
CICS Transaction Server for z/OS
Version 4 Release 2

Intercommunication Guide

SC34-7172-01

���

CICS Transaction Server for z/OS
Version 4 Release 2

Intercommunication Guide

SC34-7172-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 393.

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1977, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface ix
What this book is about ix
What is not covered by this book ix
Who this book is for x
What you need to know to understand this book . . x
How to use this book x
How this book is organized x
Terminology xi

Changes in CICS Transaction Server
for z/OS, Version 4 Release 2 xiii

Part 1. Intercommunication concepts
and facilities 1

Chapter 1. Introduction to CICS
intercommunication 3
Intercommunication methods 3

Communication between systems 3
Multiregion operation 4

Intercommunication facilities 4
Function shipping 5
Asynchronous processing 6
Transaction routing 6
Distributed program link (DPL) 6
Distributed transaction processing (DTP) 7

Using CICS intercommunication 7
Connecting regional centers 9
Connecting divisions within an organization . . 10

Transaction tracking 10
Association data 11

Chapter 2. ISC and IPIC
intercommunications facilities 19
Intercommunication using IP interconnectivity. . . 19

Intercommunication facilities available using IPIC 20
Intersystem communication over SNA 21

Intercommunication facilities available using ISC 21
Connections between subsystems 22
Intersystem sessions 23
Establishing intersystem sessions 25

Chapter 3. Multiregion operation. . . . 27
Intercommunication facilities available using MRO 27
Cross-system multiregion operation (XCF/MRO) . . 28

Benefits of XCF/MRO 31
Applications of multiregion operation 31

Program development 31
Time-sharing 31
Reliable database access 32
Departmental separation 32
Multiprocessor performance 32
Workload balancing in a sysplex 32

Virtual storage constraint relief 33
Conversion from a single-region system 33

Chapter 4. CICS function shipping . . . 35
Overview of function shipping 35
Design considerations for Function Shipping . . . 36

File control 36
DL/I 37
Temporary storage 37
Transient data 37
Intersystem queuing 38

The mirror transaction and transformer program . . 39
Long-running mirror tasks for MRO 41
The short-path transformer for MRO 42
Long-running mirror tasks for IPIC 42
Error handling and failure of the mirror
transaction. 43

Function shipping examples 44

Chapter 5. Asynchronous processing 49
Overview of asynchronous processing 49
Asynchronous processing methods 50
Asynchronous processing using START and
RETRIEVE commands 51

Starting and canceling remote transactions . . . 51
Passing information with the START command 52
Improving performance of intersystem START
requests 53
Including start request delivery in a unit of work 54
Deferred transmission of START requests with
NOCHECK option for ISC links 54
Intersystem queuing 55
Data retrieval by a started transaction 56
Terminal acquisition by a remotely-initiated CICS
transaction. 57

System programming considerations 57
Asynchronous processing examples 57

Chapter 6. Introduction to CICS
dynamic routing. 61
What is dynamic routing? 61
Two routing models 62

The “hub” model 62
The distributed model 63

Two routing programs 65

Chapter 7. CICS transaction routing . . 67
Overview of transaction routing 67

Initiating transaction routing 68
Terminal-initiated transaction routing. 68

Static transaction routing 69
Dynamic transaction routing. 69

Traditional routing of transactions started by ATI . . 71

© Copyright IBM Corp. 1977, 2012 iii

||
||

||
||
||
||
|
||

Shipping terminals for automatic transaction
initiation 73
ATI and generic resources 80

Routing transactions invoked by START commands 80
Advantages of the enhanced method 80
How to route transactions started by
terminal-related START commands 81
Non-terminal-related START commands 86

Allocation of remote APPC connections 89
Transaction routing with APPC devices 89
Allocating an alternate facility 90
The system as a terminal 90

The relay program 92
Basic mapping support (BMS) 92

BMS message routing to remote terminals and
operators 93

Using the routing transaction, CRTE 93
System programming for transaction routing . . . 94

Intersystem queuing 95

Chapter 8. CICS distributed program
link 97
Overview of DPL 97
Statically routing DPL requests 98

Using the mirror transaction. 99
Using global user exits to redirect DPL requests 101

Dynamically routing DPL requests 101
Which requests can be dynamically routed? . . 102
When the dynamic routing program is invoked 103
Using CICSPlex SM to route requests 103

Daisy-chaining of DPL requests 104
Limitations of DPL server programs 104
Intersystem queuing 105
Examples of DPL 105

Chapter 9. Distributed transaction
processing 107
Overview of DTP 107
Advantages over function shipping and transaction
routing 107
Why distributed transaction processing? 108
What is a conversation and what makes it
necessary? 109

Conversation initiation and transaction
hierarchy 109
Dialog between two transactions 110
Control flows and brackets 111
Conversation state and error detection 111
Synchronization 112

MRO or APPC for DTP?. 113
APPC mapped or basic? 114
EXEC CICS or CPI Communications? 115

Part 2. Installing and configuring
intercommunication support . . . 117

Chapter 10. Configuring intersystem
communication 119

Configuring support for communicating over a
TCP/IP network 119
Configuring support for ISC over SNA 120

Chapter 11. Steps after configuring
MRO 121

Chapter 12. Configuring z/OS
Communications Server generic
resources 123
Prerequisites for z/OS Communications Server
generic resources 123
Planning your CICSplex to use z/OS
Communications Server generic resources 124

Naming the CICS regions 125
Defining connections in a generic resource
environment. 125

Defining connections 125
Generating z/OS Communications Server generic
resource support 127
Migrating a TOR to a generic resource 127

Recommended methods 128
Removing a TOR from a generic resource 129
Moving a TOR to a different generic resource . . 130
Setting up inter-sysplex communications between
generic resources 130

Establishing connections between CICS TS for
z/OS generic resources 130

Ending affinities 135
When should you end affinities? 136
Writing a batch program to end affinities . . . 136

Using ATI with generic resources. 139
Using the ISSUE PASS command 142
Rules checklist 142
Dealing with special cases 143

Non-autoinstalled terminals and connections 143
Outbound LU6 connections. 144

Part 3. Defining
intercommunication resources . . 147

Chapter 13. How to define
connections to remote systems . . . 149
Introduction to connection definition 149

The local CICS region name 150
Identifying remote systems 152
Defining IP interconnectivity (IPIC) connections 152

Configuring IPIC connections for identity
propagation 154
Migrating APPC and MRO connections to IPIC 155

Defining links for multiregion operation 163
Defining an MRO link 164
Choosing the access method for MRO 165
Defining compatible MRO nodes 166

Defining links for use by the external CICS
interface 167

Installing MRO and EXCI link definitions . . . 169
Defining APPC connections 169

Defining the remote APPC system 169

iv CICS TS for z/OS 4.2: Intercommunication Guide

Defining groups of APPC sessions 171
Defining compatible CICS APPC nodes. . . . 172
Automatic installation of APPC links 172
Defining single-session APPC terminals . . . 173
The AUTOCONNECT attribute 175
Using z/OS Communications Server persistent
sessions on APPC links 176

Defining logical unit type 6.1 links 177
Defining CICS-to-IMS LUTYPE6.1 links 178

Defining compatible CICS and IMS nodes . . . 179
Defining multiple links to an IMS system . . . 182

Defining indirect links for transaction routing . . 184
Defining indirect links in CICS Transaction
Server for z/OS 185
Resource definition for transaction routing using
indirect links 187

Chapter 14. TCP/IP management and
control 191

Chapter 15. Managing APPC
connections 195
General information about managing APPC links 195
Acquiring a connection 196

Connection status during the acquire process 196
Effects of the AUTOCONNECT option 196
Effects of the MAXIMUM option 197

Controlling sessions with the SET MODENAME
commands 198

Command scope and restrictions 199
Releasing the connection 200

Connection status during the release process 200
The effects of limited resources 201
Making the connection unavailable 201

Summary of APPC link management 203
Command scope and restrictions 203

Chapter 16. Defining remote
resources 205
Which remote resources need to be defined? . . . 205

A note on daisy-chaining 205
Local and remote names for resources 206
Defining remote resources for function shipping 207

Defining remote files 207
Defining remote DL/I PSBs 208
Defining remote transient data destinations . . 208
Defining remote temporary storage queues . . 209

Defining remote resources for DPL 209
Defining remote server programs. 209
When definitions of remote server programs
aren't required 211

Defining remote resources for asynchronous
processing 212

Defining remote transactions 212
Defining remote resources for transaction routing 213

Defining terminals for transaction routing . . . 213
Defining transactions for transaction routing 222

Defining remote resources for DTP 227

Chapter 17. Defining local resources 229
Defining communication profiles 229

Communication profiles for principal facilities 230
Default profiles 230
Modifying the default profiles 231

Architected processes. 232
Process names 232
Modifying the architected process definitions 233

Selecting required resource definitions for
installation 233
Defining intrapartition transient data queues . . . 234

Transactions 234
Principal facilities 234

Defining local resources for DPL 236
Mirror transactions 236
Server programs 236

Part 4. Application programming
in an intersystem environment . . 237

Chapter 18. Application programming
overview 239
Terminology. 239
Problem determination 239

Chapter 19. Application programming
for CICS function shipping 241
Introduction to programming for function shipping 241
File control 241
DL/I 242
Temporary storage 242
Transient data 242
Function shipping exceptional conditions 243

Remote system not available 243
Invalid request 243
Mirror transaction abend 243

Chapter 20. Application programming
for CICS DPL 245
Introduction to DPL programming 245
The client program 245

Failure of the server program 246
The server program 246

Permitted commands 246
Syncpoints 246

DPL exceptional conditions. 246
Remote system not available 247
Server's work backed out 247
Multiple links to the same server region . . . 247
Mirror transaction abend 248
Multiple updates to a recoverable resource by
the same distributed UOW 248

Chapter 21. Application programming
for asynchronous processing 249
Starting a transaction on a remote system 249
Exceptional conditions for the START command 249

Contents v

Retrieving data associated with a remotely-issued
start request 250

Chapter 22. Application programming
for CICS transaction routing 251
Application programming restrictions 251

Basic mapping support 251
Pseudoconversational transactions 252

Reviewing values returned by the EXEC CICS
ASSIGN command in the application-owning
region 252

Chapter 23. CICS-to-IMS applications 255
Designing CICS-to-IMS ISC applications 255

Data formats 255
Forms of intersystem communication with IMS 257

CICS-to-IMS applications—asynchronous
processing 257

The START and RETRIEVE interface 257
The asynchronous SEND and RECEIVE
interface 262

CICS-to-IMS applications—DTP 262
CICS commands for CICS-to-IMS sessions . . . 262
Considerations for the front-end transaction . . 263
Attaching the remote transaction 264
Considerations for the back-end transaction . . 267
The conversation 269
Freeing the session 269
The EXEC interface block (EIB) 270
Command sequences for CICS-to-IMS sessions 271
State diagrams 272

Part 5. Performance in an
intersystem environment 275

Chapter 24. Intersystem session
queue management. 277
Overview of session queue management 277
Managing allocate queues 277

Using resource definitions to manage your
queues 277
Using the NOQUEUE option 278
Using the XISQUE and XZIQUE global user
exits 278

Chapter 25. Efficient deletion of
shipped terminal definitions 281
Overview of how shipped terminals are deleted 281

Selective deletion 281
The timeout delete mechanism 282

Implementing timeout delete 282
Tuning the performance of timeout delete 283

DSHIPIDL 283
DSHIPINT 283

Part 6. Recovery and restart in an
intersystem environment 285

Chapter 26. Recovery and restart in
interconnected systems 287
Syncpoint exchanges 287

Syncpoint flows 288
Recovery functions and interfaces 290

Recovery functions 290
Recovery interfaces 291

Initial and cold starts 294
Deciding when a cold start is possible 295
The exchange lognames process 296

Managing connection definitions 297
MRO and IPIC connections to CICS TS for z/OS
systems 298
APPC parallel-session connections to CICS TS
for z/OS systems 298
APPC connections to and from z/OS
Communications Server generic resources . . . 298

Connections that do not fully support shunting 299
LU6.1 connections 299
APPC connections to non-CICS TS for z/OS
systems 300
APPC single-session connections 301

APPC connection quiesce processing 301
Problem determination 302

Messages that report CICS recovery actions . . 302
Problem determination examples 305

Chapter 27. Intercommunication and
z/OS Communications Server
persistent sessions 311
Interconnected CICS environment, recovery and
restart 311

Part 7. Data conversion in an
intersystem environment 313

Chapter 28. Where is data converted? 315
Function shipping and DPL 315
Distributed transaction processing 316
Transaction routing 316

Chapter 29. Avoiding data conversion 317

Chapter 30. Types of conversion . . . 319

Chapter 31. Character data 321

Chapter 32. Binary data 323

Chapter 33. CICS-supported
conversions 325
Arabic 326
Baltic Rim 326
Cyrillic 327
Devanagari 327
Farsi 328
Greek 328

vi CICS TS for z/OS 4.2: Intercommunication Guide

Hebrew 329
Japanese 329
Korean 330
Lao. 331
Latin-1 and Latin-9 331
Latin-2 333
Latin-5 333
Simplified Chinese 334
Thai 335
Traditional Chinese 335
Urdu 336
Vietnamese 336
Unicode data 336

Chapter 34. The conversion process 339
Components. 339
Process 339
Standard and nonstandard conversion 340

CICS-only conversion 340
User/CICS conversion 340
User-only conversion 341

Sequence of conversion processing 341

Chapter 35. Resource definition to
enable data conversion 343

Chapter 36. Defining the conversion
table 345
DFHCNV macro types 345

Conversion and key templates. 346
Defaults for client and server code pages . . . 346
Conversion table for initial program verification
(IVP) 346

DFHCNV TYPE=INITIAL 348
DFHCNV TYPE=ENTRY 350
DFHCNV TYPE=KEY 353
DFHCNV TYPE=SELECT 353
DFHCNV TYPE=FIELD 354
DFHCNV TYPE=FINAL. 356
Hints on coding the macros 356

Chapter 37. User-defined conversion
tables. 357
Invalid and undefined DBCS characters 360

Chapter 38. Example macros. 361

Chapter 39. Assembling and
link-editing the conversion programs . 364

Chapter 40. The user-replaceable
conversion program 365

User-named conversion programs 365
Input to DFHUCNV 365

Parameter list (DFHUVNDS) 365
Conversion and key templates. 368
Field conversion records. 369

Supplied user-replaceable conversion program . . 371

Part 8. Appendixes 373

Appendix A. Intercommunication rules
and restrictions checklist 375
Transaction routing 375
Dynamic routing of DPL requests 377
Automatic transaction initiation 377
Basic mapping support 377
Acquiring LUTYPE6.1 sessions 377
Syncpointing 378
Local and remote names. 378
Master terminal transaction. 378
Installation and operations 378
Resource definition 378
Customization 378
MRO abend codes 379

Appendix B. CICS mapping to the
APPC architecture 381
Supported option sets 381
CICS implementation of control operator verbs . . 382

Control operator verbs 383
Return codes for control operator verbs . . . 389

CICS deviations from APPC architecture 390
APPC transaction routing deviations from APPC
architecture 391

Notices 393
Trademarks 394

Bibliography. 395
CICS books for CICS Transaction Server for z/OS 395
CICSPlex SM books for CICS Transaction Server
for z/OS 396
Other CICS publications 396
Other IBM publications 396

Accessibility 399

Index 401

Contents vii

viii CICS TS for z/OS 4.2: Intercommunication Guide

Preface

What this book is about
This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

This manual is about:
v Multiregion operation (MRO): communication between CICS® regions in the

same operating system, or in the same MVS™ sysplex, without the use of IBM®

Systems Network Architecture (SNA) networking facilities.1

v intersystem communication over SNA (ISC over SNA): communication between
an IBM CICS Transaction Server for z/OS® region and other (CICS or non-CICS)
systems or terminals that support the logical unit type 6.2 or logical unit type 6.1
protocols of SNA. Logical unit type 6.2 protocols are also known as Advanced
Program-to-Program Communication (APPC). The remote systems may or may
not be in the same MVS sysplex as CICS.

v IP interconnectivity (IPIC): communication between an IBM CICS Transaction
Server for z/OS region and other (CICS or non-CICS) systems or terminals that
support the Transport Control Protocol/Internet Protocol (TCP/IP). The remote
systems may or may not be in the same MVS sysplex as CICS.

What is not covered by this book
The information in this book is predominantly, but not exclusively, about
communication between CICS Transaction Server for z/OS, Version 4 Release 2
and other System/390® CICS or IMS™ systems. For supplementary information
about communication between CICS TS for z/OS, Version 4.2 and non-System/390
CICS systems, see the CICS Family: Communicating from CICS on System/390 manual.

Note: In this book, the phrase System/390 is used as a generic term for computers
of the System/370, System/390, and zSeries® families.

For an overview of the intercommunication facilities provided on other CICS
products, see the CICS Family: Interproduct Communication manual .

For information about accessing CICS programs and transactions from the Internet,
see the CICS Internet Guide. For information about accessing CICS programs and
transactions from other non-CICS environments, see the CICS External Interfaces
Guide .

For information about CICS support for the CICS Client workstation products, see
the CICS Family: Communicating from CICS on System/390 manual.

For information about the intercommunication aspects of using CICS business
transaction services (BTS), see the CICS Business Transaction Services manual.

For information about the CICS Front End Programming Interface, see the CICS
Front End Programming Interface User's Guide.

1. The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
and CICS; DCE remote procedure calls to CICS programs.

© Copyright IBM Corp. 1977, 2012 ix

For information about distributed transaction programming, see the CICS
Distributed Transaction Programming Guide.

Who this book is for
This book is for customers involved in the planning and implementation of CICS
intersystem communication over SNA (ISC over SNA), IP interconnectivity (IPIC),
or multiregion operation (MRO).

What you need to know to understand this book
It is assumed throughout this book that you have experience with single CICS
systems. The information it contains applies specifically to multiple-system
environments, and the concepts and facilities of single CICS systems are, in
general, taken for granted.

It is also assumed that you understand SNA concepts and terminology. If you plan
to create an IPIC network, you will need a knowledge of TCP/IP.

Note: In this book, the term “MVS” refers to those services and functions that are
provided by the Base Control Program (BCP) of z/OS. The BCP is a base element
of z/OS.

How to use this book
Initially, you should read Part 1 of this book to familiarize yourself with the
concepts of CICS multiregion operation and intersystem communication.

Thereafter, you can use the appropriate parts of the book as guidance and
reference material for your particular task.

How this book is organized
This book is organized as follows:

Intercommunication concepts and facilities contains an introduction to CICS
intercommunication and describes the facilities that are available. It is intended for
evaluation and planning purposes.

Installing intercommunication support describes those aspects of CICS installation
that apply particularly to intercommunication. It also contains some notes on IMS
system definition. This part is intended to be used in conjunction with the CICS
Transaction Server for z/OS Installation Guide and the CICS System Definition Guide.

Defining intercommunication resources provides guidance for resource definition.
It tells you how to define links to remote systems, how to define remote resources,
and how to define the local resources that are required in an intercommunication
environment. It is intended to be used in conjunction with the CICS Resource
Definition Guide.

Application programming in an intersystem environment describes how to write
application programs that use the CICS intercommunication facilities. It is intended
to be used in conjunction with the CICS Application Programming Guide and the
CICS Application Programming Reference.

x CICS TS for z/OS 4.2: Intercommunication Guide

Performance in an intersystem environment describes those aspects of
performance that apply particularly in the intercommunication environment. It is
intended to be used in conjunction with the CICS Performance Guide.

Recovery and restart in an intersystem environment describes those aspects of
recovery and restart that apply particularly in the intercommunication
environment. It is intended to be used in conjunction with the CICS Recovery and
Restart Guide.

Terminology
Unless specifically stated otherwise, in this book:
1. The term “CICS” means CICS Transaction Server for z/OS, Version 4 Release 2.

Where other CICS products are meant, they are named explicitly.
2. The terms “intersystem communication” and “ISC” are generic names for mean

intersystem communication over SNA (ISC over SNA) and IP interconnectivity
(IPIC). Where either ISC over SNA or IPIC is meant, it is named explicitly.
For an explanation of the two types of ISC, see “Communication between
systems” on page 3.

3. The term “IP connection” means an IP interconnectivity connection.
4. The term “MVS” refers to those services and functions that are provided by the

Base Control Program (BCP) of z/OS. The BCP is a base element of z/OS.

Preface xi

xii CICS TS for z/OS 4.2: Intercommunication Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1977, 2012 xiii

xiv CICS TS for z/OS 4.2: Intercommunication Guide

Part 1. Intercommunication concepts and facilities

This section describes the basic concepts of CICS intercommunication and the
various facilities that are provided.

Chapter 1, “Introduction to CICS intercommunication,” on page 3 defines CICS
intercommunication, and introduces the two types of intercommunication:
multiregion operation and intersystem communication. It then describes the basic
intercommunication facilities that CICS provides. These are:
v Function shipping
v Asynchronous processing
v Transaction routing
v Distributed program link (DPL)
v Distributed transaction processing (DTP).

The following sections describe each of these concepts in more detail, as follows:
v Chapter 3, “Multiregion operation,” on page 27
v Chapter 2, “ISC and IPIC intercommunications facilities,” on page 19
v Chapter 4, “CICS function shipping,” on page 35
v Chapter 5, “Asynchronous processing,” on page 49
v Chapter 6, “Introduction to CICS dynamic routing,” on page 61
v Chapter 7, “CICS transaction routing,” on page 67
v Chapter 8, “CICS distributed program link,” on page 97
v Chapter 9, “Distributed transaction processing,” on page 107.

© Copyright IBM Corp. 1977, 2012 1

2 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 1. Introduction to CICS intercommunication

CICS is often used as a single system with associated data resources and a network
of terminals. However, CICS can also be used in a multiple-system environment, in
which it can communicate with other systems that have similar communication
facilities. This sort of communication is called CICS intercommunication.

CICS intercommunication is communication between a local CICS system and a
remote system, which might or might not be another CICS system. For information
about CICS Transaction Server for z/OS's support for the CICS Client workstation
products, see the CICS Family: Communicating from CICS on zSeries manual.

For information about accessing CICS programs and transactions from the Internet,
see . the CICS Internet Guide. For information about accessing CICS programs and
transactions from other non-CICS environments, see . the CICS External Interfaces
Guide.

This section contains the following topics:
v “Intercommunication methods”
v “Intercommunication facilities” on page 4
v “Using CICS intercommunication” on page 7.

Intercommunication methods
CICS can communicate with other systems that are in the same operating system
or sysplex using multiregion operation (MRO). To communicate with other CICS or
non-CICS systems that are not in the same z/OS image or sysplex, CICS connects
using either a TCP/IP (IPIC) or SNA (ISC over SNA) protocol.

Communication between systems
For communication between CICS and non-CICS systems, or between CICS
systems that are not in the same operating system or z/OS sysplex, you usually
require a network access method to provide the necessary communication
protocols.

CICS TS for z/OS, Version 4.2 supports two such intercommunication facilities:
1. Transmission Control Protocol/Internet Protocol (TCP/IP)
2. ACF/SNA, which implements the IBM Systems Network Architecture (SNA)

Communication between systems over TCP/IP is known as IP interconnectivity
(IPIC). The generic name for communication between systems over SNA is
intersystem communication (ISC) or intersystem communication (ISC) over SNA.

IPIC and ISC are used to connect CICS and non-CICS systems or CICS systems
that are not in the same z/OS image or sysplex. These intercommunication
facilities can also be used between CICS regions in the same z/OS image or
sysplex. For example, you might create an ISC connection between two CICS
regions in the same sysplex if you require two connections between them and there
was already an MRO connection.

© Copyright IBM Corp. 1977, 2012 3

Related concepts:
“Intercommunication facilities available using IPIC” on page 20
IP interconnectivity (IPIC) supports communication between CICS systems using a
TCP/IP network.
“Intercommunication facilities available using ISC” on page 21
Intersystem communication over SNA (ISC over SNA) allows communication
between CICS and non-CICS systems or CICS systems that are not in the same
z/OS image or sysplex. These intercommunication facilities can also be used
between CICS regions in the same z/OS image or sysplex.
Chapter 2, “ISC and IPIC intercommunications facilities,” on page 19
CICS provides intercommunications facilities for intersystem communication over
SNA (ISC over SNA) and IP interconnectivity (IPIC), so that you can communicate
with external systems.

Multiregion operation
For CICS-to-CICS communication, CICS provides an interregion communication
facility that does not require the use of a network access method such as
ACF/SNA or TCP/IP.

This form of communication is called multiregion operation (MRO). MRO can be
used between CICS regions that reside:
v In the same z/OS image
v In the same z/OS systems complex (sysplex).

CICS Transaction Server for z/OS can use MRO to communicate with:
v Other CICS Transaction Server for z/OS systems
v CICS Transaction Server for OS/390® systems

Note: The external CICS interface (EXCI) uses a specialized form of MRO link to
support:
v Communication between MVS batch programs and CICS
v DCE remote procedure calls to CICS programs

Intercommunication facilities
In a multiple-system environment, each participating system can have its own local
terminals and databases, and can run its local application programs independently
of other systems in the network.

A participating system can also establish links to other systems, and gain access to
remote resources. This mechanism allows resources to be distributed among and
shared by the participating systems.

CICS provides these types of facilities for communicating with other CICS, IMS, or
other systems:
v Function shipping
v Asynchronous processing
v Transaction routing
v Distributed program link (DPL)
v Distributed transaction processing (DTP)

4 CICS TS for z/OS 4.2: Intercommunication Guide

A number of intercommunication facilities, which support access to CICS programs
and transactions from non-CICS environments, are described in Interfaces to CICS
transactions and programs, in the CICS External Interfaces Guide and in CICS and
HTTP, in the CICS Internet Guide.

These communication facilities are not all available for all forms of
intercommunication. The circumstances under which they can be used are shown
in Table 1.

Table 1. Support for CICS basic intercommunication facilities, when communicating with other CICS, IMS, APPC, or
TCP/IP systems

IRC
Interregion

communication

Intersystem
communication

over TCP/IP

Intersystem communication
over SNA

(using ACF/ z/OS Communications Server)

MRO IPIC LUTYPE6.2 (APPC) LUTYPE6.1

Facility CICS CICS
non-CICS

(for example,
CICS TG)

CICS
non-CICS

(for example,
CICS TG)

CICS IMS

Function
Shipping

Yes
Yes

(See note)
No Yes No Yes No

Asynchronous
Processing

Yes
Yes

(See note)
No Yes No Yes Yes

Transaction
Routing

Yes
Yes

(See note)
Yes Yes No No No

Distributed
program link

Yes
Yes

(See note)
Yes Yes No No No

Distributed
transaction
processing

Yes No No Yes Yes Yes Yes

Note:

v IPIC supports function shipping of all file control, transient data, and temporary storage requests between CICS
TS 4.2 or later regions.

v IPIC supports asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL commands,
between CICS TS 4.1, or later regions.

v IPIC supports transaction routing of 3270 terminals between CICS TS 4.1 or later regions, where the
terminal-owning region (TOR) is uniquely identified by an APPLID. Enhanced routing of transactions invoked by
terminal-orientated START commands is supported between CICS TS 4.2 or later regions.

v IPIC supports the following DPL calls:

– Distributed program link (DPL) calls between CICS TS 3.2 or later regions.

– Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1 or later.

Function shipping
Function shipping in CICS provides an application program with access to a
resource owned by, or accessible to, another CICS system. Both read and write
access are permitted, and facilities for exclusive control and recovery and restart
are provided.

The following remote resources can be accessed using function shipping:
v A file
v A DL/I database

Chapter 1. Introduction to CICS intercommunication 5

|

|

|

|

|

|
|

|
|

|
|
|

|

|

|

v A transient-data queue
v A temporary-storage queue

Application programs that access remote resources can be designed and coded as if
the resources were owned by the system in which the transaction is to run. During
execution, CICS ships the request to the appropriate system.

Function shipping is supported between CICS systems connected by IPIC, ISC over
SNA, or MRO links. IPIC only supports function shipping of file control, transient
data, and temporary storage requests between CICS TS 4.2 or later regions.

Asynchronous processing
Asynchronous processing allows a CICS transaction to initiate a transaction in a
remote system and to pass data to it. The remote transaction can then initiate a
transaction in the local system to receive the reply.

The reply is not necessarily returned to the task that initiated the remote
transaction, and no direct tie-in between requests and replies is possible (other
than that provided by user-defined fields in the data). The processing is therefore
called asynchronous.

Asynchronous processing is supported between CICS systems connected by MRO,
or ISC over SNA links. IPIC supports asynchronous processing of EXEC CICS START,
START CHANNEL, and CANCEL commands, between CICS TS 4.1 or later
regions..

Transaction routing
Transaction routing allows a transaction and an associated terminal to be owned
by different CICS systems.

Transaction routing can take the following forms:
v A terminal that is owned by one CICS system can run a transaction owned by

another CICS system.
v A transaction that is started by automatic transaction initiation (ATI) can acquire

a terminal owned by another CICS system.
v A transaction that is running in one CICS system can allocate a session to an

APPC device owned by another CICS system.

Transaction routing is supported between CICS systems connected by IPIC, MRO,
or ISC over SNA links. IPIC supports transaction routing of 3270 terminals
between CICS TS 4.1 or later regions, where the terminal-owning region (TOR) is
uniquely identified by an APPLID.

Distributed program link (DPL)
CICS distributed program link enables a CICS program (the client program) to call
another CICS program (the server program) in a remote CICS region.

CICS distributed program link enables a CICS program (the client program) to call
another CICS program (the server program) in a remote CICS region. Here are
some of the reasons you might want to design your application to use DPL:
v To separate the end-user interface (for example, BMS screen handling) from the

application business logic, such as accessing and processing data, to enable parts
of the applications to be ported from host to workstation more readily.

6 CICS TS for z/OS 4.2: Intercommunication Guide

|
|

|
|
|
|

v To obtain performance benefits from running programs closer to the resources
they access, and thus reduce the need for repeated function shipping requests.

v In many cases, DPL offers a simple alternative to writing distributed transaction
processing (DTP) applications.

DPL is supported between CICS systems connected by MRO, or ISC over SNA
links. IPIC supports the following DPL calls:
v Distributed program link (DPL) calls between CICS TS 3.2 or later regions.
v Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1

or later.

.

Distributed transaction processing (DTP)
The technique of distributing the functions of a transaction over several transaction
programs within a network is called distributed transaction processing (DTP).
DTP allows a CICS transaction to communicate with a transaction running in
another system. The transactions are designed and coded specifically to
communicate with each other, and thereby to use the intersystem link with
maximum efficiency.

The communication in DTP is, from the CICS point of view, synchronous, which
means that it occurs during a single invocation of the CICS transaction and that
requests and replies between two transactions can be directly associated. This
contrasts with the asynchronous processing described previously.

DTP is supported between CICS systems connected by MRO, or ISC over SNA
links.

Using CICS intercommunication
The CICS intercommunication facilities allow you to implement many different
types of distributed transaction processing. Some examples of typical applications
are explained.

Multiregion operation allows two CICS regions to share selected system resources,
and to present a “single-system” view to terminal operators. At the same time,
each region can run independently of the other, and can be protected against errors
in other regions. Various possible applications of MRO are described in Chapter 3,
“Multiregion operation,” on page 27.

ISC over SNA, using the ACF/SNA access method and ACF/NCP/VS network
control, allows resources to be distributed among and shared by different systems,
which can be in the same or different physical locations.

IPIC connections allow you to use a TCP/IP network for intercommunication
between systems. IPIC provides similar capabilities and qualities of service to those
provided by ISC over SNA.

Figure 1 on page 8 shows some typical possibilities.

Chapter 1. Introduction to CICS intercommunication 7

Connectingregionalcenters

Connectingdivisions:distributedapplicationsanddata

North

Central

South

HeadquartersFinancial
and
Planning

Warehouse Inventory Work
Orders

Plant

Databasepartitioned
byarea

Sameapplications run
ineachcenter

All terminal userscan
accessapplicationsor
data inall systems

Terminal operatorand
applicationsunawareof
locationofdata

Out-of-townrequests
routed to the
appropriatesystem

Databasepartitioned
by function

Applicationspartitioned
by function

All terminal usersand
applicationscanaccess
data inall systems

Requests fornonlocal
data routed to the
appropriatesystem

Figure 1. Examples of distributed resources (Part 1)

8 CICS TS for z/OS 4.2: Intercommunication Guide

Connecting regional centers
Many users have computer operations set up in each of the major geographical
areas in which they operate.

Summaries

Planning

Head Office

Order and

Schedules

Production

Status Report

PlantA Plant B Plant C

Parts

Cross-

Reference

Work

Order

Hierarchical division of data base

Summaries and

central data at

HQ, detail data

at plant

location

Order processing

at HQ: orders

and schedules

transmitted to

plants

Plants send

summaries of

production

status to HQ

(for example,

overnight)

Access to data

from HQ or

Plant possible

if required

Connecting division: hierarchical distribution of data and applications

Low-priority

or backup

applications

and data

High-priority

applications

and data

High-priority

applications

and data

Improved

response through

distributed

processing

Figure 2. Examples of distributed resources (Part 2)

Chapter 1. Introduction to CICS intercommunication 9

Each system has a database organized toward the activities of that area, with its
own network of terminals able to inquire on or update the regional database.
When requests from one region require data from another, without intersystem
communication, manual procedures have to be used to handle such requests. The
intersystem communication facilities allow these “out-of-town” requests to be
automatically handled by providing file access to the database of the appropriate
region.

Using CICS function shipping, application programs can be written to be
independent of the actual location of the data, and able to run in any of the
regional centers. An example of this type of application is the verification of credit
against customer accounts.

Connecting divisions within an organization
Some users are organized by division, with separate systems, terminals, and
databases for each division: for example, Engineering, Production, and Warehouse
divisions. Connecting these divisions to each other and to the headquarters
location improves access to programs and data, and thus can improve the
coordination of the enterprise.

The applications and data can be hierarchically organized, with summary and
central data at the headquarters site and detail data at plant sites. Alternatively, the
applications and data can be distributed across the divisional locations, with
planning and financial data and applications at the headquarters site,
manufacturing data and applications at the plant site, and inventory data and
applications at the distribution site. In either case, applications at any site can
access data from any other site, as necessary, or request applications to be run at a
remote site (containing the appropriate data) with the replies routed back to the
requesting site when ready.

Transaction tracking
Transaction tracking provides the capability to identify the relationships between
tasks in an application as they flow across regions in a CICSplex. Transaction
tracking can help you in auditing and problem determination. Functions are
provided to locate specific tasks based on information in the point of origin, to find
interrelated hung tasks, and to identify work initiated by non-CICS adapters (such
as WebSphere® MQ).

Transaction tracking provides a standard framework for the tracking and resolution
of interrelated CICS transactions. You can use transaction tracking to improve
productivity, simplify system operation tasks, and perform problem determination.
Transaction tracking provides tighter integration between other products, such as
WebSphere MQ, and an extension of the scope of transaction tracking to other
interfaces, including WebSphere Optimized Local Adapter and CICS sockets. The
WebSphere MQ task-related user exit (TRUE) provides support for transaction
tracking.

Transaction tracking provides the following features:

End-to-end transaction tracking
End-to-end transaction tracking is a method of propagating the context of
an application across the interrelated tasks within and between CICS
systems.

10 CICS TS for z/OS 4.2: Intercommunication Guide

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

Point of origin
Transaction tracking provides a mechanism to track the point of origin of a
transaction by associating an initial user task with other tasks that have
been created from it. Transaction tracking also describes the way in which
a task was started. The created tasks carry information about the initial
user task as origin data. For more information about the association data
components, see Association data.

Such tracking data is propagated across IPIC and MRO to provide a
complete story across the CICSPlex® for all user tasks including CICS
supplied transactions started by a user (for example, CEMT) or running on
behalf of a user-initiated transaction (for example, CSMI). For tasks created
by non-CICS transports (for example, adapters connecting to other
software applications such as WebSphere MQ) there is the ability for these
tasks to participate in transaction tracking by injecting their own unique
task metadata, describing their origin, into the propagated context of each
transaction they initiate.

Transaction group
A transaction group is an association of transactions that all contain the
same unique identifier of the originating transaction in the TRNGRPID.

Adapter tracking
Adapter tracking tracks tasks created by non-CICS transports (for example,
adapters connecting to other software applications such as WebSphere
MQ), which can participate in transaction tracking. The adapters can add
unique task metadata, describing the origin, into the propagated context of
each transaction they initiate. This adapter data is carried in the origin data
section of the association data and can be used to track the transactions
started by the adapter.

Association data
Association data is a set of information that describes the environment in which
user tasks run and the way that user tasks are attached in a region. User tasks are
tasks that are associated with user-defined transactions or with transactions
supplied by CICS. CEMT is an example of a user-initiated task typically started by
an operator, and CSMI is an example of a task started by the system on behalf of a
user-initiated transaction.

Association data is built during task attach processing and represents context
information specific to the task itself; for example, the task ID, the user ID relating
to the task, and the principal facility of the task. Association data can also include
details about the origin of the task and the way it was started.

You can use the CICS Explorer®, WUI, INQUIRE ASSOCIATION, and INQUIRE
ASSOCIATION LIST commands to view association data. The INQUIRE ASSOCIATION
LIST command returns a list of tasks, in the local region, that have matching
correlation information in their association data. You can use the CICS Performance
Analyzer (CICS PA) and the sample monitoring data print program, DFH$MOLS,
to report on association data. You can also use association data to correlate TCP/IP
connections with the CICS regions and transactions using them.

The following data components support transaction tracking:

Adapter data
Adapter data is a part of the origin data section of association data and can
be defined and provided by an adapter from other software that introduces

Chapter 1. Introduction to CICS intercommunication 11

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht1_associationdata_origindata.html#associationdata_origindata

work into CICS. This data can include, for example, data to identify which
adapter started the task. The adapter data can then be used to track the
transactions started by the adapter. For further information about using
adapter data for tracking transactions, see Adapter tracking sample
task-related user exit program (DFH$APDT).

ApplData
Association data uses socket application data (ApplData) for the socket
that received the request to start the task. You can use the ApplData to
correlate TCP/IP connections with the CICS regions and transactions that
are using them. In TCP/IP, the ApplData information is available on the
Netstat ALL/-A, ALLConn/-a, and COnn/-c reports, and can be searched
with the APPLD/-G filter. See IP System Administrator's Commands for
additional information about using ApplData with Netstat. The ApplData
information is available in the SMF 119 TCP Connection Termination
record. See IP Configuration Reference for additional information. The
ApplData information is also available through the Network Management
Interface. See IP Programmer's Guide and Reference for more information.

Origin data
Origin data is a section of association data that describes where the task
was started (the point of origin). Origin data is created by a user task that
is started when an external request arrives at a CICSplex. For further
information about origin data, see Origin data characteristics.

Previous hop data
Previous hop data is a section of association data that describes the remote
sender of the request so that the request can be tracked back into the
previous system. For further information about previous hop data, see
Previous hop data characteristics.

Task context data
Task context data is a section of association data that provides information
about the specific context of the user task that is being referenced.

User correlation data
User correlation data is a part of the origin data section of association data
and is added by the XAPADMGR global user exit program. You can use
the XAPADMGR exit to add user information at the point of origin of the
interrelated transactions. For further information about using user
information for tracking transactions, see Application association data exit
in the AP domain (XAPADMGR).

Origin data characteristics
The origin descriptor record (ODR) is part of the association data that holds origin
data information. Origin data is stored in a separate section of the association data
and describes where the task was started (the point of origin).

Origin data allows you to track and audit complex systems by providing a
transaction group ID, TRNGRPID, which is the unique key that represents the
origin data. With the TRNGRPID, you can track where transactions are created,
when they do not share the same unit of work (for example, when you use a
START command) to indicate which parts of the transaction have a common
source. CICS determines the source of information, rather than the target location
of the information. Also, with origin data you append your own identifying token
to the work request.

Origin data might be the result of a transaction ID being scheduled from an SNA
LU, from a browser, or from another external device. The task that CICS attaches is

12 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_DFHAPDT.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_DFHAPDT.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_xapadmgr_exit.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_xapadmgr_exit.html

at a new point of origin and CICS populates the fields in the ODR of the task with
information relating specifically to that task. If an application program running
under the task causes another task to be attached in the same region, the origin
data is inherited by the new task. If a new task is attached remotely over an IPIC
or MRO connection, the remote task inherits the same origin data. Origin data is
not propagated over an APPC connection, and a task attached over an APPC
connection is considered to be at a new point of origin.

If you are using CICS Transaction Gateway, the point of origin can be outside CICS
(in CICS TG) and the point of origin information is populated to the ODR when
the task is started at the boundary of the CICSplex. For example, CICS TG records
context information about the point of origin for the JCA resource adapter, and this
information is passed to CICS as part of the origin data.

The origin data fields in the association data all have names that begin with “OD”.
All fields are populated by CICS, except the user correlator data field,
USERCORRDATA, which is a 64-byte area that can be populated by the
XAPADMGR global user exit. The exit can be called only from a task that is
running at a point of origin in a CICSplex. With origin data, you can track
interrelated transactions between regions that use IPIC and MRO connections to
share work between them. You can use the CICS Explorer or WUI to search for all
the tasks that are active in a CICSplex that share a common set of origin data, or
you can search on a subset of the fields.

Origin data is written in monitoring records and stored in CICSPlex SM history
records for offline analysis. Origin data is unrecoverable information, which means
that the data does not appear with any tasks that are attached because of a
transaction restart, or with any tasks that are rebuilt from the system log when a
region is restarted.

Chapter 1. Introduction to CICS intercommunication 13

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

Flow of association data and origin data between CICS tasks and
components

v When a new task is attached, association data is created. If the task has been
created in response to a message arriving across a TCP/IP network, additional
information that CICS has obtained from the Internet Protocol stack �1� is also
stored.

v The origin data for the new task is stored in a separate section of the association
data �2� and describes where the task was started (the point of origin).

v If a global user exit has been called by the task �3�, the exit can obtain
information from other sources by using the XPI �4� to return to the task �5�,
where it is included in the origin data.

v If the task issues a DPL request to a remote region, the origin data is added to
the DPL request that is sent over TCP/IP to the remote CICS region. When the
DPL request arrives at the remote region, another new task is started to process
the request. CICS creates unique association data for this task, however CICS
detects origin data, and passes the origin data to the mirror task when it is
attached to service the DPL request �6�.

v During task attach processing, the origin data is stored as part of the association
data of the new task, �7�, and the global user exit is not called.

v If monitoring is enabled, origin data is written to the monitoring record for the
task �8� and if CICSPlex SM is configured, the data is stored in history records
�9�.

v You can use the CICSPlex SM WUI to retrieve information stored in the
association data of running tasks �10�; for example, you can create a search to
find the tasks in a CICSplex that have matching origin data.

4

10

10

11

9 8

7

1

3

2

6
8

9

1

5

New task

Association
data

Origin
data

New task

Association
data

Origin
data

Optional
user exit

SMF

Real time
CPSM WUI

CPSM History
record

Monitoring
record

Monitoring
record

14 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

v You can also use CICSPlex SM to perform offline analysis of origin data
information that is stored in history records �11�; for example, to understand
how interrelated transactions have used a TCP/IP network.

Examples of origin data creation:

An SNA LU example and a web example help you to understand how origin data
is stored and passed to other tasks.

SNA LU example

A task is started in a region when a transaction identifier is entered at an SNA LU.
The origin data is stored at the point of origin and is passed to any other tasks that
are started in the same region as a consequence of the initial task:
1. The task is at the boundary of the CICSplex and at a point of origin. CICS

populates the origin data (SNA LU information) from other fields in its
association data when the task is attached.

2. If the task issues a DPL request that is serviced in another region using an IPIC
connection, the origin data is passed with the DPL request.

3. The remote region that receives the message extracts the origin data and passes
the data to the mirror transaction, which is attached to service the DPL request.

In this example, the mirror transaction contains the following information in its
association data:
v The values that describe the mirror transaction itself; for example, task ID and

principal facility of the IPIC connection
v The same origin data that the LU task that scheduled the DPL created and

stored in its own association data

In this example, the associated data exit, XAPADMGR, can run when the LU task
is attached, but the exit is not called when the mirror task is initialized.

Web example

Figure 3 on page 16 shows an HTTP request that has been passed through a
TCP/IP network and arrives for CICS processing. The origin data is stored at the
point of origin and is passed to any other tasks that are started in the same region
as a consequence of the initial task. In this example, the origin data is populated
from two different tasks:
1. The HTTP request is passed by a CSOL system task to CICS.
2. The request is processed by a CWXN task. CWXN is at a point of origin and

CICS populates the origin data (HTTP request information) from other fields in
its association data when the CWXN task is attached.

3. A new CWBA task is attached and CWBA inherits the ODR from CWXN.
Alternatively, the XAPADMGR global user exit is called from CWBA, and the
exit provides the origin data. CWBA and CWXN might run under different
user IDs, but the user ID (userid2) used by the CWBA task is more useful for
audit purposes. As a result, the user ID used by the CWBA task is stored in the
origin data of CWBA.

4. An application program that is running under the control of the CWBA task
issues a DPL request that is serviced over an IPIC connection. The origin data
is passed unchanged with the DPL message to the CISR system task.

5. The remote region that receives the DPL message extracts the origin data and
passes the origin data to a mirror transaction (CSMI) and the mirror transaction
is attached to service the DPL request.

Chapter 1. Introduction to CICS intercommunication 15

|
|
|

|

|
|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

6. The program running under the mirror transaction issues a START command.
The origin data is inherited by the task (USER) that is attached to service the
START request.

Figure 3 shows how origin data is created when CICS processes an HTTP request
and how the origin data is inherited by other tasks that are attached to fulfill the
request.

Previous hop data characteristics
Previous hop data identifies the remote sender of a request to attach a task, and
creates a trail to be followed back into the previous system, which enables data
gathering and monitoring to continue in the region that sent the request.

Previous hop data is created if a request to attach a task is transmitted by using an
IPIC or MRO connection between CICS TS 4.2 or later regions. The task that is
attached as a result of this request has previous hop data created.

As part of an interrelated transaction, if a task issues requests to attach tasks in
other CICS TS 4.2 regions, such as when a daisy chain is used, previous hop data
is created for the tasks that are attached in the other CICS regions.

Previous hop data is not created for a task that is the point of origin. For
information about association data and the point of origin, see “Association data”
on page 11.

CSOL

CISR

CWXN

CSMI

CWBA

USER

userid1

userid3

userid2

userid4

System task
no ODR

System task
no ODR

INITUSERID=userid1
=userid1USERID

userid2
=userid3

INITUSERID=
USERID

userid2
=userid2

INITUSERID=
USERID

userid2
USERID=userid4
INITUSERID=

created

START USERID

DPL/IPCONN

inherited and
modified

inherited

inherited

Optional user exit

Figure 3. Creation and movement of origin data when an HTTP request is processed

16 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

The value of previous hop data for a task that is started by use of the START
command depends on the TERMID option. Previous hop data is not created for a
started task that is at a new point of origin.

If the TERMID option is specified, the started task is treated as starting at a point
of origin and no previous hop data is created. This is the case whether the
TERMID option specifies a local terminal definition or a remote terminal definition.

When the TERMID option specifies a remote terminal definition, the process to
schedule the START command might involve a transfer of the command across a
number of CICS systems to reach the target CICS system where the terminal
specified in the TERMID option is a local terminal definition.

If the TERMID option is not specified, only the previous-hop count is created for
the started task and the remaining previous hop data is not set. In this case, the
started task inherits the value of the previous hop count from the task in the same
CICS region that initiated it.

For example, if a START command without the TERMID option is started by a task
that is at a point of origin and the started task runs in the same CICS region, the
started task inherits a previous hop count of zero. If the START command without
the TERMID option is function shipped to another CICS region, the started task
inherits a previous hop count from the mirror task.

Previous hop data programming considerations

Previous hop data includes data items that identify the following information:
v Another CICS TS 4.2 or later region that requested the current task to be

attached.
v The task in another CICS TS 4.2 or later region that requested the current task to

be attached.
v The number of CICS system hops that are taken for all CICS TS 4.2 or later

regions to reach the current CICS system. A value of zero is the point-of-origin
CICS system.

region 1 region 2 region 3

IPIC IPIC

MRO MRO

VTAM
terminal

input

task A task B task C

Association
data

(task A)

Association
data

(task B)

Association
data

(task C)

Previous-hop
data

<empty>

Previous-hop
data

(region 1)
(task A)

Previous-hop
data

(region 2)
(task B)

Origin
data

(task A)

Origin
data

(task A)

Origin
data

(task A)

Figure 4. Previous hop data and an interrelated transaction

Chapter 1. Introduction to CICS intercommunication 17

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|
|

|
|

|
|
|

Previous hop data is not supported when interrelated transactions of a sequence of
tasks are run on a number of CICS systems and a previous hop CICS system is a
release earlier than CICS TS 4.2. In this case, not all of the previous hop data is set.
The previous hop count field is set to one, and no other values in the previous hop
data are set.

18 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|
|
|

Chapter 2. ISC and IPIC intercommunications facilities

CICS provides intercommunications facilities for intersystem communication over
SNA (ISC over SNA) and IP interconnectivity (IPIC), so that you can communicate
with external systems.

This chapter contains the following topics:
v “Intersystem communication over SNA” on page 21
v “Intercommunication using IP interconnectivity”

Intercommunication using IP interconnectivity
CICS provides intersystem communication over a Transmission Control
Protocol/Internet Protocol (TCP/IP) network. This form of communication is called
IP interconnectivity or IPIC.

IPIC connection requirements

You must activate TCP/IP services in each CICS region that you are connecting
before you create your IPIC connection.

The IPIC connection consists of two complementary resources, an IPCONN
definition and a TCPIPSERVICE definition, which you must install in each CICS
region that you are connecting. The IPCONN definition is the CICS resource that
represents the outbound TCP/IP communication link and the term IPCONN is
commonly used to refer to an IPIC connection. The inbound attributes of the
connection are specified by the TCPIPSERVICE definition. The TCPIPSERVICE
resource is named in the TCPIPSERVICE option of the IPCONN definition.

Figure 5 shows the relationship between IPCONN and TCPIPSERVICE definitions.

IPCONN(CICB)

IPCONN(CICA)

TCPIPSERVICE(TSA)

TCPIPSERVICE(TSB)

hosta.example.com hostb.example.com

CICSA CICSB

APPLID(CICSB)
HOST(hostb.example.com) PORT(B)
SENDCOUNT
TCPIPSERVICE(TSA)
RECEIVECOUNT

APPLID(CICSA)
HOST(hosta.example.com) PORT(A)
SENDCOUNT
TCPIPSERVICE(TSB)
RECEIVECOUNT

PORT(A)
PROTOCOL(IPIC)

PORT(B)
PROTOCOL(IPIC)

PORT
B

PORT
A

Figure 5. Related IPCONN and TCPIPSERVICE definitions

© Copyright IBM Corp. 1977, 2012 19

Synchronization levels

IPIC connections support synchronization level 2; that is, they support full CICS
sync pointing, including rollback.

Socket capacity

For CICS TS 4.1 systems and above, up to two sockets are available for IPIC
communications. For connections to CICS TS 3.2 systems, only one socket is
available for IPIC communications. If you lose one or more of the sockets in use by
an IPCONN, for example, because of a network error, all the sockets are lost and
the IPCONN connection is released.

TCP/IP connection balancing, for example, TCP/IP port sharing, is not supported
using IPIC and can produce unexpected results when attempting to acquire an
IPIC connection.
Related tasks:
“Defining IP interconnectivity (IPIC) connections” on page 152
To define an IPIC connection, you create two resources, IPCONN and
TCPIPSERVICE, on each CICS region that you want to connect. You can either
create new IPIC connections , or you can migrate your existing APPC connections.

Intercommunication facilities available using IPIC
IP interconnectivity (IPIC) supports communication between CICS systems using a
TCP/IP network.

IPIC supports the following types of intercommunication functions for their
respective product releases:
v Distributed program link (DPL) calls between CICS TS 3.2 or later regions.
v Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1

or later.
v Asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL

commands, between CICS TS 4.1 or later regions.
v Transaction routing of 3270 terminals, where the terminal-owning region (TOR)

is uniquely identified by an APPLID between CICS TS 4.1 or later regions.
v Enhanced method of routing transactions that are invoked by EXEC CICS

START commands between CICS TS 4.2 or later regions.
v ECI requests from CICS Transaction Gateway Version 7.1 or later.
v Function shipping of all file control, transient data, and temporary storage

requests between CICS TS 4.2 or later regions. Function shipping of file control
and temporary storage requests using IPIC connectivity are threadsafe.

v Threadsafe processing for the mirror program and the LINK command in CICS
TS 4.2 or later regions to improve performance for threadsafe applications.

20 CICS TS for z/OS 4.2: Intercommunication Guide

|
|

|
|
|

|
|

Related concepts:
“Intercommunication facilities” on page 4
In a multiple-system environment, each participating system can have its own local
terminals and databases, and can run its local application programs independently
of other systems in the network.

Intersystem communication over SNA
CICS provides intercommunications facilities for intersystem communication over
SNA (ISC over SNA). ISC over SNA implements the IBM Systems Network
Architecture (SNA), which defines data formats and communication protocols for
communication between systems in a multiple-system environment. You can use
SNA between CICS and any other system that supports APPC or LUTYPE6.1
communications. SNA supports all the base CICS intercommunication functions.

Before reading these topics, you must be familiar with the general concepts and
terminology of SNA.

This chapter contains the following topics:
v “Connections between subsystems” on page 22
v “Intersystem sessions” on page 23
v “Establishing intersystem sessions” on page 25.

Intercommunication facilities available using ISC
Intersystem communication over SNA (ISC over SNA) allows communication
between CICS and non-CICS systems or CICS systems that are not in the same
z/OS image or sysplex. These intercommunication facilities can also be used
between CICS regions in the same z/OS image or sysplex.

These facilities are available for intercommunication using ISC:
v Function shipping
v Asynchronous processing
v Transaction routing
v Distributed program link
v Distributed transaction processing

ISC can be used between CICS and any other system that supports the z/OS
Communications Server Advanced Program-to-Program Communication (APPC) or
SNA Logical Unit Type 6.1 (LUTYPE6.1) communications. For example, ISC over
SNA connections can exist between CICS regions running in different z/OS
sysplexes or on different operating system platforms, between CICS and any APPC
device, and between CICS and IMS.

CICS Transaction Server for z/OS can use ISC over SNA to communicate with
these systems:
v Other CICS Transaction Server for z/OS systems
v CICS Transaction Server for VSE
v CICS Transaction Server for iSeries®

v IMS Version 9.1 or later
v Any system that supports Advanced Program-to-Program Communication

(APPC) protocols (LU6.2)

Chapter 2. ISC and IPIC intercommunications facilities 21

Connections between subsystems
Subsystems can be connected for intersystem communication in three basic forms.
v ISC in a single host operating system
v ISC between physically adjacent operating systems
v ISC between physically remote operating systems.

A possible configuration is shown in Figure 6.

Single operating system

ISC in a single operating system (intrahost ISC) is possible through the
application-to-application facilities of ACF/SNA. In Figure 6, these facilities can be
used to communicate between CICSA and CICSB, between CICSC and IMSA, and
between CICSD and CICSE.

In an MVS system, you can use intrahost ISC for communication between two or
more CICS systems (although MRO is a more efficient alternative) or between, for
example, a CICS system and an IMS system.

From the CICS point of view, intrahost ISC is the same as ISC between systems in
different SNA domains.

Physically adjacent operating systems

You can configure an IBM 3725 with a multichannel adapter that permits you to
connect two SNA domains (for example, VTAM1 and VTAM2 in Figure 6) through
a single ACF/NCP/VS. This configuration might be useful for communication
between these systems:
v A production system and a local but separate test system
v Two production systems with differing characteristics or requirements

Direct channel-to-channel communication is available between systems that have
ACF/SNA installed.

Any APPC ACF/NCP ACF/NCP
(LU6.2)
System 3725 3725

ACF/VTAM ACF/VTAM ACF/VTAM
(VTAM1) (VTAM2) (VTAM3)

CICS TS z/OS

CICS TS z/OS

CICS TS
OS/390

CICS TS
VSE/ESA

(CICSA) (CICSC) (CICSD)
...

IMS CICS/VSE
(CICSB) (IMSA) (CICSE)

z/OS OS/390 VSE

Figure 6. A possible configuration for intercommunicating systems

22 CICS TS for z/OS 4.2: Intercommunication Guide

Remote operating systems

The most typical configuration for intersystem communication is between remote
operating systems. For example, in Figure 6 on page 22, CICSD and CICSE can be
connected to CICSA, CICSB, and CICSC in this way. Each participating system is
appropriately configured for its particular location, using MVS or Virtual Storage
Extended (VSE) CICS or IMS, and one of the ACF access methods such as
ACF/SNA.

For a list of the CICS and non-CICS systems to which CICS Transaction Server for
z/OS can connect to using ISC, see “Communication between systems” on page 3.

Intersystem sessions
CICS uses ACF/SNA to establish, or bind, logical-unit-to-logical-unit (LU-LU)
sessions with remote systems. Being a logical connection, an LU-LU session is
independent of the physical route between the two systems. A single logical
connection can carry multiple independent sessions. Such sessions are called
parallel sessions.

CICS supports two types of sessions, both of which are defined by IBM Systems
Network Architecture (SNA):
v LUTYPE6.1 sessions
v LUTYPE6.2 generally called APPC sessions.

The characteristics of LUTYPE6 sessions are described in the Systems Network
Architecture book Sessions Between Logical Units.

You must not have more than one APPC connection installed at the same time
between an LU-LU pair. You must not have an APPC and an LUTYPE6.1
connection installed at the same time between an LU-LU pair.

LUTYPE6.1
LUTYPE6.1 is the forerunner of LUTYPE6.2 (APPC).

LUTYPE6.1 sessions are supported by both CICS and IMS, so can be used for
CICS-to-IMS communication. (For CICS-to-CICS communication, LUTYPE6.2 is the
preferred protocol.)

LUTYPE6.2 (APPC)
The general term used for the LUTYPE6.2 protocol is Advanced
Program-to-Program Communication (APPC). In addition to enabling data
communication between transaction-processing systems, the APPC architecture
defines subsets that enable device-level products (APPC terminals) to communicate
with host-level products and also with each other.

You can use APPC sessions for CICS-to-CICS communication and for
communication between CICS and other APPC systems or terminals.

Here is an overview of some of the principal characteristics of the APPC
architecture.

Protocol boundary

The APPC protocol boundary is a generic interface between transactions and the
SNA network. It is defined by formatted functions, called verbs, and protocols for

Chapter 2. ISC and IPIC intercommunications facilities 23

using the verbs. Details of this SNA protocol boundary are given in the Systems
Network Architecture publication Transaction Programmer's Reference Manual for LU
Type 6.2.

CICS provides a command-level language that maps to the protocol boundary and
enables you to write application programs that hold APPC conversations.
Alternatively, you can use the Common Programming Interface Communications (CPI
Communications) of the Systems Application Architecture® (SAA) environment.

Two types of APPC conversation are defined:

Mapped
In mapped conversations, the data passed to and received from the APPC
application program interface is user data. The user is not concerned with
the internal data formats demanded by the architecture.

Basic In basic conversations, the data passed to and received from the APPC
application program interface is prefixed with a header, called a GDS
header. The user is responsible for building and interpreting this header.
Basic conversations are used principally for communication with
device-level products that do not support mapped conversations, and
which possibly do not have an application programming interface open to
the user.

Synchronization levels

The APPC architecture provides three levels of synchronization. In CICS, these
levels are known as Levels 0, 1, and 2. In SNA terms, these correspond to NONE,
CONFIRM, and SYNCPOINT, as follows:

Level 0 (NONE)
This level is for use when communicating with systems or devices that do not
support synchronization points, or when no synchronization is required.

Level 1 (CONFIRM)
This level allows conversing transactions to exchange private synchronization
requests. CICS built-in synchronization does not occur at this level.

Level 2 (SYNCPOINT)
This level is the equivalent of full CICS syncpointing, including rollback. Level
1 synchronization requests can also be used.

EXEC CICS commands and CPI Communications support all three levels.

Program initialization parameter data

When a transaction initiates a remote transaction connected by an APPC session, it
can send data to be received by the attached transaction. This data, called program
initialization parameters (PIP), is formatted into one or more variable-length
subfields according to the SNA architected rules. CPI Communications does not
support PIP.

LU services manager

Multisession APPC connections use the LU services manager, the software
component responsible for negotiating session binds, session activation and
deactivation, resynchronization, and error handling. It requires two special sessions
with the remote LU; these are called the SNASVCMG sessions. When these sessions

24 CICS TS for z/OS 4.2: Intercommunication Guide

are bound, the two sides of the LU-LU connection can communicate with each
other, even if the connection is 'not available for allocation' for users.

A single-session APPC connection has no SNASVCMG sessions. For this reason, its
function is limited. It cannot, for example, support level-2 synchronization.

Class of service

The CICS implementation of APPC includes support for “class of service”
selection.

Class of service (COS) is an ACF/SNA facility that allows sessions between a pair
of logical units to have different characteristics.
v Alternate routing: virtual routes for a given COS can be assigned to different

physical paths (explicit routes).
v Mixed traffic: different kinds of traffic can be assigned to the same virtual route

and, by selecting appropriate transmission priorities, undue session interference
can be prevented.

v Trunking: explicit routes can use parallel links between specific nodes.

In particular, sessions can take different virtual routes, and thus use different
physical links; or, the sessions can be of high or low priority to suit the traffic
carried on them.

In CICS, APPC sessions are specified in groups called modesets, each of which is
assigned a modename. The modename must be the name of a z/OS
Communications Server SNA LOGMODE entry (also called a modegroup), which
can specify the class of service required for the session group. For more
information see ACF/Communications Server LOGMODE table entries for CICS.

Limited resources

For efficient use of some network resources (for example, switched lines), SNA
allows for such resources to be defined in the network as limited resources. When a
session is bound, SNA indicates to CICS whether the bind is over a limited
resource. When a task using a session across a limited resource frees the session,
CICS unbinds that session if no other task requires it.

Both single- and multi-session connections can use limited resources. For a
multi-session connection, CICS does not unbind LU service-manager sessions until
all modegroups in the connection have performed initial “change number of
sessions” (CNOS) exchange. When CICS unbinds a session, CICS tries to balance
the contention winners and losers. This balancing might result in CICS resetting an
unbound session to be neither a winner or a loser.

Establishing intersystem sessions
Before traffic can flow on an intersystem session, the session must be established,
or bound.

CICS can be either the primary (BIND sender) or secondary (BIND receiver) in an
intersystem session, and can be either the contention winner or the contention
loser. The contention winner in an LU-LU session is the LU that is permitted to
begin a conversation at any time. The contention loser is the LU that must use an
SNA BID command (LUTYPE6.1) or LUSTATUS command (APPC) to request
permission to begin a conversation.

Chapter 2. ISC and IPIC intercommunications facilities 25

You can specify the number of contention-winning and contention-losing sessions
required on a link to a particular remote system.

For LUTYPE6.1 sessions, CICS always binds as a contention loser.

For APPC links, the number of contention-winning sessions is specified when the
link is defined. See “Defining APPC connections” on page 169. The
contention-winning sessions are normally bound by CICS, but CICS also accepts
bind requests from the remote system for these sessions.

Normally, the contention-losing sessions are bound by the remote system.
However, CICS can also bind contention-losing sessions if the remote system is
cannot send bind requests.

A single session to an APPC terminal is normally defined as the contention winner,
and is bound by CICS, but CICS can accept a negotiated bind in which the
contention winner is changed to the loser.

Session initiation occurs in one of the following ways:
v By CICS during CICS initialization for sessions for which

AUTOCONNECT(YES) or AUTOCONNECT(ALL) has been specified. See
Chapter 13, “How to define connections to remote systems,” on page 149.

v By a request from the CICS master terminal operator.
v By the remote system with which CICS is to communicate.
v By CICS when an application explicitly or implicitly requests the use of an

intersystem session and the request can be satisfied only by binding a previously
unbound session.

26 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 3. Multiregion operation

By using CICS multiregion operation (MRO), CICS systems that are running in the
same MVS image, or in the same MVS sysplex, can communicate with each other.

This chapter contains the following topics:
v “Intercommunication facilities available using MRO”
v “Cross-system multiregion operation (XCF/MRO)” on page 28
v “Applications of multiregion operation” on page 31
v “Conversion from a single-region system” on page 33.

Intercommunication facilities available using MRO
Multiregion operation (MRO) allows CICS systems that are running in the same
MVS image or in the same MVS sysplex to communicate with each other. MRO
does not support communication between a CICS system and a non-CICS system,
such as IMS.

MRO provides these intercommunication facilities:
v Function shipping
v Asynchronous processing
v Transaction routing
v Distributed program link
v Distributed transaction processing

MRO has some restrictions for distributed transaction processing. The external
CICS interface (EXCI) uses a special form of MRO link to support these types of
communication:
v Communication between MVS batch programs and CICS
v DCE remote procedure calls to CICS programs.

MRO does not need networking facilities. CICS support for region-to-region
communication is called interregion communication (IRC). You can implement IRC in
three ways:
v Through support in CICS terminal control management modules and by use of a

CICS-supplied interregion program (DFHIRP) loaded in the link pack area (LPA)
of MVS. DFHIRP is started by a type 3 supervisor call (SVC). For convenience,
this implementation of multiregion operation is called MRO(IRC), because you
select it by specifying ACCESSMETHOD(IRC) on the CONNECTION definition.

v By MVS cross-memory (XM) services, which you can select as an alternative to
the CICS type 3 SVC mechanism. Here, DFHIRP is used only to open and close
the interregion links.

v By the cross-system coupling facility (XCF) of IBM MVS/ESA. XCF is required
for MRO links between CICS regions in different MVS images of an MVS
sysplex. It is selected dynamically by CICS for such links, if available.

CICS regions linked by MRO can be at different release levels. If an MVS image
contains different releases of CICS, all using MRO to communicate with each other

© Copyright IBM Corp. 1977, 2012 27

or XCF/MRO to communicate with regions in other images in the sysplex, the
DFHIRP module in the MVS LPA must be from the most current CICS release in
the image, or higher.

Cross-system multiregion operation (XCF/MRO)
The cross-system coupling facility (XCF) is part of the MVS base control program,
providing high-performance communication links between MVS images that are
linked in a sysplex (systems complex) by channel-to-channel links, channels, or
coupling facility links.

IRC provides an XCF access method that makes it unnecessary to use z/OS
Communications Server to communicate between MVS images within the same
MVS sysplex.

Each CICS region is assigned to an XCF group when it logs on to IRC, even if it is
not currently connected to any regions in other MVS images. You specify the name
of the XCF group on the XCFGROUP system initialization parameter. If you do not
specify XCFGROUP, the region becomes a member of the default CICS XCF group,
DFHIR000.

When members of a CICS XCF group that are in different MVS images
communicate, CICS selects the XCF access method dynamically, overriding the
access method specified on the connection resource definition. By means of MVS
cross-system coupling facility, MRO can function between MVS images in a sysplex
environment, supporting all the usual MRO operations.

XCF/MRO does not support accessing shared data tables across MVS images.
Shared access to a data table, across two or more CICS regions, requires the
regions to be in the same MVS image. To access a data table in a different MVS
image, you can use function shipping.

Each CICS region can be a member of only one XCF group, which it joins when it
logs on to IRC. The maximum size of an XCF group is limited by the MVS
MAXMEMBER parameter, with an absolute limit of 2047 members. If this limit is a
problem because, for example, it limits the number of CICS regions you can have
in your sysplex, you can create multiple XCF groups, each containing a different
set of regions. You might, for example, have one XCF group for production regions
and another for development and test regions. If you do need to have multiple
XCF groups, follow these recommendations:
v You put your production regions in a different XCF group from your

development and test regions.
v You do not create more XCF groups than you need; two, separated as described,

may be sufficient.
v You try not to move regions between XCF groups.
v You try not to add or remove regions from existing XCF groups.

Note that CICS regions can use MRO or XCF/MRO to communicate only with
regions in the same XCF group. Members of different XCF groups cannot
communicate using MRO or XCF/MRO, even if they are in the same MVS image.

CICS regions linked by XCF/MRO can be at different release levels; see
“Multiregion operation” on page 4. Depending on the versions of CICS installed in
the MVS images participating in XCF/MRO, the versions of DFHIRP installed in
the link pack areas of the MVS images can be different. If a single MVS image

28 CICS TS for z/OS 4.2: Intercommunication Guide

contains different releases of CICS, all using XCF/MRO to communicate with
regions in other images in the sysplex, the DFHIRP module in the MVS LPA must
be that from the most current CICS release in the image, or higher. For full details
of software and hardware requirements for XCF/MRO, see Installation
requirements for XCF/MRO in the Installation Guide.

Figure 7 is an example of the use of XCF/MRO in a sysplex environment. This
example, has only one CICS XCF group, DFHIR000. The members of DFHIR000
can communicate using XCF/MRO links across the two MVS images.

The MRO links between CICS1 and CICS2 and between CICS3 and CICS4 use
either the IRC or XM access methods, as defined for the link. The MRO links
between CICS regions on MVS1 and the CICS regions on MVS2 use the XCF
method, which is selected by CICS dynamically.

In each MVS, the DFHIRP module in the LPA must be at the level of the highest
CICS TS for z/OS release in the image.

Figure 8 on page 30 is a slightly more complex example. This example has two
CICS XCF groups, DFHIR000 and DFHIR001. The members of each XCF group can
communicate across the MVS images by means of XCF/MRO links.

MVS1 z/OS

DBCTL/IMS
regions

SYSGRS
SYS1

SYSMVS
SYS1

L
P
A

Group:
Member:

Group:
Member:

MVS2 z/OS

CICS4

XCF group:
DFHIR000

DBCTL/IMS
regions

SYSGRS
SYS2

SYSMVS
SYS2

L
P
A

Group:
Member:

Group:
Member:

CICS3

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

SYSPLEX1

SYSPLEXTIMER

XCF
COUPLE

DATA
SET(S)

XCF signaling paths
DFHIRPDFHIRP

CICS1 CICS2

XCF group:
DFHIR000

Figure 7. A sysplex (SYSPLEX1) containing a single CICS XCF group.

Chapter 3. Multiregion operation 29

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.installation.doc/topics/dfha1er.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.installation.doc/topics/dfha1er.html

To support multiple CICS XCF groups, both MVS images must be z/OS Version
1.7 or later and must use the CICS TS for z/OS, Version 3.2 or later version of
DFHIRP. Although z/OS has supported multiple XCF groups since Version 1.6,
CICS TS for z/OS, Version 3.2, which is required to join an XCF group other than
DFHIR000 requires z/OS Version 1.7 or later.

Note:
v The members of the DFHIR000 XCF group in MVS1 (CICS 1, CICS 3, and CICS

4) use XCF/MRO, which is selected by CICS dynamically, to communicate with
the member of the DFHIR000 XCF group in MVS2 (CICS 5). Similarly, CICS 2 in
MVS1 uses XCF/MRO to communicate with CICS 6 in MVS 2; they are both
members of the DFHIR001 group.

v CICS 1, CICS 3, and CICS 4 cannot use XCF/MRO to communicate with CICS 6,
because CICS 6 is in a different XCF group. Similarly, CICS 2 cannot use
XCF/MRO to communicate with CICS 5.

v Because they are in the same MVS image and the same XCF group, CICS 1,
CICS 3, and CICS 4 can communicate with each other using either the
MRO(IRC) or MRO(XM) access method, as defined for the links.

v CICS 5 cannot use any form of MRO to communicate with CICS 6, even though
they are in the same MVS image, because they are in different XCF groups.
Similarly, CICS 2 cannot use any form of MRO to communicate with CICS 1,
CICS 3, or CICS 4.

MVS1 z/OS

SYSGRS
SYS1

SYSMVS
SYS1

L
P
A

Group:
Member:

Group:
Member:

MVS2 z/OS

CICS 6

XCF group:
DFHIR000

XCF group:
DFHIR001

DBCTL/IMS
regions

SYSGRS
SYS2

SYSMVS
SYS2

L
P
A

Group:
Member:

Group:
Member:

CICS 5

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

SYSPLEX1

SYSPLEXTIMER

XCF
COUPLE

DATA
SET(S)

XCF signaling paths
DFHIRPDFHIRP

XCF group:
DFHIR000

XCF group:
DFHIR000

XCF group:
DFHIR000

CICS 1

CICS 3

XCF group:
DFHIR001

CICS 2

CICS 4

Figure 8. A sysplex (SYSPLEX1) containing two CICS XCF groups

30 CICS TS for z/OS 4.2: Intercommunication Guide

Benefits of XCF/MRO
Cross-system MRO using XCF links offers a number of benefits.
v A low communication overhead between MVS images, providing much better

performance than using ISC links to communicate between MVS systems.
XCF/MRO thus improves the efficiency of transaction routing, function
shipping, asynchronous processing, and distributed program link across a
sysplex. You can also use XCF/MRO for distributed transaction processing if the
LUTYPE6.1 protocol is adequate for your purpose.

v Easier connection resource definition than for ISC links, with no SNA (z/OS
Communications Server) tables to update.

v Good availability, by having alternative processors and systems ready to
continue the workload of a failed MVS or a failed CICS.

v Easier transfer of CICS systems between MVS images. The more straightforward
connection resource definition of MRO, with no SNA tables to update, makes it
easier to move CICS regions from one MVS to another. You no longer need to
change the connection definitions from CICS MRO to CICS ISC (which can be
done only if the CICS startup on the new MVS is a warm or cold start).

v Improved price and performance, by coupling low-cost, rack-mounted,
air-cooled processors in an HPCS environment.

v Growth in small increments.
v Organizational benefits. Because regions in different XCF groups cannot

communicate over MRO or XCF/MRO, each group of regions is effectively
isolated from the others. This isolation can be useful if, for example, you want to
prevent, possibly, access accidentally to production regions from development or
test regions.

Applications of multiregion operation
Multiregion operation provides an environment for a number of typical
applications.

Program development
You can isolate the testing of newly written programs from production work by
running a separate CICS region for testing. This isolation permits the reliability
and availability of the production system to be maintained during the
development of new applications, because the production system continues even if
the test system terminates abnormally.

You can start and stop the test system as required, without interrupting production
work. During the cutover of the new programs into production, terminal operators
can run transactions in the test system from their regular production terminals, and
the new programs can access the full resources of the production system.

Time-sharing
If one CICS system performs compute-bound work, such as APL or ICCF, as well
as regular DB/DC work, the response time for the DB/DC user can be unduly
long. You can improve the response time by running the compute-bound
applications in a lower-priority address space and the DB/DC applications in
another address space.

Transaction routing allows any terminal to access either CICS system without the
operator being aware of the two different systems.

Chapter 3. Multiregion operation 31

Reliable database access
You can use CICS storage protection and transaction isolation to guard against
unreliable applications that might otherwise stop the system or disable other
applications.

However, you might use MRO to extend the level of protection.

For example, you might define two CICS regions, one that owns applications that
you have identified as unreliable, and the other that owns the reliable applications
and the database. If you run a smaller number of applications in the
database-owning region, you have a more reliable region. However, the
cross-region traffic is greater, so performance can be degraded. You must balance
performance against reliability.

You can take this application of MRO to its limit by having no user applications at
all in the database-owning region. The online performance degradation might be a
worthwhile trade-off against the elapsed time necessary to restart a CICS region
that owns a very large database.

Departmental separation
MRO enables you to create a CICSplex in which the various departments of an
organization have their own CICS systems.

Each can start and end its own system as it requires. At the same time, each can
have access to other departments' data, with access controlled by the system
programmer. A department can run a transaction on another department's system,
again subject to the control of the system programmer. Terminals need not be
allocated to departments, because, with transaction routing, any terminal can run a
transaction on any system.

Multiprocessor performance
Using MRO, you can take advantage of a multiprocessor by linking several CICS
systems into a CICSplex, and allowing any terminal to access the transactions and
data resources of any of the systems.

The system programmer can assign transactions and data resources to any of the
connected systems to get optimum performance. Transaction routing presents the
terminal user with a single system image; the user is not aware that more than one
CICS system is present.

Transaction routing is described in Chapter 7, “CICS transaction routing,” on page
67.

Workload balancing in a sysplex
In a sysplex, you can use MRO and XCF/MRO links to create a CICSplex
consisting of sets of functionally equivalent terminal-owning regions (TORs) and
application-owning regions (AORs).

You can use these products and functions to perform workload balancing:
v The z/OS Communications Server generic resource function
v Dynamic transaction routing
v Dynamic routing of DPL requests
v CICSPlex System Manager (CICSPlex SM)

32 CICS TS for z/OS 4.2: Intercommunication Guide

v The MVS workload manager

A z/OS Communications Server application program such as CICS can be known
to z/OS Communications Server by a generic resource name, as well as by the
specific network name defined on its z/OS Communications Server APPL
definition statement. A number of CICS regions can use the same generic resource
name.

A terminal user, who wants to start a session with a CICSplex that has several
terminal-owning regions uses the generic resource name in the logon request.
Using the generic resource name, z/OS Communications Server can select one of
the CICS TORs to be the target for that session. For this mechanism to operate, the
TORs must all register to z/OS Communications Server under the same generic
resource name. z/OS Communications Server can perform workload balancing of
the terminal sessions across the available terminal-owning regions.

The terminal-owning regions can in turn perform workload balancing using
dynamic transaction routing. Application-owning regions can route DPL requests
dynamically. The CICSPlex SM product can help you to manage dynamic routing
across a CICSplex.

For further information about z/OS Communications Server generic resources see
the VTAM Version 4 Release 2 Release Guide.
v “Dynamically routing DPL requests” on page 101
v “Dynamic transaction routing” on page 69
v CICSPlex System Manager Managing Workloads.
v CICS Performance Guide

Virtual storage constraint relief
In some large CICS systems, the amount of virtual storage available can become a
limiting factor.

In such cases, you might be able to relieve the virtual storage problem by splitting
the system into two or more separate systems with shared resources. You can use
all the facilities of MRO to help maintain a single-system image for users.

If you are using DL/I databases and want to split your system to avoid virtual
storage constraints, consider using DBCTL, rather than CICS function shipping, to
share the databases between your CICS address spaces.

Conversion from a single-region system
Usually, you can convert existing single-region CICS systems to multiregion CICS
systems with little or no reprogramming.

CICS function shipping allows operators of terminals owned by an existing
command-level application to continue accessing existing data resources after
either the application or the resource has been transferred to another CICS region.
Applications that use function shipping must follow the rules given in Chapter 19,
“Application programming for CICS function shipping,” on page 241. To conform
to these rules, you might have to modify programs written for single-region CICS
systems.

Chapter 3. Multiregion operation 33

CICS transaction routing allows operators of terminals owned by one CICS region
to run transactions in a connected CICS region. One use of this facility is to allow
applications to continue to use function that has been discontinued in the current
release of CICS. Such coexistence considerations are described in CICS Transaction
Server for z/OS Upgrading from CICS TS Version 4.1 . In addition, the restrictions that
apply are given in Chapter 22, “Application programming for CICS transaction
routing,” on page 251.

You must define an MRO link between the two regions and to provide local and
remote definitions of the shared resources.

34 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 4. CICS function shipping

You can use CICS function shipping to write CICS application programs without
regard to the location of the requested resources. They use file control commands,
temporary-storage commands, and other functions in the same way.

This chapter contains the following topics:
v “Overview of function shipping”
v “Design considerations for Function Shipping” on page 36
v “The mirror transaction and transformer program” on page 39
v “Function shipping examples” on page 44.

Overview of function shipping
You can use CICS function shipping to enable CICS application programs to
perform the following tasks.
v Access CICS files owned by other CICS systems by shipping file control

requests.
v Access DL/I databases managed by or accessible to other CICS systems by

shipping requests for DL/I functions.
v Transfer data to or from transient data and temporary storage queues in other

CICS systems by shipping requests for transient data and temporary storage
functions.

v Initiate transactions in other CICS systems, or other non-CICS systems that
implement SNA LU Type 6 protocols, such as IMS, by shipping interval control
START requests. This form of communication is described in Chapter 5,
“Asynchronous processing,” on page 49.

You can write applications without regard to the location of the requested
resources. They use file control commands, temporary-storage commands, and
other functions in the same way. Entries in the CICS resource definition tables
allow the system programmer to specify that the named resource is not on the
local (or requesting) system but on a remote (or owning) system.

An illustration of a shipped file control request is given in Figure 9 on page 36. In
this figure, a transaction running in CICA issues a file control READ command
against a file called NAMES. The resource definition for the file indicates that this
file is owned by a remote CICS system called CICB. CICS changes the READ
request into a suitable transmission format and then ships it to CICB for execution.

In CICB, the request is passed to a special transaction known as the mirror
transaction. The mirror transaction re-creates the original request, issues it on CICB,
and returns the acquired data to CICA.

CICS recovery and restart enables resources in remote systems to be updated, and
ensures that, when the requesting application program reaches a synchronization
point, any mirror transactions that are updating protected resources also take a
synchronization point, so that changes to protected resources in remote and local
systems are consistent. The CICS master terminal operator is notified of any
failures in this process, so that suitable corrective action can be taken. This action

© Copyright IBM Corp. 1977, 2012 35

can be taken manually or by user-written code.

Design considerations for Function Shipping
User application programs can run in a CICS intercommunication environment and
use the intercommunication facilities without being aware of the location of the file
or other resource being accessed. The location of the resource is specified in the
resource definition.

Guidance on identifying and defining remote resources is given in Chapter 16,
“Defining remote resources,” on page 205.

The resource definition can also specify the name of the resource as it is known on
the remote system, if it is different from the name by which it is known locally.
When the resource is requested by its local name, CICS substitutes the remote
name before sending the request. Substituting the remote name is useful when a
particular resource exists with the same name on more than one system but
contains data specific to the system on which it is located.

This technique might limit program independence. Application programs can also
name remote systems explicitly on commands that can be function-shipped, by
using the SYSID option. If you specify this option, the request is routed directly to
the named system, and the resource definition tables on the local system are not
used. You can specify the local system in the SYSID option, so that the decision
whether to access a local resource or a remote one can be taken at execution time.

File control
Function shipping allows access to VSAM or BDAM files located on a remote CICS
system.

Note the following points:-
v INQUIRE FILE, INQUIRE DSNAME, SET FILE, and SET DSNAME are not

supported.
v Both read-only and update requests are allowed, and the files can be defined as

protected on their own system.
v Updates to remote protected files are not committed until the application

program issues a sync point request or terminates successfully.

CICA CICB

DEFINE
FILE(NAMES)

DEFINE
FILE(NAMES)
REMOTESYSTEM(CICB)

.
EXEC CICS READ
FILE(NAMES)
INTO(XXXX)

CICS mirror
transaction
(issues READ
command and
passes data
back)

IPIC, ISC, or
MRO session

TERMINAL
.
.
.

Figure 9. Function shipping

36 CICS TS for z/OS 4.2: Intercommunication Guide

v Linked updates of local and remote files can be performed in the same unit of
work, even if the remote files are located on more than one connected CICS
system.

Important:

Take care when designing systems in which remote file requests using physical
record identifier values are employed, such as VSAM RBA, BDAM, or files with
keys not embedded in the record. You must ensure that all application programs in
remote systems have access to the correct values following addition of records or
reorganization of these types of file.

DL/I
Function shipping allows a CICS transaction to access IMS Database Manager (IMS
DM) databases associated with a remote CICS system, or DL/I databases
associated with a remote CICS Transaction Server for VSE system.

See Chapter 1, “Introduction to CICS intercommunication,” on page 3 for a list of
systems with which CICS Transaction Server for z/OS, Version 4 Release 2 can
communicate.

The IMS database associated with a remote CICS Transaction Server for z/OS
system can be a local database owned by the remote system or a database accessed
using IMS database control (DBCTL). To the CICS system that is doing the function
shipping, this database is remote.

As with file control, updates to remote DL/I databases are not committed until the
application reaches a sync point. With IMS DM, it is not possible to schedule more
than one program specification block (PSB) for each unit of work, even when the
PSBs are defined to be on different remote systems. Therefore linked DL/I updates
on different systems cannot be made in a single unit of work.

The PSB directory list (PDIR) is used to define a PSB as being on a remote system.
The remote system owns the database and the associated program communication
block (PCB) definitions.

Temporary storage
Function shipping enables application programs to send data and retrieve data
from temporary storage queues located on remote systems.

You can define a remote temporary storage queue by specifying remote attributes
in a TSMODEL resource definition. If the queue is to be protected, you must define
it as recoverable.

Transient data
An application program can access intrapartition or extrapartition transient-data
queues on remote systems.

The definition of the queue in the requesting system defines it as being on the
remote system. The definition of the queue in the remote system specifies its
recoverability attributes, and whether it has a trigger level and associated terminal.
You can define extrapartition queues in the owning system as having records of
fixed or variable length.

Chapter 4. CICS function shipping 37

Many current uses of transient-data and temporary-storage queues can be
extended to an interconnected processor system environment. For example, you
can create a queue of records in a system for processing overnight. Queues also
provide another means of handling requests from other systems while freeing the
terminal for other requests. The reply can be returned to the terminal when it is
ready, and delivered to the operator when there is a lull in entering transactions.

If a transient-data queue has an associated trigger level transaction, you must
define the named transaction to execute in the system owning the queue; it cannot
be defined as remote. If a terminal is associated with the transaction, it can be
connected to another CICS system and used through the transaction routing facility
of CICS.

By means of the remote naming capability, a program can send data to the CICS
service destinations, such as CSMT, in both local and remote systems.

Intersystem queuing
Performance problems can occur when function shipping requests waiting for free
sessions are queued in the issuing region.

Requests that are to be function shipped to a resource-owning region might be
queued if all bound contention winner sessions are busy, so that no sessions are
immediately available. If the resource-owning region is unresponsive, the queue
can become so long that the performance of the issuing region is severely
impaired. Further, if the issuing region is an application-owning region, its
impaired performance can spread back to the terminal-owning region.

Note: “Contention winner” is the terminology used for APPC connections. On
MRO and LUTYPE6.1 connections, the SEND sessions (defined in the session
definitions) are used for ALLOCATE requests; when all SEND sessions are in use,
queuing starts.

On IPIC connections, queuing starts when there are no available send sessions. The
number of send sessions are specified using the SENDCOUNT attribute on the
IPCONN resource definition on the local server. The number of receive sessions are
specified using the RECEIVECOUNT attribute defined in the IPCONN resource
definition on the remote system. The number of send sessions that are used is the
lower of the two values of the SENDCOUNT on the local definition and the
RECEIVECOUNT on the remote definition.

The symptoms of this impaired performance are as follows:
v The system reaches its maximum transactions (MXT) limit, because many tasks

have requests queued.
v The system becomes short-on-storage.

In either case, CICS cannot start any new work.

CICS provides two methods of preventing these problems:
v The QUEUELIMIT and MAXQTIME options on both the IPCONN and

CONNECTION definitions. You can use these options to limit the number of
requests that can be queued against particular remote regions, and the time that
requests must wait for sessions on unresponsive connections.

v The global user exits, XZIQUE, XISCONA, and XISQUE. The XZIQUE or
XISCONA exit program is invoked if no contention winner session is

38 CICS TS for z/OS 4.2: Intercommunication Guide

immediately available. The exit program can instruct CICS to queue the request
or to return SYSIDERR to the application program. Its decision can be based on
statistics accessible from the user exit parameter list. For programming
information about writing XZIQUE and XISCONA exit programs, refer to
Intersystem communication program exits XISCONA and XISLCLQ, in the CICS
Customization Guide. For information about the statistics records that are passed
to your exit program, refer to Introduction to CICS statistics , in the CICS
Performance Guide. The global user exit XISQUE is used to manage IPIC
intersystem queues, for more information about XISQUE see XISQUE exit for
managing IPIC intersystem queues.

Note: For non-IPIC connections it is best practice to use the XZIQUE exit, rather
than XISCONA. XZIQUE provides better function, and is of more general use
than XISCONA: it is driven for function shipping, DPL, transaction routing, and
distributed transaction processing requests, whereas XISCONA is driven only for
function shipping and DPL. If you enable both exits, XZIQUE and XISCONA
can both be driven for function shipping and DPL requests, which is not
recommended.
If you already have an XISCONA exit program, you might be able to modify it
for use at the XZIQUE exit point.

For further information about controlling intersystem queues, see Chapter 24,
“Intersystem session queue management,” on page 277.

The mirror transaction and transformer program
CICS supplies a number of mirror transactions, some of which correspond to
“architected processes.”

Details of the supplied mirror transactions are given in Chapter 17, “Defining local
resources,” on page 229. Here, they are referred to generally as the mirror
transaction and have the transaction identifier CSM*.

The mirror transaction runs as a normal CICS transaction and is threadsafe when
an IPIC connection is used.

Chapter 4. CICS function shipping 39

|

|
|

|
|
|

|
|

|

The sequence of events in Figure 10 are as follows:
v In the requesting system (CICA in Figure 10), the command-level EXEC interface

program (for all except DL/I requests) determines that the requested resource is
on another system (CICB in the example). It therefore calls the function-shipping
transformer program to transform the request into a form suitable for
transmission (in the example, line 2 indicates this call). The EXEC interface
program then calls on the intercommunication component to send the
transformed request to the appropriate connected system (line 3). For DL/I
requests, part of this function is handled by CICS DL/I interface modules. For
guidance about DL/I request processing, see IMS Database Control (DBCTL) , in
the CICS IMS Database Control Guide .

v The first request to a particular remote system on behalf of a transaction causes
the communication component in the local system to precede the formatted
request with the appropriate mirror transaction identifier, in order to attach this
transaction in the remote system. Thereafter, it keeps track of whether the mirror
transaction stops, and reinvokes it as required.

v The mirror transaction uses the function-shipping transformer program to
decode the formatted request (line 4 in Figure 10). The mirror then runs the
corresponding command. On completion of the command, the mirror transaction
uses the transformer program to construct a formatted reply (line 5). The mirror
transaction returns this formatted reply to the requesting system, CICA (line 6).
On CICA, the reply is decoded, again using the transformer program (line 7),
and used to complete the original request made by the application program (line
8).

v If the mirror transaction is not required to update any protected resources, and
no previous request updated a protected resource in its system, the mirror
transaction stops after sending its reply. However, if the request causes the
mirror transaction to change or update a protected resource, or if the request is
for any DL/I program specification block (PSB), it does not stop until the
requesting application program issues a synchronization point (sync point)
request or ends successfully. If a browse is in progress, the mirror transaction
does not end until the browse is complete.

v When the application program issues a sync point request, or ends successfully,
the intercommunication component sends a message to the mirror transaction

CICA CICB
DEFINE FILE(FA) DEFINE FILE(FA) ...

REMOTESYSTEM(CICB)

Transaction

Mirror
transaction

CSM*

AAAA:
...
EXEC CICS READ

FILE(FA)...
...

(1)
(3) (4)

EXEC
interface mprogra

DFHEIP

(5)
(6)

(8)

(2)
(7)

Transformer
program

Transformer
program

Figure 10. The transformer program and the mirror in function shipping

40 CICS TS for z/OS 4.2: Intercommunication Guide

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

that causes it also to issue a sync point request and stop. The successful sync
point by the mirror transaction is indicated in a response sent back to the
requesting system, which then completes its sync point processing, thereby
committing changes to any protected resources. If DL/I requests have been
received from another system, CICS issues a DL/I TERM request as a part of the
processing resulting from a sync point request made by the application program
and carried out by the mirror transaction.

v The application program can access protected or unprotected resources in any
order, and is not affected by the location of protected resources. They might all
be in remote systems, for example. When the application program accesses
resources in more than one remote system, the intercommunication component
invokes a mirror transaction in each system to run requests for the application
program. Each mirror transaction follows the above rules for ending, and when
the application program reaches a sync point, the intercommunication
component exchanges sync point messages with any mirror transactions that
have not yet ended. This situation is called the multiple-mirror.

v The mirror transaction uses the CICS command-level interface to run CICS
requests, and the DL/I CALL or the EXEC DLI interface to run DL/I requests.
The request is thus processed as for any other transaction and the requested
resource is located in the appropriate resource table. If its entry defines the
resource as remote, the mirror transaction's request is formatted for transmission
and sent to another mirror transaction in the specified system. This situation is
called a chained-mirror. To guard against possible threats to data integrity caused
by session failures, you are recommended to avoid defining a connected system
in which chained mirror requests occur, except when the requests involved do
not access protected resources, or are inquiry-only requests.

Long-running mirror tasks for MRO
Normally, MRO mirror tasks are stopped as soon as possible, in the same way as
described for ISC mirrors, to keep the number of active tasks to a minimum and to
avoid holding on to the session for long periods.

However, for some applications, it is more efficient to retain both the mirror task
and the session until the next sync point, though this retention is not required for
data integrity. For example, a transaction that issues many READ FILE requests to
a remote system might be better served by a single mirror task, rather than by a
separate mirror task for each request. In this way, you can reduce the overheads of
allocating sessions on the sending side and attaching mirror tasks on the receiving
side.

Mirror tasks that wait for the next sync point, even though they logically do not
need to do so, are called long-running mirrors. They are applicable to MRO links
only, and are specified, on the system on which the mirror runs, by coding
MROLRM=YES in the system initialization parameters. A long-running mirror is
stopped by the next sync point (or RETURN) on the sending side.

For some applications, the performance benefits of using long-running mirrors can
be significant.

Figure 12 on page 44 and Figure 13 on page 45 in “Function shipping examples” on
page 44 show how the mirror acts for MROLRM=NO and MROLRM=YES
respectively.

An additional system initialization parameter, MROFSE=YES, specified on the
front-end region, extends the retention of the mirror task and the session from the

Chapter 4. CICS function shipping 41

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

next sync point to the end of the task. To achieve maximum benefit, use
MROFSE=YES with MROLRM=YES on the back-end region. However,
MROFSE=YES still applies if the back-end region has MROLRM=NO, if requests
are of the type that cause the mirror transaction to keep its inbound session.

Conceptually, you specify MROLRM on the back-end region and MROFSE is
specified on the front-end region. However, if the distinction between “back-end”
and “front end” is not clear, it is safe to code both parameters on each region if
necessary.

MROFSE=YES gives a performance improvement only if most applications
initiated from the front-end region have multiple sync points and function
shipping requests are issued between each sync point.

Do not specify MROFSE=YES in the front-end region when long-running tasks
might be used to function-ship requests, because a SEND session is unavailable for
allocation to other tasks when unused. If you specify MROFSE=YES you might
prevent the connection from being released, when contact has been lost with the
back-end region, until the task ends or issues a function-shipped request.

Long-running mirror tasks are also available over IPIC links, the lifetime of the
mirror is specified using the MIRRORLIFE attribute on the IPCONN resource
definition. For more information see Long-running mirror tasks for IPIC.

The short-path transformer for MRO
CICS uses a special transformer program (DFHXFX) for function shipping over
MRO links.

This short-path transformer optimizes the path length involved in the construction of
the terminal input/output areas (TIOA) that are sent on an MRO session for
function shipping. It optimizes the path length by using a private CICS format for
the transformed request, rather than the architected format defined by SNA.

CICS uses DFHXFX for shipping file control, transient data, temporary storage,
and interval control (asynchronous processing) requests. It is not used for DL/I
requests. The shipped request always specifies the CICS mirror transaction, CSMI.
Architected process names are not used.

Long-running mirror tasks for IPIC
Normally, IPIC mirror tasks are stopped as soon as possible, in the same way as
described for ISC mirrors, to keep the number of active tasks to a minimum and to
avoid holding on to the session for long periods.

However, for some applications, it is more efficient to retain both the mirror task
and the session until the next sync point, though this rentention is not required for
data integrity. For example, a transaction that issues many READ FILE requests to
a remote system might be better served by a single mirror task, rather than by a
separate mirror task for each request. In this way, you can reduce the overheads of
allocating sessions on the sending side and attaching mirror tasks on the receiving
side.

Mirror tasks that wait for the next sync point, or beyond the next sync point, even
though they logically do not need to do so, are called long-running mirrors. They
are applicable to MRO and IPIC links only. For IPIC links, the lifetime of the
mirror is specified on the system on which the mirror runs by using the

42 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht10b.html

MIRRORLIFE attribute of the IPCONN on which the request is received. A
long-running mirror for an IPCONN specified with MIRRORLIFE(UOW) is
stopped by the next sync point (or RETURN) on the sending side. A long-running
mirror for an IPCONN specified with MIRRORLIFE(TASK) is stopped by the end
of the task on the sending side.

For some applications, the performance benefits of using long-running mirrors can
be significant. MIRRORLIFE(TASK) improves performance only if most
applications that are initiated from the front-end region have multiple sync points
and function shipping requests are issued between each sync point.

Specify MIRRORLIFE(TASK) or MIRRORLIFE(UOW) with caution, especially if
distributed program link (DPL) requests with SYNCONRETURN or TRANSID are
used.

Do not specify MIRRORLIFE(TASK) when long-running tasks might be used to
function ship requests. The long-running tasks will retain the use of a SEND
session for its entire duration and the SEND session will not be available for
allocation to other tasks when it is no longer used. The MIRRORLIFE setting is not
reflected in the lifetime of the mirror task until a file control, transient data queue
(TDQ) or temporary storage queue (TSQ) request is function shipped.

Error handling and failure of the mirror transaction
If the mirror task in the remote region encounters an error or abend, and the
mirror program can handle the error or abend, the error, or abend is returned to
the application program that issued the function-shipped request.

The remote mirror (server) task, and the task running the program that issued the
request (client task), share a common transaction scope unless the request was one
of the following requests:
v A function-shipped EXEC CICS START NOCHECK command
v A distributed program link (DPL) request with SYNCONRETURN
v A non update request; for example, a file control read only

If the server task performs recoverable work as part of such a common transaction
scope, that work is committed or backed out under the control of the sync point
processing of the client task even though an error or abend was encountered. The
default action is for the error or abend to cause abnormal termination of the client
task and to back out all recoverable updates made by both the client and server
programs.

However, in common with local execution (that is, when not using function
shipping or distributed program link), the application program that issued the
request that was function-shipped might attempt to handle the error or abend. The
handle logic then issues an EXEC CICS SYNCPOINT, SYNCPOINT ROLLBACK, RETURN, or
ABEND command. Attempting a SYNCPOINT or RETURN, (rather than a SYNCPOINT
ROLLBACK or ABEND) despite being informed of the error or abend, results in an
attempt to commit the client program's local resource updates and those performed
by the server transaction before the error or abend was encountered.

If the mirror program cannot handle the error or abend encountered by the mirror
transaction and this causes the termination and backout of the mirror transaction
without sending a response to the client application, CICS forces the client
program's transaction to back out. Any explicit sync point attempt fails and the

Chapter 4. CICS function shipping 43

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

local updates are backed out. This response also occurs if a problem is encountered
with the communications link between the client and server tasks.

If the client and server tasks do not share a common transaction scope, as
described previously, errors or abends that result in the stopping of the server task,
and problems with the communications link, do not force the client's transaction to
back out.

Function shipping examples
These examples illustrate the lifetime of the mirror transaction and the information
flowing between the application and its mirror.

The examples contrast the action of the mirror transaction when accessing
protected and unprotected resources on behalf of the application program, over
MRO, ISC, or IPIC links, with and without MRO long-running mirror tasks.

System A System B

Application Transaction
.
.

...

'READ' reply,last

Transmitted Information

EXEC CICS READ
FILE('RFILE')

Attach CSM*,
'READ' request

Attach mirror
transaction.
Perform READ request.

Free session. Reply is
passed back to the
application, which
continues processing.

Free session.
Terminate mirror.

Figure 11. ISC function shipping: simple inquiry. In this example, no resource is being changed; the session is freed
and the mirror task is stopped immediately.

System A System B

Application Transaction {DFHSIT MROLRM(NO)}
.
.

EXEC CICS READ
FILE('RFILE')

Attach CSM*,
'READ' request

... Attach mirror
transaction.
Perform READ request.

'READ' reply,last
Free session. Reply is
passed back to the
application, which
continues processing.

Free session.
Terminate mirror.

Transmitted Information

Figure 12. MRO or IPIC function shipping: simple inquiry. In this example, no resource is being changed. Because
long-running mirror tasks are not specified, the session is freed by System B and the mirror task is therefore stopped
immediately.

44 CICS TS for z/OS 4.2: Intercommunication Guide

|
|

|
|
|
|

EXEC CICS READ
FILE('RFILE')

Attach CSM*,
'READ' request

Attach mirror
transaction.
Perform READ request.

Hold session. Reply is
passed back to the
application, which
continues processing.

Hold session. Mirror
waits for next request.

Transmitted InformationSystem A System B

Application Transaction {DFHSIT MROLRM(YES)}
.
.

...

'READ' reply

Figure 13. MRO or IPIC function shipping: simple inquiry. In this example, no resource is being changed. However,
because long-running mirror tasks are specified, the session is held by System B, and the mirror task waits for the
next request.

Transmitted InformationSystem A System B

Application Transaction
.
.

EXEC CICS READ UPDATE
FILE('RFILE') ...

Attach CSM*, 'READ
UPDATE' request

Attach mirror transaction.
.

.

.

.

Reply passed to application
'READ UPDATE' reply

Perform READ UPDATE.

Mirror waits.
EXEC CICS REWRITE
FILE('RFILE')

'REWRITE' request

.
Mirror performs REWRITE.

.
Reply passed to application

'REWRITE' reply

. Mirror waits, still holding
the enqueue on the updated
record.

.

'SYNCPOINT' request, lastEXEC CICS SYNCPOINT

Mirror takes sync point, releases
the enqueue, frees the session,
and terminates

Sync point completed.
Application continues.

positive response

Figure 14. ISC, MRO, or IPIC function shipping: update. Because the mirror must wait for the REWRITE, it becomes
long-running and is not terminated until SYNCPOINT is received. Note that the enqueue on the updated record is not
held beyond the REWRITE command if the file is not recoverable.

Chapter 4. CICS function shipping 45

Figure 15 is like Figure 14 on page 45, except that an abend occurs during sync
point processing.

Transmitted InformationSystem A System B

Application Transaction
.
.

EXEC CICS READ UPDATE
FILE('RFILE') ... Attach CSM*, 'READ

UPDATE' request
Attach mirror transaction..

.

.

.

.
Reply passed to application

'READ UPDATE' reply Perform READ UPDATE.

Mirror waits.
EXEC CICS REWRITE
FILE('RFILE') 'REWRITE' request

.
Mirror performs REWRITE.

.
Reply passed to application

'REWRITE' reply

.
Mirror waits..

'SYNCPOINT' request, lastEXEC CICS SYNCPOINT
Mirror attempts sync point but
abends (for example. logging
error). Mirror backs out and
terminates.

Session freed.

Application is abended and
backs out. Message routed
to CSMT.

negative response

Abend message

Figure 15. ISC, MRO, or IPIC function shipping: update with ABEND.

46 CICS TS for z/OS 4.2: Intercommunication Guide

Transmitted InformationSystem A System B

Application Transaction
.
.

EXEC CICS READ UPDATE
FILE('RFILE') ...

Attach CSM*, 'READ
UPDATE' request

Attach mirror transaction.
.

.

.

.

Reply passed to application
'READ UPDATE' reply

Perform READ UPDATE.

Mirror waits.
EXEC CICS REWRITE
FILE('RFILE')

'REWRITE' request

.
Mirror performs REWRITE.

.
Reply passed to application

'REWRITE' reply

. Mirror waits, still holding
the enqueue on the updated
record.

.

'SYNCPOINT' requestEXEC CICS SYNCPOINT

Mirror takes sync point, releases
the enqueue and then waits for
the next request.

Sync point completed.
Application continues.

positive response

For MRO: MROFSE=YES For IPIC: IPCONN resource
attribute MIRRORLIFE(TASK)

Figure 16. MRO or IPIC function shipping: update using MROFSE or IPCONN MIRRORLIFE(TASK) to extend the life
of the mirror transactions. Because the mirror must wait for the REWRITE, it becomes long-running. On an MRO
connection setting MROFSE=YES on System A prevents the mirror task on System B from being terminated after sync
point. The mirror task on System B only terminates when the task on System A terminates. To extend the life of mirror
transactions using IPIC connections, use the MIRRORLIFE(TASK) option on the IPCONN resource definition on
System B.

Chapter 4. CICS function shipping 47

48 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 5. Asynchronous processing

Asynchronous processing distributes the processing required by an application
between intercommunicating systems. The processing is independent of the
sessions on which requests are sent and replies are received.

This chapter contains the following topics:
v “Overview of asynchronous processing”
v “Asynchronous processing methods” on page 50
v “Asynchronous processing using START and RETRIEVE commands” on page 51
v “System programming considerations” on page 57
v “Asynchronous processing examples” on page 57.

Overview of asynchronous processing
Asynchronous processing provides a means of distributing the processing that is
required by an application between systems in an intercommunication
environment. Unlike distributed transaction processing, however, the processing is
asynchronous.

In distributed transaction processing, a session is held by two transactions for the
period of a “conversation” between them, and requests and replies can be directly
correlated.

In asynchronous processing, the processing is independent of the sessions on
which requests are sent and replies are received. No direct correlation can be made
between a request and a reply, and no assumptions can be made about the timing
of the reply. These differences are illustrated in Figure 17.

A typical application area for asynchronous processing is online inquiry on remote
databases; for example, an application to check a credit rating. A terminal operator
can use a local transaction to enter a succession of inquiries without waiting for a
reply to each individual inquiry. For each inquiry, the local transaction initiates a

System A System B

Synchronous Processing (DTP)

TRAN1 TRAN2 TRAN1 and TRAN2 hold synchronous
conversation on session.

Asynchronous Processing
TRAN3 TRAN4

TRAN3 initiates TRAN4 and sends
request.
Later TRAN4 initiates TRAN5

TRAN5 and sends reply.
No direct correlation exists
between executions of TRAN3 and
TRAN5.

Figure 17. Synchronous and asynchronous processing compared

© Copyright IBM Corp. 1977, 2012 49

remote transaction to process the request, so that many copies of the remote
transaction can be executing concurrently. The remote transactions send their
replies by initiating a local transaction (possibly the same transaction) to deliver
the output to the operator terminal (the one that initiated the transaction). The
replies may not arrive in the same order as that in which the inquiries were issued;
correlation between the inquiries and the replies must be made by means of fields
in the user data.

In general, asynchronous processing is applicable to any situation in which it is not
necessary or desirable to tie up local resources while a remote request is being
processed.

Asynchronous processing is not suitable for applications that involve synchronized
changes to local and remote resources; for example, it cannot be used to process
simultaneous linked updates to data split between two systems.

Asynchronous processing methods
In CICS, asynchronous processing can be done in either of two ways: by using the
interval control commands START and RETRIEVE or by using distributed
transaction processing (DTP).
1. Using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote system
in much the same way as you would in a single CICS system. This type of
asynchronous processing is in effect a form of CICS function shipping, and as
such, it is transparent to the application. The system programmer determines
whether the attached transaction is local or remote.
If you use the START command for asynchronous processing, you can
communicate only with systems that support the special protocol needed for
function shipping; that is, CICS itself and IMS.
A CICS transaction that is initiated by a remotely issued start request can use
the RETRIEVE command to retrieve any data associated with the request. Data
transfer is restricted to a single record passing from the initiating transaction to
the transaction initiated.

2. Using distributed transaction processing (DTP).
This is a cross-system method and has no single-system equivalent. You can
use it to initiate a transaction in a remote system that supports one of the DTP
protocols.
When you use DTP to attach a remote transaction, you also allocate a session
and start a conversation. This permits you to send data directly and, if you
want, to receive data from the remote transaction. Your transaction design
determines the format and volume of the data you exchange. For example, you
can use repeated SEND commands to pass multirecord files.
When you have exchanged data, you terminate the conversation and quit the
local transaction, leaving the remote transaction to run on independently.
The procedure to be followed by the two transactions while they are working
together is determined by the application programming interface (API) for the
protocol you are using. APPC is the preferred one, although you must use
LUTYPE6.1 if you want to communicate with IMS. You might want to take
advantage of the flexible data exchange facilities by employing this method
across MRO links too.

50 CICS TS for z/OS 4.2: Intercommunication Guide

Whatever protocol you decide to use, you must observe the rules it imposes.
However short the conversation, during the time it is in progress, the
processing is synchronous. In terms of command sequencing, error recovery,
and syncpointing, it is full DTP.

In both forms of asynchronous processing (and also in synchronous processing), a
CICS transaction can use the EXEC CICS ASSIGN STARTCODE command to
determine how it was initiated.

CICS-to-IMS communication includes a special case of the DTP method described
above. Because it restricts data communication to one SEND LAST command
answered by a single RECEIVE, this book refers to it elsewhere as the
SEND/RECEIVE interface. The circumstances under which it is used are described
in Chapter 23, “CICS-to-IMS applications,” on page 255.

Distributed transaction processing is described in Chapter 9, “Distributed
transaction processing,” on page 107.

Asynchronous processing using START and RETRIEVE commands
The following interval control commands can be used for asynchronous processing.
v START
v CANCEL
v RETRIEVE.

For programming information about CICSinterval control, see Interval control , in
the CICS Application Programming Guide .

Starting and canceling remote transactions
The START and CANCEL commands are function shipped to the remote CICS or
IMS system. If the remote system is CICS, the mirror transaction is started in the
remote system to issue the START command on that system.

About this task

For asynchronous processing of threadsafe programs in a remote CICS system,
performance is affected by the intercommunication method that you use for
CICS-to-CICS communication. If you use IP interconnectivity (IPIC) over TCP/IP
to connect the CICS systems, CICS uses an L8 open TCB whenever possible to run
the mirror program used by the mirror transaction, so some TCB switching can be
avoided. If you use MRO or ISC over SNA to connect the CICS systems, the mirror
program does not run on an open TCB. The START and CANCEL commands are
not threadsafe for any intercommunication method.

Procedure
v Use the interval control START command to schedule transactions

asynchronously in remote CICS and IMS systems.
v For CICS-to-CICS communication, include time-control information on the

shipped START command using the INTERVAL or TIME options.
– A TIME specification is converted by CICS to a time interval, relative to the

local clock, before the command is shipped. Because the ends of an
intersystem link might be in different time zones, it is typically better to think
in terms of time intervals, rather than absolute times, for intersystem
communication.

Chapter 5. Asynchronous processing 51

|
|
|
|
|
|
|
|

– Note particularly that the time interval specified on a START command
specifies the time at which the remote transaction is to be initiated, not the
time at which the request is to be shipped to the remote system.

v You cannot specify time control for START commands sent to IMS systems.
INTERVAL(0) must be specified or allowed to take the default value.

v You can cancel a START command shipped to a remote CICS system at any time
up to its expiration time by shipping a CANCEL command to the same system.
The particular START command has a unique identifier (REQID), which you can
specify on the START command and on the associated CANCEL command. Any
task that knows the identifier can issue the CANCEL command. For information
about canceling dynamically-routed START commands, see “Canceling interval
control requests” on page 88.

v Start requests for IMS transactions cannot be canceled after they have been
issued, because you cannot specify time control for START commands sent to
IMS systems.

Passing information with the START command
The START command has a number of options that enable information to be made
available to the remote transaction when it is started. If the remote transaction is in
a CICS system, it obtains the information by issuing a RETRIEVE command.

About this task

The information that can be specified is summarized in the following list:
v User data—specified in the FROM option.

This is the principal way in which data can be passed to the remote transaction.
For CICS-to-CICS communication, additional data can be made available in a
transient data or temporary storage queue named in the QUEUE option. The
queue can be on any CICS system that is accessible to the system on which the
remote transaction is executed.
The QUEUE option cannot be used for CICS-to-IMS communication.

v The transaction and terminal names to be used for replies—specified in the
RTRANSID and RTERMID options.
These options, whose values are set by the local transaction, provide the means
for the remote transaction to pass a reply to the local system. (That is, the
TRANSID and TERMID specified by the remote transaction on its reply are the
RTRANID and RTERMID specified by the local system on the initial request.)

v A terminal name—specified in the TERMID option.
For CICS-to-CICS communication, this is the name of a terminal that is to be
associated with the remote transaction when it is initiated. It may be that the
terminal is defined on the region that owns the remote transaction but is not
owned by that region. If so, it is obtained by the automatic transaction initiation
(ATI) facility of transaction routing. See “Traditional routing of transactions
started by ATI” on page 71.
The global user exits XICTENF and XALTENF can be coded to cover the case of
the terminal that is shippable but not defined in the application-owning region.
See “Shipping terminals for automatic transaction initiation” on page 73.
For CICS-to-IMS communication, it is a transaction code or an LTERM name.

Passing a sysid or applid with the START command
If you have a transaction that can be started from several different systems, and
which is required to issue a START command to the system that initiated it, you

52 CICS TS for z/OS 4.2: Intercommunication Guide

can arrange for all of the invoking transactions to send their local system sysid or
applid as part of the user data in the START command.

About this task

An initiating transaction can obtain its local sysid by using an ASSIGN SYSID
command, or its applid by using an ASSIGN APPLID command.

If the name of the connection to the remote system matches the SYSIDNT system
initialization parameter of the remote system (typical of MRO), then the started
transaction can reply using a START command specifying the passed sysid.

If the name of an APPC or LUTYPE6.1 connection to the remote system does not
match the SYSIDNT system initialization parameter of the remote, then the started
transaction can still determine the sysid to be responded to. It can do this by
issuing an EXTRACT TCT command on which the NETNAME option specifies the
passed applid.

Improving performance of intersystem START requests
In many inquiry-only applications, sophisticated error-checking and recovery
procedures are not justified. Where the transactions make inquiries only, the
terminal operator can retry an operation if no reply is received within a specific
time. In such a situation, the number of messages to and from the remote system
can be substantially reduced by using the NOCHECK option of the START
command.

About this task

Where the connection between the two systems is via the z/OS Communications
Server, this can result in considerably improved performance. The price paid for
better performance is the inability of CICS to detect some types of error in the
START command.

A typical use for the START NOCHECK command is in the remote inquiry
application described at the beginning of this chapter.

The transaction attached as a result of the terminal operator's inquiry issues an
appropriate START command with the NOCHECK option, which causes a single
message to be sent to the appropriate remote system to start, asynchronously, a
transaction that makes the inquiry. The command should specify the operator's
terminal identifier. The transaction attached to the operator's terminal can now
terminate, leaving the terminal available for either receiving the answer or
initiating another request.

The remote system performs the requested inquiry on its local database, then
issues a start request for the originating system. This command passes back the
requested data, together with the operator's terminal identifier. Again, only one
message passes between the two systems. The transaction that is then started in
the originating system must format the data and display it at the operator's
terminal.

If a system or session fails, the terminal operator must reenter the inquiry, and be
prepared to receive duplicate replies. To aid the operator, either a correlation field
must be shipped with each request, or all replies must be self-describing.

Chapter 5. Asynchronous processing 53

An example of intercommunication using the NOCHECK option is given in
Figure 19 on page 59.

The NOCHECK option is always required when shipping of the START command
is queued pending the establishment of links with the remote system (see “Local
queuing of START commands” on page 55), or if the request is being shipped to
IMS.

Including start request delivery in a unit of work
The delivery of a start request to a remote system can be made part of a unit of
work by specifying the PROTECT option on the START command.

About this task

The PROTECT option indicates that the remote transaction must not be scheduled
until the local one has successfully completed a synchronization point (syncpoint).
(It can take the syncpoint either by issuing a SYNCPOINT command or by
terminating normally.)

Successful completion of the syncpoint guarantees that the start request has been
delivered to the remote system. It does not guarantee that the remote transaction
has completed, or even that it will be initiated.

If the remote system is IMS, no message must cross the link between the START
command and the syncpoint. Both PROTECT and NOCHECK must be specified
for all IMS recoverable transactions.

Deferred transmission of START requests with NOCHECK
option for ISC links

For START commands with the NOCHECK option, whether you specify
PROTECT, CICS can defer transmission of the request to the remote system for ISC
links. For MRO links and IP interconnectivity (IPIC), START requests with
NOCHECK are not deferred.

For ISC links, START requests with NOCHECK are deferred until one of the
following events occurs:
v The transaction issues a further START command or any function shipping

request for the same system.
v The transaction issues a SYNCPOINT command.
v The transaction stops with an implicit sync point.

The first, or only, start request transmitted from a transaction to a remote system
carries the begin-bracket indicator; the last, or only, request carries the end-bracket
indicator. Also, if any of the start requests issued by the transaction specifies
PROTECT, the last request in the unit of work (UOW) carries the sync point
request indicator. Deferred sending allows the indicators to be added to the
deferred data, and thus reduces the number of transmissions required.

Start requests are processed differently, if there are limitations because of protocol,
connection, or receiving system:
v For both the APPC and LUTYPE6.1 protocols, if the first START with

NOCHECK is followed by a second START with NOCHECK command, CICS
transmits the first command and defers the second.

54 CICS TS for z/OS 4.2: Intercommunication Guide

v For LUTYPE6.1 and 6.2 protocols, the sequence of requests is transmitted in a
single SNA bracket and, if the remote system is CICS, all the requests are
handled by the same mirror task.

v For MRO and IPIC connections, if the first START with NOCHECK is followed
by a second START with NOCHECK command, CICS transmits both commands.

v For IMS, no message can cross the link between a START request and the
following sync point. Therefore, you cannot send multiple START NOCHECK
PROTECT requests to IMS. Each request must be followed by a SYNCPOINT
command or by termination of the transaction. IP interconnectivity (IPIC) does
not support requests to IMS.

Intersystem queuing
If the link to a remote region is established, but there are no free sessions available,
function shipped EXEC CICS START requests used to schedule remote transactions
may be queued in the issuing region.

Performance problems can occur if the queue becomes excessively long. This
problem is described on page “Intersystem queuing” on page 38.

For guidance information about controlling intersystem queues, see Chapter 24,
“Intersystem session queue management,” on page 277.

Local queuing of START commands
If a remote system is unavailable, either because it is not active or because a
connection cannot be established, an attempt to function ship a START request to
the remote system usually results in the SYSIDERR condition being returned to the
application.

Provided that the remote system is directly connected to this CICS system, and
that you specify the NOCHECK option on the START command, you can arrange
for the request to be queued locally, and forwarded when the required link is in
service.

You cannot cancel a START request while it remains on the local queue. The
request can be cancelled only when the required link is back in service, the request
has been sent to the target region, and before the request is run.

A SYSIDERR condition is also returned when there is a connection to the remote
system, but there are no sessions available and you have chosen not to queue the
request in the issuing region. You can specify local queuing in two ways:
1. Specify LOCALQ(YES) on the local definition of the remote transaction. The

LOCALQ option specifies that local queuing is used, where necessary, for all
requests from the local system for a particular remote transaction.
For information about the LOCALQ option, see the CICS Resource Definition
Guide.

2. Use an XISLCLQ or XISQLCL global user exit program.
XISLCLQ is invoked only for function-shipped EXEC CICS START NOCHECK
commands, which are scheduled for a non-IPIC connection, when these
conditions apply:
v The remote system is unavailable, or

v A connection exists to the remote system but there no sessions are available,
and either the number of requests currently queued in the issuing region has
reached the maximum specified on the QUEUELIMIT option of the

Chapter 5. Asynchronous processing 55

CONNECTION definition or your XZIQUE or XISCONA global user exit
program has specified that the request is not to be queued in the issuing
region.

XISQLCL is invoked for EXEC CICS START NOCHECK commands, which are
scheduled for an IPIC connection, when these conditions apply:
v The IPIC connection is not acquired.
v A session is not available and CICS does not queue the request for a new

session.

If the connection resource is discarded, any requests that you have added to the
local queue are lost.
Your user exit program can decide, on a request-by-request basis, whether to
queue locally.
For programming information about the XISCONA, XISLCLQ, and XISQLCL
global user exits, see the CICS Customization Guide.

Data retrieval by a started transaction
A CICS transaction that is started by a start request can get the user data and other
information associated with the request by using the RETRIEVE command.

In accordance with the normal rules for CICS interval control, a start request for a
particular transaction that carries both user data and a terminal identifier is
queued if the transaction is already active and associated with the same terminal.
During the waiting period, the data associated with the queued request can be
accessed by the active transaction by using a further RETRIEVE command. This
has the effect of canceling the queued start request.

Thus, it is possible to design transactions that can handle the data associated with
multiple start requests. Typically, a long-running local transaction could be
designed to accept multiple inquiries from a terminal and ship start requests to a
remote system. From time to time, the transaction would issue RETRIEVE
commands to receive the replies, the absence of further replies being indicated by
the ENDDATA condition.

The WAIT option of the RETRIEVE command can be used to put the transaction
into a wait state pending the arrival of the next start request from the remote
system. If this option is used in a task attached to an APPC device, CICS does not
suspend the task, but instead raises the ENDDATA condition if no data is currently
available. However, for tasks attached to non-APPC devices, you must make sure
that your transaction does not get into a permanent wait state in the absence of
further start requests.

Important:

If a started transaction issues multiple RETRIEVE commands, or uses the WAIT
option of the RETRIEVE command, allow the ROUTABLE option of the transaction
definition, in the region in which the START command is issued, to default to
ROUTABLE(NO). If the transaction is defined as ROUTABLE(YES), multiple
RETRIEVE or RETRIEVE WAIT commands may not work as you expect.

For information about the ROUTABLE option of the START command, see
“Routing transactions invoked by START commands” on page 80.

56 CICS TS for z/OS 4.2: Intercommunication Guide

Terminal acquisition by a remotely-initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility.

It makes no difference whether the start request was issued by a user transaction
in the local CICS system or was received from a remote system and issued by the
mirror transaction.

Starting transactions with ISC or MRO sessions
You can name a system, rather than a terminal, in the TERMID option of the
START command.

About this task

If CICS finds that the “terminal” named in a locally- or remotely-issued start
request is a system, it selects a session available to that system and makes it the
principal facility of the started transaction (see “Terminology” on page 239). If no
session is available, the request is queued until there is one.

If the link to the system is an APPC link, CICS uses the modename associated with
the transaction definition to select a class-of-service for the session.

System programming considerations
This section discusses the CICS resources that must be defined for asynchronous
processing.
v A link to a remote system must be defined.
v Remote transactions that are to be initiated by start requests must be defined as

remote resources to the local CICS system. This is not necessary, however, for
transactions that are initiated only by START commands that name the remote
system explicitly in the SYSID option.

v If the QUEUE option is used, the named queue must be defined on the system
to which the start request is shipped. The queue can be either a local or a remote
resource on that system.

v If a START request names a “reply” transaction, that transaction must be defined
on the system to which the start request is shipped.

Asynchronous processing examples
These examples show you how remote transactions are initiated over MRO, ISC,
and IPIC connections.

Chapter 5. Asynchronous processing 57

Transmitted InformationSystem A System B

Transaction TRX
initiated by terminal T1

EXEC CICS RETRIEVE
INTO(area)
LENGTH(length)
QUEUE(Q)

Q has value 'RQUE'

EXEC CICS START
TRANSID('TRY')
RTRANSID('TRZ')
RTERMID('T1')
FROM(area)
LENGTH(length)

Attach CSM
'SCHEDULE' request for
transaction

*

Session available for
remote requests from
other transactions in
system A or B

Attach CSM
'SCHEDULE' request for
transaction

*

'SCHEDULE' reply, last

'SCHEDULE' reply

'SYNCPOINT' request, last

positive response

Attach mirror transaction.
Perform START request for
transaction TRY.

Free session. Pass return code
to application program.
Continue processing.

Perform START request with
TRANSID value of 'TRZ' and
TERMID value of 'T1'.

Free session. Terminate mirror.
Transaction TRY is dispatched
and starts processing.

Procesing based on data
aquired. Results put into TS
queue named RQUE.

RETURN
(implicit syncpoint)

EXEC CICS RETRIEVE
INTO (area)

LENGTH(length)
RTRANSID(TR)
RTERMID(T)

(TR has value 'TRZ', T has
value 'T1')

EXEC CICS

(TR has value 'TRZ', T has
value 'T1')

START
TRANSID(TR)
TERMID(T)
QUEUE('RQUE')

,
Attach mirror transaction.

Mirror waits for SYNCPOINT.

Free session.
Terminate mirror.

Transaction TRZ is dispatched
on termial T1 and starts
processing.

TRZ now uses function
shipping to read and then
delete the remote queue.

MROLRM=YES

Figure 18. Asynchronous processing—remote transaction initiation. This example shows an MRO connection with
long-running mirrors (MROLRM) specified for System A but not for System B. Note the different action of the mirror
transaction on the two systems.

58 CICS TS for z/OS 4.2: Intercommunication Guide

Transmitted InformationSystem A System B

Transaction TRX
initiated by terminal T1

EXEC CICS START
TRANSID('TRY')
RTRANSID('TRZ')
RTERMID('T1')
FROM(area)
LENGTH(length)
NOCHECK

EXEC CICS START
TRANSID(TR)
FROM(REP)
LENGTH(length)
TERMID(T)
NOCHECK

(TR has value 'TRZ', T has
value 'T1')

Attach CSM
'SCHEDULE' request for
trans, last (no reply)

*

Attach CSM
'SCHEDULE' request for
trans, last (no reply)

*

session available

session available

Attach mirror.
Perform START request for
transaction TRY.

.

Free session.
Terminate mirror.
Transaction TRY is dispatched
and starts
EXEC CICS RETRIEVE

INTO (area)
LENGTH(length)
RTRANSID(TR)
RTERMID(T)

(TR has value 'TRZ', T has
value 'T1')

Perform START request with
TRANSID value of 'TRZ' and
TERMID value of 'T1'.
Free session

Data determines processing.
Reply put in data area REP.

TRY terminates.

Attach mirror transaction.

Terminate mirror.

Transaction TRZ is dispatched
on termial T1 and starts
processing.

Terminate, and free terminal T1.
T1 could now initiate another
transaction, but TRZ could not
start until T1 became free again.

Figure 19. Asynchronous processing—remote transaction initiation using NOCHECK. This example shows an ISC
connection, or an MRO connection without long-running mirrors.

Chapter 5. Asynchronous processing 59

Transmitted InformationSystem A System B

Transaction TRX
initiated by terminal T1

EXEC CICS RETRIEVE
INTO(area)
LENGTH(length)
QUEUE(Q)

Q has value 'RQUE'

EXEC CICS START
TRANSID('TRY')
RTRANSID('TRZ')
RTERMID('T1')
FROM(area)
LENGTH(length)

Attach CSM2
'SCHEDULE' request for
transaction

Session available for
remote requests from
other transactions in
system A or B

Attach CSM2
'SCHEDULE' request for
transaction

'SCHEDULE' reply, last

'SCHEDULE' reply, last

Attach mirror transaction.
Perform START request for
transaction TRY.

Free session. Pass return code
to application program.
Continue processing.

Perform START request with
TRANSID value of 'TRZ' and
TERMID value of 'T1'.

Free session. Terminate mirror.
Transaction TRY is dispatched
and starts processing.

Procesing based on data
aquired. Results put into TS
queue named RQUE.

TRY terminates.

EXEC CICS RETRIEVE
INTO (area)

LENGTH(length)
RTRANSID(TR)
RTERMID(T)

(TR has value 'TRZ', T has
value 'T1')

EXEC CICS

(TR has value 'TRZ', T has
value 'T1')

START
TRANSID(TR)
TERMID(T)
QUEUE('RQUE')

,
Attach mirror transaction.

Free session.
Terminate mirror.

Transaction TRZ is dispatched
on termial T1 and starts
processing.

TRZ now uses function
shipping to read and then
delete the remote queue.

Figure 20. Asynchronous processing—remote transaction initiation. This example shows an IPIC connection.

60 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 6. Introduction to CICS dynamic routing

This chapter is an overview of the CICS dynamic routing interface.

The information it contains is relevant to both Chapter 7, “CICS transaction
routing,” on page 67 and Chapter 8, “CICS distributed program link,” on page 97.

What is dynamic routing?
In a CICSplex, resources (for example, transactions or programs) required by one
region may be owned by another region (the resource-owning region). For
example, you may have a terminal-owning region that requires access to
transactions owned by an application-owning region.

Static routing
Static routing means that the location of the remote resource is specified at
design time. Requests for a particular resource are always routed to the same
region. Typically, when static routing is used, the location of the resource is
specified in the installed resource definition.

Dynamic routing
Dynamic routing means that the location of the remote resource is decided at
run time. The decision is taken by a CICS-supplied user-replaceable routing
program. The routing program may, at different times, route requests for a
particular resource to different regions. This means, for example, that if you
have several cloned application-owning regions, your routing program could
balance the workload across the regions dynamically.

All the following can be dynamically routed:
v Transactions started from terminals.
v Transactions invoked by a subset of EXEC CICS START commands.
v CICS-to-CICS distributed program link (DPL) requests.
v Program-link requests received from outside CICS; for example, External Call

Interface (ECI) calls received from CICS Clients.
v CICS business transaction services (BTS) processes and activities. (BTS is

described in the CICS Business Transaction Services.)
v Method requests for enterprise beans and CORBA stateless objects. (Enterprise

beans are described in Java Applications in CICS.)
v Bridge 3270 transactions.

Some further definitions are necessary:

Requesting region
The region in which a transaction or other routable request is issued. Here
are some examples of what we mean by “requesting region”:
v For transactions started from terminals, it is the terminal-owning region

(TOR).
v For transactions started by EXEC CICS START commands, it is the region

in which the START command is issued.
v For “traditional” CICS-to-CICS DPL calls, it is the region in which the

EXEC CICS LINK PROGRAM command is issued.

© Copyright IBM Corp. 1977, 2012 61

v For program-link calls received from outside CICS, it is the CICS region
which receives the call.

v For BTS processes and activities, it is the region in which the EXEC CICS
RUN ACTIVITY ASYNCHRONOUS command is issued.

v For method requests on enterprise beans or CORBA stateless objects:
– If the method call is issued outside CICS; for example, by a remote

(non-CICS) IIOP client. The requesting region is the listener region
which receives the call.

– If the method call is issued inside CICS; for example, by an enterprise
bean object that calls a method of another enterprise bean. The
requesting region is the region on which the call is issued.

Routing region
The region in which the routing program is invoked for route selection.
With two exceptions, the requesting region and the routing region are
always the same region. The exceptions are:
1. Some terminal-related START commands:

v Because a terminal-related START command is always executed in
the terminal-owning region, the requesting region and the routing
region may or may not be the same. (This is fully explained in
“Routing transactions invoked by START commands” on page 80.)

v The routing region is always the TOR.
2. Some method requests for enterprise beans or CORBA stateless objects

issued inside CICS:
v An enterprise bean, program, or object on the local EJB/CORBA

server calls a method of an object on a remote EJB/CORBA server.
The requesting region is the local region on which the method call is
issued. The routing region is the listener region on the remote
EJB/CORBA server.

Target region
The region in which the routed transaction or request executes.

Two routing models
There are two possible dynamic routing models.

The “hub” model
The “hub” is the model that has traditionally been used with CICS dynamic
transaction routing.

A routing program running in a TOR routes transactions between several AORs.
Usually, the AORs (unless they are AOR/TORs) do no dynamic routing. Figure 21
on page 63 shows a “hub” routing model.

62 CICS TS for z/OS 4.2: Intercommunication Guide

The “hub” model applies to the routing of:
v Transactions started from terminals.
v Transactions started by terminal-related START commands.
v Program-link requests received from outside CICS. (The receiving region acts as

a “hub” or “TOR” because it routes the requests among a set of back-end server
regions.)

v Bridge 3270 requests.

The “hub” model is a hierarchical system—routing is controlled by one region (the
TOR); normally a routing program runs only in the TOR.

Advantage of the “hub” model
It is a relatively simple model to implement. For example, compared to the
distributed model, there are few inter-region connections to maintain.

Disadvantages of the “hub” model
v If you use only one “hub” to route transactions and program-link requests

across your AORs, the “hub” TOR is a single point-of-failure.
v If you use more than one “hub” to route transactions and program-link requests

across the same set of AORs, you may have problems with distributed data. For
example, if the routing program keeps a count of routed transactions for
load-balancing purposes, each “hub”-TOR will need access to this data.

The distributed model
In the distributed model, each region may be both a routing region and a target
region.

A routing program runs in each region. Figure 22 on page 64 shows a distributed
routing model.

TOR

Possible
Target region

Possible
Target region

Possible
Target region

Possible
Target region

Routing region

Requesting region Dynamic
routing
program

Figure 21. Dynamic routing using a “hub” routing model. One routing region (the TOR) selects between several target
regions.

Chapter 6. Introduction to CICS dynamic routing 63

The distributed model applies to the routing of:
v CICS business transaction services processes and activities
v Method requests for enterprise beans and CORBA stateless objects
v Non-terminal-related START requests
v CICS-to-CICS DPL requests

The distributed model is a peer-to-peer system—each participating CICS region may
be both a routing region and a target region. A routing program runs in each
region.

Advantage of the distributed model
There is no single point-of-failure.

Disadvantages of the distributed model
v Compared to the “hub” model, there are a great many inter-region connections

to maintain.

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Distributed
routing
program

Distributed
routing
program

Distributed
routing
program

Distributed
routing
program

Figure 22. Dynamic routing using a distributed routing model. Each region may be both a routing region and a target
region.

64 CICS TS for z/OS 4.2: Intercommunication Guide

v You may have problems with distributed data. For example, any data used to
make routing decisions must be available to all the regions. (CICSPlex SM solves
this problem by using dataspaces.)

Two routing programs
CICS provides two user-replaceable programs for dynamic routing: the dynamic
routing program and the distributed routing program. If you are using CICSPlex
SM to manage your CICS environment, you can use the EYU9XLOP routing
program instead.

You can use the dynamic routing program, DFHDYP, to route the following
requests:
v Transactions started from terminals
v Transactions started by terminal-related START commands
v CICS-to-CICS DPL requests
v Program-link requests received from outside CICS
v Bridge 3270 requests

You can use the distributed routing program, DFHDSRP, to route the following
requests:
v CICS business transaction services processes and activities
v Method requests for enterprise beans and CORBA stateless objects
v Non-terminal-related START requests.

The two routing programs are specified on different system initialization
parameters. You specify the name of the dynamic routing program on the DTRPGM
system initialization parameter. You specify the name of the distributed routing
program on the DSRTPGM system initialization parameter. The distributed routing
program must be specified in the routing and target CICS regions.

The programs are passed the same communications area. However, certain fields
that are meaningful to one program are not meaningful to the other. The programs
are also called at similar points; for example, for route selection, route selection
error, and optionally at termination of the routed transaction or program-link
request.

You have flexibility to use these programs in any of the following ways:
v Use different user-written programs for dynamic routing and distributed

routing.
v Use the same user-written program for both dynamic routing and distributed

routing.
v Use a user-written program for dynamic routing and the CICSPlex SM routing

program for distributed routing, or vice versa.

The dynamic and distributed routing programs are different in two important
ways:
v The dynamic routing program is called only if the resource (the transaction or

program) is defined as DYNAMIC(YES). However, the distributed routing
program is called (for eligible non-terminal-related START requests, BTS
activities, and method requests for enterprise beans and CORBA stateless
objects) even if the associated transaction is defined as DYNAMIC(NO),
although it cannot route the request. This difference means that you can use the

Chapter 6. Introduction to CICS dynamic routing 65

|
|
|
|
|

distributed routing program to monitor the effect of statically-routed requests on
the relative workloads of the target regions.

v The dynamic routing program uses the hierarchical “hub” routing model, where
one routing program controls access to resources on several target regions. The
routing program that is called at termination of a routed request is the same
program that was invoked for route selection.
The distributed routing program uses the distributed model, which is a
peer-to-peer system; the routing program itself is distributed. The routing
program that is invoked at initiation or termination of a routed transaction is not
the same program that was invoked for route selection. It is the routing program
on the target region. You must ensure that a distributed routing program is
specified in all the target regions in addition to the routing region.

66 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|
|
|
|

Chapter 7. CICS transaction routing

CICS transaction routing allows terminals connected to one CICS system to run
transactions in another CICS system.

This chapter contains the following topics:
v “Overview of transaction routing”
v “Terminal-initiated transaction routing” on page 68
v “Traditional routing of transactions started by ATI” on page 71
v “Routing transactions invoked by START commands” on page 80
v “Allocation of remote APPC connections” on page 89
v “The relay program” on page 92
v “Basic mapping support (BMS)” on page 92
v “Using the routing transaction, CRTE” on page 93
v “System programming for transaction routing” on page 94.

Overview of transaction routing
CICS transaction routing allows terminals connected to one CICS system to run
with transactions in another connected CICS system. You can distribute terminals
and transactions around your CICS systems and still have the ability to run any
transaction with any terminal.

Figure 23 shows a terminal connected to one CICS system running with a user
transaction in another CICS system. Communication between the terminal and the
user transaction is handled by a CICS-supplied transaction called the relay
transaction.

The CICS system that owns the terminal is called the terminal-owning region or
TOR, and the CICS system that owns the transaction is called the application-owning
region or AOR. These terms are not meant to imply that one system owns all the
terminals and the other system all the transactions, although this is a possible
configuration.

The terminal-owning region and the application-owning region must be connected
by IPIC, MRO, or APPC links. Transaction routing over LUTYPE6.1 links is not
supported.

CICS A CICS B
Terminal-Owning Application-Owning
Region (TOR) Region (AOR)

IPIC, MRO, or APPC
Terminal CICS Relay User

Transaction Transaction

Figure 23. The elements of transaction routing

© Copyright IBM Corp. 1977, 2012 67

In transaction routing, the term terminal is used in a general sense to mean such
things as an IBM 3270, or a single-session APPC device, an APPC session to
another CICS system, and so on. All terminal and session types supported by CICS
are eligible for transaction routing, except those given in the following list:
v LUTYPE6.1 connections and sessions
v MRO connections and sessions
v EXCI connections and sessions
v IBM 7770 or 2260 terminals
v Pooled 3600 or 3650 pipeline logical units
v MVS system consoles

The user transaction can use the terminal control, BMS, or batch data interchange
facilities of CICS to communicate with the terminal, as appropriate for the terminal
or session type. Mapping and data interchange functions are performed in the
application-owning region. BMS paging operations are performed in the
terminal-owning region.

Pseudo-conversational transactions are supported, except when the “terminal” is
an APPC session, and the various transactions that make up a
pseudo-conversational transaction can be in different systems.

Initiating transaction routing
Transaction routing can be initiated in three ways.
1. A request to start a transaction can arrive from a terminal connected to the

TOR. On the basis of an installed resource definition for the transaction, and
possibly on decisions made in a user-written dynamic routing program, the
request is routed to an appropriate AOR, and the transaction runs as if the
terminal were attached to the same region.

2. A transaction can be started by automatic transaction initiation (ATI) and can
acquire a terminal that is owned by another CICS system. The two methods of
routing transactions started by ATI are described in:
v “Traditional routing of transactions started by ATI” on page 71
v “Routing transactions invoked by START commands” on page 80.

3. A transaction can issue an ALLOCATE command to obtain a session to an
APPC terminal or connection that is owned by another system.

In addition to these methods, CICS provides a special transaction (CRTE) that can
be used for the occasional invocation of transactions in other systems. See “Using
the routing transaction, CRTE” on page 93.

Terminal-initiated transaction routing
When a request to start a transaction arrives at a CICS TOR, the TOR must find
out on which system the transaction is to run.

It does this by examining the installed transaction definition; in particular, the
values of the DYNAMIC and REMOTESYSTEM options. See “Defining transactions
for transaction routing” on page 222.

Transaction routing can be either static or dynamic, depending upon the value of
the DYNAMIC option.

68 CICS TS for z/OS 4.2: Intercommunication Guide

Static transaction routing
Static transaction routing occurs when DYNAMIC(NO) is specified in the
transaction definition.

In this case, the request is routed to the system named in the REMOTESYSTEM
option. (If REMOTESYSTEM is unspecified, or if it names the local CICS system,
the transaction is a local transaction, and transaction routing is not involved.)

Dynamic transaction routing

Dynamic routing models:

Dynamic routing of terminal-initiated transactions uses the “hub” routing model
described in “The “hub” model” on page 62.

Specifying DYNAMIC(YES) means that you want the chance to route the terminal
data to an alternative transaction at the time the defined transaction is invoked.
CICS manages this by allowing a user-replaceable program, called the dynamic
routing program, to intercept the terminal input data and specify that it be
redirected to any transaction and system. The default dynamic routing program,
supplied with CICS, is named DFHDYP. You can modify the supplied program, or
replace it with one that you write yourself. You can also use the DTRPGM system
initialization parameter to specify the name of the program that is invoked for
dynamic routing, if you want to name your program something other than
DFHDYP. For programming information about user-replaceable programs in
general, and about DFHDYP in particular, see Writing a dynamic routing program,
in the CICS Customization Guide. For information about system initialization
parameters, see Specifying CICS system initialization parameters, in the CICS
System Definition Guide.

When your routing program is invoked
CICS invokes the dynamic routing program in the following situations.
v When a transaction defined as DYNAMIC(YES) is initiated.

Note:

1. If a transaction definition is not found, CICS uses the common transaction
definition specified on the DTRTRAN system initialization parameter. See
“Using a single transaction definition in the TOR” on page 225.

2. If the transaction is defined as DYNAMIC(YES) in the target region, as well
as in the routing region (TOR), the dynamic routing program is invoked, for
routing, in the target region, as well as in the TOR. Thus, it is possible to
“daisy-chain” routed requests from one region to another. Take care that this
does not occur unintentionally.

If the transaction was initiated from a terminal, the dynamic routing program
can route the request —see “Overview of transaction routing” on page 67.
If the transaction was initiated by an EXEC CICS START command, the routing
program may or may not be able to route the request—see “Routing transactions
invoked by START commands” on page 80.

v If an error occurs in route selection.
v At the end of a routed transaction, if the initial invocation requests re-invocation

at termination.
v If a routed transaction abends, if the initial invocation requests re-invocation at

termination.

Chapter 7. CICS transaction routing 69

v For routing of DPL requests, at all the points described in “Dynamically routing
DPL requests” on page 101.

Information passed to your routing program
Parameters are passed in a communications area between CICS and the dynamic
routing program.

The program might change some of these parameters to influence subsequent CICS
action. The parameters include:
v The reason for the current invocation.
v Error information.
v The sysid of the target system. Initially, the sysid specified on the

REMOTESYSTEM option of the installed transaction definition. If no sysid was
specified, the sysid passed is that of the local system.
Use a single, common definition for all remote transactions that are to be
dynamically routed. See “Using a single transaction definition in the TOR” on
page 225.

v The name of the target transaction. Initially, the name specified on the
REMOTENAME option for the installed transaction definition. If no name was
specified, the name passed is the local name.

v The address of a buffer containing a copy of the data in the terminal
input/output area (TIOA).

v The netname of the target system. Initially, the netname corresponds to the sysid
specified on the REMOTESYSTEM option of the installed transaction definition.

v The address of the target transaction's communications area. If you are using
channels and containers and you have defined a DFHROUTE container,
DFHROUTE is used for the address.

v A user area.

Using your dynamic routing program
You can use dynamic transaction routing to make transaction routing decisions
based on the input to the transaction, available CICS systems, relative loading of
the available systems, and similar factors. However, a routing program can
perform other functions, besides redirecting transaction requests.

Your dynamic routing program could be used for these purposes:
v Perform workload balancing. For example, in a CICSplex, your program could

make intelligent choices between equivalent transactions on parallel AORs.
v Specify whether a request is to be queued if no sessions to a remote system are

available. For information about controlling the length of intersystem queues, see
Chapter 24, “Intersystem session queue management,” on page 277.

v For MRO and IPIC links, set the priority of the transaction attached in the AOR.
v Cause a user-defined program to run if the transaction cannot be routed or if the

routed-to transaction abends. For example, if all remote CICS regions are
unavailable and the transaction cannot be routed, you might want to run a
program in the local terminal-owning region to send an appropriate message to
the user.

v Monitor the number of requests routed to particular systems.

A dynamic routing program can issue EXEC CICS commands, but the EXEC CICS
RECEIVE command prevents the routed-to transaction from obtaining the initial
terminal data.

70 CICS TS for z/OS 4.2: Intercommunication Guide

For programming information about writing a dynamic transaction routing
program, see Writing a dynamic routing program , in the CICS Customization Guide.

The CICS Interdependency Analyzer
CICS transactions use many techniques to pass information between one another,
and to synchronize activity between themselves.

Some of these techniques require the transactions exchanging data to execute in the
same CICS region, and therefore impose restrictions on the dynamic routing of the
transactions. If you are using dynamic transaction routing for workload balancing
purposes (where equivalent transactions reside on multiple systems), your routing
program must be aware of transactions that are dependent on each other (that is,
that contain affinities) so that it can route them consistently.

If you are planning to create a dynamic transaction routing environment,
consisting perhaps of a mixture of CICS Transaction Server for z/OS, Version 4
Release 2 and earlier systems, you may find the CICS Interdependency Analyzer
useful. It can be used to identify the causes of inter-transaction affinities in CICS
Transaction Server for z/OS regions.

For more information about this utility, see the CICS Interdependency Analyzer for
z/OS User's Guide and Reference.

For further information about transaction affinities, see Affinity , in the CICS
Application Programming Guide.

Using CICSPlex SM
Normally, to take advantage of dynamic transaction routing, you have to write a
dynamic transaction routing program.

However, if you use the CICSPlex System Manager (CICSPlex SM) product to
manage your CICSplex, you need not do so. CICSPlex SM provides a dynamic
routing program that supports both workload routing and workload separation.
All you have to do is to tell CICSPlex SM, through its user interface, which TORs
and AORs in the CICSplex can participate in dynamic transaction routing, and
define any affinities that govern the AORs to which particular transactions must be
routed. The output from the CICS Interdependency Analyzer can be used directly
by CICSPlex SM.

Using CICSPlex SM, you could integrate workload routing for transactions and
DPL requests.

For introductory information about CICSPlex SM, see the CICSPlex SM Concepts
and Planning manual.

Traditional routing of transactions started by ATI
Use the "traditional" method of routing transactions that are started by automatic
transaction initiation (ATI) only if you cannot use the enhanced method.

Important:

Wherever possible, you should use the enhanced method described in “Routing
transactions invoked by START commands” on page 80. However, you cannot use
the enhanced method to route:
v Transactions invoked by the trigger-level on a transient data queue

Chapter 7. CICS transaction routing 71

v Some transactions that are invoked by EXEC CICS START commands.

For these cases, you must use the traditional method.

Automatic transaction initiation is the process whereby a transaction request made
internally within a CICS system or systems network leads to the scheduling of the
transaction. ATI requests result from:

EXEC CICS START commands
A START command causes CICS interval control to initiate a transaction
after a specified period of time (which might be zero) has elapsed.

Transient data queues
A transient data queue can be defined so that a transaction is automatically
initiated when the number of records on the queue reaches a specified
level.

CICS transaction routing allows an ATI request for a transaction owned by a
particular CICS system to name a terminal that is owned by another, connected
system. For example, in Figure 24 on page 73, an application in AOR1 issues a
START request for transaction TRAA to be attached to terminal PRT1.

Although the original ATI request occurs in the AOR, it is sent by CICS to the TOR
for execution. So, in the example, AOR1 sends the START request to TOR1 to be
executed. In the TOR, the ATI request causes the relay program to be initiated, in
conjunction with the specified terminal (PRT1 in the example).

The user transaction in the application-owning region is then accessed in the
manner described for terminal-initiated transaction routing. Associated with the
request is an automatic initiate descriptor (AID) that specifies the names of the
remote transaction (TRAA) and system (AOR1).

For static transaction routing, the terminal-owning region (TOR1) must find a
transaction definition that specifies REMOTESYSTEM(AOR1) and
REMOTENAME(TRAA); if it cannot find the correct definition, the request fails.

For dynamic transaction routing using the traditional method, when
DYNAMIC(YES) is coded on the transaction definition, the dynamic routing
program is invoked but cannot reroute the request, because the remote system
name is taken from the AID. To find out how to use the ROUTABLE option of the
transaction definition to specify enhanced routing, see “Routing transactions
invoked by START commands” on page 80.

72 CICS TS for z/OS 4.2: Intercommunication Guide

ATI requests are queued in the application-owning region if the link to the
terminal-owning region is not available, and subsequently in the terminal-owning
region if the terminal is not available.

The overall effect is to create a “single-system” view of ATI as far as the
application-owning region is concerned; the fact that the terminal is remote does
not affect the way in which ATI appears to operate.

In the application-owning region, the normal rules for ATI apply. The transaction
can be initiated from a transient data queue, when the trigger level is reached, or
on expiry of an interval control start request. Note particularly that, for transient
data initiation, the transient data queue must be in the same system as the
transaction. Transaction routing does not enable transient data queue entries to
initiate remote transactions.

Shipping terminals for automatic transaction initiation
A CICS system, CICA, can cause an ATI request to be executed in another CICS
system, CICB, in several ways.

For example:
1. CICA can function-ship a START request to CICB.
2. CICA can function-ship WRITEQ requests for a transient data queue owned by

CICB, which eventually triggers.
3. CICA can instigate routing to a transaction in CICB, which then issues a START

or writes to a transient data queue.

If the ATI request has a terminal associated with it, CICB searches its resources for
a definition for that terminal. If it finds that the terminal is remote, it sends the ATI
request to the system that is specified in the REMOTESYSTEM option of the
terminal definition. Remember that a terminal-related ATI request is executed in
the TOR.

TOR1 AOR1

DEFINE TRANSACTION(TRAA) DEFINE TRANSACTION(TRAA)
REMOTESYSTEM(AOR1)

VDT1 DEFINE TERMINAL(PRT1)
DEFINE TERMINAL(PRT1) REMOTESYSTEM(TOR1)

CICS initiates Shipped EXEC CICS START
VDT2 transaction TRANSID(TRAA)

routing TERMID(PRT1)

Transaction
CICS relay routing

PRT1 transaction TRANSACTION TRAA
Link
established
between PRT1
and TRAA

Figure 24. ATI-initiated transaction routing

Chapter 7. CICS transaction routing 73

Terminal-not-known condition
A common reason for the terminal-not-known condition is because a
terminal-related START command is issued in the terminal-owning region and
function-shipped to the application-owning region, where the terminal is not yet
defined.

The example in this information explains this situation.

Important:

If you can use the enhanced routing method described in “Routing transactions
invoked by START commands” on page 80, a START command issued in a TOR is
not function-shipped to the AOR; thus the terminal-not-known condition does not
occur.

To ensure correct functioning of cross-region ATI, you could define your terminals
to all the systems on the network that need to use them. However, you cannot do
this if you are using autoinstall. For information about using autoinstall, see
Autoinstall in the CICS Resource Definition Guide.) Autoinstalled terminals are
unknown to the system until they log on, and you rely on CICS to ship terminal
definitions to all the systems where they are needed. (See “Shipping terminal and
connection definitions” on page 216.) This works when routing from a terminal to
a remote system, but there are cases where a system cannot process an ATI request,
because it has not been told the location of the associated terminal.

The example in Figure 25 on page 75 should make this clear:
1. The operator at terminal T1 selects the menu transaction M1 on CICA.
2. The menu transaction M1 runs and the operator selects a function that is

implemented by transaction X1 in CICB.
3. Transaction M1 issues the following command, then exits:

EXEC CICS START
TRANSID(X1)
TERMID(T1)

4. Because X1 is defined as a remote transaction owned by CICB, CICA
function-ships the START command to CICB.

5. CICB now processes the START command and, in doing so, tries to discover
which region owns T1, because this is the region that has to execute the ATI
request resulting from the START command.

6. Only if a definition of T1, resulting from an earlier routed transaction, is
present can CICB determine where to send the ATI request. Assuming no such
definition exists, the interval control program rejects the START request with
TERMIDERR.

74 CICS TS for z/OS 4.2: Intercommunication Guide

The global user exits XICTENF and XALTENF:

You, as user of the system, know how this routing problem could be solved, and
CICS gives you a way of communicating your solution to the system. The two
global user exits XICTENF and XALTENF have been provided.

XICTENF is driven when interval control processes a START command and
discovers the associated termid is not defined to the system. XALTENF is driven
from the terminal allocation program also when the termid is not defined.

The terminal allocation program schedules requests resulting both from the
eventual execution of a START command and from the transient data queue trigger
mechanism. This means that a START command could result in an invocation of
both exits.

The program you provide to service one or both of these global user exits has
access to a parameter list containing this information:
v Whether the ATI request resulted from: a START command with data, a START

command without data, or a transient data queue trigger.
v Whether the START command was issued by a transaction that had been the

subject of transaction routing.
v Whether the START command was function-shipped from another region.
v The identifier of the transaction to be run.
v The identifier of the terminal with which the transaction should run.
v The identifier of the terminal associated with the transaction that issued the

START command, if this was a routed transaction, or the identifier of the
session, if the command was function-shipped. Otherwise, blanks are returned.

v The netname of the last system the START request was shipped from or, if the
START was issued locally, the netname of the system last transaction-routed
from. Blanks are returned if no remote system was involved.

v The sysid corresponding to the returned netname.

CICA CICB

DEFINE TRANSACTION(M1) DEFINE TRANSACTION(X1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB)

CEDA-installed or no terminals defined
autoinstalled terminal
definition for T1

TRANSACTION Function-shipped CICS Interval
M1 Control Program

EXEC CICS START raises 'TERMIDERR'
TRANSID(X1)
TERMID(T1)

Figure 25. Failure of an ATI request in a system where the termid is unknown

Chapter 7. CICS transaction routing 75

On exit from the program, you tell CICS whether the terminal exists and, if it does,
you supply either the netname or the sysid of the TOR. CICS sends the ATI request
to the region you specify. As a result, the terminal definition is shipped from the
TOR to the AOR, and transaction routing proceeds normally.

There is therefore a solution to the problem shown in Figure 25 on page 75. It is
necessary only to write a small exit program that returns the CICS-supplied
parameters unchanged and sets the return code for 'netname returned'.

The events that follow are shown in Figure 26 on page 77:
1. The interval control program accepts the START command and signals

acceptance to the issuing system if this is required.
2. After the specified interval has expired, or immediately if no interval was

specified, the terminal allocation program tries to schedule the ATI request. It
finds no terminal defined and takes the exit XALTENF, which again supplies
the required netname.

3. The ATI request is shipped to CICA. CICA allocates a relay transaction,
establishes a transaction routing link to transaction X1 in CICB, and ships a
copy of the terminal definition for T1 to CICB.

76 CICS TS for z/OS 4.2: Intercommunication Guide

The example in Figure 26 shows only one of many possible configurations. From
this elementary example, you can see how to approach a solution for the more
complex situations that can arise in multiregion networks.

Resource definition:

You do not have to be using autoinstalled terminals to make use of the exits
XICTENF and XALTENF. The technique also works with terminals that you have
defined explicitly, if they are defined with SHIPPABLE(YES) specified.

It is important that, although there is no need to have all terminal definitions in
place before you operate your network, all links between systems must be fully
defined, and remote transactions must be known to the systems that want to use
them.

Note: The 'terminal not known' condition can arise in CICS terminal-allocation
modules during restart, before any global user exit programs have been enabled. If
you want to intervene here too, you must enable your XALTENF exit program in a
first-phase PLTPI program (for programming information about PLTPI programs,

CICA CICB

DEFINE TRANSACTION(M1) DEFINE TRANSACTION(X1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB) no terminals defined

CEDA-installed or
autoinstalled terminal
definition for T1

CICS
Interval Exit
Control program

TRANSACTION Function-shipped Program returns
M1 drives netname

EXEC CICS START XICTENF "CICA"
TRANSID(X1) exit
TERMID(T1)

CICS ATI request CICS Exit
initiates Terminal program
transaction shipped to CICA Allocation returns
routing Program netname

drives "CICA"
XALTENF
exit

Transaction
CICS relay routing
transaction TRANSACTION

link established X1
between T1 and
X1 and terminal
definition for
T1 shipped over copy definition

for terminal T1

Figure 26. Resolving a 'terminal not known' condition on a START request

Chapter 7. CICS transaction routing 77

see Writing initialization and shutdown programs , in the CICS Customization
Guide.) This applies to both warm start and emergency start.

Important:

The XICTENF and XALTENF exits can be used only if there is a direct link
between the AOR and the TOR. In other words, the sysid or netname that you
pass back to CICS from the exit program must not be for an indirectly connected
system.

The exit program for the XICTENF and XALTENF exits:

How your exit program identifies the TOR from the parameters supplied by CICS
can only be decided by reference to your system design.

In the simplest case, you would hand back to CICS the netname of the system that
originated the START request. In a more complex situation, you may decide to give
each terminal a name that reflects the system on which it resides.

For programming information about the exit program, see ‘Terminal not known’
condition exits XALTENF and XICTENF, in the CICS Customization Guide. A sample
program is also available in the DFHXTENF member of library
CICSTS42.CICS.SDFHSAMP.

Shipping terminals for ATI from multiple TORs
Consider the following network setup.
1. You have an application-owning region that is connected to two or more

terminal-owning regions (TORs) that use the same, or a similar, set of terminal
identifiers.

2. One or more of the TORs issues EXEC CICS START requests for transactions in
the AOR.

3. The START requests are associated with terminals.
4. You are using shippable terminals, rather than statically defining remote

terminals in the AOR.

Now consider the following scenario:

Terminal-owning region TORB issues an EXEC CICS START request for transaction
TRANB, which is owned by region AOR1. It is to be run against terminal T1. Meanwhile,
terminal T1 on region TORA has been transaction routing to AOR1; a definition of T1 has
been shipped to AOR1 from TORA. When the START request arrives at AOR1, it is
shipped to TORA, rather than TORB, for transaction routing from terminal T1.

Figure 27 on page 79 illustrates what happens.

78 CICS TS for z/OS 4.2: Intercommunication Guide

There are two ways to prevent this situation:
1. This is the preferred method.

Use the enhanced routing method described in “Routing transactions invoked
by START commands” on page 80. A terminal-related START command issued
in the terminal-owning region is not function-shipped to the AOR; thus it
cannot be shipped back to the wrong TOR. Instead, the START executes directly
in the TOR, and the transaction is routed as if it had been initiated from a
terminal.
A definition of the terminal is shipped to the AOR, and the autoinstall user
program is called. Your autoinstall user program can then allocate an alias
termid in the AOR, to avoid a conflict with the previously installed remote
definition. Terminal aliases are described in “Terminal aliases” on page 221. For
information about writing an autoinstall program to control the installation of
shipped definitions, see the CICS Customization Guide.

2. Use this method if you cannot use the enhanced routing method.
Code YES on the FSSTAFF system initialization parameter in the AOR. This
ensures that, when a START request is received from a terminal-owning region,
and a shipped definition for the terminal named on the request is already
installed in the AOR, the request is always shipped back to a TOR, for routing,
across the link it was received on, irrespective of the TOR referenced in the remote
terminal definition. (The only exception to this is if the START request supplies
a TOR_NETNAME and a remote terminal with the correct TOR_NETNAME is
located; in which case, the request is shipped to the appropriate TOR.)
If the TOR to which the START request is returned is not the one referenced in
the installed remote terminal definition, a definition of the terminal is shipped
to the AOR, and the autoinstall user program is called. Your autoinstall user
program can then allocate an alias termid in the AOR, to avoid a conflict with
the previously installed remote definition.

TORA

TORB

AOR1

TRANA

TRANB

T1

T1

START shipped to wrong

region for routing fromT1

Transaction routing

Function shippedEXECCICSSTART
TRANSID(TRANB)
TERMID(T1)

Shipped
definition
forT1
onTORA

T2

Figure 27. Function-shipped START request started against an incorrect terminal. Because a shipped definition of
terminal T1 (owned by TORA) is installed on AOR1, the START request received from TORB is shipped to TORA, for
routing, rather than to TORB.

Chapter 7. CICS transaction routing 79

For full details of the FSSTAFF system initialization parameter, see the CICS
System Definition Guide.

ATI and generic resources
An AOR can issue an EXEC CICS START request against an LU that is owned by
an SNA (z/OS Communications Server) generic resource, without knowing the
member of the generic resource group to which the terminal is currently logged
on.

For details of using ATI with generic resources, see “Using ATI with generic
resources” on page 139.

Routing transactions invoked by START commands
Define a transaction as ROUTABLE(YES) in the requesting region (the region in
which the START command is issued) to use the "enhanced" method of routing
transactions that are invoked by EXEC CICS START commands.

The "enhanced" method supersedes the "traditional" method described in
“Traditional routing of transactions started by ATI” on page 71. Note, however,
that the "enhanced" method cannot be used to route a number of transactions:
v Transactions invoked by the trigger-level on a transient data queue
v Some transactions that are invoked by EXEC CICS START commands

For these cases, you must use the "traditional method".

Advantages of the enhanced method
There are several advantages in using the enhanced method, where possible, rather
than the “traditional” method:

Dynamic routing
Using the “traditional” method, you cannot route the started transaction
dynamically. (For example, if the transaction on a terminal-related START
command is defined as DYNAMIC(YES) in the terminal-owning region, your
dynamic routing program is invoked for notification only—it cannot route the
transaction.)

Using the enhanced method, you can route the started transaction dynamically.

Efficiency
Using the “traditional” method, a terminal-related START command issued in
a TOR is function-shipped to the AOR that owns the transaction. The request is
then shipped back again, for routing from the TOR.

Using the enhanced method, the two hops to the AOR and back are missed
out. A START command issued in a TOR executes directly in the TOR, and the
transaction is routed without delay.

Simplicity
Using the “traditional” method, when a terminal-related START command
issued in a TOR is function-shipped to the AOR that owns the transaction the
“terminal-not-known” condition may occur if the terminal is not defined in the
AOR.

Using the enhanced method, because a START command issued in a TOR is
not function-shipped to the AOR, the “terminal-not-known” condition does not
occur. The START command executes in the TOR directly, and the transaction

80 CICS TS for z/OS 4.2: Intercommunication Guide

is routed just as if it had been initiated from a terminal. If the terminal is not
defined in the AOR, a definition is shipped from the TOR.

How to route transactions started by terminal-related START
commands

You can set a number of options on a terminal-related START command that can
affect the set of regions to which the transaction can be routed.

For a transaction started by a terminal-related START command to be eligible for
the enhanced routing method, all of the following conditions must be met:
v The START command must be a member of the subset of eligible START

commands; that is, it must meet all the following conditions:
– The START command specifies the TERMID option, which names the

terminal associated with the current task.
– The principal facility of the task that issues the START command is a

terminal. The principal facility is not a terminal if, for example, the program
that issues the START command has a DPL link; in this case, the principal
facility is the intersystem session.

– The principal facility of the task that issues the START command is not a
surrogate client virtual terminal.

– The SYSID option of the START command does not specify the name of a
remote region; that is, the remote region on which the transaction is to be
started must not be specified explicitly.

The requesting region and the TOR can be the same region.
v The requesting region and the TOR, if they are different, must be connected by

one of the following links:
– An MRO link
– An APPC parallel-session link
– An IPIC link. For IPIC links, both regions must be at CICS TS for z/OS,

Version 4.1 or later
v The TOR and the target region must be connected by one of the following links:

– An MRO link
– An IPIC link. For IPIC links, both regions must be at CICS TS for z/OS,

Version 4.1 or later
– An APPC single- or parallel-session link. If an APPC link is used, at least one

of the following must be true:
1. Terminal-initiated transaction routing has previously taken place over the

link.
2. CICSPlex SM is being used for routing.

v The transaction definition in the requesting region must specify
ROUTABLE(YES).

v If the requesting region and the TOR are different, the transaction definition in
the requesting region must not specify the REMOTESYSTEM option. If the
requesting region and the TOR are the same region, you may use
REMOTESYSTEM in the transaction definition for static routing.

v If the transaction is to be routed dynamically, the transaction definition in the
TOR must specify DYNAMIC(YES).

Chapter 7. CICS transaction routing 81

|
|

|
|

Important: When considering which START-initiated transactions are candidates
for dynamic routing, you must take particular care if the START command
specifies any of the following options:
– AT, AFTER, INTERVAL, or TIME; that is, there is a delay before the START is

run.
– QUEUE.
– REQID.
– RTERMID.
– RTRANID.

START commands issued in an AOR
If a terminal-related START command is issued in an AOR, it is shipped to the
TOR that owns the terminal named in the TERMID option. The START executes in
the TOR.

Static routing for commands issued in the AOR:

Static routing takes place if the transaction definition in the application-owning
region (AOR) specifies ROUTABLE(YES) and the transaction definition in the
terminal-owning region (TOR) specifies DYNAMIC(NO). Therefore, the dynamic
routing program is not called.

If the transaction is eligible for enhanced routing, it is routed to the AOR named in
the REMOTESYSTEM option of the transaction definition in the TOR. If
REMOTESYSTEM is not specified, the transaction runs locally, in the TOR.

If the transaction is not eligible for enhanced routing, it is handled in the usual
way, as described in “Traditional routing of transactions started by ATI” on page
71; that is, CICS tries to route it back to the originating AOR for execution. If the
REMOTESYSTEM option of the transaction definition in the TOR names a region
other than the originating AOR, the request fails.

Figure 28 on page 83 shows the requirements for using the enhanced method to
statically route a transaction that is initiated by a terminal-related START command
issued in an AOR.

82 CICS TS for z/OS 4.2: Intercommunication Guide

The requesting region and the TOR are connected by an IPIC, MRO or APPC
parallel-session link. The TOR and the target region are connected by an IPIC,
MRO or APPC (single- or parallel-session) link. The transaction definition in the
requesting region specifies ROUTABLE(YES). The transaction definition in the TOR
specifies DYNAMIC(NO). The REMOTESYSTEM option names the AOR to which
the transaction is to be routed.

Dynamic routing for commands issued in the AOR:

Dynamic routing takes place if the transaction definition in the application-owning
region (AOR) specifies ROUTABLE(YES) and the transaction definition in the
terminal-owning region (TOR) specifies DYNAMIC(YES). Therefore, the dynamic
routing program is invoked in the TOR.

Dynamic routing of transactions called by terminal-related START commands uses
the “hub” routing model described in “The “hub” model” on page 62.

If the transaction is eligible for enhanced routing, the routing program can reroute
the transaction to an alternative AOR; that is, to an AOR other than that in which
the START was issued.

If the transaction is ineligible for enhanced routing, the dynamic routing program
is called for notification only; it cannot reroute the transaction. The transaction is
handled in the usual way; that is, it is routed back to the originating AOR for
execution.

Figure 29 on page 84 shows the requirements for dynamically routing a transaction
that is initiated by a terminal-related START command issued in an AOR.

AOR 1

Requesting region
START issued

IPIC, MRO
or
APPC
parallel-sessions

TOR

Target region

AOR 2 AOR 3 AOR 4

Routing region
START executed

IPIC, MRO, or APPC single- or parallel-sessions

T1

TRAN1
DYNAMIC(NO)
REMOTE

SYSTEM(AOR3)

TRAN1
ROUTABLE(YES)

Figure 28. Static routing of a terminal-related START command issued in an AOR, using the enhanced method

Chapter 7. CICS transaction routing 83

The requesting region and the TOR are connected by an MRO or APPC
parallel-session link. The TOR and the target region are connected by an MRO or
APPC (single- or parallel-session) link. The transaction definition in the requesting
region specifies ROUTABLE(YES). The transaction definition in the TOR specifies
DYNAMIC(YES).

START commands issued in a TOR
A terminal-related START command that is issued in a TOR can be statically or
dynamically routed.

Static routing of terminal-related START commands:

Transactions that are statically routed specify ROUTABLE(YES) and
DYNAMIC(NO) in the transaction definition in the terminal-owning region, so that
the dynamic routing program is not called.

If the transaction is eligible for enhanced routing, the following steps take place:
1. The START command runs in the TOR.
2. The transaction is routed to the AOR named in the REMOTESYSTEM option of

the transaction definition. If REMOTESYSTEM is not specified, the transaction
runs locally, in the TOR.

If the transaction is not eligible for enhanced routing, the START request is
handled in the usual way, described in “Traditional routing of transactions started
by ATI” on page 71; that is, it is function-shipped to the AOR named in the
REMOTESYSTEM option of the transaction definition. If REMOTESYSTEM is not
specified, the START request runs locally in the TOR.

CICS TS 1.3 or later

AOR 1

TRAN1
ROUTABLE(YES)

Requesting region
START issued

MRO
or
APPC
parallel-sessions

CICS TS 1.3 or later

TOR

Target region

AOR 2
CICS TS 1.3

or later

AOR 3 AOR 4

Routing region
START executed
Dynamic routing program runs

TRAN1
DYNAMIC(YES)

MRO or APPC single- or parallel- sessions

T1

Figure 29. Dynamic routing of a terminal-related START command issued in an AOR

84 CICS TS for z/OS 4.2: Intercommunication Guide

Figure 30 shows the requirements for using the enhanced method to statically route
a transaction that is initiated by a terminal-related START command issued in a
TOR.

The TOR and the target region are connected by an IPIC, MRO or APPC (single or
parallel session) link. The transaction definition in the TOR specifies
DYNAMIC(NO) and ROUTABLE(YES). The REMOTESYSTEM option names the
AOR to which the transaction is to be routed.
Related concepts:
“How to route transactions started by terminal-related START commands” on page
81
You can set a number of options on a terminal-related START command that can
affect the set of regions to which the transaction can be routed.

Dynamic routing of terminal-related START commands:

Transactions that are dynamically routed specify ROUTABLE(YES) and
DYNAMIC(YES) in the transaction definition in the terminal-owning region, so
that the dynamic routing program is called.

Dynamic routing of transactions started by terminal-related START commands use
the hub routing model.

If the transaction is eligible for enhanced routing, the following steps take place:
1. The START command runs in the TOR.
2. The routing program can route the transaction.

If the transaction is not eligible for enhanced routing, the dynamic routing
program is started for notification only, because it cannot route the transaction. The
START request is handled in the usual way; that is, it is function-shipped to the

TOR

TRAN1
DYNAMIC(NO)
ROUTABLE(YES)
REMOTE

SYSTEM(AOR3)

Target region

AOR 1 AOR 2 AOR 3 AOR 4

Requesting region
START issued

Routing region
START executed

IPIC, MRO, or APPC single- or parallel-sessions

T1

Figure 30. Static routing of a terminal-related START command issued in a TOR, using the enhanced method

Chapter 7. CICS transaction routing 85

AOR named in the REMOTESYSTEM option of the transaction definition in the
TOR. If REMOTESYSTEM is not specified, the START request runs locally in the
TOR.

Figure 31 shows the requirements for dynamically routing a transaction that is
initiated by a terminal-related START command issued in a TOR.

The TOR and the target region are connected by an IPIC, MRO, or APPC (single or
parallel session) link. The transaction definition in the TOR specifies both
DYNAMIC(YES) and ROUTABLE(YES).
Related concepts:
“The “hub” model” on page 62
The “hub” is the model that has traditionally been used with CICS dynamic
transaction routing.

Non-terminal-related START commands
For a non-terminal-related START request to be eligible for enhanced routing, all of
the following conditions must be met.
v The requesting region and the target region are connected in one of the

following ways:
– An MRO link.
– An APPC single- or parallel-session link. If an APPC link is used, and the

distributed routing program is called on the target region, CICSPlex SM must
be used for routing.

– An IPIC link.
v The transaction definition in the requesting region specifies ROUTABLE(YES).

In addition, if the request is to be routed dynamically, the following conditions
apply:

TRAN1
DYNAMIC(YES)
ROUTABLE(YES)

TOR

Target region

AOR 1 AOR 2 AOR 3 AOR 4

Requesting region
START issued

Routing region
START executed
Dynamic routing program runs

IPIC, MRO, or APPC single- or parallel-sessions

T1

Figure 31. Dynamic routing of a terminal-related START command issued in a TOR

86 CICS TS for z/OS 4.2: Intercommunication Guide

v The transaction definition in the requesting region must specify
DYNAMIC(YES).

v The SYSID option of the START command must not specify the name of a
remote region. (That is, the remote region on which the transaction is to be
started must not be specified explicitly.)

Note: When considering which START-initiated requests are candidates for
dynamic routing, you must take particular care if the START specifies any of the
following options:
v AT, AFTER, INTERVAL(non-zero), or TIME. That is, there is a delay before the

START is performed.
If a delay occurs, the interval control element (ICE) created by the START
request is kept in the requesting region with a transaction ID of CDFS. The
CDFS transaction retrieves any data specified by the user and reissues the
START request without an interval. The request is routed when the ICE expires,
based on the state of the transaction definition and the sysplex at that moment.

v QUEUE.
v REQID.
v RTERMID.
v RTRANID.

You must understand how these options are being used; whether, for example,
they affect the set of regions to which the request can be routed.

Static routing
The transaction definition in the requesting region specifies ROUTABLE(YES) and
DYNAMIC(NO). If the START request is eligible for enhanced routing, the
distributed routing program (the program specified on the DSRTPGM system
initialization parameter) is invoked for notification of the statically-routed request.

Note:

1. The distributed routing program differs from the dynamic routing program, in
that it is invoked—for eligible non-terminal-related START requests where the
transaction is defined as ROUTABLE(YES)—even when the transaction is
defined as DYNAMIC(NO). The dynamic routing program is never invoked for
transactions defined as DYNAMIC(NO). This difference in design means that
you can use the distributed routing program to assess the effect of
statically-routed requests on the overall workload.

2. If the request is ineligible for enhanced routing, the distributed routing
program is not invoked.

Dynamic routing

Dynamic routing models:

Dynamic routing of non-terminal-related START requests uses the distributed
routing model described in “The distributed model” on page 63.

The transaction definition in the requesting region specifies ROUTABLE(YES) and
DYNAMIC(YES). If the request is eligible for enhanced routing, the distributed
routing program is invoked for routing. The START request is function-shipped to
the target region returned by the routing program.

Note:

Chapter 7. CICS transaction routing 87

1. If the request is ineligible for enhanced routing, the distributed routing
program is not invoked. Unless the SYSID option specifies a remote region
explicitly, the START request is function-shipped to the AOR named in the
REMOTESYSTEM option of the transaction definition in the requesting region;
if REMOTESYSTEM is not specified, the START executes locally, in the
requesting region.

2. If the request is eligible for enhanced routing, but the SYSID option of the
START command names a remote region, the distributed routing program is
invoked for notification only—it cannot route the request. The START executes
on the remote region named on the SYSID option.

3.

If you intend to route from CICS Transaction Server for z/OS, Version 4
Release 2 to a CICS Transaction Server for OS/390, Version 1 Release 3 region
(or vice versa), you must ensure that the PTF for CICS APAR PQ 75814 is
applied to CICS Transaction Server for OS/390, Version 1 Release 3.
If you use CICSPlex SM for routing, the PTFs for each of the following
CICSPlex SM APARs must be applied to each relevant CICSPlex SM release:
CICSPlex SM Version 1 Release 4

PQ80891
CICSPlex SM Version 2 Release 2

PQ80893
CICSPlex SM Version 2 Release 3

PQ81235

Canceling interval control requests:

To cancel a previously-issued START, DELAY, or POST interval control request,
you use the CANCEL command.

About this task

The REQID option specifies the identifier of the request to be canceled. If the
request is due to execute on a remote region, you can use the SYSID option to
specify that the CANCEL command is to be shipped to that region.

START and DELAY requests can be canceled only before any interval specified on
the request has expired. If a START request is dynamically routed, it is kept in the
local region until the interval expires, and can therefore be canceled by a
locally-issued CANCEL command on which the SYSID option is unnecessary.
However, in a distributed routing environment (in which each region can be both a
requesting region and a target region), there may be times when you have no way
of knowing to which region to direct a CANCEL command. For example, you
might want to cancel a DELAY request which could have been issued on any one
of a set of possible regions. To resolve a situation like this:
1. Issue a CANCEL command on which the REQID option specifies the identifier

of the request to be canceled, and the SYSID option is not specified. The
command executes locally.

2. Use an XICEREQ global user exit program based on the CICS-supplied sample
program, DFH$ICCN. Your exit program is invoked before the CANCEL
command is executed. DFH$ICCN:
a. Checks:

1) That it has been invoked for a CANCEL command.
2) That the SYSID option was not specified on the command.

88 CICS TS for z/OS 4.2: Intercommunication Guide

3) That the identifier of the request to be canceled does not begin with
'DF'. ('DF' indicates a request issued internally by CICS.)

4) That the name of the transaction that issued the CANCEL command
does not begin with 'C'—that is, that the transaction is not a CICS
internal transaction, nor a CICS-supplied transaction such as CECI.

If one or more of these conditions are not met—for example, if it was
invoked for a RETRIEVE command—DFH$ICCN does nothing and returns.

b. Instructs CICSPlex SM to:
1) Search every CICS region that it knows about for an interval control

request with the identifier (REQID) specified on the CANCEL command.
2) On each region, cancel the first request (with the specified identifier)

that it finds. Note that:
v Requests may be canceled on more than one region.
v If a particular region contains more than one request with the

specified identifier, only the first request found by CICSPlex SM is
canceled.

v You must ensure that CICSPlex SM has UPDATE access to the
transaction ID of the transaction associated with the CANCEL request.

Note: For full details of DFH$ICCN's processing, see the comments in the
sample program.

For details of the CANCEL command, see CANCEL, in the CICS Application
Programming Reference. For general information about how to write an XICEREQ
global user exit program, see Interval control EXEC interface program exits, in the
CICS Customization Guide.

Allocation of remote APPC connections
A transaction running in the application-owning region can issue an ALLOCATE
command, to obtain a session to an APPC terminal or connection that is owned by
another system.

A relay program is started in the terminal-owning region to convey requests
between the transaction and the remote APPC system or terminal.

Transaction routing with APPC devices
An APPC device presents a data interface to CICS that is an implementation of the
APPC architecture. The APPC session linking it to a transaction represents the
principal facility of the transaction rather than the device itself. The transaction
converses across the link with a transaction program within the device, which may
be a hard-coded terminal device, a programmable system, or even another CICS
system.

There is no essential difference between transaction routing with APPC devices
and transaction routing with any other terminals. However, remember these points:
v APPC devices have their own “intelligence”. They can interpret operator input

data or the data received from CICS in any way the designer chooses.
v There are no error messages from CICS. The APPC device receives indications

from CICS, which it may translate into text for a human operator.
v CICS does not directly support pseudoconversational operation for APPC

devices, but the device itself could possibly be programmed to produce the same
effect.

Chapter 7. CICS transaction routing 89

v Basic mapping support (BMS) has no meaning for APPC devices.
v APPC devices can be linked by more than one session to the host system.
v TCTUAs will be shipped across the connection for APPC single-session

terminals, but not when the principal facility is an APPC parallel session.

You use the APPC application program interface to communicate with APPC
devices. For relevant introductory information, see Chapter 9, “Distributed
transaction processing,” on page 107.

Allocating an alternate facility
One of the design criteria in transaction routing is that, if a transaction running in
a single-CICS environment is transferred to an alternative, linked system, there
should be no loss of function if the transaction now has to be routed to the original
terminal.

Because an APPC device can have more than one session, it is possible, in the
single-CICS case, for a transaction to acquire further sessions to the same device
(but to different tasks) by using the ALLOCATE command. Each session thus
acquired becomes an alternate facility to the transaction. Sessions can also be
established to other terminals or systems.

Similarly, transaction routing allows any transaction to acquire an alternate facility
to an APPC device by using ALLOCATE, even though there are intermediate
systems between the APPC device and the AOR. For this, the AOR needs a remote
version of the APPC link definition that is installed in the TOR. Perhaps you can
rely on this having been shipped to the AOR by a transaction routing operation. If
not, you will have to install it expressly. You cannot use the user exits XICTENF
and XALTENF as an aid to routing the alternate facility.

The system as a terminal
Because the resource definitions for APPC devices can take the CONNECTION
and SESSIONS form, it is easy to confuse them with the definitions for the
intersystem links.

It is important to remember that definitions for the intersystem links are either
direct or indirect, while those for APPC devices are direct in the TOR and remote
in the AOR and any intermediate systems. Note also that remote CONNECTION
definitions do not need corresponding SESSIONS definitions.

Figure 32 on page 91 shows a network of three CICS systems chained together, of
which the first is linked to an APPC terminal.

90 CICS TS for z/OS 4.2: Intercommunication Guide

Note:

1. The remote link definitions for A could either be defined by the user or be
shipped from system B during transaction routing.

2. The indirect links are not necessary to this example, but are included to
complete all possible linkage combinations. See “Defining indirect links for
transaction routing” on page 184.

3. The links B-C and C-D may be either MRO or APPC.

System A (or any one of the four systems) can take on the role of a terminal. This
is a technique that allows a pair of transactions to converse across intermediate
systems. Consider this sequence of events:
1. A transaction running in A allocates a session on the link to B and makes an

attach request for a particular transaction.
2. B sees that the transaction is on C, and initiates the relay program in

conjunction with the principal facility represented by the link definition to A.
3. The attach request arrives at C together with details of the terminal; that is, B's

link to A. C builds a remote definition of the terminal and goes to attach the
transaction.

4. C also finds the transaction remote and defined as owned by D. C initiates the
relay program, which tries to attach the transaction in D.

5. D also builds a remote definition of B's link to A, and attaches the local
transaction.

6. The transaction in A that originated the attach request can now communicate
with the target transaction through the transaction routing mechanism.

Note these points:

APPC terminal Terminal-owning Intermediate Application-owning
(system) region (TOR) system region (AOR)

A B C D

Direct link Direct link Direct link
defined to A defined to D defined to C

Direct link Direct link Indirect
defined to C defined to B link defined

to B via C

Indirect Remote link Remote link
link defined definition definition
to D via C for A for A

Transaction Transaction Transaction
defined as defined as defined on
owned by C owned by D system D

Figure 32. Transaction routing to an APPC terminal across daisy-chained systems

Chapter 7. CICS transaction routing 91

v APPC terminals are always shippable. There is no need to define them as such.
v Attach requests on other sessions of the A-B link could be routed to other

systems.
v Neither partner to a conversation made possible by transaction routing knows

where the other resides, although the routed-to transaction can find out the
TERMINAL/CONNECTION name by using the EXEC CICS ASSIGN
PRINSYSID command. This name can be used to allocate one or more additional
sessions back to A.

v The transaction in D could start with an EXEC CICS (GDS) EXTRACT PROCESS
command, but it is more usual for the transaction to start with an EXEC CICS
(GDS) RECEIVE command.

The relay program
When a terminal operator enters a transaction code for a transaction that is in a
remote system, a transaction is attached in the TOR that executes a CICS-supplied
program known as the relay program. This program provides the communication
mechanism between the terminal and the remote transaction.

Although CICS determines the program to be associated with the transaction, the
user's definition for the remote transaction determines the attributes. These are
usually those of the “real” transaction in the remote system.

Because it executes the relay program, the transaction is called the relay
transaction.

When the relay transaction is attached, it acquires an interregion or intersystem
session and sends a request to the remote system to cause the “real” user
transaction to be started. In the application-owning region, the terminal is
represented by a control block known as the surrogate TCTTE. This TCTTE
becomes the transaction's principal facility, and is indistinguishable by the
transaction from a “real” terminal entry. However, if the transaction issues a
request to its principal facility, the request is intercepted by the CICS terminal
control program and shipped back to the relay transaction over the interregion or
intersystem session. The relay transaction then issues the request or output to the
terminal. In a similar way, terminal status and input are shipped through the relay
transaction to the user transaction.

Automatic transaction initiation (ATI) is handled in a similar way. If a transaction
that is initiated by ATI requires a terminal that is connected to another system, a
request to start the relay transaction is sent to the terminal-owning region. When
the terminal is free, the relay transaction is connected to it.

The relay transaction remains in existence for the life of the user transaction and
has exclusive use of the session to the remote system during this period. When the
user's transaction terminates, an indication is sent to the relay transaction, which
then also terminates and frees the terminal.

Basic mapping support (BMS)
The mapping operations of BMS are performed in the system on which the user's
transaction is running; that is, in the application-owning region. The mapped
information is routed between the terminal and this transaction via the relay
transaction, as for terminal control operations.

92 CICS TS for z/OS 4.2: Intercommunication Guide

For BMS page building and routing requests, the pages are built and stored in the
application-owning region. When the logical message is complete, the pages are
shipped to the terminal-owning region (or regions, if they were generated by a
routing request), and deleted from the application-owning region. Page retrieval
requests are processed by a BMS program running in the system to which the
terminal is connected.

BMS message routing to remote terminals and operators
You can use the BMS ROUTE command to route messages to remote terminals.

For programming information about the BMS ROUTE command, see ROUTE, in
the CICS Application Programming Reference. You cannot, however, route a message
to a selected remote operator or operator class unless you also specify the terminal
at which the message is to be delivered.

In all cases, the remote terminal must be defined in the system that issues the
ROUTE command (or a shipped terminal definition must already be available; see
“Shipping terminal and connection definitions” on page 216). Note that the facility
described in “Shipping terminals for automatic transaction initiation” on page 73
does not apply to terminals addressed by the ROUTE command.

Table 2. BMS message routing to remote terminals and operators

LIST entry OPCLASS Result

None specified Not specified
The message is routed to all the
remote terminals defined in the
originating system.

Entries specifying a terminal but
not an operator

Not specified
The message is routed to the
specified remote terminal.

Entries specifying a terminal but
not an operator

Specified
The message is delivered to the
specified remote terminal when an
operator with the specified
OPCLASS is signed on.

None specified Specified
The message is not delivered to
any remote operator.

Entries specifying an operator but
not a terminal

(Ignored)
The message is not delivered to the
remote operator.

Entries specifying both a terminal
and an operator

(Ignored)
The message is delivered to the
specified remote terminal when the
specified operator is signed on.

Using the routing transaction, CRTE
The routing transaction, CRTE, is a CICS-supplied transaction used by a terminal
operator to call transactions that are owned by a connected CICS system. CRTE
facility is particularly useful for testing remote transactions before final installation.

CRTE can be used from any 3270 display device.

To use CRTE, the terminal operator enters:

Chapter 7. CICS transaction routing 93

CRTE SYSID=xxxx [TRPROF={DFHCICSS|profile_name}]

where:
v xxxx is the name of the CONNECTION or the first four characters of the

IPCONN resource that defines the connection to the remote system
v profile_name is the name of the profile to be used for the session with the remote

system

See “Defining communication profiles” on page 229 for more information about
defining profiles. The transaction then indicates that a routing session has been
established, and the user enters input of the form:

yyyyzzzzzz...

where yyyy is the name by which the required remote transaction is known on the
remote system, and zzzzzz... is the initial input to that transaction. Subsequently,
the remote transaction can be used as if it had been defined locally and called in
the ordinary way. All further input is directed to the remote system until the
operator terminates the routing session by entering CANCEL.

In secure systems, operators are typically required to sign on before they can start
transactions. The first transaction that is called in a routing session is therefore
usually the sign-on transaction CESN; that is, the operator signs on to the remote
system.

Although the routing transaction is implemented as a pseudoconversational
transaction, the terminal from which it is called is held by CICS until the routing
session ends. Any ATI requests that name the terminal are therefore queued until
the CANCEL command is issued.

System programming for transaction routing
You have to perform the following operations to implement transaction routing in
your installation.

About this task

Procedure
1. Install MRO or ISC support, or both.
2. Define MRO or ISC links between the systems that are to be connected, as

described in Chapter 13, “How to define connections to remote systems,” on
page 149.

3. Define the terminals and transactions that will participate in transaction
routing, as described in Chapter 16, “Defining remote resources,” on page 205.

4. Ensure that the local communication profiles, transactions, and programs
required for transaction routing are defined and installed on the local system,
as described in Chapter 17, “Defining local resources,” on page 229.

5. If you want to use dynamic transaction routing, customize the supplied
dynamic routing program, DFHDYP, or write your own version. For
programming information about how to do this, see the CICS Customization
Guide.

6. If you want to route to shippable terminals from regions where those terminals
might be 'not known', code and enable the global user exits XICTENF and
XALTENF. For programming information about coding these exits, see the CICS
Customization Guide.

94 CICS TS for z/OS 4.2: Intercommunication Guide

Intersystem queuing
If the link to a remote region is established, but there are no free sessions available,
transaction routing requests may be queued in the issuing region. Performance
problems can occur if the queue becomes excessively long.

For guidance information about controlling intersystem queues, see Chapter 24,
“Intersystem session queue management,” on page 277.

Chapter 7. CICS transaction routing 95

96 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 8. CICS distributed program link

This chapter describes CICS distributed program link (DPL).

It contains:
v “Overview of DPL”
v “Statically routing DPL requests” on page 98
v “Dynamically routing DPL requests” on page 101
v “Limitations of DPL server programs” on page 104
v “Intersystem queuing” on page 105
v “Examples of DPL” on page 105.

Overview of DPL
CICS distributed program link enables CICS application programs to run programs
that are in other CICS regions by shipping program-control LINK requests.

An advantage of DPL is that you can write an application without knowledge of
the location of the requested programs. The application uses program-control LINK
commands in the usual way. The CICS program resource definitions usually
specify that the named program is not in the local region (client region), but in a
remote region (server region).

An illustration of a DPL request is shown in Figure 33 on page 98. In this diagram,
a program (the client program) running in CICA issues a program-control LINK
command for a program called PGA (the server program). From the installed
program definitions, CICS discovers that the PGA program is owned by a remote
CICS system called CICB. CICS changes the LINK request into a suitable
transmission format and then ships it to CICB to run.

In CICB, the mirror transaction (described in Chapter 4, “CICS function shipping,”
on page 35) is attached. The mirror program DFHMIRS, which is used by all
mirror transactions, re-creates the original request and issues the request on CICB.
When the server program has run to completion, the mirror program returns any
communication-area data to CICA.

© Copyright IBM Corp. 1977, 2012 97

The CICS recovery and restart facilities enable resources in remote regions to be
updated and ensure that, when the client program reaches a sync point, any mirror
transactions that are updating protected resources also take a sync point. So
changes to protected resources in remote and local systems are consistent. The
CSMT transient data queue is notified of any failures in this process, so that
suitable corrective action can be taken, whether manually or by user-written code.

A client program can run in a CICS intercommunication environment and use DPL
without any knowledge of the location of the server program. The location of the
server program is communicated to CICS in one of two ways. DPL requests can be
routed to the server region either statically or dynamically.

Provided that both the client and the server regions are CICS TS for z/OS, Version
3.2 or later, DPL is supported over IPIC connections, as well as over MRO and ISC
over SNA connections. Support for DPL functions using IPIC over TCP/IP is
equivalent to that for DPL over MRO and DPL over SNA; for example, both
two-phase commit and containers are supported. For regions from CICS TS for
z/OS, Version 4.2, when you use an IPIC connection and a long-running mirror,
CICS runs the mirror program DFHMIRS on an L8 open TCB whenever possible,
which can improve performance for threadsafe programs in the server region. The
LINK command also is threadsafe when it is used to link to a program in a remote
CICS region over an IPIC connection only. For MRO and ISC over SNA
connections, the mirror program does not run on an open TCB and the LINK
command is not threadsafe.

If both an IPIC connection and an ISC over SNA connection exist between two
CICS regions, and both have the same name, the IPIC connection takes precedence.
That is, if remote region CICB is defined by both an IPCONN definition and a
CONNECTION definition, CICS uses the IPCONN definition. However, if the
IPCONN is not acquired but is in service, the ISC over SNA connection is used.

Statically routing DPL requests
Static routing means that the location of the server program is specified at design
time, rather than at run time. DPL requests for a particular remote program are
always routed to the same server region. Typically, when static routing is used, the
location of the server program is specified in the PROGRAM resource.

CICA CICB
DEFINE DEFINE
PROGRAM('PGA') PROGRAM('PGA')
REMOTESYSTEM(CICB)

.
EXEC CICS LINK CICS mirror
PROGRAM('PGA') ISC or MRO transaction
COMMAREA(...) (issues LINK
. session command and
. passes back
. commarea)

Figure 33. Distributed program link

98 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|
|
|
|
|
|

The program resource definition can also specify the name of the server program
as it is known on the resource system, if it is different from the name by which it
is known locally. When the server program is requested by its local name, CICS
substitutes the remote name before sending the request. This facility is useful when
a server program exists with the same name on more than one system, but
performs different functions depending on the system on which it is located.

Consider, for example, a local system CICA and two remote systems CICB and
CICC. A program named PG1 resides in both CICB and CICC. These two
programs are defined in CICA, but, because they have the same name, a local alias
and a REMOTENAME must be defined for at least one of the programs. For
example:
v Definition of program PG1 in system CICB:

PROGRAM(PG1)
REMOTESYSTEM(CICB)

v Definition of program PG1 in system CICC, that uses a local alias of PG99 and
the REMOTENAME attribute:

PROGRAM(PG99)
REMOTENAME(PG1)
REMOTESYSTEM(CICC)

Note: Although doing so can limit the independence of the client program, the
client program can name the remote system explicitly by using the SYSID option
on the LINK command. If this option names a remote system, CICS routes the
request to that system unconditionally. If the value of the SYSID option is
“hard-coded”, that is, it is not deduced from a range of possibilities at run time,
this method is another form of static routing.

The local system can also be specified on the SYSID option. This means that the
decision whether to link to a remote server program or a local one can be taken at
run time. This approach is a simple form of dynamic routing.

In the client region (CICA in Figure 34 on page 100), the command-level EXEC
interface program determines that the requested server program is on another
system (CICB in the example). It therefore calls the transformer program to
transform the request into a form suitable for transmission (in the example, line (2)
indicates this). As indicated by line (3) in the example, the EXEC interface program
then calls on the intercommunication component to send the transformed request
to the appropriate connected system.

Using the mirror transaction
The intercommunication component uses CICS terminal-control facilities to send
the request to the mirror transaction. The request to a particular server region
causes the communication component in the client region to precede the formatted
request with the identifier of the appropriate mirror transaction to be attached in
the server system.

Controlling access to resources, accounting for system usage, performance tuning,
and establishing an audit trail can all be made easier if you use a user-specified
name for the mirror transaction initiated by any given DPL request. This
transaction name must be defined in the server region as a transaction that invokes
the mirror program DFHMIRS. It is worth noting that defining user transactions to
invoke the mirror program gives you the freedom to specify appropriate values for
all the other options on the transaction resource definition. To initiate any

Chapter 8. CICS distributed program link 99

user-defined mirror transaction, the client program specifies the transaction name
on the LINK request. Alternatively, the transaction name can be specified on the
TRANSID option of the program resource definition.

As line (4) in Figure 34 shows, a mirror transaction uses the transformer program
DFHXFP to decode the formatted link request. The mirror then executes the
corresponding command, thereby linking to the server program PGA (5). When the
server program issues the RETURN command (6), the mirror transaction uses the
transformer program to construct a formatted reply (7). The mirror transaction
returns this formatted reply to the client region (8). In that region (CICA in the
example), the reply is decoded, again using the transformer program (9), and used
to complete the original request made by the client program (10).

The mirror transaction, which is always long-running for DPL, suspends after
sending its communications area. The mirror transaction does not terminate until
the client program issues a syncpoint request or terminates successfully.

When the client program issues a syncpoint request, or terminates successfully, the
intercommunication component sends a message to the mirror transaction that
causes it also to issue a syncpoint request and terminate. The successful syncpoint
by the mirror transaction is indicated in a response sent back to the client region,
which then completes its syncpoint processing, so committing changes to any
protected resources.

The client program may link to server programs in any order, without being
affected by the location of server programs (they could all be in different server
regions, for example). When the client program links to server programs in more
than one server region, the intercommunication component invokes a mirror
transaction in each server region to execute link requests for the client program.
Each mirror transaction follows the above rules for termination, and when the
application program reaches a syncpoint, the intercommunication component
exchanges syncpoint messages with any mirror transactions that have not yet
terminated.

CICA CICB
DEFINE PROGRAM(PGA) DEFINE PROGRAM(PGA) ...

REMOTESYSTEM(CICB)

Transaction Mirror
AAAA: transaction

...
EXEC CICS LINK
PROGRAM('PGA')

...
(1)

(3) (5) (4)
Programs Program PGA: (6)
DFHEIP, (8) (7)

(10) DFHEPC, ...
DFHISP

EXEC CICS
(2) RETURN ...

(9)

Transformer Transformer
program DFHXFP program DFHXFP

Figure 34. The transformer program and the mirror in DPL

100 CICS TS for z/OS 4.2: Intercommunication Guide

Using global user exits to redirect DPL requests
Two global user exits can be invoked during DPL processing.

About this task
v If it is enabled, XPCREQ is invoked on entry to the CICS program control

program, before a link request is processed. For DPL requests, it is invoked on
both sides of the link; that is, in both the client and server regions.

v If it is enabled, XPCREQC is invoked after a link request has completed. For
DPL requests, it is invoked in the client region only.

XPCREQ and XPCREQC can be used for a variety of purposes. You could, for
example, use them to route DPL requests to different CICS regions, thereby
providing a simple load balancing mechanism. However, a better way of doing this
is to use the CICS dynamic routing program—see “Dynamically routing DPL
requests.”

For programming information about writing XPCREQ and XPCREQC global user
exit programs, see Program control program exits, in the CICS Customization Guide.

Dynamically routing DPL requests
Dynamic routing means that the location of the server program is decided at
run-time, rather than at design time. DPL requests for a particular remote program
may be routed to different server regions. For example, if you have several cloned
application-owning regions, you may want to use dynamic routing to balance the
workload across the regions.

Dynamic routing models:

Dynamic routing of DPL requests received from outside CICS uses the “hub”
routing model described in “The “hub” model” on page 62.

Dynamic routing of CICS-to-CICS DPL requests uses the distributed routing model
described in “The distributed model” on page 63. Note, however, that it is the
dynamic routing program, not the distributed routing program, that is invoked for
routing CICS-to-CICS DPL requests.

For eligible DPL requests, a user-replaceable program called the dynamic routing
program is invoked. (This is the same dynamic routing program that is invoked for
transactions defined as DYNAMIC—see “Dynamic transaction routing” on page
69.) The routing program selects the server region to which the program-link
request is shipped.

The default dynamic routing program, supplied with CICS, is named DFHDYP.
You can modify the supplied program, or replace it with one that you write
yourself. You can also use the DTRPGM system initialization parameter to specify
the name of the program that is invoked for dynamic routing, if you want to name
your program something other than DFHDYP. For programming information about
user-replaceable programs in general, and about the dynamic routing program in
particular, see Writing a dynamic routing program , in the CICS Customization
Guide.

Chapter 8. CICS distributed program link 101

If you are using a threadsafe program that makes DPL requests that are
transmitted to another region using IPIC communication, you might benefit from
improved performance by changing your dynamic routing program to be coded to
threadsafe standards.

You can review the value of the CONCURRENCY attribute in the PROGRAM
resource definition for your dynamic routing program. If the program is not
defined as threadsafe, each use of the program causes a switch back to the QR
TCB, incurring an additional cost. If the program is defined as threadsafe but uses
non-threadsafe CICS commands (which is permitted), each non-threadsafe
command causes a switch back to the QR TCB and incurs the additional cost. For
more information about threadsafe programs, see Threadsafe programs in CICS
Application Programming.

In the server region to which the program-link request is shipped, the mirror
transaction is invoked in the way described for static routing.

Which requests can be dynamically routed?
For a program-link request to be eligible for dynamic routing, the remote program
must either be defined to the local system as DYNAMIC(YES), or not be defined to
the local system.

Note: If the program specified on an EXEC CICS LINK command is not currently
defined, what happens next depends on whether program autoinstall is active:
v If program autoinstall is inactive, the dynamic routing program is invoked.
v If program autoinstall is active, the autoinstall user program is invoked. The

dynamic routing program is then invoked only if the autoinstall user program:
– Installs a program definition that specifies DYNAMIC(YES), or
– Does not install a program definition.
For further information about autoinstalling programs invoked by EXEC CICS
LINK commands, see “When definitions of remote server programs aren't
required” on page 211.

As well as “traditional” CICS-to-CICS DPL calls instigated by EXEC CICS LINK
PROGRAM commands, program-link requests received from outside CICS can also
be dynamically routed. For example, all of the following types of program-link
request can be dynamically routed:
v Calls received from:

– The CICS Web Interface
– The CICS Gateway for Java

v Calls from external CICS interface (EXCI) client programs
v External Call Interface (ECI) calls from any of the CICS Client workstation

products
v Distributed Computing Environment (DCE) remote procedure calls (RPCs)
v ONC/RPC calls.

A program-link request received from outside CICS can be dynamically routed by:
v Defining the program to CICS Transaction Server for z/OS as DYNAMIC(YES)
v Coding your dynamic routing program to route the request.

102 CICS TS for z/OS 4.2: Intercommunication Guide

|
|
|
|

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_concepts_threadsafe.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_concepts_threadsafe.html

When the dynamic routing program is invoked
Program-link requests are both “traditional” CICS-to-CICS DPL calls and requests
received from outside CICS. For eligible program-link requests the dynamic
routing program is invoked at the following points.
v Before the linked-to program is executed, to either:

– Obtain the SYSID of the region to which the link should be routed.

Note: The address of the caller's communication area (COMMAREA) is
passed to the routing program, which can therefore route requests by
COMMAREA contents if this is appropriate.

– Notify the routing program of a statically-routed request. This occurs if the
program is defined as DYNAMIC(YES)—or is not defined—but the caller
specifies the name of a remote region on the SYSID option on the LINK
command.
In this case, specifying the target region explicitly takes precedence over any
SYSID returned by the dynamic routing program.

v If an error occurs in route selection—for example, if the SYSID returned by the
dynamic routing program is unavailable or unknown, or the link fails on the
specified target region—to provide an alternate SYSID. This process iterates until
either the program-link is successful or the return code from the dynamic
routing program is not equal to zero.

v After the link request has completed, if reinvocation was requested by the
routing program.

v If an abend is detected after the link request has been shipped to the specified
remote system, if reinvocation was requested by the routing program.

Using CICSPlex SM to route requests
If you use CICSPlex SM to manage your CICSplex, you might not need to write
your own dynamic routing program. CICSPlex SM provides a dynamic routing
program that supports both workload routing and workload separation. All you
have to do is to tell CICSPlex SM which regions in the CICSplex can participate in
dynamic routing.

Using CICSPlex SM, you could integrate workload routing for program-link
requests with that for terminal-initiated transactions.

How CICS obtains the transaction ID

A transaction identifier is always associated with each dynamic program-link
request. CICS obtains the transaction ID using the following sequence:
1. From the TRANSID option on the LINK command.
2. From the TRANSID option on the program definition.
3. CSMI, the generic mirror transaction. This is the default if neither of the

TRANSID options are specified.

If you write your own dynamic routing program, perhaps based on DFHDYP, the
transaction ID associated with the request might not be significant; you could, for
example, code your program to route requests based on program name and
available AORs (application owning regions).

However, if you use CICSPlex SM to route your program-link requests, the
transaction ID becomes much more significant, because the CICSPlex SM routing

Chapter 8. CICS distributed program link 103

logic is transaction-based. CICSPlex SM routes each DPL request according to the
rules for its associated transaction as specified in the Transaction Group
(TRANGRP), Workload Management Definition (WLMDEF) and Workload
Management Specification (WLMSPEC) resource tables.

Note: The CICSPlex SM system programmer can use the EYU9WRAM
user-replaceable module to change the transaction ID associated with a DPL
request.

Daisy-chaining of DPL requests
Statically-routed DPL requests can be daisy-chained from region to region.

For example, imagine that you have three CICS regions—A, B, and C. In region A,
a program P is defined with the attribute REMOTESYSTEM(B). In region B, P is
defined with the attribute REMOTESYSTEM(C). An EXEC CICS LINK
PROGRAM(P) command issued in region A is shipped to region B for execution,
from where it is shipped to region C.

Dynamically-routed DPL requests cannot be daisy-chained from region to region.
Imagine two CICS regions, A and B. A program P is defined as DYNAMIC(YES),
or is not defined , in both regions. An EXEC CICS LINK PROGRAM(P) command
is issued in region A. The dynamic routing program is invoked in region A and
routes the request to region B. In region B, the dynamic routing program is not
invoked, even though program P is defined as DYNAMIC(YES); P runs locally, in
region B.

CICS does not support the daisy-chaining of dynamic DPL requests which includes
combining dynamic routing with static routing. When a DPL request has been
dynamically routed CICS expects the program to execute in the target region. If a
dynamically routed DPL request is statically daisy-chained to a different target
region via intermediate regions, it must execute in that target region.

Limitations of DPL server programs
A DPL server program cannot issue the following types of commands.
v Terminal-control commands referring to its principal facility
v Commands that set or inquire on terminal attributes
v BMS commands
v Signon and signoff commands
v Batch data interchange commands
v Commands addressing the TCTUA
v Syncpoint commands (except when the client program specifies the

SYNCONRETURN option on the LINK request).

If the client specifies SYNCONRETURN:
v The server program can issue syncpoint requests.
v The mirror transaction requests a syncpoint when the server program completes

processing.

Attention: Both these kinds of syncpoint commit only the work done by the
server program. In applications where both the client program and the server
program update recoverable resources, they could cause data-integrity problems if
the client program fails after issuing the LINK request.

104 CICS TS for z/OS 4.2: Intercommunication Guide

For further information about application programming for DPL, see Chapter 20,
“Application programming for CICS DPL,” on page 245.

Intersystem queuing
If the link to a remote region is established, but there are no free sessions available,
distributed program link requests may be queued in the issuing region.
Performance problems can occur if the queue becomes excessively long.

For guidance information about controlling intersystem queues, see Chapter 24,
“Intersystem session queue management,” on page 277.

Examples of DPL
This section gives some examples to illustrate the lifetime of the mirror transaction
and the information flowing between the client program and its mirror transaction.

Figure 35 shows a DPL request on which the client transaction issues a syncpoint.
Because the mirror is always long-running, it does not terminate before
SYNCPOINT is received.

Transmitted
System A Information System B

Application Transaction
.
.

EXEC CICS LINK Attach mirror,
PROGRAM('PGA') 'LINK' request
COMMAREA(...) ... Attach

. mirror transaction.

.
Mirror performs LINK
to PGA.

PGA runs, issues RETURN.

Reply passed to Commarea data Mirror ships the
client program. commarea back to

. system A.

. 'SYNCPOINT'
EXEC CICS SYNCPOINT request, last

Mirror takes syncpoint,
frees the session,

Positive response and terminates.
Syncpoint completed.
Client program
continues.

Figure 35. DPL with the client transaction issuing a syncpoint

Chapter 8. CICS distributed program link 105

Figure 36 shows a DPL request on which the server program abends.

Transmitted
System A Information System B

Application Transaction
.
.

EXEC CICS LINK
PROGRAM('PGA') Attach mirror,
COMMAREA(...) ... 'LINK' request

. Attach

. mirror transaction.

.
Abend condition Program PGA runs,

Client program abends. abends.
.
. Mirror waits for
. syncpoint or abend

Abend message from client region.
Message routed to CSMT.

Session freed.

Figure 36. DPL with the server program abending

106 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 9. Distributed transaction processing

The technique of distributing the functions of a transaction over several transaction
programs within a network is called distributed transaction processing (DTP).

This chapter contains the following topics:
v “Overview of DTP”
v “Advantages over function shipping and transaction routing”
v “Why distributed transaction processing?” on page 108
v “What is a conversation and what makes it necessary?” on page 109
v “MRO or APPC for DTP?” on page 113
v “APPC mapped or basic?” on page 114
v “EXEC CICS or CPI Communications?” on page 115.

Overview of DTP
When CICS arranges function shipping, distributed program link (DPL),
asynchronous transaction processing, or transaction routing for you, it establishes a
logical data link with a remote system.

A data exchange between the two systems then follows. This data exchange is
controlled by CICS-supplied programs, using APPC, LUTYPE6.1, or MRO
protocols. The CICS-supplied programs issue commands to allocate conversations,
and send and receive data between the systems. Equivalent commands are
available to application programs, to allow applications to converse. The technique
of distributing the functions of a transaction over several transaction programs
within a network is called distributed transaction processing (DTP).

Of the five intercommunication facilities, DTP is the most flexible and the most
powerful, but it is also the most complex. This chapter introduces you to the basic
concepts.

For guidance on developing DTP applications, see the CICS Distributed Transaction
Programming Guide.

Advantages over function shipping and transaction routing
Function shipping gives you access to remote resources and transaction routing lets
a terminal communicate with remote transactions.

At first sight, these two facilities may appear sufficient for all your
intercommunication needs. Certainly, from a functional point of view, they are
probably all you do need. However, there are always design criteria that go
beyond pure function. Machine loading, response time, continuity of service, and
economic use of resources are just some of the factors that affect transaction
design.

Consider the following example:

A supermarket chain has many branches, which are served by several distribution
centers, each stocking a different range of goods. Local stock records at the branches

© Copyright IBM Corp. 1977, 2012 107

are updated online from point-of-sale terminals. Sales information has also to be
sorted for the separate distribution centers, and transmitted to them to enable
reordering and distribution.

An analyst might be tempted to use function shipping to write each reorder record
to a remote file as it arises. This method has the virtue of simplicity, but must be
rejected for several reasons:
v Data is transmitted to the remote systems irregularly in small packets. This

means inefficient use of the links.
v The transactions associated with the point-of-sale devices are competing for

sessions with the remote systems. This could mean unacceptable delays at
point-of-sale.

v Failure of a link results in a catastrophic suspension of operations at a branch.
v Intensive intercommunication activity (for example, at peak periods) causes

reduction in performance at the terminals.

Now consider the solution where each sales transaction writes its reorder records
to a transient data queue. Here the data is quickly disposed of, leaving the
transaction to carry on its conversation with the terminal.

Restocking requests are seldom urgent, so it may be possible to delay the sorting
and sending of the data until an off-peak period. Alternatively, the transient data
queue could be set to trigger the sender transaction when a predefined data level
is reached. Either way, the sender transaction has the same job to do.

Again, it is tempting to use function shipping to transmit the reorder records. After
the sort process, each record could be written to a remote file in the relevant
remote system. However, this method is not ideal either. The sender transaction
would have to wait after writing each record to make sure that it got the right
response. Apart from using the link inefficiently, waiting between records would
make the whole process impossibly slow. This chapter tells you how to solve this
problem, and others, using distributed transaction processing.

The flexibility of DTP can, in some circumstances, be used to achieve improved
performance over function shipping. Consider an example in which you are
browsing a remote file to select a record that satisfies some criteria. If you use
function shipping, CICS ships the GETNEXT request across the link, and lets the
mirror perform the operation and ship the record back to the requester.

This is a lot of activity — two flows on the network; and the data flow can be
quite significant. If the browse is on a large file, the overhead can be unacceptably
high. One alternative is to write a DTP conversation that ships the selection
criteria, and returns only the keys and relevant fields from the selected records.
This reduces both the number of flows and the amount of data sent over the link,
thus reducing the overhead incurred in the function-shipping case.

Why distributed transaction processing?
In a multisystem environment, data transfers between systems are necessary
because end users need access to remote resources.

In managing these resources, network resources are used. But performance suffers
if the network is used excessively. There is therefore a performance gain if
application design is oriented toward doing the processing associated with a
resource in the resource-owning region.

108 CICS TS for z/OS 4.2: Intercommunication Guide

DTP lets you process data at the point where it arises, instead of overworking
network resources by assembling it at a central processing point.

There are, of course, other reasons for using DTP. DTP does the following:
v Allows some measure of parallel processing to shorten response times
v Provides a common interface to a transaction that is to be attached by several

different transactions
v Enables communication with applications running on other systems, particularly

on non-CICS systems
v Provides a buffer between a security-sensitive file or database and an

application, so that no application need know the format of the file records
v Enables batching of less urgent data destined for a remote system.

What is a conversation and what makes it necessary?
In DTP, transactions pass data to each other directly. While one sends, the other
receives. The exchange of data between two transactions is called a conversation.

Although several transactions can be involved in a single distributed process,
communication between them breaks down into a number of self-contained
conversations between pairs. Each such conversation uses a CICS resource known
as a session.

Conversation initiation and transaction hierarchy
A transaction starts a conversation by requesting the use of a session to a remote
system. Having obtained the session, it causes an attach request to be sent to the
other system to activate the transaction that is to be the conversation partner.

A transaction can initiate any number of other transactions, and hence,
conversations. In a complex process, a distinct hierarchy emerges, with the
terminal-initiated transaction at the very top. Figure 37 on page 110 shows a
possible configuration. Transaction TRAA is attached over the terminal session.
Transaction TRAA attaches transaction TRBB, which, in turn, attaches transactions
TRCC and TRDD. Both these transactions attach the same transaction, SUBR, in
system CICSE. This gives rise to two different tasks of SUBR.

Chapter 9. Distributed transaction processing 109

The structure of a distributed process is determined dynamically by program; it
cannot be predefined. Notice that, for every transaction, there is only one inbound
attach request, but there can be any number of outbound attach requests. The
session that activates a transaction is called its principal facility. A session that is
allocated by a transaction to activate another transaction is called its alternate
facility. Therefore, a transaction can have only one principal facility, but any
number of alternate facilities.

When a transaction initiates a conversation, it is the front end on that
conversation. Its conversation partner is the back end on the same conversation.
(Some books refer to the front end as the initiator and the back end as the
recipient.) It is normally the front end that dominates, and determines the way the
conversation goes. You can arrange for the back end to take over if you want, but,
in a complex process, this can cause unnecessary complication. This is further
explained in the discussion on synchronization later in this chapter.

Dialog between two transactions
A conversation transfers data from one transaction to another.

For this to function properly, each transaction must know what the other intends.
It would be nonsensical for the front end to send data if all the back end wants to
do is print out the weekly sales report. It is therefore necessary to design, code,
and test front end and back end as one software unit. The same applies when there
are several conversations and several transaction programs. Each new conversation
adds to the complexity of the overall design.

CICSA

Transaction TRAA

Terminal

CICSB

Transaction TRBB

CICSC CICSD

Transaction TRCC Transaction TRDD

CICSE

Transaction SUBR Transaction SUBR

Figure 37. DTP in a multisystem configuration

110 CICS TS for z/OS 4.2: Intercommunication Guide

In the example in “Advantages over function shipping and transaction routing” on
page 107, the DTP solution is to transmit the contents of the transient data queue
from the front end to the back end. The front end issues a SEND command for
each record that it takes off the queue. The back end issues RECEIVE commands
until it receives an indication that the transmission has ended.

In practice, most conversations transfer a file of data from one transaction to
another. The next stage of complexity is to cause the back end to return data to the
front end, perhaps the result of some processing. Here the front end is
programmed to request conversation turnaround at the appropriate point.

Control flows and brackets
During a conversation, data passes over the link in both directions.

A single transmission is called a flow. Issuing a SEND command does not always
cause a flow. This is because the transmission of user data can be deferred; that is,
held in a buffer until some event takes place. The APPC architecture defines data
formats and packaging. CICS handles these things for you, and they concern you
only if you need to trace flows for debugging.

The APPC architecture defines a data header for each transmission, which holds
information about the purpose and structure of the data following. The header also
contains bit indicators to convey control information to the other side. For
example, if one side wants to tell the other that it can start sending, CICS sets a bit
in the header that signals a change of direction in the conversation.

To keep flows to a minimum, non-urgent control indicators are accumulated until
it is necessary to send user data, at which time they are added to the header.

For the formats of the headers and control indicators used by APPC, see the SNA
Formats manual.

In complex procedures, such as establishing syncpoints, it is often necessary to
send control indicators when there is no user data available to send. This is called
a control flow.

begin_bracket marks the start of a conversation; that is, when a transaction is
attached. conditional_end_bracket ends a conversation. End bracket is conditional
because the conversation can be reopened under some circumstances. A
conversation is in bracket when it is still active.

MRO is not unlike APPC in its internal organization. It is based on LUTYPE6.1,
which is also an SNA-defined architecture.

Conversation state and error detection
As a conversation progresses, it moves from one state to another within both
conversing transactions.

The conversation state determines the commands that may be issued. For example,
it is no use trying to send or receive data if there is no session linking the front
end to the back end. Similarly, if the back end signals end of conversation, the
front end cannot receive any more data on the conversation.

Chapter 9. Distributed transaction processing 111

Either end of the conversation can cause a change of state, usually by issuing a
particular command from a particular state. CICS tracks these changes, and stops
transactions from issuing the wrong command in the wrong state.

Synchronization
There are many things that can go wrong during the running of a transaction. The
conversation protocol helps you to recover from errors and ensures that the two
sides remain in step with each other. This use of the protocol is called
synchronization.

Synchronization allows you to protect resources such as transient data queues and
files. If anything goes wrong during the running of a transaction, the associated
resources should not be left in an inconsistent state.

Examples of use
Suppose, for example, that a transaction is transmitting a queue of data to another
system to be written to a DASD file. Suppose also that for some reason, not
necessarily connected with the intercommunication activity, the receiving
transaction is abended.

Even if a further abend can be prevented, there is the problem of how to continue
the process without loss of data. It is uncertain how many queue items have been
received and how many have been correctly written to the DASD file. The only
safe way of continuing is to go back to a point where you know that the contents
of the queue are consistent with the contents of the file. However, you then have
two problems. On one side, you need to restore the queue entries that you have
sent; on the other side, you need to delete the corresponding entries in the DASD
file.

The cancelation by an application program of all changes to recoverable resources
since the last known consistent state is called rollback. The physical process of
recovering resources is called backout. The condition that exists as long as there is
no loss of consistency between distributed resources is called data integrity.

There are cases in which you may want to recover resources, even though there are
no error conditions. Consider an order entry system. While entering an order for a
customer, an operator is told by the system that the customer's credit limit would
be exceeded if the order went through. Because there is no use continuing until the
customer is consulted, the operator presses a function key to abandon the order.
The transaction is programmed to respond by restoring the data resources to the
state they were in at the start of the order.

Taking syncpoints
If you were to log your own data movements, you could arrange backout of your
files and queues.

However, it would involve some very complex programming, which you would
have to repeat for every similar application. To save you this overhead, CICS
arranges resource recovery for you. LU management works with resource
management in ensuring that resources can be restored.

The points in the process where resources are declared to be in a known consistent
state are called synchronization points, often shortened to syncpoints. Syncpoints
are implied at the beginning and end of a transaction. A transaction can define
other syncpoints by program command. All processing between two consecutive
syncpoints belongs to a unit of work (UOW).

112 CICS TS for z/OS 4.2: Intercommunication Guide

Taking a syncpoint commits all recoverable resources. This means that all systems
involved in a distributed process erase all the information they have been keeping
about data movements on recoverable resources. Now backout is no longer
possible, and all changes to the resources since the last syncpoint are made
irreversible.

Although CICS commits and backs out changes to resources for you, the service
must be paid for in performance. You might have transactions that do not need
such complexity, and it would be wasteful to employ it. If the recovery of
resources is not a problem, you can use simpler methods of synchronization.

The three sync levels
The APPC architecture defines three levels of synchronization (called sync levels).
v Level 0 – none
v Level 1 – confirm
v Level 2 – syncpoint

At sync level 0, there is no system support for synchronization. It is nevertheless
possible to achieve some degree of synchronization through the interchange of
data, using the SEND and RECEIVE commands.

If you select sync level 1, you can use special commands for communication
between the two conversation partners. One transaction can confirm the continued
presence and readiness of the other. The user is responsible for preserving the data
integrity of recoverable resources.

The level of synchronization described earlier in this section corresponds to sync
level 2. Here, system support is available for maintaining the data integrity of
recoverable resources.

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of
changes to recoverable resources, but no control flows take place. CICS takes a full
syncpoint when a transaction is normally terminated. Transaction abend causes
rollback. The transactions themselves can initiate syncpoint or rollback requests.
However, a syncpoint or rollback request is propagated to another transaction only
when the originating transaction is in conversation with the other transaction, and
if sync level 2 has been selected for the conversation between them.

Remember that syncpoint and rollback are not peculiar to any one conversation
within a transaction. They are propagated on every sync level 2 conversation that
is currently in bracket.

MRO or APPC for DTP?
You can program DTP applications for both MRO and APPC links. The two
conversation protocols are not identical. Although you seldom have the choice for
a particular application, an awareness of the differences and similarities will help
you to make decisions about compatibility.

Choosing between MRO and APPC can be quite simple. The options depend on
the configuration of your CICS complex and on the nature of the conversation
partner. You cannot use MRO to communicate with a partner in a non-CICS
system. Further, it supports communication between transactions running in CICS
systems in different MVS images only if the MVS images are in the same MVS
sysplex, and are joined by cross-system coupling facility (XCF) links. For full

Chapter 9. Distributed transaction processing 113

details of the hardware and software requirements for XCF/MRO, see the CICS
Transaction Server for z/OS Installation Guide.

For communication with a partner in another CICS system, where the CICS
systems are either in the same MVS image, or in the same sysplex, you can use
either the MRO or the APPC protocol. There are good performance reasons for
using MRO. But if there is any possibility that the distributed transactions will
need to communicate with partners in other operating systems, it is better to use
APPC so that the transaction remains unchanged.

Table 3 summarizes the main differences between the two protocols.

Table 3. MRO compared with APPC

MRO APPC

Function is realized within CICS Depends on the z/OS Communications
Server or similar

Nonstandard architecture SNA architecture

CICS-to-CICS links only Links to non-CICS systems possible

Communicates within single MVS image, or
(using XCF/MRO) between MVS images in
same sysplex

Communicates across multiple MVS images
and other operating systems

PIP data not supported PIP data supported

Data transmission not deferred Deferred data transmission

Partner transaction identified in data Partner transaction defined by program
command

RECEIVE can only be issued in receive state RECEIVE causes conversation turnaround
when issued in send state on mapped
conversations

No expedited flow possible ISSUE SIGNAL command flows expedited

WAIT command has no function WAIT command causes transmission of
deferred data

APPC mapped or basic?
APPC conversations can either be mapped or basic. If you are interested in
CICS-to-CICS applications, you need only use mapped conversations. Basic
conversations (also referred to as “unmapped”) are useful when communicating
with systems that do not support mapped conversations. These include some
APPC devices.

The two protocols are similar. The main difference lies in the way user data is
formatted for transmission. In mapped conversations, you send the data you want
your partner to receive; in basic conversations, you have to add a few control bytes
to convert the data into an SNA-defined format called a generalized data stream
(GDS). You also have to include the keyword GDS in EXEC CICS commands for
basic conversations.

Table 4 on page 115 summarizes the differences between mapped and basic
conversations. Note that it only applies to the CICS API. CPI Communications,
introduced in the next section, has its own rules.

114 CICS TS for z/OS 4.2: Intercommunication Guide

Table 4. APPC conversations – mapped or basic?

Mapped Basic

The conversation partners exchange data
that is relevant only to the application.

Both partners must package the user data
before sending and unpackage it on receipt.

All conversations for a transaction share the
same EXEC Interface Block for status
reporting.

Each conversation has its own area for state
information.

The transaction can handle exceptional
conditions or let them default.

The transaction must test for exceptional
conditions in a data area set aside for the
purpose.

A RECEIVE command issued in send state
causes conversation turnaround.

A RECEIVE command is illegal in send
state.

Transactions can be written in any of the
supported languages.

Transactions can be written in assembler
language or C only.

EXEC CICS or CPI Communications?
CICS gives you a choice of two application programming interfaces (APIs) for
coding your DTP conversations on APPC sessions.

The first, the CICS API, is the programming interface of the CICS implementation
of the APPC architecture. It consists of EXEC CICS commands and can be used
with all CICS-supported languages. The second, Common Programming Interface
Communications (CPI Communications) is the communication interface defined
for the SAA environment. It consists of a set of defined verbs, in the form of
program calls, which are adapted for the language being used.

Table 5 compares the two methods to help you to decide which API to use for a
particular application.

Table 5. CICS API compared with CPI Communications

CICS API CPI Communications

Portability between different members of the
CICS family.

Portability between systems that support
SAA facilities.

Basic conversations can be programmed
only in assembler language or C.

Basic conversations can be programmed in
any of the available languages.

Sync levels 0, 1, and 2 supported. Sync levels 0, 1, and 2 supported, except for
transaction routing, for which only sync levels 0
and 1 are supported.

PIP data supported. PIP data not supported.

Only a few conversation characteristics are
programmable. The rest are defined by
resource definition.

Most conversation characteristics can be
changed dynamically by the transaction
program.

Can be used on the principal facility to a
transaction started by ATI.

Cannot be used on the principal facility to a
transaction started by ATI.

Limited compatibility with MRO. No compatibility with MRO.

You can mix CPI Communications calls and EXEC CICS commands in the same
transaction, but not on the same side of the same conversation. You can implement
a distributed transaction where one partner to a conversation uses CPI

Chapter 9. Distributed transaction processing 115

Communications calls and the other uses the CICS API. In such a case, it would be
up to you to ensure that the APIs on both sides map consistently to the APPC
architecture.

116 CICS TS for z/OS 4.2: Intercommunication Guide

Part 2. Installing and configuring intercommunication support

There are different installation and configuration requirements depending on
whether a CICS system is to participate in intersystem communication or
multiregion operation.

For information about the general requirements for CICS installation, see the CICS
Transaction Server for z/OS Installation Guide. For information about coding the CICS
system initialization parameters, see Specifying CICS system initialization
parameters the CICS System Definition Guide.

Chapter 10, “Configuring intersystem communication,” on page 119 describes how
to set up CICS for intersystem communication. It also contains notes on the
installation requirements of ACF/VTAM and IMS when these products are to be
used with CICS in an intersystem communication environment.

Chapter 11, “Steps after configuring MRO,” on page 121 describes how to set up
CICS for multiregion operation.

Chapter 12, “Configuring z/OS Communications Server generic resources,” on
page 123 describes how to register your terminal-owning regions as members of a
VTAM® generic resource group, and things you need to consider when doing so.

© Copyright IBM Corp. 1977, 2012 117

118 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 10. Configuring intersystem communication

You can configure CICS to communicate over TCP/IP or over SNA in an
intersystem communication environment.

Configuring support for communicating over a TCP/IP network
CICS operating in a dual-mode environment uses both IPv4 and IPv6 networks
and always attempts to communicate using IPv6 before using the IPv4 network. A
single-mode environment operates in an IPv4 network only. You can set up
TCP/IP services to use a number of CICS-supported protocols, including HTTP
and IPIC.

Before you begin

You need a minimum level of CICS TS 4.1 to communicate using IPv6. The CICS
region must be running in a dual-mode (IPv4 and IPv6) environment and the client
or server with which CICS is communicating must also be running in a dual-mode
environment. If a region is running in a single-mode (IPv4) environment or a
region is operating at a pre-CICS TS 4.1 release, you can communicate using IPv4
only.

About this task

Follow these steps to configure your connection to use either IPv4 or IPv6
addressing, or a combination of the two formats:

Procedure
1. Activate TCP/IP services by specifying TCPIP=YES as a system initialization

parameter.
2. Define resources to support the protocol you are using to communicate over in

the TCP/IP network. Here are examples of two different protocols which can
be defined using resources:
a. If you are using IPIC, define and install an IPCONN resource definition and

a TCPIPSERVICE resource definition in both partner regions. See “Defining
IP interconnectivity (IPIC) connections” on page 152 for examples and
instructions to help you define and install your resource definitions.

b. If you are using HTTP with CICS as an HTTP client, define and install a
URIMAP(CLIENT) resource definition in the issuing region and a
TCPIPSERVICE resource definition in the listening region. Define the host
name, IPv4 or IPv6 address that you want to use in the HOST attribute of
the URIMAP(CLIENT) resource definition. See Creating a URIMAP
definition for an HTTP request by CICS as an HTTP clientthe CICS Internet
Guide for information about the URIMAP definitions for HTTP requests.

3. Optional: Advise your network administrator to define an IPv4 primary
interface address to ensure that you do not have problems when
communicating outside of a CICSplex. The primary interface address is the
address that is specified in the PRIMARYINTERFACE statement for the
TCPIP.PROFILE. If you issue a GETHOSTID call, GETHOSTID returns the IPv4
primary interface address, or the loopback address if GETHOSTID cannot find a
host address. The IPRESOLVED option stores the address returned by GETHOSTID,
so IPRESOLVED might contain either the primary interface address, or the

© Copyright IBM Corp. 1977, 2012 119

loopback address. If you are communicating outside of the CICSplex, results
can be unpredictable if a loopback address is returned. To define a primary
interface address, see the information about the TCP/IP address space,
PROFILE.TCPIP, in the z/OS Communications Server IP Configuration Guide.

Results

The TCP/IP connection is correctly configured and is available for use over an
IPv4 connection.

Your connection will also be available over IPv6 if you have the correct level of
CICS and your environments have dual-mode capability.

What to do next

If you are having problems with your connection, see the CICS Problem
Determination Guide.

Configuring support for ISC over SNA
The information on ACF/Communications Server and IMS given in this section is
for guidance only. Always consult the current ACF/Communications Server or IMS
publications for the latest information.

ISC over SNA uses the ACF/Communications Server access method, so when you
install ACF/Communications Server, you must include intersystem communication
programs and operands in your system to allow intersystem communication over
SNA (ISC over SNA).
1. Include the intersystem communication programs in your system by specifying

YES on the z/OS Communications Server and ISC system initialization
parameters.

2. When you define your CICS system to ACF/Communications Server, include
intersystem communication operands in the z/OS Communications Server
APPL statement.

3. If your CICS installation is to use CICS-to-IMS intersystem communication,
ensure that the CICS and the IMS installations are fully compatible. For more
information about defining compatible CICS and IMS nodes, see Chapter 13,
“How to define connections to remote systems,” on page 149. For full details of
IMS installation, see the IMS Installation Guide.
a. Include intersystem communication operands in the z/OS Communications

Server APPL statement.
b. Define IMS ISC-related macros and parameters. See “Defining compatible

CICS and IMS nodes” on page 179.

For more information, see the CICS Transaction Server for z/OS Installation Guide

120 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 11. Steps after configuring MRO

When you have configured MRO support, you must define the MRO connection
and resources.

Procedure
1. Define MRO connection to the remote systems. For more information, see

“Defining links for multiregion operation” on page 163.
2. Define resources on both the local CICS region and remote systems. For more

information, see Chapter 17, “Defining local resources,” on page 229 and
Chapter 16, “Defining remote resources,” on page 205.

© Copyright IBM Corp. 1977, 2012 121

122 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 12. Configuring z/OS Communications Server generic
resources

In a CICSplex containing a set of functionally-equivalent CICS terminal-owning
regions (TORs), you can use the z/OS Communications Server generic resource
function to balance terminal sessions across the available TORs.

This topic assumes some knowledge of tasks, such as defining connections to
remote systems. For information on defining links to remote systems, see
Chapter 13, “How to define connections to remote systems,” on page 149.

For an overview of Communications Server generic resources, see “Workload
balancing in a sysplex” on page 32.

This section contains the following topics:
v “Prerequisites for z/OS Communications Server generic resources”
v “Planning your CICSplex to use z/OS Communications Server generic

resources” on page 124
v “Defining connections in a generic resource environment” on page 125
v “Generating z/OS Communications Server generic resource support” on page

127
v “Migrating a TOR to a generic resource” on page 127
v “Removing a TOR from a generic resource” on page 129
v “Moving a TOR to a different generic resource” on page 130
v “Setting up inter-sysplex communications between generic resources” on page

130
v “Ending affinities” on page 135
v “Using ATI with generic resources” on page 139
v “Using the ISSUE PASS command” on page 142
v “Rules checklist” on page 142
v “Dealing with special cases” on page 143.

Prerequisites for z/OS Communications Server generic resources
To use z/OS Communications Server generic resources, you need
ACF/Communications Server Version 4 Release 2 or a later, upward-compatible,
release.

z/OS Communications Server must be:
v Running under an MVS that is part of a sysplex.
v Connected to the sysplex coupling facility. For information about the sysplex

coupling facility, see the MVS/ESA Setting Up a Sysplex manual, GC28-1449.
v At least one z/OS Communications Server in the sysplex must be an advanced

peer-to-peer networking (APPN) network node, with the other z/OS
Communications Servers being APPN end nodes.

© Copyright IBM Corp. 1977, 2012 123

Planning your CICSplex to use z/OS Communications Server generic
resources

You can use the z/OS Communications Server generic resource function to balance
terminal session workload across a number of CICS regions.

You do this by grouping the CICS regions into a single generic resource. Each
region is a member of the generic resource. When a terminal user logs on using
the name of the generic resource (the generic resource name), z/OS
Communications Server establishes a session between the terminal and one of the
members, depending upon the session workload at the time. The terminal user is
unaware of which member he or she is connected to. It is also possible for a
terminal user to log on using the name of a generic resource member (a member
name), in which case the terminal is connected to the named member.

APPC and LUTYPE6.1 connections do not log on in the same way as terminals.
But they too can establish a connection to a generic resource by using either the
generic resource name (in which case z/OS Communications Server chooses the
member to which the connection is made) or the member name (in which case the
connection is made to the named member).

When you plan your CICSplex to use z/OS Communications Server generic
resources, you need to consider the following:
v Which CICS regions should be generic resource members?

Note that:
– Only CICS regions that provide equivalent functions for terminal users

should be members of the same generic resource.
– In a CICSplex that contains both terminal-owning regions and

application-owning regions (AORs), TORs and AORs should not be members
of the same generic resource group.

v Should there be one or many generic resources in the CICSplex?
If you have several groups of end users who use different applications, you may
want to set up several generic resources, one for each group of users. Bear in
mind that a single CICS region cannot be a member of more than one generic
resource at a time.

v Will there be APPC or LUTYPE6.1 connections. You are recommended to use
APPC in preference to LUTYPE6.1 for CICS-to-CICS connections:
– Between members of a generic resource? You cannot use LUTYPE6.1

connections between members of a generic resource.
– Between members of one generic resource and members of another generic

resource?
– Between members of a generic resource and systems which are not members

of generic resources?

In all these cases you will need to understand when you can use:
– Connection definitions that specify the generic resource name of the partner

system
– Connection definitions that specify the member name of the partner system
– Autoinstall to provide definitions of the partner system.

124 CICS TS for z/OS 4.2: Intercommunication Guide

Naming the CICS regions
Every CICS region has a network name, defined on a z/OS Communications
Server APPL statement, that uniquely identifies it to z/OS Communications Server.

You specify this name, or applid, on the APPLID system initialization parameter. If
a region is a member of a generic resource, its applid and member name are one
and the same.

A generic resource—a collection of CICS regions—has a generic resource name.
Each CICS region that is to be a member of a generic resource specifies the generic
resource name on its GRNAME system initialization parameter. Unlike network
names, generic resource names do not have to be defined to z/OS
Communications Server. However, they must be distinct from network names, and
must be unique within a network. The System/390 MVS Sysplex Application
Migration manual suggests naming conventions for CICS generic resources.

When you start to use generic resources, you must decide how the generic
resource name and the member names are to relate to the applids by which the
member regions were known previously:
v If you have several TORs, you could continue to use the same applids for the

TORs, and choose a new name for the generic resource. Terminal logon
procedures will need to be changed to use the generic resource name, and so
will connection definitions that are to use the generic resource name.

v If you have a single TOR, you could use its applid as the generic resource name,
and give it a new applid. Changes to terminal logon procedures (and connection
definitions) are minimized, but you need to change z/OS Communications
Server definitions, CONNECTION definitions in AORs connected using MRO,
and RACF® profiles that specify the old applid.

Defining connections in a generic resource environment
The z/OS Communications Server generic resource function can be used to balance
session workload for APPC and LUTYPE6.1 connections.

Connections differ from terminal sessions in the following ways:
v A connection can have multiple sessions. z/OS Communications Server's generic

resource support creates dependencies, or affinities, to ensure that—once the
first session is established—subsequent sessions to a generic resource are with
the same member as the first session.

v Either end of a connection can (in principle) establish the first session. Which
end does (in practice) initiate the first session affects how connections should be
defined in the generic resource environment.

v Connections that fail, and require resynchronization, must be reestablished
between the same members. z/OS Communications Server uses affinities to
ensure that reconnections are made correctly.

Defining connections
When you define a connection to a generic resource, you have two possibilities for
the NETNAME attribute of the CONNECTION resource.

About this task
1. Use the name (applid) of the generic resource member. This type of connection

is known as a member name connection.

Chapter 12. Configuring z/OS Communications Server generic resources 125

2. Use the name of the generic resource. This type of connection is known as a
generic resource name connection.

It is important that you make the correct choice when you define connections to a
generic resource:
v When CICS initiates a connection using a member name definition, z/OS

Communications Server establishes a session with the named member.
v When CICS initiates a connection using a generic resource name connection,

z/OS Communications Server establishes a connection to one of the members of
the generic resource. Which member it chooses depends upon whether any
affinities exist, and upon z/OS Communications Server's session-balancing
algorithms.

When a CICS Transaction Server for z/OS generic resource member sends a BIND
request on a connection, the request contains the generic resource name and the
member name of the sender. If the partner is also a CICS TS for z/OS generic
resource, it can distinguish both names. Other CICS systems take the generic
resource name from the bind, and attempt to match it with a connection definition.

It follows that the only time an LUtype 6 which is not itself a member of a CICS
TS for z/OS generic resource can successfully use a member name to connect to a
generic resource is when the generic resource member will never initiate any
sessions. This is an unusual situation, and therefore a connection from a system
that is not a CICS TS for z/OS generic resource member to a generic resource
should use the generic resource name.

Defining connections between GR members and non-GR
members
When a generic resource member initiates a connection (that is, sends the first
BIND) to another LUtype 6, it identifies itself to its partner with its generic
resource name. Sessions initiated by the partner must then also use the generic
resource name of the LU that initiates the connection.

Defining connections between members within a generic
resource
You may want to define connections between members of a generic resource. You
should always specify, on the NETNAME option of these CONNECTION
definitions, the partner's member name and not the generic resource name.

Defining connections between CICS TS for z/OS generic
resources
If you have two CICS TS for z/OS generic resources, you do not need to define
and install member name connections for every possible connection between them.

Instead, you can define and install a single generic resource name connection in
each member that may initiate a connection with the partner generic resource.
CICS then autoinstalls member name connections as they are required.

The only connection definition required in a CICS region that does not initiate
connections is one that can be used as an autoinstall template. If there is a generic
resource name connection installed, it is used as the template, so we suggest that
you define generic resource name connections for this purpose.

126 CICS TS for z/OS 4.2: Intercommunication Guide

Generating z/OS Communications Server generic resource support
To generate z/OS Communications Server generic resource support for your CICS
TORs, you must perform these steps.

About this task

If your CICSplex comprises separate terminal-owning regions and
application-owning regions, do not include TORs and AORs in the same generic
resource group.

Procedure
1. Use the GRNAME system initialization parameter to define the generic

resource name under which CICS is to register to z/OS Communications
Server. To comply with the CICS naming conventions, pad the name to the
permitted 8 characters with one of the characters #, @, or $. For example:
GRNAME=CICSH###

If you specify a valid generic resource name on GRNAME, specify only name1 on
the APPLID system initialization parameter. If you do specify both name1 and
name2 on the APPLID parameter, CICS ignores name1 and uses name2 as the
z/OS Communications Server APPLID.

2. Use an APPL statement to define the attributes of each participating TOR to
z/OS Communications Server. The attributes defined on each individual APPL
statement should be identical. The name on each APPL statement must be
unique. It identifies the TOR individually, within the generic resource group.

3. Shut down each terminal-owning region normally before registering it as a
member of the generic resource. An immediate shutdown is not sufficient; nor
is a CICS failure followed by a cold start. Do not specify a shutdown assist
transaction, to avoid the possibility of the transaction force closing z/OS
Communications Server or performing an immediate shutdown. The default
shutdown assist transaction, DFHCESD, is described in Shutdown assist
program (DFHCESD) in the Operations and Utilities Guide.
If CICS has not been shut down cleanly before you try to register it as a
member of a generic resource, z/OS Communications Server might (due to the
existence of persistent sessions) fail to register it, and issue a return
code-feedback (RTNCD-FDB2) of X'14', X'86'. To correct this, you must restart
CICS (with the same APPLID), and then shut it down cleanly. Alternatively, if
you have written a batch program to end affinities (see “Writing a batch
program to end affinities” on page 136), you might be able to use it to achieve
the same effect. As part of its processing, the batch program opens the original
z/OS Communications Server ACB with the original APPLID, unbinds any
persisting sessions, and closes the ACB.

Migrating a TOR to a generic resource
This section describes how to manage existing terminals and connections when
migrating a TOR to membership of a CICS Transaction Server for z/OS generic
resource.

How to establish connections between two CICS TS for z/OS generic resources is
described separately in “Setting up inter-sysplex communications between generic
resources” on page 130.

Chapter 12. Configuring z/OS Communications Server generic resources 127

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_grname.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha609.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha609.html

Note: For the purposes of this discussion, a “terminal-owning region” is any CICS
region that owns terminals and is a candidate to be a member of the generic
resource.

Recommended methods
For simplicity, first create a generic resource consisting of only one member. Do not
add further members until the single-member generic resource is functioning
satisfactorily.

Because all members of a generic resource should be functionally equivalent, you
create additional members by cloning the first member. (A situation in which you
might choose to ignore this advice is described below.)

There are two recommended methods for migrating a TOR to a generic resource.
Which you use depends on whether there are existing LU6 connections.

No LU6 connections
If there are no LU6 (that is, APPC or LU6.1) connections to your terminal-owning
region, we recommend that you choose a new name for the generic resource and
retain your old applid. Non-LU6 terminals can log on by either applid or generic
resource name, hence they are not affected by the introduction of the generic
resource name.

About this task

You can then gradually migrate the terminals to using the generic resource name.
Later, you can expand the generic resource by cloning the first member-TOR.

Note: If you have several existing TORs that are functionally similar, rather than
cloning the first member you might choose to expand the generic resource by
adding these existing regions, using their applids as member-names.

LU6 connections
If there are LU6 (APPC or LU6.1) connections to your terminal-owning region, not
counting connections to other members of the generic resource, we recommend
that they log on using the generic resource name. However, you will probably
want to migrate to generic resource without requiring all your LU6 network
partners to change their logon procedures.

About this task

One option is to use the applid of your existing terminal-owning region as the new
generic resource name. Because this requires you to choose a new applid, it is also
necessary to change the CONNECTION definitions of MRO-connected
application-owning regions and RACF profiles that specify the old applid. Note,
however, that you do not need to change the APPL profile to which the users are
authorized—CICS passes the GRNAME to RACF as the APPL name during signon
validation, and the old applid is now the GRNAME. The recommended migration
steps are:
1. Configure your CICSplex with a single terminal-owning region.
2. Set the generic resource name to be the current applid of that terminal-owning

region.
3. Change the current applid to a new value.
4. Change CONNECTION definitions in MRO partners to use the new applid for

the terminal-owning region.

128 CICS TS for z/OS 4.2: Intercommunication Guide

5. Change RACF profiles that specify the old applid.
6. Restart the CICSplex.

At this point:
v Non-LU6 terminals can log on using the old name (without being aware that

they are now using a z/OS Communications Server generic resource). They
will, of course, be connected to the same TOR as before because there is only
one in the generic resource set.

v LU6 connections log on using the old name (thereby conforming to the
recommendation that they should connect by generic resource name).

7. Install new cloned terminal-owning regions with the same generic resource
name and the same connectivity to the set of AORs.
At this point:
v Autoinstalled non-LU6 terminals start to exploit session balancing.
v Autoinstalled APPC sync level 1 connections start to exploit session

balancing.
v Because of affinities, existing LU6.1 and APPC sync level 2 connections

continue to be connected to the original terminal-owning region (by generic
resource name).

v Special considerations apply to non-autoinstalled terminals and connections,
and to LU6 connections used for outbound requests. These are described in
“Dealing with special cases” on page 143.

Removing a TOR from a generic resource
There are several ways to remove a region from a generic resource.

About this task
v Close the z/OS Communications Server ACB.
v Shut down CICS. If you want to remove the region permanently, you must

remove the generic resource name from the GRNAME system initialization
parameter before restarting CICS.

v Issue a SET VTAM DEREGISTERED command to remove the region
dynamically—that is, without closing the z/OS Communications Server ACB or
shutting down CICS. This may be useful if, for example, you need to apply
minor maintenance to a TOR.
When a TOR is dynamically removed from a generic resource, any terminals
which are logged on are gradually redirected to the remaining generic resource
members, as they log off and back on again.
To re-register CICS with the generic resource, you must close and reopen the
z/OS Communications Server ACB.

Important:

If you remove a region from a generic resource:
v You should end any affinities that it owns. If you do not, z/OS Communications

Server will not allow the affected APPC and LU6.1 partners to connect to other
members of the generic resource. See “Ending affinities” on page 135.

v The region that has been removed should not try to acquire a connection to a
partner that knows it by its generic resource name, unless the partner has ended
its affinity to the removed region.

Chapter 12. Configuring z/OS Communications Server generic resources 129

Moving a TOR to a different generic resource
To move a region from one generic resource to another, you must perform the
following steps.

About this task
1. End any affinities that it owns. See “Ending affinities” on page 135.
2. Shut it down cleanly. See “Generating z/OS Communications Server generic

resource support” on page 127.
If CICS is not shut down cleanly before you try to register it as a member of
the new generic resource, z/OS Communications Server may fail to register it,
and issue a RTNCD-FDB2 of X'14', X'86'. To correct this, you must restart CICS
with the original GRNAME and APPLID, then shut it down normally. Do not
specify a shutdown assist transaction, to avoid the possibility of the transaction
force closing z/OS Communications Server or performing an immediate
shutdown.
Alternatively, if you have written a batch program to end affinities, you might
be able to use it to achieve the same effect. As part of its processing, the
skeleton program described in “Writing a batch program to end affinities” on
page 136 opens the original z/OS Communications Server ACB with the
original GRNAME, unbinds any persisting sessions, and closes the ACB.

3. Specify the name of the alternative generic resource on the GRNAME system
initialization parameter, and restart CICS.

Setting up inter-sysplex communications between generic resources
This section describes communications between CICS Transaction Server for z/OS
generic resources in partner sysplexes. You must use APPC parallel-session
connections for links between CICS TS for z/OS generic resources.

Establishing connections between CICS TS for z/OS generic
resources

Assume that you have two sysplexes, SYSPLEXL and SYSPLEXR, and that these
contain the CICS TS for z/OS generic resource groups CICSL and CICSR,
respectively.

About this task

This is illustrated by Figure 38 on page 132. The steps involved in establishing
connections between CICSL and CICSR are as follows:
1. On each member of CICSL that is to initiate a connection to CICSR, statically

define and install an APPC parallel-session connection in which the NETNAME
is the generic resource name of CICSR—that is, define a generic resource name
connection. Similarly, on each member of CICSR that is to initiate a connection
to CICSL, statically define and install an APPC parallel-session connection in
which the NETNAME is the generic resource name of CICSL.

Note: You should not install any predefined connections other than generic
resource name connections.
The first attempt by any member of CICSL to acquire a connection to CICSR
(or vice versa) uses a generic resource name connection.

130 CICS TS for z/OS 4.2: Intercommunication Guide

2. The CICSR member to which z/OS Communications Server sends the bind
request searches for the generic resource name connection definition for CICSL.
(If none exists, it autoinstalls one, subject to the normal rules for autoinstalling
connections.)

3. Subsequent connections that z/OS Communications Server happens to route to
the same member of CICSR from different members of CICSL are autoinstalled
on the CICSR member, using the CICSL member name as the NETNAME; that
is, CICS autoinstalls member name connections. Similarly, subsequent connections
to the same member of CICSL from different members of CICSR are
autoinstalled on the CICSL member, using the CICSR member name as the
NETNAME. The example in “Example” makes this clearer.
The template used for autoinstalling these further connections can be any
installed connection. CICS uses the generic resource name connection as the
default template.
If you decide to use a template other than the default for member name
connections, remember that use of the sessions for these connections is initiated
by the partner, so consider defining the MAXIMUM attribute of the SESSIONS
resource with no contention winners. This attribute is described in “Defining
groups of APPC sessions” on page 171. This is useful because the member
name is not known to the applications in the system in which the member
name connection is autoinstalled. They use the GR name for outbound
requests. Therefore the member name connection is not used for outbound
requests and so does not need to have any sessions defined as winners. By
allowing the partner system to have all the sessions as winners, the overhead of
bidding for loser sessions is avoided.
A template is a normal installed connection defined with CONNECTION and
SESSIONS resources that can be used solely as a template, or as a real
connection. It is used as a model from which to autoinstall further connections.

Example
An example of establishing connections between CICS TS for z/OS generic
resources.

In Figure 38 on page 132 through Figure 41 on page 134, each generic resource uses
the partner sysplex's generic resource name when initiating a connection. All
generic resource members are able to initiate connections; that is, they all have a
generic resource name connection (a predefined connection entry in which the
NETNAME is the generic resource name of the partner sysplex). The connections
are APPC parallel-session synclevel 2 links.

Chapter 12. Configuring z/OS Communications Server generic resources 131

In Figure 38, the first bind that flows from CICSL1 to CICSR is routed to
whichever member of CICSR z/OS Communications Server decides is the most
lightly loaded. In this example it goes to CICSR1. The predefined connections for
the generic resource names CICSR and CICSL in CICSL1 and CICSR1 are used.

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL1 with
CICSR1. When you need to end these affinities, you may or may not need to do so
explicitly—see “Ending affinities” on page 135 and “APPC connection quiesce
processing” on page 301. Until the affinities are ended, whenever CICSL1 tries to
reconnect to CICSR, z/OS Communications Server routes the request to CICSR1;
and whenever CICSR1 tries to reconnect to CICSL, z/OS Communications Server
routes the request to CICSL1.

SYSPLEXL

GRNAME=CICSL

CICSL1

CICSL2

SYSPLEXR

GRNAME=CICSR

CICSR1

CICSR2

1
Pre-
defined
CICSR

Pre-
defined
CICSR

Pre-
defined
CICSL

Pre-
defined
CICSL

Figure 38. The figure shows two sysplexes, SYSPLEXL and SYSPLEXR. Each contains a CICS generic resource
group. The CICSL1 member of the CICSL group attempts to acquire a connection to a member of the CICSR group in
SYSPLEXR.

132 CICS TS for z/OS 4.2: Intercommunication Guide

Figure 39 shows a bind flow from CICSL2 to CICSR. In this example z/OS
Communications Server has, once again, chosen to route it to CICSR1, but it could
have gone to one of the other members of CICSR.

The predefined connection for CICSR in CICSL2 is used. CICSR1 looks for the
connection entry for CICSL. It is already in use, so a new connection is
autoinstalled using the member name CICSL2.

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL2 with
CICSR1. If you need to end these affinities, you may or may not need to do so
explicitly.

CICSL1

CICSR

CICSL2

CICSR

CICSR1

CICSL

CICSR2

CICSL

GRNAME=CICSL GRNAME=CICSR

1

2 AI
CICSL2

Figure 39. Second flow, CICSL2-CICSR

Chapter 12. Configuring z/OS Communications Server generic resources 133

Figure 40 shows a third flow, this time from CICSR1 to CICSL. The existing affinity
forces it to CICSL1.

CICSL1

CICSR

CICSL2

CICSR

CICSR1

CICSL

CICSR2

CICSL

GRNAME=CICSL GRNAME=CICSR

1

2

3

AI
CICSL2

Figure 40. Third flow, CICSR1-CICSL

CICSL1

CICSR

CICSL2

CICSR1

CICSL

CICSR2

GRNAME=CICSL GRNAME=CICSR

1

2

3

CICSR CICSL

4

AI
CICSL2

AI
CICSR2

Figure 41. Fourth flow, CICSR2-CICSL

134 CICS TS for z/OS 4.2: Intercommunication Guide

Figure 41 on page 134 shows a fourth flow, this time from CICSR2 to CICSL. It can
go to any member of CICSL, but in this example z/OS Communications Server
routes it to CICSL2.

The predefined connection entry for CICSL in CICSR2 is not in use and so it is
used now. CICSL2 looks for the predefined connection entry for CICSR. It is in use,
and so an entry for CICSR2 is autoinstalled.

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL2 with
CICSR2. If you need to end these affinities, you may or may not need to do so
explicitly.

Ending affinities
When a session is established with a member of a generic resource, z/OS
Communications Server creates an association called an affinity between the
generic resource member and the partner LU, so that it knows where to route
subsequent flows.

In most cases, z/OS Communications Server ends the affinity when all activity on
the session has ceased. However, for some types of session, z/OS Communications
Server assumes that resynchronization data may be present, and therefore relies on
CICS to end the affinity. The sessions affected are:
v APPC synclevel 2 sessions
v APPC sessions using limited resource support
v LU6.1 sessions.

In z/OS Communications Server terms, the CICS generic resource member “owns”
the affinity and is responsible for ending it. The affinity persists even after a
connection has been deleted or CICS has performed an initial or cold start. For a
connection between two generic resources, both partners own an affinity, and each must be
ended. For APPC connections between CICS TS for OS/390, Version 1.3 or later
regions, the APPC connection quiesce protocol does this automatically—see “APPC
connection quiesce processing” on page 301. For other connections, the affinities
must be ended explicitly.

CICS provides commands that can be used to end affinities explicitly:
v You can use SET CONNECTION ENDAFFINITY when there is an installed

connection definition.
v You can use PERFORM ENDAFFINITY after an autoinstalled connection has

been deleted, as well as when it is still present. You must supply the NETNAME
(and, if the connection has been deleted, the NETID) of the remote system. The
NETNAME is the name by which the remote system is known to z/OS
Communications Server. (Note that, if the remote system is also a generic
resource, the NETNAME is always the member name, even if the connection
was defined using the generic resource name.)

These commands are valid only for LU6.1 and APPC connections. The connection,
if present, must be out of service and its recovery status (as shown by the
RECOVSTATUS option of the INQUIRE CONNECTION command) must be
NORECOVDATA. Note that only those affinities that are owned by CICS can be
ended by CICS.

CICS has no certain knowledge that an affinity exists for a given connection. To
help you, message DFHZC0177 is issued whenever there is a possibility that an

Chapter 12. Configuring z/OS Communications Server generic resources 135

affinity has been created that you may have to end explicitly. This message gives
the NETNAME and NETID to be used on the PERFORM ENDAFFINITY
command.

Having received message DFHZC0177, to check whether an affinity that must be
ended explicitly does indeed exist, you can use the SNA D NET,GRAFFIN command.
This command produces messages IST1706 and IST1707, which should contain the
information you need. Alternatively, the MVS/ESA Version 5 Interactive Problem
Control System (IPCS) Commands manual, GC28-1491, tells you how to produce a
dump of the z/OS Communications Server ISTGENERIC data area. This contains
SPTE records that show which affinities exist. For example, start the dump with:
DUMP COMM=(title)

Reply with:
r xx ,STRLIST=(STRNAME=ISTGENERIC,

ACC=NOLIMIT,(LNUM=ALL,ADJ=CAP,EDATA=SER))

Look at the dump with:
STRDATA DETAIL ALLSTRS ALLDATA

If a request to end an affinity is rejected by z/OS Communications Server because
no such affinity exists, message DFHZC0181 is issued. This may mean either that
you supplied an incorrect NETNAME or NETID, or that you (or CICS) were
wrong in supposing that an affinity existed.

When should you end affinities?
You need to end affinities if you reconfigure your sysplex.

For example, you must end any relevant affinities before you do any of the
following:
v Change the name of a generic resource.
v Change a generic resource name connection to a member-name connection.
v Change a parallel-session connection to a single-session connection.
v Remove systems from a generic resource. If you remove a system from a generic

resource and do not end its affinities, z/OS Communications Server treats it as
though it were still a member of the generic resource.

Note: For connections between generic resources, you must end the affinities
owned by both generic resources.

Writing a batch program to end affinities
If a generic resource member that owns affinities fails and cannot be recovered, the
affinities must be ended.

In a case like this, you cannot use the SET CONNECTION ENDAFFINITY or
PERFORM ENDAFFINITY commands. Instead, you can use a batch program to
clear the affinities owned by the failed member. This section demonstrates how to
write such a batch program. The program must be written in assembler language.

Note: You can use the dump technique described in the MVS/ESA Version 5
Interactive Problem Control System (IPCS) Commands manual to discover what
affinities the failed generic resource member owns.

Important:

136 CICS TS for z/OS 4.2: Intercommunication Guide

You should use this technique only if it is impossible to restart the failed CICS
system.

Program input
You need to specify the following input parameters to the program.
v Member name (in the generic resource group) of the failed system
v Generic resource name of the failed system
v APPLID of the partner system
v NETID of the partner system.

Program output
The program uses the z/OS Communications Server CHANGE
OPTCD=ENDAFFIN macro to end the affinities.

The program uses the Communications Server CHANGE OPTCD=ENDAFFIN
macro to end the affinities. You will probably need to produce a report on the
success or failure of this and the other Communications Server macro calls that the
program uses. Consult the z/OS Communications Server: SNA Programming manual
for the meaning of RTNCD/FDB2 values.

Processing
The program needs to perform the following processing.

About this task
1. Reserve storage for the following:

v The ACB of the failed sysplex member:
acb-name ACB AM=VTAM,

PARMS=(PERSIST=YES)

Note that the above example assumes that you are using persistent sessions.
v The RPL, which is required by the z/OS Communications Server macros:

rpl-name RPL AM=VTAM,OPTCD=(SYN)

v The NIB, which is required by the CHANGE OPTCD=ENDAFFIN macro:
nib-name NIB

2. Issue a z/OS Communications Server VTAM OPEN command for the ACB of
the member which owns the affinity, passing the input APPLID for this
member.

3. If any sessions persist, use the z/OS Communications Server VTAM
SENDCMD macro to terminate them. (If you are not using persistent sessions
this will not be necessary.)
a. Move the following command to an area in storage. In this example, applid1

is the member name of the failed member and applid2 is the APPLID of the
partner system.
’VARY NET,TERM,LU1=applid1,LU2=applid2,TYPE=FORCE,SCOPE=ALL’

b. Issue the SENDCMD macro, as in the example below. In this example:
v rpl-name is the name of an RPL.
v acb-name is the ACB of the failed sysplex member.
v output-area is the name an area in storage where the VARY command is

held.
v command-length is the length of the command.

Chapter 12. Configuring z/OS Communications Server generic resources 137

SENDCMD RPL=rpl-name,
ACB=acb-name,
AREA=output-area,
RECLEN=command-length,
OPTCD=(SYN)

4. Use the z/OS Communications Server VTAM RCVCMD macro to receive
messages from z/OS Communications Server. Note that RCVCMD must be
issued three times after the SENDCMD to be sure that the VARY command
worked correctly. In the following example:
v rpl-name and acb-name are as described above.
v input-area is the area of storage into which the message is to be received.
v receive_length is the length of data to be received.
RCVCMD RPL=rpl-name,

ACB=acb-name,
AREA=input-area,
AREALEN=receive-length,
OPTCD=(SYN,TRUNC)

5. Issue this command twice more to make sure of receiving all the output from
z/OS Communications Server.

6. Issue the z/OS Communications Server VTAM CHANGE OPTCD=ENDAFFIN
macro to end the affinity. Before issuing the macro the following fields must be
initialized in the NIB:
v NIBSYM is set to the APPLID of the partner system.
v NIBGENN is set to the generic resource name of the failed system.
v NIBNET is set to the NETID of the partner system.
CHANGE RPL=rpl-name,

ACB=acb-name,
NIB=nib-name,
OPTCD=(SYN,ENDAFFIN)

7. Issue the z/OS Communications Server VTAM CLOSE command for the ACB.

Results

Programming notes:

1. The z/OS Communications Server commands should be synchronous, to avoid
the use of exits (OPTCD=SYN).

2. Care must be taken not to run the program for an APPLID of a running CICS.
If you do, and you are using z/OS Communications Server persistent sessions,
a predatory takeover will occur—that is, your program will assume control of the
sessions belonging to the APPLID.

JCL for submitting the ENDAFFINITY program
This is an example of JCL for submitting the ENDAFFINITY program.

138 CICS TS for z/OS 4.2: Intercommunication Guide

Using ATI with generic resources
Automatic transaction initiation (ATI) is the process whereby a transaction is
started by a request made internally within the CICS system, rather than by a
terminal end-user entering a transaction name.

This can happen when, for example, an application program issues an EXEC CICS
START command, or the trigger level on a transient data queue is reached. Often
the started transaction is associated with a terminal, which may or may not be
owned by the region in which the transaction runs.

ATI is described in “Traditional routing of transactions started by ATI” on page 71.
In particular, “Traditional routing of transactions started by ATI” on page 71
describes how CICS invokes the “terminal not known” global user exits, XICTENF
and XALTENF, to deal with the situation where the terminal is not defined to the
AOR.

When an automatic transaction initiation (ATI) request is issued in an
application-owning region (AOR) for a terminal that is logged on to a TOR, CICS
uses the terminal definition in the AOR to determine the TOR to which the request
should be shipped. If there is no definition of the terminal in the AOR, you may be
able to use the “terminal-not-known” global user exits (XICTENF and XALTENF)
to supply the name of the TOR.

However, if a user logs on to a generic resource (using a generic resource name),
z/OS Communications Server may connect his or her terminal to any of the
regions in the generic resource. If the user then logs off and on again, z/OS
Communications Server may connect his terminal to the same region, or to a
different one. In this situation, the terminal definition in the AOR may not reflect
the correct location of the terminal; and your terminal-not-known exit program has
no way of knowing the correct destination for the ATI request.

CICS solves this problem by using z/OS Communications Server's knowledge of
where the terminal is logged on, to ship the ATI request to the correct TOR:
1. First, the ATI request is shipped to the TOR specified in the remote terminal

definition (or specified by the terminal-not-known exit)—we shall call this the
“first-choice TOR”. If the terminal is logged on to the first-choice TOR, the ATI
request completes as normal.

//JOBNAME JOB 1,userid,
// NOTIFY=userid,CLASS=n,MSGLEVEL=(n,n),MSGCLASS=n,REGION=1024K
//*
//JOBLIB DD DSN=loadlib-name,DISP=SHR
//*
//***
//* PARM=’FAILED_APPLID,FAILED_GENERIC,PARTNER_NETID,PARTNER_APPLID’
//***
//*
//RUN EXEC PGM=ENDAFFIN,PARM=’parm1,parm2,parm3,parm4’
//*
//REPORT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//

Figure 42. Example JCL for submitting the ENDAFFINITY program

Chapter 12. Configuring z/OS Communications Server generic resources 139

2. If the terminal cannot be located on the first-choice TOR, the TOR asks z/OS
Communications Server for the applid of the generic resource member where
the terminal is logged on. If the terminal is not logged on to any applid within
the generic resource group, the ATI request fails.
If the terminal is located on the first-choice TOR but not logged on, the TOR
asks z/OS Communications Server for the applid of the generic resource
member where the terminal is logged on. If the terminal is not logged on to
any applid within the generic resource group, the ATI request is scheduled on
the first-choice TOR. If the terminal is logged on to a different applid within
the generic resource group, this information is passed to the AOR, and the ATI
request is shipped to the correct TOR.

3. If the first-choice TOR is not available (and such an inquiry is possible) the
AOR asks z/OS Communications Server for the location of the terminal. The
inquiry is possible when all of the following are true:
v The z/OS Communications Server in the AOR is version 4.2 or later (that is,

it supports generic resources).
v The AOR was started with the z/OS Communications Server system

initialization parameter set to 'YES'.
v The z/OS Communications Server generic resource name where the terminal

may be logged on is known to the AOR. Such information is obtained from
the skeleton TCTTE representing the remote terminal. If the first choice TOR
name has been supplied by the user terminal-not-known exit, such an
inquiry is not possible. Note that the inquiry will fail if the terminal is not
logged on to the z/OS Communications Server generic resource name found
in the skeleton TCTTE.

If the AOR is in one network and the TORs in another, the inquiry fails.
If the inquiry is successful, the ATI request is shipped to the TOR where the
terminal is logged on.

z/OS Communications Server knows the terminal by its netname, not by its CICS
terminal identifier (TERMID). If there is a terminal definition in the AOR at the
time the START is issued, CICS obtains the netname from that definition. If there is
not, your terminal-not-known exit program should return:
v A netname that z/OS Communications Server can use to locate the terminal
v The name of a connection to any member of the generic resource that is likely to

be active.

Note:

1. If CICS has no netname for the terminal, the ATI request is shipped to the
first-choice TOR, and the termid is used to locate the terminal. If the terminal
cannot be found on the first-choice TOR, the ATI request fails.

2. Because CICS uses the terminal's netname to find its location in the generic
resource group, the ATI request will still work if, on the second or subsequent
logon, the termid changes (for instance, if the autoinstall user program does not
implement a consistent mapping between netname and termid).

3. The ATI support described in this section applies only to terminals that use the
generic name to log on to a generic resource. If a user logs on to a TOR using
the member name, CICS does not attempt to discover from z/OS
Communications Server to which TOR the terminal is connected.

4. The ATI support described in this section does not apply to ATI to an APPC
connection.

5. The TORs can use autoinstall or explicitly-defined terminal definitions.

140 CICS TS for z/OS 4.2: Intercommunication Guide

The AORs must not use explicitly-defined remote terminal definitions. If
explicitly-defined terminals are used, the ATI request will always be shipped to
the first-choice TOR and will not be re-routed to a different TOR within the
same z/OS Communications Server generic resource group, even though the
terminal may be logged on to another TOR.

Example 1:

1. A user logs on using the generic resource name CICS, which is the name of a
set of TORs (TOR1 through TOR6). The user is connected to TOR1, because it is
the most lightly loaded.

2. The user runs a transaction, which is routed to an AOR, AOR1. The terminal
definition is shipped to AOR1.

3. The transaction issues an EXEC CICS START request, to start another
transaction, after an interval, against the same terminal. The second transaction,
like the first, is located on AOR1.

4. After the first transaction has completed, the user logs off; and logs on again
later to collect the output from the second transaction. When logging on the
second time, again using the generic resource name CICS, the user is connected
to TOR2 because that is now the most lightly loaded.

5. The interval specified on the START request expires. However, the terminal is
no longer defined to TOR1. The shipped terminal definition has not yet been
deleted from AOR1 by the timeout delete mechanism.

v Result:

Because the shipped definition of the user's terminal still exists on AOR1, AOR1
ships the ATI request to TOR1 (the TOR referenced in the definition). Because
the terminal is not logged on to TOR1, TOR1 queries z/OS Communications
Server and returns the result to AOR1. AOR1 then ships the request to the
correct TOR (TOR2).

Example 2:

1. A user logs on using the generic resource name CICS, which is the name of a
set of TORs (TOR1 through TOR6). The user is connected to TOR1, because it is
the most lightly loaded.

2. The user runs a transaction, which is routed to an AOR, AOR1. The terminal
definition is shipped to AOR1.

3. The transaction does some asynchronous processing—that is, it starts a second
transaction, which happens to be on another AOR, AOR2. After it has finished
processing, the second transaction is to reinvoke the original transaction to send
a message to the user-terminal at TOR1.

4. The user logs off while the application is in process, and logs on again later to
collect the message. When logging on the second time, again using the generic
resource name CICS, the user is connected to TOR2 because that is now the
most lightly loaded.

5. The second transaction completes its processing, and issues an EXEC CICS
START command to reinvoke the original transaction, in conjunction with the
original terminal. The START request is shipped to AOR1. However, the
terminal is no longer defined to TOR1, and the shipped terminal definition has
been deleted from AOR1 by the timeout delete mechanism.

v Result:

Because the shipped terminal definition has been deleted from AOR1, CICS
invokes the XICTENF and XALTENF exits. Your exit program should return:
– The netname of the user's terminal

Chapter 12. Configuring z/OS Communications Server generic resources 141

– The name of a connection to any member of the generic resource that is likely
to be currently active.

CICS is then able to query z/OS Communications Server, as described in
Example 1, and ship the request to the correct TOR (TOR2).

Using the ISSUE PASS command
The EXEC CICS ISSUE PASS command can be used to disconnect a terminal from
CICS and transfer it to the z/OS Communications Server application specified on
the LUNAME option.

For example, to transfer a terminal from this CICS to another terminal-owning
region, you could issue the command:

EXEC CICS ISSUE PASS
LUNAME(applid)

where applid is the applid of the TOR to which the terminal is to be transferred.

When your TORs are members of a generic resource group, you can transfer a
terminal to any member of the group by specifying LUNAME as the generic
resource name. For example:

EXEC CICS ISSUE PASS LUNAME(grname)

where grname is the generic resource name. z/OS Communications Server transfers
the terminal to the most lightly-loaded member of the generic resource. (If the
system that issues the ISSUE PASS command is itself the most lightly-loaded
member, z/OS Communications Server transfers the terminal to the next most
lightly-loaded member.)

Note that, if the system that issues an ISSUE PASS LUNAME(grname) command is
the only CICS currently registered under the generic resource name (for example,
the others have all been shut down), the ISSUE PASS command does not fail with
an INVREQ. Instead, the terminal is logged off and message DFHZC3490 is written
to the CSNE log. You can code your node error program to deal with this situation.
For advice on coding a node error program, see Writing a node error program , in
the CICS Customization Guide.

If you need to transfer a terminal to a specific TOR within the CICS generic
resource group, you must specify LUNAME as the member name—that is, the
CICS APPLID, as in the first example command.

Rules checklist
Here is a checklist of the rules that govern CICS use of the z/OS Communications
Server generic resources function.
v Generic resource names must be unique in the network.
v A CICS region that is a member of a generic resource can have only one generic

resource name and only one applid.
v A generic resource name cannot be the same as a z/OS Communications Server

applid in the network.
v Within a generic resource, member names only must be used. There must be no

definitions in any of the members of the generic resource for the generic
resource name.

142 CICS TS for z/OS 4.2: Intercommunication Guide

v Non-LU6 devices that require sequence number resynchronization cannot log on
using the generic resource name. They must use the applid and therefore cannot
take advantage of session balancing.

v APPC connections to a generic resource that are initiated by the partner (that is,
on which the non-generic resource sends the first bind) can log on using a
member name.

v For LU6.1 connections initiated by a generic resource member, the partner must
know the member by its generic resource name.
Therefore, you are strongly recommended not to try to access the same LU6.1
partner from more than one member of a generic resource.

v For APPC connections initiated by a generic resource member, where the partner
is not itself a member of a CICS Transaction Server for z/OS generic resource,
the partner must know the member TOR by its generic resource name.
Therefore, you are strongly recommended not to try to access such partners from
more than one member of a generic resource.

v A system cannot statically define both an APPC generic resource name
connection and an APPC member name connection to the same generic resource.
(Generic resource name connections and member name connections are
described in “Establishing connections between CICS TS for z/OS generic
resources” on page 130.)
Furthermore, all members of a generic resource must choose the same method.
That is (for statically-defined APPC connections to a partner generic resource),
they must all use member name connections or all use generic resource name
connections.

Dealing with special cases
This section describes some special cases that you may need to consider.

Note that much of the information applies only to links to back-level
systems—where, for example, you are initiating a connection to a non-CICS TS
for z/OS system. For connections between CICS TS for z/OS generic resources,
much of the following information can be disregarded.

Non-autoinstalled terminals and connections
Because members of a generic resource should be functionally equivalent, it is not
recommended that you should predefine terminals to specific members of a
generic resource.

Important:

Use autoinstall instead, and allow the z/OS Communications Server to balance the
TORs' workload dynamically. However, there may be times—for example, while
you are migrating an existing TOR into a generic resource—when it is necessary to
use static definitions.

If an LU is predefined to a specific terminal-owning region, and the LU initiates
the connection (that is, it sends the first bind request) using the TOR's generic
resource name, the generic resource function must make the connection to the
“correct” terminal-owning region—the one that has the definition. This
requirement means that you must install the Communications Server generic
resource resolution exit program, ISTEXCGR, to enforce selection of the correct
applid (for the terminal-owning region).

Chapter 12. Configuring z/OS Communications Server generic resources 143

Note that this is not necessary if the connection is always initiated by the
terminal-owning region (by means, for example, of a START request).

A sample ISTEXCGR exit program is supplied with the z/OS Communications
Server 4.2. For details, see the z/OS Communications Server: SNA Programming
manual.

Outbound LU6 connections
This section discusses outbound LU6 connections from TORs that are members of a
generic resource group. By “outbound” we mean connections to systems outside
the CICSplex.

Using a “hub”
For LU6 connections initiated by a generic resource member, where the partner
is not itself a CICS Transaction Server for z/OS generic resource, the partner
must know the member TOR by its generic resource name.

The requirement therefore applies when a generic resource member initiates any of
the following kinds of connection:
v APPC connections to single systems
v APPC connections to members of a CICSplex that are not also generic resource

members
v All LU6.1 connections.

Because (unless the partner is also a CICS TS for z/OS generic resource) an
attempt by a generic resource member to connect to an LU6 partner will succeed
only if the partner knows the TOR by its generic resource name, it follows that the
partner can accept a connection to only one member of the generic resource at a
time. In a configuration in which more than one member of a generic resource
must connect to a remote system, you can choose a region within the CICSplex to
act as a network hub. This means that all generic resource members daisy-chain
their requests for services from remote systems through the hub.

The network hub can be a member of the generic resource, in which case it is
necessary to install a z/OS Communications Server generic resource resolution exit
program to direct any incoming binds from LU6 partners that know us by our
generic resource name to the network hub region.

An alternative solution is to have a network hub that is not a member of the
generic resource. This avoids the need for the z/OS Communications Server
generic resource resolution exit program, but requires that LU6 partners that may
initiate connections to the CICSplex log on using the applid of the network hub
region.

Figure 43 on page 145 shows a network hub that is not a member of the generic
resource.

144 CICS TS for z/OS 4.2: Intercommunication Guide

In Figure 43, the regions in CICSplex CIC1 are connected by MRO links. The
terminal-owning regions T1, T2, and T3 are members of the generic resource
group, CICSG, but the hub TOR, H, is not. H has an LU6.1 or APPC connection to
the remote region, R. The TORs daisy-chain their requests to R through H.

AOR

AOR

AOR

TOR

T1

TOR

T2

TOR

CICSG

CICSG

CICSG

T3A3

A2

A1

HUB
TOR

H R H R
LU6

System that is
not a member
of a CICSTS z/OS
generic resource

CICSTransaction Server for z/OS CICSplex CIC1

GRNAME=CICSG

MRO
links

MRO

MRO

MRO

Figure 43. A network hub. Hubs are typically used for outbound LU6 requests from members of a generic resource
group to a system that is not a member of a CICS Transaction Server for z/OS generic resource.

Chapter 12. Configuring z/OS Communications Server generic resources 145

146 CICS TS for z/OS 4.2: Intercommunication Guide

Part 3. Defining intercommunication resources

In an intercommunication environment, you create resources that define the links
to other systems, and local definitions of remote resources.

For further information about resource definition, see What is resource definition?,
in the CICS Resource Definition Guide.

Chapter 13, “How to define connections to remote systems,” on page 149 tells you
how to define links to remote systems. The links described are:
v MRO links to other CICS regions
v MRO links for use by the external CICS interface
v IP interconnectivity (IPIC) links for use with distributed program link
v Multi-session APPC links to other APPC systems (CICS or non-CICS)
v Single-session APPC links to APPC terminals
v LUTYPE6.1 links to IMS systems.

Chapter 15, “Managing APPC connections,” on page 195 tells you how to manage
APPC links.

Chapter 16, “Defining remote resources,” on page 205 tells you how to define
remote resources to the local CICS system. The resources can be:
v Remote files
v Remote DL/I PSBs
v Remote transient-data queues
v Remote temporary-storage queues
v Remote terminals
v Remote APPC connections
v Remote programs
v Remote transactions.

Chapter 17, “Defining local resources,” on page 229 tells you how to define local
resources for ISC and MRO. In general, these resources are those that are required
for ISC and MRO and are obtained by including the relevant functional groups in
the appropriate tables. However, you have the opportunity to modify some of the
supplied definitions and to provide your own communication profiles.

© Copyright IBM Corp. 1977, 2012 147

148 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 13. How to define connections to remote systems

You can define and manage different types of connections between CICS regions or
from CICS regions to non-CICS systems.

The types of connection that you can create are as follows:
v Connections for multiregion operation (MRO)
v Connections for use by the external CICS interface (EXCI)
v IPIC connections to remote CICS TS for z/OS, Version 3.2, or later, regions
v ISC over SNA connections to remote systems, using logical unit type 6.2 (APPC)

protocols
v ISC over SNA connections to remote IMS systems, using logical unit type 6.1

protocols
v Indirect connections for CICS transaction routing

Connections using the ACF/Communications Server application-to-application
facilities are treated exactly as though they are intersystem connections and can be
defined as either LUTYPE6.1 or APPC links.

This section contains the following topics:
v “Introduction to connection definition”
v “Identifying remote systems” on page 152
v “Defining links for multiregion operation” on page 163
v “Defining links for use by the external CICS interface” on page 167
v “Defining IP interconnectivity (IPIC) connections” on page 152
v “Defining APPC connections” on page 169
v “Defining logical unit type 6.1 links” on page 177
v “Defining CICS-to-IMS LUTYPE6.1 links” on page 178
v “Defining indirect links for transaction routing” on page 184

Introduction to connection definition
You can define different types of connections in CICS. You can use MRO and ISC
over SNA (APPC and LUTYPE 6.1) connections or IP interconnectivity (IPIC) over
TCP/IP connections.

MRO and ISC over SNA connections

The definition of an MRO or ISC over SNA connection to a remote system consists
of two parts:
v The definition of the remote system itself
v The definition of sessions with the remote system

The remote system is defined by a CONNECTION resource. Each session, or group
of parallel sessions, is defined by a SESSIONS command. The definitions of the
remote system and the sessions are always separate and are not associated with
each other until they are installed.

© Copyright IBM Corp. 1977, 2012 149

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

For single-session APPC terminals, you can use an alternative method of definition
by using the TERMINAL and TYPETERM resources.

If the remote system is a CICS region or any other system that uses resource
definition to define intersystem sessions, for example, IMS, the connection
definition must match a compatible definition in the remote system. For remote
systems with little or no flexibility in their session properties, for example, APPC
terminals, the connection definition must match the fixed attributes of the remote
system concerned.

IPIC connections

The definition of an IPIC connection between two CICS regions consists of two
parts:
v The definition of the outbound attributes of the connection, including the target

CICS region
v The definition of the inbound attributes of the connection, including the port

number that CICS listens for requests

The local CICS region name
A CICS Transaction Server for z/OS region can be known by more than one name.
v Application identifier (APPLID)
v System identifier (SYSID)
v z/OS Communications Server generic resource name

All CICS regions have an APPLID and a SYSID. A terminal-owning region that is a
member of a z/OS Communications Server generic resource group also has a z/OS
Communications Server generic resource name. z/OS Communications Server
generic resource names are described in Chapter 12, “Configuring z/OS
Communications Server generic resources,” on page 123.

APPLID of the CICS region

The APPLID of a CICS system is the name by which it is known in the
intercommunication network; that is, its netname.
v For MRO, CICS uses the APPLID name to identify itself when it signs on to the

CICS interregion SVC, either during startup or in response to a SET IRC OPEN
command.

v For ISC over SNA, the APPLID is used on a z/OS Communications Server APPL
statement, to identify CICS to z/OS Communications Server.

v For IPIC, the APPLID attribute of an IPCONN resource identifies the APPLID of
the remote system.

You specify the CICS APPLID on the APPLID system initialization parameter. The
default value is DBDCCICS. This value can be overridden during CICS startup.

Within a z/OS sysplex, the APPLID of each CICS region must be unique. If your
CICS regions are not part of a sysplex, if your network consists of more than one
sysplex, or if your CICS regions communicate with systems outside the local
sysplex, it is advisable to keep APPLIDs unique across the network if possible. If
your network does contain systems with identical APPLIDs, on IPIC connections
you can specify the NETWORKID option; this unique value enables you to connect to
two or more remote regions that have identical APPLIDs.

150 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/typeterm/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_applid.html

SYSID of the CICS region

The SYSID of a CICS region is a name (1–4 characters) known only to the CICS
region itself. It is obtained (in order of priority) from:
1. The startup override
2. The SYSIDNT operand of the DFHSIT macro
3. The default value CICS.

The SYSID of your CICS region might also have to be specified in the DFHTCT
TYPE=INITIAL macro if you are using macro-level resource definition. The only
purpose of the SYSIDNT operand of DFHTCT TYPE=INITIAL is to control the
assembly of local and remote terminal definitions in the terminal control table. The
SYSID of a running CICS region is always the one specified by the system
initialization parameters.

The APPLID of the local CICS system
The APPLID of a CICS system is the name by which it is known in the
intercommunication network; that is, its netname.

For MRO, CICS uses the applid name to identify itself when it signs on to the
CICS interregion SVC, either during startup or in response to a SET IRC OPEN
command.

For ISC over SNA, the APPLID is used on a z/OS Communications Server APPL
statement, to identify CICS to z/OS Communications Server.

For IPIC, the APPLID attribute of an IPCONN resource identifies the APPLID of
the remote system.

You specify the CICS applid on the APPLID system initialization parameter. The
default value is DBDCCICS. This value can be overridden during CICS startup.

Within a z/OS sysplex, the APPLID of each CICS region must be unique. If your
CICS regions are not part of a sysplex, if your network consists of more than one
sysplex, or if your CICS regions communicate with systems outside the local
sysplex, it is advisable to keep APPLIDs unique across the network, if this is
possible. If your network does contain systems with identical APPLIDs, on IPIC
connections you can specify the NETWORKID option; this unique value enables you to
connect to two or more remote systems that have identical APPLIDs.

The sysidnt of the local CICS system
The sysidnt of a CICS system is a name (1–4 characters) known only to the CICS
system itself.

It is obtained (in order of priority) from:
1. The startup override
2. The SYSIDNT operand of the DFHSIT macro
3. The default value CICS.

Note: The sysidnt of your CICS system may also have to be specified in the
DFHTCT TYPE=INITIAL macro if you are using macro-level resource definition.
The only purpose of the SYSIDNT operand of DFHTCT TYPE=INITIAL is to
control the assembly of local and remote terminal definitions in the terminal
control table. (Terminal definition is described in Chapter 16, “Defining remote

Chapter 13. How to define connections to remote systems 151

resources,” on page 205.) The sysidnt of a running CICS system is always the one
specified by the system initialization parameters.

Identifying remote systems
In addition to having a SYSIDNT for itself, a CICS system requires a SYSIDNT for
every other system with which it can communicate. SYSIDNT names are used to
relate session definitions to system definitions; to identify the systems on which
remote resources, such as files, reside; and to refer to specific systems in
application programs.

SYSIDNT names are private to the CICS system in which they are defined; they are
not known by other systems. In particular, the SYSIDNT defined for a remote CICS
system is independent of the SYSIDNT by which the remote system knows itself;
you need not make them the same.

The mapping between the local (private) SYSIDNT assigned to a remote system
and the APPLID by which the remote system is known globally in the network (its
netname), is made when you define the intercommunication link. For example, for
an MRO or ISC over SNA connection, on the CONNECTION definition you
specify the following attributes:

CONNECTION(sysidnt)
The local name for the remote system

NETNAME(applid)
The applid of the remote system

For an IPIC connection, on the IPCONN definition you specify the following
attributes:

IPCONN(sysidnt)
The local name for the remote system

APPLID(applid)
The APPLID of the remote system

Each SYSIDNT name defined to a CICS system must be unique.

Defining IP interconnectivity (IPIC) connections
To define an IPIC connection, you create two resources, IPCONN and
TCPIPSERVICE, on each CICS region that you want to connect. You can either
create new IPIC connections, or you can migrate your existing APPC connections.

Before you begin

Restriction: IPIC supports specific intercommunication functions and releases. See
the related links for this topic for more information.

TCP/IP services must be active in the CICS regions. You can activate TCP/IP
services by setting the TCPIP system initialization parameter to YES.

Procedure
1. Create an IPCONN resource on the local CICS region.

a. Specify the IPCONN name. Specify a 4-character IPCONN name with four
trailing spaces for CICS-to-CICS communications.

152 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/ipconn/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/ipconn/dfha4_overview.html

b. Specify the host name in the HOST attribute, using the value that is
specified in the TCPIPSERVICE resource in the remote CICS region. For
example, hostb.example.com The host name can be up to 116 characters in
length, or can be an IPv4 or IPv6 address. If you specify an IPv6 address (or
a host name that resolves to an IPv6 address), ensure that you are operating
in a dual-mode (IPv4 and IPv6) environment and that the client or server
that you are communicating with is also operating in a dual-mode (IPv4
and IPv6) environment.

c. Specify in the PORT attribute the port number on which the remote CICS
region will listen. Specify NO if this IPCONN resource is not used for
outbound requests and you are using the CICS Transaction Gateway.

d. Specify the name of the TCPIPSERVICE resource on the local CICS region
that specifies the inbound attributes of the IPIC connection as the value for
the TCPIPSERVICE attribute.

e. Optional: Specify values for the APPLID and NETWORKID attributes if you
want to connect to a remote system that is in a different network. The
combination of APPLID and NETWORKID attributes ensures that the
remote CICS region is referred to by a unique name.

f. Optional: Specify YES or NO for the INSERVICE attribute to set if you want
the connection to be available when the resource is created.

g. Specify values for the RECEIVECOUNT and SENDCOUNT attributes to set
how many receive and send sessions are allowed for the IPIC connection.

2. Define a TCPIPSERVICE resource to receive inbound requests on the local CICS
region. The name of the TCPIPSERVICE resource must match the value of the
TCPIPSERVICE attribute for the IPCONN resource.
a. Specify the IP address of the local CICS region in the HOST attribute. The

host name can be up to 116 characters in length, or can be an IPv4 or IPv6
address. If you use an IPv6 address, ensure that you are operating in a
dual-mode environment and that the client or server that you are
communicating with is also operating in a dual-mode environment.

b. Specify a port number on which the local CICS region listens for incoming
client requests in the PORT attribute.

c. Specify IPIC for the PROTOCOL attribute.
d. Specify NO for the SOCKETCLOSE attribute.
e. Specify the 4-character ID of the CICS transaction that runs the DFHISCOP

program as the value of the TRANSACTION attribute. The default
transaction for IPIC is CISS.

f. Optional: Specify the name of the IPCONN autoinstall user program as the
value of the URM attribute. If you do not specify this attribute, CICS uses
the CICS-supplied default IPCONN autoinstall user program, DFHISAIP.
Specify NO to disable autoinstall.

3. Create a TCPIPSERVICE resource in the remote CICS region.
4. Create an IPCONN resource in the remote CICS region. Specify

AUTOCONNECT(YES) to establish the connection between the two CICS
regions.

Results

When the resources are enabled on the local and remote CICS regions, the
connection is established between the CICS regions.

Chapter 13. How to define connections to remote systems 153

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tcpipservice/dfha4_overview.html

What to do next

You can use the IBM CICS Explorer or Web User Interface to view and update
your IPIC connections. If you do not specify AUTOCONNECT(YES) for one of the
IPCONN resources, you must acquire the connection by updating the status of the
resource.

Configuring IPIC connections for identity propagation
You define an IPCONN resource in a receiving CICS region to enable processing of
incoming distributed identity information and you define an IPCONN resource in
a sending region to specify whether a distributed identity is transmitted outside a
sysplex.

Before you begin

You must configure your RACF RACMAP settings before you configure your IPIC
connections, even if you have IDPROP(OPTIONAL) set in your IPCONN resource
definition. Otherwise, you receive the RACF ICH408I message for every unmapped
request that is sent to RACF. .

About this task

Identity propagation over an IPIC connection relies on trusted connections between
CICS regions or between CICS and CICS Transaction Gateway; for example, if
CICS and CICS Transaction Gateway are not in the same sysplex then the
connection must be over an SSL connection. Identity propagation over an IPIC
connection needs a security manager that supports identity propagation. An ICRX
identity token identifies the distributed identity of a user, and can be sent to CICS
as part of a message.

If CICS receives an ICRX in a message that is sent over an IPIC connection,
USERAUTH(IDENTIFY) must be defined for the IPCONN resource in the receiving
CICS region to allow processing of the ICRX. If USERAUTH(IDENTIFY) is defined,
CICS attempts to map the ICRX to an external security manager (ESM) user ID, for
example, a RACF user ID. If the mapping is successful, the ESM user ID is used as
the security context for the task that is attached to process the incoming message.
If the ICRX cannot be mapped to an ESM user ID, because it is not defined to the
external security manager, the message is processed as if it did not contain an
ICRX. Local and remote START commands over an IPIC connection do not support
identity propagation.

Procedure
1. Specify USERAUTH(IDENTIFY) in the IPCONN resource definition of the

receiving CICS system. The IDENTIFY attribute specifies that incoming requests
must include a user identifier, which can be provided in the form of an ICRX,
but that client authentication is being managed by the security manager that is
sending the request. If you are using CICS Transaction Gateway, you must
specify USERAUTH(IDENTIFY) to allow CICS Transaction Gateway to pass the
distributed identity to CICS. For more information about the IPCONN resource,
see the CICS Resource Definition Guide. For more information about identity
propagation with CICS Transaction Gateway, see the CICS Transaction Gateway
information center.

2. Specify IDPROP(REQUIRED) in the IPCONN resource definition of the sending
CICS system. The REQUIRED attribute specifies that a distributed identity is
required for requests that use this connection, instead of a user ID. The

154 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/ipconn/dfha4_attributes.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/ipconn/dfha4_attributes.html

attribute has no meaning if the connection is contained in a single sysplex or if
either or both regions cannot support identity propagation. If the connection is
between systems in the same sysplex, the connection operates as if
IDPROP(OPTIONAL) is specified and ignores any other setting. The receiving
CICS system must have USERAUTH(IDENTIFY) specified in the IPCONN
resource to be able to process the distributed identity information. For more
information about the IPCONN resource, see the CICS Resource Definition Guide.

Results

The distributed identity of a user can now be received in requests from a trusted
security manager, for example, CICS Transaction Gateway, that are sent over an
IPIC connection.
Related information:
Configuring RACF for identity propagation
Configuring provider mode web services for identity propagation

Migrating APPC and MRO connections to IPIC
You can migrate your existing MRO, APPC, and LUTYPE6.1 connections to IPIC
connections. Existing connections continue to operate as before. The IPCONN
definition takes precedence over the CONNECTION definition; that is, if an
IPCONN and a CONNECTION have the same name, CICS uses the IPCONN.

Before you begin

If you want to migrate APPC or MRO connections to IPIC, you must have installed
support for IPIC. The CICS Transaction Server for z/OS Installation Guide describes
how to do this.

About this task

The DFH0IPCC migration utility converts existing APPC and MRO connections to
IPIC. To migrate your existing connections to IPIC using the DFH0IPCC utility,
complete the following steps.

Procedure
1. Create a TCPIPSERVICE resource definition in each of the interconnected

regions.
a. Specify PROTOCOL(IPIC).
b. Specify TCPIPSERVICE(DFHIPIC) or TCPIPSERVICE(servicename). If you

specify a user-defined name, use this same name for all the
TCPIPSERVICE definitions that you create.

c. Specify other options, such as PORTNUMBER, according to the
requirements of the region where the TCPIPSERVICE definition is to be
installed.

2. Put each TCPIPSERVICE definition in a resource definition group of its own.
3. Add one or more resource groups to each CICS system definition file (CSD)

used by the interconnected regions, the number depending on the number of
CICS regions the CSD serves and the number of unique TCPIPSERVICE
definitions that they require.

4. Install one TCPIPSERVICE, named DFHIPIC, or user-defined service name, in
each of the interconnected regions.

Chapter 13. How to define connections to remote systems 155

5. Complete an APPLID table for the interconnected CICS regions, as shown in
Example 1 below.
a. Create the table as a fixed-block, 80-byte record format.
b. Fill the table using any method: manually, for example, or by a utility,

such as a spreadsheet or script. You must preserve the fixed-length format.
v You can remove or omit any of the provided comments or header lines

in the table.
v The table must contain the application identifiers (APPLIDs), network

IDs, where applicable, TCP/IP port numbers, and host names of all the
interconnected CICS regions.

v If the previously defined TCPIPSERVICE definitions were named
anything other than DFHIPIC, the table must contain a .DEFAULT
record with TCPIPSERVICE=servicename in the HOST column.

6. Copy your APPLID table to every system that contains a CSD used by the
interconnected regions.

7. Create JCL that can be used to invoke DFH0IPCC through DFHCSDUP, like
that shown in Example 2 below. Specify the lists and resource groups that you
want DFH0IPCC to search for information about CONNECTION and
SESSIONS definitions. The JCL issues a DFHCSDUP EXTRACT command, passing
the utility program as the USERPROGRAM.

8. On one of the CSD-owning systems, use your customized JCL file to invoke
the DFH0IPCC utility program. The utility program collects information about
CONNECTION and SESSIONS definitions, creates IPCONN definitions, and
writes a series of DEFINE statements, which form the SYSIN for your
resulting DFHCSDUP invocation JCL.

9. Review the output produced by the utility program.
a. Check that the IPCONN definitions are correct for your installation. You

might want to modify the default SSL settings to add greater security
controls for a particular connection.

b. Modify the USER, PASSWORD, and library names in the generated JCL, to
match those used by your location.

10. Run the generated JCL to add the new IPCONN resources to your CSD file.
11. Repeat steps 8, 9, and 10 for each CSD file used by the interconnected CICS

regions.

Example

This example of an APPLID table shows the format that you must use. The table
following the example has reference information for the table format.

156 CICS TS for z/OS 4.2: Intercommunication Guide

Table 6. Format of APPLID table

Table column Length Description

APPLID char 8 Unique identifier or
.DEFAULT. Use .DEFAULT to
specify default values for
NETID or TCPIPSERVICE.
The leading dot prevents the
word DEFAULT being used
as a valid APPLID. Only one
.DEFAULT row is allowed in
the table.

Separator char 1 Any alphanumeric character.

**
* *
* Description: *
* This Applid Table is for DFH0IPCC. This table must contain the *
* APPLIDs, NETWORKIDs (where applicable for foreign network connectivity), *
* PORT numbers, and TCP/IP HOST names for all CICS regions in the systems *
* for which IPCONN definitions are to be created. *
* *
* File Format: *
* This file must be in FB80 format, and relies on a tabular layout shown *
* below. Any characters can be used as separators. Add comments using an *
* asterisk in the first column of the line. A HOST name that is too long *
* to fit into the table can be continued by placing an asterisk in column *
* 80, and continuing on column 25 of the next row (the first column of the *
* space for HOST). The APPLID field of any continuation record(s) must be *
* left blank. *
* *
* Notes: *
* The optional .DEFAULT record (shown below) can be used to provide either *
* one or both of the following parameters: *
* > A TCPIPSERVICE name, which must be provided immediately after *
* ’TCPIPSERVICE=’ in the HOST column. If a name is not provided, it *
* defaults to ’DFHIPIC’. In either case, this value is the name that must*
* be used when defining the TCPIPSERVICEs for the CICS systems referred *
* to in this table. *
* > A default NETWORKID, which must be provided in the NET-ID column. *
* Its omission results in the omission of the NETWORKID parameter in *
* the generated IPCONN definition statements for those APPLIDs that had *
* a blank NET-ID column. *
* *
* Examples of various valid table entries are shown following the .DEFAULT *
* record. These are examples only. Ensure that all rows adhere to your *
* site’s standards and conventions. *
* *
* Important! When editing this file, ensure that the CAPS setting is OFF. *
* Otherwise, the case-sensitive HOST names might be destroyed. *
* *
**
*
**
APPLID. |NET-ID. |PORT.|HOST.
**
.DEFAULT|LOCALNET| |TCPIPSERVICE=TCPSERV1
APPL1A | |9876 |my.local.hostname
OTHERCIC|OTHERNET|12345|this.host.has.a.very.long.name.which.is.going.to.requir*

| | |e.a.continuation.record
* Comments such as this are entirely free-form other than the * in column 1
CICSXYZ | |9875 |10.2.156.221

Figure 44. Example 1: APPLID table

Chapter 13. How to define connections to remote systems 157

Table 6. Format of APPLID table (continued)

Table column Length Description

NETID char 8 Network identifier. When left
blank, the default NETID
specified by the .DEFAULT
row is used.

Separator char 1 Any alphanumeric character.

PORT char 5 Listening port number

Separator char 1 Any alphanumeric character

HOST char 55 TCP/IP host name

Continuation column char 1 Normally blank. Any
nonblank character in this
field indicates that the host
name is longer than 55
characters and continues in
the HOST column in the
following row.

You can use this example JCL to invoke DFH0IPCC through DFHCSDUP.

The DFH0IPCC migration utility
The DFH0IPCC utility program that is provided with CICS converts existing APPC
and MRO connections to IPIC connections (IPCONNs). DFH0IPCC is a sample
program for use with the DFHCSDUP system definition utility program. The
utility generates a set of statements that form the input to DFHCSDUP.

The DFH0IPCC program takes input supplied in a table that you can edit, called
an APPLID table. This table is used to store the APPLIDs of all the regions in the

//IPCJOB JOB user,CLASS=A,USER=user,PASSWORD=pass
/*ROUTE PRINT user
//CSDUPJOB EXEC PGM=DFHCSDUP,REGION=0M
//STEPLIB DD DSN=loadlibrary,DISP=SHR
// DD DSN=loadlibrary,DISP=SHR
//DFHCSD DD DSN=csdfilename,DISP=SHR
//SYSPRINT DD SYSOUT=A
//CSDCOPY DD UNIT=VIO
//APPLTABL DD DSN=applidtablename,
// DISP=SHR,UNIT=SYSDA,SPACE=(CYL,(2,1)),
// DCB=(RECFM=FB,BLKSIZE=15360,LRECL=80)
//LOGFILE DD DSN=logfilename,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,SPACE=(CYL,(2,1)),
// DCB=(RECFM=FB,BLKSIZE=15360,LRECL=80)
//OUTFILE DD DSN=outputfilename,
// DISP=(MOD,CATLG,DELETE),UNIT=SYSDA,SPACE=(CYL,(2,1)),
// DCB=(RECFM=FB,BLKSIZE=15360,LRECL=80)
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSIN DD *
EXTRACT GR(group1) USERPROGRAM(DFH0IPCC) OBJECTS
EXTRACT GR(group2) USERPROGRAM(DFH0IPCC) OBJECTS
EXTRACT GR(list1) USERPROGRAM(DFH0IPCC) OBJECTS
EXTRACT GR(list2) USERPROGRAM(DFH0IPCC) OBJECTS
/*
//

Figure 45. Example 2: JCL to invoke DFH0IPCC through DFHCSDUP

158 CICS TS for z/OS 4.2: Intercommunication Guide

relevant setup, with the corresponding HOST name of the region and the listening
PORT of the TCPIPSERVICE definition used to deal with inbound TCP/IP
connections.

The DFH0IPCC program examines lists and resource groups in the CSD for CICS
regions, collecting information about the CONNECTION and SESSIONS definitions
it finds. For each APPC or MRO pair of CONNECTION and SESSIONS definitions,
it creates an IPCONN definition. Where appropriate, the attributes of the IPCONN
definition are taken from the CONNECTION and SESSIONS definitions, with the
values of the remaining attributes taken from the APPLID table or allowed to take
their default values. When the utility program has completed an IPCONN
definition, it writes a series of DEFINE statements, which form the SYSIN for your
resulting DFHCSDUP invocation JCL.

IPCONN attribute mapping

This table summarizes how the DFH0IPCC utility program maps the
CONNECTION attributes to the IPCONN definition.

Table 7. IPCONN attribute mapping

IPCONN
definition
attribute Migrated From or Created By Comments

APPLID CONNECTION (NETNAME) Direct migration

AUTOCONNECT CONNECTION
(AUTOCONNECT)

Direct migration. But, if ALL, set
the new value to YES.

CERTIFICATE N/A Blank

CIPHERS N/A Blank

DESCRIPTION N/A Blank. Not migrated. You can add
this in the DFH0IPCC output.

GROUP CONNECTION (GROUP)
SESSIONS (GROUP)

Not changed

HOST APPLID table Must be specified in the APPLID
table.

INSERVICE CONNECTION (INSERVICE) Direct migration

IPCONN CONNECTION (CONNECTION) Direct migration. See “IPCONN
names” on page 160.

MAXQTIME CONNECTION (MAXQTIME) Direct migration

NETWORKID APPLID table No equivalent. Leave blank if not
specified in the APPLID table or if
using the default.

PORT APPLID table Must be specified in the APPLID
table.

QUEUELIMIT CONNECTION (QUEUELIMIT) Direct migration

RECEIVECOUNT Sum of SESSIONS (MAXIMUM) Direct migration from the MRO
SESSIONS equivalent setting, or
derived from the APPC SESSIONS
MAXIMUM setting.

SENDCOUNT Sum of SESSIONS (MAXIMUM) Direct migration from the MRO
SESSIONS equivalent setting, or
derived from the APPC SESSIONS
MAXIMUM setting.

Chapter 13. How to define connections to remote systems 159

Table 7. IPCONN attribute mapping (continued)

IPCONN
definition
attribute Migrated From or Created By Comments

SSL N/A Left blank. You can modify this in
the DFH0IPCC output.

TCPIPSERVICE APPLID table Always “DFHIPIC” or as in the
APPLID table. See
“TCPIPSERVICE names.”

XLNACTION CONNECTION (XLNACTION) Direct migration

IPCONN names

The IPCONN names are generated to avoid duplicates. The DFH0IPCC utility
program uses the name of the CONNECTION definition because there is a
one-to-one relationship between a CONNECTION definition and the IPCONN
definition created from it. The coexistence of same-name CONNECTION and
IPCONN definitions is fully supported by CICS provided that the CONNECTION
NETNAME and IPCONN APPLID are the same. In this instance, CICS selects the
IPCONN definition instead of the CONNECTION definition for routing of
supported function.

TCPIPSERVICE names

Because an IPCONN definition cannot determine the TCPIPSERVICE name of a
partner region, the utility cannot produce TCPIPSERVICE definitions; you must
define them manually. The utility works in such a way that all TCPIPSERVICE
names in regions for which the utility produces IPCONN definitions must be the
same.

All IPCONN definitions created by the DFH0IPCC utility program have the default
attribute, TCPIPSERVICE (DFHIPIC), unless you supply a different name using the
.DEFAULT row in the APPLID file. If you specify another name, use that name for
all TCPIPSERVICE definitions that you create.

Equivalent attributes on IPCONN definitions
If you want to migrate your APPC and MRO connections manually, instead of
running the DFH0IPCC migration utility, these tables show the attributes of
CONNECTION and SESSION resource definitions for MRO and APPC connections
and the equivalent attributes on IPCONN definitions.

APPC connections

Table 8. Migrating APPC connections to IPIC. CONNECTION options and their IPCONN equivalents

CONNECTION options APPC possible values IPCONN equivalent value

ACCESSMETHOD SNA Not applicable

ATTACHSEC LOCAL | IDENTIFY | VERIFY |
PERSISTENT | MIXIDPE

USERAUTH LOCAL | IDENTIFY |
VERIFY | NO | CERTIFICATE

AUTOCONNECT NO | YES | ALL NO | YES

BINDSECURITY NO | YES SSL NO | YES

DATASTREAM USER Not applicable

160 CICS TS for z/OS 4.2: Intercommunication Guide

Table 8. Migrating APPC connections to IPIC. CONNECTION options and their IPCONN equivalents (continued)

CONNECTION options APPC possible values IPCONN equivalent value

INDSYS Not applicable (indirect connections
only)

Not applicable (indirect connections
only)

INSERVICE YES | NO As is

MAXQTIME NO | 0 - 9999 As is

NETNAME The SNA APPLID of the remote
region. (For XRF, the generic
APPLID. For connections to an SNA
generic resource, either the APPLID
or generic resource name.)

Combination of APPLID and
NETWORKID

PROTOCOL APPC Not applicable

PSRECOVERY SYSDEFAULT | NONE Not applicable

QUEUELIMIT NO | 0 - 9999 As is

RECORDFORMAT U Not applicable

REMOTENAME Name (sysid) by which the remote
system is known to itself

Not applicable

REMOTESYSNET APPLID of the remote system that
owns the remote resource, if the link
to the remote system is indirect

Not applicable

REMOTESYSTEM Name (sysid) of the remote system,
or sysid of the next system in the
path, if the link to the remote system
is indirect

Not applicable

SECURITYNAME RACF ID of the remote system As is

SINGLESESS NO | YES Not applicable

USEDFLTUSER NO | YES Not applicable

XLNACTION KEEP | FORCE As is

Table 9. Migrating APPC connections to IPIC. SESSIONS options and their IPCONN equivalents

SESSIONS options APPC possible values IPCONN equivalent value

AUTOCONNECT NO | YES | ALL Not applicable

BUILDCHAIN YES Not applicable

CONNECTION Name of CONNECTION to which
this SESSION definition applies to

Not applicable

DISCREQ Not applicable Not applicable

IOAREALEN Not applicable Not applicable

MAXIMUM 1 - 999, 0 - 999 SENDCOUNT & RECEIVECOUNT

MODENAME Name of an SNA LOGMODE Not applicable

NEPCLASS Transaction class for the node error
program

Not applicable

NETNAMEQ Not applicable Not applicable

PROTOCOL APPC Not applicable

RECEIVECOUNT Not applicable Derived from MAXIMUM

RECEIVEPFX Not applicable Not applicable

RECEIVESIZE RU size to receive: 1 - 30720 Not applicable

Chapter 13. How to define connections to remote systems 161

Table 9. Migrating APPC connections to IPIC. SESSIONS options and their IPCONN equivalents (continued)

SESSIONS options APPC possible values IPCONN equivalent value

RECOVOPTION SYSDEFAULT | CLEARCONV |
RELEASESESS | UNCONDREL |
NONE

Not applicable

RELREQ NO | YES Not applicable

SENDCOUNT Not applicable Derived from MAXIMUM

SENDPFX Not applicable Not applicable

SENDSIZE RU size to send: 1 - 30720 Not applicable

SESSNAME Not applicable Not applicable

SESSPRIORITY 0 - 255 Not applicable

USERAREALEN Length of TCTTE user area: 0 - 255 Not applicable

USERID ID for sign on Not applicable

MRO connections

MRO connections are all CICS-to-CICS connections between regions in the same
sysplex. For this type of connection, MRO might be more useful than IPIC because
it supports all the base CICS intercommunication functions, whereas IPIC supports
a subset.

Table 10. Migrating MRO connections to IPIC. CONNECTION options and their IPCONN equivalents

CONNECTION options MRO possible values IPCONN equivalent value

ACCESSMETHOD IRC | XM Not applicable

ATTACHSEC LOCAL | IDENTIFY USERAUTH LOCAL | IDENTIFY |
VERIFY | NO | CERTIFICATE

AUTOCONNECT Not applicable NO | YES

BINDSECURITY Not applicable SSL NO | YES

DATASTREAM USER Not applicable

INDSYS Not applicable (indirect connections
only)

Not applicable (indirect connections
only)

INSERVICE YES | NO As is

MAXQTIME NO | 0 - 9999 As is

NETNAME The APPLID specified in the SIT of
the remote region

host.domain.country[:port]

PROTOCOL Blank Not applicable

PSRECOVERY Not applicable Not applicable

QUEUELIMIT NO | 0 - 9999 As is

RECORDFORMAT U Not applicable

REMOTENAME Not applicable Not applicable

REMOTESYSNET Not applicable Not applicable

REMOTESYSTEM Not applicable Not applicable

SECURITYNAME Not applicable As is

SINGLESESS Not applicable Not applicable

USEDFLTUSER NO | YES Not applicable

162 CICS TS for z/OS 4.2: Intercommunication Guide

Table 10. Migrating MRO connections to IPIC. CONNECTION options and their IPCONN equivalents (continued)

CONNECTION options MRO possible values IPCONN equivalent value

XLNACTION KEEP | FORCE As is

Table 11. Migrating MRO connections to IPIC. SESSIONS options and their IPCONN equivalents

SESSIONS options MRO possible values IPCONN equivalent value

AUTOCONNECT Not applicable Not applicable

BUILDCHAIN Not applicable Not applicable

CONNECTION Name of CONNECTION to which
this SESSION definition applies

Not applicable

DISCREQ Not applicable Not applicable

IOAREALEN Default TIOA size: 0 - 32767 , 0 -
32767

Not applicable

MAXIMUM Not applicable Not applicable

MODENAME Not applicable Not applicable

NEPCLASS Transaction class for the node error
program

Not applicable

NETNAMEQ Not applicable Not applicable

PROTOCOL LU61 Not applicable

RECEIVECOUNT Number of receive sessions: 1 - 999 As is

RECEIVEPFX Termid prefix Not applicable

RECEIVESIZE Not applicable Not applicable

RECOVOPTION Not applicable Not applicable

RELREQ Not applicable Not applicable

SENDCOUNT Number of send sessions: 1 - 999 As is

SENDPFX Termid prefix Not applicable

SENDSIZE Not applicable Not applicable

SESSNAME Not applicable Not applicable

SESSPRIORITY 0 - 255 Not applicable

USERAREALEN Length of TCTTE user area: 0 - 255 Not applicable

USERID ID to sign in Not applicable

Defining links for multiregion operation
This section describes how to define an interregion communication connection
between the local CICS system and another CICS region in the same operating
system.

Note: The external CICS interface (EXCI) uses a specialized form of MRO link,
that is described in “Defining links for use by the external CICS interface” on page
167. This present section describes MRO links between CICS systems. However,
most of its contents apply also to EXCI links, except where noted otherwise in
“Defining links for use by the external CICS interface” on page 167.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. SEND sessions are

Chapter 13. How to define connections to remote systems 163

used to carry an initial request from the local to the remote system and to carry
any subsequent data flows associated with the initial request. Similarly, RECEIVE
sessions are used to receive initial requests from the remote system.

Defining an MRO link
To define an MRO link, create a CONNECTION resource and an associated
SESSIONS resource.

Procedure
1. Create a CONNECTION resource. Specify the following attributes:

CONNECTION(sysidnt)
sysidnt is the local name for the CICS system to which the link is being
defined.

NETNAME(name)
The netname must be the name with which the remote system logs on to
the interregion SVC; that is, its applid. If you do not specify a netname,
then sysidnt must satisfy these requirements. There can be only one MRO
link between any two CICS regions; that is, each CONNECTION must
specify a unique netname.

ACCESSMETHOD(IRC|XM)
QUEUELIMIT(NO|0-9999)

The maximum number of requests permitted to queue for free sessions to
the remote system.

MAXQTIME(NO|0-9999)
The the maximum time between a queue becoming full and it being purged
because the remote system is unresponsive. Further information is given in
Chapter 24, “Intersystem session queue management,” on page 277.

INSERVICE(YES)
ATTACHSEC(LOCAL|IDENTIFY)
USEDFLTUSER(NO|YES)

For information about the ATTACHSEC and USEDFLTUSER security
attributes see Specifying user security in link definitions , in the CICS RACF
Security Guide.

Do not specify a value for the PROTOCOL attribute - you specify the protocol
in the SESSIONS resource.

2. Create a SESSIONS resource.
If you are using RDO, the CONNECTION and SESSIONS must be in the same
GROUP.
Specify the following attributes:

SESSIONS(csdname)
CONNECTION(sysidnt)

The CONNECTION attribute must match the sysidnt specified for the
CONNECTION. Only one SESSIONS definition can be related to an MRO
CONNECTION.

PROTOCOL(LU61)

RECEIVEPFX(prefix1) and SENDPFX(prefix2)

Specify the prefixes which allow the sessions to be named. A prefix is a
one-character or two-character string that is used to generate session

164 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

identifiers (TRMIDNTs). If you do not specify prefixes, they default to '>'
(for SEND) and '<' (for RECEIVE). It is recommended that you allow the
prefixes to default, because:
v This guarantees that the session names generated by CICS are unique;

prefixes must not cause a conflict with an existing connection or terminal
name.

v If you specify your own 2-character prefixes, the number of sessions you
can define for each connection is limited to 99. If you specify your own
1-character prefixes, the limit increases to 999—the same as for default
prefixes—but you may find it harder to guarantee unique session names.

For an explanation of how CICS generates names for MRO sessions, see
SESSIONS definition attributes

RECEIVECOUNT(number1)

SENDCOUNT(number2)

Specify the number of RECEIVE and SEND sessions that are required (at
least one of each). Initial requests can never be sent on a RECEIVE session.
Bear this in mind when deciding how many RECEIVE and SEND sessions
you need.

SESSPRIORITY(number) and IOAREALEN(value)

Choosing the access method for MRO
You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for
an MRO link. Cross-memory services are used only if the other end of the link also
specifies cross-memory.

When you specify ACCESSMETHOD(XM) in a connection definition, a region
containing this definition uses one of the 512 available MRO XM logons for the
LPAR. A region can contain both ACCESSMETHOD(XM) and
ACCESSMETHOD(IRC) connections, but if the region contains one or more XM
connections then the region uses an MRO XM logon.

To select the CICS Type 3 SVC for interregion communication, use
ACCESSMETHOD(IRC).

The use of MVS cross-memory services reduces the number of instructions
necessary to transmit messages between regions. Also, less virtual storage is
required in the MVS common service area. However, cross-memory services can be
less attractive from the security point of view (see Security implications of choice
of MRO access method , in the CICS RACF Security Guide).

Cross-memory services also require CICS address spaces to be nonswappable. For
low-activity systems that would otherwise be eligible for address space swapping,
you might prefer to accept the greater path length of the CICS interregion SVC
rather than the greater real storage requirements of nonswappable address spaces.

Note: If you are using cross-system multiregion operation (XCF/MRO), CICS
selects the XCF access method dynamically—overriding the CONNECTION
definition, which can specify either XM or IRC.

Example attributes for CONNECTION resource

CONNECTION(CICB)
The local name for remote system

Chapter 13. How to define connections to remote systems 165

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_attributes.html

NETNAME(CICSB)
The APPLID of remote system

ACCESSMETHOD(XM)
Use cross-memory services

QUEUELIMIT(NO)
If no sessions are free, queue all requests

INSERVICE(YES)

ATTACHSEC(LOCAL)
Use link security only

USEDFLTUSER(NO)

Example attributes for SESSIONS resource

SESSIONS(csdname)
Unique csd name

CONNECTION(CICB)
The name of the related CONNECTION resource

PROTOCOL(LU61)

RECEIVEPFX(<)

RECEIVECOUNT(5)
5 receive sessions

SENDPFX(>)

SENDCOUNT(3)
3 send sessions

SESSPRIORITY(100)

IOAREALEN(300)
Minimum TIOA size for sessions

Defining compatible MRO nodes
An MRO link must be defined in both of the systems that it connects. You must
ensure that the two definitions are compatible with each other. For example, if one
definition specifies six sending sessions, the other definition requires six receiving
sessions.

About this task

The compatibility requirements are summarized in the following table. Related
resources and attributes are shown by identical numbers.

Note: VTAM is now z/OS Communications Server.

CICSA CICSB

System initialization parameters

APPLID=CICSA �1� �4� APPLID=CICSB

CONNECTION resource

166 CICS TS for z/OS 4.2: Intercommunication Guide

CICSA CICSB

CONNECTION(CICB) �2�
NETNAME(CICSB) �4�
ACCESSMEHOD(VTAM)
QUEUELIMIT(500)
MAXQTIME(500)
INSERVICE(YES)

�3� CONNECTION(CICA)
�1� NETNAME(CICSA)

ACCESSMEHOD(IRC)
QUEUELIMIT(NO)

INSERVICE(YES)
ATTACHSEC(LOCAL)

SESSIONS resource

SESSIONS(csdname)
CONNECTION(CICB) �2�
PROTOCOL(LU61) �5�
RECEIVEPFX(<)
RECEIVECOUNT(8) �6�
SENDPFX(>)
SENDCOUNT(10) �7�

SESSIONS(csdname)
�3� CONNECTION(CICA)
�5� PROTOCOL(LU61)

RECEIVEPFX(<)
�7� RECEIVECOUNT(10)

SENDPFX(>)
�6� SENDCOUNT(8)

Defining links for use by the external CICS interface
This section describes how to define connections for use by non-CICS programs
that use the external CICS interface (EXCI) to link to CICS server programs. The
definitions required are similar to those needed for MRO links between CICS
systems. Each connection requires a CONNECTION and a SESSIONS definition.

Because EXCI connections are used for processing work from external sources, you
must not define any SEND sessions.

EXCI connections can be defined as “specific” or “generic”. A specific EXCI
connection is an MRO link on which all the RECEIVE sessions are dedicated to a
single user (client program). A generic EXCI connection is an MRO link on which
the RECEIVE sessions are shared by multiple users. Only one generic EXCI
connection can be defined on each CICS region.

On definitions of both specific and generic connections, you must:
v Specify PROTOCOL(EXCI).
v Specify ACCESSMETHOD(IRC). The external CICS interface does not support

the MRO cross-memory access method (XM). The cross-system coupling facility
(XCF) is supported.

v Let SENDCOUNT and SENDPFX default to blanks.

Example CONNECTION attributes for a specific EXCI connection

CONNECTION(EIP1)
The local name for the connection

NETNAME(CLAP1)
The name of the user program specified on the EXCI INITIALIZE_USER
command.

ACCESSMETHOD(IRC)

PROTOCOL(EXCI)

CONNTYPE(Specific)
Pipes are dedicated to a single user

INSERVICE(YES)

Chapter 13. How to define connections to remote systems 167

ATTACHSEC(LOCAL)

Example SESSIONS attributes for a specific EXCI connection

SESSIONS(csdname)
A unique csd name

CONNECTION(EIP1)
The name of the associated CONNECTION resource

PROTOCOL(EXCI)

RECEIVEPFX(<)

RECEIVECOUNT(5)
5 receive sessions

SENDPFX
Do not specify

SENDCOUNT
Do not specify

Example CONNECTION attributes for a generic EXCI connection

CONNECTION(EIP2)
The local name for the connection

ACCESSMETHOD(IRC)

NETNAME()
Must be blank for generic connection

INSERVICE(YES)

PROTOCOL(EXCI)

CONNTYPE(Generic)
Pipes are shared by multiple users

ATTACHSEC(LOCAL)

SESSIONS(csdname)
A unique csd name

CONNECTION(EIP2)
The name of the associated CONNECTION resource

PROTOCOL(EXCI)

RECEIVEPFX(<)

RECEIVECOUNT(5)
5 receive sessions

SENDPFX
Do not specify

SENDCOUNT
Do not specify

Figure 46. Example SESSIONS attributes for a generic EXCI connection

168 CICS TS for z/OS 4.2: Intercommunication Guide

Installing MRO and EXCI link definitions
You can install new MRO and EXCI connections dynamically, while CICS is fully
operational—there is no need to close down interregion communication (IRC) to
do so.

Note that CICS commits the installation of connection definitions at the group
level—if the install of any connection or terminal fails, CICS backs out the
installation of all connections in the group. Therefore, when adding new
connections to a CICS region with IRC open, ensure that the new connections are
in a group of their own.

You cannot modify existing MRO (or EXCI) links while IRC is open. You should
therefore ensure, when defining an MRO link, that you specify enough SEND and
RECEIVE sessions to cater for the expected workload.

For further information about installing MRO links, see CONNECTION definition
attributes, in the CICS Resource Definition Guide.

Defining APPC connections
An APPC connection consists of one or more sets of sessions. The sessions in each
set have identical characteristics, apart from being either contention winners or
contention losers.

Each set of sessions can be assigned a modename that enables it to be mapped to a
z/OS Communications Server logmode name and from there to a class of service
(COS). A set of APPC sessions is therefore referred to as a modeset.

An APPC terminal is often an APPC system that supports only a single session
and which does not support an LU services manager. There are several ways of
defining such terminals; further details are given under “Defining single-session
APPC terminals” on page 173. This section describes the definition of one or more
modesets containing more than one session.

To define an APPC connection to a remote system, you must create the following
resources:
1. A CONNECTION resource to define the remote system.
2. A SESSIONS resource to define each set of sessions to the remote system.

However, you must not have more than one APPC connection installed at the
same time between an LU-LU pair. Nor should you have an APPC and an
LUTYPE6.1 connection installed at the same time between an LU-LU pair.

For all APPC connections, except single-session connections to APPC terminals,
CICS automatically builds a set of special sessions for the exclusive use of the LU
services manager, using the modename SNASVCMG. This is a reserved name, and
cannot be used for any of the sets that you define.

If you are defining a z/OS Communications Server logon mode table, remember to
include an entry for the SNASVCMG sessions. See the CICS Transaction Server for
z/OS Installation Guide.

Defining the remote APPC system
A remote APPC system is defined with a CONNECTION resource.

Chapter 13. How to define connections to remote systems 169

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

To define a remote APPC system, create a CONNECTION resource with the
following attributes:

NETNAME(name)

ACCESSMETHOD(VTAM)

Note: VTAM is now z/OS Communications Server.

PROTOCOL(APPC)

SINGLESESS(NO)

QUEUELIMIT(NO|0-9999)

MAXQTIME(NO|0-9999)

AUTOCONNEC(NO|YES|ALL)

SECURITYNAME(value)

ATTACHSEC(LOCAL|IDENTIFY|VERIFY|PERSISTENT|MIXIDPE)

BINDPASSWORD(password)

BINDSECURITY(YES|NO)

USEDFLTUSER(NO|YES)

PSRECOVERY(SYSDEFAULT|NONE)

You must specify ACCESSMETHOD(VTAM) and PROTOCOL(APPC) to define an
APPC system. The CONNECTION name (that is, the sysidnt) and the netname
have the meanings explained in “Identifying remote systems” on page 152 (but see
the box that follows).

Important:

If you are defining an APPC link to a terminal-owning region that is a member of
a z/OS Communications Server generic resource group, NETNAME can specify
either the TOR's generic resource name, or its applid. For advice on coding
NETNAME for connections to a generic resource, see Chapter 12, “Configuring
z/OS Communications Server generic resources,” on page 123.

Because this connection will have multiple sessions, you must specify
SINGLESESS(N), or allow it to default. (The definition of single-session APPC
terminals is described in “Defining single-session APPC terminals” on page 173.)

The AUTOCONNECT attribute specifies which of the sessions associated with the
connection are to be bound when CICS is initialized. Further information is given
in “The AUTOCONNECT attribute” on page 175.

The QUEUELIMIT attribute specifies the maximum number of requests permitted
to queue for free sessions to the remote system. The MAXQTIME attribute specifies
the maximum time between a queue becoming full and it being purged because
the remote system is unresponsive. Further information is given in Chapter 24,
“Intersystem session queue management,” on page 277.

If you are using z/OS Communications Server persistent session support, the
PSRECOVERY attribute specifies whether sessions to the remote system are
recovered, if the local CICS fails and restarts within the persistent session delay

170 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html

interval. Further information is given in “Using z/OS Communications Server
persistent sessions on APPC links” on page 176.

For information about security options, see the CICS RACF Security Guide.

Note: If the intersystem link is to be used by existing applications that were
designed to run on LUTYPE6.1 links, you can use the DATASTREAM and
RECORDFORMAT attributes to specify data stream information for asynchronous
processing. The information provided by these attributes is not used by APPC
application programs.

Defining groups of APPC sessions
Each group of sessions for an APPC system is defined by means of a SESSIONS
resource.

Each individual group of sessions is referred to as a modeset.

Specify the following attributes:

SESSIONS(csdname)

CONNECTION(name)

The CONNECTION option specifies the name (1–4 characters) of the APPC
system for which the group is being defined; that is, the CONNECTION name
in the associated DEFINE CONNECTION command.

MODENAME(name)

Specifies a name (1–8 characters) that identifies this group of related sessions.
The name must be unique among the modenames for any one APPC
intersystem link, and you must not use the reserved names SNASVCMG or
CPSVCMG.

PROTOCOL(APPC)

MAXIMUM(m1,m2)
Specifies the maximum number of sessions that are to be supported for the
group. The parameters of this option have the following meanings:
v m1 specifies the maximum number of sessions in the group. The default

value is 1.
v m2 specifies the maximum number of sessions to be supported as contention

winners. The number specified for m2 must not be greater than the number
specified for m1. The default value for m2 is zero.

SENDSIZE(size)
The maximum size of request unit (RU) to be sent, in the range 256 - 30 720.

RECEIVESIZE(size)
The maximum size of request unit (RU) to be received, in the range 256 - 30
720.

SESSPRIORITY(number)

AUTOCONNECT(NO|YES|ALL)
Specifies whether the sessions are to be bound when CICS is initialized.
Further information is given in “The AUTOCONNECT attribute” on page 175.

USERAREALEN(value)

RECOVOPTION(SYSDEFAULT|UNCONDREL|NONE)

Chapter 13. How to define connections to remote systems 171

If you are using z/OS Communications Server persistent session support, and
CICS fails and restarts within the persistent session delay interval, the
RECOVOPTION option specifies how CICS recovers the sessions. (The
RECOVNOTIFY option does not apply to APPC sessions.) Further information
is given in “Using z/OS Communications Server persistent sessions on APPC
links” on page 176.

Defining compatible CICS APPC nodes
When you are defining an APPC link between two CICS systems, you must ensure
that the definitions of the link in each of the systems are compatible.

The compatibility requirements are summarized in the following table. Related
options and operands are shown by identical numbers.

Note: VTAM is now z/OS Communications Server.

CICSA CICSB

System initialization parameters

APPLID=CICSA �1� �3� APPLID=CICSB

CONNECTION resource

CONNECTION(CICB) �2�
NETNAME(CICSB) �3�
ACCESSMEHOD(VTAM)
PROTOCOL(APPC)
SINGLESESS(N) �4�
QUEUELIMIT(500)
MAXQTIME(500)
BINDPASSWORD(pw) �5�

�10� CONNECTION(CICA)
�1� NETNAME(CICSA)

ACCESSMEHOD(VTAM)
PROTOCOL(APPC)

�4� SINGLESESS(N)
QUEUELIMIT(NO)
ATTACHSEC(IDENTIFY)

�5� BINDPASSWORD(pw)

SESSIONS resource

SESSIONS(csdname)
CONNECTION(CICB) �2�
MODENAME(M1) �6�
PROTOCOL(APPC)
MAXIMUM(ss,ww) �7�
SENDSIZE(kkk) �8�
RECEIVESIZE(jjj) �9�

SESSIONS(csdname)
�10� CONNECTION(CICA)
�6� MODENAME(M1)

PROTOCOL(APPC)
�7� MAXIMUM(ss,ww)
�9� SENDSIZE(jjj)
�8� RECEIVESIZE(kkk)

Notes:

�7� The values specified for MAXIMUM on either side of the link need not
match, because they are negotiated by the LU services managers. However, a
matching specification avoids unusable TCTTE entries, and also avoids
unexpected bidding because of the “contention winners” negotiation.
�8�,�9� If the value specified for SENDSIZE on one side of the link does not
match that specified for RECEIVESIZE on the other, CICS negotiates the values
at BIND time.

Automatic installation of APPC links
You can use the CICS autoinstall facility to allow APPC links to be defined
dynamically on their first usage, thereby saving on storage for installed definitions,
and on time spent creating the definitions.

Note: The method described here applies only to APPC parallel-session and
single-session links initiated by BIND requests. The method to be used for APPC
single-session links initiated by z/OS Communications Server CINIT requests is

172 CICS TS for z/OS 4.2: Intercommunication Guide

described in “Defining single-session APPC terminals.” You cannot autoinstall
APPC parallel-session links initiated by CINIT requests.

If autoinstall is enabled, and an APPC BIND request is received for an APPC
service manager (SNASVCMG) session (or for the only session of a single-session
connection), and there is no matching CICS CONNECTION definition, a new
connection is created and installed automatically.

Like autoinstall for terminals, autoinstall for APPC links requires model definitions.
However, unlike the model definitions used to autoinstall terminals, those used to
autoinstall APPC links do not need to be defined explicitly as models. Instead,
CICS can use any previously-installed link definition as a “template” for a new
definition. In order for autoinstall to work, you must have a template for each kind
of link you want to be autoinstalled.

The purpose of a template is to provide CICS with a definition that can be used for
all connections with the same properties. You customize the supplied autoinstall
user program, DFHZATDY, to select an appropriate template for each new link,
based on the information it receives from z/OS Communications Server.

A template consists of a CONNECTION definition and its associated SESSIONS
definitions. You should have a definition installed for each different set of session
properties you are going to need.

Any installed link definition can be used as a template but, for performance
reasons, your template should be an installed link definition that you do not use.
The definition is locked while CICS is copying it, and if you have a very large
number of sessions autoinstalling, the delay may be noticeable.

Autoinstall support is likely to be beneficial if you have large numbers of APPC
parallel session devices with identical characteristics. For example, if you had 1000
Personal Computers (PCs), all with the same characteristics, you would set up one
template to autoinstall all of them. If 500 of your PCs had one set of characteristics,
and 500 had another set, you would set up two templates to autoinstall them.

For further information about using autoinstall with APPC links, see Autoinstalling
APPC connections in the Resource Definition Guide. For programming information
about the autoinstall user program, see Writing a program to control autoinstall of
APPC connections in the Customization Guide.

Defining single-session APPC terminals
There are two methods available for defining a single-session APPC terminal: you
can define a CONNECTION-SESSIONS pair, with SINGLESESS(Y) specified for the
connection; or you can define a TERMINAL-TYPETERM pair.

Defining an APPC terminal – method 1
You can define a CONNECTION-SESSIONS pair to represent a single-session
APPC terminal.

About this task

The CONNECTION and SESSIONS resources that are required are similar to those
shown in “Defining the remote APPC system” on page 169 and “Defining groups
of APPC sessions” on page 171. The differences are shown below:
v In the CONNECTION resource, you must specify SINGLESESS(Y)

Chapter 13. How to define connections to remote systems 173

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/topics/dfha42m.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/topics/dfha42m.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha32h.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha32h.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

v In the SESSIONS resource, you must specify MAXIMUM(1,0). The second value
(0) has no meaning for a single session definition as CICS always binds as a
contention winner. However, CICS accepts a negotiated bind or a negotiated
bind response in which it is changed to the contention loser.

Defining an APPC terminal – method 2
You can define a single-session APPC terminal as a TERMINAL with an associated
TYPETERM.

About this task

This method of definition has two principal advantages:
1. You can use a single TYPETERM for all your APPC terminals of the same type.
2. It makes the AUTOINSTALL facility available for APPC single-session

terminals.
Autoinstall for APPC single sessions initiated by a z/OS Communications
Server VTAM CINIT works in the same way as autoinstall for other terminals,
in that you must supply a TERMINAL—TYPETERM model pair. For further
information about using autoinstall with APPC single-session terminals, see
Autoinstalling APPC connections in the Resource Definition Guide.

Because all APPC devices are seen as systems by CICS, the value that you define
in the TERMINAL attribute is effectively a system name. When you inquire about
an APPC terminal, you actually inquire about a CONNECTION.

A single, contention-winning session is implied when you create TERMINAL
resource. However, for APPC terminals, CICS accepts a negotiated bind in which it
is changed to the contention loser.

If you plan to use automatic installation for your APPC terminals, you need the
model terminal definition (LU62) that is provided in the CICS-supplied CSD group
DFHTERM. You also have to write an autoinstall user program, and provide
suitable z/OS Communications Server LOGMODE entries.

Procedure
1. Create a TERMINAL resource with the following attributes:.

TERMINAL(sysid)

MODENAME(modename)

TYPETERM(typeterm)

Specify any other appropriate attributes
2. Create a TYPETERM resource with the following attributes:

TYPETERM(typeterm)

DEVICE(APPC)

Specify any other appropriate attributes. The CICS-supplied group DFHTYPE
contains a TYPETERM, DFHLU62T, that is suitable for APPC terminals. You
can either use this TYPETERM resource, or use it as the basis for your own
definition.

174 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/topics/dfha42m.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/typeterm/dfha4_overview.html

The AUTOCONNECT attribute
You can use the AUTOCONNECT attribute of the CONNECTION and SESSIONS
resources (and of the TYPETERM resource for APPC terminals) to control CICS
attempts to establish communication with the remote APPC system.

Except for single-session APPC terminals (see “Defining single-session APPC
terminals” on page 173), two events are necessary to establish sessions to a remote
APPC system.
1. The connection to the remote system must be established. This means binding

the LU services manager sessions (SNASVCMG) and carrying out initial
negotiations.

2. The sessions of the modeset in question must be bound.

These events are controlled in part by the AUTOCONNECT attribute of the
CONNECTION resource, and in part by the AUTOCONNECT attribute of the
SESSIONS resource.

The AUTOCONNECT attribute of a CONNECTION resource
The AUTOCONNECT option specifies whether CICS is to try to bind the LU
services manager sessions at the earliest opportunity (when the z/OS
Communications Server ACB is opened).

It can have the following values:

AUTOCONNECT(NO)
specifies that CICS is not to try to bind the LU services manager sessions.

AUTOCONNECT(YES)
specifies that CICS is to try to bind the LU services manager sessions.

AUTOCONNECT(ALL)
the same as YES.

The LU services manager sessions cannot, of course, be bound if the remote system
is not available. If for any reason they are not bound during CICS initialization,
they can be bound when the connection is placed into INSERVICE ACQUIRED
state. They are also bound if the remote system itself initiates communication. For
a single-session APPC terminal, the AUTOCONNECT attribute has no effect. This
is because a single-session connection has no LU services manager.

The AUTOCONNECT attribute of the SESSIONS resource
The AUTOCONNECT attribute specifies which sessions are to be bound when the
associated LU services manager sessions have been bound. No user sessions can be
bound before this time.

The option can have the following values:

AUTOCONNECT(NO)
specifies that no sessions are to be bound.

AUTOCONNECT(YES)
specifies that the contention-winning sessions are to be bound.

AUTOCONNECT(ALL)
specifies that the contention-winning and the contention-losing sessions are to
be bound.

Chapter 13. How to define connections to remote systems 175

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

AUTOCONNECT(ALL) allows CICS to bind contention-losing sessions with
remote systems that cannot send bind requests. By specifying
AUTOCONNECT(ALL), you can cause CICS to bind a number of contention
winners other than the number originally specified in the local system. The
number of contention winners that CICS binds depends on the reply that the
partner system gives to the request to initiate sessions (CNOS exchange). CICS
tries to bind as contention winners all sessions that are not designated as
contention losers in the CNOS reply.

For example, suppose that you specify MAXIMUM(10,4) in the local system and
MAXIMUM(10,2) in the remote system. If the sessions are acquired from the local
system, and the contention-losing sessions bind successfully, the result is 8 primary
contention-winning sessions.

Important: Never specify AUTOCONNECT(ALL) for sessions to another CICS
system, or to any system that can send a bind request. This could lead to bind-race
conditions that CICS cannot resolve.

If AUTOCONNECT(NO) is specified, the sessions can be bound and made
available by setting the modename into ACQUIRED AVAILABLE command. If this
is not done, sessions are bound individually according to the demands of your
application program.

For a single-session APPC terminal, the value specified for the AUTOCONNECT
attribute of the SESSIONS or TYPETERM resources determines whether CICS tries
to bind the single session or not.

Using z/OS Communications Server persistent sessions on
APPC links

You can use z/OS Communications Server persistent sessions to improve the
availability of APPC links. z/OS Communications Server persistent sessions
support enables sessions to be recovered without the need for network flows in the
event of a CICS or z/OS Communications Server failure.

The CICS Recovery and Restart Guide explains what happens when you use
persistent sessions support, and why you might want to run a CICS region without
persistent sessions support.

If APPC sessions are active at the time of the CICS, Communications Server or
z/OS failure, persistent sessions recovery appears to APPC partners as CICS
hanging. The Communications Server saves requests issued by the APPC partner,
and passes them to CICS when recovery is complete. When CICS reestablishes a
connection with the Communications Server, recovery of terminal sessions is
determined by the settings for the PSRECOVERY option of the CONNECTION
resource definition and the RECOVOPTION option of the SESSIONS resource
definition. You must set the PSRECOVERY option of the CONNECTION resource
definition to the default value SYSDEFAULT for sessions to be recovered. The
alternative, NONE, means that no sessions are recovered. If you have selected the
appropriate recovery options and the APPC sessions are in the correct state, CICS
performs an ISSUE ABEND to inform the partner that the current conversation has
been abnormally ended.

176 CICS TS for z/OS 4.2: Intercommunication Guide

The PSRECOVERY attribute of the CONNECTION resource
In a CICS region running with persistent session support, use this attribute to
specify whether the APPC sessions used by this connection are recovered on
system restart within the persistent session delay interval. It can have the following
values:

SYSDEFAULT
If a failed CICS system is restarted within the persistent session delay interval,
the following actions occur:
v User modegroups are recovered to the value specified in the

RECOVOPTION attribute of the SESSIONS resource.
v The SNASVCMG modegroup is recovered.
v The connection is returned in ACQUIRED state and the last negotiated

CNOS state is returned.

NONE
All sessions are unbound as out-of-service with no CNOS recovery.

The RECOVOPTION attribute of SESSIONS and TYPETERM
resources
In a CICS region running with persistent session support, the RECOVOPTION
attribute of the SESSIONS and TYPETERM resources specifies how APPC sessions
are to be recovered, after a system restart within the persistent session delay
interval.

For a single-session APPC terminal, the RECOVOPTION attribute of a SESSIONS
or TYPETERM resource specifies how the terminal is to be returned to service after
a system restart within the persistent session delay interval.

If you want the sessions to be persistent, you should allow the value to default to
SYSDEFAULT. This specifies that CICS is to select the optimum procedure to
recover a session on system restart within the persistent delay interval.

Without persistent session support, if AUTOCONNECT(YES) is specified for a
terminal, the end-user must wait until the GMTRAN transaction has run before
being able to continue working. If AUTOCONNECT(NO) is specified, the user has
no way of knowing (unless told by support staff) when CICS is operational again
unless he or she tries to log on. In either case, the user is disconnected from CICS
and needs to reestablish his session, to regain his working environment. With
persistent session support, the session is put into recovery pending state on a CICS
failure. If CICS starts within the specified interval, and RECOVOPTION is set to
SYSDEFAULT, the user does not need to reestablish his session to regain his
working environment.

Defining logical unit type 6.1 links
LUTYPE6.1 links are necessary for intersystem communication between CICS and
any system, such as IMS, that supports LUTYPE6.1 protocols but does not fully
support APPC. You are advised to use MRO or APPC links for CICS-to-CICS
communication.

Restriction:

You must not have an LUTYPE6.1 and an APPC connection active at the same time
between an LU-LU pair.

Chapter 13. How to define connections to remote systems 177

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/typeterm/dfha4_overview.html

A CONNECTION resource is always required to define the remote system on an
LUTYPE6.1 link. The sessions, however, can be defined in either of the following
ways:
1. By using a single SESSIONS resource to define a pool of sessions with identical

characteristics.
2. By using a separate SESSIONS resource to define each individual session. This

method must be used to define sessions with systems, such as IMS, that require
individual sessions to be explicitly named.

Defining CICS-to-IMS LUTYPE6.1 links
A link to an IMS system requires a definition of the connection (or system) and a
separate definition of each of the sessions.

Create a CONNECTION resource with the following attributes:

CONNECTION(sysidnt)

NETNAME(name)

ACCESSMETHOD(VTAM)

Note: VTAM in now z/OS Communications Server.

PROTOCOL(LU61)

DATASTREAM(USER|3270|SCS|STRFIELD|LMS)

RECORDFORMAT(U|VB)

QUEUELIMIT(NO|0-9999)

MAXQTIME(NO|0-9999)

INSERVICE(YES)

SECURITYNAME(name)

ATTACHSEC(LOCAL)

For each session, create a SESSIONS resource with the following attributes:

SESSIONS(csdname)

CONNECTION(sysidnt)

SESSNAME(name)

NETNAMEQ(name)

PROTOCOL(LU61)

RECEIVECOUNT(1|0)

SENDCOUNT(0|1)

SENDSIZE(size)

RECEIVESIZE(size)

SESSPRIORITY(number)

AUTOCONNECT(NO|YES|ALL)

BUILDCHAIN(YES)

IOAREALEN(value)

178 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

Defining compatible CICS and IMS nodes
This section describes the writing of suitable CICS definitions that are compatible
with the corresponding IMS definitions.

An overview of IMS system definition is given in Chapter 10, “Configuring
intersystem communication,” on page 119. The relationships between CICS and
IMS definitions are summarized in “Other session parameters” on page 180.

System names
The network name of the CICS system (its applid) is specified on the APPLID
CICS system initialization parameter.

This name must be specified on the NAME operand of the IMS TERMINAL macro
that defines the CICS system. For CICS systems that use XRF, the name will be the
CICS generic applid. For non-XRF CICS systems, the name will be the single
applid specified on the APPLID system initialization parameter.

The network name of the IMS system may be specified in various ways:
v For systems with XRF support, as the USERVAR that is defined in the

DFSHSBxx member of IMS.PROCLIB.
v For systems without XRF:

– on the APPLID operand of the IMS COMM macro
– as a label on the EXEC statement of the IMS startup job (if APPLID is coded

as NONE)
– as a started task name (if APPLID is coded as NONE).

You must specify the network name of the IMS system in the NETNAME attribute
of the CONNECTION resource that defines the IMS system.

Number of sessions
In IMS, the number of parallel sessions that are required between the CICS and
IMS system must be specified in the SESSION operand of the IMS TERMINAL
macro.

Each session is then represented by a SUBPOOL entry in the IMS VTAMPOOL. In
CICS, each of these sessions is represented by an individual session definition.

Session names
Each CICS-to-IMS session is uniquely identified by a session-qualifier pair, which
is formed from the CICS name for the session and the IMS name for the session.

The CICS name for the session is specified in the SESSNAME attribute of the
SESSIONS resource. For sessions that are to be initiated by IMS, this name must
correspond to the ID parameter of the IMS OPNDST command for the session. For
sessions initiated by CICS, the name is supplied on the CICS OPNDST command
and is saved by IMS.

The IMS name for the session is specified in the NAME operand of the IMS
SUBPOOL macro. You must make the relationship between the session names
explicit by coding this name in the NETNAMEQ attribute of the corresponding
SESSIONS resource.

The CICS and the IMS names for a session can be the same, and this approach is
recommended for operational convenience.

Chapter 13. How to define connections to remote systems 179

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html

Other session parameters
This topic lists the remaining attributes of the CONNECTION and SESSIONS
resources that are of significance for CICS-to-IMS sessions.

ATTACHSEC
Must be specified as LOCAL.

BUILDCHAIN(YES)
Specifies that multiple RU chains are to be assembled before being passed to
the application program. A complete chain is passed to the application
program in response to each RECEIVE command, and the application performs
any required deblocking.

BUILDCHAIN(YES) must be specified (or allowed to default) for LUTYPE6.1
sessions.

DATASTREAM(USER)
Must be specified with the value USER or allowed to default.

This option is used only when CICS is communicating with IMS by using the
START command (asynchronous processing). CICS messages generated by the
START command always cause IMS to interpret the data stream profile as
input for component 1.

The data stream profile for distributed transaction processing can be specified
by the application program by means of the DATASTR option of the BUILD
ATTACH command.

QUEUELIMIT(NO|0-9999)
Specifies the maximum number of requests permitted to queue for free
sessions to the remote system. Further information is given in Chapter 24,
“Intersystem session queue management,” on page 277.

MAXQTIME(NO|0-9999)
Specifies the maximum time, in seconds, between the queue for sessions to the
remote system becoming full (that is, reaching the limit specified on
QUEUELIMIT) and the queue being purged because the remote system is
unresponsive. Further information is given in Chapter 24, “Intersystem session
queue management,” on page 277.

RECORDFORMAT(U|VB)
Specifies the type of chaining that CICS is to use for transmissions on this
session that are initiated by START commands (asynchronous processing).

Two types of data-handling algorithms are supported between CICS and IMS:

Chained
Messages are sent as SNA chains. The user can use private blocking
and deblocking algorithms. This format corresponds to
RECORDFORMAT(U).

Variable-length variable-blocked records (VLVB)
Messages are sent in variable-length variable-blocked format with a
halfword length field before each record. This format corresponds to
RECORDFORMAT(VB).

The data stream format for distributed transaction processing can be specified
by the application program by means of the RECFM option of the BUILD
ATTACH command.

Additional information on these data formats is given in Chapter 23,
“CICS-to-IMS applications,” on page 255.

180 CICS TS for z/OS 4.2: Intercommunication Guide

SENDCOUNT and RECEIVECOUNT
Used to specify whether the session is a SEND session or a RECEIVE session.

A SEND session is one in which the local CICS is the secondary and is the
contention winner. Specify:
v SENDCOUNT(1)

v Allow RECEIVECOUNT to default. Do not specify RECEIVECOUNT(0).

A RECEIVE session is one in which the local CICS is the primary and is the
contention loser. Specify:
v RECEIVECOUNT(1)

v Allow SENDCOUNT to default. Do not specify SENDCOUNT(0).

SEND sessions are recommended for all CICS-to-IMS sessions.

You need not specify a SENDPFX or a RECEIVEPFX; the name of the session is
taken from the SESSNAME option.

Note: For SEND sessions, allow RECEIVECOUNT to default. For RECEIVE
sessions, allow SENDCOUNT to default.

SENDSIZE and RECEIVESIZE
Specify the maximum z/OS Communications Server request unit (RU) sizes for
these sessions.
v If CICS is the primary half-session, ensure that:

1. The CICS SENDSIZE is less than or equal to the value specified on the
RECANY parameter of the IMS COMM macro.

2. The CICS RECEIVESIZE is greater than or equal to the IMS OUTBUF
size.

v If IMS is the primary half-session, ensure that:
1. The CICS SENDSIZE is greater than or equal to the IMS OUTBUF size.
2. The CICS RECEIVESIZE is less than or equal to the IMS RECANY size.

The compatibility requirements are summarized in the following table. Related
options and operands are shown by identical numbers.

Note: VTAM is now z/OS Communications Server.

Chapter 13. How to define connections to remote systems 181

CICS IMS

System initialization parameters
COMM APPLID=SYSIMS

�7� RECANY=nnn+22
EDTNAME=ISCEDT

�4� TYPE UNITYPE=LUTYPE6

�1� TERMINAL NAME=SYSCICS
SESSION=2
COMPT1
COMPT2

�6� OUTBUF=mmm

VTAMPOOL

�5� SUBPOOL NAME=CIC1

NAME CICLT1 COMPT=1

NAME CICLT1A

�8� SUBPOOL NAME=CIC2

NAME CICLT2 COMPT=2

�3� DFSHSBxx USERVAR=SYSIMS

APPLID=SYSCICS �1�

CONNECTION resource

CONNECTION(IMSR) �2�
NETNAME(SYSIMS) �3�
ACCESSMETHOD(VTAM)
PROTOCOL(LU61)
DATASTREAM(USER)
ATTACHSEC(LOCAL)

SESSIONS resources

SESSIONS(csdname1)
CONNECTION(IMSR) �2�
SESSNAME(IMS1)
NETNAMEQ(CIC1) �5�
PROTOCOL(LU61) �4�
SENDCOUNT(1)
SENDSIZE(nnn) �7�
RECEIVESIZE(mmm) �6�
IOAREALEN(nnn,16364)

SESSIONS(csdname1)
CONNECTION(IMSR) �2�
SESSNAME(IMS2)
NETNAMEQ(CIC2) �8�
PROTOCOL(LU61) �4�
SENDCOUNT(1)
SENDSIZE(nnn) �7�
RECEIVESIZE(mmm) �6�
IOAREALEN(nnn,16364)

Note: For an example of a z/OS Communications Server logmode table entry for
IMS, see the CICS Transaction Server for z/OS Installation Guide.

Defining multiple links to an IMS system
You can define more than one intersystem link between a CICS and an IMS
system.

About this task

This is done by creating two or more CONNECTION definitions (with their
associated SESSION definitions), with the same netname but with different
sysidnts. Although all the system definitions resolve to the same netname, and
therefore to the same IMS system, the use of a sysidnt name in CICS causes CICS
to allocate a session from the link with the specified sysidnt.

It is recommended that you define up to three links (that is, groups of sessions)
between a CICS and an IMS system, depending upon the application requirements
of your installation:
1. For CICS-initiated distributed transaction processing (synchronous processing).

CICS applications that use the SEND/RECEIVE interface can use the sysidnt of
this group to allocate a session to the remote system. The session is held
('busy') until the conversation is terminated.

2. For CICS-initiated asynchronous processing.

182 CICS TS for z/OS 4.2: Intercommunication Guide

CICS applications that use the START command can name the sysidnt of this
group. CICS uses the first 'non-busy' session to ship the start request.
IMS sends a positive response to CICS as soon as it has queued the start
request, so that the session is in use for a relatively short period. Consequently,
the first session in the group shows the heaviest usage, and the frequency of
usage decreases towards the last session in the group.

3. For IMS-initiated asynchronous processing.
This group is also useful as part of the solution to a performance problem that
can arise with CICS-initiated asynchronous processing. An IMS transaction that
is initiated as a result of a START command shipped on a particular session
uses the same session to ship its “reply” START command to CICS. For the
reasons given in (2) above, the CICS START command was probably shipped
on the busiest session and, because the session is busy and CICS is the
contention winner, the replies from IMS may be queuing for a chance to use the
session.
However, facilities exist in IMS for a transaction to alter its default output
session, and a switch to a session in this third group can reduce this sort of
queuing problem.

Note: VTAM is now z/OS Communications Server.

Table 12. Defining multiple links to an IMS node

CICS

System Initialization parameters:

SYSIDNT=CICL,
APPLID=SYSCICS

Resources for CICS-initiated distributed transaction processing

CONNECTION(IMSA)
NETNAME(SYSIMS)
ACCESSMETHOD(VTAM)

SESSIONS(csdname)
CONNECTION(IMSA)
SESSNAME(IMS1)
NETNAMEQ(DTP1)
PROTOCOL(LU61)

SESSIONS(csdname)
.
.

Resources for CICS-initiated asynchronous processing

CONNECTION(IMSB)
NETNAME(SYSIMS)
ACCESSMETHOD(VTAM)

SESSIONS(csdname)
CONNECTION(IMSB)
SESSNAME(IMS1)
NETNAMEQ(ASP1)
PROTOCOL(LU61)

SESSIONS(csdname)
.
.

Resources for IMS-initiated asynchronous processing

Chapter 13. How to define connections to remote systems 183

Table 12. Defining multiple links to an IMS node (continued)

CICS

CONNECTION(IMSC)
NETNAME(SYSIMS)
ACCESSMETHOD(VTAM)

SESSIONS(csdname)
CONNECTION(IMSC)
SESSNAME(IMS1)
NETNAMEQ(IST1)
PROTOCOL(LU61)

SESSIONS(csdname)
.
.

Defining indirect links for transaction routing
In some older releases of CICS (no longer supported), indirect links between CICS
regions were required for transaction routing across intermediate regions. In a
network consisting solely of currently-available CICS systems, indirect links are
only required if you are using non-z/OS Communications Server terminals.
Optionally, you can define them for use with z/OS Communications Server
terminals. Indirect links are never used for function shipping, distributed program
link, asynchronous processing, or distributed transaction processing.

The following figure shows the concept of an indirect link.

184 CICS TS for z/OS 4.2: Intercommunication Guide

This figure illustrates a chain of systems (A, B, C, D) linked by MRO or APPC
links (you cannot do transaction routing over LUTYPE6.1 links).

It is assumed that you want to establish a transaction-routing path between a
terminal-owning region A and an application-owning region D. There is no direct
link available between system A and system D, but a path is available via the
intermediate systems B and C.

To enable transaction-routing requests to pass along the path, resource definitions
for both the terminal (which may be an APPC connection) and the transaction
must be available in all four systems. The terminal is a local resource in the
terminal-owning system A, and a remote resource in systems B, C, and D.
Similarly, the transaction is a local resource in the transaction-owning system D,
and a remote resource in the systems A, B, and C.

Defining indirect links in CICS Transaction Server for z/OS
CICS systems reference remote terminals using a unique identifier that is formed
from the applid (netname) of the terminal-owning region (TOR) and the identifier
by which the terminal is known on the terminal-owning region.

Terminal-owning Intermediate systems Application-owning
region (TOR) region (AOR)

A B C D

Transaction Transaction Transaction Transaction
defined as defined as defined as defined on
owned by B owned by C owned by D system D

Direct link Direct link
defined to D defined to C

Direct link Direct link
defined to C defined to B

Indirect Indirect
Direct link Direct link link defined link defined
defined to B defined to A to A via B to A via C

Terminal or Terminal or Terminal or Terminal or
connection connection connection connection
defined on defined as defined as defined as
system A owned by A owned by A owned by A

Figure 47. Indirect links for transaction routing

Chapter 13. How to define connections to remote systems 185

For more information on remote resource definition, see Chapter 16, “Defining
remote resources,” on page 205.

CICS must have access to the netname of the TOR to be able to form the
fully-qualified terminal identifier. In old releases of CICS (no longer supported), an
indirect link definition had two purposes. Where there was no direct link to the
TOR, it:
1. Supplied the netname of the terminal-owning region.
2. Identified the direct link that was the start of the path to the terminal-owning

region.

Thus, in Figure 47 on page 185, the indirect link definition in system D provides
the netname of system A and identifies system C as the next system in the path.
Similarly, the indirect link definition in system C provides the netname of system
A and identifies system B as the next system in the path. System B has a direct link
to system A, and therefore does not require an indirect link.

In CICS Transaction Server for z/OS, unless you are using non-z/OS
Communications Server terminals, indirect links are optional. Different
considerations apply, depending on whether you are using shippable or
hard-coded terminal definitions.

Shippable terminals
Indirect links are not necessary to allow terminal definitions to be shipped to
an AOR across intermediate systems. Each shipped definition contains a
pointer to the previous system in the transaction routing path (or to an indirect
connection to the TOR, if one exists). This allows routed transactions to be
attached, by identifying the netname of the TOR and the path from the AOR to
the TOR.

If several paths are available, you can use indirect links to specify the preferred
path to the TOR.

Note: Non-z/OS Communications Server terminals are not shippable.

Hard-coded terminals
If you are using z/OS Communications Server terminals exclusively, indirect
links are not required. You use the REMOTESYSNET attribute of the
TERMINAL definition (or the CONNECTION definition, if the “terminal” is an
APPC device) to specify the netname of the TOR; and the REMOTESYSTEM
attribute to specify the next system in the path to the TOR. If several paths are
available, use REMOTESYSTEM to specify the next system in the preferred
path.

If you are using non-z/OS Communications Server terminals, indirect links are
required. This is because must use the DFHTCT TYPE=REMOTE or
TYPE=REGION macros to define non-z/OS Communications Server terminals,
and these do not include an equivalent of the REMOTESYSNET attribute.

Therefore, in CICS Transaction Server for z/OS, you might decide to define
indirect links:
v To specify the preferred path to the TOR, if more than one exists, and you are

using shippable terminals.
v If you are using non-z/OS Communications Server terminals for transaction

routing across intermediate systems.
v To enable you to use existing remote terminal definitions that do not specify the

REMOTESYSNET attribute. For example, you might have hundreds of remote

186 CICS TS for z/OS 4.2: Intercommunication Guide

z/OS Communications Server terminals defined to a back-level system. If you
introduce a new CICS Transaction Server for z/OS back-end system into your
network, you might want to copy the existing definitions to the CSD of the new
system. If the structure of your network means that there is no direct link to the
TOR, it might be quicker to define a single indirect link, rather than change all
the copied definitions to include the REMOTESYSNET attribute.

Resource definition for transaction routing using indirect links
This section outlines the resource definitions required to establish a
transaction-routing path between a terminal-owning region SYS01 and an
application-owning region SYS04 via two intermediate systems SYS02 and SYS03,
using indirect links.

The resource definitions required are shown in Figure 48 on page 188.

Note: For clarity, the figure shows hard-coded remote terminal definitions that do
not use the REMOTESYSNET option (if REMOTESYSNET had been used, indirect
links would not be required). Shippable terminals could equally well have been
used.

Chapter 13. How to define connections to remote systems 187

SYS01 SYS02 SYS03 SYS04

DFHSIT DFHSIT DFHSIT DFHSIT
APPLID=SYS01 APPLID=SYS02 APPLID=SYS03 APPLID=SYS04
. . . .

Link between SYS01 and SYS02 Link between SYS03 and SYS04

DEFINE DEFINE DEFINE DEFINE
CONNECTION(NEXT) CONNECTION(PREV) CONNECTION(NEXT) CONNECTION(PREV)
NETNAME(SYS02) NETNAME(SYS01) NETNAME(SYS04) NETNAME(SYS03)
. . . .

DEFINE DEFINE DEFINE DEFINE
SESSIONS(csdname) SESSIONS(csdname) SESSIONS(csdname) SESSIONS(csdname)|
CONNECTION(NEXT) CONNECTION(PREV) CONNECTION(NEXT) CONNECTION(PREV)
. . . .

Indirect link from
SYS04 to SYS01

Link between SYS02 and SYS03 routed via SYS03

DEFINE DEFINE DEFINE
CONNECTION(NEXT) CONNECTION(PREV) CONNECTION(REMT)
NETNAME(SYS03) NETNAME(SYS02) NETNAME (SYS01)
. . ACCESSMETHOD

(INDIRECT)
DEFINE DEFINE INDSYS(PREV)
SESSIONS(csdname) SESSIONS(csdname)
CONNECTION(NEXT) CONNECTION(PREV)
. .

Indirect link from
SYS03 to SYS01
routed via SYS02

DEFINE
CONNECTION(REMT)

Note: NETNAME(SYS01)
This figure shows TERMINAL definitions. ACCESSMETHOD
CONNECTION definitions are appropriate (INDIRECT)
when the "terminal" is an APPC device. INDSYS(PREV)

The terminal The terminal The terminal The terminal

DEFINE DEFINE DEFINE DEFINE
TERMINAL(T42A) TERMINAL(T42A) TERMINAL(T42A) TERMINAL(T42A)
NETNAME(XXXXX) REMOTESYSTEM(PREV) REMOTESYSTEM(REMT) REMOTESYSTEM(REMT)
TYPETERM(DFHLU2) TYPETERM(DFHLU2) TYPETERM(DFHLU2) TYPETERM(DFHLU2)
. . . .

The transaction The transaction The transaction The transaction

DEFINE DEFINE DEFINE DEFINE
TRANSACTION(TRTN) TRANSACTION(TRTN) TRANSACTION(TRTN) TRANSACTION(TRTN)
REMOTESYSTEM(NEXT) REMOTESYSTEM(NEXT) REMOTESYSTEM(NEXT) PROGRAM(TRNP)
. . . .

Figure 48. Defining indirect links for transaction routing. Because the remote terminal definitions in SYS04 and SYS03
do not specify the REMOTESYSNET option, indirect links are required.

188 CICS TS for z/OS 4.2: Intercommunication Guide

Defining the direct links
The direct links between SYS01 and SYS02, SYS02 and SYS03, and SYS03 and
SYS04 are MRO or APPC links defined as described earlier in this chapter.

Defining the indirect links
Indirect links to the TOR can be defined to some systems in a transaction-routing
path and not to others, depending on the structure of your network and how you
have coded your remote terminal definitions.

For example, if one of the intermediate systems uses hard-coded terminal
definitions that do not specify REMOTESYSNET and the system does not have a
direct link to the TOR, an indirect link will be required. Indirect links are never
required in the system to which the terminal-owning region has a direct link.

In the current example, indirect links are defined in SYS04 and SYS03. The
following rules apply to the definition of an indirect link:
v ACCESSMETHOD must be INDIRECT.
v NETNAME must be the applid of the terminal-owning region.
v INDSYS (meaning indirect system) must name the CONNECTION name of an

MRO or APPC link that is the start of the path to the terminal-owning region.
v No SESSIONS definition is required for the indirect connection; the sessions that

are used are those of the direct link named in the INDSYS option.

Defining the terminal
If shippable terminals are used, no remote terminal definitions are required.

The recommended methods for defining remote terminals and connections to a
CICS Transaction Server for z/OS system are described in Chapter 16, “Defining
remote resources,” on page 205.

Figure 48 on page 188 shows hard-coded remote terminal definitions that do not
specify the REMOTESYSNET option. If you use these:
v The REMOTESYSTEM (or SYSIDNT) option in the remote terminal or

connection definition must always name a link to the TOR (that is, a
CONNECTION definition on which NETNAME specifies the applid of the
terminal-owning region).

v The named link must be the direct link to the terminal-owning region, if one
exists. Otherwise, it must be an indirect link.

Defining the transaction
The definition of remote transactions is described in Chapter 16, “Defining remote
resources,” on page 205.

Chapter 13. How to define connections to remote systems 189

190 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 14. TCP/IP management and control

You can use TCP/IP management and control to monitor work that enters or
leaves CICS over Transmission Control Protocol/Internet Protocol (TCP/IP)
connections.

TCP/IP management and control provides, for TCP/IP networks, a subset of the
management functions already provided for APPC networks and some additional
functions that are not available for APPC or MRO networks.

TCP/IP networks are systems that are interconnected by these means:
v An IPIC connection (IPCONN).

IPIC supports the following types of intercommunication functions for their
respective product releases:
– Distributed program link (DPL) calls between CICS TS 3.2 or later regions.
– Distributed program link (DPL) calls between CICS TS and TXSeries Version

7.1 or later.
– Asynchronous processing of EXEC CICS START, START CHANNEL, and

CANCEL commands, between CICS TS 4.1 or later regions.
– Transaction routing of 3270 terminals, where the terminal-owning region

(TOR) is uniquely identified by an APPLID between CICS TS 4.1 or later
regions.

– Enhanced method of routing transactions that are invoked by EXEC CICS
START commands between CICS TS 4.2 or later regions.

– ECI requests from CICS Transaction Gateway Version 7.1 or later.
– Function shipping of all file control, transient data, and temporary storage

requests between CICS TS 4.2 or later regions. Function shipping of file
control and temporary storage requests using IPIC connectivity are threadsafe.

– Threadsafe processing for the mirror program and the LINK command in
CICS TS 4.2 or later regions to improve performance for threadsafe
applications.

v TCP/IP connections from clients that carry, for example, Web Interface, IIOP, or
SOAP over HTTP requests inbound to CICS.

You can use TCP/IP management and control to perform, for example, these
functions:
v Use CICSPlex SM, or an equivalent tool, for these purposes:

– Obtain a CICSplex-wide view of the TCP/IP network.
– Examine these items in real time:

- The TCP/IP network resources that a particular CICS region is using
- The work passing in and out of a particular CICS region over the TCP/IP

network
- The CICS resources and tasks associated with a distributed transaction that

flows across the CICSplex over the TCP/IP network
- The CICS region in which a distributed transaction originated

v Save the data collected by CICS so that it can be examined offline, at some point
after the tasks and resources to which it relates are no longer available.

© Copyright IBM Corp. 1977, 2012 191

|
|

|
|
|

|
|
|

You can use TCP/IP management and control for these reasons:
v To diagnose connectivity problems
v To investigate other problems, such as transaction delays
v To track work across the CICSplex
v To capture system data over time, for use in capacity planning
v To monitor the CICSplex

Some useful SPI commands

You can use the following system programming interface (SPI) commands to
retrieve information about IPIC connections:

EXEC CICS EXTRACT STATISTICS
Specify a RESTYPE of IPCONN to retrieve resource statistics for IPIC. Global
statistics are not available.

EXEC CICS INQUIRE ASSOCIATION
In a TCP/IP network, this command returns information about a task; for
example, how the task was started, and the IP address of the TCP/IP client
that requested it to start. The task is specified by a task number, which
typically has been returned, as one of a list of numbers, by the EXEC CICS
INQUIRE ASSOCIATION LIST command.

EXEC CICS INQUIRE ASSOCIATION LIST
This command returns a list of tasks, in the local region, that have matching
user correlation data in their associated data control blocks (ADCBs). Typically,
the user correlation data has been added, at the point of origin of a distributed
transaction, by a CICS XAPADMGR global user exit program. See “The
XAPADMGR global user exit” on page 193.

EXEC CICS INQUIRE TASK
The IPALTFACILITIES option returns the address of a list of IDs, each of which
identifies an IPCONN session that the task has used to communicate with
another system. The LISTSIZE option returns the number of items in the list.

EXEC CICS PERFORM STATISTICS
Specify a statistics type of “IPCONN” to record resource statistics for IPIC
connections. Global statistics are not available.

Socket application data (ApplData)

CICS generates 40 bytes of socket application data (ApplData) for each of the TCP
sockets that it owns. CICS uses the SIOCSAPPLDATA IOCTL socket function to
associate this information with the z/OS Communications Server TCP/IP socket.
You can use this information to correlate TCP/IP connections with the CICS
regions and transactions using them.

In CICS, you can obtain the ApplData information using the CECI INQUIRE
ASSOCIATION transaction, CICSPlex SM displays, and SMF records. In TCP/IP,
the ApplData information is available on the Netstat ALL/-A, ALLConn/-a, and
COnn/-c reports, and can be searched with the APPLD/-G filter. See IP System
Administrator's Commands for additional information about using ApplData with
Netstat. The ApplData information is available in the SMF 119 TCP Connection
Termination record. See IP Configuration Reference for additional information. The
ApplData information is also available through the Network Management
Interface. See IP Programmer's Guide and Reference for more information.

192 CICS TS for z/OS 4.2: Intercommunication Guide

The XAPADMGR global user exit

The exit program is called, if enabled, at the attach of nonsystem tasks for which
no input Origin Descriptor Record is provided.

For further information about the XAPADMGR exit, see the CICS Customization
Guide.

CICS provides a sample global user exit program, DFH$APAD, for use at the
XAPADMGR exit point. The exit program is called, if enabled, when nonsystem
tasks for which no input Origin Descriptor Record is provided are attached.

DFH$APAD performs the following processing:
v Provides addressability to the association data provided as input to the exit.
v Chooses a field from this data and places it in the output buffer.
v Adds a field to the user correlation data in the output buffer.

Using CICSPlex SM to analyze TCP/IP traffic

As noted in “The XAPADMGR global user exit,” user correlation information
added to the associated data origin descriptor of a task, at the point of origin of
the distributed transaction, can be used as search keys for later processing carried
out through CICSPlex SM.

A search key (or “filter string”) can contain the following “wildcard” characters:

? Matches exactly one arbitrary character

* Matches zero or more arbitrary characters

A filter string with no wildcards must be an exact match to the entire correlator.
Therefore, a filter string that is a substring of the correlator must contain at least
one wildcard character to match any user correlator string. For example, to find a
substring that might be anywhere in the data, add both a leading and a trailing '*'
to your filter string.

The CICSPlex SM TASKASSC resource table provides information about the tasks
that make up a distributed transaction. You can filter the records using a substring
of the user correlation data added, by a CICS XAPADMGR global user exit
program, to the user data section of the associated data origin descriptor of the
task.

For more information, see the CICSPlex System Manager Operations Views Reference.

Using CICS monitoring to analyze TCP/IP traffic

Fields 360 - 372 in the performance class monitoring records in group DFHCICS
relate to TCP/IP. See the CICS Performance Guide.

Chapter 14. TCP/IP management and control 193

194 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 15. Managing APPC connections

You can use the master terminal transaction, CEMT, to manage APPC connections.
It shows how the action of the CEMT commands is affected by the way the
connections have been defined to CICS.

The commands are described under the headings:
v Acquiring the connection
v Controlling and monitoring sessions on the connection
v Releasing the connection.

The commands used to achieve these actions are:
v CEMT SET CONNECTION ACQUIRED|RELEASED
v CEMT SET MODENAME AVAILABLE|ACQUIRED|CLOSED

Tip: In the CICS Explorer, the ISC/MRO connections operations view
provides a functional equivalent to the SET CONNECTION command.

Detailed formats and options of CEMT commands are given in the CICS Supplied
Transactions manual.

The information is mainly about parallel-sessions connections between CICS
regions.

General information about managing APPC links
The operator commands controlling APPC connections cause CICS to execute
many internal processes, some of which involve communication with the partner
systems.

The major features of these processes are described on the following pages but you
should note that the processes are sometimes independent of one another and can
be asynchronous. This makes simple descriptions of them imprecise in some
respects. The execution can occasionally be further modified by independent events
occurring in the network, or simultaneous operator activity at both ends of an
APPC connection; these circumstances are more likely when a component of the
network has failed and recovery is in progress. The following sections explain the
normal operation of the commands.

Note: The principles of operation described in these sections also apply to the
EXEC CICS INQUIRE CONNECTION, INQUIRE MODENAME, SET
CONNECTION, and SET MODENAME commands. For programming information
about these commands, see the CICS System Programming Reference manual.

The rest of this chapter contains the following topics:
v “Acquiring a connection” on page 196
v “Controlling sessions with the SET MODENAME commands” on page 198
v “Releasing the connection” on page 200
v “Summary of APPC link management” on page 203.

© Copyright IBM Corp. 1977, 2012 195

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html

Acquiring a connection
The SET CONNECTION ACQUIRED command causes CICS to establish a
connection with a partner system.

The major processes involved in this operation are:
v Establishing of the two LU services manager sessions in the modegroup

SNASVCMG.
v Initiating of the change-number-of-sessions (CNOS) process by the partner

initiating the connection.
CNOS negotiation is executed (using one of the LU services manager sessions)
to determine the numbers of contention-winner and contention-loser sessions
defined in the connection. The results of the negotiation are reported in
messages DFHZC4900 and DFHZC4901.

v Establishing of the sessions that carry CICS application data.

The following processes, also part of connection establishment, are described in
Chapter 26, “Recovery and restart in interconnected systems,” on page 287:
v Exchanging lognames
v Resolving and reporting synchronization information.

Connection status during the acquire process
The status of the connection before and during the acquire process is reported by
the INQUIRE CONNECTION command.

Released
Initial state before the SET CONNECTION ACQUIRED command. All the
sessions in the connection are released.

Obtaining
Contact has been made with the partner system, and CNOS negotiation is
in progress.

Acquired
CNOS negotiation has completed for all modegroups. In this status CICS
has bound the LU services manager sessions in the modegroup
SNASVCMG. Some of the sessions in the user modegroups may also have
been bound, either as a result of the AUTOCONNECT option on the
SESSIONS definition, or to satisfy allocate requests from applications.

The results of requests for the use of a connection by application programs depend
on the status of the sessions. You can control the status of the sessions with the
AUTOCONNECT option of the SESSIONS definition as described in the following
section.

Effects of the AUTOCONNECT option
The AUTOCONNECT attribute of the SESSIONS resource controls the acquisition
of sessions in modegroups associated with the connection.

The meanings of the AUTOCONNECT attribute for APPC connections are
described in “The AUTOCONNECT attribute” on page 175. Each modegroup has
its own AUTOCONNECT option and the setting of this attribute affects the
sessions in the modegroup:

196 CICS TS for z/OS 4.2: Intercommunication Guide

Table 13. Effect of AUTOCONNECT on the SESSIONS resource

Setting Effect

YES CNOS negotiation with the partner system is performed for the
modegroup, and all negotiated contention-winner sessions are acquired
when the connection is acquired.

NO CNOS negotiation with the partner system is performed, but no sessions
are acquired. Contention-winner sessions can be bound individually
according to the demands of application programs (for example, when a
program issues an ALLOCATE command), or the SET MODENAME
ACQUIRED command can be used to bind contention-winner sessions.

ALL CNOS negotiation with the partner system is performed for the
modegroup, and all negotiated sessions, contention winners, and
contention losers are acquired when the connection is acquired. This
setting should be necessary only on connections to non-CICS systems.

When the connection is in ACQUIRED status, the INQUIRE MODENAME
command can be used to determine whether the user sessions have been made
available and activated as required. The binding of user sessions is not completed
instantaneously, and you may have to repeat the command to see the final results
of the process.

CICS can bind contention-winner sessions to satisfy an application request, but not
contention losers. However, it can assign contention-loser sessions to application
requests if they are already bound. Considerations for binding contention losers are
described in the next section.

Binding contention-loser sessions
Contention-loser sessions on one system are contention-winner sessions on the
partner system, and should be bound by the partner.. If you want all sessions to be
bound, you must make sure each side binds its contention winners.

If the connection is between two CICS systems, specify AUTOCONNECT(YES) on
the SESSIONS definition for each system, or issue CEMT SET MODENAME
ACQUIRED from both systems. If you are linked to a non-CICS system that is
unable to send bind requests, specify AUTOCONNECT(ALL) on your SESSIONS
definition.

If the remote system can send bind requests, find out how you can make it bind its
contention winners so that it does so immediately after the SNASVCMG sessions
have been bound.

The ALLOCATE command, either as an explicit command in your application or
as implied in automatic transaction initiation (ATI), cannot bind contention-loser
sessions, although it can assign them to conversations if they are already bound.

Effects of the MAXIMUM option
The MAXIMUM attribute of the SESSIONS resource specifies the maximum
number of sessions that can be supported for the modegroup, and the number of
these that are supported as contention winners.

Operation of APPC connections is made easier if the maximum number of sessions
at each end of the connection match, and the number of contention-winner
sessions specified at the two ends add up to this maximum number. If this is done,
CNOS negotiation does not change the numbers specified.

Chapter 15. Managing APPC connections 197

If the specifications at each end of the connection do not match, as has just been
described, the actual values are negotiated by the LU services managers. The effect
of the negotiation on the maximum number of sessions is to adopt the lower of the
two values. An architected algorithm is used to determine the number of
contention winners for each partner, and the results of the negotiation are reported
in messages DFHZC4900 and DFHZC4901.

These results can also be deduced, as shown in Table 14, by issuing a CEMT
INQUIRE MODENAME command.

Table 14. Data displayed by INQ MODENAME

Display Interpretation

MAXimum The value specified in the sessions definition for this modegroup. This
represents the true number of usable sessions only if it is equal to or less
than the corresponding value displayed on the partner system.

AVAilable Represents the result of the most recent CNOS negotiation for the number
of sessions to be made available and potentially active.

Following the initial CNOS negotiation, it reports the result of the
negotiation of the first value of the MAXIMUM option.

ACTive The number of sessions currently bound.

To change the MAXIMUM values, release the connection, set it OUTSERVICE,
redefine it with new values, and reinstall it.

Controlling sessions with the SET MODENAME commands
The SET MODENAME commands can be used to control the sessions within the
modegroups associated with an APPC connection, without releasing or reacquiring
the connection.

The processes executed to accomplish this are:
v CNOS negotiation with the partner system to define the changes that are to take

place.
v Binding or unbinding of the appropriate sessions.

The algorithms used by CICS to negotiate with the partner the numbers of sessions
to be made available are complex, and the numbers of sessions acquired may not
match your expectation. The outcome can depend on the following:
v The history of preceding SET MODENAME commands
v The activity in the partner system
v Errors that have caused CICS to place sessions out of service.

Modegroups can normally be controlled with the few simple commands described
in Table 15.

Table 15. SET MODENAME commands

Command Effect

SET MODENAME ACQUIRED Acquires all negotiated contention-winner sessions.

198 CICS TS for z/OS 4.2: Intercommunication Guide

Table 15. SET MODENAME commands (continued)

Command Effect

SET MODENAME CLOSED Negotiates with the partner to reduce the available
number of sessions to zero, releases the sessions, and
prevents any attempt by the partner to negotiate or
activate any sessions in the modegroup. Only the
system issuing the command can subsequently
increase the session count.

Queued session requests are honored before sessions
are unbound.

SET MODENAME
AVAIL(maximum) ACQUIRED

If this command is issued when the modegroup is
closed, the sessions are negotiated as if the
connection had been newly acquired, and the
contention-winner sessions are acquired. It can also
be used to rebind sessions that have been lost due to
errors that have caused CICS to place sessions out of
service.

Command scope and restrictions
The attributes of user modegroups, which are built from a SESSIONS resource, can
be changed while the modegrroup is active; the attributes of the SNASVCMG
modegroup, which is built from a CONNECTION definition, cannot be modified.

The SNASVCMG modegroup is controlled by the SET CONNECTION command,
or by overtyping the INQUIRE CONNECTION display data, which also affects
associated user modegroups.

CEMT INQUIRE NETNAME, where the netname is the applid of the partner
system, displays the status of all sessions associated with that connection, and can
be useful in error diagnosis. Any attempt to alter the status of these sessions by
overtyping, is suppressed.

You must use the SET|INQ CONNECTION∨MODENAME to manage the status of
user sessions and to control negotiation with remote systems.

A change to an APPC connection or modegroup can be requested by an operator
issuing CEMT SET commands or by an application program issuing EXEC CICS
SET commands. It is possible to issue one of these SET commands while a
previous, perhaps contradictory, SET command is still in progress. This is
particularly likely to occur in systems configured with large numbers of parallel
sessions, in which the status of many sessions may be affected by an individual
change to a connection or modegroup. Such overlapping SET commands can
produce unpredictable results. You should therefore ensure that previously issued
SET commands have fully completed before issuing the next SET command.

A similar situation can occur at startup if a SET CONNECTION or SET
MODEGROUP command is issued while sessions are autoconnecting. You should
therefore also ensure that all sessions have finished autoconnecting before issuing
such a SET command.

Chapter 15. Managing APPC connections 199

Releasing the connection
The SET CONNECTION RELEASED command causes CICS to quiesce a
connection and release all sessions associated with it.

The major processes involved in this operation are:
v Executing the CNOS process to inform the partner system that the connection is

closing down. The number of available sessions on all modegroups is reduced to
zero.

v Quiescing transaction activity using the connection. This process allows the
completion of transactions that are using sessions and queued ALLOCATE
requests; new requests for session allocation are refused with the SYSIDERR
condition.

v Unbinding of the user and LU services manager sessions.

Connection status during the release process
Before and during the release process, the connection can be in Acquired, Freeing
or Released state.

Acquired
Sessions are acquired; the sessions can be allocated to transactions.

Freeing
Release of the connection has been requested and is in progress.

Released
All sessions are released.

If you have control over both ends of the connection, or if your partner is unlikely
to issue commands that conflict with yours, you can release the connection to
quiesce activity on the connection. When the connection is in Released state, you
can set the connection out-of-service to prevent any attempt by the partner to
reacquire the connection.

Working with CONNECTION resources

You can change CONNECTION attributes with the following interfaces:

CICS Explorer

The CICS Explorer operations views
Use the Status and Service Status attributes in the ISC/MRO Connections
view.

CICSPlex SM

The CONNECTION views

CEMT

The SET CONNECTION command

The CICS SPI

The SET CONNECTION command

200 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/eyua3/topics/eyua3r2.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7n3.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_setconnection.html

The effects of limited resources
If an APPC connection traverses nonleased links (such as Dial, ISDN, X.25, X.21, or
Token Ring links) to communicate to remote systems, the links can be defined
within the network as limited resources. CICS recognizes this definition and
automatically unbinds the sessions as soon as no transactions require them. If new
transactions are invoked that require the connections, CICS binds the appropriate
number of sessions.

The connection status can be as follows:

Acquired
Some of the sessions in the connection are bound, and are probably in use.
The LU services manager sessions in modegroup SNASVCMG can be
unbound.

Available
The connection has been acquired, but there are no transactions that
currently require the use of the connection. All the sessions have been
unbound because they are defined in the network as limited resources.

The connection behaves in other ways exactly as for a connection over
non-limited-resource links. Commands that set the modename, and release the
connection operate normally.

Making the connection unavailable
The SET CONNECTION RELEASED command quiesces transactions using the
connection and releases the connection.

It cannot, on its own, prevent reacquisition of the connection from the partner
system. To prevent your partner from reacquiring the connection, you must execute
a sequence of commands. The choice of command sequence determines the status
the connection adopts and how it responds to further commands from either
partner.

If the number of available sessions for every modegroup of a connection is reduced
to zero (by, for example, a CEMT SET MODENAME AVAILABLE(0) command),
ALLOCATE requests are rejected. Transaction routing and function shipping
requests are also rejected. The connection is effectively unavailable. However,
because the remote system can renegotiate the availability of sessions and cause
those sessions to be bound, you cannot be sure that this state will be held.

To prevent your partner from acquiring sessions that you have made unavailable,
use the CEMT SET MODENAME CLOSED command. This reduces the number of
available user sessions in the modegroup to zero and also locks the modegroup.
Even if your partner now issues SET CONNECTION RELEASED followed by SET
CONNECTION ACQUIRED, no sessions in the locked modegroup become bound
until you specify an AVAILABLE value greater than zero.

If you lock all the modegroups, you make the connection unavailable, because the
remote system can neither bind sessions nor do anything to change the state.

Having closed all the modegroups for a connection, you can go a step further by
issuing CEMT SET CONNECTION RELEASED. This unbinds the SNASVCMG (LU
services manager) sessions. An inquiry on the CONNECTION returns INSERVICE
RELEASED (or INSERVICE FREEING if the release process is not complete).

Chapter 15. Managing APPC connections 201

If you now enter SET CONNECTION ACQUIRED, you free all locked modegroups
and the connection is fully established. If, instead, your partner issues the same
command, only the SNASVCMG sessions are bound.

You can prevent your partner from binding the SNASVCMG sessions by invoking
CEMT SET CONNECTION OUTSERVICE, which is ignored unless the connection
is already in the RELEASED state.

To summarize, you can make a connection unavailable and retain it under your
control by issuing these commands in the order shown:

Allocating from APPC mode groups with no available sessions
An application program can issue ALLOCATE commands for APPC sessions that
can be satisfied in either of two ways.
1. Only by a session in a particular mode group
2. By a session in any mode group on the connection.

An operator can set the number of sessions in a modegroup, or close the
modegroup to reduce the number of available sessions on an individual mode
group to zero.

If an ALLOCATE for a particular mode group is issued when that mode group has
no available sessions, the command is immediately rejected with the SYSIDERR
condition.

If an ALLOCATE command is issued without specifying a particular mode group,
and no mode groups on the connection have any sessions available, this command
is immediately rejected with the SYSIDERR condition.

If a relevant mode group is still draining when an allocate request is received, the
allocate is satisfied and added to the drain queue. An operator command to reduce
the number of available sessions to zero does not complete until draining
completes. In a very busy system allocating many sessions, this may mean that
such modegroup operator commands take a long time to complete.

Working with modegroups

You can change modegroup attributes with the following interfaces:

CICSPlex SM

CEMT SET MODENAME(*) CONNECTION(....) CLOSED

[The CONNECTION option is significant only if
the MODENAME applies to more than one
connection.]

INQ MODENAME(*) CONNECTION(....)

[Repeat this command until the AVAILABLE count for all
non-SNAVCMG modegroups becomes zero.]

SET CONNECTION(....) RELEASED
INQ CONNECTION(....)

[Repeat this command until the RELEASED status is displayed.]

SET CONNECTION(....) OUTSERVICE

Figure 49. Making the connection unavailable

202 CICS TS for z/OS 4.2: Intercommunication Guide

The MODENAME views

CEMT

The SET MODENAME command

The CICS SPI

The SET MODENAME command

Diagnosing and correcting error conditions
User sessions that have become unavailable because of earlier failures can be
brought back into use by restoring or increasing the available count with the SET
MODENAME AVAILABLE(n) command. The addition of the ACQUIRED option to
this command will result in the binding of any unbound contention-winner
sessions.

If the SNASVCMG sessions become unbound while user sessions are active, the
connection is still acquired. A SET CONNECTION ACQUIRED command binds all
contention-winner sessions in all modegroups, and may be sufficient to reestablish
the SNASVCMG sessions.

Sometimes, you may not be able to recover sessions, although the original cause of
failure has been removed. Under these circumstances, you should first release, then
reacquire, the connection.

Summary of APPC link management
This topic summarizes the effect of CEMT commands on the status of an APPC
link.

Table 16. Effect of CEMT commands on an operational APPC link

Commands issued in sequence shown below

1 1 1 SET MODENAME AVAILABLE(0)

1 1 1 SET MODENAME CLOSED

2 2 2 2 1 1 SET CONNECTION RELEASED

3 3 2 SET CONNECTION OUTSERVICE

Resulting states and reactions

N N N N N N N N ALLOCATE requests suspended

Y Y N N N N Y N Partner can renegotiate

Y Y Y Y Y Y Y Y
ALLOCATE rejected with
SYSIDERR

N Y Y N Y Y Y Y SNASVCMG sessions released

— Y N — Y N Y N Partner can rebind SNASVCMG

Command scope and restrictions
The attributes of user modegroups, which are built from a SESSIONS resource, can
be changed while the modegrroup is active.

The SNASVCMG modeset, on the other hand, is built from the CONNECTION
definition and any attempts to modify its status with a SET or INQUIRE

Chapter 15. Managing APPC connections 203

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/eyua3/topics/eyua3r5.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7ni.html

MODENAME command is suppressed. It is, however, controlled by the SET|INQ
CONNECTION, which also affects the user modesets.

CEMT INQUIRE NETNAME, where the netname is the applid of the partner
system, displays the status of all sessions associated with that link. Any attempt to
alter the status of these sessions is suppressed. You must use SET|INQ
CONNECTION|MODENAME to manage the status of user sessions and to control
negotiation with remote systems. INQ NETNAME may also be useful in error
diagnosis.

204 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 16. Defining remote resources

This chapter contains guidance information about identifying and defining remote
resources.

The chapter contains the following topics:
v “Which remote resources need to be defined?”
v “Local and remote names for resources” on page 206
v “Defining remote resources for function shipping” on page 207
v “Defining remote resources for DPL” on page 209
v “Defining remote resources for asynchronous processing” on page 212
v “Defining remote resources for transaction routing” on page 213
v “Defining remote resources for DTP” on page 227.

Which remote resources need to be defined?
Remote resources are resources that reside on a remote system but which need to
be accessed by the local CICS system. In general, you have to define all these
resources in your local CICS system, in much the same way as you define your
local resources, by using CICS resource definition online (RDO) or resource
definition macros, depending on the resource type.

You may need to define remote resources for CICS function shipping, DPL,
asynchronous processing (START command shipping), and transaction routing. No
remote resource definition is required for distributed transaction processing. But
see““A note on daisy-chaining.”

The remote resources that can be defined are:
v Remote files (function shipping)
v Remote DL/I PSBs (function shipping)
v Remote transient data destinations (function shipping)
v Remote temporary storage queues (function shipping)
v Remote programs for distributed program link (DPL)
v Remote terminals (transaction routing)
v Remote APPC connections (transaction routing)
v Remote transactions (transaction routing and asynchronous processing).

All remote resources must, of course, also be defined on the systems that own
them.

A note on daisy-chaining
The descriptions of how to define remote resources in this chapter usually assume
that there is a direct link between the local CICS and that on which the remote
resource resides.

In fact, in all types of CICS intercommunication, the local and remote systems need
not be directly connected. A request for a remote resource can be daisy-chained

© Copyright IBM Corp. 1977, 2012 205

across CICS systems by defining the resource as remote in each intermediate
system, as well as (where necessary) in the local system.

Note: The following types of request cannot be daisy-chained:
v Dynamically-routed DPL requests—see “Daisy-chaining of DPL requests” on

page 104
v Dynamically-routed transactions started by non-terminal-related START

commands
v Dynamically-routed transactions that are associated with CICS business

transaction services activities.

Local and remote names for resources
CICS resources are usually referred to by name: a file name for a file, a data
identifier for a temporary storage queue, and so on. When you are defining remote
resources, you must consider both the name of the resource on the remote system
and the name by which it is known in the local system.

CICS definitions for remote resources all have a REMOTENAME option
(RMTNAME on macro-level definitions) to enable you to specify the name by
which the resource is known on the remote system. If you omit this option, CICS
assumes that the local and remote names of the resource are identical.

Local and remote resource naming is illustrated in the following table. Related
resources and attributes are shown by identical numbers.

CICSA (local system) CICSB (remote system)

System initialization parameters

APPLID=CICSA �1� �3� APPLID=CICSB

CONNECTION resources

CONNECTION(CICR) �2�
NETNAME(CICSB) �3�

CONNECTION(CICL)
�1� NETNAME(CICSA)

FILE resources

FILE(FILEA) �4�
REMOTESYSTEM(CICR) �2�

FILE(FILEB)

FILE(local-name)
REMOTESYSTEM(CICR) �2�
REMOTENAME(FILEB) �5�

�4� FILE(FILEA)

�5� FILE(FILEB)

The table shows two files, FILEA and FILEB, which are owned by a remote CICS
system (CICSB), together with their definitions as remote resources in the local
CICS system CICSA.
v FILEA has the same name on both systems, so that a reference to FILEA on

either system means the same file.
v FILEB is provided with a local name on the local system, so that the file is

referred to by its local name in the local system and by FILEB on the remote
system. The “real” name of the remote file is specified in the REMOTENAME
option. Note that CICSA can also own a local file called FILEB.

206 CICS TS for z/OS 4.2: Intercommunication Guide

Defining remote resources for function shipping
You may have to define these remote resources if you are using CICS function
shipping.
v Remote files
v Remote DL/I PSBs
v Remote transient data destinations
v Remote temporary storage queues.

Defining remote files
A remote file is a file that resides on another CICS system.

CICS file control requests that are made against a remote file are shipped to the
remote system by means of CICS function shipping.

Applications can be designed to access files without being aware of their location.
To support this facility, the remote file must be defined (with the REMOTESYSTEM
option) in the local system.

Alternatively, CICS application programs can name a remote system explicitly on
file control requests, by means of the SYSID option. If this is done, there is no need
for the remote file to be defined on the local CICS system.

The following attributes provide CICS with sufficient information to enable it to
ship file control requests to a specified remote system.

FILE(name)

REMOTESYSTEM(name)

REMOTENAME(name)

RECORDSIZE(record-size)

KEYLENGTH(key-length)

Although MRO is supported for both user-maintained and CICS-maintained
remote data tables, CICS does not allow you to define a local data table based on a
remote source data set. However, there are ways around this restriction. (See “File
control” on page 36.)

The name of the remote system
The name of the remote system to which file control requests for this file are to be
shipped is specified in the REMOTESYSTEM option. If the name specified is that
of the local system, the request is not shipped.

File names
The name by which the file is known on the local CICS system is specified in the
FILE option. This is the name that is used in file control requests by application
programs in the local system.

The name by which the file is known on the remote CICS system is specified in the
REMOTENAME option. This is the name that is used in file control requests that
are shipped by CICS to the remote system.

If the name of the file is to be the same on both the local and the remote systems,
the REMOTENAME option need not be specified.

Chapter 16. Defining remote resources 207

Record lengths
The record length of a remote file can be specified in the RECORDSIZE option.

If your installation uses the C language, you should specify the record length for
any file that has fixed-length records.

In all other cases, the record length either is a mandatory option on file control
commands or can be deduced by the command-language translator.

Sharing file definitions
In some circumstances, two or more CICS systems can share a common CICS
system definition (CSD) file.

If the local and remote systems share a CSD, you need define each VSAM file used
in function shipping only once.

A file must be fully defined with a FILE resource, just like a local file definition. In
addition, the REMOTESYSTEM attribute must specify the sysidnt of the
file-owning region. When such a file is installed on the file-owning region, a full,
local, file definition is built. On any other system, a remote file definition is built.

For information about sharing a CSD, see Sharing the CSD in non-RLS mode, in
the CICS System Definition Guide.

Defining remote DL/I PSBs
To enable the local CICS system to access remote DL/I databases, you must define
the remote PSBs in a PDIR.

The form of macro used for this purpose is:

This entry refers to a PSB that is known to IMS DM on the system identified by
the SYSIDNT option.

The SYSIDNT and MXSSASZ operands are mandatory, because the PDIR contains
only remote entries.

Defining remote transient data destinations
A remote transient data destination is one that resides on another CICS system.

CICS transient data requests that are made against a remote destination are
shipped to the remote system by CICS function shipping. CICS application
programs can name a remote system explicitly on transient data requests, by using
the SYSID option. If this is done, there is no need for the remote transient data
destination to be defined on the local CICS system.

In most cases, however, applications are designed to access transient data
destinations without being aware of their location, and in this case the transient
data queue must be defined as a remote destination.

DFHDLPSB TYPE=ENTRY
,PSB=psbname
,SYSIDNT=name
,MXSSASZ=value
[,RMTNAME=name]

Figure 50. Macro for defining remote DL/I PSBs

208 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/file/dfha4_overview.html

A remote definition provides CICS with sufficient information to enable it to ship
transient data requests to the specified remote system. Specify the following
attributes:

TDQUEUE(name)

REMOTESYSTEM(name)

REMOTENAME(name)

REMOTELENGTH(length)

Defining remote temporary storage queues
A remote temporary storage queue is one that resides on another CICS system.
CICS temporary storage requests that are made against a remote queue are
shipped to the remote system by CICS function shipping.

Applications are typically designed to access temporary storage queues without
being aware of their location. In the local CICS system, you can create TSMODEL
resource definitions for temporary storage queues that match a specified prefix. To
make the temporary storage model point to a remote system, use the following
attributes:
v REMOTEPREFIX (or XREMOTEPFX) specifies the prefix for the temporary

storage queue on the remote system.
v REMOTESYSTEM specifies the name of the connection that links the local

system to the remote system where the temporary storage queue resides.

When an application specifies a temporary storage queue name that matches the
prefix defined by the temporary storage model, CICS ships the request to the
remote system.

It is also possible for CICS application programs to name a remote system
explicitly on temporary storage requests, using the SYSID option, or to use the
XTSEREQ global user exit program to direct the request to a system on which the
appropriate queue is defined. With these methods, there is no need for the remote
temporary storage queue to be defined in the local CICS system. However, note
that TSMODEL resource definitions do not support these methods for specifying a
temporary storage queue that resides in a temporary storage data sharing pool. If
you want to specify an explicit SYSID for a shared queue pool, in your application
program or through the XTSEREQ global user exit program, you must use a
temporary storage table (TST) with a TYPE=SHARED entry for the shared queue
pool.
Related information:
Temporary storage EXEC interface program exits, XTSEREQ and XTSEREQC

Defining remote resources for DPL
You may have to define remote server programs if you are using CICS DPL.

A remote server program is a program that resides on another CICS system. CICS
program-control LINK requests that are made against a remote program are
shipped to the remote system by means of CICS DPL.

Defining remote server programs
A remote server program is defined with remote attributes on the program
definition.

Chapter 16. Defining remote resources 209

|

Specify the following attributes. How you specify the attributes depends on
whether DPL requests for the program are to be routed to the remote region
statically or dynamically.

PROGRAM(name)

REMOTESYSTEM(name)

REMOTENAME(name)

TRANSID(name)

DYNAMIC(NO|YES)

The name of the remote system
To route DPL requests for the program statically you must complete the following
tasks.
v Allow the value of the DYNAMIC option to default to NO.
v On the REMOTESYSTEM option, specify the name of the server region to which

LINK requests for this program are to be shipped. The name must be the name
of an installed CONNECTION definition or an installed IPCONN definition.

An EXEC CICS LINK command that names the program is shipped to the server
region named on the REMOTESYSTEM option.

To route DPL requests for the program dynamically:
v Specify DYNAMIC(YES).
v Do not specify the REMOTESYSTEM option; or use REMOTESYSTEM to specify

a default server region.

An EXEC CICS LINK command that names the program causes the dynamic
routing program to be invoked. The routing program can select the server region
to which the request is shipped.

Program names
The name by which the server program is known on the local CICS system is
specified in the PROGRAM option. This is the name that is used in LINK requests
by client programs in the local system.

The name by which the server program is known on the remote CICS system is
specified in the REMOTENAME option. This is the name that is used in LINK
requests that are shipped by CICS to the remote system.

If the name of the server program is to be the same on both the local and the
remote systems, the REMOTENAME option need not be specified.

Transaction names
It is possible to use the program resource definition to specify the name of the
mirror transaction under which the program, when used as a DPL server, is to run.
The TRANSID option is used for this purpose.

For dynamic requests that are routed using the CICSPlex System Manager
(CICSPlex SM), the TRANSID option takes on a special significance, because
CICSPlex SM's routing logic is transaction-based. CICSPlex SM routes each DPL
request according to the rules specified for its associated transaction.

210 CICS TS for z/OS 4.2: Intercommunication Guide

Note: The CICSPlex SM system programmer can use the EYU9WRAM
user-replaceable module to change the transaction ID associated with a DPL
request.

For introductory information about CICSPlex SM, see the CICSPlex SM Concepts
and Planning manual.

When definitions of remote server programs aren't required
There are some circumstances in which you may not need to install a static
definition of a remote server program.
v The server program is to be autoinstalled.

As an alternative to being statically defined in the client system, the remote
server program can be autoinstalled when a DPL request for it is first issued. If
you use this method, you need to write an autoinstall user program to supply
the name of the remote system. (For details of the CICS autoinstall facility for
programs, see Autoinstalling programs, map sets, and partition sets, in the CICS
Resource Definition Guide. For programming information about writing
program-autoinstall user programs, see Writing a program to control autoinstall
of APPC connections, in the CICS Customization Guide.)
When the autoinstall user program is invoked, it can install:

A local definition of the server program
CICS runs the server program on the local region.

A definition that specifies REMOTESYSTEM(remote_region) and
DYNAMIC(NO)

CICS ships the LINK request to the remote region.

A definition that specifies DYNAMIC(YES)
CICS invokes the dynamic routing program to route the LINK request.

Note: The DYNAMIC attribute takes precedence over the
REMOTESYSTEM attribute. Thus, a definition that specifies both
REMOTESYSTEM(remote_region) and DYNAMIC(YES) defines the
program as dynamic, rather than as residing on a particular remote
region. (In this case, the REMOTESYSTEM attribute names the default
server region passed to the dynamic routing program.)

No definition of the server program
CICS invokes the dynamic routing program to route the LINK request.

Note: This assumes that the autoinstall control program chooses not to
install a definition. If no definition is installed because autoinstall fails,
the dynamic routing program is not invoked.

v The client program names the target region explicitly, by specifying the SYSID
option on the EXEC CICS LINK command.

Note:

1. If there is no installed definition of the program named on the LINK
command, the dynamic routing program is invoked but cannot route the
request, which is shipped to the remote region named on the SYSID option.

2. If the SYSID option names the local CICS region, the dynamic routing
program is able to route the request.

v DPL calls for the server program are to be routed dynamically.

Chapter 16. Defining remote resources 211

If there is no installed definition of the program named on the LINK command,
the dynamic routing program is invoked and (provided that the SYSID option is
not specified) can route the request.

Note: Although in some cases a remote definition of the server program may
not be necessary, in others a definition will be required—to set the program's
REMOTENAME or TRANSID attribute, for example. In these cases, you should
install a definition that specifies DYNAMIC(YES).

Defining remote resources for asynchronous processing
The only remote resource definitions needed for asynchronous processing are for
transactions that are named in the TRANSID option of START commands.

Note, however, that an application can use the CICS RETRIEVE command to
obtain the name of a remote temporary storage queue which it subsequently
names in a function shipping request.

Defining remote transactions
A remote transaction for CICS asynchronous processing is a transaction that is
owned by another system and is invoked from the local CICS system only by
START commands.

CICS application programs can name a remote system explicitly on START
commands, by means of the SYSID option. If this is done, there is no need for the
remote transaction to be defined on the local CICS system.

More generally, however, applications are designed to start transactions without
being aware of their location, and in this case an installed transaction definition for
the transaction must be available.

Note: If the transaction is owned by another CICS system and may be invoked by
CICS transaction routing as well as by START commands, you must define the
transaction for transaction routing.

Remote transactions that are invoked only by START commands without the
SYSID option require only basic information in the installed transaction definition.
Specify the following attributes:

TRANSACTION(name)

REMOTESYSTEM(sysidnt)

REMOTENAME(name)

LOCALQ(NO|YES)
Local queuing (LOCALQ) can be specified for remote transactions that are
initiated by START requests. For further details, see Chapter 5, “Asynchronous
processing,” on page 49.

Restriction on the REMOTENAME option
Some asynchronous-processing requests are for processes that involve transaction
routing.

One example is a START command to attach a remote transaction on a local
terminal. To support such requests, the value of the REMOTENAME option and
the transaction name must be the same on the local resource definition of the

212 CICS TS for z/OS 4.2: Intercommunication Guide

transaction to be started. If they are different, the requested transaction does not
start, and the message DFHCR4310 is sent to the CSMT transient-data queue in the
requesting system.

Defining remote resources for transaction routing
CICS transactions can be routed to remote regions either statically or dynamically.

A transaction that is to be routed can be started in a variety of ways:
v From a user-terminal
v By a terminal-related ATI request; for example, a terminal-related EXEC CICS

START command.
v By a non-terminal-related ATI request; for example, by a non-terminal-related

EXEC CICS START command.
v If the transaction is associated with a CICS business transaction services (BTS)

activity, by a BTS RUN ASYNCHRONOUS command. For more information about BTS,
see BTS overview in Business Transaction Services.

To route these requests, you must define a routing program. CICS provides two
routing programs that can route different types of request: the dynamic routing
program and the distributed routing program. For more information about these
programs, see “Two routing programs” on page 65. To route requests between
CICS regions, you must specify the appropriate program in the associated system
initialization parameter:
v If you use the distributed routing program, specify the DSRTPGM system

initialization parameter in each routing and target CICS region.
v If you use the dynamic routing program, specify the DTRPGM system initialization

parameter in each routing region.

In addition to configuring the CICS region, you must define the appropriate CICS
resources:
v If the request to start the transaction is associated with a terminal, define the

terminal. For more information, see “Defining terminals for transaction routing”
v For every request, define a TRANSACTION resource with the appropriate

attributes. For more information, see “Defining transactions for transaction
routing” on page 222.

Defining terminals for transaction routing
Terminal-related transaction routing is the routing of transactions started from
user-terminals, and transactions started by terminal-related ATI requests. There are
a number of rules that define whether a terminal is eligible for transaction routing.

Most of the terminal and session types supported by CICS are eligible for
transaction routing. However, the following terminals are not eligible, and cannot
be defined as remote resources:
v LUTYPE6.1 connections and sessions
v MRO connections and sessions
v IBM 7770 or 2260 terminals
v Pooled 3600 or 3650 pipeline logical units
v MVS system consoles.

Chapter 16. Defining remote resources 213

|
|
|
|
|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhp9/topics/overview.html

Both the terminal and the transaction must be defined in both CICS systems, as
follows:
1. In the terminal-owning region:

a. The terminal must be defined as a local resource (or must be
autoinstallable).

b. The transaction must be defined as a remote resource if it is to be initiated
from a terminal or by ATI.

2. In the application-owning region:
a. The terminal must be defined as a remote resource, unless a shipped

terminal definition is available; see “Shipping terminal and connection
definitions” on page 216) for more information.

b. The transaction must be defined as a local resource.

If transaction routing requests are to be “daisy-chained” across intermediate
systems, the same rules apply. In addition, both the terminal and the transaction
must be defined as remote resources in the intermediate CICS systems. If you are
using non-z/OS Communications Server terminals, you also need to define indirect
links to the TOR on the AOR and the intermediate systems (see “Defining indirect
links for transaction routing” on page 184).

Defining remote z/OS Communications Server terminals
Remote z/OS Communications Server terminals are defined with attributes that
identify the path to the terminal-owing region.

Instead of defining the terminal on the application-owning region, you can arrange
for a suitable definition to be shipped from the terminal-owning region when it is
required. See “Shipping terminal and connection definitions” on page 216 for more
information on shipping definitions.

Remote z/OS Communications Server terminals are defined using a TERMINAL
resource.
v The REMOTESYSNET attribute specifies the netname (applid) of the TOR. This

enables CICS to form the fully-qualified identifier of the remote terminal, even
where there is no direct link to the TOR. (See “Local and remote names for
terminals” on page 220.)

v The REMOTESYSTEM attribute specifies the name of the next link in the path to
the TOR. If there is more than one possible path to the TOR, use
REMOTESYSTEM to specify the next link in the preferred path.
If REMOTESYSTEM names a direct link to the TOR, normally you do not need
to specify REMOTESYSNET. However, if the direct link is an APPC connection
to a TOR that is a member of a z/OS Communications Server generic resource
group, you might need to specify REMOTESYSNET. REMOTESYSNET is needed
in this case if the NETNAME specified on the CONNECTION definition is the
generic resource name of the TOR (not the applid).

Only a few of the various terminal properties need be specified for a remote
terminal definition. They are:

TERMINAL(trmidnt)

TYPETERM(terminal-type)

NETNAME(netname_of_terminal)

REMOTESYSTEM(sysidnt_of_next_system)

214 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html

REMOTESYSNET(netname_of_TOR)

REMOTENAME(trmidnt_on_TOR)

The TYPETERM referenced by a remote terminal definition can be a CICS-supplied
version for the particular terminal type, or one that you have created. If you are
defining a TYPETERM that will be used only for remote terminals, you can ignore
the session properties, the paging properties, and the operational properties. You
can also ignore BUILDCHAIN in the application features.

Defining remote APPC connections
You can define a remote single-session APPC terminal using a TERMINAL and
TYPETERM resource, in the same way as you would define a remote z/OS
Communications Server terminal.

For more information on defining a remote z/OS Communications Server terminal,
see “Defining remote z/OS Communications Server terminals” on page 214. For
remote parallel-session APPC systems and devices, you must create a
CONNECTION with the following attributes. A SESSIONS definition is not
required for a remote connection.

CONNECTION(sysidnt_of_device)

NETNAME(netname_of_device)

REMOTESYSTEM(sysidnt_of_next_system)

REMOTESYSNET(netname_of_TOR)

REMOTENAME(sysidnt_of_device_on_TOR)

ACCESSMETHOD(VTAM)

Note: VTAM is now z/OS Communications Server.

PROTOCOL(APPC)

How to share terminal and connection definitions
In some circumstances, two or more CICS systems can share a common CICS
system definition (CSD) file. If the local and remote systems share a CSD, define
each terminal and APPC connection only once.

Define the terminal using the TERMINAL resource, and include an associated
TYPETERM resource, similar to a local terminal definition. You must specify other
attributes to ensure that when the terminal is installed on the terminal-owning
region, a full, local terminal definition is built. On any other system, a remote
terminal definition is built:
v Specify the NETNAME of the terminal-owning region in the REMOTESYSNET

attribute.
v Specify the SYSIDNT of the terminal-owning region in the REMOTESYSTEM

attribute.

Similarly, an APPC connection, for example, must be fully defined using a
CONNECTION resource, and must have one or more associated SESSIONS
resources. Specify the NETNAME of the terminal-owning region in the
REMOTESYSNET attribute and the SYSIDNT of the terminal-owning region in the
REMOTESYSTEM attribute in the same way as for the terminal definition. When
the connection is installed on the terminal-owning region, a connection definition
is built. On any other system, a remote connection definition is built, and the
SESSIONS definition is ignored.

Chapter 16. Defining remote resources 215

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/typeterm/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/typeterm/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/sessions/dfha4_overview.html

The links that you define between systems on the transaction routing path that
share common terminal or connection definitions must be given the same name.
That is, the CONNECTION resource must be given the name that you specify on
the REMOTESYSTEM attribute of the common TERMINAL definitions.

Shipping terminal and connection definitions
If you are using z/OS Communications Server terminals on your terminal-owning
region, you can arrange for a terminal definition to be shipped from the
terminal-owning region to the application-owning region whenever it is required.
If you use this method, you need not define the terminal on the
application-owning region.

When a remote transaction is invoked from a shippable terminal, the request that
is transmitted to the application-owning region is flagged to show that a shippable
terminal definition is available. If the application-owning region already has a
valid definition of the terminal (which may have been shipped previously), it
ignores the flag. Otherwise, it asks for the definition to be shipped.

Shipped terminal definitions are propagated to the connected CICS system using
the communication sessions providing the connection. When a terminal definition
is shipped to another region, the TCTUA is also shipped, except when the
principal facility is an APPC parallel session. When a routed transaction
terminates, information from the TCTTE and the TCTUA is communicated back to
the region that owns the terminal.

Note: APPC connection definitions and APPC terminal definitions are always
shippable; no special resource definition is required.

Terminal definitions can be shipped across intermediate systems. If you use
shippable terminals and there is more than one possible path from the AOR to the
TOR, you may want to specify the preferred path by defining indirect links to the
TOR on the AOR and the intermediate systems (see “Defining indirect links for
transaction routing” on page 184).

When a shipped definition is to be installed on an intermediate or
application-owning region, the autoinstall user program is invoked in that region.
If the name of the shipped definition clashes with that of a remote terminal or
connection already installed on the region, CICS assigns an alias to the shipped
definition, and passes the alias to the autoinstall user program. CICS-generated
aliases for shipped terminals and connections are recognizable by their first
character, which is always '{'. Their remaining three characters can have the values
'AAA' through '999'. Your autoinstall user program can accept a CICS-generated
alias, override it, or reject the install. Note that it can also specify an alias for a
shipped definition when there is no clash with an installed remote definition.

You need to consider assigning aliases to shipped definitions if, for example, you
have two or more terminal-owning regions that use similar sets of terminal
identifiers for transaction routing to the same AOR. For information about writing
an autoinstall user program to control the installation of shipped terminals, see
Writing a program to control autoinstall of shipped terminals , in the CICS
Customization Guide.

216 CICS TS for z/OS 4.2: Intercommunication Guide

Related concepts:
“Terminal aliases” on page 221
The name by which a terminal is known in the application-owning region is
usually the same as its name in the terminal-owning region. You can, however,
choose to call the remote terminal by a different name (an alias) in the
application-owning region.

Shipping terminals for ATI requests:

If you require a transaction that is started by ATI to acquire a remote terminal, you
normally statically define the terminal to the AOR and any intermediate systems.

You do this because, for example, specifying a remote terminal for an intrapartition
transient data queue (see “Defining intrapartition transient data queues” on page
234) does not cause a terminal definition to be shipped from the remote system.
However, if a shipped terminal definition has already been received, following a
previous transaction routing request, the terminal is eligible for ATI requests.

However, if the TOR and AOR are directly connected, CICS does allow you to
cause terminal definitions to be shipped to the AOR to satisfy ATI requests. If you
enable the user exit XALTENF in the AOR, CICS invokes this exit whenever it
meets a “terminal-not-known” condition. The program you code has access to
parameters, giving details of the origin and nature of the ATI request. You use
these to decide the identity of the region that owns the terminal definition you
want CICS to ship for you. A similar user exit, XICTENF, is available for start
requests that result from EXEC CICS START.

Remember that XALTENF and XICTENF can be used to ship terminal definitions
only if there is a direct link between the TOR and the AOR. See “Shipping
terminals for automatic transaction initiation” on page 73 for more information.

If you function ship START requests from a terminal-owning region to the
application-owning region, you may need to consider using the FSSTAFF
(function-shipped START affinity) system initialization parameter. See “Shipping
terminals for ATI from multiple TORs” on page 78 for more details.

A better way of handling terminal-related START requests is to use the enhanced
routing methods described in “Routing transactions invoked by START
commands” on page 80. If the START request is issued in the TOR, it is not
function-shipped to the AOR: thus the “terminal-not-known” cannot occur; nor do
you need to use FSSTAFF to prevent the transaction being started against the
“wrong” terminal. Instead, the START executes directly in the TOR, and the
transaction is routed as if it had been initiated from a terminal. If you are using
shippable terminals, a terminal definition is shipped to the AOR if required.

Defining terminals as shippable:

To make a terminal definition eligible for shipping, you must associate it with a
TYPETERM that specifies SHIPPABLE(YES).

This method can be used for any z/OS Communications Server terminal. It is
particularly appropriate if you use autoinstall in the TOR.

Terminal definitions that have been shipped to an application-owning region
eventually become redundant, and must be deleted from the AOR (and from any

Chapter 16. Defining remote resources 217

intermediate systems between the TOR and AOR). For information about this, see
Chapter 25, “Efficient deletion of shipped terminal definitions,” on page 281.

Defining remote non-z/OS Communications Server terminals
Non-z/OS Communications Server terminals must be defined using resource
definition macros: you cannot use RDO.

A remote non-z/OS Communications Server terminal requires a full terminal
control table entry in the remote system (TOR), and a terminal control table entry
in the local system (AOR) that contains sufficient information about the terminal to
enable CICS to perform the transaction routing. Data set control information and
line information is not required for the definition of a remote terminal.

Non-z/OS Communications Server terminal definitions are not shippable.

Using resource definition macros, you can define remote non-z/OS
Communications Server terminals in either of two ways:
1. By means of DFHTCT TYPE=REMOTE macros
2. By means of normal DFHTCT TYPE=TERMINAL macros preceded by a

DFHTCT TYPE=REGION macro

Both methods allow the same terminal definitions to be used to generate the
required entries in both the local and the remote system.

Definition using DFHTCT TYPE=REMOTE:

The format of the DFHTCT TYPE=REMOTE macro is reproduced here for ease of
reference.

SYSIDNT specifies the name of the connection to the terminal-owning region. If
there is no direct link to the TOR, SYSIDNT must specify the name of an indirect
link (see “Defining indirect links for transaction routing” on page 184).

Sharing terminal definitions:

DFHTCT TYPE=REMOTE
,ACCMETH=access-method
,SYSIDNT=name-of-CONNECTION-to-TOR
,TRMIDNT=name
,TRMTYPE=terminal-type
[,ALTPGE=(lines,columns)]
[,ALTSCRN=(lines,columns)]
[,ALTSFX=number]
[,DEFSCRN=(lines,columns)]
[,ERRATT={NO|([LASTLINE][,INTENSIFY]
[,{BLUE|RED|PINK|GREEN|TURQUOISE|YELLOW

|NEUTRAL}]
[,{BLINK|REVERSE|UNDERLINE}])}]
[,FEATURE=(feature[,feature],...)]
[,LPLEN={132|value}]
[,PGESIZE=(lines,columns)]
[,RMTNAME={name-specified-in-TRMIDNT|name}]
[,STN2980=number]
[,TAB2980={1|value}]
[,TCTUAL=number]
[,TIOAL={value|(value1,value2)}]
[,TRMMODL=numbercharacter]

Figure 51. Defining a remote non-z/OS Communications Server terminal (transaction routing)

218 CICS TS for z/OS 4.2: Intercommunication Guide

This section applies to all supported types of non-z/OS Communications Server
terminals.

With the exception of SYSIDNT, the operands of DFHTCT TYPE=REMOTE form a
subset of those that can be specified with DFHTCT TYPE=TERMINAL. Any of the
remaining operands can be specified. They are ignored unless the SYSIDNT
operand names the local system, in which case the macro becomes equivalent to
the DFHTCT TYPE=TERMINAL form.

A single DFHTCT TYPE=REMOTE macro can therefore be used to define the same
terminal in both the local and the remote systems. A typical use of this method of
definition is shown in Figure 52.

Note: VTAM is now z/OS Communications Server.

In Figure 52, the same terminal definition is used in both the local and the remote
systems.

In the local system, the fact that the terminal sysidnt differs from that of the local
system (specified on the DFHTCT TYPE=INITIAL macro) causes a remote terminal
entry to be built. In the remote system, the fact that the terminal sysidnt is that of
the remote system itself causes the TYPE=REMOTE macro to be treated exactly as
if it were a TYPE=TERMINAL macro.

Note: For this method to work, the CONNECTION from the local system to the
remote system must be given the name of the sysidnt by which the remote system
knows itself (CICR in the example).

The terminal identification is "aaaa" in both systems.

Definition using DFHTCT TYPE=REGION:

If you use the DFHTCT TYPE=REGION macro, you can define remote terminals in
the same way as local terminals, using DFHTCT TYPE=SDSCI, TYPE=LINE, and
TYPE=TERMINAL macros.

Local System CICL Remote System CICR
AOR TOR

DFHSIT TYPE= DFHSIT TYPE=
SYSIDNT=CICL SYSIDNT=CICR

DFHTCT TYPE=INITIAL, DFHTCT TYPE=INITIAL,
ACCMETH=NONVTAM, ACCMETH=NONVTAM,
SYSIDNT=CICL, SYSIDNT=CICR,
. .
. .

DFHTCT TYPE=REMOTE, DFHTCT TYPE=REMOTE,
SYSIDNT=CICR SYSIDNT=CICR
TRMIDNT=aaaa, TRMIDNT=aaaa,
TRMTYPE=3277, TRMTYPE=3277,
TRMMODL=2, TRMMODL=2,
ALTSCRN=(43,80) ALTSCRN=(43,80)
. .
. .

DFHTCT TYPE=FINAL DFHTCT TYPE=FINAL

Figure 52. Typical use of DFHTCT TYPE=REMOTE macro

Chapter 16. Defining remote resources 219

The definitions must, however, be preceded by a DFHTCT TYPE=REGION macro,
which has the following form:
DFHTCT TYPE=REGION

,SYSIDNT={name-of-CONNECTION-to-TOR|LOCAL}

SYSIDNT specifies the name of the connection to the terminal-owning region. If
there is no direct link to the TOR, SYSIDNT must specify the name of an indirect
link (see “Defining indirect links for transaction routing” on page 184).

Sharing terminal definitions:

If SYSIDNT does not name the local system, only the information required to build
a remote terminal entry is extracted from the succeeding definitions. DFHTCT
TYPE=SDSCI and TYPE=LINE definitions are ignored. Parameters of
TYPE=TERMINAL definitions that are not part of the TYPE=REMOTE subset are
also ignored.

A return to local system definitions is made by using DFHTCT
TYPE=REGION,SYSIDNT=LOCAL.

A typical use of this method of definition is shown in Figure 53.

In Figure 53, the same copy book of terminal definitions is used in both the
terminal-owning region and the application-owning region.

In the terminal-owning region, local terminal entries are built.

In the application-owning region, the fact that the sysidnt specified in the
TYPE=REGION macro differs from the sysidnt specified in the DFHTCT
TYPE=INITIAL macro causes remote terminal entries to be built.

Local and remote names for terminals
CICS uses a unique identifier for every terminal that is involved in transaction
routing. The identifier is formed from the applid (netname) of the CICS system
that owns the terminal and the terminal identifier specified in the terminal
definition on the terminal-owning region.

If, for example, the applid of the CICS system is PRODSYS and the terminal
identifier is L77A, the fully-qualified terminal identifier is PRODSYS.L77A.

Terminal-Owning Region Application-Owning Region

DFHTCT TYPE=INITIAL, DFHTCT TYPE=INITIAL,
SYSIDNT=TERM, SYSIDNT=TRAN,
ACCMETH=NONVTAM ACCMETH=NONVTAM
. .

DFHTCT TYPE=REGION,
SYSIDNT=TERM

COPY TERMDEFS COPY TERMDEFS

DFHTCT TYPE=REGION,
SYSIDNT=LOCAL

DFHTCT TYPE=FINAL DFHTCT TYPE=FINAL

Figure 53. Typical use of DFHTCT TYPE=REGION macro

220 CICS TS for z/OS 4.2: Intercommunication Guide

The following rules apply to all forms of hard-coded remote terminal definitions:
v The definition must enable CICS to access the netname of the terminal-owning

region. For example, if you are using z/OS Communications Server terminals
and there is no direct link to the TOR, you should use the REMOTESYSNET
option to provide the netname of the TOR.
If you are using non-z/OS Communications Server terminals and there is no
direct link to the TOR, the SYSIDNT operand of the DFHTCT TYPE=REMOTE
or TYPE=REGION macro must specify the name of an indirect link (on which
the NETNAME option names the applid of the TOR).

v The “real” terminal identifier must always be specified, either directly or by
means of an alias.

Providing the netname of the TOR:

You must always ensure that the remote terminal definition allows CICS to access
the netname of the TOR.

In the following examples, it is assumed that the applid of the terminal-owning
region is PRODSYS.

z/OS Communications
Server terminal definition
with direct link to TOR

TERMINAL resource
specifies

REMOTESYSTEM(PD1)

CONNECTION resource
specifies

CONNECTION(PD1)
NETNAME(PRODSYS)

z/OS Communications
Server terminal definition
with no direct link to TOR

TERMINAL resource
specifies

REMOTESYSTEM(NEXT)
REMOTESYSNET(PRODSYS)

CONNECTION resource
specifies

CONNECTION(NEXT)
NETNAME(INTER1)

Non-z/OS Communications
Server terminal definition
with direct link to TOR
(method 1)

DFHTCT TYPE=REMOTE,
SYSIDNT=PD1

CONNECTION resource
specifies

CONNECTION(PD1)
NETNAME(PRODSYS)

Non-z/OS Communications
Server terminal definition
with direct link to TOR
(method 2)

DFHTCT TYPE=REGION,
SYSIDNT=PD1

CONNECTION resource
specifies

CONNECTION(PD1)
NETNAME(PRODSYS)

Non-z/OS Communications
Server terminal definition
with no direct link to TOR
(method 1)

DFHTCT TYPE=REMOTE,
SYSIDNT=REMT,

DFHTCT TYPE=TERMINAL,
...

CONNECTION resource
specifies

CONNECTION(REMT)
NETNAME(PRODSYS)
ACCESSMETHOD(INDIRECT)
INDSYS(NEXT)

Terminal aliases:

The name by which a terminal is known in the application-owning region is
usually the same as its name in the terminal-owning region. You can, however,
choose to call the remote terminal by a different name (an alias) in the
application-owning region.

You have to provide an alias if the terminal-owning region and the
application-owning region each own a terminal with the same name; you cannot
have a local terminal definition and a remote terminal definition with the same

Chapter 16. Defining remote resources 221

name. (Nor can you have two remote terminal definitions (for terminals on
different remote regions) with the same name.)

If you use an alias, you must also specify the “real” name of the terminal as its
remote name, as follows:

You specify the remote name in the REMOTENAME attribute of the TERMINAL
resource.

Defining transactions for transaction routing
The way in which a transaction is selected for local or remote execution is
determined by the remote attributes that are specified in the transaction definition.
1. When an EXEC CICS START command uses the SYSID option to name the

remote region on which the transaction is to run, a remote region named
explicitly on in the SYSID option takes precedence over one named on the
transaction definition.

2. The remote attributes specify DYNAMIC(NO), and the REMOTESYSTEM name
is either blank or the sysid of the local system.
In this case, the transaction is executed locally, and transaction routing is not
involved.

3. The remote attributes specify DYNAMIC(NO), and the REMOTESYSTEM name
differs from the sysid of the local system.
In this case, the transaction is routed to the system named in the
REMOTESYSTEM option. This is known as static transaction routing. The
REMOTESYSTEM option must name a direct link to another system (not an
indirect link nor a remote APPC connection).

4. The remote attributes specify DYNAMIC(YES).
In this case, the decision about where to execute the transaction is taken by
your dynamic or distributed routing program. See “Two routing programs” on
page 65.

Note: Exceptions to this rule are transactions initiated by EXEC CICS START
commands that are ineligible for enhanced routing. For example, if one of these
transactions is defined as DYNAMIC(YES), your dynamic routing program is
invoked but cannot route the transaction. See “Routing transactions invoked by
START commands” on page 80.

The name in the TRANSACTION option is the name by which the transaction is
invoked in the local region. TASKREQ can be specified if special inputs, such as a

Local terminal Local terminal

Trmidnt L77A Trmidnt L77A

Remote terminal

Trmidnt R77A

Remote Name L77A

Terminal-owning
region (TOR)

Application-owning
region (AOR)

Figure 54. Local and remote names for remote terminals

222 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html

program attention (PA) key, program function (PF) key, light pen, magnetic slot
reader, or operator ID card reader, are used.

If there is a possibility that the transaction will be executed locally, the definition
must follow the normal rules for the definition of a local transaction. In particular,
the PROGRAM option must name a user program that will be installed in the local
system. When the transaction is routed to another system, the program associated
with it is always the relay program DFHAPRT, irrespective of the name specified
in the PROGRAM option.

The PROFILE option names the profile that is to be used for communication
between the terminal and the relay transaction (or the user transaction if the
transaction is executed locally). For remote execution, the TRPROF option names
the profile that is to be used for communication on the session between the relay
transaction and the remote transaction-owning system. Information about profiles
is given under “Defining communication profiles” on page 229.

When a transaction will always be routed to a remote system, so that the
transaction executed in the local system is always the relay transaction, you might
want to specify some options for control of the relay transaction:
v You can set or default TWASIZE to zero, because the relay transaction does not

require a TWA.
v You should specify transaction security for routed transactions that are operator

initiated. You do not need to specify resource security checking, because the
relay transaction does not access resources. See Transaction security , in the CICS
RACF Security Guide for information on security.

v For transaction routing on mapped APPC connections or MRO sessions, you
should code the RTIMOUT option on the communication profile named on the
TRPROF option of the transaction definition. This causes the relay transaction to
be timed out if the system to which a transaction is routed does not respond
within a reasonable time.
Deadlock time-out (specified on the DTIMOUT option of the transaction
definition) is not triggered for terminal I/O waits. Because the relay transaction
does not access resources after obtaining a session, it has little need for
DTIMOUT except to trap suspended ALLOCATE requests. (Methods for
specifying whether, if there are no free sessions to a remote system, ALLOCATE
requests should be queued or rejected, are described in Chapter 24, “Intersystem
session queue management,” on page 277.)

The method you use to define transactions for routing may differ, depending on
whether the transactions are to be statically or dynamically routed.

Static transaction routing
There are two methods of defining transactions that are to be statically routed.

Using separate local and remote definitions:

You create a remote definition for the transaction, and install it on the requesting
region: the REMOTESYSTEM option must specify the name of the target region (or
the name of an intermediate system, if the request is to be “daisy-chained”).

You install separate remote definitions for the transaction on any intermediate
systems: the REMOTESYSTEM option must specify the name of the next system in

Chapter 16. Defining remote resources 223

the routing chain. You create a local definition for the transaction, and install it on
the target region: the REMOTESYSTEM option must be blank, or specify the name
of the target region.

If the transaction may be initiated by an EXEC CICS START command, check
whether you can use the enhanced routing method described in “Routing
transactions invoked by START commands” on page 80. If enhanced routing is
possible, define the transaction as ROUTABLE(YES) in the region in which the
START will be issued.

If two or more systems along the transaction-routing path share the same CSD, the
transaction definitions should be in different groups.

Using dual-purpose definitions:

A dual-purpose transaction definition is shared between the requesting region and
the target region (and possibly between intermediate systems too, if “daisy
chaining” is involved). The REMOTESYSTEM attribute specifies the name of the
target region.

If the transaction may be initiated by an EXEC CICS START command, check
whether you can use the enhanced routing method described in “Routing
transactions invoked by START commands” on page 80. If enhanced routing is
possible, specify ROUTABLE(YES).

When the definition is installed on each system, the local CICS compares its
SYSIDNT with the REMOTESYSTEM name. If they are different (as in the
requesting region), a remote transaction definition is created. If they are the same
(as in the target region), a local transaction definition is installed.

It is recommended that, for static transaction routing, you use this method
wherever possible. Because you have only one set of CSD records to maintain, it
provides savings in disk storage and time. However, you can use it only if your
systems share a CSD. For information about sharing a CSD, see Sharing the CSD in
non-RLS mode, in the CICS System Definition Guide.

Dynamic transaction routing
There are three methods of defining transactions that are to be dynamically routed.

Note: Using dual-purpose definitions (on which the REMOTESYSTEM option
specifies the default target region) is a fourth possible method, but is not
recommended for transactions that are to be dynamically routed. This is because
the DYNAMIC(YES) attribute on the shared definition causes the dynamic routing
program to be invoked unnecessarily in the target region, after the transaction has
been routed.

Using separate local and remote definitions:

This is the recommended method for transactions that may be initiated by
terminal-related EXEC CICS START commands.

This method is as described under “Static transaction routing” on page 223.

For dynamic routing of a transaction initiated by a START command, you must
define the transaction as ROUTABLE(YES) in the region in which the START
command is issued.

224 CICS TS for z/OS 4.2: Intercommunication Guide

Using identical definitions:

This is the recommended method for the following types of transactions.
v Are associated with CICS business transaction services (BTS) activities
v Are associated with method requests for enterprise beans or CORBA stateless

objects (the request processor transactions specified on the REQUESTMODEL
definitions)

v May be initiated by non-terminal-related START commands.

These types of transactions are routed using the distributed routing model, which
is a peer-to-peer system—each region can be both a requesting/routing region and
a target region. Therefore, the transactions should be defined identically in each
participating region. The regions may or may not be able to share a CSD—see
Sharing the CSD in non-RLS mode, in the CICS System Definition Guide.

On each TRANSACTION definition:
v Specify DYNAMIC(YES).
v Do not specify a value for the REMOTESYSTEM option.
v If the transaction may be initiated by a non-terminal-related START command,

specify ROUTABLE(YES).

Note that the “identical definitions” method differs from the “dual-purpose
definitions” method in several ways:
v It is used for dynamic, not static, routing.
v The TRANSACTION definitions do not specify the REMOTESYSTEM option.
v The participating regions are not required to share a CSD.

Using a single transaction definition in the TOR:

This is the recommended method for terminal-initiated transactions.

Using it, in the TOR (and in any intermediate systems) you install only one
transaction definition that specifies DYNAMIC(YES). This single definition
provides a set of default attributes for all transactions that are dynamically routed.
The name of the common definition is that specified on the DTRTRAN system
initialization parameter. The default name is CRTX, which is the name of a
CICS-supplied transaction definition that is included in the CSD group DFHISC.

If, at transaction attach, CICS cannot find an installed resource definition for a user
transaction identifier (transid), it attaches a transaction built from the user
transaction identifier and the set of attributes taken from the common transaction
definition. (If the transaction definition specified on the DTRTRAN parameter is
not installed, CICS attaches the CICS-supplied transaction CSAC. This sends
message DFHAC2001—“Transaction 'tranid' is unrecognized”—to the user's
terminal.) Because the common transaction definition specifies DYNAMIC(YES),
CICS invokes the dynamic transaction routing program to select a target
application-owning region and, if necessary, name the remote transaction.

In the target AOR, you install a local definition for each dynamically-routed
transaction.

If you use this method for all your terminal-initiated transactions:

Chapter 16. Defining remote resources 225

v Dynamically-routed transactions should be installed in the terminal-owning
region (if local to the TOR), or the application-owning region (if local to the
AOR), but not both.

v The only terminal-initiated transaction you should define as dynamic is the
dynamic transaction routing definition specified on the DTRTRAN parameter.

v The only terminal-initiated transactions you should define as remote are those
that are to be statically routed.

This greatly simplifies the task of managing resource definitions.

It is recommended that you create your own common transaction definition for
dynamic routing, using CRTX as a model. The definition is supplied in RDO group
DFHISC, with the following attributes:

DTIMOUT(NO)

DYNAMIC(YES)
This is required for a dynamic transaction routing definition that is specified
on the DTRTRAN system initialization parameter. You can change the other
parameters when creating your own definition, but must specify
DYNAMIC(YES).

INDOUBT(BACKOUT)

PROFILE(DFHCICST)

PROGRAM(########)
The CICS-supplied default transaction specifies a dummy program name,
########. If your dynamic transaction routing program allows a transaction to
run in the local region, and its definition specifies the dummy program name,
CICS is unlikely to find such a program, causing a “program-not-found”
condition.

You are recommended to specify the name of a program that you want CICS
to invoke whenever the transaction:
v Is not routed to a remote system, and
v Is not rejected by the dynamic transaction routing program by means of the

DYRDTRRJ parameter, and
v Is run in the local region.

You can use the local program to issue a suitable response to a user's terminal
if the dynamic routing program decides it cannot route the transaction to a
remote system.

REMOTENAME()

SPURGE(YES)

STATUS(ENABLED)

TASKDATALOC(ANY)

TASKDATAKEY(CICS)

TPURGE(YES)

TRANSACTION(CRTX)
The name of the CICS-supplied dynamic transaction routing definition. Change
this to specify your own transaction identifier.

TRPROF(DFHCICSS)

TWASIZE(00000)

226 CICS TS for z/OS 4.2: Intercommunication Guide

RESTART(NO)
This attribute is forced for a routed transaction.

REMOTESYSTEM
You can code this to specify a default AOR for transactions that are to be
dynamically routed.

ROUTABLE(NO)
This attribute relates to the enhanced routing of transactions initiated by EXEC
CICS START commands.

Specifying ROUTABLE(YES) means that, if the transaction is the subject of an
eligible START command, it will be routed using the enhanced routing method
described in “Routing transactions invoked by START commands” on page 80.
You are recommended to:
v Specify ROUTABLE(NO) on the common transaction definition
v Install individual definitions of transactions that may be initiated by START

commands.

By reserving the common definition for use with transactions that are started
from user-terminals, you prevent transactions that are initiated by
terminal-related START commands from being dynamically routed “by
accident”.

Defining remote resources for DTP
For MRO and LUTYPE6.1 links, there is no need to define any remote resources
for DTP, provided that the front-end and back-end systems are directly connected.
Both the remote system and the remote transaction are identified on the EXEC
CICS commands issued by the front-end transaction. CICS therefore has all the
necessary information to connect a session and attach the back-end transaction.

However, if the back-end transaction is to be routed to, it must be defined as a
remote resource on the intermediate systems—see “A note on daisy-chaining” on
page 205.

If you use the EXEC CICS API over APPC links, you can either identify the remote
system and transaction explicitly, as for MRO and LUTYPE6.1 links, or by
reference to a PARTNER resource. If you choose to do the latter, you need to create
the appropriate PARTNER definitions. If you use the CPI Communications API
over APPC links, the syntax of the commands requires you to create a PARTNER
definition for every remote partner referenced.

Specify the following attributes for the PARTNER resource:

PARTNER(sym_dest_name)

NETWORK(name)
This attribute is optional

NETNAME(name)

PROFILE(name)
This attribute is optional

TPNAME(name)
XTPNAME(value)

Specify TPNAME or XTPNAME, but not both.

Chapter 16. Defining remote resources 227

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/partner/dfha4_overview.html

The PARTNER resource has been designed specifically to support Systems
Application Architecture (SAA) conventions. For more guidance about this, see
the SAA Common Programming Interface Communications Reference manual.

For guidance about designing and developing distributed transaction processing
applications, see the CICS Distributed Transaction Programming Guide.

228 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 17. Defining local resources

This chapter discusses how to define resources, required for intersystem
communication, that reside in the local CICS system.

The chapter contains the following topics:
v “Defining communication profiles”
v “Architected processes” on page 232
v “Selecting required resource definitions for installation” on page 233
v “Defining intrapartition transient data queues” on page 234
v “Defining local resources for DPL” on page 236.

Defining communication profiles
When a transaction acquires a non-IPIC session to another system, either explicitly
with an ALLOCATE command or implicitly because it uses, for example, non-IPIC
function shipping, a communication profile is associated with the communication
between the transaction and the session.

The communication profile specifies the following information:
v Whether function management headers (FMHs) received from the session are to

be passed on to the transaction.
v Whether input and output messages are to be journaled, and if so the location of

the journal.
v The node error program (NEP) class for errors on the session.
v For APPC sessions, the modename of the group of sessions from which the

session is to be allocated. If the profile does not contain a modename, CICS
selects a session from any available group.

CICS provides a set of default profiles, which it uses for various forms of
communication. Also, you can define your own profiles, and name a profile
explicitly on an ALLOCATE command.

A profile is always required for a session acquired by an ALLOCATE command;
either a profile that you have defined and which is named explicitly on the
command, or the default profile DFHCICSA. If CICS cannot find the profile, the
CBIDERR condition is raised in the application program. Profiles are only required
for non-IPIC communication.

The following attributes of a PROFILE resource are relevant to intersystem
sessions:

PROFILE(name)

MODENAME(name)
This attribute is optional

INBFMH(NO|ALL)
This attribute is optional.

This is the only attribute that applies to MRO sessions. And, for MRO sessions
that are acquired by an ALLOCATE command, CICS always uses

© Copyright IBM Corp. 1977, 2012 229

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/profile/dfha4_overview.html

INBFMH(ALL), no matter what is specified in the profile.
For APPC conversations, this attribute is ignored; APPC FMHs are never
passed to CICS application programs.

JOURNAL(NO|value)
This attribute is optional

MSGJRNL(NO|INPUT|OUTPUT|INOUT)
This attribute is optional

NEPCLASS(0|value)
This attribute is optional

RTIMOUT(NO|value)
This attribute is optional.

It is usually important to ensure that an intercommunicating transaction never
waits indefinitely for data from its partner transaction. The RTIMOUT attribute
should be given a value suitable for intersystem working: rather less than the
time-out periods typically specified for terminals used as operator interfaces.
The RTIMOUT value should also be greater than the DTIMOUT value
specified on the partner transaction definition.

Communication profiles for principal facilities
A profile is also associated with the communication between a transaction and its
principal facility. You can name the profile when you define the TRANSACTION
resource, or you can allow the default to be taken. The PROFILE for a principal
facility profile has more options than the PROFILE for alternate facilities.

The RTIMOUT value defined for a back-end transaction needs to be at least as
great as that specified for its front-end partner's principal facility. This is to cover
the possibility of the back-end transaction waiting almost that period of time (plus
some execution and network time) to receive data from its front-end.

Default profiles
CICS provides a set of communication profiles, which it uses when the user does
not or cannot specify a profile explicitly.

DFHCICST
The default profile for principal facilities. You can specify a different profile for
a particular transaction by means of the PROFILE attribute of the
TRANSACTION resource.

DFHCICSV
The profile for principal facilities of the CICS-supplied transactions CSNE,
CSLG, and CSRS. It is the same as DFHCICST, except that DVSUPRT(VTAM)
is specified in place of DVSUPRT(ALL).

You should not modify this profile.

Note: VTAM is now z/OS Communications Server.

DFHCICSP
The profile for principal facilities of the CICS-supplied page-retrieval
transaction, CSPG. CICS uses this profile for CSPG even if you alter the CSPG
transaction definition to specify a different one. For further information about
communication profiles used by CICS-supplied transactions, see CSPG - page
retrieval, in the CICS Supplied Transactions manual.

230 CICS TS for z/OS 4.2: Intercommunication Guide

DFHCICSE
The error profile for principal facilities. CICS uses this profile to pass an error
message to the principal facility when the required profile cannot be found.

DFHCICSA INBFMH(ALL)
The default profile for alternate facilities that are acquired by means of an
application program ALLOCATE command. A different profile can be named
explicitly on the ALLOCATE command.

This profile is also used as a principal facility profile for some CICS-supplied
transactions.

DFHCICSF INBFMH(ALL)
The profile that CICS uses for the session to the remote system or region when
a CICS application program issues a function shipping or DPL request.

Note that, if you use DPL, you may need to increase the value specified for
RTIMEOUT—see “Modifying the default profiles.”

DFHCICSS INBFMH(ALL)
The profile that CICS uses in transaction routing for communication between
the relay transaction (running in the terminal-owning region) and the
interregion link or APPC link.

DFHCICSR INBFMH(ALL)
The profile that CICS uses in transaction routing for communication between
the user transaction (running in the transaction-owning region) and the
interregion link or APPC link.

Note that the user-transaction's principal facility is the surrogate TCTTE in the
transaction-owning region, for which the default profile is DFHCICST.

Modifying the default profiles
You can modify a default profile.

A typical reason for modification is to include a modename to provide class of
service selection for, say, function shipping requests on APPC links. If you do this,
you must ensure that every APPC link in your installation has a group of sessions
with the specified modename.

You must not modify DFHCICSV, which is used exclusively by some
CICS-supplied transactions.

You can modify DFHCICSP, used by the CSPG page-retrieval transaction. The
supplied version of DFHCICSP specifies UCTRAN(YES). Be aware that, if you
specify UCTRAN(NO), terminals defined with UCTRAN(NO) will be unable to
make full use of page-retrieval facilities.

If you modify DFHCICSA, you must retain INBFMH(ALL), because it is required
by some CICS-supplied transactions. Modifying this profile does not affect the
profile options assumed for MRO sessions.

You can modify DFHCICSF, used for function shipping and DPL requests. One
reason for doing so might be to increase the value of the RTIMOUT option. For
example, the default value may be adequate for single function shipping requests,
but inadequate for a DPL call to a back-end program that retrieves a succession of
records from a data base.

Chapter 17. Defining local resources 231

Architected processes
An architected process is an IBM-defined method of allowing dissimilar products
to exchange intercommunication requests in a way that is understood by both
products.

For example, a typical requirement of intersystem communication is that one
system should be able to schedule a transaction for execution on another system.
Both CICS and IMS have transaction schedulers, but their implementation differs
considerably. The intercommunication architecture overcomes this problem by
defining a model of a “universal” transaction scheduling process. Both products
implement this architected process, by mapping it to their own internal process,
and are therefore able to exchange scheduling requests.

The architected processes implemented by CICS are:
v System message model—for handling messages containing various types of

information that needs to be passed between systems (typically, DFS messages
from IMS)

v Scheduler model—for handling scheduling requests
v Queue model—for handling queuing requests (in CICS terms, temporary-storage

or transient-data requests)
v DL/I model—for handling DL/I requests
v LU services model—for handling requests between APPC service managers.

Note: With the exception of the APPC LU services model, the architected processes
are defined in the LUTYPE6.1 architecture. CICS, however, also uses them for
function shipping on APPC links by using APPC migration mode.

The appropriate models are also used for CICS-to-CICS communication. The
exceptions are CICS file control requests, which are handled by a CICS-defined file
control model, and CICS transaction routing, which uses protocols that are private
to CICS.

During resource definition, your only involvement with architected processes is to
ensure that the relevant transactions and programs are included in your CICS
system, and possibly to change their priorities.

Process names
Architected process names are one through four bytes long, and have a first byte
value that is less than X'40'.

In CICS, the names are specified as four-byte hexadecimal transaction identifiers. If
CICS receives an architected process name that is less than four bytes long, it pads
the name with null characters (X'00') before searching for the transaction identifier.

CICS supplies the processes shown in Figure 55 on page 233.

232 CICS TS for z/OS 4.2: Intercommunication Guide

Modifying the architected process definitions
You can modify any of the definitions for the architected processes. In particular,
you may want to change the DTIMOUT value on the mirror transactions.

The previous list shows that the CICS file control model and the architected
processes for function shipping all map to program DFHMIRS, the CICS mirror
program. The inclusion of different transaction names for the various models
enables you to modify some of the transaction attributes. You must not, however,
change the XTRANID, TRANSID, or PROGRAM values.

The definitions for the mirror transactions are supplied with DTIMOUT(NO)
specified. If you are uncomfortable with this situation, you should change the
definitions to specify a value other than NO on the DTIMOUT option.

Interregion function shipping
Function shipping using MRO or IPIC connectivity can employ long-running
mirror tasks. Function shipping using MRO can also use the short-path transformer
program.

(See Long-running mirror tasks for MRO, Long-running mirror tasks for IPIC, and
The short-path transformer for MRO.)

If you modify one or more of the mirror transaction definitions, you must evaluate
the effect that this can have on interregion function shipping.

The short-path transformer always specifies transaction CSMI. It is not, however,
used for DL/I requests; they arrive as requests for process X'05000000',
corresponding to transaction CSM5.

Selecting required resource definitions for installation
The profiles and architected processes, and other transactions and programs that
are required for ISC, IPIC, and MRO, are contained in the IBM protected groups
DFHSTAND, DFHISC and DFHISCIP.

XTRANID TRANSID PROGRAM DESCRIPTION
For CICS file control

- CSMI DFHMIRS File control model

For LUTYPE6.1 architected processes
01000000 CSM1 DFHMIRS System message model
02000000 CSM2 DFHMIRS Scheduler model
03000000 CSM3 DFHMIRS Queue model
05000000 CSM5 DFHMIRS DL/I model

For APPC architected processes
06F10000 CLS1 DFHZLS1 LU services model
06F20000 CLS2 DFHLUP LU services model

- CLS3 DFHLUP LU services model

Figure 55. CICS architected process names

Chapter 17. Defining local resources 233

About this task

For information about how to include these pregenerated groups in your CICS
system, see CICS-supplied resource definitions, groups, and lists, in the CICS
Resource Definition Guide.

Install the following CICS supplied CSD groups for intercommunication:
v For MRO and ISC connections, you must install groups DFHSTAND and

DFHISC.
v For IPIC connections, you must install groups DFHSTAND, DFHISC, and

DFHISCIP.

Defining intrapartition transient data queues
This topic describes the attributes that apply to queues that cause automatic
transaction initiation or that specify an associated principal facility (such as a
terminal or another system) in an intercommunications environment.

Specify the following attributes:

TDQUEUE(name)

TYPE(Intra)

ATIFACILITY(terminal)

RECOVSTATUS(logical)

FACILITYID (terminal)

RECOVSTATUS(name)

TRANSID

TRIGGERLEVEL(value)

USERID(userid)

WAIT(yes)

WAITACTION(reject)

Transactions
A transaction that is initiated by an intrapartition transient data queue must reside
on the same system as the queue. That is, the transaction that you name in the
queue definition must not be defined as a remote transaction.

Principal facilities
The principal facility that is to be associated with a transaction started by ATI is
specified in the transient data queue definition.

A principal facility can be:
v A local terminal
v A remote terminal
v A local session or APPC device
v A remote APPC session or device.

234 CICS TS for z/OS 4.2: Intercommunication Guide

Local terminals
A local terminal is a terminal that is owned by the same system that owns the
transient data queue and the transaction.

For any local terminal other than an APPC terminal, you need to specify a
destination of terminal, and give a terminal identifier. If you omit the terminal
identifier, the name of the terminal defaults to the name of the queue.

Remote terminals
A remote terminal is a terminal that is defined as remote on the system that owns
the transient data queue and the associated transaction.

Automatic transaction initiation with a remote terminal is a form of CICS
transaction routing (see Chapter 7, “CICS transaction routing,” on page 67), and
the normal transaction routing rules apply.

For any remote terminal other than an APPC terminal, specify a destination of
terminal and a terminal identifier.

The terminal itself must be defined as a remote terminal (or a shipped terminal
definition must be made available), and the terminal-owning region must be
connected to the local system either by an IRC link or by an APPC link.

Local sessions and APPC devices
You can name a local connection definition in the definition for the transient data
queue. The remote system can be connected by IRC, LUTYPE6.1, or APPC link. In
the APPC case, “system” can be a hard-coded terminal-like device.

CICS allocates a session on the specified system, which becomes the principal
facility to transid. The transaction program converses across the session using the
appropriate DTP protocol. Read Chapter 9, “Distributed transaction processing,” on
page 107 for an introduction to DTP.

The transaction starts in 'allocated' state on its principal facility. Then it identifies
its partner transaction; that is, the process to be connected to the other end of the
session. In the APPC protocol, it does this by issuing the EXEC CICS CONNECT
PROCESS command, a command normally only used to start a conversation on an
alternate facility.

The partner transaction, having been started in the back end with the conversation
in receive state, also sees the session as its principal facility. This is unusual in that
CICS treats either end of the session as a principal facility. On both sides, the
conversation identifier is taken from EIBTRMID if needed, but it is also implied on
later commands, as is the case for principal facilities.

Remote APPC sessions and devices
A remote connection is defined as remote on the system that owns the transient
data queue and the associated transaction.

Automatic transaction initiation with a remote APPC connection is a form of CICS
transaction routing (see Chapter 7, “CICS transaction routing,” on page 67), and
the normal transaction routing rules apply.

You can name a remote connection in the definition for the transient data queue.

Chapter 17. Defining local resources 235

The connection itself must be defined as a remote connection (or a shipped
connection definition must be made available), and the terminal-owning region
must be connected to the local system either by an IRC link or by an APPC link.
The remarks in “Local sessions and APPC devices” on page 235 about handling the
link after transaction initiation apply also to routed transactions.

Defining local resources for DPL
To support DPL, special resource definitions are sometimes necessary for server
programs and mirror transactions.

Mirror transactions
You can specify whatever names you like for the mirror transactions to be initiated
by DPL requests. Each of these transaction names must be defined in the server
region on a transaction that invokes the mirror program DFHMIRS.

Defining user transactions to invoke the mirror program gives you the freedom to
specify appropriate values for all the other options on the transaction resource
definition.

It is advisable to define the user transaction to execute in the local CICS region, by
specifying DYNAMIC(NO) and no REMOTE attributes. Routing the mirror
transaction to another CICS region can impact performance and make problem
determination more difficult.

Server programs
If a local program is to be requested by some other region as a DPL server, there
must be a resource definition for that program.

The definition can be statically defined, or installed automatically (autoinstalled)
when the program is first called. (For details of the CICS autoinstall facility for
programs, see Autoinstalling programs, map sets, and partition sets, in the CICS
Resource Definition Guide.)

236 CICS TS for z/OS 4.2: Intercommunication Guide

Part 4. Application programming in an intersystem
environment

This part of the manual describes the application programming aspects of CICS
intercommunication.

It contains the following chapters:
v Chapter 18, “Application programming overview,” on page 239
v Chapter 19, “Application programming for CICS function shipping,” on page 241
v Chapter 20, “Application programming for CICS DPL,” on page 245
v Chapter 21, “Application programming for asynchronous processing,” on page

249
v Chapter 22, “Application programming for CICS transaction routing,” on page

251
v Chapter 23, “CICS-to-IMS applications,” on page 255.

For guidance about application design and programming for distributed
transaction processing, see the CICS Distributed Transaction Programming Guide.

This part of the manual documents General-use Programming Interface and
Associated Guidance Information.

© Copyright IBM Corp. 1977, 2012 237

238 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 18. Application programming overview

Application programs that are designed to run in the CICS intercommunication
environment can use one or more of these facilities.
v Function shipping
v Distributed program link
v Asynchronous processing
v Transaction routing
v Distributed transaction processing.

The application programming requirements for each of these facilities are described
separately in the remaining chapters of this part. If your application program uses
more than one facility, you can use the relevant chapter as an aid to designing the
corresponding part of the program. Similarly, if your program uses more than one
intersystem session for distributed transaction processing, it must control each
individual session according to the rules given for the appropriate session type.

For guidance about application design and programming for distributed
transaction processing, see the CICS Distributed Transaction Programming Guide.

Terminology
The following terms are sometimes used without further explanation in the
remaining chapters of this part:

Principal facility
This term means the terminal or session that is associated with your
transaction when the transaction is initiated. CICS commands, such as SEND
or RECEIVE, that do not explicitly name a facility, are taken to refer to the
principal facility. Only one principal facility can be owned by a transaction.

Alternate facility
In distributed transaction processing, a transaction can acquire the use of a
session to a remote system. This session is called an alternate facility. It must
be named explicitly on CICS commands that refer to it. A transaction can own
more than one alternate facility.

Other intersystem sessions, such as those used for function shipping, are not
owned by the transaction, and are not regarded as alternate facilities of the
transaction.

Front-end and back-end transactions
In distributed transaction processing, a pair of transactions converse with one
another. The front-end transaction is initiated first, acquires a session to the
remote system, and causes the back-end transaction to be initiated.

Note that a transaction can at the same time be the back-end transaction on
one conversation and the front-end transaction on one or more other
conversations.

Problem determination
Application programs that use CICS intercommunication facilities are liable to be
subject to error conditions not experienced in single-CICS systems.

© Copyright IBM Corp. 1977, 2012 239

Where the resource is remote, the function manager is also remote, so the
transaction abend is suffered by the remote transaction. This in turn causes the
local transaction to be abended with a transaction abend code of AIPM (for
communication through IPIC), ATNI (for communication through z/OS
Communications Server), or AZI6 (for communication through MRO) rather than
the particular code used in abending the remote transaction. However, the remote
system sends the local CICS system an error message identifying the reason for the
remote failure. This message is sent to the local CSMT destination. Therefore, if an
application program uses HANDLE ABEND to continue processing when abends
occur while accessing resources, it is unable to do so in the same way when those
resources are remote.

Trace and memory dump facilities are defined in both local and remote CICS
systems. When the remote transaction is abended, its CICS transaction dump is
available at the remote site to assist in locating the reason for an abend condition.

Applications to be used with remote systems should be well tested to minimize the
possibility of failing when accessing remote resources. A “remote test system” can
reside in the same processor as the local system and so be tested in a single
location where the transaction dumps from both systems, and the corresponding
trace data, are readily available. The two transactions can be connected through
MRO or through the z/OS Communications Server application-to-application
facility.

Detailed sequences and request formats for diagnosis of problems with CICS
intercommunication can be found in the CICS Problem Determination Guide.

240 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 19. Application programming for CICS function
shipping

This chapter contains the following topics:
v “Introduction to programming for function shipping”
v “File control”
v “DL/I” on page 242
v “Temporary storage” on page 242
v “Transient data” on page 242
v “Function shipping exceptional conditions” on page 243.

Introduction to programming for function shipping
If you are writing a program to access resources in a remote system, you code it in
much the same way as if the resources were on the local system. Function shipping
is available by using EXEC CICS commands, DL/I calls or EXEC DLI commands.

The commands that you can use to access remote resources are:
v File control commands
v DL/I calls or EXEC DLI commands
v Temporary storage commands
v Transient data commands.

For information about interval control commands, see Chapter 21, “Application
programming for asynchronous processing,” on page 249.

Your application can run in the CICS intercommunication environment and make
use of the intercommunication facilities without being aware of the location of the
resource being accessed. The location of the resource is specified in the resource
definition. Optionally, you can use the SYSID option on EXEC commands to select
the system on which the command is to be executed. In this case, the resource
definitions on the local system are not referenced, unless the SYSID option names
the local system.

When your application issues a command against a remote resource, CICS ships
the request to the remote system, where a mirror transaction is initiated. The
mirror transaction executes the request on your behalf, and returns any output to
your application program. The mirror transaction is like a remote extension of your
application program. For more information about this mechanism, read Chapter 4,
“CICS function shipping,” on page 35.

Although the same commands are used to access both local and remote resources,
there are restrictions that apply when the resource is remote. Also, some errors that
do not occur in single systems can arise when function shipping is being used. For
these reasons, you should always know whether resources that your program
accesses can possibly be remote.

File control
Function shipping allows you to access files located on a remote system.

© Copyright IBM Corp. 1977, 2012 241

If you use the SYSID option to access a remote system directly, you must observe
the following two rules:
1. For a file referencing a keyed data set, KEYLENGTH must be specified if

RIDFLD is specified, unless you are using relative byte addresses (RBA) or
relative record numbers (RRN).
For a remote BDAM file, where the DEBKEY or DEBREC options have been
specified, KEYLENGTH must be the total length of the key.

2. If the file has fixed-length records, you must specify the record length
(LENGTH).

These rules also apply if the definition of the file to this CICS does not specify the
appropriate values.

DL/I
You can use function shipping to access an IMS Database Manager subsystem that
is associated with a remote CICS system, or a database associated with a remote
CICS Transaction Server for VSE system.

For guidance about restrictions, see CICS IMS Database Control Guide.

Temporary storage
You can use function shipping to send data to or receive data from temporary
storage queues located on remote systems.

The systems programmer can use TSMODEL resource definitions to define
temporary storage models that direct matching EXEC CICS requests to remote
systems. TSMODEL resource definitions do not support the use of the SYSID
option on the WRITEQ TS, READQ TS, and DELETEQ TS commands to specify
the remote system explicitly.

For MRO and IPIC sessions, the MAIN and AUXILIARY options of the WRITEQ
TS command can be used to select the required type of storage.

For APPC sessions, the MAIN and AUXILIARY options are ignored; unless a
TSMODEL or exit directs it otherwise, auxiliary storage is always used in the
remote system.

Transient data
Function shipping allows you to access intrapartition or extrapartition transient
data queues located on remote systems. Definitions of remote transient data queues
can be made by the system programmer. You can, however, use the SYSID option
on the WRITEQ TD, READQ TD, and DELETEQ TD commands to specify the
system on which the request is to be executed.

If the remote transient data queue has fixed-length records, you must supply the
record length if it is not specified in the transient data resource definition that has
been installed.

242 CICS TS for z/OS 4.2: Intercommunication Guide

|

Function shipping exceptional conditions
Requests that are shipped to a remote system can raise any of the exceptional
conditions for the command that can occur if the resource is local.

In addition, there are some conditions that apply only when the resource is remote.

Remote system not available
The SYSIDERR condition is raised in the application program under certain
situations.

These are the following situations:
v The link to the remote system is out of service.
v The named system is not defined. This error should not occur in a production

system unless the application is designed to obtain the name of the remote
system from a terminal operator.

v The link to the remote system is busy, and the maximum number of queued
requests specified on the QUEUELIMIT option of the CONNECTION or
IPCONN resource definition has been reached.

v The link to the remote system is busy, the maximum number of queued requests
has not been reached, but your XZIQUE, XISCONA or XISQUE global user exit
program specifies that the request should not be queued. For programming
information about the XZIQUE and XISCONA exits, see the CICS Customization
Guide. The XISQUE global user exit program is used for IPIC connections, for
further information about XISQUE see XISQUE exit for managing IPIC
intersystem queues.

The default action for the SYSIDERR condition is to terminate the task abnormally.

Invalid request
The ISCINVREQ condition occurs when the remote system indicates a failure that
does not correspond to a known condition. The default action is to terminate the
task abnormally.

Mirror transaction abend
An application request against a remote resource can cause an abend in the mirror
transaction in the remote CICS. For example, a deadlock timeout causes the mirror
to be abended with a code of ATSC.

In these situations, the application program also abends, but with an abend code of
AIPM for IPIC connections, ATNI for ISC connections, or AZI6 for MRO
connections. The error condition is logged by CICS in an error message sent to the
CSMT destination. Any HANDLE ABEND command issued by the application
cannot identify the original cause of the condition and take explicit corrective
action. Corrective action might have been possible if the resource had been local.
An exception occurs in MRO function shipping if the mirror transaction abends
with a DL/I program isolation deadlock; in this case, the application abends with
the normal deadlock abend code (ADCD).

Note that the ATNI abend caused by a mirror transaction abend is not related to a
terminal control command, and the TERMERR condition is therefore not raised.

Chapter 19. Application programming for CICS function shipping 243

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_xisque_exit.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_xisque_exit.html

244 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 20. Application programming for CICS DPL

This chapter contains the following topics:
v “Introduction to DPL programming”
v “The client program”
v “The server program” on page 246
v “DPL exceptional conditions” on page 246.

Introduction to DPL programming
CICS distributed program link (DPL) allows you to link to server programs located
on a remote system.

A client program running in a CICS Transaction Server for z/OS region can link to
one or more server programs running in remote CICS regions. The remote regions
may or may not be CICS Transaction Server for z/OS systems. See Chapter 1,
“Introduction to CICS intercommunication,” on page 3 for a list of systems with
which CICS Transaction Server for z/OS can communicate.

DPL programs can be written in PL/I, C, COBOL, or assembler language.

As Chapter 8, “CICS distributed program link,” on page 97 indicates, there are two
sides (programs) involved in DPL: the client program and the server program. To
implement DPL, there are actions that each program must take. These actions are
described below.

The client program
If you are writing a client program to link to a server program in a remote system,
you code it in much the same way as if the server program were on the local
system.

Your client program can run in the CICS intercommunication environment and
make use of intercommunication facilities without being aware of the location of
the server program being linked to. The location of the server program is specified
by the program resource definition or the dynamic routing program. Optionally,
you can use the SYSID option on the LINK command to select the system on
which the command is to be executed.

When your client program issues a LINK command against a server program,
CICS ships the request to the remote system, where a mirror transaction is
initiated. The mirror transaction executes the LINK request on your behalf, thereby
causing the server program to run. When the server program issues a RETURN
command, the mirror transaction returns any communication area data to your
client program. The mirror transaction is like a remote extension of your
application program. For more information about this mechanism, read Chapter 8,
“CICS distributed program link,” on page 97.

Although the same command is used to access both local and remote server
programs, there are restrictions that apply when the server program is remote.
Also, some errors that do not occur in single systems can arise when DPL is being
used. For these reasons, you should always find out whether the server program to

© Copyright IBM Corp. 1977, 2012 245

which your client program links is remote. If there is any possibility of the server
program being remote, the client program should include the additional checks for
the exception conditions that can be returned by a remote server program.

Failure of the server program
If the server program fails, the ABEND condition and an abend code are returned
to the client program. The client program therefore also terminates abnormally,
unless it has issued the HANDLE ABEND command before issuing the LINK
command.

The server program

Permitted commands
The EXEC CICS commands that a DPL server program can issue are limited to a
subset of the CICS API.

For details of the restricted DPL subset, see Exception conditions for LINK
command in the CICS Application Programming Reference.

Syncpoints
If the server program was started by a LINK command that specified the
SYNCONRETURN option, it is able to issue a syncpoint.

If it does, this does not commit changes made by the client program. For changes
to be committed across the distributed unit of work, the client program must issue
the syncpoint. The client program can also backout changes across the distributed
unit of work, provided that the server program has not already committed its
changes.

The server program can find out how it was started, and therefore whether it is
allowed to issue independent syncpoint requests, by issuing the ASSIGN
STARTCODE command. This command returns the following values relevant to a
DPL server program:
v 'D' if the program was started by a LINK request without the

SYNCONRETURN option, and cannot therefore issue SYNCPOINT requests.
v 'DS' if the program was started by a LINK request with the SYNCONRETURN

option, and can therefore issue SYNCPOINT requests. However, the server
program need not issue a syncpoint request explicitly, because CICS takes a
syncpoint as soon as the server program issues the RETURN command.

v Values other than 'D' and 'DS' if the program was not started by a remote LINK
request.

DPL exceptional conditions
LINK requests that are shipped to a remote system can raise any of the exceptional
conditions for the command that can occur if the server program is local.

In addition, there are some conditions that apply only when the server program is
remote.

246 CICS TS for z/OS 4.2: Intercommunication Guide

Remote system not available
When the remote system is unavailable, the SYSIDERR condition can be raised in
the client program for exactly the same reasons as described for function shipping
on page “Remote system not available” on page 243.

The default action for the SYSIDERR condition is to terminate the task abnormally.

Server's work backed out
If the client program issues the LINK command with the SYNCONRETURN
option, the mirror program issues a syncpoint as soon as the server program
terminates successfully.

It is possible for this syncpoint to fail. If this happens, the ROLLEDBACK
condition is returned to the client program. The work done by the server program
will also be backed out, unless the server program has already committed the work by
issuing its own syncpoint request.

Multiple links to the same server region
When a client program issues a LINK command with the SYNCONRETURN
option, the mirror transaction terminates as soon as control is returned to the client
program. It is therefore possible for the client program to issue a subsequent LINK
command to the same server region.

However, when a client program issues a LINK command without the
SYNCONRETURN option, the mirror transaction is suspended pending a sync
point request from the client region. The client program can issue subsequent
LINK commands to the same server region as long as the SYNCONRETURN
option is omitted and the TRANSID value is not changed. A subsequent LINK
command with the SYNCONRETURN option or with a different TRANSID value
is unsuccessful unless it is preceded by a SYNCPOINT command.

Note: Similar considerations apply if the client program sends function shipping
requests to the server region, and the mirror for the function shipping request is
suspended. For example:
EXEC CICS LINK PROGRAM(’PGA’) SYSID(SERV)
EXEC CICS SYNCPOINT
EXEC CICS READQ TS QUEUE(’RQUEUE’) SYSID(SERV)
EXEC CICS LINK PROGRAM(’PGB’) SYSID(SERV) TRANSID(TRN1)

The last LINK command fails if, for example, MROLRM=YES is specified in the
CICS server region (SERV). This is because the mirror used for the READQ TS
command is still around. For the above sequence of commands to work, the client
program must issue a SYNCPOINT after the READQ TS command; alternatively,
you could set the MROLRM system initialization parameter to 'NO' in the server
region. For detailed information about using DPL and function shipping requests
in the same program, see Mixing DPL and function shipping to the same CICS
system, in the CICS Application Programming Guide.

These errors are indicated by the INVREQ and PGMIDERR conditions.

On the INVREQ condition, an accompanying RESP2 value of 14 indicates that a
sync point is necessary before the failed LINK command can be successfully
attempted. A RESP2 value of 15 indicates that the TRANSID value is different from
that of the linked mirror transaction. A RESP2 value of 16 indicates that a

Chapter 20. Application programming for CICS DPL 247

TRANSID value of spaces (blanks) was specified on the LINK command. A RESP2
value of 17 indicates that a TRANSID value of spaces (blanks) was supplied by the
dynamic routing program.

On the PGMIDERR condition, an accompanying RESP2 value of 25 indicates that
the dynamic routing program rejected the link request.

Mirror transaction abend
If the mirror program (as opposed to the server program) abends or the session
with the server region fails, the TERMERR condition is returned to the client
program.

Multiple updates to a recoverable resource by the same
distributed UOW

In a non-DPL environment, it is possible for multiple programs within one unit of
work (UOW) to update the same recoverable resource.

For instance, program1 might update Record1 in a recoverable file, then link to
program2, which could update the same record, Record1, in the same file. This is
not necessarily good programming practice but it does work, because CICS
considers the owner of the resource to be the task, not the program.

However, in a DPL environment, where the programs involved are running in
different CICS regions, it is not possible for multiple programs to update the same
recoverable resource within the same UOW. Using the same example as above,
program1 updates Record1 in a recoverable file, then links to program2, which runs
under a mirror task in another region. If program2 function-ships a file control
request to update Record1 in the same file, the request hangs. It hangs because the
mirror task processing program2's file control request cannot get the record lock for
Record1. The lock is owned by the task under which program1 is running. Even
though the file control mirror task and the task under which program1 is running
are part of the same distributed UOW, CICS does not allow the update. This is
because CICS uses the task, not the distributed UOW, as the basis for locking
recoverable resources.

248 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 21. Application programming for asynchronous
processing

This section discusses the application programming requirements for CICS-to-CICS
asynchronous processing.

The general information given for CICS transactions that use the START or RETRIEVE
commands is also applicable to CICS-to-IMS communication.

A description of the concepts of asynchronous processing is given in Chapter 5,
“Asynchronous processing,” on page 49. It is assumed that you are familiar with
the concepts of CICS interval control. For programming information about the use
of EXEC CICS commands for interval control, see START in CICS Application
Programming.

Starting a transaction on a remote system
You can start a transaction on a remote system by issuing an EXEC CICS START
command just as though the transaction were a local one.

About this task

Generally, the transaction has been defined as remote by the system programmer.
You can, however, name a remote system explicitly in the SYSID option. This use
of the START command is thus essentially a special case of CICS function
shipping.

If your application requires you to specify the time at which the remote transaction
is to be initiated, remember that the remote system may be in a different time
zone. The use of the INTERVAL form of control is preferable under these
circumstances.

Exceptional conditions for the START command
The exceptional conditions that can occur as a result of issuing a START request for
a remote transaction depend on whether or not the NOCHECK performance
option is specified on the START command.

If NOCHECK is not specified, the raising of conditions follows the normal rules
for function shipping (see “Function shipping exceptional conditions” on page
243).

If NOCHECK is specified, no conditions are raised as a result of the remote
execution of the START command. SYSIDERR, however, still occurs if no link to
the remote system is available, unless the system programmer has arranged for
local queuing of start requests (see “Local queuing of START commands” on page
55).

© Copyright IBM Corp. 1977, 2012 249

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_start.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_start.html

Retrieving data associated with a remotely-issued start request
The RETRIEVE command is used to retrieve data that has been stored for a task as
a result of a remotely-issued start request. This is the only available method for
accessing such data.

About this task

As far as your transaction is concerned, there is no distinction between data stored
by a remote start request and data stored by a local start request, and the normal
considerations for use of the RETRIEVE command apply.

250 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 22. Application programming for CICS transaction
routing

In general, if you are writing a transaction that may be used in a transaction
routing environment, you can design and code it just as you would for a single
CICS system.

There are, however, a number of restrictions that you must be aware of, and these
are described in this chapter. The same considerations apply if you are migrating
an existing transaction to the transaction routing environment.

Application programming restrictions
There are a number of restrictions and considerations when you write application
programs for transaction routing.

The program can be written in PL/I, COBOL, C, or assembler language. This
choice might, of course, be restricted by the terminal or session type: basic APPC
conversations, for example, must be written in C or assembler language.

Basic mapping support
Any BMS maps or partition sets that your program uses must reside in the same
CICS system as the program.

In a BMS routing application, a route request that specifies an operator or an
operator class directs output only to the operators signed on at terminals that are
owned by the system in which the transaction is executing.

The mapset name specified in the most recent SEND MAP command is saved in
the TCTTE. For a routed transaction, this means that the mapset name is saved in
the surrogate TCTTE and, when the routed transaction terminates, the most
recently used mapset name is passed in a DETACH sequence from the AOR to the
TOR.

Similarly, when a routed transaction is initiated, the most recently used mapset
name is passed in an ATTACH sequence from the TOR to the AOR.

The map name is supported in the same way as the mapset name. However, some
old CICS products (no longer supported) have no knowledge of map names being
passed in ATTACH and DETACH sequences. When sending an ATTACH sequence,
CICS Transaction Server for z/OS systems set the map name to null values in the
“real” TCTTE, in case the AOR is unable to return a map name in the DETACH
sequence. In other words, the TCTTE in the TOR contains a null value for the
saved map name, rather than a potentially incorrect name.

The names of mapsets and maps saved in the TCTTE can be both queried and
updated by the MAPNAME and MAPSETNAME options of the INQUIRE
TERMINAL and SET TERMINAL commands. For details of these options, see the
CICS System Programming Reference manual.

© Copyright IBM Corp. 1977, 2012 251

Pseudoconversational transactions
A routed transaction requires the use of an interregion or intersystem (APPC)
session for as long as it is running. For this reason, long-running conversational
transactions are best duplicated in the two systems, or alternatively designed as
pseudoconversational transactions.

Take care in the naming and definition of the individual transactions that make up
a pseudoconversational transaction, because a TRANSID specified in a CICS
RETURN command is returned to the terminal-owning region, where it may be a
local transaction.

There is, however, no reason why a pseudoconversational transaction cannot be
made up of both local and remote transactions.

The terminal
The “terminal” with which your transaction runs is represented by a terminal
control table terminal entry (TCTTE).

This TCTTE, called a surrogate TCTTE, is in many respects a copy of the “real”
terminal's TCTTE in the terminal-owning region. CICS releases the surrogate
TCTTE when the transaction terminates. Subsequent tasks run using new copies of
the real terminal's TCTTE.

If your program needs to discover terminal-related information, consider the
following points:
v Your program should not test fields in the TCTTE directly: it should test instead

the equivalent fields in the EXEC interface block (EIB).
v If the new task is started by ATI, the contents of certain terminal-related fields in

the EIB are unpredictable. EIBAID, which contains the attention identifier, is
always set to zeros at the start of a session.

Reviewing values returned by the EXEC CICS ASSIGN command in the
application-owning region

Review the values returned by the PRINSYSID and USERID options when you use
the EXEC CICS ASSIGN command, because the values are taken from a number of
sources.

PRINSYSID
This option returns the system identifier (SYSID) of the principal facility to the
transaction. The value returned is the name of the remote connection or
terminal defined in this system. If the connection or terminal has been shipped,
the name is the original name defined in the terminal-owning region (TOR). If
the principal facility is not an APPC session, the INVREQ condition is issued.

USERID
For a routed transaction, CICS takes the user ID from one of several sources,
depending on how you specified your security requirements. For more
information, see Transaction routing security with LU6.2, in the CICS RACF
Security Guide.

Table 17 on page 253 explains the value that is returned by the USERID option.
Here are the values:

252 CICS TS for z/OS 4.2: Intercommunication Guide

v If the connection is defined with the ATTACHSEC(LOCAL) option, and
SEC=YES or MIGRATE is specified in the system initialization parameters of
the application-owning region (AOR), CICS returns a different value
depending on the connection type:
– For ISC over SNA and IPIC connections, the value returned is either the

USERID attribute, if this attribute is specified in the SESSIONS definition,
or the value of the SECURITYNAME attribute that is specified in the
CONNECTION definition.

– For MRO connections, the RACF user ID of the TOR.
v If the connection is defined with the ATTACHSEC(LOCAL) option, and

SEC=NO is specified in the system initialization parameters of the AOR,
CICS returns the DFLTUSER value from the AOR.

v If the connection is defined with the ATTACHSEC(IDENTIFY) option or, for
APPC connections, the VERIFY, PERSISTENT, or MIXIDPE option, and
SEC=YES or MIGRATE is specified in the system initialization parameters of
the TOR, CICS returns the user ID sent at attach time.

v If the connection is defined with the ATTACHSEC(IDENTIFY) option, or, for
APPC connections, the VERIFY, PERSISTENT, or MIXIDPE option, and
SEC=NO is specified in the system initialization parameters of the TOR,
CICS returns the DFLTUSER value from the TOR.

Table 17. Values returned by the USERID option of EXEC CICS ASSIGN, for routed
transactions

System
initialization

parameter
SEC= value

in TOR

ATTACHSEC value in CONNECTION definition

IDENTIFY
VERIFY

PERSISTENT
MIXIDPE

LOCAL

System initialization
parameter SEC=YES or

MIGRATE value in
AOR

System initialization
parameter SEC=NO

value in AOR

YES
or
MIGRATE

User ID sent at attach

ISC over SNA and
IPIC:

1. USERID of session

2. SECURITYNAME of
connection

MRO: RACF user ID
of TOR

DFLTUSER of AOR

NO
User ID sent at attach
(DFLTUSER of TOR)

Chapter 22. Application programming for CICS transaction routing 253

254 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 23. CICS-to-IMS applications

This chapter tells you how to code CICS transactions that communicate with an
IMS system.

For full details of IMS ISC, refer to the appropriate IMS publications. This chapter
is intended to provide sufficient information about IMS to enable you to work with
your IMS counterpart to implement a CICS-to-IMS ISC application.

The chapter contains the following topics:
v “Designing CICS-to-IMS ISC applications”
v “CICS-to-IMS applications—asynchronous processing” on page 257
v “CICS-to-IMS applications—DTP” on page 262.

Designing CICS-to-IMS ISC applications
There are many differences between CICS and IMS, both in their architecture and
in their application and system programming requirements.

The design of CICS-to-IMS ISC applications involves principally CICS application
programming and IMS system definition. This difference reflects where the control
lies in each of the two systems.

CICS is a direct control system. Data entered at a terminal causes CICS to invoke
the appropriate application program to process the incoming data. The data is
stored, rather than queued, and the application “owns” the terminal until it
completes its processing and terminates. In CICS ISC, the application program is
involved with data flow protocols, with syncpointing, and, in general, with most
system services.

In contrast, IMS is a queued system. All input and output messages are queued by
the IMS control region on behalf of the related application programs and terminals.
The queuing of messages and the processing of messages are therefore performed
asynchronously. This is illustrated in Figure 56 on page 256.

As a result of this type of system design, IMS application programs do not have
direct control over IMS system resources, nor do they become directly involved in
the control of intersystem communication. IMS message switching is handled
entirely in the IMS control region; the message processing region is not involved.

Data formats
Messages transmitted between CICS and IMS can have either of the following data
formats.
v Variable-length variable-blocked (VLVB)
v Chain of RUs.

© Copyright IBM Corp. 1977, 2012 255

In normal CICS communication with logical units, chain of RUs is the default data
format. In IMS, VLVB is the default. In CICS-to-IMS communication, the format
that is being used is specified in the LUTYPE6.1 attach headers that are sent with
the initial data.

Variable-length variable-blocked
In VLVB format, a message can contain multiple records.

Each record is prefixed by a two-byte length field, as shown here.

In CICS, the I/O area contains a complete message, which can contain one or more
records. The blocking of records for output, and the deblocking on input, must be
done by your CICS application program.

Chain of RUs
In this format, which is the most common CICS format, a message is transmitted
as multiple SNA RUs, as shown here.

In CICS, the I/O area contains a complete message.

Control Message
Region Processing

Region

TRAN CODE message
SESSIONS processing

message program
EDIT

LTERM NAME

message

MESSAGE
QUEUES

Figure 56. Basic IMS message queuing

LL data LL data

record 1 record 2

data

multiple SNA RUs

256 CICS TS for z/OS 4.2: Intercommunication Guide

Forms of intersystem communication with IMS
In any particular application that involves communication between CICS and IMS,
the intersystem communication must be initiated by one or other of the two
systems. For example, if a CICS terminal operator initiates a CICS transaction that
is designed to obtain data from a remote IMS system, the intersystem
communication for the purposes of this application is initiated by CICS.

There are three forms of CICS-to-IMS communication that must be considered:
1. Asynchronous processing using CICS START and RETRIEVE commands
2. Asynchronous processing using CICS SEND LAST and RECEIVE commands
3. Distributed transaction processing (that is, synchronous processing) using CICS

SEND and RECEIVE commands.

The basic differences between these forms of communication are described in
Chapter 5, “Asynchronous processing,” on page 49 and Chapter 9, “Distributed
transaction processing,” on page 107.

The system that initiates intersystem communication for any particular application
is the front-end system as far as that application is concerned. The other system is
called the back-end system.

When CICS is the front end, it supports all three types of intersystem
communication listed above. The form of communication that can be used for any
particular application depends on the IMS transaction type or on the IMS facility
that is being initiated. For information about the forms of communication that IMS
supports when it is the back-end system, see the IMS Programming Guide for Remote
SNA Systems.

When IMS is the front-end system, it always uses asynchronous processing
(corresponding to the CICS START and RETRIEVE interface) to initiate
communication with CICS.

CICS-to-IMS applications—asynchronous processing
In asynchronous processing, the intersystem session is used only to pass an
initiation request, together with various items of data, from one system to the
other. All other processing is independent of the session that is used to pass the
request.

The two application programming interfaces available in CICS for asynchronous
processing are:
1. The START and RETRIEVE interface
2. The SEND and RECEIVE interface.

The START and RETRIEVE interface
The applicable forms of these commands, together with the specific meanings of
the command options in a CICS-to-IMS intersystem communication environment,
are given in this section.

For programming information about the CICS START and RETRIEVE “interval
control” commands, see , in the CICS Application Programming Reference.

Chapter 23. CICS-to-IMS applications 257

CICS front end
When CICS is the front-end system, you can use CICS START and RETRIEVE
commands to process IMS nonresponse mode and nonconversational transactions,
message switches, and the IMS /DIS, /RDIS, and /FOR operator commands.

Note: When you issue the operator commands mentioned above, unless you send
change direction (CD), IMS expects you to request definite response. You must do
this by coding the PROTECT option on the START command.

The general command sequence for your application program is shown in
Figure 57.

After transaction TRANA has obtained an input message from the terminal, it
issues a START NOCHECK command to initiate the remote IMS transaction. The
START command specifies the name of the IMS editor that is to be initiated to
process the message and the IMS transaction or logical terminal (LTERM) that is to
receive the message. It also specifies the name of the CICS transaction that is to
receive the reply and the name of the associated CICS terminal.

The PROTECT option must be specified on the START command to ensure
delivery of the message to IMS.

The start request is not shipped until your application program either issues a
SYNCPOINT command or terminates. However, the request does not carry the
syncpoint-indicator unless PROTECT was specified on the START command.

Although CICS allows an application program to issue multiple START
NOCHECK commands without intervening syncpoints (see “Deferred transmission
of START requests with NOCHECK option for ISC links” on page 54), this
technique is not recommended for CICS-to-IMS communication.

IMS sends the reply by issuing a start request that is handled in the normal way
by the CICS mirror transaction. The request specifies the CICS transaction and

TRANA
(start)

(obtain terminal
input)
START NOCHECK
[PROTECT]

.
(SYNCPOINT)
RETURN

TRANB
(start)

RETRIEVE
(send to terminal)
RETURN

CICS IMS

Figure 57. START and RETRIEVE asynchronous processing–CICS front end

258 CICS TS for z/OS 4.2: Intercommunication Guide

terminal that you named in the original START command. The transaction that is
started (TRANB) can then retrieve the reply by issuing a RETRIEVE command.

In the above example, it has been assumed that there are two separate CICS
transactions; one to issue the START command and one to receive the reply and
return it to the terminal. These two transactions can be combined, and there are
two ways in which this can be done:
v The first method is to write a transaction that contains both the START and the

RETRIEVE processing, but which performs only one of these functions for a
particular execution. The CICS ASSIGN STARTCODE command can be used to
determine whether the transaction was initiated from the terminal, in which case
the START processing is required, or by a start request, in which case the
RETRIEVE processing is required.

v The second method is to write a transaction that, having issued the START
command, issues a SYNCPOINT command to clear the start request, and then
waits for the reply by issuing a RETRIEVE command with the WAIT option. The
terminal is held by the transaction during this time, and CICS returns control to
the transaction when input directed to the same transaction and terminal is
received.

In all cases, you should make no assumptions about the timing of the reply or its
relationship to a particular previous request. A RETRIEVE command retrieves any
outstanding data intended for the same transaction and terminal. The correlation of
requests and replies is the responsibility of your application program.

IMS front end
When IMS is the front-end system, the only supported flow is the asynchronous
start request. Your application program must use the RETRIEVE command to
obtain the request from IMS, followed by a START command to send the reply if
one is required.

The general command sequence for your application program is shown in
Figure 58.

If a reply to the retrieved data is required, your start command must specify the
IMS editor and transaction or LTERM name obtained by the RETRIEVE command.

TRANA
(start)

RETRIEVE
(communicate with
terminal)
START
(SYNCPOINT)
RETURN

(start)

CICSIMS

Figure 58. RETRIEVE and START asynchronous processing – IMS front end

Chapter 23. CICS-to-IMS applications 259

The START command
This section shows the format of the START command that is used to schedule
remote IMS transactions. Note that no interval control is possible (although it is
not an error to specify INTERVAL(0)) and that the NOCHECK and PROTECT
options must be specified.

EXEC CICS START TRANSID(name)
[SYSID(name)]
[FROM(data-area) LENGTH(value)]
[TERMID(name)]
[RTRANSID(name)]
[RTERMID(name)]
NOCHECK
PROTECT
[FMH]

TRANSID(name)
Specifies the name of the IMS editor that is to be initiated to process the
message. It must be an alias (not exceeding four characters) of ISCEDT, or an
MFS MID name.

Alternatively, it can name the installed definition of a “remote” transaction. In
this case, the SYSID option is not used. The definition of the remote transaction
must name the required IMS editor in the RMTNAME option, which can be up
to eight characters long.

SYSID(name)
Specifies the name of the remote IMS system. This is the name of the
CONNECTION resource that defines the link to the remote system. You need
this option only if you are required to name the remote system explicitly.

FROM(data-area)
Specifies the data that is to be sent. The format of the data (VLVB or chain of
RUs) must match the format specified in the RECORDFORMAT attribute of the
CONNECTION resource that defines the remote IMS system (see Chapter 13,
“How to define connections to remote systems,” on page 149).

LENGTH(value)
Specifies, as a halfword binary value, the length of the data specified in the
FROM option.

TERMID(name)
Specifies the primary resource name that is to be assigned to the remote
process. For IMS, it is a transaction code or an LTERM name.

If this option is omitted, you must specify the transaction code or the LTERM
name in the first eight characters of the data named in the FROM option. You
must use this method if the name exceeds four characters (the CICS limit for
the TERMID option) or if IMS password processing is required.

RTRANSID(name)
Specifies the name of the transaction that is to be invoked when IMS returns a
reply to CICS. The name must not exceed four characters in length.

RTERMID(name)
Specifies the name of the terminal that is to be attached to the transaction
specified in the RTRANSID option when it is invoked. The name must not
exceed four characters in length.

NOCHECK
This option is mandatory.

260 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html

PROTECT
Specifies that the remote IMS transaction must not be scheduled until the local
CICS transaction has taken a syncpoint. PROTECT is mandatory.

FMH
Specifies that the user data to be passed to the started task contains function
management headers. This option is not normally used.

The RETRIEVE command
This section shows the format of the RETRIEVE command that is used to retrieve
data sent by IMS.

EXEC CICS RETRIEVE
[{INTO(data-area)|SET(pointer-ref)}

LENGTH(data-area)]
[RTRANSID(data-area)]
[RTERMID(data-area)]
[WAIT]

INTO(data-area)
Specifies the user data area into which the data retrieved from IMS is to be
written.

SET(pointer-ref)
Specifies the pointer reference to be set to the address of the data retrieved
from IMS.

LENGTH(data-area)
Specifies the halfword binary length of the retrieved data.

For a RETRIEVE command with the INTO option, this must be a data area that
specifies the maximum length of data that the program is prepared to handle.
If the value specified is less than zero, zero is assumed. If the length of the
data exceeds the value specified, the data is truncated to that value and the
LENGERR condition occurs. On completion of the retrieval operation, the data
area is set to the original length of the data.

For a RETRIEVE command with the SET option, this must be a data area. On
completion of the retrieval operation, the data area is set to the length of the
data.

RTRANSID(data-area)
Specifies an area to receive the return destination process name sent by IMS. It
is either an MFS MID name chained from an output MOD, or is blank.

Your application can use this name in the TRANSID option of a subsequent
START command.

RTERMID(data-area)
Specifies an area to receive the return primary resource name sent by IMS. It is
either a transaction name or an LTERM name.

Your application can use this name in the TERMID option of the START
command used to send the reply.

WAIT
Specifies that control is not to be returned to your application program until
data is sent by IMS.

If WAIT is not specified, the ENDDATA condition is raised if no data is
available. If WAIT is specified, the ENDDATA condition is raised only if CICS
is shut down before any data becomes available.

Chapter 23. CICS-to-IMS applications 261

The use of the WAIT option is not generally recommended, because it can
cause intervening messages (not the expected reply) to be retrieved.

The asynchronous SEND and RECEIVE interface
This form of asynchronous processing is, in CICS, a special case of distributed
transaction processing.

A CICS transaction acquires the use of a session to a remote system, and uses the
session for a single transmission (using a SEND command with the LAST option)
to initiate a remote transaction and send data to it. The reply from the remote
system causes a CICS transaction to be initiated just as if it were a back-end
transaction in normal DTP. This transaction, however, can issue only a single
RECEIVE command, and must then free the session.

Except for these additional restrictions, you can design your application according
to the rules given for distributed transaction processing later in this chapter.

The general command sequence for asynchronous SEND and RECEIVE application
programs is shown in Figure 59.

CICS-to-IMS applications—DTP
This section describes application programming for CICS-to-IMS distributed
transaction processing (DTP).

For further information about DTP, see the CICS Distributed Transaction
Programming Guide.

CICS commands for CICS-to-IMS sessions
These are the commands that can be used to acquire and use CICS-to-IMS sessions.
v ALLOCATE – used to acquire a session to the remote IMS system.
v BUILD ATTACH – used to build an LUTYPE6.1 attach header that is used to

initiate a transaction on a remote IMS system.

TRANA
(attach)

ALLOCATE
BUILD ATTACH
SEND ATTACHID

LAST
FREE

TRANB
(attach)

RECEIVE
EXTRACT ATTACH
.
FREE

CICS IMS

Figure 59. SEND and RECEIVE asynchronous processing – CICS front end

262 CICS TS for z/OS 4.2: Intercommunication Guide

v EXTRACT ATTACH – used by a CICS transaction to recover information from
the LUTYPE6.1 attach header that caused it to be initiated. This command is
required only for SEND and RECEIVE asynchronous processing.

v SEND, RECEIVE, and CONVERSE – used by the CICS transaction to send or
receive data on the session. The first SEND or CONVERSE command issued by
a front-end CICS transaction must name the attach header that has been defined
by the BUILD ATTACH command.

v WAIT TERMINAL SESSION(name) – used to ensure that CICS has transmitted
any accumulated data or data flow control indicators before it continues with
further processing.

v ISSUE SIGNAL SESSION(name) – used by a transaction that is in receive state
to request an invitation to send (change-direction) from IMS.

v FREE – used by a CICS transaction to relinquish its use of the session.

Considerations for the front-end transaction
Except in the special case of the receiving transaction in SEND and RECEIVE
asynchronous processing, the CICS transaction is always the front-end transaction
in CICS-to-IMS DTP.

The front-end transaction is responsible for acquiring a session to the remote IMS
system and initiating the remote transaction. Thereafter, the two transactions
become equals. However, the front-end transaction is usually designed as the
client, or driving, transaction.

Session allocation
You acquire an LUTYPE6.1 session to a remote IMS system by means of the
ALLOCATE command, which has the following format.

ALLOCATE {SYSID(name)|SESSION(name)}
[PROFILE(name)]
[NOQUEUE]

You can use the SESSION option to request the use of a specific session to the
remote IMS system, or you can use the SYSID option to name the remote system
and allow CICS to select an available session. The use of the SESSION option is
not normally recommended, because it can result in an application program
queuing on a specific session when others are available. In most cases, therefore,
you will use the SYSID option to name the system with which the session is
required.

If CICS cannot find the named system, or no sessions are available, it raises the
SYSIDERR condition. If CICS cannot find the named session or the session is out
of service, CICS raises the SESSIONERR condition.

The PROFILE option allows you to specify a communication profile for an
LUTYPE6.1 session. The profile, which is set up during resource definition,
contains a set of terminal control processing options that are to be used for the
session.

If you omit the PROFILE option, CICS uses the default profile DFHCICSA. This
profile specifies INBFMH(ALL), which means that incoming function management
headers are passed to your program and cause the INBFMH condition to be raised.

The NOQUEUE option allows you to specify explicitly that you do not want your
request for a session to be queued if a session is not available immediately. A
session is “not immediately available” in any of the following situations:

Chapter 23. CICS-to-IMS applications 263

v All the sessions to the specified system are in use.
v The only available sessions are not bound (in which case, CICS would have to

bind a session).
v The only available sessions are contention losers (in which case, CICS would

have to bid to begin a bracket).

The action taken by CICS if a session is not immediately available depends on
whether you specify NOQUEUE and also on whether your application has issued
a HANDLE (which is still active) for the SYSBUSY condition. The possible
combinations are shown below:
v Active HANDLE for SYSBUSY condition

– Control is returned immediately to the label specified in the HANDLE
command, whether or not you have specified NOQUEUE.

v No active HANDLE for SYSBUSY condition
– If you have specified NOQUEUE, control is returned immediately to your

application program. The SYSBUSY code (X'D3') is set in the EIBRCODE field
of the EXEC interface block. You should test this field immediately after
issuing the ALLOCATE command.

– If you have omitted the NOQUEUE option, CICS queues the request until a
session is available.

Whether a delay in acquiring a session is acceptable or not is dependent on your
application.

Similar considerations apply to an ALLOCATE command that specifies SESSION
rather than SYSID. The associated condition is 'SESSBUSY' (EIBRCODE=X'D2').

The session identifier
When a session has been allocated, the name by which it is known is available in
the EIBRSRCE field in the EIB.

Because EIBRSRCE will probably be overwritten by the next EXEC CICS
command, you must acquire the session name immediately. It is the name that you
must use in the SESSION parameter of all subsequent commands that relate to this
session.

Automatic transaction initiation
If the front-end transaction is designed to be started by automatic transaction
initiation (ATI) in the local system, and is required to hold a conversation with an
LUTYPE6.1 session as its principal facility, the session has already been allocated
when the transaction starts.

You can omit the SESSION parameter from commands that relate to the principal
facility. If, however, you want to name the session explicitly in these commands,
you should obtain the name from EIBTRMID.

Attaching the remote transaction
When a session has been acquired, the next step is to cause the remote IMS process
to be initiated.

The LUTYPE6.1 architecture defines a special function management header, called
an attach header, which carries the name of the remote process (in CICS terms, the
transaction) that is to be initiated, and also contains further session-related
information.

264 CICS TS for z/OS 4.2: Intercommunication Guide

CICS provides the BUILD ATTACH command to enable a CICS application
program to build an attach header to send to IMS, and the EXTRACT ATTACH
command to enable information to be obtained from attach headers received from
IMS.

Because these commands are available, you do not need to know the detailed
format of an LUTYPE6.1 attach header. In most cases, however, you need to know
the meaning of the information that it carries.

The format of the BUILD ATTACH command is:
BUILD ATTACH

ATTACHID(name)
[PROCESS(ISCEDT|BASICEDT∨name)]
[RESOURCE(name)]
[RPROCESS(name)]
[RRESOURCE(name)]
[QUEUE(name)]
[IUTYPE(0|data-value)]
[DATASTR(0|data-value)]
[RECFM(data-value)]

The parameters of the BUILD ATTACH command have the following meanings:

ATTACHID(name)
The ATTACHID option enables you to assign a name to the attach header so
that you can refer to it in a subsequent SEND or CONVERSE command. (The
BUILD ATTACH command builds an attach header; it does not transmit it.)

PROCESS(name)
This corresponds to the process name, ATTDPN, in an attach FMH. It specifies
the remote process that is to be initiated.

In CICS-to-IMS communication, the remote process is always an editor. It can
be ISCEDT (or its alias), BASICEDT, or an MFS MID name. The process name
must not exceed eight characters.

If the PROCESS option is omitted, IMS assumes ISCEDT.

RESOURCE(name)
This corresponds to the resource name, ATTPRN, in an attach FMH.

The RESOURCE option specifies the primary resource name (up to eight
characters) that is to be assigned to the remote process that is being initiated.

In CICS-to-IMS communication, the primary resource name is either an IMS
transaction code or a logical terminal name. You can omit the RESOURCE
option if the IMS message destination is specified in the first eight bytes of the
message or if the destination is preset by the IMS operator.

If a primary resource name is supplied to IMS, the data stream is not edited
for destination and security information. You should therefore omit the
RESOURCE option if IMS password processing is required.

The name in the RESOURCE option is ignored during conversational
processing, or if the remote process is BASICEDT.

RPROCESS(name)
This corresponds to the return process name, ATTRDPN, in an attach FMH.

The RPROCESS option specifies a suggested return destination process name.
IMS returns this name as a destination process name (ATTDPN) when it sends
a reply to CICS, although the name may be overridden by MFS.

Chapter 23. CICS-to-IMS applications 265

CICS uses the returned destination process name to determine the transaction
that is to be attached after a session restart. At any other time, it is ignored.
The RPROCESS option should therefore name a transaction that will handle
any queued messages when it is attached by CICS at session restart following
a session failure.

RRESOURCE(name)
This corresponds to the return resource name, ATTRPRN, in an attach FMH.

The RRESOURCE option specifies a suggested primary resource name that is
to be assigned to the return process. IMS returns this name as the resource
name (ATTPRN) when it sends a reply to CICS.

Although CICS normally ignores this field, one use for it in ISC is to specify a
CICS terminal to which output messages occurring after session restart should
be sent.

QUEUE(name)
This corresponds to the queue name, ATTDQN, in an attach FMH.

The QUEUE option specifies a queue that can be associated with the remote
process. In CICS-to-IMS communication, it is used only to send a paging
request to IMS during demand paging. The name used must be the one
obtained by a previous EXTRACT ATTACH QNAME command. The name
must not exceed eight characters.

IUTYPE(data-value)
This corresponds to the interchange unit field, ATTIU, in an attach FMH.

The IUTYPE option specifies SNA chaining information for the message. The
value is halfword binary. The bits in the binary value are used as follows:

0–7 X'00' – must be set to zero
8–15 X'00' – multiple RU chains

X'01' – single RU chains.

DATASTR(data-value)
This corresponds to the data stream profile field, ATTDSP, in an attach FMH.

The DATASTR option is used to select an IMS component. The value is
halfword binary. The bits in the binary value are used as follows:

0–7 X'00' – must be set to zero
8–11 0000 – (user-defined data stream)
12–15 0000 – IMS Component 1

0001 – IMS Component 2
0010 – IMS Component 3
0011 – IMS Component 4.

If the DATASTR option is omitted, IMS Component 1 is assumed.

RECFM(data-value)
This corresponds to the deblocking algorithm field, ATTDBA, in an attach
FMH.

The RECFM option specifies the format of the user data that is sent to the
remote process. The name must represent a halfword binary value. The bits in
the binary value are used as follows:

0–7 X'00' – reserved – must be set to zero
8–15 X'01' – variable-length variable-blocked (VLVB) format

266 CICS TS for z/OS 4.2: Intercommunication Guide

X'04' – chain of RUs.

If VLVB is specified, your application program must add a two-byte binary
length field in front of each record. If chain of RUs is specified, you can send
your data in the usual way; no length fields are required.

A record is interpreted by IMS as either a segment of a message (without MFS)
or an MFS record (with MFS).

The RECFM option indicates only the type of the message format. Multiple
records can be sent by one SEND command. In this case, it is the responsibility
of your application program to perform the blocking.

Having built the attach header, you must ensure that it is transmitted with the first
data sent to the remote system by naming it in the ATTACHID option of the SEND
or CONVERSE command.

Building your own attach header
CICS allows you to build an attach header, or any function management header, as
part of your output data.

You can therefore initiate the remote transaction by including an LUTYPE6.1 attach
header in the output area referenced by the first SEND or CONVERSE command.
You must specify the FMH option on the command to tell CICS that the data
contains an FMH.

Considerations for the back-end transaction
A CICS transaction can be the back-end transaction in CICS-to-IMS communication
only in the special case of SEND and RECEIVE asynchronous processing.

The transaction is initiated by an LUTYPE6.1 attach FMH received from the remote
IMS system, and is allowed to issue only a single RECEIVE command, possibly
followed by an EXTRACT ATTACH command.

Acquiring session-related information
You can use the EXTRACT ATTACH command to recover session-related
information from the attach FMH if required, but the use of this command is not
mandatory.

The presence of an attach header is indicated by EIBATT, which is set after the first
RECEIVE command has been issued.

The format of the EXTRACT ATTACH command is:
EXTRACT ATTACH

[SESSION(data-area)]
[PROCESS(data-area)]
[RESOURCE(data-area)]
[RPROCESS(data-area)]
[RRESOURCE(data-area)]
[QUEUE(data-area)]
[IUTYPE(data-area)]
[DATASTR(data-area)]
[RECFM(data-area)]

The parameters of the EXTRACT ATTACH command have the following
meanings:

Chapter 23. CICS-to-IMS applications 267

DATASTR(data-area)
Contains a value specifying the IMS output component.

The data area must be a halfword binary field. The values set by IMS are as
follows:

0–7 X'00'– (zero)
8–11 0000 – (user-defined data stream)
12–15 0000 – IMS Component 1

0001 – IMS Component 2
0010 – IMS Component 3
0011 – IMS Component 4.

IUTYPE(data-area)
indicates SNA chaining information for the message and the type of MFS
paged output.

The data area must be a halfword binary field. The values set by IMS are as
follows:

0–7 X'00' – (zero)
8–15 X'00' – multiple RU chains, MFS autopaged output

X'01' – single RU chains, MFS nonpaged output
X'05' – single RU chains, MFS demand-paged output.

PROCESS(data-area)
IMS returns either the return destination process name specified in the
RPROCESS option of the BUILD ATTACH command, or a value set by the
MFS MOD.

QUEUE(data-area)
IMS returns the LTERM name associated with the ISC session when MFS
demand-paged output is ready to be sent. The returned value should be used
in the QMODEL FMH and the BUILD ATTACH QNAME when a paging
request is to be sent.

RECFM(data-area)
Contains the data format of the incoming user message.

The data area must be a halfword binary field. The values set by IMS are as
follows:

0–7 X'00' – (zero)
8–15 X'01' – variable-length variable-blocked (VLVB) format

X'04' – chain of RUs (can also be X'00' or X'05').

If VLVB is specified, your application program must deblock the message by
using the halfword-binary length field that precedes each record.

RESOURCE(data-area)
IMS returns either the return resource name specified in the RRESOURCE
option of the BUILD ATTACH command, or a value set by the MFS MOD.

RPROCESS(data-area)
IMS sends the chained MFS MID name if MFS is being used. Otherwise, no
value is sent.

RRESOURCE(data-area)
IMS sends the value set by the MFS MOD if MFS is being used. Otherwise, no
value is sent.

268 CICS TS for z/OS 4.2: Intercommunication Guide

Initial state of back-end transaction
The back-end transaction is initiated in receive state, and should issue RECEIVE as
its first command or after EXTRACT ATTACH.

The conversation
The conversation between the front-end and the back-end transactions is held
using the usual SEND, RECEIVE, and CONVERSE commands.

For programming information about these commands, see SEND (LUTYPE6.1),
RECEIVE (LUTYPE6.1), and CONVERSE (LUTYPE6.1), in the CICS Application
Programming Reference.

In each of these commands, you must name the session in the SESSION option
unless the conversation is with the principal facility.

Deferred transmission
On ISC sessions, when you issue a SEND command, CICS normally defers sending
the data until it becomes clear what your further intentions are. This mechanism
enables CICS to avoid unnecessary flows by adding control indicators on the data
that is awaiting transmission.

In general, IMS does not accept indicators such as change-direction,
syncpoint-request, or end-bracket as stand-alone transmissions on null RUs. You
should therefore always allow deferred transmission to operate, and avoid using
the WAIT option or the WAIT TERMINAL command to force transmissions to take
place.

Using the LAST option
The LAST option on the SEND command indicates the end of the conversation. No
further data flows can occur on the session, and the next action must be to free the
session. However, the session can still carry CICS syncpointing flows before it is
freed.

The LAST option and syncpoint flows
A syncpoint on an ISC session is initiated explicitly by a SYNCPOINT command,
or implicitly by a RETURN command.

If your conversation has been terminated by a SEND LAST command, without the
WAIT option, transmission has been deferred, and the syncpointing activity causes
the final transmission to occur with an added syncpoint request. The conversation
is thus automatically involved in the syncpoint.

Freeing the session
You must free the session after issuing a SEND LAST command, or when the
EIBFREE field has been set.

The command used to free the session has the following format:
FREE SESSION(conversation-name)

CICS allows you to issue the FREE command at any time that your transaction is
in send state. CICS determines whether the end-bracket indicator has already been
transmitted, and transmits it if necessary before freeing the session. If there is also
deferred data to transmit, the end-bracket indicator is transmitted with the data.
Otherwise, the indicator is transmitted by itself.

Chapter 23. CICS-to-IMS applications 269

Because only some IMS input components accept a stand-alone end-bracket
indicator, this use of FREE is not recommended for CICS-to-IMS communication.

The EXEC interface block (EIB)
This section highlights the fields that are of particular significance in ISC
applications.

For programming information about the EXEC interface block (EIB), see EXEC
interface block, in the CICS Application Programming Reference. For further details of
how and when these fields should be tested or saved, refer to “Command
sequences for CICS-to-IMS sessions” on page 271.

Conversation identifier fields
The EIB fields EIBTRMID and EIBRSRCE enable you to obtain the name of the ISC
session.

EIBTRMID
Contains the name of the principal facility. For a back-end transaction, or for a
front-end transaction started by ATI, it is the conversation identifier (SESSION).
You must acquire this name if you want to state the session name of the
principal facility explicitly.

EIBRSRCE
Contains the session identifier (SESSION) for the session obtained by means of
an ALLOCATE command. You must acquire this name immediately after
issuing the ALLOCATE command.

Procedural fields
These fields contain information on the state of the session. In most cases, the
settings relate to the session named in the last-executed RECEIVE or CONVERSE
command, and should be tested, or saved for later testing, after the command has
been issued.

Further information about the use of these fields is given in “Command sequences
for CICS-to-IMS sessions” on page 271.

EIBRECV
Indicates that the conversation is in receive state and that the normal
continuation is to issue a RECEIVE command.

EIBCOMPL
This field is used in conjunction with the RECEIVE NOTRUNCATE command;
it is set when there is no more data available.

EIBSYNC
Indicates that the application must take a syncpoint or terminate.

EIBSIG
Indicates that the conversation partner has issued an ISSUE SIGNAL
command.

EIBFREE
Indicates that the receiver must issue a FREE command for the session.

Information fields
The following fields contain information about FMHs received from the remote
transaction.

EIBATT
Indicates that the data received contained an attach header. The attach header

270 CICS TS for z/OS 4.2: Intercommunication Guide

is not passed to your application program; however, EIBATT indicates that an
EXTRACT ATTACH command is appropriate.

EIBFMH
Indicates that the data passed to your application program contains a
concatenated FMH.

If you want to use these facilities, you must ensure that you use communication
profiles that specify INBFMH(ALL). The default profile (DFHCICSA) for a session
allocated by a CICS front-end transaction has this specification. However, the
default principal facility profile (DFHCICST) for a CICS back-end transaction does
not. Further information about this subject is given under “Defining
communication profiles” on page 229.

Command sequences for CICS-to-IMS sessions
The command sequences that you use to communicate between the front-end and
the back-end transactions are governed both by the requirements of your
application and by a set of high-level protocols designed to ensure that commands
are not issued in inappropriate circumstances.

The protocols presented in this section do not cover all possible command
sequences. However, by following them, you ensure that each transaction takes
account of the requirements of the other. This helps to avoid errors during
program development.

Conversation states
The protocols are based on the concept of several separate states.

These states apply only to the particular conversation, not to your entire
application program. In each state, there is a choice of commands that might most
reasonably be issued. After the command has been issued, fields in the EIB can be
tested to learn the current requirements of the conversation. The results of these
tests, together with the command that has been issued, may cause a transition to
another state, when another set of commands becomes appropriate.

The states that are defined for this section are:
v State 1 – Session not allocated
v State 2 – Send state
v State 3 – Receive pending after SEND INVITE
v State 4 – Receive state
v State 5 – Receiver take syncpoint
v State 6 – Free pending after SEND LAST
v State 7 – Free session.

Initial states
Normally, the front-end transaction in a conversation starts in state 1 (session not
allocated) and must issue an ALLOCATE command to acquire a session.

An exception to this occurs when the front-end transaction is started by automatic
transaction initiation (ATI), in the local system, with an LUTYPE6.1 session as its
principal facility. Here, the session is already allocated, and the transaction is in
state 2. For transactions of this type, you must immediately obtain the session
name from EIBTRMID so that you can name the session explicitly on later
commands.

Chapter 23. CICS-to-IMS applications 271

You must always assume that the back-end transaction is initially in state 4
(receive state). Even if it is designed only to send data to the front-end transaction,
you must issue a RECEIVE to receive the SEND INVITE issued by the front-end
transaction and get into send state.

State diagrams
The following diagrams help you to construct valid command sequences. Each
diagram relates to one particular state, as previously defined, and shows the
commands that you might reasonably issue, and the tests that you should make,
after issuing the command. Where more than one test is shown, make them in the
order indicated.

The combination of the command issued and a particular positive test result lead
to a new, resultant state, shown in the final column.

Other tests
The tests that are shown in the figures are those that are significant to the state of
the conversation. Tests for other conditions that may arise, for example, INVREQ
or NOTALLOC, should be made in the normal way.

Table 18. State 1—session not allocated

STATE 1 — CICS-TO-IMS CONVERSATIONS — SESSION NOT ALLOCATED

Commands you can issue What to test New state

ALLOCATE [NOQUEUE] * SYSIDERR 1

Ditto SYSBUSY * 1

Ditto
Otherwise (obtain session name from
EIBRSRCE)

2

If you want your program to wait until a session is available, omit the NOQUEUE
option of the ALLOCATE command and do not code a HANDLE command for the
SYSBUSY condition.

If you want control to be returned to your program if a session is not immediately
available, either specify NOQUEUE on the ALLOCATE command and test
EIBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY
command.

Table 19. State 2—send state

STATE 2 — CICS-TO-IMS CONVERSATIONS — SEND STATE

Commands you can issue * What to test New state

SEND 2

SEND INVITE — 3 or 4

SEND LAST — 6

CONVERSE

Equivalent to:
SEND INVITE WAIT
RECEIVE

Go to the STATE 4 table and make the tests
shown for the RECEIVE command.

—

RECEIVE Go to the STATE 4 table and make the tests
shown for the RECEIVE command.

—

SYNCPOINT (Transaction abends if SYNCPOINT fails.) 2

272 CICS TS for z/OS 4.2: Intercommunication Guide

Table 19. State 2—send state (continued)

STATE 2 — CICS-TO-IMS CONVERSATIONS — SEND STATE

Commands you can issue * What to test New state

FREE

Equivalent to:
SEND LAST WAIT
FREE

— 1

For the front-end transaction, the first command used after the session has been
allocated must be a SEND command or CONVERSE command that initiates the
back-end transaction in one of the ways described under “Attaching the remote
transaction” on page 264.

Table 20. State 3—receive pending after SEND INVITE

STATE 3 — CICS-TO-IMS CONVERSATIONS — RECEIVE PENDING after SEND
INVITE

Commands you can issue What to test New state

SYNCPOINT (Transaction abends if SYNCPOINT fails.) 4

Table 21. State 4—receive state

STATE 4 — CICS-TO-IMS CONVERSATIONS — RECEIVE STATE

Commands you can issue What to test New state

RECEIVE [NOTRUNCATE] * EIBCOMPL * —

Ditto EIBSYNC 5

Ditto EIBFREE 7

Ditto EIBRECV 4

Ditto Otherwise 2

If NOTRUNCATE is specified, a zero value in EIBCOMPL indicates that the data
passed to the application by CICS is incomplete (because, for example, the data
area specified in the RECEIVE command is too small). CICS saves the remaining
data for retrieval by later RECEIVE NOTRUNCATE commands. EIBCOMPL is set
when the last part of the data is passed back. If the NOTRUNCATE option is not
specified, over-length data is indicated by the LENGERR condition, and the
remaining data is discarded by CICS.

Table 22. State 5—receiver take syncpoint

STATE 5 — CICS-TO-IMS CONVERSATIONS — RECEIVER TAKE SYNCPOINT

Commands you can issue What to test New state

SYNCPOINT EIBFREE (saved value) 7

Ditto EIBRECV (saved value) 4

Ditto Otherwise 2

Table 23. State 6—free pending after SEND LAST

STATE 6 — CICS-TO-IMS CONVERSATIONS — FREE PENDING AFTER SEND LAST

Commands you can issue What to test New state

SYNCPOINT — 7

Chapter 23. CICS-to-IMS applications 273

Table 23. State 6—free pending after SEND LAST (continued)

STATE 6 — CICS-TO-IMS CONVERSATIONS — FREE PENDING AFTER SEND LAST

Commands you can issue What to test New state

FREE — 1

Table 24. State 7—free session

STATE 7 — CICS-TO-IMS CONVERSATIONS — FREE SESSION

Commands you can issue What to test New state

FREE — 1

274 CICS TS for z/OS 4.2: Intercommunication Guide

Part 5. Performance in an intersystem environment

This part gives advice on improving aspects of CICS performance in a
multi-system environment.

Chapter 24, “Intersystem session queue management,” on page 277 describes
methods for controlling the length of intersystem queues.

Chapter 25, “Efficient deletion of shipped terminal definitions,” on page 281
describes how to delete redundant shipped terminal definitions from AORs and
intermediate systems.

© Copyright IBM Corp. 1977, 2012 275

276 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 24. Intersystem session queue management

This chapter describes how to control the number of queued requests for sessions
on intersystem links (allocate queues).

Note: This chapter describes how to control queues for sessions on established
connections. The specialized subject of using local queuing for function-shipped
EXEC CICS START NOCHECK requests is described in “Local queuing of START
commands” on page 55.

Overview of session queue management
In a perfect intercommunication environment, queues would never occur because
work flow would be evenly distributed over time, and there would be enough
intersystem sessions available to handle the maximum number of requests arriving
at any one time.

However, in the real world this is not the case, and, with peaks and troughs in the
workload, queues do occur: queues come and go in response to the workload. The
situation to avoid is an unacceptably high level of queuing that causes a bottleneck
in the work flow between interconnected CICS regions, and which leads to
performance problems for the terminal end-user as throughput slows down or
stops. This abnormal and unexpected queuing should be prevented, or dealt with
when it occurs: a “normal” or optimized level of queuing can be tolerated.

For example, function shipping requests between CICS application-owning regions
and connected file-owning regions can be queued in the issuing region while
waiting for free sessions. Provided a file-owning region deals with requests in a
responsive manner, and outstanding requests are removed from the queue at an
acceptable rate, then all is well. But if a file-owning region is unresponsive, the
queue can become so long and occupy so much storage that the performance of
connected application-owning regions is severely impaired. Further, the impaired
performance of the application-owning region can spread to other regions. This
condition is sometimes referred to as “sympathy sickness”, although it should
more properly be described as intersystem queuing, which, if not controlled, can
lead to performance degradation across more than one region.

Managing allocate queues
There are three methods for managing allocate queues.

Using resource definitions to manage your queues
You can specify the QUEUELIMIT and MAXQTIME options on the CONNECTION
and IPCONN resource definitions for intersystem links that have simple control
requirements; for example, links that carry noncritical traffic.

QUEUELIMIT defines the maximum number of allocate requests that CICS is to
queue while waiting for free sessions on the connection.

MAXQTIME defines the approximate time for which allocate requests will queue
for free sessions on a connection that is unresponsive. MAXQTIME is used only if
a queue limit is specified on QUEUELIMIT, and if that limit is reached.

© Copyright IBM Corp. 1977, 2012 277

When an allocate request is received that causes the QUEUELIMIT value to be
exceeded, CICS calculates whether the rate of processing of the queue will allow
the new request to be processed in the maximum queuing time. If the request is
not processed, CICS purges the queue. No further queuing takes place until the
connection has freed a session. At this point, queuing begins again.

When CICS purges an allocate request because the QUEUELIMIT and MAXQTIME
settings are exceeded, the SYSIDERR condition is returned to the application
program.

For information about the QUEUELIMIT and MAXQTIME attributes, see
CONNECTION definition attributes and IPCONN definition attributes, in the CICS
Resource Definition Guide.

Using the NOQUEUE option
A further method of controlling explicit allocate requests is to specify the
NOQUEUE|NOSUSPEND option of the EXEC CICS ALLOCATE command.

However, while this enables you to control specific requests, it takes no account of
the state of the queue at the time the requests are issued. And it is of no use in
controlling implicit allocate requests (where the session request is instigated by, for
example, a function shipping request). For programming information about API
options, see ALLOCATE (APPC), in the CICS Application Programming Reference.

Using the XISQUE and XZIQUE global user exits
You can control the queuing of allocate requests through a global user exit
program, which provides more flexibility than setting a queue limit on the
connection. Use XISQUE to manage IPIC queues and XZIQUE to manage MRO
and APPC queues.

With the XISQUE and XZIQUE exits, you can quickly detect queuing problems
(bottlenecks). Both exits enable allocate requests to be queued or rejected,
depending on the length of the queue. You can use XISQUE and XZIQUE to stop
and then reestablish a connection that has a bottleneck.

The XZIQUE exit extends the function that the XISCONA exit provides for MRO
and APPC connections. XISCONA is called for function shipping and DPL requests
only, including function shipped EXEC CICS START requests used for
asynchronous processing. XZIQUE is called for transaction routing, asynchronous
processing, and distributed transaction processing requests, in addition to function
shipping and DPL. Compared with the XISCONA exit, XZIQUE receives more
detailed informationon which to base its action. For information on the relationship
between XISCONA and XZIQUE, see the CICS Customization Guide.

Uses of a queuing global user exit program

When the exit is enabled, your XZIQUE or XISQUE global user exit program can
check on the state of the allocate queue for a particular connection in the local
system.

Information is passed to the exit program in a parameter list that is structured to
provide data about nonspecific allocate requests or requests for specific
modegroups, depending on the session request. If you are using the XZIQUE exit,
nonspecific allocate requests are for MRO, LU6.1, and APPC sessions that do not
specify a modegroup.

278 CICS TS for z/OS 4.2: Intercommunication Guide

Using the information passed in the parameter list, your global user exit program
selects the system action to take:
v Queue the allocate request. This action is possible only if the queue limit has not

been reached.
v Reject the allocate request.
v Reject this allocate request and purge all queued requests for the connection.
v Reject this allocate request and purge all queued requests for the modegroup.

Your exit program might base its action on one of the following criteria: Exit
XISQUE in the Customization Guide
v The length of the allocate queue.
v Whether the number of queued requests has reached the limit set by the

QUEUELIMIT option. If the queue limit has not been reached, you might decide
to queue the request.

v The rate at which sessions are being allocated on the connection. If the queue
limit has been reached but session allocation is acceptably quick, you might
decide to reject only the current request. If the queue limit has been reached and
session allocation is unacceptably slow, you might decide to purge the whole
queue.

For details of the information passed in the XISQUE parameter list, and advice
about designing and coding an XISQUE exit program, see the programming
information in the CICS Customization Guide.

For details of the information passed in the XZIQUE parameter list, and advice
about designing and coding an XZIQUE exit program, see the programming
information in the CICS Customization Guide.

Chapter 24. Intersystem session queue management 279

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_exit_xisque.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_exit_xisque.html

280 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 25. Efficient deletion of shipped terminal definitions

This chapter describes how CICS deletes redundant shipped terminal definitions.

It contains the following topics:
v “Overview of how shipped terminals are deleted”
v “Implementing timeout delete” on page 282
v “Tuning the performance of timeout delete” on page 283

Overview of how shipped terminals are deleted
In a transaction routing environment, terminal definitions can be “shipped” from a
terminal-owning region (TOR) to an application-owning region (AOR) when they
are first needed, rather than being statically defined in the AOR.

Note: The “terminal” could be an APPC device or system. In this case, the shipped
definition would be of an APPC connection.

Shipped definitions can become redundant if:
v A terminal user logs off
v A terminal user stops using remote transactions
v The TOR is shut down
v The TOR is restarted, autoinstalled terminal definitions are not recovered, and

the autoinstall user program, DFHZATDX, assigns a new set of termids to the
same set of terminals.

At some stage redundant definitions must be deleted from the AOR (and from any
intermediate systems between the TOR and AOR). For brevity, we shall refer to
AORs and intermediate systems collectively as “back-end systems. This is
particularly necessary in the last case above, to prevent a possible mismatch
between termids in the TOR and the back-end systems.

CICS method of deleting redundant shipped definitions consists of two parts:
v Selective deletion
v A timeout delete mechanism.

Selective deletion
Each time a terminal definition is installed, CICS creates a unique “instance token”
and stores it within the definition.

Thus, if the definition is shipped to another region, the value of the token is
shipped too. All transaction routing attach requests pass the token within the
function management header (FMH). If, during attach processing, an existing
shipped definition is found in the remote region, it is used only if the token in the
shipped definition matches that passed by the TOR. Otherwise, it is deleted and an
up-to-date definition shipped.

© Copyright IBM Corp. 1977, 2012 281

The timeout delete mechanism
You can use the timeout delete mechanism in your back-end systems, to delete
shipped definitions that have not been used for transaction routing for a defined
period Its purpose is to ensure that shipped definitions remain installed only while
they are in use.

Note: Shipped definitions are not deleted if there is an automatic initiate
descriptor (AID) associated with the terminal.

Timeout delete gives you flexible control over shipped definitions. CICS allows
you to:
v Stipulate the minimum time a shipped definition must remain installed before

being eligible for deletion
v Stipulate the time interval between invocations of the mechanism
v Reset these times online
v Cause the timeout delete mechanism to be invoked immediately.

The parameters that control the mechanism allow you to arrange for a “tidy-up”
operation to take place when the system is least busy.

Implementing timeout delete
To use timeout delete in a CICS Transaction Server for z/OS system to which
terminals are shipped, you specify two system initialization parameters.

DSHIPIDL={020000|hhmmss}
Specifies the minimum time, in hours, minutes, and seconds, that an inactive
shipped terminal definition must remain installed in this region. When the
CICS timeout delete mechanism is invoked, only those shipped definitions that
have been inactive for longer than the specified time are deleted.

You can use this parameter in a transaction routing environment, on the
application-owning and intermediate regions, to prevent terminal definitions
having to be reshipped because they have been deleted prematurely.

hhmmss
Specify a 1 to 6 digit number in the range 0-995959. Numbers that have
fewer than six digits are padded with leading zeros.

DSHIPINT={120000|0|hhmmss}
Specifies the interval between invocations of the CICS timeout delete
mechanism. The timeout delete mechanism removes any shipped terminal
definitions that have not been used for longer than the time specified by the
DSHIPIDL parameter.

You can use this parameter in a transaction routing environment, on the
application-owning and intermediate regions, to control:
v How often the timeout delete mechanism is invoked.
v The approximate time of day at which a mass delete operation is to take

place, relative to CICS startup.

0 The timeout delete mechanism is not invoked. You might set this value
in a terminal-owning region, or if you are not using shipped
definitions.

282 CICS TS for z/OS 4.2: Intercommunication Guide

hhmmss
Specify a 1 to 6 digit number in the range 1-995959. Numbers that have
fewer than six digits are padded with leading zeros.

For details of how to specify system initialization parameters, see Specifying CICS
system initialization parameters, in the CICS System Definition Guide.

After CICS startup you can examine the current settings of DSHIPIDL and
DSHIPINT. For flexible control over when mass delete operations take place, you
can reset the interval until the next invocation of the timeout delete mechanism.
(The revised interval starts from the time the command is issued, not from the time
the remote delete mechanism was last invoked, nor from CICS startup.)
Alternatively, you can invoke the timeout delete mechanism.

Tuning the performance of timeout delete
A careful choice of DSHIPINT and DSHIPIDL settings results in a minimal number
of mass deletions of shipped definitions, and a scheduling of those that do take
place for times when your system is lightly loaded.

Conversely, a poor choice of settings could result in unnecessary mass delete
operations. Here are some suggestions for coding DSHIPINT and DSHIPIDL:

DSHIPIDL
In setting this value, you must consider the length of the work periods during
which remote users access resources on this system. Do they access the system
intermittently, all day? Or is their work concentrated into intensive, shorter
periods?

By setting too low a value, you could cause definitions to be deleted and
reshipped unnecessarily. It is also possible that you could cause automatic
transaction initiation (ATI) requests to fail with the “terminal not known”
condition. This condition occurs when an ATI request names a terminal that is not
defined to this system. Usually, the terminal is not defined because it is owned by
a remote system, you are using shippable terminals, and no prior transaction
routing has taken place from it. By allowing temporarily inactive shipped
definitions too short a life, you could increase the number of calls to the XALTENF
and XICTENF global user exits that deal with the “terminal not known” condition.

DSHIPINT
You can use this value to control the time of day at which your mass delete
operations take place.

For example, if you usually warm-start CICS at 7 a.m., you could set DSHIPINT to
150000, so that the timeout delete mechanism is invoked at 10 p.m., when few
users are accessing the system.

Attention: If CICS is recycled, perhaps because of a failure, the timeout delete
interval is reset. Continuing the previous example, if CICS is recycled at 8:00 p.m.,
the timeout delete mechanism will be invoked at 11:00 a.m. the following day (15
hours from the time of CICS initialization). In these circumstances, you could use
the SET DELETSHIPPED and PERFORM DELETSHIPPED commands to accurately
control when a timeout delete takes place.

Chapter 25. Efficient deletion of shipped terminal definitions 283

CICS provides statistics to help you tune the DFHIPIDL and DFHIPINT
parameters. The statistics are available online, and are mapped by the DFHA04DS
DSECT. For details of the statistics provided, see the CICS Performance Guide.

284 CICS TS for z/OS 4.2: Intercommunication Guide

Part 6. Recovery and restart in an intersystem environment

This information describes what CICS can do if things go wrong in an
intercommunication environment, and what you can do to help.

© Copyright IBM Corp. 1977, 2012 285

286 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 26. Recovery and restart in interconnected systems

This section describes those aspects of CICS recovery and restart that apply
particularly in the intercommunication environment. It assumes that you are
familiar with the concepts of units of work (UOWs), synchronization points
(syncpoints), dynamic transaction backout, and other topics related to recovery and
restart in a single CICS system.

These topics are presented in detail in the CICS Recovery and Restart Guide.

In the intercommunication environment, most of the single-system concepts remain
unchanged. Each system has its own system log (or the equivalent for non-CICS
systems), and is normally capable of either committing or backing out changes that
it makes to its own recoverable resources.

In the intercommunication environment, however, a unit of work can include
actions that are to be taken by two or more connected systems. Such a unit of
work is known as a distributed unit of work, because the resources to be accessed
are distributed across more than one system. A distributed unit of work is made
up of two or more local units of work, each of which represents the work to be
done on one of the participating systems. In a distributed unit of work, the
participating systems must agree to commit the changes they have made; this, in
turn, means that they must exchange syncpoint requests and responses over the
intersystem sessions. This requirement represents the single major difference
between recovery in single and multiple systems.

The rest of this section contains the following topics:
v “Syncpoint exchanges”
v “Recovery functions and interfaces” on page 290
v “Initial and cold starts” on page 294
v “Managing connection definitions” on page 297
v “Connections that do not fully support shunting” on page 299
v “APPC connection quiesce processing” on page 301
v “Problem determination” on page 302

Syncpoint exchanges
Consider the following example:

Syncpoint example:

An order-entry transaction is designed so that, when an order for an item is
entered from a terminal:

1. An inventory file is queried and decremented by the order quantity.

2. An order for dispatch of the goods is written to an intrapartition transient
data queue.

3. A synchronization point is taken to indicate the end of the current UOW.

In a single CICS system, the syncpoint causes steps 1 and 2 both to be committed.

© Copyright IBM Corp. 1977, 2012 287

The same result is required if the inventory file is owned by a remote system and
is accessed by means of, for example, CICS function shipping. This is achieved in
the following way:
1. When the local transaction issues the syncpoint request, CICS sends a syncpoint

request to the remote transaction (in this case, the CICS mirror transaction).
2. The remote transaction commits the change to the inventory file and sends a

positive response to the local CICS system.
3. CICS commits the change to the transient data queue.

During the period between the sending of the syncpoint request to the remote
system and the receipt of the reply, the local system does not know whether the
remote system has committed the change. This period is known as the indoubt
period, as illustrated in Figure 60 on page 289.

If the intersystem session fails before the indoubt period is reached, both sides
back out in the normal way. After this period, both sides have committed their
changes. If, however, the intersystem session fails during the indoubt period, the
local CICS system cannot tell whether the remote system committed or backed out
its changes.

Syncpoint flows
The ways in which syncpoint requests and responses are exchanged on intersystem
conversations are defined in the APPC and LUTYPE6.1 architectures. CICS MRO
and IPIC use the APPC recovery protocols. Although the formats of syncpoint
flows for APPC and LUTYPE6.1 are different, the concepts of syncpoint exchanges
are similar.

In CICS, the flows involved in syncpoint exchanges are generated automatically in
response to explicit or implicit SYNCPOINT commands issued by a transaction.
However, a basic understanding of the flows that are involved can help you in the
design of your application and give you an appreciation of the consequences of
session or system failure during the syncpoint activity. For more information about
these flows, see the CICS Distributed Transaction Programming Guide.

Figures Figure 60 on page 289 through Figure 62 on page 290 show some examples
of syncpoint flows. In the figures, the numbers in brackets, for example, (1), show
the sequence of the actions in each flow.

A CICS task may contain one or more UOWs. A local UOW that initiates syncpoint
activity—by, for example, issuing an EXEC CICS SYNCPOINT or an EXEC CICS
RETURN command—is called an initiator. A local UOW that receives syncpoint
requests from an initiator is called an agent. The simplest case is shown in
Figure 60 on page 289. There is a single conversation between an initiator and an
agent. At the start of the syncpoint activity, the initiator sends a commit request to
the agent. The agent commits its changes and responds with committed. The
initiator then commits its changes, and the unit of work is complete. However, the
agent retains recovery information about the UOW until its partner tells it (by
means of a “forget” flow) that the information can be discarded.

Between the commit flow and the committed flow, the initiator is indoubt, but the
agent is not. The local UOW that is not indoubt is called the coordinator, because
it coordinates the commitment of resources on both systems. The local UOW that is
indoubt is called the subordinate, because it must obey the decision to commit or
back out taken by its coordinator.

288 CICS TS for z/OS 4.2: Intercommunication Guide

Figure 61 shows a more complex example. Here, the agent UOW (Agent1) has a
conversation with a third local UOW (Agent2). Agent1 initiates syncpoint activity
on this latter conversation before it responds to the initiator. Agent2 commits first,
then Agent1, and finally the initiator. Note that, in Figure 61, Agent1 is both the
coordinator of the initiator and a subordinate of Agent2.

Figure 62 on page 290 shows a more general case, in which the initiator UOW has
more than one (directly-connected) agent. It must inform each of its agents that a
syncpoint is being taken. It does this by sending a “prepare to commit” request to
all of its agents except the last. The last agent is the agent that is not told to
prepare to commit.

Note: CICS chooses the last agent dynamically, at the time the syncpoint is issued.
CICS external interfaces do not provide a means of identifying the last agent.

Each agent that receives a “prepare” request responds with a “commit” request.
When all such “prepare” requests have been sent and all the “commit” responses
received, the initiator sends a “commit” request to its last agent. When this
responds with a “committed” indication, the initiator then sends “committed”
requests to all the other agents.

Note that, in Figure 62 on page 290, the Initiator is both the coordinator of Agent1
and a subordinate of Agent2. Agent2 is the last agent.

Unique session
commit(1)

Initiator Agent

Subordinate Coordinator
in-doubt

committed(2)

forget

Figure 60. Syncpointing flows—unique session. In this distributed UOW, there is one
coordinator and one subordinate. The coordinator is not indoubt.

Chained sessions - agent UOW has its own agent
commit(1)

Initiator Agent1 commit(2) Agent2

Subordinate Coordinator Subordinate Coordinator
in-doubt in-doubt

committed(3)
committed(4)

forget forget

Figure 61. Syncpointing flows—chained sessions. In this distributed UOW, Agent1 is both the coordinator of the
initiator, and a subordinate of Agent2.

Chapter 26. Recovery and restart in interconnected systems 289

Recovery functions and interfaces
This section describes the functions and interfaces provided by CICS for recovery
after a communication failure, or a CICS system failure.

Important:

Not all CICS releases provide the same level of support; this section describes
MRO, IPIC, and ISC over SNA (APPC) parallel-session connections to other CICS
Transaction Server for z/OS systems. Much of it applies also to other types of
connection, but with some restrictions. For information about the restrictions for
connections to non-CICS Transaction Server for z/OS systems, and for LU6.1 and
APPC single-session connections, see “Connections that do not fully support
shunting” on page 299.

This section also assumes that each CICS system is restarted correctly (that is, that
AUTO is coded on the START system initialization parameter). If an initial start is
performed there are implications for connected systems; these are described in
“Initial and cold starts” on page 294.

Recovery functions
If CICS is left indoubt about a unit of work due to a communication failure, it can
do one of two things.

How you can influence which of the two actions CICS takes is described in “The
indoubt attributes of the transaction definition” on page 291.
v Suspend commitment of updated resources until the systems are next in

communication. The unit of work is shunted. When communication is restored,
the decision to commit or back out is obtained from the coordinator system; the
unit of work is unshunted, and the updates are committed or backed out on the
local system in a process called resynchronization.

v Take a unilateral decision to commit or back out local resources. In this case, the
decision may be inconsistent with other systems; at the restoration of

Multiple sessions - initiator has multiple agents
prepare(1)

Initiator Agent1

commit(2)
commit(3)

Agent2
(Last agent)

Subordinate Coordinator Subordinate
Coordinator in-doubt in-doubt

committed(4)

committed(5)
forget

forget

Figure 62. Syncpointing flows—multiple sessions. In this distributed UOW, the Initiator is both the coordinator of
Agent1, and a subordinate of Agent2. Agent2 is the last agent, and is therefore not told to prepare to commit.

290 CICS TS for z/OS 4.2: Intercommunication Guide

communications the decisions are compared and CICS warns of any
inconsistency between neighboring systems (see “Messages that report CICS
recovery actions” on page 302).

There is a trade-off between the two functions: the suspension of indoubt UOWs
causes updated data to be locked against subsequent access; this disadvantage has
to be weighed against the possibility of corruption of the consistency of data,
which could result from taking unilateral decisions. When unilateral decisions are
taken, there may be application-dependent processes, such as reconciliation jobs,
that can restore consistency, but there is no general method that can be provided
by CICS.

Recovery interfaces
This section summarizes the resource definition options, system programming
commands, and CICS-supplied transactions that you can use to control and
investigate units of work that fail during the indoubt period.

The indoubt attributes of the transaction definition
You can control the action that CICS takes after a communication failure during
the indoubt period by specifying indoubt attributes when you define the
transaction, using the WAIT, WAITTIME, and ACTION attributes of the
TRANSACTION resource.

These options are honored when communication is lost with the coordinator and
the UOW is in the indoubt period.

Use the following attributes of the TRANSACTION resource:

WAIT({YES|NO})
Specifies whether or not a unit of work is to wait, pending recovery from a
failure that occurred after it had entered the indoubt period, before taking the
action specified by ACTION.

YES
The UOW is to wait, pending recovery from the failure, to resolve its
indoubt state and determine whether recoverable resources are to be
backed out or committed. In other words, it is to be shunted.

NO The UOW is not to wait. CICS takes immediately whatever action is
specified on the ACTION attribute.

Note: The setting of the WAIT option can be overridden by other system
settings—see TRANSACTION definition attributes.

WAITTIME({00,00,00|dd,hh,mm})
Specifies, if WAIT=YES, how long the transaction is to wait, before taking the
action specified by ACTION.

You can use WAIT and WAITTIME to allow an opportunity for normal
recovery and resynchronization to take place, while ensuring that a unit of
work releases locks within a reasonable time.

ACTION({BACKOUT|COMMIT})
Specifies the action to be taken when communication with the coordinator of
the unit of work is lost, and the UOW has entered the indoubt period.

Chapter 26. Recovery and restart in interconnected systems 291

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/transaction/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/transaction/dfha4_attributes.html

BACKOUT
All changes made to recoverable resources are backed out, and the
resources are returned to the state they were in before the start of the
UOW.

COMMIT
All changes made to recoverable resources are committed and the UOW is
marked as completed.

The action is dependent on the WAIT attribute. If WAIT specifies YES,
ACTION has no effect unless the interval specified on the WAITTIME option
expires before recovery from the failure.

Whether you specify BACKOUT or COMMIT is likely to depend on the kinds
of changes that the transaction makes to resources in the remote system—see
“Specifying indoubt attributes—an example.”

Specifying indoubt attributes—an example:

This simple example is an illustration of specifying the indoubt attributes of a
transaction.

Example:

A transaction is given a part number; it checks the entry in a local file to see
whether the part is in stock, decrements the quantity in stock by updating the
stock file, and sends a record to a remote transient data queue to initiate the
dispatch of the part.

The update to the local file should take place only if the addition is made to the
remote transient data (TD) queue, and the TD queue should only be updated if an
update is made to the local file. The first step towards achieving this is to specify
both the file and the TD queue as recoverable resources. This ensures
synchronization of the changes to the resources (that is, both changes will either be
backed out or committed) in all cases except for a session or system failure during
the indoubt period of syncpoint processing.

To deal with a communications failure—for example, a failure of the remote
system—during the indoubt period, specify on the local transaction definition,
WAIT(YES), ACTION(BACKOUT), and a WAITTIME long enough to allow the
remote system to be recycled. This enables resynchronization to take place
automatically, if communication is restored within the specified time limit. During
the WAITTIME period, until resynchronization takes place, the local UOW is
shunted, and a lock is held on the stock-file record.

If communication is not restored within the time limit, changes made to the stock
file on the local system are backed out. The addition to the TD queue on the
remote system may or may not have been committed; this must be investigated
after communication is restored.

INQUIRE commands
The CEMT and EXEC CICS interfaces provide a set of inquiry commands that you
can use to investigate the execution of distributed units of work, and diagnose
problems.

In the following list of commands, INQUIRE CONNECTION applies to MRO and ISC
over SNA (APPC) connections. INQUIRE IPCONN applies to IPIC connections.

292 CICS TS for z/OS 4.2: Intercommunication Guide

In the CICS Explorer, the ISC/MRO connections operations view and IPIC
connections operations view provide functional equivalents to the INQUIRE
CONNECTION and INQUIRE IPCONN commands.

In summary, the commands are:

INQUIRE {CONNECTION | IPCONN} RECOVSTATUS
Use this command to find out whether any resynchronization work is
outstanding between the local system and the connected system. The
returned CVDA values are:

NORECOVDATA
Neither side has recovery information outstanding.

NOTAPPLIC
This is not an IPIC, APPC parallel-session, nor a CICS-to-CICS
MRO connection, and does not support two-phase commit
protocols.

NRS CICS does not have recovery outstanding for the connection, but
the partner may have.

RECOVDATA
There are indoubt units of work associated with the connection, or
there are outstanding resyncs awaiting FORGET on the connection.
Resynchronization takes place when the connection next becomes
active, or when the UOW is unshunted.

INQUIRE {CONNECTION | IPCONN} PENDSTATUS
Use this command to discover whether there are any UOWs for which
resynchronization is impossible because of an initial start by the connected
system.

INQUIRE CONNECTION XLNSTATUS (APPC parallel-sessions only)

In the CICS Explorer, the ISC/MRO connections operations view
provides a functional equivalent to this command.

Use it to discover whether the link is currently able to support syncpoint
(synclevel 2) work. See “The exchange lognames process” on page 296 for
more information.

Note: XLNSTATUS is not applicable to IPCONNs.

INQUIRE UOW
Use this command to discover why a unit of work is waiting or shunted. If
the reason is a connection failure (the WAITCAUSE option returns a CVDA
value of CONNECTION), the SYSID and LINK options return the sysid
and netname of the remote system that caused the UOW to wait or be
shunted.

Note that INQUIRE UOW returns information about a local UOW—that is,
for a distributed UOW it returns information only about the work required
on the local system. You can assemble information about a distributed
UOW by matching the network-wide identifier returned in the
NETUOWID field against the identifiers of local UOWs on other systems.
For an example of how to do this, see “Resolving a resynchronization
failure” on page 305.

Chapter 26. Recovery and restart in interconnected systems 293

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html

INQUIRE UOWLINK
This command allows you to inquire about the resynchronization needs of
individual UOWs. Use it to discover information about connections
involved in a distributed UOW.

For a local UOW, INQUIRE UOWLINK returns a list of tokens (UOW-links)
representing connections to the systems that are involved in the distributed
UOW. For each UOW-link, INQUIRE UOWLINK returns:
v The CONNECTION name
v The resynchronization status of the connection
v Whether the connection is to a coordinator or a subordinate system.

For examples of the use of these commands to diagnose problems with distributed
units of work, see “Problem determination examples” on page 305.

SET {CONNECTION | IPCONN} command
In exceptional cases, you may need to override the indoubt action normally
controlled by the transaction definition.

For example, a connected system may take longer than expected to restart. If the
connected system is the coordinator of any UOWs, you can use the EXEC CICS or
CEMT SET {CONNECTION | IPCONN}
UOWACTION(FORCE|COMMIT|BACKOUT) command to force the UOWs to
take a local, unilateral decision to commit or back out.

Note: SET CONNECTION applies to MRO and ISC over SNA (APPC) connections. SET
IPCONN applies to IPIC (IP) connections.

The following commands are described in “The exchange lognames process” on
page 296 and “Managing connection definitions” on page 297:
v SET {CONNECTION | IPCONN} PENDSTATUS
v SET {CONNECTION | IPCONN} RECOVSTATUS.

Initial and cold starts
This section describes functions to manage the exceptional conditions that can
occur in a transaction-processing network when one system performs an initial or
cold start.

Important:

v Except where otherwise stated, this section describes the effect of initial and cold
starts on CICS Transaction Server for z/OS systems that are connected by MRO,
IPIC, or ISC over SNA (APPC) parallel-session links. For information about the
effects when other connections are used, see “Connections that do not fully
support shunting” on page 299.

v In the rest of this chapter, the term “cold start” means a cold start in the CICS
TS for z/OS meaning of the phrase (explained below). Where an “initial start” is
intended, the term is used explicitly.

CICS Transaction Server for z/OS systems can be started without full recovery in
two ways:

Initial start
An initial start may be performed in either of the following circumstances:
v 'INITIAL' is specified on the START system initialization parameter.

294 CICS TS for z/OS 4.2: Intercommunication Guide

v 'AUTO' is specified on the START system initialization parameter, and the
recovery manager utility program, DFHRMUTL, has been used to set the
AUTOINIT autostart override in the global catalog.

On an initial start, all information about both local and remote resources is
erased, and all resource definitions are reinstalled from the CSD or from CICS
tables.

An initial start should be performed only in exceptional circumstances.
Examples of times when an initial start is appropriate are:
v When bringing up a new CICS system for the first time
v After a serious software failure, when the global catalog or system log has

been corrupted.

Cold start
A cold start may be performed in either of the following circumstances:
v 'COLD' is specified on the START system initialization parameter.
v 'AUTO' is specified on the START system initialization parameter, and the

DFHRMUTL utility has been used to set the AUTOCOLD autostart override
in the global catalog.

In CICS TS for z/OS, a cold start means that log information about local
resources is erased, and resource definitions are reinstalled from the CSD or
from CICS tables. However, resynchronization information relating to remote
systems or to RMI-connected resource managers is preserved. The CICS log is
scanned during startup, and information regarding unit of work obligations to
remote systems, or to non-CICS resource managers (such as DB2®) connected
through the RMI, is preserved. (That is, any decisions about the outcome of
local UOWs, needed to allow remote systems or RMI resource managers to
resynchronize their resources, are preserved.)

For guidance information about the different ways in which CICS can be started,
see the CICS Recovery and Restart Guide.

Deciding when a cold start is possible
At a cold start, information relating to intersystem recovery is read from the
system log.

Connected systems act as if the local system restarted normally, and resynchronize
any outstanding work. Note that updates to local resources that were not fully
committed or backed out during the previous run of CICS are not recovered at a
cold start, even if the updates were part of a distributed unit of work.

A cold start will not damage the integrity of data if all the following conditions are
true:
1. Either

v The local system has no local recoverable resources (a TOR, for example), or

v The previous run of CICS was successfully quiesced (shutdown was normal
rather than immediate) and no units of work were shunted.

Note: On a normal shutdown, CICS issues messages to help you decide
whether it can be cold started safely. If there are no shunted UOWs, CICS
issues message DFHRM0204. If there are shunted UOWs, it issues message
DFHRM0203—you should not perform a cold start.

Chapter 26. Recovery and restart in interconnected systems 295

2. Attached resource managers that use the RMI are subsequently reconnected to
allow resynchronization.

3. Connections to remote systems required for resynchronization are subsequently
acquired.
The cold-started system may or may not contain the same connection
definitions that were in use at the previous shutdown. If autoinstalled
connections are missing, the remote system may cause them to be recreated, in
which case resynchronization takes place. If this does not happen—or the
connection definitions are missing—some action must be taken. See “Managing
connection definitions” on page 297.
If you have defined the cold-started system to be part of a z/OS
Communications Server generic resource group, its connections can be correctly
reestablished, provided the affinity relationship maintained by z/OS
Communications Server is still valid. However, the loss of autoinstalled
definitions may make it difficult to end z/OS Communications Server affinities,
if this is required. See “APPC connections to and from z/OS Communications
Server generic resources” on page 298.

The DFHRMUTL utility returns information about the type of the last CICS
shutdown which is of use in determining whether a cold restart is possible or not.
For further details, see the CICS Operations and Utilities Guide.

The exchange lognames process
The protocols that control the communication of syncpointing commit and backout
decisions depend on information in the system log.

Each time CICS systems connect they exchange tokens called lognames. Lognames
are verified during resynchronization; an exchange lognames failure means that the
recovery protocol has been corrupted. A failure can take two forms:
1. A cold/warm log mismatch. A cold/warm log mismatch is caused by the loss

of log data at one partner when the other has resynchronization work
outstanding.

Note: The term “cold start” is used in the SNA Peer Protocols manual, and by
other products that communicate with CICS TS for z/OS to describe the cause
of a loss of log data.

“Cold start” is also used in CICS TS for z/OS messages and interfaces to
describe the action of a partner system that results in a loss of log data for
CICS TS for z/OS.

However, in CICS TS for z/OS, a loss of log data for connected systems is
caused by an initial start (not by a cold start), or by a SET CONNECTION
NORECOVDATA command.

2. A lognames mismatch. A lognames mismatch is caused by a corruption of
logname data. This can occur due to:
a. A system logic error
b. An operational error—for example, a failure to perform an initial start when

upgrading from a back-level CICS release to CICS Transaction Server for
z/OS.

The exchange lognames process is defined by the APPC architecture. For a full
description of the concepts and physical flows, see the SNA Peer Protocols manual.
MRO and IPIC use a similar protocol to APPC, with the important difference that

296 CICS TS for z/OS 4.2: Intercommunication Guide

after the erasure of log information at a partner, they allow new work to begin
whatever the condition of existing work. On APPC synclevel 2 sessions, no further
work is possible until action has been taken to delete any outstanding
resynchronization work.

After a partner system has been reconnected, you can use the INQUIRE
CONNECTION PENDSTATUS command to check whether there is any
outstanding resynchronization work that has been invalidated by the erasure of log
information at the partner. A status of 'PENDING' indicates that there is. To check
whether APPC connections are able to execute new synclevel 2 work, use the
INQUIRE CONNECTION XLNSTATUS command. A status of 'XNOTDONE'
indicates that the exchange lognames process has not completed successfully,
probably because of a loss of log data.

When CICS detects that a partner system has lost log data, the possible actions it
can take are:
1. None. If there is no resynchronization work outstanding on the local system,

the loss of log data has no effect.
2. Keep outstanding resynchronization work (which may include UOWs which

were indoubt when communication was lost) for investigation.
3. Delete outstanding resynchronization work; any indoubt UOWs are committed

or backed out according to the ACTION option of the associated transaction
definition, and any decisions remembered for the partner are forgotten.

When there is outstanding resynchronization work, you can control (for IPIC, MRO
and APPC connections) which of actions 2 or 3 CICS takes:
v Automatically, using the XLNACTION option of the connection definition. To

delete resynchronization work as soon as the loss of log data by the partner is
detected, use XLNACTION(FORCE).

v Manually, using the SET UOW and SET CONNECTION
PENDSTATUS(NOTPENDING) commands.

Considerations for APPC connections
The exchange lognames process affects only level 2 synchronization conversations.
If it fails, synclevel 2 conversations are not allowed on the link until the failure is
resolved by operator action. However, synclevel 0 and synclevel 1 traffic on the
link is unaffected by the failure, and continues as normal.

Managing connection definitions
This section describes how to manage definitions of MRO, IPIC, and APPC
parallel-session connections between CICS Transaction Server for z/OS systems.

Important:

For considerations that apply to other types of connection, see “Connections that
do not fully support shunting” on page 299.

Recovery information for a remote system is largely independent of the connection
definition for the system. This allows you to manage (for example, modify)
connection definitions independently of any recovery information that may be
outstanding. However, in some cases the connection definition holds important
information, which means that it must be kept, unmodified, until any recovery
between the systems is complete.

Chapter 26. Recovery and restart in interconnected systems 297

MRO and IPIC connections to CICS TS for z/OS systems
For connections to other CICS Transaction Server for z/OS systems, the connection
definition contains no recovery information. You can modify connections without
regard to recovery, provided that the netname of the connection remains the same.

If a connection definition is lost at a cold start, use the CEMT INQUIRE UOWLINK
RESYNCSTATUS(UNCONNECTED) command to discover whether CICS retains
any recovery information for the previously-connected system. This command will
tell you whether CICS contains any tokens (UOW-links) associating UOWs with
the lost connection definition. If there are UOW-links present, you can either:
v Reinstall a suitable connection definition based on the UOW-link attributes and

reestablish the connection.
v If you are certain that the associated UOW information is of no use, use the SET

UOWLINK(xxxxxxx) ACTION(DELETE) command to delete the UOW-link. (You
may need to use the SET UOW command to force an indoubt UOW to commit
or back out before the UOW-links can be deleted.)

You can use the same UOWLINK commands if a connection has been discarded.

Before discarding a connection, you should use the INQUIRE CONNECTION
RECOVSTATUS command to check whether there is any recovery information
outstanding. If there is recovery information outstanding, you should discard the
connection only if there is no possibility of achieving a successful
resynchronization with the partner. In this exceptional circumstance, you can use
the SET CONNECTION UOWACTION command to force indoubt units of work before
discarding the connection.

APPC parallel-session connections to CICS TS for z/OS
systems

APPC parallel-session connections in a CICS Transaction Server for z/OS system
that is not registered as a member of a z/OS Communications Server generic
resource contain no recovery information and can be managed in the same way as
MRO connections to CICS TS for z/OS systems.

APPC connections to and from z/OS Communications Server
generic resources

If CICS is a member of a z/OS Communications Server generic resource group, the
local z/OS Communications Server may have an affinity which directs any new
binds from a partner to this same local system.

You must not end the affinity held by z/OS Communications Server if there is any
possibility that resynchronization with the partner may be needed; if you do, binds
(and subsequent resynchronization messages) may be directed to a different
member of the generic resource. In most cases, it is safest to allow the APPC
connection quiesce protocol to end the affinities automatically—see “APPC
connection quiesce processing” on page 301.

CICS prevents the execution of the SET CONNECTION ENDAFFINITY command
if a logname has been received from the partner system, because this is the
condition under which the partner may begin recoverable work and start
resynchronization. The discarding of a connection is also prevented, because its
loss means that the logname is no longer visible. If you intend ending affinities,
you should do it before shutting down CICS before a cold start, because a cold start

298 CICS TS for z/OS 4.2: Intercommunication Guide

restores a logname without the associated connection. Ending affinities without
removing the logname can cause exchange logname failures later.

For further information about affinities and how to end them, see “Ending
affinities” on page 135.

Managing connection definitions
For members of a generic resource, the connection definition is the only way (using
the INQUIRE and SET CONNECTION RECOVSTATUS commands) of safely
managing lognames and affinities.

Connections can be discarded only if their recovery status (RECOVSTATUS) is
NORECOVDATA. You can use the SET CONNECTION RECOVSTATUS command
to set a connection's recovery status to NORECOVDATA if neither the local system
nor the partner has any indoubt units of work dependent on the other. A simple
and safe test is that neither system's connection to the other should have a status
of RECOVSTATUS(RECOVDATA). If this test succeeds, you can issue SET
CONNECTION NORECOVDATA on both, and SET CONNECTION
ENDAFFINITY on the generic resource members.

Connections that do not fully support shunting
This section describes exceptions that apply, for example, to connections to
back-level systems.

The information in previous sections assumes that you are using MRO, IPIC, or
APPC parallel-session connections to other CICS Transaction Server for z/OS
systems—that is, that your network consists solely of current systems that fully
support shunting. Much of the preceding information applies equally to other
types of connection.

LU6.1 connections
This section describes the ways in which LU6.1 connections differ from APPC
parallel-session connections and MRO connections to CICS TS for z/OS systems.

Recovery functions and interfaces

Some recovery functions are not available to LU6.1 connections:
v Shunting is not always supported.
v Some recovery-related commands and options are not supported.
v Resynchronization takes place on a session-by-session basis.

Restriction on shunting support
There is no LU6.1 protocol by which one system can notify another system that
a unit of work has been shunted. The only time when a UOW that includes an
LU6.1 session can be shunted is when all the following are true:
v There is only one LU6.1 session in the local UOW.
v The LU6.1 session is the coordinator.
v The LU6.1 session has failed during the indoubt period.
v The LU6.1 session is to the last agent.

Under these conditions, the UOW can be shunted, because there is no need for
the LU6.1 partner to be notified of the shunt.

Chapter 26. Recovery and restart in interconnected systems 299

Under other conditions, a UOW that fails in the indoubt period, and that
involves an LU6.1 session, takes a unilateral decision. If WAIT(YES) is specified
on the transaction definition, it has no effect—WAIT(NO) is forced.

Unsupported commands
The following commands are not supported on LU6.1 connections:
v INQUIRE CONNECTION PENDSTATUS
v INQUIRE CONNECTION RECOVSTATUS
v INQUIRE CONNECTION XLNSTATUS.

Lack of SYNCPOINT ROLLBACK support
There is no LU6.1 protocol by which one system can notify another that a
UOW has been backed out, without terminating the conversation. An attempt
to issue an EXEC CICS SYNCPOINT ROLLBACK command in a UOW that
includes an LU6.1 session results in an ASP8 abend. This abend cannot be
handled by the application program.

Any resources in the UOW are backed out, but the transaction is not able to
continue.

Session-by-session resynchronization
Unlike APPC parallel-session connections and CICS TS for z/OS-CICS TS for
z/OS MRO connections, LU6.1 sessions are resynchronized one by one, as they
are bound. Therefore, any UOW that requires resynchronization is not
resynchronized until the session that failed is reconnected.

Initial and cold starts

The LU6.1 connection definition contains sequence numbers used for recovery. If
you perform an initial or cold start of CICS when there are LU6.1 connections on
which recovery is outstanding, the sequence numbers are lost, and it becomes
impossible for the partner systems to resynchronize their outstanding units of
work.

Lognames are not used. Therefore, the XLNACTION attribute of the
CONNECTION resource is meaningless for LU6.1 connections.

Managing connection definitions

Recovery information for a remote system is not stored independently from the
connection definition for the system—the LU6.1 connection definition contains
sequence numbers used for recovery. Therefore you should not modify or discard
connections for which recovery information may be outstanding.

APPC connections to non-CICS TS for z/OS systems
Some non-CICS Transaction Server for z/OS systems that can be connected to by
APPC links do not support shunting, and always take unilateral action if a session
failure occurs during the indoubt period.

Inevitably, communication with a system that does not support shunting involves a
risk of damage to data integrity through the taking of unilateral decisions. It is not
possible for CICS to distinguish systems that do not support shunting from others
that do support shunting. Therefore, it cannot preferentially select such a system to
be the coordinator of a unit of work.

Note the following:

300 CICS TS for z/OS 4.2: Intercommunication Guide

v When unshunting takes place, there may be some delay before the unshunting is
communicated to the non-CICS TS for z/OS system.

v Sessions may be unbound by CICS or its partner system as a normal part of the
shunting and resynchronization process.

APPC single-session connections
Normal syncpoint protocols cannot be used across a connection that is defined as
SINGLESESS(YES).

If function shipping is used (inbound or outbound), CICS communicates the
outcome of a unit of work. However, resynchronization cannot be performed in the
case of session failure.

CICS issues a message to inform you of the shunting—but not the unshunting— of
a unit of work.

If the connection to which a function-shipped request is made is defined as remote
(that is, it is owned by a remote region), the connection to the remote region must
be defined as a parallel-session link, if recovery protocols with the resource-owning
system are to be enabled.

APPC connection quiesce processing
When an APPC parallel-session connection with a CICS Transaction Server for
z/OS region is shut down normally, CICS exchanges information with its partner
to discover if there is any possibility that resynchronization is required when the
connection is restarted.

This exchange is known as the connection quiesce protocol (CQP).

CICS determines that resynchronization is not required if all the following
conditions are true:
v The connection is being shut down.
v There are no user sessions active (the CQP uses the SNASVCMG sessions). If the

SNASVCMG sessions become inactive before the user sessions, the CQP will not
take place.

v The CICS recovery manager domain has no record of outstanding syncpoint
work or resynchronization work for the connection.

Once the CQP has completed, CICS ensures that no recoverable work can be
initiated for the connection until a fresh logname exchange has taken place.

If the CQP determines that resynchronization is not required, CICS:
v Sets the connection's recovery state to NORECOVDATA
v If CICS is a member of a generic resource group, ends any affinity held by z/OS

Communications Server and issues a message to say that the affinity has been
ended.

If there is any failure of the CQP, CICS presumes that there is a possibility of
resynchronization being necessary. You may use the procedures described here to
determine if this is truly the case, and perform the necessary actions manually.
Alternatively, you can reacquire the connection and release it again, to force CICS
to re-attempt the CQP.

Chapter 26. Recovery and restart in interconnected systems 301

Problem determination
This section describes messages that report CICS recovery actions, and gives
examples of how to resolve indoubt and resynchronization failures. The examples
demonstrate how to use some of the commands previously discussed.

Messages that report CICS recovery actions
When a communications failure occurs, the connected systems might resolve their
local parts of a distributed unit of work in ways that are inconsistent with each
other. To warn of this possibility, when a CICS region loses communication with a
partner, for each session on which the UOW is in the indoubt period, it issues a
DFHRMxxxx message.

The message can be issued at the time of a session failure, a failure of the partner,
or during emergency restart.

When the connection has been reestablished, on each affected session the UOW is
unshunted, its state is determined, and another message is issued. For LUTYPE6.1
conversations, these messages might appear only on the initiator side.

All messages contain the following information, which enables them to be
correlated:
v The time and date of the original failure
v The transaction identifier and task number
v The netname of the remote system
v The operator identifier
v The operator terminal identifier
v The network-wide unit of work identifier
v The local unit of work identifier.

The following types of messages associated with intersystem session failure and
recovery are produced:
v When contact is lost with the coordinator of the UOW. Messages are shown in

Table 25 on page 303 and Table 26 on page 304.
v When WAIT(YES) is specified on the transaction definition and shunting is

possible. Messages are shown in Table 25 on page 303.
v When WAIT(NO) is specified, or when shunting is not possible. Messages are

shown in Table 26 on page 304.
v When contact is lost with a subordinate in the UOW. Messages are shown in

Table 27 on page 304.

Full details are in CICS Messages and Codes Vol 1.

302 CICS TS for z/OS 4.2: Intercommunication Guide

Table 25. WAIT(YES) session failure messages. The failure is between the session and the
coordinator of the UOW, WAIT(YES) is specified on the transaction definition and shunting
is possible.

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2
applies to IPIC and APPC messages.

Sequence of
messages

Circumstances Messages
issued

Meaning of messages

Stage 1 Session failure
DFHRM0106 Intersystem session failure. Resource

changes are not committed or backed
out until session recovery.

Stage 1
System failure or
restart

— —

Stage 2
Session recovery
successful

DFHRM0108 Intersystem session recovery.
Suspended resource changes now being
committed.

Stage 2
Session recovery
successful

DFHRM0109 Intersystem session recovery.
Suspended resource changes now being
backed out.

Stage 2
Wait time exceeded
or SET UOW
ACTION issued

DFHRM0104
DFHRM0105

See next table.

Stage 2

SET CONNECTION
NOTPENDING or
XLNACTION
(FORCE) or
NORECOVDATA
issued

DFHRM0125
DFHRM0126

Local resources committed or backed
out.

Stage 2
Session recovery
after a cold start of
local resources.

DFHRM0209 UOW backed out.

Stage 2
Session recovery
after a cold start of
local resources

DFHRM0208 UOW committed.

Stage 2

Session recovery
error; for example,
partner cold-started
1

DFHRM0112
DFHRM0113
DFHRM0115
DFHRM0116
DFHRM0118
DFHRM0119
DFHRM0121
DFHRM0122

Intersystem recovery error. Local
resource changes are committed or
backed out.

Key:
1. LU6.1 only

Chapter 26. Recovery and restart in interconnected systems 303

Table 26. WAIT(NO) session failure messages. The failure is between the session and the
coordinator of the UOW. WAIT(NO) is specified on the transaction definition or shunting is
not possible.

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2
applies to IPIC and APPC messages.

Sequence of
messages

Circumstances Messages
issued

Meaning of messages

Stage 1 Session failure

DFHRM0104
DFHRM0105

Intersystem session failure. Resource
changes are being committed or backed
out and might be out of sync with
partner.

Stage 1
System failure or
restart

— —

Stage 2
Session recovery
successful

DFHRM0110 Intersystem session recovery. Resource
updates found to be synchronized.

Stage 2
Session recovery
successful

DFHRM0111 Intersystem session recovery. Resource
updates found to be out of sync.

Stage 2

SET CONNECTION
NOTPENDING or
XLNACTION
(FORCE) or
NORECOVDATA
issued

DFHRM0127 SET NOTPENDING issued.

Stage 2

Session recovery
error; for example,
partner cold-started
1

DFHRM0112
DFHRM0113
DFHRM0115
DFHRM0116
DFHRM0118
DFHRM0119
DFHRM0121
DFHRM0122

Local resource changes committed or
backed out.

Key:
1. LU6.1 only

Table 27. Subordinate session failure messages. The failure is between the session and a
subordinate in the UOW.

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2
applies to IPIC and APPC messages.

Sequence of
messages

Circumstances Messages
issued

Meaning of messages

Stage 1

UOW shunted
because of failure of
session to
coordinator

— —

Stage 1
Session failure DFHRM0107 Intersystem session failure. Notification

of decision might not reach the remote
system.

Stage 1
System failure or
restart

— —

304 CICS TS for z/OS 4.2: Intercommunication Guide

Table 27. Subordinate session failure messages (continued). The failure is between the
session and a subordinate in the UOW.

In each stage (1 and 2), the messages that CICS issues depend on the circumstances that
apply, as shown in columns 2 and 4. Stage 1 applies to MRO messages, and Stage 2
applies to IPIC and APPC messages.

Sequence of
messages

Circumstances Messages
issued

Meaning of messages

Stage 2
Session recovery
successful

DFHRM0135
DFHRM0148
1

Intersystem session recovery. Resource
updates found to be synchronized.

Stage 2
Session recovery
successful

DFHRM0110 Intersystem session recovery. Resource
updates found to be synchronized, after
a unilateral decision on the remote
system.

Stage 2
Session recovery
successful

DFHRM0111
DFHRM0124

Intersystem session recovery. Resource
updates found to be out of sync, after a
unilateral decision on the remote
system.

Stage 2

SET CONNECTION
NOTPENDING or
XLNACTION
(FORCE) or
NORECOVDATA
issued

DFHRM0127 SET NOTPENDING issued.

Stage 2

Session recovery
error; for example,
partner cold-started
2

DFHRM0114
DFHRM0117
DFHRM0120
DFHRM0123

Intersystem session recovery error.
Resource changes might be out of sync.

Key:
1. DFHRM0124 and DFHRM0148 might occur without a preceding session failure message

(DFHRM0107) or shunt.
2. LU6.1 only

Problem determination examples
This section contains examples of how to resolve indoubt and resynchronization
failures.

Resource definition
v The PRINTER and ALTPRINTER options for a z/OS Communications Server

terminal must (if specified) name a printer owned by the same system as the
one that owns the terminal being defined.

v The terminals listed in the terminal list table (DFHTLT) must reside on the same
system as the terminal list table.

Resolving a resynchronization failure
This topic contains an example of how to resolve a resynchronization failure using
the CEMT transaction.

It uses the following commands:
v CEMT INQUIRE CONNECTION
v CEMT INQUIRE UOWLINK
v CEMT INQUIRE UOW

Chapter 26. Recovery and restart in interconnected systems 305

v CEMT INQUIRE UOWENQ
v SET CONNECTION NOTPENDING

Tip: In the CICS Explorer, the ISC/MRO connections operations view
provides a functional equivalent to the INQUIRE and SET CONNECTION
commands.

A transaction on system IYLX1 (which involves function shipping requests to
system IYLX4) is failing with a 'SYSIDERR'. A CEMT INQUIRE CONNECTION
command on system IYLX1 shows the following:

To see more information about this connection, put the cursor on the ISC4 line and
press ENTER—see Figure 64.

Note: VTAM is now z/OS Communications Server.

Although the Connstatus of connection ISC4 is Acquired, the Xlnstatus is
Xnotdone. The exchange lognames (XLN) flow for this connection has not
completed successfully. (When CICS systems connect they exchange lognames.
These lognames are verified before resynchronization is attempted, and an
exchange lognames failure means that resynchronization is not possible.) For
function shipping, a failure for the connection causes a SYSIDERR. Synchronization
level 2 conversations are not allowed on this connection until lognames are
successfully exchanged. (This restriction does not apply to MRO connections.)

The reason for the exchange lognames failure is reported in the CSMT log. A
failure on a CICS Transaction Server for z/OS system can be caused by:
v An initial start (START=INITIAL) of the CICS TS for z/OS system, or of a

partner.

INQUIRE CONNECTION
STATUS: RESULTS - OVERTYPE TO MODIFY
Con(ISC2) Net(IYLX2) Ins Rel Vta Appc Unk
Con(ISC4) Net(IYLX4) Pen Ins Acq Vta Appc Xno Unk
Con(ISC5) Net(IYLX5) Ins Acq Vta Appc Xok Unk

Figure 63. CEMT INQUIRE CONNECTION—connections owned by system IYLX1

INQUIRE CONNECTION
RESULT - OVERTYPE TO MODIFY

Connection(ISC4)
Netname(IYLX4)
Pendstatus(Pending)
Servstatus(Inservice)
Connstatus(Acquired)
Accessmethod(Vtam)
Protocol(Appc)
Purgetype()
Xlnstatus(Xnotdone)
Recovstatus(Nrs)
Uowaction()
Grname()
Membername()
Affinity()
Remotesystem()
Rname()
Rnetname()

Figure 64. CEMT INQUIRE CONNECTION—details of connection ISC4

306 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html

Note: A cold start (START=COLD) of a CICS TS for z/OS system preserves
resynchronization information (including the logname) and does not, therefore,
cause an exchange lognames failure.

v Use of the CEMT SET CONNECTION NORECOVDATA command.
v A system logic or operational error.

The Pendstatus for connection ISC4 is Pending, which means that there is
resynchronization work outstanding for the connection; this work cannot be
completed because of the exchange lognames failure.

At this stage, if you are not concerned about loss of synchronization, you can force
all indoubt UOWs to commit or back out by issuing the SET CONNECTION
NOTPENDING command. However, before you do so, you can investigate the
outstanding resynchronization work that exists before we clear the pending
condition.

You can use a CEMT INQUIRE UOWLINK command to display information about
UOWs that require resynchronization with system IYLX4:

To see more information for each UOW-link, press enter alongside it. For example,
the expanded information for UOW-link 016C0005 shows the following:

The Resyncstatus of Coldstart confirms that system IYLX4 has been started with a
new logname. The Role for this UOW-link is shown as Coordinator, which means
that IYLX4 is the syncpoint coordinator.

You could now use a CEMT INQUIRE UOW LINK(IYLX4) command to show all
UOWs that are indoubt and which have system IYLX4 as the coordinator system:

INQUIRE UOWLINK LINK(IYLX4)
STATUS: RESULTS - OVERTYPE TO MODIFY
Uowl(016C0005) Uow(ABD40B40C1334401) Con Lin(IYLX4)

Coo Appc Col Sys(ISC4) Net(..GBIBMIYA.IYLX150 M. A....)
Uowl(01680005) Uow(ABD40B40C67C8201) Con Lin(IYLX4)

Coo Appc Col Sys(ISC4) Net(..GBIBMIYA.IYLX151 M. F@b..)
Uowl(016D0005) Uow(ABD40B40DA5A8803) Con Lin(IYLX4)

Coo Appc Col Sys(ISC4) Net(..GBIBMIYA.IYLX156 M. .!h..)

Figure 65. CEMT INQUIRE UOWLINK—UOWs that require resynchronization with system IYLX4

I UOWLINK LINK(IYLX4)
RESULT - OVERTYPE TO MODIFY

Uowlink(016C0005)
Uow(ABD40B40C1334401)
Type(Connection)
Link(IYLX4)
Action()
Role(Coordinator)
Protocol(Appc)
Resyncstatus(Coldstart)
Sysid(ISC4)
Rmiqfy()
Netuowid(..GBIBMIYA.IYLX150 M. A....)

Figure 66. CEMT INQUIRE UOWLINK—detailed information for UOW-link 016C0005

Chapter 26. Recovery and restart in interconnected systems 307

To see more information for each indoubt UOW, press enter on its line. For
example, the expanded information for UOW ABD40B40C1334401 shows the
following:

This UOW cannot be resynchronized by system IYLX4—its status is shown as
Indoubt, because IYLX4 does not know whether the associated UOW that ran on
IYLX4 committed or backed out.

You can use the CEMT INQUIRE UOWENQ command to display the resources
that have been locked by all shunted UOWs (those that own retained locks):

You can filter the INQUIRE UOWENQ command so that only enqueues that are
owned by a particular UOW are displayed. For example, to filter for enqueues
owned by UOW ABD40B40C1334401:

INQUIRE UOW LINK(IYLX4)
STATUS: RESULTS - OVERTYPE TO MODIFY
Uow(ABD40B40C1334401) Ind Shu Tra(RFS1) Tas(0000674)

Age(00003560) Ter(X150) Netn(IYLX150) Use(CICSUSER) Con Lin(IYLX4)
Uow(ABD40B40C67C8201) Ind Shu Tra(RFS1) Tas(0000675)

Age(00003465) Ter(X151) Netn(IYLX151) Use(CICSUSER) Con Lin(IYLX4)
Uow(ABD40B40DA5A8803) Ind Shu Tra(RFS1) Tas(0000676)

Age(00003462) Ter(X156) Netn(IYLX156) Use(CICSUSER) Con Lin(IYLX4)

Figure 67. CEMT INQUIRE UOW LINK(IYLX4)—all UOWs that have IYLX4 as the coordinator

INQUIRE UOW LINK(IYLX4)
RESULT - OVERTYPE TO MODIFY

Uow(ABD40B40C1334401)
Uowstate(Indoubt)
Waitstate(Shunted)
Transid(RFS1)
Taskid(0000674)
Age(00003906)
Termid(X150)
Netname(IYLX150)
Userid(CICSUSER)
Waitcause(Connection)
Link(IYLX4)
Sysid(ISC4)
Netuowid(..GBIBMIYA.IYLX150 M. A....)

Figure 68. CEMT INQUIRE UOW LINK(IYLX4)—detailed information for UOW ABD40B40C1334401

INQUIRE UOWENQ OWN RETAINED
STATUS: RESULTS
Uow(ABD40B40C1334401) Tra(RFS1) Tas(0000674) Ret Tsq Own

Res(RFS1X150) Rle(008) Enq(00000008)
Uow(ABD40B40C67C8201) Tra(RFS1) Tas(0000675) Ret Tsq Own

Res(RFS1X151) Rle(008) Enq(00000008)
Uow(ABD40B40DA5A8803) Tra(RFS1) Tas(0000676) Ret Tsq Own

Res(RFS1X156) Rle(008) Enq(00000008)

Figure 69. CEMT INQUIRE UOWENQ—resources locked by all shunted UOWs

INQUIRE UOWENQ OWN UOW(*4401)
STATUS: RESULTS
Uow(ABD40B40C1334401) Tra(RFS1) Tas(0000674) Ret Tsq Own

Res(RFS1X150) Rle(008) Enq(00000008)

Figure 70. CEMT INQUIRE UOWENQ—resources locked by UOW ABD40B40C1334401

308 CICS TS for z/OS 4.2: Intercommunication Guide

To see more information for this UOWENQ, press enter alongside it:

With knowledge of the application, it may now be possible to decide whether
updates to the locked resources should be committed or backed out. In the case of
UOW ABD40B40C1334401, the locked resource is the temporary storage queue
RFS1X150. This resource has an ENQFAILS value of 8, which is the number of
tasks that have received the LOCKED response due to this enqueue being held in
retained state.

You can use the SET UOW command to commit, back out, or force the
uncommitted updates made by the shunted UOWs. Next, you must use the SET
CONNECTION(ISC4) NOTPENDING command to clear the pending condition
and allow synchronization level 2 conversations (including the function shipping
requests which were previously failing with SYSIDERR).

You can use the XLNACTION option of the CONNECTION definition to control
the effect of an exchange lognames failure. In this example, the XLNACTION for
the connection ISC4 is KEEP. This meant that:
v The shunted UOWs on system IYLX1 were kept following the cold/warm log

mismatch with IYLX4.
v The APPC connection between IYLX1 and IYLX4 could not be used for function

shipping requests until the pending condition was resolved.

An XLNACTION of FORCE for connection ISC4 would have caused the SET
CONNECTION NOTPENDING command to have been issued automatically when
the cold/warm log mismatch occurred. This would have forced the shunted UOWs
to commit or back out, according to the ACTION option of the associated
transaction definition. The connection ISC4 would then not have been placed into
Pending status. However, setting XLNACTION to FORCE allows no investigation
of shunted UOWs following an exchange lognames failure, and therefore
represents a greater risk to data integrity than setting XLNACTION to KEEP.

INQUIRE UOWENQ OWN UOW(*4401)
RESULT

Uowenq
Uow(ABD40B40C1334401)
Transid(RFS1)
Taskid(0000674)
State(Retained)
Type(Tsq)
Relation(Owner)
Resource(RFS1X150)
Rlen(008)
Enqfails(00000008)
Netuowid(..GBIBMIYA.IYLX150 M. A....)
Qualifier()
Qlen(000)

Figure 71. CEMT INQUIRE UOWENQ—detailed information for UOWENQ ABD40B40C1334401

Chapter 26. Recovery and restart in interconnected systems 309

310 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 27. Intercommunication and z/OS Communications
Server persistent sessions

The use of z/OS Communications Server persistent sessions support has some
implications for intersystem communication.

For definitive information about CICS support for z/OS Communications Server
persistent sessions, see Recovery with VTAM persistent sessions , in the CICS
Recovery and Restart Guide.

The use of z/OS Communications Server persistent sessions has implications for
DTP applications that use the APPC protocol. These implications are described in
Effect of VTAM persistent sessions support for DTP conversations on APPC
sessions, in the CICS Distributed Transaction Programming Guide.
Related concepts:
Chapter 13, “How to define connections to remote systems,” on page 149
You can define and manage different types of connections between CICS regions or
from CICS regions to non-CICS systems.

Interconnected CICS environment, recovery and restart
CICS systems can be interconnected using MRO, LU6.1, or LU6.2 connections and
sessions. Recovery and restart behavior varies depending on the session type and
whether or not z/OS Communications Server persistent sessions support is used.

MRO sessions

MRO connections cannot persist across CICS failures and subsequent emergency
restarts.

LU6.1 sessions

If a CICS region fails in a multisystem environment, all the LU6.1 sessions that are
connected to it are held in recovery pending state until it is restarted with an
emergency restart or until the expiry of the persistent session delay interval. In
either case, the LU6.1 sessions are then unbound. They need to be reacquired
before they can be used again.

Slightly different symptoms of the CICS failure are presented to the systems
programmer or operator, depending on whether persistent sessions support is
used. In systems without persistent sessions support, all the LU6.1 sessions unbind
immediately after the failure.

In a system with persistent session support, the LU6.1 sessions are not unbound
until the emergency restart, if this occurs within the persistent session delay
interval, or the expiry of the persistent session delay interval. Consequently, these
sessions might take a longer time to be unbound.

© Copyright IBM Corp. 1977, 2012 311

LU6.2 sessions

LU6.2 sessions that connect different CICS systems are capable of persistence
across the failure of one or more of the systems and a subsequent emergency
restart within the persistent session delay interval.

However, these sessions are unbound in certain circumstances, even if persistent
sessions are supported in your system. The following sessions are unbound after a
CICS failure and emergency restart, even if you have defined them to be persistent:
v Sessions for which no catalog entry is found:

– Autoinstalled LU6.2 parallel sessions.
– Autoinstalled LU6.2 single sessions initiated by BIND requests.
– Autoinstalled LU6.2 single sessions initiated by z/OS Communications Server

VTAM CINIT requests, if the AIRDELAY system initialization parameter is set
to zero. (AIRDELAY specifies the interval that elapses after an emergency restart
before autoinstalled terminal entries that are not in session are deleted.)
In other words, the only autoinstalled LU6.2 sessions that are not unbound
are single sessions initiated by CINIT requests, and then only if AIRDELAY is
greater than zero.

v All sessions on an LU6.2 connection to a failing TOR, where, on one or more of
the sessions, an AOR has function-shipped an ATI request to the TOR, because
the request is associated with a terminal owned by the TOR. ATI-initiated
transaction routing is described in “Traditional routing of transactions started by
ATI” on page 71.

v All sessions on an LU6.2 connection, where, on one or more of the sessions,
transaction routing by means of CRTE is taking place but no conversation is in
progress at the point of the failure. Where a conversation is in progress, a
DEALLOCATE(ABEND) is sent to the partner of the failing CICS.

After the failure of CICS in an LU6.2 interconnected environment, and a
subsequent emergency restart within the persistent session delay interval,
transaction CLS1 (CNOS) is not run unless one side of the connection issued a
CNOS request to zero or the connection was in the process of CNOS negotiation at
the time of the failure.

The failing system runs transaction CLS2 (XLN, exchange log names) as soon as it
can after emergency restart within the persistent session delay interval. CLS2 must
run before any further synclevel 2 conversations can be processed by either of the
connected systems.

312 CICS TS for z/OS 4.2: Intercommunication Guide

Part 7. Data conversion in an intersystem environment

CICS Transaction Server for z/OS application programs typically use an EBCDIC
format to represent character data. When CICS exchanges data with remote
systems, these systems often use ASCII or Unicode to represent character data.

Data exchanged by systems, which use different formats to represent character
data, must typically be converted between the different formats.

Note: If you are using a channel to perform data conversion, read Data conversion
with channels instead of this topic.

© Copyright IBM Corp. 1977, 2012 313

314 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 28. Where is data converted?

When CICS intercommunication uses SNA links, system data is transmitted in
EBCDIC format. Therefore, ASCII-based systems convert all data except for
application data areas, which are converted by the system that receives the data.

Function shipping and DPL
For function shipping and DPL, data can be converted in the ASCII-based system
or in CICS Transaction Server for z/OS.

For function shipping and DPL from an ASCII-based system to CICS Transaction
Server for z/OS, the ASCII-based system converts the resource names, and CICS
Transaction Server for z/OS converts the user data.

Table 28. Data conversion for function shipping and DPL

Request type Data Conversion type Where converted

TS Queue name Character ASCII system

TS
FROM area As specified in

DFHCNV table
Receiving system

TD Queue name Character ASCII system

TD
INTO area As specified in

DFHCNV table
Receiving system

FC File name Character ASCII system

FC
SET area As specified in

DFHCNV table
Receiving system

FC
Key As specified in

DFHCNV table
Receiving system

IC Transaction ID Character ASCII system

IC
FROM area As specified in

DFHCNV table
Receiving system

IC
RTERMID,
RTRANSID, REQID

Character ASCII system

PC Program name Character ASCII system

PC
COMMAREA As specified in

DFHCNV table
Receiving system

For function shipping and DPL to an ASCII-based system from CICS Transaction
Server for z/OS, the ASCII-based system converts all the data.

Conversion of application data is done field-by-field. Thus, ensure that the size of
each field in the application data is sufficient to hold the result of the conversion
applied to it. (This is particularly relevant where a field in the application data
contains both SBCS and DBCS characters).

© Copyright IBM Corp. 1977, 2012 315

Distributed transaction processing
In distributed transaction processing, all data areas are managed by the
application, and therefore data conversion is the application's responsibility.

When you design your applications, you can choose to convert data in CICS
Transaction Server for z/OS, in the ASCII-based system, or in both.

Transaction routing
CICS Transaction Server for z/OS does not convert data for transaction routing.
Screen data always flows as 3270 data streams. COMMAREAs and TCTUAs
(which are relevant to pseudoconversational transactions) are converted by the
ASCII system.

316 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 29. Avoiding data conversion

In many cases, you can design your applications to reduce the amount of data that
is converted.

For example, if an EBCDIC-based system acts as a file manager for an ASCII-based
system, you can avoid converting any data by using ASCII to encode the data in
the file.

Conversely, if data is held in the ASCII-based system purely for the purpose of
communicating with an EBCDIC-based system, you can avoid converting the data
by coded it in EBCDIC.

© Copyright IBM Corp. 1977, 2012 317

318 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 30. Types of conversion

The possible types of conversion are standard conversion, no conversion, and
user-defined nonstandard conversion.

Standard conversion
This applies to:
v Single-byte character sets (SBCS)
v Graphic or double-byte character sets (DBCS)
v Mixed character sets (containing SBCS and DBCS data)
v Multi-byte character sets (MBCS)
v By default, to binary data in INTEL format.

No conversion
This applies to:
v Character data encoded as UCS-2 or UTF-8
v By default, to binary data in z/Architecture® format
v Packed decimal data.

User-defined nonstandard conversion
You can apply nonstandard data conversion by writing your own version of
the user-replaceable conversion program.

You can apply user-defined conversion to selected fields, and leave others to be
converted by the CICS standard conversion program.

For CICS Transaction Server for z/OS, you can provide either:
1. Your own, customized, version of DFHUCNV, or

2. One or more differently-named conversion programs

If the nonstandard conversion applies only to character data, you may not
need to write your own data conversion program. Instead, you can create your
own conversion tables for use with the standard conversion program,
DFHCCNV. See Chapter 37, “User-defined conversion tables,” on page 357.

Attention: Your user-supplied conversion program must not convert any data
that the standard conversion program attempts to convert. Converting data
twice gives unpredictable results. To avoid this, your conversion program must
convert only fields defined as DATATYP=USERDATA (see the DATATYP
option of the DFHCNV TYPE=FIELD macro).

© Copyright IBM Corp. 1977, 2012 319

320 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 31. Character data

Character data is described by a character set identifier and a code page identifier. The
code page identifier defines how each character is to be encoded; for example “A”
is encoded as X'41' in ASCII and as X'C1' in EBCDIC.

The SRVERCP keyword on the DFHCNV TYPE=ENTRY macro specifies the
EBCDIC code page in which character data associated with a resource is encoded
in CICS Transaction Server for z/OS.

The CLINTCP keyword on the DFHCNV TYPE=ENTRY macro specifies the default
code page in which the character data associated the specified resource is encoded
when it is received by or sent from the CICS Transaction Server for z/OS.
Typically, the data is encoded in ASCII, although in some cases it might be
encoded in EBCDIC. When the data is encoded in EBCDIC, the code page is likely
to be different from that specified by the SRVERCP keyword.

The code page specified by the CLINTCP keyword can be overridden. This allows
CICS Transaction Server for z/OS to communicate with several systems, each of
which uses a code page to represent character data.

© Copyright IBM Corp. 1977, 2012 321

322 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 32. Binary data

The DATATYP keyword on the DFHCNV TYPE=ENTRY macro specifies the
default format for binary data received by CICS Transaction Server for z/OS.

DATATYP=BINARY
Specifies that the default format for binary data is big-endian; that is,
multibyte numerical values have the most significant byte values first (in
the lower machine address).

DATATYP=NUMERIC
Specifies that the default format for binary data is little-endian; that is,
multibyte numerical values have the least significant byte values first.

The default binary format can be overridden. It is therefore important that you
code a DFHCNV TYPE=FIELD macro for every binary field.

© Copyright IBM Corp. 1977, 2012 323

324 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 33. CICS-supported conversions

The conversion groups for the supported Coded Character Set Identifiers (CCSIDs)
are listed. CCSIDs are provided for code page conversion for use with the
DFHCCNV conversion program.

For unsupported CCSIDs, you can create your own conversion tables for use with
the DFHCCNV conversion program. See Chapter 37, “User-defined conversion
tables,” on page 357.

For nonstandard conversions, you must supply your own conversion program. See
“User/CICS conversion” on page 340.

In most cases, CICS Transaction Server for z/OS can convert character data
between ASCII and EBCDIC if both CCSIDs are in the same conversion group.
However, some conversions within a conversion group are not supported. For
example, when new CCSIDs are defined to extend the character set, conversions
between new equivalent ASCII and EBCDIC CCSIDs are supported, but
conversions that mix old and new ASCII and EBCDIC CCSIDs might not be
supported. An example of this situation is a character set that is extended to
include the euro.

Table 29. Conversion groups

Group Countries or regions

Arabic

Baltic Rim Latvia, Lithuania, Estonia

Cyrillic Eastern Europe; Bulgaria, Russia, Yugoslavia

Devanagari (Hindi) India

Farsi (Persian) Iran

Greek Greece

Hebrew Israel

Japanese Japan

Korean Korea

Lao Laos

Latin-1

Latin-9

USA, Western Europe, and many other countries

Latin-2 Eastern Europe; Albania, Czech Republic, Hungary, Poland,
Romania, Slovakia, Yugoslavia, Former Yugoslavia

Latin-5 Turkey

Simplified Chinese Peoples' Republic of China

Thai Thailand

Traditional Chinese Taiwan

Urdu Pakistan

Vietnamese Vietnam

© Copyright IBM Corp. 1977, 2012 325

The tables in the following sections list the CCSIDs supported for each group. For
each CCSID, they show:
v The value to be specified for the CLINTCP or SRVERCP keyword.
v The code page identifier or identifiers (CPGIDs).
v An IANA-registered character set name for the code page, where a suitable

name exists and CICS supports the use of this name on EXEC CICS commands.
The CICS-supported name might be the primary name or a preferred alias. In
some cases, more than one name or alias is supported.

Arabic
The Coded Character Set Identifiers (CCSIDs) for Arabic conversions are listed.

Data conversion does not change the direction of Arabic data.

Table 30. Arabic, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

864 00864 00864 ibm864 PC data: Arabic

1089
8859-6

01089 01089 iso-8859-6
iso_8859-6

ISO 8859-6: Arabic

1256 01256 01256 windows-1256 MS Windows: Arabic

5352 05352 01256 MS Windows: Arabic, version 2 with
euro

9448 09448 09448 MS Windows: Arabic, 2001

17248 17248 00864 PC Data: Arabic with euro

Table 31. Arabic, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

420 00420 00420 ibm420 Host: Arabic

16804 16804 00420 Host: Arabic with euro

Baltic Rim
The Coded Character Set Identifiers (CCSIDs) for Baltic Rim conversions are listed.

Table 32. Baltic Rim, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

901 00901 00901 PC data: Latvia, Lithuania; with euro

902 00902 00902 PC data: Estonia with euro

921 00921 00921 PC data: Latvia, Lithuania

922 00922 00922 PC data: Estonia

1257 01257 01257 windows-1257 MS Windows: Baltic Rim

5353 05353 01257 MS Windows: Baltic Rim, version 2 with
euro

326 CICS TS for z/OS 4.2: Intercommunication Guide

Table 33. Baltic Rim, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1112 01112 01112 Host: Latvia, Lithuania

1122 01122 01122 Host: Estonia

1156 01156 01156 Host: Latvia, Lithuania; with euro

1157 01157 01157 Host: Estonia, with euro

Cyrillic
The Coded Character Set Identifiers (CCSIDs) for Cyrillic conversions are listed.

Table 34. Cyrillic, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

808 00808 00808 PC data: Cyrillic, Russia; with euro

848 00848 00848 PC data: Cyrillic, Ukraine; with euro

849 00849 00849 PC data: Cyrillic, Belarus; with euro

855 00855 00855 ibm855 PC data: Cyrillic

866 00866 00866 ibm866 PC data: Cyrillic, Russia

872 00872 00872 PC data: Cyrillic with euro

915
8859-5

00915 00915 iso-8859-5
iso_8859-5

ISO 8859-5: Cyrillic

1124 01124 01124 8-bit: Cyrillic, Belarus

1125 01125 01125 PC Data: Cyrillic, Ukraine

1131 01131 01131 PC Data: Cyrillic, Belarus

1251 01251 01251 windows-1251 MS Windows: Cyrillic

5347 05347 01251 MS Windows: Cyrillic, version 2 with
euro

Table 35. Cyrillic, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1025 01025 01025 Host: Cyrillic multilingual

1123 01123 01123 Host: Cyrillic Ukraine

1154 01154 01154 Host: Cyrillic multilingual; with euro

1158 01158 01158 Host: Cyrillic Ukraine; wtih euro

Devanagari
The Coded Character Set Identifiers (CCSIDs) for Devanagari conversions are
listed.

Table 36. Devanagari, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

806 00806 00806 PC data: ISCII-91, Devanagari script code

Chapter 33. CICS-supported conversions 327

Table 37. Devanagari, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1137 01137 01137 Host: Devanagari

Note: These Devanagari CCSIDs may also be used to encode the identical
Devanagari character repertoire used by Marathi.

Farsi
The Coded Character Set Identifiers (CCSIDs) for Farsi conversions are listed.

Data conversion does not change the direction of Farsi data.

Table 38. Farsi, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

1098 01098 01098 PC data: Farsi

Table 39. Farsi, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1097 01097 01097 Host: Farsi

Greek
The Coded Character Set Identifiers (CCSIDs) for Greek conversions are listed.

Table 40. Greek, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

813
8859-7

00813 00813 iso-8859-7
iso_8859-7

ISO 8859-7: Greece

869 00869 00869 ibm869 PC data: Greece

1253 01253 01253 windows-1253 MS Windows: Greece

4909 04909 00813 ISO 8859-7: Greece with euro

5349 05349 01253 MS Windows: Greece, version 2 with
euro

9061 09061 00869 PC Data: Greece with euro

Table 41. Greek, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

875 00875 00875 Host: Greece

4971 04971 00875 Host: Greece with euro

328 CICS TS for z/OS 4.2: Intercommunication Guide

Hebrew
The Coded Character Set Identifiers (CCSIDs) for Hebrew conversions are listed.

Data conversion does not change the direction of Hebrew data.

Table 42. Hebrew, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

856 00856 00856 PC data: Hebrew

862 00862 00862 ibm862 PC data: Hebrew (migration)

867 00867 00867 PC Data: Hebrew with euro

916
8859-8

00916 00916 iso-8859-8
iso_8859-8

ISO 8859-8: Hebrew

1255 01255 01255 windows-1255 MS Windows: Hebrew

5351 05351 01255 MS Windows: Hebrew, version 2 with
euro

9447 09447 01255 MS Windows: Hebrew, version 2 with
euro and new sheqel

Table 43. Hebrew, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

424 00424 00424 ibm424 Host: Hebrew

803 00803 00803 Host: Hebrew (Character Set A)

4899 04899 00803 Host: Hebrew (Character Set A) with
euro

12712 12712 00424 Host: Hebrew with euro and new sheqel

Japanese
The Coded Character Set Identifiers (CCSIDs) for Japanese conversions are listed.

Table 44. Japanese, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

932 00932 1. 00897
2. 00301

1. PC data: SBCS
2. PC data: DBCS including 1880

user-defined characters

942 00942 1. 01041
2. 00301

1. PC data: Extended SBCS
2. PC data: DBCS including 1880

user-defined characters

943 00943 1. 00897
2. 00941

shift-jis
x-sjis

1. PC data: SBCS
2. PC data: DBCS for Open environment

including 1880 IBM user-defined
characters

954
EUCJP

00954 1. 00895
2. 00952
3. 00896
4. 00953

euc-jp 1. G0: JIS X201 Roman
2. G1: JIS X208-1990
3. G1: JIS X201 Katakana
4. G1: JIS X212

Chapter 33. CICS-supported conversions 329

Table 44. Japanese, Client CCSIDs (continued)

CLINTCP CCSID CPGID IANA charset name Comments

5050 05050 1. 00895
2. 00952
3. 00896
4. 00953

1. G0: JIS X201 Roman
2. G1: JIS X208-1990
3. G1: JIS X201 Katakana
4. G1: JIS X212

Table 45. Japanese, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

930 00930 1. 00290
2. 00300
3. 00290
4. 00300

1. Katakana Host: extended SBCS
2. Kanji Host: DBCS including 4370

user-defined characters
3. Katakana Host: extended SBCS
4. Kanji Host: DBCS including 1880

user-defined characters

931 00931 1. 00037
2. 00300

1. Latin Host: SBCS
2. Kanji Host: DBCS including 4370

user-defined characters

939 00939 1. 01027
2. 00300
3. 01027
4. 00300

1. Latin Host: extended SBCS
2. Kanji Host: DBCS including 4370

user-defined characters
3. Latin Host: extended SBCS
4. Kanji Host: DBCS including 1880

user-defined characters

1390 01390 1. 00290
2. 00300

1. Katakana Host: extended SBCS; with
euro

2. Kanji Host: DBCS including 6205
user-defined characters

1399 01399 1. 01027
2. 00300

1. Latin Host: extended SBCS; with euro
2. Kanji Host: DBCS including 4370

user-defined characters; with euro

Korean
The Coded Character Set Identifiers (CCSIDs) for Korean conversions are listed.

Table 46. Korean, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

934 00934 1. 00891
2. 00926

1. PC data: SBCS
2. PC data: DBCS including 1880

user-defined characters

944 00944 1. 01040
2. 00926

1. PC data: Extended SBCS
2. PC data: DBCS including 1880

user-defined characters

949 00949 1. 01088
2. 00951

1. IBM KS Code - PC data: SBCS
2. IBM KS code - PC data: DBCS

including 1880 user-defined
characters

970
EUCKR

00970 1. 00367
2. 00971

euc-kr 1. G0: ASCII
2. G1: KSC X5601-1989 including 1880

user-defined characters

330 CICS TS for z/OS 4.2: Intercommunication Guide

Table 46. Korean, Client CCSIDs (continued)

CLINTCP CCSID CPGID IANA charset name Comments

1363 01363 1. 01126
2. 01362

1. PC data: MS Windows Korean SBCS
2. PC data: MS Windows Koran DBCS

including 11172 full Hangul

Table 47. Korean, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

933 00933 1. 00833
2. 00834

1. Host: Extended SBCS
2. Host: DBCS including 1880

user-defined characters and 11172 full
Hangul characters

1364 01364 1. 00833
2. 00834

1. Host: Extended SBCS
2. Host: DBCS including 1880

user-defined characters and 11172 full
Hangul characters

Lao
The Coded Character Set Identifiers (CCSIDs) for Lao conversions are listed.

Table 48. Lao, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

1133 01133 01133 ISO-8: Lao

Table 49. Lao, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1132 01132 01132 Host: Lao

Latin-1 and Latin-9
The Coded Character Set Identifiers (CCSIDs) for Latin-1 and Latin-9 conversions
are listed.

Note: In this group, conversions are supported between non euro-supported
CCSIDs and euro-supported CCSIDs. However, use these conversions with care for
the following reasons:
v The international currency symbol in each non euro-supported EBCDIC CCSID

(for example, 00500) has been replaced by the euro symbol in the equivalent
euro-supported EBCDIC CCSID (for example, 01148).

v The dotless i in non euro-supported ASCII CCSID 00850 has been replaced by
the euro symbol in the equivalent euro-supported ASCII CCSID 00858.

Table 50. Latin-1, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

437 00437 00437 ibm437 PC data: PC Base; USA, many other
countries

819
8859-1

00819 00819 iso-8859-1
iso_8859-1

ISO 8859-1: Latin-1 countries

Chapter 33. CICS-supported conversions 331

Table 50. Latin-1, Client CCSIDs (continued)

CLINTCP CCSID CPGID IANA charset name Comments

850 00850 00850 ibm850 PC data: Latin-1 countries

858 00858 00858 ibm00858 PC data: Latin-1 countries; with euro

923 00923 00923 iso-8859-15
iso_8859-15

ISO 8859-15: Latin-9

924 00924 00924 ibm00924 ISO 8859-15: Latin-9

1047 01047 01047 Host: Latin-1

1252 01252 01252 windows-1252 MS Windows: Latin-1 countries

5348 05348 01252 MS Windows: Latin-1 countries, version
2 with euro

Table 51. Latin-1 and Latin-9, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

037 00037 00037 ibm037 Host: USA, Canada (ESA), Netherlands,
Portugal, Brazil, Australia, New Zealand

273 00273 00273 ibm273 Host: Austria, Germany

277 00277 00277 ibm277 Host: Denmark, Norway

278 00278 00278 ibm278 Host: Finland, Sweden

280 00280 00280 ibm280 Host: Italy

284 00284 00284 ibm284 Host: Spain, Latin America (Spanish)

285 00285 00285 ibm285 Host: United Kingdom

297 00297 00297 ibm297 Host: France

500 00500 00500 ibm500 Host: Belgium, Canada (AS/400®),
Switzerland, International Latin-1

871 00871 00871 ibm871 Host: Iceland

924 00924 00924 ibm00924 Host: Latin-9

1047 01047 01047 Host: Latin-1

1140 01140 01140 ibm01140 Host: USA, Canada (ESA), Netherlands,
Portugal, Brazil, Australia, New Zealand;
with euro

1141 01141 01141 ibm01141 Host: Austria, Germany; with euro

1142 01142 01142 ibm01142 Host: Denmark, Norway; with euro

1143 01143 01143 ibm01143 Host: Finland, Sweden; with euro

1144 01144 01144 ibm01144 Host: Italy; with euro

1145 01145 01145 ibm01145 Host: Spain, Latin America (Spanish);
with euro

1146 01146 01146 ibm01146 Host: United Kingdom; with euro

1147 01147 01147 ibm01147 Host: France; with euro

1148 01148 01148 ibm01148 Host: Belgium, Canada (AS/400),
Switzerland, International Latin-1; with
euro

1149 01149 01149 ibm01149 Host: Iceland; with euro

332 CICS TS for z/OS 4.2: Intercommunication Guide

Latin-2
The Coded Character Set Identifiers (CCSIDs) for Latin-2 conversions are listed.

Conversions are supported for some combinations of Latin-2 ASCII CCSIDs and
Latin-1 EBCDIC CCSIDs.

Table 52. Latin-2, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

852 00852 00852 ibm852 PC data: Latin-2 multilingual

912
8859-2

00912 00912 iso-8859-2
iso_8859-2

ISO 8859-2: Latin-2 multilingual

1250 01250 01250 windows-1250 MS Windows: Latin-2

5346 05346 01250 MS Windows: Latin-2, version 2 with
euro

9044 09044 00852 PC data: Latin-2 multilingual with euro

Table 53. Latin-2, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

500 00500 00500 ibm500 Host: International Latin-1

870 00870 00870 ibm870 Host: Latin-2 multilingual

924 00924 00924 ibm00924 Host: Latin-9

1140 01140 01140 ibm01140 Host: USA, Canada (ESA), Netherlands,
Portugal, Brazil, Australia, New Zealand;
with euro

1141 01141 01141 ibm01141 Host: Austria, Germany; with euro

1142 01142 01142 ibm01142 Host: Denmark, Norway; with euro

1143 01143 01143 ibm01143 Host: Finland, Sweden; with euro

1144 01144 01144 ibm01144 Host: Italy; with euro

1145 01145 01145 ibm01145 Host: Spain, Latin America (Spanish);
with euro

1146 01146 01146 ibm01146 Host: United Kingdom; with euro

1147 01147 01147 ibm01147 Host: France; with euro

1148 01148 01148 ibm01148 Host: International Latin-1 with euro

1149 01149 01149 ibm01149 Host: Iceland; with euro

1153 01153 01153 Host: Latin-2 multilingual with euro

Latin-5
The Coded Character Set Identifiers (CCSIDs) for Latin-5 conversions are listed.

Table 54. Latin-5, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

857 00857 00857 ibm857 PC data: Latin-5 (Turkey)

Chapter 33. CICS-supported conversions 333

Table 54. Latin-5, Client CCSIDs (continued)

CLINTCP CCSID CPGID IANA charset name Comments

920
8859-9

00920 00920 iso-8859-9
iso_8859-9

ISO 8859-9: Latin-5 (ECMA-128, Turkey
TS-5881)

1254 01254 01254 windows-1254 MS Windows: Turkey

5350 05350 01254 MS Windows: Turkey, version 2 with
euro

9049 09049 00857 PC data: Latin-5 (Turkey) with euro

Table 55. Latin-5, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1026 01026 01026 ibm1026 Host: Latin-5 (Turkey)

1155 01155 01155 Host: Latin-5 (Turkey) with euro

Simplified Chinese
The Coded Character Set Identifiers (CCSIDs) for Simplified Chinese conversions
are listed.

Table 56. Simplified Chinese, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

946 00946 1. 01042
2. 00928

1. PC data: Extended SBCS
2. PC data: DBCS including 1880

user-defined characters

1381 01381 1. 01115
2. 01380

gb2312 1. PC data: Extended SBCS (IBM GB)
2. PC data: DBCS (IBM GB) including

31 IBM-selected, 1880 user-defined
characters

1383
EUCCN

01383 1. 00367
2. 01382

1. G0: ASCII
2. G1: GB 2312-80 set

1386 01386 1. 01114
2. 01385

1. PC data: S-Chinese GBK and
T-Chinese IBM BIG-5

2. PC data: S-Chinese GBK

5488 05488 1. 01252
2. 01385
3. 01391

gb18030 1. GB18030, 1-byte data
2. GB18030, 2-byte data
3. GB18030, 4-byte data

Table 57. Simplified Chinese, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

935 00935 1. 00836
2. 00837

1. Host: Extended SBCS
2. Host: DBCS including 1880

user-defined characters

1388 01388 1. 00836
2. 00837

1. Host: Extended SBCS
2. Host: DBCS including 1880

user-defined characters

9127 09127 1. 00836
2. 00837

1. Host: Extended SBCS
2. Host: DBCS including 1880

user-defined characters

334 CICS TS for z/OS 4.2: Intercommunication Guide

Thai
The Coded Character Set Identifiers (CCSIDs) for Thai conversions are listed.

Table 58. Thai, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

1161 01161 01161 PC data: Thai with euro

1162 01162 01162 MS Windows: Thai with euro

9066 09066 00874 PC data: Thai extended SBCS

Table 59. Thai, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1160 01160 01160 Host: Thai with euro

9030 09030 00838 Host: Thai extended SBCS

Traditional Chinese
The Coded Character Set Identifiers (CCSIDs) for Traditional Chinese conversions
are listed.

Table 60. Traditional Chinese, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

938 00938 1. 00904
2. 00927

1. PC data: SBCS
2. PC data: DBCS including 6204

user-defined characters

948 00948 1. 01043
2. 00927

1. PC data: Extended SBCS
2. PC data: DBCS including 6204

user-defined characters

950
BIG5

00950 1. 01114
2. 00947

big5 1. PC data: SBCS (IBM BIG5)
2. PC data: DBCS including 13493 CNS,

566 IBM selected, 6204 user-defined
characters

964
EUCTW

00964 1. 00367
2. 00960
3. 00961

1. G0: ASCII
2. G1: CNS 11643 plane 1
3. G1: CNS 11643 plane 2

1370 01370 1. 01114
2. 00947

1. PC data: Extended SBCS; with euro
2. PC data: DBCS including 6204

user-defined characters; with euro

Table 61. Traditional Chinese, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

937 00937 1. 00037
2. 00835

1. Host: Extended SBCS
2. Host: DBCS including 6204

user-defined characters

1371 01371 1. 01159
2. 00835

1. Host: Extended SBCS; with euro
2. Host: DBCS including 6204

user-defined characters; with euro

Chapter 33. CICS-supported conversions 335

Urdu
The Coded Character Set Identifiers (CCSIDs) for Urdu conversions are listed.

Data conversion does not change the direction of Urdu data.

Table 62. Urdu, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

868 00868 00868 ibm868 PC data: Urdu

1006 01006 01006 ISO-8: Urdu

Table 63. Urdu, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

918 00918 00918 ibm918 Host: Urdu

Vietnamese
The Coded Character Set Identifiers (CCSIDs) for Vietnamese conversions are
listed.

Table 64. Vietnamese, Client CCSIDs

CLINTCP CCSID CPGID IANA charset name Comments

1129 01129 01129 ISO-8: Vietnamese

1163 01163 01163 ISO-8: Vietnamese with euro

1258 01258 01258 windows-1258 MS Windows: Vietnamese

5354 05354 01258 MS Windows: Vietnamese, version 2 with
euro

Table 65. Vietnamese, Server CCSIDs

SRVERCP CCSID CPGID IANA charset name Comments

1130 01130 01130 Host: Vietnamese

1164 01164 01164 Host: Vietnamese with euro

Unicode data
CICS Transaction Server for z/OS provides limited support for Unicode-encoded
character data. Workstations can share UCS-2 or UTF-8 encoded data with CICS
Transaction Server for z/OS provided that no conversion is required.

More extensive support for conversion to and from Unicode data is available in
CICS if you use channels to communicate your data. See Enhanced inter-program
data transfer using channels in CICS Application Programming.

Table 66. Unicode

CLINTCP
SRVERCP

CCSID CPGID IANA charset name Comments

1200
UCS-2

01200 01400 utf-16 Unicode with character set 65535. In the
absence of a byte-order mark (BOM),
assumed to be UTF-16 BE (big-endian).

336 CICS TS for z/OS 4.2: Intercommunication Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_overview.html

Table 66. Unicode (continued)

CLINTCP
SRVERCP

CCSID CPGID IANA charset name Comments

1208
UTF-8

01208 01400 utf-8 Unicode with character set 65535. UTF-8.

13488 13488 01400 iso-10646-ucs-2 Unicode with character set 3001 (fixed at
Unicode 2.0 character repertoire). In the
absence of a byte-order mark, assumed
to be UTF16-BE (big-endian).

17584 17584 01400 Unicode with character set 3004 (fixed at
Unicode 3.0 character repertoire). in the
absence of a byte-order mark, assumed
to be UTF16-BE (big-endian).

Chapter 33. CICS-supported conversions 337

338 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 34. The conversion process

This section describes in more detail how data conversion works in CICS.

Components
The CICS or user-supplied mirror transactions convert the data, using DFHCNV,
DFHCCNV, and the user-replaceable conversion program, DFHUCNV.

DFHCNV
The conversion table. For each resource for which conversion is required,
DFHCNV contains a conversion template. A conversion template is a table entry
defining fields in a data area that are to be converted, and the conversion
method to be applied to each field.

You define the DFHCNV table with the DFHCNV resource definition macros
described in Chapter 36, “Defining the conversion table,” on page 345.

DFHCCNV
The CICS program that drives the conversion process. DFHCCNV uses the
DFHCNV table to determine the required conversions. It applies standard
conversion to those fields in the conversion templates for which nonstandard,
user-handled conversion is not specified.

The user-replaceable conversion program, DFHUCNV
A user-replaceable program that allows you to override the standard
conversions applied by CICS. You can use it to apply your own conversion
logic to specific data fields. (How to do this is described in “User/CICS
conversion” on page 340.)

You can use the supplied program as a model on which to base your own
version.

You can provide either:
v Your own, customized, version of DFHUCNV, or

v One or more differently-named conversion programs

Process
This section describes the standard conversions that can be applied by DFHCCNV
to specific fields in a conversion template. Other types of conversion are possible,
if you write a DFHUCNV program.

Character data
Character data can be converted:
v From ASCII to EBCDIC, on receipt of a request from a connected system,

before invoking the EXEC interface
v From EBCDIC to ASCII, on return from the EXEC interface, before the

response is transmitted.

The translation tables shipped with CICS conform to the standards described
in the IBM Character Data Representation Architecture Level 2 - Registry,
SC09-1391.

Binary data
Binary data can be converted:

© Copyright IBM Corp. 1977, 2012 339

v From little-endian to big-endian format, on receipt of a request from a
connected system.

v From big-endian to little-endian format, before the response is transmitted.

Standard and nonstandard conversion
There are three ways a single resource, for example a file, can be converted.
v CICS-only conversion—all data fields are handled by the standard CICS

conversion program, DFHCCNV
v User/CICS conversion—a combination of nonstandard and standard conversion,

in which some data fields are handled by code in the user's conversion program
and some by DFHCCNV

v User-only conversion—all data fields are handled by the user's conversion
program.

CICS-only conversion
Use CICS-only conversion when the resource contains no data fields that require
nonstandard conversion; all can be converted by standard means.

Procedure
1. Create a conversion template, using the DFHCNV macros described in

Chapter 36, “Defining the conversion table,” on page 345. This enables
DFHCCNV to handle the resource.

2. Specify USREXIT=NO on the DFHCNV TYPE=ENTRY macro that defines the
resource. This prevents DFHUCNV from being called unnecessarily. Do not
specify DATATYP=USERDATA on any of the DFHCNV TYPE=FIELD macros
that define the data fields.

User/CICS conversion
Use user/CICS conversion when the resource contains some fields that can be
converted by standard means, and some that require nonstandard conversion.

Procedure
1. Create a conversion template.
2. Specify the USREXIT keyword on the DFHCNV TYPE=ENTRY macro that

defines the resource.
v If you specify USREXIT=YES, CICS calls DFHUCNV to convert the data.
v If you specify USREXIT=program, CICS calls the named program to convert

the data.
3. Specify DATATYP=USERDATA on the DFHCNV TYPE=FIELD macros that

define the nonstandard data fields.
a. Optional: Define nonstandard fields with a USRTYPE value in the range

X'50' through X'80' These values are passed to your user program, and can
be used to distinguish between different types of nonstandard field.

4. Define standard fields as DATATYP=CHARACTER, PD, BINARY, GRAPHIC, or
NUMERIC, as appropriate.

5. Supply a user-written version of DFHUCNV or a differently-named conversion
program to handle the nonstandard fields. Chapter 40, “The user-replaceable
conversion program,” on page 365 gives a description and listing of
DFHUCNV, with guidance on how to use it as a basis for your own conversion
program.

340 CICS TS for z/OS 4.2: Intercommunication Guide

User-only conversion
The resource contains no fields that can be converted by standard means; all
require nonstandard conversion. There are two methods of enabling user-only
conversion.

Procedure
1. Create a conversion template.
2. Specify the USREXIT keyword on the DFHCNV TYPE=ENTRY macro that

defines the resource.
v If you specify USREXIT=YES, CICS calls DFHUCNV to convert the data.
v If you specify USREXIT=program, CICS calls the named program to convert

the data.
3. Specify DATATYP=USERDATA on the DFHCNV TYPE=FIELD macros that

define the nonstandard data fields.
a. Optional: Define nonstandard fields with a USRTYPE value in the range

X'50' through X'80' These values are passed to your user program, and can
be used to distinguish between different types of nonstandard field.

4. Supply a user-written version of DFHUCNV or a differently-named conversion
program to handle all fields. Chapter 40, “The user-replaceable conversion
program,” on page 365 gives a description and listing of DFHUCNV, with
guidance on how to use it as a basis for your own conversion program.

5.

Sequence of conversion processing
This is the sequence of conversion processing.
1. Unless USREXIT=NO is specified in the DFHCNV TYPE=ENTRY macro that

defines the conversion template for the resource, DFHCCNV links to
DFHUCNV, passing the parameter list described in “Parameter list
(DFHUVNDS)” on page 365.

Note:

a. If you have not defined a template, DFHUCNV is invoked, on the
assumption that the user program is to handle all conversions for the
resource.

b. DFHUCNV must be present in your system unless all DFHCNV
TYPE=ENTRY macros specify USREXIT=NO.

2. If a conversion template is defined for the resource, DFHUCNV is responsible
for converting any fields with a type in the user-data range.
If no conversion template is defined for the resource, DFHUCNV is responsible
for determining the format of the data, and for converting all appropriate
fields.

3. On return from DFHUCNV, DFHCCNV carries out any standard conversions
specified in the conversion template for fields that are not subject to
user-defined conversion.

4. The shipped request is executed.

Figure 72 on page 343 illustrates the conversion process.

Chapter 34. The conversion process 341

342 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 35. Resource definition to enable data conversion

DFHUCNV

DFHUCNV

Request
in

CICS conversion applied

no

User conversion
applied

CICS - only
conversion specified ?

Resonse

shipped request executed

EXEC call

DFHCCNV

DFHCCNV

Response
out

CICS mirror transaction

Template supplied ?

Template supplied ?

CICS conversion applied

yes

yes

no

no

no

yes

yes

User conversion
applied

CICS - only
conversion specified ?

Figure 72. The data conversion process

© Copyright IBM Corp. 1977, 2012 343

In order to convert data in CICS Transaction Server for z/OS, you must define
some resources in your CICS region.

The resources you must define are:
v DFHCNV, conversion table
v DFHCCNV, standard conversion program
v DFHUCNV, user-defined conversion program.

344 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 36. Defining the conversion table

You define the conversion table with DFHCNV resource definition macros.

The output of the DFHCNV macro assembly contains templates specifying
resource conversion requirements and conversion tables to enable the required
conversions. User-generated conversion tables must be placed in the DFHCNV
macro source.

DFHCNV macro types
Use the DFHCNV macro to define the conversion table.

DFHCNV TYPE=INITIAL
Defines the beginning of the conversion table. It defines the default client and
server CCSIDs.

DFHCNV TYPE=ENTRY
Specifies a name and type to uniquely identify a data resource. Specify a
DFHCNV TYPE=ENTRY macro for each resource for which conversion is
required; data is not converted for resources that are not defined in a
DFHCNV TYPE=ENTRY macro. The entry for one resource is concluded by the
next TYPE=ENTRY statement, or by the end of the table. The CCSID to be
used is specified.

You can create generic templates that apply to multiple resources of the same
resource type. You do this by using the RPFX or XRPFX parameters of the
DFHCNV TYPE=ENTRY macro to specify a prefix that can be matched against
multiple resource names, rather than using the full name of a specific resource.

Defining resources in this way means that sequence is important in the
conversion table. For example, when specifying file resources, if prefix AB
precedes prefix ABCD, the former entry is used to convert data for a file
resource named ABCDEFGH. This example would give you an error when
assembling the conversion table. To avoid errors, you should put the most
specific resource names at the top of the conversion table, with the least
specific prefix at the bottom.

When no resource name or prefix is specified, the default conversion template
is used for that particular resource type.

For an example of the DFHCNV TYPE=ENTRY macro, see “DFHCNV
TYPE=ENTRY” on page 350.

DFHCNV TYPE=KEY
Applies only to an FC entry. Use this macro only if a record might need to be
accessed by key (if records are always accessed by relative record number or
relative byte address, do not code a TYPE=KEY macro). If you use this macro,
it must immediately follow a TYPE=ENTRY macro, and must be followed by
one or more TYPE=FIELD macros, which define the data conversion to be
applied to the key.

DFHCNV TYPE=SELECT
Defines selection of a record (FC record, TS data, TD data, IC start “from”
data, or COMMAREA transmitted with DPL) for data conversion based on the
value of a field in the record. Each TYPE=SELECT macro is followed by one or
more TYPE=FIELD macros, which define the data conversion to be applied if

© Copyright IBM Corp. 1977, 2012 345

the record satisfies the test defined in the TYPE=SELECT macro. The last
TYPE=SELECT macro for each entry is an OPTION=DEFAULT macro, which
defines the conversion to be applied to a record that satisfies no preceding
TYPE=SELECT macro.

DFHCNV TYPE=FIELD
Specifies the position and length of a field, and the conversion to be applied to
it. You must specify a TYPE=FIELD macro for each field for which conversion
is required.

DFHCNV TYPE=FINAL
Concludes the conversion table definition.

Conversion and key templates
Templates are table entries defining fields in a data area or key that are to be
converted and the conversion method to be applied to each field. There are two
types of template: conversion templates and key templates.
v A conversion template is defined by one or more DFHCNV TYPE=FIELD

macros following a DFHCNV TYPE=SELECT macro.
v A key template is defined by of one or more DFHCNV TYPE=FIELD macros

following a DFHCNV TYPE=KEY macro.

Both types of template are terminated by the next non-FIELD macro in the table
definition. Figure 74 on page 348 shows templates within a complete conversion
table definition.

Defaults for client and server code pages
In order to reduce the number of conversion tables required, you can specify that
the default client or server code page is defined in the system initialization table.

For the client code page:
1. In the DFHCNV TYPE=ENTRY and TYPE=SELECT macros, specify the value

SYSDEF for the CLINTCP parameter.
2. In the system initialization table, set a default client code page by specifying a

value for the CLINTCP parameter. You can use any value supported for the
CLINTCP parameter on the DFHCNV macro. The default is CLINTCP=437.

For the server code page:
1. In the DFHCNV TYPE=ENTRY and TYPE=SELECT macros, specify the value

SYSDEF for the SRVERCP parameter.
2. In the system initialization table, set a server code page by specifying a value

for the SRVERCP parameter. You can use any value supported for SRVERCP
parameter on the DFHCNV macro. The default is SRVERCP=037.

Conversion table for initial program verification (IVP)
When running the IVP jobs for CICS Transaction Server for z/OS, you need a
conversion table.

Figure 73 on page 347 is a simple example of a conversion table definition. You
don't need to code all these macros. You can generate exactly the same conversion
table by assembling the special macro, DFHCNV TYPE=IVP.

346 CICS TS for z/OS 4.2: Intercommunication Guide

All the fields are character, so only a single TYPE=SELECT macro is needed. It
specifies OPTION=DEFAULT, and has a single TYPE=FIELD macro to define the
whole data record.

The TYPE=KEY macro is followed by a single TYPE=FIELD macro, which
redefines the first six bytes of the data record.

Figure 74 on page 348 shows a typical sequence of DFHCNV macros. The figure is
annotated to show the sets of entries that correspond to resource entries,
conversion templates, and key templates. (The indentation is to illustrate nesting.
When coding the macros, as with all CICS resource definition macros, observe
assembler rules.)

DFHCNV TYPE=INITIAL
DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=FILEA,USREXIT=NO
DFHCNV TYPE=KEY
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=80,LAST=YES
DFHCNV TYPE=FINAL

Figure 73. Conversion table for IVP

Chapter 36. Defining the conversion table 347

DFHCNV TYPE=INITIAL
This is the format of the DFHCNV TYPE=INITIAL macro.

DFHCNV TYPE=INITIAL

DFHCNV TYPE=ENTRY,RTYPE=FC
DFHCNV TYPE=KEY

Key
DFHCNV TYPE=FIELD template

DFHCNV TYPE=SELECT,OPTION=COMPARE

DFHCNV TYPE=FIELD Conversion
DFHCNV TYPE=FIELD template Entry

for
DFHCNV TYPE=SELECT,OPTION=COMPARE FC

resource
DFHCNV TYPE=FIELD
DFHCNV TYPE=FIELD Conversion
DFHCNV TYPE=FIELD template
DFHCNV TYPE=FIELD

DFHCNV TYPE=SELECT,OPTION=DEFAULT
Conversion DFHCNV

DFHCNV TYPE=FIELD template conversion
table

DFHCNV TYPE=ENTRY,RTYPE=TS
DFHCNV TYPE=SELECT,OPTION=COMPARE

DFHCNV TYPE=FIELD Conversion Entry
DFHCNV TYPE=FIELD template for

TS
DFHCNV TYPE=SELECT,OPTION=DEFAULT resource

Conversion
DFHCNV TYPE=FIELD template

DFHCNV TYPE=ENTRY,RTYPE=TD
DFHCNV TYPE=SELECT,OPTION=DEFAULT Entry

for
DFHCNV TYPE=FIELD Conversion TD
DFHCNV TYPE=FIELD template resource

DFHCNV TYPE=FINAL

Figure 74. Example of DFHCNV macro sequence

348 CICS TS for z/OS 4.2: Intercommunication Guide

TYPE=INITIAL
Defines the beginning of the conversion table.

CLINTCP={437|SYSDEF|nnnn[,nnnn, ...]}
The first operand defines the default client CCSID to be used when the
CLINTCP and CDEPAGE operands are omitted from a DFHCNV
TYPE=ENTRY macro.

SYSDEF specifies that the default client code page is determined by the system
initialization table parameter CLINTCP.

For an explanation of code pages, and a list of those that you can specify, see
Chapter 31, “Character data,” on page 321.

SRVERCP={037|SYSDEF|nnnn[,nnnn, ...]}
The first operand defines the server CCSID to be used when the SRVERCP and
CDEPAGE operands are omitted from a DFHCNV TYPE=ENTRY macro.

SYSDEF specifies that the default server code page is determined by the
system initialization table parameter SRVERCP.

For an explanation of code pages, and a list of those that you can specify, see
Chapter 31, “Character data,” on page 321.

CDEPAGE=nnnn[,nnnn...]

Restriction: Do not use this parameter for new definitions. It is supported only
for compatibility with earlier releases.

Each possible value is equivalent to a pair of CLINTCP and SRVERCP entries
or (for user-defined conversion) to a SRVERCP entry.

437
Is equivalent to:
v CLINTCP=437
v SRVERCP=037

932K
Is equivalent to:
v CLINTCP=932

�� DFHCNV TYPE=INITIAL

�

437
,CLINTCP=

SYSDEF

nnnn
,nnnn

�

�

�

037
,SRVERCP=

SYSDEF

nnnn
,nnnn

�,CDEPAGE= nnnn
,nnnn

��

Chapter 36. Defining the conversion table 349

v SRVERCP=930

932
Is equivalent to:
v CLINTCP=932
v SRVERCP=931

USR
Is equivalent to:
v SRVERCP=USR

USRD
Is equivalent to:
v SRVERCP=USRD

DFHCNV TYPE=ENTRY
This is the format of the DFHCNV TYPE=ENTRY macro instruction.

350 CICS TS for z/OS 4.2: Intercommunication Guide

TYPE=ENTRY
Specifies that this macro defines a resource by name and type.

RTYPE={FC|TS|TD|IC|PC}
Specifies the type of resource:

FC A file

TS A temporary storage queue

TD A transient data queue

IC An interval control start with data

PC A program link with a COMMAREA.

CLINTCP={nnnn[,nnnn, ...]|SYSDEF}
The first operand defines the default client code page to be used.

SYSDEF specifies that the default client code page is determined by the system
initialization table parameter CLINTCP.

�� DFHCNV TYPE=ENTRY ,RTYPE= FC
IC
PC
TD
TS

�

CLINTCP=
SYSDEF

nnnn
,nnnn

�

�
SRVERCP

SYSDEF
nnnn

�

� Resource (standard syntax)
Resource (extended syntax for CICS TS for z/OS Version 2.3 and later)

,USREXIT=YES

,USREXIT=NO
,program

�

�
,CDEPAGE=nnnn

��

Resource (standard syntax):

,RNAME=resourcename
,XRNAME=xxxxxxxxxxxxxxxx

Resource (extended syntax for CICS TS for z/OS Version 2.3 and later):

,RNAME=resourcename
,RPFX=resourceprefix
,XRNAME=xxxxxxxxxxxxxxxx
,XRPFX=xxxxxxxxxxxxxx

Chapter 36. Defining the conversion table 351

For an explanation of code pages, and a list of those that you can specify, see
Chapter 31, “Character data,” on page 321.

SRVERCP={nnnn|SYSDEF}
The operand defines the server code page to be used.

SYSDEF specifies that the server code page is determined by the system
initialization table parameter SRVERCP.

For an explanation of code pages, and a list of those that you can specify, see
Chapter 31, “Character data,” on page 321.

RNAME=resourcename
Specifies the name of the resource in up to eight characters. If shorter, it is
padded with blanks; if longer, it is truncated. The name can be:
v A FILE name (up to eight characters).
v A TS queue name (up to eight characters).

Note: Although CICS supports TS queue names of up to16 characters,
DFHCNV only supports TS queue names of up to 8 characters.

v A TD queue name (up to four characters).
v An IC start transaction id (up to four characters).
v The name of the program being linked (up to eight characters).

RPFX=resourceprefix
Specifies a resource prefix of up to 7 characters for programs, TS queues and
files; or 3 characters for TD queues and transactions. The resource prefix allows
resources of a particular type to be grouped together using just one macro. All
resources of the specified type and prefix will be treated in the same way.
Order is important, so the most specific resource names should be at the top of
the converstion table, with the least specific prefixes at the bottom. If none of
the parameters are specified at this point in the macro, the default template is
used for all resources within the specified resource type.

XRNAME=xxxxxxxxxxxxxxxx (RTYPE=TS only)
Specifies the resource name in hexadecimal notation. It can include up to 16
hexadecimal digits, padded with blanks if necessary.

XRPFX=xxxxxxxxxxxxxx (RTYPE=TS only)
Specifies a resource prefix of up to 14 hexadecimal digits. The resource prefix
allows resources of a particular type to be grouped together. All resources of
the specified type and prefix will be treated in the same way. The sequence is
important, so the most specific resource names should be at the top of the
conversion table, with the least specific prefixes at the bottom. If none of the
parameters are specified at this point in the macro, the default template is used
for all resources within the specified resource type.

USREXIT={YES|NO∨program}
Specifies whether the user data conversion exit is called.

YES
User-defined conversion is required for this resource. DFHUCNV is
invoked. Code this if you need your customized version of DFHUCNV to
convert some data for this resource.

NO User-defined conversion is not required for this resource. The
user-replaceable conversion program is not called. Code this to eliminate
the overhead of calling the program unnecessarily.

352 CICS TS for z/OS 4.2: Intercommunication Guide

program
User-defined conversion is required for this resource; program is invoked.
Code this if you need your user-supplied program, program, to convert
some data for this resource.

CDEPAGE=nnnn

Restriction: Do not use this parameter for new definitions. It is supported only
for compatibility with earlier releases.

The code page must be one of those entered in the CDEPAGE option of the
DFHCNV TYPE=INITIAL macro. Each possible value is equivalent to a pair of
CLINTCP and SRVERCP entries or (for user-defined conversion) to a SRVERCP
entry. The CLINTCP and SRVERCP values to which each value resolves are
given in the description of the CDEPAGE option of the DFHCNV
TYPE=INITIAL macro.

DFHCNV TYPE=KEY
The DFHCNV TYPE=KEY macro is valid only for FC RTYPE requests, and, if
coded, must immediately follow a DFHCNV TYPE=ENTRY macro.

The macro has the following format:

TYPE=KEY
Indicates the start of conversions to be applied to a key. This macro is not
required if access is only by RRN or RBA. If access is by key but no
TYPE=KEY statement is present, the key is not converted. You must provide
matching conversion details (DFHCNV TYPE=FIELD macros) for the key, as
part of each conversion template that applies to this file, or an INVREQ
condition may be returned on the file control EXEC CICS request.

DFHCNV TYPE=SELECT
This is the format of the DFHCNV TYPE=SELECT macro instruction.

TYPE=SELECT
Indicates the start of conversion definitions (DFHCNV TYPE=FIELD macros) to
be applied to a record that satisfies the comparison defined in this macro. If
the defined comparison is not satisfied by the data in the record, the
conversion program (DFHCCNV) skips to the next TYPE=SELECT macro, until
it finds a match or reaches the OPTION=DEFAULT macro. Every
TYPE=SELECT macro must be followed by at least one TYPE=FIELD macro.

OPTION={COMPARE|DEFAULT}
States the basic selection options:

�� DFHCNV TYPE=KEY ��

�� DFHCNV TYPE=SELECT ,OPTION= COMPARE
DEFAULT

,OFFSET=nnnn ,DATA='dd...dd'
,XDATA='xx...xx'

��

Chapter 36. Defining the conversion table 353

COMPARE
Indicates that the data should be converted according to the specifications
in the following DFHCNV TYPE=FIELD macros, if the record satisfies the
comparison defined in this macro (OFFSET and DATA or XDATA options).

DEFAULT
Indicates that the data should be converted according to the specifications
in the following DFHCNV TYPE=FIELD macros, if the record has not
satisfied the comparison defined in any previous DFHCNV TYPE=SELECT
COMPARE macro.

For each resource entry (started by a TYPE=ENTRY macro) the last
TYPE=SELECT macro must specify OPTION=DEFAULT. No other
TYPE=SELECT macro in the entry should specify OPTION=DEFAULT.

The following options are ignored if OPTION=DEFAULT is coded.

OFFSET=nnnn
Specifies the byte offset in the record at which the comparison should be made,
up to a maximum of 65535.

DATA='dd...dd'

Restriction: Use only if the data to be tested is defined as
DATATYP=CHARACTER, SOSI=NO

Specifies the comparison data as an EBCDIC character string, with a maximum
length of 255 characters. CICS converts the incoming data from ASCII to
EBCDIC before checking it against the comparison data, so that EBCDIC is
compared with EBCDIC. Outgoing data is in EBCDIC, so the comparison is
made in EBCDIC without conversion.

XDATA='xx...xx'

Restriction: Use if DATA option is not used

Specifies the comparison data as a hexadecimal string, with an even number of
digits, maximum length 254 digits. Data is compared against this field, without
conversion.

DFHCNV TYPE=FIELD
This is the format of the DFHCNV TYPE=FIELD macro instruction, which occurs
as many times as needed.

354 CICS TS for z/OS 4.2: Intercommunication Guide

TYPE=FIELD
Specifies conversion specifications for a data field. There must be one such
statement for each field in a record. You cannot code a TYPE=FIELD macro
until you have coded a TYPE=SELECT macro.

OFFSET=nnnn
Specifies the byte offset in the record or key at which the conversion should
start, up to a maximum of 65535. (For TYPE=KEY conversions, this is the byte
offset from the start of the key not from the start of the record.)

DATATYP={CHARACTER|PD|BINARY|USERDATA|GRAPHIC|NUMERIC}
Specifies the type of conversion required:

CHARACTER
Specifies character fields.

PD Specifies packed decimal data in z/Architecture format.

Any packed decimal data in other formats should be defined for
USERDATA conversion, and the user-replaceable program DFHUCNV
must contain the necessary conversion code.

BINARY
Specifies binary data in big-endian format.

By default, BINARY data is not converted. This default action can be
overridden to allow requests from platforms that support different binary
architectures to access the same CICS resource using the same conversion
table.

USERDATA
Specifies data to be converted by the user-replaceable program DFHUCNV.
The DFHCCNV conversion code bypasses these fields. See the USRTYPE
operand below.

GRAPHIC
Specifies fields that contain DBCS characters only.

NUMERIC
Specifies that binary fields held on the workstation in INTEL format (for
example, C Language integer datatype) need to be converted to
z/Architecture format. Integers (four bytes) or short integers (two bytes)
can be converted.

USRTYPE=nnn
Specifies a value that is made available to the user-replaceable conversion
program DFHUCNV. The values you provide can be in the range 80 to 128

�� DFHCNV TYPE=FIELD ,OFFSET=nnnn ,DATATYP= BINARY
CHARACTER
GRAPHIC
NUMERIC
PD
USERDATA

,USRTYPE=nnn ,DATALEN=nnnn �

�
,LAST=YES NO

,SOSI=
YES

��

Chapter 36. Defining the conversion table 355

(X'50' to X'80'). The default value is 80 (X'50'). If more than one type of
user-defined conversion is possible, you can use this value to specify to
DFHUCNV what conversion is needed for each field.

This option is ignored if DATATYP=USERDATA is not specified.

DATALEN=n
Specifies the length of the data field to be converted, in bytes, up to a
maximum of 65535. For variable length fields, specify the maximum possible
length.

If DATATYP=NUMERIC, DATALEN must be 2 or 4.

LAST=YES
Specifies that this is the last field definition for this TYPE=SELECT statement.

SOSI=YES|NO
Enter YES for a mixed string containing SBCS and DBCS characters; enter NO
for an SBCS string. This field is valid only if DATATYPE=CHARACTER has
been entered in this macro. The default is NO.

DFHCNV TYPE=FINAL
The DFHCNV TYPE=FINAL macro instruction ends the table.

It must occur only once, as the last definition.

Hints on coding the macros
You can improve the performance of data conversion by coding your macros to
benefit from the way in which CICS processes the conversion tables.
1. Define entries for the most frequently-used resources first, to reduce search

time.
2. Define USERDATA fields in consecutive entries. This reduces the time needed

by your conversion program to scan the template.
3. For variable-length fields, define the maximum length required. (Comparisons

and conversions are applied to the shorter of the actual data length or the
template length. For example, if the data is 100 bytes long but the template
describes 120 bytes, up to 100 bytes are converted. If the data is 100 bytes and
the template describes 80 bytes, only 80 bytes are converted.)

4. If function-shipped data is not accessed by CICS Transaction Server for z/OS
but only by the connected system, you do not need to specify conversion
details. For example, when a CICS Transaction Server for z/OS file is used to
store data that is shared by several ASCII-based systems.

�� DFHCNV TYPE=FINAL ��

356 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 37. User-defined conversion tables

If you specify SRVERCP=USR or USRD in a DFHCNV TYPE=ENTRY macro, you
must provide user-defined conversion tables. The standard conversion program
(DFHCCNV) uses these tables, and they are made available to the user-replaceable
conversion program, DFHUCNV.

Place your user-defined conversion tables in the DFHCNV macro source, anywhere
after the DFHCNV TYPE=INITIAL macro.

Tip: For source readability, the best place is probably after the DFHCNV
TYPE=FINAL macro.

SRVERCP=USR

You must provide two character conversion tables, labelled ASTOEB and EBTOAS.

Each table must be 256 bytes long. ASTOEB is used for ASCII to EBCDIC
conversion and EBTOAS is used for EBCDIC to ASCII conversion. The
hexadecimal value of a character byte is used as an offset in the conversion table to
obtain the converted value of the character. Figure 75 on page 358 illustrates this
process.

© Copyright IBM Corp. 1977, 2012 357

SRVERCP=USRD

You must provide DBCS character conversion tables labelled DBASTOEB and
DBEBTOAS, in the DFHCNV source. These must be after the DFHCNV
TYPE=INITIAL macro, but otherwise anywhere in the source. Each table must be a
list of 256 four-byte pointers and 256 pairs of 256-byte translate tables. The first
byte of a DBCS character is used as an index to the list of pointers. Using the first
byte of the DBCS character as a hexadecimal offset in the list, the pointer found is
the address of a pair of 256-byte translate tables. The second byte of the DBCS

ASCII character 47

0 1 2 3 4 5 6 7 8 9 A B C D E F
ASTOEB

0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4 xxxxxxxxxxxxxxA3
5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
E xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

EBCDIC character BC

0 1 2 3 4 5 6 7 8 9 A B C D E F
EBTOAS

0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B xxxxxxxxxxxxxxxxxxxxxxxx23
C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
E xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In this example, the ASCII character X' converts to the EBCDIC
character X'A3', and the EBCDIC character X'BC' converts to the
ASCII character X'23'.
These values have no significance, and are used simply to
illustrate the structure of the conversion tables.

47'

Figure 75. Structure of SBCS conversion tables

358 CICS TS for z/OS 4.2: Intercommunication Guide

character is used as an offset in each of the two 256-byte translate tables to obtain
the first and second bytes of the converted DBCS character. Figure 76 illustrates
this process.

You must also provide an SBCS conversion table as specified under USR above.

()4*6A)=1A8 6A E9

List of
pointers

Conversion tables
0 1 2 3 4 5 6 7 8 9 A B C D E F

DBASTOEB
00 0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
04 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. B xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1A8 xxxxxxxx C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. E xxxxxxxxxxxxxxxxxxCC
. F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
.
. 0 1 2 3 4 5 6 7 8 9 A B C D E F
.
. 0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 5 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 8 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 9 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. A xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. B xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

3F8 E xxxxxxxxxxxxxxxxxx22
3FC F xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In this example, the double-byte character X'6AE9' converts to X'CC22'.
The value, at offset 6A in the pointer list, is the address of a pair
of 256-byte translate tables. At offset E9 in these tables, the
byte values are X'CC' and X'22' respectively. These are random values,
used purely for illustration.
This is an ASCII-EBCDIC conversion, because the pointer list is
labeled DBASTOEB. A complete set of ASCII-EBCDIC tables
contains 256 pairs of 256-byte tables, one pair for each possible value
of the first byte of a double-byte character.
DBEBTOAS is the label of a similar set of EBCDIC-ASCII tables.

Figure 76. Structure of DEBUTS conversion tables

Chapter 37. User-defined conversion tables 359

Invalid and undefined DBCS characters
In ASCII and EBCDIC, certain code ranges are valid DBCS code. Any double-byte
value outside these ranges is an invalid DBCS character. In the supplied conversion
tables, invalid DBCS characters convert to X'FFFF', as defined by the code page
architecture.

Within the valid code range, several thousand double-byte values are defined as
actual DBCS characters. A double-byte value within the valid code range, but not
defined as a DBCS character, is an undefined DBCS character.

User-defined tables should follow the above conventions for invalid and undefined
characters.

360 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 38. Example macros

These examples show the use of the data conversion macros.

Figure 77 shows an example of a record layout for a file called VSAM99. The key is
offset 0 for length 6, and the record contains no redefinition.

Figure 78 gives a full set of conversion macros for file VSAM99. Figure 79 shows
the same conversion expressed more briefly, by combining adjoining fields of the
same type.

02 FILEREC.
03 STAT PIC X.
03 NUMB PIC X(6).
03 NAME PIC X(20).
03 ADDRX PIC X(20).
03 PHONE PIC X(8).
03 DATEX PIC X(8).
03 AMOUNT PIC X(8).
03 COMMENT PIC X(9).
03 COUNTER1 PIC 9999 USAGE COMP-4.
03 COUNTER2 PIC 9999 USAGE COMP-4.
03 ADDLCMT PIC X(30).

Figure 77. Record layout for VSAM99

DFHCNV TYPE=INITIAL,CLINTCP=437,SRVERCP=037
DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99
DFHCNV TYPE=KEY
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=1
DFHCNV TYPE=FIELD,OFFSET=01,DATATYP=CHARACTER,DATALEN=6
DFHCNV TYPE=FIELD,OFFSET=07,DATATYP=CHARACTER,DATALEN=20
DFHCNV TYPE=FIELD,OFFSET=27,DATATYP=CHARACTER,DATALEN=20
DFHCNV TYPE=FIELD,OFFSET=47,DATATYP=CHARACTER,DATALEN=8
DFHCNV TYPE=FIELD,OFFSET=55,DATATYP=CHARACTER,DATALEN=8
DFHCNV TYPE=FIELD,OFFSET=63,DATATYP=CHARACTER,DATALEN=8
DFHCNV TYPE=FIELD,OFFSET=71,DATATYP=CHARACTER,DATALEN=9
DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=2
DFHCNV TYPE=FIELD,OFFSET=82,DATATYP=BINARY,DATALEN=2
DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES
DFHCNV TYPE=FINAL

Figure 78. Full description of VSAM99

DFHCNV TYPE=INITIAL,CLINTCP=437,SRVERCP=037
DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99
DFHCNV TYPE=KEY
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80
DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=4
DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES
DFHCNV TYPE=FINAL

Figure 79. Condensed description of VSAM99

© Copyright IBM Corp. 1977, 2012 361

Note: Be careful when combining adjoining fields, even if they are of the same
data type. Do not combine NUMERIC fields. Do not combine fields defined as
CHARACTER, if SOSI=YES is specified for one or more of them. Whether you can
combine USERDATA fields depends on user-defined data structures and
conversion code.

Figure 80 shows a redefined record layout for file VSAM99. Figure 81 shows a set
of conversion macros for the redefined record layout in Figure 80.

Figure 82 on page 363 shows user-defined conversion tables, EBTOAS and
ASTOEB, illustrating how they are preceded with DFHCNV macros in the source
that is submitted to the assembler.

02 FILEREC.
03 STAT PIC X.
03 NUMB PIC X(6).
03 NAME PIC X(20).
03 ADDRX PIC X(20).
03 PHONE PIC X(8).
03 DATEX PIC X(8).
03 AMOUNT PIC X(8).
03 COMMENT PIC X(9).
03 VARINF1.
03 COUNTER1 PIC 9999 USAGE COMP-4.
03 COUNTER2 PIC 9999 USAGE COMP-4.
03 ADDLCMT PIC X(30).
03 VARINF2 REDEFINES VARINF1.
03 COUNTER1 PIC 9999 USAGE COMP-4.
03 COUNTER2 PIC 9999 USAGE COMP-4.
03 COUNTER3 PIC 9999 USAGE COMP-4.
03 COUNTER4 PIC 9999 USAGE COMP-4.
03 ADDLCMT2 PIC X(26).

Figure 80. Redefined record layout for VSAM99

DFHCNV TYPE=INITIAL
DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99
DFHCNV TYPE=KEY
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES

*
* If offset 00 is a character ’X’ use the following
* conversion definitions:
*

DFHCNV TYPE=SELECT,OPTION=COMPARE,OFFSET=00,DATA=’X’
DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80
DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=4
DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES

*
* Otherwise use the following (default)
* conversion definitions
*

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80
DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=8
DFHCNV TYPE=FIELD,OFFSET=88,DATATYP=CHARACTER,DATALEN=26,LAST=YES
DFHCNV TYPE=FINAL

Figure 81. Description for redefined record layout for VSAM99

362 CICS TS for z/OS 4.2: Intercommunication Guide

*
LABL1 DFHCNV TYPE=INITIAL,CLINTCP=437,SRVERCP=037
*

DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM80
DFHCNV TYPE=KEY
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=BINARY,DATALEN=2
DFHCNV TYPE=FIELD,OFFSET=2,DATATYP=CHARACTER,DATALEN=4, X

LAST=YES
LABLX DFHCNV TYPE=SELECT,OPTION=COMPARE,OFFSET=6,XDATA=’C1C2C3’

DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=BINARY,DATALEN=2
DFHCNV TYPE=FIELD,OFFSET=2,DATATYP=CHARACTER,DATALEN=4
DFHCNV TYPE=FIELD,OFFSET=9,DATATYP=CHARACTER,DATALEN=8, X

LAST=YES

...
DFHCNV TYPE=ENTRY,RTYPE=TS,RNAME=ABCD
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=40
DFHCNV TYPE=FIELD,OFFSET=40,DATATYP=BINARY,DATALEN=4, X

LAST=YES
LABLN DFHCNV TYPE=FINAL
*
* EXAMPLE OF A USER-DEFINED CONVERSION TABLE EBCDIC to ASCII
EBTOAS DC XL16’000102030405060708090A0B0C0D0E0F’

DC XL16’101112131415161718191A1B1C1D1E1F’
DC XL16’202122232425262728292A2B2C2D2E2F’
DC XL16’303132333435363738393A3B3C3D3E3F’
DC XL16’404142434445464748494A4B4C4D4E4F’
DC XL16’505152535455565758595A5B5C5D5E5F’
DC XL16’606162636465666768696A6B6C6D6E6F’
DC XL16’707172737475767778797A7B7C7D7E7F’
DC XL16’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F’
DC XL16’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F’
DC XL16’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’
DC XL16’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’
DC XL16’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’
DC XL16’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’
DC XL16’E0E1E2A3E4E5E6E7E8E9EAEBECEDEEEF’
DC XL16’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’

*
* EXAMPLE OF A USER-DEFINED CONVERSION TABLE ASCII to EBCDIC
*
ASTOEB DC XL16’000102030405060708090A0B0C0D0E0F’

DC XL16’101112131415161718191A1B1C1D1E1F’
DC XL16’202122232425262728292A2B2C2D2E2F’
DC XL16’303132333435363738393A3B3C3D3E3F’
DC XL16’404142434445464748494A4B4C4D4E4F’
DC XL16’505152535455565758595A5B5C5D5E5F’
DC XL16’606162636465666768696A6B6C6D6E6F’
DC XL16’707172737475767778797A7B7C7D7E7F’
DC XL16’808182838485868788898A8B8C8D8E8F’
DC XL16’909192939495969798999A9B9C9D9E9F’
DC XL16’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’
DC XL16’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’
DC XL16’C0818283848586878889CACBCCCDCECF’
DC XL16’D0919293949596979899DADBDCDDDEDF’
DC XL16’E0E1A2A3A4A5A6A7A8A9EAEBECEDEEEF’
DC XL16’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’
END DFHCNVBA

Figure 82. SBCS user-defined conversion table

© Copyright IBM Corp. 1977, 2012 363

Chapter 39. Assembling and link-editing the conversion
programs

You can use either of the standard procedures DFHAUPLE and DFHAUPLK to
assemble the DFHCNV table.

About this task

You can optimize CICS virtual storage use by link-editing the DFHCNV table and
the DFHUCNV program with a MODE statement specifying AMODE(31) and
RMODE(ANY). The table and program are then loaded above the 16MB line if
enough CICS storage is available.

364 CICS TS for z/OS 4.2: Intercommunication Guide

Chapter 40. The user-replaceable conversion program

This section describes the user-replaceable data conversion program.

User-named conversion programs
You can replace DFHUCNV, the default user-replaceable conversion program, by
one or more user-named conversion programs.

DFHUCNV is invoked if:
v A conversion template is not defined for the resource, or

v A conversion template is defined for the resource and the template specifies
USREXIT=YES.

A user-named conversion program is invoked if:
v A conversion template is defined for the resource and the template specifies

USREXIT=userprogram

where userprogram is the name of the user-supplied conversion program.

Input to DFHUCNV
The first statement in the supplied version of DFHUCNV is a DFHCNV
TYPE=DSECT macro, which generates DSECTs that describe the parameter list and
the conversion template.

DFHUCNV starts with a DFHCNV TYPE=DSECT in the following format:

The DFHCNV TYPE=DSECT macro generates the following:
v The DFHUNVDS DSECT, which maps the parameter list in the COMMAREA

passed by DFHCCNV.
v An assembler DSECT for field conversion records (these are the basic

components of a template; see Figure 85 on page 369).
v Equates for resource types and field types.

Parameter list (DFHUVNDS)
The DFHUNVDS DSECT maps the parameter list passed to DFHUCNV in the
COMMAREA.

If a parameter is zero, no data is available. If you do not create a conversion template
for the resource, DFHUCNV is invoked, but only the following fields in the parameter list
contain data:
v UNVRSTP
v UNVRNMP
v UNVDIRP
v UNVOVLY

DFHCNV TYPE=DSECT

© Copyright IBM Corp. 1977, 2012 365

The following is a detailed description of the parameters:

UNVRSTP
Points to a one-byte resource type that indicates the resource being referenced
by this request. The meanings of the resource types are defined in DSECT
DFHCNVDS. The resource types are FC, IC, TS, TD, and PC.

UNVRNMP
Points to an eight-character field containing the resource name, padded with
blanks if necessary. These may be:
v For an FC request, an eight-byte file name
v For a TS request, an eight-byte TS queue name
v For a TD request, a four-byte TD queue name
v For an IC request, a four-byte transaction name
v For a PC request, an eight-byte program name.

UNVDIRP
Points to a one-byte field that shows what conversion is required:
v CNVRQATE (X'02') indicates a request needing conversion from client

encoding to server encoding.

DFHUNVDS DSECT
UNVRSTP DS AL4 PTR-TO-RESOURCE TYPE
UNVRNMP DS AL4 PTR-TO-RESOURCE NAME
UNVDIRP DS AL4 PTR-TO-CONVERSION DIRECTIVE
CNVRQATE EQU X’02’ REQUEST ASCII TO EBCDIC
CNVRPETA EQU X’04’ RESPONSE EBCDIC TO ASCII
UNVDTMP DS AL4 PTR-TO-DATA CONV TEMPLATE
UNVDLNP DS AL4 PTR-TO-DATA TEMPLATE LENGTH
UNVKTMP DS AL4 PTR-TO-KEY CONV TEMPLATE
UNVKLNP DS AL4 PTR-TO-KEY TEMPLATE LENGTH
UNVATEP DS AL4 PTR-TO-ASCII/EBCDIC TRANS TABLE
UNVETAP DS AL4 PTR-TO-EBCDIC/ASCII TRANS TABLE
UNVATED DS AL4 PTR-TO-DBCS ASCII/EBCDIC TRANS TABLE
UNVETAD DS AL4 PTR-TO-DBCS EBCDIC/ASCII TRANS TABLE

UNVOVLY DS 0H OVERLAY SECTION
ORG UNVOVLY TS REQUEST OVERLAY

UNVTSDP DS AL4 PTR-TO-TS DATA
UNVTSLNP DS AL4 PTR-TO-TS DATA LENGTH

ORG UNVOVLY TD REQUEST OVERLAY
UNVTDDP DS AL4 PTR-TO-TD DATA
UNVTDLNP DS AL4 PTR-TO-TD DATA LENGTH

ORG UNVOVLY IC REQUEST OVERLAY
UNVICDP DS AL4 PTR-TO-IC DATA
UNVICLNP DS AL4 PTR-TO-IC DATA LENGTH

ORG UNVOVLY PC REQUEST OVERLAY
UNVPCDP DS AL4 PTR-TO-PC DATA
UNVPCLNP DS AL4 PTR-TO-PC DATA LENGTH

ORG UNVOVLY FC REQUEST OVERLAY
UNVFCDP DS AL4 PTR-TO-FC DATA
UNVFCLNP DS AL4 PTR-TO-FC DATA LENGTH
UNVFCKP DS AL4 PTR-TO-FC KEY
UNVFCKLP DS AL4 PTR-TO-FC KEY LENGTH

ORG ,
UNVMRTNE DS A PTR-TO-MBCS TRANSLATION ROUTINE
UNVCLIDP DS AL4 A "client" CCSID
* (for example, 00819)
UNVSRIDP DS AL4 A "server" CCSID
* (for example, 00285)

Figure 83. DFHUNVDS—DSECT that maps the parameter list passed to DFHUCNV

366 CICS TS for z/OS 4.2: Intercommunication Guide

v CNVRPETA (X'04') indicates a response needing conversion from server
encoding to client encoding.

UNVDTMP
Points to the start of the conversion template found by CICS to match this
resource. If UNVDTMP is zero no template was found.

UNVDLNP
Points to a field that gives the length of the conversion template. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

UNVKTMP (file control requests only)
Points to the start of the template found by CICS for the key part of the
request or response. If UNVKTMP is zero, either there is no key template or
the record is accessed by relative record number or relative byte address.

UNVKLNP (file control requests only)
Points to a field that gives the length of the key conversion template. The field
is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

UNVATEP
Points to a 256-byte SBCS translation table used for converting character data
from client encoding to server encoding.

UNVETAP
Points to a 256-byte SBCS translation table used for converting character data
from server encoding to client encoding.

UNVATED
Points to a DBCS translation table used for converting character data from
client encoding to server encoding.

UNVETAD
Points to a DBCS translation table used for converting character data from
server encoding to client encoding.

The overlay section depends on resource type:

TS requests:

UNVTSDP
Points to the start of the TS record being read or written. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

UNVTSLNP
Points to a field that gives the length of the TS record.

TD requests:

UNVTDDP
Points to the start of the TD record being read or written.

UNVTDLNP
Points to a field that gives the length of the TD record. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

IC requests:

Chapter 40. The user-replaceable conversion program 367

UNVICDP
Points to the “from” area of an IC START request.

UNVICLNP
Points to a field that gives the length of the “from” area. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

PC requests:

UNVPCDP
Points to the start of the COMMAREA being supplied.

UNVPCLNP
Points to a field that gives the length of the COMMAREA. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

FC requests:

UNVFCDP
Points to the start of the file control record being read or written.

UNVFCLNP
Points to a field that gives the length of the file control record. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

UNVFCKP
Points to the start of the key for the file control record being read or written.

UNVFCKLP
Points to a field that gives the length of the key. The field is:
v A fullword for CICS Transaction Server for z/OS
v A half-word for all other platforms.

UNVMRTNE
Points to a translation routine that must be used for translations to or from an
MBCS code page. The relevant client code pages are 954, 964, and 970.

The routine expects Register 1 to point to a structure defined by the
DFHUNVM DSECT:
DFHUNVM DSECT
UNVMTABP DS AL4 Set to value in UNVATED or UNVETAD
UNVMINP DS AL4 Address of source data
INVMINL DS FL4 Length of source data
UNVMOUTP DS AL4 Address of target buffer
UNVMOUTL DS FL4 Length of target buffer

UNVCLIDP
Points to a fullword field that gives the IBM-defined CCSID, for example
00819, corresponding to the “client” code page.

UNVSRIDP
Points to a fullword field that gives the IBM-defined CCSID, for example
00285, corresponding to the “server” code page.

Conversion and key templates
In the COMMAREA, fields UNVDTMP and UNVDLNP point to the conversion
template and its length.

368 CICS TS for z/OS 4.2: Intercommunication Guide

Fields UNVKTMP and UNVKLNP point to the key template and its length.
Figure 84 illustrates the use and meaning of these fields.

Each type of template consists of field conversion records, one for each field in the
data record or key. Each field conversion record has the same layout, shown under
“Field conversion records,” and mapped by a supplied DSECT, DFHCNVDS (see
“DFHCNVDS, DSECT for field conversion records” on page 370). Figure 85 shows
the relationship between a template, field conversion records, and DFHCNVDS.
The figure shows DFHCNVDS overlaying the first field conversion record in a
template for a data record or key with six fields.

Field conversion records
This describes the layout of the field conversion records.

A field conversion record has the following layout:

Table 67. Layout of a field conversion record

CNVRLEN CNVRTYPE Reserved CNVDATTY CNVDATAO CNVDATAL

Record length Record type Reserved Data type Data offset Data length

UNVDTMP Conversion template

length

UNVDLNP conversion template length

UNVKTMP Key template

length

UNVKLNP key template length

Figure 84. Parameter fields and the conversion templates

CONVERSION OR KEY TEMPLATE

Field
conversion
record

Field
conversion
record

Field
conversion
record

Field
conversion
record

Field
conversion
record

Field
conversion
record

DFHCNVDS
DSECT

Figure 85. Field conversion records and a conversion or key template

Chapter 40. The user-replaceable conversion program 369

Table 67. Layout of a field conversion record (continued)

CNVRLEN CNVRTYPE Reserved CNVDATTY CNVDATAO CNVDATAL

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5-8 Byte 9-12

In Table 67 on page 369, record length and type refer to the length and type of the
field conversion record. The names in the top row are those used in the DSECT
DFHCNVDS which maps field conversion records (see Figure 86 on page 371. A
template has as many field conversion records as are necessary to describe all the
fields in the data record or key.

For DFHUCNV, CNVRLEN is X'0C' CNVRTYPE is always X'04' (field). DFHUCNV
must interpret CNVDATTY values in the range X'50' through X'80' according to
user specifications, and apply the appropriate conversions. DFHUCNV should
ignore fields with CNVDATTY values outside the range X'50' to X'80'.

EQUATEs in DFHCNVDS
DFHCNVDS contains EQUATEs that are useful in your conversion program.

For resource type addressed by the parameter list
CNVFC FILE CONTROL
CNVTS TEMPORARY STORAGE
CNVTD TRANSIENT DATA
CNVIC INTERVAL CONTROL
CNVPC PROGRAM CONTROL

For field type in the template

Two additional EQUATEs, DTUSRMIN and DTUSRMAX, define the limits of the
range of data types (X'50' to X'80') reserved for user definition. Ensure that
DFHUCNV can deal with any data type in this range that can be used in your
installation.

DTBIN BINARY
DTPD PACKED DECIMAL
DTCHAR CHARACTER
DTMIX MIXED CHARACTER
DTDBCS DBCS CHARACTER
DTNUM INTEL INTEGER

The supplied DFHUCNV program contains examples of the use of CNVTS,
DTUSRMIN, and DTUSRMAX—see “Supplied user-replaceable conversion
program” on page 371.

DFHCNVDS, DSECT for field conversion records

370 CICS TS for z/OS 4.2: Intercommunication Guide

Supplied user-replaceable conversion program
The supplied version of DFHUCNV checks for a resource type of TS. If it finds
one, it scans down the passed template looking for fields defined with a type in
the user-data range. If any are present, DFHUCNV converts them as characters;
you can rewrite the conversion code to your own requirements.

Study the supplied version of DFHUCNV and its introductory comments to enable
you to write your own conversion program. Your program must be able to handle
31 bit addresses.

The supplied sample is defined to CICS with program attribute
CONCURRENCY(THREADSAFE). Any code added to the sample must be
threadsafe as the program might be started on an open TCB. Alternatively you can
change the program definition to specify CONCURRENCY(QUASIRENT) but this
change can produce a TCB switching overhead.

DFHCNVDS DSECT
*
* PROVIDES A MAPPING OF THE FIELD CONVERSION RECORDS USED
* WHEN DECIDING WHETHER TO CONVERT USER DATA.
* A SET OF FIELD DEFINITIONS MAKE UP A TEMPLATE
*
CNVRLEN DS AL1 LENGTH OF THIS RECORD
CNVRTYPE DS XL1 TYPE OF RECORD
*
* EQUATES FOR RECORD TYPES
*
CNVTFLD EQU X’04’ FIELD (ONLY VALID TYPE IN
* TEMPLATE)
CNVOVLY DS 0H
**
**

ORG CNVOVLY TYPE FIELD
DS XL1 RESERVED

CNVDATTY DS XL1 DATA TYPE
*
* EQUATES FOR DATA TYPES
*
DTBIN EQU X’01’ BINARY
DTPD EQU X’02’ PACKED DECIMAL
DTCHAR EQU X’03’ CHARACTER
DTMIX EQU X’04’ MIXED CHARACTER
DTDBCS EQU X’05’ DBCS
DTNUM EQU X’06’ NUMERIC
DTUSRMIN EQU X’50’ MINIMUM USER DATA TYPE
DTUSRMAX EQU X’80’ MAXIMUM USER DATA TYPE
*
CNVDATAO DS AL4 DATA OFFSET
CNVDATAL DS AL4 DATA LENGTH
**
*
* EQUATES FOR RESOURCE TYPES
*
CNVFC EQU X’01’ FILE CONTROL
CNVTS EQU X’02’ TEMP STORAGE
CNVTD EQU X’03’ TRANS DATA
CNVIC EQU X’05’ INTERVAL CONTROL
CNVPC EQU X’06’ PROGRAM CONTROL

Figure 86. DFHCNVDS, DSECT that maps conversion/key templates passed to DFHUCNV

Chapter 40. The user-replaceable conversion program 371

|
|
|
|
|

372 CICS TS for z/OS 4.2: Intercommunication Guide

Part 8. Appendixes

© Copyright IBM Corp. 1977, 2012 373

374 CICS TS for z/OS 4.2: Intercommunication Guide

Appendix A. Intercommunication rules and restrictions
checklist

This appendix provides a checklist of the rules and restrictions that apply to
intersystem communication and multiregion operation.

Most of these rules and restrictions also appear in the body of the book. The rules
apply to:
v “Transaction routing”
v “Dynamic routing of DPL requests” on page 377
v “Automatic transaction initiation” on page 377
v “Basic mapping support” on page 377
v “Acquiring LUTYPE6.1 sessions” on page 377
v “Syncpointing” on page 378
v “Local and remote names” on page 378
v “Master terminal transaction” on page 378
v “Installation and operations” on page 378
v “Resource definition” on page 378
v “Customization” on page 378
v “MRO abend codes” on page 379

Transaction routing
Review this checklist of the rules and restrictions that apply to transaction routing.
v A transaction routing path between a terminal and a transaction must not turn

back on itself. For example, if system A specifies that a transaction is on system
B, system B specifies that it is on system C, and system C specifies that it is on
system A, the attempt to use the transaction from system A is abended when
system C tries to route back to system A.
This restriction also applies if the routing transaction, CRTE, is used to establish
all or part of a path that turns back on itself.

v Transaction routing using the following “terminals” is not supported:
– LUTYPE6.1 sessions.
– MRO sessions.
– IBM 7770 and 2260 terminals.
– Pipeline logical units with pooling.
– MVS system consoles. Messages entered through a console can be directed to

any CICS system using the MODIFY command.
v The transaction CEOT is not supported by the transaction routing facility.
v The execution diagnostic facility (EDF) can be used in single-terminal mode to

test a remote transaction.
EDF running in two-terminal mode is supported only when both of the
terminals and the user transaction are on the same system; that is, when no
transaction routing is involved.
When using an IPIC connection, use CEDX for transactions that are defined in
the terminal owning region (TOR) as remote. IPIC does not support sending
EDF information.

v The user area of the TCTTE is updated at task-attach and task-detach times.
Therefore, a user exit program running on the terminal-owning region and

© Copyright IBM Corp. 1977, 2012 375

examining the user area while the terminal is running a remote transaction does
not necessarily see the same values as a user exit running at the same time in
the application-owning region. Note also that the user areas must be defined as
having the same length in both systems.

v All programs, tables, and maps that are used by a transaction must be on the
system that owns the transaction. The programs, tables, and maps can be
duplicated in as many systems as necessary.

v When transaction routing to or from APPC devices, CICS does not support CPI
Communications conversations with sync level characteristics of
CM_SYNC_POINT.

v TCTUAs are not shipped when the principal facility is an APPC parallel session.
v For a transaction started by a terminal-related EXEC CICS START command to

be eligible for enhanced routing, all of the following conditions must be met:
– The START command is a member of the subset of eligible START

commands; that is, it meets all the following conditions:
- The START command specifies the TERMID option, which names the

principal facility of the task that issues the command; that is, the
transaction to be started must be terminal-related, and associated with the
principal facility of the starting task.

- The principal facility of the task that issues the START command is not a
surrogate client virtual terminal.

- The SYSID option of the START command does not specify the name of a
remote region; that is, the remote region on which the transaction is to be
started must not be specified explicitly.

– The requesting region and the TOR, if they are different, are connected by one
of the following:
- An MRO link
- An APPC parallel-session link
- An IPIC link

– The TOR and the target region are connected by one of the following links:
- An MRO link.
- An APPC single- or parallel-session link. If an APPC link is used, at least

one of the following must be true:
1. Terminal-initiated transaction routing has previously taken place over

the link.
2. CICSPlex SM is being used for routing.

- An IPIC link
– The transaction definition in the requesting region specifies ROUTABLE(YES).
– If the transaction is to be routed dynamically, the transaction definition in the

TOR specifies DYNAMIC(YES).
For more information about enhanced routing, see “Routing transactions
invoked by START commands” on page 80.

v For a non-terminal-related START request to be eligible for enhanced routing, all
of the following conditions must be met:
– The requesting region and the target region are connected by one of the

following links:
- An MRO link.
- An APPC single- or parallel-session link. If an APPC link is used, and the

distributed routing program is to be called on the target region, at least one
of the following must be true:

376 CICS TS for z/OS 4.2: Intercommunication Guide

1. Terminal-initiated transaction routing has previously taken place over
the link.

2. CICSPlex SM is being used for routing.
- An IPIC link

– The transaction definition in the requesting region specifies ROUTABLE(YES).
– If the request is to be routed dynamically, these conditions must be met:

- The transaction definition in the requesting region specifies
DYNAMIC(YES).

- The SYSID option of the START command does not specify the name of a
remote region; that is, the remote region on which the transaction is to be
started must not be specified explicitly.

For more information about enhanced routing, see “Routing transactions
invoked by START commands” on page 80.

v The following types of dynamic transaction routing requests cannot be
daisy-chained:
– Non-terminal-related START requests
– CICS business transaction services processes and activities

Dynamic routing of DPL requests
For a distributed program link request to be eligible for dynamic routing, the
remote program must either be defined to the local system as DYNAMIC, or not
be defined to the local system.

Daisy-chaining of dynamically-routed DPL requests is not supported—see
“Daisy-chaining of DPL requests” on page 104.

Automatic transaction initiation
v A terminal-associated transaction that is initiated by the transient data trigger

level facility must reside on the same system as the transient data queue that
causes its initiation. This restriction applies to both macro-level and
command-level application programs.

v There are restrictions on the dynamic routing of transactions initiated by EXEC
CICS START commands—see the list of conditions in “Transaction routing” on
page 375.

Basic mapping support
v BMS support must reside on each system that owns a terminal through which

paging commands can be entered.
v A BMS ROUTE request cannot be used to send a message to a selected remote

operator or operator class unless the terminal at which the message is to be
delivered is specified in the route list.

Acquiring LUTYPE6.1 sessions
v If an application tries to acquire an LUTYPE6.1 connection, and the remote

system is unavailable, the connection is placed out of service.
v If the remote system is a CICS region that uses AUTOCONNECT, the connection

is placed back in service when the initialization of the remote system is
complete.

v Otherwise, you must manually place the connection back in service.

Appendix A. Intercommunication rules and restrictions checklist 377

Syncpointing
SYNCPOINT ROLLBACK commands are supported by APPC, IPIC, and MRO
sessions.

Local and remote names
Local names are translated to remote names according to these rules.
v Transaction identifiers are translated from local names to remote names when a

request to execute a transaction is transmitted from one CICS system to another.
However, a transaction identifier specified in an EXEC CICS RETURN command
is not translated when it is transmitted from the application-owning region to
the terminal-owning region.

v Terminal identifiers are translated from local names to remote names when a
transaction routing request to execute a transaction on a specified terminal is
shipped from one CICS system to another.
However if an EXEC CICS START command specifying a terminal identification
is function shipped from one CICS system to another, the terminal identification
is not translated from local name to remote name.

Master terminal transaction
Only locally-owned terminals can be queried and modified by the master terminal
transaction CEMT. The only terminals visible to this transaction are those owned
by the system on which the master terminal transaction is running.

Installation and operations
v Module DFHIRP must be made LPA-resident; otherwise jobs and console

commands may abend on completion.
v Interregion communication requires subsystem interface (SSI) support.
v Do not install more than one APPC connection between an LU-LU pair.
v Do not install an APPC and an LUTYPE6.1 connection at the same time between

an LU-LU pair.
v Do not install more than one MRO connection between the same two CICS

regions.
v Do not install more than one generic EXCI connection on a CICS region.

Resource definition
v The PRINTER and ALTPRINTER options for a z/OS Communications Server

terminal must (if specified) name a printer owned by the same system as the
one that owns the terminal being defined.

v The terminals listed in the terminal list table (DFHTLT) must reside on the same
system as the terminal list table.

Customization
v Communication between node error programs, user exits, and user programs is

the responsibility of the user.
v Transactions that recover input messages for protected tasks after a system crash

must run on the same system as the terminal that invoked the protected task.

378 CICS TS for z/OS 4.2: Intercommunication Guide

MRO abend codes
v An IRC transaction in send state is unable to receive an error reason code if its

partner has to abend. It abends itself with code AZI2, which should be
interpreted as a general indication that the other side is no longer there. The real
reason for the failure can be read from the CSMT destination of the CICS region
that first detected the error. For example, a security violation in attaching a
back-end transaction is reported as such by the front end only if the initiating
command is CONVERSE and not SEND.

Appendix A. Intercommunication rules and restrictions checklist 379

380 CICS TS for z/OS 4.2: Intercommunication Guide

Appendix B. CICS mapping to the APPC architecture

This appendix shows how the APPC programming language is implemented by
CICS.

The APPC programming language is described in the SNA publication, Transaction
Programmer's Reference Manual for LU Type 6.2) This appendix contains the
following topics:
v “Supported option sets.”

This is a table showing which APPC option sets are supported by CICS and
which are not.

v “CICS implementation of control operator verbs” on page 382.
This section describes how CICS implements the APPC control operator verbs. It
includes tables showing how these verbs map to CICS commands.

v “CICS deviations from APPC architecture” on page 390.
This section describes the way in which the CICS implementation of APPC
differs from the architecture described in the Format and Protocol Reference
Manual: Architecture Logic for LU Type 6.2.

For information on how the CICS application programming interface for basic and
unmapped conversations maps to the APPC verbs, see the CICS Distributed
Transaction Programming Guide.

Supported option sets
Table 68. CICS support of APPC options sets

Set # Set name Supported

101 Clear the LU's send buffer Yes

102 Get attributes Yes

103 Post on receipt with test for posting No

104 Post on receipt with wait No

105 Prepare to receive Yes

106 Receive immediate
Note: CICS programs support receive_immediate requests provided these
requests are coded using the common programming Interface for
communications.

Yes

108 Sync point services Yes

109 Get TP name and instance identifier No

110 Get conversation type Yes

111 Recovery from program errors detected during syncpoint Yes

201 Queued allocation of a contention-winner session No

203 Immediate allocation of a session Yes

204 Conversations between programs located at the same LU No

211 Session-level LU-LU verification Yes

212 User ID verification Yes

© Copyright IBM Corp. 1977, 2012 381

Table 68. CICS support of APPC options sets (continued)

Set # Set name Supported

213 Program-supplied user ID and password No

214 User ID authorization Yes

215 Profile verification and authorization Yes

217 Profile pass-through No

218 Program-supplied profile No

241 Send PIP data Yes

242 Receive PIP data Yes

243 Accounting Yes

244 Long locks No

245 Test for request-to-send received Yes

246 Data mapping No

247 FMH data No

249 Vote read-only response to a syncpoint operation No

251 Extract transaction and conversation identity information No

290 Logging of data in a system log No

291 Mapped conversation LU services component Yes

401 Reliable one-way brackets No

501 CHANGE_SESSION_LIMIT verb Yes

502 ACTIVATE_SESSION verb Yes

504 DEACTIVATE_SESSION verb No

505 LU-definition verbs Yes

601 MIN_CONWINNERS_TARGET parameter No

602 RESPONSIBLE(TARGET) parameter No

603 DRAIN_TARGET(NO) parameter No

604 FORCE parameter No

605 LU-LU session limit No

606 Locally known LU names Yes

607 Uninterpreted LU names No

608 Single-session reinitiation No

610 Maximum RU size bounds Yes

611 Session-level mandatory cryptography No

612 Contention-winner automatic activation limit No

613 Local maximum (LU, mode) session limit Yes

616 CPSVCMG modename support No

617 Session-level selective cryptography No

CICS implementation of control operator verbs
CICS supports control operator verbs in a variety of ways.

382 CICS TS for z/OS 4.2: Intercommunication Guide

Some verbs are supported by the CICS master terminal transaction CEMT. The
relevant CEMT commands are:
v CEMT INQUIRE CONNECTION

v CEMT SET CONNECTION

v CEMT INQUIRE MODENAME

v CEMT SET MODENAME

Tip: In the CICS Explorer, the ISC/MRO connections operations view
provides a functional equivalent to the INQUIRE and SET CONNECTION
commands.

CEMT is normally entered by an operator at a display device. It is described in
CEMT - master terminal in CICS Supplied Transactions.

The inquire and set operations for connections and modenames are also available
at the CICS API, using the following commands:
v EXEC CICS INQUIRE CONNECTION

v EXEC CICS SET CONNECTION

v EXEC CICS INQUIRE MODENAME

v EXEC CICS SET MODENAME

Programming information about these commands is given in INQUIRE
CONNECTION in CICS System Programming Reference.

Some control operator verbs are supported by CICS resource definition. The
definition of APPC links is described in “Defining APPC connections” on page 169.

You can change some CONNECTION and SESSION attributes while CICS is
running by discarding the resource and creating a new one.

Control operator verbs
The following tables show how APPC control operator verbs are implemented by
CICS.

See “Return codes for control operator verbs” on page 389 for details of the
corresponding return-code mapping.

Note: Wherever CEMT is shown, the equivalent form of EXEC CICS command can
be used.

Tip: In the CICS Explorer, the ISC/MRO connections operations view
provides a functional equivalent to the SET and INQUIRE CONNECTION
commands. The Terminal and Transaction operations views provide functional
equivalents to the INQUIRE TERMINAL and INQUIRE TRANSACTION
commands respectively.

Table 69. CHANGE_SESSION_LIMIT

CHANGE_SESSION_LIMIT CEMT SET MODENAME

LU_NAME(vble) CONNECTION()

MODE_NAME(vble) MODENAME()

LU_MODE_SESSION_LIMIT(vble) AVAILABLE()

Appendix B. CICS mapping to the APPC architecture 383

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/topics/dfha721.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquireconnection.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquireconnection.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html

Table 69. CHANGE_SESSION_LIMIT (continued)

CHANGE_SESSION_LIMIT CEMT SET MODENAME

MIN_CONWINNERS_SOURCE(vble) CICS negotiates a revised value, based on the
AVAILABLE request and the MAXIMUM attribute of the
SESSIONS resource.

MIN_CONWINNERS_TARGET(vnle) Not supported.

RESPONSIBLE(source) Yes.

RESPONSIBLE(target) Not supported. CICS does not support receipt of
RESP(TARGET).

RETURN_CODE Supported.

Table 70. INITIALIZE_SESSION_LIMIT

INITIALIZE_SESSION_LIMIT Specified in SESSIONS resource

LU_NAME(vble) CONNECTION()

MODE_NAME(vble) MODENAME()

LU_MODE_SESSION_LIMIT(vble) MAXIMUM(value1,)

MIN_CONWINNERS_SOURCE(vble) MAXIMUM(,value2)

MIN_CONWINNERS_TARGET(vnle) Not supported.

RETURN_CODE Supported.

Table 71. PROCESS_SESSION_LIMIT

PROCESS_SESSION_LIMIT Automatic action by CICS-supplied transaction CLS1
when CNOS is received by a target CICS system.

RESOURCE(vble) Connection resource.

LU_NAME(vble) Passed internally.

MODE_NAME(vble1,vble2) Passed internally.

RETURN_CODE Supported.

Table 72. RESET_SESSION_LIMIT

RESET_SESSION_LIMIT CEMT SET MODENAME (for individual modegroups)
or CEMT SET CONNECTION RELEASED (to reset all
modegroups)

LU_NAME(vble) CONNECTION()

MODE_NAME(ALL) SET CONNECTION() RELEASED

MODE_NAME(ONE(vble)) MODENAME() AVAILABLE(0)

MODE_NAME(ONE('SNASVCMG')) SET CONNECTION() RELEASED

RESPONSIBLE(SOURCE) Yes.

RESPONSIBLE(TARGET) Not supported.

DRAIN_SOURCE(NO|YES) CICS supports YES.

DRAIN_TARGET(NO|YES) CICS supports YES.

FORCE(NO|YES) Not supported.

RETURN_CODE Supported.

384 CICS TS for z/OS 4.2: Intercommunication Guide

Table 73. ACTIVATE_SESSION

ACTIVATE_SESSION CEMT SET MODENAME ACQUIRED (for individual
modegroups) or CEMT SET CONNECTION
ACQUIRED (for SNASVCMG sessions)

LU_NAME(vble) CONNECTION()

MODE_NAME(vble) MODENAME() ACQUIRED

MODE_NAME('SNASVCMG') Activated when CEMT SET CONNECTION ACQUIRED
is issued.

RETURN_CODE Supported.

Table 74. DEACTIVATE_CONVERSATION_GROUP

DEACTIVATE_CONVERSATION_GROUP Not supported.

Table 75. DEACTIVATE_SESSION

DEACTIVATE_SESSION Not supported.

Table 76. DEFINE_LOCAL_LU

DEFINE_LOCAL_LU SESSION resource and system initialization parameters

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified. CICS uses the network LU name
(APPLID on DFHSIT).

LU_SESSION_LIMIT(NONE) Not supported.

LU_SESSION_LIMIT(VALUE(vble)) Total of MAX(nn) on all sessions.

SECURITY(ADD USER_ID(vble)) In an external security manager (ESM).

SECURITY(ADD PASSWORD(vble)) Not supported; defined in an ESM.

SECURITY(ADD PROFILE(vble)) Not supported; defined in an ESM.

SECURITY(DELETE USER_ID(vble)) Supported in an ESM.

SECURITY(DELETE PASSWORD(vble)) Not supported; defined in an ESM.

MAP_NAME(ADD(vble)) Not supported.

MAP_NAME(DELETE(vble)) Not supported.

BIND_RSP_QUEUE_CAPACITY(YES|NO) Not supported.

Table 77. DEFINE_MODE

DEFINE_MODE EXEC CICS CONNECT PROCESS +
MODEENT macro (ACF/Communications
Server systems definition) + SESSIONS
resource

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified. LU identified via
CONNECTION on SESSIONS.

MODE_NAME(vble) MODENAME on SESSIONS is mapped to
LOGMODE on MODEENT.

SEND_MAX_RU_SIZE_LOWER_BOUND
(vble)

Fixed at 8.

SEND_MAX_RU_SIZE_UPPER_BOUND
(vble)

SENDSIZE on SESSIONS.

PREFERRED_RECEIVE_RU_SIZE (vble) Not supported.

PREFERRED_SEND_RU_SIZE (vble) Not supported.

Appendix B. CICS mapping to the APPC architecture 385

Table 77. DEFINE_MODE (continued)

DEFINE_MODE EXEC CICS CONNECT PROCESS +
MODEENT macro (ACF/Communications
Server systems definition) + SESSIONS
resource

RECEIVE_MAX_RU_SIZE_LOWER
_BOUND (vble)

Fixed at 256.

RECEIVE_MAX_RU_SIZE_UPPER _BOUND
(vble)

RECEIVESIZE on SESSIONS.

SINGLE_SESSION_REINITIATION
OPERATOR

Not supported.

SINGLE_SESSION_REINITIATION PLU Not supported.

SINGLE_SESSION_REINITIATION SLU Not supported.

SINGLE_SESSION_REINITIATION
PLU_OR_SLU

Not supported.

SESSION_LEVEL_CRYPTOGRAPHY
(NOT_SUPPORTED)

Default.

SESSION_LEVEL_CRYPTOGRAPHY
(MANDATORY)

Not supported.

SESSION_LEVEL_CRYPTOGRAPHY
(SELECTIVE)

Not supported.

CONWINNER_AUTO_ACTIVATE_LIMIT
(vble)

MAXIMUM(,value2) on SESSIONS.

SESSION_DEACTIVATED_TP_NAME (vble) Not supported.

LOCAL_MAX_SESSION_LIMIT (vble) MAXIMUM(nn,) on SESSIONS.

Table 78. DEFINE_REMOTE_LU

DEFINE_REMOTE_LU CONNECTION resource

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified.

LOCALLY_KNOWN_LU_NAME(NONE) Not supported.

LOCALLY_KNOWN_LU_NAME (NAME(vble)) CONNECTION(name)

UNINTERPRETED_LU_NAME(NONE) Defaults to CONNECTION(name).

UNINTERPRETED_LU_NAME (NAME(vble)) NETNAME on CONNECTION.

INITIATE_TYPE(INITIATE_ONLY) Not supported.

INITIATE_TYPE(INITIATE_OR_QUEUE) Not supported.

PARALLEL_SESSION_SUPPORT(YES|NO) SINGLESESS(NO|YES) on CONNECTION.

CNOS_SUPPORT(YES|NO) Always YES.

LU_LU_PASSWORD(NONE) Default on CONNECTION.

LU_LU_PASSWORD(VALUE(vble)) BINDPASSWORD on CONNECTION, or SESSKEY in
RACF APPCLU profile.

SECURITY_ACCEPTANCE(NONE) ATTACHSEC(LOCAL)

SECURITY_ACCEPTANCE (CONVERSATION) ATTACHSEC(VERIFY)

SECURITY_ACCEPTANCE (ALREADY_VERIFIED) ATTACHSEC(IDENTIFY) or ATTACHSEC(PERSISTENT).

386 CICS TS for z/OS 4.2: Intercommunication Guide

Table 79. DEFINE_TP

DEFINE_TP TRANSACTION resource

TP_NAME(vble) TRANSACTION(name)

STATUS(ENABLED) STATUS(ENABLED)

STATUS(TEMP_DISABLED) Not supported.

STATUS(PERM_DISABLED) STATUS(DISABLED)

CONVERSATION_TYPE(MAPPED|BASIC) Supported for all TPs (determined by choice of
command).

SYNC_LEVEL(NONE|CONFIRM∨SYNCPT) SYNCPT for all TPs (actual level specified on CONNECT
PROCESS).

SECURITY_REQUIRED(NONE) Not supported; defined in an ESM.

SECURITY_REQUIRED(CONVERSATION) Not supported; defined in an ESM.

SECURITY_REQUIRED (ACCESS(PROFILE)) Not supported.

SECURITY_REQUIRED (ACCESS(USER_ID)) Not supported; defined in an ESM.

SECURITY_REQUIRED (ACCESS(USER_ID_PROFILE)) Not supported.

SECURITY_ACCESS(ADD(USER_ID(vble))) Transaction can be redefined.

SECURITY_ACCESS(ADD(PROFILE(vble))) Transaction can be redefined.

SECURITY_ACCESS (DELETE(USER_ID(vble))) Transaction can be redefined.

SECURITY_ACCESS (DELETE(PROFILE(vble))) Transaction can be redefined.

PIP(NO) Specified for all TPs.

PIP(YES(vble)) Specified on CONNECT PROCESS.

PIP(NO_LU_VERIFICATION) Default for all PIP data.

DATA_MAPPING(NO|YES) DATA_MAPPING(NO) for all TPs.

FMH_DATA(NO|YES) FMH_DATA(YES) for all TPs.

PRIVILEGE(NONE) Not supported.

PRIVILEGE(CNOS) Not supported.

PRIVILEGE(SESSION_CONTROL) Not supported.

PRIVILEGE(DEFINE) Not supported.

PRIVILEGE(DISPLAY) Not supported.

PRIVILEGE(ALLOCATE_SERVICE_TP) Not supported.

INSTANCE_LIMIT(vble) Not supported.

RETURN_CODE Supported.

Table 80. DELETE

DELETE EXEC CICS DISCARD

LOCAL_LU_NAME(vble) Not supported.

REMOTE_LU_NAME Not supported.

MODE_NAME Not supported.

TP_NAME DISCARD TRANSACTION()

RETURN_CODE Supported.

Appendix B. CICS mapping to the APPC architecture 387

Table 81. DISPLAY_LOCAL_LU

DISPLAY_LOCAL_LU CEMT INQUIRE CONNECTION + CEMT INQUIRE
MODENAME + CEMT INQUIRE TRANSACTION

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified in CICS. The APPLID on DFHSIT
serves as identifier for the local LU. Specific information
can be had by identifying the remote LU. Otherwise, the
universal ID * can be used.

LU_SESSION_LIMIT(vble) MAXIMUM on INQ MODENAME.

LU_SESSION_COUNT(vble) ACTIVE on INQ MODENAME

SECURITY(vble) Not available.

MAP_NAMES(vble) Not supported.

REMOTE_LU_NAMES(vble) INQ CONNECTION(*)

TP_NAMES(vble) INQ TRANSACTION(*)

BIND_RSP_QUEUE_CAPABILITY(vble) Not supported.

RETURN_CODE Supported.

Table 82. DISPLAY_REMOTE_LU

DISPLAY_REMOTE_LU CEMT INQUIRE CONNECTION + CEMT INQUIRE
MODENAME

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified; CONNECTION or MODENAME
may be used.

LOCALLY_KNOWN_LU_NAME(vble) CONNECTION name.

UNINTERPRETED_LU_NAME(vble) NETNAME on INQ CONNECTION.

INITIATE_TYPE(vble) Not supported.

PARALLEL_SESSION_SUPPORT(vble) SINGLESESS(Y|N) attribute.

CNOS_SUPPORT(vble) Always YES.

SECURITY_ACCEPTANCE_LOCAL_LU (vble) Not available.

SECURITY_ACCEPTANCE_REMOTE_LU (vble) Not available.

MODE_NAMES(vble) MODENAME attribute of the SESSIONS resource.

RETURN_CODE Supported.

Table 83. DISPLAY_MODE

DISPLAY_MODE CEMT INQUIRE MODENAME + CEMT INQUIRE
TERMINAL

FULLY_QUALIFIED_LU_NAME(vble) Cannot be specified.

MODE_NAME(vble) MODENAME attribute of the SESSIONS resource.

LOCAL_MAX_SESSION_LIMIT(vble) AVA on CEMT INQ MODENAME.

CONVERSATION_GROUP_IDS(vble) Not supported.

SEND_MAX_RU_SIZE_LOWER_BOUND (vble) Fixed at 8.

SEND_MAX_RU_SIZE_UPPER_BOUND (vble) Not available.

RECEIVE_MAX_RU_SIZE_LOWER_BOUND (vble) Fixed at 256.

RECEIVE_MAX_RU_SIZE_UPPER_BOUND (vble) Not available.

PREFERRED_SEND_RU_SIZE(vble) Not supported.

PREFERRED_RECEIVE_RU_SIZE(vble) Not supported.

388 CICS TS for z/OS 4.2: Intercommunication Guide

Table 83. DISPLAY_MODE (continued)

DISPLAY_MODE CEMT INQUIRE MODENAME + CEMT INQUIRE
TERMINAL

SINGLE_SESSION_REINITIATION(vble) Not supported.

SESSION_LEVEL_CRYPTOGRAPHY(vble) Not available.

SESSION_DEACTIVATED_TP_NAME Not supported.

CONWINNER_AUTO_ACTIVATE_LIMIT (vble) Not available.

LU_MODE_SESSION_LIMIT(vble) MAXIMUM on INQ MODENAME.

MIN_CONWINNERS(vble) Not supported.

MIN_CONLOSERS(vble) Not supported.

TERMINATION_COUNT(vble) Not supported.

DRAIN_LOCAL_LU(vble) Not supported.

DRAIN_REMOTE_LU(vble) Not supported.

LU_MODE_SESSION_COUNT(vble) ACTIVE on INQ MODENAME.

CONWINNERS_SESSION_COUNT(vble) Not available.

CONLOSERS_SESSION_COUNT(vble) Not available.

SESSION_IDS(vble) INQ TERMINAL(*).

RETURN_CODE Supported.

Table 84. DISPLAY_TP

DISPLAY_TP CEMT INQUIRE TRANSACTION

TP_NAME(vble) TRANSACTION(tranid)

STATUS(vble) ENABLED/DISABLED.

CONVERSATION_TYPE(vble) CICS TPs allow both types.

SYNC_LEVEL(vble) CICS TPs allow all sync levels.

SECURITY_REQUIRED(vble) Not available.

SECURITY_ACCESS(vble) Not available.

PIP(vble) CICS TPs allow PIP YES and NO.

DATA_MAPPING(vble) Always NO.

FMH_DATA(vble) Always YES.

PRIVILEGE(vble) Not supported.

INSTANCE_LIMIT(vble) Not supported.

INSTANCE_COUNT(vble) CEMT INQ TRAN()

RETURN_CODE Supported.

Return codes for control operator verbs
When you change the state of a CONNECTION or a MODENAME, the LU
services manager starts asynchronously.

Some of the errors that may occur are detected by immediately. Other errors are
not detected until a later time, when the LU services manager transaction (CLS1)
runs.

Appendix B. CICS mapping to the APPC architecture 389

If CLS1 detects errors, it causes messages to be written to the CSMT log, as shown
in Table 85. In normal operation, the CICS master terminal operator may not want
to inspect the CSMT log when a command has been issued. So in general, the
operator, after issuing a command to change parameters should wait for a few
seconds for the request to be carried out and then reissue the INQUIRE version of
the command to check that the requested change has been made. In the few cases
when an error occurs, the master terminal control operator can refer to the CSMT
log.

The message used to report the results of CLS1 execution is DFHZC4900. The
explanatory text that accompanies the message varies and is summarized in
Table 85. Refer to the CICS Messages and Codes Vol 1 manual for a full description of
the message. In certain cases, DFHZC4901 is also issued to give further
information.

Table 85. Messages triggered by CLS1

APPC RETURN CODE CICS MESSAGE

OK DFHZC4900 result = SUCCESSFUL

ACTIVATION_FAILURE_RETRY DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = 0

ACTIVATION_FAILURE_NO_RETRY DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = 0

ALLOCATION_ERROR SYSTEM NOT ACQUIRED is returned to the operator.

COMMAND_RACE_REJECT DFHZC4900 result = RACE DETECTED

LU_MODE_SESSION_LIMIT_CLOSED DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = 0

LU_MODE_SESSION_LIMIT_EXCEEDED DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = (negotiated value)

LU_MODE_SESSION_LIMIT_NOT_ZERO DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = (negotiated value)

LU_MODE_SESSION_LIMIT_ZERO DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = 0

LU_SESSION_LIMIT_EXCEEDED DFHZC4900 result = VALUES AMENDED + DFHZC4901
MAX = (negotiated value)

PARAMETER_ERROR Checked immediately

REQUEST_EXCEEDS_MAX_ALLOWED Checked immediately

RESOURCE_FAILURE_NO_RETRY The LU services manager transaction (CLS1) abends with
abend code ATNI.

UNRECOGNIZED_MODE_NAME DFHZC4900 result = MODENAME NOT RECOGNIZED

CICS deviations from APPC architecture
This section describes the way in which the CICS implementation of APPC differs
from the architecture described in the Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2.

There is one deviation:
v CICS implementation: CICS checks incoming BIND requests for valid

combinations of the CNOS indicator (BIND RQ byte 24 bit 6) and the
PARALLEL-SESSIONS indicator (BIND RQ byte 24 bit 7). If an incorrect

390 CICS TS for z/OS 4.2: Intercommunication Guide

combination is found (that is, PARALLEL-SESSIONS specified but CNOS not
specified), CICS sends a negative response to the BIND request.
APPC architecture: The secondary logical unit (SLU), or BIND request receiver,
should negotiate the CNOS and PARALLEL-SESSIONS indicators to the
supported level and return them in the BIND response. The SLU should not
check for an incorrect combination of these indicators.

APPC transaction routing deviations from APPC architecture
A transaction program cannot use ISSUE SIGNAL while in syncfree, syncsend, or
syncreceive state. Attempting to do so may result in a state check. This single
deviation applies only to APPC transaction routing.

Appendix B. CICS mapping to the APPC architecture 391

392 CICS TS for z/OS 4.2: Intercommunication Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1977, 2012 393

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

394 CICS TS for z/OS 4.2: Intercommunication Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0565
CICS Transaction Server for z/OS What's New, GC34-7192
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-7188
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-7189
CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1, GC34-7190
CICS Transaction Server for z/OS Installation Guide, GC34-7171

Access to CICS
CICS Internet Guide, SC34-7173
CICS Web Services Guide, SC34-7191

Administration
CICS System Definition Guide, SC34-7185
CICS Customization Guide, SC34-7161
CICS Resource Definition Guide, SC34-7181
CICS Operations and Utilities Guide, SC34-7213
CICS RACF Security Guide, SC34-7179
CICS Supplied Transactions, SC34-7184

Programming
CICS Application Programming Guide, SC34-7158
CICS Application Programming Reference, SC34-7159
CICS System Programming Reference, SC34-7186
CICS Front End Programming Interface User's Guide, SC34-7169
CICS C++ OO Class Libraries, SC34-7162
CICS Distributed Transaction Programming Guide, SC34-7167
CICS Business Transaction Services, SC34-7160
Java Applications in CICS, SC34-7174

Diagnosis
CICS Problem Determination Guide, GC34-7178
CICS Performance Guide, SC34-7177
CICS Messages and Codes Vol 1, GC34-7175
CICS Messages and Codes Vol 2, GC34-7176
CICS Diagnosis Reference, GC34-7166
CICS Recovery and Restart Guide, SC34-7180
CICS Data Areas, GC34-7163
CICS Trace Entries, SC34-7187
CICS Debugging Tools Interfaces Reference, GC34-7165

Communication
CICS Intercommunication Guide, SC34-7172
CICS External Interfaces Guide, SC34-7168

Databases
CICS DB2 Guide, SC34-7164
CICS IMS Database Control Guide, SC34-7170

© Copyright IBM Corp. 1977, 2012 395

CICS Shared Data Tables Guide, SC34-7182

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7196
CICSPlex SM Web User Interface Guide, SC34-7214

Administration and Management
CICSPlex SM Administration, SC34-7193
CICSPlex SM Operations Views Reference, SC34-7202
CICSPlex SM Monitor Views Reference, SC34-7200
CICSPlex SM Managing Workloads, SC34-7199
CICSPlex SM Managing Resource Usage, SC34-7198
CICSPlex SM Managing Business Applications, SC34-7197

Programming
CICSPlex SM Application Programming Guide, SC34-7194
CICSPlex SM Application Programming Reference, SC34-7195

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7204
CICSPlex SM Resource Tables Reference Vol 2, SC34-7205
CICSPlex SM Messages and Codes, GC34-7201
CICSPlex SM Problem Determination, GC34-7203

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 2.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

Other IBM publications
The following publications contain information about related IBM products.

IMS
IMS Communications and Connections Guide, SC18-9703
IMS Installation Guide, GC18-9710
IMS Operations and Automation Guide, SC18-9716

MVS
z/OS MVS Setting Up a Sysplex, SA22-7625

396 CICS TS for z/OS 4.2: Intercommunication Guide

Network Program Products
Network Program Products General Information, GC30-3350

Systems Application Architecture (SAA)
SAA Common Programming Interface Communications Reference, SC26-4399

Systems Network Architecture (SNA)
Concepts and Products, GC30-3072
Format and Protocol Reference Manual: Architecture Logic, SC30-3112
Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2,
SC30-3269
Format and Protocol Reference Manual: Distribution Services, SC30-3098
Reference: Peer Protocols, SC31-6808-1
Sessions Between Logical Units, GC20-1868
SNA Formats, GA27-3136
Technical Overview, GC30-3073
Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084

VTAM
VTAM Customization, LY43-0075
VTAM Data Areas for MVS Volume 1, LY43-0076
VTAM Data Areas MVS Volume 2, LY43-0077
VTAM Diagnosis, LY43-0078
VTAM Migration Guide, GC31-6416
VTAM Messages and Codes, GC31-6418
VTAM Network Implementation Guide, GC31-6419
VTAM Operation, GC31-6420
VTAM Programming, SC31-6421
VTAM Release Guide, GC31-6441
VTAM Resource Definition Reference, SC31-6428

Bibliography 397

398 CICS TS for z/OS 4.2: Intercommunication Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1977, 2012 399

400 CICS TS for z/OS 4.2: Intercommunication Guide

Index

A
acquired, connection status 196
ACTION attribute

TRANSACTION definition 291
advanced peer-to-peer networking

(APPN) 123
affinities

CICS Interdependency Analyzer 71
affinity, between generic resource and

partner LU 135
AID (automatic initiate descriptor) 72
ALLOCATE command

LUTYPE6.1 sessions
(CICS-to-IMS) 262, 263

making APPC sessions available
for 197

setting LUTYPE6.1 connection
in-service after SYSIDERR 377

alternate facility
default profile 230
defined 239

AOR (application-owning region) 67
APPC

autoinstall
of parallel-session links 172
of single-session terminals 174

basic conversations 24
class of service 25
link definition 169
link definition for terminals 173
LU services manager 24, 169
mapped conversations 24
mapping to APPC architecture 381
master terminal operations 195
modeset definition 171
overview 23
parallel-sessions

autoinstall 172
defining persistent sessions 176

persistent sessions 176, 311
single-sessions

autoinstall 172, 174
defining persistent sessions 177
definition 173
limitations 25

synchronization levels 24
APPC terminals

API for 90
as alternate facility 90
autoinstall 172
effect of AUTOCONNECT attribute on

TYPETERM 175
link definition for 173
persistent sessions 177
remote definition of 215
shipping terminal definition of 216
transaction routing

with ALLOCATE 68, 89, 90
application programming

CICS mapping to APPC verbs 381
CICS-to-IMS 255

application programming (continued)
for asynchronous processing 249
for DPL 245
for function shipping 241
for transaction routing 251
LUTYPE6.1 conversations

(CICS-to-IMS) 255
overview 239

application-owning region (AOR) 67
applid

of local CICS 150, 151
relation to sysid 151
relation to sysidnt 151

APPLID
passing with START command 53

APPLID table 155, 158
APPN (advanced peer-to-peer

networking) 123
architected processes

modifying the default definitions 233
process names 232
resource definition 232

architected processes (models) 232
ASSIGN command in AOR 252
association data 11
asynchronous processing

application programming 249
canceling remote transactions 51
CICS-to-IMS 257
compared with synchronous

processing (DTP) 49
defining remote transactions 212
examples 57
information passed with START

command 52
information retrieval 56
initiated by DTP 50
local queuing 55
NOCHECK option 53
performance improvement 53
PROTECT option 54
queuing due to 55
RETRIEVE command 56
SEND and RECEIVE interface 50

CICS-to-IMS applications 262
START and RETRIEVE interface 50,

51
CICS-to-IMS applications 257

starting remote transactions 51
system programming

considerations 57
terminal acquisition 57
typical application 49

attaching remote transactions
LUTYPE6.1 sessions

(CICS-to-IMS) 264
AUTOCONNECT attribute

APPC resource definitions 175
CONNECTION resource

for APPC 175
TYPETERM for APPC terminals 175

AUTOCONNECT option
effect on APPC 196
SESSIONS resource

for APPC 175
autoinstall

deletion of shipped terminal
definitions 281

of APPC parallel sessions 172
of APPC single sessions

initiated by BIND request 172
initiated by CINIT request 174

of APPC single-session terminals 174
user program, DFHZATDY 173

automatic initiate descriptor (AID) 72
automatic transaction initiation (ATI)

and transaction routing 71
by transient data trigger level 234
definition of 71
restriction with routing

transaction 94
restriction with shipped terminal

definitions 217
rules and restrictions summary 377
with asynchronous processing 52
with terminal-not-known

condition 73

B
back-end transaction

defined 239
LUTYPE6.1 sessions

(CICS-to-IMS) 267
basic conversations 24
basic mapping support (BMS)

rules and restrictions summary 377
with transaction routing 93, 251

binary integers (INTEL format),
conversion of 355

BIND
sender and receiver 25

BUILD ATTACH command
LUTYPE6.1 sessions

(CICS-to-IMS) 262, 265

C
C programming language, integer

datatype conversion 355
CANCEL command 51
CEMT master terminal transaction

restriction with remote terminals 378
chain of RUs format 256
chained-mirror situation 39
channel-to-channel communication 22
CICS Interdependency Analyzer 71
CICS mapping to APPC architecture 381

deviations 390
deviations from APPC

architecture 390

© Copyright IBM Corp. 1977, 2012 401

CICS MRO to CICS ISC 31
CICS-to-CICS communication

defining compatible nodes
APPC sessions 172
MRO sessions 166

CICS-to-IMS communication
application design 255
application programming 255
asynchronous processing 257

CICS front end 258
IMS front end 259

chain of RUs format 256
comparison of CICS and IMS 255
data formats 255
defining compatible nodes 179
forms of communication 257
RETRIEVE command 261
SEND and RECEIVE interface 262
START and RETRIEVE interface 257
START command 260
VLVB format 256

CICSplex
controlling with CICSPlex SM 32, 71,

103
performance of

using z/OS Communications
Server generic resources 123

transaction routing in 32
CICSPlex SM

used to control routing of DPL
requests 103, 210

used to control transaction
routing 32, 71

class of service (COS) 25
modeset 25, 169
modifying default profiles to provide

modename 231
CLINTCP 346
CNOS negotiation 197
command sequences

LUTYPE6.1 sessions
(CICS-to-IMS) 271

common programming interface
communications (CPI Communications)

defining a partner 227
PIP data 24
synchronization levels 24

communication profiles 229
Communications Server

generic resources
requirements 123

configuration 117
CONNECTION

indirect links 189
LUTYPE6.1 links 177
MRO links 164
NETNAME attribute 152

connection quiesce protocol (CQP) 301
CONNECTION resource

PSRECOVERY attribute 177
connections

defining IPIC 152
connections to remote systems

acquired, status of 196
acquiring a connection 196
defining 149
freeing, status of 200

connections to remote systems (continued)
released, status of 200
releasing the connection 200
restrictions on number 23, 169

contention loser 25
contention winner 25
conversation

LUTYPE6.1 sessions
(CICS-to-IMS) 269

CONVERSE command
LUTYPE6.1 sessions

(CICS-to-IMS) 263
conversion templates 346, 347, 369, 371

field conversion records 369, 370, 371
CQP, see connection quiesce

protocol 301
cross-system coupling facility (XCF)

overview 28
used for interregion

communication 27
cross-system MRO (XCF/MRO)

overview 28
CRTE transaction 93
CRTX, CICS-supplied transaction

definition 225
CSD (CICS system definition file)

shared between regions
dual-purpose definitions 224

D
data conversion

Arabic conversions 326
assembling/link-editing the

conversion programs 364
Baltic Rim conversions 326
binary integers (INTEL format) 355
C programming language, integer

datatype 355
character data 321
conversion process 339
conversion templates 347
Cyrillic conversions 327
defining the conversion table 345,

363
Devanagari conversions 327
DSECT for data conversion

template 370
Farsi conversions 328
Greek conversions 328
Hebrew conversions 329
IVP (initial program verification) 346
Japanese conversions 329
key templates 347
Korean conversions 330
Lao conversions 331
Latin-1 conversions 331
Latin-2 conversions 333
Latin-5 conversions 333
Latin-9 conversions 331
nonstandard conversion 340
resource definition 344, 363
sequence of conversion

processing 341
Simplified Chinese conversions 334
standard conversion 340
Thai conversions 335

data conversion (continued)
Traditional Chinese conversions 335
types of conversion 319
Urdu conversions 336
Vietnamese conversions 336

data streams
user data stream for IMS

communication 180
data tables 207
DBCS (double-byte character set)

defining DBCS data fields 355
included in standard conversion 319
invalid and undefined characters 360
mixed strings, SBCS/DBCS 356
user-defined conversion tables 357,

360
DBDCCICS 150, 151
deferred transmission

LUTYPE6.1 sessions
(CICS-to-IMS) 269

START NOCHECK requests 54
DEFINE CONNECTION

APPC terminals 173
DEFINE SESSIONS

APPC terminals 173
LUTYPE6.1 links 171

DEFINE TERMINAL
APPC terminals 174

DEFINE TRANSACTION
asynchronous processing 212

DEFINE TYPETERM
APPC terminals 174

defining IPIC connections 152
deletion of shipped terminal

definitions 281
deviations from APPC architecture 390
DFH0IPCC 155, 158
DFHCCNV, standard conversion

program 340
DFHCICSA

default profile for alternate facilities
acquired by ALLOCATE 231

DFHCICSE
default error profile for principal

facilities 231
DFHCICSF

default profile for function
shipping 231

DFHCICSP
profile for principal facilities of

CSPG 230
DFHCICSR

default profile for transaction routing
used between user program and

interregion link 231
DFHCICSS

default profile for transaction routing
used between relay program and

interregion link 231
DFHCICST

default profile for principal
facilities 230

DFHCICSV
profile for principal facilities of CSNE,

CSLG, CSRS 230
DFHCNV

CICSplex management 346

402 CICS TS for z/OS 4.2: Intercommunication Guide

DFHCNV TYPE=DSECT macro 365
DFHCNV, resource definition

macro 345, 363
coding examples 361
coding hints 356
macro types 345
TYPE=ENTRY 350
TYPE=FIELD 354
TYPE=FINAL 356
TYPE=INITIAL 348
TYPE=IVP 347
TYPE=KEY 353
TYPE=SELECT 353

DFHCNVDS, DSECT for field conversion
records 370

DFHDLPSB TYPE=ENTRY macro 208
DFHDYP, dynamic routing program 69,

101
DFHTCT TYPE=REGION macro 220
DFHTCT TYPE=REMOTE macro 218
DFHUCNV, user-replaceable conversion

program
conversion template 369
DFHCNV TYPE=DSECT macro 365
DSECT for data conversion

template 370
DSECT for parameter list 365
in conversion process 340, 343
parameter list, DFHUCNV 365
supplied version 371

DFHUNVDS, DSECT for DFHUCNV
parameter list 365

DFHZATDY, autoinstall user
program 173

distributed program link (DPL)
application programming 245
controlling with CICSPlex SM 103,

210
daisy-chaining requests 104
defining remote server programs 209
dynamic routing of requests

defining server programs 210
eligibility for routing 102
introduction 101
when the routing program is

invoked 103
examples 105
exception conditions 246
global user exits 101
limitations of server programs 104
local resource definitions 236
mirror transaction abend 248
overview 97
queuing due to 105
server programs 245

resource definition 236
static routing of requests

defining server programs 210
described 99

distributed routing
transaction definitions

for routing BTS activities 225
using identical definitions 225

distributed transaction processing (DTP)
application programming 255
as API for APPC terminals 90
CICS-to-IMS 262

distributed transaction processing (DTP)
(continued)

compared with asynchronous
processing 49

definition of remote resources 227
overview 107
PARTNER definition 227

DL/I
defining remote PSBs 208
function shipping 37

DL/I model 232
DSHIPIDL, system initialization

parameter 282
DSHIPINT, system initialization

parameter 282
DTRTRAN, system initialization

parameter 225
dual-purpose definitions 224
DYNAMIC attribute

on remote transaction definition 222
dynamic routing

overview of the interface 61
dynamic routing of DPL requests

controlling with CICSPlex SM 32
defining server programs 210
eligibility for routing 102
in sysplex 32
introduction 101
when the routing program is

invoked 103
dynamic routing program, DFHDYP 69,

101
dynamic transaction routing

CICS Interdependency Analyzer 71
controlling with CICSPlex SM 32, 71
in CICSplex 32
in sysplex 32
information passed to routing

program 70
introduction 69
invocation of routing program 69
transaction definitions

using CRTX transaction 225
using identical definitions 225
using separate local and remote

definitions 224
using single definition in the

TOR 225
uses of a routing program 70

E
EIB fields

LUTYPE6.1 sessions
(CICS-to-IMS) 270

exception conditions
DPL 246
function shipping 243

EXTRACT ATTACH command
LUTYPE6.1 sessions

(CICS-to-IMS) 263, 267

F
field conversion records 369, 371

file control
function shipping 36, 241

FREE command
LUTYPE6.1 sessions

(CICS-to-IMS) 263, 269
freeing, connection status 200
front-end transaction

defined 239
LUTYPE6.1 sessions

(CICS-to-IMS) 263
FSSTAFF, system initialization

parameter 78
function shipping

application programming 241
defining remote resources 207

DL/I PSBs 208
files 207
temporary storage queues 209
transient data destinations 208

design considerations 36
DL/I requests 37
exception conditions 243
file control 36, 241
interval control 35
main discussion 35
mirror transaction 39
mirror transaction abend 243
queuing due to 38
short-path transformer 42
temporary storage 37, 242
transient data 37, 242

G
generic resources, Communications

Server
requirements 123

generic resources, VTAM
intersysplex communications 130
migration to 127
outbound LU6 connections 144

generic resources, z/OS Communications
Server

ending affinities 135
installing 127
overview 32
restrictions 142
use with non-autoinstalled

connections 143
use with non-autoinstalled

terminals 143
global user exits

XALTENF 52, 75, 94
XICTENF 52, 75, 94
XISCONA 278
XISQUE 278
XPCREQ 101
XPCREQC 101
XZIQUE 278

GRNAME, system initialization
parameter 127

I
IMS

comparison with CICS 255

Index 403

IMS (continued)
messages switches 258
nonconversational transactions 258
nonresponse mode transactions 258

indirect links
resource definition 187

indirect links for transaction routing
example 187
overview 184
when required 186
with hard-coded terminals 186
with shippable terminals 186

indoubt period 288
session failure during 288

installation 117
generic resources, z/OS

Communications Server 127
z/OS Communications Server generic

resources 127
intercommunication facilities

concepts 3
intercommunications facility

concepts 19
interregion communication (IRC) 27

short-path transformer 42
intersystem communication (ISC)

channel-to-channel
communication 22

concepts 3, 19
connections between systems 22
controlling queued session

requests 277
defined 3
defining APPC links 169
defining APPC modesets 171
defining APPC terminals 173
defining compatible APPC nodes 172
defining compatible CICS and IMS

nodes 179
defining LUTYPE6.1 links 177
facilities 5
intrahost communication 22
multiple-channel adapter 22
over SNA 3, 19, 21, 120
sessions 23
transaction routing 67
use of z/OS Communications Server

persistent sessions 176, 311
intersystem communication over SNA

concepts 3, 19, 21
configuring 120

intersystem queues
controlling queued session

requests 38, 277
intersystem sessions 23
interval control

function shipping 35
intrahost ISC 22
invalid DBCS characters 360
IP interconnectivity

concepts 19
IPIC 19

IP interconnectivity (IPIC)
concepts 3
defined 3
intercommunication facilities 20

IPCONN
migrating APPC and MRO

connections 155, 158
IPIC

concepts 3
long-running mirror tasks 42

IPIC connections
defining 152

IPIC connectivity
migrating APPC and MRO

connections 155, 158
ISC

intercommunication facilities 21
ISC over SNA

intercommunication facilities 21
ISSUE SIGNAL command

LUTYPE6.1 sessions
(CICS-to-IMS) 263

IVP (initial program verification), data
conversion table 346

L
LAST option 269
levels of synchronization 24
limited resources 25

effects of 201
links for multiregion operation 164
links to remote systems 149
local CICS region

applid 150
naming 150
sysid 151

local CICS system
applid 151
sysidnt 151

local names for remote resources 206
local queuing of START requests 55
local resources, defining

architected processes 232
communication profiles 229
for DPL 236
intrapartition transient data

queues 234
long-running mirror tasks 41, 42
LU services manager

description 24
SNASVCMG sessions 169

LU services model 232
LU-LU sessions 23

contention 25
primary and secondary LUs 25

LUTYPE6.1
CICS-to-IMS application

programming 255
link definition 177

LUTYPE6.2
link definition 169

M
macro-level resource definition

remote DL/I PSBs 208
remote files 207
remote resources 205
remote server programs 209

macro-level resource definition
(continued)

remote transactions 212
remote transient data

destinations 208
mapped conversations 24
mapping to APPC architecture 381

control operator verbs 383
deviations 390

MAXIMUM attribute, SESSIONS resource
effect on CEMT commands for

APPC 197
MAXQTIME option, CONNECTION

definition 38, 277
MAXQTIME option, IPCONN

definition 277
methods of asynchronous processing 50
migration

from single region operation to
MRO 33

transactions to transaction routing
environment 251

mirror transaction 39
long-running mirror tasks 41, 42
resource definition for DPL 236

mirror transaction abend 243, 248
modegroup

definition of 25
SNASVCMG 196

models 232
modename 169
MODENAME 198
modeset 171

definition of 25, 169
multiple-channel adapter 22
multiple-mirror situation 39
multiregion operation (MRO)

abend codes 379
applications 31

departmental separation 32
multiprocessing 32
program development 31
reliable database access 32
time sharing 31
workload balancing 32

concepts 27
controlling queued session

requests 277
conversion from single region 33
cross-system MRO (XCF/MRO) 28
defined 4
defining compatible nodes 166
defining MRO links 163
facilities 5, 27
in a CICSplex 32
in a sysplex 32
indirect links 184
interregion communication 27
links, definition of 163
long-running mirror tasks 41
short-path transformer 42
transaction routing 67
use of z/OS Communications Server

persistent sessions 311
MVS cross-memory services

specifying for interregion links 165

404 CICS TS for z/OS 4.2: Intercommunication Guide

MVS image
MRO links between images, in a

sysplex 27, 28
MVS images 31

N
names

local CICS system 150
remote systems 152

NETNAME attribute of CONNECTION
resource

default 152
mapping to SYSIDNT 152

NOCHECK option
of START command 53

mandatory for local queuing 55
NOQUEUE option

of ALLOCATE command
LUTYPE6.1 sessions

(CICS-to-IMS) 263

O
origin data 11

P
PARTNER definition, for DTP 227
performance

controlling queued session
requests 38, 55, 95, 105, 277

deleting shipped terminal
definitions 281, 283

redundant shipped terminal
definitions 281

using CICSPlex SM 32
using dynamic routing of DPL

requests 32
using dynamic transaction

routing 32
using static transaction routing 32
using the MVS workload

manager 32
using z/OS Communications Server

generic resources 32
persistent sessions, z/OS

Communications Server 170, 171, 176,
311

PIP data
introduction 24
with CPI Communications 24

previous-hop data 11
primary logical unit (PLU) 25
principal facility

default profiles 230
defined 239

PRINSYSID option of ASSIGN
command 252

PROFILE option of ALLOCATE
command

LUTYPE6.1 sessions
(CICS-to-IMS) 263

on remote transaction definition 222
profiles

CICS-supplied defaults 230

profiles (continued)
for alternate facilities 229
for principal facilities 230
modifying the default definitions 231
read time-out 229
resource definition 229

PROGRAM attribute
on remote transaction definition 222

PROTECT option of START
command 54

pseudoconversational transactions
with transaction routing 252

PSRECOVERY attribute
CONNECTION resource 177

Q
queue model 232
QUEUELIMIT option, CONNECTION

definition 38, 277
QUEUELIMIT option, IPCONN

definition 277
quiesce

connection processing 301

R
RECEIVE command

LUTYPE6.1 sessions
(CICS-to-IMS) 263

record lengths for remote files 208
recovery and restart 287

dynamic transaction backout 291
indoubt period 288
syncpoint exchanges 287
syncpoint flows 288

RECOVOPTION attribute
SESSIONS resource 177
TYPETERM resource 177

redundant shipped terminal
definitions 281

relay transaction 92
for transaction routing 67

released, connection status 196, 200
remote DL/I PSBs 208
remote files

defining 207
file names 207
record lengths 208

remote resources
defining 205
naming 206

remote server programs
defining 209
program names 210

remote temporary storage queues
defining 209

remote terminals
definition using DFHTCT

TYPE=REGION 220
definition using DFHTCT

TYPE=REMOTE 218
terminal identifiers 220

remote transactions
defining for asynchronous

processing 212

remote transactions (continued)
defining for transaction routing 222

dynamic routing 224
static routing 223

security of routed transactions 222
remote transient data destinations

defining 208
REMOTENAME option in remote

resource definitions 206
REMOTESYSNET attribute

CONNECTION definition 186
TERMINAL definition 186, 214

REMOTESYSNET option
CONNECTION definition 215

REMOTESYSTEM attribute
CONNECTION definition 186
TERMINAL definition 186, 214
TRANSACTION definition 222

REMOTESYSTEM option
CONNECTION definition 215

resource definition
APPC links 169
APPC modesets 171
APPC terminals 173, 174
architected processes 232
asynchronous processing 212
CICS-to-IMS LUTYPE6.1 links 178

defining multiple links 182
connections to remote systems 149
data conversion 344, 363
default profiles 230
defining compatible APPC nodes 172
defining compatible CICS and IMS

nodes 179
defining compatible MRO nodes 166
defining the conversion table 345
distributed transaction

processing 227
DPL 209, 236

server programs 236
function shipping 207
indirect links 184, 189
links for multiregion operation 163
links to remote systems 149
local resources 229
LUTYPE6.1 links 177, 178
LUTYPE6.2 links 169
mirror transaction 236
modifying architected process

definitions 233
modifying the default profiles 231
overview 147
profiles 229
remote DL/I PSBs 208
remote files 207
remote partner 227
remote resources 205
remote server programs 209
remote temporary storage

queues 209
remote terminals 214, 218
remote transactions 212, 222
remote transient data

destinations 208
remote z/OS Communications Server

terminals 214

Index 405

resource definition online (RDO)
remote resources 205

RETRIEVE command
CICS-to-IMS communication 261
WAIT option 56

retrieving information shipped with
START command 56

routing BTS activities
transaction definitions 225

routing transaction, CRTE 93
automatic transaction initiation 94

RTIMOUT attribute
on communication profile 222
PROFILE definition 229

S
scheduler model 232
secondary logical unit (SLU) 25
security

of routed transactions 222
RTIMOUT attribute 222

selective deletion of shipped
terminals 281

SEND and RECEIVE, asynchronous
processing 50

CICS-to-IMS communication 262
SEND command

LUTYPE6.1 sessions
(CICS-to-IMS) 263

session allocation
LUTYPE6.1 sessions

(CICS-to-IMS) 263
session balancing

using z/OS Communications Server
generic resources 123

session failure
during indoubt period 288

SESSION option of ALLOCATE
command

LUTYPE6.1 sessions
(CICS-to-IMS) 263

session queue management
overview 277
using QUEUELIMIT option 277
using XZIQUE global user exit 278

SESSIONS
indirect links 189
LUTYPE6.1 links 177
MRO links 164

SESSIONS resource
MAXIMUM attribute

effect on CEMT commands for
APPC 197

RECOVOPTION attribute 177
shippable terminal definitions 216
shippable terminals

'terminal not known' condition 74
resource definition 217
selective deletion of 281
what is shipped 216
with ATI 73

shipped terminal definitions
deletion of 283

performance considerations 283
system initialization

parameters 282

shipped terminal definitions (continued)
selective deletion mechanism 281
timeout delete mechanism 282

short-path transformer 42
SNA

limited resources 25
LOGMODE entries 25
modegroups 25

SNASVCMG sessions
generation by CICS 169
purpose of 25

SRVERCP 346
START and RETRIEVE asynchronous

processing 50, 51
CICS-to-IMS communication 257

START command
CICS-to-IMS communication 260
NOCHECK option 53

for local queuing 55
START NOCHECK command

deferred sending 54
for local queuing 55

START PROTECT command 54
static transaction routing

transaction definitions
using dual-purpose

definitions 224
using separate local and remote

definitions 223
surrogate TCTTE 252
switched lines

cost efficiency 25
sympathy sickness

reducing 277
synchronization levels 24, 113

CPI Communications 24
syncpoint 112, 287, 378
SYSDEF value for DFHCNV and

SRVERCP 346
sysid

of local CICS region 151
relation to applid 151

SYSID keyword of ALLOCATE command
LUTYPE6.1 sessions

(CICS-to-IMS) 263
SYSID value

default 151
of local CICS region 151

sysidnt
of local CICS system 151
relation to applid 151

SYSIDNT
of remote systems 152

SYSIDNT value
default 151
local CICS system 151
mapping to NETNAME 152
of local CICS system 151
of remote systems 152

sysplex, MVS
cross-system coupling facility (XCF)

for MRO links across MVS
images 27, 28

dynamic transaction routing 32
performance of

using CICSPlex SM 32
using MVS workload manager 32

sysplex, MVS (continued)
performance of (continued)

using z/OS Communications
Server generic resources 32, 123

system initialization parameters
APPLID 150, 151
DSHIPIDL 282
DSHIPINT 282
DTRTRAN 225
for deletion of shipped terminals 282
for z/OS Communications Server

generic resources 127
FSSTAFF 78
GRNAME 127
SYSIDNT 151

system message model 232

T
TASKREQ attribute

on remote transaction definition 222
TCP/IP (Transmission Control

Protocol/Internet Protocol) 3, 19
TCP/IP management and control

overview 191
TCTTE, surrogate 252
temporary storage

function shipping 37, 242
TERMINAL

shippable terminal definitions 217
terminal aliases 221
TERMINAL definition

REMOTENAME option 221
REMOTESYSNET attribute 214
REMOTESYSTEM attribute 214

terminal-not-known condition during
ATI 74

terminal-owning region (TOR) 67
several, in a CICSplex

as members of a generic resource
group 123

balancing sessions between 123
timeout delete mechanism, for shipped

terminals 282
TOR (terminal-owning region) 67

several, in a CICSplex
as members of a generic resource

group 123
balancing sessions between 123

trademarks 394
TRANSACTION definition

ACTION attribute 291
TRANSACTION resource

ACTION attribute 291
transaction routing

DYNAMIC attribute 222
PROFILE attribute 222
PROGRAM attribute 222
REMOTESYSTEM attribute 222
TASKREQ attribute 222
TRPROF attribute 222
TWASIZE attribute 222

WAIT attribute 291
WAITTIME attribute 291

transaction routing
APPC terminals 89
application programming 251

406 CICS TS for z/OS 4.2: Intercommunication Guide

transaction routing (continued)
automatic initiate descriptor

(AID) 72
automatic transaction initiation 73
basic mapping support 93, 251
CICS Interdependency Analyzer 71
defining remote resources

dynamically-routed
transactions 224

statically-routed transactions 223
terminals 214, 218
transactions 222

deletion of shipped terminal
definitions 281

indirect links for
example 187
how defined 189
overview 184
when required 186
with hard-coded terminals 186
with shippable terminals 186

initiated by ATI request 71
overview 67
pseudoconversational

transactions 252
queuing due to 95
relay program 92
relay transaction 67
routing transaction, CRTE 93
security considerations 222
system programming

considerations 94
terminal shipping 73
terminal-initiated

dynamic 69
information passed to dynamic

routing program 70
invocation of dynamic routing

program 69
static 69
uses of a dynamic routing

program 70
use of ASSIGN command in

AOR 252
transient data

function shipping 37, 242
Transmission Control Protocol/Internet

Protocol (TCP/IP) 3, 19
TRPROF attribute

on remote transaction definition 222
TRPROF option

on routing transaction (CRTE) 94
TWASIZE attribute

on remote transaction definition 222
type 3 SVC routine

and CICS applid 150, 151
specifying for interregion links 165
used for interregion

communication 27
TYPETERM resource

RECOVOPTION attribute 177

U
undefined DBCS characters 360

user-replaceable programs
DFHDYP, dynamic routing

program 69
USERID option of ASSIGN

command 252

V
VLVB format 256
VTAM

generic resources
intersysplex communications 130
migration to 127
outbound LU6 connections 144

W
WAIT attribute

TRANSACTION resource 291
WAIT command

LUTYPE6.1 sessions
(CICS-to-IMS) 263

WAIT option
of RETRIEVE command 56

WAITTIME attribute
TRANSACTION resource 291

workload balancing
using CICSPlex SM 32
using dynamic routing of DPL

requests 32
using dynamic transaction

routing 32
using MVS workload manager 32
using z/OS Communications Server

generic resources 32, 123

X
XALTENF, global user exit 52, 75, 94,

217
XCF (cross-system coupling facility)

overview 28
XCF/MRO 31
XCF/MRO (cross-system MRO)

overview 28
XICTENF, global user exit 52, 75, 94, 217
XISCONA, global user exit

for controlling intersystem
queuing 38

XPCREQ, global user exit 101
XPCREQC, global user exit 101
XZIQUE, global user exit

for controlling intersystem
queuing 38

Z
z/OS Communications Server

APPN network node 123
ending affinities 135
generic resources

installing 127
overview 32
restrictions 142

z/OS Communications Server (continued)
generic resources (continued)

use with non-autoinstalled
connections 143

use with non-autoinstalled
terminals 143

LOGMODE entries 169
persistent sessions

effects on recovery and
restart 311

link definitions 176
on MRO and ISC links 311

Index 407

408 CICS TS for z/OS 4.2: Intercommunication Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 2
Intercommunication Guide

Publication No. SC34-7172-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7172-01

SC34-7172-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7172-01

	Contents
	Preface
	What this book is about
	What is not covered by this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	How this book is organized
	Terminology

	Changes in CICS Transaction Server for z/OS, Version 4 Release 2
	Part 1. Intercommunication concepts and facilities
	Chapter 1. Introduction to CICS intercommunication
	Intercommunication methods
	Communication between systems
	Multiregion operation

	Intercommunication facilities
	Function shipping
	Asynchronous processing
	Transaction routing
	Distributed program link (DPL)
	Distributed transaction processing (DTP)

	Using CICS intercommunication
	Connecting regional centers
	Connecting divisions within an organization

	Transaction tracking
	Association data
	Origin data characteristics
	Previous hop data characteristics

	Chapter 2. ISC and IPIC intercommunications facilities
	Intercommunication using IP interconnectivity
	Intercommunication facilities available using IPIC

	Intersystem communication over SNA
	Intercommunication facilities available using ISC
	Connections between subsystems
	Intersystem sessions
	LUTYPE6.1
	LUTYPE6.2 (APPC)

	Establishing intersystem sessions

	Chapter 3. Multiregion operation
	Intercommunication facilities available using MRO
	Cross-system multiregion operation (XCF/MRO)
	Benefits of XCF/MRO

	Applications of multiregion operation
	Program development
	Time-sharing
	Reliable database access
	Departmental separation
	Multiprocessor performance
	Workload balancing in a sysplex
	Virtual storage constraint relief

	Conversion from a single-region system

	Chapter 4. CICS function shipping
	Overview of function shipping
	Design considerations for Function Shipping
	File control
	DL/I
	Temporary storage
	Transient data
	Intersystem queuing

	The mirror transaction and transformer program
	Long-running mirror tasks for MRO
	The short-path transformer for MRO
	Long-running mirror tasks for IPIC
	Error handling and failure of the mirror transaction

	Function shipping examples

	Chapter 5. Asynchronous processing
	Overview of asynchronous processing
	Asynchronous processing methods
	Asynchronous processing using START and RETRIEVE commands
	Starting and canceling remote transactions
	Passing information with the START command
	Passing a sysid or applid with the START command

	Improving performance of intersystem START requests
	Including start request delivery in a unit of work
	Deferred transmission of START requests with NOCHECK option for ISC links
	Intersystem queuing
	Local queuing of START commands

	Data retrieval by a started transaction
	Terminal acquisition by a remotely-initiated CICS transaction
	Starting transactions with ISC or MRO sessions

	System programming considerations
	Asynchronous processing examples

	Chapter 6. Introduction to CICS dynamic routing
	What is dynamic routing?
	Two routing models
	The “hub” model
	Advantage of the “hub” model
	Disadvantages of the “hub” model

	The distributed model
	Advantage of the distributed model
	Disadvantages of the distributed model

	Two routing programs

	Chapter 7. CICS transaction routing
	Overview of transaction routing
	Initiating transaction routing

	Terminal-initiated transaction routing
	Static transaction routing
	Dynamic transaction routing
	When your routing program is invoked
	Information passed to your routing program
	Using your dynamic routing program
	The CICS Interdependency Analyzer
	Using CICSPlex SM

	Traditional routing of transactions started by ATI
	Shipping terminals for automatic transaction initiation
	Terminal-not-known condition
	Shipping terminals for ATI from multiple TORs

	ATI and generic resources

	Routing transactions invoked by START commands
	Advantages of the enhanced method
	How to route transactions started by terminal-related START commands
	START commands issued in an AOR
	START commands issued in a TOR

	Non-terminal-related START commands
	Static routing
	Dynamic routing

	Allocation of remote APPC connections
	Transaction routing with APPC devices
	Allocating an alternate facility
	The system as a terminal

	The relay program
	Basic mapping support (BMS)
	BMS message routing to remote terminals and operators

	Using the routing transaction, CRTE
	System programming for transaction routing
	Intersystem queuing

	Chapter 8. CICS distributed program link
	Overview of DPL
	Statically routing DPL requests
	Using the mirror transaction
	Using global user exits to redirect DPL requests

	Dynamically routing DPL requests
	Which requests can be dynamically routed?
	When the dynamic routing program is invoked
	Using CICSPlex SM to route requests

	Daisy-chaining of DPL requests
	Limitations of DPL server programs
	Intersystem queuing
	Examples of DPL

	Chapter 9. Distributed transaction processing
	Overview of DTP
	Advantages over function shipping and transaction routing
	Why distributed transaction processing?
	What is a conversation and what makes it necessary?
	Conversation initiation and transaction hierarchy
	Dialog between two transactions
	Control flows and brackets
	Conversation state and error detection
	Synchronization
	Examples of use
	Taking syncpoints
	The three sync levels

	MRO or APPC for DTP?
	APPC mapped or basic?
	EXEC CICS or CPI Communications?

	Part 2. Installing and configuring intercommunication support
	Chapter 10. Configuring intersystem communication
	Configuring support for communicating over a TCP/IP network
	Configuring support for ISC over SNA

	Chapter 11. Steps after configuring MRO
	Chapter 12. Configuring z/OS Communications Server generic resources
	Prerequisites for z/OS Communications Server generic resources
	Planning your CICSplex to use z/OS Communications Server generic resources
	Naming the CICS regions

	Defining connections in a generic resource environment
	Defining connections
	Defining connections between GR members and non-GR members
	Defining connections between members within a generic resource
	Defining connections between CICS TS for z/OS generic resources

	Generating z/OS Communications Server generic resource support
	Migrating a TOR to a generic resource
	Recommended methods
	No LU6 connections
	LU6 connections

	Removing a TOR from a generic resource
	Moving a TOR to a different generic resource
	Setting up inter-sysplex communications between generic resources
	Establishing connections between CICS TS for z/OS generic resources
	Example

	Ending affinities
	When should you end affinities?
	Writing a batch program to end affinities
	Program input
	Program output
	Processing
	JCL for submitting the ENDAFFINITY program

	Using ATI with generic resources
	Using the ISSUE PASS command
	Rules checklist
	Dealing with special cases
	Non-autoinstalled terminals and connections
	Outbound LU6 connections
	Using a “hub”

	Part 3. Defining intercommunication resources
	Chapter 13. How to define connections to remote systems
	Introduction to connection definition
	The local CICS region name
	The APPLID of the local CICS system
	The sysidnt of the local CICS system

	Identifying remote systems
	Defining IP interconnectivity (IPIC) connections
	Configuring IPIC connections for identity propagation
	Migrating APPC and MRO connections to IPIC
	The DFH0IPCC migration utility
	Equivalent attributes on IPCONN definitions

	Defining links for multiregion operation
	Defining an MRO link
	Choosing the access method for MRO
	Defining compatible MRO nodes

	Defining links for use by the external CICS interface
	Installing MRO and EXCI link definitions

	Defining APPC connections
	Defining the remote APPC system
	Defining groups of APPC sessions
	Defining compatible CICS APPC nodes
	Automatic installation of APPC links
	Defining single-session APPC terminals
	Defining an APPC terminal – method 1
	Defining an APPC terminal – method 2

	The AUTOCONNECT attribute
	The AUTOCONNECT attribute of a CONNECTION resource
	The AUTOCONNECT attribute of the SESSIONS resource

	Using z/OS Communications Server persistent sessions on APPC links
	The PSRECOVERY attribute of the CONNECTION resource
	The RECOVOPTION attribute of SESSIONS and TYPETERM resources

	Defining logical unit type 6.1 links
	Defining CICS-to-IMS LUTYPE6.1 links
	Defining compatible CICS and IMS nodes
	System names
	Number of sessions
	Session names
	Other session parameters

	Defining multiple links to an IMS system

	Defining indirect links for transaction routing
	Defining indirect links in CICS Transaction Server for z/OS
	Resource definition for transaction routing using indirect links
	Defining the direct links
	Defining the indirect links
	Defining the terminal
	Defining the transaction

	Chapter 14. TCP/IP management and control
	Chapter 15. Managing APPC connections
	General information about managing APPC links
	Acquiring a connection
	Connection status during the acquire process
	Effects of the AUTOCONNECT option
	Binding contention-loser sessions

	Effects of the MAXIMUM option

	Controlling sessions with the SET MODENAME commands
	Command scope and restrictions

	Releasing the connection
	Connection status during the release process
	The effects of limited resources
	Making the connection unavailable
	Allocating from APPC mode groups with no available sessions
	Diagnosing and correcting error conditions

	Summary of APPC link management
	Command scope and restrictions

	Chapter 16. Defining remote resources
	Which remote resources need to be defined?
	A note on daisy-chaining

	Local and remote names for resources
	Defining remote resources for function shipping
	Defining remote files
	The name of the remote system
	File names
	Record lengths
	Sharing file definitions

	Defining remote DL/I PSBs
	Defining remote transient data destinations
	Defining remote temporary storage queues

	Defining remote resources for DPL
	Defining remote server programs
	The name of the remote system
	Program names
	Transaction names

	When definitions of remote server programs aren't required

	Defining remote resources for asynchronous processing
	Defining remote transactions
	Restriction on the REMOTENAME option

	Defining remote resources for transaction routing
	Defining terminals for transaction routing
	Defining remote z/OS Communications Server terminals
	Defining remote APPC connections
	How to share terminal and connection definitions
	Shipping terminal and connection definitions
	Defining remote non-z/OS Communications Server terminals
	Local and remote names for terminals

	Defining transactions for transaction routing
	Static transaction routing
	Dynamic transaction routing

	Defining remote resources for DTP

	Chapter 17. Defining local resources
	Defining communication profiles
	Communication profiles for principal facilities
	Default profiles
	Modifying the default profiles

	Architected processes
	Process names
	Modifying the architected process definitions
	Interregion function shipping

	Selecting required resource definitions for installation
	Defining intrapartition transient data queues
	Transactions
	Principal facilities
	Local terminals
	Remote terminals
	Local sessions and APPC devices
	Remote APPC sessions and devices

	Defining local resources for DPL
	Mirror transactions
	Server programs

	Part 4. Application programming in an intersystem environment
	Chapter 18. Application programming overview
	Terminology
	Problem determination

	Chapter 19. Application programming for CICS function shipping
	Introduction to programming for function shipping
	File control
	DL/I
	Temporary storage
	Transient data
	Function shipping exceptional conditions
	Remote system not available
	Invalid request
	Mirror transaction abend

	Chapter 20. Application programming for CICS DPL
	Introduction to DPL programming
	The client program
	Failure of the server program

	The server program
	Permitted commands
	Syncpoints

	DPL exceptional conditions
	Remote system not available
	Server's work backed out
	Multiple links to the same server region
	Mirror transaction abend
	Multiple updates to a recoverable resource by the same distributed UOW

	Chapter 21. Application programming for asynchronous processing
	Starting a transaction on a remote system
	Exceptional conditions for the START command
	Retrieving data associated with a remotely-issued start request

	Chapter 22. Application programming for CICS transaction routing
	Application programming restrictions
	Basic mapping support
	Pseudoconversational transactions
	The terminal

	Reviewing values returned by the EXEC CICS ASSIGN command in the application-owning region

	Chapter 23. CICS-to-IMS applications
	Designing CICS-to-IMS ISC applications
	Data formats
	Variable-length variable-blocked
	Chain of RUs

	Forms of intersystem communication with IMS

	CICS-to-IMS applications—asynchronous processing
	The START and RETRIEVE interface
	CICS front end
	IMS front end
	The START command
	The RETRIEVE command

	The asynchronous SEND and RECEIVE interface

	CICS-to-IMS applications—DTP
	CICS commands for CICS-to-IMS sessions
	Considerations for the front-end transaction
	Session allocation
	The session identifier
	Automatic transaction initiation

	Attaching the remote transaction
	Building your own attach header

	Considerations for the back-end transaction
	Acquiring session-related information
	Initial state of back-end transaction

	The conversation
	Deferred transmission
	Using the LAST option
	The LAST option and syncpoint flows

	Freeing the session
	The EXEC interface block (EIB)
	Conversation identifier fields
	Procedural fields
	Information fields

	Command sequences for CICS-to-IMS sessions
	Conversation states
	Initial states

	State diagrams
	Other tests

	Part 5. Performance in an intersystem environment
	Chapter 24. Intersystem session queue management
	Overview of session queue management
	Managing allocate queues
	Using resource definitions to manage your queues
	Using the NOQUEUE option
	Using the XISQUE and XZIQUE global user exits

	Chapter 25. Efficient deletion of shipped terminal definitions
	Overview of how shipped terminals are deleted
	Selective deletion
	The timeout delete mechanism

	Implementing timeout delete
	Tuning the performance of timeout delete
	DSHIPIDL
	DSHIPINT

	Part 6. Recovery and restart in an intersystem environment
	Chapter 26. Recovery and restart in interconnected systems
	Syncpoint exchanges
	Syncpoint flows

	Recovery functions and interfaces
	Recovery functions
	Recovery interfaces
	The indoubt attributes of the transaction definition
	INQUIRE commands
	SET {CONNECTION | IPCONN} command

	Initial and cold starts
	Deciding when a cold start is possible
	The exchange lognames process
	Considerations for APPC connections

	Managing connection definitions
	MRO and IPIC connections to CICS TS for z/OS systems
	APPC parallel-session connections to CICS TS for z/OS systems
	APPC connections to and from z/OS Communications Server generic resources
	Managing connection definitions

	Connections that do not fully support shunting
	LU6.1 connections
	APPC connections to non-CICS TS for z/OS systems
	APPC single-session connections

	APPC connection quiesce processing
	Problem determination
	Messages that report CICS recovery actions
	Problem determination examples
	Resource definition
	Resolving a resynchronization failure

	Chapter 27. Intercommunication and z/OS Communications Server persistent sessions
	Interconnected CICS environment, recovery and restart

	Part 7. Data conversion in an intersystem environment
	Chapter 28. Where is data converted?
	Function shipping and DPL
	Distributed transaction processing
	Transaction routing

	Chapter 29. Avoiding data conversion
	Chapter 30. Types of conversion
	Chapter 31. Character data
	Chapter 32. Binary data
	Chapter 33. CICS-supported conversions
	Arabic
	Baltic Rim
	Cyrillic
	Devanagari
	Farsi
	Greek
	Hebrew
	Japanese
	Korean
	Lao
	Latin-1 and Latin-9
	Latin-2
	Latin-5
	Simplified Chinese
	Thai
	Traditional Chinese
	Urdu
	Vietnamese
	Unicode data

	Chapter 34. The conversion process
	Components
	Process
	Standard and nonstandard conversion
	CICS-only conversion
	User/CICS conversion
	User-only conversion

	Sequence of conversion processing

	Chapter 35. Resource definition to enable data conversion
	Chapter 36. Defining the conversion table
	DFHCNV macro types
	Conversion and key templates
	Defaults for client and server code pages
	Conversion table for initial program verification (IVP)

	DFHCNV TYPE=INITIAL
	DFHCNV TYPE=ENTRY
	DFHCNV TYPE=KEY
	DFHCNV TYPE=SELECT
	DFHCNV TYPE=FIELD
	DFHCNV TYPE=FINAL
	Hints on coding the macros

	Chapter 37. User-defined conversion tables
	Invalid and undefined DBCS characters

	Chapter 38. Example macros
	Chapter 39. Assembling and link-editing the conversion programs
	Chapter 40. The user-replaceable conversion program
	User-named conversion programs
	Input to DFHUCNV
	Parameter list (DFHUVNDS)
	Conversion and key templates
	Field conversion records
	EQUATEs in DFHCNVDS
	DFHCNVDS, DSECT for field conversion records

	Supplied user-replaceable conversion program

	Part 8. Appendixes
	Appendix A. Intercommunication rules and restrictions checklist
	Transaction routing
	Dynamic routing of DPL requests
	Automatic transaction initiation
	Basic mapping support
	Acquiring LUTYPE6.1 sessions
	Syncpointing
	Local and remote names
	Master terminal transaction
	Installation and operations
	Resource definition
	Customization
	MRO abend codes

	Appendix B. CICS mapping to the APPC architecture
	Supported option sets
	CICS implementation of control operator verbs
	Control operator verbs
	Return codes for control operator verbs

	CICS deviations from APPC architecture
	APPC transaction routing deviations from APPC architecture

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications
	Other IBM publications

	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

