NO
 YES

DTIMEOUT
Optional Parameter

 The deadlock timeout value for the transaction.
DTRTRAN

Optional Parameter

 The name of the dynamic transaction routing transaction definition.

Values for the parameter are:
 NO
 YES

DUMP
Optional Parameter

 Whether transaction dumps are to be taken.

Values for the parameter are:
 NO
 YES

DYNAMIC
Optional Parameter

 Whether the transaction is defined to be dynamic.

Values for the parameter are:
 NO
 YES

INDOUBT
Optional Parameter

 The action to take if work performed by the transaction becomes indoubt.

Values for the parameter are:
 BACKOUT

Chapter 114. Transaction manager domain (XM) 1989

COMMIT
INDOUBT_WAIT

Optional Parameter

 A binary value that indicates whether CICS wait to determine whether
recoverable resources are to be backed out or committed if a failure occurs
while the unit of work associated with the transaction is in an indoubt state.

Values for the parameter are:
 NO
 YES

INDOUBT_WAIT_TIME
Optional Parameter

 The length of time for which CICS should wait to for resolution if a failure
occurs while the unit of work associated with the transaction is in an indoubt
state.

INITIAL_PROGRAM
Optional Parameter

 Initial program of transaction.
ISOLATE

Optional Parameter

 Whether the transaction runs in its own subspace.

Values for the parameter are:
 NO
 YES

LOCAL_QUEUING
Optional Parameter

 Whether the transaction is eligible to queue locally when it is started on the
remote system.

Values for the parameter are:
 NO
 YES

OTSTIMEOUT
Optional Parameter

 The time for which an OTS transaction, created in an EJB environment
executing under this CICS transaction, is allowed to execute before syncpoint.

PARTITIONSET
Optional Parameter

 The partitionset defined for the transaction.

Values for the parameter are:
 KEEP
 NAMED
 NONE
 OWN

PARTITIONSET_NAME
Optional Parameter

 The name of the user defined partitionset used by the transaction.
PROFILE_NAME

Optional Parameter

 Profile of transaction.

1990 CICS TS for z/OS 4.1: Diagnosis Reference

REMOTE
Optional Parameter

 Whether the transaction is remote.

Values for the parameter are:
 NO
 YES

REMOTE_NAME
Optional Parameter

 The name of a remote transaction on the remote system.
REMOTE_SYSTEM

Optional Parameter

 The system that a remote transaction is to be routed to.
RESSEC

Optional Parameter

 Whether resource security checking is active.

Values for the parameter are:
 NO
 YES

RESTART
Optional Parameter

 Whether the transaction is restartable.

Values for the parameter are:
 NO
 YES

ROUTABLE_STATUS
Optional Parameter

 Specifies whether, if the transaction is the subject of an eligible EXEC CICS
START command, it will be routed using the enhanced routing method.

Values for the parameter are:
 NOTROUTABLE
 ROUTABLE

RUNAWAY_LIMIT
Optional Parameter

 The runaway limit associated with the transaction.
SHUTDOWN

Optional Parameter

 Whether the transaction can be run during shutdown.

Values for the parameter are:
 DISABLED
 ENABLED

SPURGE
Optional Parameter

 Whether the transaction is system-purgeable.

Values for the parameter are:
 NO
 YES

STATUS
Optional Parameter

Chapter 114. Transaction manager domain (XM) 1991

The status of the transaction.

Values for the parameter are:
 DISABLED
 ENABLED

STORAGE_CLEAR
Optional Parameter

 Whether task-lifetime storage is to be cleared before it is freemained.

Values for the parameter are:
 NO
 YES

STORAGE_FREEZE
Optional Parameter

 Whether storage freeze is on for the transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_ATTACH
Optional Parameter

 Whether a system task will be attached using this transaction definition.

Values for the parameter are:
 NO
 YES

SYSTEM_RUNAWAY
Optional Parameter

 Whether the transaction uses the default system runaway limit.

Values for the parameter are:
 NO
 YES

TASKDATAKEY
Optional Parameter

 The storage key that task-lifetime storage is allocated in.

Values for the parameter are:
 CICS
 USER

TASKDATALOC
Optional Parameter

 The location of task-lifetime storage.

Values for the parameter are:
 ANY
 BELOW

TCLASS
Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass that the transaction belongs to.
TPURGE

Optional Parameter

1992 CICS TS for z/OS 4.1: Diagnosis Reference

Whether the transaction can be purged after a terminal error.

Values for the parameter are:
 NO
 YES

TRACE
Optional Parameter

 The level of tracing associated with the transaction.

Values for the parameter are:
 SPECIAL
 STANDARD
 SUPPRESSED

TRAN_PRIORITY
Optional Parameter

 Transaction priority
TRAN_ROUTING_PROFILE

Optional Parameter

 Profile to be used to route a remote transaction to a remote system.
TRANSACTION_ID

Optional Parameter

 Transaction identifier
TWASIZE

Optional Parameter

 Size of Transaction Work Area.

XMXD gate, SET_TRANDEF function
The SET_TRANDEF function of the XMXD gate is used to modify transaction
definition creating a new transaction. definition instance.

Input Parameters
TRANSACTION_ID

The transaction identifier to attach.
DUMP

Optional Parameter

 Whether transaction dumps are to be taken.

Values for the parameter are:
 NO
 YES

RUNAWAY_LIMIT
Optional Parameter

 The runaway limit associated with the transaction.
SHUTDOWN

Optional Parameter

 Whether the transaction can be run during shutdown.

Values for the parameter are:
 DISABLED
 ENABLED

SHUTDOWN_DISABLEOVERRIDE
Optional Parameter

Chapter 114. Transaction manager domain (XM) 1993

Whether to override a SHUTDOWN setting of DISABLED for the transaction
definition.

Values for the parameter are:
 NO
 YES

SPURGE
Optional Parameter

 Whether the transaction is system-purgeable.

Values for the parameter are:
 NO
 YES

STATUS
Optional Parameter

 The status of the transaction.

Values for the parameter are:
 DISABLED
 ENABLED

STORAGE_FREEZE
Optional Parameter

 Whether storage freeze is on for the transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_ATTACH
Optional Parameter

 Indicates whether the transaction should be attached as a system transaction.

Values for the parameter are:
 NO
 YES

SYSTEM_RUNAWAY
Optional Parameter

 Whether the transaction uses the default system runaway limit.
TCLASS

Optional Parameter

 Whether the transaction belongs to a tclass.
TCLASS_NAME

Optional Parameter

 The name of the tclass.
TRACE

Optional Parameter

 The level of tracing associated with the transaction.

Values for the parameter are:
 SPECIAL
 STANDARD
 SUPPRESSED

TRAN_PRIORITY
Optional Parameter

 Transaction priority

1994 CICS TS for z/OS 4.1: Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The following values are returned when RESPONSE is EXCEPTION:
 RUNAWAY_LIMIT_INVALID
 UNKNOWN_TCLASS
 UNKNOWN_TRANSACTION_ID

The following values are returned when RESPONSE is INVALID:
 RUNAWAY_LIMIT_EXPECTED
 TCLASS_NAME_EXPECTED

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

TRANDEF_TOKEN
Optional Parameter

 The token representing the returned transaction definition.

XMXE gate, FREE_TXN_ENVIRONMENT function
The FREE_TXN_ENVIRONMENT function of the XMXE gate is used to release a
transaction environment for a task that was DS instead XM attached.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ATTACHED_TRANSACTION
 CALL_NOT_MADE_ON_QR
 INVALID_FUNCTION
 LOOP
 NO_ENVIRONMENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMXE gate, GET_TXN_ENVIRONMENT function
The GET_TXN_ENVIRONMENT function of the XMXE gate is used to acquire a
transaction environment for a task that was DS instead XM attached.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ATTACHED_TRANSACTION
 CALL_NOT_MADE_ON_QR
 DUPLICATE_ENVIRONMENT
 INVALID_FUNCTION
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Chapter 114. Transaction manager domain (XM) 1995

Transaction manager domain's generic gates

Table 87 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 87. Transaction manager domain's generic gates

Gate Trace Functions Format

XMDM XM 0101
XM 0102

PRE_INITIALIZE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

XMST XM 0C01
XM 0C02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

 For descriptions of these functions and their input and output parameters, refer
to descriptions of the following generic formats:

 “Domain Manager domain's generic formats” on page 956
 “Statistics domain's generic formats” on page 1777

Transaction Manager domain's callback formats

Table 88 describes the call-back formats owned by the domain and shows the
functions performed on the calls.

 Table 88. Transaction Manager domain's call-back formats

Format Calling module Function

XMAC DFHXMTA
DFHXMXE

INIT_XM_CLIENT
BIND_XM_CLIENT
TRANSACTION_HANG
ABEND_TERMINATE
RELEASE_XM_CLIENT

Note: In the descriptions of the formats, the input parameters are input not to the
transaction Manager domain, but to the domain being called by the transaction
Manager domain. Similarly, the output parameters are output by the domain that
was called by the transaction Manager domain, in response to the call.

XMAC gate, ABEND_TERMINATE function
Clean up after a deferred abend has been noted during transaction initialization.

Input Parameters
CLIENT_REQUEST_BLOCK

A block that refers to data that defines the context of the request.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1996 CICS TS for z/OS 4.1: Diagnosis Reference

XMAC gate, BIND_XM_CLIENT function
Initialize primary resources and client recoverable resources, and optionally set the
program to be called after initialization is complete.

Input Parameters
CLIENT_REQUEST_BLOCK

A block that refers to data that defines the context of the request.

Output Parameters
APPLICATION_PROGRAM

The application program to be called after initialization is complete.
LINK_APPLICATION_PROGRAM

A binary value that indicates whether an application program is to be called
after initialization is complete.

 Values for the parameter are:
 NO
 YES

ROUTABLE
A binary value that indicates whether the application program request can be
routed.

 Values for the parameter are:
 NO
 YES

REASON
The values for the parameter are:
 BAD_ENVIRONMENT

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMAC gate, INIT_XM_CLIENT function
Initialize the Transaction Manager client and return the user token extracted from
the client token. Also return whether this user token should be used to set up the
transaction user.

Input Parameters
CLIENT_REQUEST_BLOCK

A block that refers to data that defines the context of the request.

Output Parameters
USER_TOKEN

A token that is used to manage interactions between the transaction manager
and the client.

SET_USER_TOKEN
A binary value that indicates whether the user token is set.

 Values for the parameter are:
 NO
 YES

REASON
The values for the parameter are:
 INVALID_FORMAT
 INVALID_FUNCTION
 ABEND

Chapter 114. Transaction manager domain (XM) 1997

BAD_ENVIRONMENT
 RESTART_FAILURE
 REMOTE_TRANSACTION
 TRANSACTION_ABEND
 INVALID_USERID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMAC gate, RELEASE_XM_CLIENT function
Clean up resources acquired by INIT_XM_CLIENT and .BIND_XM_CLIENT
during Transaction Manager tear-down of the transaction environment.

Input Parameters
TERMINATION_TYPE

Indicates whether the transaction was terminated normally or abnormally.

 Values for the parameter are:
 NORMAL
 ABNORMAL

RESTART_REQUESTED
Optional parameter

 A binary value that indicates whether the transaction should be restarted.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 RESTART_FAILURE
 TRANSACTION_ABEND
 BAD_ENVIRONMENT
 ABEND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMAC gate, TRANSACTION_HANG function
Clean up after a severe error has taken place during transaction initialization.

Input Parameters
CLIENT_REQUEST_BLOCK

A block that refers to data that defines the context of the request.

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

1998 CICS TS for z/OS 4.1: Diagnosis Reference

Transaction manager domain's generic formats

Table 89 describes the generic formats owned by the domain and shows the
functions performed on the calls.

 Table 89. Transaction manager domain's generic formats

Format Calling modules Functions

XMNT DFHXMSR
DFHXMAT
DFHXMTA
DFHXMCL

MXT_NOTIFY
MXT_CHANGE_NOTIFY

XMDN DFHXMXD
DFHXMQD
DFHXMDD

TRANDEF_NOTIFY
TRANDEF_DELETE_QUERY

XMPP DFHXMIQ FORCE_PURGE_INHIBIT_QUERY

Note: In the descriptions of the formats, the input parameters are input not to the
transaction manager domain, but to the domain being called by the transaction
manager domain. Similarly, the output parameters are output by the domain that
was called by the transaction manager domain, in response to the call.

XMDN gate, TRANDEF_DELETE_QUERY function
The TRANDEF_DELETE_QUERY function of the XMDN format allows other
domains to object to the deletion of the named transaction. definition.

Input Parameters
TRANSACTION_ID

The transaction definition subject to the delete request.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

The values for the parameter are:
 AID_PENDING
 ICE_PENDING
 SIT_PARAMETER

INHIBIT_DELETE
Indicates whether the called domain wants to inhibit the deletion of the named
transaction definition.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMDN gate, TRANDEF_NOTIFY function
The TRANDEF_NOTIFY function of the XMDN format is used to notify other
domains that a transaction definition has been installed, changed, or deleted. The
called domain can then modify any transaction definition related data they are
keeping for that definition.

Chapter 114. Transaction manager domain (XM) 1999

Input Parameters
EVENT

Indicates the event that has caused the notify to be sent.

 Values for the parameter are:
 CHANGE
 DELETE
 INSTALL

TRANDEF_TOKEN
Token identifying the transaction definition instance subject to the above event.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 LOGIC_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMNT gate, MXT_CHANGE_NOTIFY function
The MXT_CHANGE_NOTIFY function of XMNT format is used to notify other
domains of a change to the MXT limit. The called domains indicate whether they
can cope with the new limit.

Input Parameters
REQUESTED_MXT

The new limit requested for MXT.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 LIMIT_TOO_HIGH

ALLOCATED_MXT
Indicates the limit that the called domain can cope with when the
LIMIT_TOO_HIGH exception is returned.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XMNT gate, MXT_NOTIFY function
The MXT_NOTIFY function of XMNT format is used to notify other domains when
CICS is at, or no longer at, the maximum task limit for user tasks.

Input Parameters
MXTQUEUING

Indicates whether queuing for MXT has just started or just stopped.

 Values for the parameter are:
 STARTED
 STOPPED

Output Parameters
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

2000 CICS TS for z/OS 4.1: Diagnosis Reference

XMPP gate, FORCE_PURGE_INHIBIT_QUERY function
The FORCE_PURGE_INHIBIT_QUERY function of the XMPP format allows other
domains to object to the force purge request for the specified transaction.

Input Parameters
RESOURCE_NAME

The name of the resource for which the task is waiting in the dispatcher.
RESOURCE_TYPE

The type of resource for which the task is waiting in the dispatcher.
TRANSACTION_TOKEN

Token identifying the transaction that is subject to the force purge request.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

INHIBIT_PURGE
Indicates whether the called domain wants to inhibit the force purge of the
transaction.

 Values for the parameter are:
 NO
 YES

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Modules
 Module Function

DFHXMAB XM domain abend program

DFHXMAT Handles the following requests:
 ATTACH

DFHXMBD Handles the following requests:
 START_BROWSE_TRANDEF
 GET_NEXT_TRANDEF
 END_BROWSE_TRANDEF

DFHXMCL Handles the following requests:
 ADD_REPLACE_TCLASS
 ADD_TCLASS
 INQUIRE_TCLASS
 SET_TCLASS
 DELETE_TCLASS
 START_BROWSE_TCLASS
 GET_NEXT_TCLASS
 END_BROWSE_TCLASS
 REGISTER_TCLASS_USAGE
 DEREGISTER_TCLASS_USAGE
 LOCATE_AND_LOCK_TCLASS
 UNLOCK_TCLASS

Chapter 114. Transaction manager domain (XM) 2001

Module Function

DFHXMDD Handles the following requests:
 DELETE_TRANDEF

DFHXMDM Handles the following requests:
 PRE_INITIALIZE
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHXMDUF XM domain offline dump formatting routine

DFHXMER Handles the following requests:
 SET_DEFERRED_MESSAGE
 INQUIRE_DEFERRED_MESSAGE
 SET_DEFERRED_ABEND
 INQUIRE_DEFERRED_ABEND
 REPORT_MESSAGE
 ABEND_TRANSACTION

DFHXMFD Handles the following requests:
 FIND_PROFILE

DFHXMIQ Handles the following requests:
 INQUIRE_TRANSACTION
 SET_TRANSACTION
 START_BROWSE_TRANSACTION
 GET_NEXT_TRANSACTION
 END_BROWSE_TRANSACTION
 START_BROWSE_TXN_TOKEN
 GET_NEXT_TXN_TOKEN
 END_BROWSE_TXN_TOKEN
 INQUIRE_TRANSACTION_TOKEN
 SET_TRANSACTION_TOKEN
 PURGE_TRANSACTION

DFHXMLD Handles the following requests:
 LOCATE_AND_LOCK_TRANDEF
 UNLOCK_TRANDEF

DFHXMQC Is an internal module which handles the following requests:
 TCLASS_ACQUIRE
 TCLASS_RELEASE
 TCLASS_LIMIT_CHANGE
 TCLASS_QUEUE_CHANGE

DFHXMQD Is an internal module which handles the following requests:
 QUIESCE_TRANDEF
 DELETE_INSTANCE

DFHXMRP Is an internal module which handles the following requests:
 DEFINITION_RECOVERY

DFHXMSR Handles the following requests:
 INQUIRE_MXT
 SET_MXT
 INQUIRE_DTRTRAN
 SET_DTRTRAN

DFHXMST Handles the following requests:
 COLLECT_STATISTICS
 COLLECT_RESOURCE_STATS

DFHXMTRI Interprets XM domain trace entries

2002 CICS TS for z/OS 4.1: Diagnosis Reference

Module Function

DFHXMXD Handles the following requests:
 ADD_REPLACE_TRANDEF
 SET_TRANDEF
 INQUIRE_TRANDEF
 INQUIRE_REMOTE_TRANDEF

DFHXMXE Handles the following requests:
 GET_TXN_ENVIRONMENT
 FREE_TXN_ENVIRONMENT

Exits
There is one specific global user exit point in the transaction manager, XXMAT
which is called during Attach processing. Note also that the general resource
install/discard exit, XRSINDI is also called by transaction manager to log installs
and discards of TRANSACTION and TCLASS definitions.

Chapter 114. Transaction manager domain (XM) 2003

2004 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 115. Security Domain (XS)

The security domain manages the security of CICS resources and the interaction
with the security manager.

Security Domain's specific gates
The specific gates provide access for other domains to functions that are provided
by the XS domain.

XSAD gate, ADD_USER_WITH_PASSWORD function
The ADD_USER_WITH_PASSWORD function of the XSAD gate is used to add a
user to the security domain and verify the associated password or oidcard.

Input Parameters
APPLID

is the application identifier for the CICS region.
PASSWORD

is the current password, 1 through 10 alphanumeric characters, for the userid
specified by the USERID value.

SIGNON_TYPE
is the type of signon for the userid (specified by the USERID value).

 Values for the parameter are:
 ATTACH_SIGN_ON
 DEFAULT_SIGN_ON
 IRC_SIGN_ON
 LU61_SIGN_ON
 LU62_SIGN_ON
 NON_TERMINAL_SIGN_ON
 PRESET_SIGN_ON
 USER_SIGN_ON
 XRF_SIGN_ON

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

ENTRY_PORT_NAME
Optional Parameter

 is an optional name of an entry port, 1 through 8 alphanumeric characters, to
be assigned to the userid (specified by the USERID value).

ENTRY_PORT_TYPE
Optional Parameter

 is the type of the optional entry port to be assigned to the userid. This
parameter is only valid if ENTRY_PORT_NAME is also specified.

Values for the parameter are:
 TERMINAL
 CONSOLE

GROUPID
Optional Parameter

© Copyright IBM Corp. 1997, 2011 2005

is an optional identifier, 1 through 10 alphanumeric characters, of a RACF user
group to which the userid is to be assigned.

GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the GROUPID value. This parameter is only valid if
GROUPID is also specified.

NEW_PASSWORD
Optional Parameter

 is a new password, 1 through 10 alphanumeric characters, to be assigned to the
userid (specified by the USERID value). This parameter is only valid if
PASSWORD is also specified.

OIDCARD
Optional Parameter

 is an optional oidcard (operator identification card); a 65-byte field containing
further security data from a magnetic strip reader (MSR) on 32xx devices.

PASSWORD_TYPE
Optional Parameter

 specifies if the password is masked.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLICATION_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GETMAIN_FAILURE
 GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 INVALID_NEW_PASSWORD
 INVALID_USERID
 OIDCARD_NOTAUTH
 OIDCARD_REQUIRED
 PASSWORD_EXPIRED
 PASSWORD_NOTAUTH
 PASSWORD_REQUIRED
 SECLABEL_FAILURE
 SECURITY_INACTIVE
 UNKNOWN_ESM_ERROR
 USERID_NOT_DEFINED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SECURITY_TOKEN
is the token identifying the userid.

2006 CICS TS for z/OS 4.1: Diagnosis Reference

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSAD gate, ADD_USER_WITHOUT_PASSWORD function
The ADD_USER_WITHOUT_PASSWORD function of the XSAD gate is used to
add a user to the security domain without verification of a associated password or
oidcard.

Input Parameters
APPLID

is the application identifier for the CICS region.
SIGNON_TYPE

is the type of signon for the userid (specified by the USERID value).

 Values for the parameter are:
 ATTACH_SIGN_ON
 DEFAULT_SIGN_ON
 IRC_SIGN_ON
 LU61_SIGN_ON
 LU62_SIGN_ON
 NON_TERMINAL_SIGN_ON
 PRESET_SIGN_ON
 USER_SIGN_ON
 XRF_SIGN_ON

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

ENTRY_PORT_NAME
Optional Parameter

 is an optional name of an entry port, 1 through 8 alphanumeric characters, to
be assigned to the userid (specified by the USERID value).

ENTRY_PORT_TYPE
Optional Parameter

 is the type of the optional entry port to be assigned to the userid (specified by
the USERID value). This parameter is only valid if ENTRY_PORT_NAME is
also specified.

Values for the parameter are:
 CONSOLE
 TERMINAL

GROUPID
Optional Parameter

 is an optional identifier, 1 through 10 alphanumeric characters, of a RACF user
group to which the userid (specified by the USERID value) is to be assigned.

GROUPID_LENGTH
Optional Parameter

Chapter 115. Security Domain (XS) 2007

is the 8-bit length of the GROUPID value. This parameter is only valid if
GROUPID is also specified.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLICATION_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE
 ESM_TRANQUIL
 GETMAIN_FAILURE
 GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 INVALID_USERID
 SECLABEL_FAILURE
 SECURITY_INACTIVE
 UNKNOWN_ESM_ERROR
 USERID_NOT_DEFINED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SECURITY_TOKEN
is the token identifying the userid.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSAD gate, DELETE_USER_SECURITY function
The DELETE_USER_SECURITY function of the XSAD gate is used to delete the
storage held to store the ACEE and ACEE pointer for the user represented by the
security token.

Input Parameters
SECURITY_TOKEN

is the token identifying the userid.
SIGNOFF_TYPE

is the type of signoff for the userid identified by the SECURITY_TOKEN value.

 Values for the parameter are:
 ATTACH_SIGN_OFF
 DEFERRED_SIGN_OFF
 LINK_SIGN_OFF
 NON_TERMINAL_SIGN_OFF

2008 CICS TS for z/OS 4.1: Diagnosis Reference

PRESET_SIGN_OFF
 TIMEOUT_SIGN_OFF
 UNFLATTEN_USER_SIGN_OFF
 USER_SIGN_OFF
 USRDELAY_SIGN_OFF
 XRF_SIGN_OFF

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ESM_INACTIVE
 ESM_TRANQUIL
 INVALID_SECURITY_TOKEN
 SECURITY_INACTIVE
 SECURITY_TOKEN_IN_USE
 UNKNOWN_ESM_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSAD gate, INQUIRE_USER_ATTRIBUTES function
The INQUIRE_USER_ATTRIBUTES function of the XSAD gate is used to inquire
about the attributes of the user represented by the security token.

Input Parameters
SECURITY_TOKEN

is the token identifying the userid.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ESTAE_FAILURE
 EXTRACT_FAILURE
 INVALID_ACEE
 INVALID_ESM_PARAMETER
 INVALID_SECURITY_TOKEN
 NOTAUTH
 PROFILE_UNKNOWN

Chapter 115. Security Domain (XS) 2009

SECURITY_INACTIVE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ACEE_PTR
Optional Parameter

 is a pointer to the access control environment element, the control block that is
generated by an external security manager (ESM) when the user signs on. If
the user is not signed on, the address of the CICS DFLTUSER's ACEEis
returned. If an ACEE does not exist, CICS sets the pointer reference to the null
value, X'FF000000'.

CURRENT_GROUPID
Optional Parameter

 is the identifier, 1 through 10 alphanumeric characters, of the current RACF
user group to which the userid (specified by the SECURITY_TOKEN value) is
assigned.

CURRENT_GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the GROUPID value.
ESM_RESPONSE

Optional Parameter

 is the optional 32-bit ESM response code to the call.
NATIONAL_LANGUAGE

Optional Parameter

 is a three-character code identifying the national language for the userid. It can
have any of the values in “National language codes (three-characters)” on page
2011.

OPCLASS
Optional Parameter

 is the operator class, in the range 1 through 24, for the userid.
OPIDENT

Optional Parameter

 is the operator identification code, 1 through 3 alphanumeric characters, for the
userid.

OPPRTY
Optional Parameter

 is the operator priority value, in the range 0 through 255 (where 255 is the
highest priority), for the userid.

SAF_RESPONSE
Optional Parameter

 is the optional 32-bit SAF response code to the call.
TIMEOUT

Optional Parameter

 is the number of minutes, in the range 0 through 60, that must elapse since the
user last used the terminal before CICS "times-out" the terminal.
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

2010 CICS TS for z/OS 4.1: Diagnosis Reference

USERID
Optional Parameter

 is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
the userid (specified by the SECURITY_TOKEN value) is assigned.

USERID_LENGTH
Optional Parameter

 is the length of the USERID value.
USERNAME

Optional Parameter

 is an optional buffer into which the attributes of the user are placed.
XRFSOFF

Optional Parameter

 indicates whether or not you want CICS to sign off the userid following an
XRF takeover.

Values for the parameter are:
 FORCE
 NOFORCE

National language codes (three-characters)

 Code Language Name Original Name

AFR Afrikaans Afrikaans
ARA Arabic Arabi
BEL Byelorussian Belaruskaja (mova)
BGR Bulgarian Bulgarski
CAT Catalan Catala
CHT Traditional Chinese Zhongwen
CHS Simplified Chinese
CSY Czech Cesky
DAN Danish Dansk
DEU German Deutsch
DES Swiss German Schweizer-Deutsch
ELL Greek Ellinika
ENA Australian English
ENG UK English English
ENU US English
ENP English Upper Case
ESP Spanish Espanol
FAR Farsi Persian
FIN Finnish Suomi
FRA French Francais
FRB Belgian French
FRC Canadian French
FRS Swiss French Suisse-francais
GAE Irish Gaelic (Irish) Gaeilge
HEB Hebrew Ivrith
HRV Croatian Hrvatski
HUN Hungarian Magyar
ISL Icelandic Islenska
ITA Italian Italiano
ITS Swiss Italian Italiano svizzero
JPN Japanese Nihongo

Chapter 115. Security Domain (XS) 2011

Code Language Name Original Name

KOR Korean Choson-o; Hanguk-o
MKD Macedonian Makedonski
NLD Dutch Nederlands
NLB Belgian Dutch
NOR Norwegian - Bokmal Norsk - Bokmal
NON Norwegian - Nynorsk Norsk - Nynorsk
PLK Polish Polski
PTG Portuguese Portugues
PTB Brazilian Portuguese
RMS Rhaeto-Romanic Romontsch
ROM Romanian Romana
RUS Russian Russkij
SHC Serbo-Croatian (Cyr) Srpsko-hrvatski
SHL Serbo-Croatian (Lat)
SKY Slovakian Slovensky
SLO Slovenian Slovenski
SRL Serbian (Latin) Srpski (Latin)
SRB Serbian Srpski
SQI Albanian Shqip
SVE Swedish Svenska
THA Thai Thai
TRK Turkish Turkce
UKR Ukrainian Ukrainska (mova)
URD Urdu Urdu

XSAD gate, VALIDATE_USERID function
The VALIDATE_USERID function of the XSAD gate is used to check whether the
specified userid is valid. It is used especially when the userid has to be validated
without the user being added to the system; usually because the userid was
specified in a deferred START command, and the user does not need to be added
to the system until the started task begins to execute.

Input Parameters
USERID

is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 GROUP_ACCESS_REVOKED
 SECURITY_INACTIVE
 USERID_NOT_DEFINED
 USERID_NOT_DETERMINED
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:

2012 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSAD gate, ADD_USER_VIA_ICRX function
The ADD_USER_VIA_ICRX function of the XSAD gate requests the External
Security Manager to add a user, using ICRX details.

Input Parameters
ICRX

Is the extended identity context reference (ICRX) of the user.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLICATION_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_TRANQUIL
 ESM_INACTIVE
 GETMAIN_FAILURE
 GROUP_ACCESS_REVOKED
 INVALID_GROUPID
 SECLABEL_FAILURE
 SECURITY_INACTIVE
 UNKNOWN_ESM_ERROR
 USERID_REVOKED
 USERID_NOT_DEFINED
 INVALID_USERID

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SECURITY_TOKEN
Is the token identifying the ICRX in the user domain.

ESM_RESPONSE
Optional parameter

 Is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional parameter

 Is the optional 32-bit SAF response code to the call.

XSAD gate, INQUIRE_ICRX function
The INQUIRE_ICRX function of the XSAD gate retrieves an ICRX from the
External Security Manager.

Chapter 115. Security Domain (XS) 2013

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

Input Parameters
SECURITY_TOKEN

Is the token identifying the ICRX in the user domain.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ESTAE_FAILURE
 EXTRACT_FAILURE
 INVALID_ACEE
 INVALID_ESM_PARAMETER
 INVALID_SECURITY_TOKEN
 NOTAUTH
 PROFILE_UNKNOWN
 SECURITY_INACTIVE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ICRX
Is the extended identity context reference (ICRX) of the user.

ESM_RESPONSE
Optional parameter

 Is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional parameter

 Is the optional 32-bit SAF response code to the call.

XSAD gate, RELEASE_ICRX function
The RELEASE_ICRX function of the XSAD gate requests that the External Security
Manager removes an ICRX that is no longer required.

Input Parameters
SECURITY_TOKEN

Is the token identifying the ICRX in the user domain.
ICRX

Is the extended identity context reference (ICRX) of the user.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ESM_INACTIVE
 ESM_TRANQUIL
 INVALID_SECURITY_TOKEN
 SECURITY_INACTIVE

2014 CICS TS for z/OS 4.1: Diagnosis Reference

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

SECURITY_TOKEN_IN_USE
 UNKNOWN_ESM_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional parameter

 Is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional parameter

 Is the optional 32-bit SAF response code to the call.

XSAD gate, RELEASE_ICRX_STORAGE function
The RELEASE_ICRX_STORAGE function of the XSAD gate requests that the
virtual storage associated with an ICRX is made available.

Input Parameters
SECURITY_TOKEN

Is the token identifying the ICRX in the user domain.
ICRX

Is the extended identity context reference (ICRX) or distributed identity of the
user.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following value is returned when RESPONSE is EXCEPTION:
 INVALID_SECURITY_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION
 INVALID_ICRX

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSCT gate, INQUIRE_CERTIFICATE function
The INQUIRE_CERTIFICATE function extracts data fields out of an X-509
certificate.

Input Parameters
CERTIFICATE

Optional Parameter

 On input, contains a full DER-encoded X-509 certificate. Alternatively,
CERTIFICATE_LABEL can be used to identify a certificate in the keyring. If
neither is specified, the default certificate in the key ring is used. On output,
contains the certificate from which the data is extracted.

Chapter 115. Security Domain (XS) 2015

|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

CERTIFICATE_LABEL
Optional Parameter

 Identifies a certificate in the keyring
COMMON_NAME

Optional Parameter

 A buffer in which the common name contained within the certificate is
returned.

DISTINGUISHED_NAME
Optional Parameter

 A buffer in which the BER-encoded distinguished name from the certificate is
returned.

EMAIL_ADDRESS
Optional Parameter

 A buffer in which the e-mail address contained within the certificate is
returned.

FOR
Optional Parameter

 Specifies from which of the distinguished names in the certificate the data is to
be extracted.

Values for the parameter are:
 ISSUER
 SUBJECT

LOCALITY
Optional Parameter

 A buffer in which the locality contained within the certificate is returned.
ORGANIZATION

Optional Parameter

 A buffer in which the organization contained within the certificate is returned.
ORGANIZATIONAL_UNIT

Optional Parameter

 A buffer in which the organizational unit contained within the certificate is
returned.

SERIAL_NUMBER
Optional Parameter

 A buffer in which the serial number of the certificate is returned.
STATE_OR_PROVINCE

Optional Parameter

 A buffer in which the organizational unit contained within the certificate is
returned.

TITLE
Optional Parameter

 A buffer in which the title contained within the certificate is returned.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP
 SEVERE_ERROR

2016 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 CERTIFICATE_INVALID
 CERTIFICATE_NOT_FOUND
 ESM_INACTIVE
 GETMAIN_FAILED
 KEYRING_NOT_FOUND
 NOTAUTH
 REVOCATION_LIST_INVALID

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 The external security manager's response to the call.
SAF_RESPONSE

Optional Parameter

 The system authorization facility's response to the call.
STATUS

Optional Parameter

 The status of the certificate.

Values for the parameter are:
 EXPIRED
 NOT_OWNER
 NOT_YET_CURRENT
 TRUSTED
 UNREGISTERED
 UNTRUSTED

USAGE
Optional Parameter

 The intended usage of the certificate, as recorded by the External Security
Manager.

Values for the parameter are:
 CERTAUTH
 PERSONAL
 SITE

USERID
Optional Parameter

 The user ID of the certificate's owner.
USERID_LENGTH

Optional Parameter

 The length of the user ID field.
VALID_FROM_ABSTIME

Optional Parameter

 The date and time from when the certificate is valid (in CICS ABSTIME
format).

VALID_UNTIL_ABSTIME
Optional Parameter

Chapter 115. Security Domain (XS) 2017

The date and time until when the certificate is valid (in CICS ABSTIME
format).

XSCT gate, INQUIRE_REVOCATION_LIST function
The INQUIRE_REVOCATION_LIST function extracts data fields out of a Certificate
Revocation List.

Input Parameters
REVOCATION_LIST

The certificate revocation list from which data is to be extracted.
DISTINGUISHED_NAME

Optional Parameter

 A buffer in which the distinguished name of the issuer of the revocation list is
returned.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP
 REVOCATION_LIST_INVALID

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CURRENT_ISSUE_ABSTIME
Optional Parameter

 The date and time that this revocation list was issued (in CICS ABSTIME
format).

NEXT_ISSUE_ABSTIME
Optional Parameter

 The date and time that the next revocation list is due to be issued (in CICS
ABSTIME format).

XSEJ gate, ADD_REPL_ROLE_FOR_METHOD function
Add a specified role for a specified method within the CORBASERVER to the in
storage look up table.

Input Parameters
BEAN_NAME

The name of the bean.
CORBASERVER

The name of the CORBASERVER.
METHOD_AND_SIGNATURE

The method and signature for which the role is to be added.
ROLE_NAME

The role name to be added.
APPLICATION_NAME

Optional Parameter

 An application name that qualifies the role name.
INTERFACE_TYPE

Optional Parameter

 The type of interface.

2018 CICS TS for z/OS 4.1: Diagnosis Reference

Values for the parameter are:
 HOME
 REMOTE

Output Parameters
REASON

The values for the parameter are:
 ABEND
 GETMAIN_FAILED
 INVALID_ROLE_NAME
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSEJ gate, CHECK_CALLER_IN_ROLE function
Checks whether the user associated with the current transaction is defined to be in
the named role.

Input Parameters
BEAN_NAME

The bean name for which the check is being made.
CODED_ROLE_NAME

The name of the coded role.
CORBASERVER

The CORBASERVER for which the check is being made.
APPLICATION_NAME

Optional Parameter

 An application name that qualifies the bean name.
LOGMESSAGE

Optional Parameter

 Specifes whether access failures are to be logged to the CSCS TD queue and
the MVS System Management Facility (SMF). The default is YES.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ESM_INACTIVE
 LOOP
 NOT_IN_ROLE
 NOTAUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 The external security manager's response to the call.
FAILING_USERID

Optional Parameter

Chapter 115. Security Domain (XS) 2019

The user ID for which the check failed.
FAILING_USERID_LENGTH

Optional Parameter

 The length of the user ID for which the check failed.
SAF_RESPONSE

Optional Parameter

 The system authorization facility's response to the call.

XSEJ gate, CHECK_EJB_METHOD function
Check whether the user associated with the current transaction is authorized to
invoke the specified method of the named bean.

Input Parameters
BEAN_NAME

The name of the bean for which the check is being made.
CORBASERVER

The name of the CORBASERVER for which the check is being made.
METHOD_AND_SIGNATURE

The method and signature name for which the check is being made.
APPLICATION_NAME

Optional Parameter

 An application name that qualifies the bean name.
INTERFACE_TYPE

Optional Parameter

 The type of interface.

Values for the parameter are:
 HOME
 REMOTE

LOGMESSAGE
Optional Parameter

 Specifes whether access failures are to be logged to the CSCS TD queue and
the MVS System Management Facility (SMF). The default is YES.

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 ABEND
 ESM_INACTIVE
 LOOP
 NOTAUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 The external security manager's response to the call.
FAILING_USERID

Optional Parameter

2020 CICS TS for z/OS 4.1: Diagnosis Reference

The user ID for which the check failed.
FAILING_USERID_LENGTH

Optional Parameter

 The length of the user ID for which the check failed.
SAF_RESPONSE

Optional Parameter

 The system authorization facility's response to the call.

XSEJ gate, DELETE_BEAN_SECURITY function
Delete all entries at the bean level from the in-storage lookup table. This includes
all method and coded_role entries belonging to the specified bean.

Input Parameters
BEAN_NAME

The name of the bean.
CORBASERVER

The name of the CORBASERVER.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSEJ gate, INQUIRE_DISTINGUISHED_NAME function
Obtains the sub-fields of the distinguished name from the certificate identified by
its label in the key ring.

Input Parameters
CERTIFICATE_LABEL

Optional Parameter

 The label that identifies the certificate.
COMMON_NAME

Optional Parameter

 A buffer in which the common came contained within the certificate is
returned.

EMAIL_ADDRESS
Optional Parameter

 A buffer in which the e-mail address contained within the certificate is
returned.

LOCALITY
Optional Parameter

 A buffer in which the locality contained within the certificate is returned.
ORGANIZATION

Optional Parameter

 A buffer in which the organization contained within the certificate is returned.
ORGANIZATIONAL_UNIT

Optional Parameter

Chapter 115. Security Domain (XS) 2021

A buffer in which the organizational unit contained within the certificate is
returned.

STATE_OR_PROVINCE
Optional Parameter

 A buffer in which the organizational unit contained within the certificate is
returned.

TITLE
Optional Parameter

 A buffer in which the title contained within the certificate is returned.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CERTIFICATE_INVALID
 CERTIFICATE_NOT_FOUND
 ESM_INACTIVE
 KEYRING_NOT_FOUND
 LOOP
 SEVERE_ERROR

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

COUNTRY
Optional Parameter

 The country name contained in the certificate.
ESM_RESPONSE

Optional Parameter

 The external security manager's response to the call.
SAF_RESPONSE

Optional Parameter

 The system authorization facility's response to the call.

XSEJ gate, INQUIRE_HASH_CODE function
This function returns a unique hash code to represent the Principal.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 LOOP

HASH_CODE
The desired hash code value.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSEJ gate, INQUIRE_PRINCIPAL function
This function obtains information for creating a Java Principal object and building
its distinguished name.

2022 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
CLIENT_CERTIFICATE

Optional Parameter

 On input, contains a full DER-encoded X-509 certificate. Alternatively,
CERTIFICATE_LABEL can be used to identify a certificate in the keyring. If
neither is specified, the default certificate in the key ring is used. On output,
contains the certificate from which the data is extracted.

CERTIFICATE_LABEL
Optional Parameter

 Identifies a certificate in the keyring
COMMON_NAME

Optional Parameter

 A buffer in which the common name contained within the certificate is
returned.

DISTINGUISHED_NAME
Optional Parameter

 A buffer in which the distinguished name in RFC2253 format is returned if the
DISTINGUISHED_NAME_URM para,mater is specified.

EMAIL_ADDRESS
Optional Parameter

 A buffer in which the e-mail address contained within the certificate is
returned.

LOCALITY
Optional Parameter

 A buffer in which the locality contained within the certificate is returned.
ORGANIZATION

Optional Parameter

 A buffer in which the organization contained within the certificate is returned.
ORGANIZATIONAL_UNIT

Optional Parameter

 A buffer in which the organizational unit contained within the certificate is
returned.

STATE_OR_PROVINCE
Optional Parameter

 A buffer in which the organizational unit contained within the certificate is
returned.

TITLE
Optional Parameter

 A buffer in which the title contained within the certificate is returned.
DISTINGUISHED_NAME_URM

Optional Parameter

 The name of a user-replaceable module that is called to create a distinguished
name string.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 CERTIFICATE_INVALID
 CERTIFICATE_NOT_FOUND

Chapter 115. Security Domain (XS) 2023

ESM_INACTIVE
 KEYRING_NOT_FOUND
 LOOP
 SEVERE_ERROR
 URM_FAILED

COUNTRY
The country name contained in the certificate.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USERID
Optional Parameter

 The user ID of the certificate's owner.
USERID_LENGTH

Optional Parameter

 The length of the user ID field.
USERNAME

The name of the user as defined in the external security manager.
ESM_RESPONSE

Optional Parameter

 The external security manager's response to the call.
SAF_RESPONSE

Optional Parameter

 The system authorization facility's response to the call.

XSEJ gate, SET_ROLE_FOR_CODED_ROLE function
Populates a lookup table indexed by CORBASERVER, adding a role for the
coded_role names for a bean installed in a CORBASERVER.

Input Parameters
BEAN_NAME

The name of the bean.
CODED_ROLE_NAME

The coded role name.
CORBASERVER

The name of the CORBASERVER.
ROLE_NAME

The role name.
APPLICATION_NAME

Optional Parameter

 An application name that qualifies the bean name.

Output Parameters
REASON

The values for the parameter are:
 ABEND
 INVALID_ROLE_NAME
 LOOP

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

2024 CICS TS for z/OS 4.1: Diagnosis Reference

XSFL gate, FLATTEN_USER_SECURITY function
The FLATTEN_USER_SECURITY function of the XSFL gate is used to flatten the
user's security state and place into the FLATTENED_SECURITY buffer provided.

Input Parameters
FLATTENED_SECURITY

is the buffer into which the flattened security state is placed.
SECURITY_TOKEN

is the token identifying the userid.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 INVALID_SECURITY_TOKEN
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE

The following values are returned when RESPONSE is INVALID:
 INVALID_FLATTENED_BUFFER
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSFL gate, UNFLATTEN_ESM_UTOKEN function
The UNFLATTEN_ESM_UTOKEN function of the XSFL gate returns userid and
groupid information associated with the external security manager's user token.

Input Parameters
ESM_UTOKEN_PTR

is a pointer to a security manager user pointer.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLID_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE

Chapter 115. Security Domain (XS) 2025

ESM_TRANQUIL
 GETMAIN_FAILED
 GROUP_ACCESS_REVOKED
 SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USERID_NOT_DEFINED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FLATTENED_BUFFER
 INVALID_FORMAT
 INVALID_FUNCTION

CURRENT_GROUPID
is the identifier, 1 through 10 alphanumeric characters, of the current RACF
user group to which the userid (specified by the SECURITY_TOKEN value) is
assigned.

CURRENT_GROUPID_LENGTH
is the 8-bit length of the GROUPID value.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
the userid (specified by the SECURITY_TOKEN value) is assigned.

USERID_LENGTH
is the length of the USERID value.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSFL gate, UNFLATTEN_USER_SECURITY function
The UNFLATTEN_USER_SECURITY function of the XSFL gate is used to unflatten
the user security state data in the FLATTENED_SECURITY buffer, and add the
userid to the security domain.

Input Parameters
FLATTENED_SECURITY

is the buffer into which the flattened security state is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLID_NOTAUTH
 ENTRY_PORT_NOTAUTH
 ESM_INACTIVE

2026 CICS TS for z/OS 4.1: Diagnosis Reference

ESM_TRANQUIL
 GETMAIN_FAILED
 GROUP_ACCESS_REVOKED
 SECLABEL_CHECK_FAILED
 SECURITY_INACTIVE
 UNKNOWN_ESM_RESPONSE
 USERID_NOT_DEFINED
 USERID_NOT_IN_GROUP
 USERID_REVOKED

The following values are returned when RESPONSE is INVALID:
 INVALID_FLATTENED_BUFFER
 INVALID_FORMAT
 INVALID_FUNCTION

ACEE_PTR
is a pointer to the access control environment element, the control block that is
generated by an external security manager (ESM) when the user signs on. If
the user is not signed on, the address of the CICS DFLTUSER's ACEEis
returned. If an ACEE does not exist, CICS sets the pointer reference to the null
value, X'FF000000'.

CURRENT_GROUPID
is the identifier, 1 through 10 alphanumeric characters, of the current RACF
user group to which the userid (specified by the SECURITY_TOKEN value) is
assigned.

CURRENT_GROUPID_LENGTH
is the 8-bit length of the GROUPID value.

ENTRY_PORT_NAME
is the name of an entry port, 1 through 8 alphanumeric characters, for the
userid.

ENTRY_PORT_TYPE
is the type of the entry port for the userid.

 Values for the parameter are:
 CONSOLE
 NULL
 TERMINAL

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SECURITY_TOKEN
is the token identifying the userid.

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
the userid (specified by the SECURITY_TOKEN value) is assigned.

USERID_LENGTH
is the length of the USERID value.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

Chapter 115. Security Domain (XS) 2027

XSIS gate, INQ_SECURITY_DOMAIN_PARMS function
The INQ_SECURITY_DOMAIN_PARMS function of the XSIS gate is used to return
the current values of parameters from the security state data.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

APPLID
Optional Parameter

 is the generic applid of the CICS region
CMDSEC

Optional Parameter

 indicates whether or the CICS region should obey the CMDSEC option
specified on a transaction's resource definition.

Values for the parameter are:
 ALWAYS
 ASIS

EJBROLE_PREFIX
Optional Parameter

 is the prefix that is used to qualify the security role defined in an enterprise
bean's deployment descriptor.

ESMEXITS
Optional Parameter

 indicates whether or not installation data is to be passed via the RACROUTE
interface to the ESM for use in user exits written for the ESM.

Values for the parameter are:
 NO
 YES

KEYRING
Optional Parameter

 is the fully qualified name of the key ring that contains the keys and X.509
certificates used to support the secure sockets layer (SSL).

PREFIX
Optional Parameter

 returns the value of the prefix that is being applied to all resource names in
authorization requests sent to the external security manager. It can contain 0
through 8 alphanumeric characters.

PSBCHK
Optional Parameter

 indicates whether or not DL/I security checking is to be performed for a
remote terminal initiating a transaction with transaction routing.

Values for the parameter are:

2028 CICS TS for z/OS 4.1: Diagnosis Reference

NO
 YES

RESSEC
Optional Parameter

 indicates whether the CICS region should obey the RESSEC option specified on
a transaction's resource definition.

Values for the parameter are:
 ALWAYS
 ASIS

SECURITY
Optional Parameter

 indicates whether or not security is active for this CICS region.

Values for the parameter are:
 NO
 YES

XAPPC
Optional Parameter

 indicates whether or not session security checking is used when establishing
APPC sessions.

Values for the parameter are:
 NO
 YES

XCMD
Optional Parameter

 indicates whether or not EXEC CICS commands are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for EXEC CICS commands.

XDB2
Optional Parameter

 indicates whether or not CICS performs DB2ENTRY security checking.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for DB2 entries.

XDCT
Optional Parameter

 indicates whether or not destination control entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for destination control entries.

XEJB
Optional Parameter

 indicates whether CICS support for enterprise bean security roles is enabled.

Values for the parameter are:
 NO
 YES

Chapter 115. Security Domain (XS) 2029

XFCT
Optional Parameter

 indicates whether or not file control entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for file control entries.

XJCT
Optional Parameter

 indicates whether or not journal entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for journal entries.

XPCT
Optional Parameter

 indicates whether or not EXEC-started transactions entries are checked by the
ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for EXEC-started transaction

entries.
XPPT

Optional Parameter

 indicates whether or not program entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for program entries.

XPSB
Optional Parameter

 indicates whether or not PSB entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for PSB entries.

XTRAN
Optional Parameter

 indicates whether or not attached transaction entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for attached transaction entries.

XTST
Optional Parameter

 indicates whether or not temporary storage entries are checked by the ESM.

Values for the parameter are:
 NO

2030 CICS TS for z/OS 4.1: Diagnosis Reference

YES
 name where name is the resource class name for temporary storage entries.

XUSER
Optional Parameter

 indicates whether or not user entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for user entries.

XSIS gate, INQUIRE_REALM_NAME function
Obtains the realm names under which the CICS system is executing; a realm is an
environment in which a userid and password pairing is valid.

Input Parameters
REALM_TYPE

Indicates that the request is for the Basic realm name.

 Values for the parameter are:
 BASIC
 KERBEROS

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

REALM_NAME
Returns the name of the realsm under which CICS is executing.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSIS gate, INQUIRE_REGION_USERID function
The INQUIRE_REGION_USERID function of the XSIS gate is used to return the
userid and groupid associated with the jobstep that is currently executing this
CICS region.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

REGION_USERID
is the user identifier of the CICS jobstep (a userid of 1 through 8 alphanumeric
characters).

Chapter 115. Security Domain (XS) 2031

REGION_USERID_LENGTH
is the length of the REGION_USERID value.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

REGION_GROUPID
Optional Parameter

 is the identifier, 1 through 8 alphanumeric characters, of the current RACF user
group to which the region userid is assigned.

REGION_GROUPID_LENGTH
Optional Parameter

 is the 8-bit length of the REGION_GROUPID value.

XSIS gate, SET_NETWORK_IDENTIFIER function
When CICS issues an OPEN ACB for VTAM, the CICS SVC is invoked to store the
name (netid) of the local network combined with the local luname, and to
RACLIST the profiles in the External Security Manager (ESM) APPCLU Class. If
you have specified either of the SEC=NO or XAPPC=NO system initialization
parameters, no action is performed, and the return code is set to OK.

Input Parameters
CONDITIONAL

indicates whether or not CICS can tolerate errors in XSIS calls due to the
APPCLU profiles not being in storage (LU6.2 connections cannot be validated).

 Values for the parameter are:
 NO
 YES

LOCAL_LUNAME
is the VTAM LU name of the local CICS region.

LOCAL_LUNAME_LENGTH
is the length of the VTAM LU name specified by LOCAL_LUNAME.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 LOOP

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSIS gate, SET_SECURITY_DOMAIN_PARMS function
At CICS startup, loads information for the security domain from the system
initialization table (SIT) into the security state data.

Input Parameters
APPLID

is the application identifier for the CICS region.

2032 CICS TS for z/OS 4.1: Diagnosis Reference

ESMEXITS
indicates whether or not installation data is to be passed via the RACROUTE
interface to the ESM for use in user exits written for the ESM.

 Values for the parameter are:
 NO
 YES

PSBCHK
indicates whether or not DL/I security checking is to be performed for a
remote terminal initiating a transaction with transaction routing.

 Values for the parameter are:
 NO
 YES

SECURITY
indicates whether or not security is active for this CICS region.

 Values for the parameter are:
 NO
 YES

XAPPC
indicates whether or not session security checking is used when establishing
APPC sessions.

 Values for the parameter are:
 NO
 YES

CMDSEC
Optional Parameter

 indicates whether or the CICS region should obey the CMDSEC option
specified on a transaction's resource definition.

Values for the parameter are:
 ALWAYS
 ASIS

EJBROLE_PREFIX
Optional Parameter

 is the prefix that is used to qualify the security role defined in an enterprise
bean's deployment descriptor.

KEYRING
Optional Parameter

 is the fully qualified name of the key ring that contains the keys and X.509
certificates used to support the secure sockets layer (SSL).

PREFIX
Optional Parameter

 specifies the prefix to be applied to resource name in any authorization
requests send to the external security manager. It can be 1 through 8
alphanumeric characters, or the single character '*', which indicates that the
CICS region userid is to be used as the prefix.

RESSEC
Optional Parameter

 indicates whether the CICS region should obey the RESSEC option specified on
a transaction's resource definition.

Values for the parameter are:
 ALWAYS

Chapter 115. Security Domain (XS) 2033

ASIS
XCMD

Optional Parameter

 indicates whether or not EXEC CICS commands are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for EXEC CICS commands.

XDB2
Optional Parameter

 indicates whether or not CICS performs DB2ENTRY security checking.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for DB2 entries.

XDCT
Optional Parameter

 indicates whether or not destination control entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for destination control entries.

XEJB
Optional Parameter

 indicates whether CICS support for enterprise bean security roles is enabled.

Values for the parameter are:
 NO
 YES

XFCT
Optional Parameter

 indicates whether or not file control entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for file control entries.

XJCT
Optional Parameter

 indicates whether or not journal entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for journal entries.

XPCT
Optional Parameter

 indicates whether or not EXEC-started transactions entries are checked by the
ESM.

Values for the parameter are:
 NO
 YES

2034 CICS TS for z/OS 4.1: Diagnosis Reference

name where name is the resource class name for EXEC-started transaction
entries.

XPPT
Optional Parameter

 indicates whether or not program entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for program entries.

XPSB
Optional Parameter

 indicates whether or not PSB entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for PSB entries.

XTRAN
Optional Parameter

 indicates whether or not attached transaction entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for attached transaction entries.

XTST
Optional Parameter

 indicates whether or not temporary storage entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for temporary storage entries.

XUSER
Optional Parameter

 indicates whether or not user entries are checked by the ESM.

Values for the parameter are:
 NO
 YES
 name where name is the resource class name for user entries.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 CWA_WAIT_PHASE_FAILURE
 INQUIRE_CWA_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 GETMAIN_FAILED
 KEYRING_NOT_FOUND
 KEYRING_NOTAUTH

The following values are returned when RESPONSE is INVALID:

Chapter 115. Security Domain (XS) 2035

INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSIS gate, SET_SPECIAL_TOKENS function
The SET_SPECIAL_TOKENS function of the XSIS gate sets the security tokens for
the default user ID and the region user ID.

Input Parameters
DEFAULT_SECURITY_TOKEN

The security token for the default user ID.
REGION_SECURITY_TOKEN

The security token for the region user ID.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSLU gate, GENERATE_APPC_BIND function
The GENERATE_APPC_BIND function of the XSLU gate generates a random
number which is sent to the partner LU for partner verification.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
 BINDSECURITY_INACTIVE
 SECURITY_INACTIVE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RANDOM_STRING
A random eight-character string.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSLU gate, GENERATE_APPC_RESPONSE function
The GENERATE_APPC_RESPONSE function of the XSLU gate encrypts the string
received from the LU partner, and generates a new random string for the partner
to validate.

2036 CICS TS for z/OS 4.1: Diagnosis Reference

Input Parameters
LOCAL_LUNAME

is the VTAM LU name of the local CICS region.
REMOTE_LUNAME

is the VTAM LU name of the remote CICS region (that sent the bind).
TEST_STRING

is a random eight-character string receive with a bind request
(RANDOM_STRING of the GENERATE_APPC_BIND function).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 ESTAE_FAILURE
 EXTRACT_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BINDSECURITY_INACTIVE
 NOTAUTH
 PROFILE_EXPIRED
 PROFILE_LOCKED
 PROFILE_UNKNOWN
 SECURITY_INACTIVE
 SECURITY_INACTIVE
 SESSION_KEY_NULL
 UNKNOWN_ESM_RESPONSE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ENCRYPTED_TEST_STRING
is an eight-character string formed by encrypting the test string using shared
DES (Data Encryption Standard/System) encryption keys.

RANDOM_STRING
A random eight-character string.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSLU gate, VALIDATE_APPC_RESPONSE function
The VALIDATE_APPC_RESPONSE function of the XSLU gate encrypts the string
that was previously sent to the partner, and compares it with the encrypted string
received from the partner.

Chapter 115. Security Domain (XS) 2037

Input Parameters
ENCRYPTED_TEST_STRING

is an eight-character string formed by encrypting the test string using shared
DES (Data Encryption Standard/System) encryption keys.

LOCAL_LUNAME
is the VTAM LU name of the local CICS region.

REMOTE_LUNAME
is the VTAM LU name of the remote CICS region (that sent the bind).

TEST_STRING
is a random eight-character string receive with a bind request
(RANDOM_STRING of the GENERATE_APPC_BIND function).

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 ESTAE_FAILURE
 EXTRACT_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 BINDSECURITY_INACTIVE
 NOTAUTH
 PROFILE_EXPIRED
 PROFILE_LOCKED
 PROFILE_UNKNOWN
 SECURITY_INACTIVE
 SESSION_KEY_NULL
 UNKNOWN_ESM_RESPONSE
 VALIDATION_ERROR

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSPW gate, CREATE_PASSTICKET function
The CREATE_PASSTICKET function of the XSPW gate is used to create a RACF
PassTicket (an alternative to a password). When created, the RACF PassTicket can
be presented for userid verification once only.

Input Parameters
APPLID

is the application identifier for the CICS region.
TRANSACTION_NUMBER

Optional Parameter

2038 CICS TS for z/OS 4.1: Diagnosis Reference

is an optional number that identifies a transaction from which the caller's
security token is located. If not specified, the caller's security token is located
from the principal security token associated with the current CICS task.

Output Parameters
ESM_REASON

is the optional 32-bit ESM reason returned with ESM_RESPONSE.
ESM_RESPONSE

is the optional 32-bit ESM response code to the call.
PASSTICKET

is the 10-character passticket to be used for the CICS region specified by the
APPLID value.

PASSTICKET_LENGTH
is the 8-bit length of the PASSTICKET value.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSPW gate, INQUIRE_CERTIFICATE_USERID function
The INQUIRE_CERTIFICATE_USERID function of the XSPW gate obtains the
userid associated with an X.509 certificate that has been installed into the External
Security Manager.

Input Parameters
CERTIFICATE

an X.509 certificate

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 ESTAE_FAILURE
 EXTRACT_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ESM_INACTIVE
 FREEMAIN_FAILED
 GETMAIN_FAILED
 INVALID_CERTIFICATE
 LENGTH_ERROR
 NOTAUTH
 SECURITY_INACTIVE
 UNKNOWN_CERTIFICATE
 UNKNOWN_ESM_ERROR
 UNTRUSTED_CERTIFICATE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ESM_REASON
is the optional 32-bit ESM reason returned with ESM_RESPONSE.

ESM_RESPONSE
is the optional 32-bit ESM response code to the call.

Chapter 115. Security Domain (XS) 2039

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters).
the userid (specified by the SECURITY_TOKEN value) is assigned.

USERID_LENGTH
is the length of the USERID value.

XSPW gate, INQUIRE_PASSWORD_DATA function
The INQUIRE_PASSWORD_DATA function of the XSPW gate provides information
from the ESM.

Input Parameters
PASSWORD

is the current password, 1 through 10 alphanumeric characters, for the userid
specified by the USERID value.

PASSWORD_LENGTH
is the 8-bit length of the PASSWORD value. This parameter is only valid if
PASSWORD is also specified.

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

PASSWORD_TYPE
Optional Parameter

 specifies if the password is masked.

Values for the parameter are:
 CLEAR
 MASKED

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 ESTAE_FAILURE
 EXTRACT_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 APPLID_NOTAUTH
 ESM_INACTIVE
 GROUP_CONNECTION_REVOKED
 NOTAUTH
 PASSWORD_EXPIRED
 PASSWORD_NOTAUTH
 SECURITY_INACTIVE
 UNKNOWN_ESM_ERROR
 USERID_FORMAT_ERROR
 USERID_REVOKED
 USERID_UNDEFINED

The following values are returned when RESPONSE is INVALID:

2040 CICS TS for z/OS 4.1: Diagnosis Reference

INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

CHANGE_ABSTIME
Optional Parameter

 is the date and time of when the password was last changed.
DAYS_LEFT

Optional Parameter

 is the number of days left before the password must be changed.
ESM_RESPONSE

Optional Parameter

 is the optional 32-bit ESM response code to the call.
EXPIRY_ABSTIME

Optional Parameter

 is the date and time of when the password will expire.
LASTUSE_ABSTIME

Optional Parameter

 is the date and time of when the password was last used.
PASSWORD_FAILURES

Optional Parameter

 is the number of times that the user has unsuccessfully entered tried to enter
the password.

SAF_RESPONSE
Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSPW gate, REGISTER_CERTIFICATE_USER function
The REGISTER_CERTIFICATE_USER function of the XSPW gate associates a user
with an X.509 certificate that has been installed into the External Security Manager.

Input Parameters
CERTIFICATE

an X.509 certificate
PASSWORD

is the current password, 1 through 10 alphanumeric characters, for the userid
specified by the USERID value.

PASSWORD_LENGTH
is the 8-bit length of the PASSWORD value. This parameter is only valid if
PASSWORD is also specified.

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED

Chapter 115. Security Domain (XS) 2041

ESTAE_FAILURE
 EXTRACT_FAILURE
 LOOP

The following values are returned when RESPONSE is EXCEPTION:
 ESM_INACTIVE
 FREEMAIN_FAILED
 GETMAIN_FAILED
 INVALID_CERTIFICATE
 NOTAUTH
 SECURITY_INACTIVE
 UNKNOWN_CERTIFICATE
 UNKNOWN_ESM_ERROR
 UNTRUSTED_CERTIFICATE

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ESM_REASON
is the optional 32-bit ESM reason returned with ESM_RESPONSE.

ESM_RESPONSE
is the optional 32-bit ESM response code to the call.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSPW gate, UPDATE_PASSWORD function
The UPDATE_PASSWORD function of the XSPW gate assigns a new password to
the userid, if the current password is input correctly and the new password meets
ESM and installation defined password quality rules.

Input Parameters
NEW_PASSWORD

is the new password, 1 through 10 alphanumeric characters, for the userid
specified by the USERID value.

NEW_PASSWORD_LENGTH
is the 8-bit length of the NEW_PASSWORD value.

PASSWORD
is the current password, 1 through 10 alphanumeric characters, for the userid
specified by the USERID value.

PASSWORD_LENGTH
is the 8-bit length of the PASSWORD value.

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
requesting the ESM information.

USERID_LENGTH
is the length of the USERID value.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 ABEND
 ESM_ABENDED
 ESTAE_FAILURE
 EXTRACT_FAILURE
 LOOP

2042 CICS TS for z/OS 4.1: Diagnosis Reference

The following values are returned when RESPONSE is EXCEPTION:
 ESM_INACTIVE
 GROUP_CONNECTION_REVOKED
 INVALID_NEW_PASSWORD
 PASSWORD_NOTAUTH
 SECLABEL_FAILURE
 SECURITY_INACTIVE
 UNKNOWN_ESM_ERROR
 USERID_REVOKED
 USERID_UNDEFINED

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

ESM_REASON
is the external security manager's reason code.

ESM_RESPONSE
is the external security manager's response code.

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

SAF_REASON
The system authorization facility's reason code.

SAF_RESPONSE
The system authorization facility's response to the call.

XSRC gate, CHECK_CICS_COMMAND function
The CHECK_CICS_COMMAND function of the XSRC gate performs CICS
command access checks.

Input Parameters
ACCESS

is the type of access to be made on the resource.

 Values for the parameter are:
 COLLECT
 CREATE
 DEFINE
 DELETE
 DISCARD
 INQUIRE
 INSTALL
 PERFORM
 SET

RESOURCE_TYPE
is the type of the resource.

 Values for the parameter are:
 AUTINSTMODEL
 AUTOINSTALL
 BEAN
 BRFACILITY
 CFDTPOOL
 CLASSCACHE
 CONNECTION
 CORBASERVER
 DB2CONN

Chapter 115. Security Domain (XS) 2043

DB2ENTRY
 DB2TRAN
 DELETSHIPPED
 DISPATCHER
 DJAR
 DOCTEMPLATE
 DSNAME
 DUMP
 DUMPDS
 ENQMODEL
 EXCI
 EXITPROGRAM
 FEPIRESOURCE
 FILE
 HOST
 IRBATCH
 IRC
 JOURNALMODEL
 JOURNALNAME
 JVM
 JVMPOOL
 JVMPROFILE
 LINE
 LSRPOOL
 MAPSET
 MODENAME
 MONITOR
 MVSTCB
 NONVTAM
 PARTITIONSET
 PARTNER
 PIPELINE
 PROCESSTYPE
 PROFILE
 PROGRAM
 PSB
 REQID
 REQUESTMODEL
 RESETTIME
 RRMS
 SECURITY
 SESSIONS
 SHUTDOWN
 STATISTICS
 STORAGE
 STREAMNAME
 SUBPOOL
 SYSDUMPCODE
 SYSTEM
 TASK
 TCLASS
 TCPIP
 TCPIPSERVICE
 TDQUEUE
 TERMINAL
 TIME

2044 CICS TS for z/OS 4.1: Diagnosis Reference

TRACE
 TRACEDEST
 TRACEFLAG
 TRACETYPE
 TRANCLASS
 TRANDUMPCODE
 TRANSACTION
 TRANSATTACH
 TSMODEL
 TSPOOL
 TSQUEUE
 TYPETERM
 UOW
 UOWDSNFAIL
 UOWENQ
 UOWLINK
 URIMAP
 VOLUME
 VTAM
 WEB
 WEBSERVICE
 WORKREQUEST

FORCE
Optional Parameter

 indicates (optionally) whether or not security checking is forced regardless of
the setting of RESSEC in the Security Domain's transaction token.

Values for the parameter are:
 NO
 YES

LOGMESSAGE
Optional Parameter

 indicates whether access failures are logged to the CSCS transient data queue
and the MVS System Management Facility (SMF).

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 NOTAUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
FAILING_USERID

Optional Parameter

 is the userid that failed to access the resource.
FAILING_USERID_LENGTH

Optional Parameter

Chapter 115. Security Domain (XS) 2045

is the length of the userid (specified by the FAILING_USERID value).
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSRC gate, CHECK_CICS_RESOURCE function
The CHECK_CICS_RESOURCE function of the XSRC gate performs CICS resource
access checks.

Input Parameters
ACCESS

is the type of access to be made on the resource.

 Values for the parameter are:
 COLLECT
 CREATE
 DEFINE
 DELETE
 DISCARD
 EXECUTE
 INQUIRE
 INSTALL
 PERFORM
 READ
 SET
 UPDATE

RESOURCE
is the name of the resource, padded with blanks to eight-characters.

RESOURCE_TYPE
is the type of the resource.

 Values for the parameter are:
 DB2ENTRY
 FILE
 JOURNALNAME
 PROGRAM
 PSB
 TDQUEUE
 TRANSACTION
 TRANSATTACH
 TSQUEUE

FORCE
Optional Parameter

 indicates (optionally) whether or not security checking is forced regardless of
the setting of RESSEC in the Security Domain's transaction token.

Values for the parameter are:
 NO
 YES

LOGMESSAGE
Optional Parameter

 indicates whether access failures are logged to the CSCS transient data queue
and the MVS System Management Facility (SMF).

Values for the parameter are:
 NO

2046 CICS TS for z/OS 4.1: Diagnosis Reference

YES

Output Parameters
REASON

The values for the parameter are:
 NOTAUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
FAILING_USERID

Optional Parameter

 is the userid that failed to access the resource.
FAILING_USERID_LENGTH

Optional Parameter

 is the length of the userid (specified by the FAILING_USERID value).
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSRC gate, CHECK_NON_CICS_RESOURCE function
The CHECK_NON_CICS_RESOURCE function of the XSRC gate performs
non-CICS resource access checks.

Input Parameters
ACCESS

is the type of access to be made on the resource.

 Values for the parameter are:
 ALTER
 CONTROL
 READ
 UPDATE

CLASSNAME
is the ESM class name in which the resource is defined.

RESOURCE_NAME
is the address and length of the resource name, in the form
RESOURCE_NAME(addr,length).

LOGMESSAGE
Optional Parameter

 indicates whether access failures are logged to the CSCS transient data queue
and the MVS System Management Facility (SMF).

Values for the parameter are:
 NO
 YES

Output Parameters
REASON

The values for the parameter are:
 CLASS_NOT_FOUND
 ESM_INACTIVE

Chapter 115. Security Domain (XS) 2047

ESM_NOT_PRESENT
 INVALID_RESOURCE_NAME
 NOTAUTH
 RESOURCE_NOT_FOUND

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
FAILING_USERID

Optional Parameter

 is the userid that failed to access the resource.
FAILING_USERID_LENGTH

Optional Parameter

 is the length of the userid (specified by the FAILING_USERID value).
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSRC gate, CHECK_SURROGATE_USER function
The CHECK_SURROGATE_USER function of the XSRC gate performs surrogate
user checking.

Input Parameters
ACCESS

is the type of access to be made on the resource.

 Values for the parameter are:
 CHANGE
 INSTALL
 START

USERID
is the identifier of the user (a userid of 1 through 10 alphanumeric characters)
to be added to the security domain.

USERID_LENGTH
is the length of the USERID value.

Output Parameters
REASON

The values for the parameter are:
 NOTAUTH

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
FAILING_USERID

Optional Parameter

 is the userid that failed to access the resource.
FAILING_USERID_LENGTH

Optional Parameter

2048 CICS TS for z/OS 4.1: Diagnosis Reference

is the length of the userid (specified by the FAILING_USERID value).
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSRC gate, REBUILD_RESOURCE_CLASSES function
The REBUILD_RESOURCE_CLASSES function of the XSRC gate rebuilds the
resource-class profiles.

Output Parameters
REASON

The values for the parameter are:
 ESM_INACTIVE
 REBUILD_ALREADY_ACTIVE
 REBUILD_ERROR
 REBUILD_NOT_NEEDED
 SECURITY_INACTIVE

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

ESM_RESPONSE
Optional Parameter

 is the optional 32-bit ESM response code to the call.
SAF_RESPONSE

Optional Parameter

 is the optional 32-bit SAF response code to the call.

XSXM gate, ADD_TRANSACTION_SECURITY function
The ADD_TRANSACTION_SECURITY function of the XSXM gate sets the
transaction options input to be stored as extended security tokens maintained by
the transaction manager.

Input Parameters
EDF_SECURITY_TOKEN

Optional Parameter

 is the optional EDF security token.
PRINCIPAL_SECURITY_TOKEN

Optional Parameter

 is the optional principal security token.
SESSION_SECURITY_TOKEN

Optional Parameter

 is the optional session security token.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
 GETMAIN_FAILED

The following values are returned when RESPONSE is EXCEPTION:
 NO_SECURITY_TOKEN

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT

Chapter 115. Security Domain (XS) 2049

INVALID_FUNCTION
RESPONSE

Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSXM gate, DEL_TRANSACTION_SECURITY function
The DEL_TRANSACTION_SECURITY function of the XSXM gate deletes the
security token of the specified token type for the transaction.

Input Parameters
TOKEN_TYPE

is the type of security token for the transaction.

 Values for the parameter are:
 EDF
 PRINCIPAL
 SESSION

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

XSXM gate, END_TRANSACTION function
The END_TRANSACTION function of the XSXM gate deletes transaction-related
data.

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
 INVALID_FORMAT
 INVALID_FUNCTION

RESPONSE
Indicates whether the domain call was successful. For more information, see
“The RESPONSE parameter on domain interfaces” on page 9.

Security manager domain's generic gates

Table 90 summarizes the domain's generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by
the gates, and the generic formats for calls to the gates.

 Table 90. Security manager domain's generic gates

Gate Trace Functions Format

XSDM XS 0101
XS 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

2050 CICS TS for z/OS 4.1: Diagnosis Reference

In initialization processing, the security manager domain performs internal
routines, and sets the initial security options, as for “XSIS gate,
SET_SECURITY_DOMAIN_PARMS function” on page 2032.

For all starts the information comes from the system initialization parameters.

Security manager domain also issues console messages during initialization to
report whether or not security is active.

In quiesce and termination processing, the security manager domain performs
internal routines only.
 For descriptions of these functions and their input and output parameters, refer

to descriptions of the following generic formats:
 “Domain Manager domain's generic formats” on page 956

Modules
 Module Function

DFHXSAD Handles the following requests:
 ADD_USER_WITH_PASSWORD
 ADD_USER_WITHOUT_PASSWORD
 DELETE_USER_SECURITY
 INQUIRE_USER_ATTRIBUTES
 VALIDATE_USERID
 ADD_USER_VIA_ICRX
 INQUIRE_ICRX
 RELEASE_ICRX
 RELEASE_ICRX_STORAGE

DFHXSDM Handles the following requests:
 INITIALIZE_DOMAIN
 QUIESCE_DOMAIN
 TERMINATE_DOMAIN

DFHXSDUF XS domain offline dump formatting routine

DFHXSFL Handles the following requests:
 FLATTEN_USER_SECURITY
 UNFLATTEN_USER_SECURITY
 UNFLATTEN_ESM_UTOKEN

DFHXSIS Handles the following requests:
 INQUIRE_SECURITY_DOMAIN_PARMS
 INQUIRE_REGION_USERID
 SET_SECURITY_DOMAIN_PARMS
 SET_NETWORK_IDENTIFIER
 SET_SPECIAL_TOKENS
 INQUIRE_REALM_NAME

DFHXSLU Handles the following requests:
 GENERATE_APPC_BIND
 GENERATE_APPC_RESPONSE
 VALIDATE_APPC_RESPONSE

DFHXSPW Handles the following requests:
 INQUIRE_PASSWORD_DATA
 UPDATE_PASSWORD
 CREATE_PASSTICKET
 INQUIRE_CERTIFICATE_USERID
 REGISTER_CERTIFICATE_USER

Chapter 115. Security Domain (XS) 2051

|
|
|
|
|
|
|
|
|

Module Function

DFHXSRC Handles the following requests:
 CHECK_CICS_RESOURCE
 CHECK_CICS_COMMAND
 CHECK_NON_CICS_RESOURCE
 CHECK_SURROGATE_USER
 REBUILD_RESOURCE_CLASSES

DFHXSSA Manages the routing of all security domain supervisor requests, and
handles those requests that are concerned with adding and deleting
users.

DFHXSSB Handles all the supervisor state interfaces with the ESM that are
concerned with extracting data from the ESM database.

DFHXSSC Handles all the supervisor state interfaces with the ESM that are
concerned with resource checking, including the building and deleting
of in-storage profiles for the use of the resource check functions.

DFHXSSD Handles supervisor state interfaces with RACF that are concerned with
PassTicket generation.

DFHXSSI Handles the following requests:
 DEACTIVATE_SECURITY
 INITIALIZE_SECURITY_SVC
 TERMINATE_SECURITY_SVC

DFHXSTRI Interprets XS domain trace entries.

2052 CICS TS for z/OS 4.1: Diagnosis Reference

Part 4. CICS modules

This part contains:

© Copyright IBM Corp. 1997, 2011 2053

2054 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 116. CICS directory

This section lists, in alphanumeric order by element name, the contents of the
distribution tapes listed in Table 91 on page 2056.

The list shows, for each element:
v The name of the element
v The type of element
v A description of the element
v The names of the source and object distribution libraries containing the element.

Classification of elements

Name
This is the name of the element in the distribution library.

Type
The types of elements are:
CSECT.

A control section or, in the case of a source element only, the first part of a
control section (other source elements may be copied by the CSECT).
Where an object module is OCO, this is indicated following the type
CSECT; no source code is provided for modules thus classified.

DSECT.
A dummy section (or appropriate high-level language equivalent) defining
a CICS data area.

Macro.
A macro definition.

Source.
Source code that is not a CSECT.

Sample.
Sample tables, programs, map sets, partition sets, or data files.

Symbolic.
A definition (with no DSECT statement) of a CICS data area, or a group of
EQU statements that symbolically define values used throughout a
program.

Other. Job control language statements or cataloged procedures. See The CICS
Transaction Server for z/OS Installation Guide and the CICS System Definition
Guide for the handling of these elements.

Library
Two columns are given under the heading Library. These correspond to source
code and object code distribution respectively. The distribution tapes are in SMP/E
RELFILE format, and a RELFILE number indicates the position of each data set on
a particular tape.

Some elements have several COBOL, PL/I, C, and assembler-language versions
with the same name; these elements are shown here as cataloged in more than one
source distribution library.

© Copyright IBM Corp. 1997, 2011 2055

The meanings of the letters in the library columns is given in Table 91.

 Table 91. CICS Transaction Server for z/OS, Version 4 Release 1 distribution tapes

Letter Tape
volser

File name Library

02 CI6100 HCI6100.F2 CICSTS41.CICS.ADFHINST
03 CI6100 HCI6100.F3 CICSTS41.CICS.ADFHMOD *
04 CI6100 HCI6100.F4 CICSTS41.CICS.ADFHAPD1
05 CI6100 HCI6100.F5 CICSTS41.CICS.ADFHAPD2
06 CI6100 HCI6100.F6 CICSTS41.CICS.ADFHCLIB
07 CI6100 HCI6100.F7 CICSTS41.CICS.ADFHCOB
08 CI6100 HCI6100.F8 CICSTS41.CICS.ADFHAC370
09 CI6100 HCI6100.F9 CICSTS41.CICS.ADFHENV
10 CI6100 HCI6100.F10 CICSTS41.CICS.ADFHLANG
11 CI6100 HCI6100.F11 CICSTS41.CICS.ADFHMAC
12 CI6100 HCI6100.F12 CICSTS41.CICS.ADFHMLIB
13 CI6100 HCI6100.F13 CICSTS41.CICS.ADFHMSGS
14 CI6100 HCI6100.F14 CICSTS41.CICS.ADFHMSRC
15 CI6100 HCI6100.F15 CICSTS41.CICS.ADFHPARM
16 CI6100 HCI6100.F16 CICSTS41.CICS.ADFHPLIB
17 CI6100 HCI6100.F17 CICSTS41.CICS.ADFHPL1
18 CI6100 HCI6100.F18 CICSTS41.CICS.ADFHPROC
19 CI6100 HCI6100.F19 CICSTS41.CICS.ADFHSAMP
20 CI6100 HCI6100.F20 CICSTS41.CICS.ADFHSDCK
C2 CI6100 JCI6101.F1 CICSTS41.CICS.ADFHCOB
C3 CI6100 JCI6101.F2 COBOL elements of CICSTS41.CICS.ADFHSAMP
C4 CI6100 JCI6101.F2 COBOL elements of CICSTS41.CICS.ADFHMOD
P2 CI6100 JCI6102.F1 CICSTS41.CICS.ADFHPLI
P3 CI6100 JCI6102.F2 PL/I elements of CICSTS41.CICS.ADFHSAMP
D2 CI6100 JCI6103.F1 CICSTS41.CICS.ADFHC370
D3 CI6100 JCI6103.F2 C elements of CICSTS41.CICS.ADFHSAMP
OS CI610S CICSTS41.CICS.OPTSRC01 -

An asterisk (*) following the RELFILE number indicates that the distribution
library contains object modules.

Note: Object modules only are supplied for the Japanese language feature;
corresponding source code is not provided for these modules.

Optional listings
Assembled listings of programs and source listings of macros, DSECTs, and
symbolic definitions are available with CICS, and can be supplied on CD-ROM.

For further information about the optional listings, see the Program Directory for
CICS Transaction Server for z/OS.

Contents of the distribution tapes
 Table 92. CICS modules directory
Name Type Description Library
ACCTINDX Sample Primer - batch index file recovery - COBOL C3 -
ACCTREC Sample Primer - account record - COBOL C3 -
ACCTSET Sample Primer - map set - COBOL 19 -

2056 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
ACCT00 Sample Primer - menu display - COBOL C3 -
ACCT01 Sample Primer - initial request processing - COBOL C3 -
ACCT02 Sample Primer - update processing - COBOL C3 -
ACCT03 Sample Primer - requests for printing - COBOL C3 -
ACCT04 Sample Primer - error processing - COBOL C3 -
ACIXREC Sample Primer - index record - COBOL C3 -
AXMBF CSECT Buffer management routine - 03
AXMER CSECT Server task error recovery - 03
AXMEV CSECT Event control and task management routine - 03
AXMEV1 CSECT Event management MVS POST exit - 03
AXMFL CSECT Sequential file I/O routine - 03
AXMHP CSECT Heap storage routine - 03
AXMHS CSECT Hash value generation subroutine - 03
AXMLF CSECT Server environment LIFO storage routine - 03
AXMLFMVS CSECT LIFO storage routine - MVS batch version - 03
AXMLK CSECT Lock management routine - 03
AXMMS CSECT Message editing and processing routine - 03
AXMMSTAB CSECT Message filtering table - 03
AXMOP CSECT Operator communication routine - 03
AXMOS CSECT Server operating system interface - 03
AxphG CSECT Page storage routine - 03
AXMRM CSECT Resource manger initialization/termination - 03
AXMRS CSECT Resource tracking routine - 03
AXMSC CSECT Server connection routine - 03
AXMSC1 CSECT Locate server connection system area - 03
AXMSC2 CSECT Server connection services interface - 03
AXMSI CSECT Subsystem initialization routine - 03
AXMTI CSECT Timer interval service - 03
AXMTK CSECT Task attach and detach routine - 03
AXMTM CSECT Mode-independent time and date service - 03
AXMTR CSECT Server trace management routine - 03
AXMVS CSECT Variable sized shared storage routine - 03
AXMWH CSECT AXMWH - data areas - 03
AXMWT CSECT AXMWT - data areas - 03
AXMXM CSECT Cross memory interface - 03
AXMXM1 CSECT Cross memory interface POST module - 03
CALLDLI Macro CALL DL/I services 11 -
CAUBLD CSECT CAU builder front end - 03
CAUBLDIN CSECT CAU builder input processor - 03
CAUBLDMR CSECT CAU builder merge processor - 03
CAUBLDOT CSECT CAU builder output processor - 03
CAUCAFBE CSECT CAU CAFB abend exit - 03
CAUCAFB1 CSECT CAU CAFB main program - 03
CAUCAFB2 CSECT CAU CAFB data save program - 03
CAUCAFDT CSECT CAU CAFF date utility - 03
CAUCAFFE CSECT CAU CAFF abend exit - 03
CAUCAFF1 CSECT CAU CAFF main program - 03
CAUCAFF2 CSECT CAU CAFF options - 03
CAUCAFF3 CSECT CAU CAFF start program - 03
CAUCAFF4 CSECT CAU CAFF stop program - 03
CAUCAFF5 CSECT CAU CAFF pause program - 03
CAUCAFF6 CSECT CAU CAFF continue program - 03
CAUCAFF7 CSECT CAU CAFF help program - 03
CAUCAFP CSECT CAU CAFB request handler - 03

Chapter 116. CICS directory 2057

Table 92. CICS modules directory (continued)
Name Type Description Library
CAUJCLBL Sample Sample JCL for running CAU builder 02 -
CAUJCLCA Sample Sample JCL for CAU Affinity data files 02 -
CAUJCLCC Sample Sample JCL for CAU Affinity control file 02 -
CAUJCLLD Sample Sample JCL for running CAU scanner (Detail mode) 02 -
CAUJCLLS Sample Sample JCL for running CAU scanner (Summary

mode)
02 -

CAUJCLRP Sample Sample JCL for running CAU Reporter 02 -
CAULMS CSECT CAU load module scanner - 03
CAUMAP1 CSECT CAU BMS map CAFF01 - 03
CAUMAP1U CSECT CAU BMS map CAFF01 - 19
CAUMAP2 CSECT CAU BMS map CAFF02 - 03
CAUMAP2U CSECT CAU BMS map CAFF02 - 19
CAUMAP3 CSECT CAU BMS map CAFFH1 - 03
CAUMAP4 CSECT CAU BMS map CAFFH2 - 03
CAUMSGCS CSECT CAU message manager CICS stub - 03
CAUMSGMN CSECT CAU message manager - 03
CAUMSGTB CSECT CAU message table - 03
CAUREP CSECT CAU reporter main module - 03
CAUREPFM CSECT CAU reporter file manager - 03
CAUREPPM CSECT CAU reporter print manager - 03
CAUREPRM CSECT CAU reporter report manager - 03
CAUTABM CSECT CAU detector table manager - 03
CAUTABS CSECT CAU detector table storage manager - 03
CAUXDUMM CSECT CAU detector dummy exit - 03
CAUXITBA CSECT CAU detector BAM process exit - 03
CAUXITBB CSECT CAU detector BAM activity exit - 03
CAUXITB1 CSECT CAU detector XBADEACT exit - 03
CAUXITIR CSECT CAU detector pseudo-conv end exit - 03
CAUXITI1 CSECT CAU detector TRUE - 03
CAUXITML CSECT CAU detector logoff exit - 03
CAUXITMS CSECT CAU detector signoff exit - 03
CAUXITM1 CSECT CAU detector XMEOUT exit - 03
CAUXITOA CSECT CAU detector ADDRESS exit - 03
CAUXITOC CSECT CAU detector CANCEL exit - 03
CAUXITOE CSECT CAU detector ENQ/DEQ exit - 03
CAUXITOG CSECT CAU detector GETMAIN exit - 03
CAUXITOL CSECT CAU detector LOAD/RELEASE exit - 03
CAUXITOQ CSECT CAU detector TS exit - 03
CAUXITOR CSECT CAU detector RETRIEVE exit - 03
CAUXITOS CSECT CAU detector SPI exit - 03
CAUXITOW CSECT CAU detector WAIT exit - 03
CAUXITOY CSECT CAU detector LOAD/FREEMAIN exit - 03
CAUXITO1 CSECT CAU detector XEIOUT exit - 03
CAUXITXX CSECT CAU detector ICE expiry exit - 03
CAUXITX1 CSECT CAU detector XICEXP exit - 03
CMC Symbolic SAA communications pseudonyms for C D2 -
CMCOBOL Symbolic SAA communications pseudonyms for COBOL C2 -
CMHASM Symbolic SAA communications pseudonyms for assembler 11 -
CMPLI Symbolic SAA communications pseudonyms for PL/I P2 -
DFHABAB CSECT AP domain abend handling - 03
DFHABABA DSECT ABAB parameter list OS -
DFHABABM Macro ABAB request OS -
DFHABABT CSECT ABAB trace interpretation data - 03
DFHABEND Macro Issue an ABEND macro OS -

2058 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHABREV CSECT String abbreviation checker OS 03
DFHACP CSECT Abnormal condition program OS 03
DFHACPTB Macro ACP abend table OS -
DFHADINS CSECT AD EJB CICS resource definitions - 03
DFHADJAR CSECT AD JAR to DJAR mapping - 03
DFHADSTR CSECT AD JAR to DJAR mapping - 03
DFHADUR@ CSECT - 03
DFHADURM Sample Sample URM to set CICS user id (C version) 19 -
DFHAFCD Macro Authorized function control block (AFCB) 11 -
DFHAFCS Macro Authorized function common storage anchor OS -
DFHAIBD Macro Application interface control block 11 -
DFHAICB Macro Application interface control block 11 -
DFHAICBP CSECT Application interface control block module OS 03
DFHAID Symbolic 3270 attention identifiers 11 07
DFHAID Symbolic 3270 attention identifiers - COBOL C2 -
DFHAID Symbolic 3270 attention identifiers - PL/I P2 -
DFHAID Symbolic 3270 attention identifiers - C/370 D2 -
DFHAIDDS DSECT Automatic initiate descriptor 11 -
DFHAIDUF CSECT (OCO) Autoinstall terminal model manager (AITMM)

SDUMP formatter
- 03

DFHAIINA DSECT AIIN parameter list OS -
DFHAIINM Macro AIIN request OS -
DFHAIINT CSECT (OCO) AIIN trace interpretation data - 03
DFHAIIN1 CSECT (OCO) AITMM - initialization management program - 03
DFHAIIN2 CSECT (OCO) AITMM - initialization subtask program - 03
DFHAIIQ CSECT (OCO) AITMM - locate/unlock/inquire/browse - 03
DFHAIIQA DSECT AIIQ parameter list OS -
DFHAIIQM Macro AIIQ request OS -
DFHAIIQT CSECT (OCO) AIIQ trace interpretation data - 03
DFHAIRP CSECT (OCO) AITMM - initialization/recovery - 03
DFHAIRPA DSECT AIRP parameter list OS -
DFHAIRPM Macro AIRP request OS -
DFHAIRPT CSECT (OCO) AIRP trace interpretation data - 03
DFHAITDS DSECT AITMM - static storage OS -
DFHAITM CSECT (OCO) AITMM - add replace/delete - 03
DFHAITMA DSECT AITM parameter list OS -
DFHAITMM Macro AITM request OS -
DFHAITMT CSECT (OCO) AITM trace interpretation data - 03
DFHALP CSECT Terminal allocation OS 03
DFHALRC CSECT Automatic initiate descriptor recovery - 03
DFHALXM CSECT AL XM transaction attach - 03
DFHAM Macro Address mode switching macro - 11
DFHAMBA CSECT RDO install of Processtype resources - 03
DFHAMCSD CSECT RDO command logger - 03
DFHAMDH CSECT RDO install of Document resources - 03
DFHAMD2 CSECT - 03
DFHAMEJ CSECT RDO install of EJB objects OS 03
DFHAMER CSECT RDO error message builder - 03
DFHAMFC CSECT RDO install for FCT resources - 03
DFHAMGL CSECT RDO list generator - 03
DFHAMLM CSECT Program to install log manager objects - 03
DFHAMNQ CSECT RDO install of Enqmodel resources - 03
DFHAMOP CSECT RDO install of Requestmodel resources - 03
DFHAMPAB CSECT RDO AMP error handler OS 03

Chapter 116. CICS directory 2059

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHAMPAD CSECT RDO add command - 03
DFHAMPAP CSECT RDO append command - 03
DFHAMPCH CSECT RDO check command - 03
DFHAMPCO CSECT RDO copy and rename commands - 03
DFHAMPC1 CSECT SPI generic names match - 03
DFHAMPC2 CSECT SPI check list name and produce list of groups - 03
DFHAMPC3 CSECT SPI diagnose duplicate objects - 03
DFHAMPDF CSECT RDO define/redefine command OS 03
DFHAMPDI CSECT RDO display command OS 03
DFHAMPDL CSECT RDO delete/remove commands OS 03
DFHAMPEN CSECT RDO end AMP handler OS 03
DFHAMPEX CSECT RDO expand command OS 03
DFHAMPFI CSECT RDO begin AMP handler OS 03
DFHAMPG CSECT RDO install of PG resources - 03
DFHAMPIL CSECT RDO install command OS 03
DFHAMPLO CSECT RDO lock/unlock command OS 03
DFHAMPN CSECT RDO install for partner resources OS 03
DFHAMPVW CSECT RDO view command OS 03
DFHAMP00 CSECT RDO allocation manager (DFHAMP) OS 03
DFHAMRDI CSECT RDO install logger OS 03
DFHAMSN CSECT RDO set name/type/set/stype from arg list OS 03
DFHAMSO CSECT RDO install of TCPIP services - 03
DFHAMST CSECT RDO update time and date in arg list OS 03
DFHAMTD CSECT Program to install Transient Data objects - 03
DFHAMTP CSECT RDO AMP request processor OS 03
DFHAMTS CSECT RDO install of Tsmodel resources OS 03
DFHAMXM CSECT Install XM domain resources (transaction and tranclass

objects)
OS 03

DFHANRAT Macro 3270 attribute character resolution 11 -
DFHANRWC Macro 3270 control character resolution 11 -
DFHAPAC DSECT AP domain abnormal condition reporting interface - 03
DFHAPACA DSECT APAC parameter list OS -
DFHAPACM Macro APAC request OS -
DFHAPACT CSECT APAC translate table - 03
DFHAPAPA DSECT APAP parameter list OS -
DFHAPAPM Macro APAP request OS -
DFHAPAPT CSECT APAP trace interpretation data OS 03
DFHAPATT CSECT AP domain - entrypoint attach - 03
DFHAPCBT CSECT - 03
DFHAPDDS DSECT DFHAPDM static storage OS -
DFHAPDM CSECT AP domain - initialization/termination - 03
DFHAPDN CSECT AP domain - transaction definition notify - 03
DFHAPDUF CSECT (OCO) AP domain - formatted dump print - 03
DFHAPEVI Macro AP domain - environment initialization OS -
DFHAPEX CSECT AP domain - user exit service - 03
DFHAPEXA DSECT APEX parameter list OS -
DFHAPEXM Macro APEX request OS -
DFHAPEXT CSECT APEX trace interpretation data OS 03
DFHAPH8@ CSECT - 03
DFHAPH8O CSECT Java hotpooling runtime options 0 H8 PIPI 19 03
DFHAPID DSECT Inquire on AP data - 03
DFHAPIDS DSECT Interval control static storage OS -
DFHAPIDT DSECT - 03

2060 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHAPIN CSECT AP domain - special initialization for programs and

user-replaceable modules
OS 03

DFHAPIQ CSECT (OCO) AP domain - user exit data access service - 03
DFHAPIQT CSECT (OCO) APIQ trace interpretation data - 03
DFHAPIQX Macro APIQ request 11 -
DFHAPIQY DSECT APIQ parameter list 11 -
DFHAPJC CSECT AP domain - journal interface gate service OS 03
DFHAPLH1 CSECT - 03
DFHAPLH3 CSECT - 03
DFHAPLIA CSECT AP domain - language interface program OS -
DFHAPLIT CSECT (OCO) AP domain - language interface service - 03
DFHAPLI1 CSECT (OCO) AP domain - language interface functions 1 - 03
DFHAPLI2 CSECT (OCO) AP domain - language interface functions 2 - 03
DFHAPLI3 CSECT (OCO) AP domain - language interface functions 3 - 03
DFHAPLI4 CSECT - 03
DFHAPLI5 CSECT - 03
DFHAPLI6 CSECT - 03
DFHAPLI7 CSECT - 03
DFHAPLJ1 CSECT - 03
DFHAPLJ3 CSECT - 03
DFHAPNT CSECT AP domain - MXT notify gate OS 03
DFHAPPG CSECT AP domain - optimize initial_link for DFHMIRS - 03
DFHAPPIS CSECT Java hotpooling PIPI service routines - 03
DFHAPPIV CSECT Java hotpooling PIPI service routines - 03
DFHAPRC CSECT User log record recovery module - 03
DFHAPRDA CSECT APRD interface parameter area OS -
DFHAPRDR CSECT Resource definition recovery gate - 03
DFHAPRDT CSECT APRD translate table - 03
DFHAPRT CSECT AP Domain - route transaction gate OS 03
DFHAPRTA DSECT APRT parameter list OS -
DFHAPRTM Macro APRT request OS -
DFHAPRTT CSECT APRM trace interpretation data OS 03
DFHAPSDF CSECT AP domain - formatted dump print module OS 03
DFHAPSI CSECT AP domain - gate initialization OS 03
DFHAPSIP CSECT AP domain - system initialization program OS 03
DFHAPSM CSECT AP domain - storage notify gate OS 03
DFHAPST CSECT AP domain - statistics collection OS 03
DFHAPTC CSECT AP domain - TC transport for Requeststreams - 03
DFHAPTCA CSECT APTC interface parameter area OS -
DFHAPTCM CSECT APTC interface macro OS -
DFHAPTCT CSECT - 03
DFHAPTC1 CSECT AP TC trace interpretation - 03
DFHAPTI CSECT AP domain - timer notify gate OS 03
DFHAPTIM CSECT AP domain - interval control midnight task OS 03
DFHAPTIX CSECT AP domain - expiry analysis task OS 03
DFHAPTPA Symbolic IRC trace point ID aliases OS -
DFHAPTRA CSECT IRC trace interpreter OS 03
DFHAPTRB CSECT XRF trace interpreter OS 03
DFHAPTRC CSECT User exit trace interpreter OS 03
DFHAPTRD CSECT DFHAPDM/DFHAPAP trace interpreter OS 03
DFHAPTRE CSECT (OCO) Data tables trace interpreter - 03
DFHAPTRF CSECT (OCO) SAA communications and resource recovery interfaces

trace interpreter
- 03

DFHAPTRG CSECT ZC exception and VTAM exit trace interpreter OS 03

Chapter 116. CICS directory 2061

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHAPTRI CSECT AP domain - trace interpretation router OS 03
DFHAPTRJ CSECT ZC VTAM interface trace interpreter OS 03
DFHAPTRK CSECT AP domain - resource definition interpretation module - 03
DFHAPTRL CSECT CICS OS/2 LU2 mirror trace interpreter OS 03
DFHAPTRN CSECT (OCO) Autoinstall terminal model manager trace interpreter - 03
DFHAPTRO CSECT LU6.2 application request logic trace interpreter OS 03
DFHAPTRP CSECT Program control trace interpreter OS 03
DFHAPTRR CSECT (OCO) Partner resource manager trace interpreter - 03
DFHAPTRS CSECT (OCO) AP domain - DFHEISR trace interpreter - 03
DFHAPTRU CSECT ZC install trace interpretation OS 03
DFHAPTRV CSECT (OCO) AP domain - DFHSRP trace interpreter - 03
DFHAPTRW CSECT (OCO) AP domain - FEPI trace interpreter - 03
DFHAPTRX CSECT ZC persistent sessions trace interpretation OS 03
DFHAPTRY CSECT AP domain - trace formatting (APRM, APXM, ICXM,

and TDXM)
OS 03

DFHAPTR0 CSECT Trace interpreter for old-style AP trace OS 03
DFHAPTR2 CSECT AP domain - statistics trace interpreter OS 03
DFHAPTR5 CSECT File control trace interpreter OS 03
DFHAPTR6 CSECT DBCTL trace interpreter OS 03
DFHAPTR7 CSECT Transaction routing trace interpreter OS 03
DFHAPTR8 CSECT Security trace interpreter OS 03
DFHAPTR9 CSECT Interval control trace interpreter OS 03
DFHAPUEA DSECT APUE parameter list OS -
DFHAPUEM Macro APUE request OS -
DFHAPUET CSECT APUE trace interpretation data OS 03
DFHAPXDD CSECT AP domain - transaction definition extension OS -
DFHAPXM CSECT AP domain - transaction initialization and termination

services
OS 03

DFHAPXMA DSECT APXM parameter list OS -
DFHAPXME CSECT AP domain - XM exception handler OS 03
DFHAPXMT CSECT (OCO) APXM trace interpretation data - 03
DFHASMVS Other Cataloged procedure to assemble CICS programs and

user-written macro-level programs
18 -

DFHASSUA DSECT ASSU parameter list OS -
DFHASSUM Macro ASSU request OS -
DFHASSUT CSECT ASSU trace interpretation data OS 03
DFHASV CSECT Authorized services interface OS 03
DFHATUP CSECT Audit trail Utility Program - 03
DFHAUDUF CSECT - 03
DFHAUPLE Other Cataloged procedure to assemble and link-edit CICS

control tables, and provide information to SMP/E
02 -

DFHAUTH Macro Verify environment and activate CICS SVCs OS -
DFHAXI Macro XRF alternate subsystem identifier table OS -
DFHA03DS DSECT VTAM statistics 11 -
DFHA03DS DSECT VTAM statistics - COBOL C2 07
DFHA03DS DSECT VTAM statistics - PL/I P2 -
DFHA04DS DSECT Autoinstall statistics 11 -
DFHA04DS DSECT Autoinstall statistics - COBOL C2 07
DFHA04DS DSECT Autoinstall statistics - PL/I P2 -
DFHA06DS DSECT Terminal statistics 11 -
DFHA06DS DSECT Terminal statistics - COBOL C2 07
DFHA06DS DSECT Terminal statistics - PL/I P2 -
DFHA08DS DSECT LSR pool statistics 11 -
DFHA08DS DSECT LSR pool statistics - COBOL C2 07

2062 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHA08DS DSECT LSR pool statistics - PL/I P2 -
DFHA09DS DSECT LSR pool file-related statistics 11 -
DFHA09DS DSECT LSR pool file-related statistics C2 07
DFHA09DS DSECT LSR pool file-related statistics P2 -
DFHA14DS DSECT ISC/IRC statistics for system entries 11 -
DFHA14DS DSECT ISC/IRC statistics for system entries C2 07
DFHA14DS DSECT ISC/IRC statistics for system entries P2 -
DFHA16DS DSECT Table manager statistics 11 -
DFHA16DS DSECT Table manager statistics C2 07
DFHA16DS DSECT Table manager statistics P2 -
DFHA17DS DSECT File control statistics 11 -
DFHA17DS DSECT File control statistics C2 07
DFHA17DS DSECT File control statistics P2 -
DFHA20DS DSECT ISC/IRC statistics for mode entries 11 -
DFHA20DS DSECT ISC/IRC statistics for mode entries C2 07
DFHA20DS DSECT ISC/IRC statistics for mode entries P2 -
DFHA21DS DSECT ISC/IRC attach-time statistics 11 -
DFHA21DS DSECT ISC/IRC attach-time statistics C2 07
DFHA21DS DSECT ISC/IRC attach-time statistics P2 -
DFHA22DS DSECT FEPI pool statistics 11 -
DFHA22DS DSECT FEPI pool statistics C2 07
DFHA22DS DSECT FEPI pool statistics P2 -
DFHA23DS DSECT FEPI connection statistics 11 -
DFHA23DS DSECT FEPI connection statistics C2 07
DFHA23DS DSECT FEPI connection statistics P2 -
DFHA24DS DSECT FEPI target statistics 11 -
DFHA24DS DSECT FEPI target statistics C2 07
DFHA24DS DSECT FEPI target statistics P2 -
DFHBAAC CSECT BAAC CDURUN and Gate module - 03
DFHBAACT CSECT BAM Activity Class class declaration - 03
DFHBAAC0 CSECT - 03
DFHBAAC1 CSECT - 03
DFHBAAC2 CSECT - 03
DFHBAAC3 CSECT - 03
DFHBAAC4 CSECT - 03
DFHBAAC5 CSECT - 03
DFHBAAC6 CSECT - 03
DFHBAAR1 CSECT - 03
DFHBAAR2 CSECT - 03
DFHBAA10 CSECT - 03
DFHBAA11 CSECT - 03
DFHBAA12 CSECT - 03
DFHBABR CSECT BABR CDURUN and Gata Module - 03
DFHBABRA CSECT BABR interface parameter area OS -
DFHBABRM Macro BABR interface macro OS -
DFHBABRT CSECT - 03
DFHBABU1 CSECT - 03
DFHBACR CSECT BACR CDURUN and Gate Module - 03
DFHBACRT CSECT - 03
DFHBADM CSECT BA Domain Management - 03
DFHBADUF CSECT BA Domain Dump Formatting - 03
DFHBADU1 CSECT - 03
DFHBAGDT CSECT - 03
DFHBALR2 CSECT - 03

Chapter 116. CICS directory 2063

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHBALR3 CSECT - 03
DFHBALR4 CSECT - 03
DFHBALR5 CSECT - 03
DFHBALR6 CSECT - 03
DFHBALR7 CSECT - 03
DFHBALR8 CSECT - 03
DFHBALR9 CSECT - 03
DFHBAM51 CSECT CSDUP - SPI offline messages table (51xx) OS 03
DFHBAM52 CSECT CSDUP - SPI offline messages table (52xx) OS 03
DFHBAM55 CSECT CSDUP - SPI offline messages table (55xx) OS 03
DFHBAM56 CSECT CSDUP - SPI offline messages table (56xx) OS 03
DFHBAOFI CSECT - 03
DFHBAPR CSECT BAPR CDURUN and Gate Module - 03
DFHBAPRT CSECT - 03
DFHBAPR0 CSECT - 03
DFHBAPT1 CSECT - 03
DFHBAPT2 CSECT - 03
DFHBAPT3 CSECT - 03
DFHBARUC CSECT - 03
DFHBARUD CSECT - 03
DFHBARUP CSECT CBTS Repository Utility Program - 03
DFHBASCH CSECT BRDATA for CBTS Constants - 08
DFHBASCL CSECT BRDATA for CBTS Constants - 17
DFHBASCO CSECT BRDATA for CBTS Constants - 07
DFHBASDD CSECT BRDATA for CBTS Bridge Exit 11 -
DFHBASDH CSECT BRDATA for CBTS Bridge Exit - 08
DFHBASDL CSECT BRDATA for CBTS Bridge Exit - 17
DFHBASDO CSECT BRDATA for CBTS Bridge Exit - 19
DFHBASP CSECT BASP Gate Module and BA Context Class - 03
DFHBATRI CSECT BAM Domain Trace Interpretation - 03
DFHBATT CSECT BAM CDURUN and Gate Module - 03
DFHBATTT CSECT - 03
DFHBAUE CSECT BAUE Gate Module - 03
DFHBAVP1 CSECT - 03
DFHBAXM CSECT BA XM Interfaces - 03
DFHBAXMT CSECT - 03
DFHBEPB CSECT RDO batch error program OS 03
DFHBEPC CSECT RDO message formatting module OS 03
DFHBFTCA Macro Built-in functions TCA macro 11 -
DFHBMPIC Macro BMS picture analysis 11 -
DFHBMS Macro Basic mapping support request 11 -
DFHBMSCA Symbolic BMS attribute definitions 11 08
DFHBMSCA Symbolic BMS attribute definitions C2 07
DFHBMSU Macro - 18
DFHBMSUP Macro - 03
DFHBMUTM Macro Trace BMS module generation options OS -
DFHBPXPA Sample - 02
DFHBPXP0 Sample - 02
DFHBPXP1 Sample - 02
DFHBRACD Symbolic Bridge copybook 11 -
DFHBRACH Symbolic Bridge copybook D2 -
DFHBRACL Symbolic Bridge copybook P2 17
DFHBRACO Symbolic Bridge copybook C2 -
DFHBRARD Symbolic Bridge copybook 11 -

2064 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHBRARH Symbolic Bridge copybook D2 -
DFHBRARL Symbolic Bridge copybook P2 17
DFHBRARO Symbolic Bridge copybook C2 -
DFHBRAT CSECT Design Bridge - BRAT Gate Functions - 03
DFHBRATA CSECT BRAT interface parameter area OS -
DFHBRATM CSECT DFHBRAT interface macro OS -
DFHBRATT CSECT - 03
DFHBRBFB CSECT Bridge module OS -
DFHBRDCD CSECT OS -
DFHBRDUF CSECT Bridge module - 03
DFHBRFM CSECT Bridge module - 03
DFHBRFMT Symbolic Trace interpretation data - 03
DFHBRIC CSECT Bridge module - 03
DFHBRIQ CSECT Design Bridge - BRIQ Gate Functions - 03
DFHBRIQA CSECT BRIQ interface parameter area OS -
DFHBRIQI CSECT OS -
DFHBRIQM CSECT DFHBRIQ interface macro OS -
DFHBRIQT CSECT - 03
DFHBRIQX Macro Bridge XPI macro 11 -
DFHBRIQY Symbolic Copybook 11 -
DFHBRMCD Symbolic Bridge copybook 19 -
DFHBRMCH Symbolic Bridge copybook D3 -
DFHBRMCL Symbolic Bridge copybook P3 -
DFHBRMCO Symbolic Bridge copybook C3 -
DFHBRME CSECT BR Exit Program - 03
DFHBRMF CSECT BR Formatter Program - 03
DFHBRMHD Symbolic Bridge copybook 19 -
DFHBRMHH Symbolic Bridge copybook D3 -
DFHBRMHL Symbolic Bridge copybook P3 -
DFHBRMHO Symbolic Bridge copybook C3 -
DFHBRMQD Symbolic Bridge copybook 19 -
DFHBRMQH Symbolic Bridge copybook D3 -
DFHBRMQL Symbolic Bridge copybook P3 -
DFHBRMQO Symbolic Bridge copybook C3 -
DFHBRMS CSECT Bridge module - 03
DFHBRRM CSECT DFHBRRM Design Bridge - Recovery Manager - 03
DFHBRSCD Symbolic Bridge copybook 19 -
DFHBRSCH Symbolic Bridge copybook D3 -
DFHBRSCL Symbolic Bridge copybook P3 -
DFHBRSCO Symbolic Bridge copybook C3 -
DFHBRSDD Symbolic Bridge copybook 19 -
DFHBRSDH Symbolic Bridge copybook D3 -
DFHBRSDL Symbolic Bridge copybook P3 -
DFHBRSDO Symbolic Bridge copybook C3 -
DFHBRSP CSECT Bridge module - 03
DFHBRSPA Symbolic Bridge copybook OS -
DFHBRSPM Symbolic Bridge copybook OS -
DFHBRSPT Symbolic Bridge copybook - 03
DFHBRTB CSECT Bridge Virtual Terminal Buffer - 03
DFHBRTC CSECT Bridge module - 03
DFHBRTQ CSECT - 03
DFHBRTRI Macro Bridge module - 03
DFHBRXM CSECT BR XM Principal Client - 03
DFHBSC Macro Generate binary search code 11 -

Chapter 116. CICS directory 2065

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHBSG Macro Switch subspace request OS -
DFHBSIB3 CSECT BMS 3270 builder OS 03
DFHBSIZ1 CSECT Add SCS support OS 03
DFHBSIZ3 CSECT Add DFHZCP 3270 support OS 03
DFHBSMIR CSECT Build terminal session OS 03
DFHBSMPP CSECT Build pipeline pool table entry OS 03
DFHBSM61 CSECT Generate sessions for modegroup OS 03
DFHBSM62 CSECT Build a modegroup OS 03
DFHBSS CSECT Build a connection OS 03
DFHBSSA CSECT Build DFHKCP support in a system entry OS 03
DFHBSSF CSECT Build stats support in a system entry OS 03
DFHBSSS CSECT Build security support in a system entry OS 03
DFHBSSZ CSECT Build VTAM support in a system entry OS 03
DFHBSSZG CSECT Add an APPC single-session OS 03
DFHBSSZI CSECT Add an indirect terminal system OS 03
DFHBSSZL CSECT Add a local terminal system OS 03
DFHBSSZM CSECT Introduce new system to ZCP OS 03
DFHBSSZP CSECT Add an APPC parallel-session OS 03
DFHBSSZR CSECT Add an MRO system OS 03
DFHBSSZS CSECT Add an APPC OS 03
DFHBSSZ6 CSECT Add an LU6.1 connection OS 03
DFHBST CSECT Common TCTTE builder OS 03
DFHBSTB CSECT Add a resource for BMS OS 03
DFHBSTBL CSECT Add logical device support OS 03
DFHBSTB3 CSECT Add partition support OS 03
DFHBSTC CSECT Add install-time options support OS 03
DFHBSTD CSECT Add DFHDIP support OS 03
DFHBSTE CSECT Add EDF support OS 03
DFHBSTH CSECT EXEC interface builder OS 03
DFHBSTI CSECT Add DFHICP support OS 03
DFHBSTM CSECT Add DFHMGP support OS 03
DFHBSTO CSECT Spooler terminal builder OS 03
DFHBSTP3 CSECT Add 3270-copy support OS 03
DFHBSTS CSECT Add DFHSNT support OS 03
DFHBSTT CSECT Add DFHKCP support OS 03
DFHBSTZ CSECT Build terminal or session resource OS 03
DFHBSTZA CSECT Add DFHZCP support OS 03
DFHBSTZB CSECT Add or delete bind-image OS 03
DFHBSTZC CSECT Add single-session to APPC OS 03
DFHBSTZE CSECT Set error message writer fields OS 03
DFHBSTZL CSECT Add logical device code support OS 03
DFHBSTZO CSECT Add an MVS console OS 03
DFHBSTZP CSECT Pipeline terminal builder OS 03
DFHBSTZR CSECT Add IRC session OS 03
DFHBSTZS CSECT Add an APPC session OS 03
DFHBSTZV CSECT Add VTAM and IRC information OS 03
DFHBSTZZ CSECT Add non-APPC session OS 03
DFHBSTZ1 CSECT Add remote terminal support OS 03
DFHBSTZ2 CSECT Remote APPC builder OS 03
DFHBSTZ3 CSECT Add 3270 support OS 03
DFHBSZZ CSECT Add terminal or session OS 03
DFHBSZZS CSECT Add session to LU6.2 support OS 03
DFHBSZZV CSECT Add VTAM terminal or session OS 03
DFHBT Macro Parameter sublist translation 11 -

2066 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCALLA CSECT CZ Direct-to-CICS - 03
DFHCAPB CSECT CSDUP - command analysis program (DFHCAP) OS 03
DFHCAPC CSECT RDO utility - RDL command locator OS 03
DFHCCCC CSECT (OCO) GC/LC domains - functions - 03
DFHCCCCA DSECT CCCC parameter list OS -
DFHCCCCM Macro CCCC request OS -
DFHCCCCT CSECT (OCO) CCCC trace interpretation data - 03
DFHCCDM CSECT (OCO) GC/LC domains - initialization/termination - 03
DFHCCDUF CSECT (OCO) SDUMP formatter for GC/LC domains - 03
DFHCCNV CSECT Data conversion for CICS OS/2 ISC users OS 03
DFHCCNVG CSECT Data conversion Gate - 03
DFHCCNVT CSECT - 03
DFHCCNV2 CSECT Convert characters in multi-byte representation OS 03
DFHCCTRI CSECT (OCO) Trace interpreter for GC/LC domains - 03
DFHCCUTL CSECT CICS local catalog initialization program OS 03
DFHCDBLK Symbolic CONVDATA area 11 D2
DFHCDBMI Other CDBM group file definition JCL - 02
DFHCDBTC Macro Domain call argument conversion 11 -
DFHCDC Macro Syntax analysis and code generation for

DFHxxyyM/X domain call macros
11 -

DFHCDCON CSECT Formatted parameter list translator OS 03
DFHCDEDA DSECT CDED parameter list OS -
DFHCDEDM Macro CDED request OS -
DFHCDEDT CSECT CDED trace interpretation data OS 03
DFHCDKRN CSECT KE Java to CDURUN Interface - 03
DFHCDMIK Macro Domain call inner macro - generate assignments for

IN keywords
11 -

DFHCDMOK Macro Domain call inner macro - generate assignments for
OUT keywords

11 -

DFHCDSPL Macro Domain call inner macro - subvalues of character list 11 -
DFHCDSUB Macro Domain call inner macro - subvalues of sub-parameter

list
11 -

DFHCDSYN Macro Syntax analysis on positional operands for
DFHxxyyM/X domain call macros

11 -

DFHCDTST Macro DFHTEST inner macro 11 -
DFHCDTYP Macro Determine domain call argument data type 11 -
DFHCEGN CSECT Goodnight transaction stub - 03
DFHCESC CSECT Terminal, XRF, and enable timeout routines - 03
DFHCESD CSECT CICS shutdown assist program 19 -
DFHCESDP CSECT CICS shutdown assist program - 03
DFHCETRA CSECT Trace control transaction (CETR) - main program OS 03
DFHCETRB CSECT CETR - trace component flags inquire/set OS 03
DFHCETRC CSECT CETR - terminal/transaction trace control OS 03
DFHCETRD CSECT CETR - common subroutines OS 03
DFHCFCF CSECT CFDT Server CF Interface - 03
DFHCFCN CSECT CFDT Server Client Connect/Disconnect - 03
DFHCFDF CSECT CFDT AXM Server Definitions - 03
DFHCFEN CSECT CFDT ENF event interface - 03
DFHCFIF CSECT CFDT Server Interface Module - 03
DFHCFIQ CSECT CFDT Table Inquire Routines - 03
DFHCFLW CSECT CFDT Server Lock Wait Routines - 03
DFHCFMN CSECT CFDT Server Main Program - 03
DFHCFMS CSECT CFDT Server Messages - 03
DFHCFOC CSECT CFDT Server Table Open/Close - 03

Chapter 116. CICS directory 2067

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCFOP CSECT CFDT Server Operator Command Support - 03
DFHCFPR CSECT CFDT Server Parameter Processing - 03
DFHCFRL CSECT CFDT Server Pool Reload routine - 03
DFHCFRQ CSECT CFDT Server Record Request Routines - 03
DFHCFRS CSECT CFDT ARM Restart Support - 03
DFHCFSP CSECT CFDT Server Syncpoint and Restart - 03
DFHCFST CSECT CFDT Server Statistics Routines - 03
DFHCFS6D CSECT CFDT Statistics for list structure 11 -
DFHCFS7D CSECT CFDT Statistics for table accesses 11 -
DFHCFS8D CSECT CFDT Request statistics 11 -
DFHCFS9D CSECT CFDT Statistics for server storage 11 -
DFHCFUL CSECT CFDT Server Pool Unload Routine - 03
DFHCFXS CSECT CFDT Server External Security Support - 03
DFHCHS CSECT CICS mirror for CICS OS/2 and CICS/VM OS 03
DFHCJVMA CSECT JVM Interface assembler routines - 03
DFHCICS CSECT CICS copyright information OS 03
DFHCLID Macro CICS service-level identifier 11 -
DFHCLS3 CSECT (OCO) APPC signoff transaction program - 03
DFHCLS4 CSECT (OCO) APPC signon transaction program - 03
DFHCLS5 CSECT (OCO) Connection Quiesce Protocol - 03
DFHCLT Macro Command list table 11 -
DFHCLT1$ Sample Command list table 19 03
DFHCMAC CSECT (OCO) ME domain - CICS messages and codes transaction

(CMAC)
- 03

DFHCMACD Other Source data file for CMAC transaction 13 -
DFHCMACI Other JCL to install the CICS messages data set 02 -
DFHCMACU Other JCL to update the CICS messages data set 02 -
DFHCMASM Macro CPI pseudonym file for assembler 11 -
DFHCMC CSECT (OCO) CMAC transaction map set (C/370) - D2
DFHCMCM CSECT (OCO) CMAC transaction map set - 03
DFHCMCOB CSECT (OCO) CMAC transaction map set (COBOL) - C2
DFHCMP CSECT CICS monitoring compatibility interface OS 03
DFHCMPLI CSECT (OCO) CMAC transaction map set (PL/I) - P2
DFHCNEDS Macro TCT console control element 11 -
DFHCNV Macro ISC template definition 11 -
DFHCNVCA DSECT DFHCNV commarea layout OS -
DFHCNVE Macro DFHCNV data conversion tables OS -
DFHCNVH Macro DFHCNV data conversion tables OS -
DFHCNVW$ Macro 19 03
DFHCNVXX Macro DFHCNV data conversion related OS -
DFHCNV00 CSECT DFHCNV data conversion tables OS 03
DFHCNV01 CSECT DFHCNV data conversion tables OS 03
DFHCNV02 CSECT DFHCNV data conversion tables OS 03
DFHCNV03 CSECT DFHCNV data conversion tables OS 03
DFHCNV04 CSECT DFHCNV data conversion tables OS 03
DFHCNV05 CSECT DFHCNV data conversion tables OS 03
DFHCNV06 CSECT DFHCNV data conversion tables OS 03
DFHCNV07 CSECT DFHCNV data conversion tables OS 03
DFHCNV08 CSECT DFHCNV data conversion tables OS 03
DFHCNV09 CSECT DFHCNV data conversion tables OS 03
DFHCNV10 CSECT DFHCNV data conversion tables OS 03
DFHCNV11 CSECT DFHCNV data conversion tables OS 03
DFHCNV12 CSECT DFHCNV data conversion tables OS 03
DFHCNV13 CSECT DFHCNV data conversion tables OS 03

2068 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCNV14 CSECT DFHCNV data conversion tables OS 03
DFHCNV15 CSECT DFHCNV data conversion tables OS 03
DFHCNV16 CSECT DFHCNV data conversion tables OS 03
DFHCNV17 CSECT DFHCNV data conversion tables OS 03
DFHCNV18 CSECT DFHCNV data conversion tables OS 03
DFHCNV19 CSECT DFHCNV data conversion tables OS 03
DFHCNV20 CSECT DFHCNV data conversion tables OS 03
DFHCNV21 CSECT DFHCNV data conversion tables OS 03
DFHCNV22 CSECT DFHCNV data conversion tables OS 03
DFHCNV23 CSECT DFHCNV data conversion tables OS 03
DFHCNV24 CSECT DFHCNV data conversion tables OS 03
DFHCNV25 CSECT DFHCNV data conversion tables OS 03
DFHCNV26 CSECT DFHCNV data conversion tables OS 03
DFHCNV27 CSECT DFHCNV data conversion tables OS 03
DFHCNV28 CSECT DFHCNV data conversion tables OS 03
DFHCNV29 CSECT DFHCNV data conversion tables OS 03
DFHCNV30 CSECT DFHCNV data conversion tables OS 03
DFHCNV31 CSECT DFHCNV data conversion tables OS 03
DFHCNV32 CSECT DFHCNV data conversion tables OS 03
DFHCNV33 CSECT DFHCNV data conversion tables OS 03
DFHCNV34 CSECT DFHCNV data conversion tables OS 03
DFHCNV35 CSECT DFHCNV data conversion tables OS 03
DFHCNV36 CSECT DFHCNV data conversion tables OS 03
DFHCNV37 CSECT DFHCNV data conversion tables OS 03
DFHCNV38 CSECT DFHCNV data conversion tables OS 03
DFHCNV39 CSECT DFHCNV data conversion tables OS 03
DFHCNV40 CSECT DFHCNV data conversion tables OS 03
DFHCNV41 CSECT DFHCNV data conversion tables OS 03
DFHCNV42 CSECT DFHCNV data conversion tables OS 03
DFHCNV43 CSECT DFHCNV data conversion tables OS 03
DFHCNV44 CSECT DFHCNV data conversion tables OS 03
DFHCNV45 CSECT DFHCNV data conversion tables OS 03
DFHCNV46 CSECT DFHCNV data conversion tables OS 03
DFHCNV47 CSECT DFHCNV data conversion tables OS 03
DFHCNV48 CSECT DFHCNV data conversion tables OS 03
DFHCNV49 CSECT DFHCNV data conversion tables OS 03
DFHCNV50 CSECT DFHCNV data conversion tables OS 03
DFHCNV51 CSECT DFHCNV data conversion tables OS 03
DFHCNV52 CSECT DFHCNV data conversion tables OS 03
DFHCNV53 CSECT DFHCNV data conversion tables OS 03
DFHCNV54 CSECT DFHCNV data conversion tables OS 03
DFHCNV55 CSECT DFHCNV data conversion tables OS 03
DFHCNV56 CSECT DFHCNV data conversion tables OS 03
DFHCNV57 CSECT DFHCNV data conversion tables OS 03
DFHCNV58 CSECT DFHCNV data conversion tables OS 03
DFHCNV59 CSECT DFHCNV data conversion tables OS 03
DFHCNV60 CSECT DFHCNV data conversion tables OS 03
DFHCNV61 CSECT DFHCNV data conversion tables OS 03
DFHCNV62 CSECT DFHCNV data conversion tables OS 03
DFHCNV63 CSECT DFHCNV data conversion tables OS 03
DFHCNV64 CSECT DFHCNV data conversion tables OS 03
DFHCNV65 CSECT DFHCNV data conversion tables OS 03
DFHCNV66 CSECT DFHCNV data conversion tables OS 03
DFHCNV67 CSECT DFHCNV data conversion tables OS 03

Chapter 116. CICS directory 2069

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCNV68 CSECT DFHCNV data conversion tables OS 03
DFHCNV69 CSECT DFHCNV data conversion tables OS 03
DFHCNV70 CSECT DFHCNV data conversion tables OS 03
DFHCNV71 CSECT DFHCNV data conversion tables OS 03
DFHCNV72 CSECT DFHCNV data conversion tables OS 03
DFHCNV75 CSECT DFHCNV data conversion tables OS 03
DFHCNV76 CSECT DFHCNV data conversion tables OS 03
DFHCNV77 CSECT DFHCNV data conversion tables OS 03
DFHCN06A CSECT DFHCNV data conversion tables OS -
DFHCN06B CSECT DFHCNV data conversion tables OS -
DFHCN06C CSECT DFHCNV data conversion tables OS -
DFHCN06D CSECT DFHCNV data conversion tables OS -
DFHCN06E CSECT DFHCNV data conversion tables OS -
DFHCN06F CSECT DFHCNV data conversion tables OS -
DFHCN13A CSECT DFHCNV data conversion tables OS -
DFHCN13E CSECT DFHCNV data conversion tables OS -
DFHCN28A CSECT DFHCNV data conversion tables OS -
DFHCN28E CSECT DFHCNV data conversion tables OS -
DFHCN45A CSECT DFHCNV data conversion tables OS -
DFHCN45B CSECT DFHCNV data conversion tables OS -
DFHCN45E CSECT DFHCNV data conversion tables OS -
DFHCN45F CSECT DFHCNV data conversion tables OS -
DFHCN46A CSECT DFHCNV data conversion tables OS -
DFHCN46B CSECT DFHCNV data conversion tables OS -
DFHCN46E CSECT DFHCNV data conversion tables OS -
DFHCN46F CSECT DFHCNV data conversion tables OS -
DFHCOAP Other OS -
DFHCOMDS Other JCL to delete and re-create CICS system data sets

common to all regions
02 -

DFHCOMP Macro Generate compare equate values OS -
DFHCOVER Macro Cover page generator 11 -
DFHCPARH CSECT (OCO) CPIC - CMxxxx application request handler - 03
DFHCPCAC CSECT (OCO) CPIC - Accept_Conversation - 03
DFHCPCAL CSECT (OCO) CPIC - Allocate - 03
DFHCPCBA CSECT (OCO) CPIC - Create_CPC (Accept) - 03
DFHCPCBB CSECT (OCO) CPIC - Increment_Last_Convid - 03
DFHCPCBD CSECT (OCO) CPIC - Delete_Conversation - 03
DFHCPCBE CSECT (OCO) CPIC - Extract_Syncpoint_rc - 03
DFHCPCBG CSECT (OCO) CPIC - Initialize_CPC - 03
DFHCPCBI CSECT (OCO) CPIC - Create_CPC (Initialize) - 03
DFHCPCBL CSECT (OCO) CPIC - Locate_CPC - 03
DFHCPCBS CSECT (OCO) CPIC - Set_CPC_Log_Data - 03
DFHCPCBT CSECT (OCO) CPIC - Load module branch table - 03
DFHCPCCA DSECT CPCC parameter list OS -
DFHCPCCD CSECT (OCO) CPIC - Confirmed - 03
DFHCPCCF CSECT (OCO) CPIC - Confirm - 03
DFHCPCCM Macro CPCC request OS -
DFHCPCCT CSECT (OCO) CPCC trace interpretation data - 03
DFHCPCDE CSECT (OCO) CPIC - Deallocate - 03
DFHCPCEA CSECT (OCO) CPIC - Extract_Conversation_Type - 03
DFHCPCEB CSECT (OCO) CPIC - Extract_Mode_Name - 03
DFHCPCEC CSECT (OCO) CPIC - Extract_Partner_LU_Name - 03
DFHCPCED CSECT (OCO) CPIC - Extract_Sync_Level - 03
DFHCPCEE CSECT (OCO) CPIC - Extract_Conversation_State - 03

2070 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCPCFL CSECT (OCO) CPIC - Flush - 03
DFHCPCFS CSECT (OCO) CPIC - finite state machine - 03
DFHCPCIC CSECT (OCO) CPIC - Initialize_Conversation - 03
DFHCPCLC CSECT (OCO) CPIC - interface to DFHLUC - 03
DFHCPCLM CSECT (OCO) CPIC - build send list - 03
DFHCPCLR CSECT (OCO) DFHLUC to CPIC return code conversion - 03
DFHCPCND CSECT (OCO) CPIC - Send_Data - 03
DFHCPCNE CSECT (OCO) CPIC - Send_Error - 03
DFHCPCN1 CSECT (OCO) CPIC - Send_and_Buffer - 03
DFHCPCN2 CSECT (OCO) CPIC - Send_and_Flush - 03
DFHCPCN3 CSECT (OCO) CPIC - Send_and_Prep_To_Receive - 03
DFHCPCN4 CSECT (OCO) CPIC - Send_and_Confirm - 03
DFHCPCN5 CSECT (OCO) CPIC - Send_and_Deallocate - 03
DFHCPCOJ CSECT (OCO) CPIC - Output_Journaling - 03
DFHCPCPR CSECT (OCO) CPIC - Prepare_To_Receive - 03
DFHCPCRA CSECT (OCO) CPIC - Receive mapped data - 03
DFHCPCRB CSECT (OCO) CPIC - Receive GDS header - 03
DFHCPCRC CSECT (OCO) CPIC - Receive basic data - 03
DFHCPCRI CSECT (OCO) CPIC - Receive_Immediate - 03
DFHCPCRS CSECT (OCO) CPIC - Request_To_Send - 03
DFHCPCRV CSECT (OCO) CPIC - Receive - 03
DFHCPCRW CSECT (OCO) CPIC - Receive_and_Wait - 03
DFHCPCSA CSECT (OCO) CPIC - Set_Conversation_Type - 03
DFHCPCSB CSECT (OCO) CPIC - Set_Deallocate_Type - 03
DFHCPCSC CSECT (OCO) CPIC - Set_Error_Direction - 03
DFHCPCSD CSECT (OCO) CPIC - Set_Fill - 03
DFHCPCSE CSECT (OCO) CPIC - Set_Log_Data - 03
DFHCPCSF CSECT (OCO) CPIC - Set_Mode_Name - 03
DFHCPCSG CSECT (OCO) CPIC - Set_Partner_LU_Name - 03
DFHCPCSH CSECT (OCO) CPIC - Set_Prepare_To_Receive - 03
DFHCPCSI CSECT (OCO) CPIC - Set_Receive_Type - 03
DFHCPCSJ CSECT (OCO) CPIC - Set_Return_Control - 03
DFHCPCSK CSECT (OCO) CPIC - Set_Send_Type - 03
DFHCPCSL CSECT (OCO) CPIC - Set_Sync_Level - 03
DFHCPCSM CSECT (OCO) CPIC - Set_TP_Name - 03
DFHCPCTE CSECT (OCO) CPIC - Test_Request_To_Send_Received - 03
DFHCPDUF CSECT (OCO) SDUMP formatter for CP keyword - 03
DFHCPI CSECT (OCO) Common programming interface (CPI) program - 03
DFHCPINA DSECT CPIN parameter list OS -
DFHCPINM Macro CPIN request OS -
DFHCPINT CSECT (OCO) CPIN trace interpretation data - 03
DFHCPIN1 CSECT (OCO) CPI initialization management program - 03
DFHCPIN2 CSECT (OCO) CPI initialization subtask program - 03
DFHCPIR CSECT (OCO) SRRxxxx application request processor - 03
DFHCPLC CSECT (OCO) Link-edit stub for application programs using SAA

communications interface
- 03

DFHCPLRR CSECT (OCO) Link-edit stub for application programs using SAA
resource recovery interface

- 03

DFHCPOST Macro POST macro for extended ECBs OS -
DFHCPSDS DSECT CPI static storage OS -
DFHCPSPA DSECT CPSP parameter list OS -
DFHCPSPM Macro CPSP request OS -
DFHCPSPT CSECT (OCO) CPSP trace interpretation data - 03
DFHCPSRH CSECT (OCO) CPIC - syncpoint request handler - 03

Chapter 116. CICS directory 2071

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCPY CSECT 3270 hard copy support OS 03
DFHCRBDS DSECT CICS region control block OS -
DFHCRBU CSECT UOW back-to-front processor module - 03
DFHCRC CSECT Interregion abnormal exit module OS 03
DFHCRD DSECT Communications recovery services declares 11 -
DFHCRERI DSECT AP domain - Communications recovery management -

resync
OS -

DFHCRERP DSECT Perform unshunt invoked by RM - 03
DFHCRERS DSECT Session failure during syncpoint - 03
DFHCRESI DSECT AP domain - communication recovery management OS -
DFHCRIU CSECT IRC RMC syncpoint event processor - 03
DFHCRL CSECT RMC logging back-to-front processor - 03
DFHCRLB CSECT RMC bind time logging for old MRO/LU6.2 - 03
DFHCRLBA CSECT CRLB parameter list OS -
DFHCRLBM Macro CRLB parameter list OS -
DFHCRLBT CSECT CRLB translate tables - 03
DFHCRNP CSECT Interregion connection manager OS 03
DFHCRQ CSECT ATI purge program OS 03
DFHCRR CSECT Interregion session recovery program OS 03
DFHCRRSY CSECT Communications resynchronization - 03
DFHCRS CSECT Remote scheduler program OS 03
DFHCRSP CSECT CICS IRC startup module OS 03
DFHCRT CSECT Transaction routing relay program for OS 03
DFHCRTRI CSECT Offline trace formatting - interpretation routine

parameter list
- 03

DFHCR1U CSECT IRC LU61 syncpoint event processor - 03
DFHCR2U CSECT IRC LU62 RMC syncpoint event processor - 03
DFHCSA CSECT Common system area OS 03
DFHCSAD Macro Common system area 11 -
DFHCSADS DSECT Common system area definition 11 -
DFHCSCDS Symbolic CICS SVC startup return codes OS -
DFHCSDUF CSECT (OCO) SDUMP formatter for CSA and CSA optional features

list
- 03

DFHCSVC CSECT CICS SVC startup OS 03
DFHCTRH CSECT CETR transaction help screens map set OS 03
DFHCTRM CSECT CETR transaction main screens map set OS 03
DFHCTRMU Sample - 19
DFHCUADD CSECT CSDUP - add command OS 03
DFHCUALG CSECT RDO off-line generic alter utility program - 03
DFHCUALT CSECT CSDUP - alter command OS 03
DFHCUAPP CSECT CSDUP - append command OS 03
DFHCUCAB CSECT CSDUP - command analyzer (DFHCUCA) OS 03
DFHCUCAC CSECT CSD manager - return and reason codes OS 03
DFHCUCB CSECT CSDUP - command builder OS 03
DFHCUCCB CSECT CSDUP - RDL command locator (DFHCUCC) OS 03
DFHCUCDB CSECT CSDUP - default values (DFHCUCD) OS 03
DFHCUCDC CSECT CSD manager - return and reason codes OS 03
DFHCUCOG CSECT CSDUP - generic copy command OS 03
DFHCUCOM CSECT - 03
DFHCUCOP CSECT CSDUP - copy command OS 03
DFHCUCP CSECT CSDUP - command processor OS 03
DFHCUCS CSECT CSDUP - CSD open and close OS 03
DFHCUCSE CSECT CSDUP - CSD error check routine OS 03
DFHCUCV CSECT CSDUP - command validation OS 03

2072 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHCUDEF CSECT CSDUP - define command OS 03
DFHCUERA CSECT CSDUP - delete/erase command OS 03
DFHCUFA CSECT Offline utilities - free automatic storage OS 03
DFHCUFAM Macro Offline DFHPROC - free automatic storage OS -
DFHCUGA CSECT Offline utilities - get automatic storage OS 03
DFHCUGAM Macro Offline DFHPROC - get automatic storage OS -
DFHCUINI CSECT CSDUP - initialize command OS 03
DFHCULIS CSECT CSDUP - extract and list commands OS 03
DFHCULOC CSECT CSDUP - lock/unlock routine OS 03
DFHCUMD2 CSECT - 03
DFHCUMIG CSECT CSDUP - migrate command OS 03
DFHCUMT CSECT CSDUP - TCT migration OS 03
DFHCUMTD CSECT RDO migration utility program for the DCT - 03
DFHCUMTS CSECT RDO migration utility program for the TST OS 03
DFHCUMWR CSECT CSDUP - CSD record write routine OS 03
DFHCUMXI CSECT SPI offline utility for handling cross reference of IBM

groups
OS 03

DFHCUPRC CSECT RDO off line utility OS 03
DFHCUPRO CSECT CSDUP - CSD upgrade routine OS 03
DFHCURDD CSECT CSD utilities - delete all existing CICS- supplied

groups from previous releases
OS 03

DFHCURDI CSECT CSD utilities - RDL for basic initialize OS 03
DFHCURDM CSECT CSD utilities - RDL for maintenance OS 03
DFHCURDS CSECT CSD utilities - RDL for sample definitions OS 03
DFHCURDX CSECT CSD utilities - RDL for compatibility gp OS 03
DFHCUREM CSECT CSDUP - remove command OS 03
DFHCURUG CSECT CSDUP - upgrade command OS 03
DFHCUSER CSECT CSDUP - service command OS 03
DFHCUSHL CSECT CSDUP - short lock/unlock routine OS 03
DFHCUS1 CSECT CSD utilities - sample service request OS 03
DFHCUUSR CSECT OS 03
DFHCUVER CSECT CSDUP - verify command OS 03
DFHCUXRT CSECT RDO offline utility for building cross reference table of

IBM groups
OS 03

DFHCVDAA Symbolic System programming command cvda names OS -
DFHCVTRI CSECT CCNV Gate trace interpretation - 03
DFHCZTRI CSECT CICS Foundation Classes trace interpretation - 03
DFHCZTRT CSECT Foundation classes trace interprete tables - 03
DFHCWTO CSECT Write to console operator program OS 03
DFHCXCU CSECT XRF catch-up transaction OS 03
DFHC3TRI CSECT (OCO) Trace interpreter for DFHCLS3 trace points - 03
DFHC5TRI CSECT - 03
DFHDATE Macro Date formatting OS -
DFHDBAT CSECT CICS-DBCTL adapter/transformer OS 03
DFHDBCON CSECT CICS-DBCTL connection program OS 03
DFHDBCR CSECT CICS-DBCTL XRF tracking program OS 03
DFHDBCT CSECT CICS-DBCTL control program OS 03
DFHDBCTX CSECT CICS-DBCTL control exit OS 03
DFHDBDE CSECT CICS-DBCTL operator transaction map set - 03
DFHDBDI CSECT CICS-DBCTL disable program OS 03
DFHDBDSC CSECT CICS-DBCTL disconnection program OS 03
DFHDBDUF CSECT (OCO) SDUMP formatter for DBCTL, local DL/I, and remote

DL/I
- 03

DFHDBIE CSECT CICS-DBCTL inquiry screens map set OS 03

Chapter 116. CICS directory 2073

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHDBIK CSECT (OCO) CICS-DBCTL inquiry screens map set - 03
DFHDBIQ CSECT CICS-DBCTL inquiry program OS 03
DFHDBME CSECT CICS-DBCTL menu program OS 03
DFHDBMOX CSECT CICS-DBCTL monitoring exit OS 03
DFHDBMP CSECT EDF browse map set - 03
DFHDBMS CSECT EDF browse map set OS 03
DFHDBNE CSECT CICS-DBCTL menu screens map set OS 03
DFHDBNK CSECT (OCO) CICS-DBCTL menu screens map set - 03
DFHDBP CSECT Dynamic backout program OS 03
DFHDBREX CSECT CICS-DBCTL resume exit OS 03
DFHDBSPX CSECT CICS-DBCTL suspend exit OS 03
DFHDBSSX CSECT CICS-DBCTL status exit OS 03
DFHDBSTX CSECT CICS-DBCTL statistics exit OS 03
DFHDBTI CSECT EXEC DLI LD table OS 03
DFHDBTOX CSECT CICS-DBCTL token exit OS 03
DFHDBUCA DSECT COMMAREA passed to DFHDBUEX 11 -
DFHDBUDS DSECT DBCTL unsolicited statistics 11 07
DFHDBUDS DSECT DBCTL unsolicited statistics C2 -
DFHDBUEX CSECT User-replaceable CICS-DBCTL exit 19 03
DFHDC Macro Dump service request 11 -
DFHDCPR CSECT Transaction dump macro-compatibility program OS 03
DFHDCRDS DSECT Transaction dump control record format OS -
DFHDCT Macro Destination control table 11 -
DFHDCTD Macro Destination control table 11 -
DFHDCTDS DSECT Destination control table 11 -
DFHDDBR CSECT (OCO) DD domain - browse Services - 03
DFHDDBRT CSECT (OCO) DDBR trace interpretation data - 03
DFHDDDI CSECT (OCO) DD domain - directory services - 03
DFHDDDIA CSECT (OCO) DDDI parameter list OS -
DFHDDDIM CSECT (OCO) DDDI parameter list OS -
DFHDDDIT CSECT (OCO) DDDI trace interpretation data - 03
DFHDDDM CSECT (OCO) DD domain - domain services - 03
DFHDDDU CSECT (OCO) DD domain - dump browse services - 03
DFHDDDUF CSECT (OCO) DD domain - dump formatting - 03
DFHDDLO CSECT (OCO) DD domain - locate service - 03
DFHDDLOA CSECT (OCO) DDLO parameter list OS -
DFHDDLOM CSECT (OCO) DDLO parameter list OS -
DFHDDLOT CSECT (OCO) DDLO trace interpretation data - 03
DFHDDTRI CSECT (OCO) DD domain - trace interpretation - 03
DFHDEFDS Other JCL to delete and re-create CICS system data sets

unique to each region
02 -

DFHDEIST CSECT DEIS trace interpretation data - 03
DFHDESVT DSECT DESV trace interpretation data - 03
DFHDFST CSECT OS 03
DFHDHDH CSECT Document Handler Domain - 03
DFHDHDHT CSECT - 03
DFHDHDM CSECT Document Handler Domain - 03
DFHDHDUF CSECT DH Document System Dump Formatter - 03
DFHDHEI CSECT DH Document Template EXEC resources - 03
DFHDHPB CSECT - 03
DFHDHPD CSECT - 03
DFHDHPM CSECT - 03
DFHDHPR CSECT DH Document Handler Read PDS routine - 03
DFHDHPS CSECT - 03

2074 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHDHPT CSECT - 03
DFHDHPU CSECT - 03
DFHDHPX CSECT - 03
DFHDHRM CSECT DHRM CDURUN and Gate module - 03
DFHDHRP CSECT Document Handler Recovery Program - 03
DFHDHRPT CSECT - 03
DFHDHSL CSECT Document Handler Domain - 03
DFHDHSLT CSECT - 03
DFHDHTM CSECT DH Document Handler Template Manager - 03
DFHDHTMT CSECT - 03
DFHDHTRI CSECT DH Domain Trace Formatter - 03
DFHDHTXD CSECT 11 -
DFHDHTXH CSECT - 08
DFHDHTXL CSECT - 17
DFHDHTXO CSECT - 07
DFHDHUE CSECT Document Domain (DH) user Exit Services - 03
DFHDI Macro Data interchange request 11 -
DFHDIBDS Macro Data interchange OS -
DFHDIP CSECT Data interchange program OS 03
DFHDIPDY CSECT Data interchange program (dummy) OS 03
DFHDITOP Macro Data interchange internal macro OS -
DFHDKMRA DSECT DKMR parameter list OS -
DFHDKMRM Macro DKMR request OS -
DFHDKMRT CSECT DKMR trace interpretation data - 03
DFHDKTRI CSECT (OCO) DD domain - trace interpreter - 03
DFHDLI CSECT DL/I call router OS 03
DFHDLIAI CSECT Application interface for DL/I OS 03
DFHDLIDP CSECT DBCTL call processor OS 03
DFHDLIRP CSECT DL/I remote call processor OS 03
DFHDLLO@ CSECT - 03
DFHDLP Macro CICS-DL/I interface 11 -
DFHDLPSB Macro Generate DL/I PSB directory list 11 -
DFHDLXDF CSECT DU domain - transaction dump formatter for DL/I

related areas
OS 03

DFHDMDM CSECT (OCO) DM domain - domain initialization/quiesce - 03
DFHDMDMA DSECT DMDM parameter list OS -
DFHDMDMM Macro DMDM request OS -
DFHDMDMT CSECT (OCO) DMDM trace interpretation data - 03
DFHDMDS CSECT (OCO) DM domain - task reply handler - 03
DFHDMDUF CSECT (OCO) SDUMP formatter for DM domain - 03
DFHDMEN CSECT (OCO) Domain manager ENF support - 03
DFHDMENF CSECT (OCO) Domain manager event notification routine - 03
DFHDMENS CSECT (OCO) CICS ENF SRBEXIT - 03
DFHDMENT CSECT (OCO) DMEN translation tables - 03
DFHDMIQ CSECT (OCO) DM domain - browse and inquiry - 03
DFHDMIQA DSECT DMIQ parameter list OS -
DFHDMIQM Macro DMIQ request OS -
DFHDMIQT CSECT (OCO) DMIQ trace interpretation data - 03
DFHDMPB CSECT CSDUP - definition file (CSD) manager, batch

environment router (DFHDMP batch)
OS 03

DFHDMPBA CSECT CSDUP - batch environment adapter OS 03
DFHDMPC CSECT CSD manager - CICS environment router (DFHDMP

CICS)
OS 03

DFHDMPCA CSECT CSD manager - CICS environment adapter OS 03

Chapter 116. CICS directory 2075

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHDMPH Symbolic DM domain - phase definitions OS -
DFHDMRM CSECT (OCO) CSD manager - CSD close routine - 03
DFHDMSVC CSECT (OCO) DM domain - SVC processing routine - 03
DFHDMTRI CSECT (OCO) DM domain - trace interpreter - 03
DFHDMWQ CSECT (OCO) DM domain - wait queue subroutine - 03
DFHDMWQA DSECT DMWQ parameter list OS -
DFHDMWQM Macro DMWQ request OS -
DFHDMWQT CSECT (OCO) DMWQ trace interpretation data - 03
DFHDM01B CSECT CSDUP - connect (DFHDM01 batch) OS 03
DFHDM01C CSECT CSD manager - connect (DFHDM01 CICS) OS 03
DFHDM02B CSECT CSDUP - disconnect (DFHDM02 batch) OS 03
DFHDM02C CSECT CSD manager - disconnect (DFHDM02 CICS) OS 03
DFHDM03B CSECT CSDUP - write (DFHDM03 batch) OS 03
DFHDM03C CSECT CSD manager - write (DFHDM03 CICS) OS 03
DFHDM04B CSECT CSDUP - read (DFHDM04 batch) OS 03
DFHDM04C CSECT CSD manager - read (DFHDM04 CICS) OS 03
DFHDM05B CSECT CSDUP - delete (DFHDM05 batch) OS 03
DFHDM05C CSECT CSD manager - delete (DFHDM05 CICS) OS 03
DFHDM06B CSECT CSDUP - lock/unlock (DFHDM06 batch) OS 03
DFHDM06C CSECT CSD manager - lock/unlock (DFHDM06 CICS) OS 03
DFHDM08B CSECT CSDUP - setbrowse (DFHDM08 batch) OS 03
DFHDM08C CSECT CSD manager - setbrowse (DFHDM08 CICS) OS 03
DFHDM09B CSECT CSDUP - getnext (DFHDM09 batch) OS 03
DFHDM09C CSECT CSD manager - getnext (DFHDM09 CICS) OS 03
DFHDM10B CSECT CSDUP - endbrowse (DFHDM10 batch) OS 03
DFHDM10C CSECT CSD manager - endbrowse (DFHDM10 CICS) OS 03
DFHDM11B CSECT CSDUP - createset (DFHDM11 batch) OS 03
DFHDM11C CSECT CSD manager - createset (DFHDM11 CICS) OS 03
DFHDM12B CSECT CSDUP - eraseset (DFHDM12 batch only) OS 03
DFHDM13B CSECT CSDUP - queryset (DFHDM13 batch) OS 03
DFHDM13C CSECT CSD manager - queryset (DFHDM13 CICS) OS 03
DFHDM15B CSECT CSDUP - read/write control records (DFHDM15

batch)
OS 03

DFHDM15C CSECT CSD manager - read/write control records (DFHDM15
CICS)

OS 03

DFHDM16B CSECT CSDUP - buildkey (DFHDM16 batch) OS 03
DFHDM16C CSECT CSD manager - buildkey (DFHDM16 CICS) OS 03
DFHDM17B CSECT CSDUP - relsekwa (DFHDM17 batch) OS 03
DFHDM17C CSECT CSD manager - relsekwa (DFHDM17 CICS) OS 03
DFHDM18B CSECT CSDUP - tokenize utilities (DFHDM18 batch) OS 03
DFHDM18C CSECT CSD manager - tokenize utilities (DFHDM18 CICS) OS 03
DFHDM19B CSECT CSDUP - free generic tokens chain (DFHDM19 batch) OS 03
DFHDM19C CSECT CSD manager - free generic tokens chain (DFHDM19

CICS)
OS 03

DFHDM21B CSECT CSDUP - generic qualification (DFHDM21 batch) OS 03
DFHDM21C CSECT CSD manager - generic qualification (DFHDM21 CICS) OS 03
DFHDM22B CSECT CSDUP - resequence utility (DFHDM22 batch) OS 03
DFHDM22C CSECT CSD manager - resequence utility (DFHDM22 CICS) OS 03
DFHDM23B CSECT CSDUP - verify key work area (DFHDM23 batch) OS 03
DFHDM23C CSECT CSD manager - verify key work area (DFHDM23

CICS)
OS 03

DFHDNSRT Macro Internal index sorting macro OS -
DFHDRX Macro DL/I resource table OS -

2076 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHDSAT CSECT (OCO) DS domain - attach, change mode, change/set priority,

cancel task
- 03

DFHDSATA DSECT DSAT parameter list OS -
DFHDSATM Macro DSAT request OS -
DFHDSATT CSECT (OCO) DSAT trace interpretation data - 03
DFHDSATX Macro DSAT request (XPI) 11 -
DFHDSATY DSECT DSAT parameter list (XPI) 11 -
DFHDSAUT CSECT (OCO) DS domain - authorized services - 03
DFHDSB CSECT BMS data stream build OS -
DFHDSBA$ CSECT BMS data stream build (standard) OS 03
DFHDSBR CSECT (OCO) DS domain - browse, inquire task - 03
DFHDSBRA DSECT DSBR parameter list OS -
DFHDSBRM Macro DSBR request OS -
DFHDSBRT CSECT (OCO) DSBR trace interpretation data - 03
DFHDSB1$ CSECT BMS data stream build (full) OS 03
DFHDSCPX CSECT (OCO) POST routine for DS WAIT_MVS requests - 03
DFHDSCSA CSECT (OCO) DS domain - update CSA on task dispatch - 03
DFHDSDM CSECT (OCO) DS domain - initialization/termination - 03
DFHDSDSA DSECT DSDS parameter list OS -
DFHDSDSM Macro DSDS request OS -
DFHDSDST CSECT (OCO) DSDS trace interpretation data - 03
DFHDSDS2 CSECT (OCO) DS domain - broadcast new max task limit - 03
DFHDSDS3 CSECT (OCO) DS domain - main dispatch loop - 03
DFHDSDS4 CSECT (OCO) DS domain - task purge routine - 03
DFHDSDUF CSECT (OCO) SDUMP formatter for DS domain - 03
DFHDSGDS DSECT DS domain - global statistics 11 07
DFHDSGDS DSECT DS domain - global statistics C2 -
DFHDSIT CSECT (OCO) DS domain - set/inquire DS parameters - 03
DFHDSITA DSECT DSIT parameter list OS -
DFHDSITM Macro DSIT request OS -
DFHDSITT CSECT (OCO) DSIT trace interpretation data - 03
DFHDSKE CSECT (OCO) DS domain - kernel interfaces - 03
DFHDSND Macro File control data set name 11 -
DFHDSPEX CSECT (OCO) DS domain - MVS POST exit stub - 03
DFHDSRP Sample Distributed Dynamic Routing Program (COBOL) - 07
DFHDSRP Sample Distributed Dynamic Routing Program (C) C2 08
DFHDSRP Sample Distributed Dynamic Routing Program (Asm) 19 03
DFHDSSM CSECT (OCO) DS domain - storage notify handler - 03
DFHDSSR CSECT (OCO) DS domain - suspend/resume/wait - 03
DFHDSSRA DSECT DSSR parameter list OS -
DFHDSSRM Macro DSSR request OS -
DFHDSSRT CSECT (OCO) DSSR trace interpretation data - 03
DFHDSSRV Macro DS domain - inline dispatcher services OS -
DFHDSSRX Macro DSSR request (XPI) 11 -
DFHDSSRY DSECT DSSR parameter list (XPI) 11 -
DFHDSST CSECT (OCO) DS domain - statistics collection - 03
DFHDSSTX CSECT (OCO) DS domain - STIMERM exit - 03
DFHDSTA Macro DBCTL statistics area (DFSDSTA) OS -
DFHDSTCB CSECT (OCO) DS domain - KEDS TCB_REPLY handler - 03
DFHDSTI CSECT DS domain Timer Domain Gate Service Module - 03
DFHDSTIQ Macro DS domain - obtain domain index of task issuing trace

put
OS -

DFHDSTRI CSECT (OCO) DS domain - Trace interpreter - 03
DFHDSTSD DSECT DS domain - Task Area OS -

Chapter 116. CICS directory 2077

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHDSUE CSECT (OCO) DS domain - enable/disable user exits - 03
DFHDTCF CSECT (OCO) Shared data tables connect file PC function - 03
DFHDTCP CSECT (OCO) Shared data tables cell pool management - 03
DFHDTCV CSECT (OCO) Shared data tables connection validation - 03
DFHDTDA CSECT (OCO) Shared data tables data space and ALET code - 03
DFHDTDM CSECT (OCO) Shared data tables data management - 03
DFHDTINS CSECT (OCO) Shared data tables initialization - 03
DFHDTIX CSECT (OCO) Shared data tables index management - 03
DFHDTLA CSECT (OCO) Shared data table load attach - 03
DFHDTLI CSECT (OCO) Shared data tables local initialization - 03
DFHDTLX CSECT (OCO) Shared data tables load transaction - 03
DFHDTPDS DSECT Data tables - services interface block OS -
DFHDTPC CSECT (OCO) Shared data tables program call stub - 03
DFHDTRC CSECT (OCO) Shared data tables remote file connection and

disconnection
- 03

DFHDTRE CSECT (OCO) Shared data tables remote file connection - 03
DFHDTRI CSECT (OCO) Shared data tables remote environment initialization - 03
DFHDTRM CSECT (OCO) Shared data tables record management - 03
DFHDTRR CSECT (OCO) Shared data tables remote retrieval - 03
DFHDTSR CSECT (OCO) Shared data tables shared retrieval - 03
DFHDTSS CSECT (OCO) Shared data table server status - 03
DFHDTST CSECT (OCO) Shared data table state services - 03
DFHDTSVS CSECT (OCO) Shared data tables SVC services - 03
DFHDTUP CSECT (OCO) Shared data tables update and syncpoint services - 03
DFHDTXS CSECT (OCO) Shared data tables connection security - 03
DFHDUDDA DSECT DUDD parameter list OS -
DFHDUDDM Macro DUDD request OS -
DFHDUDDT CSECT DUDD trace interpretation data OS 03
DFHDUDM CSECT DU domain - initialization/termination OS 03
DFHDUDT CSECT DU domain - dump table services OS 03
DFHDUDTA DSECT DUDT parameter list OS -
DFHDUDTM Macro DUDT request OS -
DFHDUDTT CSECT DUDT trace interpretation data OS 03
DFHDUDU CSECT DU domain - take system/transaction dump OS 03
DFHDUDUA DSECT DUDU parameter list OS -
DFHDUDUF CSECT (OCO) SDUMP formatter for DU domain - 03
DFHDUDUM Macro DUDU request OS -
DFHDUDUT CSECT DUDU trace interpretation data OS 03
DFHDUDUX Macro DUDU request (XPI) 11 -
DFHDUDUY DSECT DUDU parameter list (XPI) 11 -
DFHDUF CSECT (OCO) SDUMP formatting router - 03
DFHDUFFT CSECT (OCO) PRDUMP formatter - service functions OS 03
DFHDUFT CSECT (OCO) Dump domain services OS 03
DFHDUFTA DSECT DUFT parameter list OS -
DFHDUFTD DSECT Dump formatting routines parameter declares OS -
DFHDUFTM Macro DUFT macro OS -
DFHDUFTT DSECT (OCO) DUFT translate tables OS 03
DFHDUFTX Macro DUFT macro 11 -
DFHDUFTY DSECT DUFT call structured parameter list 11 -
DFHDUFUT CSECT (OCO) SDUMP formatting - service functions - 03
DFHDUIO CSECT DU domain - open/close/switch/write OS 03
DFHDUIOA DSECT DUIO parameter list OS -
DFHDUIOM Macro DUIO request OS -
DFHDUIOT CSECT DUIO trace interpretation data OS 03

2078 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHDUMPX CSECT DU domain - SDUMPX IEASDUMP.QUERY exit OS 03
DFHDUPH CSECT Dump utility program - dump index summary OS 03
DFHDUPM CSECT Dump utility program - module index OS 03
DFHDUPMC DSECT Dump utility program - parameter block for module

index routine
OS -

DFHDUPP CSECT Dump utility program - I/O routines OS 03
DFHDUPPC DSECT Dump utility program - parameter block for print

routine
OS -

DFHDUPR CSECT Dump utility program - main component OS 03
DFHDUPS CSECT Dump utility program - dump selection OS 03
DFHDUPSC DSECT Dump utility program - parameter block for dump

selection routine
OS -

DFHDUSR CSECT DU domain - dump services OS 03
DFHDUSRA DSECT DUSR parameter list OS -
DFHDUSRM Macro DUSR request OS -
DFHDUSRT CSECT DUSR trace interpretation data OS 03
DFHDUSU CSECT DU domain - subroutines OS 03
DFHDUSUA DSECT DUSU parameter list OS -
DFHDUSUM Macro DUSU request OS -
DFHDUSUT CSECT DUSU trace interpretation data OS 03
DFHDUSVC CSECT DU domain - SVC processing routine OS 03
DFHDUTM CSECT DU domain - dump table manager OS 03
DFHDUTRI CSECT Trace interpreter for DU domain OS 03
DFHDUXD CSECT DU domain - transaction dump control OS 03
DFHDUXFA DSECT DUXF parameter list OS -
DFHDUXFM Macro DUXF request OS -
DFHDUXFT CSECT DUXF trace interpretation data OS 03
DFHDUXW CSECT DU domain - transaction dump buffer control OS 03
DFHDUXWA DSECT DUXW parameter list OS -
DFHDUXWM Macro DUXW request OS -
DFHDUXWT CSECT DUXW trace interpretation data OS 03
DFHDWE Macro Deferred work element OS -
DFHDWEDS DSECT Deferred work element 11 -
DFHDXACH CSECT CICS-DBCTL XRF subtask router OS 03
DFHDXAX CSECT CICS-DBCTL XRF connection handling OS 03
DFHDXCU CSECT CICS-DBCTL XRF catch-up transaction OS 03
DFHDXSTM CSECT CICS-DBCTL XRF subtask manager OS 03
DFHDXUEP DSECT CICS-DBCTL XRF plist to global user exits 11 -
DFHDYP Sample Dynamic routing program C2 07
DFHDYP Sample Dynamic routing program D2 -
DFHDYP CSECT User-replaceable dynamic routing program 19 03
DFHDYPDS DSECT COMMAREA passed to DFHDYP 11 -
DFHDYPDS DSECT COMMAREA passed to DFHDYP C2 07
DFHDYPDS DSECT COMMAREA passed to DFHDYP D2 -
DFHD2CC CSECT DB2 module - 03
DFHD2CCT CSECT DB2 module - 03
DFHD2CMP CSECT DB2 module - 03
DFHD2CM0 CSECT DB2 module - 03
DFHD2CM1 CSECT DB2 module - 03
DFHD2CM2 CSECT DB2 module - 03
DFHD2CM3 CSECT DB2 module - 03
DFHD2COT CSECT DB2 module - 03
DFHD2DUF CSECT DB2 module - 03
DFHD2D2T CSECT DB2 module - 03

Chapter 116. CICS directory 2079

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHD2EDF CSECT DB2 module - 03
DFHD2EXS CSECT DB2 module - 03
DFHD2EX1 CSECT DB2 module - 03
DFHD2EX2 CSECT DB2 module - 03
DFHD2EX3 CSECT DB2 module - 03
DFHD2GDS CSECT DB2 module 11 07
DFHD2INI CSECT DB2 module - 03
DFHD2IN1 CSECT DB2 module - 03
DFHD2IN2 CSECT DB2 module - 03
DFHD2LI CSECT CICS-DB2 stub (Language interface module) - 03
DFHD2MSB CSECT DB2 module - 03
DFHD2RDS CSECT DB2 module 11 07
DFHD2RP CSECT DB2 module - 03
DFHD2SSD CSECT DB2 module OS -
DFHD2ST CSECT DB2 module - 03
DFHD2STP CSECT DB2 module - 03
DFHD2STR CSECT DB2 module - 03
DFHD2TM CSECT DB2 module - 03
DFHD2TMT CSECT DB2 module - 03
DFHD2TRI CSECT DB2 module - 03
DFHEAI CSECT EXEC interface link-edit stub for EXEC calls in

assembler language programs
OS 03

DFHEAI0 CSECT EXEC interface link-edit stub for prolog and epilog
calls in assembler language programs

OS 03

DFHEAMAA CSECT Assembler-language translator - advanced OS 03
DFHEAMEE CSECT Assembler-language translator - error editor OS 03
DFHEAMPA CSECT Assembler-language translator - primary code

generation functions
OS 03

DFHEAMSA CSECT Assembler-language translator - source scanner OS 03
DFHEAM02 CSECT Assembler-language translator - initialization OS 03
DFHEAM07 CSECT Assembler-language translator - options card OS 03
DFHEAM08 CSECT Assembler-language translator - check options OS 03
DFHEAM11 CSECT Assembler-language translator - atomization OS 03
DFHEBBND Sample Part of the CICS EJB sample - 19
DFHEBCBJ Sample Part of the CICS EJB sample - 19
DFHEBCB1 Sample COBOL source for V2ACTDB program - 19
DFHEBCB2 Sample COBOL source for V2CSTDB program - 19
DFHEBCNV Sample EJB Sample COMMAREA Conversion Table - 19
DFHEBDAT Sample Part of the CICS EJB sample - 19
DFHEBDEF Sample CICS EJB Sample Resource Definitions - 19
DFHEBF CSECT EXEC interface for BIF DEEDIT command OS 03
DFHEBGRT Sample Part of the CICS EJB sample - 19
DFHEBRCT CSECT CBRC LD table OS 03
DFHEBREB Sample Part of the CICS EJB sample - 19
DFHEBTAB Sample Part of the CICS EJB sample - 19
DFHEBTAL Other Cataloged procedure to translate, assemble and

link-edit assembler-language application programs
that use EXEC DLI and will run in a batch or CICS
shared database region

- 18

DFHEBTPL Other Cataloged procedure to translate, compile and
link-edit PL/I application programs that use EXEC
DLI and will run in a batch or CICS shared database
region

- 18

2080 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEBTVL Other Cataloged procedure to translate, compile and

link-edit VS COBOL II application programs that use
EXEC DLI and will run in a batch or CICS shared
database region

- 18

DFHEBU CSECT EXEC FMH construction OS 03
DFHECADS DSECT Event control area for interval control elements OS -
DFHECALL Macro EXEC interface call macro for assembler-language 11 -
DFHECB Macro CICS posting and testing of operating system ECBs OS -
DFHECBAM CSECT OS 03
DFHECI CSECT EXEC interface stub for EXEC calls (COBOL) OS 03
DFHECMAC CSECT COBOL translator - advanced code generation

functions
OS 03

DFHECMEE CSECT COBOL translator - error editor OS 03
DFHECMPC CSECT COBOL translator - primary code generation functions OS 03
DFHECMSC CSECT COBOL translator - input scanner OS 03
DFHECM02 CSECT COBOL translator - initialization OS 03
DFHECM07 CSECT COBOL translator - options card OS 03
DFHECM08 CSECT COBOL translator - check options OS 03
DFHECM10 CSECT COBOL translator - analyze program OS 03
DFHECM11 CSECT COBOL translator - atomization OS 03
DFHECM14 CSECT COBOL translator - read input OS 03
DFHECM17 CSECT COBOL translator - generate output OS 03
DFHEDC CSECT EXEC interface for dump control OS 03
DFHEDCP CSECT (OCO) EXEC interface for dump system/transaction - 03
DFHEDFBR CSECT Temporary-storage browse transaction, CEBR OS 03
DFHEDFCB CSECT Build one page OS 03
DFHEDFCC CSECT Parameter copy program OS 03
DFHEDFCE CSECT Extract from one page OS 03
DFHEDFCR CSECT LD table utilities OS 03
DFHEDFCS CSECT CICS special cases OS 03
DFHEDFCX CSECT Display unformatted arguments OS 03
DFHEDFD CSECT EDF display program OS 03
DFHEDFDL CSECT DL/I special cases OS 03
DFHEDFDS DSECT EDF communication area OS -
DFHEDFE CSECT EDF attach error handler OS 03
DFHEDFM CSECT EDF map set OS 03
DFHEDFP CSECT EDF control program OS 03
DFHEDFR CSECT EDF response table OS 03
DFHEDFS CSECT EDF display handling routines OS 03
DFHEDFU CSECT Data utilities OS 03
DFHEDFW CSECT Display working storage OS 03
DFHEDFX CSECT EDF task switch program OS 03
DFHEDI CSECT EXEC interface for data interchange OS 03
DFHEDMAD CSECT C/370 translator - advanced code generation functions OS 03
DFHEDMEE CSECT C/370 translator - error editor OS 03
DFHEDMPD CSECT C/370 translator - primary code generation functions OS 03
DFHEDMSD CSECT C/370 translator - input scanner OS 03
DFHEDM02 CSECT C/370 translator - initialization OS 03
DFHEDM07 CSECT C/370 translator - options card OS 03
DFHEDM08 CSECT C/370 translator - check options OS 03
DFHEDM10 CSECT C/370 translator - analyze program OS 03
DFHEDM11 CSECT C/370 translator - atomization OS 03
DFHEDM14 CSECT C/370 translator - read input OS 03
DFHEDM17 CSECT C/370 translator - generate output OS 03

Chapter 116. CICS directory 2081

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEDP CSECT EXEC DLI command stub OS 03
DFHEEI CSECT EXEC interface for HANDLE, ADDRESS, ASSIGN OS 03
DFHEEX CSECT EXEC FMH extraction OS 03
DFHEGL CSECT EXEC interface for unmapped LU6.2 commands OS 03
DFHEIACQ CSECT (OCO) EXEC ACQUIRE TERMINAL - 03
DFHEIAR Macro EIP arguments macro OS -
DFHEIBAM CSECT - 03
DFHEIBLC DSECT EXEC interface block C2 07
DFHEIBLK DSECT EXEC interface block 11 -
DFHEIBLK DSECT EXEC interface block C2 07
DFHEICDS DSECT EXEC interface COMMAREA 11 -
DFHEICRE DSECT EXEC CICS CREATE command - 03
DFHEIDDS Macro EXEC interface argument 0 descriptor 11 -
DFHEIDH CSECT Document Language Table and EI Layer - 03
DFHEIDI CSECT Address set for COBOL OS -
DFHEIDTI CSECT EXEC ask-time, format-time program OS 03
DFHEIEIA DSECT EIEI parameter list OS -
DFHEIEIM Macro EIEI request OS -
DFHEIEIT CSECT EIEI trace interpretation data OS 03
DFHEIEM CSECT DFHEIEM Design Exec EM request handler - 03
DFHEIEND Macro EXEC interface storage end macro 11 -
DFHEIENT Macro EXEC interface prolog macro 11 -
DFHEIFC Macro File control exec interface module - 03
DFHEIFSP Macro Free space OS -
DFHEIGBL Macro EXEC interface globals definition macro 11 -
DFHEIGDS CSECT Translator table (GDS commands) OS 03
DFHEIGSP Macro Get space OS -
DFHEIIC CSECT (OCO) EXEC interface IC module - 03
DFHEIIF Macro EXEC interface IF macro OS -
DFHEILIA Other Used by DFHEITAL cataloged procedure 11 -
DFHEILIC Other Used by DFHEITCL cataloged procedure C2 -
DFHEILID Other Used by DFHEITDL cataloged procedure D2 -
DFHEILIP Other Used by DFHEITPL cataloged procedure P2 -
DFHEIMDS Macro Master terminal return codes OS -
DFHEIMOP CSECT Translator options OS 03
DFHEIMSG Macro EXEC interface message macro 11 -
DFHEIMV Macro EXEC interface move macro OS -
DFHEIN00 CSECT Interpreter - CECI/CECS program OS 03
DFHEIN01 CSECT Interpreter - control module OS 03
DFHEIN02 CSECT Interpreter - initialization OS 03
DFHEIN03 CSECT CBRC/CECI/CEDA/CEMT - storage manager OS 03
DFHEIN11 CSECT CBRC/CECI - atomization OS 03
DFHEIN12 CSECT Interpreter - argument analysis OS 03
DFHEIN13 CSECT CECI/CEDA/CEMT - diagnosis OS 03
DFHEIN16 CSECT CECI/CEDA/CEMT - binary conversion OS 03
DFHEIN19 CSECT Interpreter - command analysis OS 03
DFHEIN20 CSECT Interpreter - table analysis OS 03
DFHEIN21 CSECT Interpreter - keyword analysis OS 03
DFHEIN22 CSECT Interpreter - special case code OS 03
DFHEIN23 CSECT Interpreter - plist generation OS 03
DFHEIN26 CSECT CECI/CEMT - message editor OS 03
DFHEIN27 CSECT Interpreter - spelling correction OS 03
DFHEIN28 CSECT Interpreter - basic messages OS 03
DFHEIN50 CSECT Interpreter - special displays OS 03

2082 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEIN51 CSECT Interpreter - display extraction OS 03
DFHEIN52 CSECT Interpreter - syntax display OS 03
DFHEIN53 CSECT Interpreter - utilities OS 03
DFHEIN54 CSECT Interpreter - further utilities OS 03
DFHEIP CSECT EXEC (command-level) interface program - 03
DFHEIPA CSECT EXEC interface prolog and epilog code for

assembler-language programs
OS 03

DFHEIPAD Macro EXEC interface intermodule addressing OS -
DFHEIPDS DSECT EXEC interface control blocks 11 -
DFHEIPEL Source EXEC interface layer epilog code OS -
DFHEIPEQ Symbolic EXEC interface EQU statements OS -
DFHEIPER Source EXEC interface error handling data OS -
DFHEIPLR Macro EXEC interface epilog code OS -
DFHEIPLS Macro EXEC interface prolog code OS -
DFHEIPPL Source EXEC interface layer prolog code OS -
DFHEIPRT CSECT (OCO) EXEC interface for perform resettime - 03
DFHEIPSE CSECT (OCO) EXEC interface for perform security - 03
DFHEIPSH CSECT (OCO) EXEC interface for perform shutdown - 03
DFHEIQAS CSECT (OCO) EXEC inquire association - 03
DFHEIQBA CSECT (OCO) EXEC inquire reqid - 03
DFHEIQCF CSECT (OCO) EXEC inquire cfdtpool - 03
DFHEIQDH CSECT (OCO) EXEC inquire doctemplate - 03
DFHEIQDN CSECT (OCO) EXEC inquire/set for external data sets - 03
DFHEIQDS CSECT (OCO) EXEC inquire/set/discard for files - 03
DFHEIQDU CSECT (OCO) EXEC inquire/set for dump data sets and dump codes - 03
DFHEIQD2 CSECT (OCO) - 03
DFHEIQEJ CSECT (OCO) - 03
DFHEIQIR CSECT (OCO) EXEC inquire/set for IRC - 03
DFHEIQMS CSECT (OCO) EXEC inquire/set for monitor and stats - 03
DFHEIQMT CSECT EXEC inquire/set for CEMT-only commands - 03
DFHEIQOP CSECT EXEC inquire requestmodel - 03
DFHEIQPF CSECT (OCO) EXEC inquire/discard for profiles - 03
DFHEIQPN CSECT (OCO) EXEC inquire/discard for partners - 03
DFHEIQRQ CSECT (OCO) EXEC inquire for queued requests (REQIDs) - 03
DFHEIQRR CSECT (OCO) SPI Inquire RRMS Processor - 03
DFHEIQSA CSECT (OCO) EXEC inquire/set for system attributes - 03
DFHEIQSC CSECT (OCO) EXEC inquire/set for connections - 03
DFHEIQSJ CSECT (OCO) EXEC inquire/set for journals or discard for

journalnames
- 03

DFHEIQSK CSECT (OCO) EXEC inquire/set for tasks - 03
DFHEIQSL CSECT (OCO) EXEC inquire/for journalmodel or streamname or

discard for journalmodel
- 03

DFHEIQSM CSECT (OCO) EXEC inquire/set for modenames - 03
DFHEIQSO CSECT (OCO) EXEC inquire tcpip - 03
DFHEIQSP CSECT (OCO) EXEC inquire/set/discard for programs - 03
DFHEIQSQ CSECT (OCO) EXEC inquire/set for TD queues - 03
DFHEIQST CSECT (OCO) EXEC inquire/set for terminals - 03
DFHEIQSV CSECT (OCO) EXEC inquire/set for volumes - 03
DFHEIQSX CSECT (OCO) EXEC inquire/set/discard for transactions - 03
DFHEIQSY CSECT (OCO) - 03
DFHEIQSZ CSECT (OCO) EXEC CICS SPI commands for FEPI - 03
DFHEIQTM CSECT (OCO) EXEC inquire/discard for autinstmodel - 03
DFHEIQTR CSECT (OCO) EXEC inquire/set for trace - 03
DFHEIQTS CSECT (OCO) EXEC inquire for TS queues - 03

Chapter 116. CICS directory 2083

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEIQUE CSECT (OCO) EXEC inquire for exit programs - 03
DFHEIQVT CSECT EXEC inquire/set for VTAM and autoinstall - 03
DFHEIRET Macro EXEC interface epilog macro 11 -
DFHEIS Macro EXEC interface storage 11 -
DFHEISDS DSECT EXEC interface storage definition 11 -
DFHEISEI DSECT EXEC interface structure entry I/F OS -
DFHEISO CSECT (OCO) Sockets Domain API - 03
DFHEISP CSECT (OCO) EXEC interface syncpoint processor - 03
DFHEISR CSECT (OCO) EXEC interface service routines - 03
DFHEISRA DSECT EISR parameter list OS -
DFHEISRM Macro EISR request OS -
DFHEISRT CSECT (OCO) EISR trace interpretation data - 03
DFHEISTG Macro EXEC interface storage start macro 11 -
DFHEITAB CSECT Translator table (basic commands) OS 03
DFHEITAL Other Cataloged procedure to translate, assemble, and

link-edit assembler-language application programs
18 -

DFHEITBS CSECT Translator table (special commands) OS 03
DFHEITCU CSECT RDO offline LD table OS 03
DFHEITDL Other Cataloged procedure to translate, compile, and

link-edit C/370 application programs
18 -

DFHEITHG CSECT EXEC interface hired gun lookup table OS 03
DFHEITMT CSECT Command language table for CEMT OS 03
DFHEITOT CSECT Command language table for CEOT OS 03
DFHEITPL Other Cataloged procedure to translate, compile, and

link-edit PL/I application programs
18 -

DFHEITS CSECT Temporary storage exec layer - 03
DFHEITSP CSECT Language definition table OS 03
DFHEITRD DSECT Trace point IDs for DFHETC OS -
DFHEITST CSECT CEST language definition table OS 03
DFHEITSZ CSECT (OCO) EXEC CICS language definition table - 03
DFHEITTR CSECT EXEC interface lookup table OS 03
DFHEITT2 CSECT EXEC interface level 2 lookup table OS 03
DFHEITUT Source Definition of EIP trace entries OS -
DFHEITVL Other Cataloged procedure to translate, compile, and

link-edit VS COBOL II application programs
18 -

DFHEIUOW DSECT EXEC inquire/set uow, or inquire uoqenq uowlink
and uowdsnfail

- 03

DFHEIUS DSECT EXEC interface storage - USER part OS -
DFHEIVAR DSECT COBOL working storage C2 -
DFHEIWB CSECT CWI Language Table and EXEC Layer - 03
DFHEJBB CSECT EJ Bean Browse - 03
DFHEJBBT CSECT - 03
DFHEJBG CSECT EJ Bean General - 03
DFHEJBGT CSECT - 03
DFHEJC CSECT EXEC interface for journaling OS 03
DFHEJCB CSECT EJ CorbaServer Browse - 03
DFHEJCBT CSECT - 03
DFHEJCG CSECT EJ CorbaServer General - 03
DFHEJCGT CSECT - 03
DFHEJCPT CSECT - 03
DFHEJDB CSECT EJ DJar Browse - 03
DFHEJDBT CSECT - 03
DFHEJDG CSECT EJ DJar General - 03
DFHEJDGT CSECT - 03

2084 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEJDI CSECT DFHEJDI Design EJ Domain EJDI gate functions - 03
DFHEJDIT CSECT - 03
DFHEJDM CSECT EJ Domain Functions - 03
DFHEJDND Sample Distinguished name URM - 19
DFHEJDNH Sample - 19
DFHEJDNL Sample Distinguished name URM - 19
DFHEJDNO Sample Distinguished name URM - 19
DFHEJDNX Sample Distinguished name URM - 03
DFHEJDN1 Sample Distinguished name URM - 19
DFHEJDN2 Sample CICS-supplied C-language version of DFHEJDNX - 19
DFHEJDU CSECT EJ domain EJDU gate functions - 03
DFHEJDUF CSECT Dump interpretation for EJ Domain - 03
DFHEJDUT CSECT - 03
DFHEJECT Macro Page eject/space option 11 -
DFHEJGE CSECT EJ General Operations - 03
DFHEJGET CSECT - 03
DFHEJIO CSECT EJ Domain Functions - 03
DFHEJIOT CSECT - 03
DFHEJIT CSECT EJ Transaction Functions - 03
DFHEJJO CSECT EJ Domain Functions - 03
DFHEJJOT CSECT - 03
DFHEJMI CSECT EJMI CDURUN and Gate Module - 03
DFHEJMID CSECT Message Numbers for the EJ Domain 11 -
DFHEJMIT CSECT - 03
DFHEJOB CSECT Object Store Browse - 03
DFHEJOBT CSECT - 03
DFHEJOS CSECT Object Store Program - 03
DFHEJOST CSECT - 03
DFHEJRDS CSECT 11 07
DFHEJST CSECT EJ Domain - Statistics (STST) gate - 03
DFHEJTBB CSECT - 03
DFHEJTBG CSECT - 03
DFHEJTB1 CSECT - 03
DFHEJTCB CSECT - 03
DFHEJTCG CSECT - 03
DFHEJTC1 CSECT - 03
DFHEJTDB CSECT - 03
DFHEJTDG CSECT - 03
DFHEJTDM CSECT - 03
DFHEJTD1 CSECT - 03
DFHEJTGE CSECT - 03
DFHEJTID Macro Trace Points for the EJ Domain 11 -
DFHEJTIO CSECT - 03
DFHEJTIT CSECT - 03
DFHEJTJO CSECT - 03
DFHEJTRI CSECT EJ Trace Domain interpretation - 03
DFHEJUPA Macro EJ XRSINDI Overlay 11 -
DFHEJXDF CSECT Transaction Dump - JRAS dump info - 03
DFHEKC CSECT EXEC interface for task control OS 03
DFHELII CSECT EXEC interface link-edit stub for C/370 application

programs
OS 03

DFHEMBA CSECT EM Domain - EMBA gate functions - 03
DFHEMBR CSECT EM Domain - EMBR gate functions - 03
DFHEMBRT CSECT - 03

Chapter 116. CICS directory 2085

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEMDM CSECT EM Domain - DMDM gate functions - 03
DFHEMDUF CSECT DFHEMDUF Design - 03
DFHEMEM CSECT EM Domain - EMEM gate functions - 03
DFHEMEMT CSECT - 03
DFHEMEX CSECT EXEC interface for ME domain - 03
DFHEMPID CSECT Monitoring emp-ids 11 -
DFHEMS CSECT EXEC interface for BMS OS 03
DFHEMT00 CSECT Master terminal - CEMT/CEOT/CEST program OS 03
DFHEMT01 CSECT Master terminal - control module OS 03
DFHEMT02 CSECT Master terminal - initialization OS 03
DFHEMT11 CSECT Master terminal - atomization OS 03
DFHEMT12 CSECT Master terminal - argument analysis OS 03
DFHEMT19 CSECT Master terminal - command analysis OS 03
DFHEMT20 CSECT Master terminal - table analysis OS 03
DFHEMT21 CSECT Master terminal - keyword analysis OS 03
DFHEMT22 CSECT Master terminal - special case code OS 03
DFHEMT23 CSECT Master terminal - plist generation OS 03
DFHEMT27 CSECT Master terminal - spelling correction OS 03
DFHEMT50 CSECT Master terminal - special displays OS 03
DFHEMT51 CSECT Master terminal - display extraction OS 03
DFHEMT52 CSECT Master terminal - syntax display OS 03
DFHEMT53 CSECT Master terminal - utilities OS 03
DFHEMT54 CSECT Master terminal - further utilities OS 03
DFHEMT55 CSECT Master terminal - fulists OS 03
DFHEMT56 CSECT Master terminal - execution interface OS 03
DFHEMTRI CSECT DFHEMTRI Design - 03
DFHEND Macro Generate END statement 11 -
DFHENV Macro CICS environment service request OS -
DFHEOP CSECT (OCO) EXEC interface for write operator - 03
DFHEPC CSECT EXEC interface for program control - 03
DFHEPILO Macro Free automatic storage application epilog OS -
DFHEPMAP CSECT PL/I translator - advanced code generation functions OS 03
DFHEPMEE CSECT PL/I translator - error editor OS 03
DFHEPMPP CSECT PL/I translator - primary code generation functions OS 03
DFHEPMSP CSECT PL/I translator - input scanner OS 03
DFHEPM02 CSECT PL/I translator - initialization OS 03
DFHEPM07 CSECT PL/I translator - options card OS 03
DFHEPM08 CSECT PL/I translator - check options OS 03
DFHEPM10 CSECT PL/I translator - analyze program OS 03
DFHEPM11 CSECT PL/I translator - atomization OS 03
DFHEPM14 CSECT PL/I translator - read input OS 03
DFHEPM17 CSECT PL/I translator - generate output OS 03
DFHEPS CSECT System spooling interface stub OS 03
DFHERDUF CSECT (OCO) SDUMP error message index processor - 03
DFHERM CSECT Resource manager interface (RMI) module - 03
DFHERMRS CSECT ERM resync processor - 03
DFHERMSP CSECT ERM syncpoint processor - 03
DFHESC CSECT EXEC interface for storage control OS 03
DFHESE CSECT (OCO) EXEC interface for query security - 03
DFHESN CSECT (OCO) EXEC interface for signon and sign-off - 03
DFHESP00 CSECT RDO - CEDA/CEDB/CEDC program OS 03
DFHESP01 CSECT RDO - CEDA control module OS 03
DFHESP02 CSECT RDO - CEDA initialization OS 03
DFHESP11 CSECT RDO - CEDA atomization OS 03

2086 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHESP12 CSECT RDO - CEDA argument analysis OS 03
DFHESP19 CSECT RDO - CEDA command analysis OS 03
DFHESP20 CSECT RDO - CEDA table analysis OS 03
DFHESP21 CSECT RDO - CEDA keyword analysis OS 03
DFHESP22 CSECT RDO - CEDA special case code OS 03
DFHESP23 CSECT RDO - CEDA plist generation OS 03
DFHESP26 CSECT RDO - CEDA message editor OS 03
DFHESP27 CSECT RDO - CEDA spelling correction OS 03
DFHESP50 CSECT RDO - CEDA special displays OS 03
DFHESP51 CSECT RDO - CEDA display extraction OS 03
DFHESP52 CSECT RDO - CEDA syntax display OS 03
DFHESP53 CSECT RDO - CEDA utilities OS 03
DFHESP54 CSECT RDO - CEDA further utilities OS 03
DFHESP55 CSECT RDO - CEDA fulists OS 03
DFHESZ CSECT (OCO) EXEC CICS API commands for FEPI - 03
DFHETC CSECT EXEC interface for terminal control OS 03
DFHETCB Macro EXEC terminal control block macro OS -
DFHETD CSECT EXEC interface for transient data OS 03
DFHETL CSECT LU6.2 EXEC interface stub OS 03
DFHETR CSECT EXEC interface for trace control OS 03
DFHETRX CSECT (OCO) EXEC interface for enter tracenum, monitor - 03
DFHEXAI CSECT Link-edit stub for assembler-language programs using

CSD offline extract function
OS 03

DFHEXCI CSECT Link-edit stub for COBOL programs using CSD offline
extract function

OS 03

DFHEXDUF CSECT (OCO) EXCI dump formatting routine - 03
DFHEXI CSECT Terminal exceptional input program OS 03
DFHEXLE CSECT OS 03
DFHEXLI CSECT EXCI stub 11 -
DFHEXMAB CSECT Translators - default argument text build OS 03
DFHEXMAN CSECT Translators - statement syntax analysis OS 03
DFHEXMG1 CSECT Translators - EXEC DLI code generator OS 03
DFHEXMG2 CSECT Translators - EXEC CICS code generator OS 03
DFHEXMG3 CSECT Translators - EXEC CICS GDS code generator OS 03
DFHEXMG4 CSECT Translators - EXEC EXCI code generator OS 03
DFHEXMG5 CSECT Translators - CICSPlex SM EXEC CICS command code

generator
- 03

DFHEXMKW CSECT Translators - keyword analysis OS 03
DFHExphE CSECT Translators - fatal error handler OS 03
DFHEXMS1 CSECT Translators - DL/I WHERE operand code generator OS 03
DFHEXMS2 CSECT Translators - EXEC CICS special case code generator OS 03
DFHEXMS3 CSECT Translators - EXEC CICS GDS special case code

generator
OS 03

DFHEXMS4 CSECT Translators - EXEC EXCI special case code generator OS 03
DFHEXMS5 CSECT Translators - EXEC EXCI special case code generator

for CICSPlex SM
- 03

DFHEXMTD CSECT Translators - temporaries declaration OS 03
DFHEXMTG CSECT Translators - EXEC trigger detection OS 03
DFHEXMXK CSECT Translators - syntax checker OS 03
DFHEXMXM CSECT Translators - syntax check error messages OS 03
DFHEXMXS CSECT Translators - syntax check control module OS 03
DFHEXM00 CSECT Translators - control module OS 03
DFHEXM01 CSECT Translators - control module OS 03
DFHEXM05 CSECT Translators - PARM analysis OS 03

Chapter 116. CICS directory 2087

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHEXM06 CSECT Translators - process single option OS 03
DFHEXM09 CSECT Translators - print options OS 03
DFHEXM12 CSECT Translators - match brackets OS 03
DFHEXM13 CSECT Translators - diagnosis OS 03
DFHEXM15 CSECT Translators - I/O module OS 03
DFHEXM16 CSECT Translators - conversions OS 03
DFHEXM18 CSECT Translators - insert in I/O buffer OS 03
DFHEXM25 CSECT Translators - print xref OS 03
DFHEXM27 CSECT Translators - spelling correction OS 03
DFHEXPI CSECT Link-edit stub for PL/I programs using CSD offline

extract function
OS 03

DFHEXTAL Other Cataloged procedure to translate, assemble, and
link-edit Assembler- language application programs
(EXCI)

18 -

DFHEXTDL Other Cataloged procedure to translate, compile, and
link-edit C/370 application programs (EXCI)

18 -

DFHEXTM Macro Dummy macro for DOS compatibility OS -
DFHEXTPL Other Cataloged procedure to translate, compile, and

link-edit PL/I application programs (EXCI)
18 -

DFHEXTRI Macro EXCI trace interpretation routine - 03
DFHEXTVL Other Cataloged procedure to translate, compile, and

link-edit VS COBOL II application programs (EXCI)
18 -

DFHFAUED DSECT - 11
DFHFBPDS DSECT File buffer pool control block OS -
DFHFCAT CSECT File control catalog manager OS 03
DFHFCATA DSECT FCAT parameter list OS -
DFHFCATM Macro FCAT request OS -
DFHFCATT CSECT FCAT translate tables OS 03
DFHFCBD CSECT File control BDAM request processor OS 03
DFHFCCA CSECT (OCO) File control RLS control ACB manager - 03
DFHFCCAT CSECT (OCO) FCCA translate tables - 03
DFHFCCRT CSECT - 03
DFHFCCTT CSECT - 03
DFHFCCUT CSECT - 03
DFHFCDL CSECT File control CFDT Load - 03
DFHFCDN CSECT (OCO) File control DSN block manager - 03
DFHFCDNA DSECT FCDN parameter list OS -
DFHFCDNM Macro FCDN request OS -
DFHFCDNT CSECT (OCO) FCDN translate tables - 03
DFHFCDO CSECT File control CFDT Open/Close - 03
DFHFCDR CSECT FC CF data table request handler - 03
DFHFCDST CSECT - 03
DFHFCDTS CSECT (OCO) Shared data table request program - 03
DFHFCDTX CSECT (OCO) File control shared data table function ship program - 03
DFHFCDU CSECT File control CFDT Recovery Control - 03
DFHFCDUF CSECT (OCO) File control SDUMP formatter - 03
DFHFCDUT CSECT - 03
DFHFCDW CSECT File control CFDT Recovery Control - 03
DFHFCDY CSECT File control CFDT Recovery Resynchronization - 03
DFHFCDYT CSECT - 03
DFHFCEDS DSECT File control EXEC argument list 11 -
DFHFCES CSECT (OCO) File control ENF servicer - 03
DFHFCFL CSECT (OCO) File control FRAB/FLAB processor - 03
DFHFCFLA DSECT FCFL parameter list OS -

2088 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHFCFLI Macro File control test file user OS -
DFHFCFLM Macro FCFL request OS -
DFHFCFLT CSECT FCFL translate tables - 03
DFHFCFR CSECT File control file request handler OS 03
DFHFCFRA DSECT FCFR parameter list OS -
DFHFCFRM Macro FCFR request OS -
DFHFCFRT CSECT FCFR trace interpretation data OS 03
DFHFCFS CSECT File control file state program OS 03
DFHFCFSA DSECT FCFS parameter list OS -
DFHFCFSM Macro FCFS request OS -
DFHFCFST CSECT FCFS translate tables OS 03
DFHFCINA DSECT FCIN parameter list OS -
DFHFCINM Macro FCIN request OS -
DFHFCINT CSECT FCIN translate tables OS 03
DFHFCIN1 CSECT File control initialization program 1 OS 03
DFHFCIN2 CSECT File control initialization program 2 OS 03
DFHFCIR CSECT (OCO) File control initialize recovery module - 03
DFHFCL CSECT File control VSAM LSR pool processor OS 03
DFHFCLF CSECT (OCO) File control logger failures - 03
DFHFCLGD CSECT File control part of log record 11 -
DFHFCLJ CSECT (OCO) File control logging and journaling - 03
DFHFCLJA DSECT FCLJ parameter list OS -
DFHFCLJM Macro FCLJ request OS -
DFHFCLJT CSECT FCLJ translate tables - 03
DFHFCLTD DSECT File control logger user token 11 -
DFHFCM CSECT File control VSAM KSDS base open/close OS 03
DFHFCMT CSECT (OCO) File control table manager - 03
DFHFCMTA DSECT FCMT parameter list OS -
DFHFCMTM Macro FCMT request OS -
DFHFCMTT CSECT (OCO) FCMT translate tables - 03
DFHFCN CSECT File control open/close program OS 03
DFHFCNC Source File control - close request OS -
DFHFCNO Source File control - open request OS -
DFHFCNQ CSECT (OCO) File control non-RLS lock handler - 03
DFHFCOR CSECT (OCO) File control RLS offsite recovery completion - 03
DFHFCQI CSECT File control - VSAM RLS quiesce initiation module - 03
DFHFCQIT DSECT FCQI translate tables - 03
DFHFCQR CSECT (OCO) File control - VSAM RLS quiesce receive module - 03
DFHFCQRT DSECT FCQR translate tables - 03
DFHFCQS CSECT (OCO) File control - VSAM RLS quiesce send module - 03
DFHFCQST DSECT FCQS translate tables - 03
DFHFCQT CSECT (OCO) File control - VSAM RLS quiesce - common system

transaction
- 03

DFHFCQU CSECT (OCO) File control - VSAM RLS quiesce process module - 03
DFHFCQUT DSECT FCQU translate tables - 03
DFHFCQX CSECT (OCO) File control - VSAM RLS quiesce exit module - 03
DFHFCRC CSECT (OCO) File control recovery control - 03
DFHFCRD CSECT (OCO) File control VSAM RLS post server-failure recovery - 03
DFHFCRF CSECT File control Remote Interface - 03
DFHFCRFA CSECT FCRF interface parameter area 11 -
DFHFCRFM Macro DFHFCRF interface macro OS -
DFHFCRFT CSECT - 03
DFHFCRL CSECT (OCO) File control VSAM SHRCTL block manager - 03
DFHFCRLA DSECT FCRL parameter list OS -

Chapter 116. CICS directory 2089

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHFCRLM Macro FCRL request OS -
DFHFCRLT CSECT (OCO) FCRL translate tables - 03
DFHFCRO CSECT (OCO) File control VSAM RLS open/close processor - 03
DFHFCRP CSECT File control restart program OS 03
DFHFCRPA DSECT FCRP parameter list OS -
DFHFCRPM Macro FCRP request OS -
DFHFCRPT CSECT FCRP translate tables OS 03
DFHFCRR CSECT (OCO) File control RLS restart program - 03
DFHFCRRT CSECT FCRR translate tables - 03
DFHFCRS CSECT (OCO) File control RLS record management program - 03
DFHFCRV CSECT (OCO) File control RLS VSAM interface program - 03
DFHFCSD CSECT File control shutdown program OS 03
DFHFCSDA DSECT FCSD parameter list OS -
DFHFCSDM Macro FCSD request OS -
DFHFCSDS DSECT File control static storage 11 -
DFHFCSDT CSECT FCSD translate tables OS 03
DFHFCST CSECT File control statistics program OS 03
DFHFCSTA DSECT FCST parameter list OS -
DFHFCSTM Macro FCST request OS -
DFHFCSTT CSECT FCST translate tables OS 03
DFHFCT Macro File control table 11 -
DFHFCTDS DSECT File control table entry 11 -
DFHFCTRN Symbolic File control trace, message, and catalog OS -
DFHFCTSP Macro FCT shared resources control block generator 11 -
DFHFCTSR DSECT FCT shared resources control block 11 -
DFHFCU CSECT File open utility program OS 03
DFHFCVR CSECT File control VSAM interface program OS 03
DFHFCVS CSECT File access VSAM request processor OS 03
DFHFCWS Macro File control work areas OS -
DFHFCXDF CSECT DU domain - transaction dump formatter for

file-related areas
OS 03

DFHFEP CSECT Field engineering program OS 03
DFHFIOA DSECT File input/output area OS -
DFHFLABD DSECT File lasting access block OS -
DFHFMH Macro Function management header OS -
DFHFMHDS DSECT Function management header 11 -
DFHFMIDS Symbolic Function and module identifiers 11 -
DFHFORMS CSECT - 03
DFHFRABD DSECT File request anchor block OS -
DFHFRDUF CSECT (OCO) File control recoverable work elements SDUMP

formatter
- 03

DFHFRTED DSECT File request thread element OS -
DFHFTDUF CSECT (OCO) Print feature 'FT' keyword processor - 03
DFHFTTRI CSECT (OCO) Offline TR entries trace interpretation OS 03
DFHGCAA CSECT Language Environment - get common anchor area OS 03
DFHGDEFS Symbolic CICS global symbol definitions 11 -
DFHGMM CSECT VTAM LU startup message OS 03
DFHHASH Macro Locate TCTTE entries OS -
DFHHLPDS DSECT DL/I interface block D3 -
DFHHLPDS Macro CICS-IMS HLPI control blocks OS 08
DFHHMDCD DSECT Handle manager table block OS -
DFHHPSVC CSECT HPO type 6 SVC OS 03
DFHIC Macro Time service request 11 -
DFHICDUF CSECT (OCO) Interval control SDUMP formatter - 03

2090 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHICEDS DSECT Interval control element 11 -
DFHICP CSECT Interval control program OS 03
DFHICRC CSECT Interval control recovery module - 03
DFHICUED CSECT EXEC argument list for Interval Control 11 -
DFHICXM CSECT AP domain - bind, inquire, and release facility IC

functions
OS 03

DFHICXMA DSECT ICXM parameter list OS -
DFHICXMM Macro ICXM request OS -
DFHICXMT CSECT ICXM translate tables OS 03
DFHIEDM CSECT IE Domain Initialization/Termination - 03
DFHIEDUF CSECT IE Domain System Dump Formatting - 03
DFHIEIE CSECT IP ECI Listener - 03
DFHIEIEA CSECT IEIE interface parameter area OS -
DFHIEIEM Macro DFHIEIE interface macro OS -
DFHIEIET CSECT - 03
DFHIEP CSECT - 03
DFHIETRI CSECT IP ECI Domain Trace Interpretation - 03
DFHIEXM CSECT - 03
DFHIHFSA CSECT - 02
DFHIHFS0 CSECT - 02
DFHIHFS1 CSECT - 02
DFHIICP CSECT IIOP Command Processor - 03
DFHIIDM CSECT II Domain Initialization/Termination - 03
DFHIIDUF CSECT II Domain System Dump Formatting - 03
DFHIILST CSECT - 03
DFHIIMM CSECT DFHIIMM Design II domain - IIMM gate functs. - 03
DFHIIMT CSECT - 03
DFHIIP CSECT BMS non-3270 input mapping OS -
DFHIIPA$ CSECT BMS non-3270 input mapping (standard) OS 03
DFHIIP1$ CSECT BMS non-3270 input mapping (full) OS 03
DFHIIRDS DSECT 11 07
DFHIIRH DSECT IIOP Request Handler - 03
DFHIIRHT DSECT - 03
DFHIIRP CSECT IIOP Request Processor - 03
DFHIIRPT DSECT - 03
DFHIIRQ CSECT DFHIIRQ Design - 03
DFHIIRQT CSECT - 03
DFHIIRR CSECT IIOP Request Receiver - 03
DFHIIRRS CSECT - 03
DFHIIRRT CSECT - 03
DFHIIST CSECT II Domain - Statistics (STST) gate - 03
DFHIITRI CSECT IIOP Domain Trace Interpretation - 03
DFHIIURH CSECT - 08
DFHIIXM CSECT IIOP Attach Client - 03
DFHIJVME Other Customize a member of the SDFHENV library 02 -
DFHIJVMJ Other 02 -
DFHILG1 Other Define logstream CF structures to MVS logger 02 -
DFHILG2 Other Define logstream models for system log streams 02 -
DFHILG3 Other Define logstream models for individual CICS region 02 -
DFHILG4 Other Define specific logstream for log of logs 02 -
DFHILG5 Other 02 -
DFHILG6 Other 02 -
DFHILG7 Other 02 -
DFHIMSDS DSECT ISC message inserts 11 -

Chapter 116. CICS directory 2091

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHINDAP CSECT Indoubt tool - 03
DFHINDSP CSECT Indoubt tool syncpoint processor - 03
DFHINDT CSECT Indoubt tool - 03
DFHINST Other TSO CLIST to generate installation jobs 02 -
DFHINSTA Other JCL to create an additional target zone, CSI, and set of

target libraries
02 -

DFHINSTJ Other JCL to RECEIVE, APPLY, and ACCEPT the Japanese
language feature

02 -

DFHINST1 Other JCL to allocate and catalog CICS target and
distribution libraries

02 -

DFHINST2 Other JCL to allocate and catalog CICS RELFILE data sets 02 -
DFHINST3 Other JCL to allocate and catalog CICS SMP/E data sets 02 -
DFHINST4 Other JCL to initialize CICS SMP/E data sets 02 -
DFHINST5 Other JCL to RECEIVE the CICS base-level function

SYSMOD
02 -

DFHINST6 Other JCL to APPLY and ACCEPT the CICS base- level
function SYSMOD

02 -

DFHINTRU CSECT Indoubt tool task related user exit - 03
DFHIONCD Other Replace DDDEFS for Language Environment or

TCP/IP libraries in SMP/E target zone
02 -

DFHIONCL Other Relink-edit DFHRPRP load module outside SMP/E 02 -
DFHIPCSP Other IPCS parmlib imbed member for DFHPDxxxx - 15
DFHIPDUF CSECT (OCO) SDUMP formatter for kernel stack internal procedures - 03
DFHIPUBS Other 02 -
DFHIR Macro Interregion request - 11
DFHIRP CSECT Interregion communication program OS 03
DFHIRPAD Source IRC dynamic add of connections routines OS -
DFHIRPC Source IRC connect and disconnect routines OS -
DFHIRPCL Source IRC clear and logoff routines OS -
DFHIRPD Macro IRC program internal control blocks 11 -
DFHIRPL Source IRC logon routines OS -
DFHIRPM Source IRC subroutines OS -
DFHIRPQ Source IRC in-service and quiesce routines OS -
DFHIRPR Source IRC recovery routines OS -
DFHIRPS Source IRC subroutines OS -
DFHIRPSP Source IRC SRB processor OS -
DFHIRPSW Source IRC switch and pull routines OS -
DFHIRRDS Macro Interregion session recovery data stream 11 -
DFHIRRXD Sample IRC XCF retry DIE subroutine OS -
DFHIRRXP Sample IRC XCF termination subroutine OS -
DFHIRRXS Sample IRC XCF SRB processor OS -
DFHIRSDS DSECT Interregion subsystem control blocks 11 -
DFHIRW10 CSECT IRC work delivery exit program OS 03
DFHIS Macro ISC request OS -
DFHISCRQ Macro ISC request parameter list 11 -
DFHISMKD Other 02 -
DFHISP CSECT Intersystem communication program OS 03
DFHISTAR Other JCL to invoke DFHINST 02 -
DFHIVPBT Other IVP (batch) to verify CICS startup 02 -
DFHIVPDB Other IVP to verify CICS running with DBCTL 02 -
DFHIVPOL Other IVP (online) to verify CICS, without DL/I 02 -
DFHJC Macro Journal service request OS -
DFHJCA Macro Journal control area definition 11 -
DFHJCADS DSECT Journal control area 11 -

2092 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHJCDLG CSECT Autocall SCEEOBJ - 03
DFHJCDLL CSECT Autocall SCEEOBJ - 03
DFHJCIMP CSECT - 20
DFHJCJCA DSECT JCJC parameter list OS -
DFHJCJCM Macro JCJC request OS -
DFHJCJCT CSECT JCJC trace interpretation data OS 03
DFHJCJCX Macro JCJC request (XPI) 11 -
DFHJCJCY DSECT JCJC parameter list (XPI) 11 -
DFHJCP CSECT Journal control program - 03
DFHJCR Macro Journal control record 11 -
DFHJCSTC CSECT - 03
DFHJHPA@ CSECT - 03
DFHJHPAT Sample Java Hotpooling Pre-Call URM - 19
DFHJUP CSECT Journal control print utility OS 03
DFHJVCV@ CSECT - 03
DFHJVMA@ CSECT Autocall SCEEOBJ - 03
DFHJVMAT Sample CICS JVM Interface user replaceable module - 19
DFHJVMPR Other - 09
DFHJVMPS Other - 09
DFHJVTRI CSECT - 03
DFHKC Macro Task service request 11 -
DFHKCQ CSECT Transaction manager - secondary requests OS 03
DFHKCRP CSECT Task control restart program OS 03
DFHKCSC CSECT DFHKCQ chain scanning for discard OS 03
DFHKCSCA DSECT KCSC parameter list OS -
DFHKCSCM Macro KCSC request OS -
DFHKCSCT CSECT KCSC trace interpretation data OS 03
DFHKCSP CSECT Task SRB control program OS 03
DFHKEALI Macro KE domain - label alignment OS -
DFHKEAR CSECT (OCO) KE domain - MVS ARM support services - 03
DFHKEARA DSECT KEAR parameter list OS -
DFHKEARM Macro KEAR request OS -
DFHKEART CSECT (OCO) KEAR trace interpretation data - 03
DFHKEDCL CSECT (OCO) KE domain - domain call request handler - 03
DFHKEDD CSECT (OCO) KE domain - domain definition services - 03
DFHKEDDA DSECT KEDD parameter list OS -
DFHKEDDM Macro KEDD request OS -
DFHKEDDT CSECT (OCO) KEDD trace interpretation data - 03
DFHKEDRT CSECT (OCO) KE domain - domain return request handler - 03
DFHKEDS CSECT (OCO) KE domain - dispatcher interfaces - 03
DFHKEDSA DSECT KEDS parameter list OS -
DFHKEDSI Macro KE domain - optimize kernel path lengths OS -
DFHKEDSM Macro KEDS request OS -
DFHKEDST CSECT (OCO) KEDS trace interpretation data - 03
DFHKEDSX Macro KEDS request 11 -
DFHKEDSY CSECT KEDS parameter list 11 -
DFHKEDUF CSECT (OCO) SDUMP formatter for KE domain - 03
DFHKEEDA CSECT (OCO) KE domain - execute deferred abend - 03
DFHKEENV Macro KE domain - declare/switch environment 11 -
DFHKEGD CSECT (OCO) KE domain - global data services - 03
DFHKEGDA DSECT KEGD parameter list OS -
DFHKEGDM Macro KEGD request OS -
DFHKEGDT CSECT (OCO) KEGD trace interpretation data - 03
DFHKEIN CSECT (OCO) KE domain - initialization - 03

Chapter 116. CICS directory 2093

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHKEINA DSECT KEIN parameter list OS -
DFHKEINM Macro KEIN request OS -
DFHKEINT CSECT (OCO) KEIN trace interpretation data - 03
DFHKELCL CSECT (OCO) KE domain - LIFO push simulation - 03
DFHKELOC CSECT (OCO) SDUMP routine for locating domain anchors - 03
DFHKELRT CSECT (OCO) KE domain - LIFO return/pop simulation - 03
DFHKEMD Macro KE domain - domain/subroutine prolog code OS -
DFHKEPUB DSECT KE domain - some control blocks OS -
DFHKERCD CSECT (OCO) KE domain - kernel error data construction - 03
DFHKERER CSECT (OCO) KE domain - record error routine - 03
DFHKERET CSECT (OCO) KE domain - reset address service - 03
DFHKERKE CSECT (OCO) KE domain - KERNERROR response handler - 03
DFHKERN Macro KE domain - generate call to kernel 11 -
DFHKERPC CSECT (OCO) KE domain - recovery percolation - 03
DFHKERRI CSECT (OCO) KE domain - recovery invocation - 03
DFHKERRQ CSECT (OCO) KE domain - recovery request service - 03
DFHKERRU CSECT (OCO) KE domain - runaway task error handler - 03
DFHKERRX CSECT (OCO) KE domain - recovery exit service - 03
DFHKESCL CSECT (OCO) KE domain - subroutine call handler - 03
DFHKESFM CSECT (OCO) KE domain - disposable segments freemain - 03
DFHKESGM CSECT (OCO) KE domain - new stack segments getmain - 03
DFHKESIP CSECT (OCO) KE domain - system initialization program - 03
DFHKESRT CSECT (OCO) KE domain - subroutine return handler - 03
DFHKESTP DSECT KE domain - kernel stack structure OS -
DFHKESTX CSECT (OCO) KE domain - kernel ESTAE exit - 03
DFHKESVC CSECT (OCO) KE domain - authorized service routine - 03
DFHKETA CSECT (OCO) KE domain - task reply services - 03
DFHKETAB CSECT (OCO) KE domain - list of domains requiring preinitialization

on CICS run
- 03

DFHKETB2 CSECT (OCO) KE domain - list of domains requiring preinitialization
on DFHSTUP run

- 03

DFHKETCB CSECT (OCO) KE domain - kernel TCB startup routine - 03
DFHKETI CSECT (OCO) KE domain - timer services - 03
DFHKETIA DSECT KETI parameter list OS -
DFHKETIM Macro KETI request OS -
DFHKETIT CSECT (OCO) KETI trace interpretation data - 03
DFHKETIX CSECT (OCO) KE domain - STIMER exit - 03
DFHKETXR CSECT KE ETXR - 03
DFHKEXM CSECT (OCO) KE domain - XM domain services - 03
DFHKEXMA DSECT KEXM parameter list OS -
DFHKEXMM Macro KEXM request OS -
DFHKEXMT CSECT (OCO) KEXM trace interpretation data OS 03
DFHKETRI CSECT (OCO) Trace interpreter for KE domain - 03
DFHLANG Other List of National Languages for CICS - alias for

MEULANG
10 -

DFHLDDM CSECT (OCO) LD domain - initialization/termination - 03
DFHLDDMI CSECT (OCO) LD domain - secondary initialization - 03
DFHLDDUF CSECT (OCO) SDUMP formatter for LD domain - 03
DFHLDGDS DSECT LD domain - global statistics 11 -
DFHLDGDS DSECT LD domain - global statistics C2 07
DFHLDGDS DSECT LD domain - global statistics P2 -
DFHLDLDA DSECT LDLD parameter list OS -
DFHLDLDM Macro LDLD request OS -
DFHLDLDT CSECT (OCO) LDLD trace interpretation data - 03

2094 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHLDLDX Macro LDLD request (XPI) 11 -
DFHLDLDY DSECT LDLD parameter list (XPI) 11 -
DFHLDLD1 CSECT (OCO) LD domain - acquire/release/refresh - 03
DFHLDLD2 CSECT (OCO) LD domain - define/delete - 03
DFHLDLD3 CSECT (OCO) LD domain - general functions - 03
DFHLDNT CSECT (OCO) LD domain - storage notify handler - 03
DFHLDRDS DSECT LD domain - program statistics 11 -
DFHLDRDS DSECT LD domain - program statistics C2 07
DFHLDST CSECT (OCO) LD domain - statistics collection - 03
DFHLDSUA DSECT LDSU parameter list OS -
DFHLDSUM Macro LDSU request OS -
DFHLDSUT CSECT (OCO) LDSU trace interpretation data - 03
DFHLDSVC CSECT (OCO) LD domain - authorized service routine - 03
DFHLDTRI CSECT (OCO) Trace interpreter for LD domain - 03
DFHLEAS CSECT ADD SUBPOOL service - 03
DFHLEDS CSECT DELETE SUBPOOL service - 03
DFHLEDT CSECT Transaction Dump service - 03
DFHLEFM CSECT GETMAIN service - 03
DFHLEFQ CSECT Quickcell freemain service - 03
DFHLEGM CSECT GETMAIN service - 03
DFHLEGQ CSECT Quickcell getmain service - 03
DFHLERO CSECT Runtime options service - 03
DFHLESRV Macro CICS Service routine vector 11 -
DFHLETR CSECT Trace servicve routine - 03
DFHLETRM Macro LE Trace Service invocation macro 11 -
DFHLFM Macro LIFO macro 11 -
DFHLFT Macro LIFO trace macro 11 -
DFHLFX Macro LIFO stack entry 11 -
DFHLGBAA DSECT LGBA parameter list 11 -
DFHLGBAM Macro LGBA request OS -
DFHLGBAT DSECT (OCO) LGBA translate tables - 03
DFHLGCBT DSECT LGCB translate tables - 03
DFHLGCCA CSECT (OCO) LGCC parameter list OS -
DFHLGCCM Macro LGCC request OS -
DFHLGCCT DSECT (OCO) LGCC translate tables - 03
DFHLGDM CSECT (OCO) Logger domain - domain initialization - 03
DFHLGDUF CSECT (OCO) Log Manager domain dump formatting - 03
DFHLGFLD DSECT Log Manager log of log format 11 -
DFHLGGFD DSECT Log Manager general log format 11 -
DFHLGGL CSECT (OCO) Log Manager general log gate module - 03
DFHLGGLA CSECT (OCO) LGGL parameter list OS -
DFHLGGLI CSECT (OCO) Journal number to name conversion OS -
DFHLGGLM Macro LGGL request OS -
DFHLGGLT DSECT (OCO) LGGL translate tables - 03
DFHLGICV CSECT (OCO) LG SSI log record conversion to old format - 03
DFHLGIGT DSECT LG LOGR SSI dataset GET exit - 03
DFHLGILA CSECT (OCO) LG Subsystem exit - lexical analyzer - 03
DFHLGIMS CSECT (OCO) LG Subsystem exit - syntax message composer - 03
DFHLGIPA CSECT (OCO) LG Subsystem exit - parser - 03
DFHLGIPI CSECT (OCO) LG Subsystem exit - parse interface routine - 03
DFHLGISM CSECT (OCO) LG Subsystem exit - parse message exits - 03
DFHLGJN CSECT (OCO) Log Manager journal inventory gate module - 03
DFHLGJNT DSECT (OCO) LGJN translate tables - 03
DFHLGLBA CSECT (OCO) LGLB parameter list OS -

Chapter 116. CICS directory 2095

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHLGLBM Macro LGLB request OS -
DFHLGLBT DSECT (OCO) LGLB translate tables - 03
DFHLGLD CSECT (OCO) Log Manager JournalModel gate - 03
DFHLGLDT DSECT (OCO) LGLD translate tables - 03
DFHLGMSD CSECT (OCO) Log Manager MVS SMF log format 11 -
DFHLGMVA CSECT (OCO) LGMV parameter list OS -
DFHLGMVM Macro LGMV request OS -
DFHLGMVT DSECT LGMV translate tables - 03
DFHLGPA CSECT (OCO) Logger Domain - inquire/set parameters - 03
DFHLGPAA CSECT (OCO) LGPA parameter list OS -
DFHLGPAM Macro LGPA request OS -
DFHLGPAT DSECT (OCO) LGPA translate tables - 03
DFHLGPAX Macro Log Manager parameter manager PLIST 11 -
DFHLGPAY DSECT Log Manager parameter manager PLIST 11 -
DFHLGQC CSECT (OCO) Log Manager RLS cleanup - 03
DFHLGRDS CSECT (OCO) Log Manager journal statistics 11 -
DFHLGRDS CSECT (OCO) Log Manager journal statistics C2 07
DFHLGSC CSECT (OCO) Log Manager statistics collection - 03
DFHLGSDS CSECT (OCO) Log Manager logstream statistics 11 -
DFHLGSDS CSECT (OCO) Log Manager logstream statistics C2 07
DFHLGSRA CSECT (OCO) LGSR parameter list OS -
DFHLGSRT DSECT (OCO) LGSR translate tables OS 03
DFHLGSSI CSECT (OCO) Log Manager LOGR SSI dataset exit - 03
DFHLGST CSECT (OCO) Log Manager stream connection gate - 03
DFHLGSTT DSECT (OCO) LGST translate tables - 03
DFHLGTRI CSECT (OCO) Logger - trace interpretation - 03
DFHLGWFT DSECT LGWF translate tables - 03
DFHLIFO DSECT KE domain - LIFO control blocks OS -
DFHLILBD Source Language interface program language block OS -
DFHLILIA Source Language interface parameter list OS -
DFHLILII Source AP domain - Perform goto call to language interface OS -
DFHLILIM Source Language interface services OS -
DFHLILIT CSECT (OCO) Language interface trace interpretation data - 03
DFHLIRET CSECT (OCO) Language interface return program - 03
DFHLITRI CSECT (OCO) Language interface trace interpreter - 03
DFHLIWAD Source Language interface work area OS -
DFHLI000 Macro 11 -
DFHLLDC DSECT Local logical device code table 11 -
DFHLLDLI DSECT DLI call level api macro (alias of CALLDLI) 11 -
DFHLMDM CSECT (OCO) LM domain - initialization/termination - 03
DFHLMDS CSECT (OCO) LM domain - dispatcher notify handler - 03
DFHLMDUF CSECT (OCO) SDUMP formatter for LM domain - 03
DFHLMIQ CSECT (OCO) LM domain - browse and inquiry - 03
DFHLMIQA DSECT LMIQ parameter list OS -
DFHLMIQM Macro LMIQ request OS -
DFHLMIQT CSECT (OCO) LMIQ trace interpretation data - 03
DFHLMLM CSECT (OCO) LM domain - services - 03
DFHLMLMA DSECT LMLM parameter list OS -
DFHLMLMI CSECT OS -
DFHLMLMM Macro LMLM request OS -
DFHLMLMT CSECT (OCO) LMLM trace interpretation data - 03
DFHLMTRI CSECT (OCO) Trace interpreter for LM domain - 03
DFHLNKVS Other Cataloged procedure to link-edit CICS programs and

application programs
18 -

2096 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHLOCK Macro KE domain - lock/unlock TCB entry OS -
DFHLONGN Other LD dllload long name conversion - 03
DFHLPUMD Other JCL to RECEIVE and APPLY the DFH$UMOD SMP/E

USERMOD
02 -

DFHLSTNT CSECT - 03
DFHLTRC CSECT Local terminal recovery module - 03
DFHLUC Macro LU6.2 service request OS -
DFHLUCM Macro LU6.2 migration request OS -
DFHLUS Macro LU6.2 services manager driver macro OS -
DFHL2BA CSECT (OCO) Log Manager LGBA gate - 03
DFHL2BL1 CSECT (OCO) Logger block initialize class procedure - 03
DFHL2BL2 CSECT (OCO) Logger block restore current position - 03
DFHL2BS1 CSECT (OCO) Obtain and initialize BrowseableStream class data - 03
DFHL2BS2 CSECT (OCO) Construct a BrowseableStream object and return to

caller
- 03

DFHL2BS3 CSECT (OCO) Destroy a BrowseableStream object - 03
DFHL2BS4 CSECT (OCO) Terminate all browseable stream instances known to

BrowseableStream class
- 03

DFHL2CB CSECT (OCO) Log Manager LGCB gate - 03
DFHL2CC CSECT (OCO) Log Manager LGCC gate - 03
DFHL2CHA CSECT (OCO) Logger chain start browse all procedure - 03
DFHL2CHE CSECT (OCO) Logger chain delete history procedure - 03
DFHL2CHG CSECT (OCO) Logger chain get next chain procedure - 03
DFHL2CHH CSECT (OCO) Logger chain start browse chains procedure - 03
DFHL2CHI CSECT (OCO) Logger chain end browse chains procedure - 03
DFHL2CHL CSECT (OCO) Logger chain end browse all procedure - 03
DFHL2CHM CSECT (OCO) Logger chain move procedure - 03
DFHL2CHN CSECT (OCO) Logger chain browse all get next procedure - 03
DFHL2CHO CSECT (OCO) - 03
DFHL2CHP CSECT (OCO) - 03
DFHL2CHR CSECT (OCO) Logger chain restore procedure - 03
DFHL2CHS CSECT (OCO) Logger chain set history procedure - 03
DFHL2CH1 CSECT (OCO) Logger chain initialize class procedure - 03
DFHL2CH2 CSECT (OCO) Logger chain create fresh procedure - 03
DFHL2CH3 CSECT (OCO) Logger chain start chain browse procedure - 03
DFHL2CH4 CSECT (OCO) Logger chain browse get next procedure - 03
DFHL2CH5 CSECT (OCO) Logger chain end chain browse procedure - 03
DFHL2DM CSECT (OCO) Log Manager L2 domain management - 03
DFHL2DU0 CSECT (OCO) Log Manager L2_Dump_Formatting_Module - 03
DFHL2HB CSECT (OCO) - 03
DFHL2HSF CSECT (OCO) Logger HardStream write MVS retry intro. - 03
DFHL2HSG CSECT (OCO) Logger HardStream read browse cursor - 03
DFHL2HSJ CSECT (OCO) Logger HardStream end browse cursor - 03
DFHL2HS2 CSECT (OCO) Logger HardStream connect procedure - 03
DFHL2HS3 CSECT (OCO) Logger HardStream disconnect procedure - 03
DFHL2HS4 CSECT (OCO) Logger HardStream delete all procedure - 03
DFHL2HS5 CSECT (OCO) Logger HardStream delete history procedure - 03
DFHL2HS6 CSECT (OCO) Logger HardStream start browse cursor - 03
DFHL2HS7 CSECT (OCO) Logger HardStream start read procedure - 03
DFHL2HS8 CSECT (OCO) Logger HardStream read block procedure - 03
DFHL2HS9 CSECT (OCO) Logger HardStream end read procedure - 03
DFHL2LB CSECT (OCO) Log Manager LGLB gate - 03
DFHL2MV CSECT (OCO) Log Manager LGMV gate - 03
DFHL2OFI CSECT (OCO) Logger object factory initialize procedure - 03

Chapter 116. CICS directory 2097

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHL2SLE CSECT (OCO) Logger system log notify failure method - 03
DFHL2SLN CSECT (OCO) Logger system log open stream method - 03
DFHL2SL1 CSECT (OCO) Logger system log initialize class procedure - 03
DFHL2SR CSECT (OCO) Log Manager stream class class declaration - 03
DFHL2SR1 CSECT (OCO) Logger stream class initialize class - 03
DFHL2SR2 CSECT (OCO) Logger stream class construct procedure - 03
DFHL2SR3 CSECT (OCO) Logger stream class destruct procedure - 03
DFHL2SR4 CSECT (OCO) Logstream statistics module - 03
DFHL2SR5 CSECT (OCO) Logger stream class terminate all procedure - 03
DFHL2TI2 CSECT (OCO) - 03
DFHL2TRI CSECT (OCO) Log Manager trace interpretation - 03
DFHL2VP1 CSECT (OCO) Logger storage manager initialize class - 03
DFHL2WF CSECT (OCO) Log Manager LGWF gate - 03
DFHMAPDS DSECT BMS map description OS -
DFHMAPS Other Cataloged procedure to prepare physical and symbolic

maps
18 -

DFHMAPT Other 18 -
DFHMBCDS DSECT Transient data buffer control OS -
DFHMBMBA DSECT File control DFHMBMBI parameter list OS -
DFHMBMBI Macro File control buffer management inline OS -
DFHMCAD Macro Map control area 11 -
DFHMCBDS DSECT BMS message control block 11 -
DFHMCP CSECT BMS mapping control program OS -
DFHMCPA$ CSECT BMS mapping control program (standard) OS 03
DFHMCPE CSECT BMS minimum function mapping control OS -
DFHMCPE$ CSECT BMS mapping control program (minimum) OS 03
DFHMCPIN CSECT BMS input mapping request handler OS -
DFHMCPLK Macro Linkage to BMS modules OS -
DFHMCP1$ CSECT BMS mapping control program (full) OS 03
DFHMCRDS DSECT BMS message control record 11 -
DFHMCT Macro Monitoring control table 11 -
DFHMCTA$ Sample Monitoring control table for an AOR 19 -
DFHMCTDR Macro Monitoring dictionary definition 11 -
DFHMCTDS Macro MCT root section definition 11 -
DFHMCTDT Macro Transaction monitoring field and dictionary entry

definition
11 -

DFHMCTD$ Sample Monitoring control table for an AOR with DBCTL 19 -
DFHMCTEN Macro MCT option macro 11 -
DFHMCTF$ Sample Monitoring control table for an FOR 19 -
DFHMCTMP Macro MCT class macro 11 -
DFHMCTNM Macro Monitoring numeric string check 11 -
DFHMCTSE Macro MCT option entry generator 11 -
DFHMCTT$ Sample Monitoring control table for a TOR 19 -
DFHMCT2$ Sample Monitoring control table 19 03
DFHMCX CSECT BMS fast path module OS 03
DFHMCY CSECT Process MAPPINGDEV Requests OS 03
DFHMDC Macro Build C language symbolic description map 11 -
DFHMDCL Macro Convert C field names to lowercase 11 -
DFHMDF Macro Generate BMS field definition 11 -
DFHMDI Macro Generate BMS map definition 11 -
DFHMDX Macro 11 -
DFHMEACC CSECT ME domain - DFHACxxxx message set simplified

Chinese version
14 03

DFHMEACE CSECT ME domain - DFHACxxxx message set 14 03

2098 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMEACK CSECT (OCO) ME domain - DFHACxxxx message set 14 03
DFHMEADC CSECT ME domain - DFHADxxxx message set simplified

Chinese version
14 03

DFHMEADE CSECT ME domain - DFHADxxxx message set 14 03
DFHMEADK CSECT ME domain - DFHADxxxx message set 14 03
DFHMEAIC CSECT ME domain - DFHAIxxxx message set simplified

Chinese version
14 03

DFHMEAIE CSECT ME domain - DFHAIxxxx message set 14 03
DFHMEAIK CSECT (OCO) ME domain - DFHAIxxxx message set 14 03
DFHMEAMC CSECT ME domain - DFHAMxxxx message set simplified

Chinese version
14 03

DFHMEAME CSECT ME domain - DFHAMxxxx message set 14 03
DFHMEAMK CSECT (OCO) ME domain - DFHAMxxxx message set 14 03
DFHMEAPC CSECT ME domain - DFHAPxxxx message set simplified

Chinese version
14 03

DFHMEAPE CSECT ME domain - DFHAPxxxx message set 14 03
DFHMEAPK CSECT (OCO) ME domain - DFHAPxxxx message set 14 03
DFHMEAUE CSECT ME domain - DFHAUxxxx message set 14 -
DFHMEBAC CSECT ME domain - DFHBAxxxx message set simplified

Chinese version
14 03

DFHMEBAE CSECT ME domain - DFHBAxxxx message set 14 03
DFHMEBAK CSECT (OCO) ME domain - DFHBAxxxx message set 14 03
DFHMEBM CSECT (OCO) ME domain - batch message program - 03
DFHMEBMA DSECT MEBM parameter list OS -
DFHMEBMM Macro MEBM request OS -
DFHMEBMT CSECT (OCO) MEBM trace interpretation data - 03
DFHMEBRC CSECT (OCO) ME domain 14 03
DFHMEBRE CSECT (OCO) ME domain 14 03
DFHMEBRK CSECT (OCO) ME domain 14 03
DFHMEBU CSECT (OCO) ME domain - build message - 03
DFHMEBUA DSECT MEBU parameter list OS -
DFHMEBUM Macro MEBU request OS -
DFHMEBUT CSECT (OCO) MEBU trace interpretation data - 03
DFHMECAC CSECT ME domain - message set for GC/LC domains

simplified Chinese version
14 03

DFHMECAE CSECT ME domain - DFHCAxxxx message set 14 03
DFHMECAK CSECT ME domain - DFHCAxxxx message set Japanese

(Kanji) version
14 03

DFHMECCC CSECT ME domain - DFHCCxxxx message set simplified
Chinese version

14 03

DFHMECCE CSECT ME domain - message set for GC/LC domains 14 03
DFHMECCK CSECT (OCO) ME domain - message set for GC/LC domains 14 03
DFHMECEC CSECT ME domain - DFHCExxxx message set simplified

Chinese version
14 03

DFHMECEE CSECT ME domain - DFHCExxxx message set 14 03
DFHMECEK CSECT (OCO) ME domain - DFHCExxxx message set 14 03
DFHMECFE CSECT ME domain - DFHCFxxxx message set 14 -
DFHMECPC CSECT ME domain - DFHCPxxxx message set simplified

Chinese version
14 03

DFHMECPE CSECT ME domain - DFHCPxxxx message set 14 03
DFHMECPK CSECT (OCO) ME domain - DFHCPxxxx message set 14 03
DFHMECRC CSECT ME domain - DFHCRxxxx message set simplified

Chinese version
14 03

DFHMECRE CSECT ME domain - DFHCRxxxx message set 14 03

Chapter 116. CICS directory 2099

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMECRK CSECT (OCO) ME domain - DFHCRxxxx message set 14 03
DFHMECZC CSECT ME domain - DFHCZxxxx message set simplified

Chinese version
14 03

DFHMECZE CSECT ME domain - DFHCZxxxx message set 14 03
DFHMECZK CSECT (OCO) ME domain - DFHCZxxxx message set 14 03
DFHMEDBC CSECT ME domain - DFHDBxxxx message set simplified

Chinese version
14 03

DFHMEDBE CSECT ME domain - DFHDBxxxx message set 14 03
DFHMEDBK CSECT (OCO) ME domain - DFHDBxxxx message set 14 03
DFHMEDDC CSECT ME domain - message set for DD domain simplified

Chinese version
14 03

DFHMEDDE CSECT ME domain - message set for DD domain 14 03
DFHMEDDK CSECT ME domain - message set for DD domain 14 03
DFHMEDHC CSECT ME domain - message set for DH domain simplified

Chinese version
14 03

DFHMEDHE CSECT ME domain - message set for DH domain 14 03
DFHMEDHK CSECT ME domain - message set for DH domain 14 03
DFHMEDM CSECT (OCO) ME domain - initialization/termination - 03
DFHMEDMC CSECT ME domain - message set for DM domain simplified

Chinese version
14 03

DFHMEDME CSECT ME domain - message set for DM domain 14 03
DFHMEDMK CSECT ME domain - message set for DM domain 14 03
DFHMEDSC CSECT ME domain - message set for DS domain simplified

Chinese version
14 03

DFHMEDSE CSECT ME domain - message set for DS domain 14 03
DFHMEDSK CSECT ME domain - message set for DS domain 14 03
DFHMEDUC CSECT ME domain - message set for DU domain simplified

Chinese version
14 03

DFHMEDUE CSECT ME domain - message set for DU domain 14 03
DFHMEDUF CSECT (OCO) SDUMP formatter for ME domain - 03
DFHMEDUK CSECT (OCO) ME domain - message set for DU domain 14 03
DFHMEDXC CSECT ME domain - DFHDXxxxx message set simplified

Chinese version
14 03

DFHMEDXE CSECT ME domain - DFHDXxxxx message set 14 03
DFHMEDXK CSECT (OCO) ME domain - DFHDXxxxx message set 14 03
DFHMEEJC CSECT ME domain - DFHEJxxxx message set simplified

Chinese version
14 03

DFHMEEJE CSECT ME domain - DFHEJxxxx message set 14 03
DFHMEEJK CSECT ME domain - DFHEJxxxx message set 14 03
DFHMEEMC CSECT ME domain - DFHEMxxxx message set simplified

Chinese version
14 03

DFHMEEME CSECT ME domain - DFHEMxxxx message set 14 03
DFHMEEMK CSECT ME domain - DFHEMxxxx message set 14 03
DFHMEERC CSECT ME domain - DFHERxxxx message set simplified

Chinese version
14 03

DFHMEERE CSECT ME domain - DFHERxxxx message set 14 03
DFHMEERK CSECT ME domain - DFHERxxxx message set 14 03
DFHMEEXE CSECT ME domain - DFHEXxxxx message set 14 03
DFHMEFAC CSECT ME domain - DFHFAxxxx message set simplified

Chinese version
14 03

DFHMEFAE CSECT ME domain - DFHFAxxxx message set 14 03
DFHMEFAK CSECT (OCO) ME domain - DFHFAxxxx message set 14 03
DFHMEFBC CSECT ME domain - DFHFBxxxx message set simplified

Chinese version
14 03

DFHMEFBE CSECT ME domain - DFHFBxxxx message set 14 03

2100 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMEFBK CSECT (OCO) ME domain - DFHFBxxxx message set 14 03
DFHMEFCC CSECT ME domain - DFHFCxxxx message set simplified

Chinese version
14 03

DFHMEFCE CSECT ME domain - DFHFCxxxx message set 14 03
DFHMEFCK CSECT (OCO) ME domain - DFHFCxxxx message set 14 03
DFHMEFDC CSECT ME domain - DFHFDxxxx message set simplified

Chinese version
14 03

DFHMEFDE CSECT ME domain - DFHFDxxxx message set 14 03
DFHMEFDK CSECT (OCO) ME domain - DFHFDxxxx message set 14 03
DFHMEFEC CSECT ME domain - DFHFExxxx message set simplified

Chinese version
14 03

DFHMEFEE CSECT ME domain - DFHFExxxx message set 14 03
DFHMEFEK CSECT (OCO) ME domain - DFHFExxxx message set 14 03
DFHMEFO CSECT (OCO) ME domain - format message subroutine - 03
DFHMEFOA DSECT MEFO parameter list OS -
DFHMEFOM Macro MEFO request OS -
DFHMEFOT CSECT (OCO) MEFO trace interpretation data - 03
DFHMEICC CSECT ME domain - DFHICxxxx message set simplified

Chinese version
14 03

DFHMEICE CSECT ME domain - DFHICxxxx message set 14 03
DFHMEICK CSECT (OCO) ME domain - DFHICxxxx message set 14 03
DFHMEIEC CSECT ME domain - DFHIExxxx message set simplified

Chinese version
14 -

DFHMEIEE CSECT ME domain - DFHIExxxx message set 14 -
DFHMEIEK CSECT (OCO) ME domain - DFHIExxxx message set 14 -
DFHMEIIC CSECT ME domain - DFHIIxxxx message set simplified

Chinese version
14 03

DFHMEIIE CSECT ME domain - DFHIIxxxx message set 14 03
DFHMEIIK CSECT (OCO) ME domain - DFHIIxxxx message set 14 03
DFHMEIN CSECT (OCO) ME domain - inquire message data - 03
DFHMEINA DSECT MEIN parameter list OS -
DFHMEINC DSECT ME domain - DFHINxxxx message set simplified

Chinese version
14 03

DFHMEINE DSECT ME domain - DFHINxxxx message set 14 03
DFHMEINK DSECT ME domain - DFHINxxxx message set Japanese

(Kanji) version
14 03

DFHMEINM Macro MEIN request OS -
DFHMEINT CSECT (OCO) MEIN trace interpretation data - 03
DFHMEIRC CSECT ME domain - DFHIRxxxx message set simplified

Chinese version
14 03

DFHMEIRE CSECT ME domain - DFHIRxxxx message set 14 03
DFHMEIRK CSECT (OCO) ME domain - DFHIRxxxx message set Japanese (Kanji)

version
14 03

DFHMEJCC CSECT ME domain - DFHJCxxxx message set simplified
Chinese version

14 03

DFHMEJCE CSECT ME domain - DFHJCxxxx message set 14 03
DFHMEJCK CSECT (OCO) ME domain - DFHJCxxxx message set 14 03
DFHMEKCC CSECT ME domain - DFHKCxxxx message set simplified

chinese version
14 03

DFHMEKCE CSECT ME domain - DFHKCxxxx message set 14 03
DFHMEKCK CSECT (OCO) ME domain - DFHKCxxxx message set Japanese

(Kanji) version
14 03

DFHMEKEC CSECT ME domain - DFHKExxxx message set simplified
chinese version

14 03

DFHMEKEE CSECT ME domain - message set for KE domain 14 03

Chapter 116. CICS directory 2101

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMEKEK CSECT ME domain - message set for KE domain 14 03
DFHMELDC CSECT ME domain - DFHLDxxxx message set simplified

chinese version
14 03

DFHMELDE CSECT ME domain - message set for LD domain 14 03
DFHMELDK CSECT ME domain - message set for LD domain 14 03
DFHMELGC CSECT ME domain - DFHLGxxxx message set simplified

Chinese version
14 03

DFHMELGE CSECT ME domain - DFHLGxxxx message set 14 03
DFHMELGK CSECT ME domain - DFHLGxxxx message set Japanese

(Kanji) version
14 03

DFHMELMC CSECT ME domain - DFHLMxxxx message set simplified
Chinese version

14 03

DFHMELME CSECT ME domain - message set for LM domain 14 03
DFHMELMK CSECT ME domain - DFHLMxxxx message set Japanese

(Kanji) version
14 03

DFHMEMCC CSECT ME domain - DFHMCxxxx message set simplified
Chinese version

14 03

DFHMEMCE CSECT ME domain - DFHMCxxxx message set 14 03
DFHMEMCK CSECT (OCO) ME domain - DFHMCxxxx message set Japanese

(Kanji) version
14 03

DFHMEME CSECT (OCO) ME domain - main functions - 03
DFHMEMEC CSECT ME domain - DFHMExxxx message set simplified

Chinese version
14 03

DFHMEMEA DSECT MEME parameter list OS -
DFHMEMEE CSECT ME domain - DFHMExxxx message set 14 03
DFHMEMEK CSECT (OCO) ME domain - main functions 14 03
DFHMEMEM Macro MEME request OS -
DFHMEMET CSECT (OCO) MEME trace interpretation data - 03
DFHMEMNC CSECT ME domain - DFHMNxxxx message set simplified

Chinese version
14 03

DFHMEMNE CSECT ME domain - message set for MN domain 14 03
DFHMEMNK CSECT ME domain - message set for MN domain 14 03
DFHMEMUC CSECT ME domain - DFHMUxxxx message set simplified

Chinese version
14 03

DFHMEMUE CSECT ME domain - DFHMUxxxx message set 14 03
DFHMEMUK CSECT ME domain - DFHMUxxxx message set 14 03
DFHMENCE CSECT ME domain - DFHNCxxxx message set 14 -
DFHMENQC CSECT ME domain - DFHMQxxxx message set simplified

Chinese version
14 03

DFHMENQE CSECT ME domain - DFHNQxxxx message set 14 03
DFHMENQK CSECT ME domain - DFHNQxxxx message set 14 03
DFHMEOTC CSECT ME domain - DFHOTxxxx message set simplified

Chinese version
14 03

DFHMEOTE CSECT ME domain - DFHOTxxxx message set 14 03
DFHMEOTK CSECT ME domain - DFHOTxxxx message set 14 03
DFHMEPAC CSECT ME domain - DFHPAxxxx message set simplified

Chinese version
14 03

DFHMEPAE CSECT ME domain - message set for PA domain 14 03
DFHMEPAK CSECT ME domain - message set for PA domain 14 03
DFHMEPCC CSECT ME domain - DFHPCxxxx message set simplified

Chinese version
14 03

DFHMEPCE CSECT ME domain - DFHPCxxxx message set 14 03
DFHMEPCK CSECT (OCO) ME domain - DFHPCxxxx message set Japanese

(Kanji) version
14 03

2102 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMEPGC CSECT ME domain - DFHPGxxxx message set simplified

Chinese version
14 03

DFHMEPGE CSECT ME domain - DFHPGxxxx message set 14 03
DFHMEPGK CSECT (OCO) ME domain - DFHPGxxxx message set Japanese

(Kanji) version
14 03

DFHMEPRC CSECT ME domain - DFHPRxxxx message set simplified
Chinese version

14 03

DFHMEPRE CSECT ME domain - DFHPRxxxx message set 14 03
DFHMEPRK CSECT (OCO) ME domain - DFHPRxxxx message set Japanese

(Kanji) version
14 03

DFHMEPSC CSECT ME domain - DFHPSxxxx message set simplified
Chinese version

14 03

DFHMEPSE CSECT ME domain - DFHPSxxxx message set 14 03
DFHMEPSK CSECT (OCO) ME domain - DFHPSxxxx message set 14 03
DFHMERDC CSECT ME domain - DFHRDxxxx message set simplified

Chinese version
14 03

DFHMERDE CSECT ME domain - DFHRDxxxx message set 14 03
DFHMERDK CSECT (OCO) ME domain - DFHRDxxxx message set Japanese

(Kanji) version
14 03

DFHMERMC CSECT ME domain - DFHRMxxxx message set simplified
Chinese version

14 03

DFHMERME CSECT ME domain - DFHRMxxxx message set 14 03
DFHMERMK CSECT (OCO) ME domain - DFHRMxxxx message set Japanese

(Kanji) version
14 03

DFHMEROC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMEROE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMEROK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERPC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMERPE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMERPK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERQC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMERQE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMERQK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERRC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMERRE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMERRK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERSC CSECT ME domain - DFHRSxxxx message set simplified
Chinese version

14 03

DFHMERSE CSECT ME domain - DFHRSxxxx message set 14 03
DFHMERSK CSECT (OCO) ME domain - DFHRSxxxx message set Japanese

(Kanji) version
14 03

DFHMERTC CSECT ME domain - DFHRTxxxx message set simplified
Chinese version

14 03

DFHMERTE CSECT ME domain - DFHRTxxxx message set 14 03
DFHMERTK CSECT (OCO) ME domain - DFHRTxxxx message set Japanese

(Kanji) version
14 03

Chapter 116. CICS directory 2103

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMERUC CSECT ME domain - DFHRUxxxx message set simplified

Chinese version
14 03

DFHMERUE CSECT ME domain - DFHRUxxxx message set 14 03
DFHMERUK CSECT ME domain - DFHRUxxxx message set 14 03
DFHMERXC CSECT ME domain - DFHRXxxxx message set simplified

Chinese version
14 03

DFHMERXE CSECT ME domain - DFHRXxxxx message set 14 03
DFHMERXK CSECT ME domain - DFHRXxxxx message set 14 03
DFHMERZC CSECT ME domain - DFHRZxxxx message set simplified

Chinese version
14 03

DFHMERZE CSECT ME domain - DFHRZxxxx message set 14 03
DFHMERZK CSECT ME domain - DFHRZxxxx message set 14 03
DFHMESHC CSECT ME domain - DFHSHxxxx message set simplified

Chinese version
14 03

DFHMESHE CSECT ME domain - DFHSHxxxx message set 14 03
DFHMESHK CSECT ME domain - DFHSHxxxx message set 14 03
DFHMESIC CSECT ME domain - DFHSIxxxx message set simplified

Chinese version
14 03

DFHMESIE CSECT ME domain - DFHSIxxxx message set 14 03
DFHMESIK CSECT (OCO) ME domain - DFHSIxxxx message set Japanese (Kanji)

version
14 03

DFHMESJC CSECT ME domain - DFHSJxxxx message set simplified
Chinese version

14 03

DFHMESJE CSECT ME domain - DFHSJxxxx message set 14 03
DFHMESJK CSECT (OCO) ME domain - DFHSJxxxx message set Japanese (Kanji)

version
14 03

DFHMESKC CSECT ME domain - DFHSKxxxx message set simplified
Chinese version

14 03

DFHMESKE CSECT ME domain - DFHSKxxxx message set 14 03
DFHMESKK CSECT ME domain - DFHSKxxxx message set 14 03
DFHMESMC CSECT ME domain - DFHSMxxxx message set simplified

Chinese version
14 03

DFHMESME CSECT ME domain - message set for SM domain 14 03
DFHMESMK CSECT ME domain - message set for SM domain 14 03
DFHMESNC CSECT ME domain - DFHSNxxxx message set simplified

Chinese version
14 03

DFHMESNE CSECT ME domain - DFHSNxxxx message set 14 03
DFHMESNK CSECT (OCO) ME domain - DFHSNxxxx message set Japanese

(Kanji) version
14 03

DFHMESOC CSECT ME domain - DFHSOxxxx message set simplified
Chinese version

14 03

DFHMESOE CSECT ME domain - DFHSOxxxx message set 14 03
DFHMESOK CSECT (OCO) ME domain - DFHSOxxxx message set Japanese

(Kanji) version
14 03

DFHMESR CSECT (OCO) ME domain - SIT overrides collection - 03
DFHMESRA DSECT MESR parameter list OS -
DFHMESRC CSECT ME domain - DFHSRxxxx message set simplified

Chinese version
14 03

DFHMESRE CSECT ME domain - DFHSRxxxx message set 14 03
DFHMESRK CSECT ME domain - DFHSRxxxx message set 14 03
DFHMESRM Macro MESR request OS -
DFHMESRT CSECT (OCO) MESR trace interpretation data - 03
DFHMESTC CSECT ME domain - message set for ST domain simplified

Chinese version
14 03

DFHMESTE CSECT ME domain - message set for ST domain 14 03

2104 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMESTK CSECT (OCO) ME domain - message set for ST domain Japanese

(Kanji) version
14 03

DFHMESZC CSECT (OCO) ME domain - DFHSZxxxx message set (FEPI)
simplified Chinese version

14 03

DFHMESZE CSECT (OCO) ME domain - DFHSZxxxx message set (FEPI) 14 03
DFHMESZK CSECT (OCO) ME domain - DFHSZxxxx message set (FEPI) Japanese

(Kanji) version
14 03

DFHMETCC CSECT ME domain - DFHTCxxxx message set simplified
Chinese version

14 03

DFHMETCE CSECT ME domain - DFHTCxxxx message set 14 03
DFHMETCK CSECT (OCO) ME domain - DFHTCxxxx message set Japanese

(Kanji) version
14 03

DFHMETDC CSECT ME domain - DFHTDxxxx message set simplified
Chinese version

14 03

DFHMETDE CSECT ME domain - DFHTDxxxx message set 14 03
DFHMETDK CSECT ME domain - DFHTDxxxx message set Japanese

(Kanji) version
14 03

DFHMETFC CSECT ME domain - DFHTFxxxx message set simplified
Chinese version

14 03

DFHMETFE CSECT ME domain - DFHTFxxxx message set 14 03
DFHMETFK CSECT (OCO) ME domain - DFHTFxxxx message set Japanese

(Kanji) version
14 03

DFHMETIC CSECT ME domain - DFHTIxxxx message set simplified
Chinese version

14 03

DFHMETIE CSECT ME domain - message set for TI domain 14 03
DFHMETIK CSECT ME domain - message set for TI domain 14 03
DFHMETMC CSECT ME domain - DFHTMxxxx message set simplified

Chinese version
14 03

DFHMETME CSECT ME domain - DFHTMxxxx message set 14 03
DFHMETMK CSECT ME domain - DFHTMxxxx message set Japanese

(Kanji) version
14 03

DFHMETOC CSECT ME domain - DFHTOxxxx message set simplified
Chinese version

14 03

DFHMETOE CSECT ME domain - DFHTOxxxx message set 14 03
DFHMETOK CSECT (OCO) ME domain - DFHTOxxxx message set Japanese

(Kanji) version
14 03

DFHMETPC CSECT ME domain - DFHTPxxxx message set simplified
Chinese version

14 03

DFHMETPE CSECT ME domain - DFHTPxxxx message set 14 03
DFHMETPK CSECT (OCO) ME domain - DFHTPxxxx message set Japanese

(Kanji) version
14 03

DFHMETRC CSECT ME domain - message set for TR domain simplified
Chinese version

14 03

DFHMETRE CSECT ME domain - message set for TR domain 14 03
DFHMETRI CSECT (OCO) Trace interpreter for ME domain - 03
DFHMETRK CSECT (OCO) ME domain - message set for TR domain Japanese

(Kanji) version
14 03

DFHMETSC CSECT ME domain - DFHTSxxxx message set simplified
Chinese version

14 03

DFHMETSE CSECT ME domain - DFHTSxxxx message set 14 03
DFHMETSK CSECT (OCO) ME domain - DFHTSxxxx message set Japanese

(Kanji) version
14 03

DFHMET1 CSECT ME domain - DFHMET1x online message table 14 03
DFHMET1E CSECT DFHMEU base messages link-edit module 14 -

Chapter 116. CICS directory 2105

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMET2 CSECT (OCO) ME domain - DFHMET2x offline translator message

table
- 03

DFHMET3 CSECT (OCO) ME domain - DFHMET3x offline message table for
DFHSTUP

- 03

DFHMET4 CSECT (OCO) Offline message table for EXCI - 03
DFHMET5 CSECT ME domain - DFHMET5x online message table OS 03
DFHMET6 CSECT ME domain - DFHMET6x online message table - 03
DFHMET5E CSECT DFHMEU ONC RPS messages link-edit module 14 -
DFHMET9 CSECT ME domain - DFHMET9x online message table OS 03
DFHMEU CSECT Message translation utility program - 03
DFHMEUA DSECT (OCO) Message editing utility parameter list - 03
DFHMEUC CSECT (OCO) Message editing utility copy message dataset - 03
DFHMEUCL CSECT (OCO) Message editing utility copy message dataset 06 -
DFHMEUD CSECT (OCO) Message editing utility set/validate system defaults - 03
DFHMEUE CSECT (OCO) Message editing utility edit message - 03
DFHMEUL CSECT (OCO) Message editing utility compile, assemble and

link-edit message data sets
- 03

DFHMEULT CSECT (OCO) Message editing utility CLIST to create language codes
table

06 -

DFHMEUM Macro (OCO) Message editing utility ISPF editor profile - 03
DFHMEUP CSECT (OCO) Message editing utility display PTF panel and submit

PTF job
- 03

DFHMEUPC CSECT ME domain - message set for UP domain simplified
Chinese version

14 03

DFHMEUPE CSECT (OCO) ME domain - DFHUPxxxx message set 14 03
DFHMEUPK CSECT (OCO) ME domain - DFHUPxxxx message set 14 03
DFHMEUSC CSECT (OCO) Message editing utility check state of message data set

simplified Chinese version
14 03

DFHMEUSE CSECT (OCO) Message editing utility check state of message data set 14 03
DFHMEUSK CSECT (OCO) Message editing utility check state of message data set

Japanese (Kanji) version
14 03

DFHMEUU CSECT (OCO) Message editing utility compare PTF and English
message data sets

- 03

DFHMEU00 CSECT Message editing utility help index panel 16 -
DFHMEU01 CSECT Message editing utility main help panel 1 16 -
DFHMEU10 CSECT Message editing utility main panel 16 -
DFHMEU11 CSECT Message editing utility main help panel 2 16 -
DFHMEU12 CSECT Message editing utility main help panel 3 16 -
DFHMEU20 CSECT Message editing utility set defaults panel (part 1 of 2) 16 -
DFHMEU21 CSECT Message editing utility set defaults (part 1) help panel

1
16 -

DFHMEU22 CSECT Message editing utility set defaults (part 1) help panel
2

16 -

DFHMEU30 CSECT Message editing utility set defaults panel (part 2 of 2) 16 -
DFHMEU31 CSECT Message editing utility set defaults (part 2) help panel 16 -
DFHMEU40 CSECT Message editing utility language selection panel 16 -
DFHMEU41 CSECT Message editing utility language selection help panel 16 -
DFHMEU50 CSECT Message editing utility message selection panel 16 -
DFHMEU51 CSECT Message editing utility message selection help panel 16 -
DFHMEU60 CSECT Message editing utility message edit panel 16 -
DFHMEU61 CSECT Message editing utility message edit help panel 16 -
DFHMEU70 CSECT Message editing utility apply PTF updates panel 16 -
DFHMEU71 CSECT Message editing utility apply PTF updates help panel 16 -
DFHMEWBC CSECT (OCO) ME domain 14 03

2106 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMEWBE CSECT (OCO) ME domain 14 03
DFHMEWBK CSECT (OCO) ME domain 14 03
DFHMEWS CSECT (OCO) ME domain - write symptom string to SYS1.LOGREC - 03
DFHMEWSA DSECT MEWS parameter list OS -
DFHMEWSM Macro MEWS request OS -
DFHMEWST CSECT (OCO) MEWS trace interpretation data - 03
DFHMEWT CSECT (OCO) ME domain - WTOR service routine - 03
DFHMEWTA DSECT MEWT parameter list OS -
DFHMEWTM Macro MEWT request OS -
DFHMEWTT CSECT (OCO) MEWT trace interpretation data - 03
DFHMEXAC CSECT ME domain - message set for XA domain simplified

Chinese version
14 03

DFHMEXAE CSECT ME domain - DFHXAxxxx message set 14 03
DFHMEXAK CSECT ME domain - DFHXAxxxx message set 14 03
DFHMEXCC CSECT ME domain - message set for XC domain simplified

Chinese version
14 03

DFHMEXCE CSECT ME domain - DFHXCxxxx message set 14 03
DFHMEXCK CSECT ME domain - DFHXCxxxx message set 14 03
DFHMEXGC CSECT ME domain - DFHXGxxxx message set simplified

Chinese version
14 03

DFHMEXGE CSECT ME domain - DFHXGxxxx message set 14 03
DFHMEXGK CSECT (OCO) ME domain - DFHXGxxxx message set Japanese

(Kanji) version
14 03

DFHMEXMC CSECT ME domain - DFHXMxxxx message set simplified
Chinese version

14 03

DFHMEXME CSECT ME domain - DFHXMxxxx message set 14 03
DFHMEXMK CSECT (OCO) ME domain - DFHXMxxxx message set Japanese

(Kanji) version
14 03

DFHMEXOC CSECT ME domain - DFHXOxxxx message set simplified
Chinese version

14 03

DFHMEXOE CSECT ME domain - DFHXOxxxx message set 14 03
DFHMEXOK CSECT ME domain - DFHXOxxxx message set 14 03
DFHMEXQE CSECT ME domain - DFHXQxxxx message set 14 -
DFHMEXSC CSECT ME domain - DFHXSxxxx message set simplified

Chinese version
14 03

DFHMEXSE CSECT ME domain - DFHXSxxxx message set 14 03
DFHMEXSK CSECT (OCO) ME domain - DFHXSxxxx message set Japanese

(Kanji) version
14 03

DFHMEZAC CSECT ME domain - DFHZAxxxx message set simplified
Chinese version

14 03

DFHMEZAE CSECT ME domain - DFHZAxxxx message set 14 03
DFHMEZAK CSECT (OCO) ME domain - DFHZAxxxx message set Japanese

(Kanji) version
14 03

DFHMEZBC CSECT ME domain - DFHZBxxxx message set simplified
Chinese version

14 03

DFHMEZBE CSECT ME domain - DFHZBxxxx message set 14 03
DFHMEZBK CSECT (OCO) ME domain - DFHZBxxxx message set Japanese

(Kanji) version
14 03

DFHMEZCC CSECT ME domain - DFHZCxxxx message set simplified
Chinese version

14 03

DFHMEZCE CSECT ME domain - DFHZCxxxx message set 14 03
DFHMEZCK CSECT (OCO) ME domain - DFHZCxxxx message set Japanese

(Kanji) version
14 03

DFHMEZDC CSECT ME domain - DFHZDxxxx message set simplified
Chinese version

14 03

Chapter 116. CICS directory 2107

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMEZDE CSECT ME domain - DFHZDxxxx message set 14 03
DFHMEZDK CSECT (OCO) ME domain - DFHZDxxxx message set Japanese

(Kanji) version
14 03

DFHMEZEC CSECT ME domain - DFHZExxxx message set simplified
Chinese version

14 03

DFHMEZEE CSECT ME domain - DFHZExxxx message set 14 03
DFHMEZEK CSECT (OCO) ME domain - DFHZExxxx message set Japanese

(Kanji) version
14 03

DFHMEZNC CSECT ME domain - DFHZNxxxx message set simplified
Chinese version

14 03

DFHMEZNE CSECT ME domain - DFHZNxxxx message set 14 03
DFHMEZNK CSECT (OCO) ME domain - DFHZNxxxx message set Japanese

(Kanji) version
14 03

DFHME00C CSECT ME domain - NLS message language globals
simplified Chinese version

14 03

DFHME00E CSECT ME domain - NLS message language globals 14 03
DFHME00K CSECT (OCO) ME domain - NLS message language globals Japanese

(Kanji) version
14 03

DFHME01E CSECT ME domain - NLS message language globals 14 -
DFHME1UC CSECT ME domain 14 03
DFHME1UE CSECT ME domain - DFH1Uxx message set 14 03
DFHME1UK CSECT (OCO) ME domain - DFH1Uxx message set 14 03
DFHME42E CSECT ME domain - DFH42xx message set 14 -
DFHME70C CSECT ME domain - DFH70xx message set simplified Chinese

version
14 03

DFHME70E CSECT ME domain - DFH70xx message set 14 03
DFHME70K CSECT (OCO) ME domain - DFH70xx message set 14 03
DFHME71C CSECT ME domain - DFH71xx message set simplified Chinese

version
14 03

DFHME71E CSECT ME domain - DFH71xx message set 14 03
DFHME71K CSECT (OCO) ME domain - DFH71xx message set 14 03
DFHME72C CSECT ME domain - DFH72xx message set simplified Chinese

version
14 03

DFHME72E CSECT ME domain - DFH72xx message set 14 03
DFHME72K CSECT (OCO) ME domain - DFH72xx message set 14 03
DFHMGM Macro Message prototype macro 11 -
DFHMGMI0 Macro Message prototype literal macro-1 11 -
DFHMGMI1 Macro Message prototype literal macro-2 11 -
DFHMGPME CSECT DFHMGP NLS message support OS 03
DFHMGP00 CSECT DFHMGP error message find OS 03
DFHMGT CSECT Message generation table 11 03
DFHMGT01 CSECT Subsystem interface message table segment 11 -
DFHMGT20 CSECT Message generation table segment 11 -
DFHMGT21 CSECT Message generation table segment 11 -
DFHMGT22 CSECT Message generation table segment 11 -
DFHMGT24 CSECT Message generation table segment 11 -
DFHMGT26 CSECT Message generation table segment 11 -
DFHMGT33 CSECT Message generation table segment 11 -
DFHMGT34 CSECT Message generation table segment 11 -
DFHMGT35 CSECT Message generation table segment 11 -
DFHMGT37 CSECT Message generation table segment 11 -
DFHMGT44 CSECT Message generation table segment 11 -
DFHMGT49 CSECT Message generation table segment 11 -
DFHMGT50 CSECT Message generation table segment 11 -

2108 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMGT85 CSECT Message generation table segment 11 -
DFHMGT90 CSECT Message generation table segment 11 -
DFHMIN Source BMS 3270 input mapping OS -
DFHMIRS CSECT ISC request shipping - mirror program OS 03
DFHMKDIR Other - 02
DFHMKEYS CSECT Alias for MEUKEYS 16 -
DFHML1 CSECT BMS LU1 printer mapping program OS 03
DFHMN Macro MN domain - inline request OS -
DFHMNDEF Macro MN domain - some control blocks OS -
DFHMNDM CSECT (OCO) MN domain - initialization/termination - 03
DFHMNDUF CSECT (OCO) SDUMP formatter for MN domain - 03
DFHMNDUP CSECT (OCO) Monitoring dictionary utility - 03
DFHMNEXC Macro MN domain - monitoring exception record 11 -
DFHMNGDS DSECT MN domain - global statistics 11 -
DFHMNGDS DSECT MN domain - global statistics C2 07
DFHMNMN CSECT (OCO) MN domain - functions - 03
DFHMNMNA DSECT MNMN parameter list OS -
DFHMNMNM Macro MNMN request OS -
DFHMNMNT CSECT MNMN trace interpretation data OS 03
DFHMNMNX Macro MNMN request (XPI) 11 -
DFHMNMNY DSECT MNMN parameter list (XPI) 11 -
DFHMNNT CSECT (OCO) MN domain - XM notify gate - 03
DFHMNPBI Macro MN domain - access to MVS WLM performance block

token
OS -

DFHMNPDA CSECT Monitoring facility performance class record 19 -
DFHMNSMF Macro MN domain - monitoring SMF header and SMF

product section
11 -

DFHMNSR CSECT (OCO) MN domain - services - 03
DFHMNSRA DSECT MNSR parameter list OS -
DFHMNSRM Macro MNSR request OS -
DFHMNSRT CSECT MNSR trace interpretation data OS 03
DFHMNST CSECT (OCO) MN domain - statistics services - 03
DFHMNSU CSECT (OCO) MN domain - subroutines - 03
DFHMNSUA DSECT MNSU parameter list OS -
DFHMNSUM Macro MNSU request OS -
DFHMNSUT CSECT MNSU trace interpretation data OS 03
DFHMNSVC CSECT (OCO) MN domain - authorized service routine - 03
DFHMNTDS DSECT MN domain - transaction monitoring data 11 -
DFHMNTDS DSECT MN domain - transaction monitoring data C2 07
DFHMNTI CSECT (OCO) MN domain - timer gate - 03
DFHMNTRI CSECT (OCO) Trace interpreter for MN domain - 03
DFHMNUE CSECT (OCO) MN domain - user exit service - 03
DFHMNXM CSECT (OCO) MN domain functional gate - 03
DFHMNXMT DSECT MNXM translate tables - 03
DFHMOVE Macro Domain call argument MOVE macro OS -
DFHMPARS CSECT Parameter syntax checking OS -
DFHSIPLT CSECT System initialization - PLT processor OS 03
DFHMRCDS DSECT Transient data VSAM control OS -
DFHMRDUF CSECT (OCO) MRO SDUMP formatter - 03
DFHMROQM Macro MRO work queue manager interface OS -
DFHMROQP CSECT MRO work queue manager - enable/disable OS 03
DFHMROSM Macro MRO work queue manager quickcell interface OS -
DFHMRQDS DSECT MRO work queue manager control blocks OS -
DFHMRXM CSECT TF XM transaction attach - 03

Chapter 116. CICS directory 2109

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHMSCAN CSECT Macro scan utility OS 03
DFHMSD Macro Generate BMS map set definition 11 -
DFHMSET CSECT Parameter syntax checking record OS -
DFHMSG Macro Generate a message 11 -
DFHMSGIF CSECT CZ Direct_to_CICS - 03
DFHMSG00 CSECT MEU MEU00x message set (alias MEU00) 12 -
DFHMSG01 CSECT MEU MEU01x message set (alias MEU01) 12 -
DFHMSG02 CSECT MEU MEU02x message set (alias MEU02) 12 -
DFHMSG03 CSECT MEU MEU03x message set (alias MEU03) 12 -
DFHMSG04 CSECT MEU MEU04x message set (alias MEU04) 12 -
DFHMSG05 CSECT MEU MEU05x message set (alias MEU05) 12 -
DFHMSGEN Macro Generate messages in BMS modules OS -
DFHMSP CSECT Message switching program OS 03
DFHMSPUT Macro Put messages to terminals in BMS OS -
DFHMSRCA Symbolic Magnetic slot reader control values 11 -
DFHMSRCA Symbolic Magnetic slot reader control values C2 07
DFHMSRCA Symbolic Magnetic slot reader control values D3 08
DFHMSX Symbolic 11 -
DFHMVRMS CSECT (OCO) MVS recovery/termination manager RESMGR exit

stub
- 03

DFHMWCDS DSECT Transient data wait control OS -
DFHMXP CSECT Local queuing shipper OS 03
DFHM32 CSECT BMS 3270 mapping OS -
DFHM32A$ CSECT BMS 3270 mapping (standard) OS 03
DFHM321$ CSECT BMS 3270 mapping (full) OS 03
DFHNCASM Macro Named counter service interface 11 -
DFHNCC DSECT Named counter service interface - 08
DFHNCCF DSECT Named counter service interface - 03
DFHNCCN DSECT Named counter service interface - 03
DFHNCOB DSECT Named counter service interface - 07
DFHNCDF DSECT Named counter server AXM definitions - 03
DFHNCEN DSECT NC ENF event interface - 03
DFHNCEQU Macro Named counter server interface 11 -
DFHNCIF CSECT Named counter server interface - 03
DFHNCMN CSECT Named counter server main program - 03
DFHNCMS CSECT Named counter server messages - 03
DFHNCO Macro Named counter option table definition 11 -
DFHNCOP CSECT Named counter server operator commands - 03
DFHNCOPT CSECT Named counter server sample option table 19 03
DFHNCPLI CSECT Named counter service interface 17 -
DFHNCPR CSECT Named counter server parameter routine - 03
DFHNCPS CSECT Named counter server pool selection - 03
DFHNCRL CSECT Named counter server pool reload - 03
DFHNCRQ CSECT Named counter server request routine - 03
DFHNCRS CSECT NC ARM Restart Support - 03
DFHNCST CSECT Named counter server statistics support - 03
DFHNCS4D Macro Named counter server list str stats 11 -
DFHNCS5D Macro Named counter server storage statistics 11 -
DFHNCTR CSECT Named counter server interface stub - 03
DFHNCUL CSECT Named counter server pool unload - 03
DFHNEPCA DSECT NEP communication area D2 -
DFHNEPCA Macro NEP communication area 11 -
DFHNOTIT CSECT - 03
DFHNQDM CSECT NQ domain management - 03

2110 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHNQDUF CSECT NQ offline dump formatting - 03
DFHNQED CSECT NQED format enqueue/dequeue - 03
DFHNQEDA CSECT NQED parameter list OS -
DFHNQEDM Macro NQED request OS -
DFHNQEDT DSECT NQED translate tables - 03
DFHNQEDX Macro 11 -
DFHNQEDY Macro 11 -
DFHNQGDS CSECT NQ enqueue manager statistics 11 -
DFHNQGDS CSECT NQ enqueue manager statistics C2 07
DFHNQIB CSECT NQ inquire/browse module - 03
DFHNQIBA CSECT NQIB parameter list OS -
DFHNQIBM Macro NQIB request OS -
DFHNQIBT DSECT NQIB translate tables - 03
DFHNQIE CSECT NQ default enqueue interpreter - 03
DFHNQNQ CSECT NQ main functions - 03
DFHNQNQA CSECT NQNQ parameter list OS -
DFHNQNQM Macro NQNQ request OS -
DFHNQNQT DSECT NQNQ translate tables - 03
DFHNQRN CSECT Sysplex resource names services - 03
DFHNQRNA Other NQRN interface parameter area OS -
DFHNQRNM Macro DFHNQRN interface macro OS -
DFHNQRNT CSECT - 03
DFHNQST CSECT (OCO) NQ statistics - 03
DFHNQTRI CSECT (OCO) NQ offline trace interpretation - 03
DFHNQUED Macro EXEC arguement list for ENQ/DEQ user exits 11 -
DFHNXDUF CSECT (OCO) SDUMP control block index processor - 03
DFHOPSRC Other JCL to install optional source tapes 02 -
DFHOSPWA DSECT BMS common control area 11 -
DFHOTCO CSECT OTCO CDURUN and Gate Module - 03
DFHOTCOT CSECT - 03
DFHOTCPT CSECT - 03
DFHOTDM CSECT OT Domain Management - 03
DFHOTDUF CSECT OT Domain Dump Formatting - 03
DFHOTIS1 CSECT - 03
DFHOTIS2 CSECT - 03
DFHOTR CSECT OTS Resync Transaction - 03
DFHOTRM CSECT Run Transaction Syncpoint Processor - 03
DFHOTRP1 CSECT - 03
DFHOTRS CSECT OTRS CDURUN and Gate Module - 03
DFHOTRST CSECT - 03
DFHOTSU CSECT OTSU CDURUN and Gate Module - 03
DFHOTSUT CSECT - 03
DFHOTTR CSECT OTTR CDURUN and Gate Module - 03
DFHOTTRI CSECT OT Domain Trace Interpretation - 03
DFHOTTRT CSECT - 03
DFHOTVP1 CSECT - 03
DFHPADM CSECT (OCO) PA domain - initialization/termination - 03
DFHPADUF CSECT (OCO) SDUMP formatter for PA domain - 03
DFHPAGP CSECT (OCO) PA domain - get parameters service - 03
DFHPAGPA DSECT PAGP parameter list OS -
DFHPAGPM Macro PAGP request OS -
DFHPAGPT CSECT (OCO) PAGP trace interpretation data - 03
DFHPAIO CSECT (OCO) PA domain - communication with SYSIN data set and

operator console
- 03

Chapter 116. CICS directory 2111

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHPAIOA DSECT PAIO parameter list OS -
DFHPAIOM Macro PAIO request OS -
DFHPAIOT CSECT (OCO) PAIO trace interpretation data - 03
DFHPAPL Macro DBCTL architected parameter list OS -
DFHPASY CSECT (OCO) PA domain - system initialization parameter checker

and syntax analyzer
- 03

DFHPASYA DSECT PASY parameter list OS -
DFHPASYM Macro PASY request OS -
DFHPASYT CSECT (OCO) PASY trace interpretation data - 03
DFHPATCH Macro Generate patch area 11 -
DFHPATRI CSECT (OCO) Trace interpreter for PA domain - 03
DFHPBP CSECT BMS page and text build OS -
DFHPBPA$ CSECT BMS page and text build (standard) OS 03
DFHPBP1$ CSECT BMS page and text build (full) OS 03
DFHPC Macro Program service request 11 -
DFHPCEDS DSECT EXEC argument list for Program Control - 11
DFHPCEXT CSECT AP recovery point when called from kernel OS -
DFHPCOM Macro PEP communication area 11 -
DFHPCOMD DSECT PEP communication area - 08
DFHPCPG CSECT PM domain - interface program - 03
DFHPCTPF Macro Generate a profile entry 11 -
DFHPCUE DSECT Program control data block for user exits 11 -
DFHPCXDF CSECT DU domain - transaction dump formatter for program

related areas
OS 03

DFHPDI Macro Generate BMS partition definition 11 -
DFHPDKW CSECT (OCO) SDUMP formatting - CICSDATA operand string

validation
- 03

DFHPDX1 CSECT (OCO) SDUMP formatting - control program - 03
DFHPEP CSECT User-replaceable program error program 19 03
DFHPEPD Sample Program error program - C/370 - 19
DFHPESAD Source Program environment save area (PESA) OS -
DFHPGACD Macro PG domain - autoinstall exit program parameter list -

Assembler
11 -

DFHPGACH CSECT PG domain - autoinstall exit program parameter list -
C/370

- 08

DFHPGACL CSECT PG domain - autoinstall exit program parameter list -
PL/I

P2 -

DFHPGACO CSECT PG domain - autoinstall exit program parameter list -
COBOL

C2 -

DFHPGADS DSECT BMS page control area OS -
DFHPGADX CSECT Program autoinstall exit - Assembler 19 03
DFHPGAHX Sample Program autoinstall exit - C/370 - 19
DFHPGAI CSECT Program autoinstall function - 03
DFHPGAIT CSECT PGAI trace interpretation data - 03
DFHPGALX Sample Program autoinstall exit - PL/I - 19
DFHPGAOX Sample Program autoinstall exit - COBOL - 19
DFHPGAQ CSECT PG domain - inquire/set autoinstall - 03
DFHPGAQA DSECT PGAQ parameter list OS -
DFHPGAQM Macro PGAQ request OS -
DFHPGAQT CSECT PGAQ trace interpretation data - 03
DFHPGAQX Macro PGAQ request 11 -
DFHPGAQY DSECT PGAQ parameter list 11 -
DFHPGDCD Source PG domain anchor block OS -
DFHPGDD CSECT (OCO) PG domain - define/delete program - 03

2112 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHPGDDA DSECT PGDD parameter list OS -
DFHPGDDM Macro PGDD request OS -
DFHPGDDT CSECT (OCO) PGDD trace interpretation data - 03
DFHPGDM CSECT PG domain - initialize, quiesce, and terminate domain

functions
- 03

DFHPGDUF CSECT (OCO) PG domain - SDUMP formatter - 03
DFHPGEX CSECT (OCO) PG domain - initialize and terminate exits functions - 03
DFHPGEXA DSECT PGEX parameter list OS -
DFHPGEXI Macro PGEX inline version of DFHPGEXM OS -
DFHPGEXM Macro PGEX request OS -
DFHPGEXT Macro (OCO) PGEX trace interpretation data - 03
DFHPGGDS Macro PG domain - statistics 11 -
DFHPGGDS Macro PG domain - statistics C2 07
DFHPGHM CSECT (OCO) PG domain - handle manager services - 03
DFHPGHMA DSECT PGHM parameter list OS -
DFHPGHMI Macro PGHM inline version of DFHPGHMM OS -
DFHPGHMM Macro PGHM request OS -
DFHPGHMT CSECT (OCO) PGHM trace interpretation data - 03
DFHPGIS CSECT (OCO) PG domain - PGIS functions - 03
DFHPGISA DSECT PGIS parameter list - 11
DFHPGISI Macro PGIS inline version of DFHPGHMM OS -
DFHPGISM Macro PGIS request - 11
DFHPGIST CSECT (OCO) PGIS trace interpretation data - 03
DFHPGISX Macro PGIS request 11 -
DFHPGISY CSECT PGIS parameter list 11 -
DFHPGLD CSECT (OCO) PG domain - load and release functions - 03
DFHPGLDA DSECT PGLD parameter list OS -
DFHPGLDM Macro PGLD request OS -
DFHPGLDT CSECT (OCO) PGLD trace interpretation data - 03
DFHPGLE CSECT (OCO) PG domain - link exec function - 03
DFHPGLEA DSECT PGLE parameter list OS -
DFHPGLEM Macro PGLE request OS -
DFHPGLET CSECT (OCO) PGLE trace interpretation data - 03
DFHPGLK CSECT (OCO) PG domain - link and link PLT functions - 03
DFHPGLKA DSECT PGLK parameter list OS -
DFHPGLKM Macro PGLK request OS -
DFHPGLKT CSECT (OCO) PGLK trace interpretation data - 03
DFHPGLU CSECT (OCO) PG domain - link URM function - 03
DFHPGLUA DSECT PGLU parameter list OS -
DFHPGLUM Macro PGLU request OS -
DFHPGLUT CSECT (OCO) PGLU trace interpretation data - 03
DFHPGP Macro Validate group name for PCT/PPT migrate 11 -
DFHPGPG CSECT (OCO) PG domain - initial link function - 03
DFHPGPGA DSECT PGPG parameter list OS -
DFHPGPGM Macro PGPG request OS -
DFHPGPGT CSECT (OCO) PGPG trace interpretation data - 03
DFHPGRE CSECT (OCO) PG domain - prepare return function - 03
DFHPGREA DSECT PGRE parameter list OS -
DFHPGREM Macro PGRE request OS -
DFHPGRET CSECT (OCO) PGRE trace interpretation data - 03
DFHPGRP CSECT (OCO) PG domain - recovery program - 03
DFHPGRPT CSECT (OCO) PGRP trace interpretation data - 03
DFHPGST CSECT (OCO) PG domain - statistics - 03
DFHPGTRI CSECT (OCO) PG domain - trace interpreter - 03

Chapter 116. CICS directory 2113

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHPGUE CSECT (OCO) PG domain - service requests user exit - 03
DFHPGXE CSECT (OCO) PG domain - prepare XCTL function - 03
DFHPGXEA DSECT PGXE parameter list OS -
DFHPGXEM Macro PGXE request OS -
DFHPGXET CSECT (OCO) PGXE trace interpretation data - 03
DFHPGXM CSECT (OCO) PG domain - initialize and terminate transactions

functions
- 03

DFHPGXMT CSECT (OCO) PGXM trace interpretation data - 03
DFHPH Macro Partition handling macro 11 -
DFHPHN CSECT Phonetic code conversion OS 03
DFHPHP CSECT Partition handling program OS 03
DFHPLARG DSECT Generalized domain call parameter list (header,

standard fields, responses)
OS -

DFHPLT Macro Program list table 11 -
DFHPLTDS DSECT Program list table definition OS -
DFHPPFDS DSECT KC domain - profile data OS -
DFHPRCM CSECT (OCO) Partner resource manager command interface - 03
DFHPRCMA DSECT PRCM parameter list OS -
DFHPRCMM Macro PRCM request OS -
DFHPRCMT CSECT (OCO) PRCM trace interpretation data - 03
DFHPRDUF CSECT (OCO) Partner resource manager SDUMP formatter SAA

communications interface
- 03

DFHPRFS CSECT (OCO) Partner resource manager interface to - 03
DFHPRFSA DSECT PRFS parameter list OS -
DFHPRFSM Macro PRFS request OS -
DFHPRFST CSECT (OCO) PRFS trace interpretation data - 03
DFHPRINA DSECT PRIN parameter list OS -
DFHPRINM Macro PRIN request OS -
DFHPRINT Macro DSECT print control 11 -
DFHPRINU CSECT (OCO) PRIN trace interpretation data - 03
DFHPRIN1 CSECT (OCO) Partner resource manager initialization management

program
- 03

DFHPRIN2 CSECT (OCO) Partner resource manager initialization subtask
program

- 03

DFHPRK CSECT 3270 print key program OS 03
DFHPRMCK Macro Parameter checking macro 11 -
DFHPROLG Source Prologue to DFHENTER OS -
DFHPROLM Source Acquire LIFO storage application prolog OS -
DFHPROLO Macro Acquire automatic storage appl prolog OS -
DFHPRPT CSECT (OCO) Partner resource table (PRT) manager - 03
DFHPRPTA DSECT PRPT parameter list OS -
DFHPRPTM Macro PRPT request OS -
DFHPRPTT CSECT (OCO) PRPT trace interpretation data - 03
DFHPRRP CSECT (OCO) Partner resource manager recovery program - 03
DFHPRRPA DSECT PRRP parameter list OS -
DFHPRRPM Macro PRRP request OS -
DFHPRRPT CSECT (OCO) PRRP trace interpretation data - 03
DFHPRSDS DSECT Partner static storage area OS -
DFHPS Macro System spooling interface OS -
DFHPSD Macro Generate BMS partition set definition 11 -
DFHPSDDS DSECT Partition set control block OS -
DFHPSGDS DSECT Spooler global control block 11 -
DFHPSIP CSECT Spooler initialization program OS 03
DFHPSP CSECT System spooling interface program OS 03

2114 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHPSPCK CSECT System spooling subsystem activator OS 03
DFHPSPDW CSECT System spooling interface, DWE processor OS 03
DFHPSPSS CSECT System spooling JES interface subtask OS 03
DFHPSPST CSECT System spooling JES interface control OS 03
DFHPSSVC CSECT System spooling interface, retrieve a data set name OS 03
DFHPTDUF CSECT (OCO) Program control table SDUMP formatter - 03
DFHPUPAB CSECT CSDUP - initialize RDO parameter fields and address

list (DFHPUPA)
OS 03

DFHPUPAC CSECT CSDUP - initialize RDO parameter fields and address
list (DFHPUPA)

OS 03

DFHPUPB CSECT CSDUP - RDO parameter utility program, batch
environment (DFHPUP batch)

- 03

DFHPUPC CSECT RDO parameter utility program, CICS environment
(DFHPUP CICS)

- 03

DFHPUPDB CSECT CSDUP - default parameter values lookup (DFHPUPD
batch)

OS 03

DFHPUPDC CSECT RDO parameter utility - default parameter values
lookup (DFHPUPD CICS)

OS 03

DFHPUPXB CSECT CSDUP - language table referencing functions
(DFHPUPX batch)

OS 03

DFHPUPXC CSECT RDO parameter utility - language table referencing
functions (DFHPUPX CICS)

OS 03

DFHP3270 CSECT 3270 print function support OS 03
DFHQRY CSECT Query transaction OS 03
DFHQSSS CSECT (OCO) Qualified subsystem services - 03
DFHRCEX CSECT Recovery control enable exit OS 03
DFHRCNO Other Used by DFHSTART cataloged procedure 19 -
DFHRCSDS DSECT Recovery control static storage OS -
DFHRCYES Other Used by DFHSTART cataloged procedure 19 -
DFHRDDUF CSECT Resource definition recovery offline dump exit - 03
DFHRDJPN CSECT (OCO) CSD utilities - RDL for Japanese language feature

upgrade
- 03

DFHREGS Macro Standard register name definition 11 -
DFHREQ Macro Attention ID coding macro 11 -
DFHREST CSECT User-replaceable restart program 19 03
DFHRITRI CSECT RMI trace interpretation routine - 03
DFHRKB CSECT 3270 release keyboard program OS 03
DFHRLR CSECT BMS route list resolution OS -
DFHRLRA$ CSECT BMS route list resolution (standard) OS 03
DFHRLR1$ CSECT BMS route list resolution (full) OS 03
DFHRMCAL Macro Resource manager call 11 -
DFHRMCD CSECT Recovery manager client directory - 03
DFHRMCDA CSECT RMCD parameter list OS -
DFHRMCDM Macro RMCD request OS -
DFHRMCDT DSECT RMCD translate tables - 03
DFHRMCD1 CSECT RM client directory class initialization - 03
DFHRMCD2 CSECT RM client directory class quiesce proc - 03
DFHRMCI2 CSECT RM client directory set gate procedure - 03
DFHRMCI3 CSECT RM client directory wait for client proc - 03
DFHRMCI4 CSECT RM client directory send procedure - 03
DFHRMDEA CSECT RMDE parameter list OS -
DFHRMDEM Macro RMDE request OS -
DFHRMDET DSECT RMDE translate tables - 03
DFHRMDM CSECT Recovery manager domain management - 03

Chapter 116. CICS directory 2115

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHRMDMA CSECT RMDM parameter list OS -
DFHRMDMM Macro RMDM request OS -
DFHRMDMT DSECT RMDM translate tables - 03
DFHRMDU0 CSECT RMCI dump formatting - 03
DFHRMDU2 CSECT RMDU start work token browse procedure - 03
DFHRMDU3 CSECT RMDU get next work token procedure - 03
DFHRMDU4 CSECT RMDU end work token browse procedure - 03
DFHRMDU5 CSECT - 03
DFHRMGDS CSECT Recovery manager global statistics 11 -
DFHRMGDS CSECT Recovery manager global statistics C2 07
DFHRMKDA CSECT RMKD parameter list OS -
DFHRMKDM Macro RMKD request OS -
DFHRMKDT DSECT RMKD translate tables - 03
DFHRMKPA CSECT RMKP parameter list OS -
DFHRMKPM Macro RMKP request OS -
DFHRMKPT DSECT RMKP translate tables - 03
DFHRMLKQ CSECT RMLK quiesce procedure - 03
DFHRMLKT DSECT RMLK translate tables - 03
DFHRMLK1 CSECT RMLK initialize class procedure - 03
DFHRMLK2 CSECT RMLK initiate recovery2 procedure - 03
DFHRMLK3 CSECT RMLK inquire logname procedure - 03
DFHRMLK4 CSECT RMLK clear pending2 procedure - 03
DFHRMLK5 CSECT RMLK collect statistics procedure - 03
DFHRMLN CSECT RMLN gate handler module - 03
DFHRMLNA CSECT RMLN parameter list OS -
DFHRMLNM Macro RMLN request OS -
DFHRMLNT DSECT RMLN translate table - 03
DFHRMLSD CSECT Recovery Manager LinkSet class declaration - 03
DFHRMLSF CSECT RMLS inquire awaiting forget procedure - 03
DFHRMLSO CSECT RMLS commit procedure - 03
DFHRMLSP CSECT RMLS prepare procedure - 03
DFHRMLSS CSECT RMLS shunt procedure - 03
DFHRMLSU CSECT RMLS unshunt procedure - 03
DFHRML1D CSECT RMLK deliver data procedure - 03
DFHRMNM CSECT Recovery Manager Lognames class - 03
DFHRMNMA CSECT RMNM parameter list OS -
DFHRMNMM Macro RMNM request OS -
DFHRMNMT DSECT RMNM translate tables - 03
DFHRMNM1 CSECT RMNM initialize class procedure - 03
DFHRMNS1 CSECT RMNS initialize class procedure - 03
DFHRMNS2 CSECT RMNS quiesce procedure - 03
DFHRMOFI CSECT RMOF initialize procedure - 03
DFHRMOT CSECT RMOT CDURUN and Gate Module - 03
DFHRMOTT CSECT - 03
DFHRMREA CSECT RMRE parameter list OS -
DFHRMREM Macro RMRE request OS -
DFHRMRET DSECT RMRE translate tables - 03
DFHRMRO CSECT RM resource owner class - 03
DFHRMROA CSECT RMRO parameter list OS -
DFHRMROM Macro RMRO request OS -
DFHRMROO CSECT RMRO forgotten procedure - 03
DFHRMROS CSECT RMRO shunt procedure - 03
DFHRMROT CSECT RMRO translate tables - 03
DFHRMROU CSECT RMRO unshunt procedure - 03

2116 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHRMROV CSECT RMRO avail procedure - 03
DFHRMRO1 CSECT RMRO initialize class procedure - 03
DFHRMRO2 CSECT RMRO start back out procedure - 03
DFHRMRO3 CSECT RMRO deliver back out data procedure - 03
DFHRMRO4 CSECT RMRO end back out procedure - 03
DFHRMRS CSECT RM RMC CDURUN and Gate Module - 03
DFHRMR1D CSECT RMRO deliver data procedure - 03
DFHRMR1E CSECT RMRO end delivery procedure - 03
DFHRMR1K CSECT RMRO take keypoint procedure - 03
DFHRMR1S CSECT RMRO start delivery procedure - 03
DFHRMSL CSECT RM system log class - 03
DFHRMSLA CSECT RMSL parameter list OS -
DFHRMSLF CSECT RMSL force procedure - 03
DFHRMSLJ CSECT RMSL notify disjoint chains procedure - 03
DFHRMSLL CSECT RMSL close chain procedure - 03
DFHRMSLM Macro RMSL request OS -
DFHRMSLO CSECT RMSL open chain procedure - 03
DFHRMSLT CSECT RMSL translate tables - 03
DFHRMSLV CSECT RMSL move chain procedure - 03
DFHRMSLW CSECT RMSL write procedure - 03
DFHRMSL1 CSECT RMSL initialize class procedure - 03
DFHRMSL2 CSECT RMSL start chain browse procedure - 03
DFHRMSL3 CSECT RMSL chain browse read procedure - 03
DFHRMSL4 CSECT RMSL end chain browse procedure - 03
DFHRMSL5 CSECT RMSL restart procedure - 03
DFHRMSL6 CSECT RMSL schedule keypoint procedure - 03
DFHRMSL7 CSECT RMSL take keypoint procedure - 03
DFHRMST CSECT RM statistics class - 03
DFHRMST1 CSECT RMST initialize class procedure - 03
DFHRMSY CSECT Resource Manager resynchronization program - 03
DFHRMTRI CSECT Offline trace formatting interpretation routine

parameter list
- 03

DFHRMUC CSECT Resource Manager create UOW - 03
DFHRMUO CSECT Resource Manager commit UOW - 03
DFHRMUW CSECT Resource Manager unit of work class - 03
DFHRMUTL CSECT Resource Manager batch utility program - 03
DFHRMUWA CSECT RMUW parameter list OS -
DFHRMUWB CSECT RMUW deliver backout procedure - 03
DFHRMUWE CSECT RMUW unshunt reply procedure - 03
DFHRMUWF CSECT RMUW force procedure - 03
DFHRMUWH CSECT RMUW hold procedure - 03
DFHRMUWI Macro RMUWI inquire UOQ ID OS -
DFHRMUWJ CSECT RMUW force heurism procedure - 03
DFHRMUWL CSECT RMUW forget links procedure - 03
DFHRMUWM Macro RMUW request OS -
DFHRMUWN CSECT RMUW unshunt procedure - 03
DFHRMUWP CSECT RMUW process avail procedure - 03
DFHRMUWQ CSECT RMUW process indoubt resolution procedure - 03
DFHRMUWS CSECT RMUW record decision procedure - 03
DFHRMUWT DSECT RM unit of work class (timeout) - 03
DFHRMUWU CSECT RMUW set local lu name procedure - 03
DFHRMUWV CSECT RMUW avail procedure - 03
DFHRMUWW CSECT RMUW write procedure - 03
DFHRMUW0 CSECT RMUW release procedure - 03

Chapter 116. CICS directory 2117

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHRMUW1 CSECT RMUW initialize class procedure - 03
DFHRMUW2 CSECT RMUW collect statistics procedure - 03
DFHRMUW3 CSECT RMUW inquire work token procedure - 03
DFHRMUXD DSECT Define parts of UOW objects accessible by inline

macros
OS -

DFHRMU1C CSECT RMUW set chain token procedure - 03
DFHRMU1D CSECT RMUW deliver data procedure - 03
DFHRMU1E CSECT RMUW end delivery procedure - 03
DFHRMU1F CSECT RMUW wait timeout notify procedure - 03
DFHRMU1G CSECT RMUW - 03
DFHRMU1J CSECT RMUW inquire disjoint chains procedure - 03
DFHRMU1K CSECT RMUW take keypoint procedure - 03
DFHRMU1L CSECT xphP force purge inhibit query gate - 03
DFHRMU1N CSECT RMU1 force purge query procedure - 03
DFHRMU1Q CSECT TISR notify gate - 03
DFHRMU1R CSECT RMUW restart procedure - 03
DFHRMU1S CSECT RMUW start delivery procedure - 03
DFHRMU1U CSECT RMUW process restart procedure - 03
DFHRMU1V CSECT RMUW request wait timeout procedure - 03
DFHRMU1W CSECT RMUW cancel wait timeout procedure - 03
DFHRMVP1 CSECT RMVP initialize class procedure - 03
DFHRMWTA CSECT RMWT parameter list OS -
DFHRMWTI Macro Supports the Inquire_work_token and Set_work_token

of RMWT CDURUN interface
OS -

DFHRMWTM Macro RMWT request OS -
DFHRMWTT DSECT RMWT translate tables - 03
DFHRMXNE CSECT RMXN reattach procedure - 03
DFHRMXN2 CSECT RMXN schedule keypoint procedure - 03
DFHRMXN3 CSECT RMXN keypoint transaction - 03
DFHRMXN4 CSECT RMXN restart procedure - 03
DFHRMXN5 CSECT RMXN inc trandef statistic procedure - 03
DFHROINA CSECT ROIN parameter list OS -
DFHROINM Macro ROIN request OS -
DFHROINT DSECT ROIN translate tables OS 03
DFHRPAL CSECT (OCO) ONC RPC Feature alias list - 03
DFHRPALT DSECT RPAL translate tables - 03
DFHRPAS CSECT (OCO) ONC RPC alias main program - 03
DFHRPCC CSECT (OCO) RPCC parameter list - 03
DFHRPCB Macro Extension to DL/I PCB control block - contains ISC

information about PCB
OS -

DFHRPCDH CSECT RPPC caller DFHRPCC parameter list - 08
DFHRPCDO CSECT RPPC caller DFHRPCC parameter list - 07
DFHRPC0A CSECT (OCO) CRPC dataset list processing - 03
DFHRPC0B CSECT (OCO) CRPC common subroutines - 03
DFHRPC0D CSECT (OCO) CRPC register remote procedures - 03
DFHRPC0E CSECT (OCO) CRPC register remote procedures - 03
DFHRPC01 CSECT (OCO) CRPC initial processing - 03
DFHRPC03 CSECT (OCO) CRPC manage feature dataset - 03
DFHRPC04 CSECT (OCO) CRPC disable processing - 03
DFHRPC05 CSECT (OCO) CRPC manage feature dataset - 03
DFHRPC06 CSECT (OCO) CRPC update feature - 03
DFHRPC08 CSECT (OCO) CRPC ONC RPC feature - 03
DFHRPC09 CSECT (OCO) ONC RPC registration table management - 03
DFHRPC10 CSECT (OCO) CRPC alias list processing - 03

2118 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHRPC4C CSECT (OCO) ONC RPC initialization - 03
DFHRPC42 CSECT (OCO) CRPC enable request processing - 03
DFHRPDUF CSECT (OCO) System dump formatting routine for ONC/RPC OS 03
DFHRPMS CSECT (OCO) ONC RPC feature server controller - 03
DFHRPRDH CSECT RPRSC parameter list - 08
DFHRPRDO CSECT RPRSC parameter list - 07
DFHRPRP CSECT (OCO) ONC RPC feature RPC caller - 03
DFHRPRPT CSECT (OCO) RPRP call structured parameter list - 03
DFHRPTRI CSECT (OCO) ONC RPC feature trace interpretation - 03
DFHRPTRU CSECT (OCO) ONC RPC task-related user exit - 03
DFHRPUCH CSECT Constants used by user replaceable programs - 08
DFHRPUCO CSECT Constants used by user replaceable programs - 07
DFHRP0 CSECT (OCO) BMS mapset for CRPC main panels - 03
DFHRP0H CSECT (OCO) CRPC DFHRP0 help panels - 03
DFHRST Macro DBCTL XRF recoverable service table 11 -
DFHRTC CSECT CRTE cancel command processor OS 03
DFHRTE CSECT Transaction routing program OS 03
DFHRTSU CSECT Surrogate terminal interface program - 03
DFHRTSUA CSECT RTSU parameter list OS -
DFHRTSUI CSECT Provide Assign/Relay relay link functions of

DFHRTSU
OS -

DFHRTSUM Macro RTSU request OS -
DFHRTSUT DSECT RTSU translate tables - 03
DFHRTTRI CSECT ISC transaction routing (APRT) trace interpreter OS 03
DFHRTTR1 CSECT RTSU trace interpretation - 03
DFHRXAST CSECT - 03
DFHRXDM CSECT RX Domain Management - 03
DFHRXDMA CSECT RXDM interface parameter area OS -
DFHRXDMM Macro DFHRXDM interface macro OS -
DFHRXDMT CSECT - 03
DFHRXDUF CSECT RX Domain Dump Formatting - 03
DFHRXSVC CSECT RX Domain Management - 03
DFHRXTRI CSECT DFHRXTRI Design - 03
DFHRXUW CSECT RX Domain UOW Manager - 03
DFHRXUWA Other RXUW interface parameter area OS -
DFHRXUWM Macro RXUW interface macro OS -
DFHRXUWT CSECT - 03
DFHRXXMA Other RXXM interface parameter area OS -
DFHRXXMM Macro DFHRXXM interface macro OS -
DFHRXXMT CSECT - 03
DFHRXXRG CSECT - 03
DFHRXXRM CSECT - 03
DFHRZDM CSECT - 03
DFHRZDUF CSECT RequestStreams remote join interface - 03
DFHRZIX CSECT - 03
DFHRZJN CSECT - 03
DFHRZLN CSECT - 03
DFHRZNR2 CSECT - 03
DFHRZOFI CSECT - 03
DFHRZRG2 CSECT - 03
DFHRZRJ CSECT RequestStreams remote join interface - 03
DFHRZRJT CSECT - 03
DFHRZRM CSECT RZRM Gate Module for RM RO callback - 03
DFHRZRS1 CSECT - 03

Chapter 116. CICS directory 2119

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHRZRT CSECT RZRT CDURUN and Gate Module - 03
DFHRZRT1 CSECT - 03
DFHRZRT2 CSECT - 03
DFHRZSO CSECT - 03
DFHRZSOT CSECT - 03
DFHRZSO1 CSECT - 03
DFHRZTA CSECT - 03
DFHRZTAT CSECT - 03
DFHRZTCX CSECT - 03
DFHRZTRI CSECT RequestStreams Trace interpretation - 03
DFHRZTR1 CSECT - 03
DFHRZVP1 CSECT - 03
DFHRZXM CSECT RequestStreams XM Attach Client - 03
DFHR2TRI CSECT - 03
DFHSAADS DSECT Storage accounting area 11 -
DFHSABDS DSECT Subsystem anchor block OS -
DFHSAIQ CSECT (OCO) AP domain - system data inquire and set - 03
DFHSAIQT CSECT (OCO) SAIQ trace interpretation data - 03
DFHSAIQX Macro SAIQ request 11 -
DFHSAIQY DSECT SAIQ parameter list 11 -
DFHSAXDF CSECT DU domain - transaction dump formatter for system

areas (CSA, TCA, and so on)
OS 03

DFHSC Macro Storage service request 11 -
DFHSCAA CSECT Language Environment - set common anchor area OS 03
DFHSCALL Macro EXEC interface call macro for CICSPlex SM commands

in assembler-language pgms
11 -

DFHSCCOS Symbolic Storage control class of storage OS -
DFHSDGDS DSECT System dump global statistics 11 -
DFHSDGDS DSECT System dump global statistics C2 07
DFHSDMP Macro SDUMP parameter area and MD=L expansion OS -
DFHSDRDS DSECT System dump statistics by dump code 11 -
DFHSDRDS DSECT System dump statistics by dump code C2 07
DFHSFP CSECT Sign-off program OS 03
DFHSFTC CSECT OS -
DFHSGTIM CSECT OS -
DFHSHDM CSECT SH Domain Management - 03
DFHSHDUF CSECT SH Domain Dump Formatting - 03
DFHSHOFI CSECT - 03
DFHSHPR CSECT SHPR CDURUN and Gate Module - 03
DFHSHPRT CSECT - 03
DFHSHRE1 CSECT - 03
DFHSHRM CSECT SHRM CDURUN and Gate Module - 03
DFHSHRQ CSECT Scheduler Services - Request Queue - 03
DFHSHRQA Other SHRQ interface parameter area OS -
DFHSHRQM Macro DFHSHRQ interface macro OS -
DFHSHRQT CSECT - 03
DFHSHRQ1 CSECT - 03
DFHSHRR CSECT SHRR CDURUN and Gate Module - 03
DFHSHRRP CSECT - 03
DFHSHRRT CSECT - 03
DFHSHRSP CSECT - 03
DFHSHRT CSECT SHRT CDURUN and Gate Module - 03
DFHSHRTT CSECT - 03
DFHSHRT1 CSECT - 03

2120 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSHRT2 CSECT - 03
DFHSHSY CSECT Component modules - 03
DFHSHTC CSECT OS -
DFHSHTI CSECT - 03
DFHSHTRI CSECT SH Domain Trace Interpretation - 03
DFHSHVP1 CSECT - 03
DFHSHWPL DSECT File control SHOWCAT parameter list OS -
DFHSHXM CSECT Scheduler Services XM Attach Client - 03
DFHSIA1 CSECT System initialization - module A1 OS 03
DFHSIB1 CSECT System initialization - module B1 OS 03
DFHSIB1A Source DFHSIB1 pre-nucleus load routines OS -
DFHSIB1B Source DFHSIB1 nucleus load routine OS -
DFHSIB1C Source DFHSIB1 post-nucleus load routine OS -
DFHSIB1D Source DFHSIB1 subroutines OS -
DFHSICOM Macro System initialization definitions OS -
DFHSIC1 CSECT System initialization - module C1 OS 03
DFHSID1 CSECT System initialization - module D1 OS 03
DFHSIF1 CSECT System initialization - module F1 OS 03
DFHSIG1 CSECT System initialization - module G1 OS 03
DFHSIH1 CSECT System initialization - module H1 OS 03
DFHSII1 CSECT System initialization - module I1 OS 03
DFHSIJ1 CSECT System initialization - module J1 OS 03
DFHSIPD Macro Generate system initialization communication area OS -
DFHSIPDS DSECT SIP communication area OS -
DFHSIT Macro System initialization table 11 -
DFHSIT$$ Sample Default system initialization table 19 03
DFHSIT6$ Sample System initialization table 19 03
DFHSJAS CSECT SJ Assembler routines for DFHSJCS - 03
DFHSJCS@ CSECT Autocall SCEEOBJ - 03
DFHSJDM CSECT SJ SJVM Domain - 03
DFHSJDUF CSECT SJ SJVM Domain - 03
DFHSJGDS DSECT Jvmpool Global Statistics 11 07
DFHSJIIN CSECT SJ JVM Domain - 03
DFHSJINT CSECT - 03
DFHSJIS CSECT SJ JVM Domain - 03
DFHSJIST CSECT - 03
DFHSJJ8H CSECT - 08
DFHSJJ8O CSECT SJ JVM Domain OS 03
DFHSJST CSECT (SOCKETS) Statistics functions - 03
DFHSJTRI CSECT SJ SJVM Domain - 03
DFHSK Macro Subtasking interface OS -
DFHSKC CSECT Subtask control program OS 03
DFHSKE CSECT Subtask execution program OS 03
DFHSKM CSECT Subtask manager OS 03
DFHSKR Macro Generate SKR table entries in SIT 11 -
DFHSKTSK CSECT General purpose subtask entry point OS 03
DFHSLDC DSECT System logical device code table 11 -
DFHSMAD CSECT (OCO) SM domain - add/delete subpool - 03
DFHSMADA DSECT SMAD parameter list OS -
DFHSMADM Macro SMAD request OS -
DFHSMADT CSECT (OCO) SMAD trace interpretation data - 03
DFHSMAFA DSECT SMAF parameter list OS -
DFHSMAFT CSECT (OCO) SMAF trace interpretation data - 03
DFHSMAR CSECT (OCO) SM domain - handle functions - 03

Chapter 116. CICS directory 2121

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSMART CSECT (OCO) SMAR trace interpretation data - 03
DFHSMCK CSECT (OCO) SM domain - storage checking/recovery - 03
DFHSMCKA DSECT SMCK parameter list OS -
DFHSMCKM Macro SMCK request OS -
DFHSMCKT CSECT (OCO) SMCK trace interpretation data - 03
DFHSMDDS DSECT SM domain - storage statistics for domain subpools 11 -
DFHSMDDS DSECT SM domain - storage statistics for domain subpools C2 07
DFHSMDM CSECT (OCO) SM domain - initialization/termination - 03
DFHSMDUF CSECT (OCO) SDUMP formatter for SM domain - 03
DFHSMFDS DSECT SMF header and product section (JC/MN/ST) 11 07
DFHSMGF CSECT (OCO) SM domain - getmain/freemain - 03
DFHSMGFA DSECT SMGF parameter list OS -
DFHSMGFI Macro SM domain - inline getmain/freemain OS -
DFHSMGFM Macro SMGF request OS -
DFHSMGFT CSECT (OCO) SMGF trace interpretation data - 03
DFHSMMCA DSECT SMMC parameter list OS -
DFHSMMCI CSECT (OCO) SM domain - macro-compatibility initialize - 03
DFHSMMCM Macro SMMC request OS -
DFHSMMCT CSECT (OCO) SMMC trace interpretation data - 03
DFHSMMCX Macro SMMC request (XPI) 11 -
DFHSMMCY DSECT SMMC parameter list (XPI) 11 -
DFHSMMC2 CSECT (OCO) SM domain - macro-compatibility system freemain

functions
- 03

DFHSMMF CSECT (OCO) SM domain - macro-compatibility freemain interface - 03
DFHSMMG CSECT (OCO) SM domain - macro-compatibility getmain interface - 03
DFHSMNTA DSECT SMNT parameter list OS -
DFHSMNTM Macro SMNT request OS -
DFHSMNTT CSECT (OCO) SMNT trace interpretation data - 03
DFHSMPE Other Cataloged procedure to execute SMP/E 02 -
DFHSMPP CSECT (OCO) SM domain - pagepool manager functions 1 - 03
DFHSMPPT CSECT (OCO) SMPP trace interpretation data - 03
DFHSMPQ CSECT (OCO) SM domain - pagepool manager functions 2 - 03
DFHSMPQT CSECT (OCO) SMPQ trace interpretation data - 03
DFHSMPT Macro SMP/E control card generator 11 -
DFHSMSCP CSECT (OCO) Storage control program - 03
DFHSMSDS DSECT SM domain - storage statistics for DSAs 11 -
DFHSMSDS DSECT SM domain - storage statistics for DSAs C2 07
DFHSMSQ CSECT (OCO) SM domain - suspend queue manager function - 03
DFHSMSQT CSECT (OCO) SMSQ trace interpretation data - 03
DFHSMSR CSECT (OCO) SM domain - services - 03
DFHSMSRA DSECT SMSR parameter list OS -
DFHSMSRI CSECT SM domain - in-line INQUIRE_ACCESS OS -
DFHSMSRM Macro SMSR request OS -
DFHSMSRT CSECT (OCO) SMSR trace interpretation data - 03
DFHSMSRX Macro (OCO) SMSR request (XPI) 11 -
DFHSMSRY DSECT (OCO) SMSR parameter list 11 -
DFHSMST CSECT (OCO) SM domain - statistics collection - 03
DFHSMSU CSECT (OCO) Subspace manager - 03
DFHSMSUT CSECT (OCO) Subspace manager trace interpretation data - 03
DFHSMSVC CSECT (OCO) SM domain - authorized service routine - 03
DFHSMSY CSECT (OCO) SM domain - system task - 03
DFHSMTAB CSECT CICSPLex SM commands language table - 03
DFHSMTDS DSECT SM domain - storage statistics for task subpools 11 -
DFHSMTDS DSECT SM domain - storage statistics for task subpools C2 -

2122 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSMTDS DSECT SM domain - storage statistics for task subpools P2 -
DFHSMTRI CSECT (OCO) Trace interpreter for SM domain - 03
DFHSMUTL CSECT SM Catalog Update Program OS 03
DFHSMXDF CSECT (OCO) Transaction dump - task subpools - 03
DFHSNAS CSECT create signon/sign-off ATI sessions - 03
DFHSNEP Macro Node error program generator 11 -
DFHSNEPH Macro NEP inner macro 11 -
DFHSNET Macro Node error table generator 11 -
DFHSNEX Macro Signon extension block generator 11 -
DFHSNEXD DSECT Signon extension to TCTTE OS -
DFHSNGND DSECT CEGN parameter list OS -
DFHSNGSD DSECT GNTRAN parameter list 11 -
DFHSNGSH DSECT GNTRAN parameter list (C/370) - 08
DFHSNGSL DSECT GNTRAN parameter list (PL/I) - 17
DFHSNGSO DSECT GNTRAN parameter list (COBOL) C2 -
DFHSNLE CSECT Signon large screens map set OS 03
DFHSNLK CSECT (OCO) Signon large screens map set - 03
DFHSNMIG CSECT Signon table migration utility OS 03
DFHSNNFY CSECT RACF CICS segment notify exit OS 03
DFHSNP CSECT Signon program OS 03
DFHSNPTO CSECT CICS segment (RACF) TIMEOUT keyword print exit

routine
- 03

DFHSNPU CSECT Preset userid signon/sign-off - 03
DFHSNSC CSECT Timeout transaction (CESC) scheduler - 03
DFHSNSCA CSECT SNSC parameter list OS -
DFHSNSCM Macro SNSC requests OS -
DFHSNSE CSECT Signon small screens map set OS 03
DFHSNSG CSECT Surrogate terminal signon/off - 03
DFHSNSGI Macro Surrogate terminals sign-on and signoff requests OS -
DFHSNSK CSECT (OCO) Signon small screens map set - 03
DFHSNSTA DSECT ISC/IRC attach-time statistics area OS -
DFHSNSU CSECT Session userid signon/sign-off - 03
DFHSNTRI CSECT SN trace interpreter - 03
DFHSNTU CSECT Terminal userid signon/sign-off - 03
DFHSNUS CSECT (OCO) US domain - local and remote signon - 03
DFHSNUSA DSECT SNUS parameter list OS -
DFHSNUSM Macro SNUS macro OS -
DFHSNUST CSECT (OCO) SNUS trace interpretation data - 03
DFHSNVCL CSECT RACF CICS segment OPCLASS validation exit OS 03
DFHSNVID CSECT RACF CICS segment OPIDENT validation exit OS 03
DFHSNVPR CSECT RACF CICS segment OPPRTY validation exit OS 03
DFHSNVTO CSECT RACF CICS segment TIMEOUT validation exit OS 03
DFHSNXR CSECT (OCO) XRF reflecting signon state - 03
DFHSNXRA DSECT SNXR parameter list OS -
DFHSNXRM Macro SNXR requests OS -
DFHSNXRT CSECT (OCO) SNXR trace interpretation data - 03
DFHSOAD CSECT SO Domain - SOAD gate functions - 03
DFHSOADT CSECT - 03
DFHSOCBT CSECT - 03
DFHSOCK CSECT Sockets send/receive/close - 03
DFHSOCKT CSECT - 03
DFHSODM CSECT Sockets Domain Initialization - 03
DFHSODUF CSECT Sockets Domain Dump Formatting - 03
DFHSOGDS DSECT Sockets Global Statistics 11 07

Chapter 116. CICS directory 2123

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSOGH@ DSECT - 03
DFHSOIS CSECT Sockets Domain Inquire/Set - 03
DFHSOIST CSECT - 03
DFHSOL CSECT Sockets Domain Listener Task - 03
DFHSOLS CSECT Sockets Listener - 03
DFHSOLST CSECT - 03
DFHSOLX CSECT Sockets Domain Asynchronous exit routine - 03
DFHSOPI CSECT SO Domain CEEPIPI service routines - 03
DFHSORD CSECT SO Domain Sockets Register/Deregister - 03
DFHSORDS Other SO Domain TCPIP Service Statistics 11 07
DFHSORDT CSECT - 03
DFHSORT Macro Auxiliary sort 11 -
DFHSOSE CSECT Sockets Domain Secure Sockets Layer - 03
DFHSOSET CSECT - 03
DFHSOSK@ CSECT - 03
DFHSOSKO CSECT - 03
DFHSOST CSECT Sockets Statistics Functions - 03
DFHSOS00 CSECT - 03
DFHSOS01 CSECT - 03
DFHSOS02 CSECT - 03
DFHSOS03 CSECT - 03
DFHSOS04 CSECT - 03
DFHSOS05 CSECT - 03
DFHSOS06 CSECT - 03
DFHSOS07 CSECT - 03
DFHSOS08 CSECT - 03
DFHSOS09 CSECT - 03
DFHSOS10 CSECT - 03
DFHSOS11 CSECT - 03
DFHSOS12 CSECT - 03
DFHSOS13 CSECT - 03
DFHSOS14 CSECT - 03
DFHSOS15 CSECT - 03
DFHSOS16 CSECT - 03
DFHSOS17 CSECT - 03
DFHSOS18 CSECT - 03
DFHSOS19 CSECT - 03
DFHSOS20 CSECT - 03
DFHSOS21 CSECT - 03
DFHSOS22 CSECT - 03
DFHSOS23 CSECT - 03
DFHSOTB CSECT SO Domain SOTB Gate Functions - 03
DFHSOTBT CSECT - 03
DFHSOTI CSECT Sockets Timer - 03
DFHSOTRI CSECT Sockets Domain Trace Interpretation - 03
DFHSOUE CSECT Sockets Domain User Exit Services - 03
DFHSOXM CSECT Sockets Attach Client - 03
DFHSP Macro Syncpoint service request 11 -
DFHSPBAB CSECT - 03
DFHSPBAC CSECT - 03
DFHSPBAE CSECT - 03
DFHSPDBB CSECT OS 03
DFHSPDBC CSECT OS 03
DFHSPDBE CSECT OS 03

2124 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSPDHB CSECT - 03
DFHSPDHC CSECT - 03
DFHSPDHE CSECT - 03
DFHSPEJB CSECT - 03
DFHSPEJC CSECT - 03
DFHSPEJE CSECT - 03
DFHSPFIB CSECT CSDUP - cross-keyword validation for files OS 03
DFHSPFIC CSECT RDO - cross-keyword validation for files OS 03
DFHSPFIE CSECT RDO file definition validation OS 03
DFHSPKCB CSECT CSDUP - cross-keyword validation for transactions

and profiles
OS 03

DFHSPKCC CSECT RDO - cross-keyword validation for transactions and
profiles

OS 03

DFHSPKCE CSECT RDO txn control definition validation OS 03
DFHSPLMB CSECT RDO JournalModel definition validation - 03
DFHSPLMC CSECT RDO JournalModel definition validation - 03
DFHSPLME CSECT RDO JournalModel definition validation - 03
DFHSPLSB CSECT CSDUP - cross-keyword validation for LSR pools OS 03
DFHSPLSC CSECT RDO - cross-keyword validation for LSR pools OS 03
DFHSPLSE CSECT RDO - Lsrpool definition validation OS 03
DFHSPNQB CSECT OS 03
DFHSPNQC CSECT OS 03
DFHSPNQE CSECT OS 03
DFHSPOPB CSECT - 03
DFHSPOPC CSECT - 03
DFHSPOPE CSECT - 03
DFHSPPCB CSECT CSDUP - cross-keyword validation for programs, map

sets, and partition sets
OS 03

DFHSPPCC CSECT RDO - cross-keyword validation for programs, map
sets, and partition sets

OS 03

DFHSPPCE CSECT RDO - program definition validation OS 03
DFHSPPNB CSECT CSDUP - cross-keyword validation for partners OS 03
DFHSPPNC CSECT RDO - cross-keyword validation for partners OS 03
DFHSPPNE CSECT RDO - partner definition validation OS 03
DFHSPSOB CSECT - 03
DFHSPSOC CSECT - 03
DFHSPSOE CSECT - 03
DFHSPTCB CSECT CSDUP - cross-keyword validation for terminals OS 03
DFHSPTCC CSECT RDO - cross-keyword validation for terminals OS 03
DFHSPTCE CSECT RDO - terminal definition validation OS 03
DFHSPTDB CSECT RDO - TDQueue definition validation - 03
DFHSPTDC CSECT RDO - TDQueue definition validation - 03
DFHSPTDE CSECT RDO - TDQueue definition validation - 03
DFHSPTIB CSECT CSDUP - cross-keyword validation for sessions OS 03
DFHSPTIC CSECT RDO - cross-keyword validation for sessions OS 03
DFHSPTIE CSECT RDO - sessions definition validation OS 03
DFHSPTNB CSECT CSDUP - cross-keyword validation for connections OS 03
DFHSPTNE CSECT RDO - connection definition validation OS 03
DFHSPTNC CSECT RDO - cross-keyword validation for connections OS 03
DFHSPTRI CSECT SPI trace interpreter OS 03
DFHSPTSB CSECT OS 03
DFHSPTSC CSECT OS 03
DFHSPTSE CSECT OS 03
DFHSPTYB CSECT CSDUP - cross-keyword validation for typeterms OS 03

Chapter 116. CICS directory 2125

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSPTYC CSECT RDO - cross-keyword validation for typeterms OS 03
DFHSPTYE CSECT RDO - Typeterms definition validation OS 03
DFHSPP CSECT Syncpoint program - 03

DFHSPXMB CSECT CSDUP - cross-keyword validation for transactions - 03
DFHSPXMC CSECT RDO - cross-keyword validation for transactions - 03
DFHSPXME CSECT RDO - TranClass definition validation - 03
DFHSRADS DSECT SRB interface control area OS -
DFHSRASM CSECT Alias for SRRHASM 11 -
DFHSRCOB CSECT Alias for SRRCOBOL C2 -
DFHSRED DSECT System recovery error data for XSRAB exit 11 -
DFHSRLI CSECT SRP LIFO storage subroutine OS 03
DFHSRLIA DSECT SRLI parameter list OS -
DFHSRLIM Macro SRLI request OS -
DFHSRLIT CSECT SRLI trace interpretation data OS 03
DFHSRP CSECT System recovery program OS 03
DFHSRPLI CSECT Alias for SRRPLI P2 -
DFHSRRC CSECT Alias for SRRC - 08
DFHSRSRA Source SRSR parameter list OS -
DFHSRSRM Source SRSR request OS -
DFHSRT Macro System recovery table 11 -
DFHSRTDS DSECT System recovery table OS -
DFHSRT1$ Sample System recovery table 19 03
DFHSRXDS DSECT SRB and extensions in SQA OS -
DFHSR1 CSECT System recovery program - 03
DFHSSAD Macro Static storage area address list 11 -
DFHSSDUF CSECT (OCO) SDUMP formatter for static storage areas - 03
DFHSSEN CSECT Subsystem interface EOT and EOM routine OS 03
DFHSSGC CSECT Subsystem interface generic connect OS 03
DFHSSIN CSECT CICS subsystem initialization OS 03
DFHSSMGP CSECT Subsystem interface message program OS 03
DFHSSMGT CSECT Subsystem interface message table OS 03
DFHSSREQ Macro Subsystem interface (SSI) request OS -
DFHSSWT CSECT Subsystem interface WTO router OS 03
DFHSSWTF CSECT SSI MODIFY command password suppression OS 03
DFHSSWTO CSECT SSI CICS console message reformatting OS 03
DFHSTAB Macro Table scan macro 11 -
DFHSTACK Macro Save/restore registers on subroutine calls OS -
DFHSTART Other CICS startup cataloged procedure 02 -
DFHSTDBX CSECT (OCO) STUP - DBCTL statistics summary formatter - 03
DFHSTDM CSECT (OCO) ST domain - initialization/termination - 03
DFHSTDSX CSECT (OCO) STUP - DS domain stats summary formatter - 03
DFHSTDUF CSECT (OCO) SDUMP formatter for ST domain - 03
DFHSTDUX CSECT (OCO) STUP - DU domain stats summary formatter - 03
DFHSTD2 Macro Standard names of domains, gates, formats 11 -
DFHSTD2X CSECT - 03
DFHSTEJX CSECT Stats.Util.EJ Domain Extended formatting - 03
DFHSTE15 CSECT (OCO) STUP - DFSORT interface to E15 user exit - 03
DFHSTE35 CSECT (OCO) STUP - DFSORT interface to E35 user exit - 03
DFHSTFC CSECT AP domain - file control statistics - 03
DFHSTGDS DSECT ST domain - global statistics 11 -
DFHSTGDS DSECT ST domain - global statistics C2 07
DFHSTIDS DSECT Statistics common record header and record identifiers 11 -

2126 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSTIDS DSECT Statistics common record header and record identifiers C2 07
DFHSTIIX CSECT Stats.Util.II Domain Extended formatting - 03
DFHSTIN CSECT (OCO) STUP - DFSORT E15 user exit input routine - 03
DFHSTISX CSECT (OCO) STUP - IPCONN statistics summary formatter - 03
DFHSTLDX CSECT (OCO) STUP - LD domain stats summary formatter - 03
DFHSTLGX CSECT (OCO) Logger Domain statistics extended - 03
DFHSTLK CSECT AP domain - ISC/IRC statistics - 03
DFHSTLS CSECT AP domain - LSR pool statistics - 03
DFHSTMNX CSECT (OCO) STUP - MN domain stats summary formatter - 03
DFHSTMQX CSECT CICS-MQ statistics summary formatter - 03
DFHSTNDD Macro 11 -
DFHSTNQX CSECT (OCO) Enqueue Manager domain statistics - 03
DFHSTOT CSECT (OCO) STUP - DFSORT E35 user exit output routine - 03
DFHSTP CSECT System termination program OS 03
DFHSTPGX CSECT STUP - PG domain autoinstall statistics - 03
DFHSTRD CSECT (OCO) STUP - read interface - 03
DFHSTRDA DSECT STRD parameter list OS -
DFHSTRDM Macro STRD request OS -
DFHSTRMX CSECT (OCO) Recovery Manager domain statistics - 03
DFHSTSJX CSECT Stats.Util.JVM Domain Extended formatting - 03
DFHSTSMF Macro ST domain - statistics SMF header and SMF product

section
11 -

DFHSTSMX CSECT (OCO) STUP - SM domain stats summary formatter - 03
DFHSTSOX CSECT Stats.Util.SO Domain Extended formatting - 03
DFHSTST CSECT (OCO) ST domain - services - 03
DFHSTSTA DSECT STST parameter list OS -
DFHSTSTM Macro STST request OS -
DFHSTSTT CSECT STST trace interpretation data OS 03
DFHSTSTX CSECT (OCO) STUP - ST domain stats summary formatter - 03
DFHSTSZ CSECT AP domain - FEPI statistics - 03
DFHSTTD CSECT AP domain - transient data statistics - 03
DFHSTTI CSECT (OCO) ST domain - timer notify handler - 03
DFHSTTM CSECT AP domain - table manager statistics - 03
DFHSTTQX CSECT STUP - TDQueue id extended formatting - 03
DFHSTTR CSECT AP domain - terminal statistics - 03
DFHSTTRI CSECT (OCO) Trace interpreter for ST domain - 03
DFHSTTSX CSECT (OCO) Shared TS statistics - 03
DFHSTUDB CSECT (OCO) STUP - DBCTL statistics formatter - 03
DFHSTUDE CSECT (OCO) STUP - DE domain statistics formatter - 03
DFHSTUDS CSECT (OCO) STUP - DS domain statistics formatter - 03
DFHSTUDU CSECT (OCO) STUP - DU domain statistics formatter - 03
DFHSTUD2 CSECT (OCO) STUP - DU domain statistics formatter - 03
DFHSTUE CSECT (OCO) ST domain - user exit service - 03
DFHSTUEJ CSECT STUP - EJ Domain formatting routine - 03
DFHSTUII CSECT STUP - II Domain formatting routine - 03
DFHSTUIS CSECT (OCO) STUP - IPCONN statistics formatter - 03
DFHSTULD CSECT (OCO) STUP - LD domain statistics formatter - 03
DFHSTULG CSECT (OCO) STUP - Logger domain formatting routine - 03
DFHSTUMN CSECT (OCO) STUP - MN domain statistics formatter - 03
DFHSTUMQ CSECT CICS-MQ statistics formatter - 03
DFHSTUNQ CSECT (OCO) STUP - Enqueue manager domain statistics - 03
DFHSTUPG CSECT (OCO) STUP - PG domain autoinstall statistics formatter - 03
DFHSTUP1 CSECT (OCO) STUP - preinitialize - 03
DFHSTURM CSECT (OCO) STUP - Recovery manager domain statistics - 03

Chapter 116. CICS directory 2127

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSTURS CSECT (OCO) STUP - US domain statistics formatter - 03
DFHSTURX CSECT (OCO) STUP - US domain statistics summary formatter - 03
DFHSTUSJ CSECT STUP - Scaleable JVM Domain formatting - 03
DFHSTUSM CSECT (OCO) STUP - SM domain statistics formatter - 03
DFHSTUSO CSECT STUP - Sockets Domain formatting routine - 03
DFHSTUST CSECT (OCO) STUP - ST domain statistics formatter - 03
DFHSTUTQ CSECT (OCO) STUP - Transient data statistics - 03
DFHSTUTS CSECT (OCO) Shared TS statistics - 03
DFHSTUXC CSECT (OCO) STUP - Transaction manager domain statistics - 03
DFHSTUXM CSECT (OCO) STUP - XM domain statistics formatter - 03
DFHSTU03 CSECT (OCO) STUP - VTAM statistics formatter - 03
DFHSTU04 CSECT (OCO) STUP - autoinstall terminals statistics formatter - 03
DFHSTU06 CSECT (OCO) STUP - terminal statistics formatter - 03
DFHSTU08 CSECT (OCO) STUP - LSRPOOL resource statistics formatter - 03
DFHSTU09 CSECT (OCO) STUP - LSRPOOL file statistics formatter - 03
DFHSTU14 CSECT (OCO) STUP - ISC/IRC statistics formatter - 03
DFHSTU16 CSECT (OCO) STUP - table manager statistics formatter - 03
DFHSTU17 CSECT (OCO) STUP - file control statistics formatter - 03
DFHSTU21 CSECT (OCO) STUP - ISC/IRC attach-time statistics formatter - 03
DFHSTU22 CSECT (OCO) STUP - FEPI statistics formatter - 03
DFHSTWR CSECT (OCO) STUP - write interface - 03
DFHSTWRA DSECT STWR parameter list OS -
DFHSTWRM Macro STWR request OS -
DFHSTXCX CSECT (OCO) STUP - Transaction manager domain extended

formatting routine for TranClass Stats
- 03

DFHSTXLE CSECT Off-line Statistics Utility Program - 03
DFHSTXMX CSECT (OCO) STUP - XM statistics extended formatter - 03
DFHST03X CSECT (OCO) STUP - VTAM statistics summary formatter - 03
DFHST04X CSECT (OCO) STUP - autoinstall terminals statistics summary

formatter
- 03

DFHST06X CSECT (OCO) STUP - terminal stats summary formatter - 03
DFHST08X CSECT (OCO) STUP - LSRPOOL resource statistics summary

formatter
- 03

DFHST09X CSECT (OCO) STUP - LSRPOOL file statistics summary formatter - 03
DFHST14X CSECT (OCO) STUP - ISC/IRC stats summary formatter - 03
DFHST16X CSECT (OCO) STUP - table manager statistics summary formatter - 03
DFHST17X CSECT (OCO) STUP - file control statistics summary formatter - 03
DFHST21X CSECT (OCO) STUP - ISC/IRC attach-time statistics summary

formatter
- 03

DFHST22X CSECT (OCO) STUP - FEPI statistics summary formatter - 03
DFHSUDUF CSECT (OCO) SDUMP formatter for DU domain summary - 03
DFHSUEX CSECT User exit handler subroutine - 03
DFHSUEXA DSECT SUEX parameter list OS -
DFHSUEXM Macro SUEX request OS -
DFHSUEXT CSECT SUEX trace interpretation data OS 03
DFHSUME CSECT (OCO) ME domain - produce and issue messages subroutine

(used by ME and LM domains)
- 03

DFHSUMEA DSECT SUME parameter list OS -
DFHSUMEM Macro SUME request OS -
DFHSUMET CSECT SUME trace interpretation data - 03
DFHSUNP Other OS -
DFHSUSX CSECT XRF signon OS 03
DFHSUSXA DSECT SUSX parameter list OS -
DFHSUSXM Macro SUSX request OS -

2128 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSUSXT DSECT SUSX translate tables OS 03
DFHSUTRI CSECT WTO/WTOR subroutine trace interpreter OS 03
DFHSUWT CSECT WTO/WTOR interface subroutine OS 03
DFHSUWTA DSECT SUWT parameter list OS -
DFHSUWTM Macro SUWT request OS -
DFHSUWTT CSECT SUWT trace interpretation data OS 03
DFHSUZX CSECT ZC trace controller OS 03
DFHSUZXA DSECT SUZX parameter list OS -
DFHSUZXM Macro SUZX request OS -
DFHSUZXT CSECT SUZX trace interpretation data OS 03
DFHSVCHK Macro SVC level check 11 -
DFHSWXK Macro Switch execution key routine OS -
DFHSYS Macro System definition macro 11 -
DFHSZAPA DSECT FEPI programming copybook - assembler 11 -
DFHSZAPC DSECT FEPI programming copybook - C/370 - 08
DFHSZAPO DSECT FEPI programming copybook - COBOL C2 -
DFHSZAPP DSECT FEPI programming copybook - PL/I P2 17
DFHSZATC CSECT (OCO) FEPI adaptor command tables - 03
DFHSZATR CSECT (OCO) FEPI adaptor program - 03
DFHSZBCL CSECT (OCO) FEPI cleanup API requests at error routine - 03
DFHSZBCS CSECT (OCO) FEPI RM collect statistics - 03
DFHSZBFT CSECT (OCO) FEPI FREE transaction requests scheduler - 03
DFHSZBLO CSECT (OCO) FEPI lost session reporter - 03
DFHSZBRS CSECT (OCO) FEPI RM collect resource ID statistics - 03
DFHSZBSI CSECT (OCO) FEPI signon exit scheduler - 03
DFHSZBST CSECT (OCO) FEPI STSN transaction scheduler - 03
DFHSZBUN CSECT (OCO) FEPI unsolicited data transaction scheduler - 03
DFHSZBUS CSECT (OCO) FEPI RM unsolicited statistics recording - 03
DFHSZDUF CSECT (OCO) FEPI dump formatting routine - 03
DFHSZFRD CSECT (OCO) FEPI formatted 3270 RECEIVE support - 03
DFHSZFSD CSECT (OCO) FEPI formatted 3270 SEND support - 03
DFHSZIDX CSECT (OCO) FEPI SLU P queue install/discard exit - 03
DFHSZPCP CSECT (OCO) FEPI SLU P flow controller - 03
DFHSZPDX CSECT (OCO) FEPI SLU P drain completion exit - 03
DFHSZPID CSECT (OCO) FEPI SLU P send data processor - 03
DFHSZPIX CSECT (OCO) FEPI SLU P send completion exit - 03
DFHSZPOA CSECT (OCO) FEPI SLU P send response processor - 03
DFHSZPOD CSECT (OCO) FEPI SLU P receive data processor - 03
DFHSZPOR CSECT (OCO) FEPI SLU P response processor - 03
DFHSZPOX CSECT (OCO) FEPI SLU P receive specific response exit - 03
DFHSZPOY CSECT (OCO) FEPI SLU P receive specific response processor - 03
DFHSZPQS CSECT (OCO) FEPI SLU P REQSESS (request session) issuer - 03
DFHSZPQX CSECT (OCO) FEPI SLU P REQSESS exit - 03
DFHSZPSB CSECT (OCO) FEPI SLU P bind processor - 03
DFHSZPSC CSECT (OCO) FEPI SLU P session controller - 03
DFHSZPSD CSECT (OCO) FEPI SLU P SDT processor - 03
DFHSZPSH CSECT (OCO) FEPI SLU P SHUTC processor - 03
DFHSZPSQ CSECT (OCO) FEPI SLU P quiesce complete (QC) processor - 03
DFHSZPSR CSECT (OCO) FEPI RESETSR processor CSECT - 03
DFHSZPSS CSECT (OCO) FEPI SLU P STSN processor - 03
DFHSZPSX CSECT (OCO) FEPI SLU P OPNSEC completion exit - 03
DFHSZPTE CSECT (OCO) FEPI SLU P TERMSESS processor - 03
DFHSZRCA CSECT (OCO) FEPI node control processor - 03
DFHSZRCT CSECT (OCO) FEPI issue processor - 03

Chapter 116. CICS directory 2129

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSZRDC CSECT (OCO) FEPI delete connection processor - 03
DFHSZRDG CSECT (OCO) FEPI discard node processor - 03
DFHSZRDN CSECT (OCO) FEPI delete node processor - 03
DFHSZRDP CSECT (OCO) FEPI dispatcher - 03
DFHSZRDS CSECT (OCO) FEPI discard property set processor - 03
DFHSZRDT CSECT (OCO) FEPI discard target processor - 03
DFHSZREQ CSECT (OCO) FEPI request processor - 03
DFHSZRFC CSECT (OCO) FEPI FREE completion processor - 03
DFHSZRGR CSECT (OCO) FEPI Dispatcher work queue processor - 03
DFHSZRIA CSECT (OCO) FEPI allocate processor - 03
DFHSZRIC CSECT (OCO) FEPI define connection processor - 03
DFHSZRID CSECT (OCO) FEPI discard processor - 03
DFHSZRIF CSECT (OCO) FEPI install free processor - 03
DFHSZRII CSECT (OCO) FEPI install processor - 03
DFHSZRIN CSECT (OCO) FEPI install node processor - 03
DFHSZRIO CSECT (OCO) FEPI ACB open processor - 03
DFHSZRIP CSECT (OCO) FEPI install pool processor - 03
DFHSZRIQ CSECT (OCO) FEPI inquire processor - 03
DFHSZRIS CSECT (OCO) FEPI install processor - 03
DFHSZRIT CSECT (OCO) FEPI install target processor - 03
DFHSZRIW CSECT (OCO) FEPI SET processor - 03
DFHSZRNC CSECT (OCO) FEPI NODE processor - 03
DFHSZRNO CSECT (OCO) FEPI NOOP processor - 03
DFHSZRPM CSECT (OCO) FEPI timer services - 03
DFHSZRPW CSECT (OCO) FEPI request preparation - 03
DFHSZRQR CSECT (OCO) FEPI queue for REQSESS processing - 03
DFHSZRQW CSECT (OCO) FEPI request queue processor - 03
DFHSZRRD CSECT (OCO) FEPI RECEIVE request processor - 03
DFHSZRRT CSECT (OCO) FEPI request release processor - 03
DFHSZRSC CSECT (OCO) FEPI connection processor - 03
DFHSZRSE CSECT (OCO) FEPI SEND request processor - 03
DFHSZRST CSECT (OCO) FEPI START request processor - 03
DFHSZRTM CSECT (OCO) FEPI recovery services - 03
DFHSZRXD CSECT (OCO) FEPI EXTRACT processor - 03
DFHSZRZZ CSECT (OCO) FEPI TERMINATE processor - 03
DFHSZSDS DSECT FEPI storage control block 11 -
DFHSZSIP CSECT (OCO) FEPI initialization processor - 03
DFHSZVBN CSECT (OCO) FEPI copy NIB mask to real NIB - 03
DFHSZVGF CSECT (OCO) FEPI get queue element FIFO - 03
DFHSZVQS CSECT (OCO) FEPI REQSESS dispatcher - 03
DFHSZVRA CSECT (OCO) FEPI VTAM receive_any processor - 03
DFHSZVRI CSECT (OCO) FEPI VTAM receive_any issuer - 03
DFHSZVSC CSECT (OCO) FEPI delayed bind processor - 03
DFHSZVSL CSECT (OCO) FEPI SETLOGON request issuer - 03
DFHSZVSQ CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZVSR CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZVSY CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZWSL CSECT (OCO) FEPI RPL exit after SETLOGON - 03
DFHSZXDA CSECT (OCO) FEPI VTAM DFASY exit - 03
DFHSZXFR CSECT (OCO) FEPI RPL exit to free request block - 03
DFHSZXLG CSECT (OCO) FEPI VTAM logon exit - 03
DFHSZXLT CSECT (OCO) FEPI VTAM LOSTERM (lost terminal) exit - 03
DFHSZXNS CSECT (OCO) FEPI VTAM NSEXIT (network services) exit - 03
DFHSZXPM CSECT (OCO) FEPI STIMER IRB exit routine - 03

2130 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHSZXRA CSECT (OCO) FEPI VTAM RECEIVE_ANY exit - 03
DFHSZXSC CSECT (OCO) FEPI VTAM SCIP (session control) exit - 03
DFHSZXTP CSECT (OCO) FEPI VTAM TPEND exit - 03
DFHSZYLG CSECT (OCO) FEPI RPL exit following logon reject - 03
DFHSZYQR CSECT (OCO) FEPI post for REQSESS processing - 03
DFHSZYRI CSECT (OCO) FEPI VTAM RECEIVE_ANY issuer - 03
DFHSZYSC CSECT (OCO) FEPI VTAM SCIP exit extension - 03
DFHSZYSR CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZYSY CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZZAG CSECT (OCO) FEPI get RECEIVE_ANY request block - 03
DFHSZZFR CSECT (OCO) FEPI free RECEIVE_ANY request block - 03
DFHSZZNG CSECT (OCO) FEPI get session control request block - 03
DFHSZZRG CSECT (OCO) FEPI get RPL request block - 03
DFHSZ2CP CSECT (OCO) FEPI SLU2 flow controller - 03
DFHSZ2DX CSECT (OCO) FEPI SLU2 drain completion exit - 03
DFHSZ2ID CSECT (OCO) FEPI SLU2 send data processor - 03
DFHSZ2IX CSECT (OCO) FEPI SLU2 send completion exit - 03
DFHSZ2OA CSECT (OCO) FEPI SLU2 send response processor - 03
DFHSZ2OD CSECT (OCO) FEPI SLU2 receive data processor - 03
DFHSZ2OR CSECT (OCO) FEPI SLU2 response processor - 03
DFHSZ2OX CSECT (OCO) FEPI SLU2 receive specific completion exit - 03
DFHSZ2OY CSECT (OCO) FEPI SLU2 receive specific action module - 03
DFHSZ2PX CSECT (OCO) FEPI SLU2 positive response drain exit - 03
DFHSZ2QS CSECT (OCO) FEPI SLU2 REQSESS issuer - 03
DFHSZ2QX CSECT (OCO) FEPI SLU2 REQSESS exit - 03
DFHSZ2SB CSECT (OCO) FEPI SLU2 bind processor - 03
DFHSZ2SC CSECT (OCO) FEPI SLU2 session controller - 03
DFHSZ2SD CSECT (OCO) FEPI SLU2 SDT processor - 03
DFHSZ2SH CSECT (OCO) FEPI SLU2 SHUTC processor - 03
DFHSZ2SQ CSECT (OCO) FEPI SLU2 QC processor - 03
DFHSZ2SR CSECT (OCO) FEPI SLU2 RESETSR processor - 03
DFHSZ2SX CSECT (OCO) FEPI SLU2 OPNSEC processor - 03
DFHSZ2TE CSECT (OCO) FEPI SLU2 TERMSESS processor - 03
DFHTACB Macro Task abend control block 11 -
DFHTACLE DSECT TCT line entry prefix 11 -
DFHTACP CSECT Terminal abnormal condition program OS 03
DFHTAJP CSECT Time adjustment program OS 03
DFHTBS Macro Builder interface OS -
DFHTBSB CSECT Add a node OS 03
DFHTBSBP CSECT Recursive part of DFHTBSB OS 03
DFHTBSD CSECT Delete node program OS 03
DFHTBSDP CSECT Recursive part of DFHTBSD OS 03
DFHTBSL CSECT Create recovery record for node OS 03
DFHTBSLP CSECT Recursive part of DFHTBSL OS 03
DFHTBSQ CSECT Builder inquire process OS 03
DFHTBSQP CSECT Recursive part of DFHTBSQ OS 03
DFHTBSR CSECT Builder restore process OS 03
DFHTBSRP CSECT Recursive part of DFHTBSR OS 03
DFHTBSS CSECT TBS syncpoint processor - 03
DFHTBSST DSECT TBSS translate tables - 03
DFHTBS00 CSECT Table builder services program OS 03
DFHTC Macro Terminal service request 11 -
DFHTCA Macro Task control area 11 -
DFHTCADS DSECT Task control area 11 -

Chapter 116. CICS directory 2131

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHTCAM Source CICS-TCAM interface logic OS -
DFHTCCLC Source Common line control logic OS -
DFHTCCOM Source Input data length computation OS -
DFHTCCSS Source Start-stop event analysis OS -
DFHTCDEF Symbolic Terminal control definitions OS -
DFHTCDPF CSECT (OCO) Terminal control prefix SDUMP module - 03
DFHTCDUF CSECT (OCO) Terminal control SDUMP formatter - 03
DFHTCORS Source Terminal storage routine OS -
DFHTCP CSECT Terminal control program OS 03
DFHTCPCL Macro DFHZCP request OS -
DFHTCPCM Macro Common ZCP functions 11 -
DFHTCPLR Macro LU6.2 limited resources service OS -
DFHTCPQR Macro Queued response notification OS -
DFHTCPRA DSECT Receive-any control element OS -
DFHTCPRT Macro DFHZCP RETURN macro OS -
DFHTCPSM Macro TCT generation - VTAM DSECTs 11 -
DFHTCPSV Macro DFHZCP SAVE macro OS -
DFHTCPZR Macro VTAM RPL extension for HPO 11 -
DFHTCQUE Macro DFHZCP QUEUE macro OS -
DFHTCRP CSECT Terminal control recovery program OS 03
DFHTCRPC CSECT XRF tracking interface for TCT contents OS 03
DFHTCRPL CSECT Install TCT macro definitions OS 03
DFHTCRPS CSECT XRF tracking interface for ZCP sessions OS 03
DFHTCRPU CSECT XRF tracking interface for SNTTEs OS 03
DFHTCRWE DSECT Remote install work element OS -
DFHTCSAM Source Sequential terminal logic OS -
DFHTCSRV Macro DFHTC inner service macro 11 -
DFHTCSUM CSECT Terminal control dump summary program - 03
DFHTCT Macro Terminal control table 11 -
DFHTCTDY CSECT Terminal control table (dummy) 19 03
DFHTCTFN Source TCT TYPE=FINAL (VTAM) 11 -
DFHTCTFX DSECT TCT prefix 11 -
DFHTCTI Source Terminal control task initiation logic OS -
DFHTCTLC Macro TCT inner macro 11 -
DFHTCTLE DSECT TCT line entry 11 -
DFHTCTME Macro Generate TCT mode group entries 11 -
DFHTCTPR Macro TCTTE partition extension builder 11 -
DFHTCTPS Macro TCT inner macro 11 -
DFHTCTPX Macro TCT inner macro 11 -
DFHTCTRD Macro VTAM RDO command list builder 11 -
DFHTCTRE Macro TCT definition macro 11 -
DFHTCTRN Source Terminal control translation tables OS -
DFHTCTSA Macro TCT inner macro 11 -
DFHTCTSB Macro TCT inner macro 11 -
DFHTCTSE Macro Generate ISC system entry 11 -
DFHTCTSK Macro Generate TCT skeleton entry 11 -
DFHTCTST Macro TCT inner macro 11 -
DFHTCTSV Macro TCT inner macro 11 -
DFHTCTTE DSECT TCT terminal entry 11 -
DFHTCTUA Macro TCT inner macro 11 -
DFHTCTUB Macro TCT inner macro 11 -
DFHTCTWA DSECT TC transaction work area 11 -
DFHTCTWE DSECT TCT autodefine work element OS -
DFHTCTZE Macro TCTTE definition 11 -

2132 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHTCT5$ Sample Terminal control table 19 03
DFHTCUDS DSECT COMMAREA passed to autoinstall exit 11 -
DFHTCUDS DSECT COMMAREA passed to autoinstall exit C2 07
DFHTCUDS DSECT COMMAREA passed to autoinstall exit P2 08
DFHTCV29 DSECT XRF session state data control vector OS -
DFHTCX Macro TCA extension for LU6.2 11 -
DFHTCXDF CSECT DU domain - transaction dump formatter for terminal

related areas
OS 03

DFHTD Macro Transient data service request 11 -
DFHTDA CSECT Transient data request processor - 03
DFHTDB CSECT Transient data request processor - 03
DFHTDCI DSECT Transient data VSAM CI map OS -
DFHTDDUF CSECT (OCO) Transient data SDUMP formatter - 03
DFHTDEXL CSECT Transient data DCB exit list and DCB abend exit

routine
OS 03

DFHTDGDS DSECT Transaction dump global statistics 11 -
DFHTDGDS DSECT Transaction dump global statistics C2 07
DFHTDOA DSECT Transient data output area 11 -
DFHTDOC CSECT Transient data open/close for extrapartition queues - 03
DFHTDOCA DSECT TDOC parameter list OS -
DFHTDOCM Macro TDOC request OS -
DFHTDOCT CSECT TDOC trace interpretation data - 03
DFHTDRDS DSECT Transaction dump statistics by dump code 11 -
DFHTDRDS DSECT Transaction dump statistics by dump code C2 07
DFHTDRDS DSECT Transaction dump statistics by dump code P2 -
DFHTDRP CSECT Transient data recovery program OS 03
DFHTDSDS DSECT Transient data static storage OS -
DFHTDTDA DSECT TDTD parameter list OS -
DFHTDTDM Macro TDTD request OS -
DFHTDTDT CSECT TDTD trace interpretation data - 03
DFHTDTM CSECT Transient data table management gate - 03
DFHTDTMA CSECT TDTM parameter list OS -
DFHTDTMM Macro TDTM request OS -
DFHTDTMT DSECT TDTM translate tables - 03
DFHTDTRI CSECT Transient data trace interpreter OS 03
DFHTDUED Macro TD user exits EXEC argument list 11 -
DFHTDX CSECT Transient data phase 1 initialization OS 03
DFHTDXM CSECT (OCO) XM domain - TD facility management services OS 03
DFHTDXMA DSECT TDXM parameter list OS -
DFHTDXMM Macro TDXM request OS -
DFHTDXMT CSECT (OCO) TDXM trace interpretation data OS 03
DFHTEPA Macro TEP inner macro 11 -
DFHTEPC Macro TEP inner macro 11 -
DFHTEPCA Macro TEP communication area 11 -
DFHTEPM Macro TEP module generator 11 -
DFHTEPS Macro TEP inner macro 11 -
DFHTEPT Macro TEP table generator 11 -
DFHTERID Symbolic Terminal error definitions 11 -
DFHTEST Macro Domain call argument TEST macro 11 -
DFHTFALA DSECT TFAL parameter list OS -
DFHTFALM Macro TFAL request OS -
DFHTFALT CSECT (OCO) TFAL trace interpretation data - 03
DFHTFBFA DSECT TFBF parameter list OS -
DFHTFBFM Macro TFBF request OS -

Chapter 116. CICS directory 2133

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHTFBFT CSECT (OCO) TFBF trace interpretation data - 03
DFHTFIQ CSECT (OCO) Terminal facility manager inquire/set functions - 03
DFHTFIQA DSECT TFIQ parameter list OS -
DFHTFIQI DSECT TFIQ requests (inline form) OS -
DFHTFIQM DSECT TFIQ requests OS -
DFHTFIQT CSECT (OCO) TFIQ trace interpretation data - 03
DFHTFP CSECT Transaction failure program OS 03
DFHTFRF CSECT (OCO) Terminal facility manager release function - 03
DFHTFRFT CSECT (OCO) TFRF trace interpretation data - 03
DFHTFTRI CSECT (OCO) Terminal facility manager trace interpreter - 03
DFHTFXM CSECT TF XM transaction attach - 03
DFHTIDM CSECT (OCO) TI domain - initialization/termination - 03
DFHTIDUF CSECT (OCO) SDUMP formatter for TI domain - 03
DFHTIEDS DSECT Task interface element OS -
DFHTIEM CSECT Resource manager interface TIE manager OS 03
DFHTIOA DSECT Terminal input/output area 11 -
DFHTIOA DSECT Terminal input/output area C2 07
DFHTISR CSECT (OCO) TI domain - services - 03
DFHTISRA DSECT TISR parameter list OS -
DFHTISRM Macro TISR request OS -
DFHTISRT CSECT TISR trace interpretation data - 03
DFHTITRI CSECT (OCO) Trace interpreter for TI domain - 03
DFHTLT Macro Terminal list table 11 -
DFHTM Macro Table manager interface 11 -
DFHTMDUF CSECT (OCO) Table manager SDUMP formatter - 03
DFHTMP01 CSECT (OCO) Table manager program - part 1 - 03
DFHTMP02 CSECT (OCO) Table manager program - part 2 - 03
DFHTMTRI CSECT (OCO) Table manager program trace interpreter - 03
DFHTOACN CSECT Terminal object resolution (TOR) - add connection OS 03
DFHTOAPT CSECT TOR - add pooled terminal - 03
DFHTOASE CSECT TOR - add session OS 03
DFHTOATM CSECT TOR - add (non-pooled) terminal - 03
DFHTOATY CSECT TOR - add typeterm - 03
DFHTOBPS CSECT TOR - create BPS and check attributes OS 03
DFHTOCAN CSECT TOR - dynamic backout processing - 03
DFHTOCMT CSECT TOR - syncpoint commit processing - 03
DFHTOLCR CSECT TOR - end logical unit of complex replacement - 03
DFHTOLUI CSECT TOR - end logical unit of installation - 03
DFHTOM Macro BMS terminal output OS -
DFHTON CSECT Terminal object resolution module - 03
DFHTONR CSECT Terminal object resolution recovery - 03
DFHTONRT DSECT TONR translate tables - 03
DFHTORP CSECT Terminal object recovery program - 03
DFHTOR00 CSECT Terminal object resolution program (DFHTOR) OS 03
DFHTOUT1 CSECT TOR - set operation utilities - 03
DFHTOUT2 CSECT TOR - map operation utilities - 03
DFHTPE DSECT Terminal partition extension OS -
DFHTPP CSECT BMS terminal page processor OS -
DFHTPPA$ CSECT BMS terminal page processor (standard) OS 03
DFHTPP1$ CSECT BMS terminal page processor (full) OS 03
DFHTPQ CSECT BMS terminal page cleanup program OS 03
DFHTQGDS CSECT Global statistics for Transient Data 11 -
DFHTQGDS CSECT Global statistics for Transient Data C2 07
DFHTQRDS CSECT Transient data queue statistics 11 -

2134 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHTQRDS CSECT Transient data queue statistics C2 07
DFHTPR CSECT BMS terminal page retrieval program OS 03
DFHTPS CSECT BMS terminal page scheduling program OS 03
DFHTR Macro Trace service request 11 -
DFHTRA DSECT TR domain - anchor block OS -
DFHTRACE Macro Trace system macro OS -
DFHTRADS DSECT TR domain - parameter list to DFHTRAP 11 -
DFHTRAO CSECT TR domain - auxiliary trace output OS 03
DFHTRAP CSECT TR domain - FE global trap/trace exit 11 03
DFHTRBL DSECT TR domain - internal trace table block OS -
DFHTRCIF CSECT CZ Direct-to-CICS - 03
DFHTRDM CSECT TR domain - initialization/termination OS 03
DFHTRDS DSECT TR domain - control blocks OS -
DFHTRDUB CSECT TR and DU keyword copybook OS -
DFHTRDUF CSECT (OCO) SDUMP formatter for TR domain - 03
DFHTREND DSECT TR domain - trace entry 11 -
DFHTREX DSECT - 03
DFHTRFCA DSECT Offline trace formatting control area OS -
DFHTRFFD CSECT Offline trace formatting - format data fields OS 03
DFHTRFFE CSECT Offline trace formatting - format trace entry OS 03
DFHTRFPB CSECT Offline trace formatting - process block OS 03
DFHTRFPP CSECT Offline trace formatting - process selective print

parameters
OS 03

DFHTRFT CSECT Trace put routine for features OS 03
DFHTRFTA CSECT TRFT parameter list OS -
DFHTRFTD CSECT TR feature trace entry header OS -
DFHTRFTM Macro TRFT macro OS -
DFHTRFTT CSECT TRFT translate tables OS 03
DFHTRFTX Macro TRFT macro 11 -
DFHTRFTY Macro TRFT call structured parameter list 11 -
DFHTRIB CSECT Trace interpretation string builder OS 03
DFHTRP CSECT Trace control program OS 03
DFHTRPRA CSECT Auxiliary trace offline formatting OS 03
DFHTRPRG CSECT GTF trace offline formatting OS 03
DFHTRPT CSECT TR domain - trace put (all destinations) OS 03
DFHTRPTA DSECT TRPT parameter list OS -
DFHTRPTM Macro TRPT request OS -
DFHTRPTT CSECT TRPT trace interpretation data OS 03
DFHTRPTX Macro TRPT request (XPI) 11 -
DFHTRPTY DSECT TRPT parameter list (XPI) 11 -
DFHTRPX CSECT TR domain - trace put (fast path) OS 03
DFHTRSR CSECT TR domain - trace destination services OS 03
DFHTRSRA DSECT TRSR parameter list OS -
DFHTRSRM Macro TRSR request OS -
DFHTRSRT CSECT TRSR trace interpretation data OS 03
DFHTRSU CSECT TR domain - subroutines OS 03
DFHTRSUA DSECT TRSU parameter list OS -
DFHTRSUM Macro TRSU request OS -
DFHTRSUT CSECT TRSU trace interpretation data OS 03
DFHTRTRI CSECT Trace interpreter for TR domain OS 03
DFHTRTST Macro TR domain - test if trace point active OS -
DFHTRUDS DSECT TRUE 24-bit parameter list save area 11 -
DFHTRXDF CSECT DU domain - transaction dump formatter for internal

trace table
OS 03

Chapter 116. CICS directory 2135

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHTRZCP CSECT Terminal object builder OS 03
DFHTRZIP CSECT Session object builder OS 03
DFHTRZPP CSECT Pool object builder OS 03
DFHTRZXP CSECT Connection object builder OS 03
DFHTRZYP CSECT Typeterm object builder OS 03
DFHTRZZP CSECT Terminal object matching OS 03
DFHTS Macro Temporary-storage service request 11 -
DFHTSAD CSECT TS Domain - TSAD Gate Function - 03
DFHTSADT CSECT - 03
DFHTSAM CSECT TS auxiliary manager functions subroutine - 03
DFHTSAMT DSECT TSAM translate tables - 03
DFHTSBR CSECT TS browse functions - 03
DFHTSBRA CSECT TSBR parameter list OS -
DFHTSBRM Macro TSBR request OS -
DFHTSBRT DSECT TSBR translate tables - 03
DFHTSDM CSECT TS domain manager functions (initialize, quiesce,

terminate)
- 03

DFHTSDQ CSECT Temporary Storage Delete Queue - 03
DFHTSDUC CSECT (OCO) Temporary-storage SDUMP analysis - 03
DFHTSDUF CSECT (OCO) Temporary-storage SDUMP formatter - 03
DFHTSDUS CSECT (OCO) Temporary-storage SDUMP summary - 03
DFHTSGDS DSECT Temporary-storage statistics DSECT (Assembler) 11 -
DFHTSGDS DSECT Temporary-storage statistics DSECT (COBOL) C2 07
DFHTSHD Macro Temporary-storage input/output area header OS -
DFHTSIOA DSECT Temporary-storage input/output area 11 -
DFHTSICT CSECT TSIC translate tables - 03
DFHTSITR CSECT TS trace interpretation - 03
DFHTSMB CSECT DFHTSMB Design - 03
DFHTSMBT CSECT - 03
DFHTSP CSECT Temporary-storage control program OS 03
DFHTSPT CSECT TS put functions - 03
DFHTSPTA CSECT TSPT request OS -
DFHTSPTM Macro TSPT request OS -
DFHTSPTT DSECT TSPT translate tables - 03
DFHTSQR CSECT TS mainline queue request functions - 03
DFHTSQRT DSECT TSQR translate tables - 03
DFHTSRM CSECT TS recovery manager functions - 03
DFHTSSBT DSECT TSSB translate tables - 03
DFHTSSH CSECT TS shared TS functions - 03
DFHTSSHT DSECT TSSH translate tables - 03
DFHTSSR CSECT TS service functions (inquire, set) - 03
DFHTSSRT DSECT TSSR translate tables - 03
DFHTSST CSECT TS statistics functions - 03
DFHTST Macro Temporary-storage table 11 -
DFHTSTDS DSECT Temporary-storage table OS -
DFHTSUED CSECT XTSEREQ and XTSEREQC EXEC parameter lists 11 -
DFHTSUTC DSECT TSUT abstract type internal control blocks OS -
DFHTSUTI Macro TSUT abstract type inline functions OS -
DFHTSWQ CSECT TS wait queue functions subroutine - 03
DFHTSWQT DSECT TSWQ translate tables - 03
DFHTTPDS DSECT BMS - terminal type parameter 11 -
DFHTUL DSECT Standard-labeled tape user labels - -
DFHTUTEN Macro Trace table generation macro OS -
DFHUCNV Sample CICS OS/2 user data conversion program 19 03

2136 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHUEDUF CSECT (OCO) User exit SDUMP formatter - 03
DFHUEFDS DSECT File control user exit file/data set info 11 -
DFHUEH CSECT User exit handler (AP domain) - 03
DFHUEHC Source User exit program invocation - -
DFHUEHWA DSECT User exit work areas OS -
DFHUEIQ CSECT User exit inquire exitprogram function - 03
DFHUEIQT CSECT EIQT trace interpreter - 03
DFHUEM CSECT User exit manager OS 03
DFHUEPBD DSECT User exit program block 11 -
DFHUEPLD DSECT User exit program link 11 -
DFHUERMD DSECT User exit resource manager 11 -
DFHUETED DSECT User exit table entry 11 -
DFHUETHD DSECT User exit table header 11 -
DFHUEXIT Macro User-exit-dependent code generator 11 -
DFHUEXPT Macro User exit point definition 11 -
DFHUIBA DSECT Assembler DSECT for User interface block 11 -
DFHUIBC CSECT C structure of the UIB - 08
DFHUIBO CSECT Cobol structure of the UIB C2 07
DFHUIBP CSECT PLI structure of the UIB P2 17
DFHURLDS DSECT BMS - user-supplied route list 11 -
DFHURLDS DSECT BMS - user-supplied route list C2 07
DFHURLDS DSECT BMS - user-supplied route list D2 08
DFHUSAD CSECT (OCO) US domain - Add, Delete and Inquire User - 03
DFHUSADA DSECT USAD parameter list OS -
DFHUSADM Macro USAD request OS -
DFHUSADT CSECT (OCO) USAD trace interpretation data - 03
DFHUSAGE Macro Usage pricing code generation macro OS -
DFHUSAND CSECT (OCO) US domain - anchor block OS -
DFHUSBP CSECT User backout program OS 03
DFHUSDET DSECT USDE translate tables - 03
DFHUSDM CSECT (OCO) US domain - initialize, quiesce, and terminate domain

functions
- 03

DFHUSDUF CSECT (OCO) US domain - dump formatter - 03
DFHUSFL CSECT (OCO) US domain - Flatten and unflatten user - 03
DFHUSFLA DSECT USFL parameter list OS -
DFHUSFLM Macro USFL request OS -
DFHUSFLT CSECT (OCO) USFL trace interpretation data - 03
DFHUSGDS DSECT US domain - global statistics 11 -
DFHUSGDS DSECT US domain - global statistics C2 07
DFHUSIS CSECT (OCO) US domain - inquire and set functions - 03
DFHUSISA DSECT USIS parameter list OS -
DFHUSISM Macro USIS request OS -
DFHUSIST CSECT (OCO) USIS trace interpretation data - 03
DFHUSST CSECT (OCO) US domain - statistics - 03
DFHUSTI CSECT (OCO) US domain - timeout handler - 03
DFHUSTIA DSECT USTI parameter list OS -
DFHUSTIM Macro USTI request OS -
DFHUSTIT CSECT (OCO) USTI trace interpretation data - 03
DFHUSTRI CSECT (OCO) US domain - trace formatter - 03
DFHUSXM CSECT (OCO) US domain - transaction support - 03
DFHUSXMA DSECT USXM parameter list OS -
DFHUSXMI Macro USXM request (inline version of DFHUSXMM) OS -
DFHUSXMM Macro USXM request OS -
DFHUSXMT CSECT (OCO) USXM trace interpretation data - 03

Chapter 116. CICS directory 2137

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHUT64 CSECT RU Base64 encoding and decoding - 03
DFHVM Macro Version/modification level generator 11 -
DFHVSWA DSECT VSAM work area 11 -
DFHVTWA DSECT NACP LIFO storage definition OS -
DFHWBA CSECT Web module - 03
DFHWBADX CSECT Web module 19 03
DFHWBAHX CSECT Web module - 19
DFHWBALX CSECT Web module - 19
DFHWBAOX CSECT Web module - 19
DFHWBAP CSECT WB Domain WBAP Gate Functions - 03
DFHWBAPF CSECT Web Module - 03
DFHWBAPT CSECT Web Module - 03
DFHWBAP@ CSECT Web module - 03
DFHWBA1 CSECT Web module - 03
DFHWBA1D CSECT Web module 11 -
DFHWBA1H CSECT Web module - 08
DFHWBA1L CSECT Web module - 17
DFHWBA1O CSECT Web module - 07
DFHWBBLI CSECT Business Logic interfac program - 03
DFHWBBLL CSECT - 17
DFHWBBMS CSECT WB Web Interface BMS Support - 03
DFHWBCDD CSECT Web module - 11
DFHWBCDH CSECT Web module - 08
DFHWBCDL CSECT Web module - 17
DFHWBCDO CSECT Web module - 07
DFHWBCNV Macro WB CICS Web Interface codepage macro 11 -
DFHWBC01 CSECT Web module - 03
DFHWBDCD CSECT Web module OS -
DFHWBDL@ CSECT Autocall SCEEOBJ - 03
DFHWBDM CSECT Domain initialization - 03
DFHWBDUF CSECT Web module - 03
DFHWBENV CSECT Web module - 03
DFHWBEP CSECT Web error program - 03
DFHWBEPL CSECT - 17
DFHWBGB CSECT WB Web Interface Garbage Collection - 03
DFHWBIMG CSECT Web module - 03
DFHWBIP CSECT Web module - 03
DFHWBIPA CSECT Web module OS -
DFHWBIPM Macro DFHWBIP interface macro 11 -
DFHWBIPT CSECT Web module - 03
DFHWBLT CSECT Web module - 03
DFHWBOUT CSECT Web module 11 -
DFHWBPA CSECT Web module - 03
DFHWBQM CSECT Domain Initialization - 03
DFHWBQMT CSECT - 03
DFHWBRP CSECT Web module - 03
DFHWBSR CSECT WB Web Send/Receive - 03
DFHWBSRT CSECT - 03
DFHWBST CSECT Web module - 03
DFHWBSTT CSECT Web module - 03
DFHWBTC CSECT Web module - 03
DFHWBTC@ CSECT Web module - 03
DFHWBTCT CSECT Web module - 03
DFHWBTDD CSECT Web module 11 -

2138 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHWBTDH CSECT Web module - 08
DFHWBTDL CSECT Web module - 17
DFHWBTDO CSECT Web module - 07
DFHWBTL CSECT Web module - 03
DFHWBTLD CSECT Web module 11 -
DFHWBTLG CSECT Web module 11 -
DFHWBTLH CSECT Web module - 08
DFHWBTLL CSECT Web module - 17
DFHWBTLO CSECT Web module C2 -
DFHWBTRI CSECT Web module - 03
DFHWBTR1 CSECT Web GWAPI Trace Interpretation - 03
DFHWBTRU CSECT Web module - 03
DFHWBTTA CSECT Web module - 03
DFHWBUCD CSECT Web module 11 -
DFHWBUCH CSECT Web module - 08
DFHWBUCL CSECT Web module - 17
DFHWBUCO CSECT Web module - 07
DFHWBUN CSECT Web Interface Unescaping Program - 03
DFHWBUND CSECT Web Interface Unescaping parameter list 11 -
DFHWBUNH CSECT - 08
DFHWBUNL CSECT - 17
DFHWBUNO CSECT - 07
DFHWBXM CSECT Web Interface Attach Client - 03
DFHWBXMT CSECT - 03
DFHWBXN CSECT Web Attach Processing - 03
DFHWCCS CSECT CAVM common services OS 03
DFHWCGDS DSECT CAVM global control block OS -
DFHWCGNT CSECT CAVM entry point table for routines above 16MB line OS 03
DFHWCSDS DSECT XRF static storage OS -
DFHWDATT CSECT XRF process dispatcher attach control OS 03
DFHWDINA CSECT XRF process dispatcher initialization OS 03
DFHWDISP CSECT XRF process dispatcher OS 03
DFHWDSDS DSECT CAVM dispatcher interface parameter block OS -
DFHWDSRP CSECT PC/ABEND handler for XRF dispatcher OS 03
DFHWDWAT CSECT XRF process dispatcher wait services OS 03
DFHWFGDS DSECT CAVM file control block OS -
DFHWKP CSECT Warm keypoint program - 03
DFHWLF Macro XRF LIFO free storage request OS -
DFHWLFRE CSECT XRF LIFO free allocation service OS 03
DFHWLG Macro XRF LIFO get storage request OS -
DFHWLGET CSECT XRF LIFO get allocation service OS 03
DFHWLIST CSECT WORDLIST function (used by DFHDBME) OS 03
DFHWMG1 CSECT XRF message manager, GETMSG process OS 03
DFHWMI CSECT XRF message manager, signon initialization routine OS 03
DFHWMMT CSECT XRF message manager, I/O services OS 03
DFHWMPG CSECT XRF message manager, data copying service OS 03
DFHWMP1 CSECT XRF message manager, PUTMSG process OS 03
DFHWMQG CSECT XRF message manager, CICS TCB part of GETMSG

processing
OS 03

DFHWMQH CSECT XRF message manager, message block services for
GETMSG

OS 03

DFHWMQP CSECT XRF message manager, CICS TCB part of PUTMSG
processing

OS 03

DFHWMQS CSECT XRF message manager, work queue services OS 03

Chapter 116. CICS directory 2139

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHWMRD CSECT XRF message manager, message reader OS 03
DFHWMS CSECT XRF message manager, request interface OS 03
DFHWMS20 CSECT XRF message manager, request router OS 03
DFHWMWR CSECT XRF message manager, output routine OS 03
DFHWNFDS DSECT CAVM NOTIFY exit parameter block OS -
DFHWORDS CSECT WORDS function (used by DFHDBME) OS 03
DFHWOS CSECT XRF overseer startup module OS 03
DFHWOSA CSECT XRF overseer initialization module OS 03
DFHWOSB CSECT XRF overseer services module OS 03
DFHWOSM Macro XRF overseer interface definition 11 -
DFHWSADS DSECT CAVM surveillance status control block OS -
DFHWSCDS DSECT CAVM time-of-day difference control area OS -
DFHWSMDS DSECT CAVM state management record OS -
DFHWSNDS DSECT XRF table of entry points in load module DFHWSMS OS -
DFHWSRDS DSECT CAVM surveillance communication area OS -
DFHWSRTR CSECT CAVM state management request router and subtask

entry point
OS 03

DFHWSSDS DSECT CAVM state management parameter block OS -
DFHWSSN1 CSECT CAVM state management signon initial entry point OS 03
DFHWSSN2 CSECT CAVM state management signon request handler OS 03
DFHWSSN3 CSECT CAVM state management data set initialization routine OS 03
DFHWSSOF CSECT CAVM state management sign-off request handler OS 03
DFHWSSR CSECT CAVM surveillance status reader OS 03
DFHWSSW CSECT CAVM surveillance status writer OS 03
DFHWSTDS DSECT XRF takeover parameter area OS -
DFHWSTI CSECT CAVM surveillance tick generator and system status

monitor
OS 03

DFHWSTKV CSECT CAVM state management takeover request handler OS 03
DFHWSXDS DSECT NOTIFY exit control block OS -
DFHWSXPI CSECT CAVM state management CAVM process initialization OS 03
DFHWS2DS DSECT Parameter list for DFHWSSN2 OS -
DFHWS3DS DSECT Parameter list for DFHWSSN3 OS -
DFHWTADS DSECT XRF takeover initiation argument block OS -
DFHWTI CSECT XRF takeover initiation program OS 03
DFHWTIA Source XRF takeover initiation program - RST specific

routines
OS -

DFHWTIC Source XRF takeover initiation program - CLT specific
routines

OS -

DFHWTII Source XRF takeover initiation program - inquire job status OS -
DFHWTIJ Source XRF takeover initiation program - job

termination/wait
OS -

DFHWTO Macro Write to console operator 11 -
DFHWTRP CSECT XRF trace routine OS 03
DFHXBMDS Macro BMS User Exits Parameter List 11 -
DFHXCALL Macro EXCI EXEC Interface 11 -
DFHXCDMP CSECT (OCO) EXCI dump services - 03
DFHXCEIP CSECT (OCO) EXCI EXEC API handler - 03
DFHXCGUR CSECT EXCI Get Unit of Recovery Tokens - 03
DFHXCO Macro EXCI EXEC options 11 -
DFHXCOPT DSECT EXCI options table 19 03
DFHXCP CSECT Transaction manager (part) OS 03
DFHXCPLD Sample EXCI CALL parameter list (Assembler) 11 -
DFHXCPLH Sample EXCI CALL parameter list (C) - 08
DFHXCPLL Sample EXCI CALL parameter list (PL/I) - 17

2140 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHXCPLO Sample EXCI CALL parameter list (COBOL) - 07
DFHXCPRH DSECT EXCI program request handler - 03
DFHXCRCD Sample EXCI return codes (Assembler) 11 -
DFHXCRCH Sample EXCI return codes (C) D2 08
DFHXCRCL Sample EXCI return codes (PL/I) - 17
DFHXCRCO Sample EXCI return codes (COBOL) - 07
DFHXCSTB CSECT EXCI stub - 03
DFHXCSVC CSECT (OCO) EXCI SVC services - 03
DFHXCTAB CSECT (OCO) EXCI language table - 03
DFHXCTRA CSECT EXCI global trap program 11 03
DFHXCTRD DSECT EXCI global trap program parameter list 11 -
DFHXCTRI CSECT EXCI trace initialization termination, and recovery - 03
DFHXCTRP CSECT EXCI trace services - 03
DFHXCURM CSECT EXCI user-replaceable module 19 03
DFHXDTDS Sample Data Table User Exits Parameter List 11 -
DFHXDXDF CSECT DU domain - transaction dump formatter for headers

and general information
OS 03

DFHXFDL Macro DL/I function shipping OS -
DFHXFFC Macro FC function shipping OS -
DFHXFHED Macro Produce transformation program headings OS -
DFHXFIC Macro IC function shipping OS -
DFHXFIOA DSECT Transformer I/O area OS -
DFHXFJC Macro JC function shipping OS -
DFHXFMOD Macro Produce data transformation programs OS -
DFHXFP CSECT Online data transformation program OS 03
DFHXFPC Macro DFHXFMOD inner macro OS -
DFHXFQ CSECT Batch data transformation program OS 03
DFHXFQU Macro TD and TS function shipping OS -
DFHXFRM Macro Function shipping recovery module - 03
DFHXFSM Macro DFHXFMOD inner macro OS -
DFHXFSTG Macro XF control block and transformer 11 -
DFHXFX CSECT Optimized data transformation program OS 03
DFHXIS Sample XISCONA global user exit program 19 03
DFHXISDS Sample XISCONA data set information 19 -
DFHXLT Macro Transaction list table 11 -
DFHXLTDS DSECT Transaction list table OS -
DFHXMAB CSECT (OCO) XM domain - abend handler - 03
DFHXMACT CSECT - 03
DFHXMAT CSECT (OCO) XM domain - attach - 03
DFHXMATA Source XMAT parameter list OS -
DFHXMATM Source XMAT request OS -
DFHXMATT CSECT (OCO) XMAT trace interpretation data - 03
DFHXMBD CSECT (OCO) XM domain - browse - 03
DFHXMBDA Source XMBD parameter list OS -
DFHXMBDM Source XMBD request OS -
DFHXMBDT CSECT (OCO) XMBD trace interpretation data - 03
DFHXMCDS DSECT XM domain - TCLASS statistics 11 -
DFHXMCDS DSECT XM domain - TCLASS statistics C2 07
DFHXMCL CSECT (OCO) XM domain - transaction class functions - 03
DFHXMCLA Source XMCL parameter list OS -
DFHXMCLM Source XMCL request OS -
DFHXMCLT CSECT (OCO) XMCL trace interpretation data - 03
DFHXMCLX Macro XMCL request 11 -
DFHXMCLY DSECT XMCL parameter list 11 -

Chapter 116. CICS directory 2141

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHXMDD CSECT (OCO) XM domain - delete installed transaction - 03
DFHXMDDA Source XMDD parameter list OS -
DFHXMDDM Source XMDD request OS -
DFHXMDDT CSECT (OCO) XMDD trace interpretation data - 03
DFHXMDM CSECT (OCO) XM domain - pre-initialize, initialize, and quiesce

domain functions
- 03

DFHXMDNA Source XMDN parameter list OS -
DFHXMDNT CSECT XMDN trace interpretation data - 03
DFHXMDUF CSECT (OCO) Transaction manager SDUMP formatter - 03
DFHXMER CSECT (OCO) XM domain - XMER gate functions - 03
DFHXMERA Source XMER parameter list OS -
DFHXMERM Source XMER request OS -
DFHXMERT CSECT XMER trace interpretation data - 03
DFHXMFD CSECT (OCO) XM domain - XMFD gate functions - 03
DFHXMFDA Source XMFD parameter list OS -
DFHXMFDM Macro XMFD requests OS -
DFHXMFDT CSECT (OCO) XMFD trace interpretation data - 03
DFHXMGDS DSECT XM domain - global statistics 11 -
DFHXMGDS DSECT XM domain - global statistics C2 07
DFHXMIQ CSECT (OCO) XM domain - XMIQ gate functions - 03
DFHXMIQA Source XMIQ parameter list OS -
DFHXMIQI Source XMIQ request (inline form of DFHXMIQM) OS -
DFHXMIQM Source XMIQ requests OS -
DFHXMIQT CSECT (OCO) XMIQ trace interpretation data - 03
DFHXMIQX Macro XMIQ requests 11 -
DFHXMIQY DSECT XMIQ parameter list 11 -
DFHXMLD CSECT (OCO) XM domain - XMLD gate functions - 03
DFHXMLDA Source XMLD parameter list OS -
DFHXMLDM Source XMLD requests OS -
DFHXMLDT CSECT XMLD trace interpretation data - 03
DFHXMNTA DSECT XMNT parameter list OS -
DFHXMNTT CSECT XMNT trace interpretation data - 03
DFHxphPA DSECT xphP parameter list OS -
DFHxphPT CSECT xphP trace interpretation data - 03
DFHXMQC CSECT (OCO) XM domain - tclass functions subroutine - 03
DFHXMQCA Source XMQC parameter list OS -
DFHXMQCM Source XMQC request OS -
DFHXMQCT CSECT XMQC trace interpretation data - 03
DFHXMQD CSECT (OCO) XM domain - quiesce and delete transaction

definitions functions subroutine
- 03

DFHXMQDT CSECT (OCO) XMQD trace interpretation data - 03
DFHXMRDS DSECT XM domain - transaction statistics 11 -
DFHXMRDS DSECT XM domain - transaction statistics C2 07
DFHXMRM CSECT XM domain Run Transaction Syncpoint Process. - 03
DFHXMRM1 CSECT - 03
DFHXMRP CSECT (OCO) XM domain - definition recovery subroutine - 03
DFHXMRPT CSECT (OCO) XMRP trace interpretation data - 03
DFHXMRSD DSECT (OCO) XM domain - communications area for transaction

restart (Assembler)
11 -

DFHXMRSH DSECT (OCO) XM domain - communications area for transaction
restart (C/370)

- 08

DFHXMRSL DSECT (OCO) XM domain - communications area for transaction
restart (PL/I)

- 17

2142 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHXMRSO DSECT (OCO) XM domain - communications area for transaction

restart (COBOL)
- 07

DFHXMRU CSECT XMRU CDURUN and Gate Module - 03
DFHXMRUT CSECT - 03
DFHXMSG CSECT Default XRF recovery message OS 03
DFHXMSR CSECT (OCO) XM domain - XMSR gate functions - 03
DFHXMSRA Source XMSR parameter list OS -
DFHXMSRM Source XMSR request OS -
DFHXMSRT CSECT (OCO) XMSR trace interpretation data - 03
DFHXMSRX Macro XMSR request 11 -
DFHXMSRY DSECT XMSR parameter list 11 -
DFHXMST CSECT (OCO) XM domain - statistics services - 03
DFHXMSUA DSECT XMSU parameter list OS -
DFHXMSUM Macro XMSU request OS -
DFHXMSUT CSECT XMSU trace interpretation data OS 03
DFHXMTA CSECT (OCO) XM domain - task reply gate - 03
DFHXMTRI CSECT (OCO) XM domain - trace initialization, termination, and

recovery
- 03

DFHXMTRM Macro Obtain 3 character task number from TCA of task
issuing trace put

OS -

DFHXMXD CSECT (OCO) XM domain - XMXD gate functions - 03
DFHXMXDA Source XMXD parameter list OS -
DFHXMXDD Source XMXD transaction definition instance parameter list OS -
DFHXMXDI Source XMXD request (inline form of DFHXMXDM) OS -
DFHXMXDM Source XMXD request OS -
DFHXMXDT CSECT (OCO) XMXD trace interpretation data - 03
DFHXMXDX Macro XMXD request 11 -
DFHXMXDY DSECT XMXD parameter list 11 -
DFHXMXE CSECT (OCO) XM domain - XMXE gate functions - 03
DFHXMXEA Source XMXE parameter list OS -
DFHXMXEM Source XMXE request OS -
DFHXMXET CSECT (OCO) XMXE trace interpretation data - 03
DFHXMXM CSECT Run Transaction XM Attach Client - 03
DFHXMXND CSECT (OCO) XM domain - transaction storage OS -
DFHXOPU@ CSECT - 03
DFHXOPUS Sample Sample IIOP URM (C Version) - 19
DFHXQBF CSECT XQ queue server buffer pool routines - 03
DFHXQCF CSECT XQ queue server coupling facility I/O - 03
DFHXQCN CSECT XQ queue server connect/disconnect - 03
DFHXQDF CSECT XQ TS queue pool server definitions - 03
DFHXQEN CSECT XQ ENF event interface - 03
DFHXQIF CSECT XQ queue server interface module - 03
DFHXQIQ CSECT XQ queue server inquire module - 03
DFHXQMN CSECT XQ queue server mainline - 03
DFHXQMS CSECT XQ queue pool server messages - 03
DFHXQOP CSECT XQ queue server command processing - 03
DFHXQPR CSECT XQ queue server parameter processing - 03
DFHXQRL CSECT XQ queue server reload routine - 03
DFHXQRQ CSECT XQ queue server request routine - 03
DFHXQRS CSECT XQ ARM Restart Support - 03
DFHXQST CSECT XQ queue server statistics - 03
DFHXQS1D CSECT XQ list structure statistics record 11 -
DFHXQS2D CSECT XQ queue buffer statistics record 11 -
DFHXQS3D CSECT XQ main storage statistics record 11 -

Chapter 116. CICS directory 2143

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHXQUL CSECT XQ queue server unload routine - 03
DFHXR Macro XRF code generation macro 11 -
DFHXRA CSECT XRF request processing program OS 03
DFHXRB CSECT XRF NOTIFY exit program OS 03
DFHXRC CSECT XRF inquire status exit program OS 03
DFHXRCP CSECT XRF console communication program OS 03
DFHXRDUF CSECT (OCO) XRF SDUMP formatter - 03
DFHXRE CSECT XRF startup program OS 03
DFHXRF CSECT XRF CAVM sign-off interface OS 03
DFHXRHDS DSECT XRF health data definition 11 -
DFHXROCL Other Used by DFHCRST cataloged procedure 11 -
DFHXRSP CSECT XRF surveillance program OS 03
DFHXRXDF CSECT DU domain - transaction dump formatter for XRF

related areas
OS 03

DFHXSAD CSECT (OCO) XS domain - XSAD gate functions - 03
DFHXSADA Source XSAD parameter list OS -
DFHXSADM Source XSAD request OS -
DFHXSADT CSECT (OCO) XSAD trace interpretation data - 03
DFHXSDM CSECT (OCO) XS domain - initialize, quiesce, terminate domain

functions
- 03

DFHXSDUF CSECT (OCO) XS domain - SDUMP formatter - 03
DFHXSEAI CSECT Early verification stub program - 03
DFHXSEJ CSECT Security Interfaces for EJB - 03
DFHXSEJT CSECT - 03
DFHXSEV CSECT (OCO) XS domain - early verification support - 03
DFHXSFL CSECT (OCO) XS domain - XSFL gate functions - 03
DFHXSFLA Source XSFL parameter list OS -
DFHXSFLM Source XSFL request OS -
DFHXSFLT CSECT (OCO) XSFL trace interpretation data - 03
DFHXSIDT CSECT (OCO) XS domain - trace interpretation data - 03
DFHXSIS CSECT (OCO) XS domain - XSIS gate functions - 03
DFHXSISA Source XSIS parameter list OS -
DFHXSISM Source XSIS request OS -
DFHXSIST CSECT (OCO) XSIS trace interpretation data - 03
DFHXSLU CSECT (OCO) XS domain - XSLU gate functions - 03
DFHXSLUA Source XSLU parameter list OS -
DFHXSLUM Source XSLU request OS -
DFHXSLUT CSECT (OCO) XSLU trace interpretation data - 03
DFHXSPUB DSECT (OCO) XS domain - public storage fields OS -
DFHXSPW CSECT (OCO) XS domain - XSPW gate functions - 03
DFHXSPWA Source XSPW parameter list OS -
DFHXSPWM Source XSPW request OS -
DFHXSPWT CSECT (OCO) XSPW trace interpretation data - 03
DFHXSRC CSECT (OCO) XS domain - XSRC gate functions - 03
DFHXSRCA Source XSRC parameter list OS -
DFHXSRCI Source XSRC request (inline form of DFHXSRCM) OS -
DFHXSRCM Macro XSRC requests OS -
DFHXSRCT CSECT (OCO) XSRC trace interpretation data - 03
DFHXSSA CSECT (OCO) XS domain - supervisor request router - 03
DFHXSSAT CSECT (OCO) XSSA trace interpretation data - 03
DFHXSSB CSECT (OCO) XS domain - supervisor extraction services - 03
DFHXSSBT CSECT (OCO) XSSB trace interpretation data - 03
DFHXSSC CSECT (OCO) XS domain - resource checking functions - 03
DFHXSSCT CSECT (OCO) XSSC trace interpretation data - 03

2144 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHXSSD CSECT (OCO) XS domain - create passticket function - 03
DFHXSSDT CSECT (OCO) XSSD trace interpretation data - 03
DFHXSSE CSECT Security Supervisor Phase E Cert.Mgement - 03
DFHXSSET CSECT - 03
DFHXSSI CSECT (OCO) XS domain - storage initialization - 03
DFHXSSIT CSECT (OCO) XSSI trace interpretation data - 03
DFHXSTRI CSECT (OCO) XS domain - trace initialization, termination, and

recovery
- 03

DFHXSUXP Macro Installation data for ESM exits 11 -
DFHXSWM CSECT XRF message manager for security manager OS 03
DFHXSWMA CSECT XSWM parameter list OS -
DFHXSWMM Macro XSWM request OS -
DFHXSXM CSECT (OCO) XS domain - XM domain interface - 03
DFHXSXMA DSECT XSXM parameter list OS -
DFHXSXMI Macro XSXM requests (inline form) OS -
DFHXSXMM Macro XSXM requests OS -
DFHXSXMT CSECT (OCO) XSXM trace interpretation data - 03
DFHXT Macro DFHXTP internal table generator OS -
DFHXTAB Macro BMS internal macro 11 -
DFHXTCI CSECT XRF terminal switching OS 03
DFHXTENF Sample XICTENF/XALTENF global user exit program 19 03
DFHXTEP CSECT User-replaceable terminal error program 19 03
DFHXTEPT CSECT User-replaceable terminal error tables 19 03
DFHXTP CSECT Terminal sharing transformation program OS 03
DFHXTPD DSECT XTP internal control blocks OS -
DFHXTSTG Macro XTP parameter list OS -
DFHXTT Source XTP data transformation argument descriptions (used

by DFHXT macro)
OS -

DFHXTTT Macro DFHXTT inner macro OS -
DFHXZIDS DSECT XZIQUE exit data set information 11 -
DFHYBTPL Other Cataloged procedure to translate, compile, and

link-edit Language Environment PL/I application
programs that use EXEC DLI and will run in a batch
or CICS shared database region

18 -

DFHYBTVL Other Cataloged procedure to translate, compile, and
link-edit Language Environment COBOL application
programs that use EXEC DLI and will run in a batch
or CICS shared database region

18 -

DFHYITDL Other Cataloged procedure to translate, compile, and
link-edit Language Environment C application
programs

18 -

DFHYITEL Other Cataloged procedure to translate, compile, and
link-edit C++ application programs using the
Language Environment compiler

18 -

DFHYITPL Other Cataloged procedure to translate, compile, and
link-edit Language Environment PL/I application
programs

18 -

DFHYITVL Other Cataloged procedure to translate, compile, and
link-edit Language Environment COBOL application
programs

18 -

DFHYXTDL Other Cataloged procedure to translate, compile, and
link-edit Language Environment C application
programs that are to use the external CICS interface

18 -

Chapter 116. CICS directory 2145

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHYXTEL Other Cataloged procedure to translate (EXCI), compile, and

link-edit C++ application programs using the
Language Environment compiler

18 -

DFHYXTPL Other Cataloged procedure to translate, compile, and
link-edit Language Environment PL/I application
programs that are to use the external CICS interface

18 -

DFHYXTVL Other Cataloged procedure to translate, compile, and
link-edit Language Environment COBOL application
programs that are to use the external CICS interface

18 -

DFHZABD CSECT No VTAM support abend handler OS 03
DFHZACT CSECT Activate scan OS 03
DFHZAIT CSECT Attach initialization table OS -
DFHZAND CSECT Abend control block OS 03
DFHZAPB Sample 3770 application program 19 -
DFHZARER CSECT LU6.2 protocol error and exception handler OS 03
DFHZARL CSECT LU6.2 application request logic OS 03
DFHZARM CSECT LU6.2 migration logic OS 03
DFHZARQ CSECT Application request handler OS 03
DFHZARR CSECT LU6.2 application receive request logic OS 03
DFHZARRA CSECT LU6.2 application receive buffer support OS 03
DFHZARRC CSECT LU6.2 classify what next to receive OS 03
DFHZARRF CSECT LU6.2 receive FMH7 and ER1 OS 03
DFHZASX CSECT DFASY exit OS 03
DFHZATA CSECT Autoinstall program OS 03
DFHZATA2 CSECT ZCINST Autoinstall Program - Console - 03
DFHZATD CSECT Autoinstall delete program OS 03
DFHZATDX CSECT User-replaceable autoinstall exit 19 03
DFHZATDY CSECT User-replaceable autoinstall exit with APPC 19 03
DFHZATI CSECT Automatic task initiation OS 03
DFHZATMD CSECT Automatic terminal remote definition program - 03
DFHZATMF CSECT Mass flag program for time-out delete - 03
DFHZATR CSECT Autoinstall restart program OS 03
DFHZATS CSECT Remote autoinstall/delete program OS 03
DFHZATT CSECT Task attach OS 03
DFHZBAN CSECT Terminal control bind analysis OS 03
DFHZBKT CSECT LU6.2 bracket state machine OS 03
DFHZBLX CSECT VTAM SCIP exit LU6.2 bind handling OS 03
DFHZBSM Macro LU6.2 bracket state macro OS -
DFHZCA CSECT VTAM working set module OS 03
DFHZCB CSECT VTAM working set module OS 03
DFHZCC CSECT VTAM working set module OS 03
DFHZCGRP CSECT (OCO) Attach CGRP task (for DFHZGRP) - 03
DFHZCHM Macro LU6.2 chain state macro OS -
DFHZCHS CSECT LU6.2 chain state machine OS 03
DFHZCLS CSECT CLSDST OS 03
DFHZCLX CSECT CLSDST exit OS 03
DFHZCNA CSECT System console activity control OS 03
DFHZCNM Macro LU6.2 contention state macro OS -
DFHZCNR CSECT System console application request OS 03
DFHZCNT CSECT LU6.2 contention state machine OS 03
DFHZCNVM Macro MRO application state setting OS -
DFHZCN1 CSECT CICS Client CCIN Transaction - 03
DFHZCN2 CSECT CICS Client CCIN ZC domain subroutine - 03
DFHZCN2T DSECT ZCN2 translate tables - 03

2146 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHZCTR1 CSECT ZC CICS Client trace interpretation - 03
DFHZCOVR CSECT Terminal control open VTAM retry - 03
DFHZCP CSECT Terminal management program OS 03
DFHZCPBK Macro Bracket control OS -
DFHZCPLR CSECT PL/AS call for TCPLR OS 03
DFHZCQ Macro Terminal control install interface 11 -
DFHZCQCH CSECT Catalog a TCT element OS 03
DFHZCQDL CSECT Dynamic delete TCT element OS 03
DFHZCQIN CSECT Initialize DFHZCQ OS 03
DFHZCQIQ CSECT Inquire about a TCTTE OS 03
DFHZCQIS CSECT Install a TCTTE OS 03
DFHZCQRS CSECT Restore a terminal control resource OS 03
DFHZCQRT CSECT ZC resource types table OS 03
DFHZCQ00 CSECT Dynamic add/replace TCT elements OS 03
DFHZCRM Macro LU6.2 RPL_B state macro OS -
DFHZCRQ CSECT CTYPE command request OS 03
DFHZCRT CSECT LU6.2 RPL_B state machine OS 03
DFHZCSTP CSECT Attach CSTP (TCP task) OS 03
DFHZCTDX Sample Autoinstall user exit - COBOL - 19
DFHZCTRI CSECT Persistent sessions trace interpreter - 03
DFHZCT1 CSECT CICS Client CTIN transaction - 03
DFHZCUT CSECT Persistent verification signed-on-from list management

program
OS 03

DFHZCUTA DSECT ZCUT parameter list OS -
DFHZCUTM Macro ZCUT request OS -
DFHZCUTT CSECT ZCUT trace interpretation data OS 03
DFHZCW CSECT VTAM nonworking set module OS 03
DFHZCX CSECT LOCATE, ISC/IRC request OS 03
DFHZCXR CSECT Transaction routing module address list OS 03
DFHZCY CSECT VTAM nonworking set module OS 03
DFHZCZ CSECT VTAM nonworking set module OS 03
DFHZDET CSECT Task detach OS 03
DFHZDSP CSECT Dispatcher OS 03
DFHZDST CSECT SNA-ASCII translator OS 03
DFHZDTDX Sample Autoinstall user exit - C/370 D3 -
DFHZEMW CSECT Error message writer OS 03
DFHZEPD DSECT TCP/ZCP module entry address list 11 -
DFHZEQU Symbolic ZCP equates 11 -
DFHZERH CSECT LU6.2 error program OS 03
DFHZERRM Macro ZCP error-handling macro OS -
DFHZETR Macro ZC VTAM exit GTF trace macro OS -
DFHZEV1 CSECT LU6.2 security encryption program part 1 OS 03
DFHZEV2 CSECT LU6.2 security encryption program part 2 OS 03
DFHZFRE CSECT FREEMAIN request OS 03
DFHZGAI CSECT (OCO) APPC autoinstall - create APPC clones - 03
DFHZGAIA Source ZGAI parameter list OS -
DFHZGAIM Source ZGAI request OS -
DFHZGAIT CSECT ZGAI trace interpretation data OS 03
DFHZGBM CSECT (OCO) APPC manipulate bitmap - 03
DFHZGBMA Source ZGBM parameter list OS -
DFHZGBMM Source ZGBM request OS -
DFHZGBMT CSECT (OCO) ZGBM trace interpretation data - 03
DFHZGCA CSECT (OCO) LU6.2 CNOS actioning - 03
DFHZGCAA Source ZGCA parameter list OS -

Chapter 116. CICS directory 2147

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHZGCAM Source ZGCA request OS -
DFHZGCAT CSECT (OCO) ZGCA trace interpretation data - 03
DFHZGCC CSECT (OCO) Catalog CNOS services - 03
DFHZGCCA Source ZGCC parameter list OS -
DFHZGCCM Source ZGCC request OS -
DFHZGCCT CSECT (OCO) ZGCC trace interpretation data - 03
DFHZGCH CSECT ZC VTAM change macro domain subroutine - 03
DFHZGCHA CSECT ZGCH parameter list OS -
DFHZGCHM Macro ZGCH request OS -
DFHZGCHT DSECT ZGCH translate tables OS 03
DFHZGCN CSECT (OCO) LU6.2 CNOS negotiation - 03
DFHZGCNA Source ZGCN parameter list OS -
DFHZGCNM Source ZGCN request OS -
DFHZGCNT CSECT (OCO) ZGCN trace interpretation data - 03
DFHZGDA CSECT (OCO) VTAM persistent sessions deallocate abend functions - 03
DFHZGDAA Source ZGDA parameter list OS -
DFHZGDAM Macro ZGDA requests 11 -
DFHZGDAT CSECT (OCO) ZGDA trace interpretation data - 03
DFHZGDCD CSECT Terminal control subroutine constants OS -
DFHZGET CSECT GETMAIN request OS 03
DFHZGIN CSECT ZC VTAM INQUIRE domain subroutine - 03
DFHZGINA CSECT ZGIN parameter list OS -
DFHZGINM Macro ZGIN request OS -
DFHZGINT DSECT ZGIN translate tables - 03
DFHZGPC CSECT (OCO) LU6.2 recover CNOS values for modegroups - 03
DFHZGPCA Source ZGPC parameter list OS -
DFHZGPCM Source ZGPC request OS -
DFHZGPCT CSECT (OCO) ZGPC trace interpretation data - 03
DFHZGPR CSECT (OCO) VTAM persistent sessions resource handler - 03
DFHZGPRA Source ZGPR parameter list OS -
DFHZGPRI Source ZGPR request (inline form of DFHZGPRM) OS -
DFHZGPRM Source ZGPR request OS -
DFHZGPRT CSECT (OCO) ZGPR trace interpretation data - 03
DFHZGRP CSECT (OCO) VTAM persistent sessions initialization - 03
DFHZGRPA Source ZGRP parameter list OS -
DFHZGRPD Source ZGRP control blocks OS -
DFHZGRPM Source ZGRP request OS -
DFHZGRPT CSECT (OCO) ZGRP trace interpretation data - 03
DFHZGSL CSECT (OCO) VTAM persistent sessions set logon - 03
DFHZGSLA Source ZGSL parameter list OS -
DFHZGSLM Source ZGSL request OS -
DFHZGSLT CSECT (OCO) ZGSL trace interpretation data - 03
DFHZGTA CSECT ZC TMP table alter gate - 03
DFHZGTAA CSECT ZGTA parameter list OS -
DFHZGTAM Macro ZGTA request OS -
DFHZGTAT DSECT ZGTA translate tables - 03
DFHZGTI CSECT ZC TMP table inquire gate - 03
DFHZGTIA CSECT ZGTI parameter list OS -
DFHZGTIC CSECT ZGTI create copybook OS -
DFHZGTIM Macro ZGTI request OS -
DFHZGTIT DSECT ZGTI translate tables - 03
DFHZGTRA DSECT ZGTR interface parameter area OS -
DFHZGTRM Macro DFHZGTR interface macro OS -
DFHZGTRT DSECT ZGTR translate tables - 03

2148 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHZGUB CSECT (OCO) VTAM persistent sessions terminate - 03
DFHZGUBA Source ZGUB parameter list OS -
DFHZGUBM Source ZGUB request OS -
DFHZGUBT CSECT (OCO) ZGUB trace interpretation data - 03
DFHZGURD CSECT (OCO) VTAM persistent sessions URD table OS -
DFHZGXA CSECT LU6.2 extended attach security - 03
DFHZGXAA DSECT ZGXA parameter list OS -
DFHZGXAM Macro ZGXA requests OS -
DFHZGXAT CSECT ZGXA trace interpretation data OS 03
DFHZHPCH Macro Generate authorized path CHECK or CHECK macro OS -
DFHZHPDS DSECT ZCP call plist for initialization of SRB facility (HPO) OS -
DFHZHPRV Macro Generate authorized path RECEIVE or RECEIVE

macro
OS -

DFHZHPRX CSECT Authorized path SRB mode VTAM EXECRPL OS 03
DFHZHPSD Macro Generate authorized path SEND or SEND macro OS -
DFHZHPSR CSECT Authorized path SRB requests OS 03
DFHZINT Source Terminal control initialization OS -
DFHZISP CSECT Allocate/free/point OS 03
DFHZIS1 CSECT Prepare/SPR/commit/abend OS 03
DFHZIS2 CSECT IRC internal requests OS 03
DFHZLEX CSECT LERAD exit OS 03
DFHZLGX CSECT Logon exit OS 03
DFHZLOC CSECT Locate OS 03
DFHZLRP CSECT Logical record presentation OS 03
DFHZLS1 CSECT LU6.2 CNOS request transaction program - 03
DFHZLS1M Macro LU6.2 CNOS request OS -
DFHZLTX CSECT LOSTERM exit OS 03
DFHZMJM Macro NACP sense code table generation macro OS -
DFHZNAC CSECT Node abnormal condition program (NACP) OS 03
DFHZNCA CSECT NACP message table generator OS -
DFHZNCE CSECT NACP interface to NEP OS -
DFHZNCM Macro NACP message table generation macro OS -
DFHZNCS CSECT Sense code analysis OS -
DFHZNCV CSECT VTAM return code analysis OS -
DFHZNEPI Macro NEP interface generator 11 -
DFHZNEPX Source Translated command-level default NEP 19 -
DFHZNEP0 CSECT User-replaceable node error program 19 03
DFHZNSET Other SMP/E zone setter (used by cataloged procedures) 11 -
DFHZNSP CSECT VTAM services procedure error exit OS 03
DFHZOPA CSECT Dynamic VTAM open OS 03
DFHZOPN CSECT OPNDST OS 03
DFHZOPX CSECT OPNDST exit OS 03
DFHZPTDX Sample Autoinstall user exit - PL/I - 19
DFHZQUE CSECT Attach chain and queue subroutine OS 03
DFHZRAC CSECT Receive-any completion OS 03
DFHZRAQ CSECT Read ahead queuing OS 03
DFHZRAR CSECT Read ahead retrieval OS 03
DFHZRAS CSECT Receive-any slowdown processing OS 03
DFHZRBDS DSECT LU6.2 application receive set buffer hdr OS -
DFHZRLP CSECT LU6.2 post-VTAM receive logic OS 03
DFHZRLX CSECT LU6.2 receive exit program OS 03
DFHZRPL Source TC build receive-any RPLs OS -
DFHZRQM Macro Add element to RPL completion queue 11 -
DFHZRRX CSECT Release request exit OS 03

Chapter 116. CICS directory 2149

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHZRSP CSECT Resync send program OS 03
DFHZRST CSECT RESETSR OS 03
DFHZRSY1 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY2 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY3 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY4 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY5 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY6 CSECT VTAM LU6.1 resynchronization - 03
DFHZRTRI CSECT VTAM LU6.1 resynchronization trace interpretation - 03
DFHZRVL CSECT LU6.2 pre-VTAM receive logic OS 03
DFHZRVS CSECT Receive specific OS 03
DFHZRVX CSECT Receive specific exit OS 03
DFHZSAX CSECT Send DFASY exit OS 03
DFHZSCX CSECT Session control input exit OS 03
DFHZSDA CSECT Send asynchronous command OS 03
DFHZSDL CSECT LU6.2 send logic OS 03
DFHZSDR CSECT Send response OS 03
DFHZSDS CSECT Send DFSYN OS 03
DFHZSDX CSECT Send DFSYN data exit OS 03
DFHZSES CSECT SESSIONC OS 03
DFHZSEX CSECT SESSIONC exit OS 03
DFHZSHU CSECT Checks shutdown status for VTAM terminals OS 03
DFHZSIM CSECT SIMLOGON OS 03
DFHZSIX CSECT SIMLOGON exit OS 03
DFHZSKR CSECT Command response OS 03
DFHZSLDS Symbolic Send list data structure 11 -
DFHZSLS CSECT Set logon start OS 03
DFHZSLX CSECT LU6.2 send exit program OS 03
DFHZSSX CSECT Send DFSYN exit OS 03
DFHZSTAM Macro DFHZSTAP interface OS -
DFHZSTAP CSECT Conversation state determination OS 03
DFHZSTU CSECT Terminal control status change OS 03
DFHZSUP CSECT Startup task OS 03
DFHZSYN CSECT VTAM recovery module OS 03
DFHZSYX CSECT SYNAD exit OS 03
DFHZS1DS DSECT ZC SUBPOOL_TOKENs table OS -
DFHZTAX CSECT Turnaround exit OS 03
DFHZTPX CSECT TPEND exit OS 03
DFHZTR Macro ZCP trace macro OS -
DFHZTRA CSECT VTAM trace module OS 03
DFHZTSP CSECT Terminal sharing program OS 03
DFHZUCT CSECT Uppercase translate OS 03
DFHZUIX CSECT User input exit OS 03
DFHZUSR CSECT LU6.2 conversation state machine OS 03
DFHZUSRM Macro LU6.2 conversation state macro OS -
DFHZXCU CSECT VTAM XRF catch-up transaction OS 03
DFHZXDUF CSECT (OCO) XRF ZCP queue SDUMP formatter - 03
DFHZXPS CSECT VTAM persistent sessions APPC recovery - 03
DFHZXQO CSECT XRF ZCP tracking queue organizer OS 03
DFHZXQOS Symbolic DFHZXQO internal control blocks OS -
DFHZXRC CSECT XRF and Persistent sessions state data analysis OS 03
DFHZXRE0 CSECT VTAM reconnect transaction OS 03
DFHZXRL CSECT Transaction routing - LU6.2 command processor, AOR OS 03
DFHZXRPL Macro Clear RPL OS -

2150 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFHZXRT CSECT Transaction routing - LU6.2 command processor, TOR OS 03
DFHZXS Macro Interface to DFHZXST OS -
DFHZXST CSECT XRF ZCP session-state tracking OS 03
DFHZXSTS CSECT SETLOGON routine OS 03
DFH0AZBC Sample FEPI sample: CICS back-end application 19 -
DFH0AZBI Sample FEPI sample: IMS back-end application 19 -
DFH0AZPA Sample FEPI sample: SLU P pseudo-conversational program

(Assembler)
19 -

DFH0AZPS Sample FEPI sample: SLU P one-out one-in program
(Assembler)

19 -

DFH0AZQS Sample FEPI sample: STSN processing 19 -
DFH0AZTD Sample FEPI sample: 3270 data stream pass through 19 -
DFH0AZXS Sample FEPI sample: setup program (Assembler) 19 -
DFH0BAT1 Sample Batch enabling sample BAT1 - disable transactions

coordinator
C3 -

DFH0BAT2 Sample Batch enabling sample BAT2 - inquire retained locks
coordinator

C3 -

DFH0BAT3 Sample Batch enabling sample BAT3 - force retained locks
coordinator

C3 -

DFH0BAT4 Sample Batch enabling sample BAT1 - disable transactions
program

C3 -

DFH0BAT5 Sample Batch enabling sample BAT2 - inquire retained locks
program

C3 -

DFH0BAT6 Sample Batch enabling sample BAT3 - force indoubt UOWs
program

C3 -

DFH0BAT7 Sample Batch enabling sample BAT2 - retry backout failures
program

C3 -

DFH0BAT8 Sample Batch enabling sample BAT3 - forcibly release locks
program

C3 -

DFH0BCA Sample CUA communication area layout - COBOL C3 -
DFH0BCR Sample CUA customer record layout - COBOL C3 -
DFH0BC11 Sample Batch enabling sample BAT1 - disable transactions TS

queue
C3 -

DFH0BC12 Sample Batch enabling sample BAT1 - disable transactions
commarea

C3 -

DFH0BC21 Sample Batch enabling sample BAT2 - inquire retained locks
TS queue

C3 -

DFH0BC22 Sample Batch enabling sample BAT2 - inquire retained locks
commarea

C3 -

DFH0BC23 Sample Batch enabling sample BAT2 - inquire retained locks
map texts

C3 -

DFH0BC31 Sample Batch enabling sample BAT3 - force retained locks TS
queue

C3 -

DFH0BC32 Sample Batch enabling sample BAT3 - force retained locks
commarea

C3 -

DFH0BFKT Sample CUA variable function key layout - COBOL C3 -
DFH0BFPD Sample CUA redefinition of file pull-down - COBOL C3 -
DFH0BHP Sample CUA redefinition of help pop-up - COBOL C3 -
DFH0BHPD Sample CUA redefinition of help pull-down - COBOL C3 -
DFH0BHR Sample CUA help text TS queue layout - COBOL C3 -
DFH0BHT Sample CUA help file key table - COBOL C3 -
DFH0BLST Sample CUA redefinition of list base panel - COBOL C3 -
DFH0BMSG Sample CUA application message table - COBOL C3 -
DFH0BM1 Sample Batch enabling sample BAT1 - disable transactions

BMS mapset
19 -

Chapter 116. CICS directory 2151

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH0BM1O Sample Batch enabling sample BAT1 - disable transactions

BMS mapset
C3 -

DFH0BM2 Sample Batch enabling sample BAT2 - inquire retained locks
BMS mapset

19 -

DFH0BM2O Sample Batch enabling sample BAT2 - inquire retained locks
BMS mapset

C3 -

DFH0BM3 Sample Batch enabling sample BAT3 - force retained locks
BMS mapset

19 -

DFH0BM3O Sample Batch enabling sample BAT3 - force retained locks
BMS mapset

C3 -

DFH0BRT Sample CUA program routing control table - COBOL C3 -
DFH0BTSQ Sample CUA TS queue details layout - COBOL C3 -
DFH0BZCA Sample FEPI sample: system definition and customization

(Assembler)
19 -

DFH0BZCC Sample FEPI sample: system definition and customization
(C/370)

D3 -

DFH0BZCO Sample FEPI sample: system definition and customization
(COBOL)

C3 -

DFH0BZCP Sample FEPI sample: system definition and customization
(PL/I)

P3 -

DFH0BZMA Sample FEPI sample: messages and text (Assembler) 19 -
DFH0BZMC Sample FEPI sample: messages and text (C/370) D3 -
DFH0BZMO Sample FEPI sample: messages and text (COBOL) C3 -
DFH0BZMP Sample FEPI sample: messages and text (PL/I) P3 -
DFH0BZ1O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ2O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ3A Sample FEPI sample: front-end terminal map (Assembler) 19 -
DFH0BZ4O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ5O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ6C Sample FEPI sample: front-end terminal map (C/370) D3 -
DFH0BZ7P Sample FEPI sample: front-end terminal map (PL/I) P3 -
DFH0BZ8A Sample FEPI sample: front-end terminal map 19 -
DFH0BZ9A Sample FEPI sample: front-end terminal map 19 -
DFH0CALL Sample Inquiry/update - COBOL C3 -
DFH0CBAC Sample Sample CICS BTS 3270 Transaction Client C3 -
DFH0CBAE Sample Sample Bridge Exit Routine C3 -
DFH0CBAI Sample Sample input routine for BTS 3270 txn C3 -
DFH0CBAO Sample Sample output routine for BTS 3270 txn C3 -
DFH0CBDC Sample CSD backup program - COBOL C3 -
DFH0CBRD Sample Sample bridge exit common area C3 -
DFH0CBRE Sample Sample bridge exit C3 -
DFH0CBRF Sample Sample bridge formatter C3 -
DFH0CBRU Sample Sample bridge exit user area C3 -
DFH0CBRW Sample Browse - COBOL C3 -
DFH0CCOM Sample Order entry queue print - COBOL C3 -
DFH0CESD Sample Shutdown assist program - COBOL C3 -
DFH0CFIL Sample Customer file (FILEA) record layout - COBOL C3 -
DFH0CLOG Sample Audit trail (log) record layout - COBOL C3 -
DFH0CL86 Sample Order entry queue record layout - COBOL C3 -
DFH0CMA Sample Operator instructions map set - COBOL 19 -
DFH0CMB Sample Customer details map set - COBOL 19 -
DFH0CMC Sample File browse map set - COBOL 19 -
DFH0CMD Sample Low balance inquiry map set - COBOL 19 -
DFH0CMK Sample Order entry map set - COBOL 19 -

2152 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH0CML Sample Order report map set - COBOL 19 -
DFH0CMNU Sample Operator instructions - COBOL C3 -
DFH0CONT Sample sample program for CICS BTS C3 -
DFH0CMP Sample Keystroke overlap/look-aside query - map set -

COBOL
19 -

DFH0CPKO Sample Keystroke overlap - COBOL - 19
DFH0CPLA Sample Look-aside query - COBOL - 19
DFH0CREN Sample Order entry - COBOL - 19
DFH0CREP Sample Low balance inquiry - COBOL - 19
DFH0CRFC Sample CSD cross-reference program - COBOL - 19
DFH0CXCC Sample Keystroke overlap - COBOL - 19
DFH0CZTK Sample FEPI sample: keystroke CONVERSE program (C/370) D3 19
DFH0CZXS Sample FEPI sample: setup program (C/370) D3 19
DFH0DCUS Sample CUA customer details file contents 05 -
DFH0DEL1 Sample Sample program for CICS BTS - 19
DFH0DHLP Sample CUA help file contents 04 -
DFH0DHTX Sample Sample EXITPGM Template - 19
DFH0DLCC Sample CICS-DL/I program (CALL) - COBOL - 19
DFH0DLCE Sample CICS-DL/I program (EXEC) - COBOL - 19
DFH0FORC Sample DB2 formatting program - COBOL - 19
DFH0GMAP Sample Sample goodnight program map set - 19
DFH0GNIT Sample Sample goodnight transaction - 19
DFH0INV1 Sample Sample program for CICS BTS - 19
DFH0IZRI Sample FEPI sample: RDO data for back-end IMS 19 -
DFH0IZRQ Sample FEPI sample: RDM data for front-end CICS 19 -
DFH0JCUS Other JCL to create CUA customer details file 02 -
DFH0JHLP Other JCL to create CUA help file 02 -
DFH0MAB Sample CUA abend handling - map set - COBOL 19 -
DFH0MABT Sample CUA about the sample application pop-up - map set -

COBOL
19 -

DFH0MBRW Sample CUA browse customer details, base panel - map set -
COBOL

19 -

DFH0MDEL Sample CUA delete a customer record, base panel - map set -
COBOL

19 -

DFH0MFPD Sample CUA file pull-down - map set - COBOL 19 -
DFH0MHLP Sample CUA help stub full-screen pop-up - map set - COBOL 19 -
DFH0MHP Sample CUA contextual help pop-up - map set - COBOL 19 -
DFH0MHPD Sample CUA help pull-down - map set - COBOL 19 -
DFH0MLST Sample CUA list processing, base panel - map set - COBOL 19 -
DFH0MNEW Sample CUA new customer record, base panel - map set -

COBOL
19 -

DFH0MOPN Sample CUA file open pop-up - map set - COBOL 19 -
DFH0MPRT Sample CUA print pop-up - map set - COBOL 19 -
DFH0MSAS Sample CUA save changed customer record pop-up - map set

- COBOL
19 -

DFH0MT1 Sample CUA primary panel for sample application - map set -
COBOL

19 -

DFH0MUPD Sample CUA update customer details, base panel - map set -
COBOL

19 -

DFH0MZ1 Sample FEPI sample: keystroke CONVERSE map (COBOL) 19 -
DFH0MZ2 Sample FEPI sample: send/start and receive map (COBOL) 19 -
DFH0MZ3 Sample FEPI sample: map for back-end CICS application

(Assembler)
19 -

DFH0MZ4 Sample FEPI sample: SLU P one-out one-in map (COBOL) 19 -

Chapter 116. CICS directory 2153

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH0MZ5 Sample FEPI sample: SLU P pseudo-conversational map

(COBOL)
19 -

DFH0MZ6 Sample FEPI sample: keystroke CONVERSE map (C/370) 19 -
DFH0MZ7 Sample FEPI sample: keystroke CONVERSE map (PL/I) 19 -
DFH0MZ8 Sample FEPI sample: SLU P one-out one-in map (Assembler) 19 -
DFH0MZ9 Sample FEPI sample: SLU P pseudo-conversational map

(Assembler)
19 -

DFH0PAYC Sample Sample program for CICS BTS 19 -
DFH0PAYM Sample Sample program for CICS BTS 19 -
DFH0PAY0 Sample Sample program for CICS BTS 19 -
DFH0PAY1 Sample Sample program for CICS BTS 19 -
DFH0PS Sample Keystroke overlap/look-aside query - partition set -

COBOL
19 -

DFH0PZTK Sample FEPI sample: keystroke CONVERSE program (PL/I) - 19
DFH0RED1 Sample Sample program for CICS BTS 19 -
DFH0REM1 Sample Sample program for CICS BTS 19 -
DFH0SALC Sample Sample program for CICS BTS 19 -
DFH0SALM Sample Sample program for CICS BTS 19 -
DFH0SAL0 Sample Sample program for CICS BTS 19 -
DFH0SAL1 Sample Sample program for CICS BTS 19 -
DFH0SAL2 Sample Sample program for CICS BTS 19 -
DFH0SET Sample Menu map for sample application 19 -
DFH0SINX Sample Rebuild primer index from master file - 19
DFH0SIXR Sample Name index record for sample application - 19
DFH0SREC Sample Account file record for sample application - 19
DFH0STAT Sample Collect and print statistics - COBOL C3 03
DFH0STCM Sample Statistics sample (DFH0STAT) Commarea - 19
DFH0STLK Sample C3 03
DFH0STM Sample Collect and print stats map set - COBOL 19 03
DFH0STMD Sample 19 -
DFH0STMU Sample 19 -
DFH0STOC Sample Sample program for CICS BTS 19 -
DFH0STPR Sample Sample program for CICS BTS 19 03
DFH0STS Sample Statistics sample mapset - report selection 19 03
DFH0STSD Sample 19 -
DFH0STSU Sample 19 -
DFH0STSY Sample 19 03
DFH0STTP Sample 19 03
DFH0S00 Sample Online account menu sample program C3 -
DFH0S01 Sample File inquire for sample application C3 -
DFH0S02 Sample File update for sample application C3 -
DFH0S03 Sample Print customer record for sample application C3 -
DFH0S04 Sample Error routine for sample application C3 -
DFH0VAB Sample CUA abend handler - COBOL C3 -
DFH0VABT Sample CUA about pop-up handler - COBOL C3 -
DFH0VBRW Sample CUA browse customer details processing - COBOL C3 -
DFH0VDEL Sample CUA delete customer details processing - COBOL C3 -
DFH0VDQ Sample CUA temporary-storage cleanup - COBOL C3 -
DFH0VHLP Sample CUA help pop-up handler - COBOL C3 -
DFH0VHP Sample CUA contextual help pop-up handler - COBOL C3 -
DFH0VLIO Sample CUA help file handler - COBOL C3 -
DFH0VLST Sample CUA list panel handler - COBOL C3 -
DFH0VNEW Sample CUA new customer panel processing - COBOL C3 -
DFH0VOL Sample CUA overlay handler - COBOL C3 -

2154 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH0VOPN Sample CUA file open pop-up handler - COBOL C3 -
DFH0VPRT Sample CUA print pop-up handler - COBOL C3 -
DFH0VRIO Sample CUA customer detail file handler - COBOL C3 -
DFH0VSAS Sample CUA save customer details pop-up handler - COBOL C3 -
DFH0VTBL Sample CUA table router - COBOL C3 -
DFH0VT1 Sample CUA primary panel processing - COBOL C3 -
DFH0VUPD Sample CUA update customer record processing - COBOL C3 -
DFH0VZPA Sample FEPI sample: SLU P pseudo-conversational program

(COBOL)
C3 -

DFH0VZPS Sample FEPI sample: SLU P one-out one-in program (COBOL) C3 -
DFH0VZQS Sample FEPI sample: STSN handler (COBOL) C3 -
DFH0VZTD Sample FEPI sample: 3270 data stream pass through (COBOL) C3 -
DFH0VZTK Sample FEPI sample: keystroke CONVERSE program

(COBOL)
C3 -

DFH0VZTR Sample FEPI sample: screen image RECEIVE/ EXTRACT
FIELD (COBOL)

C3 -

DFH0VZTS Sample FEPI sample: screen image SEND/START (COBOL) C3 -
DFH0VZUC Sample FEPI sample: begin session handler (COBOL) C3 -
DFH0VZUU Sample FEPI sample: end session handler (COBOL) C3 -
DFH0VZUX Sample FEPI sample: monitor unsolicited data handler

(COBOL)
C3 -

DFH0VZXS Sample FEPI sample: setup program (COBOL) C3 -
DFH0WBCA Sample Sample Client Authentication Program - 19
DFH2980 Symbolic Special characters for 2980 C2 07
DFH3QSS Sample OS 03
DFH62XM Sample 62 XM transaction attach - 03
DFH99BC Sample Dynamic allocation - convert to binary target 19 03
DFH99BLD Other Dyn alloc - JCL to build sample program 02 -
DFH99CC Sample Dyn alloc - character and numeric string conversion 19 03
DFH99DY Sample Dyn alloc - issue SVC and analyze 19 03
DFH99FP Sample Dyn alloc - process function keyword 19 03
DFH99GI Sample Dyn alloc - format display and get input 19 03
DFH99KC Sample Dyn alloc - keyword value conversion 19 03
DFH99KH Sample Dyn alloc - list keywords for help 19 03
DFH99KO Sample Dyn alloc - process operator keywords 19 03
DFH99KR Sample Dyn alloc - convert returned value to keyword 19 03
DFH99LK Sample Dyn alloc - search key set for given token 19 03
DFH99M Sample Dyn alloc - macro 11 -
DFH99MAC Sample Dyn alloc - macro 19 -
DFH99ML Sample Dyn alloc - build message text from token list 19 03
DFH99MM Sample Dyn alloc - main control program 19 03
DFH99MP Sample Dyn alloc - message filing routine 19 03
DFH99MT Sample Dyn alloc - match abbreviation with keyword 19 03
DFH99RP Sample Dyn alloc - process returned values 19 03
DFH99SVC Sample Dyn alloc - SVC services 19 -
DFH99T Sample Dyn alloc - table of keywords 19 03
DFH99TK Sample Dyn alloc - tokenize input command 19 03
DFH99TX Sample Dyn alloc - text display routine 19 03
DFH99VH Sample Dyn alloc - list description for help 19 03
DFH$AALL Sample Inquiry/update 19 03
DFH$ABRW Sample Browse 19 03
DFH$ACOM Sample Order entry queue print 19 03
DFH$ADSP Sample XRF overseer - display status 19 03
DFH$AFIL Sample Customer file (FILEA) record layout 19 -

Chapter 116. CICS directory 2155

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH$AGA Sample Generated version of DFH$AMA 19 03
DFH$AGB Sample Generated version of DFH$AMB 19 03
DFH$AGC Sample Generated version of DFH$AMC 19 03
DFH$AGCB Sample XRF overseer - set up RPL 19 03
DFH$AGD Sample Generated version of DFH$AMD 19 03
DFH$AGK Sample Generated version of DFH$AMK 19 03
DFH$AGL Sample Generated version of DFH$AML 19 03
DFH$ALOG Sample Audit trail (log) record layout 19 -
DFH$AL86 Sample Order entry queue record layout 19 -
DFH$AMA Sample Operator instructions map set 19 -
DFH$AMAU Sample Operator instructions map set 19 -
DFH$AMB Sample Customer details map set 19 -
DFH$AMBU Sample Customer details map set 19 -
DFH$AMC Sample File browse map set 19 -
DFH$AMCU Sample File browse map set 19 -
DFH$AMD Sample Low balance inquiry map set 19 -
DFH$AMDU Sample Web Interface BMS screen emulation 19 -
DFH$AMK Sample Order entry map set 19 -
DFH$AMKU Sample Order entry map set 19 -
DFH$AML Sample Order report map set 19 -
DFH$AMNU Sample Operator instructions 19 03
DFH$AREN Sample Order entry 19 03
DFH$AREP Sample Low balance inquiry 19 03
DFH$ARES Sample XRF overseer - restart failed region 19 03
DFH$ATXC Sample EXCI batch client program (Assembler) 19 03
DFH$AXCC Sample EXCI batch client program (Assembler) 19 03
DFH$AXCS Sample EXCI batch server program (Assembler) 19 03
DFH$AXRO Sample XRF overseer program 19 03
DFH$AXVS Sample EXCI sample server 19 03
DFH$BMXT Sample Sample BMS global user exit 19 -
DFH$BTCH Sample Batch test data for DFHIVPBT 19 -
DFH$CAT1 Sample CLIST to create RACF profiles for CICS category 1

transactions
19 -

DFH$CAT2 Sample CLIST to create RACF profiles for CICS category 2
transactions

19 -

DFH$CESD Sample Shutdown assist program P3 -
DFH$CRFA Sample CSD cross-reference program 19 03
DFH$CRFP Sample CSD cross-reference program - PL/I P3 -
DFH$CSDU Sample RDO offline utilities 19 -
DFH$CUS1 Sample CSDUP invocation from TSO environment 19 03
DFH$DALL Sample Inquiry/update - C/370 D3 -
DFH$DBAN Sample Batch test data for DFHIVPDB (Assembler) 19 -
DFH$DBCB Sample Batch test data for DFHIVPDB (Cobol) 19 -
DFH$DBPL Sample Batch test data for DFHIVPDB (PL/I) 19 -
DFH$DBRW Sample Browse - C/370 D3 -
DFH$DB2T Sample DB2 table definitions for DFH$FORx 19 -
DFH$DCOM Sample Order entry queue print - C/370 D3 -
DFH$DCTD Sample DCT SDSCI entries 19 -
DFH$DCTR Sample DCT entries for basic facilities 19 -
DFH$DCTS Sample DCT entries for sample applications 19 -
DFH$DFIL Sample Customer file (FILEA) record layout -C/370 D3 -
DFH$DLAC Sample CICS-DL/I program using CALL interface 19 03
DFH$DLAE Sample CICS-DL/I program using EXEC DLI 19 03
DFH$DLPC Sample CICS-DL/I program (CALL) - PL/I P3 -

2156 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH$DLPE Sample CICS-DL/I program (EXEC) - PL/I P3 -
DFH$DL86 Sample Order entry queue record layout - C/370 D3 -
DFH$DMA Sample Operator instructions map set - C/370 19 -
DFH$DMB Sample Customer details map set - C/370 19 -
DFH$DMC Sample File browse map set - C/370 19 -
DFH$DMD Sample Low balance inquiry map set - C/370 19 -
DFH$DMK Sample Order entry map set - C/370 19 -
DFH$DML Sample Order report map set - C/370 19 -
DFH$DMNU Sample Operator instructions - C/370 D3 -
DFH$DREN Sample Order entry - C/370 D3 -
DFH$DREP Sample Low balance inquiry - C/370 D3 -
DFH$DTLC Sample Shared Data Tables XDTLC exit program 19 -
DFH$DTAD Sample Shared data tables XDTAD exit program 19 -
DFH$DTRD Sample Shared data tables XDTRD exit program 19 -
DFH$DXCC Sample Batch Client Program (C/370) D3 -
DFH$DXVC Sample EXCI client program - Java environment 19 03
DFH$FAIN Sample Data for batch load of FILEA 19 -
DFH$FCBF Sample Sample XFCBFAIL exit program 19 -
DFH$FCBV Sample Sample XFCBOVER exit program 19 -
DFH$FCLD Sample Sample XFCLDEL exit program 19 -
DFH$FORA Sample DB2 formatting program 19 03
DFH$FORP Sample DB2 formatting program - PL/I P3 -
DFH$GMAP Sample Sample goodnight transaction BMS map 19 -
DFH$ICCN Sample Call to CPSM to issue cancel command 19 -
DFH$ICIC Sample CICS-CICS or CICS-IMS conversation 19 03
DFH$IFBL Sample Remote file browse - local processing 19 03
DFH$IFBR Sample Remote file browse - remote processing 19 03
DFH$IGB Sample Generated version of DFH$IMB 19 03
DFH$IGC Sample Generated version of DFH$IMC 19 03
DFH$IGS Sample Generated version of DFH$IMS 19 03
DFH$IGX Sample Generated version of DFH$IMX 19 03
DFH$IG1 Sample Generated version of DFH$IM1 19 03
DFH$IG2 Sample Generated version of DFH$IM2 19 03
DFH$IIAT Sample IIOP banking sample app.to C Account 19 -
DFH$IIBI Sample IIOP banking sample app.to C Init. 19 -
DFH$IIBQ Sample IIOP banking sample app.to C Query 19 -
DFH$IICC Sample IIOP banking sample app.to C Credit Check 19 -
DFH$IICH Sample IIOP banking sample app.to C Cr.Chk commarea 19 -
DFH$IIMA Sample IIOP banking sample app.to C BMS Map 19 -
DFH$IIQR Sample IIOP banking sample app.to C Comm_struct 19 -
DFH$IMB Sample Remote file browse - map set 19 -
DFH$IMC Sample CICS-CICS or CICS-IMS conversation - map set 19 -
DFH$IMS Sample CICS-IMS conversation/demand paged output - map

set
19 -

DFH$IMSN Sample CICS-IMS conversation 19 03
DFH$IMSO Sample CICS-IMS demand paged output 19 03
DFH$IMX Sample Local to remote temporary-storage queue transfer -

map set
19 -

DFH$IM1 Sample TS record retrieval - map set 1 19 -
DFH$IM2 Sample TS record retrieval - map set 2 19 -
DFH$IQRD Sample TS record retrieval - local display 19 03
DFH$IQRL Sample TS record retrieval - local request 19 03
DFH$IQRR Sample TS record retrieval - remote request 19 03

Chapter 116. CICS directory 2157

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH$IQXL Sample Local to remote temporary-storage queue transfer -

local processing
19 03

DFH$IQXR Sample Local to remote temporary-storage queue transfer -
remote processing

19 03

DFH$JSAM Sample Java Sample Linker in C 19 -
DFH$LCCA Sample Java Sample COMMAREA checker in C 19 -
DFH$LDSP Sample Create FILEA data file 19 03
DFH$LGLS Sample Sample GLUE program for XLGSTRM 19 -
DFH$MCTD Sample MCT entry for DBCTL 19 -
DFH$MOLS Sample Offline processor of monitoring data 19 03
DFH$OFAR Sample 19 -
DFH$PALL Sample Inquiry/update - PL/I P3 -
DFH$PBRW Sample Browse - PL/I P3 -
DFH$PCEX Sample XPCFTCH global user exit program 19 03
DFH$PCGA Sample Global work area for DFH$PCEX 19 -
DFH$PCOM Sample Order entry queue print - PL/I P3 -
DFH$PCPI Sample Enabling program for DFH$PCEX and DFH$ZCAT 19 03
DFH$PCPL Sample DFH$PCEX global user exit invocation 19 03
DFH$PCTA Sample XPCTA user exit program 19 -
DFH$PDUM Sample Dummy main program for PL/I programs using CSD

offline extract function
P3 -

DFH$PFIL Sample Customer file (FILEA) record layout - PL/I P3 -
DFH$PLOG Sample Audit trail (log) record layout - PL/I P3 -
DFH$PL86 Sample Order entry queue record layout - PL/I P3 -
DFH$PMA Sample Operator instructions map set - PL/I 19 -
DFH$PMB Sample Customer details map set - PL/I 19 -
DFH$PMC Sample File browse map set - PL/I 19 -
DFH$PMD Sample Low balance inquiry map set - PL/I 19 -
DFH$PMK Sample Order entry map set - PL/I 19 -
DFH$PML Sample Order report map set - PL/I 19 -
DFH$PMNU Sample Operator instructions - PL/I P3 -
DFH$PMP Sample Keystroke overlap/look-aside query - map set - PL/I 19 -
DFH$PPKO Sample Keystroke overlap - PL/I P3 -
DFH$PPLA Sample Look-aside query - PL/I P3 -
DFH$PREN Sample Order entry - PL/I P3 -
DFH$PREP Sample Low balance inquiry PL/I P3 -
DFH$PS Sample Keystroke overlap/look-aside query - partition set -

PL/I
19 -

DFH$PXCC Sample Batch client program (PL/I) P3 -
DFH$RACF Sample RACF class descriptor table 19 -
DFH$RING Sample Build KEYRING profiles in RACF 19 -
DFH$SIPA Other System initialization parameters for use with AOR and

default SIT
19 -

DFH$SIPD Other System initialization parameters for use with DOR and
default SIT

19 -

DFH$SIPT Other System initialization parameters for use with TOR and
default SIT

19 -

DFH$SIP1 Other System initialization parameters for use by
DFHIVPOL (online IVP)

19 -

DFH$SIP2 Other System initialization parameters for use by DFHIVPBT
(batch IVP)

19 -

DFH$SIP5 Other System initialization parameters for use by
DFHIVPDB (DBCTL IVP)

19 -

DFH$SNPW Sample Password expiration mgement for Windows/NT 19 -

2158 CICS TS for z/OS 4.1: Diagnosis Reference

Table 92. CICS modules directory (continued)
Name Type Description Library
DFH$SNP2 Sample Password expiration mgement for OS/2 Warp 19 -
DFH$SQLT Sample Input for DB2 table load utility 19 -
DFH$STAS Sample DFH0STAT storage statistics subroutine 19 03
DFH$STCN Sample DFH0STAT time calculations subroutine 19 03
DFH$STED Sample Stagger end-of-day time for statistics 19 03
DFH$STER Sample PLT program to print recovery statistics on CICS

emergency restart
19 03

DFH$STTB Sample Statistics sample user exit ID table 19 03
DFH$SXP1 Sample Suppress message by number (user exit) 19 03
DFH$SXP2 Sample Suppress message by destination route code 19 03
DFH$SXP3 Sample Suppress message by transient data queue 19 03
DFH$SXP4 Sample Reroute console message to transient data queue 19 03
DFH$SXP5 Sample Reroute message from one transient data queue to

another
19 03

DFH$SXP6 Sample Reroute message from transient data queue to list of
consoles

19 03

DFH$TCTS Sample TCT entries for sequential (CRLP) terminals 19 -
DFH$TDWT Sample Transient data write to terminal 19 03
DFH$ULPA Other Placeholder for DFH$ULPA 19 -
DFH$UMOD Other SMP/E USERMOD to move LPA-eligible CICS

modules into LPA library
19 -

DFH$WBAU Sample Web module 19 03
DFH$WBSA Sample Web module 19 03
DFH$WBSB Sample Web module 19 03
DFH$WBSC Sample Web module 19 03
DFH$WBSN Sample Web module 19 03
DFH$WBSR Sample Web module 19 03
DFH$WBST Sample Web module 19 03
DFH$WB1A Sample Web module 19 03
DFH$WB1C Sample Web module D3 -
DFH$XDRQ Sample 19 03
DFH$XNQE Sample Exec ENQ/DEQ Sample XNQEREQ Exit 19 03
DFH$XRDS Sample XRF overseer control blocks 19 -
DFH$XTSE Sample XTSEREQ global user exit program 19 03
DFH$XZIQ Sample Sample XZIQUE global user exit program 19 03
DFH$ZCAT Sample Sample XZCATT global user exit program 19 03
DFH$ZCGA Sample Global work area for DFH$ZCAT 19 -
DFJ$UMOD Sample Place holder for DFJ$UMOD 19 -
DLIUIB DSECT DL/I user interface block C2 -
DLIUIB DSECT DL/I user interface block P2 -
DLIUIB DSECT DL/I user interface block D3 -
DLIUIB Macro DL/I user interface block 12 -
DFH99SVC CSECT Dyn alloc - SVC services - 03
DSNCPRMA Macro CICS-DB2 connect dynamic plan selection parmlist

(Assembler)
12 -

DSNCPRMC Macro CICS-DB2 connect dynamic plan selection parmlist
(COBOL)

C2 -

DSNCPRMP Macro CICS-DB2 connect dynamic plan selection parmlist
(PL/I)

P2 -

DSNCRCT Macro CICS-DB2 connect RCT macro 12 -
DSNCUEXT CSECT CICS-DB2 connect dynamic plan selection 19 03
MEUKEYS CSECT MEU key definitions 17 -
MEULANG CSECT MEU language table 11 -
MEU00 CSECT MEU MEU00x message set 13 -

Chapter 116. CICS directory 2159

Table 92. CICS modules directory (continued)
Name Type Description Library
MEU01 CSECT MEU MEU01x message set 13 -
MEU02 CSECT MEU MEU02x message set 13 -
MEU03 CSECT MEU MEU03x message set 13 -
MEU04 CSECT MEU MEU04x message set 13 -
MEU05 CSECT MEU MEU05x message set 13 -
SRRC Symbolic SAA resource recovery pseudonyms for C D3 -
SRRCOBOL Symbolic SAA resource recovery pseudonyms for COBOL C2 -
SRRHASM Symbolic SAA resource recovery pseudonyms for

assembler-language
12 -

SRRPLI Symbolic SAA pseudonym file for PL/I P2 -

2160 CICS TS for z/OS 4.1: Diagnosis Reference

Chapter 117. CICS executable modules

The following list shows, for each module:
1. The name of the module
2. Its entry points
3. Callers of the module
4. A brief description of the module
5. Where the module returns to. This information is omitted where the module

returns to its caller (the normal situation).

In general, this list is restricted to non-OCO modules. In the few cases where OCO
modules are included, no design details are given.

DFHACP
Entry points

DFHACPNA

Called by

DFHAPRM, DFHAPXME

Description

The abnormal condition program writes a message to the terminal and to the
CSMT destination if a transaction abends or cannot be started. Subject to tests on
the type of terminal, DFHACP invokes DFHMGP to output the message. It calls
DFHPEP and, depending on the result, may disable the transaction. For each error,
there is an entry in a table which contains the number of the message to be written
to the principal facility (terminal) and the number of the message to be written to
CSMT. If, in either case, there is no message, zero is entered.

The main subroutines of DFHACP are:
ABCSMTWT - Write to CSMT
ACPCALMG - Use DFHMGP to output a message
ACPCLPEP - Invoke DFHPEP
ACPFENTY - Identify message for terminal
TERMERR - Terminal error.

DFHAICBP
Entry points

DFHAICB

Called by

User application program

© Copyright IBM Corp. 1997, 2011 2161

Description

The application interface control block program acts both as a control block and,
for compatibility with early releases of CICS/VS, as executable code. DFHAICBP
provides addressability between application programs and CICS entry points,
namely those of the EXEC interface and the common programming interface.
DFHAICBP is link-edited with the EXEC interface programs (DFHEIP and
DFHEIPA), and the common programming interface program (DFHCPI) to form
the application interface program (DFHAIP) load module.

DFHALP
Entry points

DFHALPNA

Called by

DFHCRQ, DFHCRS, DFHICP, DFHTPQ, DFHTPR, DFHTPS, DFHZATI, DFHZISP,
DFHZNAC, DFHZTSP

Description

The terminal allocation program contains the logic to allocate TCTTE resources to
requesting transactions. The request operates in a multiple exchange between the
requesting transaction and terminal control. DFHALP passes a SCHEDULE request
to terminal control as an ATI terminal control, then responds with an AVAIL
command. The requests are represented by AIDs (AID chain manipulations being
performed by calls to DFHALP). For LU6.2, DFHALP issues a terminal control
allocate mode name macro.

DFHAMP
Entry points

DFHAMPNA

Called by

DFHEIP, DFHSII1

Description

The allocation management program is invoked by the CEDA transaction. It
analyzes commands and calls the definition file management program, DFHDMP,
to process changes to records in the CSD. For the INSTALL command, DFHAMP
also calls program manager, transaction manager, and DFHSPP. DFHPUP is called
to convert data between address list format and the CSD record format.

DFHAPJC
Entry points

DFHAPJCN

2162 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

User

Description

The AP domain journal control gate service module handles
WRITE_JOURNAL_DATA calls made by the user exit’s XPI. It gets a TCA if the
task doesn’t currently have one, and also a JCA. If the task already has a JCA, this
is stacked. It then copies the parameter list passed in the domain call, to the JCA,
and then issues one of four journal writes, depending on the request. Finally the
return code from the JC write is copied into the domain parameter list, and the
JCA and TCA are released if they were obtained by DFHAPJC.

DFHAPSIP
Entry points

DFHSIPNA

Called by

DFHAPDM

Description

The main AP domain initialization program provides DFHWTO support and
common subroutines used by DFHSIA1 through DFHSIJ1. In sequence, DFHAPSIP
performs the following functions:
v Defines the AP domain subpools
v Acquires the SIT address
v Passes control to the DFHSIA1, DFHSIB1, and so on.

The main subroutines of DFHAPSIP are:
CHKRLVLR - Check release level
OVERLSUP - Overlay supervisor
SIGETCOR - Storage allocation
SILOADR - Program loader
SIPCONS - Console WRITE.

DFHAPST
Entry points

DFHAPST

Called by

DFHEIP, DFHSTST

Description

The supervisory statistics program within the AP domain accepts a request for and
then supervises the copying/resetting of statistics counters in the AP domain by
calling the appropriate DFHSTxx modules to access the counters.

Chapter 117. CICS executable modules 2163

This module is called when:
v Statistics domain is collecting INTERVAL statistics and calls this module to pass

it copies of and to reset all statistics in AP domain. This module then
sequentially calls all of the DFHSTxx modules to do the copying and resetting.

v A CEMT PERFORM STATISTICS command results in a call to the statistics
domain which then makes an appropriate call to this module to pass it copies of
the requested statistics. This module then calls the DFHSTxx modules required
to do the copying.

v An EXEC CICS COLLECT STATISTICS command results in a call to this module
which then calls the DFHSTxx module required to pass copies of the statistics
back to the application program.

Thus, this module is called only by the statistics domain or by DFHEIP.

This module provides two functions:

COLLECT_STATISTICS
collects statistics for all resources in the AP domain and calls the statistics
domain to write them out to the SMF data set.

COLLECT_RESOURCE_STATS
collects statistics for the named resource type (optionally qualified by the
resource identifier) and either copies them to a buffer available through the
API, or causes them to be written to the SMF data set.

DFHAPTD
Entry points

DFHAPTD

Called by

DFHETD, DFHTDA, DFHTDB, ME domain

Description

DFHAPTD handles DFHTDTDM macro requests; as such, it provides the transient
data gate into the AP domain. DFHTDTDM macro requests are routed from
DFHAPTD to DFHTDP using the corresponding DFHTD CTYPE requests.

DFHAPTI
Entry points

DFHAPTI

Called by

the timer domain to handle NOTIFY calls for the application domain.

Description

The DFHAPTO module looks at the token passed by the timer domain and
resumes either the DFHAPTI or DFHAPTIX module, as appropriate.

2164 CICS TS for z/OS 4.1: Diagnosis Reference

DFHAPTIM
Entry points

DFHAPTIM

Called by

runs as a system task attached by the DFHSII1 module.

Description

The DFHAPTIM module is part of the interval control mechanism. When it first
gets control, it suspends itself to wait for an interval control ICE to expire. Interval
control uses the timer domain to handle time intervals. When the timer domain
detects the expiry of an interval control related interval, it calls the DFHAPTI
module, which in turn resumes the DFHAPTIM module. The DFHAPTIM module
then makes an “expiry analysis” call to the DFHICP module, which processes any
expired ICEs. On return, the DFHAPTIM module suspends itself again to wait for
the next ICE to expire.

DFHAPTIX
Entry points

DFHAPTIX

Called by

runs as a system task attached by the DFHSII1 module.

Description

The DFHAPTIX module is part of the interval control mechanism. When it first
gets control, it tells the timer domain that it wants to be told every time it is
midnight. It then suspends itself to wait for the next midnight. When that occurs,
the timer domain calls the DFHAPTI module, which resumes the DFHAPTIX
module, which in turn calls the DFHICP module to do midnight processing.

DFHASV
Entry points

DFHASVNA

Called by

DFHCSVC

Description

DFHASV is one of the modules that run under the CICS type 3 SVC. On entry to
DFHASV, register 0 contains one of the following request codes:
 0 - Paging request
 8 - SRB termination
 9 - HPO initialization

Chapter 117. CICS executable modules 2165

24 - Monitoring services
 64 - Authorize general purpose subtask TCB
 80 - Issue SDUMP
136 - Bind AP domain.

DFHBSIB3
Entry points

DFHBSIB3

Called by

DFHTBSxx

Description

DFHBSIB3 adds BMS 3270 support to a TCT table entry.

DFHBSIZ1
Entry points

DFHBSIZ1

Called by

DFHTBSxx

Description

DFHBSIZ1 adds SCS support to a TCT table entry.

DFHBSIZ3
Entry points

DFHBSIZ3

Called by

DFHTBSxx

Description

DFHBSIZ3 adds DFHZCP 3270 support to a TCT table entry.

DFHBSMIR
Entry points

DFHBSMIR

Called by

DFHTBSxx

2166 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHBSMIR builds a TCT table entry for a session.

DFHBSMPP
Entry points

DFHBSMPP

Called by

DFHTBSxx

Description

DFHBSMPP builds a TCT table entry for a pipeline pool entry.

DFHBSM61
Entry points

DFHBSM61

Called by

DFHTBSxx

Description

DFHBSM61 builds sessions for an LU6.2 mode group.

DFHBSM62
Entry points

DFHBSM62

Called by

DFHTBSxx

Description

DFHBSM62 builds the mode entry for an LU6.2 mode group.

DFHBSS
Entry points

DFHBSS

Called by

DFHTBSxx

Chapter 117. CICS executable modules 2167

Description

DFHBSS adds a new connection (system entry) to a CICS system.

DFHBSSA
Entry points

DFHBSSA

Called by

DFHTBSxx

Description

DFHBSSA initializes DFHKCP support in a new TCT system entry.

DFHBSSF
Entry points

DFHBSSF

Called by

DFHTBSxx

Description

DFHBSSF initializes the statistics counters in a new TCT system entry.

DFHBSSS
Entry points

DFHBSSS

Called by

DFHTBSxx

Description

DFHBSSS builds security support for a new TCT system entry.

DFHBSSZ
Entry points

DFHBSSZ

Called by

DFHTBSxx

2168 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHBSSZ builds VTAM interface support for a new TCT system entry.

DFHBSSZB
Entry points

DFHBSSZB

Called by

DFHTBSxx

Description

DFHBSSZB adds a new batch interregion connection to a CICS system.

DFHBSSZG
Entry points

DFHBSSZG

Called by

DFHTBSxx

Description

DFHBSSZG adds a new advanced program-to-program communication (APPC)
single-session connection to a CICS system.

DFHBSSZI
Entry points

DFHBSSZI

Called by

DFHTBSxx

Description

DFHBSSZI adds an indirect terminal control system table entry to a CICS system.

DFHBSSZL
Entry points

DFHBSSZL

Called by

DFHTBSxx

Chapter 117. CICS executable modules 2169

Description

DFHBSSZL adds a local terminal control system table entry to a CICS system.

DFHBSSZM
Entry points

DFHBSSZM

Called by

DFHTBSxx

Description

DFHBSSZM introduces a new connection (system) to ZCP.

DFHBSSZP
Entry points

DFHBSSZP

Called by

DFHTBSxx

Description

DFHBSSZP builds an advanced program-to-program communication (APPC)
parallel-session connection to a CICS system.

DFHBSSZR
Entry points

DFHBSSZR

Called by

DFHTBSxx

Description

DFHBSSZR builds an MRO session entry.

DFHBSSZS
Entry points

DFHBSSZS

Called by

DFHTBSxx

2170 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHBSSZS builds an advanced program-to-program communication (APPC)
session entry.

DFHBSSZ6
Entry points

DFHBSSZ6

Called by

DFHTBSxx

Description

DFHBSSZ6 builds an LU6.1 connection entry.

DFHBST
Entry points

DFHBST

Called by

DFHTBSxx

Description

DFHBST performs TCTTE initialization common to terminals, pipeline pool entries,
and sessions for IRC and ISC.

DFHBSTB
Entry points

DFHBSTB

Called by

DFHTBSxx

Description

DFHBSTB adds support for BMS to a new TCT terminal or session entry.

DFHBSTBL
Entry points

DFHBSTBL

Chapter 117. CICS executable modules 2171

Called by

DFHTBSxx

Description

DFHBSTBL adds support for logical device components (LDCs).

DFHBSTB3
Entry points

DFHBSTB3

Called by

DFHTBSxx

Description

DFHBSTB3 adds partition support to a new TCT terminal or session entry.

DFHBSTC
Entry points

DFHBSTC

Called by

DFHTBSxx

Description

DFHBSTC performs those operations that are executed after the installation of a
terminal.

DFHBSTD
Entry points

DFHBSTD

Called by

DFHTBSxx

Description

DFHBSTD adds data interchange program (DFHDIP) support for a new TCT table
entry.

2172 CICS TS for z/OS 4.1: Diagnosis Reference

DFHBSTE
Entry points

DFHBSTE

Called by

DFHTBSxx

Description

DFHBSTE adds EXEC diagnostic facility (EDF) support for a new TCT table entry.

DFHBSTH
Entry points

DFHBSTH

Called by

DFHTBSxx

Description

DFHBSTH initializes EXEC interface fields for a new TCT table entry.

DFHBSTI
Entry points

DFHBSTI

Called by

DFHTBSxx

Description

DFHBSTI adds interval control program (DFHICP) support for a new TCT table
entry.

DFHBSTM
Entry points

DFHBSTM

Called by

DFHTBSxx

Chapter 117. CICS executable modules 2173

Description

DFHBSTM adds message generation program (DFHMGP) support for a new TCT
table entry.

DFHBSTO
Entry points

DFHBSTO

Called by

DFHTBSxx

Description

DFHBSTO is the spooler builder.

DFHBSTP3
Entry points

DFHBSTP3

Called by

DFHTBSxx

Description

DFHBST adds 3270-copy support for a new TCT table entry.

DFHBSTS
Entry points

DFHBSTS

Called by

DFHTBSxx

Description

DFHBSTS adds signon program (DFHSNP) support for a new TCT table entry.

DFHBSTT
Entry points

DFHBSTT

Called by

DFHTBSxx

2174 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHBSTT adds task control program (DFHKCP) support for a new TCT table
entry.

DFHBSTZ
Entry points

DFHBSTZ

Called by

DFHTBSxx

Description

DFHBSTZ builds a session or terminal resource.

DFHBSTZA
Entry points

DFHBSTZA

Called by

DFHTBSxx

Description

DFHBSTZA adds DFHZCP activity scan support to a new TCT terminal or session
entry.

DFHBSTZB
Entry points

DFHBSTZB

Called by

DFHTBSxx

Description

DFHBSTZB appends or deletes a BIND image for a TCT terminal or session entry.

DFHBSTZC
Entry points

DFHBSTZC

Chapter 117. CICS executable modules 2175

Called by

DFHTBSxx

Description

DFHBSTZC adds a single-session LU6.2 system as an advanced
program-to-program communication (APPC) terminal.

DFHBSTZE
Entry points

DFHBSTZE

Called by

DFHTBSxx

Description

DFHBSTZE sets error message writer fields for a new TCT table entry.

DFHBSTZH
Entry points

DFHBSTZH

Called by

DFHTBSxx

Description

DFHBSTZH adds an interregion (IRC) batch session to a CICS system.

DFHBSTZL
Entry points

DFHBSTZL

Called by

DFHTBSxx

Description

DFHBSTZL adds logical device code support to a new TCT terminal or session
entry.

2176 CICS TS for z/OS 4.1: Diagnosis Reference

DFHBSTZO
Entry points

DFHBSTZO

Called by

DFHTBSxx

Description

DFHBSTZO adds an MVS console to a CICS system.

DFHBSTZP
Entry points

DFHBSTZP

Called by

DFHTBSxx

Description

DFHBSTZP adds a pipeline pool entry to a CICS system.

DFHBSTZR
Entry points

DFHBSTZR

Called by

DFHTBSxx

Description

DFHBSTZR adds an interregion (IRC) session to a CICS system.

DFHBSTZS
Entry points

DFHBSTZS

Called by

DFHTBSxx

Description

DFHBSTZS adds an advanced program-to-program communication (APPC) session
to the terminal control program.

Chapter 117. CICS executable modules 2177

DFHBSTZV
Entry points

DFHBSTZV

Called by

DFHTBSxx

Description

DFHBSTZV adds the parts of a terminal or session TCT table entry that are special
to VTAM and IRC.

DFHBSTZZ
Entry points

DFHBSTZZ

Called by

DFHTBSxx

Description

DFHBSTZZ adds a non-APPC session to the TCT. (APPC is advanced
program-to-program communication.)

DFHBSTZ1
Entry points

DFHBSTZ1

Called by

DFHTBSxx

Description

DFHBSTZ1 adds support for a remote terminal to a CICS system.

DFHBSTZ2
Entry points

DFHBSTZ2

Called by

DFHTBSxx

2178 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHBSTZ2 adds support for a remote advanced program-to-program
communication (APPC) connection.

DFHBSTZ3
Entry points

DFHBSTZ3

Called by

DFHTBSxx

Description

DFHBSTZ3 adds a 3270 to the TCT.

DFHBSXGS
Entry points

DFHBSXGS

Called by

DFHBSMIR, DFHZTSP

Description

DFHBSXGS generates a unique session name for an LU6.2 TCTTE.

DFHBSZZ
Entry points

DFHBSZZ

Called by

DFHTBSxx

Description

DFHBSZZ adds a terminal or session to the TCT.

DFHBSZZS
Entry points

DFHBSZZS

Called by

DFHTBSxx

Chapter 117. CICS executable modules 2179

Description

DFHBSZZS adds a new session to LU6.2 support.

DFHBSZZV
Entry points

DFHBSZZV

Called by

DFHTBSxx

Description

DFHBSZZV adds a VTAM terminal or session to the TCT.

DFHCAPB
Entry points

DFHCAPNA

Called by

DFHTCRP

Description

DFHCAPB processes command analysis for VTAM terminal definitions contained
in a load module table DFHRDTxx for TCT migration.

DFHCCNV
Entry points

DFHCCNV

Called by

DFHCHS, DFHMIRS

Description

DFHCCNV provides conversion of user data from ASCII to EBCDIC and from
EBCDIC to ASCII for function-shipped requests from external clients. DFHCCNV
is called from either the LU2 remote server program DFHCHS or the mirror
program DFHMIRS, for EXEC CICS requests and replies originating from the
identified server or mirror. For any function-shipped request it is invoked twice,
once on the inbound side and once on the outbound path. DFHCCNV is passed
the EXEC CICS parameter list by its caller. On the request side, this occurs after
DFHCHS or DFHMIRS has called transformer 2 but before DFHEIP is invoked. On
the response side, this occurs after DFHEIP returns to DFHCHS or DFHMIRS but
before transformer 3 is invoked.

2180 CICS TS for z/OS 4.1: Diagnosis Reference

DFHCMP
Entry points

DFHCMPNA

Called by

DFHETR

Description

The CICS monitoring compatibility module is invoked by the old event monitoring
point of EXEC CICS ENTER TRACEID to interface to the monitoring domain.

DFHCPY
Entry points

DFHCPYNA

Called by

DFHPRK

Description

The 3270 copy program (transaction CSCY) causes data to be copied from screen to
printer in a (VTAM) 3270 system. DFHCPY is invoked by DFHPRK (only if the
3270 has the copy feature) and issues a DFHTC TYPE=COPY macro to the printer.
DFHCPY then initiates DFHRKB.

DFHCRC
Entry points

DFHCRCNA

Called by

MVS

Description

The interregion abnormal exit module is a CICS module that contains an ESTAE
exit to terminate interregion communication in abnormal conditions. DFHCRC
issues a CLEAR request to the interregion SVC.

DFHCRNP
Entry points

DFHCRNNA

Chapter 117. CICS executable modules 2181

Called by

DFHCRSP, dispatcher

Description

DFHCRNP, the connection manager (transaction CSNC), controls IRC connections.
It establishes and breaks these connections and processes inbound requests to
attach tasks (for example, mirror) to communicate with connected systems.

DFHCRQ
Entry points

DFHCRQNA

Called by

transaction CRSQ

Description

The remote schedule page program is invoked periodically to delete requests to
attach a transaction on a remotely owned terminal if those requests have been
outstanding for more than the ATI purge delay interval.

DFHCRR
Entry points

DFHCRRNA

Called by

DFHCRNP

Description

The interregion session recovery program performs session recovery on behalf of
primary or secondary IRC sessions.

DFHCRS
Entry points

DFHCRSNA

Called by

transaction CRSR

Description

The remote scheduler program builds and ships AIDs for automatic transaction
initiation when the terminal is in a remote address space. It receives requests to
schedule an AID shipped to it from a remote address space.

2182 CICS TS for z/OS 4.1: Diagnosis Reference

DFHCRSP
Entry points

DFHCRSNA

Called by

DFHEIP, DFHSIJ1

Description

The interregion communication startup module can be invoked, either at system
initialization or by a CEMT request, in order to make the CICS address space
available for communication by other address spaces. DFHCRSP issues a logon
request to the interregion communication SVC routine and attaches transaction
CSNC (DFHCRNP).

DFHCRT
Entry points

DFHCRTNA

Called by

transaction CXRT

Description

DFHCRT is the relay program used when a transaction attempts to allocate a
conversation to a remote advanced program-to-program (APPC) terminal.

DFHCSA
Entry points

DFHCSANA

Called by

Not applicable

Description

The DFHCSA module contains the common system area (CSA) and CSA optional
features list, the queue control area (QCA) and, for HPO systems, the SRB interface
control area.

DFHCSDUP
Entry points

DFHCUCNA

Chapter 117. CICS executable modules 2183

Called by

MVS

Description

The CSD utility program is an offline program that provides services for the CSD.
The utility command processor (DFHCUCP) validates commands and invokes the
appropriate routine to execute the requested function. DFHCSDUP calls DFHDMP
to access the CSD.

DFHCSSC
Entry points

DFHCSSNA

Called by

DFHSIJ1, DFHSNSN, DFHSUSN, DFHTCRP, DFHZCUT

Description

DFHCSSC, the signon time-out program, is invoked as a system task by DFHSIJ1
and DFHTCRP to perform XRF takeover sign-off time-out processing. It is invoked
elsewhere as the CSSC transaction for time-out processing of the following:
v Terminals signed on with the TIMEOUT option
v Entries in the internally managed signon table (SNT)
v Entries in the local userid tables (LUITs).

The CSSC transaction is scheduled when task termination determines that a
time-out is necessary. When DFHCSSC is executed, it examines all signed-on
terminals, all entries in the SNT managed by DFHTMP, and all entries in the
LUITs. It signs off or deletes expired entries as appropriate, and then reschedules
itself to perform later time-outs if required.

DFHCSVC
Entry points

DFHCSVC

Called by

MVS

Description

This module is a type 3 SVC that passes control to the various required routines,
dependent on the parameter passed to it. On a first request for a particular
function, it loads the required module and puts its address in the AFCB and then
branches to that code. Further calls result in the address in the AFCB being
branched to.

2184 CICS TS for z/OS 4.1: Diagnosis Reference

Returns to

Type 3 SVC

DFHCUCAB
Entry points

DFHCUCA

Called by

DFHCAPB

Description

The resource definition online command analyzer interprets a VTAM resource
definition in command form and produces a parameter list.

DFHCUCB
Entry points

DFHCUCB

Called by

DFHCUCP

Description

The resource definition online command builder receives commands and
transforms them to a format for use by the command processors.

DFHCUCCB
Entry points

DFHCUCC

Called by

DFHCAPB

Description

This program extracts a single entry from a loaded RDT table containing VTAM
resource definitions for TCT migration.

DFHCUCDB
Entry points

DFHCUCD

Chapter 117. CICS executable modules 2185

Called by

DFHCAPB

Description

The resource definition online command default values program modifies the
parameter list produced by DFHCUCAB by inserting the default values.

DFHCWTO
Entry points

DFHCWTNA

Called by

CWTO transaction

Description

The console write-to-operator module is a CICS-supplied transaction that allows an
operator to send a message to the console operator. DFHCWTO issues SVC 35
(WTO) to pass the message to the operator’s console.

DFHDBAT
Entry points

AENTRY

Called by

DFHERM, IMS database resource adapter (DRA).

Description

This program provides a mapping between the external architectures of CICS (the
resource manager interface (RMI) and of DBCTL (the database resource adapter
(DRA)). Both are independently defined and different. DFHDBAT is part of the
support for the CICS-DBCTL interface and runs in an application program
environment. DFHDBAT is invoked by a DFHRMCAL request through the CICS
RMI. The RMI supplies DFHDBAT with a parameter list from which DFHDBAT
constructs the DRA INIT, DRA TERM, and DRA THREAD parameter lists. It must
also transform the DRA parameter list back, after a DL/I call to the format
expected by CICS. Thus, DFHDBAT is also referred to as the CICS-DBCTL
adapter-transformer.

DFHDBCON
Entry points

DFHDBCON

2186 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHDBME

Description

This program issues a CICS-DBCTL interface connection request to the
CICS-DBCTL adapter-transformer, DFHDBAT. DFHDBCON is part of the support
for the CICS-DBCTL interface and runs in an application program environment.

DFHDBCR
Entry points

DFHDBCR

Called by

DFHSII1 via attach

Description

DFHDBCR is the CICS/DBCTL XRF tracking program. DFHDBCR runs in an
alternate CICS system during the tracking phase. DFHDBCR receives messages
from the active CICS system regarding the state of the connection to DBCTL, and
drives the XXDFB and XXDTO exits and takes appropriate action.

DFHDBCT
Entry points

DFHDBCT

Called by

DFHDBCTX, DFHDBAT

Description

This program processes any elements placed on the CICS-DBCTL control work
element (CWE) chain. DFHDBCT is part of the support for the CICS-DBCTL
interface and runs in an application program environment. It is invoked when the
CICS-DBCTL connection program, DFHDBCON, attempts to connect to DBCTL.
The program then issues a wait. The DFHDBCT program is posted whenever an
element is placed on the CWE chain.

DFHDBCTX
Entry points

DFHDBCTX

Called by

DFHDBAT

Chapter 117. CICS executable modules 2187

Description

This program notifies the CICS-DBCTL control transaction of changes in the state
of the CICS-DBCTL interface. DFHDBCTX is part of the support for the
CICS-DBCTL interface. It does not run in a CICS environment and thus does not
use any CICS services. This exit is invoked by the DBCTL adapter on behalf of the
DBCTL DRA.

DFHDBDI
Entry points

DFHDBDI

Called by

DFHDBCT

Description

This program disables the CICS-DBCTL adapter program and cleans up the storage
used by the CICS-DBCTL interface programs. DFHDBDI is part of the support for
the CICS-DBCTL interface and runs in an application program environment.
DFHDBDI is invoked by the CICS/VS DBCTL control program, DFHDBCT, just
before it terminates.

DFHDBDSC
Entry points

DFHDBDSC

Called by

DFHDBCT, DFHDBME

Description

This program issues a CICS-DBCTL interface disconnection request to the
CICS-DBCTL adapter-transformer. DFHDBDSC is part of the support for the
CICS-DBCTL interface and runs in an application program environment.

DFHDBIQ
Entry points

DFHDBIQ

Called by

CDBI transaction

2188 CICS TS for z/OS 4.1: Diagnosis Reference

Description

This program is the CDBI CICS-supplied transaction. Its function is to inquire on
the current status of the CICS-DBCTL interface. DFHDBIQ is part of the support
for the CICS-DBCTL interface.

DFHDBME
Entry points

DFHDBME

Called by

CDBC transaction

Description

This program is the CDBC CICS-supplied transaction. Its function is to provide a
front end for making certain changes to the status of the CICS-DBCTL interface.
DFHDBME is part of the support for the CICS-DBCTL interface.

DFHDBMOX
Entry points

DFHDBMOX

Called by

DFHDBAT

Description

This program outputs monitoring information supplied by DBCTL to the
monitoring domain, using monitoring domain services. The information is
supplied by DBCTL when it has processed a PSB schedule request and a thread
termination request. This exit forms part of the support for the CICS-DBCTL
interface. It runs in a CICS application environment. This exit is invoked by the
CICS-DBCTL adapter.

DFHDBP
Entry points

DFHDBPNA

Called by

DFHAPRC

Description

This program invokes DWE processors when a UOW backs out.

Chapter 117. CICS executable modules 2189

DFHDBREX
Entry points

DFHDBREX

Called by

DFHDBAT

Description

This program is the CICS-DBCTL resume exit. The resume exit is driven whenever
the adapter or the DRA requires to resume a task which they have suspended. This
exit forms part of the support for the CICS-DBCTL interface. It does not run in a
CICS environment and thus cannot use CICS services.

DFHDBSPX
Entry points

DFHDBSPX

Called by

DFHDBAT

Description

This program is the CICS-DBCTL suspend exit. The suspend exit is driven
whenever the adapter or the DRA requires to suspend a task. DFHDBSPX forms
part of the support for the CICS-DBCTL interface. It runs in a CICS application
environment.

DFHDBSSX
Entry points

DFHDBSSX

Called by

DFHDBAT

Description

DFHDBSSX is the CICS/DBCTL status exit. In the event of a DRA thread failure,
DFHDBSSX is called to transfer ownership of PCB storage to CICS. When the task
ends, DFHDBSSX is called to release this storage.

DFHDBSTX
Entry points

DFHDBSTX

2190 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHDBAT

Description

This program is the CICS-DBCTL statistics exit. The exit outputs CICS-DBCTL
session termination statistics to the statistics domain. DFHDBSTX forms part of the
support for the CICS-DBCTL interface. It runs in a CICS application environment,
but it can also be invoked during CICS orderly termination. This exit is invoked by
the CICS-DBCTL adapter.

DFHDBTOX
Entry points

DFHDBTOX

Called by

DFHDBAT

Description

This program is the CICS-DBCTL token exit. The function of this exit is to provide
the CICS-DBCTL adapter with task tokens for tasks that have not been through the
DBCTL call processor ,DFHDLIDP, or the DBCTL connection program,
DFHDBCON, or the DBCTL disconnection program, DFHDBDSC, where task
tokens are usually generated. DFHDBTOX forms part of the support for the
CICS-DBCTL interface. It runs in a CICS application environment. This exit is
invoked by the CICS-DBCTL adapter.

DFHDBUEX
Entry points

DFHDBUEX

Called by

DFHDBCT, DFHDBDSC

Description

DFHDBUEX is the user-replaceable CICS-DBCTL exit program. It is invoked
whenever CICS successfully connects to DBCTL and whenever CICS disconnects
from DBCTL. DFHDBUEX forms part of the support for the CICS-DBCTL interface.
It runs in a CICS application environment.

DFHDCP
Entry points

DFHDCPNA

Chapter 117. CICS executable modules 2191

Called by

DFHDC macro, DFHEDC

Description

DFHDCP translates DFHDC macro requests for a transaction dump to DU domain
TRANSACTION_DUMP calls.

DFHDES
Entry points

DFHDESNA

Called by

DFHZEV1, DFHZEV2, DFHZOPN

Description

DFHDES performs data encryption and bind-time security.

DFHDIP
Entry points

DFHDIPNA

Called by

DFHACP, DFHDI macro, DFHEDI, DFHKCP, DFHMCP, DFHTOM, DFHZEMW,
DFHZRSP, DFHZSUP

Description

The data interchange program acts as a function manager when transactions want
to communicate with batch devices using SNA support. DFHDIP builds and
receives FMHs, which control the data set selection and function currently being
performed by the batch device.

The main subroutines of DFHDIP are:
DESTCHEK - Destination change
D1ABORTE - Abort
D1CONRTE - Continue
D1ENDRTE - End
D1INARTE - Transaction attach
D1INPRTE - Input
D1NOTRTE - Note
D1QUERTE - Query.

DFHDLI
Entry points

DFHDLINA

2192 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

User application, DFHMIRS, DFHSPP

Description

DFHDLI is the DL/I call router program. It decides which call processor is to be
used for the request: DBCTL or REMOTE. It then invokes the appropriate
processor: DFHDLIDP or DFHDLIRP.

DFHDLIAI
Entry points

ASMTDLI, CBLTDLI, PLITDLI

Called by

User application using DL/I CALL interface

Description

This module is used by the CICS-DL/I interface. It is link-edited with the
application program to provide D/I communication between the application and
the CICS-DL/I interface routine DFHDLI. Calls for DL/I to the ASMTDLI,
CBLTDLI, or PLITDLI entry points are resolved by this processor.

DFHDLIDP
Entry points

DFHDLIDP

Called by

DFHDLI

Description

DFHDLIDP is the DBCTL call processor. It services DL/I calls for PSBs that are
owned by a DBCTL subsystem, and invokes the DL/I task-related user exit
(adapter) to interface with DBCTL.

DFHDLIRP
Entry points

DFHDLIRP

Called by

DFHDLI

Chapter 117. CICS executable modules 2193

Description

DFHDLIRP is the remote call processor. It services DL/I calls that are
function-shipped to another CICS system.

DFHDMP
Entry points

DFHDMPNA

Called by

DFHAMP, DFHCSDUP

Description

The definition file management program handles physical changes to the CSD. The
main processes in DFHDMP are:
BUILDKWA (DM16) - Build key work area
CONNECT (DM01) - CONNECT
CREATSET (DM11) - Create SET
DELETE (DM05) - DELETE
DISCONN (DM02) - DISCONNECT
ENDBRO (DM10) - End BROWSE
ERASESET (DM12) - Delete SET
GETNEXT (DM09) - Get next record
LOCK (DM06) - LOCK
QUERYSET (DM13) - QUERYSET
READ (DM04) - Read CSD control records
RELSEKWA (DM17) - Free key work area
SETBRO (DM08) - Set browse
UNLOCK (DM06) - UNLOCK
WRITE (DM03) - WRITE.

DFHDRPG
Entry points

DFHDRPNA

Called by

DFHEIP

Description

DFHDRPG is the EXEC interface processor for EXEC DLI commands for database
sharing. It receives the parameters of the command and from them builds a list
that is appropriate to call DFHDRPE, the program request handler. On return from
DFHDRPE, the status code in the PCB is examined. For some codes, an MVS
abend is executed; the other codes are passed back to the application program.

DFHDSBA$, DFHDSB1$
Entry points

DFHDSBNA

2194 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHPBP

Description

The data stream build program produces the final device-dependent data stream
for each page of BMS output. It is invoked only for processing data streams that
are not in 3270 format. DFHDSB removes blanks from the ends of lines, converts
logical new-line characters into the device-dependent equivalents (adding idle
characters where necessary), and inserts horizontal and vertical tab characters if
supported.

DFHDU660
Entry points

DFHDUPNA

Called by

MVS

Description

The dump utility program formats and prints transaction dumps from a CICS
transaction dump data set (DFHDMPA or DFHDMPB). The transaction dumps are
written to the data set by the dump domain. They contain information about the
state of a particular transaction at the time of a transaction abend or user-requested
dump.

DFHDXACH
Entry points

DFHDXACH

Called by

DFHDBCR, DFHDBCT

Description

DFHDXACH is a stub that is also MVS-attached, and which branches to an input
address.

DFHDXSTM
Entry points

DFHDXSTM

Called by

DFHDBCT, DFHDBCR

Chapter 117. CICS executable modules 2195

Description

DFHDXSTM is used to attach, detach, and inquire on MVS subtasks attached by
DFHDBCR and DFHDBCT.

DFHDYP
Entry points

DFHDYP

Called by

DFHAPRT

Description

This is the system-provided (default) dynamic routing program invoked from the
CICS relay program (DFHAPRT) when a remote transaction is defined as being
dynamic.

DFHEAI
Entry points

DFHEI1

Called by

User application

Description

This is a stub that is link-edited with an assembler-language application program
to provide communication with DFHEIP. The command-language translator turns
each EXEC CICS command into a call statement. The external entry point invoked
by the call is resolved to an entry point in this stub. The address of the entry point
in DFHEIP (DFHEIPCN) is found through a chain of system and CICS control
blocks.

DFHEAI0
Entry points

DFHEAI0

Called by

User application

Description

This is a stub that is link-edited with an assembler-language application program
to provide communication with DFHEIPA, part of the EXEC interface layer, for the
prolog and epilog calls generated by the command-language translator in the
application program. The external entry point invoked by the calls is resolved to

2196 CICS TS for z/OS 4.1: Diagnosis Reference

an entry point in this stub. The address of the entry point in DFHEIPA
(DFHEIPAN) is found using a chain of system and CICS control blocks.

DFHEAP1$
Entry points

PREPROC

Description

The assembler-language translator module performs the following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity of the message produced:

 0 - no message
 4 - warning
 8 - error
12 - severe error
16 - translator failure.

v Replaces CICS commands by invocations of the DFHECALL macro, and inserts
invocations of DFHEIENT, DFHEIRET, DFHEISTG, and DFHEIEND macros at
appropriate places.

v Inserts diagnostics resulting from errors in commands, as comments in the
output program that are not listed on the listing file.

DFHEBF
Entry points

DFHEBFNA

Called by

DFHEIP

Description

DFHEBF is the EXEC interface processor for the field edit built-in function,
DEEDIT.

DFHEBU
Entry points

DFHEBUNA

Called by

DFHETL, DFHETC

Chapter 117. CICS executable modules 2197

Description

The EXEC function management header (FMH) construction module is called by
DFHETC when a SEND or CONVERSE command is being processed, and
ATTACH function management headers have to be built and concatenated ahead
of user data.

DFHECI
Entry points

DFHEI1

Called by

User application

Description

This is a link-edit stub similar to DFHEAI, except that it is used for COBOL
application programs.

DFHECID
Entry points

DFHEIN01

Called by

DFHECIP

Description

The command interpreter module analyzes CECI commands, and manages its
displays. It uses the EXEC interface to invoke other CICS functions.

DFHECIP
Entry points

DFHEIN00

Called by

CECI transaction

Description

The command interpreter program performs preliminary validation and
initialization for the CECI transaction, and links to DFHECID.

2198 CICS TS for z/OS 4.1: Diagnosis Reference

DFHECP1$
Entry points

PREPROC

Description

The COBOL translator module performs the following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity of the message produced:

 0 - no message
 4 - warning
 8 - error
12 - severe error
16 - translator failure.

v Inserts DFHEIBLK and COMMAREA declarations in the LINKAGE section.
v Inserts the EIB definition in the LINKAGE section.
v Inserts the DIB definition (for DL/I HLPI) in the WORKING_STORAGE section.
v In the PROCEDURE DIVISION, the translator inserts a USING clause in the

DIVISION statement, and replaces all CICS and DL/I commands by COBOL
CALL statements.

v Inserts diagnostics resulting from any errors in commands, as messages in the
translator listing file.

DFHEDAD
Entry points

DFHESP01

Called by

DFHEDAP

Description

The resource definition online (RDO) transactions module analyzes the commands,
and manages the displays for CEDA, CEDB, and CEDC. It uses the EXEC interface.

DFHEDAP
Entry points

DFHESP00

Called by

CEDA, CEDB, CEDC transaction

Chapter 117. CICS executable modules 2199

Description

The resource definition online (RDO) transactions program performs preliminary
validation and initialization for CEDA, and links to DFHEDAD.

Returns to

DFHEIP

DFHEDC
Entry points

DFHEDCNA

Called by

DFHEIP

Description

DFHEDC is the EXEC interface processor for dump commands.

DFHEDFBR
Entry points

DFHEDFBR

Called by

CEBR transaction, DFHEDFD

Description

The temporary-storage browse transaction browses, copies, or deletes entries in a
temporary-storage queue. It interprets commands and PF key actions.

DFHEDFD
Entry points

DFHEDFD

Called by

DFHEDFP

Description

The EDF display program is invoked from DFHEDFP to analyze and display the
current status of the user program. DFHEDFD stores control information about a
temporary-storage message queue and uses BMS to format the display screen.
DFHEDFD interfaces with other CICS control programs using the EXEC interface.

2200 CICS TS for z/OS 4.1: Diagnosis Reference

DFHEDFM
Description

The EDF map set contains BMS maps used by DFHEDFD to format the EDF
display.

DFHEDFP
Entry points

DFHEDFNA

Called by

transaction CEDF

Description

The EDF main program is the control program for EDF. DFHEDFP can be invoked
in one of two ways:
1. Directly from the EDF display terminal by entering the CEDF transaction

identification
2. By pressing the user-defined PF key.

DFHEDFP is also attached by DFHEDFX as the main program of the EDF task.

DFHEDFR
Entry points

DFHEDFNA

Called by

Not applicable

Description

The EDF response table contains a description of the exception responses for each
EXEC command and the abend codes associated with error responses. DFHEDFR
is used by DFHEDFD to interpret the responses obtained from an EXEC command.

DFHEDFX
Entry points

DFHEDFNA

Called by

DFHACP, DFHEIP, program manager

Chapter 117. CICS executable modules 2201

Description

The EDF task switch program is invoked from DFHACP, DFHEIP, or program
manager when a program is running in debug mode. DFHEDFX suspends the user
task and attaches the debugging task, passing it information about the user task in
the TWA of the debugging task.

DFHEDI
Entry points

DFHEDINA

Called by

DFHEIP

Description

DFHEDI is the EXEC interface processor for data interchange commands.

DFHEDP
Entry points

DFHEDPNA

Called by

DFHERM

Description

DFHEDP converts command-level DL/I statements into a call parameter list
acceptable to DL/I. In addition, it provides 31-bit application support by moving
segment I/O areas above and below the 16MB line as required.

DFHEDP1$
Entry points

PREPROC

Description

The C translator module performs the following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity of the message produced:

 0 - no message
 4 - warning
 8 - error
12 - severe error
16 - translator failure.

2202 CICS TS for z/OS 4.1: Diagnosis Reference

v Inserts the EIB definition at the head of the translated output.
v If the DLI translator option is specified, inserts the DIB definition
v Replaces all CICS and DL/I commands in the input program by function calls

(dfhexec) in the output program.
v Inserts diagnostics from any errors in commands, as messages on the translator

listing file.

DFHEEI
Entry points

DFHEEINA

Called by

DFHEIP

Description

DFHEEI is the EXEC interface processor for DFHEIP ADDRESS, ASSIGN, PUSH,
POP, and HANDLE commands.

DFHEEX
Entry points

DFHEEXNA

Called by

DFHETC

Description

The EXEC function management header (FMH) extraction module is called by
DFHETC when a RECEIVE or CONVERSE command is being processed, and
when data has to be extracted from ATTACH function management headers.

DFHEFRM
Entry points

DFHEFRM

Called by

DFHDBP, DFHSPP

Description

DFHEFRM is the EXEC interface file control syncpoint processor. At syncpoint
commit or rollback time, DFHEFRM deletes the FFLE entries that were created by
DFHFCEI for the task.

Chapter 117. CICS executable modules 2203

DFHEGL
Entry points

DFHEGLNA

Called by

DFHEIP

Description

DFHEGL is the EXEC interface processor for unmapped LU6.2 commands.

DFHEIIC
Entry points

DFHEICNA

Called by

DFHEIP

Description

DFHEIIC is the EXEC interface processor for interval control commands.

Exits

DFHEIIC has the following global user exit points:
 XICERES

DFHEIDTI
Entry points

DFHEIDTI

Called by

DFHEIP

Description

DFHEIDTI is the EXEC interface processor for ASKTIME and FORMATTIME.
DFHEIDTI updates the time and date fields in the EIB and certain time fields in
the CSA, and returns the current time, or date, to the application.

DFHEIP
Entry points

DFHEIPNA

2204 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

application programs

Description

DFHEIP is the main EXEC interface module. See Chapter 19, “EXEC interface,” on
page 153 for further information.

DFHEIPA
Entry points

DFHEIPAN

Called by

DFHEAI0

Description

DFHEIPA is part of the EXEC interface layer. It acquires and partially initializes the
DFHEISTG dynamic storage when called from the DFHEIENT macro in an
assembler-language application program. It frees this storage when called from the
DFHEIRET macro.

DFHEIFC
Entry points

DFHEIFC

Called by

DFHEIP

Description

DFHEIFC is the file control EXEC interface module, providing an interface between
DFHEIP and file control. It locates the AFCTE, and performs the security check.
For a remote file, DFHEIFC passes the request to a transformer, which then ships
the request to the other system. For a local file, DFHEIFC converts the EXEC
argument list to an FCFR parameter list (as defined by the DFHFCFRA DSECT)
and calls DFHFCFR, the file control file request handler. After the request
completes, DFHEIFC builds return code information in the EIB.

DFHEISR
Entry points

DFHEISR

Called by

DFHEDI, DFHEGL, DFHEIQMS, DFHEMS, DFHEOP, DFHETC, DFHETL,
DFHTDB, DFHXFFC, DFHXFX

Chapter 117. CICS executable modules 2205

Description

DFHEISR obtains buffers and copies data for the calling EXEC interface modules,
at the location and in the storage key required by the application.

DFHEJC
Entry points

DFHEJCNA

Called by

DFHEIP

Description

DFHEJC is the EXEC interface processor for journaling commands.

DFHEKC
Entry points

DFHEKCNA

Called by

DFHEIP

Description

DFHEKC is the EXEC interface processor for task control commands.

DFHELII
Entry points

DFHEI1

Called by

User application

Description

This is a link-edit stub similar to DFHEAI, except that it is used for C application
programs.

DFHEMS
Entry points

DFHEMSNA

2206 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHEIP

Description

DFHEMS is the EXEC interface processor for BMS commands.

DFHEMTA
Entry points

DFHEMT00

Called by

User application

Description

The master terminal programmed interface program is a special version of
DFHEMTP that a user application can link to for master terminal services.

DFHEMTD
Entry points

DFHEMT01

Called by

DFHEMTA, DFHEMTP, DFHEOTP, DFHESTP

Description

The master terminal module analyzes the commands, and manages displays for
CEMT, CEOT, and CEST transactions. It uses the EXEC interface.

DFHEMTP
Entry points

DFHEMT00

Called by

CEMT transaction

Description

The master terminal program performs preliminary validation and initialization for
the CEMT transaction, and links to DFHEMTD.

Chapter 117. CICS executable modules 2207

DFHEOTP
Entry points

DFHEMT00

Called by

CEOT transaction

Description

The master terminal program performs preliminary validation and initialization for
the CEOT transaction, and links to DFHEMTD.

DFHEPC
Entry points

DFHEPCNA

Called by

DFHEIP

Description

DFHEPC is the EXEC interface processor for program control commands.

DFHEPI
Entry points

DFHEI1

Called by

User application

Description

This is a link-edit stub similar to DFHEAI, except that it is used for PL/I
application programs.

DFHEPP1$
Entry points

PREPROC

Description

The PL/I translator module performs the following functions:
v Runs offline.
v Takes on an input file.

2208 CICS TS for z/OS 4.1: Diagnosis Reference

v Produces an output or listing file.
v Gives a return code according to the highest severity of the message produced:

 0 - no message
 4 - warning
 8 - error
12 - severe error
16 - translator failure.

v If the input program is a MAIN procedure, inserts DFHEIPTR as the first
parameter on the PROCEDURE statement to address the EIB. The translator also
inserts declarations of the EIB and certain temporary variables.

v Replaces all CICS and DL/I commands in the input program by CALL
statements in the output program.

v Inserts diagnostics from any errors in commands, as messages on the translator
listing file.

DFHEPS
Entry points

DFHEPSNA

Called by

DFHEIP

Description

DFHEPS is the link between DFHEIP and the JES interface program, DFHPSP.

DFHERM
Entry points

DFHERMNA

Called by

DFHEIP

Description

DFHERM is called by DFHEIP on behalf of the other components of CICS to
manage the connection between CICS and non-CICS products.

DFHESC
Entry points

DFHESCNA

Called by

DFHEIP

Chapter 117. CICS executable modules 2209

Description

DFHESC is the EXEC interface processor for storage control commands.

DFHEISP
Entry points

DFHESPNA

Called by

DFHEIP

Description

DFHEISP is the EXEC interface processor for syncpoint commands.

DFHESTP
Entry points

DFHEMT00

Called by

CEST transaction

Description

The master terminal program performs preliminary validation and initialization for
the CEST transaction, and links to DFHEMTD.

DFHETC
Entry points

DFHETCNA

Called by

DFHEIP

Description

DFHETC is the EXEC interface processor for terminal control commands.

DFHETD
Entry points

DFHETDNA

Called by

DFHEIP

2210 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHETD is the EXEC interface processor for transient data commands. The EXEC
requests are routed from DFHETD to DFHTDP using the corresponding DFHTD
CTYPE requests.

DFHETL
Entry points

DFHETLNA

Called by

DFHETC

Description

DFHETL is the EXEC interface processor for mapped LU6.2 commands.

DFHETR
Entry points

DFHETRNA

Called by

DFHEIP

Description

DFHETR is the EXEC interface processor for trace commands.

DFHETS
Entry points

DFHETSNA

Called by

DFHEIP

Description

DFHETS is the EXEC interface processor for temporary-storage commands.

DFHEXI
Entry points

DFHEXINA

Chapter 117. CICS executable modules 2211

Called by

DFHZARQ

Description

The exceptional input program is invoked from DFHZCP when unexpected input
is received from a VTAM 3270 terminal that has a task attached. DFHEXI checks
whether the input is the result of a 3270 print function key being pressed; if so,
DFHEXI issues a DFHTC TYPE=PRINT macro, and then unlocks the keyboard; in
any case, DFHEXI then passes control back to DFHZCP.

DFHFCAT
Entry points

DFHFCAT

Called by

DFHFCDN, DFHFCN

Description

DFHFCAT processes inquire and update requests on the state of the backup while
open (BWO) attributes in the ICF catalog for VSAM data sets, and inquires on the
quiesce state in the ICF catalog.

DFHFCBD
Entry points

DFHFCBD

Called by

DFHFCFR

Description

DFHFCBD handles BDAM file control requests except for OPEN and CLOSE.

DFHFCDN
Entry points

DFHFCDN

Called by

DFHAMFC, DFHAMPFI, DFHEIQDN, DFHEIQDS, DFHFCLF, DFHFCMT,
DFHFCN, DFHFCRC, DFHFCRO, DFHFCRD, DFHFCRP

2212 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHFCDN builds data set name blocks at cold start or in response to CEDA
requests. It also examines or modifies data set name blocks in response to EXEC
CICS INQUIRE or EXEC CICS SET commands.

DFHFCDTS
Entry points

DFHFCDTS

Called by

DFHFCFR

Description

DFHFCDTS processes file control requests to access data table records for
READ-ONLY requests against CICS-maintained tables, and for all record requests
against user-maintained tables. It calls data table services to retrieve or modify
table records, calls DFHFCVS to retrieve data from the VSAM source data set if it
is not in the table, and calls DFHFCDTX to function ship requests that cannot be
satisfied by sharing.

DFHFCFR
Entry points

DFHFCFR

Called by

DFHAPLI, DFHAPSM, DFHDTLX, DFHDMPCA, DFHEIFC, DFHERM,
DFHFCDTS, DFHFCFR, DFHFCFS, DFHFCRC, DFHFCRP, DFHUEH

Description

DFHFCFR is the central module in the file control component. It handles file
control requests issued by DFHFCEI (requests from application programs), or by
other CICS modules (internal file control requests). DFHFCFR ensures that the file
is both opened and enabled, acquires an FRTE as necessary, performs request
validity checking, and then routes the request to the appropriate access-method
dependent module (DFHFCBD for BDAM, DFHFCVS for non-RLS VSAM and also
for update or browse requests against a CICS-maintained data table, DFHFCRS for
RLS VSAM, and DFHFCDTS for all other data table requests).

DFHFCFS
Entry points

DFHFCFS

Chapter 117. CICS executable modules 2213

Called by

DFHAMFC, DFHDMPCA, DFHDMRM, DFHDTLX, DFHEIQDS, DFHFCDTS,
DFHFCFR, DFHFCLF, DFHFCQU, DFHFCRC, DFHFCRD, DFHFCRU, DFHFCSD,
DFHFCU, DFHFCVS

Description

DFHFCFS changes the state of a file. It invokes DFHFCN to open, or close, files.

DFHFCL
Entry points

DFHFCLNA

Called by

DFHFCN

Description

DFHFCL is a file control program that is link-edited into DFHFCFS. DFHFCL
builds and deletes VSAM LSR pools. It is called by DFHFCN with a parameter list
that specifies the pool number (1 through 8) and the action to be taken (build or
delete).

DFHFCM
Entry points

DFHFCMNA

Called by

DFHFCFS

Description

DFHFCM is a file control program that is link-edited into DFHFCFS. When records
are added via a VSAM path, DFHFCM is called to open the base associated with
the path.

DFHFCMT
Entry points

DFHFCMT

Called by

DFHAFMT, DFHAMFC, DFHAMPFI, DFHDMPCA, DFHEDFX, DFHEIQDS

2214 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHFCMT builds file control table entries in response to CEDA commands. It also
examines or modifies FCT entries in response to EXEC CICS INQUIRE or EXEC
CICS SET commands.

DFHFCN
Entry points

DFHFCNNA

Called by

DFHFCFS

Description

DFHFCN is a file control program that is link-edited into DFHFCFS. DFHFCN
opens and closes files. If a file has not been allocated, DFHFCN allocates it, and
frees it on closure.

DFHFCRL
Entry points

DFHFCRL

Called by

DFHAMFC

Description

DFHFCRL modifies SHRCTL blocks (describing VSAM LSR pools) in response to
CEDA requests.

DFHFCRP
Entry points

DFHFCRP

Called by

DFHFCIN2

Description

The file control restart program builds the file control environment and initializes
file control.

Chapter 117. CICS executable modules 2215

DFHFCSD
Entry points

DFHFCSD

Called by

DFHSTP

Description

DFHFCSD is called during CICS controlled shutdown processing to close all open
files managed by CICS file control.

DFHFCST
Entry points

DFHFCST

Called by

DFHSTFC, DFHSTLS

Description

DFHFCST is called to collect or reset file or LSRPOOL statistics on request from
DFHSTFC or DFHSTLS.

DFHFCU
Entry points

DFHFCUNA

Called by

CSFU transaction

Description

DFHFCU issues an OPEN for files specified in the file control table (FCT). This
program examines the FCT, and calls DFHFCFS to open all specified files.

DFHFCVR
Entry points

DFHFCVR, UPADEXIT

Called by

DFHFCBD, DFHFCFR, DFHFCVR, DFHFCVS, VSAM

2216 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHFCVR is a file control program that is link-edited into DFHFCVS. It handles
requests to VSAM, and also contains the VSAM UPAD exit.

DFHFCVS
Entry points

DFHFCVS

Called by

DFHFCDTS, DFHFCFR

Description

DFHFCVS handles requests for file control services made against VSAM files.
These services include:
v Communication with files defined in the file control table
v Logging of changes to these files by DFHFCJL and the log manager.
v Syncpoint services.

DFHFDP
Entry points

DFHFDPNA

Called by

DFHFD macro

Description

DFHFDP translates DFHFD macro requests for a system dump to DU domain
SYSTEM_DUMP calls.

DFHFEP
Entry points

DFHFEPNA

Called by

CSFE transaction

Description

The FE terminal test program can be used to send a complete character set to a
terminal or to echo input or to turn tracing on or off. This program is an
application program and does not exit to any other CICS modules. However it
does use CICS facilities.

Chapter 117. CICS executable modules 2217

DFHGMM
Entry points

DFHGMMNA

Called by

DFHKCP

Description

The “good morning” program is invoked by the CSGM system transaction to write
a “good morning” message to VTAM logical units when a satisfactory OPNDST
has occurred (and if the message has been requested in the TCT
TYPE=TERMINAL entry).

DFHHPSVC
Entry points

IGCnnn

Called by

DFHZHPSR (via an SVC call)

Description

This is a type 6 SVC module used only on MVS. Its sole purpose is to cause MVS
to dispatch an SRB. DFHHPSVC provides part of the CICS high performance
option (HPO) code, and is invoked only if HPO is in use. In the entry point name,
nnn is the number of the SVC.

Returns to

MVS

DFHICP
Entry points

DFHICPNA

Called by

DFHEIIC, DFHIC macro

Description

The interval control program is used for time management and has two main
functions:
1. Services DFHIC macros under the control of a requesting task’s TCA
2. Detects the expiration of time-dependent events, as defined in ICEs.

2218 CICS TS for z/OS 4.1: Diagnosis Reference

The main subroutines of DFHICP are:
ICCANCLN - Cancel a time-ordered request
ICEXPANL - Time expiration analysis
ICGTIMEN - Current time of day
ICGTTTDM - Data retrieval
ICICECRN - Build basic ICE
ICPCTSN - Task initiation
ICPOSTN - Signal expiration of a specified time
ICRESETN - Time of day clock reset support
ICSCHEDN - ICE schedule
ICWAITN - Delay processing of a task.

DFHIIPA$, DFHIIP1$
Entry points

DFHIIPNA

Called by

DFHMCP

Description

The non-3270 input mapping program performs all BMS input mapping functions
for all devices except the 3270. On exit from the module, the input data has been
mapped into a newly acquired TIOA that is returned to the application program
and is then addressable using BMS DSECTs in the application.

The main subsections of DFHIIP are:
IIMID - GETMAINs TIOA to return to user, and maps
 page buffer into it using specified map.
IIREAD - Reads input data, issuing DFHTC or DFHDI
 requests to get data from the terminal.
IISCAN - Scans data stream for device-dependent
 control characters and creates page
 buffer.

DFHIRP
Entry points

DFHIRPNA

Called by

DFHCRC, DFHCRNP, DFHCRSP, DFHDRPD, DFHDRPE, DFHDRPF, DFHSRP,
DFHSTP, DFHZCX

Description

The interregion communication program is used to pass data from one region to
another in the same CEC. The programs being run in the regions are usually CICS
programs, but DFHIRP does not assume this.

Chapter 117. CICS executable modules 2219

DFHIRW10
Entry points

As defined in interest ladder 3

Called by

DFHIRP

Description

The interregion work exit delivers work to the IRC control task (CSNC).
DFHIRW10 is called whenever DFHIRP has work to deliver to a system that
logged on with DFHIRW10 as its interregion work exit. This module checks
whether the work being delivered to the target system requires that work be
enqueued on CSNC; if so, it enqueues the work and posts CSNC. DFHIRW10 is
invoked in access register (AR) mode and user key.

DFHISP
Entry points

DFHISPNA

Called by

DFHDLI, DFHEIP, DFHEIFC

Description

The intersystem communication program is invoked when a request to access a
resource has to be shipped to a remote system (through ISC or MRO).

These requests are passed to DFHISP:
v File control
v Interval control
v Temporary storage
v Transient data
v DL/I

DFHISP controls the acquisition, use, and freeing of a session to the remote system,
and invokes DFHXFP or DFHXFX to process requests and replies. Two user exits
are provided in DFHISP: XISCONA can be used to control the queuing of requests
from DFHISP to allocate intersystems sessions and XISLCLQ can be used to
override the LOCALQ option of the transaction attributes. XISCONA is invoked
for any function-shipping requests that cannot be processed immediately. XISLCLQ
supports the local queuing of function-shipped START NOCHECK requests when
the link to the remote system is out of service. If a START NOCHECK request is
queued, DFHISP starts the CMPX transaction when the link is brought into service.

3. Interest ladder: ladder within DFHIRW10 that expresses interest in all types of MRO work.

2220 CICS TS for z/OS 4.1: Diagnosis Reference

|

|
|
|
|
|
|

DFHJCP
Entry points

DFHJCPNA

Called by

DFHEJC, DFHJC macro

Description

The journal control program (DFHJCP) either processes a request to get a JCA
control block, or has been called to write to a journal. In the latter case it examines
the information in the JCA that is passed with the request and decides whether to
call the recovery manager or the log manager based on whether it finds
journalname DFHLOG in the JCA or not. There are three separate calls to the
DFHLGGL gate of the log manager: one for a write, a put or a wait request. The
same is true for the recovery manager calls, which use the DFHRMRE gate. In
addition there is a call to this gate for requests which have keypoint record data
with them.

When control returns from either of these domains, the domain's outcome is
mapped onto a valid return code which is put into the JCA before control returns
back to the calling program

DFHJUP
Entry points

DFHJUPNA

Called by

MVS

Description

The journal print utility program examines, selects, and displays data in QSAM
data sets, such as the CICS and IMS logs. Data selection is controlled by input
parameters, and an optional user exit. DFHJUP provides access to the MVS log
streams via the SUBSYS keyword in the JCL.

DFHKCP
Entry points

DFHKCPNA

Called by

DFHEKC, DFHKC macro

Chapter 117. CICS executable modules 2221

Description

This is a startup routine that passes control to either DFHXCP or DFHXCPC. It
also deals with some ENQ and DEQ calls.

DFHKCQ
Entry points

DFHKCQNA

Called by

DFHXCPC

Description

DFHKCQ processes DFHKC INITIALIZE, REPLACE, WAITINIT, and DISCARD
macro calls to the transaction manager.

DFHKCRP
Entry points

DFHKCRP

Called by

DFHKCP (attaches DFHKCRP as a CICS task)

Description

DFHKCRP is the task control restart program.

DFHKCSC
Entry points

DFHKCSC

Called by

DFHKCQ

Description

This module forms part of the transaction manager. It provides the
QUERY_TRANSACTION and QUERY_PROFILE functions for use in determining
whether the transaction or profile specified on a DISCARD TRANSACTION or
DISCARD PROFILE command respectively can validly be discarded. For the
QUERY_TRANSACTION function, DFHKCSC examines the ICE chain, the AID
chains, and the SIT, looking for references to the transaction that is the subject of
the DISCARD. For the QUERY_PROFILE function, DFHKCSC examines the PCT
for a reference to the profile that is the subject of the DISCARD.

2222 CICS TS for z/OS 4.1: Diagnosis Reference

DFHKCSP
Entry points

DFHKCSPA, DFHKCSPI, DFHKCSPD, DFHKCSPF, DFHKCSPP

Description

The task SRB control program is part of the high performance option (HPO) code
available on CICS on MVS. It runs in SRB mode and resides in protected storage.

DFHLUP
Entry points

DFHLUPNA

Description

DFHLUP is the LU6.2 services manager. It initializes and shuts down a network,
and resynchronizes flows.

DFHMCPA$, DFHMCPE$, DFHMCP1$
Entry points

DFHMCPNA

Called by

DFHBMS macro, DFHEMS

Description

The mapping control program processes DFHBMS macro requests and completes
the processing of a logical message when a task terminates without issuing a
DFHBMS TYPE=PAGEOUT. DFHMCP’s main function is to analyze DFHBMS
requests and to pass control to the appropriate modules. Other functions include
the loading of maps and partition sets, and scheduling of output messages
transmitted by temporary storage.

The main subsections of DFHMCP are:
MCPCPO - Completes logical message build message
 control record for temporary storage
MCPDWEXT - DWE processing, invoked by DFHKCP to
 complete BMS processing at application
 termination
MCPINPT - Handles all input requests
MCPIN - TYPE=IN (EXEC CICS RECEIVE MAP)
MCPMAPLO - Loads map set and locates map
MCPPGBLD - TYPE=PAGEBLD|TEXTBLD (EXEC SEND TEXT)
MCPPGOUT - TYPE=PAGEOUT (EXEC CICS SEND PAGE)
MCPPURGE - TYPE=PURGE (EXEC CICS PURGE MESSAGE)
MCPROUTE - TYPE=ROUTE (EXEC CICS ROUTE).

Chapter 117. CICS executable modules 2223

DFHMCX
Entry points

DFHMCXNA

Called by

DFHMCP

Description

DFHMCX is the BMS fast path module for standard and full-function BMS, and
the program for minimum BMS support. It is called by DFHMCP if the request
satisfies one of the following conditions:
v It is a noncumulative direct terminal send map or receive map issued by a

command-level program.
v It is for a 3270 display or an LU3 printer which does not support outboard

formatting. If the terminal supports partitions, it is in the base state.
v The CSPQ transaction has been started.
v The message disposition has not changed.

DFHMGP
Entry points

DFHMGPNA

Called by

DFHACP, DFHCRQ, DFHCRT, DFHEOP, DFHFEP, DFHRTC, DFHRTE,
DFHZEMW, DFHZERH, DFHZIS1, DFHZTSP, DFHZXRL

Description

The message generation program provides an interface for sending CICS messages
to the terminal end user.

DFHMGT
Entry points

DFHMGTNA

Called by

DFHMGP

Description

The message prototype control table, or message generation table, consists of a
series of copybooks, DFHMGTnn, each of which contains up to 100 messages that
are issued by DFHMGP.

2224 CICS TS for z/OS 4.1: Diagnosis Reference

DFHMIRS
Entry points

DFHMIRNA

Called by

Task initiation

Description

The mirror program is invoked when a request to access a resource is received
from a remote ISC system or from a remote MRO system. DFHMIRS may be
thought of as returning the answer to the requesting actions of DFHISP. It is
DFHMIRS that controls the receipt of requests and transmission of replies.

DFHMIRS processes requests from:
v MRO-connected systems
v LU6.1 connected systems
v LU6.2 sync level 1 connected systems
v LU6.2 sync level 2 connected systems.

The input to DFHMIRS consists of a TCTTE representing the session between CICS
and its session partner, and a TIOA containing the function shipping request.

The TIOA is passed to DFHXFP (transformer 2) for conversion of the request from
transmission format to the parameter list format required for DFHEIP or DFHDLI.
If the data requires conversion (transaction CPMI), an EXEC CICS LINK is used to
link to the data conversion program DFHCCNV, passing a COMMAREA that
contains the EXEC CICS parameter list for the request where applicable. DFHMIRS
then passes the request to DFHEIP or DFHDLI for execution.

On return from DFHEIP or DFHDLI the data conversion program is called to
convert the reply (if applicable), and then the transformer program DFHXFP
(transformer 3) is called to convert the reply parameter list to transmission format.
DFHMIRS then determines the DFC to send with the reply and transmits the reply
to the requesting system. If the mirror task has modified protected resources, it
continues receiving requests and transmitting replies until a syncpoint request is
received from the remote system.

A mirror task on an IRC link suspends itself on completion of a request and it is
then available for use by any other MRO function-shipped request. The dispatcher
terminates the mirror task if it is not reused within ten seconds.

DFHML1
Entry points

DFHML1NA

Called by

DFHMCP, DFHPBP

Chapter 117. CICS executable modules 2225

Description

The SCSPRT logical unit type 1 output mapping routine is called by DFHPBP to
build a page of data stream from a chain of map and application data structure
copies. The data contains only features that the TTP says are supported by the
target terminal. This routine is called when NLEOM is specified for 3270 printers
or LU3 printers.

The main subsections of DFHML1 are:
ML1SPACE

Calculate space for chaining and mapping
ML1FMCA

Format the chains that describe the maps
ML1PF

Process map fields

DFHMROQP
Entry points

DFHMRONA

Called by

DFHCRNP, DFHCRSP

Description

The MRO work queue enable/disable program is invoked by the DFHMROQM
macro for ENABLE and DISABLE requests (other requests are processed by an
inline expansion). DFHMROQP is called by DFHCRSP to enable the MRO work
queues when starting interregion communication, and by either DFHCRSP or
DFHCRNP to disable the work queues when stopping interregion communication.
MRO work queues are used to deliver work to the IRC control task (CSNC).

DFHMSP
Entry points

DFHMSPNA

Called by

CMSG transaction

Description

The message switching program routes a message entered at the terminal to one or
more operator-defined terminals or to other operators. DFHMSP can be used in
conversational mode to process operands entered from separate input operations.
In this case the operands already processed are preserved in temporary storage.

The main sections and subroutines of DFHMSP are:

2226 CICS TS for z/OS 4.1: Diagnosis Reference

MSBMSRT - Check for complete operands
MSCNVRS - Issue conversational response
MSCONTIN - Process conversational response
MSMSG4 - MSG operand
MSNTRY - Process operands
MSROUTE - Route operand.

DFHMXP
Entry points

DFHMXPNA

Called by

Automatic transaction initiation

Description

The local queuing shipper provides the means of transferring to a remote system a
START request that has been temporarily deferred by use of the local queuing
option.

DFHM32A$, DFHM321$
Entry points

DFHM32NA

Called by

DFHMCP, DFHPBP

Description

For a BMS output request, the 3270 mapping program generates the appropriate
data stream for a 3270 device, and returns control to DFHPBP which invokes the
DFHTPP module to send the data to the appropriate destination, which is either to
the direct terminal, or to temporary storage, or back to the caller. For a BMS input
request, the data stream from a 3270 device is examined and mapped into a user
application TIOA format.

The main subsections of DFHM32 are:
BMFMHTST - Create beginning of 3270 data stream
 (FMH cursor positioning)
BMMID - Input mapping
BMMMS - Merge maps (output mapping)
M32PF - Process field.

DFHPBPA$, DFHPBP1$
Entry points

DFHPBPNA

Chapter 117. CICS executable modules 2227

Called by

DFHMCP

Description

The page and text build program positions maps or text, including header or
trailer maps or text, within a page of output. For non-3270 devices, the module
creates a page buffer containing the user’s data which is then passed to DFHDSB
to produce a device-dependent data stream. When mapping, this includes merging
the data supplied by the application with the constant data included in the map.
For 3270 devices, copies of the maps and application-supplied data for a page are
chained together, to be processed by module DFHM32, to produce a 3270 data
stream. The page and text build program creates dummy maps, and chains them
in the same way for 3270 text building. For LU1 printers with extended attributes,
copies of the maps and application-supplied data for a page are chained together,
to be processed by module DFHML1 to produce an SCS data stream. The page and
text build program creates dummy maps, and chains them in the same way for
text building. After the maps have been processed by DFHDSB, DFHM32, or
DFHML1, DFHPBP calls DFHTPP to write them out.

The main subroutines of DFHPBP are:
PBDOUTPT

Mapping/text build complete, decide whether to call data stream generator
and which one (DFHDSB or DFHM32). Return to caller (DFHMCP)

PBD00005
Main control logic, request analysis.

PBD01000
Map placement logic (3270 and non-3270 mapping).

PBD01130
Non-3270 mapping.

PBD10000
Pageout routine.

PBD11000
Modify field positions within map (used by 3270 and non-3270 mapping).

PBD20000
Text processing (3270 and non-3270).

PBD30000
3270 mapping.

PBFMHBLD
Build FMH if FMHPARM specified (non-3270 text and map processing).

DFHPD660
Entry points

DFHPD660

Called by

MVS IPCS program

2228 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHPD660 runs as an exit from the MVS IPCS program. It formats an MVS system
dump (SDUMP) using the IPCS service routines to extract data and print output,
including interpreted trace.

DFHPEP
Entry points

DFHPEPNA

Called by

DFHACP

Description

The program error program is CICS-supplied and establishes a base register,
establishes addressability to the COMMAREA passed from DFHACP using a
DFHPC CTYPE=LINK_URM macro call, and returns control to DFHACP. DFHPEP
can be modified by the user to perform further recovery operations.

DFHPHP
Entry points

DFHPHPNA

Called by

DFHMCP, DFHTOM

Description

The partition handling program has one entry point, and starts with a branch table
that passes control to the required routine according to the request.

The main routines of DFHPHP are:
PHPPSI - Loads a partition set
PHPPSC - Destroys any existing partitions and
 creates new partitions
PHPPIN - Extracts the AID, cursor position, and
 partition ID
PHPPXE - Activates the appropriate partition if
 data is received from an unexpected
 partition.

DFHPL1OI
Description

The PL/I interface module contains the following routines:
DFHPL1N

Initial entry point for PL/I programs under CICS
DFHPL1I

CICS macro service interface

Chapter 117. CICS executable modules 2229

DFHPL1C
Set the CSA address

IBMBOCLA/B/C
Startup routines for open/close functions.

DFHPRK
Entry points

DFHPRKNA

Called by

DFHZATT

Description

The 3270 print key program (transaction CSPK) is invoked when, under VTAM,
the 3270 program access key designated as the print key is pressed and no task is
attached to the terminal. If the 3270 hardware copy feature is present, DFHPRK
attaches task CSCY to the printer designated in the TCTTE, and DFHCPY is
executed. If the copy feature is not present, DFHPRK executes a DFHTC
TYPE=PRINT macro.

DFHPSP
Entry points

DFHPSPNA

Called by

DFHEPS

Description

DFHPSP is the system spooling interface control module.

DFHPSPDW
Entry points

DFHPSPDW

Called by

DFHSPP

Description

DFHPSPDW is the system spooling interface DWE.

2230 CICS TS for z/OS 4.1: Diagnosis Reference

DFHPSPSS
Entry points

DFHPSPSS

Called by

DFHPSP

Description

The system spooling JES interface subtask module attaches a subtask to check
whether a writer name and a token have been supplied. It opens and closes JES
data sets, reads a record, and writes a record.

DFHPSPST
Entry points

DFHPSPST

Called by

DFHPSPSS

Description

DFHPSPST is the system spooling JES interface control module.

DFHPSSVC
Entry points

DFHPSSNA

Called by

DFHPSPSS, DFHPSPST

Description

DFHPSSVC is the system spooling interface module that retrieves a data set name
for a given external writer name, dynamically allocates it, and returns its
DDNAME.

DFHPUP
Entry points

DFHPUPNA

Called by

DFHAMP, DFHCSDUP

Chapter 117. CICS executable modules 2231

Description

The parameter utility program transforms the definition data of the CSD. In the
CSD, the data is held in a compacted form and each field is self-identifying.
Elsewhere in the processing, these fields are handled in parameterized form, using
an argument address list. It also serves to transform the resource definition to the
original high-level command.

DFHP3270
Entry points

DFHP32NA

Called by

CSPP transaction, DFHTCP, DFHZCP

Description

The 3270 print program prints 3270 data received from a screen on a 3270 printer.
The data is compressed where possible and then transmitted to the printer.

DFHQRY
Entry points

DFHQRY

Called by

DFHALP, DFHTCTI, DFHZATT

Description

The query transaction (DFHQRY) sends a READ PARTITION QUERY structured
field to a 3270, analyzes the response, and completes information in the
corresponding TCTTE. DFHQRY can be attached by DFHALP, DFHTCTI, or
DFHZATT.

DFHRCEX
Entry points

DFHRCEX

Called by

DFHFCBP, DFHTCBP, DFHUSBP

Description

DFHRCEX enables the global user exits for emergency restart processing.

2232 CICS TS for z/OS 4.1: Diagnosis Reference

DFHRKB
Entry points

DFHRKBNA

Called by

DFHCPY

Description

The release 3270 keyboard program is initiated by DFHCPY to release a 3270
keyboard. It does this by issuing a DFHTC TYPE=WRITE macro that sends a 3270
write control character.

DFHREST
Entry points

DFHREST

Called by

DFHXMTA

Description

The transaction restart program, DFHREST, is a user-replaceable module that helps
you to determine whether or not a transaction is restarted. The default DFHREST
module requests a transaction restart under certain conditions; for example, for a
program isolation deadlock, one of the tasks is backed out and automatically
restarted, and the other is allowed to complete its update.

DFHRLRA$, DFHRLR1$
Entry points

DFHRLRNA

Called by

DFHMCP

Description

The route list resolution program builds a terminal type parameter (TTP) control
block for each type of terminal for which a message is to be built. A TTP is
acquired for each terminal type in the user route list and the direct terminal if
there is one.

The main subsections of DFHRLR are:
RLRALL - Routing with ROUTE=ALL specified in
 application
RLRLIST - Routing with route list specified in
 application

Chapter 117. CICS executable modules 2233

RLROPCL - Routing with OPCLASS= specified in
 application
RLRRTEBY - Nonrouting, non-LDC device (that is
 direct terminal)
RLR3601 - Nonrouting LDC device.

DFHRMSY
Entry points

DFHRMSNA

Called by

DFHERMSP, DFHERMRS

Description

The purpose of task-related user exit resynchronization is to resolve any indoubt
LUWs. Task-related user exit resynchronization is called by DFHERMRS during
execution of the RESYNC command to restore the CICS end of the thread that was
interrupted by the failure of the connection with the resource manager.

It is also called by DFHERMSP when a wait is unshunted and requires RMI
resynchronization with a resource manager.

DFHRTC
Entry points

DFHRTCNA

Called by

CSSF transaction

Description

The CSSF transaction is invoked on the remote system when a CRTE routing
session is to be canceled. CSSF runs the CRTE cancel command processor,
DFHRTC, to sign off the user and terminate the extended routing session. DFHRTC
calls DFHSUSN to sign off the surrogate.

DFHRTE
Entry points

DFHRTENA

Called by

transaction CRTE, DFHSNTU

2234 CICS TS for z/OS 4.1: Diagnosis Reference

Description

The transaction routing program establishes a transaction routing session with a
remote region specified by the user. Subsequent input is analyzed by DFHRTE, the
transaction code extracted, and a request issued to DFHZTSP to route the
transaction to the required system.

DFHSFP
Entry points

DFHSFP

Called by

CESF trans.

Description

The sign-off program signs off the user who invoked the CESF transaction.

DFHSIA1
Entry points

DFHSIANA

Called by

DFHAPSIP

Description

The DFHSIA1 system initialization program loads and initializes the CSA.

DFHSIB1
Entry points

DFHSIBNA

Called by

DFHAPSIP

Description

The DFHSIB1 system initialization program loads the CICS nucleus.

DFHSIC1
Entry points

DFHSICNA

Chapter 117. CICS executable modules 2235

Called by

DFHAPSIP

Description

The DFHSIC1 system initialization program initializes the transaction manager and
the storage manager domain’s macro compatibility interface, acquires a TCA for
LIFO functions during initialization, initializes user exits, and processes the START
parameter.

DFHSID1
Entry points

DFHSIDNA

Called by

DFHAPSIP

Description

The DFHSID1 system initialization program performs the following functions:
v Adds storage subpools for transient data use
v Allocates storage for transient data control blocks:

– TDST
– MBCA, MBCBs, and MQCBs, I/O buffers if required
– MRCA, ACBs, MRCBs, and RPLs

v Creates the DCTE and SDSCI for CXRF.

DFHSIF1
Entry points

DFHSIFNA

Called by

DFHAPSIP

Description

The DFHSIF1 system initialization program initializes terminal control. DFHSIF1:
v Opens the VTAM ACB
v Builds hash-table entries for non-VTAM terminals
v Constructs a DFHZCP module list in the TCT prefix
v Initializes the attach tables.

2236 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSIG1
Entry points

DFHSIGNA

Called by

DFHAPSIP

Description

The DFHSIG1 system initialization program opens the dump data set.

DFHSIH1
Entry points

DFHSIHNA

Called by

DFHAPSIP

Description

The DFHSIH1 system initialization program:
v Loads the DBCTL call processor (DFHDLIDP)
v Loads the remote DBCTL call processor (DFHDLIRP) if necessary
v Attaches the TCP task.

DFHSII1
Entry points

DFHSIINA

Called by

DFHAPSIP

Description

The DFHSII1 system initialization program establishes AP domain recovery
routines in DFHSRP and calls DFHICRC to initialise Interval Control services. It
attaches the CPLT transaction to run the first stage PLTPI programs, the CSTP
transaction (the TCP task) and a system transaction to run the rest of AP
initialization (the III task). The rest of DFHSII1, running as the III task:
v Starts XRF control transactions if required
v Attaches the CICS restart tasks to run in parallel:

– Security interface
– Transient data
– Terminal control

Chapter 117. CICS executable modules 2237

– Program control
– Task control
– File control
– Common programming interface (CPI)
– Partner resource manager
– Object recovery
– Autoinstall terminal model manager

v Waits for the restart tasks to complete
v Processes the GRPLIST parameter

DFHSIJ1
Entry points

DFHSIJNA

Called by

DFHAPSIP

Description

DFHSIJ1 is the last to be executed in the process of system initialization. It issues
the message ‘CONTROL IS BEING GIVEN TO CICS’ and passes control back to
DFHAPSIP. DFHSIJ1:
v Links to DFHCRSP, if IRCSTRT=YES is specified as a system initialization

parameter, to start up the interregion communication session
v Links to DFHPSIP to enable the system spooling interface
v Enables the DL/I high-level programming interface by acquiring an exit

program block and addressing DFHEDP
v Enables AUTOINSTALL
v Links to the second-stage PLT programs listed in DFHPLT, then deletes this table
v Issues a DFHLDLDM SET_OPTIONS call to instruct the loader domain to write

all outstanding program definitions to the catalogs.

DFHSIP
Entry points

DFHKESIP

Called by

MVS

Description

DFHSIP initializes CICS and also contains code for the following domains:
v Kernel (KE)
v Domain manager (DM)
v Dispatcher (DS)

2238 CICS TS for z/OS 4.1: Diagnosis Reference

v Dump (DU)
v Global catalog (GC)
v Local catalog (LC)
v Loader (LD)
v Lock manager (LM)
v Message (ME)
v Parameter manager (PA)
v Storage manager (SM)
v Trace (TR).

DFHSKP
Entry points

DFHSKMNA, DFHSKC, DFHSKE

Called by

MVS, DFHFCL, DFHFCM, DFHFCN, DFHPSPSS, DFHSTP, DFHXSMX

Description

DFHSKP consists of these modules, which are link-edited together:
DFHSKM - subtask manager
DFHSKC - subtask control program
DFHSKE - subtask execution program.

DFHSKM calls and, if necessary, attaches DFHSKC to process the created work
queue element (WQE). DFHSKM also causes termination of the subtask when
requested, and handles DWE processing and task cancel requests. DFHSKC starts
an operating system subtask, DFHSKE, and waits for its completion. DFHSKE
processes WQEs, looking at in-progress and waiting queues on a first-in, first-out
basis. DFHSKE intercepts program checks and operating system abends.

DFHSMSCP
Entry points

DFHSMSCP

Called by

DFHSC macro

Description

The storage control program is called as a result of DFHSC GETMAIN and
FREEMAIN macro requests issued from CICS modules.

DFHSNAT
Entry points

DFHSNAT

Chapter 117. CICS executable modules 2239

Called by

DFHCRNP, DFHZISP, DFHZSUP (via DFHSUSN)

Description

The attach-time signon/sign off interface program provides support for the signon
and sign off of LU6.2 sessions.

DFHSNNFY
Entry points

DFHSNNFY

Called by

IRRDPR10

Description

The CICS segment notify exit is called by RACF whenever a change is made to a
user’s CICS segment in the RACF database.

DFHSNMIG
Entry points

DFHSNMIG

Called by

MVS

Description

The signon table migration utility program produces a CLIST file containing
ADDUSER and ALTUSER commands that provide RACF with all the user
attributes for each user entry in the signon table (SNT). This CLIST file is run by a
TSO user to migrate the user information to RACF.

DFHSNP
Entry points

DFHSNP

Called by

CESN transaction

Description

The signon program is called in response to a CESN signon request. DFHSNP
interprets the signon parameters, prompts the operator for more parameters if
needed, and passes the values to the security manager for verification.

2240 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSNSN
Entry points

DFHSNSN

Called by

DFHCSSC, DFHSNAT (via DFHSUSN)

Description

The optimized signon/sign off interface program provides a mechanism for
optimizing calls to the security manager. It achieves this optimization using the
signon table (SNT).

DFHSNVCL
Entry points

DFHSNVCL

Called by

IRRDPR02

Description

The OPCLASS validation exit is called by RACF to validate the operands of the
OPCLASS subparameter of the CICS parameter in the ADDUSER or ALTUSER
TSO commands. DFHSNVCL checks whether the operands are in the range 1
through 24.

DFHSNVID
Entry points

DFHSNVID

Called by

IRRDPR02

Description

The OPIDENT validation exit is called by RACF to validate the operand of the
OPIDENT subparameter of the CICS parameter in the ADDUSER or ALTUSER
TSO commands.

DFHSNVPR
Entry points

DFHSNVPR

Chapter 117. CICS executable modules 2241

Called by

IRRDPR02

Description

The OPPRTY validation exit is called by RACF to validate the operand of the
OPPRTY subparameter of the CICS parameter in the ADDUSER or ALTUSER TSO
commands. DFHSNVPR checks whether the operand is in the range 0 through 255.

DFHSNVTO
Entry points

DFHSNVTO

Called by

IRRDPR02

Description

The TIMEOUT validation exit is called by RACF to validate the operand of the
TIMEOUT subparameter of the CICS parameter in the ADDUSER or ALTUSER
TSO commands. DFHSNVTO checks whether the operand is in the range 1
through 60.

DFHSPP
Entry points

DFHSPPNA

Called by

DFHESP, DFHSP macro

Description

The syncpoint program is invoked during a user-specified syncpoint (by a DFHSP
macro) or at task termination. For a rollback request only, DFHSPP calls DFHDBP
to restore recoverable resources. It scans the DWE chain invoking the appropriate
DWE processors, and performs the necessary syncpoint logging. It dequeues all
resources enqueued by the transaction. DFHSPP processes any DWEs connected
with the resource manager, and processes the RESYNC command.

The main subroutines of DFHSPP are:
SPP00005 - Write DWE log data
SPP02020 - Build a DWE chain that can be logged
SPP03000 - End.

DFHSRLI
Entry points

DFHSRLI

2242 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHSRP

Description

DFHSRLI is called during recovery processing after a system abend has occurred,
to build the SRP_ERROR_DATA block and pass control to the XSRAB global user
exit.

DFHSRP
Entry points

DFHSRPNA

Called by

AP domain recovery routines

Description

The system recovery program deals with program check interrupts, system abends,
and runaway tasks in the AP domain. For a program check, DFHSRP abends the
task with abend code ASRA. For a system abend, DFHSRP searches the SRT for the
abend code that has arisen and, if a match is found, calls DFHSRLI to invoke the
XSRAB global user exit (if active). Afterwards, DFHSRP can either abend CICS or
attempt to keep it running with only the faulty task abended (ASRB). For a
runaway task, DFHSRP abends the task with abend code AICA.

DFHSSEN
Entry points

DFHSSEN

Called by

MVS subsystem interface

Description

The subsystem end-of-memory routine is invoked by the MVS subsystem interface
at all end-of-task (EOT) and end-of-memory (EOM) events when the CICS
subsystem has been initialized by module DFHSSIN. It cleans up any subsystem
control blocks owned by the terminating CICS region.

DFHSSGC
Entry points

DFHSSGC

Called by

DFHCSVC, DFHSSEN (through the subsystem interface)

Chapter 117. CICS executable modules 2243

Description

The subsystem generic connect routine records the existence of active CICS address
spaces. When the first CICS address space becomes active in an MVS image,
DFHSSGC enables the subsystem broadcast facility of MVS console management.
When the last CICS address space becomes inactive in an MVS image, it disables
the broadcast facility.

DFHSSIN
Entry points

DFHSSIN

Called by

MVS master scheduler initialization

Description

The CICS subsystem initialization routine reads subsystem parameters from
SYS1.PARMLIB, and creates a subsystem vector table (SSVT) for the CICS
subsystem. DFHSSIN loads modules DFHSSEN, DFHSSGC, and DFHSSWT into
MVS common storage, and saves their addresses in the SSVT.

DFHSSMGP
Entry points

DFHSSMGP

Called by

DFHSSIN

Description

The subsystem interface message program provides message formatting support
for the subsystem interface routines, analogous to DFHMGP within CICS. (Neither
DFHMGP nor the message domain can be used in this environment because CICS
is not active.)

DFHSSMGT
Entry points

DFHSSMNA

Called by

DFHSSMGP

Description

The subsystem interface message table contains the text of messages that are issued
by DFHSSMGP.

2244 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSSWT
Entry points

DFHSSWTA

Called by

MVS console support

Description

The subsystem interface WTO router is invoked for all MVS console messages
when the console message broadcast facility has been enabled by DFHSSGC.
DFHSSWT routes DFH messages to DFHSSWTO, and routes MODIFY command
text to DFHSSWTF.

DFHSSWTF
Entry points

DFHSSWTF

Called by

DFHSSWT

Description

This module suppresses signon passwords that are supplied on CESN transactions
entered through MODIFY commands on an MVS console. Any passwords are
replaced by eight asterisks.

DFHSSWTO
Entry points

DFHSSWTO

Called by

DFHSSWT

Description

This module inserts the CICS region’s applid into all DFH messages issued under
a CICS TCB whose applid can be determined.

DFHSTDT
Entry points

DFHSTDT

Chapter 117. CICS executable modules 2245

Called by

DFHAPST

Description

This module is called by DFHAPST to collect or reset dynamic transaction backout
statistics. Statistics are written to the SMF data set or made available on the API
according to the type of request.

DFHSTFC
Entry points

DFHSTFC

Called by

DFHAPST

Description

This module is called by DFHAPST to collect or reset file control statistics.
Statistics are written to the SMF data set or made available on the API according to
the type of request.

DFHSTIB
Entry points

DFHSTIB

Called by

DFHAPST

Description

This module and called by DFHAPST to collect or reset IRC batch system
connected statistics. Statistics are written to the SMF data set or made available on
the API according to the type of request.

DFHSTJC
Entry points

DFHSTJC

Called by

DFHAPST

2246 CICS TS for z/OS 4.1: Diagnosis Reference

Description

This module is called by DFHAPST to collect or reset journal control statistics.
Statistics are written to the SMF data set or made available on the API according to
the type of request.

DFHSTLK
Entry points

DFHSTLK

Called by

DFHAPST

Description

This module is called by DFHAPST to collect or reset ISC/IRC statistics. Statistics
are written to the SMF data set or made available on the API according to the type
of request.

DFHSTLS
Entry points

DFHSTLS

Called by

DFHAPST

Description

This module is called by DFHAPST to collect or reset LSRPOOL statistics. Statistics
are written to the SMF data set or made available on the API according to the type
of request.

DFHSTP
Entry points

DFHSTPNA

Called by

DFHEMTP

Description

The main function of the system termination program is to shut down CICS. In
sequence, DFHSTP performs the following functions (according to options
specified):
 1. Collects statistics now if immediate shutdown
 2. Shuts down the resource managers

Chapter 117. CICS executable modules 2247

3. Terminates subsystem interface
 4. Resumes suspended tasks
 5. Executes the programs defined in the first part of DFHPLT
 6. Rebuilds AIDs for paging sessions
 7. Breaks the ICE and AID chains
 8. Quiesces IRC
 9. Executes the programs defined in the second part of DFHPLT
10. Closes all open files managed by CICS file control
11. Synchronize with Recovery Manager shutdown keypoint
12. Call WKP to catalog terminals and profiles
13. Terminate extra partition TD
14. Signs off from the CAVM
15. Terminates general-purpose subtasking facility
16. Calls the kernel to terminate the system.

Returns to

MVS

DFHSTSZ
Entry points

DFHSTSZ

Called by

DFHAPST

Description

DFHSTSZ is called by DFHAPST to collect or reset FEPI statistics. Statistics are
written to the SMF data set or made available on the API according to the type of
request.

DFHSTTD
Entry points

DFHSTTD

Called by

DFHAPST

Description

DFHSTTD is called by DFHAPST to collect or reset transient data statistics.
Statistics are written to the SMF data set or made available on the API according to
the type of request.

2248 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSTTM
Entry points

DFHSTTM

Called by

DFHAPST

Description

DFHSTTM is called by DFHAPST to collect or reset table manager statistics.
Statistics are written to the SMF data set or made available on the API according to
the type of request.

DFHSTTR
Entry points

DFHSTTR

Called by

DFHAPST

Description

DFHSTTR is called by DFHAPST to collect or reset terminal statistics. Statistics are
written to the SMF data set or made available on the API according to the type of
request.

DFHSTTS
Entry points

DFHSTTS

Called by

DFHAPST

Description

DFHSTTS is called by DFHAPST to collect or reset temporary-storage statistics.
Statistics are written to the SMF data set or made available on the API according to
the type of request.

DFHSUSN
Entry points

DFHSUSN

Chapter 117. CICS executable modules 2249

Called by

DFHACP, DFHBSTS, DFHCRNP, DFHCSSC, DFHEEI, DFHEIQST, DFHERM,
DFHESN, DFHMGPME, DFHMGP00, DFHRTC, DFHSUSX, DFHTCTI, DFHTPQ,
DFHTPR, DFHXSMN, DFHZCUT, DFHZEV1, DFHZEV2, DFHZISP, DFHZIS2,
DFHZNAC, DFHZOPN, DFHZSUP, DFHZTSP, DFHZXCU

Description

DFHSUSN is used to create, destroy, and query the contents of a signon table
element (SNTTE). It calls DFHSUSX to notify the XRF alternate system of the
creation and destruction of SNTTEs. It also provides an interface for the creation
and validation of encrypted passwords used in LU6.2 bind password processing.

DFHSUSX
Entry points

DFHSUSX

Called by

DFHTCRPU, DFHZXCU, DFHSUSN

Description

DFHSUSX provides tracking for SNTTEs. This module is responsible for:
v Sending messages to an alternate system to reflect the current state of the

SNTTEs in the active system
v Actioning an add or delete of an SNTTE in an alternate system, based on

information tracked from another CICS system
v Making changes to the signed-on state in an alternate system, based on

information tracked from another CICS system.

Entry points

DFHSUWT

Called by

DFHMEME, DFHSUWT

Description

The DFHSUWT module provides the following support for executing MVS WTO
and WTOR SVCs:
v SEND support for Write To Operator (WTO)
v CONVERSE support for Write To Operator With Reply (WTOR).

For further information about DFHSUWT, see Chapter 68, “WTO and WTOR,” on
page 553.

2250 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSUZX
Entry points

DFHSUZX

Called by

DFHBSTZV, DFHEIQSC, DFHEIQST, DFHEIQTR

Description

The ZC trace controller is responsible for actioning set, cancel, and inquire requests
for the CICS VTAM exit tracing facility. It sets or unsets the control flags and gets
or releases the storage used by the DFHZETR function located in the ACB and RPL
exits.

DFHTACP
Entry points

DFHTACNA

Called by

DFHTCP

Description

The terminal abnormal condition program is invoked by DFHTCP and performs
the following functions:
v Analyzes error codes in the TACLE
v Sends appropriate messages to the CSMT transient data destination (for terminal

errors), or to the CSTL transient data destination (for logical errors)
v Invokes the user-supplied (or sample) terminal error program (DFHTEP)
v Takes the appropriate actions resulting from the defaults which may have been

modified by the terminal error program.

DFHTAJP
Entry points

DFHTAJNA

Description

The time adjustment program calls DFHICP to reset the CSA’s time fields
according to the host-supplied time-of-day. DFHTAJP then scans the ICE chain and
adjusts the expiry time of interval-controlled ICEs. Time-controlled ICEs are not
adjusted but the ICE chain is reordered so that it is left in order by expiry time.
Times held in the TCT and CSATCNDT are decreased, and negative times are
made zero. Lastly, DFHTAJP writes a message.

Chapter 117. CICS executable modules 2251

DFHTBSB
Entry points

DFHTBSB

Called by

DFHZCQIS

Description

DFHTBSB adds a node to the control-block structure. It is called during the
dynamic installation of TCT resources, and calls routines in the control block
builder.

DFHTBSBP
Entry points

DFHTBSBP

Called by

DFHTBSB, DFHTBSBP

Description

DFHTBSBP is the recursive part of DFHTBSB.

DFHTBSD
Entry points

DFHTBSD

Called by

DFHZCQDL

Description

DFHTBSD deletes a node in a CICS terminal network.

DFHTBSDP
Entry points

DFHTBSDP

Called by

DFHTBSD, DFHTBSDP

2252 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHTBSDP is the recursive part of DFHTBSD.

DFHTBSL
Entry points

DFHTBSL

Called by

DFHTBSR, DFHZCQCH

Description

DFHTBSL creates the recovery record for a node during the dynamic installation of
a TCT table entry using the CEDA INSTALL command, for example, and calls
routines in the control-block builder.

DFHTBSLP
Entry points

DFHTBSLP

Called by

DFHTBSL, DFHTBSLP, DFHTBSSP

Description

DFHTBSLP is the recursive part of DFHTBSL.

DFHTBSQ
Entry points

DFHTBSQ

Called by

DFHZCQIQ

Description

DFHTBSQ is called to retrieve the parameters that were supplied to a TCT table
entry at build time.

DFHTBSQP
Entry points

DFHTBSQP

Chapter 117. CICS executable modules 2253

Called by

DFHTBSQ

Description

DFHTBSQP is called by DFHTBSQ to retrieve parameters that were supplied to a
TCT table entry at build time.

DFHTBSR
Entry points

DFHTBSR

Called by

DFHZCQRS

Description

DFHTBSR takes a table-builder recovery record and re-creates the corresponding
table entry. It is called during warm or emergency restart.

DFHTBSRP
Entry points

DFHTBSRP

Called by

DFHTBSR

Description

DFHTBSRP is called by DFHTBSR.

DFHTBSSP
Entry points

DFHTBSSP

Description

DFHTBSSP performs a commit or rollback action for a previous table-builder
change according to the outcome of a logical unit of work. Each action is dequeued
from a DWE.

DFHTBS00
Entry points

DFHTBS

2254 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHTBS00 is the main routine for DFHTBS and holds the addresses of the
modules used to build control blocks for the dynamic installation of TCT resources.

DFHTCBP
Entry points

DFHTCBNA

Description

The terminal control backout program restores TCTTEs and other ISC state data
during emergency restart.

DFHTCP
Entry points

DFHTCPNA

Description

DFHTCP is the terminal control program. The terminal control task is attached
during system initialization and remains until termination. DFHTCP manages all
non-VTAM terminals, which involves:
v Ensuring that I/O operations are started when possible on the lines
v Analyzing completion information
v Attaching transactions when data is received from a terminal and no task is

attached to that terminal
v Servicing terminal control requests from user transactions.

The modules and subsections of DFHTCP are:
DFHTCAM

Terminal control TCAM device dependent
DFHTCCLC

Terminal control line control scan routine
DFHTCCOM

Terminal control common logic
DFHTCCSS

Terminal control start-stop common logic
DFHTCDEF

Terminal control symbol definition
DFHTCORS

Terminal control storage handling
DFHTCSAM

Terminal control sequential terminal device dependent
DFHTCTI

Terminal control task initiation
DFHTCTRN

Terminal control translate tables

Chapter 117. CICS executable modules 2255

DFHTCRP
Entry points

DFHTCRP

Description

DFHTCRP initializes and recovers terminal control definitions and protected
messages. It is run as a task during CICS initialization.

DFHTCRPC
Entry points

DFHTCRPC

Called by

DFHZXQO

Description

DFHTCRPC is the XRF tracking interface for TCT contents. It is one of a set of
routines called by DFHZXQO from the same CALL statement, the entry point
address having been passed to DFHZXQO. This routine calls ZC RESTORE to add
or delete a TCT entry based on information from another CICS system using the
log, the catalog, or the XRF tracking queues.

DFHTCRPL
Entry points

DFHTCRPL

Called by

DFHTCRP

Description

DFHTCRPL installs TCT resources defined by the TCT macros.

DFHTCRPS
Entry points

DFHTCRPS

Called by

DFHZXQO

2256 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHTCRPS is the XRF tracking interface for ZCP sessions. It is one of a set of
routines called by DFHZXQO from the same CALL statement, the entry point
address having been passed to DFHZXQO. This routine calls DFHZXST (through
DFHZXS) to make changes to the session state.

DFHTCRPU
Entry points

DFHTCRPU

Called by

DFHZXQO

Description

DFHTCRPU is the XRF tracking interface for signon table elements (SNTTEs). It is
one of a set of routines called by DFHZXQO from the same CALL statement, the
entry point address having been passed to DFHZXQO. This routine calls
DFHSUSX to add or delete tracked SNTTEs, and to make changes to the signed-on
state.

DFHTDA
Entry points

DFHTDANA

Called by

DFHAKP, DFHAMCSD, DFHAPTD, DFHCRNP, DFHCRQ, DFHDBP, DFHEIQMS,
DFHEIQSQ, DFHESE, DFHETD, DFHJCP, DFHMCP, DFHMGP00, DFHRCRP,
DFHRUP, DFHSII1, DFHSTP, DFHSTTD, DFHTCAP, DFHTDRP, DFHTEPM,
DFHTPQ, DFHTRP, DFHTSRP, DFHWKP, DFHZNAC

Description

DFHTDA, which is link-edited with RMODE(24), handles DFHTD macro requests.
In particular:
v DFHTD TYPE=GET|PUT|PURGE requests are converted to the corresponding

DFHTD CTYPE=GET|PUT|PURGE requests.
v DFHTD CTYPE=GET|PUT|PURGE requests for intrapartition queues are routed

to DFHTDQ for further processing.
v All of the processing for DFHTD CTYPE=GET|PUT for extrapartition queues is

done under the QR TCB.
v Much of the processing for DFHTD CTYPE=OPEN|CLOSE for extrapartition

queues is done under the RO TCB.

CICS Transaction Server for z/OS uses QSAM GL|PL mode processing.

Chapter 117. CICS executable modules 2257

DFHTDB
Entry points

DFHTDBNA

Called by

DFHTDA

Description

DFHTDB, which is link-edited with RMODE(ANY), handles DFHTD macro
requests for intrapartition queues. In particular, DFHTDB:
v Manages the input and output cursors for each queue
v Manages space on the intrapartition data set
v Initiates transactions when trigger levels are reached
v Manages the buffers; processing is done under the QR TCB
v Manages the strings; processing is done under the CO TCB.

DFHTDEXL
Entry points

EX11RTNE

Called by

QSAM

Description

DFHTDEXL contains the DCB abend exit routine used for extrapartition
processing.

DFHTDP
Entry points

DFHTDANA

Called by

DFHAKP, DFHAMCSD, DFHAPTD, DFHCRNP, DFHCRQ, DFHDBP, DFHEIQMS,
DFHEIQSQ, DFHESE, DFHETD, DFHMCP, DFHMGP00, DFHRCRP, DFHRUP,
DFHSII1, DFHSTP, DFHSTTD, DFHTACP, DFHTDRP, DFHTEPM, DFHTPQ,
DFHTRP, DFHTSRP, DFHWKP, DFHZNAC

Description

DFHTDP is a load module link-edited from object modules for DFHTDA,
DFHTDEXL, and DFHTDX.

2258 CICS TS for z/OS 4.1: Diagnosis Reference

DFHTDQ
Entry points

DFHTDBNA

Called by

DFHTDA

Description

DFHTDQ is a load module link-edited from object modules for DFHTDB.

DFHTDRM
Entry points

DFHTDRM

Called by

DFHDBP

Description

DFHTDRM is the transient data recovery manager processor. If transient data has
any outstanding resources, DFHTDRM is called at phase 1 syncpoint (or backout).
For phase 1 syncpoint (or backout) requests, DFHTDRM issues a request to
mainline transient data(DFHTDA) to reset any resources that have not yet been
released.

DFHTDRP
Entry points

DFHTDRNA

Called by

DFHTDX

Description

DFHTDRP handles transient data recovery during CICS initialization. In particular,
DFHTDRP:
v Adds the entries found in the DCT load module by calling the DFHTDTM gate.
v Restores input and output cursors for intrapartition queues on warm start; the

cursors are recovered by DFHRUP on emergency restart
v Restores the CI state map on warm start
v Opens extrapartition queues
v Opens the intrapartition data set
v Recovers the CI state map on emergency restart.

Chapter 117. CICS executable modules 2259

DFHTDTM
Entry points

DFHTDTM

Called by

DFHALP, DFHEIQMS, DFHEIQSQ, DFHESE, DFHSZRPM, DFHTDRP

Description

DFHTDTM manages the entries in the destination control table. It is used to add,
update and delete entries in this table and records images of each entry on the
global catalog for use during a warm start or emergency restart. It allows table
entries to be inquired upon.

DFHTDX
Entry points

DFHTDXNA

Called by

Task initiation

Description

DFHTDX is the initial program invoked by the transient data recovery task. It links
to program DFHTDRP.

DFHTEP
Entry points

DFHTEPNA

Called by

DFHTACP

Description

The terminal error program is invoked by DFHTACP using a DFHPC
CTYPE=LINK_URM macro. The sample DFHTEP (invoked only if there is no
customer-supplied version) puts a terminal out of service if the number of terminal
errors detected by DFHTACP exceeds default values contained in DFHTEP tables.

DFHTMP
Entry points

DFHTMPNA

2260 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHTM macro

Description

The table management program performs locates, adds, deletes, locks, and unlocks
to entries in certain CICS tables. DFHTMP uses a hash table for these operations.

The main subroutines of DFHTMP are:
CHKTTC - Check table type code
COMMIT - Commit table changes
CRTCLE - Create a change list element
CRTDWE - Create deferred work element
DELDWE - Cancel deferred work element
DEQALLDE - Dequeue on directory element
DEQUEUE - Dequeue on table modification
DYNHASH - Dynamic re-hash
ENQDEQDE - Enqueue/dequeue on directory element
ENQUEUE - Enqueue on table modification
GET_STORAGE - Get storage from the CICS shared subpool
GET_TASK_STORAGE - Get task lifetime 31-bit storage
GET_TASK_STORAGE_COND - Get task lifetime 31-bit storage
 (conditionally)
GET_STORAGE_FAILURE - Get storage failure routine
FREE_STORAGE - Release storage from the CICS shared subpool
FREE_TASK_STORAGE - Release task lifetime 31-bit storage
LOCATE_PREVIOUS_DE - Locate previous directory
 element in collating series
LOCATETE - Locate a table/directory entry
LOCFDIRE - Locate a free directory element
NOTERL - Note Read Lock
SETABORD - Set up alphabetic ordering pointer
 for a given table type
TMFINDLOCK - Find a read lock
TMPDWEEP - Deferred work element processor
TMSETLOCK - Set a read lock
TMUNLOCK - Release a read lock
UNQUIES - Unquiesce a directory element.

DFHTON
Entry points

DFHTONNA

Called by

DFHDBP, DFHSPP

Description

The terminal object resolution module is called by DFHDBP or DFHSPP during
DWE processing for DFHTOR. It calls DFHTOR with end-LUW-cancel or
end-LUW-commit code to perform cancel or commit of changes to TERMINAL,
TYPETERM, CONNECTION, or SESSIONS definitions.

Chapter 117. CICS executable modules 2261

DFHTOR
Entry points

DFHTORNA

Called by

DFHAMP, DFHTON

Description

DFHTOR is the terminal object resolution program. DFHAMP calls DFHTOR for a
TERMINAL, TYPETERM, CONNECTION, or SESSIONS object in a CICS system
definition (CSD) file that is being installed, or when DFHAMP encounters an
end-of-group. DFHTOR processes the objects and passes them to the terminal
control builder program (DFHZCQ). The DFHTON entry is used for DWE
processing.

DFHTORP
Entry points

DFHTORNA

Called by

DFHSII1

Description

DFHTORP is the terminal object recovery program. It is called during CICS
initialization to purge TYPETERM and model terminal definitions from the catalog
on a cold start, and to recover these definitions on an emergency restart.

DFHTPPA$, DFHTPP1$
Entry points

DFHTPPNA

Called by

DFHDSB, DFHM32

Description

The terminal page processor program handles DFHBMS TYPE=OUT, STORE, and
RETURN requests. If OUT, DFHTPP sends the complete page using DFHTC macro
requests; if STORE, the page is sent to temporary storage; and if RETURN, no
output operation takes place but the page is returned to the application program.

The main subroutines of DFHTPP are:

2262 CICS TS for z/OS 4.1: Diagnosis Reference

TPNODDS - TYPE=STORE (PAGING) requests
TPOUT - TYPE=OUT (TERMINAL) requests (the macro
 DFHTOM is used by both DFHTPP and DFHTPR
 to handle output to terminals)
TPRETPG - TYPE=RETURN (SET) requests.

Returns to

DFHPBP

DFHTPQ
Entry points

DFHTPQNA

Called by

DFHICP, DFHMCP, DFHTCP

Description

The undelivered messages cleanup program is initiated periodically in order to
cancel the delivery of BMS messages that have been placed in temporary storage,
but have remained undelivered for an interval exceeding the purge delay time
interval specified by the PRGDLAY system initialization parameter, if this has a
nonzero value.

DFHTPR
Entry points

DFHTPRNA

Called by

DFHMCP, DFHTCP

Description

The terminal page retrieval program (transaction CSPG) is invoked:
v By automatic transaction initiation as a result of a SCHEDULE issued by

DFHTPS
v By a DFHPGLK LINK from DFHMCP, when CTRL=RETAIN or RELEASE on

DFHBMS TYPE=PAGEOUT (RETAIN or RELEASE on SEND PAGE at command
level)

v When CSPG or an operator paging command is entered at a terminal.

If the message is autopaged, DFHTPR retrieves the pages of the message in order,
transmits them to the terminal, and then purges the message. Otherwise DFHTPR
runs pseudo-conversationally. All further input is passed to DFHTPR, until the
message is purged explicitly or implicitly. If the input is a valid paging command
(page retrieval, page copy, page purge, or page chaining), it is processed. It is
rejected if explicit purge is required, or passed back to normal task initiation if
automatic purge is allowed.

Chapter 117. CICS executable modules 2263

The main subsections of DFHTPR are:
DFHMSPUT - Send error message to terminal
TPENCCHN - Encode and execute page chain
TPENCCOP - Encode and execute page copy
TPENCPUR - Execute page purge
TPENCRET - Encode page retrieval
TPERETA - Reset to autopaging
TPERETQ - Page query
TPEXIT - Exit from program
TPEXPUR - Execute page purge
TPEXRET - Execute page retrieval
TPTSGET - Get MCR or page from temporary storage.

DFHTPS
Entry points

DFHTPSNA

Called by

DFHICP, DFHMCP

Description

The terminal page scheduling program (transaction CSPS) is invoked for each
terminal type to which a BMS logical message built with TYPE=STORE is to be
sent. For each terminal designated by the originating application program,
DFHTPR is scheduled to display the first page of the logical message if the
terminal is in paging status, or the complete message if it is in autopage status.
DFHTPS contains the following major subsections, each dealing with a separate
function:
v DFHTPSNA—used when DFHTPS is invoked by automatic initiation on expiry

of ICE, and as a result of an IC PUT request issued by DFHMCP (there is no
associated terminal). This invocation schedules CSPG for terminals on this
system, and schedules CSPS on the link to each remote system which owns
terminals contained in the route list for the message (that is the function of
TPS02000).

v TPS01000—used when DFHTPS is linked to from DFHMCP for direct paging
requests to a terminal on a remote system. The task has a surrogate TCTTE as its
primary facility, and owns a relay link connected to the terminal owning system.
This section ships the pages of the message to the terminal-owning region,
where it is re-created by the relay program (DFHAPRT) which issues BMS,
STORE, TEXT, NOEDIT, and PAGEOUT requests.

v TPS02000—used when DFHTPS is scheduled by TPS01000 to run against the link
to a remote system. This routine ships the logical message to the remote system
and deletes the terminals on the remote system from the terminal list in the
original message control record. (TPS03000 receives the information at the
remote system.)

v TPS03000—used when DFHTPS is invoked by an ATTACH request from a
remote system (that is, originated by TPS01000 or TPS02000). This routine
receives the shipped logical message and issues BMS ROUTE, TEXTBLD,
NOEDIT, and PAGEOUT requests to re-create the logical message on the
terminal-owning region.

DFHTPS contains the following subroutine:

2264 CICS TS for z/OS 4.1: Diagnosis Reference

v TPSSHIPM—ships a complete logical message.

DFHTRAP
Entry points

DFHTRANA

Called by

DFHTRPT

Description

The FE global trap/trace exit is provided for diagnostic use only under the
guidance of service personnel.

DFHTR660 and AMDUSREF
Entry points

DFHTRPRG

Called by

IPCS

Description

The CICS GTF trace formatting routine is invoked by IPCS processing of the
GTFTRACE keyword when a CICS entry (USR F6C, format ID X'EF') is
encountered. For each entry, it writes a line containing the job name and then
formats the entry in the same form as DFHTU660 does for an auxiliary trace print.
AMDUSREF is defined as an alias for DFHTR660 because IPCS looks for a
program called AMDUSRxx to format entries with format ID xx.

DFHTRP
Entry points

DFHTRPNA

Called by

Many AP domain modules

Description

The trace control program translates DFHTR, DFHTRACE, and DFHLFM macro
requests to write trace entries into TR domain TRACE_PUT requests. DFHTRP
collects the data required in the trace for the specified trace ID into a standard
layout and issues the TRACE_PUT call. For requests to change the various trace
flags that control tracing, DFHTRP issues KEDD format calls to the kernel domain.

Chapter 117. CICS executable modules 2265

DFHTRZCP
Entry points

DFHTRZCP

Called by

CEDA transaction, DFHTCRP, DFHTOR

Description

DFHTRZCP builds a terminal builder parameter set.

DFHTRZIP
Entry points

DFHTRZIP

Called by

CEDA transaction, DFHTCRP, DFHTOR

Description

DFHTRZIP builds a chain of builder parameter sets for sessions.

DFHTRZPP
Entry points

DFHTRZPP

Called by

CEDA transaction, DFHTCRP, DFHTOR

Description

DFHTRZPP builds a pool builder parameter set.

DFHTRZXP
Entry points

DFHTRZXP

Called by

CEDA transaction, DFHTCRP, DFHTOR

Description

DFHTRZXP builds a connection builder parameter set.

2266 CICS TS for z/OS 4.1: Diagnosis Reference

DFHTRZYP
Entry points

DFHTRZYP

Called by

CEDA transaction, DFHTCRP, DFHTOR

Description

DFHTRZYP builds a TYPETERM builder parameter set.

DFHTRZZP
Entry points

DFHTRZZP

Called by

CEDA transaction, DFHTCRP, DFHTOR

Description

DFHTRZZP merges a TYPETERM builder parameter set into a terminal builder
parameter set.

DFHTSP
Entry points

DFHTSPNA

Called by

DFHACP, DFHAKP, DFHALP, DFHCRQ, DFHDBP, DFHDIP, DFHEDFP, DFHESE,
DFHETS, DFHICP, DFHMCP, DFHMSP, DFHRTE, DFHSII1, DFHSTP, DFHTCBP,
DFHTPP, DFHTPQ, DFHTPR, DFHTPS, DFHTSBP, DFHTSP, DFHTSRP, DFHZISP,
DFHZRAQ, DFHZRAR, DFHZRSP

Description

The temporary-storage program services DFHTS requests. It maintains the tables,
directories, and maps necessary to keep track of every temporary-storage record
and of available space on the VSAM auxiliary storage or in main storage. The main
subroutine of DFHTSP is DFHTSPAM, which manages auxiliary storage (including
multiple buffers and strings).

DFHTU660
Entry points

DFHTRPRA

Chapter 117. CICS executable modules 2267

Called by

MVS

Description

The trace utility program formats and prints trace records stored on the auxiliary
trace data set. This utility program is run as a separate job, and extracts selected
trace entries as specified on parameter statements supplied as part of the input to
the program.

DFHUCNV
Entry points

DFHUCNV

Called by

DFHCCNV

Description

DFHUCNV is a sample program for CICS OS/2 user data conversion. Users can
write their own version of DFHUCNV to apply any conversion. If specified, a
user-supplied conversion is applied before the standard conversion. DFHUCNV is
invoked for each EXEC CICS request and reply that has resulted from a CICS
OS/2 function shipping request and may require conversion of user data from
ASCII to EBCDIC (inbound from CICS OS/2) or from EBCDIC to ASCII
(outbound). DFHCCNV issues an EXEC CICS LINK to DFHUCNV before
attempting any standard conversions. This allows a user program to convert data
of type USERDATA, as defined in the CICS OS/2 conversion macros (DFHCNV).

The sample program obtains addressability to the COMMAREA passed to it, and
checks that the request is a temporary-storage (TS) request. Then it checks that
DFHCCNV managed to locate a conversion template for the resource (a TS queue)
with this name, and scans and checks the template using the supplied template
pointer and length. If the check is successful, the program translates the user data
field as appropriate.

DFHUEH
Entry points

DFHUEHNA

Called by

CICS management modules containing exit points

Description

The user exit handler is the link between an exit point in a CICS management
module in the AP domain, and the user code. DFHUEH invokes in turn each
started exit program for that exit point, passing a parameter list defined in the
CICS management module.

2268 CICS TS for z/OS 4.1: Diagnosis Reference

DFHUEM
Entry points

DFHUEMNA

Called by

DFHEIP

Description

The EXEC interface processor for the ENABLE, DISABLE, and EXTRACT user exit
commands.

DFHUSBP
Entry points

DFHUSBNA

Called by

DFHRCRP

Description

The user backout program sends records, journaled by the user to the system log,
to a user exit during emergency restart. The records are extracted by DFHRUP
from the restart data set. They may exist for any logical unit of work, whether in
flight or not, depending on the JCRSTRID value specified when the record was
written.

DFHWCCS
Entry points

DFHWCCS

Called by

Many CAVM modules

Description

DFHWCCS provides common services for the CAVM:
v MVS FREEMAIN
v MVS GETMAIN
v MVS POST
v Message or MVS ABEND
v Create CAVM process block.

Chapter 117. CICS executable modules 2269

Returns to

MVS abend, caller

DFHWCGNT
Entry points

DFHWCGNA

Description

DFHWCGNT is the entry point list for CAVM modules above the 16 MB line.

DFHWDATT
Entry points

DFHWDATT

Called by

DFHWDINA, DFHWMG1, DFHWMP1, DFHWSXPI

Description

DFHWDATT creates the CAVM process.

DFHWDINA
Entry points

DFHWDINA

Called by

DFHWSRTR

Description

DFHWDINA attaches the initial CAVM process. It sets up lock tables, the
dispatcher control area, the LIFO control area, and the dispatcher ESPIE and
ESTAE exits.

Returns to

DFHWDISP

DFHWDISP
Entry points

DFHWDISP, DFHWDIND

2270 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHWDWAT, DFHWDINA

Description

DFHWDISP is the CAVM process dispatcher. It dispatches the next ready CAVM
process, or waits for an external event. It dispatches the initial CAVM process.

Returns to

Dispatched process, caller of DFHWDINA

DFHWDSRP
Entry points

DFHWDSRP

Called by

DFHWDINA, CAVM program check/abend

Description

DFHWDSRP establishes the ESPIE/ESTAE CAVM process. It performs CAVM
process error handling for processes with ESPIE or ESTAE routines.

DFHWDWAT
Entry points

DFHWDWAT

Called by

Many CAVM modules

Description

DFHWDWAT causes the current CAVM process to wait for specific events.

Returns to

DFHWDISP

DFHWKP
Entry points

DFHWKPNA

Called by

DFHSTP

Chapter 117. CICS executable modules 2271

Description

DFHWKP takes a warm keypoint at the normal termination of CICS. This program
is part of the restart component.

DFHWLFRE
Entry points

DFHWLFRE

Called by

Many CAVM modules

Description

DFHWLFRE frees the LIFO stack entry for CAVM modules running above the 16
MB line.

DFHWLGET
Entry points

DFHWLGET

Called by

Many CAVM modules

Description

DFHWLGET gets the LIFO stack entry for CAVM modules running above the 16
MB line.

DFHWMG1
Entry points

DFHWMG1

Called by

DFHWMI, DFHWDISP, DFHWDSRP

Description

DFHWMG1 is the main module of the CAVM message manager GET MESSAGE
service. It is called by DFHWMI to initialize service, and attach itself as a
message-reader CAVM process; by DFHWDISP to run as a message-reader CAVM
process that reads messages and stores them; and by DFHWDSRP to handle
ESPIE/ESTAE exits for the message reader.

2272 CICS TS for z/OS 4.1: Diagnosis Reference

DFHWMI
Entry points

DFHWMI

Called by

DFHWSXPI

Description

DFHWMI allocates the CAVM message-manager communication area. It calls each
of the main message-manager modules, which then initialize themselves.

DFHWMMT
Entry points

DFHWMMT

Called by

DFHWMRD, DFHWMWR

Description

DFHWMMT provides VSAM GET and PUT services for the CAVM message data
set.

DFHWMPG
Entry points

DFHWMPG

Called by

DFHWMP1, DFHWMWR

Description

DFHWMPG copies message data into the buffer provided by the user of PUTMSG,
PUTREQ, PUTRSP, and CAVM message-manager services. It provides an ESPIE
routine to handle program checks occurring during the copying.

DFHWMP1
Entry points

DFHWMP1

Called by

DFHWMI, DFHWDISP, DFHWDSRP

Chapter 117. CICS executable modules 2273

Description

DFHWMP1 is the main module of the CAVM message-manager PUT MESSAGE
service. It is called by DFHWMI to initialize service, and attach itself as a
message-writer CAVM process; by DFHWDISP to run as a message-writer CAVM
process that writes messages to the CAVM message data set; and by DFHWDSRP
to handle ESPIE and ESTAE exits for the message writer.

DFHWMQG
Entry points

DFHWMQG

Called by

DFHWMS20

Description

DFHWMQG runs under the CICS TCB above the 16MB line. It processes GETMSG
CAVM message-manager requests. It waits for a message to arrive, then copies
from the main-memory message queue created by the CAVM message-reader
process.

DFHWMQH
Entry points

DFHWMQH

Called by

DFHWMG1, DFHWMQG

Description

The CAVM message-manager message input queue handler locates or creates
message-queue anchor blocks, and adds copies of messages read by the CAVM
reader process to the main-memory message queues.

DFHWMQP
Entry points

DFHWMQP

Called by

DFHWMS20

Description

DFHWMQP runs under the CICS TCB above the 16MB line. It processes CAVM
message-manager PUTMSG, PUTREQ, and PUTRSP requests; places the request in
the appropriate queue; and posts the queue to awaken CAVM process to handle

2274 CICS TS for z/OS 4.1: Diagnosis Reference

request, waits for completion, and returns response to the caller.

DFHWMQS
Entry points

DFHWMQS

Called by

DFHWMP1, DFHWMWR

Description

The CAVM message-manager message output queue handler provides services to
select the next work item to process, and posts items complete.

DFHWMRD
Entry points

DFHWMRD

Called by

DFHWMG1

Description

The CAVM message-manager message read routine reads messages from the
CAVM message data set, taking account of the position of the active write cursor,
and creates message blocks for copies of messages that have been read.

DFHWMS
Entry points

DFHWMSNA

Called by

Users of CAVM message services

Description

The CAVM message-manager service interface routine runs under the CICS TCB
above the 16MB line. It builds a dummy CAVM process block, so that subsequent
modules can run in an XRF LIFO environment, and calls DFHWMS20 to process a
request passed by the caller.

DFHWMS20
Entry points

DFHWMS20

Chapter 117. CICS executable modules 2275

Description

The CAVM message manager services interface selects the request type and passes
requests to DFHWMQP (PUTMSG, PUTREQ, PUTRSP) or DFHWMQG (GETMSG).

DFHWMWR
Entry points

DFHWMWR

Called by

DFHWMP1

Description

The CAVM message-manager message write routine takes data from PUTMSG
requests and copies them into CI buffers to be written to the CAVM message data
sets.

DFHWOS
Entry points

DFHWOSNA

Description

The overseer startup module loads DFHWOSA and passes control to it.

DFHWOSA
Entry points

DFHWOSNA

Called by

DFHWOS

Description

The overseer services initialization module processes control parameters, loads
DFHWOSB, and sets up entry points for overseer services.

DFHWOSB
Entry points

DFHWOSNA

Called by

Overseer program

2276 CICS TS for z/OS 4.1: Diagnosis Reference

Description

The overseer service module processes requests from the overseer program which
are issued by the DFHWOSM macro.

DFHWSRTR
Entry points

DFHWSMNA

Called by

DFHXRA, MVS after attach of new TCB

Description

The CAVM state-management request router and subtask entry point is the initial
entry point for a CAVM task attached by DFHWSSN1 to process the CAVM
SIGNON command. It calls DFHWSSN2 to continue the processing of the SIGNON
request and, if it is accepted, calls DFHWDINA to attach the tick generator module
DFHWSTI as the first and highest-priority CAVM process. It is called under the
CICS TCB to queue the CAVM TAKEOVER command for processing by the CAVM
task, and to initiate processing of the CAVM SIGNOFF command by detaching the
CAVM task. DFHWSRTR is the initial entry point for MVS subtasks attached by
the CAVM task to perform various functions, such as issuing requests for CSVC
services, or formatting new CAVM data sets when they are used for the first time.

DFHWSSN1
Entry points

DFHWSSNA

Called by

DFHXRA

Description

DFHWSSN1 is the CAVM state management SIGNON initial entry point. The CICS
task issues an MVS LINK, specifying load module DFHWSSON to perform a
CAVM SIGNON request. DFHWSSN1 attaches the CAVM task to execute the
request, waits to see if it is successful, detaches the task and, if it is not successful,
reports the result to CICS.

DFHWSSN2
Entry points

DFHWSSN2

Called by

DFHWSRTR

Chapter 117. CICS executable modules 2277

Description

The CAVM state management SIGNON request handler is entered under the
CAVM TCB to process a CAVM SIGNON request. It allocates storage for, and
initializes, key CAVM control blocks, sets up DFHWSSOF as an ESTAE exit, calls
DFHWSSN3 to OPEN the CAVM data sets, reads the state management record
from the control data set, uses the JES inquire-job-status CSVC service provided by
DFHWTI, and looks for surveillance signals from other CAVM users to check
whether the environment is such that the requested SIGNON can be accepted. It
prompts the operator for job status information if necessary. If SIGNON is
accepted, it updates the state management record and status CIs to record that this
job has signed on to the CAVM. When possible, it also cleans up out-of-date
information in the CAVM data sets left behind by jobs that were unable to sign off
properly before terminating.

DFHWSSN3
Entry points

DFHWSSN3

Called by

DFHWSSN2

Description

The CAVM state management data set initialization routine builds ACBs, and
opens and validates the CAVM control and message data sets for CAVM SIGNON.
It builds the reserve parameter list for serializing accesses to the control data set. If
new CAVM data sets are being used for the first time, it attaches an MVS subtask
to record relevant information in each data set’s control interval, and to format the
CIs needed by state management.

DFHWSSOF
Entry points

DFHWSSOF

Called by

MVS recovery/termination manager

Description

DFHWSSOF is the CAVM state management SIGNOFF request handler. During
SIGNON processing, this module is established as an ESTAE exit for the CAVM
task. It purges outstanding I/O requests, reads the state management record from
the control data set, and searches it to see if this job has signed on to the CAVM. If
so, it updates the status CI and state management record to indicate that the job
has signed off. It makes the TAKEOVER message available to DFHWSRTR when
an active system signs off after takeover has started.

2278 CICS TS for z/OS 4.1: Diagnosis Reference

DFHWSSR
Entry points

DFHWSSR

Called by

DFHWDISP

Description

The CAVM surveillance status reader runs as a process controlled by the XRF
dispatcher, DFHWDISP. It reads the status CI of the partner system from the
control data set or the message data set, generates internal CAVM events, and
drives the NOTIFY exit when the partner’s status changes, or its surveillance
signals cease. For an alternate system, it monitors and records the time-of-day
clock difference when the active system is running in a different CEC.

DFHWSSW
Entry points

DFHWSSW

Called by

DFHWDISP

Description

The CAVM surveillance status writer runs as a CAVM process controlled by the
CAVM dispatcher, DFHWDISP. It writes a system’s current status to its status CI in
the control data set, or the message data set, to make it available to its partner and
to provide a surveillance signal; generates an internal CAVM event when a status
write completes; and puts the current time-of-day clock reading in the status CI to
permit DFHWSSR to deduce the time-of-day clock difference when the active
system and the alternate system are running in different CECs.

DFHWSTI
Entry points

DFHWSTI

Called by

DFHWDISP

Description

The CAVM surveillance tick generator and CICS status monitor runs as a CAVM
process controlled by the CAVM dispatcher DFHWDISP. It issues an MVS STIMER
for the surveillance interval and, when this expires, generates an internal CAVM
clock-tick event, calls the inquire-CICS-status exit, and schedules the surveillance
status writer processes, to cause a surveillance signal reporting this system’s

Chapter 117. CICS executable modules 2279

current status to be written to the control data set or the message data set.

DFHWSTKV
Entry points

DFHWSTKV

Called by

DFHWDISP

Description

The CAVM state management TAKEOVER request handler runs as a CAVM
process controlled by the CAVM dispatcher DFHWDISP. When a new active
SIGNON has been detected, it reads the state management record from the control
data set and attaches an MVS subtask to invoke DFHWTI’s validate-CLT CSVC
service. When a TAKEOVER command has been issued, it reads the state
management record, validates the TAKEOVER request, and attaches an MVS
subtask to use DFHWTI’s JES inquire-job-status service to determine the current
state of the active system.

If the active system is still signed on to CAVM, it updates the state management
record to indicate that a takeover is in progress, places the TAKEOVER message
for the active system in the alternate system’s status, and attaches an MVS subtask
to invoke DFHWTI’s TAKEOVER-initiate service.

After the active system has signed off (or terminated), it requests DFHWSSR to
read the active system’s final status, quiesces surveillance processing, and updates
the state management record and status CIs to indicate the stage reached by
takeover. It then arranges for surveillance processing to be resumed in active
mode. It attaches an MVS subtask to invoke DFHWTI’s process-CLT CSVC service
if necessary.

When the active system has finally terminated, it updates the state management
record to take its place as the new active system, generates internal CAVM events,
and calls the NOTIFY exit to report the progress of the TAKEOVER request,
including acceptability of the time-of-day clock reading. It terminates by returning
to DFHWDISP.

DFHWSXPI
Entry points

DFHWSXPI

Called by

DFHWSTI

Description

The CAVM state management CAVM process initialization runs under the tick
generator CAVM process towards the end of SIGNON. It attaches the TAKEOVER
CAVM process (alternate systems only), two status writer CAVM processes, and

2280 CICS TS for z/OS 4.1: Diagnosis Reference

two status reader CAVM processes, and then calls the CAVM message
management initialization module.

DFHWTI
Entry points

DFHWTINA

Called by

DFHCSVC from: DFHWSSN2, DFHWSTKV, DFHZXSTS

Description

Takeover initiation is the primary function of this module, and is requested by
CAVM state management at takeover to terminate the CICS active system issue
commands in the CLT, and wait until the CICS active system terminates. Other
XRF services provided by this module are to determine whether a job is running,
to issue the operator commands for the overseer program, to issue MODIFY
USERVAR to VTAM, to validate the CLT, and to process the CLT.

DFHWTRP
Entry points

DFHWTRP

Called by

Many CAVM modules

Description

DFHWTRP makes a trace entry in the CAVM main-memory trace table.

DFHXCP
Entry points

DFHXCPNA

Called by

DFHKCP

Description

DFHXCP processes DFHKC CANCEL, CHAP, RESUME, SUSPEND, and WAIT
macro calls to the transaction manager.

DFHXCPC
Entry points

DFHXCPC

Chapter 117. CICS executable modules 2281

Called by

DFHKCP

Description

DFHXCPC processes DFHKC ATTACH, CHANGE, DEQ, DEQALL, ENQ, and SRB
macro calls to the transaction manager. It receives DFHKC INITIALIZE, REPLACE,
and WAITINIT macro calls to the transaction manager and passes them on to
DFHKCQ.

DFHXCP1
Entry points

DFHXCP1

Called by

DFHXCPC

Description

DFHXCP1 finds a new range of free transaction numbers when the current range
has been used up.

DFHXFP
Entry points

DFHXFPNA

Called by

DFHISP, DFHMIRS

Description

The online data transformation program takes data addressed from a parameter list
(command-level or DL/I), and constructs an FMH suitable for transmission to a
remote ISC or MRO system; DFHXFP also performs the reverse transformation.

DFHXFQ
Entry points

DFHXFQNA

Called by

DFHXEPRH

Description

The batch data transformation program executes in an EXCI region. DFHXFQ takes
data addressed from a DPL parameter list and constructs an FMH suitable for

2282 CICS TS for z/OS 4.1: Diagnosis Reference

passing to the online region; DFHXFQ also performs the reverse transformation.

DFHXFX
Entry points

DFHXFXNA

Called by

DFHISP, DFHMIRS

Description

DFHXFX performs the same logical transformations of function shipping requests
as DFHXFP but in a manner that is optimized for the MRO environment. It is not
used for the transformation of DL/I requests; these are processed by DFHXFP.

DFHXRA
Entry points

DFHXRANA

Called by

DFHAPDM, DFHCSSC, DFHCXCU, DFHDBCR, DFHDBCT, DFHSIC1, DFHSII1,
DFHSTP, DFHTCRP, DFHTDRP, DFHXRCP, DFHXRSP, DFHZNAC, DFHZOPN,
DFHZSLS

Description

DFHXRA is the program that executes the DFHXR macro. It runs under the CICS
TCB in AMODE(24). In general, it uses CICS macros to invoke other services.
Exceptions are MVS LINK to DFHWSSON to sign on to the CAVM, and MVS
LOAD and DELETE for DFHWSMS to sign off from the CAVM, and to initiate
takeover. It invokes global user exit XXRSTAT, which can lead to the abend 208.

DFHXRB
Entry points

DFHXRBNA

Called by

DFHWDSRP, DFHWMQH, DFHWMRD, DFHWSSR, DFHWSTKV

Description

DFHXRB is the XRF notify exit program. Its address is passed to the CAVM when
CICS signs on to the CAVM. It runs under the CAVM TCB in AMODE(31); reacts
to events detected by various CAVM modules; and creates a queue of work
elements (chained from XRWECHN) to be processed by DFHXRSP.

Chapter 117. CICS executable modules 2283

DFHXRC
Entry points

DFHXRCNA

Called by

DFHWSSN2, DFHWSTI

Description

DFHXRC is the CICS-status exit program. Its address is passed to the CAVM when
CICS signs on to the CAVM. It runs under the CAVM TCB in AMODE(31), and
returns the latest CICS-status data to be written to the state management data set.

DFHXRCP
Entry points

DFHXRCNA

Description

The XRF console communication task runs under the CICS TCB in AMODE(24). It
processes MODIFY commands received by CICS during initialization of the
alternate system. It initiates takeover, shuts down the active system, and manages
trace and dump as required.

DFHXRE
Entry points

DFHXRENA

Called by

DFHPCP

Description

The XRF startup program is the entry point for the system task attached by
DFHXRA. It links to DFHXRE, whichever module was indicated by DFHXRA.

DFHXRP
Entry points

DFHXRANA

Called by

Not applicable

2284 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHXRP consists of six object modules link-edited together:
DFHXRA - XRF request processor
DFHXRB - XRF NOTIFY exit program
DFHXRC - XRF inquire status exit program
DFHXRE - XRF startup program
DFHXRF - XRF CAVM sign-off interface
DFHWMS - CAVM message manager service interface.

It is loaded by DFHSIB1.

DFHXRSP
Entry points

DFHXRSNA

Called by

DFHXRA

Description

DFHXRSP is the XRF surveillance program, which runs as a program under a
CICS transaction. It runs under the CICS TCB in AMODE(31); processes the queue
of work elements created by DFHXRB; attaches the catch-up transaction CXCU,
initiates takeover, and shuts down CICS as required; and can issue abends 206 and
207.

DFHXSMN
Entry points

DFHXSMNA

Called by

DFHBSTS, DFHCRNP, DFHDLIDP, DFHDLIRP, DFHEDFP, DFHEIPSE, DFHSII1,
DFHSUSN, DFHSUXS, DFHTACP, DFHZSUP

Description

The security manager is invoked by the DFHSEC macro, and provides an interface
to the external security manager (ESM). DFHXSMN validates the parameters
passed, then calls DFHXSMX as a general-purpose subroutine to invoke the ESM.

DFHXSMX
Entry points

DFHXSMNA

Called by

DFHXSMN

Chapter 117. CICS executable modules 2285

Description

DFHXSMX is the subroutine used by the security manager to invoke the external
security manager (ESM). For resource checking, this routine first issues the MVS
RACROUTE REQUEST=FASTAUTH macro, which calls the ESM in problem state.
All other security functions require the caller to be in supervisor state. For these
functions, and for a failed FASTAUTH call that requires logging, the CICS SVC is
issued under a general purpose subtask, entered by the DFHSK macro, to shield
the main CICS task from any imbedded waits that may occur in the ESM.

DFHXSS
Entry points

DFHXSSNA

Called by

DFHCSVC

Description

DFHXSS invokes the external security manager (ESM) for all functions that need to
be invoked while authorized, except for the EXTRACT functions for which it
passes control to DFHXSSB.

DFHXSSB
Entry points

DFHXSSB

Called by

DFHXSS

Description

This module extracts data from the ESM’s database. DFHXSSB extracts
userid-related data at signon time, and session key information at LU6.2 session
bind time. It uses the MVS RACROUTE REQUEST=EXTRACT macro.

DFHXSWM
Entry points

DFHXSWM

Called by

DFHXSMN

Description

DFHXSWM passes and retrieves messages to and from the XRF alternate system to
see if security initialization is required in the XRF environment.

2286 CICS TS for z/OS 4.1: Diagnosis Reference

DFHXTCI
Entry points

DFHXTCI

Description

DFHXTCI is the transaction invoked when the alternate system begins a takeover.
It examines the TCT to locate the terminals with XRF backup sessions, and queues
these TCTTEs to DFHZSES for the SESSIONC CONTROL=SWITCH command.

DFHXTP
Entry points

DFHXTPNA

Called by

DFHTPS, DFHZTSP, DFHZXRL, DFHZXRT

Description

The terminal sharing transformation program comprises four logical modules
(known as transformers 1 through 4). DFHXTP transforms routing requests into the
LU type 6 format for shipping to a remote CICS address space.

DFHZABD
Entry points

DFHZABD1

Called by

TC CTYPE= requests

Description

If a TC CTYPE request is issued when ZCP has been generated without VTAM
support, DFHZABD is invoked to abend the transaction.

DFHZACT
Entry points

DFHZACT1

Called by

DFHZDSP

Chapter 117. CICS executable modules 2287

Description

The activate scan routine scans the four TCTTE activity queues: activate, log, wait,
and NACP. DFHZACT scans the activate queue for request bits that may be set in
the TCTTEs; for each request, DFHZACT calls the appropriate module. If no
requests are outstanding, the TCTTE is removed from the queue. If the NACP
queue is not empty, DFHZACT attaches DFHZNAC (if not already attached).
Similarly, if the log queue is not empty, DFHZACT attaches DFHZRLG. DFHZACT
scans the wait queue. If automatic resource definition is in the system, DFHZACT
looks for any corresponding work elements. For each work element, DFHZATA is
attached.

DFHZAIT
Entry points

DFHZAIT1

Called by

DFHSIF1

Description

The attach initialization tables routine initializes local tables used by the mainline
task-attach routine, DFHZATT. DFHZAIT generates the page command table from
information supplied by the system initialization table, modifying it for use by
DFHZATT. DFHZAIT also initializes the transaction code delimiter table.

DFHZAND
Entry points

DFHZAND1

Called by

DFHZARQ

Description

The abend control block builder is used to assist in building the transaction abend
block when an abend has occurred in an interconnected system. Its function is to
extract the error sense bytes, and the diagnostic message sent by the other system,
and to copy these into the block. As an initial step in its processing, DFHZAND
acquires storage for the block itself.

DFHZARER
Entry points

DFHZARER

Called by

DFHZARL, DFHZARR, DFHZARRA

2288 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHZARER tidies up after an LU6.2 protocol error or session failure has been
detected. For some errors, it calls DFHZNAC.

DFHZARL
Entry points

DFHZARL1

Called by

DFHACP, DFHCPCBA, DFHCPCLC, DFHCRS, DFHEGL, DFHETL, DFHLUP,
DFHXFP, DFHXTP, DFHZARL, DFHZARM, DFHZERH, DFHZISP, DFHZLUS,
DFHZSUP, DFHZTSP, DFHZXRL, DFHZXRT

Description

DFHZARL is called via the DFHLUC macro, which passes the LU6.2 request in a
parameter list mapped by the DFHLUCDS DSECT. If the request is for a remote
APPC device, DFHZARL passes the parameter list to DFHZXRL for processing.
(APPC is advanced program-to-program communication.) Otherwise, it examines
the parameter list to determine the function required. Most functions are processed
by DFHZARL. However, it calls the following modules as indicated:
DFHZARER - Protocol errors and exceptions
DFHZARR - RECEIVE requests
DFHZARRA - FREE-STORE requests
DFHZERH - Handling FMH7s and negative responses
DFHZISP - ALLOCATE and FREE requests
DFHZRVL - Receiving SNA indicators from VTAM
DFHZSDL - Sending data to VTAM.

It also manages the logical receive buffer pointers TCTERBLA and TCTERBLL in a
consistent manner with the physical receive buffer pointers TCTERBA and
TCTERBDL, as (address, length) pairs.

DFHZARM
Entry points

DFHZARM1

Called by

DFHZARQ, DFHETL, DFHZISP

Description

DFHZARM handles DFHTC macros for LU6.2 sessions.

DFHZARQ
Entry points

DFHZARQ1

Chapter 117. CICS executable modules 2289

Called by

DFHETC, DFHTC macro

Description

The application request interface module analyzes the terminal control request
from the application. For a VTAM terminal, it sets the appropriate flags and calls
the required module or adds the TCTTE to the activate chain.

DFHZARR
Entry points

DFHZARR

Called by

DFHZARL

Description

DFHZARR controls the receive function for LU6.2 application requests. It calls
DFHZARRC to decide what to process next, or whether it is necessary to call its
inline subroutine DFHZARR1 to receive more data. Then it processes the returned
item, and decides whether the receive is complete. If the receive is not complete,
DFHZARR loops, calling DFHZARRC and processing the returned item, until
enough data has been received. DFHZARR uses the inline subroutine DFHZARR0
and the DFHZARRA module to control various receive buffers. It also uses
DFHZARRF to receive FMH7s and negative responses, DFHZUSR to control the
conversation state, and the inline subroutine DFHZARR1 to handle the type of
receive and how much data is to be received.

DFHZARR0 is responsible for updating the logical buffer pointers TCTERBLA and
TCTERBLL, shifting up data in the LU6.2 receive buffer, and resetting associated
indicators, for example, TCTECCDR in the TCTTE LUC extension.

DFHZARR1 is responsible for setting fields TCTEMINL and TCTEMAXL in the
TCTTE LUC extension to inform DFHZRVL how much data to receive and
whether the request is a receive immediate or a receive and wait. DFHZARR1 calls
DFHZARR0 to shift up data in the LU6.2 receive buffer, and then calls DFHZRVL
to receive RUs from VTAM by placing requests on the active chain.

DFHZARRA
Entry points

DFHZARRA

Called by

DFHZARL, DFHZARR

2290 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHZARRA controls all functions concerned with the LU6.2 application receive
buffer. These include GETMAIN and FREEMAIN of buffers, copying data into a
buffer, and updating the pointer to the next free slot.

DFHZARRC
Entry points

DFHZARRC

Called by

DFHZARR

Description

DFHZARRC is responsible for examining what has been received from VTAM on a
particular session (for example, data, PS headers, FMH7s, and indicators), and for
deciding what should be processed next on behalf of the application. The result is
returned to DFHZARR.

DFHZARRF
Entry points

DFHZARRF

Called by

DFHZARR

Description

DFHZARRF receives LU6.2 FMH7s and negative responses. It calls the DFHZARR0
subroutine to shift up data in the LU6.2 receive buffer, and then calls DFHZERH.

DFHZASX
Entry points

DFHZASX1

Called by

VTAM

Description

The asynchronous command exit module is called by VTAM if an asynchronous
command is received. The only such commands are request shutdown, quiesce at
end of chain, release quiesce, and signal. DFHZASX sets up the TCTTE
appropriately and returns control to VTAM.

Chapter 117. CICS executable modules 2291

DFHZATA
Entry points

DFHZATA

Called by

DFHZACT

Description

The autoinstall program runs as the CATA transaction and performs operations
necessary to INSTALL autoinstallable terminals. It requests information from a user
program where appropriate.

DFHZATD
Entry points

DFHZATD

Called by

DFHZACT, DFHZNAC

Description

The autoinstall delete program runs as the CATD transaction and performs
operations necessary to DELETE autoinstalled terminals. It requests information
from a user program where appropriate.

DFHZATDX
Entry points

DFHZATDX

Called by

DFHZATA, DFHZATD

Description

DFHZATDX is the user program for autoinstall. It is called when:
v An autoinstall INSTALL is in progress
v An autoinstall DELETE has just completed
v An autoinstall INSTALL has failed.

For INSTALL, DFHZATDX selects a model name and the corresponding
TRMIDNT to be used by the terminal control builder program (DFHTBSxx). This
program can be used as a model for a user program.

2292 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZATI
Entry points

DFHZATI1

Called by

DFHZACT

Description

The automatic task initiation module checks for stress conditions, calls DFHZSIM if
the node is not in session, acquires an RPL if necessary, and issues a conditional
DFHKC TYPE=AVAIL macro. DFHZATI initiates bid protocols to decide whether
the LU is available.

DFHZATMD
Entry points

DFHZATMD

Called by

DFHZATMF

Description

This program deletes all remote terminal definitions that are flagged (by
DFHZATMF) for deletion.

DFHZATMF
Entry points

DFHZATMF

Called by

Description

This program flags remote terminals for Mass-deletion (by DFHZATMD). It is a
part of the transaction routing component, and is started to flag all skeletons that
have been unused for more than the terminal latency period for deletion.

DFHZATR
Entry points

DFHZATR

Called by

DFHZATR, DFHZXRE0

Chapter 117. CICS executable modules 2293

Description

The autoinstall restart program runs as the CATR transaction at CICS startup after
the time period specified in the AIRDELAY parameter. DFHZATR scans all
autoinstalled terminals, and causes the CATD transaction to be called to delete any
autoinstalled terminals that have not been used during the AIRDELAY interval.

DFHZATS
Entry points

DFHZATS

Called by

DFHZTSP, DFHCRS

Description

The remote autoinstall program runs as the following four transactions:

CITS The remote autoinstall function that is attached by DFHZTSP.

CDTS The remote delete function that is attached by DFHZTSP or DFHCRS.

CFTS The remote reset function that flags terminals for mass deletion after a
CICS restart and is attached by DFHZTSP or DFHCRS.

CMTS The mass delete function of remote terminals that is attached by DFHZATS
transaction CFTS if it finds any terminals for deletion.

DFHZATT
Entry points

DFHZATT1

Called by

DFHZACT

Description

The task attach module checks for stress conditions, allocates an RPL if necessary,
and determines the task to be attached either from the data, or from the TCTTE (if
the previous transaction specified TRANID), or from the AID (for a 3270).
DFHZATT also checks for paging commands (having been modified by DFHZAIT).
Finally a conditional ATTACH is issued. The module is applicable for VTAM, SRL,
and MVS console support.

DFHZBAN
Entry points

DFHZBAN

2294 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHZOPN

Description

The terminal control bind analysis program checks that a bind is valid and
supportable and, if requested, sets the TCTTE information that supports the
session parameters.

DFHZBKT
Entry points

DFHZBKT1

Called by

DFHZSDL, DFHZSLX, DFHZRLX, DFHZLUS

Description

DFHZBKT maintains the bracket state for LU6.2.

DFHZBLX
Entry points

DFHZBLX

Called by

DFHZSCX

Description

DFHZBLX is the part of of SCIP exit which processes LU6.2 binds. It matches a
TCTTE to the BIND and schedules DFHZOPN to complete the BIND process. This
module returns to VTAM.

DFHZCA
Entry points

DFHZCANA

Called by

See component submodules

Description

DFHZCA is the name of the load module created when the following modules are
link-edited together:

Chapter 117. CICS executable modules 2295

DFHZACT - Activate scan
DFHZFRE - FREEMAIN request
DFHZGET - GETMAIN request
DFHZQUE - Chaining
DFHZRST - RESETSR.

DFHZCB
Entry points

DFHZCBNA

Called by

See component submodules

Description

DFHZCB is the name of the load module created when the following modules are
link-edited together:
DFHZATI

Automatic task initiation
DFHZDET

Task detach
DFHZHPSR

HPO send/receive
DFHZLRP

Logical record presentation
DFHZRAC

Receive-any completion
DFHZRAS

Receive-any slowdown processing
DFHZRVS

Receive specific
DFHZRVX

Receive specific exit
DFHZSDR

Send response
DFHZSDS

Send DFSYN
DFHZSDX

Send DFSYN data exit
DFHZSSX

Send DFSYN exit
DFHZUIX

User input exit

DFHZCC
Entry points

DFHZCCNA

Called by

See component submodules

2296 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHZCC is the name of the load module created when the following modules are
link-edited together:
DFHZARER

LU6.2 protocol error and exception handler
DFHZARL

LU6.2 application request logic
DFHZARM

LU6.2 migration logic
DFHZARR

LU6.2 application receive request logic
DFHZARRA

LU6.2 application receive buffer support
DFHZARRC

LU6.2 classify what next to receive
DFHZARRF

LU6.2 receive FMH7 and ER1
DFHZBKT

LU6.2 bracket state machine
DFHZCHS

LU6.2 chain state machine
DFHZCNT

LU6.2 contention state machine
DFHZCRT

LU6.2 RPL_B state machine
DFHZRLP

LU6.2 post-VTAM receive logic
DFHZRLX

LU6.2 receive exit program
DFHZRVL

LU6.2 pre-VTAM receive logic
DFHZSDL

LU6.2 send logic
DFHZSLX

LU6.2 send exit program
DFHZSTAP

MRO or LU6.2 conversation state determination
DFHZUSR

LU6.2 conversation state machine

DFHZCHS
Entry points

DFHZCHS1

Called by

DFHZRLX, DFHZSDL, DFHZSLX

Description

DFHZCHS maintains the chain state for LU6.2.

Chapter 117. CICS executable modules 2297

DFHZCLS
Entry points

DFHZCLS1

Called by

DFHZACT

Description

The close destination module obtains an RPL if necessary, issues CLSDST to
VTAM, and checks if it was accepted. The CLSDST exit handles the completion of
the request. DFHZCLS performs a normal closedown procedure according to the
LU type (for example, LU6 sends SBI and BIS). In the case of an abnormal
closedown, DFHZCLS performs immediate termination, using CLSDST or
TERMSESS commands. If the terminal was automatically defined, it is put out of
service.

DFHZCLX
Entry points

DFHZCLX1

Called by

VTAM

Description

The close destination exit module receives control from VTAM when a CLSDST or
TERMSESS request completes. If the CLSDST or TERMSESS was successful,
DFHZCLX cleans up TCTTE and returns to VTAM; otherwise it enqueues the
TCTTE to DFHZNAC and then returns to VTAM.

DFHZCNA
Entry points

DFHZCNA1

Called by

DFHZDSP

Description

The system console activity control program is responsible for CICS system
requests. It performs the following functions:
v Shutdown—when all other access method terminals have been quiesced,

quiesces console support, allowing CICS to terminate.
v Resume—resumes tasks waiting on read request when they are completed.
v Detach—releases all TIOAs associated with a completed task.

2298 CICS TS for z/OS 4.1: Diagnosis Reference

v Attach—passes the data associated with a MODIFY command (in a TIOA
attached to a console TCTTE) to DFHZATT to create a task.

v ATI—determines whether a console TCTTE is available for automatic task
initiation.

DFHZCNR
Entry points

DFHZCNR1

Called by

DFHZARQ

Description

The system console application request program performs READ, WRITE, and
CONVERSE operations to an MVS system console that is used as a terminal.

DFHZCNT
Entry points

DFHZCNT1

Called by

DFHZLUS, DFHZRLX

Description

DFHZCNT maintains the contention state for LU6.2.

DFHZCP
Entry points

DFHZCPNA

Called by

See component submodules

Description

DFHZCP is the name of the load module created when the following modules are
link-edited together:
DFHZARQ - Application request handler
DFHZATT - Attach routine
DFHZCNA - System console activity control
DFHZDSP - Dispatcher
DFHZISP - Allocate/free/point routine
DFHZSUP - Startup task
DFHZUCT - 3270 uppercase translation.

Chapter 117. CICS executable modules 2299

DFHZCQ
Entry points

DFHZCQ

Called by

DFHAMTP, DFHCRS, DFHQRY, DFHTCRP, DFHWKP, DFHZATA, DFHZATD,
DFHZTSP, DFHZXCU

Description

DFHZCQ is the control program for all requests for the dynamic add and delete of
terminal control table entries. It is called by resource definition online (RDO) to:
v Cold start group lists
v Cold or warm start nonmigrated VTAM resources
v Dynamically install using the CEDA transaction.

The main subroutines of DFHZCQ are:
DFHZCQCH - Catalog a TCT element
DFHZCQDL - Delete
DFHZCQIN - Initialize DFHZCQ
DFHZCQIQ - Inquire about TCTTE
DFHZCQIS - Install TCTTE
DFHZCQIT - Add macro-generated TCTTE
DFHZCQRS - Restore ZC resource.

DFHZCQDL
Entry points

DFHZCQDL

Called by

DFHZCQ00, DFHZNAC, RDO

Description

DFHZCQDL dynamically deletes a TCT entry when the entry is quiesced. This
module is part of DFHZCQ.

DFHZCQIN
Entry points

DFHZCQIN

Called by

DFHTCRP

2300 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHZCQIN initializes DFHZCQ for all its operations. This module is part of
DFHZCQ.

DFHZCQIQ
Entry points

DFHZCQIQ

Called by

DFHZTSP

Description

DFHZCQIQ obtains the parameters for a TCT resource and is called by DFHZTSP
in the terminal-owning node as part of the process of shipping a TCT definition to
a remote system. This module is part of DFHZCQ.

DFHZCQIS
Entry points

DFHZCQIS

Description

DFHZCQIS installs a TCTTE. If the resource already exists, the old resource is
deleted.

DFHZCQIT
Entry points

DFHZCQIT

Description

DFHZCQIT adds a macro-generated TCTTE to a CICS system.

DFHZCQRS
Entry points

DFHZCQRS

Description

During emergency restart or warm start, DFHTCRP restores terminal control
resources to the state they were in before the last shutdown of CICS, using the
restart data set.

Chapter 117. CICS executable modules 2301

DFHZCRQ
Entry points

DFHZCRQ1

Called by

TC CTYPE requests

Description

The CTYPE request module analyzes DFHTC CTYPE commands, and calls or links
to the appropriate send module.

DFHZCRT
Entry points

DFHZCRT1

Called by

DFHZACT, DFHZARL, DFHZFRE, DFHZNAC, DFHZRAC, DFHZRLP, DFHZRVL,
DFHZSDL, DFHZSHU, DFHZSTU, DFHZTPX

Description

DFHZCRT maintains the RPL_B state for LU6.2.

DFHZCUT
Entry points

DFHZCUT

Called by

DFHCSSC, DFHLUP, DFHSNAT, DFHTCPLR

Description

DFHZCUT manages the persistent verification signed-on-from list, also known as
the local userid table (LUIT). There is one LUIT per connection supporting
persistent verification.

DFHZCW
Entry points

DFHZCWNA

Called by

See component submodules

2302 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHZCW is the name of the load module created when the following modules are
link-edited together:
DFHZERH - LU6.2 error program
DFHZEV1 - LU6.2 BIND security
DFHZEV2 - LU6.2 BIND security
DFHZLUS - LU6.2 session management program.

DFHZCX
Entry points

DFHZCXNA

Called by

See component submodules

Description

DFHZCX is the name of the load module created when the following modules are
link-edited together:
DFHZABD - Abend routine for incorrect requests
DFHZAND - Build TACB before issuing PC abends
DFHZCNR - System console application request
DFHZIS1 - ISC or IRC syncpoint
DFHZIS2 - IRC internal requests
DFHZLOC - Locate TCTTE and ATI requests
DFHZSTU - Terminal control status change.

DFHZCXR
Entry points

DFHZCXRA

Called by

See component submodules

Description

DFHZCXR is the generic name allocated to a composite module that is not called
by any other code. It includes the following transaction-routing related modules:
DFHZTSP - Terminal-sharing program
DFHZXRL - Routes LU6.2 commands to TOR
DFHZXRT - Receives LU6.2 commands from AOR.

DFHZCY
Entry points

DFHZCYNA

Chapter 117. CICS executable modules 2303

Called by

See component submodules

Description

DFHZCY is the name of the load module created when the following modules are
link-edited together:
DFHZASX

DFASY exit
DFHZDST

SNA-ASCII translation
DFHZLEX

LERAD exit
DFHZLGX

LOGON exit
DFHZLTX

LOSTERM exit
DFHZNSP

Network services exit
DFHZOPA

Open VTAM ACB
DFHZRRX

Release request exit
DFHZRSY

Resynchronization
DFHZSAX

Send synchronous command exit
DFHZSCX

SESSION control input exit
DFHZSDA

Send synchronous command
DFHZSES

SESSIONC
DFHZSEX

SESSIONC exit
DFHZSHU

Shutdown VTAM
DFHZSIM

SIMLOGON
DFHZSIX

SIMLOGON exit
DFHZSKR

Send response to command
DFHZSLS

Set logon start
DFHZSYN

Handle CTYPE=SYNC or CTYPE=RECOVER request
DFHZSYX

SYNAD exit
DFHZTPX

TPEND exit
DFHZTRA

Create ZCP or VIO trace requests
DFHZXRC

XRF session state data analysis

2304 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZCZ
Entry points

DFHZCZNA

Called by

See component submodules

Description

DFHZCZ is the name of the load module created when the following modules are
link-edited together:
DFHZCLS - CLSDST
DFHZCLX - CLSDST exit
DFHZCRQ - Command request
DFHZEMW - Error message writer
DFHZOPN - OPNDST
DFHZOPX - OPNDST exit
DFHZRAQ - Read-ahead queuing
DFHZRAR - Read-ahead retrieval
DFHZTAX - Turnaround exit.

DFHZDET
Entry points

DFHZDET1

Called by

DFHZACT, DFHZISP

Description

The task detach module receives control when a detach request is issued by
DFHZISP. If a WRITE is pending (deferred write or any write), the SEND routine
is called. If the SEND cannot complete, the DETACH request is left on the activate
queue. If requests are queued then DFHZACT drives DFHZDET when the
operation is complete. If the node is in between bracket state, an end bracket is
sent.

DFHZDSP
Entry points

DFHZDSP1

Called by

DFHSII1

Description

The dispatcher module handles the dispatching of modules for execution, and
gives control to VTAM modules of ZCP using DFHZACT.

Chapter 117. CICS executable modules 2305

DFHZDST
Entry points

DFHZDST1

Called by

DFHZRVX, DFHZSDS

Description

The data stream translator module translates data between EBCDIC and ASCII
code while that data is being sent and received on VTAM sessions.

DFHZEMW
Entry points

DFHZEMW1

Called by

DFHACP, DFHZDET, DFHZNAC, DFHZRAC

Description

The error message writer module handles all requests for error messages on VTAM
supported terminals/LUs. According to the request flags, it:
v Sends a negative response
v Purges unprocessed inbound data until EOC or CANCEL is received
v Sends an error message.

DFHZERH
Entry points

DFHZERH1

Called by

DFHZARL, DFHZARRF

Description

DFHZERH handles the sending and receiving of LU6.2 FMH7s and negative
responses. It also manages the logical receive buffer pointers TCTERBLA and
TCTERBLL in a consistent manner with the physical receive buffer pointers
TCTERBA and TCTERBDL, as (address, length) pairs.

DFHZEV1
Entry points

DFHZEV11

2306 CICS TS for z/OS 4.1: Diagnosis Reference

Description

DFHZEV1 is the LU6.2 bind-time security encryption validation program, part 1.

DFHZEV2
Entry points

DFHZEV21

Description

DFHZEV2 is the LU6.2 bind-time security encryption validation program, part 2.

DFHZFRE
Entry points

DFHZFRE1

Called by

DFHZACT, DFHZEMW, DFHZCLS, DFHZCLX

Description

The FREEMAIN module is used to free storage (RPLs, NIBs, bind areas, TIOAs,
buffer lists, LUC send/receive buffers, and extract logon data) acquired by ZC
modules. Some storage is also freed by other ZC modules.

DFHZGET
Entry points

DFHZGET1

Called by

DFHZACT, DFHZARL, DFHZATI, DFHZATT, DFHZCLS, DFHZISP, DFHZOPN,
DFHZRAC, DFHZRST, DFHZRSY, DFHZRVL, DFHZRVS, DFHZSDA, DFHZSDL,
DFHZSDR, DFHZSDS, DFHZSES, DFHZSKR

Description

The GETMAIN module is used to acquire an RPL, NIB, bind area, TIOA, buffer
list, or LUC send/receive buffer. DFHZGET also sets up the dynamic NIB using
the information in the NIB descriptor block. Normally, when a ZC module requires
some of the above storage, it invokes DFHZGET to obtain the storage; if this is
unsuccessful, it may queue the request, and then DFHZACT calls DFHZGET on
behalf of the caller.

DFHZHPRX
Entry points

DFHZHPNA

Chapter 117. CICS executable modules 2307

Called by

DFHKCSP (via DFHZHPSR and DFHKCP)

Description

In authorized path SRB mode, DFHZHPRX issues VTAM EXECRPL.

DFHZHPSR
Entry points

DFHZHPS1

Called by

DFHZRVS, DFHZSDS

Description

DFHZHPSR is the SEND and RECEIVE module for the HPO environment.

DFHZISP
Entry points

DFHZISP1

Called by

DFHISP, DFHKCP

Description

The intersystem program services ISC requests to free, or point to, a particular
TCTTE within a specified system, or to allocate a TCTTE within a specified system.
DFHZISP also handles ATI requests, and checks for a terminal time-out.

DFHZIS1
Entry points

DFHZIS11

Description

DFHZIS1 handles the transmissions control CTYPE requests of Prepare, Syncpoint
Request (SPR), Commit, and Abort. Each request is translated into the appropriate
ISC/IRC action and is transmitted to the connected system.

DFHZIS2
Entry points

DFHZIS21

2308 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHZARQ, DFHZIS1

Description

The intersystem program provides services for CICS system code that wants to use
intersystem or interregion (IRC) function requests:
RECEIVE

Is invoked when DFHCRNP gets input data as a result of a ‘switch first’
SVC request.

IOR The IRC input/output routine. This interfaces with the IRC SVC in order
to send data to the other end of the connection, or await data from there.

GETDATA
Is used to fetch input data into a TIOA.

DISCONNECT
Disconnects a given IRC link.

STOP Quiesces interregion activity, either for connections to a given system, or
for the whole of IRC.

LOGOFF
Issues a logoff request to the IRC SVC. This completes IRC activity for this
CICS system.

OPERATIVE
Allows connections to be made to a given system.

RECABRT
processes input abend FMHs (FMH07).

DFHZLEX
Entry points

DFHZLEX1

Called by

VTAM

Description

The logical error address (LERAD) exit module receives control from VTAM when
a logical error is detected. Logical errors are usually the result of an incorrectly
defined terminal table.

DFHZLGX
Entry points

DFHZLGX1

Called by

VTAM

Chapter 117. CICS executable modules 2309

Description

The logon exit module receives control from VTAM when a terminal logs on to the
network. DFHZLGX scans the CICS NIBs and, if a match is found, sets an
OPNDST request in the corresponding TCTTE and places it on the activate queue.
If no match is found, DFHZLGX defines a terminal automatically, if possible, by
allocating an autodefine work element which holds the CINIT_RU. The work
element is then queued for activate scan processing. Otherwise, a dummy TCTTE
is placed on the NACP queue to write an error message.

DFHZLOC
Entry points

DFHZLOC1

Called by

DFHTC CTYPE=LOCATE

Description

The locate module provides two functions:
v Locates specific TCTTEs, TCTSEs, and SESSIONs in the TCT
v Locates LDC information.

DFHZLRP
Entry points

DFHZLRP1

Called by

DFHZARQ, DFHZSUP

Description

The logical record presentation module handles deblocking of input data. The
delimiters that are recognized are new line (NL), interchange record separator
(IRS), and transparent (TRN). One logical record is returned for each DFHTC
TYPE=READ request.

DFHZLTX
Entry points

DFHZLTX1

Called by

VTAM

2310 CICS TS for z/OS 4.1: Diagnosis Reference

Description

The lost terminal (LOSTERM) exit module receives control when VTAM detects a
loss of contact with a node. There are three possible return codes set by VTAM on
entry to this routine:
node lost, recovery in progress

The terminal is placed out of service with no further action taken.
node lost, recovery successful

The TCTTE is queued to the NACP queue with a ‘successful’ error code
set; NACP issues a CLSDST, schedules a SIMLOGON, and issues an
information message.

node lost, no recovery or unsuccessful recovery
The TCTTE is queued to the NACP queue with an ‘unsuccessful’ error
code set; NACP issues a CLSDST and also the appropriate message.

DFHZLUS
Entry points

DFHZLUS1

Description

DFHZLUS handles session management for LU6.2 sessions.

DFHZNAC
Entry points

DFHZNANA

Called by

DFHZACT

Description

The node abnormal condition program is attached by DFHZACT when an error in
communication with a logical unit occurs. DFHZNAC performs the following
functions:
v Analyzes abnormal conditions
v Sends appropriate messages to the CSNE transient data destination
v Invokes the user-supplied (or sample) node error program
v Takes the appropriate actions resulting from the defaults which may have been

modified by the node error program.

DFHZNAC consists of the following copybooks:
DFHZNCA - Primary error action table and exits
DFHZNCE - Take action routine
DFHZNCS - Sense decode routine
DFHZNCV - VTAM return code routine.

Chapter 117. CICS executable modules 2311

DFHZNEP
Entry points

DFHZNENA

Called by

DFHZNAC

Description

The user-replaceable node error program provides:
v A general environment within which it is easy for users to add their own error

processors
v Fundamental error recovery actions for a VTAM 3270 network
v The default NEP where the user selects a NEP at system initialization.

DFHZNSP
Entry points

DFHZNSP1

Called by

VTAM

Description

The network service program is invoked when VTAM detects a network service
error; for example, when attempting to connect two nodes together, or when the
link between two nodes is broken unexpectedly. This module receives control from
the VTAM NSEXIT.

DFHZOPA
Entry points

DFHZOPA1

Called by

DFHEIQVT

Description

The open VTAM ACB module is invoked by DFHEIQVT when the master terminal
command VTAM OPEN is issued. The ACB is opened and DFHZSLS is called to
accept logon requests.

2312 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZOPN
Entry points

DFHZOPN1

Called by

DFHZACT

Description

The open destination module acquires storage for an RPL and NIB and BIND areas
if the TCTTE does not have these resources already, and sets up the BIND image if
required. DFHZOPN then issues a VTAM OPNDST macro (or OPNSEC macro if
secondary, to respond to an incoming BIND) to establish a session between CICS
and the remote LU.

DFHZOPX
Entry points

DFHZOPX1

Called by

VTAM

Description

The open destination exit module receives control from VTAM on completion of
the OPNDST macro in DFHZOPN. If the OPNDST was successful, it indicates in
the TCTTE that SDT (start data transfer) is to be sent and checks whether a “good
morning” message should be triggered. It then returns to VTAM.

DFHZQUE
Entry points

DFHZQUE1

Called by

All ZCP exits called by VTAM, DFHTCQUE macro

Description

The queue manipulation module processes all requests to add or remove a TCTTE
to or from a ZCP activate queue. Additions to the activate queue made by mainline
modules use compare-and-swap (CS), because an exit routine may also be adding
to the queue asynchronously.

Chapter 117. CICS executable modules 2313

DFHZRAC
Entry points

DFHZRAC1

Called by

DFHZDSP

Description

The receive-any completion module processes the completion of receive-any
requests, sets up the TIOA to be passed to attach, and reissues the RECEIVE_ANY
macro.

DFHZRAQ
Entry points

DFHZRAQ1

Called by

DFHZARQ, DFHZSYN

Description

The read-ahead queuing module is used to save the inbound data stream in
temporary storage when an interlock is caused by both the host and the terminal
wanting to send data at the same time.

DFHZRAR
Entry points

DFHZRAR1

Called by

DFHZARQ

Description

The read-ahead retrieval module is called to retrieve data previously saved in
temporary storage by DFHZRAQ.

DFHZRAS
Entry points

DFHZRAS1

Called by

DFHZRAC

2314 CICS TS for z/OS 4.1: Diagnosis Reference

Description

The receive-any slowdown processing module issues RECEIVE SPEC NQs on
LU6.2 sessions for connections and modegroups for which there are ALLOCATE
requests queued. This is only done on sessions considered most likely to lead to
freeing a “flooding” situation that occurred when LU6.2 connections were
reestablished after a failure.

DFHZRLG
Entry points

DFHZRLNA

Called by

DFHZACT

Description

The response logger program logs responses received for protected data sent to an
APB. DFHZRLG processes TCTTEs on the log queue when attached by DFHZACT.

DFHZRLP
Entry points

DFHZRLP1

Called by

DFHZDSP

Description

DFHZRLP handles the completion of LU6.2 RECEIVE requests, using the receive
RPL addressed by field TCTERPLB in the TCTTE LUC extension. It also manages
the logical receive buffer pointers TCTERBLA and TCTERBLL in a consistent
manner with the physical receive buffer pointers TCTERBA and TCTERBDL, as
(address, length) pairs.

DFHZRLX
Entry points

DFHZRLX1

Called by

VTAM

Description

DFHZRLX is a VTAM exit routine that queues the completed RPL for (post-VTAM)
processing by DFHZRLP.

Chapter 117. CICS executable modules 2315

DFHZRRX
Entry points

DFHZRRX1

Called by

VTAM

Description

The release request exit module receives control from VTAM when another
application program has requested connection to a terminal currently connected to
CICS. If the terminal is not busy, a CLSDST request is queued to the activate chain.
Otherwise the release request indicator is set and the request is processed later by
module DFHZDET.

DFHZRSP
Entry points

DFHZRSNA

Description

The resynchronization send program performs 3614-dependent actions and is also
used to retransmit committed output messages. The message is retrieved from
temporary storage if necessary.

DFHZRST
Entry points

DFHZRST1

Called by

DFHZACT, DFHZATI, DFHZCRQ, DFHZDET, DFHZEMW, DFHZERH,
DFHZNAC, DFHZRAC, DFHZRSY, DFHZSTU

Description

The RESETSR module changes the mode of a session with a terminal and cancels
unsatisfied RECEIVE requests. The mode that is set can be Continue Any (CA) or
Continue Specific (CS) and RTYPE=DFSYN, DFASY, or RESP.

DFHZRSY
Entry points

DFHZRSY1

Called by

DFHZACT

2316 CICS TS for z/OS 4.1: Diagnosis Reference

Description

The resynchronize module resynchronizes CICS and other nodes of the network.
DFHZRSY checks whether inbound and outbound sequence numbers are valid.

DFHZRVL
Entry points

DFHZRVL1

Called by

DFHZARL, DFHZARRL

Description

DFHZRVL processes RECEIVE commands for LU6.2 sessions, using the receive
RPL (RPL_B) addressed by field TCTERPLB in the TCTTE LUC extension. The
processing state of the receive RPL is held in the RPL_B state machine field
TCTERPBS, also in the TCTTE LUC extension.

DFHZRVS
Entry points

DFHZRVS1

Called by

DFHZACT

Description

The receive specific module initiates a DFSYN receive specific to obtain the next
logical record from a node when a user application issues a RECEIVE command.

DFHZRVX
Entry points

DFHZRVX1

Called by

VTAM

Description

The receive specific exit module receives control from VTAM when a receive
specific is completed. If the data received is too long for the TIOA provided, the
overlength data flag is turned on in the TCTTE and the TCTTE is put back on the
activate chain. Otherwise, the response is checked and marked in the TCTTE. The
data length is set in the TIOA and the FMH is removed.

Chapter 117. CICS executable modules 2317

DFHZSAX
Entry points

DFHZSAX1

Called by

VTAM

Description

The send DFASY exit module receives control from VTAM when an asynchronous
command has completed. It places the TCTTE on the NACP queue if recovery is
needed.

DFHZSCX
Entry points

DFHZSCX1

Called by

VTAM

Description

The SCIP exit module is entered whenever the following asynchronous commands
are received:
v Non-LU6.2 BIND (as secondary)
v UNBIND (as secondary)
v STSN (as secondary)
v Clear (as secondary)
v SDT (as secondary)
v Request recovery (as primary).

The module correlates BINDs to a TCTTE and schedules DFHZOPN to complete
the BIND process. For the other commands, it takes appropriate action and then
schedules DFHZNAC using the NACP queue. This module calls DFHZBLX to
process LU6.2 binds.

DFHZSDA
Entry points

DFHZSDA1

Called by

DFHZACT, DFHZSDS

2318 CICS TS for z/OS 4.1: Diagnosis Reference

Description

The send data flow asynchronous module handles asynchronous command
requests. It ensures that an RPL is allocated, primes the RPL for the requested
command, and issues the VTAM asynchronous send macro.

DFHZSDL
Entry points

DFHZSDL1

Called by

DFHZARL

Description

DFHZSDL processes SEND commands for LU6.2 sessions, using the RPL addressed
by field TCTERPLA in the TCTTE.

DFHZSDR
Entry points

DFHZSDR1

Called by

DFHZACT, DFHZCRQ, DFHZDET, DFHZRVS, DFHZSDA, DFHZSDS

Description

The send response module sends responses to nodes when a synchronization
request for a terminal is made and a response is outstanding from a previous
operation. If errors occur during task initiation, this module is responsible for the
negative response.

DFHZSDS
Entry points

DFHZSDS1

Called by

DFHZACT, DFHZARQ, DFHZATI, DFHZATT, DFHZDET

Description

The send data synchronous module sets up and issues the appropriate VTAM send
macro for requests of “send data” or an SNA synchronous command.

Chapter 117. CICS executable modules 2319

DFHZSDX
Entry points

DFHZSDX1

Called by

VTAM

Description

The send data synchronous exit module receives control from VTAM when a
SEND request is complete. It checks the RPL for successful completion of the
message sent and takes appropriate action.

DFHZSES
Entry points

DFHZSES1

Called by

DFHZACT, DFHZRSY

Description

The session control module is entered whenever a session control command is
requested by CICS. It sets up and issues the VTAM SESSIONC command.

DFHZSEX
Entry points

DFHZSEX1

Called by

VTAM

Description

The SESSIONC exit module receives control from VTAM when a SESSIONC
command has completed. If the command was successful, it turns off the
corresponding flags and enqueues the TCTTE on the activate chain. If the
completion was not successful, the TCTTE is placed on the NACP queue for
recovery processing.

DFHZSHU
Entry points

DFHZSHU1

2320 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHZDSP

Description

The close VTAM ACB module is invoked whenever CICS and VTAM are being
uncoupled. This may be as a result of DFHZTPX being driven as the result of a
VTAM halt command or the issue of the master terminal command SET
VTAM,CLOSE|IMMCLOSE. The status of all sessions is checked and, when all are
inactive, the ACB is closed.

DFHZSIM
Entry points

DFHZSIM1

Called by

DFHZACT

Description

The simulate logon module is entered to issue a VTAM SIMLOGON or REQSESS
(if secondary) request to place a node in session without the operator having to
logon. LU6.2 can be selected by mode name.

DFHZSIX
Entry points

DFHZSIX1

Called by

VTAM

Description

Whenever a SIMLOGON or REQSESS command has been completed, this exit
routine is scheduled by VTAM. On successful completion, it turns off the
SIMLOGON requested flag and enqueues the TCTTE or TCTME on the activate
chain or, if NACP is required, for NACP processing.

DFHZSKR
Entry points

DFHZSKR1

Called by

DFHZACT

Chapter 117. CICS executable modules 2321

Description

The send command response module sends responses to VTAM commands
including response to BIND, STSN, and SDT. A positive or negative response can
be sent. The module is for secondary LU support only.

DFHZSLS
Entry points

DFHZSLS1

Called by

DFHZDSP, DFHZOPA

Description

The SETLOGON start module issues SETLOGON to cause VTAM to accept
automatic logon requests, and issues the initial RECEIVE ANYs for RPLs in the
receive-any pool. DFHZSLS also examines the SIT to determine whether autodefine
is used. If it is, the appropriate system initialization parameters are copied to the
TCT prefix.

DFHZSLX
Entry points

DFHZSLX1

Called by

VTAM

Description

DFHZSLX is a VTAM exit routine that handles the completion of LU6.2 SEND
requests.

DFHZSSX
Entry points

DFHZSSX1

Called by

VTAM

Description

The send data flow synchronous exit module receives control when the send of a
DFSYN command has been completed.

2322 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZSTAP
Entry points

DFHZSTA1

Called by

DFHEGL, DFHETC, DFHETL

Description

DFHZSTAP determines the state of an MRO or LU6.2 conversation from an
application viewpoint.

DFHZSTU
Entry points

DFHZSTU1

Called by

DFHTC CTYPE=STATUS, DFHEIQMT, DFHEIQSC, DFHEIQST

Description

DFHZSTU changes the status of TCTTEs and TCTSEs. It can change the following
statuses:
v Inservice
v Outservice
v Intlog | No intlog
v Page | Autopage
v ATI | NATI.

DFHZSUP
Entry points

DFHZSUP1

Called by

DFHKCP

Description

The startup task module is the entry point for all terminal-related tasks. DFHZSUP
performs the following functions:
v Sets up the TCTTE status
v Performs security checking
v Performs logging of the TCTTE status and input TIOA
v Performs PCT option checking

Chapter 117. CICS executable modules 2323

v Passes control to transaction program, for example, user application, DFHACP,
DFHAPRT.

DFHZSYN
Entry points

DFHZSYN1

Called by

DFHDBP

Description

DFHZSYN handles CTYPE=SYNC and RECOVER requests. For protected message
support, DFHSPP issues CTYPE=SYNC to clear protected messages. For RECOVER
requests, DFHZSYN ensures that no further I/O is issued to that session, and that
UNBIND flows.

DFHZSYX
Entry points

DFHZSYX1

Called by

VTAM

Description

The SYNAD exit module receives control from VTAM when a catastrophic error is
encountered. DFHZSYX determines the type of error and the appropriate action to
be taken, and schedules NACP using the NACP queue to complete the recovery
processing.

DFHZTAX
Entry points

DFHZTAX1

Called by

VTAM

Description

The turnaround exit module is called by VTAM on completion of the SEND
operation initiated by DFHZRVS in order to perform a turnaround in flip-flop
protocol.

2324 CICS TS for z/OS 4.1: Diagnosis Reference

DFHZTPX
Entry points

DFHZTPX1

Called by

VTAM

Description

The TPEND exit module receives control when VTAM is terminating. It schedules
a CLSDST for each active session if quick shutdown is required, and sets bits in
the TCT prefix so that DFHZSHU is invoked.

DFHZTRA
Entry points

DFHZTRA1

Called by

DFHZACT, DFHZDET, DFHZRAC, DFHZRLP, DFHZRVS, DFHZSDL, DFHZSDR,
DFHZSDS

Description

DFHZTRA creates VIO trace entries.

DFHZTSP
Entry points

DFHZTSP1

Called by

DFHAPRT, DFHISP, DFHRTE, DFHTPS, DFHZARQ, DFHZCQ, DFHZSUP

Description

The terminal sharing program acquires a TCTTE for a link to a remote CICS
address space, and transfers request data to that space. DFHZTSP also receives
requests from the remote address space.

DFHZUCT
Entry points

DFHZUCT1

Called by

DFHAPRT, DFHZARQ, DFHZCNA, DFHZRAC, DFHZRVX, DFHZSUP

Chapter 117. CICS executable modules 2325

Description

The uppercase translate module converts a VTAM 3270 data stream into uppercase.

DFHZUIX
Entry points

DFHZUIX1

Called by

DFHZACT, DFHZRAC, DFHZRVX

Description

The user input exit module is called directly (by DFHZRAC) or indirectly (by
DFHZRVX via DFHZACT) to link to the user’s XZCIN exit.

DFHZUSR
Entry points

DFHZUSR1

Called by

DFHACP, DFHETL, DFHZARER, DFHZARL, DFHZARM, DFHZARR,
DFHZARRF, DFHZERH, DFHZOPX, DFHZSTAP, DFHZSUP, DFHZUSR,
DFHZXRL, DFHZXRT

Description

DFHZUSR maintains the conversation state for LU6.2.

DFHZXCU
Entry points

DFHZXCU

Description

The VTAM XRF catch-up program is used to send messages that allow a new
alternate system to catch up with the current state of the active system for:
v TCT contents
v Bound/unbound state of sessions.

The program is invoked when a new alternate system signs on.

DFHZXQO
Entry points

DFHZXQO

2326 CICS TS for z/OS 4.1: Diagnosis Reference

Called by

DFHTCRP, DFHZXST

Description

The XRF ZCP tracking queue organizer allows pending XRF tracking activity to be
stored in a way that honors interdependencies, while allowing such requests to be
met as soon as all their prerequisites are fulfilled. This component consists of a
data structure and accessing program that uses the CICS catalog key structure to
identify all the actions for a single resource and the dependencies between them.
Actions are put into the structure on receipt in DFHTCRP, and removed by
DFHTCRP and at the end of DFHZNAC processing for standby BIND and
CLSDST completion. The structure is freed at the end of DFHTCRP tracking.

DFHZXRC
Entry points

DFHZXRC1

Called by

DFHZACT

Description

DFHZXRC analyzes the data received in response to the SESSIONC
CONTROL=SWITCH command. It determines the state of the session at the point
when it was switched, and initiates the necessary action to clean up and recover
the session.

DFHZXRE0
Entry points

DFHZXRE0

Called by

System

Description

DFHZXRE0 runs the CXRE transaction to perform autoconnect and XRF reconnect
processing. It also starts the acquire process for terminals with flag TCTEXRE set.

DFHZXRL
Entry points

DFHZXRL1

Called by

DFHZARL, DFHZISP

Chapter 117. CICS executable modules 2327

Description

DFHZXRL is executed in an application-owning region. It routes LU6.2 commands
to the terminal-owning region.

DFHZXRT
Entry points

DFHZXRT1

Called by

DFHZTSP

Description

DFHZXRT executes in a terminal-owning region. It receives LU6.2 commands from
the application-owning region, and issues them to an APPC device.

DFHZXST
Entry points

DFHZXST

Called by

DFHETC, DFHSIJ1, DFHTCRP, DFHTCRPS, DFHZNAC, DFHZOPA, DFHZXCU

Description

XRF ZCP session-state tracking is called by:
v DFHZNAC for BIND/UNBIND completion in the active system, and for

standby-BIND and UNBIND in the alternate system
v DFHETC for logon data freed in the active system
v DFHTCRPS to handle a tracking message
v DFHTCRP to terminate session tracking
v DFHZXCU for BIND/UNBIND catch-up in the active system
v DFHSIJ1 and DFHZOPA to issue a SETLOGON START command.

2328 CICS TS for z/OS 4.1: Diagnosis Reference

Part 5. Appendixes

© Copyright IBM Corp. 1997, 2011 2329

2330 CICS TS for z/OS 4.1: Diagnosis Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1997, 2011 2331

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

2332 CICS TS for z/OS 4.1: Diagnosis Reference

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General
 CICS Transaction Server for z/OS Program Directory, GI13-0536
 CICS Transaction Server for z/OS What's New, GC34-6994
 CICS Transaction Server for z/OS Upgrading from CICS TS Version 2.3, GC34-6996
 CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-6997
 CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-6998
 CICS Transaction Server for z/OS Installation Guide, GC34-6995

Access to CICS
 CICS Internet Guide, SC34-7021
 CICS Web Services Guide, SC34-7020

Administration
 CICS System Definition Guide, SC34-6999
 CICS Customization Guide, SC34-7001
 CICS Resource Definition Guide, SC34-7000
 CICS Operations and Utilities Guide, SC34-7002
 CICS RACF Security Guide, SC34-7003
 CICS Supplied Transactions, SC34-7004

Programming
 CICS Application Programming Guide, SC34-7022
 CICS Application Programming Reference, SC34-7023
 CICS System Programming Reference, SC34-7024
 CICS Front End Programming Interface User's Guide, SC34-7027
 CICS C++ OO Class Libraries, SC34-7026
 CICS Distributed Transaction Programming Guide, SC34-7028
 CICS Business Transaction Services, SC34-7029
 Java Applications in CICS, SC34-7025

Diagnosis
 CICS Problem Determination Guide, GC34-7034
 CICS Performance Guide, SC34-7033
 CICS Messages and Codes, SC34-7035
 CICS Diagnosis Reference, GC34-7038
 CICS Recovery and Restart Guide, SC34-7012
 CICS Data Areas, GC34-7014
 CICS Trace Entries, SC34-7013
 CICS Supplementary Data Areas, GC34-7015
 CICS Debugging Tools Interfaces Reference, GC34-7039

Communication
 CICS Intercommunication Guide, SC34-7018
 CICS External Interfaces Guide, SC34-7019

Databases
 CICS DB2 Guide, SC34-7011
 CICS IMS Database Control Guide, SC34-7016

© Copyright IBM Corp. 1997, 2011 2333

CICS Shared Data Tables Guide, SC34-7017

CICSPlex SM books for CICS Transaction Server for z/OS
General
 CICSPlex SM Concepts and Planning, SC34-7044
 CICSPlex SM Web User Interface Guide, SC34-7045

Administration and Management
 CICSPlex SM Administration, SC34-7005
 CICSPlex SM Operations Views Reference, SC34-7006
 CICSPlex SM Monitor Views Reference, SC34-7007
 CICSPlex SM Managing Workloads, SC34-7008
 CICSPlex SM Managing Resource Usage, SC34-7009
 CICSPlex SM Managing Business Applications, SC34-7010

Programming
 CICSPlex SM Application Programming Guide, SC34-7030
 CICSPlex SM Application Programming Reference, SC34-7031

Diagnosis
 CICSPlex SM Resource Tables Reference, SC34-7032
 CICSPlex SM Messages and Codes, GC34-7035
 CICSPlex SM Problem Determination, GC34-7037

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 1.
 Designing and Programming CICS Applications, SR23-9692
 CICS Application Migration Aid Guide, SC33-0768
 CICS Family: API Structure, SC33-1007
 CICS Family: Client/Server Programming, SC33-1435
 CICS Family: Interproduct Communication, SC34-6853
 CICS Family: Communicating from CICS on System/390, SC34-6854
 CICS Transaction Gateway for z/OS Administration, SC34-5528
 CICS Family: General Information, GC33-0155
 CICS 4.1 Sample Applications Guide, SC33-1173
 CICS/ESA 3.3 XRF Guide , SC33-0661

2334 CICS TS for z/OS 4.1: Diagnosis Reference

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1997, 2011 2335

2336 CICS TS for z/OS 4.1: Diagnosis Reference

Index

Special characters
RESPONSE

domain interface parameter 9

A
ABAB gate

CREATE_ABEND_RECORD
function 563

INQUIRE_ABEND_RECORD
function 566

START_ABEND function 568
TAKE_TRANSACTION_DUMP

function 569
UPDATE_ABEND_RECORD

function 570
ABEND_TERMINATE function, XMAC

gate 1996
ABEND_TRANSACTION function,

XMER gate 1955
abnormal termination

system recovery program (SRP) 409
transaction failure program

(TFP) 475
ABNORMALLY_TERMINATE_TASK

function, KEDS gate 1225
ABSTRACT function, IICP gate 1157
ACB (access control block) 295
ACB (access method control block),

VSAM 195
ACB (access method control block),

VTAM 455
ACCEPT function, SOCK gate 1717
access control block (ACB) 295
access method control block (ACB),

VSAM 195
access method control block (ACB),

VTAM 455
access methods, terminal control 446
ACCUMULATE_RMI_TIME function,

MNMN gate 1349
ACP (abnormal condition program) 475

node 357
ACQUIRE_ACTIVITY function, BAAC

gate 869
ACQUIRE_CONNECTION function,

ISCO gate 1179
ACQUIRE_PROCESS function, BAPR

gate 888
ACQUIRE_PROGRAM function, LDLD

gate 1258
ACQUIRE_SURROGATE function, APRS

gate 591
ACTION_CORBASERVER function, EJCG

gate 1075
ACTION_DJAR function, EJDG

gate 1089
activate scan (DFHZACT) 16
ACTIVATE_DEBUG_PROFILE function,

DPFM gate 961

ACTIVATE_MODE function, DSIT
gate 1012

ACTIVATE_OBJECT function, EJOS
gate 1123

ACTIVATE_TRAP function, TRSR
gate 1793

adapter, FEPI 289
logic flow 291

ADD function, CCCC gate 903
ADD_ACTIVITY function, BAAC

gate 869
ADD_ATOMSERVICE function, W2AT

gate 1925
ADD_BEAN function, EJBG gate 1066
ADD_BEAN function, EJJO gate 1108
ADD_BEAN function, EJMI gate 1116
ADD_BEAN_STATS function, EJBG

gate 1067
ADD_CORBASERVER function, EJCG

gate 1076
ADD_CRITICAL_MODULE function,

KEDS gate 1225
ADD_CRITICAL_WINDOW function,

KEDS gate 1225
ADD_DJAR function, EJDG gate 1090
ADD_DOMAIN function, DMDM

gate 949
ADD_DOMAIN function, KEDD

gate 1216
ADD_ENTRY function, DDDI gate 918
ADD_ENTRY function, EJDI gate 1100
ADD_FILE function, FCMT gate 771
ADD_GATE function, KEDD gate 1216
ADD_IPCONN function, ISIC gate 1182
ADD_LINK function, RMLN gate 1554
ADD_LOCK function, LMLM gate 1319
ADD_LOGICAL_SERVER function, IICP

gate 1157
ADD_METHOD function, EJMI

gate 1117
ADD_PENDING_REQUEST function,

SHPR gate 1643
ADD_PIPELINE function, PIPL

gate 1494
ADD_POOL function, TSSH gate 1821
ADD_PROCESS function, BAPR

gate 889
ADD_REATTACH_ACQUIRED function,

BAAC gate 870
ADD_REPL_ROLE_FOR_METHOD

function, XSEJ gate 2018
ADD_REPL_TERM_MODEL, AITM

format 32
ADD_REPLACE_ATOMSERVICE

function, W2AT gate 1927
ADD_REPLACE_DOCTEMPLATE

function, DHTM gate 938
ADD_REPLACE_ENQMODEL function,

NQRN gate 1374
ADD_REPLACE_LIBRARY function,

LDLB gate 1249

ADD_REPLACE_PROCESSTYPE
function, BATT gate 893

ADD_REPLACE_RQMODEL function,
IIMM gate 1162

ADD_REPLACE_TCLASS function,
XMCL gate 1949

ADD_REPLACE_TCPIPSERVICE
function, SOAD gate 1715

ADD_REPLACE_TDQDEF function,
TDTM gate 829

ADD_REPLACE_TRANDEF function,
XMXD gate 1979

ADD_REPLACE_TSMODEL function,
TSAD gate 1801

ADD_REPLACE_URIMAP function,
WBUR gate 1902

ADD_SUBEVENT function, EMEM
gate 1139

ADD_SUBORDINATE function, OTSU
gate 1386

ADD_SUBPOOL function, S2AD
gate 1701

ADD_SUBPOOL function, SMAD
gate 1677

ADD_SUSPEND function, DSSR
gate 1021

ADD_SYMBOL_LIST function, DHSL
gate 936

ADD_SYSTEM_DUMPCODE function,
DUDT gate 1035

ADD_TCB function, DSIT gate 1014
ADD_TCLASS function, XMCL

gate 1949
ADD_TIMER_REQUEST function, BAAC

gate 870
ADD_TO_ACTIVE_JVMSET function,

SJCC gate 1651
ADD_TRAN_DUMPCODE function,

DUDT gate 1036
ADD_TRANSACTION_SECURITY

function, XSXM gate 2049
ADD_TRANSACTION_USER function,

USXM gate 1853
ADD_USER_VIA_ICRX function, USAD

gate 1846
ADD_USER_VIA_ICRX function, XSAD

gate 2013
ADD_USER_WITH_PASSWORD

function, USAD gate 1837
ADD_USER_WITH_PASSWORD

function, XSAD gate 2005
ADD_USER_WITHOUT_PASSWORD

function, USAD gate 1839
ADD_USER_WITHOUT_PASSWORD

function, XSAD gate 2007
address space modules 325
ADFHAPD1 distribution library 2056
ADFHC370 distribution library 2056
ADFHCLIB distribution library 2056
ADFHCOB distribution library 2056
ADFHENV distribution library 2056

© Copyright IBM Corp. 1997, 2011 2337

ADFHINST distribution library 2056
ADFHLANG distribution library 2056
ADFHMAC distribution library 2056
ADFHMLIB distribution library

Message translation utility
ADFHMLIB distribution

library 2056
ADFHMOD distribution library 2056

COBOL elements 2056
ADFHMSGS distribution library 2056
ADFHMSRC distribution library 2056
ADFHPARM distribution library 2056
ADFHPL1 distribution library 2056
ADFHPLI distribution library 2056
ADFHPLIB distribution library 2056
ADFHPROC distribution library 2056
ADFHSAMP distribution library 2056

ADFHAPD2 distibution
elements 2056

C elements 2056
COBOL elements 2056
PL/I elements 2056

ADFHSDCK distribution library 2056
ADJUST_STCK_TO_LOCAL function,

KETI gate 1240
advanced program-to-program

communication (APPC) 22, 482
AIIN format

COMPLETE_INIT function 30
START_INIT function 29

AIIQ format
END_BROWSE function 32
GET_NEXT function 31
INQUIRE_TERM_MODEL

function 31
LOCATE_TERM_MODEL

function 30
START_BROWSE function 31
UNLOCK_TERM_MODEL

function 30
AIRDELAY 536
AITM format

ADD_REPL_TERM_MODEL 32
DELETE_TERM_MODEL 33

AITM manager 29
AIX (alternate index)

REWRITE processing 190
ALLOCATE function, TFAL gate 843
ALLOCATE processing in

application-owning region 487
ALLOCATE processing in

terminal-owning region 492
ALLOCATE_SEND function, ISIS

gate 1196
ALLOCATE_SET_STORAGE function,

TSQR gate 1814
ALLOCATE_TRANSACTION_STG

function, SMAR gate 1681
allocation of TCTTE, function

shipping 312
allocation program

undelivered messages cleanup
program (TPQ) 56

AMDUSREF 2265
AMEND_CORBASERVER function, EJCG

gate 1079

AMEND_CORBASERVER function, EJSO
gate 1127

AMEND_DJAR function, EJDG
gate 1091

AOR (application-owning region) 22,
482

ALLOCATE processing in 487
APPC command processing in 489
ATTACH processing in 485
DETACH processing in 487
FREE processing in 488
LU6.2 command processing in 489

AP (Application Manager Domain)
domain 563

AP (application) domain 11
APAC gate

REPORT_CONDITION function 572
APAP gate

TRANSFER_SIT function 573
APCR gate

ESTIMATE_ALL function 574
ESTIMATE_CHANGED function 574
EXPORT_ALL function 575
EXPORT_CHANGED function 576
IMPORT_ALL function 576
IMPORT_CHANGED function 578

APEX gate
INVOKE_USER_EXIT function 579

APID gate
PROFILE function 579
QUERY_NETNAME function 580

APIQ gate
INQ_APPLICATION_DATA

function 580
INQ_SIT_PARM function 581

APJC gate
WRITE_JOURNAL_DATA

function 581
APLI gate

ESTABLISH_LANGUAGE
function 582

PIPI_CALL_SUB function 586
PIPI_INIT_SUB_DP function 587
PIPI_TERM function 587
START_PROGRAM function 584

APLX gate
NOTIFY_REFRESH function 588

APPC
command processing in

application-owning region 489
command processing in

terminal-owning region 493
daisy chaining 490
transaction routing 501
VTAM 523

APPC (advanced program-to-program
communication) 22, 482

APPC autoinstall
call of builders 85

APPC connections, autoinstall 15
APPC control blocks 483
APPC devices, autoinstall disconnection

flow 21
APPC devices, autoinstall logon flow 17
APPC devices, LU6.2

transaction routing for 501
APPEND function, RMRE gate 1576

application (AP) domain 11
Application Manager Domain (AP)

domain 563
application programming commands,

FEPI
logic flow 289

application programming functions with
function shipping 301

application programs
mapping control program (MCP) 46

application services
basic mapping support (BMS) 35
built-in functions 89
command interpreter 101
data interchange program (DIP) 119
SAA Communications interface 377
SAA Resource Recovery

interface 377
temporary-storage browse

transaction 169
application-owning region (AOR) 22
APRA gate

RELAY_TERMINAL_REQUEST
function 589

REMOTE_ATTACH function 589
REMOTE_DETACH function 589

APRD gate
END_ATOMS function 589
INITIALISE function 590
PRE_INITIALISE function 591

APRR gate
IPIC_ROUTE_TRANSACTION

function 591
APRS gate

ACQUIRE_SURROGATEfunction 591
RELEASE_SURROGATE

function 592
APRT gate

ROUTE_TRANSACTION
function 592

APRX gate
FLATTEN_REQUEST function 593
FLATTEN_RESPONSE function 593
UNFLATTEN_REQUEST

function 594
UNFLATTEN_RESPONSE

function 594
APTC gate

CANCEL function 594
CLOSE function 595
EXTRACT_PROCESS function 595
LISTEN function 596
OPEN function 596
RECEIVE function 596
SEND function 597
SET_SESSION function 597

APTD gate
DELETE_TRANSIENT_DATA

function 598
INITIALISE_TRANSIENT_DATA

function 599
READ_TRANSIENT_DATA

function 600
RESET_TRIGGER_LEVEL

function 601
WRITE_TRANSIENT_DATA

function 601

2338 CICS TS for z/OS 4.1: Diagnosis Reference

APUE gate
SET_EXIT_STATUS function 868

APXM gate
BIND_XM_CLIENT function 603
INIT_XM_CLIENT function 603
RELEASE_XM_CLIENT function 603
RMI_START_OF_TASK function 603

ATI (automatic transaction
initiation) 331, 441, 504

atom (resource definition) 65
ATTACH function, BRAT gate 604
ATTACH function, DSAT gate 997
ATTACH function, XMAT gate 1939,

1997
ATTACH processing in

application-owning region 485
ATTACH processing in terminal-owning

region 491
audit trail 78
autoinstall

APPC call of builders 85
APPC connections 15
diagnosing problems 24
logoff call of builders 85
logon call of builders 85
rejection of BIND parameters 24
rejection of logon request 24
terminals 15

autoinstall disconnection flow,
LU-initiated 19

autoinstall logon flow
APPC devices 17
terminals 16

autoinstall of a generic resource
connection 18

autoinstall of consoles install flow 19
autoinstall program (DFHZATA) 16
autoinstall terminal model manager 375
autoinstall terminal model manager

(AITM) 16, 29
autoinstall work element (AWE) 16
AUTOINSTALL_IPCONN function, ISIC

gate 1184
autoinstalled consoles deletion

autoinstalled consoles deletion 21
automatic journaling 183
automatic logging 183
automatic transaction initiation

(ATI) 331, 441, 504
AVAIL function, RMRE gate 1578
AWE (autoinstall work element) 16

B
BA (Business Application Manager

Domain) domain 869
BAAC gate

ACQUIRE_ACTIVITY function 869
ADD_ACTIVITY function 869
ADD_REATTACH_ACQUIRED

function 870
ADD_TIMER_REQUEST

function 870
CANCEL_ACTIVITY function 870
CHECK_ACTIVITY function 871
DELETE_ACTIVITY function 872
LINK_ACTIVITY function 872

BAAC gate (continued)
RESET_ACTIVITY function 873
RESUME_ACTIVITY function 874
RETURN_END_ACTIVITY

function 874
RUN_ACTIVITY function 874
SUSPEND_ACTIVITY function 875

BABR gate
COMMIT_BROWSE function 875
ENDBR_ACTIVITY function 875
ENDBR_CONTAINER function 876
ENDBR_PROCESS function 876
GETNEXT_ACTIVITY function 876
GETNEXT_CONTAINER

function 877
GETNEXT_PROCESS function 877
INQUIRE_ACTIVATION

function 878
INQUIRE_ACTIVITY function 878
INQUIRE_CONTAINER function 880
INQUIRE_PROCESS function 881
STARTBR_ACTIVITY function 881
STARTBR_CONTAINER function 882
STARTBR_PROCESS function 883

BACKOUT function, FCCU gate 666
BACKOUT function, FCDU gate 682
backout logging 183
BACKOUT_UOW function, RMUW

gate 1583
backup while open (BWO) 206, 209, 224,

234
BACR gate

COPY_CONTAINER function 883
DELETE_CONTAINER function 884
GET_CONTAINER_INTO

function 885
GET_CONTAINER_LENGTH

function 885
GET_CONTAINER_SET function 886
MOVE_CONTAINER function 887
PUT_CONTAINER function 888

BAPR gate
ACQUIRE_PROCESS function 888
ADD_PROCESS function 889
CANCEL_PROCESS function 890
CHECK_PROCESS function 890
LINK_PROCESS function 891
RESET_PROCESS function 892
RESUME_PROCESS function 892
RUN_PROCESS function 892
SUSPEND_PROCESS function 893

basic direct access method (BDAM) 181
BATT gate

ADD_REPLACE_PROCESSTYPE
function 893

COMMIT_PROCESSTYPE_TABLE
function 894

DISCARD_PROCESSTYPE
function 894

END_BROWSE_PROCESSTYPE
function 895

GET_NEXT_PROCESSTYPE
function 895

INQUIRE_PROCESSTYPE
function 895

SET_PROCESSTYPE function 896

BATT gate (continued)
START_BROWSE_PROCESSTYPE

function 897
BAXM gate

BIND_ACTIVITY_REQUEST
function 897

INIT_ACTIVITY_REQUEST
function 898

BDAM
ENDBR request processing 193
READ request processing 187
READNEXT request processing 192
RESETBR request processing 192
REWRITE request processing 190
STARTBR request processing 192
UNLOCK request processing 190
WRITE request processing 189

BDAM (basic direct access method) 181
BDAM request processor, file control

(DFHFCBD) 207
BEGIN_TRAN function, OTTR

gate 1388
BIND function, SOCK gate 1719
BIND_ACTIVITY_REQUEST function,

BAXM gate 897
BIND_CHANNEL function, PGCH

gate 1399
BIND_FACILITY function, TFBF

gate 860
BIND_LDAP function, DDAP gate 911
BIND_RECEIVER function, ISIS

gate 1197
BIND_SECONDARY_FACILITY function,

TDXM gate 842
BIND_UOW_TO_TXN function, RMUW

gate 1584
BIND_XM_CLIENT function, APXM

gate 603
BIND_XM_CLIENT function, DPXM

gate 995
BMS (basic mapping support) 35

3270 mapping (M32) 49
control blocks, illustrated 39
data stream build (DSB) 43
full version, modules used 42
LU1 printer with extended attributes

mapping program (ML1) 48
mapping control program (MCP) 45
message switching 352
minimum version, modules used 42
modules 41
modules and routines,

organization 42
non-3270 input mapping (IIP) 44
page and text build (PBP) 50
partition handling program (PHP) 52
route list resolution program

(RLR) 53
standard version, modules used 42
terminal page processor (TPP) 54
terminal page retrieval program

(TPR) 57
terminal page scheduling program

(TPS) 58
undelivered messages cleanup

program (TPQ) 56
BPS (builder parameter set) 61

Index 2339

BRAT gate
ATTACH function 604

BREAK_PARTNERSHIP function, PTTW
gate 1523

BRIQ gate
INQUIRE_CONTEXT function 604

BROWSE function, FCRF gate 799
browse token 9
browse token, table manager 420
BROWSE_ALL_GET_NEXT function,

LGBA gate 1279
BROWSE_CHAINS_GET_NEXT function,

LGCC gate 1282
BSAM (basic sequential access

method) 441
and testing facility 443

BUILD_CONTENT_TYPE function,
PIMM gate 1483

BUILD_MIME_HEADERS function,
PIMM gate 1484

BUILD_MIME_MESSAGE function,
PIMM gate 1485

BUILD_MULTIPART_RELATED function,
PIMM gate 1486

BUILD_XOP function, PIMM gate 1520
build/delete terminals 84
builder parameter list 84
builder parameter set (BPS) 61
builders 61

description 61
purpose 69

builders for 3277 remote terminal
calling sequence 82

built-in functions
description 89
field edit 89
phonetic conversion 89

Business Application Manager Domain
(BA) domain 869

BWO (backup while open) 206, 209, 224,
234

BWO_BITS_DISABLED function, FCAT
gate 635

BWO_BITS_ENABLED function, FCAT
gate 636

C
CALL macro

DL/I interface 136
CALL_EVENT_URM function, EJDG

gate 1093
CALLDLI macro

DL/I interface 136
calling sequence builders for 3277 remote

terminal 82
CANCEL function, APTC gate 594
CANCEL function, SOCK gate 1720
CANCEL function, TISR gate 1786
CANCEL_ACTIVITY function, BAAC

gate 870
CANCEL_AID function, TFAL gate 843
CANCEL_AIDS_FOR_CONNECTION

function, TFAL gate 844
CANCEL_AIDS_FOR_TERMINAL

function, TFAL gate 844

CANCEL_CLOSE_FILE function, FCFS
gate 757

CANCEL_PROCESS function, BAPR
gate 890

CANCEL_SPECIFIC_AID function, TFAL
gate 845

CANCEL_TASK function, DSAT
gate 998

CATA transaction 16, 63, 67, 2292
catalog manager, file control

(DFHFCAT) 206
CATALOG_DSNB function, FCDN

gate 671
CATALOG_PROGRAMS function, LDLD

gate 1260
CATD transaction 2292
CATR transaction 2293
CATS transaction 2294
CC (CICS Catalog Domain) domain 903
CCB (connection control block) 322
CCCC gate

ADD function 903
DELETE function 903
END_BROWSE function 904
END_WRITE function 904
GET function 904
GET_NEXT function 905
GET_UPDATE function 905
PUT_REPLACE function 906
START_BROWSE function 906
START_WRITE function 906
STARTUP_CLOSE function 906
STARTUP_OPEN function 907
TYPE_PURGE function 907
WRITE function 907
WRITE_NEXT function 908

CCE (console control element) 451
CCNV gate

CONVERT_ADS function 606
CONVERT_DATA function 608
CREATE_CONVERSION_TOKEN

function 610
EXTRACT_ADS function 611
FREE_CONVERSION_TOKEN

function 613
GET_CONVERSION_TOKEN

function 614
INITIALISE function 616
INQUIRE_CONVERSION_SIZE

function 617
VERIFY_CGCSGID function 618
VERIFY_CICS_CCSID function 620
VERIFY_IANA_CCSID function 621
VERIFY_IBM_CCSID function 622

CD-ROM, optional source listings 2056
CEBR transaction 169
CECI transaction 101
CECS transaction 101
CEDA install 85
CEDA transaction 373
CEDB transaction 373
CEDC transaction 373
CEMT transaction 347, 383
CEOT transaction 347
CEST transaction 347
CFDT load program, file control

(DFHFCDL) 208

CFDT open/close program, file control
(DFHFCDO) 211

CFDT request processor, file control
(DFHFCDR) 211

CFDT resynchronization program, file
control (DFHFCDY) 212

CFDT RMC program, file control
(DFHFCDW) 211

CFDT UOW calls program, file control
(DFHFCDU) 211

CHAIN_BROWSE_GET_NEXT function,
LGCB gate 1280

CHANGE_MODE function, DSAT
gate 999

CHANGE_PRIORITY function, DSAT
gate 1001

CHECK function, FCCA gate 638
CHECK_ACTIVITY function, BAAC

gate 871
CHECK_CALLER_IN_ROLE function,

XSEJ gate 2019
CHECK_CICS_COMMAND function,

XSRC gate 2043
CHECK_CICS_RESOURCE function,

XSRC gate 2046
CHECK_EJB_METHOD function, XSEJ

gate 2020
CHECK_NON_CICS_RESOURCE

function, XSRC gate 2047
CHECK_PREFIX function, TSBR

gate 1802
CHECK_PROCESS function, BAPR

gate 890
CHECK_STORAGE function, SMCK

gate 1682
CHECK_SURROGATE_USER function,

XSRC gate 2048
CHECK_TIMER function, EMEM

gate 1140
CHECK_TRANID_IN_USE function,

TFAL gate 846
checkpoint and restart 442
CIB (command input buffer) 451
CICS business logic interface 555
CICS Catalog Domain (CC) domain 903
CICS Web support 555
CICS_RESYNC function, ISRE gate 1207
CICS-DB2 Attachment facility 91
CICS-DB2 Attachment Facility 97
CICS-DB2 DB2ENTRY block

(D2ENT) 97
CICS-DB2 DB2TRAN block (D2TRN) 97
CICS-DB2 Global block (D2GLB) 97
CICS-DB2 global work area

(D2GWA) 97
CICS-DB2 life of task block (D2LOT) 97
CICS-DB2 static storage (D2SS) 97
CICS-DB2 subtask block (D2CSB) 97
CICS-DB2 support 91
CICS-DBCTL interface 117
class of service, LU6.2 523
CLEAR_ENVIRONMENT function, FCFR

gate 696
CLEAR_LABELS function, PGHM

gate 1429
CLEAR_MATCH function, DSAT

gate 1002

2340 CICS TS for z/OS 4.1: Diagnosis Reference

CLEAR_PENDING function, RMNM
gate 1574

close destination program, DFHZCLS 20
CLOSE function, APTC gate 595
CLOSE function, FCCT gate 659
CLOSE function, LGGL gate 1289
CLOSE function, SOCK gate 1721
CLOSE_ALL_EXTRA_TD_QUEUES

function, TDOC gate 827
CLOSE_FILE function, FCFS gate 757
CLOSE_MVS_CIB_QUEUE function,

CQCQ gate 624
CLOSE_OBJECT_STORE function, EJOS

gate 1124
CLOSE_SESSION function, WBCL

gate 1870
CLOSE_SESSION function, WBSV

gate 1901
CLOSE_TRANSIENT_DATA function,

TDOC gate 827
CLT (command list table) 173
CMPX transaction 309
CMSG transaction 351, 352
cold start 84
COLD_START_RLS function, FCCA

gate 639
COLLECT_FILE_STATISTICS function,

FCST gate 816
COLLECT_POOL_STATISTICS function,

FCST gate 817
COLLECT_RESOURCE_STATS function,

STST gate 1771, 1778
COLLECT_STATISTICS function, STST

gate 1772, 1779
command input buffer (CIB) 451
command list table (CLT) 173
command-language translator 369
COMMIT function, FCCU gate 667
COMMIT function, FCDU gate 683
COMMIT function, OTTR gate 1389
COMMIT function, RMOT gate 1575
commit process

single-phase 434
two-phase 433

COMMIT_BROWSE function, BABR
gate 875

COMMIT_DSNREFS function, FCDN
gate 672

COMMIT_ENQMODEL function, NQRN
gate 1375

COMMIT_FILES function, FCMT
gate 776

COMMIT_ONE_PHASE function, OTTR
gate 1389

COMMIT_POOLS function, FCRL
gate 811

COMMIT_PROCESSTYPE_TABLE
function, BATT gate 894

COMMIT_RQMODELS function, IIMM
gate 1163

COMMIT_TDQDEFS function, TDTM
gate 832

COMMIT_UOW function, RMUW
gate 1584

common programming interface
(CPI) 377

communication with remote system 303

Communications interface, SAA 377
COMPLETE_INIT function, AIIN

format 30
COMPLETE_INIT function, CPIN

format 380
COMPLETE_JVMSERVER function, SJJS

gate 1654
COMPLETE_PIPELINE function, PIPL

gate 1494
COMPLETE_QUIESCE function, FCQI

gate 793
components of CICS

organization 3
concurrency control 181
concurrent tasks 184
CONFIRM_ALL_BEANS function, EJBG

gate 1068
CONNECT function, LGLB gate 1300
CONNECT function, LGST gate 1308
CONNECT function, SOCK gate 1722
CONNECT_DSNB function, FCDN

gate 672
connection control block (CCB) 322
console control element (CCE) 451
console message handling 389
contention update model 182
control blocks

for BMS, illustrated 39
for file control, illustrated 193
for interregion communication (IRC),

illustrated 319
for relay transaction, illustrated 499
for subsystem interface,

illustrated 391
for table manager, illustrated 422
for terminal control, illustrated 458
for user exit interface, illustrated 512

conversation
session recovery 326

CONVERSE function, ISIS gate 1197
CONVERSE function, MEME gate 1325
CONVERSE function, PITG gate 1510
CONVERT_ADS function, CCNV

gate 606
CONVERT_CID_TO_CONTENT_ID

function, PIMM gate 1487
CONVERT_CONTENT_ID_TO_CID

function, PIMM gate 1487
CONVERT_DATA function, CCNV

gate 608
CONVERT_NAME function, LDLD

gate 1260
CONVERT_TIME function, TIMF

gate 1781
CONVERT_TO_DECIMAL_TIME

function, KETI gate 1241
CONVERT_TO_STCK_FORMAT function,

KETI gate 1241
COPY_ABOVE_BAR_TO_BELOW

function, S2SR gate 1707
COPY_BELOW_BAR_TO_ABOVE

function, S2SR gate 1708
COPY_CHANNEL function, PGCH

gate 1399
COPY_CONTAINER function, BACR

gate 883

COPY_CONTAINER function, PGCR
gate 1407

COPY_CONTAINER_POOL function,
PGCP gate 1406

COUNT_FOR_CS function, EJDG
gate 1093

coupling facility data table 182
coupling facility data tables server 184
CPI (common programming

interface) 377
CPIN format

COMPLETE_INIT function 380
START_INIT function 380

CPMI transaction 302
CPSP format

SYNCPOINT_REQUEST 380
CQCQ gate

CLOSE_MVS_CIB_QUEUE
function 624

DEFER_CIB function 624
GET_CIB function 624
GET_PROCESSED_CIB function 625
INITIALIZE function 625
MERGE_CIB_QUEUES function 626
PUT_CIB function 626
PUT_PROCESSED_CIB function 626
TRACE_PUT_CQ function 626

CRB (cross-region block) 319
CREATE function, RLCB gate 1547, 1549
CREATE function, RZSO gate 1634
CREATE function, SOCK gate 1723
CREATE_ABEND_RECORD function,

ABAB gate 563
CREATE_CHAIN_TOKEN function,

LGCC gate 1282
CREATE_CHANNEL function, PGCH

gate 1399
CREATE_CONTAINER_POOL function,

PGCP gate 1406
CREATE_CONTEXT function, PIAT

gate 1475
CREATE_CONTEXT_RESP function,

PIAT gate 1475
CREATE_CONVERSION_TOKEN

function, CCNV gate 610
CREATE_DIRECTORY function, DDDI

gate 919
CREATE_DOCUMENT function, DHDH

gate 923
CREATE_ENQUEUE_POOL function,

NQNQ gate 1368
CREATE_JVMSERVER function, SJJS

gate 1653
CREATE_LE_ENCLAVE function, LEPT

gate 821
CREATE_NETWORK_UOWID function,

RMUW gate 1585
CREATE_NON_TERMINAL_MSG

function, PIAT gate 1476
CREATE_PARTNERSHIP function, PTTW

gate 1524
CREATE_PASSTICKET function, XSPW

gate 2038
CREATE_POOL function, PTTW

gate 1524
CREATE_PTHREAD function, LEPT

gate 821

Index 2341

CREATE_REGISTER_REQUEST function,
PIAT gate 1476

CREATE_REGISTER_RESP function, PIAT
gate 1477

CREATE_TASK function, KEDS
gate 1226

CREATE_TCB function, KEDS gate 1226
CREATE_TERMINAL_MSG function,

PIAT gate 1477
CREATE_UOW function, RMUW

gate 1585
CREATE_WEBSERVICE function, PIWR

gate 1512
create, EXEC CICS 85
CREATED function, RLRO gate 1541
creation/deletion state machine 73
CROSS_SYSTEM_DUMP_AVAIL function,

DUSR gate 1052
cross-region block (CRB) 319
cross-system coupling facility (XCF)

used for interregion
communication 319

CSD utility program (DFHCSDUP) 103
commands 103

CSFE transaction 179
CSGM transaction 317
CSM1 transaction 302
CSM2 transaction 302
CSM3 transaction 302
CSM5 transaction 302
CSMI transaction 302
CSNC transaction 326

delay-queue 326
quiesce of interregion facility 326
suspension 326
termination 327

CSNE transaction 357
CSPG transaction 57
CSPQ transaction 47, 56
CSPS transaction 47
CSZI transaction 289
CVMI transaction 302
CXRT transaction 492

D
D2CSB (CICS-DB2 subtask block) 97
D2ENT (CICS-DB2 DB2ENTRY

block) 97
D2GLB (CICS-DB2 global block) 97
D2GWA (CICS-DB2 global work

area) 97
D2LOT (CICS-DB2 life of task block) 97
D2SS (CICS-DB2 static storage) 97
D2TRN (CICS-DB2 DB2TRAN block) 97
daisy chaining

APPC 490
LU6.2 490

data control block (DCB) 195
data event control block (DECB) 446
data for function shipping,

formatting 305
data format

transaction-routed 497
data interchange block (DIB) 120
data services

transient 505

data set name block (DSNB) 196
data streams for transaction routing 496
data table request processor, file control

(DFHFCDTS) 211
data tables, processing using 185
database resource adapter (DRA) 107
database support 91, 107, 135, 371
DATASET_COPY function, FCLJ

gate 762
DB2 91
DBCTL (database control) 107

PSB scheduling 116
PSB termination 116
system definition 116

DBCTL call processor 112
DBCTL global block (DGB) 117
DBCTL scheduling block (DSB) 117
DBCTL user-replaceable program 112
DCB (data control block) 195
DD (directory manager) domain 911
DDAP gate

BIND_LDAP function 911
END_BROWSE_RESULTS

function 912
FLUSH_LDAP_CACHE function 912
FREE_SEARCH_RESULTS

function 913
GET_ATTRIBUTE_VALUE

function 913
GET_NEXT_ATTRIBUTE

function 914
GET_NEXT_ENTRY function 914
SEARCH_LDAP function 915
START_BROWSE_RESULTS

function 916
UNBIND_LDAP function 917

DDBR gate
END_BROWSE function 917
GET_NEXT_ENTRY function 917
START_BROWSE function 918

DDDI gate
ADD_ENTRY function 918
CREATE_DIRECTORY function 919
DELETE_ENTRY function 919
REPLACE_DATA function 920

DDLO gate
LOCATE function 920

DEACTIVATE function, NQNQ
gate 1370

DEACTIVATE_TRAP function, TRSR
gate 1793

DEBKEY option
READ request processing 187
READNEXT request processing 193
RESETBR request 192
STARTBR request 192

deblocking
DEBKEY option 187
DEBREC option 187
READ request processing 187
RESETBR request 192
STARTBR request 192

deblocking for BDAM data sets 181
DEBREC option

READ request processing 187
READNEXT request processing 192
RESETBR request 192

DEBREC option (continued)
STARTBR request 192

Debugging profile domain (DP) 961
DECB (data event control block) 446
DECREMENT_USE_COUNT function,

PIWR gate 1513
DEFER_CIB function, CQCQ gate 624
deferred work element (DWE) 402
DEFINE_ATOMIC_EVENT function,

EMEM gate 1140
DEFINE_COMPOSITE_EVENT function,

EMEM gate 1140
DEFINE_PROGRAM function, LDLD

gate 1261
DEFINE_PROGRAM function, PGDD

gate 1423
DEFINE_TIMER function, EMEM

gate 1141
DEL_TRANSACTION_SECURITY

function, XSXM gate 2050
DELETE function, CCCC gate 903
DELETE function, DMEN gate 951
DELETE function, FCCR gate 649
DELETE function, FCCT gate 660
DELETE function, FCFR gate 696
DELETE function, FCRF gate 801
DELETE function, TSQR gate 1814
DELETE function, TSSH gate 1822
delete lock 191
DELETE_ACTIVITY function, BAAC

gate 872
DELETE_ALL function, LGCC gate 1283
DELETE_ALL_BEANS function, EJBG

gate 1068
DELETE_ALL_DJARS function, EJDG

gate 1094
DELETE_ALL_OPEN_TCBS function,

DSIT gate 1015
DELETE_ATOMSERVICE function, W2AT

gate 1928
DELETE_ATTACHMENTS function,

PIMM gate 1488
DELETE_BEAN function, EJBG

gate 1069
DELETE_BEAN_SECURITY function,

XSEJ gate 2021
DELETE_BOOKMARK function, DHDH

gate 925
DELETE_CERTIFICATE_DATA function,

SOIS gate 1740
DELETE_CHANNEL function, PGCH

gate 1400
DELETE_CONTAINER function, BACR

gate 884
DELETE_CONTAINER function, PGCR

gate 1408
DELETE_CONTAINER_POOL function,

PGCP gate 1406
DELETE_CORBASERVER function, EJCG

gate 1081
DELETE_DATA function, DHDH

gate 925
DELETE_DEBUG_PROFILE function,

DPFM gate 962
DELETE_DJAR function, EJDG

gate 1095

2342 CICS TS for z/OS 4.1: Diagnosis Reference

DELETE_DOCTEMPLATE function,
DHTM gate 940

DELETE_DOCUMENT function, DHDH
gate 926

DELETE_DSNB function, FCDN
gate 673

DELETE_ENTRY function, DDDI
gate 919

DELETE_EVENT function, EMEM
gate 1142

DELETE_FILE function, FCMT gate 776
DELETE_GATE function, KEDD

gate 1217
DELETE_HFS_FILE function, DHFS

gate 931
DELETE_HISTORY function, LGCC

gate 1283
DELETE_INACTIVE_JVMS function, SJIS

gate 1662
DELETE_LINK function, RMLN

gate 1557
DELETE_LOCK function, LMLM

gate 1319
DELETE_LOGICAL_SERVER function,

IICP gate 1158
DELETE_MULTIPLE function, FCCR

gate 650
DELETE_OPEN_TCB function, DSIT

gate 1015
DELETE_OWNED_CHANNELS function,

PGCH gate 1401
DELETE_PENDING_REQUEST function,

SHPR gate 1644
DELETE_PROGRAM function, LDLD

gate 1263
DELETE_PROGRAM function, PGDD

gate 1427
DELETE_RQMODEL function, IIMM

gate 1164
DELETE_SUBPOOL function, S2AD

gate 1702
DELETE_SUBPOOL function, SMAD

gate 1679
DELETE_SUBSPACE_TCBS function,

DSAT gate 1002
DELETE_SUSPEND function, DSSR

gate 1022
DELETE_SYSTEM_DUMPCODE function,

DUDT gate 1037
DELETE_TCB function, DSIT gate 1015
DELETE_TCLASS function, XMCL

gate 1950
DELETE_TCPIPSERVICE function, SOAD

gate 1717
DELETE_TERM_MODEL, AITM

format 33
DELETE_THREADED_TCB function,

SJDS gate 1653
DELETE_TIMER function, EMEM

gate 1143
DELETE_TRAN_DUMPCODE function,

DUDT gate 1037
DELETE_TRANDEF function, XMDD

gate 1955
DELETE_TRANSACTION_USER

function, USXM gate 1854

DELETE_TRANSIENT_DATA function,
APTD gate 598

DELETE_TSMODEL function, TSAD
gate 1802

DELETE_URIMAP function, WBUR
gate 1905

DELETE_USER function, USAD
gate 1841

DELETE_USER_SECURITY function,
XSAD gate 2008

deletion of autoinstalled APPC
devices 21

deletion of autoinstalled consoles 21
DELIVER_BACKOUT_DATA function,

RMRO gate 1599
DELIVER_FORGET function, RMDE

gate 1603
DELIVER_IC_RECOVERY_DATA

function, TSRM gate 1834
DELIVER_RECOVERY function, RMDE

gate 1603
DEQUEUE function, NQED gate 1361
DEQUEUE_TASK function, NQNQ

gate 1371
DEREGISTER function, DUFT gate 1049
DEREGISTER function, KEAR gate 1215
DEREGISTER function, RLRO gate 1542
DEREGISTER function, SORD gate 1757
DEREGISTER_INTEREST function, RSSR

gate 1618
DEREGISTER_TCLASS_USAGE function,

XMCL gate 1950
DESTROY_PARTNERSHIP function,

PTTW gate 1525
DESTROY_POOL function, PTTW

gate 1526
DESTROY_SHAREDCC function, SJIN

gate 1659
DETACH processing in

application-owning region 487
DETACH_CHANNEL function, PGCH

gate 1401
DETACH_TERMINATED_OWN_TCBS

function, KEDS gate 1228
device independence 37
DFH£STXA 384, 385
DFH0STXC 384, 385
DFH0STXR 384, 385
DFH99BC 146
DFH99CC 147
DFH99DY 147
DFH99FP 147
DFH99GI 147
DFH99KC 147
DFH99KH 147
DFH99KO 147
DFH99KR 147
DFH99LK 147
DFH99M 145
DFH99ML 147
DFH99MM 147
DFH99MP 147
DFH99MT 147
DFH99RP 147
DFH99T 147
DFH99TK 147
DFH99TX 147

DFH99VH 147
DFHACP 475, 477, 2161
DFHAICBP 2161
DFHAIDUF 33, 405
DFHAIIN1 33
DFHAIIN2 33
DFHAIIQ 34
DFHAIRP 34
DFHAITM 34
DFHALP 2162
DFHAMP 373, 374, 458, 2162
DFHAMPIL 458
DFHAMTP 62, 454, 458
DFHAMXM 375
DFHAPAC 477
DFHAPEX 512, 513
DFHAPJC 2162
DFHAPRC 403
DFHAPRDR 63, 66, 457
DFHAPRT 481, 492, 501
DFHAPSIP 2163
DFHAPST 2163
DFHAPTD 2164
DFHAPTI 2164
DFHAPTIM 332, 2165
DFHAPTIX 332, 2165
DFHAPTR0 405, 472
DFHAPTR2 405, 472
DFHAPTR4 405, 472
DFHAPTR5 406, 472
DFHAPTR6 406, 472
DFHAPTR7 406, 472
DFHAPTR8 406, 472
DFHAPTR9 406, 472
DFHAPTRA 405, 472
DFHAPTRB 405, 472
DFHAPTRC 405, 472
DFHAPTRD 405, 472
DFHAPTRE 405, 472
DFHAPTRF 381, 405, 472
DFHAPTRG 405, 472
DFHAPTRI 405, 472
DFHAPTRJ 405, 472
DFHAPTRL 405, 472
DFHAPTRN 34, 405, 472
DFHAPTRO 405, 472
DFHAPTRP 405, 472
DFHAPTRR 405, 472
DFHAPTRS 405, 472
DFHAPTRV 405, 472
DFHAPTRW 405, 472
DFHAPXME 477
DFHASV 2165
DFHBAA10 900
DFHBAA11 900
DFHBAA12 900
DFHBAAC 900
DFHBAAC0 900
DFHBAAC1 900
DFHBAAC2 900
DFHBAAC3 900
DFHBAAC4 900
DFHBAAC5 900
DFHBAAC6 900
DFHBAAR1 900
DFHBAAR2 900
DFHBABR 900

Index 2343

DFHBABU1 900
DFHBACO1 900
DFHBACR 900
DFHBADM 901
DFHBADU1 901
DFHBADUF 901
DFHBALR2 901
DFHBALR3 901
DFHBALR4 901
DFHBALR5 901
DFHBALR6 901
DFHBALR7 901
DFHBALR8 901
DFHBALR9 901
DFHBAOFI 901
DFHBAPR 901
DFHBAPR0 901
DFHBAPT1 901
DFHBAPT2 901
DFHBAPT3 901
DFHBARUC 901
DFHBARUD 901
DFHBARUP 901
DFHBASP 901
DFHBATRI 901
DFHBATT 902
DFHBAUE 902
DFHBAVP1 902
DFHBAXM 902
DFHBMSCA 59
DFHBS* builder programs 63, 455
DFHBSIB3 2166
DFHBSIZ1 2166
DFHBSIZ3 2166
DFHBSM61 2167
DFHBSM62 2167
DFHBSMIR 2166
DFHBSMPP 2167
DFHBSS 2167
DFHBSSA 2168
DFHBSSF 2168
DFHBSSS 2168
DFHBSSZ 2168
DFHBSSZ6 2171
DFHBSSZB 2169
DFHBSSZG 2169
DFHBSSZI 2169
DFHBSSZL 2169
DFHBSSZM 2170
DFHBSSZP 2170
DFHBSSZR 2170
DFHBSSZS 2170
DFHBST 2171
DFHBSTB 2171
DFHBSTB3 2172
DFHBSTBL 2171
DFHBSTC 2172
DFHBSTD 2172
DFHBSTE 2173
DFHBSTH 2173
DFHBSTI 2173
DFHBSTM 2173
DFHBSTO 2174
DFHBSTP3 2174
DFHBSTS 2174
DFHBSTT 2174
DFHBSTZ 2175

DFHBSTZ1 2178
DFHBSTZ2 2178
DFHBSTZ3 2179
DFHBSTZA 2175
DFHBSTZB 2175
DFHBSTZC 2175
DFHBSTZE 2176
DFHBSTZH 2176
DFHBSTZL 2176
DFHBSTZO 2177
DFHBSTZP 2177
DFHBSTZR 2177
DFHBSTZS 2177
DFHBSTZV 2178
DFHBSTZZ 2178
DFHBSXGS 2179
DFHBSZZ 2179
DFHBSZZS 2179
DFHBSZZV 2180
DFHCAPB 2180
DFHCCCC 909
DFHCCDM 909
DFHCCDUF 406, 909
DFHCCNV 2180
DFHCCTRI 406, 472, 909
DFHCCUTL 909
DFHCDCON 472
DFHCLS3 523, 530
DFHCMAC 1334
DFHCMP 2181
DFHCPARH 381
DFHCPCxx 381
DFHCPDUF 381, 406
DFHCPI 381
DFHCPIN1 381
DFHCPIN2 381
DFHCPIR 381
DFHCPLC 381
DFHCPLRR 381
DFHCPSRH 381
DFHCPY 2181
DFHCRC 327, 2181
DFHCRNP 326, 2181
DFHCRQ 2182
DFHCRR 327, 2182
DFHCRS 2182
DFHCRSP 326, 2183
DFHCRT 492, 501, 2183
DFHCSA 2183
DFHCSDUF 406
DFHCSDUP 104, 375, 2183
DFHCSSC 2184
DFHCSVC 2184
DFHCTRI 23
DFHCUCAB 2185
DFHCUCB 2185
DFHCUCCB 2185
DFHCUCDB 2185
DFHCWTO 2186
DFHD2CC 98
DFHD2CM0 98
DFHD2CM1 98
DFHD2CM2 98
DFHD2CM3 98
DFHD2CO 98
DFHD2D2 98
DFHD2EDF 98

DFHD2EX1 98
DFHD2EX2 98
DFHD2EX3 98
DFHD2IN1 98
DFHD2IN2 98
DFHD2INI 98
DFHD2MSB 98
DFHD2RP 98
DFHD2ST 98
DFHD2STP 98
DFHD2STR 98
DFHD2TM 98
DFHDBAT 117, 2186
DFHDBCON 117, 2186
DFHDBCR 2187
DFHDBCT 117, 2187
DFHDBCTX 117, 2187
DFHDBDI 117, 2188
DFHDBDSC 117, 2188
DFHDBDUF 406
DFHDBIE 117
DFHDBIQ 117, 2188
DFHDBME 117, 2189
DFHDBMOX 117, 2189
DFHDBNE 117
DFHDBP 403, 2189
DFHDBREX 117, 2190
DFHDBSPX 117, 2190
DFHDBSSX 117, 2190
DFHDBSTX 118, 2190
DFHDBTOX 118, 2191
DFHDBUEX 118, 2191
DFHDCP 2191
DFHDDDUF 406
DFHDDTRI 406, 472
DFHDES 2192
DFHDHDH 947
DFHDHDM 947
DFHDHDUF 947
DFHDHPB 947
DFHDHPD 947
DFHDHPM 947
DFHDHPR 947
DFHDHPS 947
DFHDHPT 948
DFHDHPU 948
DFHDHPX 948
DFHDHRM 948
DFHDHSL 948
DFHDHTM 948
DFHDHTRI 948
DFHDHUE 948
DFHDIP 119, 2192
DFHDLI 118, 136, 139, 2192
DFHDLIAI 2193
DFHDLIDP 118, 139, 2193
DFHDLIRP 139, 371, 2193
DFHDLXDF 1061
DFHDMDM 958
DFHDMDS 958
DFHDMDUF 406, 959
DFHDMEN 959
DFHDMENF 959
DFHDMIQ 959
DFHDMP 373, 374, 2194
DFHDMPBA 104
DFHDMSVC 959

2344 CICS TS for z/OS 4.1: Diagnosis Reference

DFHDMTRI 406, 472, 959
DFHDMWQ 959
DFHDRPG 2194
DFHDSAT 1032
DFHDSB 40, 43
DFHDSB1$ 2194
DFHDSBA$ 2194
DFHDSBR 1033
DFHDSDM 1033
DFHDSDUF 406
DFHDSIT 1033
DFHDSKE 1033
DFHDSSM 1033
DFHDSSR 1033
DFHDSST 1033
DFHDSTRI 406, 472
DFHDSUE 1033
DFHDU660 472, 2195
DFHDUDM 1060
DFHDUDT 1060
DFHDUDU 1060
DFHDUDUF 406
DFHDUF 406
DFHDUFUT 406
DFHDUIO 1060
DFHDUPH 142, 1060
DFHDUPM 143, 1061
DFHDUPMC 143
DFHDUPP 142, 1061
DFHDUPPC 143
DFHDUPR 142, 1061
DFHDUPS 142, 1061
DFHDUPSC 143
DFHDUSR 1061
DFHDUSU 1061
DFHDUSVC 1061
DFHDUTM 1061
DFHDUTRI 406, 472
DFHDUXD 1061
DFHDUXW 1061
DFHDXACH 2195
DFHDXSTM 2195
DFHDYP 2196
DFHEAI 2196
DFHEAI0 2196
DFHEAP1$ 369, 2197
DFHEBF 89, 162, 2197
DFHEBU 2197
DFHECI 2198
DFHECID 101, 2198
DFHECIP 101, 2198
DFHECP1$ 369, 2199
DFHECSP 101
DFHEDAD 374, 2199
DFHEDAP 374, 2199
DFHEDC 162, 2200
DFHEDCP 165
DFHEDFBR 169, 2200
DFHEDFD 169, 2200
DFHEDFM 170, 2201
DFHEDFP 170, 2201
DFHEDFR 171, 2201
DFHEDFX 171, 338, 2201
DFHEDI 162, 2202
DFHEDP 2202
DFHEDP1$ 369, 2202
DFHEEI 160, 2203

DFHEEX 2203
DFHEFRM 2203
DFHEGL 124, 125, 162, 2204
DFHEIBLK 153
DFHEICDS 154
DFHEIDTI 163, 2204
DFHEIFC 205, 301, 2205
DFHEIIC 2204
DFHEIP 122, 153, 338, 416, 2204
DFHEIPA 153, 2205
DFHEIPRT 164
DFHEIPSE 164
DFHEIPSH 164
DFHEIQDN 164
DFHEIQDS 163
DFHEIQDU 164
DFHEIQIR 164
DFHEIQMS 164
DFHEIQPF 163
DFHEIQPN 163
DFHEIQSA 163
DFHEIQSC 164, 454
DFHEIQSJ 164
DFHEIQSK 164
DFHEIQSM 164
DFHEIQSP 163
DFHEIQSQ 164
DFHEIQST 163, 454
DFHEIQSX 163
DFHEIQSZ, FEPI EXEC stub 289
DFHEIQTM 163
DFHEIQTR 164
DFHEIQVT 164
DFHEISDS 155
DFHEISP 2210
DFHEISR 2205
DFHEITAB 101
DFHEITBS 101
DFHEITMT 347
DFHEITOT 347
DFHEITST 347
DFHEJBB 1133
DFHEJBG 1133
DFHEJC 162, 2206
DFHEJCB 1133
DFHEJCG 1133
DFHEJCPT 1133
DFHEJDB 1133
DFHEJDG 1133
DFHEJDI 1133
DFHEJDM 1133
DFHEJDU 1133
DFHEJGE 1133
DFHEJIO 1133
DFHEJJO 1133
DFHEJMI 1133
DFHEJOB 1133
DFHEJOS 1133
DFHEJST 1133
DFHEKC 162, 2206
DFHELII 2206
DFHEMBA 1147
DFHEMBR 1147
DFHEMDM 1147
DFHEMDUF 1147
DFHEMEM 1147
DFHEMS 40, 162, 2206

DFHEMTA 2207
DFHEMTD 347, 2207
DFHEMTP 347, 2207
DFHEMTRI 1147
DFHEOP 164
DFHEOTP 347, 2208
DFHEPAS 1151
DFHEPC 122, 363, 2208

EXEC CICS LINK command 161
DFHEPDM 1151
DFHEPDS 1151
DFHEPDUF 1151
DFHEPI 2208
DFHEPIS 1151
DFHEPP1$ 369, 2208
DFHEPS 163, 416, 2209
DFHEPSS 1151
DFHEPSY 1151
DFHEPTRI 1151
DFHERDUF 406
DFHERM 431, 2209
DFHERMRS 401, 436
DFHESC 161, 2209
DFHESE 164
DFHESN 164
DFHESP 162
DFHESTP 347, 2210
DFHESZ, FEPI EXEC stub 289
DFHETC 123, 124, 125, 160, 2210
DFHETD 161, 508, 2210
DFHETL 124, 125, 2211
DFHETR 162, 2211
DFHETRX 163
DFHETS 161, 2211
DFHEXI 2211
DFHFCAT 206, 2212
DFHFCBD 207, 2212
DFHFCCA 208
DFHFCDL 208
DFHFCDN 208, 2212
DFHFCDO 211
DFHFCDR 211
DFHFCDTS 211, 2213
DFHFCDTX 211
DFHFCDU 211
DFHFCDUF 406
DFHFCDW 211
DFHFCDY 212
DFHFCES 212
DFHFCFL 212
DFHFCFR 212, 2213
DFHFCFS 214, 2213
DFHFCIN1 217
DFHFCIN2 217
DFHFCIR 218
DFHFCL 219, 2214
DFHFCLF 220
DFHFCLJ 220
DFHFCM 2214
DFHFCMT 220, 2214
DFHFCN 223, 2215
DFHFCNQ 227
DFHFCOR 227
DFHFCQI 227
DFHFCQR 228
DFHFCQS 228
DFHFCQT 228

Index 2345

DFHFCQU 228
DFHFCRC 229
DFHFCRD 231
DFHFCRF 231
DFHFCRL 228, 232, 2215
DFHFCRO 233
DFHFCRP 233, 2215
DFHFCRR 235
DFHFCRS 235
DFHFCRV 236
DFHFCSD 236, 2216
DFHFCST 236, 2216
DFHFCU 2216
DFHFCVR 184, 238, 2216
DFHFCVS 239, 2217
DFHFCXDF 1061
DFHFDP 2217
DFHFEP 179, 2217
DFHFRDUF 406
DFHGMM 317, 2218
DFHHPSVC 2218
DFHICDUF 406
DFHICP 332, 2218
DFHICRC 332
DFHIEDM 1155
DFHIEIE 1155
DFHIICP 1177
DFHIIDM 1177
DFHIIDUF 1177
DFHIILS 1177
DFHIIMM 1177
DFHIIP 40, 44
DFHIIP1$ 2219
DFHIIPA$ 2219
DFHIIRH 1177
DFHIIRP 1177
DFHIIRQ 1177
DFHIIRR 1177
DFHIIST 1177
DFHIITRI 1178
DFHIIXM 1178
DFHIPCSP 406
DFHIPDUF 406
DFHIR3762 message 327
DFHIRP 303, 325, 2219
DFHIRW10 2220
DFHISAIP 1213
DFHISAL 1213
DFHISBU 1213
DFHISCIP 1213
DFHISCO 1213
DFHISCOP 1213
DFHISCU 1213
DFHISDIP 1213
DFHISDM 1213
DFHISDUF 1213
DFHISEM 1213
DFHISIC 1213
DFHISIF 1213
DFHISIS 1213
DFHISJU 1213
DFHISP 122, 301, 2220
DFHISPIP 1213
DFHISRE 1213
DFHISRE1 1213
DFHISREX 1213
DFHISRR 1213

DFHISRRP 1213
DFHISSR 1214
DFHISTRI 1214
DFHISUE 1214
DFHISXF 1214
DFHISXFT 1214
DFHISXM 1214
DFHISZA 1214
DFHJCP 2221
DFHJUP 2221
DFHKCP 2221
DFHKCQ 2222
DFHKCRP 2222
DFHKCSC 2222
DFHKCSP 2223
DFHKEAR 1246
DFHKEDCL 1246
DFHKEDD 1246
DFHKEDRT 1246
DFHKEDS 1246
DFHKEDUF 406, 1246
DFHKEEDA 1246
DFHKEGD 1246
DFHKEIN 1246
DFHKELCL 1246
DFHKELOC 406, 1246
DFHKELRT 1246
DFHKERCD 1246
DFHKERER 1246
DFHKERET 1246
DFHKERKE 1246
DFHKERPC 1246
DFHKERRI 1246
DFHKERRQ 1246
DFHKERRU 1246
DFHKERRX 1246
DFHKESCL 1246
DFHKESFM 1246
DFHKESGM 1246
DFHKESIP 1246
DFHKESRT 1246
DFHKESTX 1246
DFHKESVC 1246
DFHKETA 1247
DFHKETCB 1247
DFHKETI 1247
DFHKETIX 1247
DFHKETRI 406, 472, 1247
DFHKETXR 1247
DFHKEXM 1247
DFHL2BA 1316
DFHL2BL1 1316
DFHL2BL2 1316
DFHL2BS1 1316
DFHL2BS2 1316
DFHL2BS3 1316
DFHL2BS4 1316
DFHL2CB 1316
DFHL2CC 1315
DFHL2CH1 1316
DFHL2CH2 1316
DFHL2CH3 1316
DFHL2CH4 1316
DFHL2CH5 1316
DFHL2CHA 1316
DFHL2CHE 1316
DFHL2CHG 1316

DFHL2CHH 1316
DFHL2CHI 1316
DFHL2CHL 1316
DFHL2CHM 1316
DFHL2CHN 1316
DFHL2CHR 1316
DFHL2CHS 1316
DFHL2DM 1315
DFHL2HS2 1316
DFHL2HS3 1316
DFHL2HS4 1316
DFHL2HS5 1316
DFHL2HS6 1316
DFHL2HS7 1316
DFHL2HS8 1316
DFHL2HS9 1316
DFHL2HSG 1316
DFHL2HSJ 1316
DFHL2LB 1315
DFHL2MV 1316
DFHL2OFI 1316
DFHL2SL1 1316
DFHL2SLE 1316
DFHL2SLN 1316
DFHL2SR 1315
DFHL2SR1 1316
DFHL2SR2 1316
DFHL2SR3 1316
DFHL2SR4 1317
DFHL2SR5 1317
DFHL2TR 1315
DFHL2TRI 473
DFHL2VPX 1317
DFHL2WF 1315
DFHLDDM 1277
DFHLDDMI 1277
DFHLDDUF 406, 1277
DFHLDLB 1278
DFHLDLB2 1278
DFHLDLB3 1278
DFHLDLD 1277
DFHLDLD1 1277
DFHLDLD2 1277
DFHLDLD3 1277
DFHLDNT 1278
DFHLDST 1278
DFHLDSVC 1278
DFHLDTRI 406, 472, 1278
DFHLGDM 1315
DFHLGDUF 1315
DFHLGGL 1315
DFHLGHB 1315
DFHLGICV 1315
DFHLGIGT 1315
DFHLGILA 1315
DFHLGIMS 1315
DFHLGIPA 1315
DFHLGIPI 1315
DFHLGISM 1315
DFHLGJN 1315
DFHLGLD 1315
DFHLGPA 1315
DFHLGSC 1315
DFHLGSSI 1315
DFHLGST 1315
DFHLGTRI 472, 1315
DFHLMDM 1322

2346 CICS TS for z/OS 4.1: Diagnosis Reference

DFHLMDS 1322
DFHLMDUF 406, 1322
DFHLMLM 1322
DFHLMTRI 406, 473, 1322
DFHLUC requests 489
DFHLUP 2223
DFHM32 41, 49
DFHM321$ 2227
DFHM32A$ 2227
DFHMAPDS 38
DFHMCAD 38
DFHMCBDS 38
DFHMCP 41, 45
DFHMCP1$ 2223
DFHMCPA$ 2223
DFHMCPE 59
DFHMCPE$ 2223
DFHMCPIN 59
DFHMCRDS 38
DFHMCX 41, 2224
DFHMEBM 1334
DFHMEBU 1334
DFHMEDM 1334
DFHMEDUF 406, 1334
DFHMEFO 1334
DFHMEIN 1334
DFHMEME 1334
DFHMERSx 1625
DFHMESR 1334
DFHMETRI 406, 473, 1334
DFHMEWS 1334
DFHMEWT 1334
DFHMGP 349, 2224
DFHMGT 349, 2224
DFHMIN 59
DFHMIRS 122, 301, 2225
DFHML1 48, 2225
DFHMLDM 1348
DFHMLDUF 1348
DFHMLPC 1348
DFHMLTF 1348
DFHMLTRI 1348
DFHMLXT 1348
DFHMNDM 1358
DFHMNDUF 406, 1358
DFHMNMN 1358
DFHMNNT 1358
DFHMNSR 1358
DFHMNST 1358
DFHMNSU 1358
DFHMNSVC 1358
DFHMNTI 1358
DFHMNTRI 406, 473, 1358
DFHMNUE 1358
DFHMNXM 1358
DFHMRDUF 406
DFHMROQP 2226
DFHMSP 351, 352, 2226
DFHMSRCA 59
DFHMXP 2227
DFHNQDM 1381
DFHNQDUF 1381
DFHNQED 1381
DFHNQEDI 1381
DFHNQIB 1381
DFHNQIE 1381
DFHNQNQ 1381

DFHNQRN 1382
DFHNQST 1382
DFHNQTRI 473, 1382
DFHNXDUF 406
DFHOSPWA 38
DFHOTCO 1390
DFHOTDM 1390
DFHOTDUF 1390
DFHOTRM 1390
DFHOTSU 1391
DFHOTTR 1391
DFHOTTRI 1391
DFHP3270 2232
DFHPADM 1396
DFHPADUF 406, 1396
DFHPAGP 1396
DFHPAIO 1396
DFHPASY 1396
DFHPATRI 406, 473, 1396
DFHPBP 41, 50
DFHPBP1$ 2227
DFHPBPA$ 2227
DFHPCP 363
DFHPCXDF 1061
DFHPD510 405
DFHPD660 2228
DFHPDKW 406
DFHPDX1 406
DFHPEP 367, 2229
DFHPGADS 38
DFHPGAI 1472
DFHPGAQ 1472
DFHPGDD 375, 1472
DFHPGDM 1472
DFHPGDUF 406, 1472
DFHPGEX 1472
DFHPGHM 1472
DFHPGIS 1472
DFHPGLD 1473
DFHPGLE 1473
DFHPGLK 1473
DFHPGLU 1473
DFHPGPG 1473
DFHPGRE 1473
DFHPGRP 1473
DFHPGST 1473
DFHPGTRI 406, 473, 1473
DFHPGUE 1473
DFHPGXE 1473
DFHPGXM 1473
DFHPHN 89
DFHPHP 41, 52, 2229
DFHPIA1 1521
DFHPIAD 1521
DFHPIAP 1521
DFHPIAT 1521
DFHPICA 1521
DFHPICC 1521
DFHPIDM 1521
DFHPIDSH 1521
DFHPIDUF 1521
DFHPIII 1521
DFHPIIT 1521
DFHPIIW 1521
DFHPILN 1521
DFHPIMM 1521
DFHPIPA 1521

DFHPIPL 1521
DFHPIPM 1521
DFHPIRT 1521
DFHPISF 1522
DFHPISN 1522
DFHPISN1 1522
DFHPISN2 1522
DFHPIST 1522
DFHPITC 1522
DFHPITH 1522
DFHPITL 1522
DFHPITP 1522
DFHPITQ 1522
DFHPITQ1 1522
DFHPITRI 1522
DFHPITS 1522
DFHPIWR 1522
DFHPIWT 1522
DFHPIXI 1522
DFHPIXO 1522
DFHPL1OI 2229
DFHPRDUF 406
DFHPRK 2230
DFHPSDDS 38
DFHPSP 416, 2230
DFHPSPCK 416
DFHPSPDW 416, 2230
DFHPSPSS 416, 2231
DFHPSPST 416, 2231
DFHPSSVC 416, 2231
DFHPTDM 1535
DFHPTDUF 406
DFHPTTW 1535
DFHPUP 374, 2231
DFHQRY 455, 458, 2232
DFHRCEX 2232
DFHREST 480, 2233
DFHRKB 2233
DFHRLCB 1549
DFHRLDM 1549
DFHRLDUF 1549
DFHRLMF 1550
DFHRLPK 1550
DFHRLPM 1550
DFHRLR 41, 53
DFHRLR1$ 2233
DFHRLRA$ 2233
DFHRLRG 1550
DFHRLRO 1550
DFHRLRP 1550
DFHRLRS 1550
DFHRLSC 1550
DFHRLST 1550
DFHRLTRI 1550
DFHRLVP1 1550
DFHRLXM 1550
DFHRMCAL 427
DFHRMCD 1612
DFHRMCD1 1612
DFHRMCD2 1612
DFHRMCI2 1612
DFHRMCI3 1612
DFHRMCI4 1612
DFHRMDM 1612
DFHRMDU0 1612
DFHRMDU2 1612
DFHRMDU3 1612

Index 2347

DFHRMDU4 1612
DFHRMDUF 406
DFHRML1D 1613
DFHRMLK1 1612
DFHRMLK2 1612
DFHRMLK3 1612
DFHRMLK4 1612
DFHRMLK5 1612
DFHRMLKQ 1612
DFHRMLN 1613
DFHRMLSD 1613
DFHRMLSF 1613
DFHRMLSO 1613
DFHRMLSP 1613
DFHRMLSS 1613
DFHRMLSU 1613
DFHRMNM 1613
DFHRMNM1 1613
DFHRMNS1 1613
DFHRMNS2 1613
DFHRMOFI 1613
DFHRMR1D 1613
DFHRMR1E 1613
DFHRMR1K 1613
DFHRMR1S 1613
DFHRMRO 1613
DFHRMRO1 1613
DFHRMRO2 1613
DFHRMRO3 1613
DFHRMRO4 1613
DFHRMROO 1613
DFHRMROS 1613
DFHRMROU 1613
DFHRMROV 1613
DFHRMSL 1613
DFHRMSL1 1613
DFHRMSL2 1613
DFHRMSL3 1613
DFHRMSL4 1613
DFHRMSL5 1613
DFHRMSL6 1613
DFHRMSL7 1613
DFHRMSLF 1613
DFHRMSLJ 1613
DFHRMSLL 1613
DFHRMSLO 1613
DFHRMSLV 1613
DFHRMSLW 1613
DFHRMST 1614
DFHRMST1 1614
DFHRMSY 401, 436, 2234
DFHRMTRI 473, 1614
DFHRMU1C 1614
DFHRMU1D 1614
DFHRMU1E 1614
DFHRMU1F 1614
DFHRMU1J 1614
DFHRMU1K 1614
DFHRMU1L 1614
DFHRMU1N 1614
DFHRMU1Q 1614
DFHRMU1R 1614
DFHRMU1S 1614
DFHRMU1U 1614
DFHRMU1V 1614
DFHRMU1W 1614
DFHRMUC 1614

DFHRMUO 1614
DFHRMUTL 1614
DFHRMUW 1614
DFHRMUW0 1614
DFHRMUW1 1614
DFHRMUW2 1614
DFHRMUW3 1614
DFHRMUWB 1614
DFHRMUWE 1614
DFHRMUWF 1614
DFHRMUWH 1614
DFHRMUWJ 1614
DFHRMUWL 1614
DFHRMUWN 1614
DFHRMUWP 1614
DFHRMUWQ 1614
DFHRMUWS 1614
DFHRMUWU 1614
DFHRMUWV 1614
DFHRMUWW 1614
DFHRMVP1 1614
DFHRMXN2 1615
DFHRMXN3 1615
DFHRMXN4 1615
DFHRMXN5 1615
DFHRMXNE 1614
DFHRSDM 1625
DFHRSDU 1625
DFHRSDUF 1625
DFHRSFD 1625
DFHRSSM 1625
DFHRSSR 1625
DFHRSXM 1625
DFHRSXRI 1625
DFHRTC 2234
DFHRTE 2234
DFHRTSU 501
DFHRXDM 1630
DFHRXDUF 1631
DFHRXSVC 1631
DFHRXTRI 1631
DFHRXUW 1630
DFHRXXRG 1631
DFHRXXRM 1631
DFHRZDUF 1642
DFHRZIX 1642
DFHRZJN 1642
DFHRZLN 1642
DFHRZNR2 1642
DFHRZOFI 1642
DFHRZRG2 1642
DFHRZRJ 1642
DFHRZRM 1642
DFHRZRS1 1642
DFHRZRT 1642
DFHRZRT1 1642
DFHRZRT2 1642
DFHRZSO 1642
DFHRZSO1 1642
DFHRZTA 1642
DFHRZTCX 1642
DFHRZTR1 1642
DFHRZTRI 1642
DFHRZVP1 1642
DFHRZXM 1642
DFHS22RX 385
DFHSABDS 391

DFHSAXDF 1061
DFHSFP 2235
DFHSHDM 1649
DFHSHDUF 1649
DFHSHOFI 1649
DFHSHPR 1649
DFHSHRE1 1649
DFHSHRM 1650
DFHSHRQ 1650
DFHSHRQ1 1650
DFHSHRR 1650
DFHSHRRP 1650
DFHSHRSP 1650
DFHSHRT 1650
DFHSHRT1 1650
DFHSHRT2 1650
DFHSHSY 1650
DFHSHTI 1650
DFHSHTRI 1650
DFHSHVP1 1650
DFHSHXM 1650
DFHSIA1 2235
DFHSIB1 2235
DFHSIC1 2235
DFHSID1 2236
DFHSIF1 2236
DFHSIG1 2237
DFHSIH1 2237
DFHSII1 374, 2237
DFHSIJ1 338, 2238
DFHSIP 2238
DFHSJCS 1675
DFHSJDM 1675
DFHSJDS 1675
DFHSJIN 1675
DFHSJIS 1675
DFHSJJS 1675
DFHSJPJP 1675
DFHSJSM 1675
DFHSJTH 1675
DFHSKC 396, 398
DFHSKE 396, 398
DFHSKM 395, 398
DFHSKP 395, 2239
DFHSMAD 1712
DFHSMAR 1712
DFHSMCK 1712
DFHSMDM 1712
DFHSMDUF 406, 1712
DFHSMGF 1712
DFHSMMC2 1713
DFHSMMCI 1712
DFHSMMF 1713
DFHSMMG 1713
DFHSMSCP 387, 2239
DFHSMSR 1713
DFHSMST 1713
DFHSMSVC 1713
DFHSMSY 1713
DFHSMTRI 406, 473, 1713
DFHSMVN 1713
DFHSMVP 1713
DFHSMXDF 1061
DFHSNAT 2239
DFHSNEP 361
DFHSNMIG 2240
DFHSNNFY 2240

2348 CICS TS for z/OS 4.1: Diagnosis Reference

DFHSNP 2240
DFHSNSN 2241
DFHSNTRI 406, 473
DFHSNVCL 2241
DFHSNVID 2241
DFHSNVPR 2241
DFHSNVTO 2242
DFHSOAD 1769
DFHSOCK 1769
DFHSODM 1769
DFHSODUF 1769
DFHSOIS 1769
DFHSORD 1769
DFHSOSE 1770
DFHSOTB 1770
DFHSOTRI 1770
DFHSPP 401, 402, 525, 2242
DFHSR1 414
DFHSRLI 414, 2242
DFHSRP 409, 414, 2243
DFHSSDUF 406
DFHSSEN 392, 2243
DFHSSGC 393, 2243
DFHSSIN 389, 392, 2244
DFHSSMGP 393, 2244
DFHSSMGT 393, 2244
DFHSSWT 393, 2245
DFHSSWTF 393, 2245
DFHSSWTO 393, 2245
DFHST03X 385
DFHST04X 385
DFHST06X 385
DFHST08X 385
DFHST09X 385
DFHST14X 385
DFHST16X 385
DFHST17X 385
DFHST21X 385
DFHSTD2X 385
DFHSTDBX 385, 1779
DFHSTDSX 385
DFHSTDT 2245
DFHSTDUF 406, 1779
DFHSTDUX 385
DFHSTE15 385
DFHSTE35 385
DFHSTEJX 385
DFHSTFC 2246
DFHSTIB 2246
DFHSTIIX 386
DFHSTIN 386
DFHSTISX 386
DFHSTJC 2246
DFHSTLDX 386
DFHSTLGX 386
DFHSTLK 2247
DFHSTLS 2247
DFHSTMNX 386
DFHSTMQX 386
DFHSTOT 386
DFHSTP 338, 2247
DFHSTPGX 386
DFHSTRD 386
DFHSTRMX 386
DFHSTSJX 386
DFHSTSMX 386
DFHSTSOX 386

DFHSTST 1779
DFHSTSTX 386
DFHSTSZ 2248
DFHSTTD 2248
DFHSTTI 1780
DFHSTTM 2249
DFHSTTQX 386
DFHSTTR 2249
DFHSTTRI 406, 473, 1780
DFHSTTS 2249
DFHSTTSX 386
DFHSTU03 386
DFHSTU04 386
DFHSTU06 386
DFHSTU08 386
DFHSTU09 386
DFHSTU14 386
DFHSTU16 386
DFHSTU17 386
DFHSTU21 386
DFHSTU22 386
DFHSTUD2 386
DFHSTUDB 386
DFHSTUDS 386
DFHSTUDU 386
DFHSTUE 1780
DFHSTUEJ 386
DFHSTUII 386
DFHSTUIS 386
DFHSTULD 386
DFHSTULG 386
DFHSTUMN 386
DFHSTUMQ 386
DFHSTUP 383
DFHSTUP1 386
DFHSTUPG 386
DFHSTURM 386
DFHSTURS 386
DFHSTURX 386
DFHSTUSJ 386
DFHSTUSM 386
DFHSTUSO 386
DFHSTUST 386
DFHSTUTQ 386
DFHSTUTS 386
DFHSTUXM 386
DFHSTWR 386
DFHSTXMX 386
DFHSUDUF 407
DFHSUEX 512, 513
DFHSUSN 2249
DFHSUSX 2250
DFHSUTRI 407
DFHSUWT 553, 2250
DFHSUZX 2251
DFHSZ2CP 298
DFHSZ2DX 298
DFHSZ2ID 298
DFHSZ2IX 298
DFHSZ2OA 298
DFHSZ2OD 298
DFHSZ2OR 298
DFHSZ2OX 298
DFHSZ2OY 298
DFHSZ2QS 298
DFHSZ2QX 298
DFHSZ2SB 298

DFHSZ2SC 298
DFHSZ2SD 298
DFHSZ2SH 299
DFHSZ2SQ 299
DFHSZ2SR 299
DFHSZ2SX 299
DFHSZ2TE 299
DFHSZATC 296
DFHSZATR 296
DFHSZBCL 296
DFHSZBCS 296
DFHSZBFT 296
DFHSZBLO 296
DFHSZBRS 296
DFHSZBSI 296
DFHSZBST 296
DFHSZBUN 296
DFHSZBUS 296
DFHSZDUF 296, 407
DFHSZFRD 296
DFHSZFSD 296
DFHSZIDX 296
DFHSZPCP 296
DFHSZPDX 296
DFHSZPID 296
DFHSZPIX 296
DFHSZPOA 296
DFHSZPOD 296
DFHSZPOR 296
DFHSZPOX 296
DFHSZPOY 296
DFHSZPQS 296
DFHSZPQX 296
DFHSZPSB 296
DFHSZPSC 296
DFHSZPSD 296
DFHSZPSH 296
DFHSZPSQ 296
DFHSZPSR 296
DFHSZPSS 296
DFHSZPSX 296
DFHSZPTE 296
DFHSZRCA 297
DFHSZRCT 297
DFHSZRDC 297
DFHSZRDG 297
DFHSZRDN 297
DFHSZRDP 297
DFHSZRDS 297
DFHSZRDT 297
DFHSZREQ 297
DFHSZRFC 297
DFHSZRGR 297
DFHSZRIA 297
DFHSZRIC 297
DFHSZRID 297
DFHSZRIF 297
DFHSZRII 297
DFHSZRIN 297
DFHSZRIO 297
DFHSZRIP 297
DFHSZRIQ 297
DFHSZRIS 297
DFHSZRIT 297
DFHSZRIW 297
DFHSZRNC 297
DFHSZRNO 297

Index 2349

DFHSZRPM 297
DFHSZRPW 297
DFHSZRQR 297
DFHSZRQW 297
DFHSZRRD 297
DFHSZRRT 297
DFHSZRSC 297
DFHSZRSE 297
DFHSZRST 297
DFHSZRTM 297
DFHSZRXD 297
DFHSZRZZ 297
DFHSZSIP 297
DFHSZVBN 297
DFHSZVGF 297
DFHSZVQS 297
DFHSZVRA 298
DFHSZVRI 298
DFHSZVSC 298
DFHSZVSL 298
DFHSZVSQ 298
DFHSZVSR 298
DFHSZVSY 298
DFHSZWSL 298
DFHSZXDA 298
DFHSZXFR 298
DFHSZXLG 298
DFHSZXLT 298
DFHSZXNS 298
DFHSZXPM 298
DFHSZXRA 298
DFHSZXSC 298
DFHSZXTP 298
DFHSZYLG 298
DFHSZYQR 298
DFHSZYRI 298
DFHSZYSC 298
DFHSZYSR 298
DFHSZYSY 298
DFHSZZAG 298
DFHSZZFR 298
DFHSZZNG 298
DFHSZZRG 298
DFHTACP 437, 439, 2251
DFHTAJP 331, 332, 2251
DFHTBS 63, 66
DFHTBS00 2254
DFHTBSB 2252
DFHTBSBP 64, 2252
DFHTBSD 2252
DFHTBSDP 2252
DFHTBSL 2253
DFHTBSLP 2253
DFHTBSQ 2253
DFHTBSQP 2253
DFHTBSR 2254
DFHTBSRP 2254
DFHTBSS 63, 66, 79, 454, 457
DFHTBSSP 2254
DFHTC macro 489
DFHTCBP 2255
DFHTCDUF 407
DFHTCP 444, 460, 2255
DFHTCRP 62, 457, 2256
DFHTCRPC 2256
DFHTCRPL 2256
DFHTCRPS 2256

DFHTCRPU 2257
DFHTCT 452
DFHTCXDF 1061
DFHTDA 508, 2257
DFHTDB 508, 2258
DFHTDDUF 407
DFHTDEXC 508
DFHTDEXL 2258
DFHTDOC 508
DFHTDP 508, 2258
DFHTDQ 2259
DFHTDRM 508, 2259
DFHTDRP 2259
DFHTDSUC 508
DFHTDTM 508, 2260
DFHTDTRI 407
DFHTDX 2260
DFHTEP 465, 2260
DFHTFP 475, 477
DFHTIDM 1790
DFHTIDUF 407, 1790
DFHTIEM 431
DFHTISR 1790
DFHTITRI 407, 473, 1790
DFHTMDUF 407
DFHTMP 422, 457, 2260
DFHTOAxx 458
DFHTOBPS 458
DFHTON 2261
DFHTONR 63, 66
DFHTOR 374, 458, 2262
DFHTORP 2262
DFHTPE 39
DFHTPP 41, 54
DFHTPP1$ 2262
DFHTPPA$ 2262
DFHTPQ 41, 56, 2263
DFHTPR 41, 57, 2263
DFHTPS 41, 58, 2264
DFHTR660 2265
DFHTRAO 1800
DFHTRAP 1800, 2265
DFHTRDM 1800
DFHTRDUF 407, 472
DFHTRFFD 407, 472
DFHTRFFE 407, 472
DFHTRFPB 407, 472
DFHTRFPP 407, 472
DFHTRIB 407, 472
DFHTRP 468, 2265
DFHTRPRA 472
DFHTRPRG 472
DFHTRPT 1800
DFHTRPX 1800
DFHTRSR 1800
DFHTRSU 1800
DFHTRTRI 407, 473
DFHTRXDF 1061
DFHTRZCP 2266
DFHTRZIP 2266
DFHTRZPP 2266
DFHTRZxP 458
DFHTRZXP 2266
DFHTRZYP 2267
DFHTRZZP 2267
DFHTSBR 1835
DFHTSDM 1835

DFHTSDUF 407
DFHTSITR 473, 1835
DFHTSP 1835, 2267
DFHTSPT 1835
DFHTSQR 1836
DFHTSRM 1836
DFHTSSH 1836
DFHTSSR 1836
DFHTSST 1836
DFHTT660 2267
DFHTTPDS 39
DFHTU660 470
DFHUCNV 2268
DFHUEDUF 407
DFHUEH 511, 513, 2268
DFHUEM 162, 427, 431, 510, 514, 2269
DFHUSAD 1860
DFHUSBP 2269
DFHUSDM 1860
DFHUSDUF 407, 1860
DFHUSFL 1860
DFHUSIS 1860
DFHUSST 1860
DFHUSTI 1860
DFHUSTRI 407, 473, 1860
DFHUSXM 1860
DFHW2A 1937
DFHW2AC 1937
DFHW2AS 1937
DFHW2AT 1937
DFHW2DM 1937
DFHW2DUF 1937
DFHW2FD 1937
DFHW2FI 1937
DFHW2FR 1937
DFHW2RP 1937
DFHW2SD 1937
DFHW2ST 1937
DFHW2TRI 1937
DFHW2TS 1937
DFHW2TT 1937
DFHW2UE 1937
DFHW2W2 1937
DFHWBA 557
DFHWBA1 558
DFHWBAAX 557
DFHWBADX 557
DFHWBAP 1923
DFHWBAPF 1923
DFHWBBLI 558
DFHWBCL 558, 1923
DFHWBDM 1923
DFHWBERX 557
DFHWBGB 558
DFHWBIP 557
DFHWBLT 558
DFHWBQM 1923
DFHWBRP 1923
DFHWBSR 1924
DFHWBST 558
DFHWBTC 558
DFHWBTTA 558
DFHWBTTB 558
DFHWBTTC 558
DFHWBUN 558
DFHWBUR 1924
DFHWBXM 1924

2350 CICS TS for z/OS 4.1: Diagnosis Reference

DFHWBXN 557
DFHWCCS 2269
DFHWCGNT 2270
DFHWDATT 2270
DFHWDINA 2270
DFHWDISP 2270
DFHWDSRP 2271
DFHWDWAT 2271
DFHWKP 455, 2271
DFHWLFRE 2272
DFHWLGET 2272
DFHWMG1 2272
DFHWMI 2273
DFHWMMT 2273
DFHWMP1 2273
DFHWMPG 2273
DFHWMQG 2274
DFHWMQH 2274
DFHWMQP 2274
DFHWMQS 2275
DFHWMRD 2275
DFHWMS 174, 2275
DFHWMS20 2275
DFHWMWR 2276
DFHWOS 2276
DFHWOSA 2276
DFHWOSB 2276
DFHWSRTR 2277
DFHWSSN1 2277
DFHWSSN2 2277
DFHWSSN3 2278
DFHWSSOF 2278
DFHWSSR 2279
DFHWSSW 2279
DFHWSTI 2279
DFHWSTKV 2280
DFHWSXPI 2280
DFHWTI 2281
DFHWTO 553
DFHWTRP 2281
DFHXCALL 177
DFHXCDMP 177
DFHXCEIP 177
DFHXCO 177
DFHXCOPT 177
DFHXCP 2281
DFHXCP1 2282
DFHXCPC 2281
DFHXCPLD 177
DFHXCPLH 177
DFHXCPLL 177
DFHXCPLO 177
DFHXCPRH 177
DFHXCRCD 177
DFHXCRCH 177
DFHXCRCL 177
DFHXCRCO 178
DFHXCSTB 177
DFHXCSVC 178
DFHXCTAB 178
DFHXCTRA 178
DFHXCTRD 178
DFHXCTRI 178
DFHXCTRP 178
DFHXCURM 178
DFHXDXDF 1061
DFHXFP 301, 2282

DFHXFQ 2282
DFHXFX 301, 2283
DFHXMAB 2001
DFHXMAT 2001
DFHXMBD 2001
DFHXMCL 2001
DFHXMDD 2002
DFHXMDM 2002
DFHXMDUF 407, 2002
DFHXMER 2002
DFHXMFD 2002
DFHXMIQ 2002
DFHXMLD 2002
DFHXMQC 2002
DFHXMQD 2002
DFHXMRP 2002
DFHXMSR 2002
DFHXMST 2002
DFHXMTRI 407, 473, 2002
DFHXMXD 2003
DFHXMXE 2003
DFHXRA 174, 2283
DFHXRB 2283
DFHXRC 2284
DFHXRCP 174, 2284
DFHXRDUF 407
DFHXRE 2284
DFHXRP 2284
DFHXRSP 174, 2285
DFHXRXDF 1061
DFHXSAD 2051
DFHXSDM 2051
DFHXSDUF 407, 2051
DFHXSFL 2051
DFHXSIS 2051
DFHXSLU 2051
DFHXSMN 2285
DFHXSMX 2285
DFHXSPW 2051
DFHXSRC 2052
DFHXSS 2286
DFHXSSA 2052
DFHXSSB 2052, 2286
DFHXSSC 2052
DFHXSSD 2052
DFHXSSI 2052
DFHXSTRI 473, 2052
DFHXSWM 2286
DFHXTCI 174, 2287
DFHXTP 495, 501, 2287
DFHZABD 2287
DFHZACT 16, 357, 2287
DFHZAIT 2288
DFHZAND 2288
DFHZARER 130, 2288
DFHZARL 124, 126, 130, 2289
DFHZARM 124, 128, 2289
DFHZARQ 123, 129, 328, 2289
DFHZARR 124, 130, 2290
DFHZARR0 130, 2290
DFHZARR1 131, 2290
DFHZARRA 130, 2290
DFHZARRC 130, 131, 2291
DFHZARRF 130, 2291
DFHZASX 2291
DFHZATA 16, 23, 63, 454, 2292
DFHZATA2 23

DFHZATD 23, 454, 2292
DFHZATDX 23, 2292
DFHZATDY 23
DFHZATI 2293
DFHZATMD 2293
DFHZATMF 2293
DFHZATR 23, 2293
DFHZATS 23, 454, 2294
DFHZATT 2294
DFHZBAN 2294
DFHZBKT 525, 2295
DFHZBLX 518, 2295
DFHZCA 2295
DFHZCB 2296
DFHZCC 2296
DFHZCGRP 543
DFHZCHS 525, 2297
DFHZCLS 2298
DFHZCLS, close destination program 20
DFHZCLX 20, 2298
DFHZCNA 451, 2298
DFHZCNR 451, 2299
DFHZCNT 525, 2299
DFHZCP 328, 444, 460, 2299
DFHZCQ 63, 80, 375, 454, 2300
DFHZCQDL 2300
DFHZCQIN 2300
DFHZCQIQ 2301
DFHZCQIS 2301
DFHZCQIT 2301
DFHZCQRS 2301
DFHZCQRT 64
DFHZCRQ 2302
DFHZCRT 525, 2302
DFHZCUT 2302
DFHZCW 2302
DFHZCX 327, 2303
DFHZCXR 2303
DFHZCY 2303
DFHZCZ 2305
DFHZDET 2305
DFHZDSP 2305
DFHZDST 2306
DFHZEMW 2306
DFHZERH 124, 130, 131, 2306
DFHZEV1 2306
DFHZEV2 2307
DFHZFRE 2307
DFHZGAI 23
DFHZGCA 533, 543
DFHZGCC 543
DFHZGCH 518
DFHZGCN 531, 543
DFHZGDA 543
DFHZGET 2307
DFHZGIN 519
DFHZGPC 543
DFHZGPR 544
DFHZGRP 544
DFHZGSL 544
DFHZGTA 63, 67
DFHZGTI (terminal location) 455
DFHZGUB 544
DFHZHPRX 2307
DFHZHPSR 2308
DFHZIS1 327, 2308
DFHZIS2 327, 2308

Index 2351

DFHZISP 123, 124, 132, 328, 2308
DFHZLEX 2309
DFHZLGX 2309
DFHZLGX, logon exit 16
DFHZLOC 2310
DFHZLOC (terminal location) 455
DFHZLRP 2310
DFHZLS1 531
DFHZLTX 2310
DFHZLUS 2311
DFHZMJM 360
DFHZNAC 357, 359, 447, 2311
DFHZNCA 20, 359
DFHZNCE 359
DFHZNCM 360
DFHZNCS 360
DFHZNCV 360
DFHZNEP 361, 2312
DFHZNSP 2312
DFHZOPA 2312
DFHZOPN 2313
DFHZOPX 2313
DFHZQUE 2313
DFHZRAC 2314
DFHZRAQ 2314
DFHZRAR 2314
DFHZRAS 2314
DFHZRLG 2315
DFHZRLP 527, 2315
DFHZRLX 525, 530, 2315
DFHZRRX 2316
DFHZRSP 2316
DFHZRST 2316
DFHZRSY 2316
DFHZRVL 525, 527, 2317
DFHZRVS 2317
DFHZRVX 2317
DFHZSAX 2318
DFHZSCX 2318
DFHZSDA 2318
DFHZSDL 525, 529, 2319
DFHZSDR 2319
DFHZSDS 2319
DFHZSDX 2320
DFHZSES 2320
DFHZSEX 2320
DFHZSHU 2320
DFHZSIM 2321
DFHZSIX 2321
DFHZSKR 2321
DFHZSLS 2322
DFHZSLX 525, 530, 2322
DFHZSSX 2322
DFHZSTAP 123, 124, 132, 2323
DFHZSTU 2323
DFHZSUP 328, 485, 491, 2323
DFHZSYN 2324
DFHZSYX 2324
DFHZTAX 2324
DFHZTPX 2325
DFHZTRA 2325
DFHZTSP 63, 454, 486, 492, 493, 501,

2325
DFHZUCT 2325
DFHZUIX 2326
DFHZUSR 2326
DFHZXCU 174, 2326

DFHZXDUF 407
DFHZXPS 545
DFHZXQO 2326
DFHZXRC 545, 2327
DFHZXRE0 2327
DFHZXRL 485, 487, 489, 501, 2327
DFHZXRT 501, 2328
DFHZXST 2328
DFXUSTRI 407
DGB (DBCTL global block) 117
DH (Document Handler Domain)

domain 923
DHDH gate

CREATE_DOCUMENT function 923
DELETE_BOOKMARK function 925
DELETE_DATA function 925
DELETE_DOCUMENT function 926
INQUIRE_DOCUMENT function 926
INSERT_BOOKMARK function 926
INSERT_DATA function 927
REPLACE_DATA function 928
RETRIEVE_WITH_CTLINFO

function 930
RETRIEVE_WITHOUT_CTLINFO

function 930
SET_PARAMETERS function 931

DHFS gate
DELETE_HFS_FILE function 931
END_BROWSE_DIRECTORY

function 931
GET_NEXT_IN_DIRECTORY

function 932
INQUIRE_HFS_FILE function 932
MAKE_HFS_DIRECTORY

function 933
READ_HFS_FILE function 933
START_BROWSE_DIRECTORY

function 934
WRITE_HFS_FILE function 935

DHSL gate
ADD_SYMBOL_LIST function 936
EXPORT_SYMBOL_LIST

function 936
IMPORT_SYMBOL_LIST

function 937
SET_SYMBOL_VALUE_BY_API

function 937
SET_SYMBOL_VALUE_BY_SSI

function 938
DHTM gate

ADD_REPLACE_DOCTEMPLATE
function 938

DELETE_DOCTEMPLATE
function 940

END_BROWSE function 941
GET_NEXT function 941
INITIALIZE_DOCTEMPLATES

function 942
INQUIRE_DOCTEMPLATE

function 942
INQUIRE_TEMPLATE_STATUS

function 944
READ_TEMPLATE function 944
START_BROWSE function 945

DIB (data interchange block) 120
DIB (DL/I interface block) 137
DIP (data interchange program) 119

DIP (data interchange program)
(continued)

storage control 120
temporary-storage control 120
terminal control 120
trace control 120

Directory manager domain 911
DISABLE routine of DFHUEM 511
DISABLE_FILE function, FCFS gate 759
DISABLE_STATISTICS function, STST

gate 1773
DISCARD function, LGJN gate 1294
DISCARD function, LGLD gate 1303
DISCARD function, RLCB gate 1548
DISCARD_AIDS function, TFAL

gate 846
DISCARD_BUNDLE function, RLPM

gate 1537
DISCARD_DJAR function, IICP

gate 1158
DISCARD_ENQMODEL function, NQRN

gate 1376
DISCARD_EVENTBINDING function,

ECIS gate 627
DISCARD_IPCONN function, ISIC

gate 1186
DISCARD_JVMSERVER function, SJJS

gate 1655
DISCARD_LIBRARY function, LDLB

gate 1251
DISCARD_METHOD_INFO function,

EJMI gate 1117
DISCARD_PIPELINE function, PIPL

gate 1495
DISCARD_PROCESSTYPE function,

BATT gate 894
DISCARD_TDQDEF function, TDTM

gate 833
DISCARD_WEBSERVICE function, PIWR

gate 1513
DISCARD_XMLTRANSFORM function,

MLXT gate 1344
discard, EXEC CICS 85
DISCARDED function, RLRO gate 1542
DISCONNECT for IRC 325
DISCONNECT function, LGLB

gate 1301
DISCONNECT function, LGST

gate 1309
DISCONNECT_ALL function, LGLB

gate 1301
DISCONNECT_CFDT_POOLS function,

FCDS gate 681
DISCONNECT_DSNB function, FCDN

gate 673
disconnection flow for terminals,

LU-initiated 19
Dispatcher Domain (DS) domain 997
distributed program link (DPL) 121
distributed transaction processing (DTP)

logical unit type 6.1 (LU6.1)
protocol 123

session failures 123
system failures 123

distribution tapes, modules
supplied 2055

DJAR_SCAN function, IICP gate 1159

2352 CICS TS for z/OS 4.1: Diagnosis Reference

DL/I
PSB scheduling 116, 371
PSB termination 116, 371
remote 371
system definition 371

DL/I database support 107, 135, 371
DL/I interface

CALL macro 136
CALLDLI macro 136
EXEC DLI command 136
IMS service modules 136
program specification block

(PSB) 136
DL/I interface block (DIB) 137
DL/I interface parameter list (DLP) 117,

137
DL/I interface program 135
DL/I request handling, function

shipping 310
DL/I support 107, 135, 371
DLP (DL/I interface parameter list) 117,

137
DM (Domain Manager Domain)

domain 949
DMDM gate

ADD_DOMAIN function 949
INITIALISE_DOMAIN function 956
PRE_INITIALISE function 957
QUIESCE_DOMAIN function 957
QUIESCE_SYSTEM function 950
SET_PHASE function 950
TERMINATE_DOMAIN function 957
WAIT_PHASE function 950

DMEN gate
DELETE function 951
LISTEN function 952
NOTIFY_SMSVSAM_OPERATIONAL

function 958
DMIQ gate

END_BROWSE function 952
GET_NEXT function 953
INQ_DOMAIN_BY_ID function 953
INQ_DOMAIN_BY_NAME

function 954
INQ_DOMAIN_BY_TOKEN

function 955
START_BROWSE function 955

Document Handler Domain (DH)
domain 923

domain
Directory manager (DD) 911

domain calls 3
formats 8
generic 9
specific 9
tokens 9

domain gates 7
Domain Manager Domain (DM)

domain 949
domains 3

application (AP) 11
Application Manager Domain

(AP) 563
Business Application Manager

Domain (BA) 869
CICS Catalog Domain (CC) 903
debugging profile (DP) 961

domains (continued)
Dispatcher Domain (DS) 997
Document Handler Domain

(DH) 923
Domain Manager Domain (DM) 949
Dump Domain (DU) 1035
Enqueue Domain (NQ) 1361
Enterprise Java Domain (EJ) 1063
Event Manager Domain (EM) 1135
Event processing domain (EP) 1149
IIOP (II) 1157
inter-system 1179
IP ECI (IE) 1153
IS 1179
Java Virtual Machine Domain

(SJ) 1651
Kernel Domain (KE) 1215
Loader Domain (LD) 1249
Lock Manager Domain (LM) 1319
Logger Domain (LG) 1279
Markup language domain (ML) 1337
Message Domain (ME) 1323
Monitoring Domain (MN) 1349
object transaction service (OT) 1383
Parameter Manager Domain

(PA) 1393
Partner Management Domain

(PT) 1523
Pipeline Manager Domain (PI) 1475
Program Manager Domain (PG) 1397
Recovery Manager Domain

(RM) 1551
Region status domain (RS) 1617
Request Streams Domain (RZ) 1633
Resource life-cycle domain (RL) 1537
RRMS (RX) 1627
Scheduler Services Domain

(SH) 1643
Security Domain (XS) 2005
Sockets Domain (SO) 1715
Statistics Domain (ST) 1771
Storage Manager Domain (SM) 1677
Temporary Storage Domain

(TS) 1801
Timer Domain (TI) 1781
Trace Domain (TR) 1791
transaction manager (XM) 1939
User Domain (US) 1837
Web 2.0 Domain (W2) 1925
Web Domain (WB) 1861

DP (debugging profile) domain 961
DPFM gate

ACTIVATE_DEBUG_PROFILE
function 961

DELETE_DEBUG_PROFILE
function 962

END_PM_BROWSE function 962
GET_DEBUG_PROFILE function 963
INACTIVATE_DEBUG_PROFILE

function 965
READNEXT_PM_PROFILE

function 965
REPLACE_DEBUG_PROFILE

function 967
SAVE_DEBUG_PROFILE

function 970
START_PM_BROWSE function 973

DPIQ gate
INQUIRE_DEBUG_TASK

function 973
INQUIRE_PARAMETERS

function 973
SET_DEBUG_PROFILE function 974
SET_DEBUGGING function 974
SET_PARAMETERS function 975

DPLM gate
ENDBR_DEBUG_PROFILES

function 975
READNEXT_DEBUG_PROFILE

function 975
READNEXT_INPUT function 978
RESTARTBR_DEBUG_PROFILES

function 980
STARTBR_DEBUG_PROFILES

function 980
UPDATE_PROFILE_IN_LIST

function 981
DPPM gate

PATTERN_MATCH_PROFILE
function 982

PATTERN_MATCH_TASK
function 985

DPUM gate
GET_USER_DEFAULTS function 985
SAVE_USER_DEFAULTS

function 987
DPWD gate

PROCESS_PAGE function 990
PROCESS_SUBMIT function 990

DPWE gate
PROCESS_PAGE function 991
PROCESS_SUBMIT function 992

DPWJ gate
PROCESS_PAGE function 992
PROCESS_SUBMIT function 993

DPWL gate
PROCESS_PAGE function 993
PROCESS_SUBMIT function 994

DPXM gate
BIND_XM_CLIENT function 995
INIT_XM_CLIENT function 995
RELEASE_XM_CLIENT function 995

DRA (database resource adapter) 107
DRAIN_CONTROL_ACB function, FCCA

gate 639
DRIVE_PENDING function, RLRO

gate 1542
DS (Dispatcher Domain) domain 997
DSAT gate

ATTACH function 997
CANCEL_TASK function 998
CHANGE_MODE function 999
CHANGE_PRIORITY function 1001
CLEAR_MATCH function 1002
DELETE_SUBSPACE_TCBS

function 1002
FORCE_PURGE_INHIBIT_QUERY

function 1032
FREE_SUBSPACE_TCBS

function 1003
NOTIFY_DELETE_TCB

function 1032
PURGE_INHIBIT_QUERY

function 1031

Index 2353

DSAT gate (continued)
RELEASE_OPEN_TCB function 1003
SET_PRIORITY function 1003
SET_TRANSACTION_TOKEN

function 1004
TASK_REPLY function 1031
TCB_POOL_MANAGEMENT

function 1005
DSB (data stream build) 43

interfaces, illustrated 43
page and text build (PBP) 44
terminal page processor (TPP) 44

DSB (DBCTL scheduling block) 117
DSBR gate

END_BROWSE function 1005
GET_NEXT function 1005
INQUIRE_TASK function 1007
INQUIRE_TCB function 1009
SET_TASK function 1010
SET_TCB function 1011
START_BROWSE function 1012

DSIT gate
ACTIVATE_MODE function 1012
ADD_TCB function 1014
DELETE_ALL_OPEN_TCBS

function 1015
DELETE_OPEN_TCB function 1015
DELETE_TCB function 1015
FREE_TCB function 1016
INQUIRE_DISPATCHER

function 1016
PROCESS_DEAD_TCBS

function 1017
SET_DISPATCHER function 1018

DSMT gate
END_BROWSE_MVSTCB

function 1019
GET_NEXT_MVSTCB function 1019
INQUIRE_MVSTCB function 1020
SNAPSHOT_MVSTCBS

function 1021
START_BROWSE_MVSTCB

function 1021
DSNAME block manager, file control

(DFHFCDN) 208
DSNB (data set name block) 196
DSNCUEXT 98
DSSR gate

ADD_SUSPEND function 1021
DELETE_SUSPEND function 1022
RESUME function 1022
SUSPEND function 1023
WAIT_MVS function 1024
WAIT_OLDC function 1026
WAIT_OLDW function 1028

DU (Dump Domain) domain 1035
DUDT gate

ADD_SYSTEM_DUMPCODE
function 1035

ADD_TRAN_DUMPCODE
function 1036

DELETE_SYSTEM_DUMPCODE
function 1037

DELETE_TRAN_DUMPCODE
function 1037

ENDBR_SYSTEM_DUMPCODE
function 1037

DUDT gate (continued)
ENDBR_TRAN_DUMPCODE

function 1038
GETNEXT_SYSTEM_DUMPCODE

function 1038
GETNEXT_TRAN_DUMPCODE

function 1039
INQUIRE_SYSTEM_DUMPCODE

function 1040
INQUIRE_TRAN_DUMPCODE

function 1041
SET_SYSTEM_DUMPCODE

function 1042
SET_TRAN_DUMPCODE

function 1044
STARTBR_SYSTEM_DUMPCODE

function 1045
STARTBR_TRAN_DUMPCODE

function 1045
DUDU gate

SYSTEM_DUMP function 1045
TRANSACTION_DUMP

function 1047
DUFT gate

DEREGISTER function 1049
INQUIRE_FEATURE function 1050
REGISTER function 1050
UPDATE_FEATURE function 1051

Dump Domain (DU) domain 1035
dump utility program (DFHDUxxx) 141
DUMP_DATA function, EJDU gate 1103
DUMP_STACK function, EJDU

gate 1103
DUMPDS_CLOSE function, DUSR

gate 1052
DUMPDS_OPEN function, DUSR

gate 1052
DUMPDS_SWITCH function, DUSR

gate 1052
dumps

finding in dump 420
finding table entries in 420

dumps, FEPI
interpreted areas 294

DUSR gate
CROSS_SYSTEM_DUMP_AVAIL

function 1052
DUMPDS_CLOSE function 1052
DUMPDS_OPEN function 1052
DUMPDS_SWITCH function 1052
INQUIRE_CURRENT_DUMPDS

function 1053
INQUIRE_DUMPDS_AUTOSWITCH

function 1053
INQUIRE_DUMPDS_OPEN_STATUS

function 1053
INQUIRE_INITIAL_DUMPDS

function 1054
INQUIRE_RETRY_TIME

function 1054
INQUIRE_SYSTEM_DUMP

function 1054
SET_DUMPDS_AUTOSWITCH

function 1055
SET_DUMPTABLE_DEFAULTS

function 1055

DUSR gate (continued)
SET_INITIAL_DUMPDS

function 1056
SET_RETRY_TIME function 1056
SET_SYSTEM_DUMP function 1056
SET_TRANTABLESIZE function 1057
SET_TRANTABLETYPE

function 1057
DWE (deferred work element) 402
DYN_CREATE_WEBSERVICE function,

PISC gate 1503
dynamic allocation sample program

(DYNALLOC) 145
dynamic log

as used by file control 183
for restartable transactions 479

dynamic transaction backout
READ UPDATE request 187
WRITE request 188

dynamic transaction backout (DTB)
transaction restart 479

E
ECIS gate

DISCARD_EVENTBINDING
function 627

END_BROWSE function 628
END_BROWSE_CAPTURESPEC

function 627
GET_NEXT_CAPTURESPEC

function 628
GET_NEXT_ENTRY function 629
INQ_CAPTURESPEC function 629
INQ_EVENTBINDING function 630
INQ_EVENTPROCESS function 630
SET_EVENTBINDING function 631
SET_EVENTPROCESS function 631
START_BROWSE_CAPTURESPEC

function 631
START_BROWSE_EVENTBINDING

function 632
ECSE gate

SIGNAL_EVENT function 632
EDF (execution diagnostic facility) 169
EIB (EXEC interface block) 153
EIC (EXEC interface communication

area) 154
EIP (EXEC interface program) 153
EIS (EXEC interface storage) 155
EJ (Enterprise Java Domain)

domain 1063
EJBB gate

END_BROWSE function 1063
GET_NEXT function 1064
START_BROWSE function 1065

EJBG gate
ADD_BEAN function 1066
ADD_BEAN_STATS function 1067
CONFIRM_ALL_BEANS

function 1068
DELETE_ALL_BEANS function 1068
DELETE_BEAN function 1069
GET_BEAN_DD function 1069
INQUIRE_BEAN function 1070
RESET_BEAN_STATS function 1071

2354 CICS TS for z/OS 4.1: Diagnosis Reference

EJCB gate
END_BROWSE function 1072
GET_NEXT function 1072
START_BROWSE function 1075

EJCG gate
ACTION_CORBASERVER

function 1075
ADD_CORBASERVER function 1076
AMEND_CORBASERVER

function 1079
DELETE_CORBASERVER

function 1081
ESTABLISH function 1082
INQUIRE_CORBASERVER

function 1082
RELINQUISH function 1084
RESOLVE_CORBASERVER

function 1085
SET_ALL_STATE function 1086
WAIT_FOR_CORBASERVER

function 1086
EJDB gate

END_BROWSE function 1087
GET_NEXT function 1087
START_BROWSE function 1089

EJDG gate
ACTION_DJAR function 1089
ADD_DJAR function 1090
AMEND_DJAR function 1091
CALL_EVENT_URM function 1093
COUNT_FOR_CS function 1093
DELETE_ALL_DJARS function 1094
DELETE_DJAR function 1095
INQUIRE_DJAR function 1096
RESOLVE_DJAR function 1097
SCAN_DJARS function 1097
SET_ALL_STATE function 1098
WAIT_FOR_DJAR function 1099
WAIT_FOR_USABLE_DJARS

function 1099
EJDI gate

ADD_ENTRY function 1100
INITIALISE function 1101
LOOKUP_ENTRY function 1101
REMOVE_ENTRY function 1102

EJDU gate
DUMP_DATA function 1103
DUMP_STACK function 1103
INQUIRE_TRACE_FLAGS

function 1104
EJGE gate

INITIALISE function 1104
QUIESCE function 1105
TERMINATE function 1105

EJIO gate
RESOLVE function 1105
RESOLVE_CSERVERS function 1106
RESOLVE_DJARS function 1106
SET_RSTATE function 1107

EJJO gate
ADD_BEAN function 1108
END_BEAN_BROWSE function 1109
ESTABLISH function 1109
GET_BEAN_DD function 1110
GET_NEXT_BEAN function 1110
INQUIRE_CORBASERVER

function 1111

EJJO gate (continued)
SET_BEAN_STATS function 1113
START_BEAN_BROWSE

function 1114
WAIT_FOR_CORBASERVER

function 1115
WAIT_FOR_USABLE_DJARS

function 1116
EJMI gate

ADD_BEAN function 1116
ADD_METHOD function 1117
DISCARD_METHOD_INFO

function 1117
GET_METHOD_INFO function 1118
INITIALISE function 1118

EJOB gate
END_BROWSE_OBJECT

function 1118
GET_NEXT_OBJECT function 1119
INQUIRE_OBJECT function 1120
INQUIRE_STORES function 1121
RETRIEVE_STATISTICS

function 1121
START_BROWSE_OBJECT

function 1122
EJOS gate

ACTIVATE_OBJECT function 1123
CLOSE_OBJECT_STORE

function 1124
OPEN_OBJECT_STORE

function 1124
REMOVE_OBJECT function 1125
REMOVE_STORE function 1125
STORE_OBJECT function 1126

EJSO gate
AMEND_CORBASERVER

function 1127
INQUIRE_CORBASERVER

function 1130
elements list 2055

types of elements 2055
EM (Event Manager Domain)

domain 1135
EMBR gate

END_BROWSE_EVENT
function 1135

END_BROWSE_TIMER
function 1135

GET_NEXT_EVENT function 1136
GET_NEXT_TIMER function 1136
INQUIRE_EVENT function 1137
INQUIRE_TIMER function 1138
START_BROWSE_EVENT

function 1138
START_BROWSE_TIMER

function 1139
EMEM gate

ADD_SUBEVENT function 1139
CHECK_TIMER function 1140
DEFINE_ATOMIC_EVENT

function 1140
DEFINE_COMPOSITE_EVENT

function 1140
DEFINE_TIMER function 1141
DELETE_EVENT function 1142
DELETE_TIMER function 1143
FIRE_EVENT function 1143

EMEM gate (continued)
FORCE_TIMER function 1143
INQUIRE_STATUS function 1144
REMOVE_SUBEVENT function 1145
RETRIEVE_REATTACH_EVENT

function 1145
RETRIEVE_SUBEVENT

function 1145
TEST_EVENT function 1146

emergency restart 85
after 85

ENABLE routine of DFHUEM 510
ENABLE_FILE function, FCFS gate 760
END_ATOMS function, APRD gate 589
END_BACKOUT function, RMRO

gate 1600
END_BEAN_BROWSE function, EJJO

gate 1109
END_BROWSE function, AIIQ

format 32
END_BROWSE function, CCCC

gate 904
END_BROWSE function, DDBR

gate 917
END_BROWSE function, DHTM

gate 941
END_BROWSE function, DMIQ

gate 952
END_BROWSE function, DSBR

gate 1005
END_BROWSE function, ECIS gate 628
END_BROWSE function, EJBB gate 1063
END_BROWSE function, EJCB gate 1072
END_BROWSE function, EJDB

gate 1087
END_BROWSE function, FCFR gate 699
END_BROWSE function, FCRF gate 802
END_BROWSE function, IIRQ gate 1172
END_BROWSE function, LDLD

gate 1263
END_BROWSE function, LGJN

gate 1294
END_BROWSE function, LGLD

gate 1303
END_BROWSE function, LGST

gate 1309
END_BROWSE function, SOTB

gate 1762
END_BROWSE function, TSBR

gate 1803
END_BROWSE function, TSMB

gate 1806
END_BROWSE function, TSSH

gate 1822
END_BROWSE function, WBAP

gate 1861
END_BROWSE_ALL function, LGBA

gate 1280
END_BROWSE_ATOMSERVICE function,

W2AT gate 1929
END_BROWSE_BUNDLE function,

RLPM gate 1537
END_BROWSE_BUNDLERES function,

RLRO gate 1543
END_BROWSE_CAPTURESPEC function,

ECIS gate 627

Index 2355

END_BROWSE_CHAINS function, LGCC
gate 1284

END_BROWSE_DIRECTORY function,
DHFS gate 931

END_BROWSE_ENQMODEL function,
NQRN gate 1376

END_BROWSE_ENQUEUE function,
NQIB gate 1364

END_BROWSE_EVENT function, EMBR
gate 1135

END_BROWSE_FILE function, FCMT
gate 776

END_BROWSE_HEADERS function,
WBCL gate 1871

END_BROWSE_HOST function, WBUR
gate 1905

END_BROWSE_JVM function, SJIS
gate 1662

END_BROWSE_JVMPROFILE function,
SJIS gate 1663

END_BROWSE_JVMSERVER function,
SJJS gate 1656

END_BROWSE_LIBRARY function, LDLB
gate 1252

END_BROWSE_MVSTCB function,
DSMT gate 1019

END_BROWSE_OBJECT function, EJOB
gate 1118

END_BROWSE_PIPELINE function, PIPL
gate 1495

END_BROWSE_PROCESSTYPE function,
BATT gate 895

END_BROWSE_PROGRAM function,
PGIS gate 1438

END_BROWSE_RESULTS function,
DDAP gate 912

END_BROWSE_TCLASS function, XMCL
gate 1950

END_BROWSE_TDQDEF function,
TDTM gate 833

END_BROWSE_TIMER function, EMBR
gate 1135

END_BROWSE_TRANDEF function,
XMBD gate 1943

END_BROWSE_TRANSACTION
function, XMIQ gate 1960

END_BROWSE_TXN_TOKEN function,
XMIQ gate 1960

END_BROWSE_URIMAP function,
WBUR gate 1906

END_BROWSE_WEBSERVICE function,
PIWR gate 1514

END_BROWSE_XMLTRANSFORM
function, MLXT gate 1347

END_CHAIN_BROWSE function, LGCB
gate 1281

END_DELIVERY function, RMDE
gate 1605

END_DSNB_BROWSE function, FCDN
gate 674

END_FILE_IN_POOL_BROWSE function,
FCST gate 818

END_LINK_BROWSE function, RMLN
gate 1557

END_PM_BROWSE function, DPFM
gate 962

END_POOL_BROWSE function, PTTW
gate 1527

END_SUBPOOL_BROWSE function,
S2AD gate 1703

END_SUBPOOL_BROWSE function,
SMAD gate 1679

END_SYSTEM_DUMP function, RSDU
gate 1617

END_TASK function, KEDS gate 1229
END_TRANSACTION function, RSXM

gate 1623
END_TRANSACTION function, USXM

gate 1854
END_TRANSACTION function, XSXM

gate 2050
END_TRANSACTION_DUMP function,

RSDU gate 1617
END_TSPOOL_BROWSE function, TSSH

gate 1823
END_UOW_BROWSE function, RMUW

gate 1587
END_UOWDSN_BROWSE function,

FCFL gate 690
END_WORK_TOKEN_BROWSE function,

RMUW gate 1587
END_WRITE function, CCCC gate 904
ENDBR_ACTIVITY function, BABR

gate 875
ENDBR_CONTAINER function, BABR

gate 876
ENDBR_CONTAINER function, PGCR

gate 1409
ENDBR_DEBUG_PROFILES function,

DPLM gate 975
ENDBR_PROCESS function, BABR

gate 876
ENDBR_SYSTEM_DUMPCODE function,

DUDT gate 1037
ENDBR_TRAN_DUMPCODE function,

DUDT gate 1038
ENDBROWSE_IPCONN function, ISIC

gate 1186
ENF servicer, file control

(DFHFCES) 212
Enqueue Domain (NQ) domain 1361
ENQUEUE function, NQED gate 1362
Enterprise Java Domain (EJ)

domain 1063
environment, function shipping 304
EP (Event processing) domain 1149
EP domain

modules 1151
EPAS gate

FORMAT_EVENT function 1149
EPB (exit program block) 425, 430, 509
EPEV gate

PUT_EVENT function 1149
SYNC_EVENT function 1150

EPIS gate
SET_EVENT_PROCESSING

function 1151
EPL (exit program link) 509
ERROR function, LGGL gate 1314
ESDS (entry-sequenced data set)

invalid DELETE request 191
WRITE request processing 188

ESTABLISH function, EJCG gate 1082

ESTABLISH function, EJJO gate 1109
ESTABLISH function, SOCK gate 1725
ESTABLISH_LANGUAGE function, APLI

gate 582
ESTABLISH_PIPELINE function, PIPL

gate 1496
ESTAE exit routine 324, 397, 398
ESTIMATE_ALL function, APCR

gate 574
ESTIMATE_CHANGED function, APCR

gate 574
Event Manager Domain (EM)

domain 1135
Event processing (EP) domain 1149
EXCEPTION_DATA_PUT function,

MNMN gate 1349
exchange log name (XLN) 525
EXCI (external CICS interface) 175

design overview 175
EXEC CALL interface 175
EXEC CICS interface 176
programming interfaces 175

EXEC CALL interface of EXCI 175
EXEC CICS CREATE 85
EXEC CICS DELETE command 191
EXEC CICS DISCARD 85
EXEC CICS ENDBR command 193
EXEC CICS interface of EXCI 176
EXEC CICS READ command 186
EXEC CICS READNEXT command 192
EXEC CICS READPREV command 192
EXEC CICS RESETBR command 192
EXEC CICS REWRITE command 189
EXEC CICS STARTBR command 192
EXEC CICS UNLOCK command 190
EXEC CICS WRITE command 187
EXEC DLI command

DL/I interface 136
EXEC interface block (EIB) 153
EXEC interface communication area

(EIC) 154
EXEC interface module, file control

(DFHEIFC) 205
EXEC interface program (EIP) 153
EXEC interface storage (EIS) 155
execution diagnostic facility (EDF) 169
exit interface, user

control blocks, illustrated 512
exit program block (EPB) 425, 430, 509
exit program link (EPL) 509
exits

VTAM 26, 551
EXPLICIT_OPEN function, LGJN

gate 1294
EXPORT_ALL function, APCR gate 575
EXPORT_CERTIFICATE_DATA function,

SOIS gate 1741
EXPORT_CHANGED function, APCR

gate 576
EXPORT_SYMBOL_LIST function, DHSL

gate 936
extended recovery facility (XRF) 173
external CICS interface (EXCI) 175

design overview 175
EXEC CALL interface 175
EXEC CICS interface 176
programming interfaces 175

2356 CICS TS for z/OS 4.1: Diagnosis Reference

extract statistics reporting function 384
EXTRACT_ADS function, CCNV

gate 611
EXTRACT_CFDT_STAT function, FCDS

gate 681
EXTRACT_PROCESS function, APTC

gate 595
EXTRACT_STATISTICS function, FCCT

gate 661
EXTRACT-EXIT routine of

DFHUEM 511
extrapartition transient data queues 504

interfaces, illustrated 507
referencing using indirect queues 504

F
facility control area associated address

task control area (TCA)
terminal control 445

fast file locate element (FFLE) 193
FBWA (file browse work area)

FREEMAIN in ENDBR request
processing 193

RESETBR request 192
STARTBR request 192

FC static (file control static storage) 197
FCAT gate

INQ_BASEDSNAME function 633
INQ_CATALOG_QUIESCESTATE

function 633
INQ_CATALOG_RECOV_REQD

function 634
INQ_DATASET_STATE function 635
SET_BWO_BITS_DISABLED

function 635
SET_BWO_BITS_ENABLED

function 636
SET_CATALOG_RECOV_POINT

function 636
SET_CATALOG_RECOV_REQD

function 637
SET_CATALOG_RECOVERED

function 637
FCCA gate

CHECK function 638
COLD_START_RLS function 639
DRAIN_CONTROL_ACB

function 639
INQUIRE_RECOVERY function 640
LOST_LOCKS_COMPLETE

function 641
QUIESCE_COMPLETE function 641
QUIESCE_REQUEST function 642
REGISTER_CONTROL_ACB

function 643
RELEASE_LOCKS function 644
RESET_NONRLS_BATCH

function 645
RETAIN_DATASET_LOCKS

function 645
RETAIN_UOW_LOCKS function 646
UNREGISTER_CONTROL_ACB

function 646
FCCI gate

INQUIRE function 647

FCCR DELETE
file control 247
file control, FCCR DELETE

function 247
FCCR DELETE_MULTIPLE

file control 249
file control, FCCR

DELETE_MULTIPLE function 249
FCCR gate

DELETE function 649
DELETE_MULTIPLE function 650
HIGHEST function 652
LOAD function 653
POINT function 653
READ function 654
READ_DELETE function 656
REWRITE function 656
UNLOCK function 657
WRITE function 658

FCCR HIGHEST
file control 241
file control, FCCR HIGHEST

function 241
FCCR LOAD

file control 244
file control, FCCR LOAD

function 244
FCCR POINT

file control 240
file control, FCCR POINT

function 240
FCCR READ

file control 242
file control, FCCR READ

function 242
FCCR READ_DELETE

file control 243
file control, FCCR READ_DELETE

function 243
FCCR REWRITE

file control 246
file control, FCCR REWRITE

function 246
FCCR UNLOCK

file control 243
file control, FCCR UNLOCK

function 243
FCCR WRITE

file control 245
file control, FCCR WRITE

function 245
FCCT CLOSE

file control 252
file control, FCCT CLOSE

function 252
FCCT DELETE

file control 253
file control, FCCT DELETE

function 253
FCCT EXTRACT_STATISTICS

file control 254
file control, FCCT

EXTRACT_STATISTICS
function 254

FCCT gate
CLOSE function 659
DELETE function 660

FCCT gate (continued)
EXTRACT_STATISTICS function 661
OPEN function 662
SET function 665

FCCT OPEN
file control 250
file control, FCCT OPEN

function 250
FCCT SET

file control 253
file control, FCCT SET function 253

FCCU BACKOUT
file control 257
file control, FCCU BACKOUT

function 257
FCCU COMMIT

file control 256
file control, FCCU COMMIT

function 256
FCCU gate

BACKOUT function 666
COMMIT function 667
INQUIRE function 668
PREPARE function 669
RESTART function 670
RETAIN function 670

FCCU INQUIRE
file control 257
file control, FCCU INQUIRE

function 257
FCCU PREPARE

file control 255
file control, FCCU PREPARE

function 255
FCCU RESTART

file control 258
file control, FCCU RESTART

function 258
FCCU RETAIN

file control 256
file control, FCCU RETAIN

function 256
FCDN gate

CATALOG_DSNB function 671
COMMIT_DSNREFS function 672
CONNECT_DSNB function 672
DELETE_DSNB function 673
DISCONNECT_DSNB function 673
END_DSNB_BROWSE function 674
GET_NEXT_DSNB function 675
INQUIRE_DSNB function 676
RESET_ALL_QUIESCE_STATUS

function 678
SET_CATALOG_RECOVERED

function 678
SET_DSNB function 679
START_DSNB_BROWSE

function 680
UPDATE_RECOVERY_POINTS

function 680
FCDS DISCONNECT_CFDT_POOLS

file control 260
file control, FCDS

DISCONNECT_CFDT_POOLS
function 260

FCDS EXTRACT_CFDT_STATS
file control 259

Index 2357

FCDS EXTRACT_CFDT_STATS
(continued)

file control, FCDS
EXTRACT_CFDT_STATS
function 259

FCDS gate
DISCONNECT_CFDT_POOLS

function 681
EXTRACT_CFDT_STATS

function 681
FCDU BACKOUT

file control 263
file control, FCDU BACKOUT

function 263
FCDU COMMIT

file control 262
file control, FCDU COMMIT

function 262
FCDU gate

BACKOUT function 682
COMMIT function 683
INQUIRE function 684
PREPARE function 686
RESTART function 687
RETAIN function 688

FCDU INQUIRE
file control 264
file control, FCDU INQUIRE

function 264
FCDU PREPARE

file control 260
file control, FCDU PREPARE

function 260
FCDU RESTART

file control 265
file control, FCDU RESTART

function 265
FCDU RETAIN

file control 261
file control, FCDU RETAIN

function 261
FCDY gate

RESYNC_CFDT_LINK function 689
RESYNC_CFDT_POOL function 689
RETURN_CFDT_ENTRY_POINTS

function 690
FCDY RESYNC_CFDT_LINK

file control 266
file control, FCDY

RESYNC_CFDT_LINK function 266
FCDY RESYNC_CFDT_POOL

file control 266
file control, FCDY

RESYNC_CFDT_POOL
function 266

FCDY RETURN_CFDT_ENTRY_POINTS
file control 267
file control, FCDY

RETURN_CFDT_ENTRY_POINTS
function 267

FCFL END_UOWDSN_BROWSE
file control 267
file control, FCFL

END_UOWDSN_BROWSE
function 267

FCFL FIND_RETAINED
file control 268

FCFL FIND_RETAINED (continued)
file control, FCFL FIND_RETAINED

function 268
FCFL FORCE_INDOUBTS

file control 268
file control, FCFL FORCE_INDOUBTS

function 268
FCFL gate

END_UOWDSN_BROWSE
function 690

FIND_RETAINED function 691
FORCE_INDOUBTS function 692
GET_NEXT_UOWDSN function 692
RESET_BFAILS function 693
RETRY function 694
START_UOWDSN_BROWSE

function 694
TEST_USER function 695

FCFL GET_NEXT_UOWDSN
file control 269
file control, FCFL

GET_NEXT_UOWDSN
function 269

FCFL RESET_BFAILS
file control 270
file control, FCFL RESET_BFAILS

function 270
FCFL RETRY

file control 270
file control, FCFL RETRY

function 270
FCFL START_UOWDSN_BROWSE

file control 270
file control, FCFL

START_UOWDSN_BROWSE
function 270

FCFL TEST_USER
file control 271
file control, FCFL TEST_USER

function 271
FCFR gate

CLEAR_ENVIRONMENT
function 696

DELETE function 696
END_BROWSE function 699
FREE_UNUSED_BUFFERS

function 700
PREPARE_FILE_REQUEST

function 701
PREPARE_TO_BACKOUT

function 701
READ_INTO function 702
READ_NEXT_INTO function 705
READ_NEXT_SET function 708
READ_NEXT_UPDATE_INTO

function 711
READ_NEXT_UPDATE_SET

function 714
READ_PREVIOUS_INTO

function 716
READ_PREVIOUS_SET function 719
READ_PREVIOUS_UPDATE_INTO

function 722
READ_PREVIOUS_UPDATE_SET

function 725
READ_SET function 727
READ_UPDATE_INTO function 730

FCFR gate (continued)
READ_UPDATE_SET function 734
REPLACE function 737
REPLACE_DELETE function 740
RESET_BROWSE function 742
RESTART_FILE_CONTROL

function 744
REWRITE function 744
REWRITE_DELETE function 747
START_BROWSE function 749
TEST_FILE_USER function 752
UNLOCK function 752
WRITE function 754

FCFS gate
CANCEL_CLOSE_FILE function 757
CLOSE_FILE function 757
DISABLE_FILE function 759
ENABLE_FILE function 760
OPEN_FILE function 760

FCIN gate
INITIALISE_FILE_CONTROL

function 762
WAIT_FOR_FILE_CONTROL

function 762
FCLJ DATASET_COPY

file control 278
file control, FCLJ DATASET_COPY

function 278
FCLJ FILE_CLOSE

file control 272
file control, FCLJ FILE_CLOSE

function 272
FCLJ FILE_OPEN

file control 271
file control, FCLJ FILE_OPEN

function 271
FCLJ gate

DATASET_COPY function 762
FILE_CLOSE function 763
FILE_OPEN function 763
READ_ONLY function 764
READ_UPDATE function 765
SYNCHRONISE_READ_UPDATE

function 766
TAKE_KEYPOINT function 766
WRITE_ADD_COMPLETE

function 767, 768
WRITE_DELETE function 769
WRITE_UPDATE function 770

FCLJ READ_ONLY
file control 272
file control, FCLJ READ_ONLY

function 272
FCLJ READ_UPDATE

file control 273
file control, FCLJ READ_UPDATE

function 273
FCLJ SYNCHRONIZE_READ_UPDATE

file control 277
file control, FCLJ

SYNCHRONIZE_READ_UPDATE
function 277

FCLJ TAKE_KEYPOINT
file control 278
file control, FCLJ TAKE_KEYPOINT

function 278

2358 CICS TS for z/OS 4.1: Diagnosis Reference

FCLJ WRITE_ADD
file control 275
file control, FCLJ WRITE_ADD

function 275
FCLJ WRITE_ADD_COMPLETE

file control 276
file control, FCLJ

WRITE_ADD_COMPLETE
function 276

FCLJ WRITE_DELETE
file control 277
file control, FCLJ WRITE_DELETE

function 277
FCLJ WRITE_UPDATE

file control 274
file control, FCLJ WRITE_UPDATE

function 274
FCMT gate

ADD_FILE function 771
COMMIT_FILES function 776
DELETE_FILE function 776
END_BROWSE_FILE function 776
GET_NEXT_FILE function 777
INQUIRE_FILE function 783
START_BROWSE_FILE function 789
UPDATE_FILE function 789

FCQI gate
COMPLETE_QUIESCE function 793
INITIATE_QUIESCE function 794
INQUIRE_QUIESCE function 795

FCQR gate
RECEIVE_QUIESCES function 796

FCQR RECEIVE_QUIESCES
file control 279
file control, FCQR

RECEIVE_QUIESCES function 279
FCQRE (file control quiesce receive

element)
file control quiesce receive element

(FCQRE) 193
FCQS gate

SEND_QUIESCES function 796
FCQS SEND_QUIESCES

file control 279
file control, FCQS SEND_QUIESCES

function 279
FCQSE (file control quiesce send element)

file control quiesce send element
(FCQSE) 193

FCQU gate
PROCESS_QUIESCE function 797

FCQU PROCESS_QUIESCE
file control 280
file control, FCQU

PROCESS_QUIESCE function 280
FCRF gate

BROWSE function 799
DELETE function 801
END_BROWSE function 802
READ function 803
REPLACE function 804
REPLACE_DELETE function 805
RESET_BROWSE function 806
REWRITE function 807
START_BROWSE function 808
UNLOCK function 809
WRITE function 810

FCRL gate
COMMIT_POOLS function 811
SET_POOL function 811

FCRP gate
RESTART_FILE_CONTROL

function 812
FCRR gate

LOST_LOCKS_RECOVERED
function 813

RESOURCE_AVAILABLE
function 814

RESTART_RLS function 814
FCRR LOST_LOCKS_RECOVERED

file control 284
file control, FCRR

LOST_LOCKS_RECOVERED
function 284

FCRR RESOURCE_AVAILABLE
file control 283
file control, FCRR

RESOURCE_AVAILABLE
function 283

FCRR RESTART_RLS
file control 282
file control, FCRR RESTART_RLS

function 282
FCSD gate

TERMINATE function 816
FCST gate

COLLECT_FILE_STATISTICS
function 816

COLLECT_POOL_STATISTICS
function 817

END_FILE_IN_POOL_BROWSE
function 818

GET_NEXT_FILE_IN_POOL
function 818

START_FILE_IN_POOL_BROWSE
function 819

FCT (file control table) 193
FCVC gate

INQUIRE_CATALOG function 820
FCXCWAIT resource type

READ request processing 187
REWRITE request processing 190

FEPI as a CICS transaction 289
FEPI dumps

interpreted areas 294
FEPI module directory 2055
FFLE (fast file locate element) 193
field edit built-in function 89
field engineering program 179
file control 181

BDAM request processor
(DFHFCBD) 207

catalog manager (DFHFCAT) 206
CFDT UOW pool block (FCUP) 199
control blocks, illustrated 193
coupling facility data table load

program (DFHFCDL) 208
coupling facility data table open/close

program (DFHFCDO) 211
coupling facility data table request

processor (DFHFCDR) 211
coupling facility data table

resynchronization program
(DFHFCDY) 212

file control (continued)
coupling facility data table RMC

program (DFHFCDW) 211
coupling facility data table UOW calls

program (DFHFCDU) 211
data table request processor

(DFHFCDTS) 211
DELETE request 191
DSNAME block manager

(DFHFCDN) 208
ENDBR request 193
ENF servicer (DFHFCES) 212
EXEC interface module

(DFHEIFC) 205
FBWA (file browse work area) 197
FCPE (file control CFDT pool

element) 198
FCPW (file control CFDT pool wait

element) 198
FCQRE (file control quiesce receive

element) 197
FCQSE (file control quiesce send

element) 198
FCTE (file control table entry) 199
FCUP (file control CFDT UOW pool

block) 199
file browse work area (FBWA) 197
file control CFDT pool element

(FCPE) 198
file control CFDT pool wait element

(FCPW) 198
file control CFDT UOW pool block

(FCUP) 199
file control locks locator blocks

(FLLBs) 201
file control quiesce receive element

(FCQRE) 197
file control quiesce send element

(FCQSE) 198
file control table entry (FCTE) 199
file lasting access block (FLAB) 200
file request handler (DFHFCFR) 212
file state program (DFHFCFS) 214
FLAB (file lasting access block) 200
FLLBs (file control locks locator

blocks) 201
FRAB and FLAB processor

(DFHFCFL) 212
function shipping interface module

(DFHFCRF) 231
initialization program 1

(DFHFCIN1) 217
initialization program 2

(DFHFCIN2) 217
initialize recovery (DFHFCIR) 218
locks locator blocks (FLLBs) 201
log failures handler (DFHFCLF) 220
logging and journaling program

(DFHFCLJ) 220
modules, organization 204
non-RLS lock handler

(DFHFCNQ) 227
offsite recovery completion

(DFHFCOR) 227
open/close program (DFHFCN) 223
pool element (FCPE) 198
pool wait element (FCPW) 198

Index 2359

file control (continued)
quiesce receive element (FCQRE) 197
quiesce receive transaction

(DFHFCQR) 228
quiesce send element (FCQSE) 198
READ request 186
READNEXT request 192
READPREV request 192
recovery control program

(DFHFCRC) 229
request processing 184
RESETBR request 192
restart program (DFHFCRP) 233
REWRITE request 189
RLS cleanup transaction

(DFHFCRD) 231
RLS control ACB manager

(DFHFCCA) 208
RLS open/close program

(DFHFCRO) 233
RLS quiesce common system

transaction (DFHFCQT) 228
RLS quiesce exit (DFHFCQX) 228
RLS quiesce initiation

(DFHFCQI) 227
RLS quiesce processor

(DFHFCQU) 228
RLS quiesce send transaction

(DFHFCQS) 228
RLS record management processor

(DFHFCRS) 235
RLS restart (DFHFCRR) 235
RLS VSAM interface processor

(DFHFCRV) 236
share control block manager

(DFHFCRL) 232
shared data table function ship

program (DFHFCDTX) 211
shared resources pool processor

(DFHFCL) 219
shutdown program (DFHFCSD) 236
STARTBR request 192
static storage (FC static) 197
statistics program (DFHFCST) 236
table entry (FCTE) 199
table manager (DFHFCMT) 220
UNLOCK request 190
user exits 286
VSAM interface program

(DFHFCVR) 238
VSAM request processor

(DFHFCVS) 239
WRITE request 187

file input/output area (FIOA) 193, 200
file lasting access block (FLAB) 193
file request anchor block (FRAB) 193,

201
file request handler, file control

(DFHFCFR) 212
file request thread element (FRTE) 193,

202
file state program, file control

(DFHFCFS) 214
FILE_CLOSE function, FCLJ gate 763
FILE_OPEN function, FCLJ gate 763
files

DELETE request 191

files (continued)
LSR (local shared resources) 185
READ request 185

FIND_PROFILE function, XMFD
gate 1960

FIND_REQUEST_STREAM function,
IIRH gate 1164

FIND_RETAINED function, FCFL
gate 691

FIND_SIGNATURE function, PICC
gate 1479

FIND_TRANSACTION_OWNER
function, TFAL gate 846

FIOA (file input/output area) 193, 200
FREEMAIN after REWRITE

request 190
FREEMAIN after WRITE request 189
FREEMAIN during UNLOCK request

processing 190
FREEMAIN in ENDBR request

processing 193
READ request 187
RESETBR request 192
STARTBR request 192
WRITE request 189, 190

FIRE_EVENT function, EMEM gate 1143
FLAB (file lasting access block) 193
FLATTEN process

FLATTEN 79
FLATTEN_REQUEST function, APRX

gate 593
FLATTEN_RESPONSE function, APRX

gate 593
FLATTEN_TRANSACTION_USER

function, USXM gate 1855
FLATTEN_USER function, USFL

gate 1850
FLATTEN_USER_SECURITY function,

XSFL gate 2025
FLLBs (file control locks locator blocks)

file control locks locator blocks
(FLLBs) 193

flow for sign-on to consoles
flow for sign-on to consoles 19

FLUSH_LDAP_CACHE function, DDAP
gate 912

FORCE function, LGGL gate 1289
FORCE function, RMRE gate 1579
FORCE_DATA function, LGWF

gate 1311
FORCE_INDOUBTS function, FCFL

gate 692
FORCE_JNL function, LGGL gate 1290
FORCE_LINKS function, ISRE gate 1208
FORCE_PURGE_INHIBIT_QUERY

function, DSAT gate 1032
FORCE_PURGE_INHIBIT_QUERY

function, XMPP gate 2001
FORCE_START function, PAGP

gate 1393
FORCE_TIMER function, EMEM

gate 1143
FORCE_UOW function, RMUW

gate 1587
FORGET function, OTCO gate 1383
FORGET function, OTSU gate 1387

FORGET_TRANSACTION function,
OTRS gate 1385

FORMAT_EVENT function, EPAS
gate 1149

FORMAT_TIME function, TIMF
gate 1782

formats, domain call
generic 9
ownership of 9
specific 9

formatting data for function
shipping 305

forward recovery logging 183
FRAB (file request anchor block) 193,

201
FRAB and FLAB processor, file control

(DFHFCFL) 212
FREE processing in application-owning

region 488
FREE processing in terminal-owning

region 493
FREE_CONVERSION_TOKEN function,

CCNV gate 613
FREE_HANDLE_TABLES function,

PGHM gate 1430
FREE_SEARCH_RESULTS function,

DDAP gate 913
FREE_SUBSPACE_TCBS function, DSAT

gate 1003
FREE_TCB function, DSIT gate 1016
FREE_TCBS function, KEDS gate 1229
FREE_TXN_ENVIRONMENT function,

XMXE gate 1995
FREE_UNUSED_BUFFERS function,

FCFR gate 700
FREEMAIN function, S2GF gate 1704
FREEMAIN function, SMGF gate 1683
FREEMAIN function, SMMC gate 1686
FREEMAIN_ALL_TERMINAL function,

SMMC gate 1688
FRTE (file request thread element) 193,

202
function shipping 301

communication with remote
system 303

data transformations 305
distributed program link 121
handling of CICS requests 306

receiving a reply from a remote
system 310

receiving a request at a remote
system 309

sending a reply at a remote
system 310

sending a request to a remote
system 307

handling of DL/I requests 310
receiving a DL/I reply from a

remote system 312
receiving a DL/I request at a

remote system 312
sending a DL/I reply at a remote

system 312
sending a DL/I request to a

remote system 311
initialization 303
local and remote resource names 302

2360 CICS TS for z/OS 4.1: Diagnosis Reference

function shipping (continued)
programming functions with 301
protocols 303

resynchronization protocol 304
sender error recovery

protocol 304
shutdown protocol 303
symmetrical bracket protocol 303

syncpoint functions
ABORT 313
COMMIT 313
PREPARE 313
SPR (syncpoint request) 313

terminal control 312
terminal control functions

ALLOCATE 312
FREE 313
POINT 313
TERM=YES operand 313

function shipping interface module, file
control (DFHFCRF) 231

function, FCQR gate 796
functional layout of FEPI 289
functions of CICS, organization 3, 11
functions provided by gates 7
FWA (file work area)

FREEMAIN during REWRITE
processing 190

FREEMAIN during UNLOCK request
processing 190

FREEMAIN during WRITE
request 189

FREEMAIN in BDAM ENDBR request
processing 193

FREEMAIN in VSAM ENDBR request
processing 193

READ request 186
RESETBR request 192
STARTBR request 192

G
gates, domain

functions provided by 7
generic 8
specific 8

general request processing 185
GENERATE_APPC_BIND function, XSLU

gate 2036
GENERATE_APPC_RESPONSE function,

XSLU gate 2037
GENERATE_CONTENT_ID function,

PIMM gate 1488
generic formats 9
generic gates 8
GENERIC option of DELETE

request 191
generic resource

VTAM 515
Generic Resource - autoinstall 18
Generic resource and ATI 517
GET function, CCCC gate 904
GET function, TSPT gate 1810
GET_ASSOCIATED_DATA_LIST

function, USAD gate 1850
GET_ATTACHMENT function, PIMM

gate 1489

GET_ATTRIBUTE_VALUE function,
DDAP gate 913

GET_BEAN_DD function, EJBG
gate 1069

GET_BEAN_DD function, EJJO
gate 1110

GET_CIB function, CQCQ gate 624
GET_CLIENT_REQUEST function,

RXUW gate 1628
GET_CONTAINER_INTO function,

BACR gate 885
GET_CONTAINER_INTO function, PGCR

gate 1409
GET_CONTAINER_LENGTH function,

BACR gate 885
GET_CONTAINER_LENGTH function,

PGCR gate 1411
GET_CONTAINER_SET function, BACR

gate 886
GET_CONTAINER_SET function, PGCR

gate 1413
GET_CONVERSION_TOKEN function,

CCNV gate 614
GET_CURRENT function, RZTA

gate 1638
GET_DATA_LENGTH function, SOCK

gate 1726
GET_DEBUG_DATA function, RZTA

gate 1639
GET_DEBUG_PROFILE function, DPFM

gate 963
GET_HTTP_RESPONSE function, WBAP

gate 1861
GET_INITIAL_DATA function, IIRP

gate 1167
GET_IPFACILITY_LIST function, ISIF

gate 1195
GET_JOIN_DATA function, RZTA

gate 1639
GET_MESSAGE function, TFAL

gate 846
GET_MESSAGE_BODY function, WBAP

gate 1862
GET_METHOD_INFO function, EJMI

gate 1118
GET_NEXT function, AIIQ format 31
GET_NEXT function, CCCC gate 905
GET_NEXT function, DHTM gate 941
GET_NEXT function, DMIQ gate 953
GET_NEXT function, DSBR gate 1005
GET_NEXT function, EJBB gate 1064
GET_NEXT function, EJCB gate 1072
GET_NEXT function, EJDB gate 1087
GET_NEXT function, IIRQ gate 1173
GET_NEXT function, LGJN gate 1295
GET_NEXT function, LGLD gate 1304
GET_NEXT function, LGST gate 1310
GET_NEXT function, SOTB gate 1762
GET_NEXT function, TSBR gate 1803
GET_NEXT function, TSMB gate 1806
GET_NEXT function, TSSH gate 1823
GET_NEXT_ATOMSERVICE function,

W2AT gate 1930
GET_NEXT_ATTRIBUTE function, DDAP

gate 914
GET_NEXT_BEAN function, EJJO

gate 1110

GET_NEXT_BUNDLE function, RLPM
gate 1538

GET_NEXT_BUNDLERES function,
RLRO gate 1543

GET_NEXT_CAPTURESPEC function,
ECIS gate 628

GET_NEXT_DSNB function, FCDN
gate 675

GET_NEXT_ENQMODEL function,
NQRN gate 1376

GET_NEXT_ENQUEUE function, NQIB
gate 1364

GET_NEXT_ENTRY function, DDAP
gate 914

GET_NEXT_ENTRY function, DDBR
gate 917

GET_NEXT_ENTRY function, ECIS
gate 629

GET_NEXT_EVENT function, EMBR
gate 1136

GET_NEXT_FILE function, FCMT
gate 777

GET_NEXT_FILE_IN_POOL function,
FCST gate 818

GET_NEXT_HOST function, WBUR
gate 1907

GET_NEXT_IN_DIRECTORY function,
DHFS gate 932

GET_NEXT_INSTANCE function, LDLD
gate 1264

GET_NEXT_JVM function, SJIS
gate 1663

GET_NEXT_JVMPROFILE function, SJIS
gate 1665

GET_NEXT_JVMSERVER function, SJJS
gate 1656

GET_NEXT_LIBRARY function, LDLB
gate 1252

GET_NEXT_LINK function, RMLN
gate 1557

GET_NEXT_MVSTCB function, DSMT
gate 1019

GET_NEXT_OBJECT function, EJOB
gate 1119

GET_NEXT_PIPELINE function, PIPL
gate 1496

GET_NEXT_POOL function, PTTW
gate 1527

GET_NEXT_PROCESSTYPE function,
BATT gate 895

GET_NEXT_PROGRAM function, LDLD
gate 1266

GET_NEXT_PROGRAM function, PGIS
gate 1439

GET_NEXT_SUBPOOL function, S2AD
gate 1703

GET_NEXT_SUBPOOL function, SMAD
gate 1679

GET_NEXT_TCLASS function, XMCL
gate 1951

GET_NEXT_TDQDEF function, TDTM
gate 833

GET_NEXT_TIMER function, EMBR
gate 1136

GET_NEXT_TRANDEF function, XMBD
gate 1944

Index 2361

GET_NEXT_TRANSACTION function,
XMIQ gate 1961

GET_NEXT_TSPOOL function, TSSH
gate 1824

GET_NEXT_TXN_TOKEN function,
XMIQ gate 1965

GET_NEXT_UOW function, RMUW
gate 1588

GET_NEXT_UOWDSN function, FCFL
gate 692

GET_NEXT_URIMAP function, WBUR
gate 1908

GET_NEXT_WEBSERVICE function,
PIWR gate 1514

GET_NEXT_WORK_TOKEN function,
RMUW gate 1590

GET_NEXT_XMLTRANSFORM function,
MLXT gate 1346

GET_PARAMETERS function, PAGP
gate 1393

GET_PROCESSED_CIB function, CQCQ
gate 625

GET_PUBLIC_ID function, RZTA
gate 1640

GET_RELEASE function, TSPT
gate 1810

GET_RELEASE_SET function, TSPT
gate 1811

GET_RESPONSE function, PITC
gate 1508

GET_SERVER_DATA function, RZTA
gate 1640

GET_SET function, TSPT gate 1811
GET_SOCKET_OPTS function, SOCK

gate 1727
GET_TXN_ENVIRONMENT function,

XMXE gate 1995
GET_UPDATE function, CCCC gate 905
GET_USER_DEFAULTS function, DPUM

gate 985
GETMAIN function, S2GF gate 1705
GETMAIN function, SMGF gate 1684
GETMAIN function, SMMC gate 1688
GETNEXT_ACTIVITY function, BABR

gate 876
GETNEXT_CONTAINER function, BABR

gate 877
GETNEXT_CONTAINER function, PGCR

gate 1415
GETNEXT_IPCONN function, ISIC

gate 1187
GETNEXT_PROCESS function, BABR

gate 877
GETNEXT_SYSTEM_DUMPCODE

function, DUDT gate 1038
GETNEXT_TRAN_DUMPCODE function,

DUDT gate 1039
GL_FORCE function, LGLB gate 1302
GL_WRITE function, LGLB gate 1302
global user exits 430

XFCREQ 185, 187
good morning message program 317

H
HANDLE_ATOM_REQUEST function,

W2W2 gate 1936

HANDLE_PARSE_EVENT function, PICC
gate 1480

hash table 417
high-performance option (HPO) 450
HIGHEST function, FCCR gate 652
horizontal tabs

and device independence 37
HPO (high-performance option) 450

I
ICE (interval control element) 332
ICP (interval control program)

mapping control program (MCP) 47
terminal page retrieval program

(TPR) 58
undelivered messages cleanup

program (TPQ) 56
ICRX_TO_USERID function, USAD

gate 1849
ICXM gate

INQUIRE_FACILITY function 821
IDENTIFY_PROGRAM function, LDLD

gate 1268
IE (IP ECI) domain 1153
IEFJSCVT 391
IEFJSSVT 391
IEIE gate

PROCESS_ECI_FLOW function 1153
RECEIVE function 1153
SEND function 1154
SEND_ERROR function 1154

IGNORE_CONDITIONS function, PGHM
gate 1430

II (IIOP) domain 1157
IICP gate

ABSTRACT function 1157
ADD_LOGICAL_SERVER

function 1157
DELETE_LOGICAL_SERVER

function 1158
DISCARD_DJAR function 1158
DJAR_SCAN function 1159
INSTALL_DJAR function 1159
PRE_INSTALL_DJAR function 1159
PUBLISH_CORBASERVER

function 1160
PUBLISH_DJAR function 1160
PUBLISH_LOGICAL_SERVER

function 1161
RETRACT_CORBASERVER

function 1161
RETRACT_DJAR function 1162
RETRACT_LOGICAL_SERVER

function 1162
IIMM gate

ADD_REPLACE_RQMODEL
function 1162

COMMIT_RQMODELS
function 1163

DELETE_RQMODEL function 1164
IIOP domain (II) 1157
IIP (non-3270 input mapping) 44

interfaces, illustrated 44
mapping control program (MCP) 45,

47
storage control 45

IIP (non-3270 input mapping) (continued)
terminal control 45

IIRH gate
FIND_REQUEST_STREAM

function 1164
PARSE function 1166

IIRP gate
GET_INITIAL_DATA function 1167
INITIALISE function 1168
INVOKE function 1168
RECEIVE_REPLY function 1169
RECEIVE_REQUEST function 1170
SEND_REPLY function 1171
TERMINATE function 1172
UPDATE_WORKREQUEST

function 1172
IIRQ gate

END_BROWSE function 1172
GET_NEXT function 1173
INQUIRE_RQMODEL function 1174
MATCH_RQMODEL function 1175
START_BROWSE function 1175

IIRR gate
PROCESS_REQUESTS function 1176

IMMCLOSE function, SORD gate 1758
IMPLICIT_OPEN function, LGJN

gate 1296
IMPORT_ALL function, APCR gate 576
IMPORT_CERTIFICATE_DATA function,

SOIS gate 1742
IMPORT_CHANGED function, APCR

gate 578
IMPORT_SYMBOL_LIST function, DHSL

gate 937
IMPORT_TRAN function, OTTR

gate 1389
IMS service modules

DL/I interface 136
in-doubts, resolution of 434
INACTIVATE_DEBUG_PROFILE

function, DPFM gate 965
INBOUND_FLOW function, RMLN

gate 1561
INCREMENT_USE_COUNT function,

PIWR gate 1515
indexes 455
indirect transient data queues 504
INIT_ACTIVITY_REQUEST function,

BAXM gate 898
INIT_TRANSACTION_USER function,

USXM gate 1855
INIT_XM_CLIENT function, APXM

gate 603
INIT_XM_CLIENT function, DPXM

gate 995
INIT_XM_CLIENT function, XMAC

gate 1997
INITIAL_LINK function, PGPG

gate 1467
INITIALISE function, APRD gate 590
INITIALISE function, CCNV gate 616
INITIALISE function, EJDI gate 1101
INITIALISE function, EJGE gate 1104
INITIALISE function, EJMI gate 1118
INITIALISE function, IIRP gate 1168
INITIALISE function, SMMC gate 1690
INITIALISE function, TSAD gate 1802

2362 CICS TS for z/OS 4.1: Diagnosis Reference

INITIALISE function, TSSH gate 1824
INITIALISE_DOMAIN function, DMDM

gate 956
INITIALISE_FILE_CONTROL function,

FCIN gate 762
INITIALISE_TRANSIENT_DATA

function, APTD gate 599
INITIALISE_WEBSERVICE function,

PIWR gate 1516
INITIALIZE function, CQCQ gate 625
INITIALIZE function, LGGL gate 1290
INITIALIZE function, LGJN gate 1297
INITIALIZE function, LGLD gate 1304
INITIALIZE function, LGST gate 1310
initialize recovery, file control

(DFHFCIR) 218
INITIALIZE_AID_POINTERS function,

TFAL gate 847
INITIALIZE_ATOMSERVICES function,

W2AT gate 1932
INITIALIZE_CONNECTION function,

ISCO gate 1180
INITIALIZE_DOCTEMPLATES function,

DHTM gate 942
INITIALIZE_ENVIRONMENT function,

SOIS gate 1743
INITIALIZE_EXIT function, PGEX

gate 1428
INITIALIZE_JVM function, SJIN

gate 1660
INITIALIZE_RECEIVER function, ISIS

gate 1198
INITIALIZE_SHAREDCC function, SJIN

gate 1660
INITIALIZE_TRANSACTION function,

PGXM gate 1470
INITIALIZE_TRANSACTION function,

WBAP gate 1863
INITIALIZE_URIMAPS function, WBUR

gate 1911
INITIATE_QUIESCE function, FCQI

gate 794
INITIATE_RECOVERY function, RMLN

gate 1561
initiation of transactions

automatic 504
time ordered 331

input TIOA
message switching 352

INQ_ABEND function, PGHM
gate 1431

INQ_AID function, PGHM gate 1432
INQ_APPLICATION_DATA function,

APIQ gate 580
INQ_BASEDSNAME function, FCAT

gate 633
INQ_CAPTURESPEC function, ECIS

gate 629
INQ_CATALOG_QUIESCESTATE

function, FCAT gate 633
INQ_CATALOG_RECOV_REQD function,

FCAT gate 634
INQ_CONDITION function, PGHM

gate 1433
INQ_DATASET_STATE function, FCAT

gate 635

INQ_DOMAIN_BY_ID function, DMIQ
gate 953

INQ_DOMAIN_BY_NAME function,
DMIQ gate 954

INQ_DOMAIN_BY_TOKEN function,
DMIQ gate 955

INQ_EVENTBINDING function, ECIS
gate 630

INQ_EVENTPROCESS function, ECIS
gate 630

INQ_LOCAL_DATETIME_DECIMAL
function, KETI gate 1242

INQ_MONITORING function, MNSR
gate 1352

INQ_SECURITY_DOMAIN_PARMS
function, XSIS gate 2028

INQ_SIT_PARM function, APIQ
gate 581

INQ_STATISTICS_OPTIONS function,
STST gate 1773

INQ_TRANSACTION_ISOLATION
function, SMSR gate 1691

INQUIRE function, FCCI gate 647
INQUIRE function, FCCU gate 668
INQUIRE function, FCDU gate 684
INQUIRE function, LGJN gate 1298
INQUIRE function, LGLD gate 1305
INQUIRE function, LGST gate 1310
INQUIRE function, RLCB gate 1548
INQUIRE function, RXUW gate 1628
INQUIRE function, SOIS gate 1743
INQUIRE function, WBAP gate 1864
INQUIRE_ABEND_RECORD function,

ABAB gate 566
INQUIRE_ACCESS function, SMSR

gate 1692
INQUIRE_ACCESS_TOKEN function,

SMSR gate 1693
INQUIRE_ACTIVATION function, BABR

gate 878
INQUIRE_ACTIVITY function, BABR

gate 878
INQUIRE_ALL_TCLASSES function,

XMCL gate 1951
INQUIRE_ALLOCATE_AID function,

TFAL gate 847
INQUIRE_ANCHOR function, KEDD

gate 1217
INQUIRE_ATOMSERVICE function,

W2AT gate 1932
INQUIRE_AUTOINSTALL function,

PGAQ gate 1397
INQUIRE_AUXILIARY_TRACE function,

TRSR gate 1793
INQUIRE_BEAN function, EJBG

gate 1070
INQUIRE_BOUND_CHANNEL function,

PGCH gate 1402
INQUIRE_BROWSE_CONTEXT function,

PGCR gate 1416
INQUIRE_BUNDLE function, RLPM

gate 1539
INQUIRE_BY_NAME function, RLBR

gate 1549
INQUIRE_CATALOG function, FCVC

gate 820

INQUIRE_CERTIFICATE function, XSCT
gate 2015

INQUIRE_CERTIFICATE_USERID
function, XSPW gate 2039

INQUIRE_CHANNEL function, PGCH
gate 1402

INQUIRE_CHANNEL_BY_TOKEN
function, PGCH gate 1403

INQUIRE_CLASSCACHE function, SJIS
gate 1665

INQUIRE_CLIENT_DATA function,
RMCD gate 1551

INQUIRE_CONNECTION function, SOIS
gate 1748

INQUIRE_CONTAINER function, BABR
gate 880

INQUIRE_CONTAINER function, PGCR
gate 1416

INQUIRE_CONTAINER_BY_TOKEN
function, PGCR gate 1417

INQUIRE_CONTAINER_POOL function,
PGCP gate 1407

INQUIRE_CONTEXT function, BRIQ
gate 604

INQUIRE_CONVERSION_SIZE function,
CCNV gate 617

INQUIRE_CORBASERVER function,
EJCG gate 1082

INQUIRE_CORBASERVER function, EJJO
gate 1111

INQUIRE_CORBASERVER function,
EJSO gate 1130

INQUIRE_CURRENT_CHANNEL
function, PGCH gate 1404

INQUIRE_CURRENT_DUMPDS function,
DUSR gate 1053

INQUIRE_CURRENT_PROGRAM
function, PGIS gate 1445

INQUIRE_CURRENT_SESSION function,
WBSV gate 1899

INQUIRE_DATE_FORMAT function,
KETI gate 1243

INQUIRE_DEBUG_TASK function, DPIQ
gate 973

INQUIRE_DEFAULT_USER function,
USAD gate 1842

INQUIRE_DEFER_INTERVAL function,
LGCC gate 1284

INQUIRE_DEFERRED_ABEND function,
XMER gate 1956

INQUIRE_DEFERRED_MESSAGE
function, XMER gate 1956

INQUIRE_DISPATCHER function, DSIT
gate 1016

INQUIRE_DISTINGUISHED_NAME
function, XSEJ gate 2021

INQUIRE_DJAR function, EJDG
gate 1096

INQUIRE_DOCTEMPLATE function,
DHTM gate 942

INQUIRE_DOCUMENT function, DHDH
gate 926

INQUIRE_DOMAIN function, USIS
gate 1853

INQUIRE_DOMAIN_BY_NAME
function, KEDD gate 1218

Index 2363

INQUIRE_DOMAIN_BY_TOKEN
function, KEDD gate 1218

INQUIRE_DOMAIN_TRACE function,
KEDD gate 1218

INQUIRE_DSA_LIMIT function, SMSR
gate 1693

INQUIRE_DSA_SIZE function, SMSR
gate 1694

INQUIRE_DSNB function, FCDN
gate 676

INQUIRE_DTRTRAN function, XMSR
gate 1977

INQUIRE_DUMPDS_AUTOSWITCH
function, DUSR gate 1053

INQUIRE_DUMPDS_OPEN_STATUS
function, DUSR gate 1053

INQUIRE_ELEMENT_LENGTH function,
S2GF gate 1706

INQUIRE_ELEMENT_LENGTH function,
SMGF gate 1685

INQUIRE_ELEMENT_LENGTH function,
SMMC gate 1690

INQUIRE_ENQMODEL function, NQRN
gate 1377

INQUIRE_ENQUEUE function, NQIB
gate 1366

INQUIRE_EVENT function, EMBR
gate 1137

INQUIRE_EXIT_PROGRAM function,
SHRT gate 1647

INQUIRE_EXPIRATION_TOKEN
function, TISR gate 1787

INQUIRE_FACILITY function, ICXM
gate 821

INQUIRE_FACILITY function, ISIS
gate 1199

INQUIRE_FEATURE function, DUFT
gate 1050

INQUIRE_FILE function, FCMT
gate 783

INQUIRE_GARBAGE_INTERVAL
function, PTTW gate 1527

INQUIRE_GLOBAL_TRACE function,
KEDD gate 1219

INQUIRE_GTF_TRACE function, TRSR
gate 1794

INQUIRE_HASH_CODE function, XSEJ
gate 2022

INQUIRE_HFS_FILE function, DHFS
gate 932

INQUIRE_HOST function, WBUR
gate 1911

INQUIRE_ICRX function, USAD
gate 1848

INQUIRE_ICRX function, XSAD
gate 2014

INQUIRE_INITIAL_DUMPDS function,
DUSR gate 1054

INQUIRE_INTERNAL_TRACE function,
TRSR gate 1795

INQUIRE_IPCONN function, ISIC
gate 1189

INQUIRE_IPCONN_BY_APPLID
function, ISIC gate 1191

INQUIRE_IPFACILITY function, ISIF
gate 1196

INQUIRE_ISOLATION_TOKEN function,
SMSR gate 1694

INQUIRE_JVM function, SJIS gate 1667
INQUIRE_JVMPOOL function, SJIS

gate 1668
INQUIRE_JVMPROFILE function, SJIS

gate 1669
INQUIRE_JVMSERVER function, SJJS

gate 1657
INQUIRE_KERNEL function, KEGD

gate 1237
INQUIRE_KEYPOINT_FREQUENCY

function, LGCC gate 1284
INQUIRE_KEYPOINT_STATS function,

LGCC gate 1285
INQUIRE_LIBRARY function, LDLB

gate 1254
INQUIRE_LINK function, RMLN

gate 1563
INQUIRE_LOCAL_LU_NAME function,

RMDM gate 1552
INQUIRE_LOGNAME function, RMNM

gate 1574
INQUIRE_MESSAGE function, MEME

gate 1326
INQUIRE_MESSAGE_DEFINITION

function, MEBM gate 1323
INQUIRE_MESSAGE_LENGTH function,

MEBM gate 1323
INQUIRE_MESSAGE_LENGTH function,

MEME gate 1326
INQUIRE_MONITOR_DATA function,

TFIQ gate 860
INQUIRE_MONITORING_DATA

function, MNMN gate 1350
INQUIRE_MVSTCB function, DSMT

gate 1020
INQUIRE_MVSTCB function, KEDS

gate 1230
INQUIRE_MXT function, XMSR

gate 1977
INQUIRE_NQRNAME function, NQRN

gate 1378
INQUIRE_OBJECT function, EJOB

gate 1120
INQUIRE_OPTIONS function, LDLD

gate 1270
INQUIRE_PARAMETERS function, DPIQ

gate 973
INQUIRE_PARAMETERS function, LGPA

gate 1307
INQUIRE_PARAMETERS function, SOIS

gate 1749
INQUIRE_PASSWORD_DATA function,

XSPW gate 2040
INQUIRE_PIPELINE function, PIPL

gate 1497
INQUIRE_POOL_TOKEN function, TSSH

gate 1825
INQUIRE_PRINCIPAL function, XSEJ

gate 2023
INQUIRE_PROCESS function, BABR

gate 881
INQUIRE_PROCESSTYPE function, BATT

gate 895
INQUIRE_PROGRAM function, LDLD

gate 1271

INQUIRE_PROGRAM function, PGIS
gate 1449

INQUIRE_QUEUE function, TSBR
gate 1804

INQUIRE_QUEUE function, TSRM
gate 1821

INQUIRE_QUEUE function, TSSH
gate 1825

INQUIRE_QUIESCE function, FCQI
gate 795

INQUIRE_REALM_NAME function, XSIS
gate 2031

INQUIRE_RECOVERY function, FCCA
gate 640

INQUIRE_REENTRANT_PROGRAM
function, SMSR gate 1695

INQUIRE_REGION_USERID function,
XSIS gate 2031

INQUIRE_REMOTE_TRANDEF function,
XMXD gate 1983

INQUIRE_RESOURCE_DATA function,
MNMN gate 1350

INQUIRE_RETRY_TIME function, DUSR
gate 1054

INQUIRE_REVOCATION_LIST function,
XSCT gate 2018

INQUIRE_RQMODEL function, IIRQ
gate 1174

INQUIRE_RRS function, RXDM
gate 1627

INQUIRE_SCOPE function, RLXM
gate 1545

INQUIRE_SESSION function, WBCL
gate 1873

INQUIRE_SESSION function, WBSV
gate 1901

INQUIRE_SHORT_ON_STORAGE
function, SMSR gate 1695

INQUIRE_SOCKET_TOKEN function,
SOIS gate 1751

INQUIRE_START function, PAGP
gate 1394, 1395

INQUIRE_STARTUP function, RMDM
gate 1553

INQUIRE_STATISTICS function, SOIS
gate 1751

INQUIRE_STATUS function, EMEM
gate 1144

INQUIRE_STORAGE_PROTECT function,
SMSR gate 1696

INQUIRE_STORES function, EJOB
gate 1121

INQUIRE_SUBPOOL function, S2AD
gate 1703

INQUIRE_SUBPOOL function, SMAD
gate 1680

INQUIRE_SYSID_TABLE_TOKEN
function, TSSH gate 1826

INQUIRE_SYSTEM function, SAIQ
gate 823

INQUIRE_SYSTEM_DUMP function,
DUSR gate 1054

INQUIRE_SYSTEM_DUMPCODE
function, DUDT gate 1040

INQUIRE_TARGET_STATUS function,
RSSR gate 1619

2364 CICS TS for z/OS 4.1: Diagnosis Reference

INQUIRE_TASK function, DSBR
gate 1007

INQUIRE_TASK_STORAGE function,
SMMC gate 1691

INQUIRE_TASK_TRACE function, KEDD
gate 1220

INQUIRE_TCB function, DSBR
gate 1009

INQUIRE_TCB function, KEDS
gate 1230

INQUIRE_TCLASS function, XMCL
gate 1952

INQUIRE_TCPIPSERVICE function, SOTB
gate 1764

INQUIRE_TDQDEF function, TDTM
gate 837

INQUIRE_TEMPLATE_STATUS function,
DHTM gate 944

INQUIRE_TERM_MODEL function, AIIQ
format 31

INQUIRE_TERMINAL_FACILITY
function, TFIQ gate 862

INQUIRE_TIME function, TIMF
gate 1784

INQUIRE_TIMER function, EMBR
gate 1138

INQUIRE_TRACE_FLAGS function,
EJDU gate 1104

INQUIRE_TRAN_DATA_FACILITY
function, TDXM gate 842

INQUIRE_TRAN_DUMPCODE function,
DUDT gate 1041

INQUIRE_TRANDEF function, XMXD
gate 1988

INQUIRE_TRANSACTION function,
XMIQ gate 1966

INQUIRE_TRANSACTION_TOKEN
function, XMIQ gate 1970

INQUIRE_TRANSACTION_USER
function, USXM gate 1856

INQUIRE_TSMODEL function, TSMB
gate 1807

INQUIRE_TSPOOL function, TSSH
gate 1826

INQUIRE_UOW function, RMUW
gate 1591

INQUIRE_UOW_ID function, RMUW
gate 1594

INQUIRE_UOW_TOKEN function,
RMUW gate 1594

INQUIRE_URIMAP function, WBUR
gate 1912

INQUIRE_USER function, USAD
gate 1844

INQUIRE_USER_ATTRIBUTES function,
XSAD gate 2009

INQUIRE_USER_TOKEN function, PTTW
gate 1528

INQUIRE_WEBSERVICE function, PIWR
gate 1516

INQUIRE_WORK_TOKEN function,
RMUW gate 1595

INQUIRE_XMLTRANSFORM function,
MLXT gate 1344

INSERT_BOOKMARK function, DHDH
gate 926

INSERT_DATA function, DHDH
gate 927

INSERT_LINK function, RMLN
gate 1566

install flow for autoinstall of consoles
install flow of console autoinstall 19

INSTALL function, LGLD gate 1305
INSTALL_BUNDLE function, RLPM

gate 1540
INSTALL_DJAR function, IICP

gate 1159
INSTALL_XMLTRANSFORM function,

MLXT gate 1343
install, CEDA 85
inter-system 1179
intercommunication facilities

distributed program link 121
distributed transaction

processing 123
transaction routing 481

INTERPRET_ENQUEUE function, NQNQ
gate 1371

interregion communication (IRC) 319,
355

interval control 331
interval control element (ICE) 332
intrapartition transient data queues 503

interfaces, illustrated 505
recovery of 503
referencing using indirect queues 504

INVOKE function, IIRP gate 1168
INVOKE_GC function, SJIN gate 1661
INVOKE_JAVA_PROGRAM function,

SJIN gate 1661
INVOKE_JAVA_PROGRAM function,

SJTH gate 1673
INVOKE_PROGRAM function, PIPM

gate 1500
INVOKE_PTHREAD function, LEPT

gate 822
INVOKE_STUB function, PIPM

gate 1501
INVOKE_USER_EXIT function, APEX

gate 579
INVOKE_WEBSERVICE function, PIIW

gate 1482
IOINFO area 337, 343
IP ECI domain (IE) 1153
IPIC_ROUTE_TRANSACTION function,

APRR gate 591
IRC (interregion communication) 319

CICS address space modules 325
DFHCRC 327
DFHCRNP 326
DFHCRR 327
DFHZCP 328
DFHZCX 327
DFHZIS2 327

control blocks, illustrated 319
delay-queue 326
input data stream 327
interregion program (DFHIRP) 325
new conversation 326
quiesce 326

IS 1179
ISC (intersystem communication) 329

secondary half session support 314

ISCO gate
ACQUIRE_CONNECTION

function 1179
INITIALIZE_CONNECTION

function 1180
RELEASE_CONNECTION

function 1181
TERMINATE_CONNECTION

function 1182
ISIC gate

ADD_IPCONN function 1182
AUTOINSTALL_IPCONN

function 1184
DISCARD_IPCONN function 1186
ENDBROWSE_IPCONN

function 1186
GETNEXT_IPCONN function 1187
INQUIRE_IPCONN function 1189
INQUIRE_IPCONN_BY_APPLID

function 1191
SET_IPCONN function 1193
STARTBROWSE_IPCONN

function 1195
ISIF gate

GET_IPFACILITY_LIST
function 1195

INQUIRE_IPFACILITY function 1196
ISIS gate

ALLOCATE_SEND function 1196
BIND_RECEIVER function 1197
CONVERSE function 1197
INITIALIZE_RECEIVER

function 1198
INQUIRE_FACILITY function 1199
RECEIVE_BUFFER function 1200
RECEIVE_REQUEST function 1201
ROUTING_CONVERSE

function 1202
SEND_BUFFER function 1203
SEND_ERROR function 1205
SEND_RESPONSE function 1205
SET_PARAMETERS function 1206

ISRE gate
CICS_RESYNC function 1207
FORCE_LINKS function 1208
KEEP_LINKS function 1208
RESYNC_LINKS function 1209
XA_RESYNC function 1210

ISRR gate
NOTIFY function 1210
NOTIFY_SERVICE function 1211
PROCESS_ERROR_QUEUE

function 1212
PROCESS_INPUT_QUEUE

function 1212
TERMINATE_INPUT function 1212

ISSUE function, PITC gate 1506
ISSUE_PREPARE function, RMLN

gate 1566

J
Japanese language feature 2055
Java Virtual Machine Domain (SJ)

domain 1651
JES 391
JOIN function, RZSO gate 1635

Index 2365

journaling, automatic 183

K
KCP (task control program)

deferred work element (DWE) 46
mapping control program (MCP) 46,

47
terminal control 445, 446
terminal page retrieval program

(TPR) 58
KE (Kernel Domain) domain 1215
KEAR gate

DEREGISTER function 1215
READY function 1215
REGISTER function 1215
WAITPRED function 1215

KEDD gate
ADD_DOMAIN function 1216
ADD_GATE function 1216
DELETE_GATE function 1217
INQUIRE_ANCHOR function 1217
INQUIRE_DOMAIN_BY_NAME

function 1218
INQUIRE_DOMAIN_BY_TOKEN

function 1218
INQUIRE_DOMAIN_TRACE

function 1218
INQUIRE_GLOBAL_TRACE

function 1219
INQUIRE_TASK_TRACE

function 1220
PERFORM_SYSTEM_ACTION

function 1220
SET_ANCHOR function 1221
SET_DEFAULT_RECOVERY

function 1221
SET_DOMAIN_TRACE

function 1222
SET_GLOBAL_TRACE function 1222
SET_TASK_TRACE function 1223
SET_TRAP_OFF function 1224
SET_TRAP_ON function 1224

KEDS gate
ABNORMALLY_TERMINATE_TASK

function 1225
ADD_CRITICAL_MODULE

function 1225
ADD_CRITICAL_WINDOW

function 1225
CREATE_TASK function 1226
CREATE_TCB function 1226
DETACH_TERMINATED_OWN_TCBS

function 1228
END_TASK function 1229
FREE_TCBS function 1229
INQUIRE_MVSTCB function 1230
INQUIRE_TCB function 1230
POP_TASK function 1230
PROCESS_KETA_ERROR

function 1231
PUSH_TASK function 1231
READ_TIME function 1232
RESET_TIME function 1233
RESTORE_STIMER function 1234
SEND_DEFERRED_ABEND

function 1234

KEDS gate (continued)
START_FORCE_PURGE_PROTECT

function 1235
START_PURGE_PROTECTION

function 1235
START_RUNAWAY_TIMER

function 1235
STOP_FORCE_PURGE_PROTECT

function 1236
STOP_PURGE_PROTECTION

function 1236
STOP_RUNAWAY_TIMER

function 1236
TASK_REPLY function 1244
TCB_REPLY function 1245

KEEP_LINKS function, ISRE gate 1208
KEGD gate

INQUIRE_KERNEL function 1237
SET_KERNEL function 1239

Kernel Domain (KE) domain 1215
kernel linkage routines 3
KETI gate

ADJUST_STCK_TO_LOCAL
function 1240

CONVERT_TO_DECIMAL_TIME
function 1241

CONVERT_TO_STCK_FORMAT
function 1241

INQ_LOCAL_DATETIME_DECIMAL
function 1242

INQUIRE_DATE_FORMAT
function 1243

NOTIFY_RESET function 1246
REQUEST_NOTIFY_OF_A_RESET

function 1243
RESET_LOCAL_TIME function 1243
SET_DATE_FORMAT function 1243

KEXM gate
TRANSACTION_INITIALISATION

function 1244
keypoint list element (KPLE) block 203
KEYPOINT_DATA function, RMRE

gate 1580
KPLE (keypoint list element) block 203
KSDS (key-sequenced data set)

GENERIC option of DELETE
request 191

WRITE request for KSDS file 188

L
LACB (logon address control block) 322
Language Environment interface 335

establishing connection 336
function calls 335
parameter lists 339
storage acquisition 338
storage for transaction 337

LCB (logon control block) 322
LCBE (logon control block entry) 322
LD (Loader Domain) domain 1249
LDLB gate

ADD_REPLACE_LIBRARY
function 1249

DISCARD_LIBRARY function 1251
END_BROWSE_LIBRARY

function 1252

LDLB gate (continued)
GET_NEXT_LIBRARY function 1252
INQUIRE_LIBRARY function 1254
LOG_LIBRARY_ORDER

function 1257
SET_LIBRARY function 1257
START_BROWSE_LIBRARY

function 1258
LDLD gate

ACQUIRE_PROGRAM function 1258
CATALOG_PROGRAMS

function 1260
CONVERT_NAME function 1260
DEFINE_PROGRAM function 1261
DELETE_PROGRAM function 1263
END_BROWSE function 1263
GET_NEXT_INSTANCE

function 1264
GET_NEXT_PROGRAM

function 1266
IDENTIFY_PROGRAM function 1268
INQUIRE_OPTIONS function 1270
INQUIRE_PROGRAM function 1271
REFRESH_PROGRAM function 1273
RELEASE_PROGRAM function 1274
SET_OPTIONS function 1275
START_BROWSE function 1276

LEAVE function, RZSO gate 1636
LEPT gate

CREATE_LE_ENCLAVE function 821
CREATE_PTHREAD function 821
INVOKE_PTHREAD function 822
PTHREAD_REPLY function 822
TERMINATE_LE_ENCLAVE

function 822
TERMINATE_PTHREAD

function 823
LG (Logger Domain) domain 1279
LGBA gate

BROWSE_ALL_GET_NEXT
function 1279

END_BROWSE_ALL function 1280
START_BROWSE_ALL function 1280

LGCB gate
CHAIN_BROWSE_GET_NEXT

function 1280
END_CHAIN_BROWSE

function 1281
START_CHAIN_BROWSE

function 1281
LGCC gate

BROWSE_CHAINS_GET_NEXT
function 1282

CREATE_CHAIN_TOKEN
function 1282

DELETE_ALL function 1283
DELETE_HISTORY function 1283
END_BROWSE_CHAINS

function 1284
INQUIRE_DEFER_INTERVAL

function 1284
INQUIRE_KEYPOINT_FREQUENCY

function 1284
INQUIRE_KEYPOINT_STATS

function 1285
RELEASE_CHAIN_TOKEN

function 1285

2366 CICS TS for z/OS 4.1: Diagnosis Reference

LGCC gate (continued)
RESET_KEYPOINT_STATS

function 1286
RESTORE_CHAIN_TOKEN

function 1286
SET_DEFER_INTERVAL

function 1287
SET_HISTORY function 1287
SET_KEYPOINT_FREQUENCY

function 1288
START_BROWSE_CHAINS

function 1288
SYSINI function 1289

LGGL gate
CLOSE function 1289
ERROR function 1314
FORCE function 1289
FORCE_JNL function 1290
INITIALIZE function 1290
OPEN function 1290
UOW_TIME function 1291
WRITE function 1292
WRITE_JNL function 1292

LGJN gate
DISCARD function 1294
END_BROWSE function 1294
EXPLICIT_OPEN function 1294
GET_NEXT function 1295
IMPLICIT_OPEN function 1296
INITIALIZE function 1297
INQUIRE function 1298
PROCESS_STATISTICS function 1299
SET function 1299
START_BROWSE function 1300
STREAM_FAIL function 1300

LGLB gate
CONNECT function 1300
DISCONNECT function 1301
DISCONNECT_ALL function 1301
GL_FORCE function 1302
GL_WRITE function 1302

LGLD gate
DISCARD function 1303
END_BROWSE function 1303
GET_NEXT function 1304
INITIALIZE function 1304
INQUIRE function 1305
INSTALL function 1305
MATCH function 1306
START_BROWSE function 1306

LGMV gate
MOVE_CHAIN function 1306

LGPA gate
INQUIRE_PARAMETERS

function 1307
SET_PARAMETERS function 1307

LGSR gate
LOGSTREAM_STATS function 1308

LGST gate
CONNECT function 1308
DISCONNECT function 1309
END_BROWSE function 1309
GET_NEXT function 1310
INITIALIZE function 1310
INQUIRE function 1310
START_BROWSE function 1311

LGWF gate
FORCE_DATA function 1311
WRITE function 1312

limited resources, LU6.2 526
LINK function, PGLK gate 1464
LINK_ACTIVITY function, BAAC

gate 872
LINK_EXEC function, PGLE gate 1462
LINK_PLT function, PGLK gate 1465
LINK_PROCESS function, BAPR

gate 891
LINK_URM function, PGLU gate 1466
linkage routines, kernel 3
LISTEN function, APTC gate 596
LISTEN function, DMEN gate 952
LISTEN function, SOCK gate 1729
LISTEN function, SOLS gate 1756
LM (Lock Manager Domain)

domain 1319
LMLM gate

ADD_LOCK function 1319
DELETE_LOCK function 1319
LOCK function 1320
TEST_LOCK_OWNER function 1320
UNLOCK function 1321

LOAD function, FCCR gate 653
LOAD function, PGLD gate 1459
LOAD_EXEC function, PGLD gate 1460
Loader Domain (LD) domain 1249
local resource names in function

shipping 302
local shared resources (LSR) 185, 195
LOCATE function, DDLO gate 920
LOCATE_AID function, TFAL gate 848
LOCATE_AND_LOCK_TCLASS function,

XMCL gate 1952
LOCATE_AND_LOCK_TRANDEF

function, XMLD gate 1975
LOCATE_REMDEL_AID function, TFAL

gate 848
LOCATE_SHIPPABLE_AID function,

TFAL gate 849
LOCATE_TERM_MODEL function, AIIQ

format 30
LOCATE_URIMAP function, WBUR

gate 1915
LOCK function, LMLM gate 1320
Lock Manager Domain (LM)

domain 1319
locking update model 182
locks 457
log failures handler, file control

(DFHFCLF) 220
LOG_LIBRARY_ORDER function, LDLB

gate 1257
Logger Domain (LG) domain 1279
logging and journaling program, file

control (DFHFCLJ) 220
logging, automatic 183
logical unit type 6.1 (LU6.1) protocols

distributed transaction
processing 123

function shipping 303
logical unit type 6.2 (LU6.2) 523
logon address control block (LACB) 322
logon control block (LCB) 322
logon control block entry (LCBE) 322

logon exit, DFHZLGX 16
LOGSTREAM_STATS function, LGSR

gate 1308
LOOKUP_ENTRY function, EJDI

gate 1101
LOST_LOCKS_COMPLETE function,

FCCA gate 641
LOST_LOCKS_RECOVERED function,

FCRR gate 813
lower objects first, rule 71
LSR (local shared resources) 185, 195
LU-initiated autoinstall disconnection

flow 19
LU6.1 314
LU6.2

class of service 523
command processing in

application-owning region 489
command processing in

terminal-owning region 493
daisy chaining 490
exchange log name (XLN) 525
limited resources 526
modules 526
RECEIVE processing 525
SEND processing 525
session management 523
session states 525
transaction routing for APPC

devices 501
VTAM 523

M
M32 (3270 mapping) 49

interfaces, illustrated 49
mapping control program (MCP) 47,

49
page and text build (PBP) 49
storage control 50
terminal control 50
terminal input/output area

(TIOA) 50
terminal page processor (TPP) 50

MAKE_HFS_DIRECTORY function,
DHFS gate 933

MAKE_PARTNERSHIP function, PTTW
gate 1528

MARK_THREAD_DELETED function,
SJJS gate 1658

Markup language (ML) domain 1337
MASSINSERT option of WRITE

request 189
MATCH function, LGLD gate 1306
MATCH function, TSMB gate 1808
MATCH_RQMODEL function, IIRQ

gate 1175
MATCH_TASK_TO_AID function, TFAL

gate 849
MCB (message control block) 39
MCP (mapping control program) 45

3270 mapping (M32) 47, 49
application programs 46
BMS fast-path module (MCX) 47
interfaces, illustrated 45
interval control 47

Index 2367

MCP (mapping control program)
(continued)

LU1 printer with extended attributes
mapping program (ML1) 48

non-3270 input mapping (IIP) 45, 47
page and text build (PBP) 47, 51
partition handling program

(PHP) 48, 53
program manager 47
route list resolution program

(RLR) 47, 54
storage control 47
task control 46, 47
temporary-storage control 46
terminal page retrieval program

(TPR) 58
transient data control 47
undelivered messages cleanup

program (TPQ) 56
MCX (BMS fast path module)

mapping control program (MCP) 47
ME (Message Domain) domain 1323
MEBM gate

INQUIRE_MESSAGE_DEFINITION
function 1323

INQUIRE_MESSAGE_LENGTH
function 1323

RETRIEVE_MESSAGE function 1324
MEME gate

CONVERSE function 1325
INQUIRE_MESSAGE function 1326
INQUIRE_MESSAGE_LENGTH

function 1326
RETRIEVE_MESSAGE function 1328
SEND_MESSAGE function 1329
VALIDATE_LANGUAGE_CODE

function 1331
VALIDATE_LANGUAGE_SUFFIX

function 1332
MERGE_CIB_QUEUES function, CQCQ

gate 626
MESR gate

SET_MESSAGE_OPTIONS
function 1333

message control block (MCB) 39
Message Domain (ME) domain 1323
message generation program (MGP) 349
message routing 37
message switching 351

BMS 352
input TIOA 352
program control 352
ROUTE operand 352
storage control 352
task control area (TCA) 352
temporary-storage control 351
terminal list table (TLT) 352

Message translation utility
ADFHCLIB distribution library 2056
ADFHMSRC distribution

library 2056
ADFHPARM distribution

library 2056
ADFHPL1 distribution library 2056
ADFHPLIB distribution library 2056
ADFHPROC distribution

library 2056

Message translation utility (continued)
ADFHSDCK distribution

library 2056
messages

DFHIR3762 327
MGP (message generation program) 349
mirror transaction 302
ML (Markup language domain)

domain 1337
ML domain

modules 1348
ML1 (LU1 printer with extended

attributes mapping program) 48
interfaces, illustrated 48
mapping control program (MCP) 48
page and text build (PBP) 48
storage control 49
terminal input/output area

(TIOA) 49
terminal page processor (TPP) 49

MLPC gate
PARSE_CONTAINER function 1337

MLTF gate
PARSE_XSDBIND_FILE

function 1337
QUERY_XML function 1338
RELEASE_XSDBIND function 1339
TRANSFORM_STRUCTURE_TO_XML

function 1340
TRANSFORM_XML_TO_STRUCTURE

function 1341
MLXT gate

DISCARD_XMLTRANSFORM
function 1344

END_BROWSE_XMLTRANSFORM
function 1347

GET_NEXT_XMLTRANSFORM
function 1346

INQUIRE_XMLTRANSFORM
function 1344

INSTALL_XMLTRANSFORM
function 1343

SET_XMLTRANSFORM
function 1345

START_BROWSE_XMLTRANSFORM
function 1346

MN (Monitoring Domain) domain 1349
MNMN gate

ACCUMULATE_RMI_TIME
function 1349

EXCEPTION_DATA_PUT
function 1349

INQUIRE_MONITORING_DATA
function 1350

INQUIRE_RESOURCE_DATA
function 1350

MONITOR function 1351
PERFORMANCE_DATA_PUT

function 1352
MNPS 535, 536, 537
MNSR gate

INQ_MONITORING function 1352
SET_MCT_SUFFIX function 1354
SET_MONITORING function 1354

MNXM gate
TRANSACTION_INITIALISATION

function 1356

MNXM gate (continued)
TRANSACTION_TERMINATION

function 1356
model terminal support (MTS) 16
modules

EP domain 1151
ML domain 1348
PI domain 1521
RL domain 1549
RS domain 1625

modules list 2161
modules supplied on the CICS

distribution tapes 2055
MONITOR function, MNMN gate 1351
Monitoring Domain (MN) domain 1349
MOVE_CHAIN function, LGMV

gate 1306
MOVE_CONTAINER function, BACR

gate 887
MOVE_CONTAINER function, PGCR

gate 1419
MRO (multiregion operation) 355

interregion communication 319, 355
multinode persistent sessions 535, 536,

537
multiregion operation (MRO) 355
MVS image

MRO links between images, in a
sysplex 319

MVS_STORAGE_NOTIFY function,
SMNT gate 1709

MXT_CHANGE_NOTIFY function,
XMNT gate 2000

MXT_NOTIFY function, XMNT
gate 2000

N
NACP (node abnormal condition

program) 357, 443
terminal control 447
VTAM 357

NEP (node error program) 361, 443
skeleton sample 361
terminal control 447
user-written 361
VTAM 361

NIB (node initialization block) 16, 61,
295, 455

node initialization block (NIB) 16, 61,
295, 455

non-RLS lock handler, file control
(DFHFCNQ) 227

NOPS 535
NOTIFY function, ISRR gate 1210
NOTIFY function, RLRO gate 1544
NOTIFY function, TISR gate 1790
NOTIFY_DELETE_TCB function, DSAT

gate 1032
NOTIFY_REFRESH function, APLX

gate 588
NOTIFY_RESET function, KETI

gate 1246
NOTIFY_SERVICE function, ISRR

gate 1211
NOTIFY_SMSVSAM_OPERATIONAL

function, DMEN gate 958

2368 CICS TS for z/OS 4.1: Diagnosis Reference

NOTIFY_USERID function, USAD
gate 1846

NQ (Enqueue Domain) domain 1361
NQED gate

DEQUEUE function 1361
ENQUEUE function 1362

NQIB gate
END_BROWSE_ENQUEUE

function 1364
GET_NEXT_ENQUEUE

function 1364
INQUIRE_ENQUEUE function 1366
START_BROWSE_ENQUEUE

function 1367
NQNQ gate

CREATE_ENQUEUE_POOL
function 1368

DEACTIVATE function 1370
DEQUEUE_TASK function 1371
INTERPRET_ENQUEUE

function 1371
REACQUIRE_ENQUEUE

function 1372
SET_NQRNAME_LIST function 1373

NQRN gate
ADD_REPLACE_ENQMODEL

function 1374
COMMIT_ENQMODEL

function 1375
DISCARD_ENQMODEL

function 1376
END_BROWSE_ENQMODEL

function 1376
GET_NEXT_ENQMODEL

function 1376
INQUIRE_ENQMODEL

function 1377
INQUIRE_NQRNAME function 1378
REMOVE_ENQMODEL

function 1379
RESTORE_DIRECTORY

function 1379
SET_ENQMODEL function 1379
START_BROWSE_ENQMODEL

function 1380

O
object code only (OCO) 1, 7
object transaction service domain

(OT) 1383
OCO (object code only) 1, 7
OCO components 7
offsite recovery completion, file control

(DFHFCOR) 227
OPEN function, APTC gate 596
OPEN function, FCCT gate 662
OPEN function, LGGL gate 1290
OPEN_FILE function, FCFS gate 760
OPEN_OBJECT_STORE function, EJOS

gate 1124
OPEN_SESSION function, WBCL

gate 1875
OPEN_TRANSIENT_DATA function,

TDOC gate 827
open/close program, file control

(DFHFCN) 223

operator error
abnormal condition program

(ACP) 475
optional source listings, CD-ROM 2056
OSPWA (output services processor work

area) 39
partition handling program (PHP) 53

OT (object transaction service)
domain 1383

OTCO gate
FORGET function 1383
RESYNC function 1383
SET_COORDINATOR function 1384
SET_LAST_AGENT function 1384

OTCP gate
RESYNC_COORDINATOR

function 1384
RESYNC_SUBORDINATE

function 1385
OTRS gate

FORGET_TRANSACTION
function 1385

PERFORM_RESYNC function 1385
SET_REMOTE_STATUS

function 1386
OTSU gate

ADD_SUBORDINATE function 1386
FORGET function 1387
RESYNC function 1387
SET_VOTE function 1387

OTTR gate
BEGIN_TRAN function 1388
COMMIT function 1389
COMMIT_ONE_PHASE

function 1389
IMPORT_TRAN function 1389
PREPARE function 1390
ROLLBACK function 1390
SET_ROLLBACK_ONLY

function 1390
ownership of formats 9

P
PA (Parameter Manager Domain)

domain 1393
PAGP gate

FORCE_START function 1393
GET_PARAMETERS function 1393
INQUIRE_START function 1394,

1395
parallel sessions

allocation 313
Parameter Manager Domain (PA)

domain 1393
PARSE function, IIRH gate 1166
PARSE_CONTAINER function, MLPC

gate 1337
PARSE_CONTENT_TYPE function,

PIMM gate 1489
PARSE_ICM function, PIII gate 1482
PARSE_MIME_HEADERS function,

PIMM gate 1490
PARSE_MIME_MESSAGE function,

PIMM gate 1491
PARSE_MULTIPART_FORM function,

WBFM gate 1888

PARSE_MULTIPART_RELATED function,
PIMM gate 1492

PARSE_URL function, WBCL gate 1877
PARSE_URL_ENCODED_FORM function,

WBFM gate 1889
PARSE_URL_ENCODED_LIST function,

WBFM gate 1890
PARSE_XOP function, PIXI gate 1519
PARSE_XSDBIND_FILE function, MLTF

gate 1337
Partner Management Domain (PT)

domain 1523
partner resource manager 375, 378
paths

REWRITE processing 190
pattern structure 69
PATTERN_MATCH_PROFILE function,

DPPM gate 982
PATTERN_MATCH_TASK function,

DPPM gate 985
patterns 68, 82
patterns and subpatterns 69
PAUSE_AUXILIARY_TRACE function,

TRSR gate 1795
PBP (page and text build) 50

3270 mapping (M32) 49
data stream build (DSB) 44
interfaces, illustrated 50
LU1 printer with extended attributes

mapping program (ML1) 48
mapping control program (MCP) 47,

51
program manager 52
storage control 52

PCP (program control program) 363
message switching 352

PEEK_HEADERS function, WBSV
gate 1898

PEP (program error program) 367
transaction failure program

(TFP) 476
PERFORM_COMMIT function, RMLK

gate 1605
PERFORM_COMMIT function, RMRO

gate 1601
PERFORM_JOIN function, RZRJ

gate 1633
PERFORM_JVMPOOL function, SJIN

gate 1669
PERFORM_PIPELINE function, PIPL

gate 1498
PERFORM_PRELOGGING function,

RMLK gate 1607
PERFORM_PREPARE function, RMLK

gate 1608
PERFORM_PREPARE function, RMRO

gate 1601
PERFORM_REGULAR_DREDGE

function, SHRQ gate 1645
PERFORM_RESTART_DREDGE function,

SHRQ gate 1645
PERFORM_RESYNC function, OTRS

gate 1385
PERFORM_RESYNC function, PIRE

gate 1503
PERFORM_SHUNT function, RMLK

gate 1609

Index 2369

PERFORM_SHUNT function, RMRO
gate 1602

PERFORM_SHUTDOWN function, SHRQ
gate 1645

PERFORM_SYSTEM_ACTION function,
KEDD gate 1220

PERFORM_UNSHUNT function, RMCD
gate 1602

PERFORM_UNSHUNT function, RMLK
gate 1610

PERFORM_XML_PARSE function, PICC
gate 1481

PERFORMANCE_DATA_PUT function,
MNMN gate 1352

persistent sessions 535, 536, 537
diagnosing problems 545
sessions unbind during restart 545

persistent sessions delay interval 536
persistent sessions restart flow 537
PG (Program Manager Domain)

domain 1397
PGAQ gate

INQUIRE_AUTOINSTALL
function 1397

SET_AUTOINSTALL function 1398
SET_SYSTEM function 1398

PGCH gate
BIND_CHANNEL function 1399
COPY_CHANNEL function 1399
CREATE_CHANNEL function 1399
DELETE_CHANNEL function 1400
DELETE_OWNED_CHANNELS

function 1401
DETACH_CHANNEL function 1401
INQUIRE_BOUND_CHANNEL

function 1402
INQUIRE_CHANNEL function 1402
INQUIRE_CHANNEL_BY_TOKEN

function 1403
INQUIRE_CURRENT_CHANNEL

function 1404
RENAME_CHANNEL function 1405
SET_CURRENT_CHANNEL

function 1405
PGCP gate

COPY_CONTAINER_POOL
function 1406

CREATE_CONTAINER_POOL
function 1406

DELETE_CONTAINER_POOL
function 1406

INQUIRE_CONTAINER_POOL
function 1407

PGCR gate
COPY_CONTAINER function 1407
DELETE_CONTAINER function 1408
ENDBR_CONTAINER function 1409
GET_CONTAINER_INTO

function 1409
GET_CONTAINER_LENGTH

function 1411
GET_CONTAINER_SET

function 1413
GETNEXT_CONTAINER

function 1415
INQUIRE_BROWSE_CONTEXT

function 1416

PGCR gate (continued)
INQUIRE_CONTAINER

function 1416
INQUIRE_CONTAINER_BY_TOKEN

function 1417
MOVE_CONTAINER function 1419
PUT_CONTAINER function 1420
SET_CONTAINER function 1422
STARTBR_CONTAINER

function 1423
TRACE_CONTAINERS

function 1423
PGDD gate

DEFINE_PROGRAM function 1423
DELETE_PROGRAM function 1427

PGEX gate
INITIALIZE_EXIT function 1428
TERMINATE_EXIT function 1429

PGHM gate
CLEAR_LABELS function 1429
FREE_HANDLE_TABLES

function 1430
IGNORE_CONDITIONS

function 1430
INQ_ABEND function 1431
INQ_AID function 1432
INQ_CONDITION function 1433
POP_HANDLE function 1434
PUSH_HANDLE function 1435
SET_ABEND function 1435
SET_AIDS function 1436
SET_CONDITIONS function 1437

PGIS gate
END_BROWSE_PROGRAM

function 1438
GET_NEXT_PROGRAM

function 1439
INQUIRE_CURRENT_PROGRAM

function 1445
INQUIRE_PROGRAM function 1449
REFRESH_PROGRAM function 1455
SET_PROGRAM function 1456
START_BROWSE_PROGRAM

function 1458
PGLD gate

LOAD function 1459
LOAD_EXEC function 1460
RELEASE function 1461
RELEASE_EXEC function 1462

PGLE gate
LINK_EXEC function 1462

PGLK gate
LINK function 1464
LINK_PLT function 1465

PGLU gate
LINK_URM function 1466

PGMINFO1 area 337, 344
PGMINFO2 area 345
PGPG gate

INITIAL_LINK function 1467
PGRE gate

PREPARE_RETURN_EXEC
function 1468

PGXE gate
PREPARE_XCTL_EXEC

function 1469

PGXM gate
INITIALIZE_TRANSACTION

function 1470
TERMINATE_TRANSACTION

function 1471
phonetic conversion subroutine 89
PHP (partition handling program) 52

interfaces, illustrated 52
mapping control program (MCP) 48,

53
output services processor work area

(OSPWA) 53
program manager 53
storage control 53
terminal control table terminal entry

(TCTTE) 53
terminal output macro (TOM) 53
terminal partition extension (TPE) 53

PHPPIN 52
PHPPSC 52
PHPPSI 52
PHPPXE 52
PI (Pipeline Manager Domain)

domain 1475
PI domain

modules 1521
PIAT gate

CREATE_CONTEXT function 1475
CREATE_CONTEXT_RESP

function 1475
CREATE_NON_TERMINAL_MSG

function 1476
CREATE_REGISTER_REQUEST

function 1476
CREATE_REGISTER_RESP

function 1477
CREATE_TERMINAL_MSG

function 1477
PROCESS_CONTEXT function 1478
PROCESS_CONTEXT_RESP

function 1478
PROCESS_MSG function 1479

PICC gate
FIND_SIGNATURE function 1479
HANDLE_PARSE_EVENT

function 1480
PERFORM_XML_PARSE

function 1481
PIII gate

PARSE_ICM function 1482
PIIW gate

INVOKE_WEBSERVICE
function 1482

PIMM gate
BUILD_CONTENT_TYPE

function 1483
BUILD_MIME_HEADERS

function 1484
BUILD_MIME_MESSAGE

function 1485
BUILD_MULTIPART_RELATED

function 1486
BUILD_XOP function 1520
CONVERT_CID_TO_CONTENT_ID

function 1487
CONVERT_CONTENT_ID_TO_CID

function 1487

2370 CICS TS for z/OS 4.1: Diagnosis Reference

PIMM gate (continued)
DELETE_ATTACHMENTS

function 1488
GENERATE_CONTENT_ID

function 1488
GET_ATTACHMENT function 1489
PARSE_CONTENT_TYPE

function 1489
PARSE_MIME_HEADERS

function 1490
PARSE_MIME_MESSAGE

function 1491
PARSE_MULTIPART_RELATED

function 1492
PUT_ATTACHMENT function 1493

Pipeline Manager Domain (PI)
domain 1475

PIPI_CALL_SUB function, APLI
gate 586

PIPI_INIT_SUB_DP function, APLI
gate 587

PIPI_TERM function, APLI gate 587
PIPL gate

ADD_PIPELINE function 1494
COMPLETE_PIPELINE

function 1494
DISCARD_PIPELINE function 1495
END_BROWSE_PIPELINE

function 1495
ESTABLISH_PIPELINE function 1496
GET_NEXT_PIPELINE function 1496
INQUIRE_PIPELINE function 1497
PERFORM_PIPELINE function 1498
RELINQUISH_PIPELINE

function 1499
RESOLVE_PIPELINE function 1499
SET_PIPELINE function 1499
START_BROWSE_PIPELINE

function 1500
PIPM gate

INVOKE_PROGRAM function 1500
INVOKE_STUB function 1501
START_PIPELINE function 1502

PIRE gate
PERFORM_RESYNC function 1503

PISC gate
DYN_CREATE_WEBSERVICE

function 1503
UPDATE_WEBSERVICE

function 1504
PISF gate

SOAPFAULT_ADD function 1504
SOAPFAULT_CREATE function 1505
SOAPFAULT_DELETE function 1505

PISN gate
SOAP_11 function 1506
SOAP_12 function 1506

PITC gate
GET_RESPONSE function 1508
ISSUE function 1506
TRUST_CLIENT function 1508
VALIDATE function 1507

PITG gate
CONVERSE function 1510
RECEIVE_REQUEST function 1511
SEND_ERROR_RESPONSE

function 1511

PITG gate (continued)
SEND_REQUEST function 1509
SEND_RESPONSE function 1510

PITL gate
PROCESS_SOAP_REQUEST

function 1512
PIWR gate

CREATE_WEBSERVICE
function 1512

DECREMENT_USE_COUNT
function 1513

DISCARD_WEBSERVICE
function 1513

END_BROWSE_WEBSERVICE
function 1514

GET_NEXT_WEBSERVICE
function 1514

INCREMENT_USE_COUNT
function 1515

INITIALISE_WEBSERVICE
function 1516

INQUIRE_WEBSERVICE
function 1516

RESOLVE_ALL_WEBSERVICES
function 1518

SET_WEBSERVICE function 1518
START_BROWSE_WEBSERVICE

function 1519
PIXI gate

PARSE_XOP function 1519
POINT function, FCCR gate 653
POP_HANDLE function, PGHM

gate 1434
POP_SCOPE function, RLXM gate 1545
POP_TASK function, KEDS gate 1230
PRE_INITIALISE function, APRD

gate 591
PRE_INITIALISE function, DMDM

gate 957
PRE_INSTALL_DJAR function, IICP

gate 1159
PREPARE function, FCCU gate 669
PREPARE function, FCDU gate 686
PREPARE function, OTTR gate 1390
PREPARE function, RMOT gate 1576
PREPARE_FILE_REQUEST function,

FCFR gate 701
PREPARE_RETURN_EXEC function,

PGRE gate 1468
PREPARE_TO_BACKOUT function, FCFR

gate 701
PREPARE_XCTL_EXEC function, PGXE

gate 1469
Problem solving for generic resource

generic resource 519
problem solving 519

process overview
adapter 289
EXEC stubs 289
FEPI as CICS transaction 289
logic flow

FEPI application programming
commands 289

FEPI system programming
commands 290

within adapter 291
Resource Manager 289

PROCESS_CONTEXT function, PIAT
gate 1478

PROCESS_CONTEXT_RESP function,
PIAT gate 1478

PROCESS_DEAD_TCBS function, DSIT
gate 1017

PROCESS_ECI_FLOW function, IEIE
gate 1153

PROCESS_ERROR_QUEUE function,
ISRR gate 1212

PROCESS_INPUT_QUEUE function, ISRR
gate 1212

PROCESS_KETA_ERROR function, KEDS
gate 1231

PROCESS_MSG function, PIAT
gate 1479

PROCESS_PAGE function, DPWD
gate 990

PROCESS_PAGE function, DPWE
gate 991

PROCESS_PAGE function, DPWJ
gate 992

PROCESS_PAGE function, DPWL
gate 993

PROCESS_QUIESCE function, FCQU
gate 797

PROCESS_REQUESTS function, IIRR
gate 1176

PROCESS_SOAP_REQUEST function,
PITL gate 1512

PROCESS_STATISTICS function, LGJN
gate 1299

PROCESS_SUBMIT function, DPWD
gate 990

PROCESS_SUBMIT function, DPWE
gate 992

PROCESS_SUBMIT function, DPWJ
gate 993

PROCESS_SUBMIT function, DPWL
gate 994

processing using data tables 185
processing using VSAM 185
processors 429
PROFILE function, APID gate 579
program check interrupt

system recovery program (SRP) 409
program isolation deadlock 479
Program Manager Domain (PG)

domain 1397
program preparation utilities

command-language translator 369
program termination block (PTB) 337,

345
programming functions with function

shipping 301
protocols, function shipping 303
protocols, LU6.1

function shipping 303
PSB (program specification block)

DL/I interface 136
PSB scheduling, DBCTL 116
PSB scheduling, DL/I 116, 371
PSB termination, DBCTL 116
PSB termination, DL/I 116, 371
PSDINT 536
PSTYPE 535, 536, 537

Index 2371

PT (Partner Management Domain)
domain 1523

PTB (program termination block) 337,
345

PTHREAD_REPLY function, LEPT
gate 822

PTTW gate
BREAK_PARTNERSHIP

function 1523
CREATE_PARTNERSHIP

function 1524
CREATE_POOL function 1524
DESTROY_PARTNERSHIP

function 1525
DESTROY_POOL function 1526
END_POOL_BROWSE function 1527
GET_NEXT_POOL function 1527
INQUIRE_GARBAGE_INTERVAL

function 1527
INQUIRE_USER_TOKEN

function 1528
MAKE_PARTNERSHIP

function 1528
QUERY_PARTNERSHIP

function 1529
QUERY_POOL function 1530
SET_GARBAGE_INTERVAL

function 1531
SET_USER_TOKEN function 1532
START_POOL_BROWSE

function 1532
TRIGGER_PARTNER function 1532
WAIT_FOR_PARTNER function 1534

PUBLISH_CORBASERVER function, IICP
gate 1160

PUBLISH_DJAR function, IICP
gate 1160

PUBLISH_LOGICAL_SERVER function,
IICP gate 1161

PURGE_ALLOCATE_AIDS function,
TFAL gate 849

PURGE_INHIBIT_QUERY function,
DSAT gate 1031

PURGE_TRANSACTION function, XMIQ
gate 1971

PUSH_HANDLE function, PGHM
gate 1435

PUSH_SCOPE function, RLXM
gate 1546

PUSH_TASK function, KEDS gate 1231
PUT function, TSPT gate 1812
PUT_ATTACHMENT function, PIMM

gate 1493
PUT_CIB function, CQCQ gate 626
PUT_CLIENT_REQUEST function,

RXUW gate 1629
PUT_CONTAINER function, BACR

gate 888
PUT_CONTAINER function, PGCR

gate 1420
PUT_EVENT function, EPEV gate 1149
PUT_PROCESSED_CIB function, CQCQ

gate 626
PUT_REPLACE function, CCCC

gate 906
PUT_REPLACE function, TSPT

gate 1813

Q
QUERY function 458
QUERY_NETNAME function, APID

gate 580
QUERY_PARTNERSHIP function, PTTW

gate 1529
QUERY_POOL function, PTTW

gate 1530
QUERY_XML function, MLTF gate 1338
queues, transient data

extrapartition 504, 507
indirect 504
intrapartition 503, 505

QUIESCE function, EJGE gate 1105
quiesce receive transaction, file control

(DFHFCQR) 228
QUIESCE_COMPLETE function, FCCA

gate 641
QUIESCE_DOMAIN function, DMDM

gate 957
QUIESCE_REQUEST function, FCCA

gate 642
QUIESCE_SYSTEM function, DMDM

gate 950
quiesce, table manager 420

R
RABN (Resource definition Atom Block

Name) 65
RACB (receive-any control block) 455
RACE (receive-any RPL pool) 460
range table 417
RDO (resource definition online) 373

CEDA transaction 373
terminal control autoinstallation 373

RDUB (Resource Definition Update
Block) 65

REACQUIRE_ENQUEUE function,
NQNQ gate 1372

READ function, FCCR gate 654
READ function, FCRF gate 803
READ function, WBAP gate 1865
read integrity 183
read locks, table manager 419
READ_DELETE function, FCCR

gate 656
READ_HEADER function, WBCL

gate 1878
READ_HFS_FILE function, DHFS

gate 933
READ_INTO function, FCFR gate 702
READ_INTO function, TSQR gate 1815
READ_INTO function, TSSH gate 1827
READ_NEXT function, WBAP gate 1866
READ_NEXT_HEADER function, WBCL

gate 1880
READ_NEXT_INTO function, FCFR

gate 705
READ_NEXT_INTO function, TSQR

gate 1816
READ_NEXT_INTO function, TSSH

gate 1828
READ_NEXT_SET function, FCFR

gate 708

READ_NEXT_SET function, TSQR
gate 1817

READ_NEXT_SET function, TSSH
gate 1829

READ_NEXT_UPDATE_INTO function,
FCFR gate 711

READ_NEXT_UPDATE_SET function,
FCFR gate 714

READ_ONLY function, FCLJ gate 764
READ_PREVIOUS_INTO function, FCFR

gate 716
READ_PREVIOUS_SET function, FCFR

gate 719
READ_PREVIOUS_UPDATE_INTO

function, FCFR gate 722
READ_PREVIOUS_UPDATE_SET

function, FCFR gate 725
READ_REQUEST function, WBSV

gate 1896
READ_RESPONSE function, WBCL

gate 1881
READ_SET function, FCFR gate 727
READ_SET function, TSQR gate 1818
READ_SET function, TSSH gate 1829
READ_TEMPLATE function, DHTM

gate 944
READ_TIME function, KEDS gate 1232
READ_TRANSIENT_DATA function,

APTD gate 600
READ_UPDATE function, FCLJ gate 765
READ_UPDATE_INTO function, FCFR

gate 730
READ_UPDATE_SET function, FCFR

gate 734
READNEXT_DEBUG_PROFILE function,

DPLM gate 975
READNEXT_INPUT function, DPLM

gate 978
READNEXT_PM_PROFILE function,

DPFM gate 965
READY function, KEAR gate 1215
REATTACH function, XMAT gate 1942
REATTACH_REPLY function, RMUW

gate 1596
REBUILD_RESOURCE_CLASSES

function, XSRC gate 2049
RECEIVE function, APTC gate 596
RECEIVE function, IEIE gate 1153
RECEIVE function, SOCK gate 1730
RECEIVE function, WBSR gate 1892
RECEIVE processing, LU6.2 525
RECEIVE_BUFFER function, ISIS

gate 1200
RECEIVE_REPLY function, IIRP

gate 1169
RECEIVE_REPLY function, RZSO

gate 1636
RECEIVE_REQUEST function, IIRP

gate 1170
RECEIVE_REQUEST function, ISIS

gate 1201
RECEIVE_REQUEST function, PITG

gate 1511
RECEIVE_REQUEST function, RZTA

gate 1640
RECEIVE_REQUEST function, SHRR

gate 1645

2372 CICS TS for z/OS 4.1: Diagnosis Reference

RECEIVE_SSL_DATA function, SOCK
gate 1732

receive-any control block (RACB) 455
receive-any RPL pool (RACE) 460
record locking

DELETE request processing 191
READ UPDATE request 187
WRITE request for BDAM file 189
WRITE request for ESDS file 188

RECORD_STATISTICS function, STST
gate 1773

RECORD_VOTE function, RMLN
gate 1567

RECOVER_START_DATA function, TFAL
gate 850

RECOVER_STORAGE function, SMCK
gate 1682

recoverable data set
DELETE request processing 191
READ request 187
REWRITE processing 190
WRITE request 188

recovery
resource manager interface 433
task-related user exits 433

recovery control program, file control
(DFHFCRC) 229

Recovery Manager Domain (RM)
domain 1551

recovery of intrapartition transient data
queues 503

logical 504
physical 503

recovery point 211
recovery/restart

transaction restart program,
DFHREST 479

REFRESH_PROGRAM function, LDLD
gate 1273

REFRESH_PROGRAM function, PGIS
gate 1455

Region Status (RS) domain 1617
REGISTER function, DUFT gate 1050
REGISTER function, KEAR gate 1215
REGISTER function, RLRO gate 1544
REGISTER function, RMCD gate 1551
REGISTER function, SORD gate 1758
REGISTER_CERTIFICATE_USER

function, XSPW gate 2041
REGISTER_CONTROL_ACB function,

FCCA gate 643
REGISTER_JAVA_VERSION function,

SJCC gate 1651
REGISTER_NOTIFICATION function,

SORD gate 1760
REGISTER_TCLASS_USAGE function,

XMCL gate 1953
reinstall

example 71
process 73

relay transaction 481
relay transaction control blocks 499
RELAY_TERMINAL_REQUEST function,

APRA gate 589
RELEASE function, PGLD gate 1461
RELEASE function, TSPT gate 1813

RELEASE_CHAIN_TOKEN function,
LGCC gate 1285

RELEASE_CONNECTION function, ISCO
gate 1181

RELEASE_EXEC function, PGLD
gate 1462

RELEASE_FACILITY function, TFRF
gate 865

RELEASE_ICRX function, USAD
gate 1849

RELEASE_ICRX function, XSAD
gate 2014

RELEASE_ICRX_STORAGE function,
XSAD gate 2015

RELEASE_LOCKS function, FCCA
gate 644

RELEASE_OPEN_TCB function, DSAT
gate 1003

RELEASE_PROGRAM function, LDLD
gate 1274

RELEASE_SURROGATE function, APRS
gate 592

RELEASE_TRANSACTION_STG
function, SMAR gate 1681

RELEASE_XM_CLIENT function, APXM
gate 603

RELEASE_XM_CLIENT function, DPXM
gate 995

RELEASE_XM_CLIENT function, RLXM
gate 1546

RELEASE_XM_CLIENT function, XMAC
gate 1998

RELEASE_XSDBIND function, MLTF
gate 1339

RELINQUISH function, EJCG gate 1084
RELINQUISH function, SOCK gate 1733
RELINQUISH_PIPELINE function, PIPL

gate 1499
RELOAD_CLASSCACHE function, SJCC

gate 1652
remote DL/I 371
remote resource names in function

shipping 302
remote system entry 484
REMOTE_ATTACH function, APRA

gate 589
REMOTE_DELETE function, TFAL

gate 850
REMOTE_DETACH function, APRA

gate 589
REMOVE function, RMRE gate 1581
REMOVE_ENQMODEL function, NQRN

gate 1379
REMOVE_ENTRY function, EJDI

gate 1102
REMOVE_EXPIRED_AID function, TFAL

gate 851
REMOVE_EXPIRED_REMOTE_AID

function, TFAL gate 851
REMOVE_LINK function, RMLN

gate 1567
REMOVE_MESSAGE function, TFAL

gate 852
REMOVE_OBJECT function, EJOS

gate 1125
REMOVE_REMOTE_DELETES function,

TFAL gate 852

REMOVE_STORE function, EJOS
gate 1125

REMOVE_SUBEVENT function, EMEM
gate 1145

RENAME_CHANNEL function, PGCH
gate 1405

REPLACE function, FCFR gate 737
REPLACE function, FCRF gate 804
REPLACE_DATA function, DDDI

gate 920
REPLACE_DATA function, DHDH

gate 928
REPLACE_DEBUG_PROFILE function,

DPFM gate 967
REPLACE_DELETE function, FCFR

gate 740
REPLACE_DELETE function, FCRF

gate 805
REPLY_DO_COMMIT function, RMLK

gate 1610
REPORT_CONDITION function, APAC

gate 572
REPORT_MESSAGE function, XMER

gate 1957
REPORT_RECOVERY_STATUS function,

RMLN gate 1568
request parameter list (RPL), VSAM 204
request processing, general 185
Request Streams Domain (RZ)

domain 1633
REQUEST_FORGET function, RMRE

gate 1582
REQUEST_NOTIFY_INTERVAL function,

TISR gate 1787
REQUEST_NOTIFY_OF_A_RESET

function, KETI gate 1243
REQUEST_NOTIFY_TIME_OF_DAY

function, TISR gate 1788
REQUEST_STATISTICS function, STST

gate 1774
REROUTE_SHIPPABLE_AIDS function,

TFAL gate 853
RESCHEDULE_BMS function, TFAL

gate 853
RESERVE function, SOCK gate 1734
RESET_ACTIVITY function, BAAC

gate 873
RESET_AID_QUEUE function, TFAL

gate 854
RESET_ALL_QUIESCE_STATUS function,

FCDN gate 678
RESET_BEAN_STATS function, EJBG

gate 1071
RESET_BFAILS function, FCFL gate 693
RESET_BROWSE function, FCFR

gate 742
RESET_BROWSE function, FCRF

gate 806
RESET_KEYPOINT_STATS function,

LGCC gate 1286
RESET_LOCAL_TIME function, KETI

gate 1243
RESET_NONRLS_BATCH function,

FCCA gate 645
RESET_PROCESS function, BAPR

gate 892
RESET_TIME function, KEDS gate 1233

Index 2373

RESET_TRIGGER_LEVEL function, APTD
gate 601

RESOLVE function, EJIO gate 1105
RESOLVE_ALL_JVMSERVERS function,

SJJS gate 1658
RESOLVE_ALL_WEBSERVICES function,

PIWR gate 1518
RESOLVE_CORBASERVER function,

EJCG gate 1085
RESOLVE_CSERVERS function, EJIO

gate 1106
RESOLVE_DJAR function, EJDG

gate 1097
RESOLVE_DJARS function, EJIO

gate 1106
RESOLVE_PIPELINE function, PIPL

gate 1499
Resource Definition Atom 65
resource definition atom block name

(RABN) 65
resource definition recovery anchor block

(RRAB) 64
resource definition update block

(RDUB) 65
Resource life-cycle (RL) domain 1537
resource manager interface (RMI) 425
resource manager interface (RMI)

recovery 433
Resource Manager, FEPI 289
Resource Recovery interface, SAA 377
resource recovery table 193
RESOURCE_AVAILABLE function, FCRR

gate 814
restart

emergency 85
RESTART function, FCCU gate 670
RESTART function, FCDU gate 687
restart of transactions

DFHREST 479
restart program, file control

(DFHFCRP) 233
RESTART_FILE_CONTROL function,

FCFR gate 744
RESTART_FILE_CONTROL function,

FCRP gate 812
RESTART_RLS function, FCRR gate 814
RESTARTBR_DEBUG_PROFILES

function, DPLM gate 980
RESTORE_CHAIN_TOKEN function,

LGCC gate 1286
RESTORE_DIRECTORY function, NQRN

gate 1379
RESTORE_FROM_KEYPOINT function,

TFAL gate 854
RESTORE_STIMER function, KEDS

gate 1234
RESUME function, DSSR gate 1022
RESUME_ACTIVITY function, BAAC

gate 874
RESUME_PROCESS function, BAPR

gate 892
RESYNC function, OTCO gate 1383
RESYNC function, OTSU gate 1387
RESYNC_CFDT_LINK function, FCDY

gate 689
RESYNC_CFDT_POOL function, FCDY

gate 689

RESYNC_COORDINATOR function,
OTCP gate 1384

RESYNC_LINKS function, ISRE
gate 1209

RESYNC_SUBORDINATE function,
OTCP gate 1385

resynchronization protocol 304
RETAIN function, FCCU gate 670
RETAIN function, FCDU gate 688
RETAIN_DATASET_LOCKS function,

FCCA gate 645
RETAIN_UOW_LOCKS function, FCCA

gate 646
RETRACT_CORBASERVER function,

IICP gate 1161
RETRACT_DJAR function, IICP

gate 1162
RETRACT_LOGICAL_SERVER function,

IICP gate 1162
RETRIEVE_MESSAGE function, MEBM

gate 1324
RETRIEVE_MESSAGE function, MEME

gate 1328
RETRIEVE_REATTACH_EVENT function,

EMEM gate 1145
RETRIEVE_START_DATA function, TFAL

gate 854
RETRIEVE_STATISTICS function, EJOB

gate 1121
RETRIEVE_SUBEVENT function, EMEM

gate 1145
RETRIEVE_WITH_CTLINFO function,

DHDH gate 930
RETRIEVE_WITHOUT_CTLINFO

function, DHDH gate 930
RETRY function, FCFL gate 694
RETRY_REQUEST function, SHRR

gate 1646
RETURN_CFDT_ENTRY_POINTS

function, FCDY gate 690
RETURN_END_ACTIVITY function,

BAAC gate 874
REWRITE function, FCCR gate 656
REWRITE function, FCFR gate 744
REWRITE function, FCRF gate 807
REWRITE function, TSQR gate 1819
REWRITE function, TSSH gate 1830
REWRITE_DELETE function, FCFR

gate 747
RIDFLD

READ request 187
READNEXT request processing 193
recoverable data set 187

RL (Resource life-cycle) domain 1537
RL domain

modules 1549
RLA (route list area) 39
RLBR gate

INQUIRE_BY_NAME function 1549
RLCB gate

CREATE function 1547, 1549
DISCARD function 1548
INQUIRE function 1548

RLPM gate
DISCARD_BUNDLE function 1537
END_BROWSE_BUNDLE

function 1537

RLPM gate (continued)
GET_NEXT_BUNDLE function 1538
INQUIRE_BUNDLE function 1539
INSTALL_BUNDLE function 1540
SET_BUNDLE function 1540
START_BROWSE_BUNDLE

function 1541
RLR (route list resolution program) 53

interfaces, illustrated 54
mapping control program (MCP) 47,

54
program manager 54
storage control 54

RLRO gate
CREATED function 1541
DEREGISTER function 1542
DISCARDED function 1542
DRIVE_PENDING function 1542
END_BROWSE_BUNDLERES

function 1543
GET_NEXT_BUNDLERES

function 1543
NOTIFY function 1544
REGISTER function 1544
START_BROWSE_BUNDLERES

function 1545
RLS cleanup transaction, file control

(DFHFCRD) 231
RLS control ACB manager, file control

(DFHFCCA) 208
RLS open/close program, file control

(DFHFCRO) 233
RLS quiesce common system transaction,

file control (DFHFCQT) 228
RLS quiesce exit, file control

(DFHFCQX) 228
RLS quiesce initiation, file control

(DFHFCQI) 227
RLS quiesce processor, file control

(DFHFCQU) 228
RLS quiesce send transaction, file control

(DFHFCQS) 228
RLS record management processor, file

control (DFHFCRS) 235
RLS restart, file control (DFHFCRR) 235
RLS VSAM interface processor, file

control (DFHFCRV) 236
RLXM gate

INQUIRE_SCOPE function 1545
POP_SCOPE function 1545
PUSH_SCOPE function 1546
RELEASE_XM_CLIENT

function 1546
RM (Recovery Manager Domain)

domain 1551
RMCD gate

INQUIRE_CLIENT_DATA
function 1551

REGISTER function 1551
SET_CLIENT_DATA function 1552
SET_GATE function 1552

RMDE gate
DELIVER_FORGET function 1603
DELIVER_RECOVERY function 1603
END_DELIVERY function 1605
START_DELIVERY function 1605

2374 CICS TS for z/OS 4.1: Diagnosis Reference

RMDM gate
INQUIRE_LOCAL_LU_NAME

function 1552
INQUIRE_STARTUP function 1553
SET_LOCAL_LU_NAME

function 1553
SET_PARAMETERS function 1554
SET_STARTUP function 1554

RMI (resource manager interface) 425
RMI (resource manager interface)

recovery 433
RMI_START_OF_TASK function, APXM

gate 603
RMKP gate

TAKE_KEYPOINT function 1605
RMLK gate

PERFORM_COMMIT function 1605
PERFORM_PRELOGGING

function 1607
PERFORM_PREPARE function 1608
PERFORM_SHUNT function 1609
PERFORM_UNSHUNT

function 1610
REPLY_DO_COMMIT function 1610
SEND_DO_COMMIT function 1611

RMLN gate
ADD_LINK function 1554
DELETE_LINK function 1557
END_LINK_BROWSE function 1557
GET_NEXT_LINK function 1557
INBOUND_FLOW function 1561
INITIATE_RECOVERY function 1561
INQUIRE_LINK function 1563
INSERT_LINK function 1566
ISSUE_PREPARE function 1566
RECORD_VOTE function 1567
REMOVE_LINK function 1567
REPORT_RECOVERY_STATUS

function 1568
SET_LINK function 1569
SET_MARK function 1571
SET_RECOVERY_STATUS

function 1571
START_LINK_BROWSE

function 1572
TERMINATE_RECOVERY

function 1573
RMNM gate

CLEAR_PENDING function 1574
INQUIRE_LOGNAME function 1574
SET_LOGNAME function 1575

RMOT gate
COMMIT function 1575
PREPARE function 1576
ROLLBACK function 1576
SET_OTS_UOW function 1576

RMRE gate
APPEND function 1576
AVAIL function 1578
FORCE function 1579
KEYPOINT_DATA function 1580
REMOVE function 1581
REQUEST_FORGET function 1582

RMRO gate
DELIVER_BACKOUT_DATA

function 1599
END_BACKOUT function 1600

RMRO gate (continued)
PERFORM_COMMIT function 1601
PERFORM_PREPARE function 1601
PERFORM_SHUNT function 1602
PERFORM_UNSHUNT

function 1602
START_BACKOUT function 1603

RMSL gate
TAKE_ACTIVITY_KEYPOINT

function 1583
RMUW gate

BACKOUT_UOW function 1583
BIND_UOW_TO_TXN function 1584
COMMIT_UOW function 1584
CREATE_NETWORK_UOWID

function 1585
CREATE_UOW function 1585
END_UOW_BROWSE function 1587
END_WORK_TOKEN_BROWSE

function 1587
FORCE_UOW function 1587
GET_NEXT_UOW function 1588
GET_NEXT_WORK_TOKEN

function 1590
INQUIRE_UOW function 1591
INQUIRE_UOW_ID function 1594
INQUIRE_UOW_TOKEN

function 1594
INQUIRE_WORK_TOKEN

function 1595
REATTACH_REPLY function 1596
SET_UOW function 1596
SET_WORK_TOKEN function 1597
START_UOW_BROWSE

function 1597
START_WORK_TOKEN_BROWSE

function 1598
ROLLBACK 77
ROLLBACK function, OTTR gate 1390
ROLLBACK function, RMOT gate 1576
route list area (RLA) 39
ROUTE_REQUEST function, SHRR

gate 1646
ROUTE_TRANSACTION function, APRT

gate 592
ROUTING_CONVERSE function, ISIS

gate 1202
RPL (request parameter list), VSAM 204
RPL (request parameter list), VTAM 446

receive-any RPL 460
RRAB (Resource definition Recovery

Anchor Block) 64
RRDS (relative record data set)

WRITE request for RRDS file 188
RRMS domain (RX) 1627
RS (Region status) domain 1617
RS domain

modules 1625
RSDU gate

END_SYSTEM_DUMP function 1617
END_TRANSACTION_DUMP

function 1617
START_SYSTEM_DUMP

function 1618
START_TRANSACTION_DUMP

function 1618

RSSR gate
DEREGISTER_INTEREST

function 1618
INQUIRE_TARGET_STATUS

function 1619
SET_THRESHOLD_PERCENTAGE

function 1620
START_RECORDING function 1621
STOP_RECORDING function 1622
TEST_CONNECTION function 1623

RSXM gate
END_TRANSACTION function 1623
START_TRANSACTION

function 1624
RUN_ACTIVITY function, BAAC

gate 874
RUN_PROCESS function, BAPR

gate 892
RUN_TRANSACTION function, XMRU

gate 1976
runaway task

system recovery program (SRP) 409
RX (RRMS) domain 1627
RXDM gate

INQUIRE_RRS function 1627
SET_PARAMETERS function 1627

RXUW gate
GET_CLIENT_REQUEST

function 1628
INQUIRE function 1628
PUT_CLIENT_REQUEST

function 1629
RZ (Request Streams Domain)

domain 1633
RZRJ gate

PERFORM_JOIN function 1633
RZRT gate

SET_EXIT_PROGRAM function 1633
RZSO gate

CREATE function 1634
JOIN function 1635
LEAVE function 1636
RECEIVE_REPLY function 1636
SEND_REQUEST function 1637
WEAK_JOIN function 1638

RZTA gate
GET_CURRENT function 1638
GET_DEBUG_DATA function 1639
GET_JOIN_DATA function 1639
GET_PUBLIC_ID function 1640
GET_SERVER_DATA function 1640
RECEIVE_REQUEST function 1640
SEND_REPLY function 1641
TERMINATE function 1641

S
S2AD gate

ADD_SUBPOOL function 1701
DELETE_SUBPOOL function 1702
END_SUBPOOL_BROWSE

function 1703
GET_NEXT_SUBPOOL function 1703
INQUIRE_SUBPOOL function 1703
START_SUBPOOL_BROWSE

function 1704

Index 2375

S2GF gate
FREEMAIN function 1704
GETMAIN function 1705
INQUIRE_ELEMENT_LENGTH

function 1706
S2SR gate

COPY_ABOVE_BAR_TO_BELOW
function 1707

COPY_BELOW_BAR_TO_ABOVE
function 1708

SAA Communications interface 377
SAA Resource Recovery interface 377
SAB (subsystem anchor block) 391
SAIQ gate

INQUIRE_SYSTEM function 823
SET_SYSTEM function 826

SAVE_DEBUG_PROFILE function, DPFM
gate 970

SAVE_USER_DEFAULTS function, DPUM
gate 987

SCACB (subsystem connection address
control block) 323

SCAN_DJARS function, EJDG gate 1097
SCCB (subsystem connection control

block) 323
SCHEDULE_BMS function, TFAL

gate 855
SCHEDULE_RECEIVER_TASK function,

SOCK gate 1735
SCHEDULE_START function, TFAL

gate 856
SCHEDULE_TDP function, TFAL

gate 858
Scheduler Services Domain (SH)

domain 1643
SCP (storage control program)

3270 mapping (M32) 50
data interchange program (DIP) 120
LU1 printer with extended attributes

mapping program (ML1) 49
mapping control program (MCP) 47
message switching 352
non-3270 input mapping (IIP) 45
page and text build (PBP) 52
partition handling program (PHP) 53
route list resolution program

(RLR) 54
terminal control 446
terminal page processor (TPP) 55
terminal page retrieval program

(TPR) 58
transaction failure program

(TFP) 476
undelivered messages cleanup

program (TPQ) 56
SCTE (subsystem control table

extension) 322, 391
SEARCH_LDAP function, DDAP

gate 915
secondary index 418
Security Domain (XS) domain 2005
SEND function, APTC gate 597
SEND function, IEIE gate 1154
SEND function, SOCK gate 1736
SEND function, WBSR gate 1893
SEND processing, LU6.2 525
SEND_BUFFER function, ISIS gate 1203

SEND_DEFERRED_ABEND function,
KEDS gate 1234

SEND_DO_COMMIT function, RMLK
gate 1611

SEND_ERROR function, IEIE gate 1154
SEND_ERROR function, ISIS gate 1205
SEND_ERROR_RESPONSE function,

PITG gate 1511
SEND_MESSAGE function, MEME

gate 1329
SEND_QUIESCES function, FCQS

gate 796
SEND_REPLY function, IIRP gate 1171
SEND_REPLY function, RZTA gate 1641
SEND_REQUEST function, PITG

gate 1509
SEND_REQUEST function, RZSO

gate 1637
SEND_RESPONSE function, ISIS

gate 1205
SEND_RESPONSE function, PITG

gate 1510
SEND_RESPONSE function, WBAP

gate 1867
SEND_SSL_DATA function, SOCK

gate 1737
SEND_STATIC_RESPONSE function,

WBSR gate 1895
sequential retrieval 182
service request block (SRB) 446
SERVREQ attribute of file

DELETE request 191
READ request 185

session management, LU6.2 523
session states, LU6.2 525
sessions

recovery 326
SET function, FCCT gate 665
SET function, LGJN gate 1299
SET function, SOIS gate 1753
SET VTAM 537
SET_ABEND function, PGHM gate 1435
SET_AIDS function, PGHM gate 1436
SET_ALL_STATE function, EJCG

gate 1086
SET_ALL_STATE function, EJDG

gate 1098
SET_ANCHOR function, KEDD

gate 1221
SET_ATOMSERVICE function, W2AT

gate 1934
SET_AUTOINSTALL function, PGAQ

gate 1398
SET_AUX_TRACE_AUTOSWITCH

function, TRSR gate 1795
SET_BEAN_STATS function, EJJO

gate 1113
SET_BOUND_REQUEST function, SHPR

gate 1644
SET_BUFFERS function, TSSR gate 1832
SET_BUNDLE function, RLPM

gate 1540
SET_CATALOG_RECOV_POINT

function, FCAT gate 636
SET_CATALOG_RECOV_REQD function,

FCAT gate 637

SET_CATALOG_RECOVERED function,
FCAT gate 637

SET_CATALOG_RECOVERED function,
FCDN gate 678

SET_CLASSCACHE function, SJIS
gate 1670

SET_CLIENT_DATA function, RMCD
gate 1552

SET_CONDITIONS function, PGHM
gate 1437

SET_CONTAINER function, PGCR
gate 1422

SET_COORDINATOR function, OTCO
gate 1384

SET_CURRENT_CHANNEL function,
PGCH gate 1405

SET_DATE_FORMAT function, KETI
gate 1243

SET_DEBUG_PROFILE function, DPIQ
gate 974

SET_DEBUGGING function, DPIQ
gate 974

SET_DEFAULT_RECOVERY function,
KEDD gate 1221

SET_DEFER_INTERVAL function, LGCC
gate 1287

SET_DEFERRED_ABEND function,
XMER gate 1958

SET_DEFERRED_MESSAGE function,
XMER gate 1959

SET_DISPATCHER function, DSIT
gate 1018

SET_DOMAIN_TRACE function, KEDD
gate 1222

SET_DSA_LIMIT function, SMSR
gate 1696

SET_DSA_SIZE function, SMSR
gate 1697

SET_DSNB function, FCDN gate 679
SET_DTRTRAN function, XMSR

gate 1978
SET_DUMPDS_AUTOSWITCH function,

DUSR gate 1055
SET_DUMPTABLE_DEFAULTS function,

DUSR gate 1055
SET_ENQMODEL function, NQRN

gate 1379
SET_EVENT_PROCESSING function,

EPIS gate 1151
SET_EVENTBINDING function, ECIS

gate 631
SET_EVENTPROCESS function, ECIS

gate 631
SET_EXIT_PROGRAM function, RZRT

gate 1633
SET_EXIT_PROGRAM function, SHRT

gate 1647
SET_EXIT_STATUS function, APUE

gate 868
SET_GARBAGE_INTERVAL function,

PTTW gate 1531
SET_GATE function, RMCD gate 1552
SET_GLOBAL_TRACE function, KEDD

gate 1222
SET_HISTORY function, LGCC

gate 1287
SET_HOST function, WBUR gate 1917

2376 CICS TS for z/OS 4.1: Diagnosis Reference

SET_INITIAL_DUMPDS function, DUSR
gate 1056

SET_INTERNAL_TABLE_SIZE function,
TRSR gate 1796

SET_IPCONN function, ISIC gate 1193
SET_JVMPOOL function, SJIS gate 1671
SET_JVMPROFILEDIR function, SJIS

gate 1672
SET_JVMSERVER function, SJJS

gate 1658
SET_KERNEL function, KEGD gate 1239
SET_KEYPOINT_FREQUENCY function,

LGCC gate 1288
SET_LAST_AGENT function, OTCO

gate 1384
SET_LIBRARY function, LDLB gate 1257
SET_LINK function, RMLN gate 1569
SET_LOCAL_LU_NAME function,

RMDM gate 1553
SET_LOGNAME function, RMNM

gate 1575
SET_MARK function, RMLN gate 1571
SET_MCT_SUFFIX function, MNSR

gate 1354
SET_MESSAGE_OPTIONS function,

MESR gate 1333
SET_MONITORING function, MNSR

gate 1354
SET_MXT function, XMSR gate 1978
SET_NETWORK_IDENTIFIER function,

XSIS gate 2032
SET_NQRNAME_LIST function, NQNQ

gate 1373
SET_OPTIONS function, LDLD

gate 1275
SET_OTS_UOW function, RMOT

gate 1576
SET_PARAMETERS function, DHDH

gate 931
SET_PARAMETERS function, DPIQ

gate 975
SET_PARAMETERS function, ISIS

gate 1206
SET_PARAMETERS function, LGPA

gate 1307
SET_PARAMETERS function, RMDM

gate 1554
SET_PARAMETERS function, RXDM

gate 1627
SET_PARAMETERS function, SOIS

gate 1754
SET_PARAMETERS function, W2W2

gate 1936
SET_PHASE function, DMDM gate 950
SET_PIPELINE function, PIPL gate 1499
SET_POOL function, FCRL gate 811
SET_PRIORITY function, DSAT

gate 1003
SET_PROCESSTYPE function, BATT

gate 896
SET_PROGRAM function, PGIS

gate 1456
SET_RECOVERY_STATUS function,

RMLN gate 1571
SET_REENTRANT_PROGRAM function,

SMSR gate 1697

SET_REMOTE_STATUS function, OTRS
gate 1386

SET_RETRY_TIME function, DUSR
gate 1056

SET_ROLE_FOR_CODED_ROLE
function, XSEJ gate 2024

SET_ROLLBACK_ONLY function, OTTR
gate 1390

SET_RSTATE function, EJIO gate 1107
SET_SECURITY_DOMAIN_PARMS

function, XSIS gate 2032
SET_SESSION function, APTC gate 597
SET_SESSION function, WBSV

gate 1900
SET_SOCKET_OPTS function, SOCK

gate 1738
SET_SPECIAL_TOKENS function, XSIS

gate 2036
SET_START_TYPE function, TSSR

gate 1833
SET_STARTUP function, RMDM

gate 1554
SET_STATISTICS_OPTIONS function,

STST gate 1774
SET_STORAGE_PROTECT function,

SMSR gate 1698
SET_STORAGE_RECOVERY function,

SMSR gate 1698
SET_STRINGS function, TSSR gate 1833
SET_SYMBOL_VALUE_BY_API function,

DHSL gate 937
SET_SYMBOL_VALUE_BY_SSI function,

DHSL gate 938
SET_SYSTEM function, PGAQ gate 1398
SET_SYSTEM function, SAIQ gate 826
SET_SYSTEM_DUMP function, DUSR

gate 1056
SET_SYSTEM_DUMPCODE function,

DUDT gate 1042
SET_TASK function, DSBR gate 1010
SET_TASK_TRACE function, KEDD

gate 1223
SET_TCB function, DSBR gate 1011
SET_TCLASS function, XMCL gate 1953
SET_TCPIPSERVICE function, SOTB

gate 1767
SET_TDQDEF function, TDTM gate 841
SET_TERMINAL_FACILITY function,

TFIQ gate 864
SET_THRESHOLD_PERCENTAGE

function, RSSR gate 1620
SET_TRAN_DUMPCODE function,

DUDT gate 1044
SET_TRANDEF function, XMXD

gate 1993
SET_TRANSACTION function, XMIQ

gate 1972
SET_TRANSACTION_ISOLATION

function, SMSR gate 1699
SET_TRANSACTION_TOKEN function,

DSAT gate 1004
SET_TRANSACTION_TOKEN function,

XMIQ gate 1973
SET_TRANTABLESIZE function, DUSR

gate 1057
SET_TRANTABLETYPE function, DUSR

gate 1057

SET_TRAP_OFF function, KEDD
gate 1224

SET_TRAP_ON function, KEDD
gate 1224

SET_UOW function, RMUW gate 1596
SET_URIMAP function, WBUR

gate 1918
SET_USER_DOMAIN_PARMS function,

USIS gate 1852
SET_USER_TOKEN function, PTTW

gate 1532
SET_VOTE function, OTSU gate 1387
SET_WEBSERVICE function, PIWR

gate 1518
SET_WORK_TOKEN function, RMUW

gate 1597
SET_XMLTRANSFORM function, MLXT

gate 1345
SH (Scheduler Services Domain)

domain 1643
share control block manager, file control

(DFHFCRL) 232
shared data table function ship program,

file control (DFHFCDTX) 211
shared data table services 184
shared resources control (SHRCTL)

block 203
shared resources pool processor, file

control (DFHFCL) 219
shipping TCTTE for transaction

routing 22
SHPR gate

ADD_PENDING_REQUEST
function 1643

DELETE_PENDING_REQUEST
function 1644

SET_BOUND_REQUEST
function 1644

SHRCTL (shared resources control)
block 203

SHRQ gate
PERFORM_REGULAR_DREDGE

function 1645
PERFORM_RESTART_DREDGE

function 1645
PERFORM_SHUTDOWN

function 1645
SHRR gate

RECEIVE_REQUEST function 1645
RETRY_REQUEST function 1646
ROUTE_REQUEST function 1646

SHRT gate
INQUIRE_EXIT_PROGRAM

function 1647
SET_EXIT_PROGRAM function 1647

shutdown 85
shutdown program, file control

(DFHFCSD) 236
side information (partner) 378
sign-on to consoles flow 19
SIGNAL_EVENT function, ECSE

gate 632
single-node persistent sessions 535, 536,

537
single-phase commit process 434
SJ (Java Virtual Machine Domain)

domain 1651

Index 2377

SJCC gate
ADD_TO_ACTIVE_JVMSET

function 1651
REGISTER_JAVA_VERSION

function 1651
RELOAD_CLASSCACHE

function 1652
START_CLASSCACHE function 1652
STOP_CLASSCACHE function 1652

SJDS gate
DELETE_THREADED_TCB

function 1653
SJIN gate

DESTROY_SHAREDCC
function 1659

INITIALIZE_JVM function 1660
INITIALIZE_SHAREDCC

function 1660
INVOKE_GC function 1661
INVOKE_JAVA_PROGRAM

function 1661
PERFORM_JVMPOOL function 1669
UPDATE_JVMSERVER_PROFILE

function 1662
SJIS gate

DELETE_INACTIVE_JVMS
function 1662

END_BROWSE_JVM function 1662
END_BROWSE_JVMPROFILE

function 1663
GET_NEXT_JVM function 1663
GET_NEXT_JVMPROFILE

function 1665
INQUIRE_CLASSCACHE

function 1665
INQUIRE_JVM function 1667
INQUIRE_JVMPOOL function 1668
INQUIRE_JVMPROFILE

function 1669
SET_CLASSCACHE function 1670
SET_JVMPOOL function 1671
SET_JVMPROFILEDIR function 1672
START_BROWSE_JVM function 1673
START_BROWSE_JVMPROFILE

function 1673
SJJS gate

COMPLETE_JVMSERVER
function 1654

CREATE_JVMSERVER function 1653
DISCARD_JVMSERVER

function 1655
END_BROWSE_JVMSERVER

function 1656
GET_NEXT_JVMSERVER

function 1656
INQUIRE_JVMSERVER

function 1657
MARK_THREAD_DELETED

function 1658
RESOLVE_ALL_JVMSERVERS

function 1658
SET_JVMSERVER function 1658
START_BROWSE_JVMSERVER

function 1659
SJTH gate

INVOKE_JAVA_PROGRAM
function 1673

SLCB (subsystem logon control
block) 323

SLOWDOWN_PURGE function, TFAL
gate 858

SM (Storage Manager Domain)
domain 1677

SMAD gate
ADD_SUBPOOL function 1677
DELETE_SUBPOOL function 1679
END_SUBPOOL_BROWSE

function 1679
GET_NEXT_SUBPOOL function 1679
INQUIRE_SUBPOOL function 1680
START_SUBPOOL_BROWSE

function 1680
SMAR gate

ALLOCATE_TRANSACTION_STG
function 1681

RELEASE_TRANSACTION_STG
function 1681

SMCK gate
CHECK_STORAGE function 1682
RECOVER_STORAGE function 1682

SMGF gate
FREEMAIN function 1683
GETMAIN function 1684
INQUIRE_ELEMENT_LENGTH

function 1685
SMMC gate

FREEMAIN function 1686
FREEMAIN_ALL_TERMINAL

function 1688
GETMAIN function 1688
INITIALISE function 1690
INQUIRE_ELEMENT_LENGTH

function 1690
INQUIRE_TASK_STORAGE

function 1691
SMNT gate

MVS_STORAGE_NOTIFY
function 1709

STORAGE_NOTIFY function 1710
SMSR gate

INQ_TRANSACTION_ISOLATION
function 1691

INQUIRE_ACCESS function 1692
INQUIRE_ACCESS_TOKEN

function 1693
INQUIRE_DSA_LIMIT function 1693
INQUIRE_DSA_SIZE function 1694
INQUIRE_ISOLATION_TOKEN

function 1694
INQUIRE_REENTRANT_PROGRAM

function 1695
INQUIRE_SHORT_ON_STORAGE

function 1695
INQUIRE_STORAGE_PROTECT

function 1696
SET_DSA_LIMIT function 1696
SET_DSA_SIZE function 1697
SET_REENTRANT_PROGRAM

function 1697
SET_STORAGE_PROTECT

function 1698
SET_STORAGE_RECOVERY

function 1698

SMSR gate (continued)
SET_TRANSACTION_ISOLATION

function 1699
SWITCH_SUBSPACE function 1700
UPDATE_SUBSPACE_TCB_INFO

function 1700
SNAPSHOT_MVSTCBS function, DSMT

gate 1021
SNPS 535, 536, 537
SO (Sockets Domain) domain 1715
SOAD gate

ADD_REPLACE_TCPIPSERVICE
function 1715

DELETE_TCPIPSERVICE
function 1717

SOAP_11 function, PISN gate 1506
SOAP_12 function, PISN gate 1506
SOAPFAULT_ADD function, PISF

gate 1504
SOAPFAULT_CREATE function, PISF

gate 1505
SOAPFAULT_DELETE function, PISF

gate 1505
SOCK gate

ACCEPT function 1717
BIND function 1719
CANCEL function 1720
CLOSE function 1721
CONNECT function 1722
CREATE function 1723
ESTABLISH function 1725
GET_DATA_LENGTH function 1726
GET_SOCKET_OPTS function 1727
LISTEN function 1729
RECEIVE function 1730
RECEIVE_SSL_DATA function 1732
RELINQUISH function 1733
RESERVE function 1734
SCHEDULE_RECEIVER_TASK

function 1735
SEND function 1736
SEND_SSL_DATA function 1737
SET_SOCKET_OPTS function 1738
SURRENDER function 1739

Sockets Domain (SO) domain 1715
SOIS gate

DELETE_CERTIFICATE_DATA
function 1740

EXPORT_CERTIFICATE_DATA
function 1741

IMPORT_CERTIFICATE_DATA
function 1742

INITIALIZE_ENVIRONMENT
function 1743

INQUIRE function 1743
INQUIRE_CONNECTION

function 1748
INQUIRE_PARAMETERS

function 1749
INQUIRE_SOCKET_TOKEN

function 1751
INQUIRE_STATISTICS function 1751
SET function 1753
SET_PARAMETERS function 1754
VALIDATE_CIPHERS function 1755
VERIFY_IP_ADDRESS function 1756

2378 CICS TS for z/OS 4.1: Diagnosis Reference

SOLICIT_INQUIRES function, TSRM
gate 1835

SOLS gate
LISTEN function 1756

SORD gate
DEREGISTER function 1757
IMMCLOSE function 1758
REGISTER function 1758
REGISTER_NOTIFICATION

function 1760
SORL gate

UPDATE_REVOCATION_LIST
function 1761

SOTB gate
END_BROWSE function 1762
GET_NEXT function 1762
INQUIRE_TCPIPSERVICE

function 1764
SET_TCPIPSERVICE function 1767
START_BROWSE function 1768

specific formats 9
specific gates 8
SPIE exit routine 397
SPP (syncpoint program) 312, 401, 427,

433, 525
SRB (service request block) 446
SRP (system recovery program)

abnormal termination 409
program check interrupt 409
runaway task 409
system abend 409
system recovery table (SRT) 409

SRT (system recovery table) 409
SSCT (subsystem communication

table) 389, 391
SSVT (subsystem vector table) 389, 391
ST (Statistics Domain) domain 1771
START_ABEND function, ABAB

gate 568
START_AUXILIARY_TRACE function,

TRSR gate 1796
START_BACKOUT function, RMRO

gate 1603
START_BEAN_BROWSE function, EJJO

gate 1114
START_BROWSE function, AIIQ

format 31
START_BROWSE function, CCCC

gate 906
START_BROWSE function, DDBR

gate 918
START_BROWSE function, DHTM

gate 945
START_BROWSE function, DMIQ

gate 955
START_BROWSE function, DSBR

gate 1012
START_BROWSE function, EJBB

gate 1065
START_BROWSE function, EJCB

gate 1075
START_BROWSE function, EJDB

gate 1089
START_BROWSE function, FCFR

gate 749
START_BROWSE function, FCRF

gate 808

START_BROWSE function, IIRQ
gate 1175

START_BROWSE function, LDLD
gate 1276

START_BROWSE function, LGJN
gate 1300

START_BROWSE function, LGLD
gate 1306

START_BROWSE function, LGST
gate 1311

START_BROWSE function, SOTB
gate 1768

START_BROWSE function, TSBR
gate 1805

START_BROWSE function, TSMB
gate 1809

START_BROWSE function, TSSH
gate 1831

START_BROWSE function, WBAP
gate 1869

START_BROWSE_ALL function, LGBA
gate 1280

START_BROWSE_ATOMSERVICE
function, W2AT gate 1935

START_BROWSE_BUNDLE function,
RLPM gate 1541

START_BROWSE_BUNDLERES function,
RLRO gate 1545

START_BROWSE_CAPTURESPEC
function, ECIS gate 631

START_BROWSE_CHAINS function,
LGCC gate 1288

START_BROWSE_DIRECTORY function,
DHFS gate 934

START_BROWSE_ENQMODEL function,
NQRN gate 1380

START_BROWSE_ENQUEUE function,
NQIB gate 1367

START_BROWSE_EVENT function,
EMBR gate 1138

START_BROWSE_EVENTBINDING
function, ECIS gate 632

START_BROWSE_FILE function, FCMT
gate 789

START_BROWSE_HEADERS function,
WBCL gate 1883

START_BROWSE_HOST function, WBUR
gate 1921

START_BROWSE_JVM function, SJIS
gate 1673

START_BROWSE_JVMPROFILE function,
SJIS gate 1673

START_BROWSE_JVMSERVER function,
SJJS gate 1659

START_BROWSE_LIBRARY function,
LDLB gate 1258

START_BROWSE_MVSTCB function,
DSMT gate 1021

START_BROWSE_OBJECT function, EJOB
gate 1122

START_BROWSE_PIPELINE function,
PIPL gate 1500

START_BROWSE_PROCESSTYPE
function, BATT gate 897

START_BROWSE_PROGRAM function,
PGIS gate 1458

START_BROWSE_RESULTS function,
DDAP gate 916

START_BROWSE_TCLASS function,
XMCL gate 1954

START_BROWSE_TDQDEF function,
TDTM gate 842

START_BROWSE_TIMER function, EMBR
gate 1139

START_BROWSE_TRANDEF function,
XMBD gate 1948

START_BROWSE_TRANSACTION
function, XMIQ gate 1974

START_BROWSE_TXN_TOKEN function,
XMIQ gate 1974

START_BROWSE_URIMAP function,
WBUR gate 1922

START_BROWSE_WEBSERVICE function,
PIWR gate 1519

START_BROWSE_XMLTRANSFORM
function, MLXT gate 1346

START_CHAIN_BROWSE function,
LGCB gate 1281

START_CLASSCACHE function, SJCC
gate 1652

START_DELIVERY function, RMDE
gate 1605

START_DSNB_BROWSE function, FCDN
gate 680

START_FILE_IN_POOL_BROWSE
function, FCST gate 819

START_FORCE_PURGE_PROTECT
function, KEDS gate 1235

START_GTF_TRACE function, TRSR
gate 1797

START_INIT function, AIIN format 29
START_INIT function, CPIN format 380
START_INTERNAL_TRACE function,

TRSR gate 1797
START_LINK_BROWSE function, RMLN

gate 1572
START_PIPELINE function, PIPM

gate 1502
START_PM_BROWSE function, DPFM

gate 973
START_POOL_BROWSE function, PTTW

gate 1532
START_PROGRAM function, APLI

gate 584
START_PURGE_PROTECTION function,

KEDS gate 1235
START_RECORDING function, RSSR

gate 1621
START_RUNAWAY_TIMER function,

KEDS gate 1235
START_SUBPOOL_BROWSE function,

S2AD gate 1704
START_SUBPOOL_BROWSE function,

SMAD gate 1680
START_SYSTEM_DUMP function, RSDU

gate 1618
START_TRANSACTION function, RSXM

gate 1624
START_TRANSACTION_DUMP function,

RSDU gate 1618
START_TSPOOL_BROWSE function,

TSSH gate 1831

Index 2379

START_UOW_BROWSE function, RMUW
gate 1597

START_UOWDSN_BROWSE function,
FCFL gate 694

START_WORK_TOKEN_BROWSE
function, RMUW gate 1598

START_WRITE function, CCCC gate 906
start, cold 84
start, warm 84
STARTBR_ACTIVITY function, BABR

gate 881
STARTBR_CONTAINER function, BABR

gate 882
STARTBR_CONTAINER function, PGCR

gate 1423
STARTBR_DEBUG_PROFILES function,

DPLM gate 980
STARTBR_PROCESS function, BABR

gate 883
STARTBR_SYSTEM_DUMPCODE

function, DUDT gate 1045
STARTBR_TRAN_DUMPCODE function,

DUDT gate 1045
STARTBROWSE_IPCONN function, ISIC

gate 1195
STARTUP_CLOSE function, CCCC

gate 906
STARTUP_OPEN function, CCCC

gate 907
static storage, file control (FC static) 197
statistics

CICS-DB2 99
statistics collection 383
Statistics Domain (ST) domain 1771
statistics program, file control

(DFHFCST) 236
statistics utility program

(DFHSTUP) 383
STATISTICS_COLLECTION function,

STST gate 1775
STOP_AUXILIARY_TRACE function,

TRSR gate 1797
STOP_CLASSCACHE function, SJCC

gate 1652
STOP_FORCE_PURGE_PROTECT

function, KEDS gate 1236
STOP_GTF_TRACE function, TRSR

gate 1798
STOP_INTERNAL_TRACE function,

TRSR gate 1798
STOP_PURGE_PROTECTION function,

KEDS gate 1236
STOP_RECORDING function, RSSR

gate 1622
STOP_RUNAWAY_TIMER function,

KEDS gate 1236
storage control macro-compatibility

interface 387
Storage Manager Domain (SM)

domain 1677
STORAGE_NOTIFY function, SMNT

gate 1710
STORE_OBJECT function, EJOS

gate 1126
STREAM_FAIL function, LGJN

gate 1300

STST gate
COLLECT_RESOURCE_STATS

function 1771, 1778
COLLECT_STATISTICS

function 1772, 1779
DISABLE_STATISTICS function 1773
INQ_STATISTICS_OPTIONS

function 1773
RECORD_STATISTICS function 1773
REQUEST_STATISTICS

function 1774
SET_STATISTICS_OPTIONS

function 1774
STATISTICS_COLLECTION

function 1775
subsystem anchor block (SAB) 391
subsystem communication table

(SSCT) 389, 391
subsystem connection address control

block (SCACB) 323
subsystem connection control block

(SCCB) 323
subsystem control table extension

(SCTE) 322, 391
subsystem definition 389
subsystem interface 389

console message handling 389
control blocks, illustrated 391

subsystem logon control block
(SLCB) 323

subsystem user definition block
(SUDB) 322

subsystem vector table (SSVT) 389, 391
subtask control 395
SUDB (subsystem user definition

block) 322
SURRENDER function, SOCK gate 1739
surrogate session entry 484
surrogate TCTTE 500
SUSPEND function, DSSR gate 1023
SUSPEND_ACTIVITY function, BAAC

gate 875
SUSPEND_PROCESS function, BAPR

gate 893
SVC 53

REWRITE request processing 190
UNLOCK request processing 190
WRITE request processing 189

SWITCH_AUXILIARY_EXTENTS
function, TRSR gate 1798

SWITCH_SUBSPACE function, SMSR
gate 1700

SYNC_EVENT function, EPEV gate 1150
SYNCHRONISE_READ_UPDATE

function, FCLJ gate 766
synchronization of tasks

time 331
synchronization processing,

initiating 137
syncpoint 65

function shipping 313
SYNCPOINT_REQUEST, CPSP

format 380
SYSINI function, LGCC gate 1289

sysplex, MVS
cross-system coupling facility (XCF)

for MRO links across MVS
images 319

system abend
system recovery program (SRP) 409

system control
autoinstall terminal model

manager 29
CICS-DB2 Attachment facility 91
DL/I database support 107, 135, 371
EXEC interface program (EIP) 153
file control 181
interval control 331
program control 363
storage control macro-compatibility

interface 387
subtask control 395
syncpoint program (SPP) 401
table manager 417
task-related user exit control 425
terminal control 441
trace control macro-compatibility

interface 467
transient data control 503
user exit control 509

system definition, DBCTL 116
system definition, DL/I 371
system dump formatting program 405
system EIB 154
system entries, TCT (terminal control

table) 304
system programming commands, FEPI

logic flow 290
system reliability

node abnormal condition program
(VTAM) 357

node error program (VTAM) 361
program error program (PEP) 367
system recovery program (SRP) 409
task-related user exit recovery 433
terminal abnormal condition program

(BSAM) 437
terminal error program 465
transaction failure program

(TFP/ACP) 475
transaction restart program,

DFHREST 479
system services

dynamic allocation sample program
(DYNALLOC) 145

field engineering program 179
master terminal 347
message switching 351
operator terminal 347
resource definition online (RDO) 373
subsystem interface 389
supervisory terminal 347
system spooling interface 415

system spooling interface 415
system utilities

command-language translator 369
CSD utility program 103
dump utility program 141
statistics utility program 383
system dump formatting

program 405

2380 CICS TS for z/OS 4.1: Diagnosis Reference

system utilities (continued)
trace utility program 470

SYSTEM_DUMP function, DUDU
gate 1045

T
table management program (TMP) 457
table manager, file control

(DFHFCMT) 220
tabs, horizontal

and device independence 37
tabs, vertical

and device independence 37
TACLE (terminal abnormal condition line

entry)
terminal control 446

TACP (terminal abnormal condition
program) 437, 443

BSAM 437
default error handling 439
message construction matrix 438
message routines 437
terminal control 446

TAKE_ACTIVITY_KEYPOINT function,
RMSL gate 1583

TAKE_KEYPOINT function, FCLJ
gate 766

TAKE_KEYPOINT function, RMKP
gate 1605

TAKE_KEYPOINT function, TFAL
gate 858

TAKE_TRANSACTION_DUMP function,
ABAB gate 569

TAKEOVER function, USFL gate 1851
task abnormal condition

abnormal condition program
(DFHACP) 475

transaction failure program
(DFHTFP) 475

task control area facility control area
associated address (TCAFCAAA) 445

task interface element (TIE) 401, 425,
430

task synchronization, time 331
TASK_REPLY function, DSAT gate 1031
TASK_REPLY function, KEDS gate 1244
task-related user exits 425, 433

control 425
control blocks, illustrated 430
entry to 427
implementation 427
recovery 433
recovery token 433
resynchronization 401
state of 427

TCA (task control area)
message switching 352
terminal control 447
user 447

TCAFCAAA (task control area facility
control area associated address) 445

TCB_POOL_MANAGEMENT function,
DSAT gate 1005

TCB_REPLY function, KEDS gate 1245
TCT (terminal control table) 441, 455

terminal control table prefix 460

TCT (terminal control table) (continued)
terminal control table wait list 460

TCTLE (terminal control table line
entry) 446, 460

TCTSE (terminal control table system
entry) 304

TCTTE (terminal control table terminal
entry) 460

allocation in function shipping 312
partition handling program (PHP) 53
shipping for transaction routing 22
surrogate 500

TCTTE creation and deletion 62
TCTTE generation

DFHZCQ 63
TCTTE layout 80
TCTTE structure 68
TDOC gate

CLOSE_ALL_EXTRA_TD_QUEUES
function 827

CLOSE_TRANSIENT_DATA
function 827

OPEN_TRANSIENT_DATA
function 827

TDTM gate
ADD_REPLACE_TDQDEF

function 829
COMMIT_TDQDEFS function 832
DISCARD_TDQDEF function 833
END_BROWSE_TDQDEF

function 833
GET_NEXT_TDQDEF function 833
INQUIRE_TDQDEF function 837
SET_TDQDEF function 841
START_BROWSE_TDQDEF

function 842
TDXM gate

BIND_SECONDARY_FACILITY
function 842

INQUIRE_TRAN_DATA_FACILITY
function 842

Temporary Storage Domain (TS)
domain 1801

temporary-storage browse transaction,
CEBR 169

temporary-storage control
data interchange program (DIP) 120
mapping control program (MCP) 46
message switching 351
terminal page processor (TPP) 55
terminal page retrieval program

(TPR) 58
undelivered messages cleanup

program (TPQ) 56
TEP (terminal error program) 443, 465
TERM_AVAILABLE_FOR_QUEUE

function, TFAL gate 859
TERM_TRANSACTION_USER function,

USXM gate 1858
terminal control 441

3270 mapping (M32) 50
access method dependent

interface 446
access methods 446
autoinstallation 373
BSAM routines, illustrated 448
builder parameter set 61

terminal control (continued)
common interface 445
control blocks, illustrated 458
data interchange program (DIP) 120
flow through device-dependent

modules, illustrated 449
for function shipping 312
indexes 455
interfaces, illustrated 444
locks 457
node abnormal condition program

(NACP) 447
node error program (NEP) 447
non-3270 input mapping (IIP) 45
service request facilities 442
storage control 446
system console support 450
system control services 442
task control 445, 446
task control area (TCA)

facility control area associated
address 445

task control area, user 447
TCA (task control area), terminal

control 447
terminal abnormal condition line

entry (TACLE) 446
terminal abnormal condition program

(TACP) 446
terminal page retrieval program

(TPR) 58
transmission facilities

VTAM 442
VTAM/non-VTAM 443

WAIT request 445
ZCP and TCP common control

routines, illustrated 448
terminal control table line entry

(TCTLE) 446, 460
terminal control table system entry

(TCTSE) 304
terminal definition 80

installing 452
terminal error program (TEP) 443, 465
terminal error recovery 443
terminal location (DFHZGTI) 455
terminal location (DFHZLOC) 455
terminal page scheduling program

(TPS) 58
terminal paging 37
terminal query transaction 458
terminal storage, builders 79
TERMINAL_NOW_UNAVAILABLE

function, TFAL gate 859
terminal-owning region (TOR) 22
terminals

build/delete 84
Terminals

autoinstall 15
LU-initiated disconnection flow 19

terminals, autoinstall logon flow 16
TERMINATE function, EJGE gate 1105
TERMINATE function, FCSD gate 816
TERMINATE function, IIRP gate 1172
TERMINATE function, RZTA gate 1641
TERMINATE_CONNECTION function,

ISCO gate 1182

Index 2381

TERMINATE_DOMAIN function, DMDM
gate 957

TERMINATE_EXIT function, PGEX
gate 1429

TERMINATE_INPUT function, ISRR
gate 1212

TERMINATE_LE_ENCLAVE function,
LEPT gate 822

TERMINATE_PTHREAD function, LEPT
gate 823

TERMINATE_RECOVERY function,
RMLN gate 1573

TERMINATE_TRANSACTION function,
PGXM gate 1471

TEST_CONNECTION function, RSSR
gate 1623

TEST_EVENT function, EMEM
gate 1146

TEST_FILE_USER function, FCFR
gate 752

TEST_LOCK_OWNER function, LMLM
gate 1320

TEST_USER function, FCFL gate 695
testing facility, and sequential access

method (BSAM) 443
TFAL gate

ALLOCATE function 843
CANCEL_AID function 843
CANCEL_AIDS_FOR_CONNECTION

function 844
CANCEL_AIDS_FOR_TERMINAL

function 844
CANCEL_SPECIFIC_AID

function 845
CHECK_TRANID_IN_USE

function 846
DISCARD_AIDS function 846
FIND_TRANSACTION_OWNER

function 846
GET_MESSAGE function 846
INITIALIZE_AID_POINTERS

function 847
INQUIRE_ALLOCATE_AID

function 847
LOCATE_AID function 848
LOCATE_REMDEL_AID

function 848
LOCATE_SHIPPABLE_AID

function 849
MATCH_TASK_TO_AID

function 849
PURGE_ALLOCATE_AIDS

function 849
RECOVER_START_DATA

function 850
REMOTE_DELETE function 850
REMOVE_EXPIRED_AID

function 851
REMOVE_EXPIRED_REMOTE_AID

function 851
REMOVE_MESSAGE function 852
REMOVE_REMOTE_DELETES

function 852
REROUTE_SHIPPABLE_AIDS

function 853
RESCHEDULE_BMS function 853
RESET_AID_QUEUE function 854

TFAL gate (continued)
RESTORE_FROM_KEYPOINT

function 854
RETRIEVE_START_DATA

function 854
SCHEDULE_BMS function 855
SCHEDULE_START function 856
SCHEDULE_TDP function 858
SLOWDOWN_PURGE function 858
TAKE_KEYPOINT function 858
TERM_AVAILABLE_FOR_QUEUE

function 859
TERMINAL_NOW_UNAVAILABLE

function 859
UNCHAIN_AID function 859
UPDATE_TRANNUM_FOR_RESTART

function 859
TFBF gate

BIND_FACILITY function 860
TFIQ gate

INQUIRE_MONITOR_DATA
function 860

INQUIRE_TERMINAL_FACILITY
function 862

SET_TERMINAL_FACILITY
function 864

TFP (transaction failure program) 475
TFP/ACP (transaction failure program)

functions 475
TFRF gate

RELEASE_FACILITY function 865
TI (Timer Domain) domain 1781
TIE (task interface element) 401, 425,

430
time-dependent task

synchronization 331
time-of-day

retrieval 331
time-of-day control 331
Timer Domain (TI) domain 1781
TIMF gate

CONVERT_TIME function 1781
FORMAT_TIME function 1782
INQUIRE_TIME function 1784

TIOA (terminal input/output area) 460
3270 mapping (M32) 50
LU1 printer with extended attributes

mapping program (ML1) 49
TISR gate

CANCEL function 1786
INQUIRE_EXPIRATION_TOKEN

function 1787
NOTIFY function 1790
REQUEST_NOTIFY_INTERVAL

function 1787
REQUEST_NOTIFY_TIME_OF_DAY

function 1788
TLT (terminal list table)

message switching 352
TMP (table management program) 417,

457
browse token 420
control blocks, illustrated 422
hash table 417
quiesce 420
range table 417
read locks 419

TMP (table management program)
(continued)

secondary index 418
token, browse 420

token browse, table manager 420
token, browse 9
tokens, domain call 9
TOM (terminal output macro)

partition handling program (PHP) 53
terminal page processor (TPP) 55
terminal page retrieval program

(TPR) 58
TOR (terminal-owning region) 22, 491

ALLOCATE processing in 492
APPC command processing in 493
ATTACH processing in 491
FREE processing in 493
LU6.2 command processing in 493

TPE (terminal partition extension)
partition handling program (PHP) 53

TPEND 536
TPP (terminal page processor) 54

3270 mapping (M32) 50
data stream build (DSB) 44
interfaces, illustrated 55
LU1 printer with extended attributes

mapping program (ML1) 49
storage control 55
temporary-storage control 55
terminal output macro (TOM) 55
terminal type parameter 55

TPQ (undelivered messages cleanup
program) 56

allocation program 56
interfaces, illustrated 56
interval control 56
mapping control program (MCP) 56
storage control 56
temporary-storage control 56
transient data control 56

TPR (terminal page retrieval
program) 57

interfaces, illustrated 57
interval control 58
mapping control program (MCP) 58
program manager 57
storage control 58
task control 58
temporary-storage control 58
terminal control 58
terminal output macro (TOM) 58
transient data control 58

TPS (terminal page scheduling
program) 58

TR (Trace Domain) domain 1791
trace

CICS-DB2 98
trace control

data interchange program (DIP) 120
trace control macro-compatibility

interface 467
Trace Domain (TR) domain 1791
trace formatting 469
trace formatting control area

(TRFCA) 472
trace point IDs

AP 00C4 174

2382 CICS TS for z/OS 4.1: Diagnosis Reference

trace point IDs (continued)
AP 00C5 174
AP 00C6 174
AP 00C7 174
AP 00CB 404
AP 00CD 59
AP 00CF 59
AP 00D7 120
AP 00DC 477
AP 00DE 398
AP 00DF 315
AP 00E0 350
AP 00E2 375
AP 00E3 416
AP 00E6 440, 463
AP 00E7 431, 436
AP 00EA 422
AP 00EB 375
AP 00EC 375
AP 00EF 375
AP 00F2 366
AP 00F3 333
AP 00F6 508
AP 00FA 59
AP 00FB 90
AP 00FC 86, 463
AP 00FE 468
AP 00FF 468
AP 03xx 139
AP 04xx 286
AP 0701 414
AP 0702 414
AP 0780 414
AP 0781 414
AP 0782 414
AP 0783 414
AP 0790 414
AP 0791 414
AP 0792 414
AP 0793 414
AP 0794 414
AP 0795 414
AP 0796 414
AP 0797 414
AP 0798 414
AP 0799 414
AP 079A 414
AP 08xx 502
AP 0Axx 174
AP 0Bxx 286
AP 0Cxx 381
AP 0F0x 34
AP 0F1x 34
AP 23xx 286
AP 24xx 286
AP D5xx 514
AP D8xx 404
AP D9xx 315
AP DBxx 502
AP DDxx 328
AP E00E1 167
AP F1xx 387
AP F2xx 366
AP F6xx 508
AP FBxx 552
AP FC71 362
AP FC72 362

trace point IDs (continued)
AP FCxx 26, 360, 463
AP FD7E 360
AP FDxx 132, 463
AP FExx 132, 463
AP FF0x 553
RE trace points 26
UE trace points 26
WB xxxx 559

trace utility program 470
TRACE_CONTAINERS function, PGCR

gate 1423
TRACE_PUT function, TRFT gate 1791
TRACE_PUT function, TRPT gate 1792
TRACE_PUT_CQ function, CQCQ

gate 626
trademarks 2332
TRANDEF_DELETE_QUERY function,

XMDN gate 1999
TRANDEF_NOTIFY function, XMDN

gate 2000
transaction initiation, automatic

(ATI) 504
transaction manager domain (XM) 1939
transaction restart program,

DFHREST 479
transaction routing 85, 481

data streams for 496
DFHAPRT 481
for APPC devices, LU6.2 501
relay transaction 481
shipping TCTTE for 22
surrogate TCTTE 500

TRANSACTION_DUMP function, DUDU
gate 1047

TRANSACTION_HANG function, XMAC
gate 1998

TRANSACTION_INITIALISATION
function, KEXM gate 1244

TRANSACTION_INITIALISATION
function, MNXM gate 1356

TRANSACTION_TERMINATION
function, MNXM gate 1356

transaction-routed data format 497
transactions

CATA 16, 63, 67, 2292
CATD 2292
CATR 2293
CEBR 169
CECI 101
CECS 101
CEDA 373
CEDB 373
CEDC 373
CEMT 347, 383
CEOT 347
CEST 347
CITS 2294
CMPX 309
CMSG 351, 352
CPMI 302
CSFE 179
CSGM 317
CSM1 302
CSM2 302
CSM3 302
CSM5 302

transactions (continued)
CSMI 302
CSNC 326
CSNE 357
CSPG 57
CSPQ 47, 56
CSPS 47
CSZI 289
CVMI 302
CXRT 492
mirror 302

TRANSFER_SIT function, APAP
gate 573

TRANSFORM_STRUCTURE_TO_XML
function, MLTF gate 1340

TRANSFORM_XML_TO_STRUCTURE
function, MLTF gate 1341

transformations of data for function
shipping 305

transformer program (DFHXTP) 495
transient data control

abnormal condition program
(ACP) 476

mapping control program (MCP) 47
terminal page retrieval program

(TPR) 58
undelivered messages cleanup

program (TPQ) 56
transient data program (TDP)

deferred work element (DWE) 503
transient data services 505
translator, command-language 369
TRFCA (trace formatting control

area) 472
TRFT gate

TRACE_PUT function 1791
TRIGGER_PARTNER function, PTTW

gate 1532
TRPT gate

TRACE_PUT function 1792
TRSR gate

ACTIVATE_TRAP function 1793
DEACTIVATE_TRAP function 1793
INQUIRE_AUXILIARY_TRACE

function 1793
INQUIRE_GTF_TRACE

function 1794
INQUIRE_INTERNAL_TRACE

function 1795
PAUSE_AUXILIARY_TRACE

function 1795
SET_AUX_TRACE_AUTOSWITCH

function 1795
SET_INTERNAL_TABLE_SIZE

function 1796
START_AUXILIARY_TRACE

function 1796
START_GTF_TRACE function 1797
START_INTERNAL_TRACE

function 1797
STOP_AUXILIARY_TRACE

function 1797
STOP_GTF_TRACE function 1798
STOP_INTERNAL_TRACE

function 1798
SWITCH_AUXILIARY_EXTENTS

function 1798

Index 2383

TRUST_CLIENT function, PITC
gate 1508

TS (Temporary Storage Domain)
domain 1801

TSAD gate
ADD_REPLACE_TSMODEL

function 1801
DELETE_TSMODEL function 1802
INITIALISE function 1802

TSBR gate
CHECK_PREFIX function 1802
END_BROWSE function 1803
GET_NEXT function 1803
INQUIRE_QUEUE function 1804
START_BROWSE function 1805

TSMB gate
END_BROWSE function 1806
GET_NEXT function 1806
INQUIRE_TSMODEL function 1807
MATCH function 1808
START_BROWSE function 1809

TSPT gate
GET function 1810
GET_RELEASE function 1810
GET_RELEASE_SET function 1811
GET_SET function 1811
PUT function 1812
PUT_REPLACE function 1813
RELEASE function 1813

TSQR gate
ALLOCATE_SET_STORAGE

function 1814
DELETE function 1814
READ_INTO function 1815
READ_NEXT_INTO function 1816
READ_NEXT_SET function 1817
READ_SET function 1818
REWRITE function 1819
WRITE function 1820

TSRM gate
DELIVER_IC_RECOVERY_DATA

function 1834
INQUIRE_QUEUE function 1821
SOLICIT_INQUIRES function 1835

TSSH gate
ADD_POOL function 1821
DELETE function 1822
END_BROWSE function 1822
END_TSPOOL_BROWSE

function 1823
GET_NEXT function 1823
GET_NEXT_TSPOOL function 1824
INITIALISE function 1824
INQUIRE_POOL_TOKEN

function 1825
INQUIRE_QUEUE function 1825
INQUIRE_SYSID_TABLE_TOKEN

function 1826
INQUIRE_TSPOOL function 1826
READ_INTO function 1827
READ_NEXT_INTO function 1828
READ_NEXT_SET function 1829
READ_SET function 1829
REWRITE function 1830
START_BROWSE function 1831
START_TSPOOL_BROWSE

function 1831

TSSH gate (continued)
WRITE function 1832

TSSR gate
SET_BUFFERS function 1832
SET_START_TYPE function 1833
SET_STRINGS function 1833

TTP (terminal type parameter)
illustration of 39
terminal page processor (TPP) 55

two-phase commit process 433
type 3 SVC routine

used for interregion
communication 319

TYPE_PURGE function, CCCC gate 907

U
UEH (user exit handler) 511
UEM (user exit manager) 510
UET (user exit table) 430, 509
UIB (user interface block) 138
UNBIND_LDAP function, DDAP

gate 917
UNCHAIN_AID function, TFAL

gate 859
UNFLATTEN_ESM_UTOKEN function,

XSFL gate 2025
UNFLATTEN_REQUEST function, APRX

gate 594
UNFLATTEN_RESPONSE function,

APRX gate 594
UNFLATTEN_TRANSACTION_USER

function, USXM gate 1858
UNFLATTEN_USER function, USFL

gate 1851
UNFLATTEN_USER_SECURITY function,

XSFL gate 2026
unit of recovery descriptor (URD) 401,

433
UNLOCK function, FCCR gate 657
UNLOCK function, FCFR gate 752
UNLOCK function, FCRF gate 809
UNLOCK function, LMLM gate 1321
UNLOCK_TCLASS function, XMCL

gate 1954
UNLOCK_TERM_MODEL function, AIIQ

format 30
UNLOCK_TRANDEF function, XMLD

gate 1976
UNREGISTER_CONTROL_ACB function,

FCCA gate 646
UOW_TIME function, LGGL gate 1291
UPDATE option of READ request

backout processing 187
exclusive control of control

interval 187
processing 186

UPDATE_ABEND_RECORD function,
ABAB gate 570

UPDATE_FEATURE function, DUFT
gate 1051

UPDATE_FILE function, FCMT gate 789
UPDATE_JVMSERVER_PROFILE

function, SJIN gate 1662
UPDATE_PASSWORD function, XSPW

gate 2042

UPDATE_PROFILE_IN_LIST function,
DPLM gate 981

UPDATE_RECOVERY_POINTS function,
FCDN gate 680

UPDATE_REVOCATION_LIST function,
SORL gate 1761

UPDATE_SUBSPACE_TCB_INFO
function, SMSR gate 1700

UPDATE_TRANNUM_FOR_RESTART
function, TFAL gate 859

UPDATE_WEBSERVICE function, PISC
gate 1504

UPDATE_WORKREQUEST function, IIRP
gate 1172

URD (unit of recovery descriptor) 401,
433

URL_DECODE function, WBFM
gate 1891

US (User Domain) domain 1837
USAD gate

ADD_USER_VIA_ICRX
function 1846

ADD_USER_WITH_PASSWORD
function 1837

ADD_USER_WITHOUT_PASSWORD
function 1839

DELETE_USER function 1841
GET_ASSOCIATED_DATA_LIST

function 1850
ICRX_TO_USERID function 1849
INQUIRE_DEFAULT_USER

function 1842
INQUIRE_ICRX function 1848
INQUIRE_USER function 1844
NOTIFY_USERID function 1846
RELEASE_ICRX function 1849
VALIDATE_USERID function 1846

User Domain (US) domain 1837
user exit control 509
user exit handler (UEH) 511
user exit interface

control blocks, illustrated 512
user exit manager (UEM) 510
user exit service module

(DFHAPEX) 512
user exit subroutine (DFHSUEX) 512
user exit table (UET) 430, 509
user exits

“good morning” message
program 317

CICS-DB2 98
data tables 286
database control (DBCTL) 118
DFHCSDUP 104
DL/I database support 139
exec interface 167
extended recovery facility (XRF) 174
file control 286
function shipping 315
interval control 332
program control 365
system recovery program 414
terminal control 462
transient data control 508

user interface block (UIB) 138
USFL gate

FLATTEN_USER function 1850

2384 CICS TS for z/OS 4.1: Diagnosis Reference

USFL gate (continued)
TAKEOVER function 1851
UNFLATTEN_USER function 1851

USIS gate
INQUIRE_DOMAIN function 1853
SET_USER_DOMAIN_PARMS

function 1852
USXM gate

ADD_TRANSACTION_USER
function 1853

DELETE_TRANSACTION_USER
function 1854

END_TRANSACTION function 1854
FLATTEN_TRANSACTION_USER

function 1855
INIT_TRANSACTION_USER

function 1855
INQUIRE_TRANSACTION_USER

function 1856
TERM_TRANSACTION_USER

function 1858
UNFLATTEN_TRANSACTION_USER

function 1858

V
VALIDATE function, PITC gate 1507
VALIDATE_APPC_RESPONSE function,

XSLU gate 2038
VALIDATE_CIPHERS function, SOIS

gate 1755
VALIDATE_LANGUAGE_CODE

function, MEME gate 1331
VALIDATE_LANGUAGE_SUFFIX

function, MEME gate 1332
VALIDATE_USERID function, USAD

gate 1846
VALIDATE_USERID function, XSAD

gate 2012
VERIFY_CGCSGID function, CCNV

gate 618
VERIFY_CICS_CCSID function, CCNV

gate 620
VERIFY_IANA_CCSID function, CCNV

gate 621
VERIFY_IBM_CCSID function, CCNV

gate 622
VERIFY_IP_ADDRESS function, SOIS

gate 1756
vertical tabs

and device independence 37
virtual storage access method

(VSAM) 181
Virtual Telecommunications Method

(VTAM) 441
and node abnormal condition

program (NACP) 357
and node error program (NEP) 361
transmission facilities 442

VSAM
ENDBR request processing 193
READ request processing 186
READNEXT request processing 192
READPREV request processing 192
RESETBR request processing 192
REWRITE request processing 189
STARTBR request processing 192

VSAM (continued)
UNLOCK request processing 190
WRITE request processing 187

VSAM (virtual storage access
method) 181

VSAM interface program, file control
(DFHFCVR) 238

VSAM request processor, file control
(DFHFCVS) 239

VSAM work area (VSWA) 193, 204
VSAM, processing using 185
VSWA (VSAM work area) 193, 204

FREEMAIN during DELETE
processing 191

FREEMAIN during UNLOCK request
processing 190

FREEMAIN in ENDBR request
processing 193

READ request 186
WRITE request 187

VTAM
control blocks

ACBs 295
NIBs 295
RPLs 295

exits
DFASY 295
LOGON 295
LOSTERM 295
NSEXIT 295
SCIP 296
TPEND 296

persistent sessions support 535, 536,
537

VTAM asynchronous receive exit
(DFHZASX) 20

VTAM asynchronous send exit
(DFHZSAX) 20

VTAM exits 26, 551
VTAM generic resource 515
VTAM LU6.2 523
VTAM persistent sessions

diagnosing problems 545

W
W2 (Web 2.0) domain 1925
W2AT gate

ADD_ATOMSERVICE function 1925
ADD_REPLACE_ATOMSERVICE

function 1927
DELETE_ATOMSERVICE

function 1928
END_BROWSE_ATOMSERVICE

function 1929
GET_NEXT_ATOMSERVICE

function 1930
INITIALIZE_ATOMSERVICES

function 1932
INQUIRE_ATOMSERVICE

function 1932
SET_ATOMSERVICE function 1934
START_BROWSE_ATOMSERVICE

function 1935
W2W2 gate

HANDLE_ATOM_REQUEST
function 1936

W2W2 gate (continued)
SET_PARAMETERS function 1936

WAIT request
terminal control 445

WAIT_FOR_CORBASERVER function,
EJCG gate 1086

WAIT_FOR_CORBASERVER function,
EJJO gate 1115

WAIT_FOR_DJAR function, EJDG
gate 1099

WAIT_FOR_FILE_CONTROL function,
FCIN gate 762

WAIT_FOR_PARTNER function, PTTW
gate 1534

WAIT_FOR_USABLE_DJARS function,
EJDG gate 1099

WAIT_FOR_USABLE_DJARS function,
EJJO gate 1116

WAIT_MVS function, DSSR gate 1024
WAIT_OLDC function, DSSR gate 1026
WAIT_OLDW function, DSSR gate 1028
WAIT_PHASE function, DMDM

gate 950
WAITPRED function, KEAR gate 1215
warm start 84
WB (Web) domain 1861
WBAP gate

END_BROWSE function 1861
GET_HTTP_RESPONSE

function 1861
GET_MESSAGE_BODY

function 1862
INITIALIZE_TRANSACTION

function 1863
INQUIRE function 1864
READ function 1865
READ_NEXT function 1866
SEND_RESPONSE function 1867
START_BROWSE function 1869
WRITE_HEADER function 1870

WBCL gate
CLOSE_SESSION function 1870
END_BROWSE_HEADERS

function 1871
INQUIRE_SESSION function 1873
OPEN_SESSION function 1875
PARSE_URL function 1877
READ_HEADER function 1878
READ_NEXT_HEADER

function 1880
READ_RESPONSE function 1881
START_BROWSE_HEADERS

function 1883
WRITE_HEADER function 1884
WRITE_REQUEST function 1886

WBFM gate
PARSE_MULTIPART_FORM

function 1888
PARSE_URL_ENCODED_FORM

function 1889
PARSE_URL_ENCODED_LIST

function 1890
URL_DECODE function 1891

WBSR gate
RECEIVE function 1892
SEND function 1893

Index 2385

WBSR gate (continued)
SEND_STATIC_RESPONSE

function 1895
WBSV gate

CLOSE_SESSION function 1901
INQUIRE_CURRENT_SESSION

function 1899
INQUIRE_SESSION function 1901
PEEK_HEADERS function 1898
READ_REQUEST function 1896
SET_SESSION function 1900
WRITE_RESPONSE function 1897

WBUR gate
ADD_REPLACE_URIMAP

function 1902
DELETE_URIMAP function 1905
END_BROWSE_HOST function 1905
END_BROWSE_URIMAP

function 1906
GET_NEXT_HOST function 1907
GET_NEXT_URIMAP function 1908
INITIALIZE_URIMAPS

function 1911
INQUIRE_HOST function 1911
INQUIRE_URIMAP function 1912
LOCATE_URIMAP function 1915
SET_HOST function 1917
SET_URIMAP function 1918
START_BROWSE_HOST

function 1921
START_BROWSE_URIMAP

function 1922
WEAK_JOIN function, RZSO gate 1638
Web (WB) domain 1861
Web 2.0 (W2) domain 1925
WRITE function, CCCC gate 907
WRITE function, FCCR gate 658
WRITE function, FCFR gate 754
WRITE function, FCRF gate 810
WRITE function, LGGL gate 1292
WRITE function, LGWF gate 1312
WRITE function, TSQR gate 1820
WRITE function, TSSH gate 1832
WRITE_ADD_COMPLETE function, FCLJ

gate 767, 768
WRITE_DELETE function, FCLJ

gate 769
WRITE_HEADER function, WBAP

gate 1870
WRITE_HEADER function, WBCL

gate 1884
WRITE_HFS_FILE function, DHFS

gate 935
WRITE_JNL function, LGGL gate 1292
WRITE_JOURNAL_DATA function, APJC

gate 581
WRITE_NEXT function, CCCC gate 908
WRITE_REQUEST function, WBCL

gate 1886
WRITE_RESPONSE function, WBSV

gate 1897
WRITE_TRANSIENT_DATA function,

APTD gate 601
WRITE_UPDATE function, FCLJ

gate 770
WTO macro 553
WTOR macro 553

X
XA_RESYNC function, ISRE gate 1210
XFCREQ, global user exit

READ request 185
WRITE request 187

XLN (exchange log name) 525
XM (transaction manager) domain 1939
XMAC gate

ABEND_TERMINATE function 1996
INIT_XM_CLIENT function 1997
RELEASE_XM_CLIENT

function 1998
TRANSACTION_HANG

function 1998
XMAT gate

ATTACH function 1939, 1997
REATTACH function 1942

XMBD gate
END_BROWSE_TRANDEF

function 1943
GET_NEXT_TRANDEF

function 1944
START_BROWSE_TRANDEF

function 1948
XMCL gate

ADD_REPLACE_TCLASS
function 1949

ADD_TCLASS function 1949
DELETE_TCLASS function 1950
DEREGISTER_TCLASS_USAGE

function 1950
END_BROWSE_TCLASS

function 1950
GET_NEXT_TCLASS function 1951
INQUIRE_ALL_TCLASSES

function 1951
INQUIRE_TCLASS function 1952
LOCATE_AND_LOCK_TCLASS

function 1952
REGISTER_TCLASS_USAGE

function 1953
SET_TCLASS function 1953
START_BROWSE_TCLASS

function 1954
UNLOCK_TCLASS function 1954

XMDD gate
DELETE_TRANDEF function 1955

XMDN gate
TRANDEF_DELETE_QUERY

function 1999
TRANDEF_NOTIFY function 2000

XMER gate
ABEND_TRANSACTION

function 1955
INQUIRE_DEFERRED_ABEND

function 1956
INQUIRE_DEFERRED_MESSAGE

function 1956
REPORT_MESSAGE function 1957
SET_DEFERRED_ABEND

function 1958
SET_DEFERRED_MESSAGE

function 1959
XMFD gate

FIND_PROFILE function 1960

XMIQ gate
END_BROWSE_TRANSACTION

function 1960
END_BROWSE_TXN_TOKEN

function 1960
GET_NEXT_TRANSACTION

function 1961
GET_NEXT_TXN_TOKEN

function 1965
INQUIRE_TRANSACTION

function 1966
INQUIRE_TRANSACTION_TOKEN

function 1970
PURGE_TRANSACTION

function 1971
SET_TRANSACTION function 1972
SET_TRANSACTION_TOKEN

function 1973
START_BROWSE_TRANSACTION

function 1974
START_BROWSE_TXN_TOKEN

function 1974
XMLD gate

LOCATE_AND_LOCK_TRANDEF
function 1975

UNLOCK_TRANDEF function 1976
XMNT gate

MXT_CHANGE_NOTIFY
function 2000

MXT_NOTIFY function 2000
XMPP gate

FORCE_PURGE_INHIBIT_QUERY
function 2001

XMRU gate
RUN_TRANSACTION function 1976

XMSR gate
INQUIRE_DTRTRAN function 1977
INQUIRE_MXT function 1977
SET_DTRTRAN function 1978
SET_MXT function 1978

XMXD gate
ADD_REPLACE_TRANDEF

function 1979
INQUIRE_REMOTE_TRANDEF

function 1983
INQUIRE_TRANDEF function 1988
SET_TRANDEF function 1993

XMXE gate
FREE_TXN_ENVIRONMENT

function 1995
GET_TXN_ENVIRONMENT

function 1995
XRF 536
XRF (extended recovery facility) 173
XRF_GET function, XSWM gate 865
XRF_PUT function, XSWM gate 866
XS (Security Domain) domain 2005
XSAD gate

ADD_USER_VIA_ICRX
function 2013

ADD_USER_WITH_PASSWORD
function 2005

ADD_USER_WITHOUT_PASSWORD
function 2007

DELETE_USER_SECURITY
function 2008

INQUIRE_ICRX function 2014

2386 CICS TS for z/OS 4.1: Diagnosis Reference

XSAD gate (continued)
INQUIRE_USER_ATTRIBUTES

function 2009
RELEASE_ICRX function 2014
RELEASE_ICRX_STORAGE

function 2015
VALIDATE_USERID function 2012

XSCT gate
INQUIRE_CERTIFICATE

function 2015
INQUIRE_REVOCATION_LIST

function 2018
XSEJ gate

ADD_REPL_ROLE_FOR_METHOD
function 2018

CHECK_CALLER_IN_ROLE
function 2019

CHECK_EJB_METHOD
function 2020

DELETE_BEAN_SECURITY
function 2021

INQUIRE_DISTINGUISHED_NAME
function 2021

INQUIRE_HASH_CODE
function 2022

INQUIRE_PRINCIPAL function 2023
SET_ROLE_FOR_CODED_ROLE

function 2024
XSFL gate

FLATTEN_USER_SECURITY
function 2025

UNFLATTEN_ESM_UTOKEN
function 2025

UNFLATTEN_USER_SECURITY
function 2026

XSIS gate
INQ_SECURITY_DOMAIN_PARMS

function 2028
INQUIRE_REALM_NAME

function 2031
INQUIRE_REGION_USERID

function 2031
SET_NETWORK_IDENTIFIER

function 2032
SET_SECURITY_DOMAIN_PARMS

function 2032
SET_SPECIAL_TOKENS

function 2036
XSLU gate

GENERATE_APPC_BIND
function 2036

GENERATE_APPC_RESPONSE
function 2037

VALIDATE_APPC_RESPONSE
function 2038

XSPW gate
CREATE_PASSTICKET function 2038
INQUIRE_CERTIFICATE_USERID

function 2039
INQUIRE_PASSWORD_DATA

function 2040
REGISTER_CERTIFICATE_USER

function 2041
UPDATE_PASSWORD function 2042

XSRC gate
CHECK_CICS_COMMAND

function 2043

XSRC gate (continued)
CHECK_CICS_RESOURCE

function 2046
CHECK_NON_CICS_RESOURCE

function 2047
CHECK_SURROGATE_USER

function 2048
REBUILD_RESOURCE_CLASSES

function 2049
XSWM gate

XRF_GET function 865
XRF_PUT function 866

XSXM gate
ADD_TRANSACTION_SECURITY

function 2049
DEL_TRANSACTION_SECURITY

function 2050
END_TRANSACTION function 2050

XWBAUTH 558, 1924
XWBOPEN 559
XWBSNDO 559

Index 2387

2388 CICS TS for z/OS 4.1: Diagnosis Reference

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 1
Diagnosis Reference

 Publication No. GC34-7038-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
 GC34-7038-02

GC34-7038-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
 SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

GC34-7038-02

	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to use this book
	Notes on terminology

	Changes in CICS Transaction Server for z/OS, Version 4 Release 1
	Part 1. Introduction
	Chapter 1. CICS domains
	Domain gates
	Functions provided by gates
	Specific gates, generic and call-back gates
	Domain call formats
	Ownership of formats
	Tokens
	The BROWSE_TOKEN parameter on domain interfaces

	The RESPONSE parameter on domain interfaces

	Chapter 2. Application domain
	Part 2. CICS components
	Chapter 3. Autoinstall for terminals, consoles and APPC connections
	Design overview
	Autoinstall of a terminal logon flow
	Autoinstall of APPC device logon flow
	Autoinstall of an APPC Generic Resource connection

	Autoinstall of consoles install flow
	Sign-on to consoles flow
	Disconnection flow for terminals (LU-initiated)
	Deletion of autoinstalled APPC devices.
	Disconnection flow (APPC devices)

	Deletion of autoinstalled consoles
	Shipping a TCTTE for transaction routing

	Modules
	DFHZATDX
	DFHZATDY

	Diagnosing autoinstall problems
	Diagnosing APPC autoinstall problems

	Diagnosing console autoinstall problems
	VTAM exits
	Trace

	Chapter 4. Autoinstall terminal model manager
	Functions provided by the autoinstall terminal model manager
	AIIN format, START_INIT function
	Input parameters
	Output parameters

	AIIN format, COMPLETE_INIT function
	Input parameters
	Output parameters

	AIIQ format, LOCATE_TERM_MODEL function
	Input parameters
	Output parameters

	AIIQ format, UNLOCK_TERM_MODEL function
	Input parameters
	Output parameters

	AIIQ format, INQUIRE_TERM_MODEL function
	Input parameters
	Output parameters

	AIIQ format, START_BROWSE function
	Input parameters
	Output parameters

	AIIQ format, GET_NEXT function
	Input parameters
	Output parameters

	AIIQ format, END_BROWSE function
	Input parameters
	Output parameters

	AITM format, ADD_REPL_TERM_MODEL function
	Input parameters
	Output parameters

	AITM format, DELETE_TERM_MODEL function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 5. Basic mapping support
	Design overview
	Message routing
	Terminal paging
	Device independence

	Control blocks
	Modules
	DFHDSB (data stream build)
	DFHIIP (non-3270 input mapping)
	DFHMCP (mapping control program)
	DFHML1 (LU1 printer with extended attributes mapping)
	DFHM32 (3270 mapping)
	DFHPBP (page and text build)
	DFHPHP (partition handling program)
	DFHRLR (route list resolution program)
	DFHTPP (terminal page processor)
	DFHTPQ (undelivered messages cleanup program)
	DFHTPR (terminal page retrieval program)
	DFHTPS (terminal page scheduling program)

	Copy books
	Exits
	Trace

	Chapter 6. Builders
	Design overview
	What is a builder (DFHBS*)?
	Builder parameter set (BPS)
	TCTTE creation and deletion
	Component overview
	DFHTCRP
	DFHAMTP
	DFHZATA and the CATA transaction
	DFHZTSP
	DFHZCQ
	DFHBS* builder programs
	DFHTBS
	DFHAPRDR
	DFHTBSS
	DFHTONR
	DFHZGTA

	DFHZCQ and TCTTE generation
	What is DFHZCQRT?
	What does DFHTBSBP do?
	What is the RRAB used for?
	What is a resource definition 'atom'?
	What is a Resource definition Atom Name block (RABN)?
	What is a Resource Definition Update Block (RDUB)?
	What is syncpointing?
	DFHTBS
	DFHAPRDR
	DFHTBSS
	DFHTONR
	DFHZGTA
	Summary
	Example of an autoinstall

	Patterns, hierarchies, nodes, and builders
	What is a hierarchy?
	What is a pattern?
	The purpose of the builders
	How does DFHTBSBP do its work?

	The DELETE process
	What about the “lower objects first” rule?
	Example of a reinstall

	Completing the process description
	CONNECT
	READY
	The creation/deletion state machine

	The hierarchy and its effect upon the creation process
	Recursion
	Simple recursion example

	ROLLBACK
	Catalog records and the CICS global catalog data set
	Overview
	The key and the recovery record
	More about the audit trail
	DFHTBSS and the FLATTEN process
	The RESTORE process

	Control blocks
	Terminal storage acquired by the builders
	TCTTE layout
	Terminal definition

	Modules
	Module entry
	Subroutine entry
	Subroutine exit (return to module entry)
	Patterns
	Calling sequence of builders for a 3277 remote terminal
	Builder parameter list
	When the builders are called
	Cold start
	Warm start
	Emergency restart
	After emergency restart
	APPC autoinstall
	Autoinstall logon and logoff
	CEDA INSTALL
	EXEC CICS CREATE
	EXEC CICS DISCARD
	Transaction routing
	Shutdown

	Diagnosing problems with the builders
	Exits
	Trace
	Messages
	Message sets
	How messages show up in a trace

	Chapter 7. Built-in functions
	Design overview
	Field edit (DEEDIT)
	Phonetic conversion

	Modules
	Exits
	Trace

	Chapter 8. CICS-DB2 Attachment Facility
	Design overview
	CICS Initialization
	CICS-DB2 initialization gate DFHD2IN1
	CICS-DB2 recovery task DFHD2IN2
	CICS-DB2 restart program DFHD2RP

	CICS-DB2 Attachment startup
	CICS-DB2 startup program DFHD2STR

	CICS-DB2 attachment shutdown
	CICS-DB2 shutdown program DFHD2STP

	CICS-DB2 mainline processing
	CICS-DB2 task related user exit (TRUE) DFHD2EX1
	CICS-DB2 coordinator program DFHD2CO
	CICS-DB2 master subtask program DFHD2MSB
	CICS-DB2 subtask program DFHD2EX3
	CICS-DB2 thread processor DFHD2D2
	CICS-DB2 service task program DFHD2EX2
	CICS-DB2 PLTPI program DFHD2CM0
	CICS-DB2 comand processor DFHD2CM1
	CICS-DB2 shutdown quiesce program DFHD2CM2
	CICS-DB2 shutdown force program DFHD2CM3
	CICS-DB2 table manager DFHD2TM
	CICS DB2 statistics program DFHD2ST
	CICS DB2 connection control program DFHD2CC
	CICS DB2 EDF processor DFHD2EDF

	Control blocks
	DFHD2SS (CICS-DB2 static storage)
	DFHD2GLB (CICS-DB2 global block)
	DFHD2ENT (CICS-DB2 DB2ENTRY block)
	DFHD2TRN (CICS-DB2 DB2TRAN block)
	DFHD2CSB (CICS-DB2 connection block)
	DFHD2GWA (CICS-DB2 global work area)
	DFHD2LOT (CICS-DB2 life of task block)

	Modules
	Exits
	Trace
	Statistics

	Chapter 9. Command interpreter
	Design overview
	Modules
	Exits
	Trace

	Chapter 10. CSD utility program (DFHCSDUP)
	Design overview
	Modules
	Exits
	Trace
	Statistics

	Chapter 11. Database control (DBCTL)
	Design overview
	The connection process
	Connection and disconnection programs
	Control program (DFHDBCT)
	DRA control exit (DFHDBCTX)
	DBCTL user-replaceable program (DFHDBUEX)
	Disable program (DFHDBDI)
	The DBCTL call processor program (DFHDLIDP)

	The interface layer
	Adapter (DFHDBAT)
	Suspend exit (DFHDBSPX)
	Resume exit (DFHDBREX)
	Adapter exits

	DBCTL system definition
	DBCTL PSB scheduling
	Database calls
	DBCTL PSB termination
	System termination

	Control blocks
	Modules
	Exits

	Chapter 12. Data interchange program
	Design overview
	Modules
	Exits
	Trace

	Chapter 13. Distributed program link
	Modules
	Exits
	Trace

	Chapter 14. Distributed transaction processing
	Design overview
	Distributed transaction processing with MRO and LU6.1
	Mapped and unmapped conversations (LU6.2)

	Modules
	DFHEGL
	DFHETC and DFHETL
	DFHZARL
	INITIAL_CALL function
	ALLOCATE function
	SEND function
	RECEIVE function
	ISSUE ERROR or ABEND function

	DFHZARM
	SEND function
	RECEIVE function
	FREE function
	INVALID_ID function
	LU6.1 chains

	DFHZARQ
	DFHZARR
	RECEIVE function

	DFHZERH
	Outbound errors
	Inbound errors

	DFHZISP
	DFHZSTAP

	Exits
	Trace

	Chapter 15. DL/I database support
	Design overview
	The router component (DFHDLI)
	Deciding where to process a request
	Initiating synchronization processing
	Generating CICS trace records

	Control blocks
	DL/I interface block (DIB)
	DL/I interface parameter list (DLP)
	User interface block (UIB)

	Modules
	Exits
	Trace

	Chapter 16. Dump utility program (DFHDU660)
	Design overview
	Data sets
	Processing

	Modules
	Copy books
	Exits
	Trace

	Chapter 17. Dynamic allocation sample program (IBM 3270 only)
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 18. ECI over TCP/IP
	Design Overview
	Listener task, CIEP
	Request header settings

	Mirror task, CPMI
	PING
	Notes
	Modules

	Chapter 19. EXEC interface
	Design overview
	Control blocks
	Modules
	DFHEIP
	Method of calling processor modules

	Exits
	Trace

	Chapter 20. Execution diagnostic facility (EDF)
	Design overview
	Modules
	CEBR transaction (DFHEDFBR)
	EDF display (DFHEDFD)
	Method

	EDF map set (DFHEDFM)
	EDF control program (DFHEDFP)
	Input
	Output
	Method

	EDF response table (DFHEDFR)
	EDF task switch program (DFHEDFX)
	Method

	Exits
	Trace

	Chapter 21. Extended recovery facility (XRF)
	Design overview
	Control blocks
	Modules
	Exits
	Trace

	Chapter 22. External CICS interface
	Design overview
	The programming interfaces

	Modules
	Exits
	Trace

	Chapter 23. Field engineering program
	Design overview
	Modules
	Exits
	Trace

	Chapter 24. File control
	Design overview
	Deblocking services for BDAM data sets
	Concurrency control
	Concurrency control for coupling facility data tables

	Sequential retrieval
	Read Integrity
	Backout logging
	Forward Recovery Logging
	Automatic journaling and logging
	Use of concurrent tasks
	Shared Data table services
	Coupling facility data tables server
	How CICS processes file control requests
	Processing using VSAM
	Processing using Data Tables
	General request processing
	READ request processing
	WRITE request processing
	REWRITE request processing
	UNLOCK request processing
	DELETE request processing
	STARTBR and RESETBR request processing
	READNEXT and READPREV request processing
	ENDBR request processing

	Control blocks
	Access method control block (ACB)
	Data control block (DCB)
	Data set name block (DSNB)
	File browse work area (FBWA)
	File control static storage (FC static)
	File control quiesce receive element (FCQRE)
	File control quiesce send element (FCQSE)
	File control coupling facility data table pool element (FCPE)
	File control coupling facility data table pool wait element (FCPW)
	File control table entry (FCTE)
	File control table entry (FCPW)
	File control coupling facility data tables UOW pool block (FCUP)
	File input/output area (FIOA)
	File lasting access block (FLAB)
	File control locks locator blocks (FLLBs)
	File request anchor block (FRAB)
	File request thread elements (FRTEs)
	Keypoint list element (KPLE)
	Shared resources control (SHRCTL) block
	VSAM work area (VSWA)

	Modules
	DFHEIFC (file control EXEC interface module)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCAT (file control catalog manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCBD (file control BDAM request processor)
	Call mechanism
	Entry address
	Addressing mode
	Residency mode
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCCA (file control RLS control ACB manager)
	DFHFCDL (file control CFDT load program)
	DFHFCDN (file control DSN block manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCDO (file control CFDT open/close program)
	DFHFCDR (file control CFDT request processor)
	DFHFCDTS (file control shared data table request program)
	DFHFCDTX (file control shared data table function ship program)
	DFHFCDU (file control CFDT UOW calls program)
	DFHFCDW (file control CFDT RMC program)
	DFHFCDY (file control CFDT resynchronization program)
	DFHFCES (file control ENF servicer)
	DFHFCFL (file control FRAB and FLAB processor)
	DFHFCFR (file control file request handler)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCFS (file control file state program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCIN1 (file control initialization program 1)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCIN2 (file control initialization program 2)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCIR (file control initialize recovery)
	DFHFCL (file control shared resources pool processor)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCLF (file control log failures handler)
	DFHFCLJ (file control logging and journaling program
	DFHFCMT (file control table manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCN (file control open/close program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCNQ (file control non-RLS lock handler)
	Lock retention
	Lock name interpretation

	DFHFCOR (file control offsite recovery completion)
	DFHFCQI (file control RLS quiesce initiation)
	DFHFCQR (file control quiesce receive transaction)
	DFHFCQS (file control RLS quiesce send transaction)
	DFHFCQT (file control RLS quiesce common system transaction)
	DFHFCQU (file control RLS quiesce processor)
	DFHFCQX (file control RLS quiesce exit)
	DFHFCRC (file control recovery control program)
	PERFORM_PREPARE
	PERFORM_COMMIT
	START_BACKOUT
	DELIVER_BACKOUT_DATA
	END_BACKOUT
	PERFORM_SHUNT
	PERFORM_UNSHUNT
	TAKE_KEYPOINT
	START_DELIVERY
	DELIVER_RECOVERY
	DELIVER_FORGET
	END_DELIVERY

	DFHFCRD (file control RLS cleanup transaction)
	DFHFCRF (file control function shipping interface module)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCRL (file control share control block manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCRO (file control RLS open/close program)
	DFHFCRP (file control restart program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCRR (file control RLS restart)
	DFHFCRS (file control RLS record management processor)
	DFHFCRV (file control RLS VSAM interface processor)
	DFHFCSD (file control shutdown program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCST (file control statistics program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCVR (file control VSAM interface program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCVS (file control VSAM request processor)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	Parameter lists
	FCCR POINT function
	Input parameters
	Output parameters

	FCCR HIGHEST function
	Input parameters
	Output parameters

	FCCR READ function
	Input parameters
	Output parameters

	FCCR READ_DELETE function
	FCCR UNLOCK function
	Input parameters
	Output parameters

	FCCR LOAD function
	Input parameters
	Output parameters

	FCCR WRITE function
	Input parameters
	Output parameters

	FCCR REWRITE function
	Input parameters
	Output parameters

	FCCR DELETE function
	Input parameters
	Output parameters

	FCCR DELETE_MULTIPLE function
	Input parameters
	Output parameters

	FCCT OPEN function
	Input parameters
	Output parameters

	FCCT CLOSE function
	Input parameters
	Output parameters

	FCCT DELETE function
	Input parameters
	Output parameters

	FCCT SET function
	Input parameters
	Output parameters

	FCCT EXTRACT_STATISTICS function
	Input parameters
	Output parameters

	FCCU PREPARE function
	Input parameters
	Output parameters

	FCCU RETAIN function
	Input parameters
	Output parameters

	FCCU COMMIT function
	Input parameters
	Output parameters

	FCCU BACKOUT function
	Input parameters
	Output parameters

	FCCU INQUIRE function
	Input parameters
	Output parameters

	FCCU RESTART function
	Input parameters
	Output parameters

	FCDS EXTRACT_CFDT_STATS function
	Input parameters
	Output parameters

	FCDS DISCONNECT_CFDT_POOLS function
	Input parameters
	Output parameters

	FCDU PREPARE function
	Input parameters
	Output parameters

	FCDU RETAIN function
	Input parameters
	Output parameters

	FCDU COMMIT function
	Input parameters
	Output parameters

	FCDU BACKOUT function
	Input parameters
	Output parameters

	FCDU INQUIRE function
	Input parameters
	Output parameters

	FCDU RESTART function
	Input parameters
	Output parameters

	FCDY RESYNC_CFDT_POOL function
	Input parameters
	Output parameters

	FCDY RESYNC_CFDT_LINK function
	Input parameters
	Output parameters

	FCDY RETURN_CFDT_ENTRY_POINTS function
	Input parameters
	Output parameters

	FCFL END_UOWDSN_BROWSE function
	Input parameters
	Output parameters

	FCFL FIND_RETAINED function
	Input parameters
	Output parameters

	FCFL FORCE_INDOUBTS function
	Input parameters
	Output parameters

	FCFL GET_NEXT_UOWDSN function
	Input parameters
	Output parameters

	FCFL RESET_BFAILS function
	Input parameters
	Output parameters

	FCFL RETRY function
	Input parameters
	Output parameters

	FCFL START_UOWDSN_BROWSE function
	Input parameters
	Output parameters

	FCFL TEST_USER function
	Input parameters
	Output parameters

	FCLJ FILE_OPEN function
	Input parameters
	Output parameters

	FCLJ FILE_CLOSE Function
	Input parameters
	Output parameters

	FCLJ READ_ONLY Function
	Input parameters
	Output parameters

	FCLJ READ_UPDATE Function
	Input parameters
	Output parameters

	FCLJ WRITE_UPDATE Function
	Input parameters
	Output parameters

	FCLJ WRITE_ADD Function
	Input parameters
	Output parameters

	FCLJ WRITE_ADD_COMPLETE Function
	Input parameters
	Output parameters

	FCLJ WRITE_DELETE Function
	Input parameters
	Output parameters

	FCLJ SYNCHRONIZE_READ_UPDATE Function
	Input parameters
	Output parameters

	FCLJ TAKE_KEYPOINT Function
	Input parameters
	Output parameters

	FCLJ DATASET_COPY Function
	Input parameters
	Output parameters

	FCQR RECEIVE_QUIESCES Function
	Input parameters
	Output parameters

	FCQS SEND_QUIESCES Function
	Input parameters
	Output parameters

	FCQU PROCESS_QUIESCE Function
	Input parameters
	Output parameters

	FCRR RESTART_RLS Function
	COLD and INITIAL
	WARM and EMERGENCY
	DYNAMIC
	Input parameters
	Output parameters

	FCRR RESOURCE_AVAILABLE function
	Input parameters
	Output parameters

	FCRR LOST_LOCKS_RECOVERED function
	Input parameters
	Output parameters

	File Control's call back gates
	Exits
	Trace

	Chapter 25. Front end programming interface (FEPI)
	Design overview
	FEPI as a CICS transaction
	Application flows
	Application programming command flows
	System programming command flows
	Logic flow within the FEPI adapter
	The FEPI adapter and Resource Manager

	The FEPI Resource Manager work queues
	Summary of Resource Manager work queues

	Control blocks
	Dump
	FEPI and VTAM
	VTAM control blocks
	VTAM exits

	Modules

	Chapter 26. Function shipping
	Design overview
	Application programming functions with CICS function shipping
	Local and remote names
	Mirror transactions
	Initialization of CICS for CICS function shipping
	Communication with a remote system
	Protocols
	Symmetrical bracket protocol
	Shutdown protocol
	Sender error recovery protocol (ERP)
	Resynchronization protocol

	CICS function shipping environment
	System entries in the terminal control table
	Transformation of requests and replies for transmission between systems

	CICS function shipping—handling of EXEC CICS commands
	Sending a request to a remote system
	Receiving a request at a remote system
	Sending a reply at a remote system
	Receiving a reply from a remote system

	CICS function shipping—handling of DL/I requests
	Sending a DL/I request to a remote system
	Receiving a DL/I request at a remote system
	Sending a DL/I reply at a remote system
	Receiving a DL/I reply from a remote system

	Terminal control support for CICS function shipping
	TCTTE allocation functions
	Syncpoint functions
	VTAM secondary half-session support

	NOCHECK option function handling

	Exits
	Trace

	Chapter 27. Good morning message program
	Design overview
	Modules
	Exits
	Trace

	Chapter 28. Interregion communication (IRC)
	Design overview
	Control blocks
	Terminal control layer
	DFHIR layer
	Terminal control layer and DFHIR layer
	MRO ECB summary

	Modules
	DFHIRP (interregion communication (SVC) program)
	CICS address space modules
	DFHCRSP (CICS IRC startup module)
	DFHCRNP (connection manager—CSNC transaction)
	DFHCRR (CICS session recovery module)
	DFHCRC (interregion abnormal exit module)
	DFHZCX (CICS terminal control routines)
	DFHZCP (CICS terminal management program)

	Exits
	Trace

	Chapter 29. Intersystem communication (ISC)
	Chapter 30. Interval control
	Design overview
	Time of day
	Time-dependent task synchronization
	Automatic time-ordered transaction initiation
	Time-of-day control

	Control blocks
	Modules
	Exits
	Trace

	Chapter 31. Language Environment interface
	Design overview
	Establishing the connection
	Storage for the transaction
	Storage acquisition

	Control blocks
	Modules
	Exits
	Trace
	External interfaces
	Language Environment interface parameter lists
	Work areas
	IOINFO
	PGMINFO1

	PGMINFO2
	Program termination block

	Chapter 32. Master terminal program
	Design overview
	Modules
	Exits
	Trace

	Chapter 33. Message generation program
	Design overview
	Modules
	Exits
	Trace

	Chapter 34. Message switching
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 35. Multiregion operation (MRO)
	Chapter 36. Node abnormal condition program
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	Statistics

	Chapter 37. Node error program
	Design overview
	Modules
	Exits
	Trace

	Chapter 38. Program control
	Design overview
	Services in response to requests

	Modules
	DFHEPC
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	Exits
	Trace

	Chapter 39. Program error program
	Design overview
	Control blocks
	Modules
	Exits
	Trace

	Chapter 40. Program preparation utilities
	Design overview
	Modules
	Exits
	Trace

	Chapter 41. Remote DL/I
	Design overview
	System definition
	DL/I PSB scheduling
	Database calls
	DL/I PSB termination

	Control blocks

	Chapter 42. Resource definition online (RDO)
	Design overview
	Modules
	Exits
	Trace

	Chapter 43. SAA Communications and Resource Recovery interfaces
	Design overview
	The SAA Communications interface
	Using the SAA Communications interface on recoverable conversations

	The SAA Resource Recovery interface

	Functions provided by the CPI component
	CPIN format, START_INIT function
	Input parameters
	Output parameters

	CPIN format, COMPLETE_INIT function
	Input parameters
	Output parameters

	CPSP format, SYNCPOINT_REQUEST function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 44. Statistics utility program (DFHSTUP)
	Design overview
	DFHSTUP operation

	Modules

	Chapter 45. Storage control macro-compatibility interface
	Design overview
	Modules
	Exits
	Trace

	Chapter 46. Subsystem interface
	Functional overview
	Subsystem definition

	Design overview
	Console message handling

	Control Blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 47. Subtask control
	Design overview
	DFHSKM (subtask manager program)
	DFHSKC (subtask control program)
	DFHSKE (subtask exit program)

	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 48. Syncpoint program
	Design overview
	Task-related user exit resynchronization

	Control blocks
	Deferred work element (DWE)

	Modules
	DFHSPP
	DFHDBP
	DFHAPRC

	Exits
	Trace

	Chapter 49. System dump formatting program
	Design overview
	Modules
	Exits
	Trace
	External interfaces

	Chapter 50. System recovery program
	Design overview
	System recovery table
	Recovery initialization
	Error handling
	Program check
	Operating system abend
	Runaway task
	Kernel gate error
	kernel stack GETMAIN error
	Deferred abend

	DFHSRLIM interface
	INVOKE_XSRAB
	DIAGNOSE_ABEND

	System dump suppression

	Modules
	Exits
	Trace

	Chapter 51. System spooler interface
	Design overview
	System spooler interface modules
	Normal flow
	Abnormal flow

	Modules
	Exits
	Trace

	Chapter 52. Table manager
	Design overview
	Hash table
	Range table and getnext chain
	Secondary indexes
	Functions of the table manager
	Read locks
	Browse token
	Quiesce state
	Finding table entries in a partition dump

	Control blocks
	Modules
	Exits
	Trace
	Table Management Statistics

	Chapter 53. Task-related user exit control
	Functional overview
	Design overview
	Task-related user exit implementation
	Processors

	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 54. Task-related user exit recovery
	Design overview
	The two-phase commit process
	Resolution of in-doubts

	The single-phase commit process
	Single-phase commit for read-only UOWs
	Single-phase commit for the single updater

	Modules
	Exits
	Trace
	External interfaces

	Chapter 55. Terminal abnormal condition program
	Design overview
	Modules
	Exits
	Trace

	Chapter 56. Terminal control
	Design overview
	Terminal control services
	Service request facilities
	System control services
	Transmission facilities—VTAM
	Transmission facilities—VTAM/non-VTAM

	Terminal error recovery
	Testing facility—BSAM
	Terminal control modules (DFHZCP, DFHTCP)
	High-performance option
	System console support
	Console support control modules

	Defining terminals to CICS
	DFHZCQ
	DFHBS* builder programs
	Contents of the TCT
	TCT indexing(DFHZGTI and DFHZLOC)
	Locks
	System initialization (DFHTCRP, DFHAPRDR and DFHTBSS)
	CEDA INSTALL and EXEC CICS CREATE (DFHAMTP)

	Autoinstall
	QUERY function (DFHQRY)

	Control blocks
	Modules
	Exits
	Trace

	Chapter 57. Terminal error program
	Design overview
	Modules
	Exits
	Trace

	Chapter 58. Trace control macro-compatibility interface
	Design overview
	Modules
	Exits
	Trace

	Chapter 59. Trace formatting
	Design overview
	Segmented entries on GTF

	Control blocks
	Modules
	Exits

	Chapter 60. Transaction Failure program
	Design overview
	Modules
	Exits
	Trace

	Chapter 61. Transaction restart program
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	Transaction Restart Statistics

	Chapter 62. Transaction routing
	Design overview
	Overview of operation in the application-owning region for APPC transaction routing
	APPC control blocks
	DFHZXRL
	ATTACH processing in the application-owning region
	DETACH processing in the application-owning region
	ALLOCATE processing in the application-owning region
	FREE processing in the application-owning region
	Other LU6.2 command processing in the application-owning region
	LU6.2 daisy-chaining considerations

	Overview of operation in the terminal-owning region for APPC transaction routing
	ATTACH processing in the terminal-owning region
	ALLOCATE processing in the terminal-owning region
	FREE processing in the terminal-owning region
	Other LU6.2 command processing in the terminal-owning region

	Transformer program (DFHXTP)
	Data streams for transaction routing
	Transaction-routed data format

	Control blocks
	Relay transaction control blocks
	User transaction control blocks

	Modules
	Exits
	Trace

	Chapter 63. Transient data control
	Design overview
	Intrapartition queues
	Recovery of intrapartition transient data queues

	Extrapartition queues
	Indirect queues
	Automatic transaction initiation
	Transient data services
	Transient data
	Intrapartition queues
	Extrapartition queues

	Modules
	Exits
	Trace

	Chapter 64. User exit control
	Design overview
	User exit control modules
	DFHUEM (user exit manager)
	DFHUEH (user exit handler)
	DFHAPEX (user exit service module)
	DFHSUEX (user exit subroutine)

	Control blocks
	Modules
	Exits
	Trace

	Chapter 65. VTAM generic resource
	Design Overview
	Generic resource and LU6.1/LU6.2
	LU6.2 GR to GR connections
	LU6.2 GR to non-GR connections
	LU6.1

	Ending affinities
	Generic resource and ATI
	Modules
	DFHZBLX
	DFHZGCH
	DFHZGIN

	Problem solving for generic resource
	Generic resource status byte (TCTV_GRSTATUS)
	Generic resource flag byte (TCSEI_GR)
	Trace
	Waits

	Chapter 66. VTAM LU6.2
	Design overview
	Session management
	Change Number Of Sessions (CNOS)
	Exchange Log Name (XLN)

	LU6.2 session states
	LU6.2 SEND and RECEIVE processing
	Limited resources

	Modules
	DFHZRVL
	DFHZRLP
	Data received
	Command received
	Response received

	DFHZSDL
	Data transmission
	Command transmission
	Response transmission

	DFHZSLX
	DFHZRLX
	DFHCLS3
	DFHZLS1
	DFHZGCN
	INITIALIZE_SESSION_LIMIT
	RESET_SESSION_LIMIT
	CHANGE_SESSION_LIMIT
	PROCESS_SESSION_LIMIT

	DFHZGCA
	ACTION_CNOS_AND_CONNECT
	SET_NEGOTIATED_VALUES
	ENSURE_SESSIONS_BOUND

	Exits
	Trace

	Chapter 67. VTAM persistent sessions support
	Design overview
	Situations in which sessions are not reestablished
	Situations in which VTAM does not retain sessions
	Persistent sessions restart flow
	Enabling of persistence
	Sessions that persist at CICS startup
	Sessions that persist when CICS opens the VTAM ACB
	TCB concurrency
	Persistent sign-on under persistent sessions

	Modules
	Diagnosing persistent sessions problems
	Persistent sessions status byte (TCTE_PRSS)
	Bid status byte (TCTE_BID_STATUS)
	Summary of persistent session waits
	VTAM exits
	Trace
	Statistics

	Chapter 68. WTO and WTOR
	Design overview
	Modules
	Exits
	Trace

	Chapter 69. CICS Web support and the CICS business logic interface
	Control blocks
	Modules
	Initialization, DFHWBIP
	Web attach processing, DFHWBXN
	Default analyzer program, DFHWBAAX
	Alias transaction, DFHWBA
	HTTP client processing, DFHWBCL
	CICS business logic interface, DFHWBBLI
	CICS Web support for 3270 display applications
	Unescaping function, DFHWBUN

	Exits
	Trace

	Part 3. CICS domains
	Chapter 70. Application Manager Domain (AP)
	Application Manager Domain's specific gates
	ABAB gate, CREATE_ABEND_RECORD function
	ABAB gate, INQUIRE_ABEND_RECORD function
	ABAB gate, START_ABEND function
	ABAB gate, TAKE_TRANSACTION_DUMP function
	ABAB gate, UPDATE_ABEND_RECORD function
	APAC gate, REPORT_CONDITION function
	APAP gate, TRANSFER_SIT function
	APCR gate, ESTIMATE_ALL function
	APCR gate, ESTIMATE_CHANGED function
	APCR gate, EXPORT_ALL function
	APCR gate, EXPORT_CHANGED function
	APCR gate, IMPORT_ALL function
	APCR gate, IMPORT_CHANGED function
	APEX gate, INVOKE_USER_EXIT function
	APID gate, PROFILE function
	APID gate, QUERY_NETNAME function
	APIQ gate, INQ_APPLICATION_DATA function
	APIQ gate, INQ_SIT_PARM function
	APJC gate, WRITE_JOURNAL_DATA function
	APLI gate, ESTABLISH_LANGUAGE function
	APLI gate, START_PROGRAM function
	APLJ gate, PIPI_CALL_SUB function
	APLI gate, PIPI_INIT_SUB_DP function
	APLI gate, PIPI_TERM function
	APLX gate, NOTIFY_REFRESH function
	APRA gate, RELAY_TERMINAL_REQUEST function
	APRA gate, REMOTE_ATTACH function
	APRA gate, REMOTE_DETACH function
	APRD gate, END_ATOMS function
	APRD gate, INITIALISE function
	APRD gate, PRE_INITIALISE function
	APRR gate, IPIC_ROUTE_TRANSACTION function
	APRS gate, ACQUIRE_SURROGATE function
	APRS gate, RELEASE_SURROGATE function
	APRT gate, ROUTE_TRANSACTION function
	APRX gate, FLATTEN_REQUEST function
	APRX gate, FLATTEN_RESPONSE function
	APRX gate, UNFLATTEN_REQUEST function
	APRX gate, UNFLATTEN_RESPONSE function
	APTC gate, CANCEL function
	APTC gate, CLOSE function
	APTC gate, EXTRACT_PROCESS function
	APTC gate, LISTEN function
	APTC gate, OPEN function
	APTC gate, RECEIVE function
	APTC gate, SEND function
	APTC gate, SET_SESSION function
	APTD gate, DELETE_TRANSIENT_DATA function
	APTD gate, INITIALISE_TRANSIENT_DATA function
	APTD gate, READ_TRANSIENT_DATA function
	APTD gate, RESET_TRIGGER_LEVEL function
	APTD gate, WRITE_TRANSIENT_DATA function
	APXM gate, BIND_XM_CLIENT function
	APXM gate, INIT_XM_CLIENT function
	APXM gate, RELEASE_XM_CLIENT function
	APXM gate, RMI_START_OF_TASK function
	BRAT gate, ATTACH function
	BRIQ gate, INQUIRE_CONTEXT function
	CCNV gate, CONVERT_ADS function
	CCNV gate, CONVERT_DATA function
	CCNV gate, CREATE_CONVERSION_TOKEN function
	CCNV gate, EXTRACT_ADS function
	CCNV gate, FREE_CONVERSION_TOKEN function
	CCNV gate, GET_CONVERSION_TOKEN function
	CCNV gate, INITIALISE function
	CCNV gate, INQUIRE_CONVERSION_SIZE function
	CCNV gate, VERIFY_CGCSGID function
	CCNV gate, VERIFY_CICS_CCSID function
	CCNV gate, VERIFY_IANA_CCSID function
	CCNV gate, VERIFY_IBM_CCSID function
	CQCQ gate, CLOSE_MVS_CIB_QUEUE function
	CQCQ gate, DEFER_CIB function
	CQCQ gate, GET_CIB function
	CQCQ gate, GET_PROCESSED_CIB function
	CQCQ gate, INITIALIZE function
	CQCQ gate, MERGE_CIB_QUEUES function
	CQCQ gate, PUT_CIB function
	CQCQ gate, PUT_PROCESSED_CIB function
	CQCQ gate, TRACE_PUT_CQ function
	ECIS gate, DISCARD_EVENTBINDING function
	ECIS gate, END_BROWSE_CAPTURESPEC function
	ECIS gate, END_BROWSE_EVENTBINDING function
	ECIS gate, GET_NEXT_CAPTURESPEC function
	ECIS gate, GET_NEXT_EVENTBINDING function
	ECIS gate, INQ_CAPTURESPEC function
	ECIS gate, INQ_EVENTBINDING function
	ECIS gate, INQ_EVENTPROCESS function
	ECIS gate, SET_EVENTPROCESS function
	ECIS gate, SET_EVENTBINDING function
	ECIS gate, START_BROWSE_CAPTURESPEC function
	ECIS gate, START_BROWSE_EVENTBINDING function
	ECSE gate, SIGNAL_EVENT function
	FCAT gate, INQ_BASEDSNAME function
	FCAT gate, INQ_CATALOG_QUIESCESTATE function
	FCAT gate, INQ_CATALOG_RECOV_REQD function
	FCAT gate, INQ_DATASET_STATE function
	FCAT gate, SET_BWO_BITS_DISABLED function
	FCAT gate, SET_BWO_BITS_ENABLED function
	FCAT gate, SET_CATALOG_RECOV_POINT function
	FCAT gate, SET_CATALOG_RECOV_REQD function
	FCAT gate, SET_CATALOG_RECOVERED function
	FCCA gate, CHECK function
	FCCA gate, COLD_START_RLS function
	FCCA gate, DRAIN_CONTROL_ACB function
	FCCA gate, INQUIRE_RECOVERY function
	FCCA gate, LOST_LOCKS_COMPLETE function
	FCCA gate, QUIESCE_COMPLETE function
	FCCA gate, QUIESCE_REQUEST function
	FCCA gate, REGISTER_CONTROL_ACB function
	FCCA gate, RELEASE_LOCKS function
	FCCA gate, RESET_NONRLS_BATCH function
	FCCA gate, RETAIN_DATASET_LOCKS function
	FCCA gate, RETAIN_UOW_LOCKS function
	FCCA gate, UNREGISTER_CONTROL_ACB function
	FCCI gate, INQUIRE function
	FCCR gate, DELETE function
	FCCR gate, DELETE_MULTIPLE function
	FCCR gate, HIGHEST function
	FCCR gate, LOAD function
	FCCR gate, POINT function
	FCCR gate, READ function
	FCCR gate, READ_DELETE function
	FCCR gate, REWRITE function
	FCCR gate, UNLOCK function
	FCCR gate, WRITE function
	FCCT gate, CLOSE function
	FCCT gate, DELETE function
	FCCT gate, EXTRACT_STATISTICS function
	FCCT gate, OPEN function
	FCCT gate, SET function
	FCCU gate, BACKOUT function
	FCCU gate, COMMIT function
	FCCU gate, INQUIRE function
	FCCU gate, PREPARE function
	FCCU gate, RESTART function
	FCCU gate, RETAIN function
	FCDN gate, CATALOG_DSNB function
	FCDN gate, COMMIT_DSNREFS function
	FCDN gate, CONNECT_DSNB function
	FCDN gate, DELETE_DSNB function
	FCDN gate, DISCONNECT_DSNB function
	FCDN gate, END_DSNB_BROWSE function
	FCDN gate, GET_NEXT_DSNB function
	FCDN gate, INQUIRE_DSNB function
	FCDN gate, RESET_ALL_QUIESCE_STATUS function
	FCDN gate, SET_CATALOG_RECOVERED function
	FCDN gate, SET_DSNB function
	FCDN gate, START_DSNB_BROWSE function
	FCDN gate, UPDATE_RECOVERY_POINTS function
	FCDS gate, DISCONNECT_CFDT_POOLS function
	FCDS gate, EXTRACT_CFDT_STATS function
	FCDU gate, BACKOUT function
	FCDU gate, COMMIT function
	FCDU gate, INQUIRE function
	FCDU gate, PREPARE function
	FCDU gate, RESTART function
	FCDU gate, RETAIN function
	FCDY gate, RESYNC_CFDT_LINK function
	FCDY gate, RESYNC_CFDT_POOL function
	FCDY gate, RETURN_CFDT_ENTRY_POINTS function
	FCFL gate, END_UOWDSN_BROWSE function
	FCFL gate, FIND_RETAINED function
	FCFL gate, FORCE_INDOUBTS function
	FCFL gate, GET_NEXT_UOWDSN function
	FCFL gate, RESET_BFAILS function
	FCFL gate, RETRY function
	FCFL gate, START_UOWDSN_BROWSE function
	FCFL gate, TEST_USER function
	FCFR gate, CLEAR_ENVIRONMENT function
	FCFR gate, DELETE function
	FCFR gate, END_BROWSE function
	FCFR gate, FREE_UNUSED_BUFFERS function
	FCFR gate, PREPARE_FILE_REQUEST function
	FCFR gate, PREPARE_TO_BACKOUT function
	FCFR gate, READ_INTO function
	FCFR gate, READ_NEXT_INTO function
	FCFR gate, READ_NEXT_SET function
	FCFR gate, READ_NEXT_UPDATE_INTO function
	FCFR gate, READ_NEXT_UPDATE_SET function
	FCFR gate, READ_PREVIOUS_INTO function
	FCFR gate, READ_PREVIOUS_SET function
	FCFR gate, READ_PREVIOUS_UPDATE_INTO function
	FCFR gate, READ_PREVIOUS_UPDATE_SET function
	FCFR gate, READ_SET function
	FCFR gate, READ_UPDATE_INTO function
	FCFR gate, READ_UPDATE_SET function
	FCFR gate, REPLACE function
	FCFR gate, REPLACE_DELETE function
	FCFR gate, RESET_BROWSE function
	FCFR gate, RESTART_FILE_CONTROL function
	FCFR gate, REWRITE function
	FCFR gate, REWRITE_DELETE function
	FCFR gate, START_BROWSE function
	FCFR gate, TEST_FILE_USER function
	FCFR gate, UNLOCK function
	FCFR gate, WRITE function
	FCFS gate, CANCEL_CLOSE_FILE function
	FCFS gate, CLOSE_FILE function
	FCFS gate, DISABLE_FILE function
	FCFS gate, ENABLE_FILE function
	FCFS gate, OPEN_FILE function
	FCIN gate, INITIALISE_FILE_CONTROL function
	FCIN gate, WAIT_FOR_FILE_CONTROL function
	FCLJ gate, DATASET_COPY function
	FCLJ gate, FILE_CLOSE function
	FCLJ gate, FILE_OPEN function
	FCLJ gate, READ_ONLY function
	FCLJ gate, READ_UPDATE function
	FCLJ gate, SYNCHRONISE_READ_UPDATE function
	FCLJ gate, TAKE_KEYPOINT function
	FCLJ gate, WRITE_ADD function
	FCLJ gate, WRITE_ADD_COMPLETE function
	FCLJ gate, WRITE_DELETE function
	FCLJ gate, WRITE_UPDATE function
	FCMT gate, ADD_FILE function
	FCMT gate, COMMIT_FILES function
	FCMT gate, DELETE_FILE function
	FCMT gate, END_BROWSE_FILE function
	FCMT gate, GET_NEXT_FILE function
	FCMT gate, INQUIRE_FILE function
	FCMT gate, START_BROWSE_FILE function
	FCMT gate, UPDATE_FILE function
	FCQI gate, COMPLETE_QUIESCE function
	FCQI gate, INITIATE_QUIESCE function
	FCQI gate, INQUIRE_QUIESCE function
	FCQR gate, RECEIVE_QUIESCES function
	FCQS gate, SEND_QUIESCES function
	FCQU gate, PROCESS_QUIESCE function
	FCRF gate, BROWSE function
	FCRF gate, DELETE function
	FCRF gate, END_BROWSE function
	FCRF gate, READ function
	FCRF gate, REPLACE function
	FCRF gate, REPLACE_DELETE function
	FCRF gate, RESET_BROWSE function
	FCRF gate, REWRITE function
	FCRF gate, START_BROWSE function
	FCRF gate, UNLOCK function
	FCRF gate, WRITE function
	FCRL gate, COMMIT_POOLS function
	FCRL gate, SET_POOL function
	FCRP gate, RESTART_FILE_CONTROL function
	FCRR gate, LOST_LOCKS_RECOVERED function
	FCRR gate, RESOURCE_AVAILABLE function
	FCRR gate, RESTART_RLS function
	FCSD gate, TERMINATE function
	FCST gate, COLLECT_FILE_STATISTICS function
	FCST gate, COLLECT_POOL_STATISTICS function
	FCST gate, END_FILE_IN_POOL_BROWSE function
	FCST gate, GET_NEXT_FILE_IN_POOL function
	FCST gate, START_FILE_IN_POOL_BROWSE function
	FCVC gate, INQUIRE_CATALOG function
	ICXM gate, INQUIRE_FACILITY function
	LEPT gate, CREATE_LE_ENCLAVE function
	LEPT gate, CREATE_PTHREAD function
	LEPT gate, INVOKE_PTHREAD function
	LEPT gate, PTHREAD_REPLY function
	LEPT gate, TERMINATE_LE_ENCLAVE function
	LEPT gate, TERMINATE_PTHREAD function
	SAIQ gate, INQUIRE_SYSTEM function
	SAIQ gate, SET_SYSTEM function
	TDOC gate, CLOSE_ALL_EXTRA_TD_QUEUES function
	TDOC gate, CLOSE_TRANSIENT_DATA function
	TDOC gate, OPEN_TRANSIENT_DATA function
	TDTM gate, ADD_REPLACE_TDQDEF function
	TDTM gate, COMMIT_TDQDEFS function
	TDTM gate, DISCARD_TDQDEF function
	TDTM gate, END_BROWSE_TDQDEF function
	TDTM gate, GET_NEXT_TDQDEF function
	TDTM gate, INQUIRE_TDQDEF function
	TDTM gate, SET_TDQDEF function
	TDTM gate, START_BROWSE_TDQDEF function
	TDXM gate, BIND_SECONDARY_FACILITY function
	TDXM gate, INQUIRE_TRAN_DATA_FACILITY function
	TFAL gate, ALLOCATE function
	TFAL gate, CANCEL_AID function
	TFAL gate, CANCEL_AIDS_FOR_CONNECTION function
	TFAL gate, CANCEL_AIDS_FOR_TERMINAL function
	TFAL gate, CANCEL_SPECIFIC_AID function
	TFAL gate, CHECK_TRANID_IN_USE function
	TFAL gate, DISCARD_AIDS function
	TFAL gate, FIND_TRANSACTION_OWNER function
	TFAL gate, GET_MESSAGE function
	TFAL gate, INITIALIZE_AID_POINTERS function
	TFAL gate, INQUIRE_ALLOCATE_AID function
	TFAL gate, LOCATE_AID function
	TFAL gate, LOCATE_REMDEL_AID function
	TFAL gate, LOCATE_SHIPPABLE_AID function
	TFAL gate, MATCH_TASK_TO_AID function
	TFAL gate, PURGE_ALLOCATE_AIDS function
	TFAL gate, RECOVER_START_DATA function
	TFAL gate, REMOTE_DELETE function
	TFAL gate, REMOVE_EXPIRED_AID function
	TFAL gate, REMOVE_EXPIRED_REMOTE_AID function
	TFAL gate, REMOVE_MESSAGE function
	TFAL gate, REMOVE_REMOTE_DELETES function
	TFAL gate, REROUTE_SHIPPABLE_AIDS function
	TFAL gate, RESCHEDULE_BMS function
	TFAL gate, RESET_AID_QUEUE function
	TFAL gate, RESTORE_FROM_KEYPOINT function
	TFAL gate, RETRIEVE_START_DATA function
	TFAL gate, SCHEDULE_BMS function
	TFAL gate, SCHEDULE_START function
	TFAL gate, SCHEDULE_TDP function
	TFAL gate, SLOWDOWN_PURGE function
	TFAL gate, TAKE_KEYPOINT function
	TFAL gate, TERM_AVAILABLE_FOR_QUEUE function
	TFAL gate, TERMINAL_NOW_UNAVAILABLE function
	TFAL gate, UNCHAIN_AID function
	TFAL gate, UPDATE_TRANNUM_FOR_RESTART function
	TFBF gate, BIND_FACILITY function
	TFIQ gate, INQUIRE_MONITOR_DATA function
	TFIQ gate, INQUIRE_TERMINAL_FACILITY function
	TFIQ gate, SET_TERMINAL_FACILITY function
	TFRF gate, RELEASE_FACILITY function
	XSWM gate, XRF_GET function
	XSWM gate, XRF_PUT function

	Application domain's call-back gates
	Application Manager Domain's generic gates
	Application Manager Domain's generic formats
	APUE gate, SET_EXIT_STATUS function

	Chapter 71. Business Application Manager Domain (BA)
	Business Application Manager Domain's specific gates
	BAAC gate, ACQUIRE_ACTIVITY function
	BAAC gate, ADD_ACTIVITY function
	BAAC gate, ADD_REATTACH_ACQUIRED function
	BAAC gate, ADD_TIMER_REQUEST function
	BAAC gate, CANCEL_ACTIVITY function
	BAAC gate, CHECK_ACTIVITY function
	BAAC gate, DELETE_ACTIVITY function
	BAAC gate, LINK_ACTIVITY function
	BAAC gate, RESET_ACTIVITY function
	BAAC gate, RESUME_ACTIVITY function
	BAAC gate, RETURN_END_ACTIVITY function
	BAAC gate, RUN_ACTIVITY function
	BAAC gate, SUSPEND_ACTIVITY function
	BABR gate, COMMIT_BROWSE function
	BABR gate, ENDBR_ACTIVITY function
	BABR gate, ENDBR_CONTAINER function
	BABR gate, ENDBR_PROCESS function
	BABR gate, GETNEXT_ACTIVITY function
	BABR gate, GETNEXT_CONTAINER function
	BABR gate, GETNEXT_PROCESS function
	BABR gate, INQUIRE_ACTIVATION function
	BABR gate, INQUIRE_ACTIVITY function
	BABR gate, INQUIRE_CONTAINER function
	BABR gate, INQUIRE_PROCESS function
	BABR gate, STARTBR_ACTIVITY function
	BABR gate, STARTBR_CONTAINER function
	BABR gate, STARTBR_PROCESS function
	BACR gate, COPY_CONTAINER function
	BACR gate, DELETE_CONTAINER function
	BACR gate, GET_CONTAINER_INTO function
	BACR gate, GET_CONTAINER_LENGTH function
	BACR gate, GET_CONTAINER_SET function
	BACR gate, MOVE_CONTAINER function
	BACR gate, PUT_CONTAINER function
	BAPR gate, ACQUIRE_PROCESS function
	BAPR gate, ADD_PROCESS function
	BAPR gate, CANCEL_PROCESS function
	BAPR gate, CHECK_PROCESS function
	BAPR gate, LINK_PROCESS function
	BAPR gate, RESET_PROCESS function
	BAPR gate, RESUME_PROCESS function
	BAPR gate, RUN_PROCESS function
	BAPR gate, SUSPEND_PROCESS function
	BATT gate, ADD_REPLACE_PROCESSTYPE function
	BATT gate, COMMIT_PROCESSTYPE_TABLE function
	BATT gate, DISCARD_PROCESSTYPE function
	BATT gate, END_BROWSE_PROCESSTYPE function
	BATT gate, GET_NEXT_PROCESSTYPE function
	BATT gate, INQUIRE_PROCESSTYPE function
	BATT gate, SET_PROCESSTYPE function
	BATT gate, START_BROWSE_PROCESSTYPE function
	BAXM gate, BIND_ACTIVITY_REQUEST function
	BAXM gate, INIT_ACTIVITY_REQUEST function

	Business Application Manager Domain's generic gates
	Business application manager domain's call-back gates
	Business application manager domain's generic formats
	Modules
	Exits

	Chapter 72. CICS Catalog Domain (CC)
	CICS Catalog Domain's specific gates
	CCCC gate, ADD function
	CCCC gate, DELETE function
	CCCC gate, END_BROWSE function
	CCCC gate, END_WRITE function
	CCCC gate, GET function
	CCCC gate, GET_NEXT function
	CCCC gate, GET_UPDATE function
	CCCC gate, PUT_REPLACE function
	CCCC gate, START_BROWSE function
	CCCC gate, START_WRITE function
	CCCC gate, STARTUP_CLOSE function
	CCCC gate, STARTUP_OPEN function
	CCCC gate, TYPE_PURGE function
	CCCC gate, WRITE function
	CCCC gate, WRITE_NEXT function

	CICS Catalog Domain's generic gates
	Modules

	Chapter 73. Directory manager domain (DD)
	Directory manager domain's specific gates
	DDAP gate, BIND_LDAP function
	DDAP gate, END_BROWSE_RESULTS function
	DDAP gate, FLUSH_LDAP_CACHE function
	DDAP gate, FREE_SEARCH_RESULTS function
	DDAP gate, GET_ATTRIBUTE_VALUE function
	DDAP gate, GET_NEXT_ATTRIBUTE function
	DDAP gate, GET_NEXT_ENTRY function
	DDAP gate, SEARCH_LDAP function
	DDAP gate, START_BROWSE_RESULTS function
	DDAP gate, UNBIND_LDAP function
	DDBR gate, END_BROWSE function
	DDBR gate, GET_NEXT_ENTRY function
	DDBR gate, START_BROWSE function
	DDDI gate, ADD_ENTRY function
	DDDI gate, CREATE_DIRECTORY function
	DDDI gate, DELETE_ENTRY function
	DDDI gate, REPLACE_DATA function
	DDLO gate, LOCATE function

	Directory manager domain's generic gates

	Chapter 74. Document Handler Domain (DH)
	Document Handler Domain's specific gates
	DHDH gate, CREATE_DOCUMENT function
	DHDH gate, DELETE_BOOKMARK function
	DHDH gate, DELETE_DATA function
	DHDH gate, DELETE_DOCUMENT function
	DHDH gate, INQUIRE_DOCUMENT function
	DHDH gate, INSERT_BOOKMARK function
	DHDH gate, INSERT_DATA function
	DHDH gate, REPLACE_DATA function
	DHDH gate, RETRIEVE_WITH_CTLINFO function
	DHDH gate, RETRIEVE_WITHOUT_CTLINFO function
	DHDH gate, SET_PARAMETERS function
	DHFS gate, DELETE_HFS_FILE function
	DHFS gate, END_BROWSE_DIRECTORY function
	DHFS gate, GET_NEXT_IN_DIRECTORY function
	DHFS gate, INQUIRE_HFS_FILE function
	DHFS gate, MAKE_HFS_DIRECTORY function
	DHFS gate, READ_HFS_FILE function
	DHFS gate, START_BROWSE_DIRECTORY function
	DHFS gate, WRITE_HFS_FILE function
	DHSL gate, ADD_SYMBOL_LIST function
	DHSL gate, EXPORT_SYMBOL_LIST function
	DHSL gate, IMPORT_SYMBOL_LIST function
	DHSL gate, SET_SYMBOL_VALUE_BY_API function
	DHSL gate, SET_SYMBOL_VALUE_BY_SSI function
	DHTM gate, ADD_REPLACE_DOCTEMPLATE function
	DHTM gate, DELETE_DOCTEMPLATE function
	DHTM gate, END_BROWSE function
	DHTM gate, GET_NEXT function
	DHTM gate, INITIALIZE_DOCTEMPLATES function
	DHTM gate, INQUIRE_DOCTEMPLATE function
	DHTM gate, INQUIRE_TEMPLATE_STATUS function
	DHTM gate, READ_TEMPLATE function
	DHTM gate, START_BROWSE function

	Document handler domain's generic gates
	Document handler domain's call-back gates
	Modules

	Chapter 75. Domain Manager Domain (DM)
	Domain Manager Domain's specific gates
	DMDM gate, ADD_DOMAIN function
	DMDM gate, QUIESCE_SYSTEM function
	DMDM gate, SET_PHASE function
	DMDM gate, WAIT_PHASE function
	DMEN gate, DELETE function
	DMEN gate, LISTEN function
	DMIQ gate, END_BROWSE function
	DMIQ gate, GET_NEXT function
	DMIQ gate, INQ_DOMAIN_BY_ID function
	DMIQ gate, INQ_DOMAIN_BY_NAME function
	DMIQ gate, INQ_DOMAIN_BY_TOKEN function
	DMIQ gate, START_BROWSE function

	Domain manager domain's generic gates
	Domain Manager domain's generic formats
	DMDM gate, INITIALISE_DOMAIN function
	DMDM gate, PRE_INITIALISE function
	DMDM gate, QUIESCE_DOMAIN function
	DMDM gate, TERMINATE_DOMAIN function

	Domain Manager domain call-back formats
	DMEN gate, NOTIFY_SMSVSAM_OPERATIONAL function

	Modules

	Chapter 76. Debugging profile domain (DP)
	Debugging profile domain's specific gates
	DPFM gate, ACTIVATE_DEBUG_PROFILE function
	DPFM gate, DELETE_DEBUG_PROFILE function
	DPFM gate, END_PM_BROWSE function
	DPFM gate, GET_DEBUG_PROFILE function
	DPFM gate, INACTIVATE_DEBUG_PROFILE function
	DPFM gate, READNEXT_PM_PROFILE function
	DPFM gate, REPLACE_DEBUG_PROFILE function
	DPFM gate, SAVE_DEBUG_PROFILE function
	DPFM gate, START_PM_BROWSE function
	DPIQ gate, INQUIRE_DEBUG_TASK function
	DPIQ gate, INQUIRE_PARAMETERS function
	DPIQ gate, SET_DEBUG_PROFILE function
	DPIQ gate, SET_DEBUGGING function
	DPIQ gate, SET_PARAMETERS function
	DPLM gate, ENDBR_DEBUG_PROFILES function
	DPLM gate, READNEXT_DEBUG_PROFILE function
	DPLM gate, READNEXT_INPUT function
	DPLM gate, RESTARTBR_DEBUG_PROFILES function
	DPLM gate, STARTBR_DEBUG_PROFILES function
	DPLM gate, UPDATE_PROFILE_IN_LIST function
	DPPM gate, PATTERN_MATCH_PROFILE function
	DPPM gate, PATTERN_MATCH_TASK function
	DPUM gate, GET_USER_DEFAULTS function
	DPUM gate, SAVE_USER_DEFAULTS function
	DPWD gate, PROCESS_PAGE function
	DPWD gate, PROCESS_SUBMIT function
	DPWE gate, PROCESS_PAGE function
	DPWE gate, PROCESS_SUBMIT function
	DPWJ gate, PROCESS_PAGE function
	DPWJ gate, PROCESS_SUBMIT function
	DPWL gate, PROCESS_PAGE function
	DPWL gate, PROCESS_SUBMIT function
	DPXM gate, BIND_XM_CLIENT function
	DPXM gate, INIT_XM_CLIENT function
	DPXM gate, RELEASE_XM_CLIENT function

	Debugging profile domain's generic gates

	Chapter 77. Dispatcher Domain (DS)
	Dispatcher Domain's specific gates
	DSAT gate, ATTACH function
	DSAT gate, CANCEL_TASK function
	DSAT gate, CHANGE_MODE function
	DSAT gate, CHANGE_PRIORITY function
	DSAT gate, CLEAR_MATCH function
	DSAT gate, DELETE_SUBSPACE_TCBS function
	DSAT gate, FREE_SUBSPACE_TCBS function
	DSAT gate, RELEASE_OPEN_TCB function
	DSAT gate, SET_PRIORITY function
	DSAT gate, SET_TRANSACTION_TOKEN function
	DSAT gate, TCB_POOL_MANAGEMENT function
	DSBR gate, END_BROWSE function
	DSBR gate, GET_NEXT function
	DSBR gate, INQUIRE_TASK function
	DSBR gate, INQUIRE_TCB function
	DSBR gate, SET_TASK function
	DSBR gate, SET_TCB function
	DSBR gate, START_BROWSE function
	DSIT gate, ACTIVATE_MODE function
	DSIT gate, ADD_TCB function
	DSIT gate, DELETE_ALL_OPEN_TCBS function
	DSIT gate, DELETE_OPEN_TCB function
	DSIT gate, DELETE_TCB function
	DSIT gate, FREE_TCB function
	DSIT gate, INQUIRE_DISPATCHER function
	DSIT gate, PROCESS_DEAD_TCBS function
	DSIT gate, SET_DISPATCHER function
	DSMT gate, END_BROWSE_MVSTCB function
	DSMT gate, GET_NEXT_MVSTCB function
	DSMT gate, INQUIRE_MVSTCB function
	DSMT gate, SNAPSHOT_MVSTCBS function
	DSMT gate, START_BROWSE_MVSTCB function
	DSSR gate, ADD_SUSPEND function
	DSSR gate, DELETE_SUSPEND function
	DSSR gate, RESUME function
	DSSR gate, SUSPEND function
	DSSR gate, WAIT_MVS function
	DSSR gate, WAIT_OLDC function
	DSSR gate, WAIT_OLDW function

	Dispatcher domain's generic gates
	Dispatcher domain's generic formats
	DSAT gate, TASK_REPLY function
	DSAT gate, PURGE_INHIBIT_QUERY function
	DSAT gate, FORCE_PURGE_INHIBIT_QUERY function
	DSAT gate, NOTIFY_DELETE_TCB function

	Modules
	Exits

	Chapter 78. Dump Domain (DU)
	Dump Domain's specific gates
	DUDT gate, ADD_SYSTEM_DUMPCODE function
	DUDT gate, ADD_TRAN_DUMPCODE function
	DUDT gate, DELETE_SYSTEM_DUMPCODE function
	DUDT gate, DELETE_TRAN_DUMPCODE function
	DUDT gate, ENDBR_SYSTEM_DUMPCODE function
	DUDT gate, ENDBR_TRAN_DUMPCODE function
	DUDT gate, GETNEXT_SYSTEM_DUMPCODE function
	DUDT gate, GETNEXT_TRAN_DUMPCODE function
	DUDT gate, INQUIRE_SYSTEM_DUMPCODE function
	DUDT gate, INQUIRE_TRAN_DUMPCODE function
	DUDT gate, SET_SYSTEM_DUMPCODE function
	DUDT gate, SET_TRAN_DUMPCODE function
	DUDT gate, STARTBR_SYSTEM_DUMPCODE function
	DUDT gate, STARTBR_TRAN_DUMPCODE function
	DUDU gate, SYSTEM_DUMP function
	DUDU gate, TRANSACTION_DUMP function
	DUFT gate, DEREGISTER function
	DUFT gate, INQUIRE_FEATURE function
	DUFT gate, REGISTER function
	DUFT gate, UPDATE_FEATURE function
	DUSR gate, CROSS_SYSTEM_DUMP_AVAIL function
	DUSR gate, DUMPDS_CLOSE function
	DUSR gate, DUMPDS_OPEN function
	DUSR gate, DUMPDS_SWITCH function
	DUSR gate, INQUIRE_CURRENT_DUMPDS function
	DUSR gate, INQUIRE_DUMPDS_AUTOSWITCH function
	DUSR gate, INQUIRE_DUMPDS_OPEN_STATUS function
	DUSR gate, INQUIRE_INITIAL_DUMPDS function
	DUSR gate, INQUIRE_RETRY_TIME function
	DUSR gate, INQUIRE_SYSTEM_DUMP function
	DUSR gate, SET_DUMPDS_AUTOSWITCH function
	DUSR gate, SET_DUMPTABLE_DEFAULTS function
	DUSR gate, SET_INITIAL_DUMPDS function
	DUSR gate, SET_RETRY_TIME function
	DUSR gate, SET_SYSTEM_DUMP function
	DUSR gate, SET_TRANTABLESIZE function
	DUSR gate, SET_TRANTABLETYPE function

	Dump domain's generic gates
	Initialization and termination

	Modules
	Exits

	Chapter 79. Enterprise Java Domain (EJ)
	Enterprise Java Domain's specific gates
	EJBB gate, END_BROWSE function
	EJBB gate, GET_NEXT function
	EJBB gate, START_BROWSE function
	EJBG gate, ADD_BEAN function
	EJBG gate, ADD_BEAN_STATS function
	EJBG gate, CONFIRM_ALL_BEANS function
	EJBG gate, DELETE_ALL_BEANS function
	EJBG gate, DELETE_BEAN function
	EJBG gate, GET_BEAN_DD function
	EJBG gate, INQUIRE_BEAN function
	EJBG gate, RESET_BEAN_STATS function
	EJCB gate, END_BROWSE function
	EJCB gate, GET_NEXT function
	EJCB gate, START_BROWSE function
	EJCG gate, ACTION_CORBASERVER function
	EJCG gate, ADD_CORBASERVER function
	EJCG gate, AMEND_CORBASERVER function
	EJCG gate, DELETE_CORBASERVER function
	EJCG gate, ESTABLISH function
	EJCG gate, INQUIRE_CORBASERVER function
	EJCG gate, RELINQUISH function
	EJCG gate, RESOLVE_CORBASERVER function
	EJCG gate, SET_ALL_STATE function
	EJCG gate, WAIT_FOR_CORBASERVER function
	EJDB gate, END_BROWSE function
	EJDB gate, GET_NEXT function
	EJDB gate, START_BROWSE function
	EJDG gate, ACTION_DJAR function
	EJDG gate, ADD_DJAR function
	EJDG gate, AMEND_DJAR function
	EJDG gate, CALL_EVENT_URM function
	EJDG gate, COUNT_FOR_CS function
	EJDG gate, DELETE_ALL_DJARS function
	EJDG gate, DELETE_DJAR function
	EJDG gate, INQUIRE_DJAR function
	EJDG gate, RESOLVE_DJAR function
	EJDG gate, SCAN_DJARS function
	EJDG gate, SET_ALL_STATE function
	EJDG gate, WAIT_FOR_DJAR function
	EJDG gate, WAIT_FOR_USABLE_DJARS function
	EJDI gate, ADD_ENTRY function
	EJDI gate, INITIALISE function
	EJDI gate, LOOKUP_ENTRY function
	EJDI gate, REMOVE_ENTRY function
	EJDU gate, DUMP_DATA function
	EJDU gate, DUMP_STACK function
	EJDU gate, INQUIRE_TRACE_FLAGS function
	EJGE gate, INITIALISE function
	EJGE gate, QUIESCE function
	EJGE gate, TERMINATE function
	EJIO gate, RESOLVE function
	EJIO gate, RESOLVE_CSERVERS function
	EJIO gate, RESOLVE_DJARS function
	EJIO gate, SET_RSTATE function
	EJJO gate, ADD_BEAN function
	EJJO gate, END_BEAN_BROWSE function
	EJJO gate, ESTABLISH function
	EJJO gate, GET_BEAN_DD function
	EJJO gate, GET_NEXT_BEAN function
	EJJO gate, INQUIRE_CORBASERVER function
	EJJO gate, SET_BEAN_STATS function
	EJJO gate, START_BEAN_BROWSE function
	EJJO gate, WAIT_FOR_CORBASERVER function
	EJJO gate, WAIT_FOR_USABLE_DJARS function
	EJMI gate, ADD_BEAN function
	EJMI gate, ADD_METHOD function
	EJMI gate, DISCARD_METHOD_INFO function
	EJMI gate, GET_METHOD_INFO function
	EJMI gate, INITIALISE function
	EJOB gate, END_BROWSE_OBJECT function
	EJOB gate, GET_NEXT_OBJECT function
	EJOB gate, INQUIRE_OBJECT function
	EJOB gate, INQUIRE_STORES function
	EJOB gate, RETRIEVE_STATISTICS function
	EJOB gate, START_BROWSE_OBJECT function
	EJOS gate, ACTIVATE_OBJECT function
	EJOS gate, CLOSE_OBJECT_STORE function
	EJOS gate, OPEN_OBJECT_STORE function
	EJOS gate, REMOVE_OBJECT function
	EJOS gate, REMOVE_STORE function
	EJOS gate, STORE_OBJECT function
	EJSO gate, AMEND_CORBASERVER function
	EJSO gate, INQUIRE_CORBASERVER function

	Enterprise Java domain's generic gates
	Modules

	Chapter 80. Event Manager Domain (EM)
	Event Manager Domain's specific gates
	EMBR gate, END_BROWSE_EVENT function
	EMBR gate, END_BROWSE_TIMER function
	EMBR gate, GET_NEXT_EVENT function
	EMBR gate, GET_NEXT_TIMER function
	EMBR gate, INQUIRE_EVENT function
	EMBR gate, INQUIRE_TIMER function
	EMBR gate, START_BROWSE_EVENT function
	EMBR gate, START_BROWSE_TIMER function
	EMEM gate, ADD_SUBEVENT function
	EMEM gate, CHECK_TIMER function
	EMEM gate, DEFINE_ATOMIC_EVENT function
	EMEM gate, DEFINE_COMPOSITE_EVENT function
	EMEM gate, DEFINE_TIMER function
	EMEM gate, DELETE_EVENT function
	EMEM gate, DELETE_TIMER function
	EMEM gate, FIRE_EVENT function
	EMEM gate, FORCE_TIMER function
	EMEM gate, INQUIRE_STATUS function
	EMEM gate, REMOVE_SUBEVENT function
	EMEM gate, RETRIEVE_REATTACH_EVENT function
	EMEM gate, RETRIEVE_SUBEVENT function
	EMEM gate, TEST_EVENT function

	Event manager domain's generic gates
	Modules

	Chapter 81. Event processing domain (EP)
	Event processing domain's specific gates
	EPAS gate, FORMAT_EVENT function
	EPEV gate, PUT_EVENT function
	EPEV gate, SYNC_EVENT function
	EPIS gate, SET_EVENT_PROCESSING function

	Event processing domain's generic gates
	Modules

	Chapter 82. IP ECI (IE) domain
	IP ECI domain's specific gates
	IEIE gate, PROCESS_ECI_FLOW function
	IEIE gate, RECEIVE function
	IEIE gate, SEND function
	IEIE gate, SEND_ERROR function

	IP ECI domain's generic gates
	Modules

	Chapter 83. IIOP domain (II)
	IIOP domain's specific gates
	IICP gate, ABSTRACT function
	IICP gate, ADD_LOGICAL_SERVER function
	IICP gate, DELETE_LOGICAL_SERVER function
	IICP gate, DISCARD_DJAR function
	IICP gate, DJAR_SCAN function
	IICP gate, INSTALL_DJAR function
	IICP gate, PRE_INSTALL_DJAR function
	IICP gate, PUBLISH_CORBASERVER function
	IICP gate, PUBLISH_DJAR function
	IICP gate, PUBLISH_LOGICAL_SERVER function
	IICP gate, RETRACT_CORBASERVER function
	IICP gate, RETRACT_DJAR function
	IICP gate, RETRACT_LOGICAL_SERVER function
	IIMM gate, ADD_REPLACE_RQMODEL function
	IIMM gate, COMMIT_RQMODELS function
	IIMM gate, DELETE_RQMODEL function
	IIRH gate, FIND_REQUEST_STREAM function
	IIRH gate, PARSE function
	IIRP gate, GET_INITIAL_DATA function
	IIRP gate, INITIALISE function
	IIRP gate, INVOKE function
	IIRP gate, RECEIVE_REPLY function
	IIRP gate, RECEIVE_REQUEST function
	IIRP gate, SEND_REPLY function
	IIRP gate, TERMINATE function
	IIRP gate, UPDATE_WORKREQUEST function
	IIRQ gate, END_BROWSE function
	IIRQ gate, GET_NEXT function
	IIRQ gate, INQUIRE_RQMODEL function
	IIRQ gate, MATCH_RQMODEL function
	IIRQ gate, START_BROWSE function
	IIRR gate, PROCESS_REQUESTS function

	IIOP domain's generic gates
	Modules
	Exits

	Chapter 84. Inter-system (IS) domain
	IS domain specific gates
	ISCO gate, ACQUIRE_CONNECTION function
	ISCO gate, INITIALIZE_CONNECTION function
	ISCO gate, RELEASE_CONNECTION function
	ISCO gate, TERMINATE_CONNECTION function
	ISIC gate, ADD_IPCONN function
	ISIC gate, AUTOINSTALL_IPCONN function
	ISIC gate, DISCARD_IPCONN function
	ISIC gate, ENDBROWSE_IPCONN function
	ISIC gate, GETNEXT_IPCONN function
	ISIC gate, INQUIRE_IPCONN function
	ISIC gate, INQUIRE_IPCONN_BY_APPLID function
	ISIC gate, SET_IPCONN function
	ISIC gate, STARTBROWSE_IPCONN function
	ISIF gate, GET_IPFACILITY_LIST function
	ISIF gate, INQUIRE_IPFACILITY function
	ISIS gate, ALLOCATE_SEND function
	ISIS gate, BIND_RECEIVER function
	ISIS gate, CONVERSE function
	ISIS gate, INITIALIZE_RECEIVER function
	ISIS gate, INQUIRE_FACILITY function
	ISIS gate, RECEIVE_BUFFER function
	ISIS gate, RECEIVE_REQUEST function
	ISIS gate, ROUTING_CONVERSE function
	ISIS gate, SEND_BUFFER function
	ISIS gate, SEND_ERROR function
	ISIS gate, SEND_RESPONSE function
	ISIS gate, SET_PARAMETERS function
	ISRE gate, CICS_RESYNC function
	ISRE gate, FORCE_LINKS function
	ISRE gate, KEEP_LINKS function
	ISRE gate, RESYNC_LINKS function
	ISRE gate, XA_RESYNC function
	ISRR gate, NOTIFY function
	ISRR gate, NOTIFY_SERVICE function
	ISRR gate, PROCESS_ERROR_QUEUE function
	ISRR gate, PROCESS_INPUT_QUEUE function
	ISRR gate, TERMINATE_INPUT function

	IS domain modules

	Chapter 85. Kernel Domain (KE)
	Kernel Domain's specific gates
	KEAR gate, DEREGISTER function
	KEAR gate, READY function
	KEAR gate, REGISTER function
	KEAR gate, WAITPRED function
	KEDD gate, ADD_DOMAIN function
	KEDD gate, ADD_GATE function
	KEDD gate, DELETE_GATE function
	KEDD gate, INQUIRE_ANCHOR function
	KEDD gate, INQUIRE_DOMAIN_BY_NAME function
	KEDD gate, INQUIRE_DOMAIN_BY_TOKEN function
	KEDD gate, INQUIRE_DOMAIN_TRACE function
	KEDD gate, INQUIRE_GLOBAL_TRACE function
	KEDD gate, INQUIRE_TASK_TRACE function
	KEDD gate, PERFORM_SYSTEM_ACTION function
	KEDD gate, SET_ANCHOR function
	KEDD gate, SET_DEFAULT_RECOVERY function
	KEDD gate, SET_DOMAIN_TRACE function
	KEDD gate, SET_GLOBAL_TRACE function
	KEDD gate, SET_TASK_TRACE function
	KEDD gate, SET_TRAP_OFF function
	KEDD gate, SET_TRAP_ON function
	KEDS gate, ABNORMALLY_TERMINATE_TASK function
	KEDS gate, ADD_CRITICAL_MODULE function
	KEDS gate, ADD_CRITICAL_WINDOW function
	KEDS gate, CREATE_TASK function
	KEDS gate, CREATE_TCB function
	KEDS gate, DETACH_TERMINATED_OWN_TCBS function
	KEDS gate, END_TASK function
	KEDS gate, FREE_TCBS function
	KEDS gate, INQUIRE_MVSTCB function
	KEDS gate, INQUIRE_TCB function
	KEDS gate, POP_TASK function
	KEDS gate, PROCESS_KETA_ERROR function
	KEDS gate, PUSH_TASK function
	KEDS gate, READ_TIME function
	KEDS gate, RESET_TIME function
	KEDS gate, RESTORE_STIMER function
	KEDS gate, SEND_DEFERRED_ABEND function
	KEDS gate, START_FORCE_PURGE_PROTECT function
	KEDS gate, START_PURGE_PROTECTION function
	KEDS gate, START_RUNAWAY_TIMER function
	KEDS gate, STOP_FORCE_PURGE_PROTECT function
	KEDS gate, STOP_PURGE_PROTECTION function
	KEDS gate, STOP_RUNAWAY_TIMER function
	KEGD gate, INQUIRE_KERNEL function
	KEGD gate, SET_KERNEL function
	KETI gate, ADJUST_STCK_TO_LOCAL function
	KETI gate, CONVERT_TO_DECIMAL_TIME function
	KETI gate, CONVERT_TO_STCK_FORMAT function
	KETI gate, INQ_LOCAL_DATETIME_DECIMAL function
	KETI gate, INQUIRE_DATE_FORMAT function
	KETI gate, REQUEST_NOTIFY_OF_A_RESET function
	KETI gate, RESET_LOCAL_TIME function
	KETI gate, SET_DATE_FORMAT function
	KEXM gate, TRANSACTION_INITIALISATION function

	Kernel domain generic formats
	KEDS gate, TASK_REPLY function
	KEDS gate, TCB_REPLY function
	KETI gate, NOTIFY_RESET function

	Modules

	Chapter 86. Loader Domain (LD)
	Loader domain's specific gates
	LDLB gate, ADD_REPLACE_LIBRARY function
	LDLB gate, DISCARD_LIBRARY function
	LDLB gate, END_BROWSE_LIBRARY function
	LDLB gate, GET_NEXT_LIBRARY function
	LDLB gate, INQUIRE_LIBRARY function
	LDLB gate, LOG_LIBRARY_ORDER function
	LDLB gate, SET_LIBRARY function
	LDLB gate, START_BROWSE_LIBRARY function
	LDLD gate, ACQUIRE_PROGRAM function
	LDLD gate, CATALOG_PROGRAMS function
	LDLD gate, CONVERT_NAME function
	LDLD gate, DEFINE_PROGRAM function
	LDLD gate, DELETE_PROGRAM function
	LDLD gate, END_BROWSE function
	LDLD gate, GET_NEXT_INSTANCE function
	LDLD gate, GET_NEXT_PROGRAM function
	LDLD gate, IDENTIFY_PROGRAM function
	LDLD gate, INQUIRE_OPTIONS function
	LDLD gate, INQUIRE_PROGRAM function
	LDLD gate, REFRESH_PROGRAM function
	LDLD gate, RELEASE_PROGRAM function
	LDLD gate, SET_OPTIONS function
	LDLD gate, START_BROWSE function

	Loader domain's generic gates
	Modules

	Chapter 87. Log manager domain (LG)
	Log manager domain's specific gates
	LGBA gate, BROWSE_ALL_GET_NEXT function
	LGBA gate, END_BROWSE_ALL function
	LGBA gate, START_BROWSE_ALL function
	LGCB gate, CHAIN_BROWSE_GET_NEXT function
	LGCB gate, END_CHAIN_BROWSE function
	LGCB gate, START_CHAIN_BROWSE function
	LGCC gate, BROWSE_CHAINS_GET_NEXT function
	LGCC gate, CREATE_CHAIN_TOKEN function
	LGCC gate, DELETE_ALL function
	LGCC gate, DELETE_HISTORY function
	LGCC gate, END_BROWSE_CHAINS function
	LGCC gate, INQUIRE_DEFER_INTERVAL function
	LGCC gate, INQUIRE_KEYPOINT_FREQUENCY function
	LGCC gate, INQUIRE_KEYPOINT_STATS function
	LGCC gate, RELEASE_CHAIN_TOKEN function
	LGCC gate, RESET_KEYPOINT_STATS function
	LGCC gate, RESTORE_CHAIN_TOKEN function
	LGCC gate, SET_DEFER_INTERVAL function
	LGCC gate, SET_HISTORY function
	LGCC gate, SET_KEYPOINT_FREQUENCY function
	LGCC gate, START_BROWSE_CHAINS function
	LGCC gate, SYSINI function
	LGGL gate, CLOSE function
	LGGL gate, FORCE function
	LGGL gate, FORCE_JNL function
	LGGL gate, INITIALIZE function
	LGGL gate, OPEN function
	LGGL gate, UOW_TIME function
	LGGL gate, WRITE function
	LGGL gate, WRITE_JNL function
	LGJN gate, DISCARD function
	LGJN gate, END_BROWSE function
	LGJN gate, EXPLICIT_OPEN function
	LGJN gate, GET_NEXT function
	LGJN gate, IMPLICIT_OPEN function
	LGJN gate, INITIALIZE function
	LGJN gate, INQUIRE function
	LGJN gate, PROCESS_STATISTICS function
	LGJN gate, SET function
	LGJN gate, START_BROWSE function
	LGJN gate, STREAM_FAIL function
	LGLB gate, CONNECT function
	LGLB gate, DISCONNECT function
	LGLB gate, DISCONNECT_ALL function
	LGLB gate, GL_FORCE function
	LGLB gate, GL_WRITE function
	LGLD gate, DISCARD function
	LGLD gate, END_BROWSE function
	LGLD gate, GET_NEXT function
	LGLD gate, INITIALIZE function
	LGLD gate, INQUIRE function
	LGLD gate, INSTALL function
	LGLD gate, MATCH function
	LGLD gate, START_BROWSE function
	LGMV gate, MOVE_CHAIN function
	LGPA gate, INQUIRE_PARAMETERS function
	LGPA gate, SET_PARAMETERS function
	LGSR gate, LOGSTREAM_STATS function
	LGST gate, CONNECT function
	LGST gate, DISCONNECT function
	LGST gate, END_BROWSE function
	LGST gate, GET_NEXT function
	LGST gate, INITIALIZE function
	LGST gate, INQUIRE function
	LGST gate, START_BROWSE function
	LGWF gate, FORCE_DATA function
	LGWF gate, WRITE function

	Logger manager domain's generic gates
	Log manager domain's call-back gates
	Log manager domain's call-back formats
	LGGL gate, ERROR function

	Modules
	Exits

	Chapter 88. Lock Manager Domain (LM)
	Lock Manager domain's specific gates
	LMLM gate, ADD_LOCK function
	LMLM gate, DELETE_LOCK function
	LMLM gate, LOCK function
	LMLM gate, TEST_LOCK_OWNER function
	LMLM gate, UNLOCK function

	Lock manager domain's generic gates
	Modules

	Chapter 89. Message Domain (ME)
	Message Domain's specific gates
	MEBM gate, INQUIRE_MESSAGE_DEFINITION function
	MEBM gate, INQUIRE_MESSAGE_LENGTH function
	MEBM gate, RETRIEVE_MESSAGE function
	MEME gate, CONVERSE function
	MEME gate, INQUIRE_MESSAGE function
	MEME gate, INQUIRE_MESSAGE_LENGTH function
	MEME gate, RETRIEVE_MESSAGE function
	MEME gate, SEND_MESSAGE function
	MEME gate, VALIDATE_LANGUAGE_CODE function
	MEME gate, VALIDATE_LANGUAGE_SUFFIX function
	MESR gate, SET_MESSAGE_OPTIONS function

	Message domain's generic gates
	Modules
	Exits

	Chapter 90. Markup language domain (ML)
	Markup language domain's specific gates
	MLPC gate, PARSE_CONTAINER function
	MLTF gate, PARSE_XSDBIND_FILE function
	MLTF gate, QUERY_XML function
	MLTF gate, RELEASE_XSDBIND function
	MLTF gate, TRANSFORM_STRUCTURE_TO_XML function
	MLTF gate, TRANSFORM_XML_TO_STRUCTURE function
	MLXT gate, INSTALL_XMLTRANSFORM function
	MLXT gate, DISCARD_XMLTRANSFORM function
	MLXT gate, INQUIRE_XMLTRANSFORM function
	MLXT gate, SET_XMLTRANSFORM function
	MLXT gate, START_BROWSE_XMLTRANSFORM function
	MLXT gate, GET_NEXT_XMLTRANSFORM function
	MLXT gate, END_BROWSE_XMLTRANSFORM function

	Modules

	Chapter 91. Monitoring Domain (MN)
	Monitoring Domain's specific gates
	MNMN gate, ACCUMULATE_RMI_TIME function
	MNMN gate, EXCEPTION_DATA_PUT function
	MNMN gate, INQUIRE_MONITORING_DATA function
	MNMN gate, INQUIRE_RESOURCE_DATA function
	MNMN gate, MONITOR function
	MNMN gate, PERFORMANCE_DATA_PUT function
	MNSR gate, INQ_MONITORING function
	MNSR gate, SET_MCT_SUFFIX function
	MNSR gate, SET_MONITORING function
	MNXM gate, TRANSACTION_INITIALISATION function
	MNXM gate, TRANSACTION_TERMINATION function

	Monitoring domain's generic gates
	Modules
	Exits

	Chapter 92. Enqueue Domain (NQ)
	Enqueue Domain's specific gates
	NQED gate, DEQUEUE function
	NQED gate, ENQUEUE function
	NQIB gate, END_BROWSE_ENQUEUE function
	NQIB gate, GET_NEXT_ENQUEUE function
	NQIB gate, INQUIRE_ENQUEUE function
	NQIB gate, START_BROWSE_ENQUEUE function
	NQNQ gate, CREATE_ENQUEUE_POOL function
	NQNQ gate, DEACTIVATE function
	NQNQ gate, DEQUEUE_TASK function
	NQNQ gate, INTERPRET_ENQUEUE function
	NQNQ gate, REACQUIRE_ENQUEUE function
	NQNQ gate, SET_NQRNAME_LIST function
	NQRN gate, ADD_REPLACE_ENQMODEL function
	NQRN gate, COMMIT_ENQMODEL function
	NQRN gate, DISCARD_ENQMODEL function
	NQRN gate, END_BROWSE_ENQMODEL function
	NQRN gate, GET_NEXT_ENQMODEL function
	NQRN gate, INQUIRE_ENQMODEL function
	NQRN gate, INQUIRE_NQRNAME function
	NQRN gate, REMOVE_ENQMODEL function
	NQRN gate, RESTORE_DIRECTORY function
	NQRN gate, SET_ENQMODEL function
	NQRN gate, START_BROWSE_ENQMODEL function

	Enqueue Domain's generic gates
	Enqueue domain's call-back gates
	Modules
	Exits

	Chapter 93. Object transaction service domain (OT)
	Object transaction service domain's specific gates
	OTCO gate, FORGET function
	OTCO gate, RESYNC function
	OTCO gate, SET_COORDINATOR function
	OTCO gate, SET_LAST_AGENT function
	OTCP gate, RESYNC_COORDINATOR function
	OTCP gate, RESYNC_SUBORDINATE function
	OTRS gate, FORGET_TRANSACTION function
	OTRS gate, PERFORM_RESYNC function
	OTRS gate, SET_REMOTE_STATUS function
	OTSU gate, ADD_SUBORDINATE function
	OTSU gate, FORGET function
	OTSU gate, RESYNC function
	OTSU gate, SET_VOTE function
	OTTR gate, BEGIN_TRAN function
	OTTR gate, COMMIT function
	OTTR gate, COMMIT_ONE_PHASE function
	OTTR gate, IMPORT_TRAN function
	OTTR gate, PREPARE function
	OTTR gate, ROLLBACK function
	OTTR gate, SET_ROLLBACK_ONLY function

	Modules

	Chapter 94. Parameter Manager Domain (PA)
	Parameter Manager Domain's specific gates
	PAGP gate, FORCE_START function
	PAGP gate, GET_PARAMETERS function
	PAGP gate, INQUIRE_PARM function
	PAGP gate, INQUIRE_START function

	Parameter manager domain's generic gates
	Modules

	Chapter 95. Program Manager Domain (PG)
	Program Manager domain's specific gates
	PGAQ gate, INQUIRE_AUTOINSTALL function
	PGAQ gate, SET_AUTOINSTALL function
	PGAQ gate, SET_SYSTEM function
	PGCH gate, BIND_CHANNEL function
	PGCH gate, COPY_CHANNEL function
	PGCH gate, CREATE_CHANNEL function
	PGCH gate, DELETE_CHANNEL function
	PGCH gate, DELETE_OWNED_CHANNELS function
	PGCH gate, DETACH_CHANNEL function
	PGCH gate, INQUIRE_BOUND_CHANNEL function
	PGCH gate, INQUIRE_CHANNEL function
	PGCH gate, INQUIRE_CHANNEL_BY_TOKEN function
	PGCH gate, INQUIRE_CURRENT_CHANNEL function
	PGCH gate, RENAME_CHANNEL function
	PGCH gate, SET_CURRENT_CHANNEL function
	PGCP gate, COPY_CONTAINER_POOL function
	PGCP gate, CREATE_CONTAINER_POOL function
	PGCP gate, DELETE_CONTAINER_POOL function
	PGCP gate, INQUIRE_CONTAINER_POOL function
	PGCR gate, COPY_CONTAINER function
	PGCR gate, DELETE_CONTAINER function
	PGCR gate, ENDBR_CONTAINER function
	PGCR gate, GET_CONTAINER_INTO function
	PGCR gate, GET_CONTAINER_LENGTH function
	PGCR gate, GET_CONTAINER_SET function
	PGCR gate, GETNEXT_CONTAINER function
	PGCR gate, INQUIRE_BROWSE_CONTEXT function
	PGCR gate, INQUIRE_CONTAINER function
	PGCR gate, INQUIRE_CONTAINER_BY_TOKEN function
	PGCR gate, MOVE_CONTAINER function
	PGCR gate, PUT_CONTAINER function
	PGCR gate, SET_CONTAINER function
	PGCR gate, STARTBR_CONTAINER function
	PGCR gate, TRACE_CONTAINERS function
	PGDD gate, DEFINE_PROGRAM function
	PGDD gate, DELETE_PROGRAM function
	PGEX gate, INITIALIZE_EXIT function
	PGEX gate, TERMINATE_EXIT function
	PGHM gate, CLEAR_LABELS function
	PGHM gate, FREE_HANDLE_TABLES function
	PGHM gate, IGNORE_CONDITIONS function
	PGHM gate, INQ_ABEND function
	PGHM gate, INQ_AID function
	PGHM gate, INQ_CONDITION function
	PGHM gate, POP_HANDLE function
	PGHM gate, PUSH_HANDLE function
	PGHM gate, SET_ABEND function
	PGHM gate, SET_AIDS function
	PGHM gate, SET_CONDITIONS function
	PGIS gate, END_BROWSE_PROGRAM function
	PGIS gate, GET_NEXT_PROGRAM function
	PGIS gate, INQUIRE_CURRENT_PROGRAM function
	PGIS gate, INQUIRE_PROGRAM function
	PGIS gate, REFRESH_PROGRAM function
	PGIS gate, SET_PROGRAM function
	PGIS gate, START_BROWSE_PROGRAM function
	PGLD gate, LOAD function
	PGLD gate, LOAD_EXEC function
	PGLD gate, RELEASE function
	PGLD gate, RELEASE_EXEC function
	PGLE gate, LINK_EXEC function
	PGLK gate, LINK function
	PGLK gate, LINK_PLT function
	PGLU gate, LINK_URM function
	PGPG gate, INITIAL_LINK function
	PGRE gate, PREPARE_RETURN_EXEC function
	PGXE gate, PREPARE_XCTL_EXEC function
	PGXM gate, INITIALIZE_TRANSACTION function
	PGXM gate, TERMINATE_TRANSACTION function

	Program manager domain's generic gates
	INITIALISE_DOMAIN
	QUIESCE_DOMAIN
	TERMINATE_DOMAIN

	Modules

	Chapter 96. Pipeline Manager Domain (PI)
	Pipeline Manager Domain's specific gates
	PIAT gate, CREATE_CONTEXT function
	PIAT gate, CREATE_CONTEXT_RESP function
	PIAT gate, CREATE_NON_TERMINAL_MSG function
	PIAT gate, CREATE_REGISTER_REQUEST function
	PIAT gate, CREATE_REGISTER_RESP function
	PIAT gate, CREATE_TERMINAL_MSG function
	PIAT gate, PROCESS_CONTEXT function
	PIAT gate, PROCESS_CONTEXT_RESP function
	PIAT gate, PROCESS_MSG function
	PICC gate, FIND_SIGNATURE function
	PICC gate, HANDLE_PARSE_EVENT function
	PICC gate, PERFORM_XML_PARSE function
	PIII gate, PARSE_ICM function
	PIIW gate, INVOKE_WEBSERVICE function
	PIMM gate, BUILD_CONTENT_TYPE function
	PIMM gate, BUILD_MIME_HEADERS function
	PIMM gate, BUILD_MIME_MESSAGE function
	PIMM gate, BUILD_MULTIPART_RELATED function
	PIMM gate, CONVERT_CID_TO_CONTENT_ID function
	PIMM gate, CONVERT_CONTENT_ID_TO_CID function
	PIMM gate, DELETE_ATTACHMENTS function
	PIMM gate, GENERATE_CONTENT_ID function
	PIMM gate, GET_ATTACHMENT function
	PIMM gate, PARSE_CONTENT_TYPE function
	PIMM gate, PARSE_MIME_HEADERS function
	PIMM gate, PARSE_MIME_MESSAGE function
	PIMM gate, PARSE_MULTIPART_RELATED function
	PIMM gate, PUT_ATTACHMENT function
	PIPL gate, ADD_PIPELINE function
	PIPL gate, COMPLETE_PIPELINE function
	PIPL gate, DISCARD_PIPELINE function
	PIPL gate, END_BROWSE_PIPELINE function
	PIPL gate, ESTABLISH_PIPELINE function
	PIPL gate, GET_NEXT_PIPELINE function
	PIPL gate, INQUIRE_PIPELINE function
	PIPL gate, PERFORM_PIPELINE function
	PIPL gate, RELINQUISH_PIPELINE function
	PIPL gate, RESOLVE_PIPELINE function
	PIPL gate, SET_PIPELINE function
	PIPL gate, START_BROWSE_PIPELINE function
	PIPM gate, INVOKE_PROGRAM function
	PIPM gate, INVOKE_STUB function
	PIPM gate, START_PIPELINE function
	PIRE gate, PERFORM_RESYNC function
	PISC gate, DYN_CREATE_WEBSERVICE function
	PISC gate, UPDATE_WEBSERVICE function
	PISF gate, SOAPFAULT_ADD function
	PISF gate, SOAPFAULT_CREATE function
	PISF gate, SOAPFAULT_DELETE function
	PISN gate, SOAP_11 function
	PISN gate, SOAP_12 function
	PITC gate, ISSUE function
	PITC gate, VALIDATE function
	PITC gate, GET_RESPONSE function
	PITC gate, TRUST_CLIENT function
	PITG gate, SEND_REQUEST function
	PITG gate, SEND_RESPONSE function
	PITG gate, CONVERSE function
	PITG gate, RECEIVE_REQUEST function
	PITG gate, SEND_ERROR_RESPONSE function
	PITL gate, PROCESS_SOAP_REQUEST function
	PIWR gate, CREATE_WEBSERVICE function
	PIWR gate, DECREMENT_USE_COUNT function
	PIWR gate, DISCARD_WEBSERVICE function
	PIWR gate, END_BROWSE_WEBSERVICE function
	PIWR gate, GET_NEXT_WEBSERVICE function
	PIWR gate, INCREMENT_USE_COUNT function
	PIWR gate, INITIALISE_WEBSERVICE function
	PIWR gate, INQUIRE_WEBSERVICE function
	PIWR gate, RESOLVE_ALL_WEBSERVICES function
	PIWR gate, SET_WEBSERVICE function
	PIWR gate, START_BROWSE_WEBSERVICE function
	PIXI gate, PARSE_XOP function
	PIXO gate, BUILD_XOP function

	Pipeline Manager domain's generic gates
	Modules

	Chapter 97. Partner Management Domain (PT)
	Partner Management Domain's specific gates
	PTTW gate, BREAK_PARTNERSHIP function
	PTTW gate, CREATE_PARTNERSHIP function
	PTTW gate, CREATE_POOL function
	PTTW gate, DESTROY_PARTNERSHIP function
	PTTW gate, DESTROY_POOL function
	PTTW gate, END_POOL_BROWSE function
	PTTW gate, GET_NEXT_POOL function
	PTTW gate, INQUIRE_GARBAGE_INTERVAL function
	PTTW gate, INQUIRE_USER_TOKEN function
	PTTW gate, MAKE_PARTNERSHIP function
	PTTW gate, QUERY_PARTNERSHIP function
	PTTW gate, QUERY_POOL function
	PTTW gate, SET_GARBAGE_INTERVAL function
	PTTW gate, SET_USER_TOKEN function
	PTTW gate, START_POOL_BROWSE function
	PTTW gate, TRIGGER_PARTNER function
	PTTW gate, WAIT_FOR_PARTNER function

	Modules

	Chapter 98. Resource life-cycle domain (RL)
	Resource life-cycle domain's specific gates
	RLPM gate, DISCARD_BUNDLE function
	RLPM gate, END_BROWSE_BUNDLE function
	RLPM gate, GET_NEXT_BUNDLE function
	RLPM gate, INQUIRE_BUNDLE function
	RLPM gate, INSTALL_BUNDLE function
	RLPM gate, SET_BUNDLE function
	RLPM gate, START_BROWSE_BUNDLE function
	RLRO gate, CREATED function
	RLRO gate, DEREGISTER function
	RLRO gate, DISCARDED function
	RLRO gate, DRIVE_PENDING function
	RLRO gate, END_BROWSE_BUNDLERES function
	RLRO gate, GET_NEXT_BUNDLERES function
	RLRO gate, NOTIFY function
	RLRO gate, REGISTER function
	RLRO gate, START_BROWSE_BUNDLERES function
	RLXM gate, INQUIRE_SCOPE function
	RLXM gate, POP_SCOPE function
	RLXM gate, PUSH_SCOPE function
	RLXM gate, RELEASE_XM_CLIENT function

	Resource life-cycle domain's generic gates
	Resource life-cycle domain's call-back formats
	RLCB gate, CREATE function
	RLCB gate, DISCARD function
	RLCB gate, INQUIRE function
	RLCB gate, INQUIRE_BY_NAME function
	RLCB gate, SET function

	Modules

	Chapter 99. Recovery Manager Domain (RM)
	Recovery Manager Domain's specific gates
	RMCD gate, INQUIRE_CLIENT_DATA function
	RMCD gate, REGISTER function
	RMCD gate, SET_CLIENT_DATA function
	RMCD gate, SET_GATE function
	RMDM gate, INQUIRE_LOCAL_LU_NAME function
	RMDM gate, INQUIRE_STARTUP function
	RMDM gate, SET_LOCAL_LU_NAME function
	RMDM gate, SET_PARAMETERS function
	RMDM gate, SET_STARTUP function
	RMLN gate, ADD_LINK function
	RMLN gate, DELETE_LINK function
	RMLN gate, END_LINK_BROWSE function
	RMLN gate, GET_NEXT_LINK function
	RMLN gate, INBOUND_FLOW function
	RMLN gate, INITIATE_RECOVERY function
	RMLN gate, INQUIRE_LINK function
	RMLN gate, INSERT_LINK function
	RMLN gate, ISSUE_PREPARE function
	RMLN gate, RECORD_VOTE function
	RMLN gate, REMOVE_LINK function
	RMLN gate, REPORT_RECOVERY_STATUS function
	RMLN gate, SET_LINK function
	RMLN gate, SET_MARK function
	RMLN gate, SET_RECOVERY_STATUS function
	RMLN gate, START_LINK_BROWSE function
	RMLN gate, TERMINATE_RECOVERY function
	RMNM gate, CLEAR_PENDING function
	RMNM gate, INQUIRE_LOGNAME function
	RMNM gate, SET_LOGNAME function
	RMOT gate, COMMIT function
	RMOT gate, PREPARE function
	RMOT gate, ROLLBACK function
	RMOT gate, SET_OTS_UOW function
	RMRE gate, APPEND function
	RMRE gate, AVAIL function
	RMRE gate, FORCE function
	RMRE gate, KEYPOINT_DATA function
	RMRE gate, REMOVE function
	RMRE gate, REQUEST_FORGET function
	RMSL gate, TAKE_ACTIVITY_KEYPOINT function
	RMUW gate, BACKOUT_UOW function
	RMUW gate, BIND_UOW_TO_TXN function
	RMUW gate, COMMIT_UOW function
	RMUW gate, CREATE_NETWORK_UOWID function
	RMUW gate, CREATE_UOW function
	RMUW gate, END_UOW_BROWSE function
	RMUW gate, END_WORK_TOKEN_BROWSE function
	RMUW gate, FORCE_UOW function
	RMUW gate, GET_NEXT_UOW function
	RMUW gate, GET_NEXT_WORK_TOKEN function
	RMUW gate, INQUIRE_UOW function
	RMUW gate, INQUIRE_UOW_ID function
	RMUW gate, INQUIRE_UOW_TOKEN function
	RMUW gate, INQUIRE_WORK_TOKEN function
	RMUW gate, REATTACH_REPLY function
	RMUW gate, SET_UOW function
	RMUW gate, SET_WORK_TOKEN function
	RMUW gate, START_UOW_BROWSE function
	RMUW gate, START_WORK_TOKEN_BROWSE function

	Recovery manager domain call-back formats
	RMRO gate, DELIVER_BACKOUT_DATA function
	RMRO gate, END_BACKOUT function
	RMRO gate, PERFORM_COMMIT function
	RMRO gate, PERFORM_PREPARE function
	RMRO gate, PERFORM_SHUNT function
	RMRO gate, PERFORM_UNSHUNT function
	RMRO gate, START_BACKOUT function
	RMDE gate, DELIVER_FORGET function
	RMDE gate, DELIVER_RECOVERY function
	RMDE gate, END_DELIVERY function
	RMDE gate, START_DELIVERY function
	RMKP gate, TAKE_KEYPOINT function
	RMLK gate, PERFORM_COMMIT function
	RMLK gate, PERFORM_PRELOGGING function
	RMLK gate, PERFORM_PREPARE function
	RMLK gate, PERFORM_SHUNT function
	RMLK gate, PERFORM_UNSHUNT function
	RMLK gate, REPLY_DO_COMMIT function
	RMLK gate, SEND_DO_COMMIT function

	Modules

	Chapter 100. Region status domain (RS)
	Region status domains specific gates
	RSDU gate, END_SYSTEM_DUMP function
	RSDU gate, END_TRANSACTION_DUMP function
	RSDU gate, START_SYSTEM_DUMP function
	RSDU gate, START_TRANSACTION_DUMP function
	RSSR gate, DEREGISTER_INTEREST function
	RSSR gate, INQUIRE_TARGET_STATUS function
	RSSR gate, SET_THRESHOLD_PERCENTAGE function
	RSSR gate, START_RECORDING function
	RSSR gate, STOP_RECORDING function
	RSSR gate, TEST_CONNECTION function
	RSXM gate, END_TRANSACTION function
	RSXM gate, START_TRANSACTION function

	Region status domains generic gates
	Modules

	Chapter 101. RRMS domain (RX)
	RRMS domain's specific gates
	RXDM gate, INQUIRE_RRS function
	RXDM gate, SET_PARAMETERS function
	RXUW gate, GET_CLIENT_REQUEST function
	RXUW gate, INQUIRE function
	RXUW gate, PUT_CLIENT_REQUEST function

	RRMS domain's call-back gates
	Modules

	Chapter 102. Request Streams Domain (RZ)
	Request Streams Domain's specific gates
	RZRJ gate, PERFORM_JOIN function
	RZRT gate, SET_EXIT_PROGRAM function
	RZSO gate, CREATE function
	RZSO gate, JOIN function
	RZSO gate, LEAVE function
	RZSO gate, RECEIVE_REPLY function
	RZSO gate, SEND_REQUEST function
	RZSO gate, WEAK_JOIN function
	RZTA gate, GET_CURRENT function
	RZTA gate, GET_DEBUG_DATA function
	RZTA gate, GET_JOIN_DATA function
	RZTA gate, GET_PUBLIC_ID function
	RZTA gate, GET_SERVER_DATA function
	RZTA gate, RECEIVE_REQUEST function
	RZTA gate, SEND_REPLY function
	RZTA gate, TERMINATE function

	Modules

	Chapter 103. Scheduler Services Domain (SH)
	Scheduler Services Domain's specific gates
	SHPR gate, ADD_PENDING_REQUEST function
	SHPR gate, DELETE_PENDING_REQUEST function
	SHPR gate, SET_BOUND_REQUEST function
	SHRQ gate, PERFORM_REGULAR_DREDGE function
	SHRQ gate, PERFORM_RESTART_DREDGE function
	SHRQ gate, PERFORM_SHUTDOWN function
	SHRR gate, RECEIVE_REQUEST function
	SHRR gate, RETRY_REQUEST function
	SHRR gate, ROUTE_REQUEST function
	SHRT gate, INQUIRE_EXIT_PROGRAM function
	SHRT gate, SET_EXIT_PROGRAM function

	Scheduler Services Domain's generic gates
	Scheduler domain's call-back gates
	Modules

	Chapter 104. Java Virtual Machine Domain (SJ)
	Java Virtual Machine Domain's specific gates
	SJCC gate, ADD_TO_ACTIVE_JVMSET function
	SJCC gate, REGISTER_JAVA_VERSION function
	SJCC gate, RELOAD_CLASSCACHE function
	SJCC gate, START_CLASSCACHE function
	SJCC gate, STOP_CLASSCACHE function
	SJDS gate, DELETE_THREADED_TCB function
	SJJS gate, CREATE_JVMSERVER function
	SJJS gate, COMPLETE_JVMSERVER function
	SJJS gate, DISCARD_JVMSERVER function
	SJJS gate, END_BROWSE_JVMSERVER function
	SJJS gate, GET_NEXT_JVMSERVER function
	SJJS gate, INQUIRE_JVMSERVER function
	SJJS gate, MARK_THREAD_DELETED function
	SJJS gate, RESOLVE_ALL_JVMSERVERS function
	SJJS gate, SET_JVMSERVER function
	SJJS gate, START_BROWSE_JVMSERVER function
	SJIN gate, DESTROY_SHAREDCC function
	SJIN gate, INITIALIZE_JVM function
	SJIN gate, INITIALIZE_SHAREDCC function
	SJIN gate, INVOKE_GC function
	SJIN gate, INVOKE_JAVA_PROGRAM function
	SJIN gate, UPDATE_JVMSERVER_PROFILE function
	SJIS gate, DELETE_INACTIVE_JVMS function
	SJIS gate, END_BROWSE_JVM function
	SJIS gate, END_BROWSE_JVMPROFILE function
	SJIS gate, GET_NEXT_JVM function
	SJIS gate, GET_NEXT_JVMPROFILE function
	SJIS gate, INQUIRE_CLASSCACHE function
	SJIS gate, INQUIRE_JVM function
	SJIS gate, INQUIRE_JVMPOOL function
	SJIS gate, INQUIRE_JVMPROFILE function
	SJIN gate, PERFORM_JVMPOOL function
	SJIS gate, SET_CLASSCACHE function
	SJIS gate, SET_JVMPOOL function
	SJIS gate, SET_JVMPROFILEDIR function
	SJIS gate, START_BROWSE_JVM function
	SJIS gate, START_BROWSE_JVMPROFILE function
	SJTH gate, INVOKE_JAVA_PROGRAM function

	JVM domain's generic gates
	Modules
	Exits

	Chapter 105. Storage Manager Domain (SM)
	Storage Manager Domain's specific gates
	SMAD gate, ADD_SUBPOOL function
	SMAD gate, DELETE_SUBPOOL function
	SMAD gate, END_SUBPOOL_BROWSE function
	SMAD gate, GET_NEXT_SUBPOOL function
	SMAD gate, INQUIRE_SUBPOOL function
	SMAD gate, START_SUBPOOL_BROWSE function
	SMAR gate, ALLOCATE_TRANSACTION_STG function
	SMAR gate, RELEASE_TRANSACTION_STG function
	SMCK gate, CHECK_STORAGE function
	SMCK gate, RECOVER_STORAGE function
	SMGF gate, FREEMAIN function
	SMGF gate, GETMAIN function
	SMGF gate, INQUIRE_ELEMENT_LENGTH function
	SMMC gate, FREEMAIN function
	SMMC gate, FREEMAIN_ALL_TERMINAL function
	SMMC gate, GETMAIN function
	SMMC gate, INITIALISE function
	SMMC gate, INQUIRE_ELEMENT_LENGTH function
	SMMC gate, INQUIRE_TASK_STORAGE function
	SMSR gate, INQ_TRANSACTION_ISOLATION function
	SMSR gate, INQUIRE_ACCESS function
	SMSR gate, INQUIRE_ACCESS_TOKEN function
	SMSR gate, INQUIRE_DSA_LIMIT function
	SMSR gate, INQUIRE_DSA_SIZE function
	SMSR gate, INQUIRE_ISOLATION_TOKEN function
	SMSR gate, INQUIRE_REENTRANT_PROGRAM function
	SMSR gate, INQUIRE_SHORT_ON_STORAGE function
	SMSR gate, INQUIRE_STORAGE_PROTECT function
	SMSR gate, SET_DSA_LIMIT function
	SMSR gate, SET_DSA_SIZE function
	SMSR gate, SET_REENTRANT_PROGRAM function
	SMSR gate, SET_STORAGE_PROTECT function
	SMSR gate, SET_STORAGE_RECOVERY function
	SMSR gate, SET_TRANSACTION_ISOLATION function
	SMSR gate, SWITCH_SUBSPACE function
	SMSR gate, UPDATE_SUBSPACE_TCB_INFO function
	S2AD gate, ADD_SUBPOOL function
	S2AD gate, DELETE_SUBPOOL function
	S2AD gate, END_SUBPOOL_BROWSE function
	S2AD gate, GET_NEXT_SUBPOOL function
	S2AD gate, INQUIRE_SUBPOOL function
	S2AD gate, START_SUBPOOL_BROWSE function
	S2GF gate, FREEMAIN function
	S2GF gate, GETMAIN function
	S2GF gate, INQUIRE_ELEMENT_LENGTH function
	S2SR gate, COPY_ABOVE_BAR_TO_BELOW function
	S2SR gate, COPY_BELOW_BAR_TO_ABOVE function

	Storage manager domain generic gates
	Storage manager domain generic formats
	SMNT gate, MVS_STORAGE_NOTIFY function
	SMNT gate, STORAGE_NOTIFY function

	Modules

	Chapter 106. Sockets Domain (SO)
	Sockets Domain's specific gates
	SOAD gate, ADD_REPLACE_TCPIPSERVICE function
	SOAD gate, DELETE_TCPIPSERVICE function
	SOCK gate, ACCEPT function
	SOCK gate, BIND function
	SOCK gate, CANCEL function
	SOCK gate, CLOSE function
	SOCK gate, CONNECT function
	SOCK gate, CREATE function
	SOCK gate, ESTABLISH function
	SOCK gate, GET_DATA_LENGTH function
	SOCK gate, GET_SOCKET_OPTS function
	SOCK gate, LISTEN function
	SOCK gate, RECEIVE function
	SOCK gate, RECEIVE_SSL_DATA function
	SOCK gate, RELINQUISH function
	SOCK gate, RESERVE function
	SOCK gate, SCHEDULE_RECEIVER_TASK function
	SOCK gate, SEND function
	SOCK gate, SEND_SSL_DATA function
	SOCK gate, SET_SOCKET_OPTS function
	SOCK gate, SURRENDER function
	SOIS gate, DELETE_CERTIFICATE_DATA function
	SOIS gate, EXPORT_CERTIFICATE_DATA function
	SOIS gate, IMPORT_CERTIFICATE_DATA function
	SOIS gate, INITIALIZE_ENVIRONMENT function
	SOIS gate, INQUIRE function
	SOIS gate, INQUIRE_CONNECTION function
	SOIS gate, INQUIRE_PARAMETERS function
	SOIS gate, INQUIRE_SOCKET_TOKEN function
	SOIS gate, INQUIRE_STATISTICS function
	SOIS gate, SET function
	SOIS gate, SET_PARAMETERS function
	SOIS gate, VALIDATE_CIPHERS function
	SOIS gate, VERIFY_IP_ADDRESS function
	SOLS gate, LISTEN function
	SORD gate, DEREGISTER function
	SORD gate, IMMCLOSE function
	SORD gate, REGISTER function
	SORD gate, REGISTER_NOTIFICATION function
	SORL gate, UPDATE_REVOCATION_LIST function
	SOTB gate, END_BROWSE function
	SOTB gate, GET_NEXT function
	SOTB gate, INQUIRE_TCPIPSERVICE function
	SOTB gate, SET_TCPIPSERVICE function
	SOTB gate, START_BROWSE function

	Socket domain's generic gates
	Modules

	Chapter 107. Statistics Domain (ST)
	Statistics domain's specific gates
	STST gate, COLLECT_RESOURCE_STATS function
	STST gate, COLLECT_STATISTICS function
	STST gate, DISABLE_STATISTICS function
	STST gate, INQ_STATISTICS_OPTIONS function
	STST gate, RECORD_STATISTICS function
	STST gate, REQUEST_STATISTICS function
	STST gate, SET_STATISTICS_OPTIONS function
	STST gate, STATISTICS_COLLECTION function

	Statistics domain's generic gates
	Statistics domain's generic gates
	Statistics domain's generic formats
	STST gate, COLLECT_RESOURCE_STATS function
	STST gate, COLLECT_STATISTICS function

	Modules

	Chapter 108. Timer Domain (TI)
	Timer Domain's specific gates
	TIMF gate, CONVERT_TIME function
	TIMF gate, FORMAT_TIME function
	TIMF gate, INQUIRE_TIME function
	TISR gate, CANCEL function
	TISR gate, INQUIRE_EXPIRATION_TOKEN function
	TISR gate, REQUEST_NOTIFY_INTERVAL function
	TISR gate, REQUEST_NOTIFY_TIME_OF_DAY function

	Timer domain's generic gates
	Timer domain's generic formats
	TISR gate, NOTIFY function

	Modules

	Chapter 109. Trace Domain (TR)
	Trace Domain's specific gates
	TRFT gate, TRACE_PUT function
	TRPT gate, TRACE_PUT function
	TRSR gate, ACTIVATE_TRAP function
	TRSR gate, DEACTIVATE_TRAP function
	TRSR gate, INQUIRE_AUXILIARY_TRACE function
	TRSR gate, INQUIRE_GTF_TRACE function
	TRSR gate, INQUIRE_INTERNAL_TRACE function
	TRSR gate, PAUSE_AUXILIARY_TRACE function
	TRSR gate, SET_AUX_TRACE_AUTOSWITCH function
	TRSR gate, SET_INTERNAL_TABLE_SIZE function
	TRSR gate, START_AUXILIARY_TRACE function
	TRSR gate, START_GTF_TRACE function
	TRSR gate, START_INTERNAL_TRACE function
	TRSR gate, STOP_AUXILIARY_TRACE function
	TRSR gate, STOP_GTF_TRACE function
	TRSR gate, STOP_INTERNAL_TRACE function
	TRSR gate, SWITCH_AUXILIARY_EXTENTS function

	Trace domain's generic gates
	Modules

	Chapter 110. Temporary Storage Domain (TS)
	Temporary Storage Domain's specific gates
	TSAD gate, ADD_REPLACE_TSMODEL function
	TSAD gate, DELETE_TSMODEL function
	TSAD gate, INITIALISE function
	TSBR gate, CHECK_PREFIX function
	TSBR gate, END_BROWSE function
	TSBR gate, GET_NEXT function
	TSBR gate, INQUIRE_QUEUE function
	TSBR gate, START_BROWSE function
	TSMB gate, END_BROWSE function
	TSMB gate, GET_NEXT function
	TSMB gate, INQUIRE_TSMODEL function
	TSMB gate, MATCH function
	TSMB gate, START_BROWSE function
	TSPT gate, GET function
	TSPT gate, GET_RELEASE function
	TSPT gate, GET_RELEASE_SET function
	TSPT gate, GET_SET function
	TSPT gate, PUT function
	TSPT gate, PUT_REPLACE function
	TSPT gate, RELEASE function
	TSQR gate, ALLOCATE_SET_STORAGE function
	TSQR gate, DELETE function
	TSQR gate, READ_INTO function
	TSQR gate, READ_NEXT_INTO function
	TSQR gate, READ_NEXT_SET function
	TSQR gate, READ_SET function
	TSQR gate, REWRITE function
	TSQR gate, WRITE function
	TSRM gate, INQUIRE_QUEUE function
	TSSH gate, ADD_POOL function
	TSSH gate, DELETE function
	TSSH gate, END_BROWSE function
	TSSH gate, END_TSPOOL_BROWSE function
	TSSH gate, GET_NEXT function
	TSSH gate, GET_NEXT_TSPOOL function
	TSSH gate, INITIALISE function
	TSSH gate, INQUIRE_POOL_TOKEN function
	TSSH gate, INQUIRE_QUEUE function
	TSSH gate, INQUIRE_SYSID_TABLE_TOKEN function
	TSSH gate, INQUIRE_TSPOOL function
	TSSH gate, READ_INTO function
	TSSH gate, READ_NEXT_INTO function
	TSSH gate, READ_NEXT_SET function
	TSSH gate, READ_SET function
	TSSH gate, REWRITE function
	TSSH gate, START_BROWSE function
	TSSH gate, START_TSPOOL_BROWSE function
	TSSH gate, WRITE function
	TSSR gate, SET_BUFFERS function
	TSSR gate, SET_START_TYPE function
	TSSR gate, SET_STRINGS function

	Temporary Storage domain generic gates
	Temporary Storage domain call-back formats
	TSIC format, DELIVER_IC_RECOVERY_DATA function
	TSIC format, SOLICIT_INQUIRES function

	Modules
	Exits

	Chapter 111. User Domain (US)
	User Domain's specific gates
	USAD gate, ADD_USER_WITH_PASSWORD function
	USAD gate, ADD_USER_WITHOUT_PASSWORD function
	USAD gate, DELETE_USER function
	USAD gate, INQUIRE_DEFAULT_USER function
	USAD gate, INQUIRE_USER function
	USAD gate, VALIDATE_USERID function
	USAD gate, NOTIFY_USERID function
	USAD gate, ADD_USER_VIA_ICRX function
	USAD gate, INQUIRE_ICRX function
	USAD gate, RELEASE_ICRX function
	USAD gate, ICRX_TO_USERID function
	USAD gate, GET_ASSOCIATED_DATA_LIST function
	USFL gate, FLATTEN_USER function
	USFL gate, TAKEOVER function
	USFL gate, UNFLATTEN_USER function
	USIS gate, SET_USER_DOMAIN_PARMS function
	USIS gate, INQUIRE_DOMAIN function
	USXM gate, ADD_TRANSACTION_USER function
	USXM gate, DELETE_TRANSACTION_USER function
	USXM gate, END_TRANSACTION function
	USXM gate, FLATTEN_TRANSACTION_USER function
	USXM gate, INIT_TRANSACTION_USER function
	USXM gate, INQUIRE_TRANSACTION_USER function
	USXM gate, TERM_TRANSACTION_USER function
	USXM gate, UNFLATTEN_TRANSACTION_USER function

	User domain's generic gates
	Modules

	Chapter 112. Web Domain (WB)
	Web Domain's specific gates
	WBAP gate, END_BROWSE function
	WBAP gate, GET_HTTP_RESPONSE function
	WBAP gate, GET_MESSAGE_BODY function
	WBAP gate, INITIALIZE_TRANSACTION function
	WBAP gate, INQUIRE function
	WBAP gate, READ function
	WBAP gate, READ_NEXT function
	WBAP gate, SEND_RESPONSE function
	WBAP gate, START_BROWSE function
	WBAP gate, WRITE_HEADER function
	WBCL gate, CLOSE_SESSION function
	WBCL gate, END_BROWSE_HEADERS function
	WBCL gate, INQUIRE_SESSION function
	WBCL gate, OPEN_SESSION function
	WBCL gate, PARSE_URL function
	WBCL gate, READ_HEADER function
	WBCL gate, READ_NEXT_HEADER function
	WBCL gate, READ_RESPONSE function
	WBCL gate, START_BROWSE_HEADERS function
	WBCL gate, WRITE_HEADER function
	WBCL gate, WRITE_REQUEST function
	WBFM gate, PARSE_MULTIPART_FORM function
	WBFM gate, PARSE_URL_ENCODED_FORM function
	WBFM gate, PARSE_URL_ENCODED_LIST function
	WBFM gate, URL_DECODE function
	WBSR gate, RECEIVE function
	WBSR gate, SEND function
	WBSR gate, SEND_STATIC_RESPONSE function
	WBSV gate, READ_REQUEST function
	WBSV gate, WRITE_RESPONSE function
	WBSV gate, PEEK_HEADERS function
	WBSV gate, INQUIRE_CURRENT_SESSION function
	WBSV gate, SET_SESSION function
	WBSV gate, CLOSE_SESSION function
	WBSV gate, INQUIRE_SESSION function
	WBUR gate, ADD_REPLACE_URIMAP function
	WBUR gate, DELETE_URIMAP function
	WBUR gate, END_BROWSE_HOST function
	WBUR gate, END_BROWSE_URIMAP function
	WBUR gate, GET_NEXT_HOST function
	WBUR gate, GET_NEXT_URIMAP function
	WBUR gate, INITIALIZE_URIMAPS function
	WBUR gate, INQUIRE_HOST function
	WBUR gate, INQUIRE_URIMAP function
	WBUR gate, LOCATE_URIMAP function
	WBUR gate, SET_HOST function
	WBUR gate, SET_URIMAP function
	WBUR gate, START_BROWSE_HOST function
	WBUR gate, START_BROWSE_URIMAP function

	Web domain's generic gates
	Web domain's call-back gates
	Modules
	Exits

	Chapter 113. Web 2.0 Domain (W2)
	Web 2.0 Domain's specific gates
	W2AT gate, ADD_ATOMSERVICE function
	W2AT gate, ADD_REPLACE_ATOMSERVICE function
	W2AT gate, DELETE_ATOMSERVICE function
	W2AT gate, END_BROWSE_ATOMSERVICE function
	W2AT gate, GET_NEXT_ATOMSERVICE function
	W2AT gate, INITIALIZE_ATOMSERVICES function
	W2AT gate, INQUIRE_ATOMSERVICE function
	W2AT gate, SET_ATOMSERVICE function
	W2AT gate, START_BROWSE_ATOMSERVICE function
	W2W2 gate, HANDLE_ATOM_REQUEST function
	W2W2 gate, SET_PARAMETERS function

	Modules
	Exits

	Chapter 114. Transaction manager domain (XM)
	Transaction manager domain's specific gates
	XMAT gate, ATTACH function
	XMAT gate, REATTACH function
	XMBD gate, END_BROWSE_TRANDEF function
	XMBD gate, GET_NEXT_TRANDEF function
	XMBD gate, START_BROWSE_TRANDEF function
	XMCL gate, ADD_REPLACE_TCLASS function
	XMCL gate, ADD_TCLASS function
	XMCL gate, DELETE_TCLASS function
	XMCL gate, DEREGISTER_TCLASS_USAGE function
	XMCL gate, END_BROWSE_TCLASS function
	XMCL gate, GET_NEXT_TCLASS function
	XMCL gate, INQUIRE_ALL_TCLASSES function
	XMCL gate, INQUIRE_TCLASS function
	XMCL gate, LOCATE_AND_LOCK_TCLASS function
	XMCL gate, REGISTER_TCLASS_USAGE function
	XMCL gate, SET_TCLASS function
	XMCL gate, START_BROWSE_TCLASS function
	XMCL gate, UNLOCK_TCLASS function
	XMDD gate, DELETE_TRANDEF function
	XMER gate, ABEND_TRANSACTION function
	XMER gate, INQUIRE_DEFERRED_ABEND function
	XMER gate, INQUIRE_DEFERRED_MESSAGE function
	XMER gate, REPORT_MESSAGE function
	XMER gate, SET_DEFERRED_ABEND function
	XMER gate, SET_DEFERRED_MESSAGE function
	XMFD gate, FIND_PROFILE function
	XMIQ gate, END_BROWSE_TRANSACTION function
	XMIQ gate, END_BROWSE_TXN_TOKEN function
	XMIQ gate, GET_NEXT_TRANSACTION function
	XMIQ gate, GET_NEXT_TXN_TOKEN function
	XMIQ gate, INQUIRE_TRANSACTION function
	XMIQ gate, INQUIRE_TRANSACTION_TOKEN function
	XMIQ gate, PURGE_TRANSACTION function
	XMIQ gate, SET_TRANSACTION function
	XMIQ gate, SET_TRANSACTION_TOKEN function
	XMIQ gate, START_BROWSE_TRANSACTION function
	XMIQ gate, START_BROWSE_TXN_TOKEN function
	XMLD gate, LOCATE_AND_LOCK_TRANDEF function
	XMLD gate, UNLOCK_TRANDEF function
	XMRU gate, RUN_TRANSACTION function
	XMSR gate, INQUIRE_DTRTRAN function
	XMSR gate, INQUIRE_MXT function
	XMSR gate, SET_DTRTRAN function
	XMSR gate, SET_MXT function
	XMXD gate, ADD_REPLACE_TRANDEF function
	XMXD gate, INQUIRE_REMOTE_TRANDEF function
	XMXD gate, INQUIRE_TRANDEF function
	XMXD gate, SET_TRANDEF function
	XMXE gate, FREE_TXN_ENVIRONMENT function
	XMXE gate, GET_TXN_ENVIRONMENT function

	Transaction manager domain's generic gates
	Transaction Manager domain's callback formats
	XMAC gate, ABEND_TERMINATE function
	XMAC gate, BIND_XM_CLIENT function
	XMAC gate, INIT_XM_CLIENT function
	XMAC gate, RELEASE_XM_CLIENT function
	XMAC gate, TRANSACTION_HANG function

	Transaction manager domain's generic formats
	XMDN gate, TRANDEF_DELETE_QUERY function
	XMDN gate, TRANDEF_NOTIFY function
	XMNT gate, MXT_CHANGE_NOTIFY function
	XMNT gate, MXT_NOTIFY function
	XMPP gate, FORCE_PURGE_INHIBIT_QUERY function

	Modules
	Exits

	Chapter 115. Security Domain (XS)
	Security Domain's specific gates
	XSAD gate, ADD_USER_WITH_PASSWORD function
	XSAD gate, ADD_USER_WITHOUT_PASSWORD function
	XSAD gate, DELETE_USER_SECURITY function
	XSAD gate, INQUIRE_USER_ATTRIBUTES function
	XSAD gate, VALIDATE_USERID function
	XSAD gate, ADD_USER_VIA_ICRX function
	XSAD gate, INQUIRE_ICRX function
	XSAD gate, RELEASE_ICRX function
	XSAD gate, RELEASE_ICRX_STORAGE function
	XSCT gate, INQUIRE_CERTIFICATE function
	XSCT gate, INQUIRE_REVOCATION_LIST function
	XSEJ gate, ADD_REPL_ROLE_FOR_METHOD function
	XSEJ gate, CHECK_CALLER_IN_ROLE function
	XSEJ gate, CHECK_EJB_METHOD function
	XSEJ gate, DELETE_BEAN_SECURITY function
	XSEJ gate, INQUIRE_DISTINGUISHED_NAME function
	XSEJ gate, INQUIRE_HASH_CODE function
	XSEJ gate, INQUIRE_PRINCIPAL function
	XSEJ gate, SET_ROLE_FOR_CODED_ROLE function
	XSFL gate, FLATTEN_USER_SECURITY function
	XSFL gate, UNFLATTEN_ESM_UTOKEN function
	XSFL gate, UNFLATTEN_USER_SECURITY function
	XSIS gate, INQ_SECURITY_DOMAIN_PARMS function
	XSIS gate, INQUIRE_REALM_NAME function
	XSIS gate, INQUIRE_REGION_USERID function
	XSIS gate, SET_NETWORK_IDENTIFIER function
	XSIS gate, SET_SECURITY_DOMAIN_PARMS function
	XSIS gate, SET_SPECIAL_TOKENS function
	XSLU gate, GENERATE_APPC_BIND function
	XSLU gate, GENERATE_APPC_RESPONSE function
	XSLU gate, VALIDATE_APPC_RESPONSE function
	XSPW gate, CREATE_PASSTICKET function
	XSPW gate, INQUIRE_CERTIFICATE_USERID function
	XSPW gate, INQUIRE_PASSWORD_DATA function
	XSPW gate, REGISTER_CERTIFICATE_USER function
	XSPW gate, UPDATE_PASSWORD function
	XSRC gate, CHECK_CICS_COMMAND function
	XSRC gate, CHECK_CICS_RESOURCE function
	XSRC gate, CHECK_NON_CICS_RESOURCE function
	XSRC gate, CHECK_SURROGATE_USER function
	XSRC gate, REBUILD_RESOURCE_CLASSES function
	XSXM gate, ADD_TRANSACTION_SECURITY function
	XSXM gate, DEL_TRANSACTION_SECURITY function
	XSXM gate, END_TRANSACTION function

	Security manager domain's generic gates
	Modules

	Part 4. CICS modules
	Chapter 116. CICS directory
	Classification of elements
	Name
	Type
	Library

	Optional listings
	Contents of the distribution tapes

	Chapter 117. CICS executable modules
	DFHACP
	DFHAICBP
	DFHALP
	DFHAMP
	DFHAPJC
	DFHAPSIP
	DFHAPST
	DFHAPTD
	DFHAPTI
	DFHAPTIM
	DFHAPTIX
	DFHASV
	DFHBSIB3
	DFHBSIZ1
	DFHBSIZ3
	DFHBSMIR
	DFHBSMPP
	DFHBSM61
	DFHBSM62
	DFHBSS
	DFHBSSA
	DFHBSSF
	DFHBSSS
	DFHBSSZ
	DFHBSSZB
	DFHBSSZG
	DFHBSSZI
	DFHBSSZL
	DFHBSSZM
	DFHBSSZP
	DFHBSSZR
	DFHBSSZS
	DFHBSSZ6
	DFHBST
	DFHBSTB
	DFHBSTBL
	DFHBSTB3
	DFHBSTC
	DFHBSTD
	DFHBSTE
	DFHBSTH
	DFHBSTI
	DFHBSTM
	DFHBSTO
	DFHBSTP3
	DFHBSTS
	DFHBSTT
	DFHBSTZ
	DFHBSTZA
	DFHBSTZB
	DFHBSTZC
	DFHBSTZE
	DFHBSTZH
	DFHBSTZL
	DFHBSTZO
	DFHBSTZP
	DFHBSTZR
	DFHBSTZS
	DFHBSTZV
	DFHBSTZZ
	DFHBSTZ1
	DFHBSTZ2
	DFHBSTZ3
	DFHBSXGS
	DFHBSZZ
	DFHBSZZS
	DFHBSZZV
	DFHCAPB
	DFHCCNV
	DFHCMP
	DFHCPY
	DFHCRC
	DFHCRNP
	DFHCRQ
	DFHCRR
	DFHCRS
	DFHCRSP
	DFHCRT
	DFHCSA
	DFHCSDUP
	DFHCSSC
	DFHCSVC
	DFHCUCAB
	DFHCUCB
	DFHCUCCB
	DFHCUCDB
	DFHCWTO
	DFHDBAT
	DFHDBCON
	DFHDBCR
	DFHDBCT
	DFHDBCTX
	DFHDBDI
	DFHDBDSC
	DFHDBIQ
	DFHDBME
	DFHDBMOX
	DFHDBP
	DFHDBREX
	DFHDBSPX
	DFHDBSSX
	DFHDBSTX
	DFHDBTOX
	DFHDBUEX
	DFHDCP
	DFHDES
	DFHDIP
	DFHDLI
	DFHDLIAI
	DFHDLIDP
	DFHDLIRP
	DFHDMP
	DFHDRPG
	DFHDSBA$, DFHDSB1$
	DFHDU660
	DFHDXACH
	DFHDXSTM
	DFHDYP
	DFHEAI
	DFHEAI0
	DFHEAP1$
	DFHEBF
	DFHEBU
	DFHECI
	DFHECID
	DFHECIP
	DFHECP1$
	DFHEDAD
	DFHEDAP
	DFHEDC
	DFHEDFBR
	DFHEDFD
	DFHEDFM
	DFHEDFP
	DFHEDFR
	DFHEDFX
	DFHEDI
	DFHEDP
	DFHEDP1$
	DFHEEI
	DFHEEX
	DFHEFRM
	DFHEGL
	DFHEIIC
	DFHEIDTI
	DFHEIP
	DFHEIPA
	DFHEIFC
	DFHEISR
	DFHEJC
	DFHEKC
	DFHELII
	DFHEMS
	DFHEMTA
	DFHEMTD
	DFHEMTP
	DFHEOTP
	DFHEPC
	DFHEPI
	DFHEPP1$
	DFHEPS
	DFHERM
	DFHESC
	DFHEISP
	DFHESTP
	DFHETC
	DFHETD
	DFHETL
	DFHETR
	DFHETS
	DFHEXI
	DFHFCAT
	DFHFCBD
	DFHFCDN
	DFHFCDTS
	DFHFCFR
	DFHFCFS
	DFHFCL
	DFHFCM
	DFHFCMT
	DFHFCN
	DFHFCRL
	DFHFCRP
	DFHFCSD
	DFHFCST
	DFHFCU
	DFHFCVR
	DFHFCVS
	DFHFDP
	DFHFEP
	DFHGMM
	DFHHPSVC
	DFHICP
	DFHIIPA$, DFHIIP1$
	DFHIRP
	DFHIRW10
	DFHISP
	DFHJCP
	DFHJUP
	DFHKCP
	DFHKCQ
	DFHKCRP
	DFHKCSC
	DFHKCSP
	DFHLUP
	DFHMCPA$, DFHMCPE$, DFHMCP1$
	DFHMCX
	DFHMGP
	DFHMGT
	DFHMIRS
	DFHML1
	DFHMROQP
	DFHMSP
	DFHMXP
	DFHM32A$, DFHM321$
	DFHPBPA$, DFHPBP1$
	DFHPD660
	DFHPEP
	DFHPHP
	DFHPL1OI
	DFHPRK
	DFHPSP
	DFHPSPDW
	DFHPSPSS
	DFHPSPST
	DFHPSSVC
	DFHPUP
	DFHP3270
	DFHQRY
	DFHRCEX
	DFHRKB
	DFHREST
	DFHRLRA$, DFHRLR1$
	DFHRMSY
	DFHRTC
	DFHRTE
	DFHSFP
	DFHSIA1
	DFHSIB1
	DFHSIC1
	DFHSID1
	DFHSIF1
	DFHSIG1
	DFHSIH1
	DFHSII1
	DFHSIJ1
	DFHSIP
	DFHSKP
	DFHSMSCP
	DFHSNAT
	DFHSNNFY
	DFHSNMIG
	DFHSNP
	DFHSNSN
	DFHSNVCL
	DFHSNVID
	DFHSNVPR
	DFHSNVTO
	DFHSPP
	DFHSRLI
	DFHSRP
	DFHSSEN
	DFHSSGC
	DFHSSIN
	DFHSSMGP
	DFHSSMGT
	DFHSSWT
	DFHSSWTF
	DFHSSWTO
	DFHSTDT
	DFHSTFC
	DFHSTIB
	DFHSTJC
	DFHSTLK
	DFHSTLS
	DFHSTP
	DFHSTSZ
	DFHSTTD
	DFHSTTM
	DFHSTTR
	DFHSTTS
	DFHSUSN
	DFHSUSX
	DFHSUZX
	DFHTACP
	DFHTAJP
	DFHTBSB
	DFHTBSBP
	DFHTBSD
	DFHTBSDP
	DFHTBSL
	DFHTBSLP
	DFHTBSQ
	DFHTBSQP
	DFHTBSR
	DFHTBSRP
	DFHTBSSP
	DFHTBS00
	DFHTCBP
	DFHTCP
	DFHTCRP
	DFHTCRPC
	DFHTCRPL
	DFHTCRPS
	DFHTCRPU
	DFHTDA
	DFHTDB
	DFHTDEXL
	DFHTDP
	DFHTDQ
	DFHTDRM
	DFHTDRP
	DFHTDTM
	DFHTDX
	DFHTEP
	DFHTMP
	DFHTON
	DFHTOR
	DFHTORP
	DFHTPPA$, DFHTPP1$
	DFHTPQ
	DFHTPR
	DFHTPS
	DFHTRAP
	DFHTR660 and AMDUSREF
	DFHTRP
	DFHTRZCP
	DFHTRZIP
	DFHTRZPP
	DFHTRZXP
	DFHTRZYP
	DFHTRZZP
	DFHTSP
	DFHTU660
	DFHUCNV
	DFHUEH
	DFHUEM
	DFHUSBP
	DFHWCCS
	DFHWCGNT
	DFHWDATT
	DFHWDINA
	DFHWDISP
	DFHWDSRP
	DFHWDWAT
	DFHWKP
	DFHWLFRE
	DFHWLGET
	DFHWMG1
	DFHWMI
	DFHWMMT
	DFHWMPG
	DFHWMP1
	DFHWMQG
	DFHWMQH
	DFHWMQP
	DFHWMQS
	DFHWMRD
	DFHWMS
	DFHWMS20
	DFHWMWR
	DFHWOS
	DFHWOSA
	DFHWOSB
	DFHWSRTR
	DFHWSSN1
	DFHWSSN2
	DFHWSSN3
	DFHWSSOF
	DFHWSSR
	DFHWSSW
	DFHWSTI
	DFHWSTKV
	DFHWSXPI
	DFHWTI
	DFHWTRP
	DFHXCP
	DFHXCPC
	DFHXCP1
	DFHXFP
	DFHXFQ
	DFHXFX
	DFHXRA
	DFHXRB
	DFHXRC
	DFHXRCP
	DFHXRE
	DFHXRP
	DFHXRSP
	DFHXSMN
	DFHXSMX
	DFHXSS
	DFHXSSB
	DFHXSWM
	DFHXTCI
	DFHXTP
	DFHZABD
	DFHZACT
	DFHZAIT
	DFHZAND
	DFHZARER
	DFHZARL
	DFHZARM
	DFHZARQ
	DFHZARR
	DFHZARRA
	DFHZARRC
	DFHZARRF
	DFHZASX
	DFHZATA
	DFHZATD
	DFHZATDX
	DFHZATI
	DFHZATMD
	DFHZATMF
	DFHZATR
	DFHZATS
	DFHZATT
	DFHZBAN
	DFHZBKT
	DFHZBLX
	DFHZCA
	DFHZCB
	DFHZCC
	DFHZCHS
	DFHZCLS
	DFHZCLX
	DFHZCNA
	DFHZCNR
	DFHZCNT
	DFHZCP
	DFHZCQ
	DFHZCQDL
	DFHZCQIN
	DFHZCQIQ
	DFHZCQIS
	DFHZCQIT
	DFHZCQRS
	DFHZCRQ
	DFHZCRT
	DFHZCUT
	DFHZCW
	DFHZCX
	DFHZCXR
	DFHZCY
	DFHZCZ
	DFHZDET
	DFHZDSP
	DFHZDST
	DFHZEMW
	DFHZERH
	DFHZEV1
	DFHZEV2
	DFHZFRE
	DFHZGET
	DFHZHPRX
	DFHZHPSR
	DFHZISP
	DFHZIS1
	DFHZIS2
	DFHZLEX
	DFHZLGX
	DFHZLOC
	DFHZLRP
	DFHZLTX
	DFHZLUS
	DFHZNAC
	DFHZNEP
	DFHZNSP
	DFHZOPA
	DFHZOPN
	DFHZOPX
	DFHZQUE
	DFHZRAC
	DFHZRAQ
	DFHZRAR
	DFHZRAS
	DFHZRLG
	DFHZRLP
	DFHZRLX
	DFHZRRX
	DFHZRSP
	DFHZRST
	DFHZRSY
	DFHZRVL
	DFHZRVS
	DFHZRVX
	DFHZSAX
	DFHZSCX
	DFHZSDA
	DFHZSDL
	DFHZSDR
	DFHZSDS
	DFHZSDX
	DFHZSES
	DFHZSEX
	DFHZSHU
	DFHZSIM
	DFHZSIX
	DFHZSKR
	DFHZSLS
	DFHZSLX
	DFHZSSX
	DFHZSTAP
	DFHZSTU
	DFHZSUP
	DFHZSYN
	DFHZSYX
	DFHZTAX
	DFHZTPX
	DFHZTRA
	DFHZTSP
	DFHZUCT
	DFHZUIX
	DFHZUSR
	DFHZXCU
	DFHZXQO
	DFHZXRC
	DFHZXRE0
	DFHZXRL
	DFHZXRT
	DFHZXST

	Part 5. Appendixes
	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

