
CICS Family

Interproduct Communication

SC34-6853-01

���





CICS Family

Interproduct Communication

SC34-6853-01

���



Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
77.

This edition applies to the following IBM licensed programs, and to all subsequent versions, releases, and
modifications of these programs until otherwise indicated in new editions.

CICS Transaction Server for z/OS Version 3, program number 5655-M15
CICS Transaction Server for z/OS Version 2, program number 5697-E93
CICS Transaction Server for VSE/ESA, program number 5648-054
CICS/VSE Version 2, program number 5686-026
CICS Transaction Server for Windows, Version 5.0, program number 5724-D05
CICS Transaction Server for iSeries, program number 5722-DFH
CICS/400 Version 4, program number 5769-DFH
TXSeries Version 5.0 for Multiplatforms, part number 5724-B44
TXSeries for HP-UX, Version 4.2, program number 5801-AAR

© Copyright IBM Corporation 1992, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
What this book is about . . . . . . . . . . . . . . . . . . . . . . vii
Who this book is for . . . . . . . . . . . . . . . . . . . . . . . vii
What you need to know to understand this book. . . . . . . . . . . . . vii
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Summary of changes . . . . . . . . . . . . . . . . . . . . . . ix
Changes for CICS Transaction Server for z/OS, Version 3 Release 2 . . . . . ix
Changes for the tenth edition . . . . . . . . . . . . . . . . . . . . ix
Changes for the ninth edition . . . . . . . . . . . . . . . . . . . . ix

Part 1. Introduction to CICS interproduct communication . . . . . . . . . . . . 1

Chapter 1. CICS interproduct communication . . . . . . . . . . . . . 3
The documentation plan . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. CICS communication support . . . . . . . . . . . . . . . 5
What is a product's communication ability? . . . . . . . . . . . . . . . 5

The CICS intersystem communication functions . . . . . . . . . . . . 5
Communication protocols . . . . . . . . . . . . . . . . . . . . 5
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 6
Data conversion . . . . . . . . . . . . . . . . . . . . . . . . 7

CICS product communication support . . . . . . . . . . . . . . . . . 7
CICS on zSeries interproduct communication . . . . . . . . . . . . . 8
CICS Transaction Server for Windows interproduct communication . . . . . 8
CICS on Open Systems interproduct communication . . . . . . . . . . 9
CICS/400 interproduct communication . . . . . . . . . . . . . . . 10

Chapter 3. CICS Clients . . . . . . . . . . . . . . . . . . . . . 11
Functions that the CICS Clients provide . . . . . . . . . . . . . . . . 11

The External Call Interface . . . . . . . . . . . . . . . . . . . 11
The External Presentation Interface . . . . . . . . . . . . . . . . 11
The External Security interface . . . . . . . . . . . . . . . . . . 12
Terminal emulation . . . . . . . . . . . . . . . . . . . . . . 12

CICS Clients for various platforms . . . . . . . . . . . . . . . . . . 12

Chapter 4. Data conversion. . . . . . . . . . . . . . . . . . . . 15
Numeric data . . . . . . . . . . . . . . . . . . . . . . . . . 15
Character data . . . . . . . . . . . . . . . . . . . . . . . . . 15

Code pages . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 5. Configuring CICS for SNA communications . . . . . . . . . 17
Introduction to SNA terminology. . . . . . . . . . . . . . . . . . . 17

SNA concepts . . . . . . . . . . . . . . . . . . . . . . . . 18
SNA products . . . . . . . . . . . . . . . . . . . . . . . . 19

Preparing for SNA configuration. . . . . . . . . . . . . . . . . . . 20
Matching parameters. . . . . . . . . . . . . . . . . . . . . . 20
Platform specific implementation . . . . . . . . . . . . . . . . . 20
The scenario. . . . . . . . . . . . . . . . . . . . . . . . . 20

Configuration details . . . . . . . . . . . . . . . . . . . . . . . 21
Mainframe host configuration. . . . . . . . . . . . . . . . . . . 21
AIX machine configuration. . . . . . . . . . . . . . . . . . . . 22

Configuring CICS for SNA—next steps . . . . . . . . . . . . . . . . 23

© Copyright IBM Corp. 1992, 2010 iii



Part 2. CICS intercommunication functions . . . . . . . . . . . . . . . . . . 25

Chapter 6. Introduction to the CICS intercommunication functions . . . . 27
Summary of CICS intercommunication functions . . . . . . . . . . . . 27

Function shipping . . . . . . . . . . . . . . . . . . . . . . . 27
Transaction routing . . . . . . . . . . . . . . . . . . . . . . 27
Distributed program link . . . . . . . . . . . . . . . . . . . . 28
Distributed transaction programming . . . . . . . . . . . . . . . . 28

Which intercommunication function? . . . . . . . . . . . . . . . . . 28

Chapter 7. Function shipping . . . . . . . . . . . . . . . . . . . 31
Introduction to function shipping . . . . . . . . . . . . . . . . . . 31
Transparency to application . . . . . . . . . . . . . . . . . . . . 32
Remote resources that can be accessed . . . . . . . . . . . . . . . 32

CICS file control data sets. . . . . . . . . . . . . . . . . . . . 32
IMS databases . . . . . . . . . . . . . . . . . . . . . . . . 33
Temporary storage and transient data . . . . . . . . . . . . . . . 33

How function shipping works . . . . . . . . . . . . . . . . . . . . 34
The transformer programs . . . . . . . . . . . . . . . . . . . . 34
The mirror transaction . . . . . . . . . . . . . . . . . . . . . 35

Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 36
Function shipping examples . . . . . . . . . . . . . . . . . . . . 36

Chapter 8. Transaction routing . . . . . . . . . . . . . . . . . . 39
Introduction to transaction routing . . . . . . . . . . . . . . . . . . 39
Initiating transaction routing . . . . . . . . . . . . . . . . . . . . 40

Terminal-initiated transaction routing . . . . . . . . . . . . . . . . 40
Automatic transaction initiation . . . . . . . . . . . . . . . . . . 41

The relay program . . . . . . . . . . . . . . . . . . . . . . . 43
Basic mapping support . . . . . . . . . . . . . . . . . . . . . . 44
The routing transaction (CRTE) . . . . . . . . . . . . . . . . . . . 44

Chapter 9. Distributed program link . . . . . . . . . . . . . . . . 47
Introduction to DPL . . . . . . . . . . . . . . . . . . . . . . . 47
Why use DPL? . . . . . . . . . . . . . . . . . . . . . . . . . 48
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 48
DL/I and SQL databases . . . . . . . . . . . . . . . . . . . . . 48
Restrictions when using DPL. . . . . . . . . . . . . . . . . . . . 48
Abends when using DPL . . . . . . . . . . . . . . . . . . . . . 49

Chapter 10. Asynchronous processing . . . . . . . . . . . . . . . 51
Introduction to asynchronous processing . . . . . . . . . . . . . . . 51
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Asynchronous processing methods . . . . . . . . . . . . . . . . . 52
Asynchronous processing using START/RETRIEVE commands . . . . . . . 53

Starting and canceling remote transactions . . . . . . . . . . . . . 53
Passing information with the START command . . . . . . . . . . . . 53
Improving performance of intersystem START requests . . . . . . . . . 54
Including start request delivery in a logical unit of work . . . . . . . . . 54
Deferred sending of START requests with NOCHECK option . . . . . . . 55
Local queuing of START commands for remote transactions . . . . . . . 55
Data retrieval by a started transaction . . . . . . . . . . . . . . . 55
Terminal acquisition by a remotely-initiated CICS transaction . . . . . . . 56

System programming considerations . . . . . . . . . . . . . . . . . 56
Asynchronous processing example (with NOCHECK) . . . . . . . . . . . 57

iv CICS Family: Interproduct Communication



Chapter 11. Distributed transaction programming . . . . . . . . . . . 59
Why use distributed transaction programming? . . . . . . . . . . . . . 59

Limitations of function shipping . . . . . . . . . . . . . . . . . . 59
Advantages of distributed transaction programming . . . . . . . . . . 60

Conversations . . . . . . . . . . . . . . . . . . . . . . . . . 61
Conversation initiation and transaction hierarchy . . . . . . . . . . . 61
Application design. . . . . . . . . . . . . . . . . . . . . . . 62
Control flows. . . . . . . . . . . . . . . . . . . . . . . . . 63
Conversation state and error detection . . . . . . . . . . . . . . . 63
Synchronization . . . . . . . . . . . . . . . . . . . . . . . 63

EXEC CICS or CPI Communications? . . . . . . . . . . . . . . . . 65
Additional notes on the two APIs . . . . . . . . . . . . . . . . . 66

Part 3. Appendixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . 69
CICS Family intercommunication books . . . . . . . . . . . . . . . . 69
CICS on zSeries intercommunication books . . . . . . . . . . . . . . 69

CICS Transaction Server for z/OS Version 3 Release 2 . . . . . . . . . 69
CICS Transaction Server for z/OS Version 3 Release 1 . . . . . . . . . 69
CICS Transaction Server for z/OS Version 2 Release 3 . . . . . . . . . 69
CICS Transaction Server for z/OS Version 2 Release 2 . . . . . . . . . 69
CICS Transaction Server for OS/390 Release 3 . . . . . . . . . . . . 69
CICS Transaction Server for VSE/ESA Release 1.1.1. . . . . . . . . . 69
CICS/VSE Version 2 . . . . . . . . . . . . . . . . . . . . . . 69

CICS non-zSeries intercommunication books . . . . . . . . . . . . . . 69
CICS Transaction Gateway and CICS Universal Clients . . . . . . . . . . 70
Non-CICS books . . . . . . . . . . . . . . . . . . . . . . . . 70

SNA books . . . . . . . . . . . . . . . . . . . . . . . . . 70

Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . 71

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Contents v



vi CICS Family: Interproduct Communication



Preface

What this book is about
This book introduces the subject of intercommunication between CICS® family
members. It shows what functions are available, and how the systems are
configured.

The CICS products covered by this book are:

v CICS on zSeries®

v CICS Transaction Server for Windows®

v CICS on Open Systems

v CICS/400

v CICS Clients

Important: These are generic terms for subsets of CICS products. Their meanings
are defined in “Terminology.”

Who this book is for
This book is for anyone who is involved in the planning and implementation of
communication between different CICS products.

What you need to know to understand this book
You should have a general knowledge of the facilities of CICS, and of the
communication functions of the operating environments of your CICS systems. To
implement CICS interproduct communication, you will also need the detailed
product-specific information that is in the Intercommunication Guide for your local
CICS product. The documentation plan for the individual CICS products is explained
in Chapter 1, “CICS interproduct communication,” on page 3.

Terminology
Throughout this document, when the term “CICS” is used without specifying any
particular product or version level, it can be taken as a generic term for all the CICS
family products.

The following CICS products run on computers of the zSeries family, and support
communication with CICS products that run on other hardware platforms.

v CICS Transaction Server for z/OS® Version 3, program number 5655-M15

v CICS Transaction Server for z/OS Version 2, program number 5697–E93

v CICS Transaction Server for VSE/ESA, program number 5648-054

v CICS/VSE Version 2, program number 5686-026

In this book, the term zSeries is used to refer to any zSeries computer on which
one of the above products can run. The term non-zSeries refers to the hardware
platforms used by other CICS products—for example, iSeries® (used by CICS/400),
IBM-compatible personal computers (used by CICS Transaction Server for
Windows), and RISC System/6000 (used by CICS on Open Systems).

© Copyright IBM Corp. 1992, 2010 vii



In statements that apply to each of the CICS products that runs on a zSeries
hardware platform, the generic term CICS on zSeries is used to represent all of
them. One of these CICS products is referred to by name only if there is a
difference in its interface to non-zSeries products as compared with the interface
from other zSeries products. Subject to explicitly-stated exceptions, interpret all
references to CICS as applying to your CICS on zSeries product.

The term CICS Transaction Server for z/OS, without a qualifying Version number, is
used as a generic term for:

v CICS Transaction Server for z/OS Version 3 Release 2

v CICS Transaction Server for z/OS Version 3 Release 1

v CICS Transaction Server for z/OS, Version 2 Release 3

v CICS Transaction Server for z/OS, Version 2 Release 2

The term CICS Transaction Server for Windows, without a qualifier, means CICS
Transaction Server for Windows, Version 5.0.

The term CICS on Open Systems is used as a generic name for:

v TXSeries Version 5.0 for Multiplatforms, which contains:
– CICS for AIX®

– CICS for HP-UX
– CICS for Sun Solaris
– CICS for Windows NT®

v TXSeries Version 4.3 for AIX (which contains CICS for AIX)

v TXSeries Version 4.3 for Sun Solaris (which contains CICS for Sun Solaris)

v TXSeries Version 4.3 for Windows NT (which contains CICS for Windows NT)

v TXSeries Version 4.2 for HP-UX (which contains CICS for HP-UX)

Where it is necessary to distinguish between these products, the full product names
are quoted.

The term CICS Transaction Server for VSE/ESA means CICS Transaction Server
for VSE/ESA Release 1.1.1.

The term CICS/VSE means CICS for VSE/ESA Version 2 Release 3.

The term CICS/400 is used as a generic name for:
v CICS/400 Version 4 Release 5
v CICS Transaction Server for iSeries

The term CICS Clients is used as a generic term for:
v The CICS Universal Client (for Windows NT, Windows 2000, and Windows XP)
v The CICS Client elements of the CICS Transaction Gateway products
v The client daemons of the CICS Transaction Gateway products

The notation CICS–CICS Transaction Server for Windows is used to refer to
communication in either direction. To specify communication in only one direction,
an arrow is added. For example, CICS–CICS on Open Systems function shipping
refers to function shipping from CICS to CICS on Open Systems or from CICS on
Open Systems to CICS. CICS/400–�CICS function shipping refers only to function
shipping from CICS/400 to CICS.

viii CICS Family: Interproduct Communication

|



Summary of changes

This book is based on the tenth edition of the CICS Interproduct Communication
manual, SC34-6473-00. Changes from that edition are marked by vertical bars in
the left margin.

This softcopy version is based on the printed version. Some formatting
amendments may have been made to make the information more suitable for
softcopy, and it may include changes made since the most recent printed version.
Any such changes (apart from very minor ones) are marked by # symbols in the left
margin.

Changes for CICS Transaction Server for z/OS, Version 3 Release 2

For information about changes that have been made in CICS Transaction Server for
z/OS, Version 3 Release 2, please refer to What's New in the information center, or
the following publications:

v CICS Transaction Server for z/OS Release Guide

v CICS Transaction Server for z/OS Migration from CICS TS Version 3.1

v CICS Transaction Server for z/OS Migration from CICS TS Version 2.3

v CICS Transaction Server for z/OS Migration from CICS TS Version 2.2

v CICS Transaction Server for z/OS Migration from CICS TS Version 1.3

Changes for the tenth edition
The more significant changes for this edition are:

v The book has been revised to take account of the following new products:

– CICS Transaction Server for z/OS Version 3 Release 1

Changes for the ninth edition
The more significant changes for this edition were:

v The book was revised to take account of the following new products:

– CICS Transaction Server for z/OS, Version 2 Release 3

– CICS Transaction Server for Windows, Version 5.0

v References to the following CICS products, which are no longer supported, were
removed:
– CICS Transaction Server for z/OS, Version 2 Release 1
– CICS Transaction Server for OS/390® Release 2
– CICS Transaction Server for OS/390 Release 1
– CICS Transaction Server for VSE/ESA Release 1.0
– CICS/ESA Version 4.1
– CICS Transaction Server for OS/2 Warp Version 4
– CICS for OS/2 Version 3.1

© Copyright IBM Corp. 1992, 2010 ix



x CICS Family: Interproduct Communication



Part 1. Introduction to CICS interproduct communication

This part:

v Introduces CICS interproduct communication, and describes the documentation
plan used for each CICS product.

v Describes the CICS intercommunication functions, and shows what functions are
supported between any pair of CICS systems.

v Introduces the CICS client products, and shows what functions are supported
with each CICS server.

v Explains why data conversion is necessary, explaining its concepts and
terminology.

v Introduces the concepts and practice of system configuration for SNA
communications.

© Copyright IBM Corp. 1992, 2010 1



2 CICS Family: Interproduct Communication



Chapter 1. CICS interproduct communication

This topic introduces CICS interproduct communication, and describes the
documentation plan used for each CICS product. The following groups of CICS
systems are discussed:

v CICS on zSeries

v CICS Transaction Server for Windows

v CICS on Open Systems

v CICS/400

The documentation plan
This manual provides an overview of how all the CICS products communicate. Each
CICS product has its own intercommunication manual which provides greater detail
on how that product is configured and what functions are available to it.

The configurations with all the CICS products, and the associated documentation,
are shown in Figure 1 on page 4. This shows each CICS product in communication
with another product of the same type, and then all products being interconnected.
The highlighted numbers in the figure refer to the following manuals:

1. CICS on System 390 Intercommunication Guide. (This means the
Intercommunication Guide for your CICS on zSeries product.)

2. CICS Family: Communicating from CICS on zSeries

3. CICS TS for Windows, Intercommunication

4. CICS on Open Systems Intercommunication Guide

5. CICS/400 Intercommunication

© Copyright IBM Corp. 1992, 2010 3



half-session

half-session

SESSION

SESSION

half-session

CICS on System/390

CICS on System/390

half-session

half-session

CICS/400

SESSION

half-session

CICS/400

half-session

SESSION

half-session

CICS on Open Systems

CICS on Open Systems

half-session

3

SESSION

half-session

CICS TS for Windows

CICS TS for Windows

half-session

half-session

3

3

3

Figure 1. Sessions between CICS systems. This figure shows the coverage of each of the CICS intercommunication
books. The numbers refer to the books in the list of books.

4 CICS Family: Interproduct Communication



Chapter 2. CICS communication support

This chapter has two sections:

v “What is a product's communication ability?” is an introduction to intersystem
communication terminology, and to the CICS communication functions.

v “CICS product communication support” on page 7 shows the ways in which any
pair of CICS products can communicate.

What is a product's communication ability?
When planning your communication functions between different CICS systems you
must consider:

v The intersystem communication functions that the CICS products support

v The communication protocols that are supported

v The synchronization levels that are supported

v What data conversion support will be required

These questions are examined in the following sections.

The CICS intersystem communication functions
CICS intersystem communication supports five basic functions:

Function shipping
enables an application program running in one CICS system to access data
resources (such as files and queues) that are owned by another CICS
system.

Transaction routing
enables a terminal connected to one CICS system to run a transaction in
another CICS system.

Distributed program link (DPL)
enables an application program executing in one CICS system to link (pass
control) to a program in a different CICS system. The linked-to program
executes and returns a result to the linking program.

Asynchronous processing
enables a transaction executing in one CICS system to start a transaction
in a different system. The two transactions then execute independently of
each other.

Distributed transaction programming
enables a transaction running in one CICS system to communicate with
transactions running in other systems. The transactions are designed and
coded specifically to communicate with each other.

Communication protocols
If two systems are to communicate successfully they must use a common set of
rules that both understand. A communications protocol is such a set of rules that
defines, for example, a set of standard requests and responses, and the order in
which they can be sent.

For CICS products, three communication protocols are important:

© Copyright IBM Corp. 1992, 2010 5



SNA LU TYPE 6.2
LU TYPE 6.2 (LU 6.2) is a Systems Network Architecture (SNA) protocol that
supports both system-to-system communication and system-to-device
communication. LU 6.2 is also known as “Advanced Program-to-Program
Communications” (APPC) and “intersystem communication over SNA” (ISC over
SNA).

Contrast ISC over SNA with “IP interconnectivity” (IPIC), described under the
TCP/IP section, below.

CICS can make use of the AnyNet® product, which allows SNA flows to be
transmitted over a TCP/IP network.

All CICS products support the LU 6.2 protocol.

TCP/IP
The Transmission Control Protocol/Internet Protocol (TCP/IP) is a set of
protocols that are used for both LANs and Wide Area Networks (WANs).

TCP/IP is supported natively by CICS Transaction Server for Windows, CICS on
Open Systems, and versions of CICS Transaction Server for z/OS from Version
2.3 onwards.

Note: CICS Transaction Server for z/OS, Version 2 Release 3 and later support
native TCP/IP connections to clients. The CICS External Call Interface
(ECI) is supported, but not the External Presentation Interface (EPI) nor
the External Security Interface (ESI). See Table 5 on page 13.

All CICS on zSeries products except CICS TS for VSE/ESA and CICS/VSE 2.3
can make use of the AnyNet product, which allows SNA flows to be transmitted
over a TCP/IP network.

CICS Transaction Server for z/OS Version 3 Release 2 alone supports the IP
interconnectivity protocol. This allows communication between CICS TS for
z/OS Version 3.2 systems over a TCP/IP network. Traditionally, communication
between CICS systems that are not in the same operating system or z/OS
sysplex has required SNA. Now, CICS TS for z/OS Version 3.2-CICS TS for
z/OS Version 3.2 connections can use IP interconnectivity instead. Currently,
the only one of the CICS base intercommunication functions supported is
distributed program link (DPL). For detailed information about IP
interconnectivity, see the CICS TS for z/OS Version 3.2 Intercommunication
Guide.

NetBIOS
The Network Basic Input/Output System (NetBIOS) is a local area network
(LAN) protocol for personal computers. It is supported by CICS Transaction
Server for Windows.

You can use IBM® NetBIOS, or another NetBIOS emulator. For example,
Novell's NetBIOS emulator provides NetBIOS flows over its Internetwork Packet
eXchange (IPX) protocol.

Synchronization
During CICS interproduct communication, partner transactions may make
logically-related updates to their data stores — data sets, databases, temporary
storage, transient data, and so on. Data integrity would be lost if both transactions
did not commit (or back out) the updates they made to their resources.

The process used to ensure data integrity is called synchronization. Synchronization
has to prevent one transaction completing normally and committing its updates

6 CICS Family: Interproduct Communication

|
|
|

|
|

#
#

#



while its partner transaction abends and backs out its updates. Synchronization
must also handle situations when network problems prevent the transactions from
communicating and informing each other of their actions.

Synchronization levels

SNA APPC architecture defines three levels of synchronization, which it calls
NONE, CONFIRM, and SYNCPOINT. CICS refers to these as synchronization
levels 0, 1, and 2, respectively.

Level 0
Provides no synchronization support.

Level 1
Allows transactions to exchange confirmation requests which they may use
to provide some degree of synchronization. CICS is not involved in this
process.

Level 2
Provides system-level syncpoint exchanges.

Synchronization level 2 provides two-phase commit. In a two-phase commit
process, one CICS system initiates the syncpointing and acts as coordinator for the
operation. The coordinating system:

1. Asks each connected system to prepare to commit

2. When each system has signalled readiness, it tells each to commit, or, if any
resource manager signals that it cannot commit, it tells each to back out.

The synchronization level that two connected CICS systems can use is established
when they first establish the connection. A connection established at
synchronization level 2 can support a synchronization level 0, 1, or 2 conversation,
and a connection established at synchronization level 1 can support a
synchronization level 0 or 1 conversation.

The synchronization level you can use depends upon the capabilities of the
particular CICS systems, and the capability of the network that they are using for
the connection. The synchronization levels for all pairings of CICS systems is
summarized in “CICS product communication support.”

Data conversion
CICS products use two interchange codes for character data representation,
EBCDIC and ASCII. Data in CICS on zSeries products and CICS/400 is held in
EBCDIC format. Data in CICS Transaction Server for Windows and CICS on Open
Systems is typically held in ASCII format.

Support of an intersystem communication function between two products requires
support for any necessary data conversion. For further information, see Chapter 4,
“Data conversion,” on page 15.

CICS product communication support
This section summarizes the support each CICS product provides when it is in
communication with another CICS product of the same type, and when it is
communicating with each of the other CICS family products.

Chapter 2. CICS communication support 7



CICS on zSeries interproduct communication
Functions supported

CICS on zSeries supports all CICS intersystem communication functions.

Communication protocols supported

All CICS on zSeries products support SNA.

All CICS on zSeries products except CICS TS for VSE/ESA and CICS/VSE 2.3 can
make use of the AnyNet product, which allows SNA flows to be transmitted over a
TCP/IP network.

CICS Transaction Server for z/OS, Version 2 Release 3 and later support native
TCP/IP connections to clients. The CICS External Call Interface (ECI) is supported,
but not the External Presentation Interface (EPI) nor the External Security Interface
(ESI). See Table 5 on page 13.

CICS Transaction Server for z/OS Version 3 Release 2 alone supports the IP
interconnectivity protocol. Two CICS TS for z/OS Version 3.2 systems that are not
in the same MVS image or z/OS sysplex can use IP interconnectivity to
communicate, rather than SNA. (If they were in the same MVS image or z/OS
sysplex they could use a multiregion operation (MRO) connection.) However,
currently the only one of the CICS base intercommunication functions supported
over IP interconnectivity links is distributed program link (DPL). For detailed
information about IP interconnectivity, see the CICS TS for z/OS Version 3.2
Intercommunication Guide.

Synchronization level supported

CICS on zSeries can support synchronization levels 0, 1, and 2. The
synchronization level used depends upon the support available in the partner
system. This is summarized in Table 1.

Table 1. CICS on zSeries synchronization level support

CICS on
zSeries

CICS on
Open
Systems

CICS/400 CICS
Transaction
Server for
Windows

Maximum synchronization
level supported:

2 2 2 1

CICS Transaction Server for Windows interproduct communication
Functions supported

CICS Transaction Server for Windows supports all CICS intersystem communication
functions.

Communication protocols supported

CICS Transaction Server for Windows supports SNA, TCP/IP, and NetBIOS. The
communication protocol that can be used is dependent upon the support available
in the partner system. This is summarized in Table 2 on page 9.

8 CICS Family: Interproduct Communication

|
|
|
|
|
|
|
|
|



Table 2. CICS Transaction Server for Windows communication protocol support

CICS
Transaction
Server for
Windows

CICS on
Open
Systems

CICS on
zSeries

CICS /400

Communication SNA SNA SNA SNA

protocols TCP/IP TCP/IP

supported: NetBIOS

Note: Distributed transaction processing is supported only by SNA.

Synchronization level supported

CICS Transaction Server for Windows supports only synchronization levels 0 and 1,
and either level can be used with any partner CICS system.

CICS on Open Systems interproduct communication
Functions supported

CICS on Open Systems supports all CICS intersystem communication functions.

Communication protocols supported

CICS on Open Systems supports SNA and two types of TCP/IP:

v CICS family TCP/IP for communication with other CICS on Open Systems
regions, CICS Transaction Server for Windows, and CICS Clients.

CICS family TCP/IP supports only synchronization levels 0 and 1, and it cannot
be used for distributed transaction processing.

v Encina PPC TCP/IP for communication with other CICS on Open Systems
regions.

Encina PPC TCP/IP supports synchronization levels 0, 1, and 2, and can be
used for distributed transaction processing.

The choice of communication protocol depends upon the function supported by the
partner system, and is summarized in Table 3.

Table 3. CICS on Open Systems communication protocol, and synchronization level support

CICS on
Open
Systems

CICS
Transaction
Server for
Windows

CICS on
zSeries

CICS/400

Communication protocols
supported: SNA

TCP/IP (1)
TCP/IP (2)

SNA
TCP/IP(1)

SNA SNA

Maximum synchronization
level supported:

2 1 2 2

Note:

1. TCP/IP (1) - CICS family TCP/IP support
2. TCP/IP (2) - Encina PPC TCP/IP support

Chapter 2. CICS communication support 9



Synchronization level supported

CICS on Open Systems can support synchronization levels 0, 1, and 2 when using
SNA and Encina PPC TCP/IP, and levels 0 and 1 when using CICS family TCP/IP.
The synchronization level that CICS on Open Systems supports with other CICS
systems is summarized in Table 3 on page 9.

CICS/400 interproduct communication
Functions supported

CICS/400 supports all CICS intersystem communication functions.

Communication protocols supported

CICS/400 supports only SNA.

Synchronization level supported

CICS/400 supports synchronization levels 0, 1, and 2. The synchronization level
you use depends upon the support available in the partner system. This is
summarized in Table 4.

Table 4. CICS/400 synchronization level support

CICS/400 CICS on
zSeries

CICS on
Open
Systems

CICS
Transaction
Server for
Windows

Maximum synchronization
level supported:

2 2 2 1

10 CICS Family: Interproduct Communication



Chapter 3. CICS Clients

Terminology: In this information, we use the term CICS Clients as a generic term
for connections from:
v The CICS Universal Client
v The CICS Transaction Gateway

CICS Clients allow a workstation to access the transactions and resources in a
CICS system.

The CICS Clients are not themselves full-function CICS systems, but they contain
functions that enable them to access the resources of CICS systems running on
other machines in the network. The CICS systems to which Clients are connected
are known as CICS servers.

There is a CICS Client for many different operating systems. These are described in
“CICS Clients for various platforms” on page 12.

Functions that the CICS Clients provide
CICS Clients provide a set of functions for client/server computing. This section
gives an overview of the most important functions; it is not meant to be exhaustive.

The External Call Interface
The External Call Interface (ECI) is an application programming interface (API) that
allows a non-CICS program running on a workstation to call a CICS program
located on a CICS server. This enables the program to make use of existing server
routines that could be used, for example, to make enquiries on a database.

The client program can make the following types of call to a CICS server:

v Program link calls, which can be synchronous (that is, the calling program waits
for a response from the linked-to program), or asynchronous (that is, the two
programs continue to execute independently). The client program can issue a
number of such calls, which can all run within the same unit of work (UOW), or
they may run as individual units of work.

v Calls to retrieve a response from a previous asynchronous call.

v Calls that return a value indicating the status of the CICS system. This allows an
application to test for availability of the CICS server or to monitor it by waiting for
a change in its status.

The External Presentation Interface
The External Presentation Interface (EPI) is an API that allows a client program to
appear to a CICS server as a 3270 terminal. You could, for example, use the EPI to
enable workstation users to access CICS server transactions written for 3270
terminals, without changing the server code.

The client program can start CICS transactions and send and receive standard
3270 data streams to and from the transactions. It can present the 3270 data to the
user by emulating a 3270 terminal, or by means of a graphical user interface such
as Windows (Windows clients).

© Copyright IBM Corp. 1992, 2010 11



The EPI consists of a set of calls that can be made from an application program.
The calls are provided in a library that is linked to the application. Among the
functions available are calls to:

v Initialize the EPI.

v Terminate the EPI.

v Obtain a list of CICS servers to which a terminal may attach.

v Attach a pseudo-terminal.

v Detach a pseudo-terminal.

v Start a transaction for a terminal.

v Send data from a terminal to a transaction.

v Obtain details of an event that has occurred for a terminal. An example of an
event is when the transaction is expecting a reply from the terminal.

v Obtain detailed error information for the last error that occurred for a terminal.

The External Security interface
The External Security Interface (ESI) is an API that allows a non-CICS Client
program to verify and change the passwords used by Clients to connect to a CICS
server.

Terminal emulation
CICS Clients can run 3270 terminal emulators. A client terminal emulator transmits
or receives standard CICS transaction routing flows to or from a CICS server. This
allows a user to interact with the server, and run transactions, as if the client were a
locally-attached 3270 terminal.

It is possible to run multiple terminal emulators on a single client. The emulators
can be connected to the same CICS server, or to different servers.

Users can customize the colors and keyboard mapping of their emulators.
Double-byte character sets (DBCS) are supported but note that CICS clients
attached to CICS/400 servers do not support double-byte character sets.

CICS Clients for various platforms
CICS Clients are available for the following operating systems:

v AIX

v Microsoft® Windows

v Solaris

v HP-UX

v Linux

Consult the documentation for your version of the CICS Universal Client or CICS
Transaction Gateway to see the versions of these operating systems that are
supported.

Depending on the version of the CICS Universal Client or CICS Transaction
Gateway that you are using, your CICS Client can attach to some or all of the
following CICS servers:

v CICS Transaction Server for z/OS

v CICS Transaction Server for VSE/ESA

v CICS/VSE Version 2.3

12 CICS Family: Interproduct Communication



v CICS/400

v CICS Transaction Server for Windows

v CICS on Open Systems

Supported functions and protocols

Table 5 shows the functions and communication protocols that are supported on
each CICS Client–CICS server link.

Table 5. IBM CICS Client function and protocol support

CICS Servers ECI EPI
Terminal
Emulator

Auto
install

LU 6.2 NetBIOS TCP/IP

CICS Transaction Server for
Windows

Y Y Y Y Y Y Y

CICS on Open Systems Y Y Y Y Y - Y

CICS/400 Y Y Y Y Y - -

CICS Transaction Server for
z/OS, Version 2 Release 2 and
above

Y Y Y Y Y - 1 2

CICS Transaction Server for
z/OS Version 3 Release 2

Y Y Y Y Y - Y3

CICS TS for VSE/ESA Y Y Y Y Y - -

CICS/VSE V2.3 Y - - Y4 Y - -

Notes:

Y Function or protocol is supported

- Function or protocol not supported

ECI External Call Interface

EPI External Presentation Interface

Autoinstall
User does not need to predefine the client connection to the server

1. Native TCP/IP is supported, using ECI over TCP/IP. All clients are supported,
but only the ECI (not the EPI nor the ESI) can be used.

2. Native TCP/IP is supported, using IP interconnectivity (IPIC) and the ECI
Resource Adapter. Only the ECI (not the EPI nor the ESI) can be used.

3. Only single-session LU6.2 connections can be autoinstalled.

Chapter 3. CICS Clients 13

|
|

|
|
|||||||

|
|



14 CICS Family: Interproduct Communication



Chapter 4. Data conversion

The CICS family of products runs on a variety of operating system and hardware
platforms. Numeric and character data can be held in different ways in different
systems. When intercommunication between CICS products requires the transfer of
data, data conversion may be necessary.

This chapter gives an overview of data conversion that serves as an introduction to
the task-oriented information in the CICS Intercommunication manual for your CICS
product. It does not describe the mechanics of the process.

CICS products do most of the necessary data conversion automatically. Some
conversion requires no setup by the user, for example, file names in function
shipping requests. For other data, such as file records, you supply resource
definitions that identify the types of conversion to be applied to specified fields in
data records. For non-automatic conversion, exits or user-replaceable conversion
programs are available in some products.

Numeric data
The main ways of holding numeric data are binary and packed decimal. If these
types of data are held differently in two CICS systems, resource definitions in each
system may be sufficient to cause automatic data conversion.

In some cases, you can arrange for one system to hold data in a way that is
compatible with the other, avoiding the need for conversion. For example, if a CICS
Transaction Server for Windows COBOL application program is compiled with the
IBMCOMP and SIGN EBCDIC directives, packed decimal data is held in
zSeries-compatible format.

Automatic data conversion is not available in some cases. For example, conversion
between workstation packed decimal data and zSeries packed decimal data
requires user-written conversion code. This code can be inserted in a
user-replaceable conversion program in the CICS on zSeries product.

See the platform-specific CICS intercommunication guides for a detailed explanation
of which CICS system is responsible for converting the data when two systems are
exchanging data.

Character data
The smallest unit of computer data is a bit, or binary digit. A bit has only two
possible values, 0 or 1. To represent character data, bits must be grouped. The
most common grouping is the 8-bit byte, providing up to 256 different characters.

A named character set is a particular set of characters—“Latin-1”, for example, is a
set of Western uppercase and lowercase letters, numbers, and a selection of
symbols.

A single-byte character set (SBCS) allows the representation of up to 256
characters, each character being represented by a single byte.

A double-byte character set (DBCS) allows the representation of more than 256
characters, each character being represented by a pair of bytes. Some languages

© Copyright IBM Corp. 1992, 2010 15



require characters to be represented by multiple bytes in what is called a
multi-byte character set (MBCS); here, each character is represented by up to 4
bytes.

The different languages in some countries (such as Japan) may use both SBCS
and DBCS.

A computer program or operating system must assign a byte, 2-byte, or multi-byte
value to each character that it wants to represent. Several conventions exist for
character representation. In this chapter, these conventions are called interchange
codes. Two different interchange codes are used in the hardware platforms on
which CICS products run:

v Extended Binary-Coded Decimal Interchange Code (EBCDIC), typically used on
zSeries and AS/400® machines.

v American National Standard Code for Information Interchange (ASCII), typically
used in personal computers and RISC System/6000 (RS/6000®) machines.

Code pages
A code page defines the code points for the characters in a particular character
set. It consists of a list of byte values or 2-byte values and the characters they
represent. The EBCDIC and ASCII interchange codes include more than one code
page, so data conversion can be necessary even between two systems that use the
same interchange code.

A Coded Character Set Identifier (CCSID) is a combination of a character set and
its associated code page. A CCSID may be composite; that is, it may contain
multiple character sets and code pages—for example, Katakana (1-byte) and Kanji
(2-byte).

Most CICS products use in-built conversion tables to handle conversion between
common code pages. Some products allow you to define your own conversion
tables. For nonstandard conversion, you can supply a user-written conversion
program.

For detailed information about data conversion, see the CICS Intercommunication
manuals for your CICS products.

Note:

1. CICS for OS/400® uses a comprehensive set of conversion tables
provided by AS/400, and does not support user-defined tables.

2. CICS on Open Systems uses the operating system's iconv routines,
which provide data conversion by both table-driven and algorithmic
methods. A comprehensive set of converters is supplied. A CICS on
Open Systems user can create or customize a converter.

16 CICS Family: Interproduct Communication



Chapter 5. Configuring CICS for SNA communications

Before two systems can communicate, they each need to know:

v The identity of the other system

v The characteristics of the other system

v The communication methods to be used

v The services and functions to be used

This chapter shows how you specify that information when configuring CICS
systems for SNA communication.

There are a number of stages in the process of configuring a system for
communication:

1. Establish a basic connection between the two systems that can be used by a
simple test application.

2. Build on that initial configuration to enable support for your own applications.

3. Refine that working configuration to expand facilities and enhance performance.

This chapter gives you the information on SNA and CICS that you will need to
establish that first basic configuration. You should not consider proceeding beyond
that first stage until you have completed and successfully tested a basic, simple
SNA connection.

There are other manuals that give broader and more detailed information about
SNA. There are manuals that explain the SNA architecture, manuals that explain
how individual products have implemented the architecture, and manuals that
explain how to configure various combinations of different systems.

The scenario chosen for the discussion is based on an established SNA network of
interconnected CICS on zSeries systems. To this we will be adding a CICS for AIX
system, which will use SNA to connect to one of the CICS on zSeries systems.

The rest of this chapter contains:
v “Introduction to SNA terminology”
v “Preparing for SNA configuration” on page 20
v “Configuration details” on page 21
v “Configuring CICS for SNA—next steps” on page 23

Introduction to SNA terminology
IBM's System Network Architecture (SNA) defines a set of rules that systems use to
communicate. These rules define the layout of the data that flows between the
systems and the action the systems take when they receive the data. The layout of
the data is known as the format, and the action the systems take when they
receive that data is known as the protocol. Together, formats and protocols
constitute the architecture.

SNA does not specify how a system should implement the architecture. Indeed, a
fundamental objective of SNA is to allow systems that have very different internal
hardware and software design to communicate. The only requirement is that the
network flows meet the rules of the architecture.

© Copyright IBM Corp. 1992, 2010 17



One consequence of this independent implementation is that each system brings its
own terminology into its SNA implementation, and this can lead to a confusion of
terminology when you start to establish a connection between two different
systems. This section introduces those particular SNA concepts and terms that you
will encounter when configuring CICS systems.

SNA concepts
network

A network is a collection of interconnected computers and devices, together
with the physical and logical connections that connect them.

network address
A network address is a unique code that is assigned to every device in a
network. With a personal computer, for example, it is likely to be the
medium access control (MAC) address in its network adapter card.

link and node
A link connects two nodes, where a node is any device in a network that
transmits and receives data.

logical unit (LU)
A logical unit represents the logical destination of a communication data
flow. The formal definition of an LU is that it is the means by which an end
user gains entry into a network, and an end user is defined as the ultimate
source, or destination, of data flow in a network. SNA supports several
different types of LUs. These are grouped together in numbered LU types,
such as LU type 2 for 3270 display terminals, and LU type 4 for printers.
The LU type for CICS-to-CICS communication is LU type 6.2, and is
frequently referred to as advanced program-to-program communication
(APPC). Each LU is given a unique name that identifies it in the network,
and this is referred to as the LU name.

Sometimes the name of the network that the LU is in is appended to the
name of the LU. It is then known as the network-qualified LU name, or
the fully qualified LU name, and it takes the form network-name.LU-name.

physical unit (PU)
A physical unit is the hardware and software components in a device that
manage its network resources. LUs reside within a PU, and one PU may
hold many LUs. There are several different types of PU. VTAM® running in
a mainframe host is a PU type 5, and NCP running in a 37x5 network
controller is a PU type 4. When workstations connect together in a
peer-to-peer manner they act as PU type 2.1. When a workstation connects
to a mainframe host in a hierarchical manner, it acts as a PU type 2.0. The
PU type 2.1 is described as an independent node (because it is
independent of a mainframe host), and the PU type 2.0 is a dependent
node.

control point (CP)
The SNA concept that relates LUs to PUs is a control point. A CP can be
thought of as that part of a PU that manages the LU.

exchange identification (XID)
Associated with the PU and CP is the exchange identification. XID is
actually the name of a data flow that PUs exchange during the early stages
of their attempt to establish a connection, but, in the context of SNA
configuration, XID refers to one of the fields within that XID flow. It is a
hexadecimal field which the PUs use to confirm the identity of each other.

18 CICS Family: Interproduct Communication



session
SNA uses the term session to refer to various types of data flow in a
network. To avoid ambiguity, it should always be qualified by a description
of the type of data flow, for example CP-CP session. However, when used
by CICS for APPC, it can be assumed to refer to data flow between LUs,
and so is an LU-LU session. There are usually several sessions between
any two LUs, and these are known as parallel sessions.

connection
CICS uses the term connection to refer to a group of sessions that connect
two CICS systems.

transaction program (TP)
In SNA, the term transaction program refers to the application program in
an APPC environment. The TP uses the LU to gain access to the network.
When CICS is using APPC, the TP is a CICS transaction.

conversation
In SNA, the term conversation describes the communication between two
TPs. That is, when two APPC TPs are in communication, they are said to
be holding a conversation. Conversations flow on LU-LU sessions. Each
conversation is allocated a session for its own private use. When the
conversation ends, the session is free to be used by another conversation.
There can only be one conversation between any two TPs, but one TP
could have multiple conversations with different TPs.

mode There may be a choice of many routes and paths in the network that an
LU-LU session could use. One route might be suitable for large volumes of
batch data, another might be reserved for smaller, high speed exchanges.
SNA allows for these different route types to be grouped into modes. A TP
can select an appropriate mode when it first establishes a conversation.
The conversation will flow on an LU-LU session that follows the route
defined by the node.

local, remote, partner
These terms are used in many contexts. For example, you could refer to
the local system, the remote system, and the partner system. When you are
at a workstation, you regard the workstation as the local system, the
machine your workstation is communicating with is the remote system, and
that remote system is your partner. However, these terms are all relative to
your point of reference, so the remote system regards itself as being a local
system with your workstation being its remote system, and each system is
a partner of the other.

In summary, it may help you to understand these terms if you visualize a session as
being like a pipe that links LUs. When the LU inserts data into the pipe it is
inevitable that the data will be passed to the LU at the other end of the pipe. Pipes
with similar characteristics are grouped together in a mode. These pipes are
created when the systems are first initialized and SNA is started, or when a TP first
requests the use of one. Several pipes usually run in parallel between two CICS
systems. When a CICS transaction wants to hold a conversation with a transaction
on another system, it requests the use of a pipe. It is given the sole use of a pipe.
When the transaction ends, the pipe is returned to the pool and can be allocated to
the next transaction.

SNA products
CICS does not provide its own SNA support. That is, CICS does not structure the
network data flows into the SNA format, nor is it responsible for initiating the SNA

Chapter 5. Configuring CICS for SNA communications 19



protocol when a data flow is received. These SNA functions are provided by a
separate SNA product, and CICS uses the services of that product. On a zSeries
host the SNA product is VTAM, and on an AIX machine it is AIX SNA Server/6000
(AIX SNA).

When you configure your systems, you have to configure both the CICS product
and the associated SNA product.

Preparing for SNA configuration
To establish a SNA connection, each system must:

1. Define itself to the network

2. Define the connection to its partner

3. Ensure that the remote system has a definition of the local system

You could regard the first step as the system registering its name and address with
the network; the second step as a system specifying its intended partner's name
and address so that the network can establish a link to it; and the third step as your
partner registering your system's name so that it will recognize your system's
requests when it receives them.

Matching parameters
The names that are used to define system resources include the network name, LU
name, PU name, CP name and XID.

Some of these names are used as parameters when configuring the CICS product,
and others are used as parameters when configuring the SNA product. Some are
used in both products. Some are used in one product on the local system and in
another product on the remote system. When a parameter is used in more than one
place, it is important that the same name is used. That is, the parameters must
match.

Mode name
The partners must use matching mode names. Any mode may be used, but a
convenient one is the #INTER architected mode.

Alias names
Some resources (typically the LU) may have an alias or local name as well as a
real name. The alias is only used internally within a local system. The partner
system recognizes only the real name, and it is that name that must match across
the systems.

Platform specific implementation
Depending upon the particular network configurations and SNA products being
used, you may find that not all the parameters are needed. For example, the XID
may be used rather than the CP name to identify the partner. In other
circumstances when, for example, there is only one LU in the PU, the CP may have
to have the same name as the LU. You should refer to the product-specific manuals
for clarification of these points when you are ready to proceed beyond this first
basic configuration.

The scenario
In the scenario chosen for this discussion, we assume that there is an established
SNA network of interconnected CICS on zSeries systems into which we are adding

20 CICS Family: Interproduct Communication



a CICS for AIX system. This chapter is written from the perspective of the AIX
systems' administrator who connects the workstations to the mainframe host.

To avoid the potential problem of duplicate names being used, and to assist
management of the network, the VTAM system administrator may act as
coordinator for the network resource names. You therefore need to agree the
network names of your workstations with the VTAM systems administrator.

Configuration details
The tables in the following sections show where the resource names are configured
in the CICS and SNA products. The information is generally given by naming the
attribute in which the resource name is specified as a parameter, and giving the
name of the definition statement or front-end panel in which that attribute appears.
If you need further information on the configuration tools used by the different
product you should refer to the product-specific manuals listed in the bibliography.

If the tables show that a name is specified in both CICS and the SNA product, then
the same matching name must be used in both. When a name is not defined in one
of the products, this is indicated by a dash (-).

There is not complete symmetry in the configuration details in the mainframe host
and the workstations. For example, the workstation configuration requires that it
knows the address of the mainframe host, but the mainframe is not given the
address of the workstation. This is because the workstations are regarded as the
calling system, and the mainframe the listener. This means that the session will be
initiated by the workstation calling the mainframe. Therefore the information the
workstation needs about the mainframe is different from the information the
mainframe needs about the workstation.

Mainframe host configuration
CICS on zSeries and VTAM will have already defined their network name and LU
name to the network. Table 6 shows where these names are defined in CICS on
zSeries and VTAM. Here they refer to the mainframe's local resources. You use
these names when you later configure the workstations where they refer to the
workstation's partner resources.

The workstations need to know the address of the mainframe host. This is a
12-character hexadecimal code assigned to the front-end processor. This code is
not used in the configuration of CICS on zSeries or VTAM and so is not shown in
the table. The network administrator will be able to tell you the address.

Table 6. Defining local resources to CICS on zSeries and VTAM.

CICS on zSeries VTAM

Network name - NETID= attribute in VTAM startup
procedure

LU name APPLID= attribute in the SIT The label on the APPL statement
that defines CICS to VTAM

Defining the workstations to CICS on zSeries and VTAM
You now have to agree with the CICS and VTAM system administrator on the
resource names that you use for your workstations. The workstations have to be
defined to CICS on zSeries and VTAM so that CICS on zSeries recognizes and
accepts session initiation requests from them. For each workstation the system

Chapter 5. Configuring CICS for SNA communications 21



administrator creates a new CONNECTION definition in CICS, and new PU, LU,
and MODEENT definition statements in VTAM.

Table 7 shows where the LU, PU, CP and XID names are defined. Remember that
these are the names of the mainframe's partner resources. You use these same
names when configuring the workstations, where they refer to those workstation's
local resources (see Table 8).

Table 7. Defining the workstation to CICS Transaction Server and VTAM.

CICS on zSeries VTAM

LU name NETNAME attribute in the
CONNECTION definition

The label on the LU statement

PU name - The label on the PU statement

CP name - CPNAME= attribute in the PU
statement

XID - IDBLK= and IDNUM= attributes in
the PU statement

Mode MODENAME attribute in the
SESSIONS definition

LOGMODE= attribute in the
MODEENT statement

Note: The workstation is in the same network as the mainframe, and so the network name
it uses is the same as that defined to VTAM in Table 6 on page 21.

AIX machine configuration
To configure the AIX machine, you must:

1. Define it to the network

2. Define a connection to its partner

AIX is a versatile platform and offers many ways of connecting CICS to the
network. The AIX SNA product can be in a different machine from the CICS for AIX
product. It can be using an Encina PPC Gateway, with CICS using TCP/IP to
communicate with the gateway before gaining access to the SNA network. The
machines can be in different networks. The example shown here describes the
basic case of a single machine, that is running both CICS for AIX and AIX SNA,
and that is in the same network as the mainframe.

Defining the AIX machine to the network
Table 8 shows where the local resources are defined to CICS for AIX and AIX SNA.
You use the names you have previously agreed with the mainframe system
administrator that are shown in Table 7.

Table 8. Defining local resources in CICS for AIX and AIX SNA

CICS for AIX AIX SNA

Network name LocalNetworkName= attribute in
the Region Definition

Local network name attribute in the
Initial Node Setup panel

LU name LocalLUName= attribute in the
Region Definition

Local LU name attribute in the Add
LU 6.2 Local LU Profile and the
Side Information Profile panels

CP name - control point name attribute in the
Initial Node Setup panel

XID - XID node ID attribute in the Initial
Node Setup panel

22 CICS Family: Interproduct Communication



Table 8. Defining local resources in CICS for AIX and AIX SNA (continued)

CICS for AIX AIX SNA

Mode DefaultSNAModeName= attribute in
the Communication Definition

Profile name attribute in the Add
LU 6.2 Mode Profile panel

Defining the connection to CICS on zSeries
Table 9 shows how you define the connection to the mainframe. All you have to
provide is the LU name (which is effectively the name of the CICS on zSeries
system), and the hardware address.

Table 9. Defining the connection to CICS on zSeries

CICS for AIX AIX SNA

LU name RemoteLUName attribute in the
Communications Definition

Fully qualified partner LU name
attribute in the Add LU 6.2 Partner
LU Profile panel

Address - Link address attribute in Link
station information in the Initial
Node Setup panel

Configuring CICS for SNA—next steps
This chapter shows what has to be done to configure your workstations for SNA
communications. Only information on the logical connections has been given. You
need to add information on the particular physical connections you are using (such
as whether you are using a Token Ring or Ethernet LAN, or a SDLC connection to
the mainframe).

The CICS on Open Systems Intercommunication Guide gives complete
configuration examples for various types of connections.

As stated in the introduction, your first aim must be to configure a basic setup and
test it with a simple application. For instance:

v APING is the APPC equivalent of the TCP/IP PING program. It can be used
independently of CICS as a stand-alone APPC application and so will test the
configuration of your SNA products.

v The CICS Server ISC PING Transaction is available as SupportPac CC02 at this
web site:

www.ibm.com/software/ts/cics/txppacs/cc02.html

Only after you are satisfied that you have a working APPC link should you expand
the configuration to include your own applications.

Chapter 5. Configuring CICS for SNA communications 23

http://www.ibm.com/software/ts/cics/txppacs/cc02.html


24 CICS Family: Interproduct Communication



Part 2. CICS intercommunication functions

This part describes the CICS intercommunication functions. The information is
intended for planners and analysts, and as an introduction for programmers.

© Copyright IBM Corp. 1992, 2010 25



26 CICS Family: Interproduct Communication



Chapter 6. Introduction to the CICS intercommunication
functions

This chapter gives a simple description of the CICS intercommunication functions.

In “Summary of CICS intercommunication functions,” the figures and explanations
deliberately gloss over technical details, but present the functions as seen by an
application programmer. The important point is that function shipping, asynchronous
processing, transaction routing, and distributed program link (DPL) are powerful
distributed functions that are transparent to the application programmer. Applications
can access local or remote resources and programs entirely under the control of
definitions created by the systems programmer.

Distributed transaction programming is a more complex facility and application
programmers need to be aware that a dialog is taking place with a remote
transaction. The program logic must react to the current state of the dialog.

“Which intercommunication function?” on page 28 gives some guidelines for the
selection of the correct intercommunication function for particular requirements.

Summary of CICS intercommunication functions
As an introduction for new CICS users, this section presents deliberately simplified
definitions of the CICS intercommunication functions.

Function shipping
A program in system CICSA accesses resources (such as files or transient data
queues) that are owned by remote system CICSB as though they were locally
owned. The diagram shows a data-access request.

EXEC CICS READ

Program

Data

CICSA CICSB

response

resource access

request

Asynchronous processing is an example of function shipping that does not access
data – the shipped request is an EXEC CICS START command for a remote
transaction.

Transaction routing
A terminal attached to system CICSA runs a transaction in remote system CICSB
as though it were a local transaction.

© Copyright IBM Corp. 1992, 2010 27



CICSA CICSB

response

Program

Transactiontransaction initiation

request

Terminal

Distributed program link
A program in system CICSA links a program in remote system CICSB as though it
were running in the local system.

Program

CICSA CICSB

EXEC CICS RETURN

EXEC CICS LINK
Program

Distributed transaction programming
Two programs, one in system CICSA and one in system CICSB, communicate
synchronously with each other. This dialog is called a conversation.

Program

CICSA CICSB

Program
Dialog

Which intercommunication function?
To help you choose the right intercommunication function, the list below gives
typical requirements and the functions that meet them:

v A terminal user needs to run a transaction owned by a different system
than the one to which he or she is connected.

Use transaction routing.

v A transaction wants to read/write data owned by another system.

28 CICS Family: Interproduct Communication



Use function shipping. However, function shipping has higher overheads than
transaction routing, so it is better to use transaction routing unless the transaction
accesses data in the local system as well as data in the remote system.

v A transaction wants to read/write IMS™ or DL/I data to which another
system has access.

Use distributed program link.

v A transaction needs to signal a remote system that it should start a named
transaction.

Use asynchronous processing.

v A transaction wants several accesses to remote data, possibly with some
processing between the accesses.

Use distributed program link if possible. This requirement can be met with
several function shipping requests, but DPL minimizes the data flows on the
network. If DPL cannot meet the whole requirement, a mixture of DPL and
function shipping is more efficient use of the network than total reliance on
function shipping.

v An application requires communication between two or more systems with
interdependent resource updates based on data exchanges.

Use distributed transaction programming.

Chapter 6. Introduction to the CICS intercommunication functions 29



30 CICS Family: Interproduct Communication



Chapter 7. Function shipping

This chapter contains the following topics:
v “Introduction to function shipping”
v “Transparency to application” on page 32
v “Remote resources that can be accessed” on page 32
v “How function shipping works” on page 34
v “Synchronization” on page 36
v “Function shipping examples” on page 36

Introduction to function shipping
CICS function shipping enables CICS application programs to use EXEC CICS
commands to:

v Access CICS files owned by other CICS systems by shipping file control
requests.

v Transfer data to or from transient data and temporary storage queues in other
CICS systems by shipping requests for transient data and temporary storage
functions.

v Initiate transactions in other CICS systems, or other non-CICS systems that
implement SNA LU Type 6 protocols, such as IMS, by shipping START requests.
This form of communication is described in Chapter 10, “Asynchronous
processing,” on page 51.

An illustration of a shipped file control request is given in Figure 2. In this figure, a
transaction running in a CICS system, CICA, issues a file control READ command
against a file called NAMES. From the resource definition table, CICA discovers that
this file is owned by a remote CICS system called CICB. CICA changes the READ
request into a suitable transmission format, and then ships it to CICB for execution.

In CICB, the request is passed to a special transaction known as the mirror
transaction. The mirror transaction recreates the original request, issues it on
CICB, and returns the acquired data to CICA.

Remote definition
of

file
NAMES

.
EXEC CICS READ
FILE
INTO(XXXX)
.
.
.

CICA

Local definition
of

file
NAMES

CICS MIRROR
transaction
(issues READ
command and
passes data
back)

CICB

file access

request

response

(NAMES)

Figure 2. Function shipping

© Copyright IBM Corp. 1992, 2010 31



Transparency to application
An application that uses function shipping need not know the location of the
requested resources; it uses file control commands, temporary storage commands,
and so on, as if all resources are owned by the system in which the application
runs. Entries in the CICS resource definition tables allow the system programmer to
specify that the named resource is not on the local (or requesting) system but on a
remote (or owning) system.

The definition of a remote resource can include both the name by which the
resource is known in the remote system, and a different name by which it is known
locally. When the resource is requested by its local name, CICS substitutes the
remote name before sending the request. This facility is useful when resources
exist with the same name on more than one system, but each contains data
peculiar to the system on which it is located.

Application programs can use the SYSID option of various EXEC CICS commands
to name remote systems explicitly. If this option is specified, the request is routed
directly to the named system, and the resource definition tables on the local system
are not used. Using SYSID in this way destroys the program's independence of the
resource's location. The advantage is that any system, including the local system,
can be named in the SYSID option. The decision whether to access a local
resource or a remote one can be taken at execution time.

Remote resources that can be accessed
Function shipping requests can access the following remote resources:

v CICS file control data sets

v Temporary storage

v Transient data

v IMS and DOS DL/I databases (from CICS on zSeries systems).

CICS file control data sets
Function shipping allows access to files located on a remote CICS system. The
following EXEC CICS commands are not supported:

v INQUIRE FILE

v INQUIRE DSNAME

v SET FILE

v SET DSNAME

Both read-only and update requests are allowed. Protection of data depends on the
security facilities available to the different CICS products. Updates to remote
recoverable files are not committed until the application program issues a syncpoint
request or terminates successfully. Logically-related updates of local and remote
files can be performed within the same logical unit of work, even if the remote files
are located on more than one connected CICS system.

Care should be taken when designing systems that use remote file requests
containing physical record identifier values (examples include BDAM, VSAM RBA,
and files with keys not embedded in the record). Application programs in remote
systems must have access to the correct values following updating or
reorganization of such files.

32 CICS Family: Interproduct Communication



IMS databases
Function shipping allows a CICS on zSeries transaction to access IMS/ESA® DM
and IMS/VS DB databases associated with a remote CICS z/OS system, or DL/I for
VSE/ESA databases associated with a remote CICS/VSE system.

CICS Transaction Server for Windows, CICS/400, and CICS on Open Systems
systems cannot access IMS or DL/I databases by function shipping, but can do so
by distributed program link (see Chapter 9, “Distributed program link,” on page 47).
The following discussion applies to CICS on zSeries systems only.

The IMS/ESA DM (DL/I) database associated with a remote CICS system can be a
local database owned by the remote system, or a database accessed using IMS
database control (DBCTL). To the CICS system that is doing the function shipping,
this database is simply remote.

As with file control, updates to remote DL/I databases are not committed until the
application reaches a syncpoint. In IMS/ESA DM, it is not possible to schedule more
than one PSB for a single logical unit of work, even when the PSBs are defined to
be on different remote systems. For this reason, logically-related DL/I updates on
different systems cannot be made in a single logical unit of work.

The PSB directory list (PDIR or DLZACT) is used to define a PSB as being on a
remote system. The remote system owns the database and the associated PCB
definitions. When DL/I access requests are made to another processor system by a
CICS system but no local requests are made, it is not necessary to install IMS on
the requesting system.

Temporary storage and transient data
Many of the uses made of transient data and temporary storage queues in a single
CICS system can be extended to an interconnected system environment. For
example, a queue of records can be created in a remote system for processing
overnight. Queues also provide a means of handling responses from remote
systems, while keeping local terminals free to enter other requests. A response can
be returned to a terminal when it is ready, and delivered to the operator when there
is a lull in entering transactions.

Temporary storage

Function shipping enables application programs to send data to, or retrieve data
from, temporary storage queues located on remote systems. A recoverable queue
must be defined as recoverable in its local (resource-owning) system.

Transient data

An application program can access intrapartition or extrapartition transient data
queues on remote systems. The resource definition in the requesting system
defines the named queue as being on the remote system. The queue definition in
the remote system specifies whether the queue is recoverable, and whether it has a
trigger level and associated terminal.

If a transient data destination has an associated transaction, the named transaction
must be defined to execute in the system owning the queue; it cannot be defined as
remote. If a terminal is associated with the transaction, it can be connected to
another CICS system and used through the transaction routing facility of CICS.

Chapter 7. Function shipping 33



The remote naming capability enables a program to send data to the CICS service
destinations, such as CSMT, in both local and remote systems.

How function shipping works
Two CICS components implement function shipping:

v The CICS transformer programs

v The CICS mirror transaction.

Figure 3 on page 35 illustrates how these components work together.

The transformer programs
If a CICS transaction issues a request to access a resource, the command level
EXEC interface program determines whether the resource is owned by the local
CICS system. If the resource is on another system, control passes to the
function-shipping transformer program.

DL/I (EXEC DL/I or CALL DLI) requests use the DL/I interface, which also provides
part of the transformer program's function.

A transformer program converts the request to a form suitable for transmission, and
calls the intercommunication component to send the request to the resource-owning
system.

The CICS intercommunication component sends the request to the remote system.
On the first request to a particular remote system on behalf of a transaction, the
communication component in the local system precedes the formatted request with
the mirror-transaction identifier, in order to attach this transaction in the remote
system. The local transformer program keeps track of whether the remote mirror
transaction terminates, and reinvokes it as required.

When a reply is received from the remote system, a second transformer program
decodes it. CICS uses the decoded reply to complete the original command-level
request.

The remote system uses its own transformer programs in dealing with the request
(see next section).

34 CICS Family: Interproduct Communication



The mirror transaction
A resource-owning system passes an incoming function-shipping request to the
mirror transaction. The first request from a particular remote transaction causes the
initiation of a new instance of the mirror transaction, which uses CICS
intercommunication facilities to communicate with the requesting system.

Using a CICS transformer program, the mirror transaction decodes the formatted
request, and executes the command. On completion of the command the mirror
transaction uses a transformer program to construct a formatted reply, and returns
this to the requesting system.

The mirror transaction remains active after sending its reply to the current command
in any of the following cases:

v Execution of a future command depends on the retention of system-specific
information established during execution of the current command, for example:

– REWRITE depends on prior READ UPDATE

– READNEXT depends on prior STARTBR

v Execution of a future command may depend on the retention of
application-specific information established during execution of the current
command, for example when a recoverable resource has been updated.

v The mirror remained active after replying to a previous command for one of the
reasons above (the mirror then remains active until the end of the logical unit of
work in the requesting system).

In other cases, the mirror terminates after replying to the current command.

An active mirror always terminates when the requesting transaction issues a
synchronization request or terminates successfully. The mirror always terminates
after executing a LINK command with the SYNCONRETURN option. For a further
explanation of SYNCONRETURN, please refer to “Synchronization” on page 48.

Multiple mirrors
A transaction can access recoverable and nonrecoverable resources in any order,
and is not affected by the location of recoverable resources (they could all be in

CICA CICB

Transformer 2Transformer 1 MirrorApplication

Function
shipping
request

Continues
processing

Codes
request

Transmits request

Receives response

Decodes
response

Invokes
transformer

Executes
request

Invokes
transformer

Returns
response

Decodes
request

Codes
response

Transformer 3
Intercomm.

Transformer 4

Figure 3. Relationship of mirror and transformers

Chapter 7. Function shipping 35



different remote systems, for example). When a local transaction accesses
resources in more than one remote system, the intercommunication component
invokes a mirror transaction in each remote system to execute requests for the local
transaction. Each mirror transaction follows the above rules for termination, and
when the transaction reaches a synchronization point, the intercommunication
component exchanges synchronization point messages with those mirror
transactions that have not yet terminated (if any).

Chained mirrors
The mirror transaction uses the EXEC CICS interface to execute CICS requests
and the DL/I CALL or the EXEC DLI interface to execute DL/I requests. The request
is thus processed as for any other transaction and the requested resource is
located in the appropriate resource table. If its entry defines the resource as being
remote, the mirror transaction's request is formatted for transmission and sent to the
specified remote system, which activates its own mirror transaction. This is called a
chained-mirror.

Synchronization
CICS recovery and restart facilities ensure that when the requesting transaction
reaches a synchronization point, any mirror transactions that are updating
recoverable resources also take a synchronization point, so that changes to
recoverable resources in remote and local systems are consistent. The CICS
master terminal (or, with CICS/400, the control region) receives notification of any
failures in this process, so that suitable corrective action can be taken. This action
can be taken manually or by user-written code.

When a transaction issues a synchronization point request, or terminates
successfully, the intercommunication component sends a message to the mirror
transaction that causes it also to issue a synchronization point request and
terminate. The successful synchronization point by the mirror transaction is
indicated in a response sent back to the requesting system, which then completes
its synchronization point processing, so committing changes to any recoverable
resources.

Function shipping examples
Figure 4 on page 37 and Figure 5 on page 37 give examples to illustrate the lifetime
of the mirror transaction.

36 CICS Family: Interproduct Communication



In Figure 5 the mirror is long-running.

System A

ApplicationTransaction
.
.

EXEC CICS READ
FILE('RFILE')
...

Free session. Reply is
passed back to the
application, which
continues processing.

System B

Attach mirror transaction.
Process READ request.

Free session. Terminate
mirror.

Transmitted Information

'READ' request

'READ' Reply, Last

Figure 4. Function shipping—simple inquiry. Here, no resource is being changed; the session is freed and the mirror
task is terminated immediately.

System A

ApplicationTransaction
.
.

EXEC CICS READ UPDATE
FILE('RFILE')

.

.

.
Reply passed to application

.

.
EXEC CICS REWRITE
FILE('RFILE')

Reply passed to application
.
.
.

EXEC CICS SYNCPOINT

Sync point completed.
Application continues.

System B

Attach mirror transaction.

Perform READ UPDATE.
Enqueue on update record.
Mirror waits.

Mirror performs REWRITE.

Mirror waits, still holding the
enqueue on the updated record.

Mirror takes syncpoint.
commits the record, releases
the enqueue, frees the
session, and terminates.

Transmitted Information

'READ UPDATE' request

'READ UPDATE' reply

'REWRITE' request

'REWRITE' reply

'SYNCPOINT' request,last

positive or negative response

Figure 5. Function shipping—update. Because the mirror must wait for the REWRITE, it does not terminate until
SYNCPOINT is received. Note that the enqueue on the updated record would not be held beyond the REWRITE
command if the file was not recoverable.

Chapter 7. Function shipping 37



38 CICS Family: Interproduct Communication



Chapter 8. Transaction routing

This chapter contains the following topics:
v “Introduction to transaction routing”
v “Initiating transaction routing” on page 40
v “The relay program” on page 43
v “Basic mapping support” on page 44
v “The routing transaction (CRTE)” on page 44

Introduction to transaction routing
CICS transaction routing allows terminals connected to one CICS system to run
with transactions in another, connected, CICS system. This means that you can
distribute terminals and transactions around your CICS systems and still have the
ability to run any transaction with any terminal.

Figure 6 shows a terminal connected to one CICS system running with a user
transaction in another CICS system. Communication between the terminal and the
user transaction is handled by a CICS-supplied transaction called the relay
transaction.

Two different CICS products must be connected by an LU6.2 link. Transaction
routing over LU6.1 links is not supported.

In transaction routing, the term terminal is used in a general sense to mean such
things as an IBM 3270, or a single-session APPC device, or an APPC session to
another CICS system, and so on. All terminal and session types supported by
CICS on zSeries are eligible for transaction routing, except those given in the
following list:

v LUTYPE6.1 connections and sessions

v Pooled 3600 or 3650 pipeline logical units

v MVS™ system consoles.

CICS Transaction Server for Windows, CICS/400, and CICS on Open Systems
support minimum BMS. (They support SEND TEXT.) Only CICS on zSeries systems
support batch data interchange, standard BMS, and full BMS. Depending on these
product capabilities, a user transaction can use CICS terminal control, BMS, or
batch data interchange facilities to communicate with the terminal, as appropriate
for the terminal or session type. Mapping and data interchange functions are
performed in the application-owning system (CICS B in Figure 6). BMS paging
operations are performed in the terminal-owning system (CICS A in Figure 6).

CICSA CICSB

LU6.2

User
Transaction

CICS Relay
Transaction

Terminal

Figure 6. The elements of transaction routing

© Copyright IBM Corp. 1992, 2010 39



Pseudoconversations are supported (except when the terminal is an APPC
session), and the various transactions that make up a pseudoconversation can be
in different systems.

Initiating transaction routing
Transaction routing can be initiated in the following three ways:

1. A terminal sends a request to the CICS terminal-owning system to start a
transaction. On the basis of an installed resource definition for the transaction
(and possibly, in CICS on zSeries and CICS Transaction Server for Windows,
on decisions made by a user-written dynamic routing program) the request is
routed to an appropriate transaction-owning system, and the transaction runs as
if the terminal were attached to the transaction-owning system.

2. A transaction started by automatic transaction initiation (ATI) acquires a terminal
that is owned by another CICS system.

3. A CICS on zSeries transaction issues an ALLOCATE command for a session to
an APPC terminal or connection that is owned by another CICS system.

4. The CICS-supplied transaction CRTE is used to invoke transactions in other
systems. See “The routing transaction (CRTE)” on page 44.

Terminal-initiated transaction routing
When a terminal requests transaction initiation, CICS examines the installed
transaction definition. If the transaction is defined with a remote system named in
the REMOTESYSTEM option (or REMOTESYSID in CICS on Open Systems),
CICS initiates the relay transaction, which passes control to the relay program to
drive transaction routing.

Static transaction routing
Static transaction routing is a term used to distinguish standard transaction routing
from dynamic transaction routing. In CICS/400, all transaction routing is static. In
CICS on zSeries and CICS on Open Systems, static transaction routing occurs
when DYNAMIC(NO) is specified in the transaction definition.

In static transaction routing, the request is routed to the system named in the
REMOTESYSTEM option. If REMOTESYSTEM is unspecified, or if it names the
local CICS system, the transaction is a local transaction, and transaction routing is
not involved.

Dynamic transaction routing
Dynamic transaction routing allows a user-written program to select the system to
which a transaction routing request is to be directed. Dynamic transaction routing is
provided by CICS on zSeries, CICS on Open Systems, and CICS Transaction
Server for Windows. The implementations are different (see following descriptions).
CICS/400 does not support dynamic transaction routing.

CICS on zSeries and CICS on Open Systems: In a CICS on zSeries or CICS on
Open Systems system, you can use the DYNAMIC option when defining a
transaction. This includes a remote definition of a CICS Transaction Server for
Windows or CICS/400 transaction.

Specifying DYNAMIC(YES) means that you want the opportunity to route the
terminal data to an alternative transaction at the time the defined transaction is
invoked. CICS enables this by allowing a user-supplied program, called the
dynamic transaction routing program, to examine the terminal input data and
redirect it to any transaction and system it chooses. In CICS on zSeries, this

40 CICS Family: Interproduct Communication



program has the default name of DFHDYP, but an alternative name may be defined
by using the DTRPGM system initialization parameter.

Parameters are passed in a communications area between CICS and the routing
program. The program may change some of these to influence subsequent CICS
action. For example, in CICS on zSeries, some of the parameters are:

v Invocation reason. The routing program can be reinvoked after an unsuccessful
routing attempt or when the target transaction has terminated.

v Error information.

v The SYSID of the target system. Initially, the one specified on the
REMOTESYSTEM option for the installed transaction (or REMOTESYSID in
CICS on Open Systems).

v The name of the target transaction. Initially, the name specified on the
REMOTENAME option for the installed transaction.

v A pointer to a data area containing the initial input data from the terminal.

The dynamic transaction routing program can issue most EXEC CICS commands.

Dynamic transaction routing enables you to make transaction routing decisions
based on such factors as input to the transaction, available CICS systems, relative
loading of the available systems, and so on.

CICS Transaction Server for Windows: CICS Transaction Server for Windows
provides a user exit in which a user program can change the target system of a
transaction routing request. This exit can also change the target system for any
shipped function request and provide a target system for a transaction not defined
in the local system.

The exit, if defined, is called before processing any of the following:

v An undefined transaction code

v A transaction routing request

v A function shipping request

v A DPL request

v Any command with a SYSID option.

Shipping terminal definitions
Terminals defined as shippable do not need a definition in the transaction-owning
system. If necessary to support transaction routing, the terminal-owning system
sends the terminal definition to the transaction-owning system.

Automatic transaction initiation
Automatic transaction initiation (ATI) is the process whereby a transaction request
made internally within a CICS system or systems network leads to the scheduling of
the transaction.

An ATI request can cause the initiation of a transaction in a remote system (see
Figure 7 on page 43).

ATI also allows a request for a transaction owned by a particular CICS system to
name a terminal that is owned by another, connected system (see Figure 7 on page
43). Although the original ATI request occurs in the application-owning system, it is
sent by CICS to the terminal-owning system, where it causes the relay transaction
to be initiated in conjunction with the specified terminal.

Chapter 8. Transaction routing 41



The user transaction in the application-owning system is then initiated as described
on page “Terminal-initiated transaction routing” on page 40 for terminal-initiated
transaction routing, with one important difference. The extra factor in this case is the
AID (automatic initiate descriptor) associated with an ATI request. The AID specifies
the names of the remote transaction and system, (P1 and S1 in Figure 7 on page
43). In Figure 7 on page 43, the terminal-owning system (S2) must find a
transaction definition that specifies REMOTENAME (P1) and REMOTESYSTEM
(S1) (or REMOTESYSID on CICS on Open Systems).

In a CICS on zSeries system, an alternative to REMOTESYSTEM is
DYNAMIC(YES). In CICS/VSE and CICS Transaction Server for VSE/ESA, if
DYNAMIC(YES) is coded, the dynamic routing program is not driven and the
remote system name is taken from the AID. In CICS Transaction Server for z/OS, if
DYNAMIC(YES) is coded, the dynamic routing program is driven, but the remote
system name is still taken from the AID; the routing program can do other
things—for example, update counts of requests routed to various remote systems.

In summary, if S2 finds a transaction definition that specifies REMOTENAME (P1)
and either REMOTESYSTEM (S1) or DYNAMIC(YES), the START command is
routed back to S1; otherwise the START command is rejected.

ATI requests are queued:

v If the link to the terminal-owning system is not available, in the
application-owning system.

v If the terminal is not available, in the terminal-owning system.

The overall effect is to create a “single-system” view of ATI as far as the
application-owning system is concerned; the fact that the terminal is remote does
not affect the way in which ATI appears to operate.

In the transaction-owning system, the normal rules for ATI apply. The transaction
can be initiated from a transient data queue when the trigger level is reached, or on
expiry of an interval control START request. Note particularly that, for transient data
initiation, the transient data queue must be in the same system as the transaction.

Figure 7 on page 43 shows an example of ATI involving three systems:

S0 The initiating system

S1 The transaction-owning system

S2 The terminal-owning system.

42 CICS Family: Interproduct Communication



Terminal definitions not shipped with ATI requests
As mentioned in “Shipping terminal definitions” on page 41, CICS ships a copy of
the terminal definition to the transaction-owning system when necessary to support
transaction routing. This definition is available for use with ATI requests received
subsequently by the transaction-owning system.

However, terminal definitions are not shipped at the time an ATI request is
received. If an ATI request names a terminal not already known in the
transaction-owning system, the terminal-not-known condition occurs.

User exits for terminal-not-known condition: In CICS on zSeries systems only,
two global user exits, XALTENF and XICTENF, help you to deal with the
terminal-not-known condition.

The relay program
When a terminal operator enters a transaction code, and CICS determines that the
transaction is in a remote system, a local relay transaction is attached to execute a
CICS-supplied program known as the relay program. The relay program provides
the communication mechanism between the terminal and the remote transaction.
Note that in CICS on Open Systems, the relay is a function running in a shared
library.

Although CICS determines the program to be associated with the relay transaction,
the user's definition for the remote transaction determines the other attributes of the
relay transaction. These are usually those of the “real” transaction in the remote
system.

When the relay transaction is attached, it acquires an intersystem session and
sends a request to the application-owning system, to cause the “real” user
transaction to be started. In the application-owning system, the terminal is
represented by a control block known as the surrogate TCTTE (in CICS on Open
Systems, terminal surrogate). This TCTTE becomes the transaction's principal

START
TRANSID( P1 )
SYSID( S1 )
TERMID(T2 )

Determines
that T2 is
owned by S2 ,
sends request
to S2

Initiates
transaction

Checks for
transaction
defined with
REMOTENAME
(P1)
and initiates
relay program

T2

Initiating
system

Transaction-
owning system

Terminal-
owning system
S2S1S0

Asynchronous

processing

request

Transaction

routing

request

Function

shipped

ATI request

P1

Figure 7. Automatic transaction initiation involving three CICS systems

Chapter 8. Transaction routing 43



facility, and is indistinguishable by the transaction from a “real” terminal entry. If the
transaction issues a request to its principal facility, the request is shipped back to
the relay transaction over the intersystem session. The relay transaction then issues
the request or output to the terminal. In a similar way, terminal status and input are
shipped through the relay transaction to the user transaction.

Automatic transaction initiation is handled in a similar way. If a transaction that is
initiated by ATI requires a terminal that is connected to another system, a request to
start the relay transaction is sent to the terminal-owning system. When the terminal
is free, the relay transaction is connected to it.

The relay transaction remains in existence for the life of the user transaction and
has exclusive use of the session to the remote system during this period. When the
user's transaction terminates, an indication is sent to the relay transaction, which
terminates and frees the terminal and the intersystem session.

Basic mapping support
CICS Transaction Server for Windows, CICS on Open Systems, and CICS/400
support only the minimum level of BMS. (They support SEND TEXT.)

The mapping operations of BMS are performed in the system on which the user's
transaction is running; that is, the application-owning system. The mapped
information is routed between the terminal and this transaction via the relay
transaction, as for terminal control operations.

When transaction routing with BMS, you should be aware of the limitations of BMS,
and of the possible different levels of support in the application owning region and
the terminal owning region when they are running on CICS systems on different
platforms.

The routing transaction (CRTE)
The routing transaction (CRTE) is a CICS-provided transaction that enables a
terminal operator to invoke transactions that are owned by a connected CICS
system. It differs from normal transaction routing in that the remote transactions do
not have to be defined in the local system. However, the terminal through which
CRTE is invoked must be defined on the remote system (or defined as “shippable”
in the local system), and the terminal operator needs security authorization if the
remote system is protected. For the security support available, see the CICS
Intercommunication manual for each product.

CRTE can be used from any 3270 display device.

To use CRTE, the terminal operator enters:
CRTE SYSID=xxxx

where xxxx is the local name of the remote system. The transaction then indicates
that a routing session has been established, and the user enters input of the form:
yyyyzzzzzz

where yyyy is the name by which the required remote transaction is known on the
remote system, and zzzzzz is the initial input to that transaction. Subsequently, the

44 CICS Family: Interproduct Communication



remote transaction can be used as if it had been defined locally and invoked in the
ordinary way. All further input is directed to the remote system until the operator
terminates the routing session.

In secure systems, operators are normally required to sign on before they can
invoke transactions. The first transaction that is invoked in a routing session is
therefore usually the sign-on transaction CESN; that is, the operator signs on to the
remote system. The use of CRTE itself can also be restricted by security.

Although the routing transaction is implemented as a pseudoconversational
transaction, the terminal from which it is invoked is held by CICS until the routing
session is terminated. Any ATI requests that name the terminal are therefore
queued until the CANCEL command is issued.

The CRTE facility is particularly useful for invoking the master terminal transaction,
CEMT, on a particular remote system. It is an alternative to installing a definition of
the remote CEMT in the local system. CRTE is also useful for testing remote
transactions before final installation.

Chapter 8. Transaction routing 45



46 CICS Family: Interproduct Communication



Chapter 9. Distributed program link

This chapter contains the following topics:
v “Introduction to DPL”
v “Why use DPL?” on page 48
v “Synchronization” on page 48
v “DL/I and SQL databases” on page 48
v “Restrictions when using DPL” on page 48
v “Abends when using DPL” on page 49

Introduction to DPL
When a CICS application program issues an EXEC CICS LINK command, control
passes to a second program, named in the command. The second program
executes and, when it completes, control returns to the first program at the
instruction following the LINK command. The linked-to program can return data to
the linking program in either of the following cases:

v The LINK command has used the COMMAREA option to pass the address of a
communication area.

v The CICS region is CICS TS for z/OS, Version 3.1 or later, and the programs
exchange data by means of a “channel”. (For information about channels, see
the Application Programming Guide for your CICS zSeries product.)

Distributed program link (DPL) extends the use of the EXEC CICS LINK command
so that the linking and linked-to programs can be in different CICS systems. The
systems can be copies of the same CICS product or of different CICS products.

In certain circumstances, the use of DPL can improve performance by reducing the
number of data flows between connected CICS systems.

You can specify that the linked program is to run on a connected CICS system by
coding the SYSID option in the LINK command, or by specifying the remote system
name in the local definition of the program.

In Figure 8, program A links to a program B, which is in a different CICS system.
The arrowed line represents the flow of control. To program A, program B appears
as a called subroutine.

EXEC CICS
RETURN

CICS system

Program B

EXEC CICS
LINK

CICS system

Program A

Figure 8. Distributed program link

© Copyright IBM Corp. 1992, 2010 47

#
#
#



Why use DPL?
The following are some reasons why you use might use DPL:

v To separate the end-user interface (for example, BMS screen handling) from the
application business logic (for example, accessing and processing data). This
makes it easier to port part of an application between systems; an example
would be moving the end-user interface from a 370/390 system to a workstation.

v To obtain performance benefits from running programs closer to the resources
they access, reducing the need for function shipping requests.

v Where applicable, to provide a simpler solution than distributed transaction
programming (DTP).

Synchronization
DPL provides two ways to handle synchronization:

1. If you code SYNCONRETURN, the linked-to program commits its resource
updates immediately before returning control to the linking program. There are
separate units of work in the two communicating systems.

The linked-to program may take one or more syncpoints during its execution.
However, the response the linking program is given (which may be Normal or
Rollback) corresponds to the outcome of the syncpoint taken by CICS on return
from the linked-to program, and does not relate to the outcome of any of the
syncpoints the linked-to program may have initiated.

2. If you do not code SYNCONRETURN, the linking program initiates commitment
in both systems, either by issuing a SYNCPOINT command or implicitly at task
end.

Data integrity considerations govern the decision whether or not to use the
SYNCONRETURN option.

DL/I and SQL databases
DPL is an easy way for a CICS Transaction Server for Windows, CICS on Open
Systems, or CICS/400 application program to access DL/I and SQL databases and
BDAM files on a remote CICS system. The program simply links to an application
program (in the data-owning system) that reads and updates the databases or files.

Another way to access this data is to use distributed transaction programming
(DTP) as described in Chapter 11, “Distributed transaction programming,” on page
59. DTP is more difficult and therefore more costly to develop, but, if well designed,
should be more efficient in use.

Restrictions when using DPL
There are a number of restrictions on the programs that you can link to using DPL.

You should not link to programs that issue syncpoints (unless SYNCONRETURN is
coded in the LINK command). See “Taking syncpoints” on page 64.

Because there is no terminal involved, you should not link to programs that issue:

v Terminal control commands to the system in which the linking program is running

v Commands that inquire on terminal attributes (such as ASSIGN commands)

v BMS commands

48 CICS Family: Interproduct Communication



v Batch data interchange commands

v Commands that address the TCTUA (programs can use the communication area
to pass data).

For DPL between any combination of CICS products, the maximum recommended
length of a communications area is 32500 bytes.

Abends when using DPL
If the linked-to program terminates abnormally, the mirror transaction returns the
last abend code to the linking system. The abend code returned is the last abend
to occur in the linked-to program, which may have handled other abends before
terminating.

Chapter 9. Distributed program link 49



50 CICS Family: Interproduct Communication



Chapter 10. Asynchronous processing

This chapter contains the following topics:
v “Introduction to asynchronous processing”
v “Example” on page 52
v “Asynchronous processing methods” on page 52
v “Asynchronous processing using START/RETRIEVE commands” on page 53
v “System programming considerations” on page 56
v “Asynchronous processing example (with NOCHECK)” on page 57

Introduction to asynchronous processing
Asynchronous processing is a way of distributing the processing of an application
between connected systems. In contrast to distributed transaction programming, the
processing is asynchronous.

In distributed transaction programming, a session is held by two transactions for the
period of a “conversation” between them, and requests and replies (if any) can be
directly correlated.

In asynchronous processing, requests and replies are transmitted on different
sessions. No processing dependency exists between a request and a reply, and no
assumptions are made about the timing of the reply. The differences between
synchronous and asynchronous processing are illustrated in Figure 9. The starting
of TRAN4 can be time-dependent and can be delayed by scheduling constraints in
System B.

In general, asynchronous processing is applicable to any situation in which it is not
necessary or desirable to tie up local resources while a remote request is being
processed.

Asynchronous processing is not suitable for applications that require synchronized
changes to local and remote resources; for example, it cannot be used to process
concurrent logically-related updates to data in different systems.

Synchronous Processing (DTP)

TRAN1 andTRAN2 hold synchronous
conversation on session.

Asynchronous Processing

TRAN3 initiatesTRAN4 and sends
request. At a later time,TRAN4
initiatesTRAN5 and sends reply
No direct correlation between
executions ofTRAN3 andTRAN5.

Note: TRAN4 could be designed
to request a new invocation
ofTRAN3.

TRAN4

TRAN2TRAN1

TRAN3

TRAN5

System A System B

Figure 9. Synchronous and asynchronous processing compared

© Copyright IBM Corp. 1992, 2010 51



Note that, in Figure 9 on page 51, any changes made by the synchronous
transactions TRAN1 and TRAN2 can be co-ordinated for recovery purposes; any
changes made by the asynchronous transactions TRAN3, TRAN4, and TRAN5
cannot.

Example
A typical asynchronous processing application is online inquiry on remote
databases; for example, a credit rating check application. A terminal operator uses a
local transaction to enter a succession of inquiries without waiting for replies. For
each inquiry, the local transaction initiates a remote transaction to process the
request, so that many copies of the remote transaction can be executing
concurrently. The remote transactions send their replies by initiating a local
transaction (possibly the same transaction) to deliver the output to the operator
terminal. The replies may not arrive in the same order as the inquiries were issued;
correlation between the inquiries and the replies must be made by means of fields
in the user data.

Asynchronous processing methods
In CICS, asynchronous processing can be done in two ways:

1. By using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote system
in much the same way as you would in a single CICS system. This type of
asynchronous processing is essentially a form of CICS function shipping, and as
such, is usually transparent to the application. CICS recognizes that a
transaction is remote in one of two ways:

v The transaction resource definition specifies that it is remote

v The START command includes the SYSID option to specify a remote CICS
system.

A CICS transaction that is initiated by a remotely-issued start request can use
the RETRIEVE command to retrieve any data associated with the request. Data
transfer is restricted to a single record passing from the initiating transaction to
the initiated transaction.

A CICS transaction can use the EXEC CICS ASSIGN STARTCODE command
to determine how it was initiated.

Asynchronous processing is more fully discussed under “Asynchronous
processing using START/RETRIEVE commands” on page 53.

2. By using distributed transaction programming (DTP), a cross-system method
with no single-system equivalent.

When you use DTP to attach a remote transaction, you also allocate a session
and start a conversation. This permits you to send data directly and, if you want,
to receive data from the remote transaction. Your transaction design determines
the format and volume of the data you exchange. For example, you can use
repeated SEND commands to pass multi-record files. However short the
conversation, during the time it is in progress, the processing is synchronous.
Error recovery and syncpoint functions are available using the normal DTP
commands.

When you have exchanged data, you terminate the conversation and quit the
local transaction, leaving the remote transaction to continue processing
asynchronously.

DTP can be used for CICS—non-CICS communication, as well as for
CICS—CICS communication.

52 CICS Family: Interproduct Communication



If data conversion is required, the DTP application must contain logic to handle
this.

Distributed transaction programming is more fully discussed under Chapter 11,
“Distributed transaction programming,” on page 59.

Asynchronous processing using START/RETRIEVE commands
The interval control commands that can be used for asynchronous processing are:

v START

v CANCEL

v RETRIEVE.

Starting and canceling remote transactions
The interval control START command is used to queue a transaction-initiation
request in a remote CICS system. The command is effectively function shipped. In
the remote system, the mirror transaction is invoked to issue the START command.

You can include time-control information on the shipped START command, using
the INTERVAL or TIME option. Before a command is shipped, a TIME specification
is converted by CICS to a time interval relative to the local clock. If the ends of a
link are in different time zones, use the INTERVAL option.

The time interval specified in a START command is the time at which the remote
transaction is to be initiated, not the time at which the request is to be shipped to
the remote system.

A START command shipped to a remote CICS system can be canceled, before the
expiry of the time interval, by shipping a CANCEL command to the same system.
The START command to be canceled is uniquely identified by the REQID value
specified on the START command and on the associated CANCEL command. Any
task can issue the CANCEL command.

Passing information with the START command
The START command has a number of options that enable information to be made
available to the remote transaction when it is started. If the remote transaction is in
a CICS system, the information is obtained by using the RETRIEVE command. The
information that can be specified is summarized in the following list:

v User data specified in the FROM option. This is the principal way in which data
can be passed to the remote transaction.

v Additional user data can be located by using the QUEUE option, which could (for
example) identify a temporary storage queue.

v A terminal name—specified in the TERMID option. This is the name of a terminal
that is to be associated with the remote transaction when it is initiated. If a
terminal is defined in the system that owns the remote transaction but is not
owned by that system, it is acquired by transaction routing. This is illustrated in
Figure 7 on page 43.

In a CICS on zSeries system, the global user exits XICTENF and XALTENF can
be coded to cover the case where the terminal is not defined in the
application-owning system.

v The transaction name and terminal name to be used for replies—specified in the
RTRANSID and RTERMID options. These options provide a means for the
remote transaction to pass a reply to the local system. (That is, the TRANSID

Chapter 10. Asynchronous processing 53



and TERMID specified by the remote transaction on its reply are the RTRANSID
and RTERMID specified by the local transaction on the initial request.)

Passing an APPLID with the START command

If you have a transaction that can be started from several different systems, and
that is required to issue a START command to the system that initiated it, you can
arrange for each invoking transaction to send its local system APPLID as part of the
user data in the START command. A transaction can obtain its local APPLID by
using an ASSIGN APPLID command.

Improving performance of intersystem START requests
In some inquiry-only applications, sophisticated error-checking and recovery
procedures may not be justified. When the transactions make inquiries only, the
terminal operator can retry an operation if no reply is received within a specific time.
In such a situation, the number of data flows to and from the remote system can be
substantially reduced by using the NOCHECK option of the START command.
When the connection between the two systems is through VTAM, this can result in
considerably improved performance. The trade-off is between performance and
sophisticated recovery procedures.

A typical use for the START NOCHECK command is in the remote inquiry
application described in “Example” on page 52.

The transaction attached as a result of the terminal operator's inquiry issues an
appropriate START command with the NOCHECK option, which causes a single
message to be sent to the appropriate remote system to start, asynchronously, a
transaction that makes the inquiry. The command should specify the operator's
terminal identifier. The transaction attached to the operator's terminal can now
terminate, leaving the terminal available for either receiving the answer or initiating
another request.

The remote system performs the requested inquiry on its local database, then
issues a start request for the originating system. This command passes back the
requested data, together with the operator's terminal identifier. Again, only one
message passes between the two systems. The transaction that is then started in
the originating system must format the data and display it at the operator's terminal.

If a system or session fails, the terminal operator must reenter the inquiry, and be
prepared to receive duplicate replies. To aid the operator, either a correlation field
must be shipped with each request, or all replies must be self-describing.

An example of intercommunication using the NOCHECK option is given in Figure 10
on page 57.

The NOCHECK option is always required when shipping of the START command is
queued pending the establishment of links with the remote system (see “Local
queuing of START commands for remote transactions” on page 55).

Including start request delivery in a logical unit of work
The delivery of a start request to a remote system can be made part of a logical
unit of work by specifying the PROTECT option on the START command. The
PROTECT option indicates that the remote transaction must not be scheduled until
the local one has successfully completed a synchronization point. (It can take the
synchronization point either by issuing a SYNCPOINT command or by terminating.)

54 CICS Family: Interproduct Communication



Successful completion of the syncpoint guarantees that the start request has been
delivered to the remote system. It does not guarantee that the remote transaction
has completed, or even that it will be initiated.

Deferred sending of START requests with NOCHECK option
For START commands with the NOCHECK option, CICS defers transmission of the
request to the remote system.

START requests with NOCHECK are deferred until one of the following events
occurs:

v The transaction issues a syncpoint.

v The transaction terminates with an implicit syncpoint.

v The transaction issues any other type of function shipping request—for example,
a WRITE TS, or a START without the NOCHECK option.

v A sufficient number of START NOCHECK requests for the same remote system
have accumulated on the local system to make transmission efficient.

There are exceptions to the above rules:

v In CICS on zSeries MRO intercommunication, START commands with
NOCHECK are not deferred.

v In CICS on Open Systems, a START NOCHECK with the PROTECT option
causes the buffer to be flushed.

The first, or only, start request transmitted from a transaction to a remote system
carries the begin-bracket indicator; the last, or only, request carries the end-bracket
indicator. Also, if any of the start requests issued by the transaction specifies
PROTECT, the last request carries the syncpoint-request indicator. Deferred
sending allows the indicators to be added to the deferred data, and thus reduces
the number of transmissions required. The sequence of requests is transmitted
within a single SNA bracket and all the requests are handled by the same mirror
task.

Local queuing of START commands for remote transactions
When a local transaction is ready to ship a START command, the intersystem
facilities may be unavailable, either because the remote system is not active or
because a connection cannot be established. The normal CICS action in these
circumstances is to raise the SYSIDERR condition. This can be avoided by using
the NOCHECK option, and arranging for CICS to queue the request locally and
forward it when the required link is in service.

If the required connection is out of service, CICS queues a START NOCHECK
command for a remote transaction when two conditions are satisfied:

1. The SYSID option is not coded in the START command

2. The local definition of the transaction specifies LOCALQ(YES).

CICS on zSeries products support the XISLCLQ global user exit, which allows
flexibility by enabling a user-written program to make a decision about local
queueing, overriding the LOCALQ option.

Data retrieval by a started transaction
A CICS transaction that is started by a start request can get user data and other
information associated with the request by using the RETRIEVE command.

Chapter 10. Asynchronous processing 55



In accordance with the normal rules for interval control, CICS queues a start
request for a transaction that carries both user data and a terminal identifier if the
transaction is already active and associated with the same terminal. During the
waiting period, the data associated with the queued request can be accessed by
the active transaction by using a further RETRIEVE command. Such an access
automatically cancels the queued start request.

Thus, it is possible to design a transaction that can handle the data associated with
multiple start requests. Typically, a long-running transaction could be designed to
accept multiple inquiries from a terminal and ship start requests to a remote system.
From time to time, the transaction could issue RETRIEVE commands to receive the
replies, the absence of further replies being indicated by the ENDDATA condition.

The WAIT option of the RETRIEVE command can be used to put the transaction
into a WAIT state pending the arrival of the next start request from the remote
system. Overall application design should ensure that a transaction cannot get into
a permanent wait state due to the absence of further start requests—for example,
the transaction can be defined with a timeout interval. (Note that this option is not
supported by CICS on Open Systems.)

Terminal acquisition by a remotely-initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility. It makes no difference whether the start request was issued by a user
transaction in the local CICS system or was received from a remote system and
issued by the mirror transaction.

Starting transactions

You can name a system, rather than a terminal, in the TERMID option of the
START command.

If CICS finds that the “terminal” named in a start request is a system, it selects an
available session to that system and makes it the principal facility of the started
transaction. If no session is available, the request is queued until there is one.

System programming considerations
Resources must be defined for asynchronous processing, as briefly indicated below.
Detailed information on how to define the resources is given in the resource
definition guide for your CICS product.

v A link to a remote system must be defined.

v Remote transactions that are to be initiated by start requests must be defined as
remote resources to the local CICS system. This is not necessary, however, for
transactions that are initiated only by START commands that name the remote
system explicitly in the SYSID option.

v If the QUEUE option is used, the additional user data located by that option must
be accessible from the system to which the START command is shipped.

v In a START command, the RTRANSID option specifies a transaction identifier
that can be retrieved by the started transaction and used in a subsequent START
command. The transaction named by the RTRANSID option must be defined in
the remote system.

For example, in Figure 9 on page 51, the START command in TRAN3 would
include the options TRANSID(TRAN4) and RTRANSID(TRAN5). These options

56 CICS Family: Interproduct Communication



cause TRAN4 to be started, and indicate to TRAN4 that it in turn should start
TRAN5. This is the intended use of the RTRANSID option; its actual use is
application-dependent. TRAN5 must be defined to System B.

Asynchronous processing example (with NOCHECK)

Figure 10 shows an example of asynchronous processing using the NOCHECK
option of the START command.

SystemA System BTransmitted
Information

TransactionTRX
initiated by terminalT1.

EXEC CICS STARTTRANSID ('TRY')
RTRANSID('TRZ') RTERMID('T1')
FROM(area) LENGTH(length)

NOCHECK

Terminate, and free terminalT1.
T1 could now initiate
transaction, butTRZ could not
start until T1 became free again.

Attach mirror transaction.

Perform STARTrequest with
TRANSID value of 'TRZ' andTERMID
value of 'T1'. Free session.
Terminate mirror.

TransactionTRZ is dispatched on
terminalT1 and starts processing.

Attach mirror. Perform START
request for transactionTRY.
Free session. Terminate
mirror.

TransactionTRY is initiated
and starts processing.
EXEC CICS RETRIEVE INTO(area)

LENGTH(length) RTR
RTERMID(T)

(TR has a value 'TRZ',Thas
value 'T1')

Processing based on data
acquired. Reply put in data
area REP.

EXEC CICS STARTTRANSID(TR)
FROM(REP) LENGTH(length)
TERMID(T) NOCHECK

(TR has a value 'TRZ',T
value 'T1')

TRYterminates.

Attach mirror
transaction
'SCHEDULE'
request for
trans, last
(no reply)

session
available

Attach mirror
transaction
'SCHEDULE'
request for
trans
(no reply)

session
available

Figure 10. Asynchronous processing—remote transaction initiation using NOCHECK

Chapter 10. Asynchronous processing 57



58 CICS Family: Interproduct Communication



Chapter 11. Distributed transaction programming

When CICS arranges function shipping, asynchronous transaction processing,
transaction routing, or distributed program link, it establishes a logical data link with
a remote system. A data exchange between the two systems follows. CICS-supplied
programs control this exchange, issuing commands to allocate conversations, and
send and receive data between the systems.

CICS supplies equivalent commands to enable application programs to converse
under their own control across intercommunication links. Using these commands,
you can distribute the functions of a business transaction over several transaction
programs within a network. This technique is called distributed transaction
programming (DTP).

DTP is the most flexible and the most powerful of the CICS intercommunication
facilities, but it is also the most complex. This chapter introduces you to the basic
concepts.

Why use distributed transaction programming?
Distributed transaction programming is needed because of the possible costs of
other intercommunication functions (see “Limitations of function shipping”) and
because of its own advantages (see “Advantages of distributed transaction
programming” on page 60).

Limitations of function shipping
Function shipping gives you access to remote resources, and transaction routing
lets a terminal communicate with remote transactions. From a functional point of
view, these two facilities are probably sufficient for most intercommunication needs.
However, design criteria go beyond pure function. Machine loading, response time,
continuity of service, line traffic, and economic use of all resources are factors that
affect transaction design.

The following two examples describe cases where function shipping is an obvious
but not ideal solution.

Example 1
You are browsing a remote file to select a record that satisfies some criteria.

Solution 1: Use function shipping. CICS ships each GETNEXT request across the
link, and the mirror reads the record and ships it back to the requester.

There are two network data flows per record; the data flow can be quite significant.
For a browse on a large file, the overhead can be unacceptably high.

Solution 2: Use distributed program link. CICS links to a program that is running
in the system that owns the file.

Solution 3: Use a DTP conversation. The local transaction sends the selection
criteria. The remote transaction returns the keys and relevant fields from the
selected records. This drastically reduces both the number of flows and the amount
of data sent over the link.

© Copyright IBM Corp. 1992, 2010 59



Example 2
A supermarket chain has many branches, which are served by several distribution
centers, each stocking a different range of goods. Local stock records at the
branches are updated online from point-of-sale terminals. Sales information has to
be sorted for the separate distribution centers, and transmitted to them to enable
reordering and distribution.

Solution 1: Use function shipping to write each reorder record to a remote file as
it arises. This method is simple, but has several drawbacks:

v Data is transmitted to the remote systems irregularly in small packets. This
means inefficient use of busy links.

v The transactions associated with the point-of-sale devices are competing for
sessions with the remote systems. This could mean unacceptable delays at
point-of-sale.

v Failure of a link causes a catastrophic suspension of operations at a branch.

v Intensive intercommunications activity (for example, at peak periods) causes
reduction in performance at the point-of-sales terminals.

Solution 2: Each sales transaction writes its reorder records to a transient data
queue, and continues its conversation with the terminal.

Restocking requests are not urgent, so sorting and sending the data is delayed until
an off-peak period. Alternatively, the transient data queue can be set to trigger the
sender transaction when a predefined data level is reached. Either way, the sender
transaction has the same job to do.

The sender transaction can use function shipping to transmit the reorder records.
After the sort process, each record is written to a remote file in the relevant remote
system.

This method is not ideal either. The sender transaction must wait after writing each
record to make sure that it gets the right response. Apart from using the link
inefficiently, waiting between records makes the whole process very slow.

Solution 3: Using distributed transaction programming, a transaction in the
branch:

1. Sorts the reorder records and creates a file for each distribution center.

2. Sends each file to a partner transaction at the appropriate distribution center.

Each distribution center then processes the reorder records like any other local file.
This solution is a much more efficient use of the link.

Advantages of distributed transaction programming
In a multisystem environment, data transfers between systems are necessary
because end users need access to remote resources. In managing these
resources, network resources are used. But performance suffers if the network is
used excessively. There is, therefore, a performance gain if application design
places the processing associated with a resource in the resource-owning region.

DTP (like asynchronous processing and distributed program link) lets you process
data at the point where it arises, instead of overworking network resources by
assembling it at a central processing point. However, DTP is much more flexible
than either asynchronous processing or DPL. For example, it:

v Can be used to communicate with both CICS and non-CICS systems.

60 CICS Family: Interproduct Communication



v Enables synchronous communication and data transfer between applications
running on different systems.

v Can provide a common interface to transactions owned by different systems.

v Allows some measure of parallel processing to shorten response times.

v Provides a buffer between a security-sensitive file or database and applications,
so that no application need know the format of the file records.

v Enables batching of less urgent data destined for a remote system.

Conversations
In DTP, transactions pass data to each other directly. While one sends, the other
receives. The exchange of data between two transactions is called a conversation.
Although several transactions can be involved in a single distributed process,
communication between them breaks down into a number of self-contained
conversations between pairs. Each such conversation uses a CICS resource known
as a session.

Conversation initiation and transaction hierarchy
A transaction starts a conversation by requesting the use of a session to a remote
system. Having obtained the session, it causes an attach request to be sent to the
other system to activate the transaction that is to be the conversation partner.

A transaction can initiate any number of other transactions, and hence,
conversations. In a complex process, a distinct hierarchy emerges, with the
terminal-initiated transaction at the very top. Figure 11 on page 62 shows a possible
configuration. Transaction TRAA is attached over the terminal session. Transaction
TRAA attaches transaction TRBB, which, in turn, attaches transactions TRCC and
TRDD. Both these transactions attach the same transaction, SUBR, in system
CICSE. This gives rise to two different tasks running SUBR.

Chapter 11. Distributed transaction programming 61



Structure of a distributed process
The structure of a distributed process is determined dynamically; it cannot be
specified beforehand in transaction definitions. For each transaction, there is only
one inbound attach request, but there can be any number of outbound attach
requests. The session that activates a transaction is called its principal facility. A
session that is allocated by one transaction to activate another transaction is called
the alternate facility of the allocating transaction. In Figure 11, session 1 is the
principal facility of transaction TRBB and an alternate facility of transaction TRAA. A
transaction has only one principal facility, but can have any number of alternate
facilities. Transaction TRBB has two alternate facilities, sessions 2 and 3.

When a transaction initiates a conversation, it is the front end on that conversation.
Its conversation partner is the back end on the same conversation. In Figure 11,
transaction TRBB is the front end of the conversations on sessions 2 and 3, and
the back end of the conversation on session 1. (Some publications refer to the front
end as the initiator and the back end as the recipient.) It is normally the front end
that dominates, and determines the way the conversation goes. You can arrange for
the back end to take over if you want, but, in a complex process, this can cause
unnecessary complication. This is further explained in the discussion on
synchronization later in this chapter.

Application design
DTP has none of the transparency of function shipping or transaction routing. A
conversation transfers data from one transaction to another. For this to function
properly, each transaction must know what the other intends. It is therefore
necessary to design, code, and test front end and back end as one software unit.
The same applies when there are several conversations and several transaction
programs. Each new conversation adds to the complexity of the overall design.

Transaction TRCC Transaction TRDD

Transaction SUBR Transaction SUBR

Transaction TRBB

Transaction TRAA

CICSA

CICSB

CICSC

CICSE

CICSD

Session 1

Session 3Session 2

Session 4 Session 5

Terminal

Figure 11. DTP in a multisystem configuration

62 CICS Family: Interproduct Communication



In “Example 2” on page 60, the DTP solution (Solution 3) is to transfer a file of data
from one transaction to another–in this case, transmit the entire contents of the
transient data queue from the front end to the back end. The next stage of
complexity is to cause the back end to return data to the front end, perhaps the
result of some processing. Here, the front end is programmed to request
conversation turnaround at the appropriate point.

Among other things, the designer of a DTP application must decide:
v Which syncpoint-level to use for conversations
v If data conversion is necessary, which partner in the conversation should handle

it

Control flows
During a conversation, data passes over the link in both directions. A single
transmission is called a flow. Issuing a SEND command does not always cause a
flow. This is because the transmission of user data can be deferred; that is, held in
a buffer until some event takes place. The APPC architecture defines data formats
and packaging. CICS handles these things for you, and they concern you only if
you need to trace flows for debugging.

The APPC architecture defines a data header for each transmission, which holds
information about the purpose and structure of the data following. The header also
contains bit indicators to convey control information to the other side. For example,
if one side wants to tell the other that it can start sending, CICS sets a bit in the
header that signals a change of direction in the conversation.

To keep flows to a minimum, non-urgent control indicators are accumulated until it
is necessary to send user data. Then they are added to the header.

In complex procedures, such as establishing syncpoints, it is often necessary to
send control indicators when there is no user data available to send. This is called
a control flow.

Conversation state and error detection
As a conversation progresses, it moves from one state to another within both
conversing transactions. The conversation state determines the commands that
may be issued. For example, it is no use trying to send or receive data if there is no
session linking the front end to the back end. Similarly, if the back end signals end
of conversation, the front end cannot be in a state to receive more data.

Either end of the conversation can cause a change of state, usually by issuing a
particular command from a particular state. CICS tracks these changes, and stops a
transaction from issuing a command that is wrong for its current state.

Synchronization
Many things can go wrong during the running of a transaction. The conversation
protocol helps you to recover from errors and ensures that the two sides remain in
step with each other. This use of the protocol is called synchronization.

Synchronization allows you to protect resources such as transient data queues and
files. Whatever goes wrong during the running of a transaction should not leave the
associated resources in an inconsistent state.

Chapter 11. Distributed transaction programming 63



Example
A transaction is transmitting a queue of data to another system to be written to a
file. The receiving transaction is abended.

Even if a further abend can be prevented, there is the problem of how to continue
the process without loss of data. It is uncertain how many queue items have been
received and how many have been correctly written to the file. The only safe way of
continuing is to go back to a point where you know that the contents of the queue
are consistent with the contents of the file. The sending system must restore the
queue entries that have been sent, and the receiving system must delete any
entries made in the file. CICS helps you to do this (see “Taking syncpoints”).

Rollback and backout
The cancelation by an application program of all changes to recoverable resources
since the last known consistent state is called rollback. The physical process of
recovering resources is called backout. For the most part, the two terms are used
interchangeably. The condition that exists as long as there is no loss of consistency
between distributed data resources is called data integrity.

Application-initiated rollback: There are cases where you want to recover
resources, even though there are no error conditions detectable by CICS. Consider
an order entry system. While entering an order for a customer, an operator is told
by the system that the customer's credit limit would be exceeded if the order went
through. Because there is no use continuing until the customer is consulted, the
operator presses a PF key to abandon the order. The transaction can be
programmed to respond by restoring the data resources to the state they were in at
the start of the order. At synchronization level 2 (see “Synchronization levels” on
page 7), rollback occurs automatically in all remote partner transactions.

Taking syncpoints
If you log your own data movements, you can arrange backout of your files and
queues. However, this involves very complex programming. To save you the
trouble, CICS arranges resource recovery for you.

A point in the process where resources are declared to be in a known consistent
state is called a synchronization point, often shortened to syncpoint.
Synchronization points are implied at the beginning and end of a transaction. A
transaction can define other syncpoints by program command. All processing
between two syncpoints belongs to a unit of work (UOW).

Taking a syncpoint, if successful, commits all changes to recoverable resources.
This means that all systems involved in a distributed process erase all the
information they have been keeping about data movements on recoverable
resources. Now backout is no longer possible, and all changes to the resources
since the last syncpoint are made irreversible.

An unsuccessful syncpoint causes rollback. Recoverable resources are restored to
their state at the start of the UOW.

CICS can commit and back out changes to resources, but the service has a
performance trade-off. Some transactions do not need such facilities. If the recovery
of resources is not a problem, use simpler methods of synchronization.

The three synchronization levels
The APPC architecture defines three levels of synchronization:

v Level 0 – none

64 CICS Family: Interproduct Communication



v Level 1 – confirm

v Level 2 – syncpoint

At synchronization level 0, there is no system support for synchronization. It is
nevertheless possible to achieve some degree of synchronization through the
interchange of data, using the SEND and RECEIVE commands.

If you select synchronization level 1, you can use specific commands for
communication between the two conversation partners. One transaction can confirm
the continued presence and readiness of the other. The user is responsible for
preserving the data integrity of recoverable resources.

The level of synchronization described earlier in this section corresponds to
synchronization level 2. Here, system support is available for maintaining the data
integrity of recoverable resources.

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of
changes to recoverable resources, but no control flows take place. CICS takes a full
syncpoint when a transaction is normally terminated. Transaction abend causes
rollback. The transactions themselves can initiate syncpoint or rollback requests.
However, a syncpoint or rollback request is propagated to another transaction only
when the originating transaction is in conversation with the other transaction, and
synchronization level 2 has been selected for the conversation between them.

Remember that syncpoint and rollback are not peculiar to any one conversation
within a transaction. They are propagated on every current synchronization level 2
conversation within the transaction.

A transaction specifies the required synchronization level in the CONNECT
PROCESS command that initiates a conversation. The requested level must not be
higher than that supported between the two products. Support for the different
synchronization levels varies between products. Refer to “CICS product
communication support” on page 7.

EXEC CICS or CPI Communications?
Some CICS products give you a choice of two application programming interfaces
(APIs) for coding your DTP conversations on APPC sessions. The first, the CICS
API, is the end-user interface of the CICS implementation of the APPC architecture.
It consists of EXEC CICS commands and can be used with all CICS-supported
languages. The second, Common Programming Interface for Communications
(CPI Communications) is the communications interface defined by Systems
Application Architecture® (SAA). It consists of a set of defined verbs, in the form of
program calls, which are adapted for the language being used.

Table 10 compares the two methods to help you to decide which API to use for a
particular application.

Table 10. CICS API compared with CPI Communications

CICS API CPI Communications

Portability between different members of the
CICS family.

Portability between systems that support
SAA.

Chapter 11. Distributed transaction programming 65



Table 10. CICS API compared with CPI Communications (continued)

CICS API CPI Communications

Synchronization levels 0, 1, and 2 supported. Synchronization levels 0, 1, and 2 supported,
except for transaction routing, for which only
synchronization levels 0 and 1 are
supported.

Program initialization parameter (PIP) data
supported (CICS on zSeries and CICS on
Open Systems only).

PIP data not supported.

Only a few conversation characteristics are
programmable. The rest are defined by
resource definition.

Most conversation characteristics can be
changed dynamically by the transaction
program.

Can be used on the principal facility to a
transaction started by ATI.

Cannot be used on the principal facility to a
transaction started by ATI.

Mapped conversations (see note 3) can be
programmed in any of the languages
supported by CICS.

Mapped conversations can be programmed
in any of the languages supported by CICS.

Basic conversations (see note 3) can be
programmed only in assembler language or
C, and only on a CICS on zSeries system.

Basic conversations can be programmed in
any of the languages supported by CICS, but
only on a CICS on zSeries system.

Additional notes on the two APIs
1. You can mix CPI Communications calls and EXEC CICS commands in the

same transaction, but not on the same side of the same conversation. In other
words, each half-session can use only one application interface.

2. One partner in a conversation can use CPI Communications calls while the
other uses the CICS API. In other words, the half-sessions at either end of
the same conversation can use different application interfaces.

To correctly coordinate a conversation that is using a different API in each
half-session, the programmers must know the details of how both APIs map to
the APPC architecture.

3. Both interfaces, CICS API and CPI Communications, support APPC mapped
conversations, in which the systems provide and interpret protocol headers,
and the application programs deal only with user data. In an APPC basic
conversation, the sending application must prefix the data with the header
required by the communications protocol. The receiving application must
interpret this header.

4. CICS/VSE 2.3 does not support the CPI Communications API.

66 CICS Family: Interproduct Communication



Part 3. Appendixes

© Copyright IBM Corp. 1992, 2010 67



68 CICS Family: Interproduct Communication



Bibliography

This section lists those books in the zSeries and
non-zSeries CICS libraries that are related to
intercommunication.

Note: To help you find the information you need,
some books are listed in more than one
category.

CICS Family intercommunication
books

CICS Family: Communicating from CICS on
zSeries, SC34 number to follow
CICS Family: Interproduct Communication,
SC34 number to follow

CICS on zSeries
intercommunication books

CICS Transaction Server for z/OS
Version 3 Release 2

CICS Distributed Transaction Programming
Guide, SC34 number to follow
CICS External Interfaces Guide, SC34 number
to follow
CICS Front End Programming Interface User’s
Guide, SC34 number to follow
CICS Intercommunication Guide, SC34
number to follow
CICS Internet Guide, SC34 number to follow

CICS Transaction Server for z/OS
Version 3 Release 1

CICS Distributed Transaction Programming
Guide, SC34-6438-00
CICS External Interfaces Guide, SC34-6449-00
CICS Front End Programming Interface User’s
Guide, SC34-6436-00
CICS Intercommunication Guide,
SC34-6448-00
CICS Internet Guide, SC34-6450-00

CICS Transaction Server for z/OS
Version 2 Release 3

CICS Distributed Transaction Programming
Guide, SC34-6236-00
CICS External Interfaces Guide, SC34-6244-00
CICS Front End Programming Interface User’s
Guide, SC34-6234-00

CICS Intercommunication Guide,
SC34-6243-00
CICS Internet Guide, SC34-6245-00

CICS Transaction Server for z/OS
Version 2 Release 2

CICS Distributed Transaction Programming
Guide, SC34-5998-00
CICS External Interfaces Guide, SC34-6006-00
CICS Front End Programming Interface User’s
Guide, SC34-5996-00
CICS Intercommunication Guide,
SC34-6005-00
CICS Internet Guide, SC34-6007-00

CICS Transaction Server for
OS/390 Release 3

CICS Distributed Transaction Programming
Guide, SC33-1691-02
CICS External Interfaces Guide, SC33-1944-01
CICS Front End Programming Interface User’s
Guide, SC33-1692-02
CICS Intercommunication Guide,
SC33-1695-02
CICS Internet Guide, SC34-5445-00

CICS Transaction Server for
VSE/ESA Release 1.1.1

Distributed Transaction Programming Guide,
SC33-1661
External CICS Interface, SC33-1669
Front End Programming Interface User’s
Guide, SC33-1662
Intercommunication Guide, SC33-1665

CICS/VSE Version 2
Distributed Transaction Programming Guide,
SC33-0898
Intercommunication Guide, SC33-0701
Server Support for CICS Clients, SC33-1712

CICS non-zSeries
intercommunication books

CICS TS for Windows, Intercommunication,
SC34-6209
CICS on Open Systems Intercommunication
Guide, SC33-1564
CICS/400 Intercommunication, SC33-1388

© Copyright IBM Corp. 1992, 2010 69



CICS Transaction Gateway and
CICS Universal Clients

CICS Transaction Gateway: Programming
Guide, SC34-6141
CICS Transaction Gateway: Programming
Reference, SC34-6140
CICS/VSE Version 2 Release 3 Server Support
for CICS Clients, SC33-1712

Non-CICS books

SNA books
Systems Network Architecture Technical
Overview, GC30-3073

Systems Network Architecture Transaction
Programmer's Reference Manual for LU Type
6.2, GC30-3084

Systems Network Architecture--Sessions
Between Logical Units, GC20-1868

Systems Network Architecture Format and
Protocol Reference Manual: Architecture Logic
for LU Type 6.2, SC30-3269

Systems Network Architecture LU 6.2
Reference–Peer Protocols, SC31-6808

70 CICS Family: Interproduct Communication



Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system
in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1992, 2010 71



72 CICS Family: Interproduct Communication



Index

A
allocating APPC terminal or connection 40
alternate facility 62
American National Standard Code for Information

Interchange (ASCII) 16
APIs 65
APPC terminals, transaction routing 40
APPC, communication protocol 5
application design, DTP 62
application programming interfaces 65
APPLID passed with START command 54
ASCII 16
asynchronous processing 51, 57

compared with synchronous processing (DTP) 51
initiated by DTP 52
initiating asynchronous processing 52
START/RETRIEVE interface 53, 56

“terminal” is a system 56
canceling remote transactions 53
information passed with START command 53
information retrieval 55
local queuing of START requests 55
NOCHECK option, START command 54
performance improvement 54
PROTECT option, START command 54
RETRIEVE command 55
starting remote transactions 53
terminal acquisition 56

system programming considerations 56
typical application 52

ATI (automatic transaction initiation) 41
restricted by CRTE routing transaction 45
with transaction routing 41

B
back end 62
backout 64
basic conversation 66
basic mapping support (BMS), transaction routing 39,

44

C
CANCEL command 53
CEMT master terminal transaction, invoked by

CRTE 45
choosing an intercommunication function 28
CICS clients

functions provided
External Call Interface 11
External Presentation Interface 11
Terminal Emulation 12

CICS Clients
for AIX 12
for HP-UX 12
for Linux 390 12

CICS Clients (continued)
for Microsoft Windows 12
for Sun Solaris 12
functions provided

External Security Interface 12
overview 11
servers supported 12

CICS on zSeries
dynamic transaction routing 40

CICS Transaction Server for Windows
dynamic transaction routing 41

client/server computing 11
clients, CICS

functions provided
External Call Interface 11
External Presentation Interface 11
Terminal Emulation 12

overview 11
code pages 16
committing changes to resources 64
communication functions

functions listed 5
product support for 5, 11

communication protocols
APPC 5
IPX 5
LU6.2 5
NetBIOS 5
TCP/IP 5

configuring CICS for SNA 17
control flows 63
conversation 61, 65

alternate facility 62
back end 62
basic 66
control flows 63
data header 63
error detection 63
front end 62
principal facility 62
session 61
state 63
synchronization 63, 65

Conversation
initiation 61

CPI Communications 65
CRTE transaction 44

D
data conversion 15, 17

ASCII 16
character data 15, 17
code pages 16
EBCDIC 16
numeric data 15

data header, APPC architecture 63
data integrity 6, 64

© Copyright IBM Corp. 1992, 2010 73



DBCS, double-byte character set 16
deferred sending, START NOCHECK 55
distributed program link 28, 47, 49
distributed transaction programming 28
DL/I databases

accessed by DPL 48
accessed by function shipping 33

double-byte character set (DBCS) 16
DPL (distributed program link) 47, 49
DTP (distributed transaction programming) 59, 66

advantages of 60
application design 62
compared with asynchronous processing 51
conversation 61, 65
synchronization 63, 65
why it is needed 59

dynamic transaction routing 40

E
EBCDIC 16
ECI (External Call Interface) 11
EPI (External Presentation Interface) 11
error detection, conversation 63
ESI (External Security Interface)

overview 12
examples

ATI 42
function shipping 36

EXEC CICS, API 65
exits, user

XALTENF 53
XICTENF 53

Extended Binary-Coded Decimal Interchange Code
(EBCDIC) 16

External Call Interface (ECI) 11
External Presentation Interface (EPI) 11

F
file control 32
front end 62
function shipping 27, 31, 37

DL/I databases 33
examples 36
file control 32
how it works 34
IMS databases 33
interval control 31
limitations 59
mirror transaction 31, 35
synchronization 36
temporary storage 33
transformer program 34
transient data 33
transparency to application 32

H
hierarchy, transaction 61

I
IMS databases, function shipping 33
initiator, conversation 62
intercommunication functions 27

brief definitions 27
choosing between 28

interproduct communication
defining a product's communication ability 5
how each pair of products can communicate 7

interval control, function shipping 31
IPX, communication protocol 5

L
local queuing of START requests 55
LU6.2, communication protocol 5

M
MBCS, multi-byte character set 16
mirror transaction 31, 35, 36

chained mirrors 36
multiple mirrors 35

multi-byte character set (MBCS) 16

N
NetBIOS, communication protocol 5
NOCHECK option, START command

deferred sending 55
improving performance 54, 55
local queuing 55

P
principal facility 62
PROTECT option, START command 54
protocols, for communication

APPC 5
IPX 5
LU6.2 5
NetBIOS 5
TCP/IP 5

pseudoconversation 40

R
recipient, conversation 62
relay program (DFHCRP) 43
relay transaction 39
RETRIEVE command 52
RETRIEVE command, WAIT option 56
retrieving data sent with START command 55
rollback 64
routing transaction, CRTE 44

S
SBCS, single-byte character sets 15

74 CICS Family: Interproduct Communication



session
used by a conversation 61

shipping terminal definitions 41, 43
SNA configuration 17

CICS for AIX 22
CICS on zSeries 21

SNA terminology 17
SQL databases, accessed by DPL 48
START command 52

deferred sending 55
local queuing 55
NOCHECK option 54
PROTECT option 54

START/RETRIEVE, asynchronous processing 53
state, conversation 63
synchronization 6

DPL 48
DTP 63, 65

backout 64
committing changes to resources 64
data integrity 64
rollback 64
syncpoints 64
unit of work (UOW) 64

function shipping 36
synchronization levels 6
two-phase commit 6

synchronization levels 6, 64
syncpoints 64

T
TCP/IP, communication protocol 5
temporary storage, function shipping 33
terminal-not-known condition 43
terminals, shipping definitions 43
transaction hierarchy 61
transaction routing 27, 39, 45

ATI (automatic transaction initiation) 41
basic mapping support (BMS) 39, 44
dynamic transaction routing 40
eligible sessions 39
eligible terminals 39
initiating transaction routing 40
pseudoconversation 40
relay program 43
routing transaction, CRTE 44
shipping terminal definitions 43
static transaction routing 40
terminal-initiated transaction routing 40

transformer program 34
transient data, function shipping 33
two-phase commit 6

U
unit of work (UOW) 64
UOW (unit of work) 64
user exits

XALTENF 53
XICTENF 53

W
WAIT option, RETRIEVE command 56

X
XALTENF, user exit 53
XICTENF, user exit 53

Index 75



76 CICS Family: Interproduct Communication



Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 1992, 2010 77



The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

78 CICS Family: Interproduct Communication



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and trademark
information at www.ibm.com/legal/copytrade.shtml.

INTEL is a registered trademark of Intel Corporation, in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1992, 2010 79



80 CICS Family: Interproduct Communication



Readers’ Comments — We'd Like to Hear from You

CICS Family
Interproduct Communication

Publication No. SC34-6853-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44–1962–816151
v Send your comments via e-mail to: idrcf@hursley.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address



Readers’ Comments — We'd Like to Hear from You
SC34-6853-01

SC34-6853-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





����

SC34-6853-01



Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

Fa
m

ily
C

IC
S

Fa
m

ily
:I

nt
er

pr
od

uc
tC

om
m

un
ic

at
io

n


	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	Terminology

	Summary of changes
	Changes for CICS Transaction Server for z/OS, Version 3 Release 2
	Changes for the tenth edition
	Changes for the ninth edition

	Part 1. Introduction to CICS interproduct communication
	Chapter 1. CICS interproduct communication
	The documentation plan

	Chapter 2. CICS communication support
	What is a product's communication ability?
	The CICS intersystem communication functions
	Communication protocols
	Synchronization
	Data conversion

	CICS product communication support
	CICS on zSeries interproduct communication
	CICS Transaction Server for Windows interproduct communication
	CICS on Open Systems interproduct communication
	CICS/400 interproduct communication


	Chapter 3. CICS Clients
	Functions that the CICS Clients provide
	The External Call Interface
	The External Presentation Interface
	The External Security interface
	Terminal emulation

	CICS Clients for various platforms

	Chapter 4. Data conversion
	Numeric data
	Character data
	Code pages


	Chapter 5. Configuring CICS for SNA communications
	Introduction to SNA terminology
	SNA concepts
	SNA products

	Preparing for SNA configuration
	Matching parameters
	Mode name
	Alias names

	Platform specific implementation
	The scenario

	Configuration details
	Mainframe host configuration
	Defining the workstations to CICS on zSeries and VTAM

	AIX machine configuration
	Defining the AIX machine to the network
	Defining the connection to CICS on zSeries


	Configuring CICS for SNA—next steps

	Part 2. CICS intercommunication functions
	Chapter 6. Introduction to the CICS intercommunication functions
	Summary of CICS intercommunication functions
	Function shipping
	Transaction routing
	Distributed program link
	Distributed transaction programming

	Which intercommunication function?

	Chapter 7. Function shipping
	Introduction to function shipping
	Transparency to application
	Remote resources that can be accessed
	CICS file control data sets
	IMS databases
	Temporary storage and transient data

	How function shipping works
	The transformer programs
	The mirror transaction
	Multiple mirrors
	Chained mirrors


	Synchronization
	Function shipping examples

	Chapter 8. Transaction routing
	Introduction to transaction routing
	Initiating transaction routing
	Terminal-initiated transaction routing
	Static transaction routing
	Dynamic transaction routing
	Shipping terminal definitions

	Automatic transaction initiation
	Terminal definitions not shipped with ATI requests


	The relay program
	Basic mapping support
	The routing transaction (CRTE)

	Chapter 9. Distributed program link
	Introduction to DPL
	Why use DPL?
	Synchronization
	DL/I and SQL databases
	Restrictions when using DPL
	Abends when using DPL

	Chapter 10. Asynchronous processing
	Introduction to asynchronous processing
	Example
	Asynchronous processing methods
	Asynchronous processing using START/RETRIEVE commands
	Starting and canceling remote transactions
	Passing information with the START command
	Improving performance of intersystem START requests
	Including start request delivery in a logical unit of work
	Deferred sending of START requests with NOCHECK option
	Local queuing of START commands for remote transactions
	Data retrieval by a started transaction
	Terminal acquisition by a remotely-initiated CICS transaction

	System programming considerations
	Asynchronous processing example (with NOCHECK)

	Chapter 11. Distributed transaction programming
	Why use distributed transaction programming?
	Limitations of function shipping
	Example 1
	Example 2

	Advantages of distributed transaction programming

	Conversations
	Conversation initiation and transaction hierarchy
	Structure of a distributed process

	Application design
	Control flows
	Conversation state and error detection
	Synchronization
	Example
	Rollback and backout
	Taking syncpoints
	The three synchronization levels


	EXEC CICS or CPI Communications?
	Additional notes on the two APIs


	Part 3. Appendixes
	Bibliography
	CICS Family intercommunication books
	CICS on zSeries intercommunication books
	CICS Transaction Server for z/OS Version 3 Release 2
	CICS Transaction Server for z/OS Version 3 Release 1
	CICS Transaction Server for z/OS Version 2 Release 3
	CICS Transaction Server for z/OS Version 2 Release 2
	CICS Transaction Server for OS/390 Release 3
	CICS Transaction Server for VSE/ESA Release 1.1.1
	CICS/VSE Version 2

	CICS non-zSeries intercommunication books
	CICS Transaction Gateway and CICS Universal Clients
	Non-CICS books
	SNA books


	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	W
	X

	Notices
	Trademarks
	Readers’ Comments — We'd Like to Hear from You

