
CICS Transaction Server for z/OS
Version 4 Release 2

External Interfaces Guide

SC34-7168-01

���

CICS Transaction Server for z/OS
Version 4 Release 2

External Interfaces Guide

SC34-7168-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 361.

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

What this manual is about ix

How to use this manual. xi

What you need to know to understand
this manual xiii

Notes on terminology xv

Changes in CICS Transaction Server
for z/OS, Version 4 Release 2 xvii

Part 1. Overview of CICS external
interfaces 1

Chapter 1. Interfaces to CICS
transactions and programs 3
The client/server model 6
Distributed computing 6

Security support 7
TCP/IP protocols 8

TCP/IP internet addresses and ports 9
ONC and DCE concepts 11

DCE 11
EXCI concepts 12
3270 bridge concepts 12

The 3270 bridge and FEPI 13

Part 2. Bridging to 3270
transactions. 15

Chapter 2. Introduction to the 3270
bridge 17
The Link3270 bridge mechanism 17
The bridge facility 18

Lifetime of the bridge facility 19
The application data structure (ADS) 19

The ADS descriptor (ADSD) 19
Link3270 programming considerations 20
Transaction Routing considerations 24

Allocating a bridge facility name for a
pseudoconversation when using the Link3270
bridge for transaction routing 25

Chapter 3. Using the Link3270 bridge 27
Establish Link3270 suitability 27

Using the Load Module Scanner Utility 28
Using the 3270 Bridge Passthrough SupportPac 28

Writing the Link3270 client 28
Select Link3270 client scenarios 29
Analyze the 3270 application 32

Using Link3270 messages. 32
Inbound BRIV vectors 33
Outbound BRIV vectors 34
Link3270 bridge basic and extended support . . 34
Copybooks and default vectors 35

Using Link3270 single transaction mode 36
Updating data length fields 36

Using Link3270 session mode 37
How to create a message 37
Allocating a bridge facility 37
Running transactions 38
Deleting a bridge facility 40
Delivering large messages 41
Recovery from connection failure 41
Validity of Link3270 requests 41

Calling the Link3270 bridge 42
Calling Link3270 using LINK 43
Calling Link3270 using EXCI 43
Calling Link3270 using ECI 43
Multiple Router regions 44

Using data conversion with Link3270. 44
Converting BRIH and BRIV header data. . . . 44
Converting RETRIEVE data 45
Converting user data 45

Chapter 4. Managing the Link3270
bridge environment 47
Defining Link3270 system initialization parameters 47
Defining the bridge facility 48

Defining the facilitylike 48
Defining the bridge facility name 49
Defining a specific bridge facility name 51
Initializing the TCTUA 51
Accessing bridge facility properties 52

Managing Link3270 bridge resources 54
INQUIRE/SET AUTOINSTALL with the
Link3270 bridge 55
INQUIRE/SET BRFACILITY with the Link3270
bridge 55
INQUIRE TASK with the Link3270 bridge . . . 56
INQUIRE/SET TRACETYPE with the Link3270
bridge 56
INQUIRE TRANSACTION with the Link3270
bridge 56
XPI commands for the Link3270 bridge 56

Using Link3270 bridge load routing 57
Using the dynamic transaction routing program
with Link3270 58

Chapter 5. Link3270 message formats 61
Link3270 message header (BRIH) 62

Inbound BRIH message header 63
Outbound BRIH message header 66

Inbound Link3270 vectors 69
Link3270 inbound vector header 70

© Copyright IBM Corp. 1994, 2012 iii

Link3270 INPUT CONVERSE vector 70
Link3270 RECEIVE vector 72
Link3270 RECEIVE MAP vector 73
Link3270 RETRIEVE vector 75

Outbound Link3270 vectors 76
Link3270 output vector header 76
Link3270 ISSUE ERASEAUP vector 77
Link3270 SEND vector. 77
Link3270 SEND CONTROL vector. 79
Link3270 SEND MAP vector. 82
Link3270 SEND TEXT vector 85
Link3270 SEND PAGE vector 88
Link3270 PURGE MESSAGE vector 89
Link3270 SYNCPOINT vector 89
Link3270 CONVERSE request vector 90
Link3270 RECEIVE request vector 92
Link3270 RECEIVE MAP request vector 92

Link3270 ADS descriptor 93
ADS descriptor header 93
ADS field descriptor 94

Chapter 6. Link3270 diagnostics 97
BRIH-RETURNCODE values 98

Chapter 7. Using the Link3270
samples. 103
The NACT transaction 105
Running the sample client programs 105

Setup the Link3270 environment 106
Setup for the CICS-based clients 106
Setup for z/OS based client 106
Setup for the workstation client 108

Setup for the NACT transaction 108

Part 3. External CICS Interface. . . 111

Chapter 8. Introduction to the external
CICS interface 113
The EXCI programming interfaces 114

Choosing between the EXEC CICS and the
CALL interface 114
Illustrations of the external CICS CALL interface 115
Illustration of the EXCI EXEC CICS interface 117

Resource recovery 118
Use of RRMS with the external CICS interface 119
Use of sync points in the client program . . . 122

Requirements for the external CICS interface . . . 122

Chapter 9. The EXCI CALL interface 123
The EXCI CALL interface commands 123

Initialize_User 123
Allocate_Pipe 127
Open_Pipe 129
DPL_Request 131
Close_PIPE 140
Deallocate_Pipe 142

EXCI call response code values 143
Return area for the EXCI CALL interface 144

Return area and function call EQUATE
copybooks 144
Return codes 145
Dpl_retarea return codes 145

Example of EXCI CALLs with null parameters . . 146

Chapter 10. The EXCI EXEC CICS
interface 149
Using EXEC CICS LINK command 149
Retries on an EXEC CICS LINK command . . . 153
Translation required for EXEC CICS LINK
command 155

Chapter 11. Setting up EXCI for static
routing 157

Chapter 12. Setting up EXCI for
dynamic routing 159

Chapter 13. Defining connections to
CICS 161
CONNECTION resource definition for EXCI . . . 161
SESSIONS resource definitions for EXCI
connections 162
Inquiring on the state of EXCI connections . . . 165

Chapter 14. The EXCI user-replaceable
module 167

Chapter 15. Using the EXCI options
table, DFHXCOPT 169

Chapter 16. Compiling and link-editing
EXCI client programs 175
Job control language to run an EXCI client
program 175

CICS-supplied procedures for the EXCI . . . 176
EXCI programming considerations 177

PL/I considerations 177
C considerations 177
Setting the return code (R15) at termination . . 178

Using EXCI sample application programs 178
Description of the sample applications 181
Installing the EXCI sample definitions 183
Running the EXCI sample applications 184
Results of running the EXCI sample applications 184

Chapter 17. EXCI security 187
Using MRO logon and bind-time security 187

Defining DFHAPPL FACILITY class profiles for
an EXCI region 188

Link security 188
User security 189
Surrogate user checking 189

Chapter 18. Problem determination for
the external CICS interface (EXCI) . . 191

iv CICS TS for z/OS 4.2: External Interfaces Guide

Trace 191
Formatting GTF trace. 191

Using System dumps 192
Formatting system dumps 192
Capturing SYSMDUMPs. 192
Using the MVS DUMP command at the console
for dumps 192

MVS 04xx abends for the external CICS interface 193
0401 193
0402 193
0403 194
0404 194
0405 195
0406 195
0407 196
0408 196
0409 197
0410 197
0411 198
0412 198
0413 199
0414 199
0415 200

The EXCI service trap, DFHXCTRA 200
Problem determination with RRMS 200
EXCI trace entry points 201

Chapter 19. Response and reason
codes returned on EXCI calls 215
Reason code for response: OK 215

0: NORMAL. 215
Reason codes for response: WARNING 215

1: PIPE_ALREADY_OPEN 215
2: PIPE_ALREADY_CLOSED 215
3: VERIFY_BLOCK_FM_ERROR 215
4: WS_FREEMAIN_ERROR. 216
5: XCPIPE_FREEMAIN_ERROR 216
6: IRP_IOAREA_FM_FAILURE 216
7: SERVER_TERMINATED 217
8: XFRASTG1_FM_FAILURE 217

Reason codes for response: RETRYABLE 217
201: NO_CICS_IRC_STARTED. 217
202: NO_PIPE 218
203 (on Open_Pipe call): NO_CICS 218
204: WRONG_MVS_FOR_RRMS 219
205: RRMS_NOT_AVAILABLE. 219

Reason codes for response: USER_ERROR 220
401: INVALID_CALL_TYPE 220
402: INVALID_VERSION_NUMBER 220
403: INVALID_APPL_NAME 220
404: INVALID_USER_TOKEN 221
405: PIPE_NOT_CLOSED 221
406: PIPE_NOT_OPEN 221
407: INVALID_USERID 221
408: INVALID_UOWID 222
409: INVALID_TRANSID 222
410: DFHMEBM_LOAD_FAILED 222
411: DFHMET4E_LOAD_FAILED. 223
412: DFHXCURM_LOAD_FAILED 223
413: DFHXCTRA_LOAD_FAILED 224
414: IRP_ABORT_RECEIVED 224

415: INVALID_CONNECTION_DEFN 224
416: INVALID_CICS_RELEASE 225
417: PIPE_MUST_CLOSE 225
418: INVALID_PIPE_TOKEN 225
419: CICS_AFCB_PRESENT 226
420: DFHXCOPT_LOAD_FAILED 226
421: RUNNING_UNDER_AN_IRB 226
422: SERVER_ABENDED 227
423: SURROGATE_CHECK_FAILED. 227
424: RRMS_NOT_SUPPORTED 227
425: UOWID_NOT_ALLOWED 228
426: INVALID_TRANSID2 228
427: INVALID_CCSID 228
428: INVALID_ENDIAN. 228
429: DFHXCEIX_LOAD_FAILED 229
430: DFHXCPRX_LOAD_FAILED 229

Reason codes for response: SYSTEM_ERROR . . . 229
601: WS_GETMAIN_ERROR 229
602: XCGLOBAL_GETMAIN_ERROR 230
603: XCUSER_GETMAIN_ERROR 230
604: XCPIPE_GETMAIN_ERROR 231
605: VERIFY_BLOCK_GM_ERROR 231
606: SSI_VERIFY_FAILED 231
607: CICS_SVC_CALL_FAILURE 232
608: IRC_LOGON_FAILURE 232
609: IRC_CONNECT_FAILURE 232
610: IRC_DISCONNECT_FAILURE 233
611: IRC_LOGOFF_FAILURE 233
612: TRANSFORM_1_ERROR 234
613: TRANSFORM_4_ERROR 234
614: IRP_NULL_DATA_RECEIVED 234
615: IRP_NEGATIVE_RESPONSE. 235
616: IRP_SWITCH_PULL_FAILURE 235
617: IRP_IOAREA_GM_FAILURE 235
619: IRP_BAD_IOAREA 236
620: IRP_PROTOCOL_ERROR. 236
621: PIPE_RECOVERY_FAILURE 236
622: ESTAE_SETUP_FAILURE 237
623: ESTAE_INVOKED 237
624: SERVER_TIMEDOUT 238
625: STIMER_SETUP_FAILURE 238
626: STIMER_CANCEL_FAILURE 238
627: INCORRECT_SVC_LEVEL 239
628: IRP_LEVEL_CHECK_FAILURE 239
629: SERVER_PROTOCOL_ERROR 240
630: RRMS_ERROR 240
631: RRMS_SEVERE_ERROR 240
632: XCGUR_GETMAIN_ERROR 241

Chapter 20. Messages and codes . . . 243
DFHEX0001: An abend (code aaa/bbbb) has
occurred in module modname. 243
DFHEX0002: A severe error (code X'code') has
occurred in module modname. 244
DFHEX0003: A GETMAIN request in module
modname (code X'code') has failed. Reason X'rc'. . . 244
DFHEX0004: JOBNAME: jobname, STEPNAME:
stepname, PROCNAME: procname, SYSID IN SMF:
sysid, APPLID: applid. 245
DFHEX0100: The installed level of CICS SVC does
not support the EXCI call. 246

Contents v

DFHEX0101: Unable to start interregion
communication because DFHIRP services are down
level. 246
DFHEX0110: EXCI SDUMP has been taken.
Dumpcode: dumpcode, Dumpid: dumpid. 247
DFHEX0111: EXCI SDUMP attempted but SDUMP
is busy - will retry every five seconds for nnnn
seconds. 247
DFHEX0112: SDUMP request failed - reason X'nn'. 248
DFHEX0113: EXCI trace Initialization has failed. 249
DFHEX0114: Incorrect data has been passed for
EXCI tracing causing a program check in
DFHXCTRP. 250
DFHEX0115: EXCI trace services have been
disabled due to a previous error. 250
DFHEX0116: Program check occurred within global
trap exit - DFHXCTRA now marked unusable. . . 251

Part 4. CICS ONC RPC support 253

Chapter 21. Introduction to ONC RPC 255
ONC RPC concepts 255

RPC 256
ONC 256
TCP/IP 256

ONC RPC facilities 257
XDR routines 257
RPCGEN compiler 258
ONC RPC API library 258

ONC RPC naming and routing 259
Procedure zero 259
Registration and the Portmapper 259
Routing 260
Types of remote procedure call 260

Chapter 22. CICS ONC RPC concepts 263
ONC RPC remote procedures and CICS programs 263

Where the CICS program might be 264
CICS ONC RPC transactions 264

Connection manager (CRPC) 264
Server controller (CRPM) 264
Alias (CRPA) 264

CICS ONC RPC user-replaceable programs . . . 265
XDR routines 265
Resource checker module 265
Converters 265

CICS ONC RPC control flow 266
Updating recoverable resources 268

CICS ONC RPC data flow 268
From client to CICS program 268
Data format in the CICS program
communication area 269
From CICS program to client 270

Chapter 23. Setting up CICS ONC RPC 273
CICS ONC RPC setup tasks 274

Creating the CICS ONC RCP data set 274
JCL entry for dump formatting 274
Migrating between CICS versions 274

Modifying z/OS Communications Server data
sets. 275

Defining CICS ONC RPC resources to CICS . . . 275
Transaction definitions for CICS ONC RPC
transactions 275
Transaction definitions for extra alias
transactions 275
Program definitions for CICS ONC RPC
programs 276
Program definitions for user-written programs 276
Mapset definition 277
Transient data definitions 277
XLT definitions 277

Chapter 24. Configuring CICS ONC
RPC using the connection manager. . 279
Starting the connection manager 279

Using the connection manager BMS panels . . 281
Starting the connection manager when CICS
ONC RPC is disabled 282
Starting the connection manager when CICS
ONC RPC is enabled 282

Updating CICS ONC RPC status 282
Changing the CICS ONC RPC status 283

Enabling CICS ONC RPC 284
Setting and modifying options. 285
Validating, saving, and activating options . . . 286
When CICS ONC RPC is enabled 286

Defining, saving, modifying, and deleting 4-tuples 286
Defining the attributes of a 4-tuple 287
Saving new 4-tuple definitions 291
Modifying existing 4-tuple definitions 291
Deleting existing 4-tuple definitions 291

Registering the 4-tuples 291
Limits on registration. 292

Unregistering 4-tuples 292
Unregistering 4-tuples one by one 293
Unregistering 4-tuples from a list 293

Disabling CICS ONC RPC 294
On CICS normal shutdown. 296
On CICS immediate shutdown 296

Updating the CICS ONC RPC data set 296
Updating the CICS ONC RPC definition record 297
Working with a list of 4-tuples 298
Changing the attributes of a 4-tuple 299

Processing the alias list 300

Chapter 25. Programming with CICS
ONC RPC 303
Developing an ONC RPC application for CICS
ONC RPC 303

Step 1—Decide what data is to be sent 304
Step 2—Decide the format of the
communication area 304
Step 3—Write the XDR routines 305
Step 4—Write the converter 306
Step 5—Write a resource checker 306
Step 6—Compile and link 306
Step 7—Make CICS definitions 307
Step 8—Make a connection manager entry . . 307

vi CICS TS for z/OS 4.2: External Interfaces Guide

||

Write the CICS ONC RPC converter 307
Tasks that can be performed by a converter . . 307
Organizing the converter 309
Writing a converter in C. 310
Writing a converter in COBOL 312
Using converters 315

Reference information for the converter functions 315
Getlengths 316
Decode 318
Encode 323

Chapter 26. CICS ONC RPC security 327
Security in ONC RPC 327
Security in CICS and its effect on CICS ONC RPC
operations 327

Using RACF Secured Sign-on 329
Writing the resource checker 329

Reference information for the resource checker 329

Chapter 27. CICS ONC RPC problem
determination 333
CICS ONC RPC recovery procedures 333
CICS ONC RPC operational considerations . . . 334

MVS task control blocks (TCBs) used by ONC
RPC 334
ONC RPC task-related user exit (TRUE) . . . 334

Troubleshooting CICS ONC/RPC. 334
Defining the problem. 334
Documentation about the problem 335

Using messages and codes for ONC RPC 336
CMAC (online help facility for messages and
codes) 336

CICS ONC RPC trace information 336
Feature trace points 336
Numeric values of response and reason codes 337

ONC RPC dump and trace formatting 337
Debugging the ONC RPC user-replaceable
programs 337

XDR routines 338
Converter and resource checker 338

Chapter 28. CICS ONC RPC
performance and tuning. 339

Part 5. Using CICS as a DCE
server 341

Chapter 29. Introduction to the
Distributed Computing Environment . 343
What is DCE? 343

Remote procedure call (RPC) 343
Directory Service 344
Security Service 344
Time Service. 344
File Service 345
Threads 345

Chapter 30. DCE remote procedure
calls 347
Overview of DCE with CICS 347

DCE terminology 348
What CICS server programs can do 348
What you need for DCE RPC to a CICS server . . 349

Chapter 31. Defining CICS programs
as DCE servers 351

Chapter 32. Application programming
for DCE remote procedure calls . . . 353

Part 6. Appendixes 357

Appendix. Routing program-link
requests 359
Static routing 359
Dynamic routing 359

Notices 361
Trademarks 362

Bibliography. 363
CICS books for CICS Transaction Server for z/OS 363
CICSPlex SM books for CICS Transaction Server
for z/OS 364
Other CICS publications 364

Accessibility 365

Index 367

Contents vii

viii CICS TS for z/OS 4.2: External Interfaces Guide

What this manual is about

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

This manual describes how you can make the CICS® transaction processing
services of CICS Transaction Server for z/OS® available to a variety of external
users.

© Copyright IBM Corp. 1994, 2012 ix

x CICS TS for z/OS 4.2: External Interfaces Guide

How to use this manual

Read Part 1, “Overview of CICS external interfaces,” on page 1 for planning
information, and for guidance about which other parts of the manual to consult.

© Copyright IBM Corp. 1994, 2012 xi

xii CICS TS for z/OS 4.2: External Interfaces Guide

What you need to know to understand this manual

This manual assumes that you are familiar with CICS, either as a system
administrator or as a system or application programmer. Some parts of the manual
assume additional knowledge about CICS and other products.

© Copyright IBM Corp. 1994, 2012 xiii

xiv CICS TS for z/OS 4.2: External Interfaces Guide

Notes on terminology

When the term “CICS” is used without any qualification in this manual, it refers to
the CICS element of IBM® CICS Transaction Server for z/OS.

© Copyright IBM Corp. 1994, 2012 xv

xvi CICS TS for z/OS 4.2: External Interfaces Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1994, 2012 xvii

xviii CICS TS for z/OS 4.2: External Interfaces Guide

Part 1. Overview of CICS external interfaces

CICS provides a number of interfaces which make transaction processing services
available to a variety of external users.

© Copyright IBM Corp. 1994, 2012 1

2 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 1. Interfaces to CICS transactions and programs

You can use many types of external requests to run transactions and program in
CICS.

WebSphere® MQ users
WebSphere MQ users can use the CICS 3270 bridge to access CICS
transactions. See Part 2, “Bridging to 3270 transactions,” on page 15 and CICS
integration with WebSphere MQ.

MVS™ applications
Applications running in MVS address spaces can use the External CICS
Interface (EXCI) to access CICS programs. See Part 3, “External CICS Interface,”
on page 111.

ONC RPC clients
ONC RPC clients can use CICS ONC RPC support to access CICS programs.
See Part 4, “CICS ONC RPC support,” on page 253

DCE RPC clients
DCE RPC clients use the Application Support (AS) server to access CICS
programs. See Part 5, “Using CICS as a DCE server,” on page 341.

The following types of external requests are described in other books:

User socket applications
User socket applications can use the CICS Sockets feature of CICS Transaction
Server. See z/OS Communication Server: IP Configuration Guide.

Web browsers
Web browsers can use a variety of methods:

CICS Web support
The CICS Web support is a CICS-provided facility for supporting Web
browsers. See theConfiguring CICS web support components in the
Internet Guide

IBM WebSphere
The IBM WebSphere Application Server for z/OS is an MVS application
that supports Web browsers and routes their requests into CICS.

CICS Transaction Gateway
The CICS Transaction Gateway is a workstation application that can accept
requests from Web browsers and route them into CICS. It uses the EXCI
and ECI.

JVM applications
Java Virtual Machine applications can use a local gateway connection that uses
the EXCI to pass requests to CICS. See Java Applications in CICS.

Java-enabled Web browsers
Java-enabled Web browsers can use applets that communicate with CICS.
Writers of applets can use CICS-provided Java classes to construct external call
interface (ECI) and external presentation interface (EPI) requests. The Web
browsers communicate with Web servers, and with the CICS Transaction
Gateway.

© Copyright IBM Corp. 1994, 2012 3

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtlbw.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtlbw.html

CICS client applications
CICS client applications use a distributed CICS client (either CICS Transaction
Gateway or the CICS Universal Client) and the ECI or the EPI. See the CICS
Transaction Gateway: Programming Guide.

CICS programs
Programs running in CICS Servers on any platform can use EXEC CICS LINK to
call a CICS program, or can use transaction routing to send transaction
requests to CICS Transaction Server. Programs running in CICS Transaction
Server can use the CICS front end programming interface (FEPI) to start
transactions in the same or another instance of CICS Transaction Server. See
FEPI overview in the FEPI Guide.

Telnet clients
Telnet clients can use TN3270 to start transactions.

3270 users
Users of the IBM 3270 Display System can start transactions. This is the most
familiar method of introducing work to CICS Transaction Server.

Figure 2 on page 5 shows the principal ways of using CICS transaction processing
services from outside CICS.

Key to figure 2

= Sources of external requests

= Targets of external requests

= CICS provided interfaces

= CICS components

= Other product components

TC = Terminal Control
TR = Transaction Routing
DPL = Distributed Program Link
EXCI = EXternal CICS Interface
ECI = External Call Interfaces
EPI = External Presentation Interface
CWP = CICS WebServer Plugin

Figure 1. Key for External Interface diagram

4 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.fepi.doc/topics/overview.html

Web
browser

CICS client
application

DCE RPC
client

CICS business
logic interface

WebSphere

CICS
Transaction

Gateway

AS
Server

CICS
Transaction Server

CICS
ONC RPC

CICS
sockets

MQ CICS
bridge

ONC RPC
client

MQSeries

User Socket
application

L

I

N

K

L

I

N

K

D

P

L

D

P

L

E

X

C

I

E

X

C

I

Target
COMMAREA

Program

CORBA
client TCPIPSERVICE

CORBA
support

Java
class

E
C
I

CICS TX Series

Java

JVM Java
application

Any MVS
application

CICS Transaction Server environment

CICS
TX Series

TN3270

IBM 3270

CICS
Transaction Server

T

C

T

C

T

R

T

R

T

R

T

R

Target
3270

Transaction

CICS client
application

E
P
I

Web
browser

Web
Sphere

CICS
Transaction

Gateway Java

MVS environment

3270
Bridge

MQ CICS
bridgeMQSeries

CWP

Web 3270
interface

TCPIPSERVICE

CICS Web
support

Web browser

Figure 2. Client access to existing business logic

Chapter 1. Interfaces to CICS transactions and programs 5

The client/server model
Client/server is a model of interaction in which a program sends a request to
another program and awaits a response. The requesting program is called a client;
the answering program is called a server. Although the client/server model can be
used between programs in a single computer, the term typically refers to a
network. In a network, the model provides a convenient way to interconnect
programs that are distributed across different locations.

In CICS, a client is the source of an external request, and the server is the CICS
program that services the request. A client can be a program on another platform
that is connected to CICS over a network, or a program on another CICS region,
connected with interregion communication (IRC).

CICS (or another product) provides a transport-specific listener (a long-running
task) that starts another task (a facilitator such as an alias or a mirror), to process
the incoming request. The facilitator uses CICS services to access the application.

The priorities of different alias transactions can be adjusted to determine the
service that a client request receives. There must be enough free tasks to service the
alias transactions as they are started by the listener. The CICS programs that
service the client requests are subject to contention for resources in the CICS
system, and to transmission delays if they are remote from the CICS system, or if
they request the use of remote resources by function shipping or distributed
program link.

The CICS server is independent of the application model (2/3-tier, 2/3 platforms).
The listener/facilitator deals with the different transports used and sets the rules
for which programming models are supported.

Distributed computing
Distributed computing involves the cooperation of two or more machines
communicating over a network. The machines participating in the system can
range from personal computers to super computers; the network can connect
machines in one building or on different continents.

The main benefit of distributed computing is that it enables you to optimize your
computing resources for both responsiveness and economy. For example, it enables
you to:
v Share the cost of expensive resources, such as a typesetting and printing service,

across many desktops. It also gives you the flexibility to change the
desktop-to-server ratio, depending on the demand for the service.

v Allocate an application’s presentation, business, and data logic appropriately.
Often, the desktop is the best place to perform the presentation logic, as it is
nearest to the end user and can provide highly responsive processing for such
actions as drag and drop GUI interfaces.
Conversely, you may feel that the best place for the database access logic is close
to the actual storage device - that is, on an enterprise or departmental server.
The most appropriate place for the business logic may be less clear, but there is
much to be said for placing this too in the same node as the data logic, thus
allowing a single desktop request to initiate a substantial piece of server work
without intervening network traffic.
Distributed computing enables you to make such trade-offs in a flexible way.

6 CICS TS for z/OS 4.2: External Interfaces Guide

Along with the advantages of distributed computing come new challenges.
Examples include keeping multiple copies of data consistent, keeping clocks in
individual machines synchronized, and providing network-wide security. A system
that provides distributed computing support must address these new issues.

CICS supports distributed computing and the client/server model by means of:

Internet Inter-Orb Protocol (IIOP)
CORBA clients can access CICS Java servers using IIOP.

Distributed Computing Environment (DCE)
The remote procedure call model implemented by the Open Software
Foundation's DCE is supported in CICS.

Distributed program link (DPL)
This is similar to a DCE remote procedure call. A CICS client program passes
parameters to a remote CICS server program and waits for the server to send
data in reply. Parameters and data are exchanged by means of a
communications area.

The external CICS interface (EXCI)
An MVS client program links to a CICS server program. Again, this is similar
to a DCE RPC.

The external call interface (ECI)
The ECI enables CICS Transaction Server for z/OS server programs to be
called from client programs running on a variety of operating systems. For
information about CICS Clients, see the CICS Transaction Gateway: Programming
Guide.

Function shipping
The parameters for a single CICS API request are intercepted by CICS code
and sent from the client system to the server. The CICS mirror transaction in
the server executes the request, and returns any reply data to the client
program. This can be viewed as a specialized form of remote procedure call.

Asynchronous transaction processing
A CICS client transaction uses the EXEC CICS START command to initiate
another CICS transaction, and pass data to it. The START request can be
intercepted by CICS code, and function shipped to a server system. The client
transaction and started transactions execute independently. This is similar to a
remote procedure call with no response data.

Distributed transaction processing
A program in the client system establishes a conversation with a
complementary program in the server, and exchanges messages. The programs
may use the APPC protocols.

Transaction routing
Terminals owned by one CICS system to run transactions owned by another.

The CICS family of products runs on a variety of operating systems, and provides
a standard set of functions to enable members to communicate with each other. For
information about the CICS family, see the CICS Family: Interproduct Communication
manual.

Security support
CICS Transaction Server for z/OS supports: a single network signon, and
authentication of the client system through bind-time security.

Chapter 1. Interfaces to CICS transactions and programs 7

Single network signon is supported through the ATTACHSEC option of the
DEFINE CONNECTION command.

RACF® or an equivalent security manager provides mechanisms similar to the DCE
access control lists and login facility.

There is no CICS concept similar to the DCE Directory Service. In all the above
scenarios the client environment must know which server CICS system to
communicate with. This is normally done by specifying the name of the required
remote CICS system in the definition of the relevant remote CICS resource, or in
the client application program.

TCP/IP protocols
TCP/IP is a communication protocol used between physically separated computer
systems. TCP/IP can be implemented on a wide variety of physical networks.

TCP/IP is a large family of protocols that is named after its two most important
members, Transmission Control Protocol and Internet Protocol. Figure 3 shows the
TCP/IP protocols used by CICS ONC RPC in terms of the layered Open Systems
Interconnection (OSI) model. For CICS users, who may be more accustomed to
SNA, the left side of Figure 3 shows the SNA layers that correspond very roughly
to the OSI layers.

The protocols used by TCP/IP are shown in the right-hand box in Figure 3.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
connectionless data transmission service, and supports both TCP and UDP.
Data is transmitted link by link; an end-to-end connection is never set up
during the call. The unit of data transmission is the datagram.

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a
connection-oriented data transmission service between applications, that is, a
connection is established before data transmission begins. TCP has more
error checking that UDP.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It
provides a connectionless data transmission service between applications.
UDP has less error checking than TCP. If UDP users want to be able to

Application

Presentation

Data flow

Transmission

Path control

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

RPC

XDR

(empty)

TCP or UDP

IP

subnetwork

Sockets
interface

SNA OSI TCP/IP family

Figure 3. TCP/IP protocols compared to the OSI and SNA models

8 CICS TS for z/OS 4.2: External Interfaces Guide

respond to errors, the communicating programs must establish their own
protocol for error handling. With high-quality transmission networks, UDP
errors are of little concern.

ONC RPC and XDR
XDR and ONC RPC correspond to the sixth and seventh OSI layers.

Sockets interface
The interface between the fourth and higher layers is the sockets interface.
In some TCP/IP implementations, the sockets interface is the API that
customers use to write their higher-level applications.

TCP/IP internet addresses and ports
TCP/IP provides for process-to-process communication, which means that calls
need an addressing scheme that specifies both the physical host connection (Host
A and Host B in Figure 4) and the software process or application (C, D, E, F, G,
and H). The way this is done in TCP/IP is for calls to specify the host by an
internet address and the process by a port number. You may find internet addresses
also referred to elsewhere as internet protocol (IP) addresses or host IDs.

IP addresses
Each server or client on a TCP/IP internet is identified by a numeric IP (Internet
Protocol) address. The two types of IP address are the IPv4 (IP version 4) address
and the IPv6 (IP version 6) address.

IP addresses are managed and allocated to users by the Internet Assigned
Numbers Authority (IANA) and its delegates. The internet address specifies both
the network and the individual host. This specification varies with the size of the
network.

IPv6 addresses

IPv6 addresses are 128-bit addresses, usually expressed in hexadecimal notation:
IP address in hexadecimal notation : ’000100220333444400000000abc0def0’x
Halfword 0: 0001 hexadecimal
Halfword 1: 0022 hexadecimal
Halfword 2: 0333 hexadecimal
Halfword 3: 4444 hexadecimal
Halfword 4: 0000 hexadecimal
Halfword 5: 0000 hexadecimal
Halfword 6: abc0 hexadecimal
Halfword 7: def0 hexadecimal
IP address in colon hexadecimal notation: 1:22:333:4444::abc0:def0

IP address in hexadecimal notation : ’00000000000000000000ffff01020304’x
Halfword 0: 0000 hexadecimal

Host address

Port numbers

Processes

129.126.178.99

21 23 4100

C D E

Host A Host B

123.156.189.2

3300 3301 3302

F G H

Figure 4. How applications are addressed

Chapter 1. Interfaces to CICS transactions and programs 9

Halfword 1: 0000 hexadecimal
Halfword 2: 0000 hexadecimal
Halfword 3: 0000 hexadecimal
Halfword 4: 0000 hexadecimal
Halfword 5: ffff hexadecimal
Halfword 6: 0102 hexadecimal
Halfword 7: 0304 hexadecimal
IP address in colon hexadecimal notation: ::ffff:1.2.3.4 or ::ffff:0102:0304

The address consists of eight halfword fields. Zeros are treated in the following
ways in the address output:
v If a field contains leading zeros, they are ignored; for example, 0001 is

represented as 1

v If one or more consecutive fields in the address contain the value 0000, these
fields are expressed using the notation ::

For example, 000000000000ffff is represented as ::ffff

The :: substitution is used once only in an address, to avoid confusion in
calculating how many fields were substituted.

IPv4 addresses

IPv4 addresses are 32-bit addresses, usually expressed in dotted decimal notation:
IP address in hexadecimal notation : ’817EB263’x
Byte 0: 81 hexadecimal = 129 decimal
Byte 1: 7E hexadecimal = 126 decimal
Byte 2: B2 hexadecimal = 178 decimal
Byte 3: 63 hexadecimal = 99 decimal
IP address in dotted decimal notation: 129.126.178.99

In this example, 129.126 specifies the network and 178.99 specifies the host on
that network.

Port numbers (for servers)
An incoming connection request specifies the server that it wants by specifying the
server’s port number.

For instance, in Figure 4 on page 9, a call requesting port number 21 on host A is
directed to process C.

Well-known ports identify servers that carry standard services such as the File
Transfer Protocol (FTP) or Telnet. The same service is always allocated the same
port number, so, for example, FTP is always 21 and Telnet always 23. Networks
generally reserve port numbers 1 through 255 for well-known ports.

Port numbers (for clients)
Client applications must also identify themselves with port numbers so that server
applications can distinguish different connection requests.

The method of allocating client port numbers must ensure that the numbers are
unique; such port numbers are termed ephemeral port numbers. For example, in
Figure 4 on page 9, process F is shown with port number 3300 on host B allocated.

10 CICS TS for z/OS 4.2: External Interfaces Guide

ONC and DCE concepts
ONC (Open Network Computing) RPC (Remote Procedure Call) is an open source
RPC framework developed by Sun Microsystems. DCE (Distributed Computing
Environment) is an architecture defined by the Open Software Foundation (OSF).
Both technologies support client-server applications in heterogeneous distributed
environments.

DCE RPC is different from ONC RPC in many ways. For example, DCE RPC does
not limit the number of parameters on the call, whereas an ONC RPC call is
limited to one input and one output parameter (but these may be structures that
contain many fields, including pointers to other data).

Figure 5 shows how the two CICS RPC implementations provide the same
function.

You provide a definition of the client's parameter list in the interface definition
language (IDL) provided as a part of DCE RPC. The DCE IDL module maps the
incoming parameters into a CICS communication area, so the communication area
format is defined by the client's parameter list.

CICS ONC RPC CICS programs can be written in any CICS-supported
programming language, and the conversion from client format to communication
area is done by the Decode function of the converter. With ONC RPC you get
more flexibility, but you have more work to do.

CICS programs that are used as servers for DCE RPC clients can also be used as
servers for ONC RPC clients. You need to write a Decode function that converts
the incoming data structure into the predefined communication area, and converts
the incoming data from C types to COBOL types.

DCE
DCE provides a high-level, coherent environment for developing and running
applications on a distributed system.

The DCE components fall into two categories: tools for developing distributed
applications and services for running them. The tools, such as Remote Procedure
Calls and Threads, assist in the development of an application. The services, like

COBOL
CICS
program

Client call

with C parms

Client call

with C parms

parameters

COBOL

Client

Client

ONC:

CICS ONC RPC

CICS
Transaction
Server

DCE:

DCE IDL module

Figure 5. Remote procedures provided for DCE RPC and ONC RPC

Chapter 1. Interfaces to CICS transactions and programs 11

the Directory Service, Security Service, and Time Service, provide support in a
distributed system that is analogous to the support an operating system provides
in a centralized system.

DCE includes management tools for administering all of the DCE services and
many aspects of the distributed environment itself.

DCE is oriented towards heterogeneous rather than homogeneous systems. The
DCE architecture allows for different operating systems and hardware platforms.
Using DCE, a process running on one computer can interoperate with a process on
a second computer, even when the two computers have different hardware or
operating systems.

EXCI concepts
The external CICS interface makes CICS applications more easily accessible from
non-CICS environments.

Programs running in MVS can issue an EXEC CICS LINK PROGRAM command to
call a CICS application programs running in a CICS region. Alternatively, the MVS
programs can use the CALL interface when it is more appropriate to do so.

The provision of this programming interface means that, for example, MVS
programs can:
v Update resources with integrity while CICS is accessing them.
v Take CICS resources offline, and back online, at the start and end of an MVS job.

For example, you can:
– Open and close CICS files.
– Enable and disable transactions in CICS (and so eliminate the need for a

master terminal operator during system backup and recovery procedures).

The external CICS interface opens up a new way to implement client/server
applications, where the client program in a non-CICS environment calls a server
program running in the CICS address space. The external CICS interface benefits
not only TSO and batch applications, but allows you to extend the use of CICS
application programs in an open client/server environment.

Although the CICS external interface operates over CICS MRO links, the client
program can run on non-MVS platforms, and pass requests to CICS over an open
system interface (OSI) using the IBM z/OS Distributed Computing Environment
Application Support MVS/ESA CICS feature (DCE AS/CICS). In this way the
external CICS interface provides an open interface to a wide variety of other
application platforms.

3270 bridge concepts
The 3270 bridge allows you to introduce new GUI front ends to access existing
3270-based CICS applications without modifying them.

This means that you can concentrate your efforts on the new user interfaces and
avoid, or at least postpone, rewriting stable mainframe applications. You do not
need to restructure your applications to separate the business logic from the
presentation logic; the bridge effectively does this for you.

12 CICS TS for z/OS 4.2: External Interfaces Guide

The same applications can be used both by 3270 terminals, and by the new client
applications. This allows a phased migration of users from the 3270 applications to
the new client applications. Applications written for 3270 terminals can be run on
CICS systems without the z/OS Communications Server.

The bridge can process commands faster than existing front-end methods, such as
FEPI and EPI, because the terminal emulation is part of the same CICS transaction.
With the START BREXIT bridge mechanism, there is only a single unit of work.
This means that the bridge can use a recoverable WebSphere MQ queue. This
greatly simplifies recovery.

For BMS user transactions, there is no need to convert BMS data to 3270 format,
because the client application receives the BMS Application Data Structure, rather
than a 3270 datastream. This provides an easier method for the application
programmer to interface with the user transaction compared to FEPI. A utility
program (DFHBMSUP) is provided to re-create map source code from existing load
modules, so that installations that do not have access to the original source code
can still exploit the new ADS descriptor provided by the BMS macros.

The target transaction is unchanged, but because of the way it now executes in the
bridge environment, there are some restrictions on what it can do. These
restrictions are described in “Link3270 programming considerations” on page 20..

CICS provides two types of 3270 bridge mechanism:

The Link3270 mechanism
This mechanism provides a simplified interface using LINK, ECI or EXCI.
All messages have a fixed format and you are not required to provide any
user-written supporting programs.

The START BREXIT mechanism
This 3270 bridge mechanism requires a bridge monitor transaction to
initiate the bridge environment by issuing a START BREXIT command,
which specifies the target user transaction and also the name of a
user-written bridge exit. The bridge exit is called to intercept 3270 requests
and pass them in the form of messages to the client application. You can
write your own bridge exit and also define your own message formats.
Bridge exits are provided to support client applications using temporary
storage, the web and Websphere MQ as transport mechanisms for requests,
using sample message formats.

The START BREXIT mechanism is still supported, and the sample bridge exits are
still provided, but it is better to use the simpler Link3270 mechanism, and migrate
to it where possible. The START BREXIT is described in the CICS Transaction
Server for OS/390®, Version 1 Release 3 CICS External Interfaces Guide, which can
be found at http://www.ibm.com/software/ts/cics/library/books/os390/ .

The 3270 bridge and FEPI
To help you decide between the 3270 bridge technology and FEPI, the following
table summarizes the major characteristics.

Table 1. Comparision between 3270 bridge technology and FEPI

START Bridge Link3270 Bridge FEPI

Enabling technology Enabling technology An application programming
interface

Chapter 1. Interfaces to CICS transactions and programs 13

http://www-4.ibm.com/software/ts/cics/library/books/os390/

Table 1. Comparision between 3270 bridge technology and FEPI (continued)

START Bridge Link3270 Bridge FEPI

Based on application data
structure

Based on application data
structure

Based on the 3270 data
stream

Enables optimization due to
integral knowledge of the
target

Enables optimization due to
integral knowledge of target

Easier to create generic
driver (data structure is
architected)

Efficient; no terminal control
involved

Efficient, no terminal control
involved

z/OS Communications
Server managed connection
between source and target

Single COMMAREA API and
user replaceable program

COMMAREA API Requires system
programming and z/OS
Communications Server
skills

CICS specific: source and
target must be in the same
region

LINK, DPL, EXCI or ECI
interface supported

Ideal for driving remote
applications, not just CICS

Driven exit decides method
of communication with the
client

Client interface is LINK,
DPL, EXCI or ECI

Can be freed from the
workings of the target;
terminal emulation

Knowledge of UOW Standard CICS LINK
coordination

No coordination

Ideal when the routing is
done elsewhere

Supports workload balancing Sysplex support requires
three regions

14 CICS TS for z/OS 4.2: External Interfaces Guide

Part 2. Bridging to 3270 transactions

Using the 3270 bridge you can connect a client application to a 3270-based CICS
transaction. In this configuration, the client application takes the place of the 3270
terminal and the terminal end-user.
v Chapter 2, “Introduction to the 3270 bridge,” on page 17
v Chapter 3, “Using the Link3270 bridge,” on page 27
v Chapter 4, “Managing the Link3270 bridge environment,” on page 47
v Chapter 5, “Link3270 message formats,” on page 61
v Chapter 6, “Link3270 diagnostics,” on page 97
v Chapter 7, “Using the Link3270 samples,” on page 103

© Copyright IBM Corp. 1994, 2012 15

16 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 2. Introduction to the 3270 bridge

The 3270 bridge provides an interface so that you can run 3270-based CICS
transactions without a 3270 terminal. The 3270 terminal and end-user are replaced
by an application program, known as the client application.

Commands for the 3270 terminal in the CICS 3270 user transaction are intercepted
by CICS and replaced by a messaging mechanism that provides a bridge between
the client application and the CICS user transaction.

CICS provides two types of 3270 bridge mechanism:

The Link3270 mechanism
This mechanism provides a simplified interface using LINK, ECI or EXCI. All
messages have a fixed format and you are not required to provide any
user-written supporting programs. This mechanism supports CICSPlex® SM
load balancing; bridge facilities are shared between CICS regions on the
CICSplex

The START BREXIT mechanism
This 3270 bridge mechanism requires a bridge monitor transaction to initiate
the bridge environment by issuing a START BREXIT command, which specifies
the target user transaction and also the name of a user-written bridge exit. The
bridge exit is called to intercept 3270 requests and pass them in the form of
messages to the client application. You can write your own bridge exit and also
define your own message formats. Bridge exits are provided to support client
applications using Temporary Storage, the Web and WebSphere MQ as
transport mechanisms for requests, using sample message formats. This
mechanism is single region only: bridge facilities are local to the region.

The START BREXIT mechanism is supported and the sample bridge exits are still
provided. However, consider migrating to use the simpler Link3270 mechanism
where possible. START BREXIT is not documented in this release of CICS . To use it
or modify existing implementations, refer to the CICS documentation that is
published at http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dfhjatm6/
CCONTENTS.

The Link3270 bridge mechanism
The client application uses the Link3270 bridge to run 3270 transactions by linking
to the DFHL3270 program in the router region and passing a COMMAREA that
identifies the transaction to be run and contains the data used by the user
application.

The response contains the 3270 screen data reply. If the target application used
BMS, this is presented in the form of an application data structure (ADS), another
name for the symbolic map that is generated by the BMS macros used to define
the mapping of the 3270 screen.

The Link3270 bridge is called in the same way for all request mechanisms of the
interface: EXEC CICS LINK, the EXternal CICS Interface (EXCI), and the CICS
External Call Interface (ECI).

© Copyright IBM Corp. 1994, 2012 17

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dfhjatm6/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dfhjatm6/CCONTENTS

The following flow describing the Link3270 mechanism is shown also in Figure 6:
1. The client application creates a Link3270 request message.
2. The client application issues an appropriate link request (ECI, EXCI or LINK) to

the CICS router program DFHL3270, passing the Link3270 message as a
COMMAREA. Note that CICS takes care of the codepage conversion if
necessary.

3. DFHL3270 dynamically routes the request to the bridge driver task, which may
be in the same or another CICS region. Load balancing can be implemented in
this step.

4. The driver starts the user application (the target 3270 transaction), running in a
bridge environment.

5. The response Link3270 message is returned to the client as a COMMAREA.
6. The client application processes the outbound message .

The Link3270 mechanism supports non-conversational, pseudoconversational and
conversational applications.

The bridge facility
The 3270 user application was designed to be used with a real 3270 terminal and
the CICS commands that it uses assume that a real 3270 exists.

The 3270 bridge mechanism simulates the presence of a real 3270 by providing
internal interfaces for a virtual 3270, known as the bridge facility.

This replaces the terminal resource definition that you would normally provide for
a 3270 application. The bridge facility emulates a real terminal in the following
EXEC CICS interfaces:
v ASSIGN
v Terminal control and some of the BMS API

CICSplex

AORs

User
application

Bridge
Driver

Start
Client

program

Router regions

DFHL3270

Client
program

Client
program

DPL

LI
N

K

E
X

C
I

ECI

Figure 6. Link3270 request flow

18 CICS TS for z/OS 4.2: External Interfaces Guide

v EIB
v INQUIRE TASK
v INQUIRE TERMINAL

You do not provide a resource definition for the bridge facility, but you can control
some of the terminal properties used by providing a 3270 TERMINAL resource
definition to be used as a template. The name of this TERMINAL definition,
known as the facilitylike, is passed to the bridge on the Link3270 call.

See “Defining the bridge facility” on page 48 for further information about the
bridge facility.

Lifetime of the bridge facility
When simple transactions are run in single transaction mode, the bridge facility is
created dynamically by CICS and deleted at the end of the transaction.

In session mode, multiple transactions or pseudotransactions can be run using the
same bridge facility. In this mode the client application can request creation and
deletion of the bridge facility, and can also specify a keeptime in
BRIH-FACILITYKEEPTIME in the Allocate function. See “Using Link3270 session
mode” on page 37.

The maximum keeptime value can be limited by the BRMAXKEEPTIME system
initialization parameter. Bridge facilities are deleted automatically if they are
inactive for the keeptime interval.

For more information about specifying system initialization parameters, see CICS
startup in the System Definition Guide.

The application data structure (ADS)
Application data structure (ADS) is another name for the symbolic map that is
generated by the BMS macros used to define the mapping of the 3270 screen.

Application data structure (ADS) is another name for the symbolic map that is
generated by the BMS macros used to define the mapping of the 3270 screen. For
BMS programs, terminal data is passed between the client and the bridge in this
format, giving the client application a simplified interface to the terminal data,
without the need to understand 3270 data streams.

See “DFHBMSUP” on page 20 for guidance on creating the ADSD if you have no
source.

The ADS descriptor (ADSD)
The ADS descriptor allows interpretation of the BMS application data structure
(the symbolic map used by your application program for the data in SEND and
RECEIVE MAP requests) - without requiring your client program to include the
relevant DSECT or copybook at compile time.

The ADS descriptor contains a header with general information about the map,
and a field descriptor for every field that appears in the ADS, corresponding to
every named field in the map definition macro. It can be located in the mapset
from an offset field in DFHMAPDS.

Chapter 2. Introduction to the 3270 bridge 19

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/topics/dfha2_cics_startup.dita.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/topics/dfha2_cics_startup.dita.html

The ADS descriptor is available only if the map load module has been reassembled
to include the descriptor, and CICS attempts to locate the descriptor only if the
BRIH-ADSDESCRIPTOR indicator is set to BRIHADSD-YES in the Link3270
message header.

DFHBMSUP
If you are unable to reassemble the mapset because you do not have the source,
you can use the DFHBMSUP utility to re-create source statements from your
mapset load module.

For information about DFHBMSUP, see .

Link3270 programming considerations
The user transaction is unchanged, but because of the way it now executes in the
bridge environment, there are some restrictions on what it can do, and some
limitations on how it can use the bridge facility, because it is not a real terminal.

You can use the Load Module Scanner utility (described in Operations and utilities
overview in the Operations and Utilities Guide), using the supplied table
DFHEIDBR, to identify any CICS commands in your program that are not
supported by the bridge.

Note: The bridge only supports valid documented CICS API interfaces. If either
the application or vendor programs use undocumented interfaces, the results will
be unpredictable.

If you are using CICS Service Flow Runtime there are additional restrictions
described in Link3270 bridge restrictions.

Abend information
The bridge facility name is not used as the TERMID in any diagnostic
information produced as the result of an abend, except in a transaction dump.

ASSIGN
If the user transaction issues ASSIGN NETNAME, the value returned is the
NETNAME if there is one, or else the TERMID. The name is not visible outside
the user transaction, and may contain '}' characters.

You can only use ASSIGN to request information about BMS attributes such as
MAPCOLUMN, MAPHEIGHT, MAPLINE, and MAPWIDTH if an ADS
descriptor is present in the mapset. See “The ADS descriptor (ADSD)” on page
19.

BMS requests
The Link3270 bridge supports the following BMS commands. If other BMS
functions that require a principal facility are used, they cause the user
transaction to abend ABR3.

RECEIVE commands

v RECEIVE MAP TERMINAL
v RECEIVE MAP FROM
v RECEIVE MAP MAPPINGDEV

Note: TERMINAL is implied if neither TERMINAL nor FROM is specified.

SEND commands

v SEND MAP TERMINAL

20 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha6_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha6_overview.html

v SEND TEXT TERMINAL
v SEND TEXT NOEDIT TERMINAL
v SEND TEXT MAPPED TERMINAL
v SEND CONTROL TERMINAL
v SEND MAP SET
v SEND TEXT SET
v SEND TEXT NOEDIT SET
v SEND TEXT MAPPED SET

Note:

1. TERMINAL is implied if none of TERMINAL, SET, or PAGING is
specified.

Routing
Routing to real terminals from a transaction running on a bridge facility is
supported, but it is not possible to route to a bridge facility, nor to specify
a bridge facility as ERRTERM on ROUTE. If ERRTERM without a name is
specified on a ROUTE request issued in a bridge environment, the
INVERRTERM condition is raised.

PAGING is supported only under routing.

Partitions
Partition related commands and options are supported, but are treated in
the same way as they would be for a real terminal that does not support
partitions.

SEND PARTNSET
Supported, but the bridge exit is not invoked.

RECEIVE PARTN
Supported; the bridge exit is invoked with bridge exit area
command fields set up for a terminal control RECEIVE.

INPARTN
Accepted but ignored; not passed to the bridge exit.

OUTPARTN
Accepted but ignored; not passed to the bridge exit.

ACTPARTN
Accepted but ignored; not passed to the bridge exit.

CICS-supplied transactions
CEDF, CEDX, CSFE, and CSGM cannot run as user transactions.

DB2® authorization check
Do not use the settings AUTHTYPE(TERM) or AUTHTYPE(OPID) in the
DB2CONN definition, because these security checks fail in a bridge
environment.

External security customization
TERMID, OPID, and TCTUA information is not passed in the DFHXSID
parameter list.

Global User Exits
The following global user exits (GLUEs) are not driven because the bridge
facility is not a real terminal.

Chapter 2. Introduction to the 3270 bridge 21

XBMIN
to intercept a RECEIVE MAP request.

XBMOUT
to intercept a SEND MAP request.

XTCATT
before a task attach.

XZCATT
before a task attach (z/OS Communications Server SNA).

XZCIN
after an input event (z/OS Communications Server SNA).

XZCOUT
before an output event (z/OS Communications Server SNA).

XZCOUT1
before a message is broken into RUs (z/OS Communications Server
SNA).

The XALTENF and XICTENF exits can be driven if a request is made for a
bridge facility. The ‘terminal-not-found' condition is raised because the bridge
facility is not a real terminal.

The standard user exit parameter list field UEPTERM that points to the
TERMID are not set for exits invoked under a bridge task.

ISSUE PASS
ISSUE PASS is not supported and results in an INVREQ.

ISSUE PRINT
ISSUE PRINT is not supported and results in a no-op. A NORMAL condition is
returned.

Monitoring
A 3270 bridge transaction identifier is present in monitoring records.

Remote DLI requests
No security check of the PSB against the terminal is done for function-shipped
DLI requests.

Security Processing
When a bridge facility is created, it is signed on as a preset USERID terminal,
with the client's USERID. As with other preset terminals, the SIGNON and
SIGNOFF commands are not permitted, and INVREQ is raised.

The bridge facility is signed off when it is discarded. It remains signed on in
session mode until a specific delete facility request is sent, or the keeptime
interval expires.

START
The user transaction can issue EXEC CICS START requests for its own bridge
facility. This allows existing menu-driven and pseudo-conversational
applications that use this interface to work in a bridge environment. See
“Pseudoconversational transactions” on page 39 for a description of START
TERMID where TERMID specifies the bridge facility.

The time delay options, (INTERVAL, TIME, AFTER, AT, HOURS, MINUTES,
SECONDS) are not normally used in the bridge environment, but the bridge
mechanism uses them to put the STARTs for a particular bridge facility in time
order, but the exact delays requested are not implemented. TIME and AT
specifications are ignored completely.

22 CICS TS for z/OS 4.2: External Interfaces Guide

Other options on the START command are partly supported :

TERMID
You can specify the name of your own bridge facility for this
transaction, or for any real terminal.

USERID
USERID and TERMID are mutually exclusive. The CICS translator
rejects START requests with both USERID and TERMID specified.

TRANSID
If the TRANSID cannot be defined as REMOTE, the TERMID will not
be found if the request is shipped to a remote system.

SYSID
Routing of START requests is not possible in a bridge environment.
This option is not supported, unless the value of the SYSID is the local
SYSID. If you specify any other value, the request will be shipped and
the TERMID will not be found on the remote system.

NOCHECK
This option only applies to shipped start requests and is ignored.

PROTECT
If you specify the PROTECT option on a START request for a bridge
facility, and the starting task abends before taking a syncpoint, the
START request is discarded. PROTECT normally delays the starting of
the new task until a SYNCPOINT has occurred. This happens
automatically for a task issuing a START for its own facility because
the START cannot take effect until the starting task has terminated and
freed up its bridge facility.

STARTed transactions
Some menu applications use START to initiate subsequent transactions.

You can specify BRIHSC-START in the BRIH-STARTCODE field of a single
transaction mode request message, or in the first transaction of a session mode
pseudoconversation, to return the correct response to ASSIGN STARTCODE
and INQUIRE TASK STARTCODE commands issued by the user transaction.

User transactions that are initiated by START may issue one or more
RETRIEVEs to obtain data passed on the START. When the bridge has passed
all the data provided in the Link3270 request message, ENDDATA is returned
to the user transaction.

Statistics
You cannot use EXEC CICS COLLECT STATISTICS TERMINAL(xxxx) where xxxx is
a bridge facility.

Storage violation counts
No storage violation counts will be kept in a bridge facility.

TCTUA
The TCTUA is available to the user transaction using the EXEC CICS
ADDRESS command. You can modify the contents of the TCTUA using the
XFAINTU global user exit. See “Initializing the TCTUA” on page 51. Note that
the TCTUA is NOT available to any programs in other CICS regions that are
linked to by the user transaction using DPL.

Transaction restart
RESTART(NO) is forced for user transactions because CICS has no way of
restoring the initial input message.

Chapter 2. Introduction to the 3270 bridge 23

Transaction Routing
Transaction Routing is not directly supported, see “Transaction Routing
considerations” for a technique you can use. The Link3270 bridge supports
workload balancing with an affinity.

TWA
The TWA is available to the user transaction.

Transaction Routing considerations
Although the 3270 bridge does not directly support transaction routing, you can
migrate applications using the following technique.

Add a wrapper program in the router region to drive initialization and termination
routines as shown in the following table:

Client Router wrapper Bridged tran

Link to wrapper1
wrapper1
ADDRESS COMMAREA(msg)
brih-transaction =
briht-allocate-facility
LINK PROG(DFHL3270)

COMMAREA(alloc-msg)

brih-transaction = appl1
LINK PROG(DFHL3270)

COMMAREA(msg)

brih-transaction = term
LINK PROG(DFHL3270)

COMMAREA(dummy-msg)

brih transaction =
briht-delete-facility
LINK PROG(DFHL3270)

COMMAREA(del-msg)

READQ TS
INTO(appl-commarea)

RETURN
COMMAREA(msg+appl-commarea)

app1
..BMS or 3270 commands..
RETURN

COMMAREA(appl-commarea)

term
ADDRESS

COMMAREA(appl-commarea)
WRITEQ TS

FROM(appl-commarea)

24 CICS TS for z/OS 4.2: External Interfaces Guide

Client Router wrapper Bridged tran

Link to wrapper2
wrapper2

ADDRESS
COMMAREA(msg+appl-commarea)

WRITEQ TS
FROM(appl-commarea)

brih-transaction =
briht-allocate-facility
LINK PROG(DFHL3270)

COMMAREA(alloc-msg)

brih-transaction=init
LINK PROG(DFHL3270)

COMMAREA(dummy-msg)

brih-transaction=appl2
LINK PROG(DFHL3270)

COMMAREA(msg)

brih-transaction =
briht-delete-facility
LINK PROG(DFHL3270)

COMMAREA(del-msg)

RETURN
COMMAREA(msg)

init
READQ TS INTO(appl-commarea)
RETURN

COMMAREA(appl-commarea)

appl2
ADDRESS

COMMAREA(appl-commarea)
..BMS or 3270 commands..
RETURN

COMMAREA(appl-commarea)

Note:

1. This solution could be varied according to the commarea size. If the
msg+appl-commarea is greater than 32K, then rather than returning the
appl-commarea to the listener, the init and term transansactions could write the
commarea to a shared TS queue.

2. The same method can be used to initialize a TCTUA, large amounts of start
data , or anything other parameters relating to the transaction environment.

Allocating a bridge facility name for a pseudoconversation
when using the Link3270 bridge for transaction routing

In this example the application is controlled by a bridge client on the host.

About this task

This is described in “Select Link3270 client scenarios” on page 29.

Before running your client program:
1. Set the AIBRIDGE system initialization parameter to "yes" in the router region.

This causes CICS to call the autoinstall user-replaceable program when a
terminal ID has been allocated.

2. Ensure that your autoinstall user-replaceable program contains code to change
the last character of the terminal ID in SELECTED-BRFAC-TERMID if it is set

Chapter 2. Introduction to the 3270 bridge 25

to is set to "}". This character must be changed to a character that is unique to
the system and can be an alphanumeric character or one of the following
special characters: ¢@#./_$?!:|"=¬,;<>
If you are using NETNAME change it by copying SELECTED-BRFAC-TERMID
to SELECTED-BRFAC-NETNAME.

Your client program should contain the following steps:

Procedure
1. Call the Link3270 bridge with an allocate-facility request. This bridge facility is

referred to as the primary bridge facility in this example.
2. Set BRIH-FACILITYKEEPTIME to the time the application will take to run. If in

doubt set it to the maximum value allowed. The maximum value is given in
the description of BRMAXKEEPTIME in “Defining Link3270 system
initialization parameters” on page 47. Set BRIH-FACILITYKEEPTIME to the
time the application will take to run. If in doubt set it to the maximum value
allowed. The maximum value is given in the description of BRMAXKEEPTIME
in “Defining Link3270 system initialization parameters” on page 47.
CICS calls the autoinstall user-replaceable program when the terminal ID for
the bridge facility has been allocated.

3. When the transaction completes you may want to route to a different AOR:
a. Keep the terminal ID and NETNAME which are returned from the Link3270

call in BRIH-TERMINAL and BRIH-NETNAME and do not delete the
primary bridge facility.

b. Allocate a new bridge facility using a Link3270 allocate-facility request.
Before issuing this request, set BRIH-TERMINAL to the value of the
primary bridge facility. Set BRIH-NETNAME also if you need NETNAME
to be the same throughout. The facility allocated by this request is referred
to as the secondary bridge facility in this example.

c. When the autoinstall user-replaceable program is called for the new facility,
SELECTED-BRFAC-TERMID is set to the value in BRIH-TERMINAL. Note
that this name does not have "}" as the last character and the program will
accept it.

d. When changing to a third AOR, call Link3270 with a delete-facility request
for the secondary bridge facility.

e. Repeat steps 3a to 3d each time the target AOR changes.
4. When all transaction routing has finished, call Link3270 with a delete-facility

request for the primary bridge facility.

26 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 3. Using the Link3270 bridge

To run transactions using the Link3270 bridge, you must provide a client program
that drives the Link3270 interface using LINK, EXCI LINK, or ECI requests. The
message passed on each request determine the mode of operation, and the service
to be performed.

To develop a client program to run an existing CICS 3270 transaction using the
Link3270 bridge you need to:
v Establish the suitability of your applications for use with Link3270 .
v Design and write your client programs

CICS provides sample ECI, EXCI and LINK client programs to run the NACT
sample transaction. You can use these as guidance in converting your own
applications. See Chapter 7, “Using the Link3270 samples,” on page 103 for more
information about the Link3270 samples and NACT.

This chapter describes:
v “Establish Link3270 suitability”
v “Writing the Link3270 client” on page 28
v “Using Link3270 messages” on page 32
v “Using Link3270 single transaction mode” on page 36
v “Using Link3270 session mode” on page 37
v “Calling the Link3270 bridge” on page 42
v “Using data conversion with Link3270” on page 44

Establish Link3270 suitability
You need to establish that your applications are suitable for use with the Link3270
bridge.

This can be done in two ways:
1. Using the load module scanner to identify if the applications use any

instructions that are not supported by the bridge. This involves the following
steps:
v Identify the programs used by the application
v Run the load module scanner against the programs (see “Using the Load

Module Scanner Utility” on page 28), using the bridge restrictions table
DFHEIDBR. If there are any hits this indicates that there may be
unsupported EXEC CICS commands.

Note: note that the load module scanner can occasionally generate a false
hit, so you will need to investigate the program to ensure that this has not
occurred.

v If there are unsupported commands you may be able to change them. If not,
then the application is not supported by Link3270.

2. Using the 3270 Bridge Passthrough SupportPak (See “Using the 3270 Bridge
Passthrough SupportPac” on page 28) to check if the application uses any
unsupported interfaces.

© Copyright IBM Corp. 1994, 2012 27

The bridge is designed to support applications conforming to the documented
CICS API specified in the Application programming reference overview in CICS
Application Programming, subject to the restrictions described in “Link3270
programming considerations” on page 20. To confirm whether the application
(and associated vendor products used on the system) conform to this, the
application should be run under the Passthrough application. There may be
various routes through the program which use different EXEC CICS API
commands. Each of these routes should be tested using the Passthrough.

Using the Load Module Scanner Utility
The load module scanner is a batch utility that scans load modules for specified
CICS API commands.

The commands to be reported upon are defined as a filter input file. A sample
command filter list (DFHEIDBR) is provided to search for commands that are not
supported in the 3270 bridge environment, and an output report identifies the
commands and load module offsets, including EDF information if available. For
more information about this utility, see Load module scanner (DFHEISUP) in the
Operations and Utilities Guide.

Using the 3270 Bridge Passthrough SupportPac
The CA1E SupportPac is a support package providing the CICS 3270 Bridge
Passthrough tool.

This allows you to run a CICS 3270 user transaction from a 3270 terminal in the
normal way, but internally CICS uses the Link3270 bridge logic instead of real 3270
terminal support. This allows you to evaluate whether a CICS 3270 transaction is
suitable to be driven using the 3270 bridge.

The Passthrough transactions also allow you to examine the 3270 data streams and
log them for further analysis. You can then use this information to write the client
program that will drive the CICS 3270 transaction instead of a real 3270 terminal.

The CA1E SupportPac can be obtained from the following address:
http://www.software.ibm.com/ts/cics/txppacs.

Writing the Link3270 client
To design and write a client program to run an existing CICS 3270 transaction
using the Link3270 bridge you need to:
1. select a suitable bridge scenario to decide where code needs to be written
2. analyze the application to understand the business data that flows between the

3270 and the application, so that you can replace it with messages
3. decide whether you can use the simplified single transaction mode interface or

whether you need to use the full session mode interface
4. Write you client program using the selected scenario and transaction mode,

using Link3270 messages to communicate with Link3270.

Link3270 has two modes of operation:

Single transaction mode
This is a 'one-shot' type of request. A single transaction is run, and a single
response message returned. The bridge facility is allocated automatically

28 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha693.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha693.html
http://www.software.ibm.com/ts/cics/txppacs

by CICS and deleted at the end of the transaction. This mode is
appropriate for inquiry type applications.

Session mode
This mode is appropriate for sequences of transactions where state data is
maintained between transactions. In this mode, the client program can
request:
v allocation of a bridge facility
v running of a transaction
v sending of continuation responses
v recovery from communication failure
v deletion of the bridge facility

Your client program manages the sequence of requests and the creation
and deletion of the bridge facility. Note that this is different from the
implementation of the START bridge, where the bridge facility is created
dynamically.

Select Link3270 client scenarios
The following scenarios describe some common client environments.

They show how you can develop your client program to run in the most
appropriate environment to make best use of existing skills and experience. These
scenarios demonstrate tiered client applications that enable you to divide the logic
to make best use of skills and experience. They use some common terms:

Business client
The business client is concerned only with the business data and its
representation in the client end-user environment

bridge client
The bridge client builds the bridge messages and manages the communication
with the bridge using the Link3270 interface. You can develop the more
complex bridge client to run in CICS, using CICS commands, and the business
client portion can run in any environment that allows communication with the
bridge client. The bridge client can be designed to be reusable.

1. Host CICS Client

In this scenario, shown in Figure 7 on page 30, the programmer has CICS skills
and experience, so it is more appropriate to write the Link3270 interface code
on CICS.
You can separate the client logic into a business client, and a bridge client.
The LINK and EXCI samples show how a client application can be separated in
this way and how common logic can be shared in the bridge client. Note that a
business client in another CICS region can use DPL to access the bridge client.

Chapter 3. Using the Link3270 bridge 29

2. CICS Workstation Client

In this scenario, shown in Figure 8, where a CICS product is installed on the
workstation (such as CICS for Unix) then the client can be a CICS program
using LINK to interface with Link3270, or with a host CICS bridge client. In the
three tier model the writer of the bridge client needs to have CICS skills, but
the business client programmer only needs skills on that platform.

3. Non - CICS Workstation Client

In this scenario, shown in Figure 9 on page 31, the programmer has
workstation skills and limited CICS experience. For the two tier scenario, the

CICSplex

AORs

User
application

Bridge
Driver

Start
Business

client

Business
client

Router regions

DFHL3270ECI DPL

Business
client

Bridge
client

LINK

E
X

C
I

LI
N

K

Figure 7. Link3270 host CICS client scenario

Client

CICS

CICSplex

AORs

User
application

Bridge
Driver

Start

Router regions

DFHL3270

Bridge
client

DPL

LI
N

K

DPL

DPL

Figure 8. Link3270 CICS workstation client scenario

30 CICS TS for z/OS 4.2: External Interfaces Guide

programmer must have some CICS experience to understand the messages
(which involve EXEC CICS instructions).
The client program executes on a remote workstation, using ECI to drive the
user application. A single client program is written, combining the business
logic in the client environment and the interface to Link3270.

4. 3–tier Workstation client

In this scenario, shown in Figure 10, the workstation business client calls a
bridge client in another environment, perhaps to utilize existing skills. For
example, a Unix program could send a user-defined XML message to
WebSphere on z/OS. A user-written bridge client application in WebSphere
could then parse the XML message and convert it to a Link3270 message and
use an EXCI LINK to call Link3270.

CICSplex

AORs

User
application

Bridge
Driver

Start

Router regions

DFHL3270 DPL
Business /

Bridge
Client

ECI

Figure 9. Link3270 non-CICS workstation client scenario

CICSplex

AORs

User
application

Bridge
Driver

Start

Business
Client

Router regions

DFHL3270 DPL
Bridge
Client

WebSphere

Bridge
Client

WebSphere

XML

ECI

X
M

L

E
X

C
I

Figure 10. Link3270 3–tier client scenario

Chapter 3. Using the Link3270 bridge 31

Analyze the 3270 application
You need to analyze the 3270 application programs that form your transaction in
order to replace the 3270 input data with messages sent by your client program.

You can use the 3270 Bridge Passthrough SupportPak (See “Using the 3270 Bridge
Passthrough SupportPac” on page 28) to drive your applications and log 3270
commands.

3270 programs fall mainly into the following types:

Minimum function BMS
This includes minimum function, SEND TEXT, and ACCUM. Link3270
supports these applications. Bridge clients can be written relatively easily by a
CICS programmer.

BMS and little 3270 datastream
A typical example of this type is an application that issues RECEIVE of
command line input, and issues a send MAP as output. Link3270 supports
these applications. Client applications can be written relatively easily by a
CICS programmer.

Mixed BMS and 3270 datastream
A typical example of this type is an application that issues RECEIVE and then
RECEIVE MAP FROM. Link3270 supports these applications but the client
programs are more difficult to write because MAP information has to be
supplied in 3270 datastream format.

Pure 3270 datastream
Typically user-written 3270 datastream where the user has a well-understood
fixed 3270 datastream structure. This is supported but the client program is
more difficult to program than with BMS. However this is usually the format
understood by the programmer of the target application.

Alternative map generators
3270 datastreams are generated dynamically. Link3270 supports these
applications but the client programs are more difficult to write because MAP
information has to be supplied in 3270 datastream format.

Full function BMS
Including ACCUM, PAGE and PARTITION support. These programs are not
supported and will be detected by the load module scanner or the Passthrough
tool.

Using Link3270 messages
To run transactions using the Link3270 Bridge, a client program: creates an
inbound message, links to Link3270 with a COMMAREA containing the message,
and interprets the result of the outbound message.

The inbound message
The inbound message is passed on the LINK, ECI or EXCI call as a
COMMAREA. It contains the following data structures:

Bridge message header (BRIH)
A data structure containing parameters to be passed to the Link3270 bridge
mechanism, such as the name of the user transaction; the facility-like
template to be used when the bridge facility is created, and the termid to
be assigned to the bridge facility.

32 CICS TS for z/OS 4.2: External Interfaces Guide

Bridge message vectors (BRIV)s
Zero or more data structures containing data to be passed to the user
transaction containing the data requested by the EXEC CICS command for
3270 terminal input.

For example, if the application issues an EXEC CICS RECEIVE MAP, the inbound
message will have the following form:

Table 2. Message structure for the EXEC CICS RECEIVE MAP command

BRIH BRIV-RM ADS

Where ADS is the application data structure expected by the RECEIVE MAP
command.

Sample BRIH and BRIV copybooks are supplied, primed with the default
values, to simplify programming. You can include these in your program and
then change only the specific fields relevant to the request.

The outbound message
The outbound message is passed in the COMMAREA on return from the
LINK, ECI or EXCI call. It contains the following data:

Bridge message header (BRIH)
A data structure containing parameters returned by the Link3270
mechanism, such as return and response codes; the actual termid assigned
to the bridge facility, and the length of the returned message.

Bridge message vectors (BRIV)s
Zero or more data structures containing the data supplied by the EXEC
CICS command for a 3270 terminal output request, or requests for more
data, to be passed to the client program.

For example, if the application issues several non-terminal EXEC CICS
commands, an EXEC CICS SEND MAP and then an EXEC CICS RETURN, the
outbound message will have the following form where ADS is the application
data structure expected by the SEND MAP command.

Table 3. Message structure for the EXEC CICS SEND MAP command

BRIH BRIV-SM ADS

A more complicated example would be one where the application issues
several non-terminal EXEC CICS commands, an EXEC CICS SYNCPOINT, an EXEC
CICS SEND CONTROL, an EXEC CICS SEND MAP, and then an EXEC CICS RETURN. In
this case, the outbound message has the following form:

Table 4. More complicated message structure

BRIH BRIV-SP BRIV-SC BRIV-SM ADS

Inbound BRIV vectors
One BRIV vector is required containing the data requested by every EXEC CICS
command for 3270 terminal input issued by the user transaction.

The following commands are supported:
v CONVERSE
v RECEIVE
v RECEIVE MAP

Chapter 3. Using the Link3270 bridge 33

Note: If the application issues CONVERSE, and there is an inbound converse
vector to satisfy this request, then the output from the converse is used to build an
output SEND vector.
When the user transaction issues the command, the bridge mechanism searches the
inbound message for the first BRIV that matches the command type. For RECEIVE
MAP commands it attempts to match the MAPSET and MAP if these have been
supplied by the client. RECEIVE MAP vectors are processed in order, and those
that do not match the current command are discarded until a match is found.
Blank names in the vector match any command.

Where there are several input vectors of different types, the order is not important.

For 'conversational' transactions (see “Conversational transactions” on page 39)
when the client is asked for further input, the previous inbound message vectors
(except RETRIEVE vectors) are discarded when a new inbound message is
received. Note that RETRIEVE vectors can only flow in the first message of the
first transaction in a session. See “Using Link3270 session mode” on page 37 for an
explanation of the session programming mode.

Outbound BRIV vectors
One BRIV vector is created containing the data supplied by every EXEC CICS
command for 3270 terminal output issued by the user transaction. This passes to
the client all the information and data relating to the command.

The following commands are supported:
v ISSUE ERASEUP
v SEND
v SEND MAP
v SEND TEXT
v SEND CONTROL
v SYNCPOINT
v SEND PAGE
v PURGE MESSAGE

Note: SEND PAGE and PURGE MESSAGE are only available for the Link3270
bridge with extended support. See“Link3270 bridge basic and extended support”
for an explanation of the differences between Link3270 bridge basic and extended
support.

For 'conversational' transactions (see “Conversational transactions” on page 39), the
last BRIV vector can represent an EXEC CICS command that requests more data.
This vector is only created if the previous input message did not contain a BRIV to
satisfy all the CICS commands. The following commands are supported:
v CONVERSE request
v RECEIVE request
v RECEIVE MAP request
v RETRIEVE request

Link3270 bridge basic and extended support
There are two levels of support for the Link3270 bridge.

34 CICS TS for z/OS 4.2: External Interfaces Guide

v Link3270 bridge with basic support provides the same as the support as that
provided in CICS Transaction Server for z/OS, Version 2 Release 2. If you want
to continue using basic support, you do not need to take any action. Basic
support is provided automatically.

v Link3270 bridge with extended support provides support for the ACCUM option
on EXEC CICS SEND TEXT, EXEC CICS SEND MAP, and EXEC CICS SEND
CONTROL, in addition to the basic support. To support the ACCUM option,
there are two extra outbound vectors, SEND PAGE and PURGE MESSAGE. If
you want to take advantage of extended support, you must recompile any CICS
Transaction Server for z/OS, Version 2 Release 2 Link3270 programs using the
extended copybooks (listed in Table 6), instead of the basic copybooks.

Copybooks and default vectors
To simplify the task of constructing and analyzing Link3270 messages, CICS
provides copybooks and header files containing BRIH and BRIV structures. Sample
BRIH and input BRIV structures already primed with default values are also
supplied, so all you need to do is copy them into your COMMAREA and modify
relevant fields.

Default structures and message copybooks

The following default structures are supplied in all supported languages:
v BRIH-DEFAULT
v BRIV-CONVERSE-DEFAULT
v BRIV-RECEIVE-DEFAULT
v BRIV-RECEIVE-MAP-DEFAULT
v BRIV-RETRIEVE-DEFAULT

You will find the copybooks and headers in the files listed in the tables below.
Table 5 shows the basic copybooks. Table 6 shows the extended copybooks.

Table 5. Link3270 message copybooks for basic support

structure COBOL C PLI Assembler

BRIH DFHBRIHO DFHBRIHH DFHBRIHL DFHBRIHD

Inbound BRIVs DFHBRIIO DFHBRIHH DFHBRIHL DFHBRIHD

Outbound BRIVs DFHBRIOO DFHBRIHH DFHBRIHL DFHBRIHD

Defaults and
constants

DFHBRICO DFHBRICH DFHBRICL DFHBRICD

Table 6. Link3270 message copybooks for extended support

structure COBOL C PLI Assembler

BRIH DFHBR2HO DFHBR2HH DFHBR2HL DFHBR2HD

Inbound BRIVs DFHBR2IO DFHBR2HH DFHBR2HL DFHBR2HD

Outbound BRIVs DFHBR2OO DFHBR2HH DFHBR2HL DFHBR2HD

Defaults and
constants

DFHBR2CO DFHBR2CH DFHBR2CL DFHBR2CD

Chapter 3. Using the Link3270 bridge 35

Sample client programs are supplied to illustrate the use of the copybooks and
defaults. You will find a description of these in “Running the sample client
programs” on page 105.

Using Link3270 single transaction mode
Single transaction mode allows a client to run a single transaction.

The bridge facility is automatically created, then deleted at the end of the
transaction. This mechanism is more efficient and easier to program than session
mode, if only one transaction is being run. It is particularly suited to inquiry
transactions.

To run in single transaction mode, your client program must supply the name of
the user transaction in the BRIH_TRANSACTIONID field of the bridge message
header (BRIH). See “Link3270 message header (BRIH)” on page 62 for a
description of the BRIH. The following parameters may also be optionally defined:
v BRIH-DATALENGTH (if BRIV vectors are appended to the message)
v BRIH-FACILITYLIKE
v BRIH-TERMINAL
v BRIH-NETNAME
v BRIH-ADSDESCRIPTOR
v BRIH-ATTENTIONID
v BRIH-STARTCODE
v BRIH-CURSORPOSITION

Your client program must also create BRIV vectors for any input commands. If you
add data to a BRIV, you must also update the BRIH-DATALENGTH field. See
“Updating data length fields”.

To use single transaction mode your application must satisfy the following
restrictions, otherwise session mode should be used:
v Only one input and one output message are allowed. To run conversational

transactions, you must provide all the input data in sequential BRIV structures
in the input message. The BRIH-CONVERSATIONALTASK and
BRIH-GETWAITINTERVAL parameters in the BRIH are ignored.

v The COMMAREA should be large enough to receive the output message. If it is
not, the message is truncated at the last complete vector, and the rest of the
message is discarded. BRIH-REMAININGDATALENGTH is set to a non zero
value to indicate there has been truncation.

v If a communications link breaks, you can not obtain the output using a resend
message request. For this reason it is recommended that single transaction mode
is mainly used for inquiry type transactions.

Updating data length fields
If you add data to a BRIV you must update the following fields to include the
length of the data:
v The BRIV data length field
v The BRIV header vector length field

If you add a BRIV to a message, you must add the value in the BRIV header
vector length field to BRIH-DATALENGTH.

36 CICS TS for z/OS 4.2: External Interfaces Guide

Using Link3270 session mode
Session mode allows a client to run a number of transactions using the same
bridge facility.

It is more efficient than running each of these transaction in single transaction
mode. Session mode supports the following operations:
v Allocating a bridge facility
v Running transactions
v Deleting a bridge facility
v Delivering large messages
v Recovery in the event of communications failure

Note: The USERID must be the same for the whole session and must be specified
in every Link3270 request.

How to create a message
Before sending each message you must perform these steps.

Procedure
1. Move the default bridge message header (BRIH) into a message area.
2. For all messages other than the allocate, set BRIH_FACILITY to the value

returned on the allocate.
3. Modify other parameters of the message as required, as described in the

following sections.

Allocating a bridge facility
To allocate a bridge facility, your client program must set the value of the
BRIH_TRANSACTIONID field of the bridge message header (BRIH) to
BRIHT-ALLOCATE-FACILITY.

See “Link3270 message header (BRIH)” on page 62 for a description of the BRIH.
The following parameters may also be optionally defined:
v BRIH-FACILITYKEEPTIME
v BRIH-FACILITYLIKE
v BRIH-TERMINAL
v BRIH-NETNAME

Other fields in the message are ignored.

For example, to allocate a bridge facility using the supplied default BRIH and
constants:
Working-Storage Section
...
copy dfhbrico.
...
Linkage Section

01 msg-area
copy DFHBRIHO.

...
Procedure Division.
...
move brih-default to msg-area.
set briht-allocate-facility to true.

Chapter 3. Using the Link3270 bridge 37

EXEC CICS LINK PROGRAM(’DFHL3270) COMMAREA(msg-area)
LENGTH(length of brih) DATALENGTH(len)
END-EXEC

...

:

Note: The BRIH-FACILITYLIKE value supplied by your client program is not
validated until the first application transaction is run. It is only when the first
application transaction is processed that the AOR region is determined and the
facilitylike value can be validated within the selected AOR.

Running transactions
To run transactions in session mode, your client program must supply the name of
the user transaction in the BRIH_TRANSACTIONID field of the bridge message
header (BRIH), and set BRIH-FACILITY to the value returned by the allocate
request.

The following parameters may also be optionally defined:
v BRIH-DATALENGTH
v BRIH-CONVERSATIONALTASK
v BRIH-GETWAITINTERVAL
v BRIH-ADSDESCRIPTOR
v BRIH-ATTENTIONID
v BRIH-STARTCODE
v BRIH-CURSORPOSITION

Other fields in the BRIH are ignored.

For example, to run transaction NACT using the supplied default BRIH and
constants:
Working-Storage Section
.
.
copy dfhbrico.
.
Linkage Section.
01 msg-area.

copy DFHBRIHO.
03 msg-vectors pic x(2000).

.
Procedure Division
.

move brih-default to msg-area
move ’NACT’ to brih-transactionid
move facility to brih-facility
move brih-datalength to len
EXEC CICS LINK PROGRAM(’DFHL3270’) COMMAREA(msg-area)

LENGTH(length of msg-area) DATALENGTH(len)
END-EXEC

.

.

Your client program must also create BRIV vectors for any input commands. For
example:

move briv-receive-map-default to briv-in.
move ’DFH0MNA ’ to briv-rm-mapset.
move ’ACCTMNU ’ to briv-rm-map.

38 CICS TS for z/OS 4.2: External Interfaces Guide

move ’422’ to briv-rm-cposn.
move length of acctmnui to briv-rm-data-len.
set address of acctmnui to address of briv-rm-data.
move low-values to acctmnui.
add briv-rm-data-len to briv-input-vector-length.
add briv-input-vector-length to brih-datalength.

Note: When adding a BRIV always remember to increment the
BRIH-DATALENGTH

Conversational transactions
A traditionally conversation transaction, making multiple interactions with a
terminal, can be run under the Link3270 bridge as a simple 'non-conversational'
transaction by providing all the terminal input in multiple BRIV vectors in the
Link3270 request message.

Here, the term 'conversational' refers to transactions where there are multiple flows
between the client and the user transaction. To enable this conversational
interaction, you must set BRIH-CONVERSATIONALTASK to BRIHCT-YES.

If the user transaction encounters a CONVERSE, RECEIVE or RECEIVE MAP and
the Link3270 mechanism has not received a BRIV to satisfy the request, and the
BRIH allows conversations (BRIH-CONVERSATIONALTASK is set to
BRIHCT-YES), a message is returned to the client requesting further data. The
value of BRIH-TASKENDSTATUS is set to the value BRIHTES-CONVERSATION,
and a request BRIV is the last vector in the message.

The client then responds by sending a further input message containing the
required 3270 input data. The client initializes the message to the default BRIH and
sets the value of the BRIH-TRANSACTIONID field to BRIHT-CONTINUE-
CONVERSATION and BRIH-FACILITY to the value returned on the allocate
request. The following parameters may also be optionally defined:
v BRIH-DATALENGTH (if BRIV vectors are appended to the message)
v BRIH-CONVERSATIONALTASK
v BRIH-GETWAITINTERVAL
v BRIH-CANCELCODE

Other fields in the BRIH are ignored.

The client program may also need to create BRIV vectors if appropriate, and it
must reply within the time specified in BRIH-GETWAITINTERVAL

Note: If BRIH-CONVERSATIONALTASK is set to BRIHCT-NO, the bridge will
abend the user transaction if it issues an input command for which no vector has
been supplied.

Pseudoconversational transactions
A pseudoconversation normally involves a series of transactions, each initiated by
the previous transaction, which may also pass some data. The name of the next
transaction to be run can be defined by the user transaction in different ways.
1. EXEC CICS RETURN TRANSID

2. EXEC CICS RETURN TRANSID IMMEDIATE

3. EXEC CICS START TRANSID TERMID

4. EXEC CICS SET TERMINAL/NETNAME NEXTTRANSID

5. Terminal data

Chapter 3. Using the Link3270 bridge 39

Note: Transactions initiated by START TERMID are not necessarily
pseudoconversational. Here we are considering only those transactions initiated by
a START to the principal facility (the bridge facility) where the STARTING and
STARTED applications are associated in a pseudoconversation. In this case, START
TERMID must specify the bridge facility.

Commands 1-4 all cause the bridge mechanism to set the next transaction identifier
in the BRIH-NEXTTRANSACTIONID field to be returned to the client in the next
response message.

The client responds by sending a run request for the next transaction, with
BRIH-TRANSACTIONID set to the value from BRIH-NEXTTRANSACTIONID and
BRIH-FACILITY set to the value returned on the allocate request. The following
parameters may also be optionally defined:
v BRIH-DATALENGTH (if BRIV vectors are appended to the message)
v BRIH-CONVERSATIONALTASK
v BRIH-GETWAITINTERVAL (if conversational)
v BRIH-ADSDESCRIPTOR
v BRIH-ATTENTIONID
v BRIH-CURSORPOSITION

Other fields in the BRIH are ignored.

Note: The same bridge facility must be used by all transactions in the
pseudoconversation.

Deleting a bridge facility
When all session activity is complete, the client can delete the bridge facility.

To do this, your client program must set the value of the BRIH_TRANSACTIONID
field of the BRIH to BRIHT-DELETE-FACILITY, and set BRIH-FACILITY to the
value returned by the allocate request. Other fields in the message are ignored.

For example, to delete a bridge facility using the supplied default BRIH and
constants:
Working-Storage Section
.
.
copy dfhbrico
.
Linkage Section.
01 msg-area.
copy DFHBRIHO.
.
Procedure Division
.

move brih-default to msg-area
set briht-delete-facility to true
move facility to brih-facility
move brih-datalength to len
EXEC CICS LINK PROGRAM(’DFHL3270’) COMMAREA(msg-area)

LENGTH(length of brih) DATALENGTH(len)
END-EXEC

.

.

40 CICS TS for z/OS 4.2: External Interfaces Guide

If the bridge facility is not explicitly deleted, it is scheduled for deletion
automatically by CICS if it is unused for the time specified in the
BRIH-FACILITYKEEPTIME field, or in the BRMAXKEEPTIME system initialization
parameter. The smaller interval is used.

Delivering large messages
If the output message from the user transaction is larger than the size of the
COMMAREA passed on the request, the bridge mechanism returns a BRIH and as
many complete BRIV vectors as will fit into the returned COMMAREA.

If it is not possible to fit the whole of the outbound message into the
COMMAREA, the field BRIH-REMAININGDATALENGTH is set to a non zero
value. The client can then issue one or more requests to obtain the rest of the data.
To do this, your client program must set the value of the BRIH-TRANSACTIONID
field to BRIHT-GET-MORE-MESSAGE, and set BRIH-FACILITY to the value
returned by the allocate request. Other fields in the message are ignored.

This is so that CICS can return error information. Clients should follow CICS
recommendations regarding COMMAREA lengths described in LENGTH options
in CICS commands, in the CICS Application Programming Reference.

Recovery from connection failure
If the communications connection fails before a response message is received, the
client can reconnect to the same router and request that the message be sent again.

To do this, your client program must set the value of the BRIH-TRANSACTIONID
field to BRIHT-RESEND-MESSAGE, and set BRIH-FACILITY to the value returned
by the allocate request. Other fields in the message are ignored.

If successful, the outbound Link3270 bridge message contains as much of the
message as can be fitted into the COMMAREA. If either the router or the AOR
CICS region has failed, the message returned indicates that the facilitytoken is
unknown.

If unsuccessful, the output is the BRIHT-RESEND-MESSAGE message with an
appropriate BRIH-RETURNCODE.

Note:

1. A resend request must be sent before the interval specified in
BRIH-FACILITYKEEPTIME on the allocate request has expired. Otherwise, both
the bridge facility and the outstanding message are deleted.

2. You can use the field BRIH-SEQNO to check whether the previous request has
worked.

Validity of Link3270 requests
At any time, the bridge facility is considered to be in a specific state.

Some requests are only valid is the facility is in an appropriate state. If the request
is not valid, BRIH-RETURNCODE is set to the value indicated in Table 7 on page
42.

Possible states are:
v Not Allocated

Chapter 3. Using the Link3270 bridge 41

v Allocated
v Conversational
v Transaction Ended

The following table will help you to decide when a request is valid, and what the
resulting state will be. If a request is invalid, the state does not change:

Table 7. Validity of Link3270 requests

Request Not Allocated Allocated Conversational Transaction
ended

Allocate Facility valid
->Allocated

note⁸ note⁸ note⁸

Run Transaction valid² valid⁴ invalid³ valid⁴

Continue
Conversation

invalid¹ invalid⁵ valid⁴ invalid⁵

Get More
Message

invalid¹ invalid⁶ valid/invalid⁷ valid/invalid⁷

Resend Message invalid¹ invalid⁶ valid
->Conversational

valid
->Transaction
ended

Delete Facility invalid¹ valid ->Not
Allocated

invalid³ valid ->Not
Allocated

Note:

1. BRIH-RETURNCODE set to BRIHRC-INVALID-FACILITYTOKEN.
2. This is defined as single transaction mode.
3. BRIH-RETURNCODE set to BRIHRC-FACILITYTOKEN-IN-USE.
4. The resulting stated depends on whether the transaction issues further requests

for which there is no BRIV. Possible new states are Conversational or
Transaction-ended

5. BRIH-RETURNCODE set to BRIHRC-TRANSACTION-NOT-RUNNING.
6. BRIH-RETURNCODE set to BRIHRC_NO-DATA.
7. The resulting state depends on whether there is more data to send (indicated

by BRIH-REMAININGDATALENGTH).
8. This state is not relevant, as Allocate always creates a new facility.

Expiry of facilitytoken
If the facilitytoken expires due to inactivity, any subsequent requests are invalid.
BRIH-RETURNCODE is set to BRIHRC-INVALID-FACILITYTOKEN and the
resulting state is Not Allocated. Conversational requests may result in loss of data.

Calling the Link3270 bridge
The Link3270 bridge supports these external request mechanisms.
1. EXEC CICS LINK. This includes both local link and DPL.
2. The External CICS Interface (EXCI). This includes both the EXCI call interface

and the EXEC CICS interface.
3. The External Call Interface (ECI).

42 CICS TS for z/OS 4.2: External Interfaces Guide

Calling Link3270 using LINK
The interface is the standard EXEC CICS LINK interface.
EXEC CICS LINK PROGRAM(’DFHL3270’)

COMMAREA(Link3270_message)
DATALENGTH(inbound_message_length)
LENGTH(outbound_message_length)

v PROGRAM must specify DFHL3270.
v The COMMAREA must contain a structured Link3270 message, as described in

Chapter 5, “Link3270 message formats,” on page 61.

If you are using DPL:
v SYSID may be specified. If there are multiple router regions, all calls must be

issued to the same region where the allocate-facility call was sent.
v SYNCONRETURN can be used, but is not required. If it is not used, a mirror

task remains in the router for the duration of the session.
v TRANSID can be used
v INPUTMSG and INPUTMSGLEN are ignored.

The bridge header (BRIH) indicates whether the transaction ran successfully or not.
See Chapter 6, “Link3270 diagnostics,” on page 97 for a full description of the
return codes from the Link3270 call.

For a full description of the LINK command, see LINK in CICS Application
Programming .

Calling Link3270 using EXCI
Either form of the EXCI interface can be used to run the bridge.

The EXEC CICS interface is recommended for the single transaction mode. The call
interface is recommended for the session mode. See Chapter 3, “Using the
Link3270 bridge,” on page 27 for a description of single transaction and session
modes. See “The EXCI programming interfaces” on page 114 for information about
using the EXCI interface.

Calling Link3270 using ECI
The interface is the standard ECI interface, passing the ECIPARMS parameter list.

This should contain the following specific fields:

parameter value

eci_call_type synchronous or asynchronous

eci_program_name DFHL3270

eci_userid Userid for security validation. The user
transaction runs with this userid

eci_password Password or Passticket for security
validation

eci_tpn User transaction name

eci_commarea Address of the Link3270 message

eci_commarea_length Length of the Link3270 message

Chapter 3. Using the Link3270 bridge 43

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_link.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_link.html

The other fields are set according to normal ECI programming. See CICS Family:
Client/Server Programming for more information about the using the ECI interface.

The return code from the ECI call indicates whether the request was accepted by
CICS. A return code of ECI_NO_ERROR does not imply that the transaction ran
successfully. It implies that the transmission of the message was successful. The
client application should look in the returned bridge header (BRIH) for the return
code and abend code. See Chapter 6, “Link3270 diagnostics,” on page 97 for a full
description of the return codes from the Link3270 call.

Multiple Router regions
If there are multiple router regions, all calls must be issued to the same region
where the allocate-facility call was sent.

Using data conversion with Link3270
If the codepage of your client program is different from the codepage used by the
CICS user program, your messages need to be converted.

The BRIH, all BRIV vector headers and RETRIEVE data can be converted using the
CICS conversion program DFHCCNV. See the CICS Intercommunication Guide for
information about the data conversion process.

DFHCCNV uses the DFHCNV table to determine the required conversions. You
need to supply entries in this table for each resource that requires conversion. See
the CICS Intercommunication Guide .

Converting BRIH and BRIV header data
If you are using codepages other than the defaults, that is, other than 437 for the
client and 037 for the server, then you must ensure that the correct codepage
conversion is applied to DFHBRCTD.

You can do this by coding SRVERCP and CLINTCP parameters on the DFHCNV
TYPE=INITIAL statement. The COPY DFHBRCTD statement should follow DFHCNV
TYPE=INITIAL.

If the application programs run using the same codepages as those specified on the
TYPE=INITIAL statement, then the TYPE=ENTRY statements do not need to specify the
codepages.

If an application program, or programs, need to use different codepages, then the
new values must be specified on the appropriate TYPE=ENTRY statements.

In your DFHCNV, you should include:
COPY DFHBRCTD

Build DFHCNV as described in the CICS Intercommunication Guide. This will
convert the BRIH and BRIV vector headers using the codepages described in your
conversion template.

DFHCNV example for Link3270
This shows an example of a DFHCNV for a CICS region using codepage 939 for
the server programs and codepage 943 for most of the clients.

44 CICS TS for z/OS 4.2: External Interfaces Guide

The COPY DFHBRCTD statement follows the DFHCNV TYPE=INITIAL statement,
so it will use 939 and 943. This is used in the conversion of BRIHs.

PROG1 uses the same codepages, but PROG2 uses client codepage 932 instead of
939. In order to achieve this, the TYPE=ENTRY statement for PROG2 contains
overrides for the client and server codepages.

Converting RETRIEVE data
RETRIEVE data is converted using the conversion template for the user
transaction. You should provide a DFHCNV entry with RTYPE=IC RNAME=user
tranid.

Converting user data
User data following each BRIV (including the ADSD, but excluding RETRIEVE
data) is converted in the AOR using the GCHARS and GCODES values defined for
the facility-like terminal that was used as a template to build the bridge facility.

You should define these values appropriately for your client program, and specify
the facility-like name in your Link2370 call if you are not using the default. The
client codepage must be specified in value 2 of CGCSGID in the AOR as well as in
the DFHCNV conversion table in the router region.

The codepage conversion for user data is based on the codepage conversion for
EPI emulation.

CGCSGID values 1 and 2 can be retrieved by an application program using EXEC
CICS ASSIGN GCHARS and EXEC CICS ASSIGN GCODES respectively.

Note: SEND TEXT NOEDIT data is always converted as if it were in 3270 data stream
format.

DFHCNV TITLE ’EXAMPLE DFHCNV CONVERSION TABLE’
*

DFHCNV TYPE=INITIAL,SRVERCP=939,CLINTCP=943
*

COPY DFHBRCTD
*

DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=PROG1
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=10018, *

LAST=YES
*

DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=PROG2, *
SRVERCP=939,CLINTCP=932

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=500, *

LAST=YES
*

DFHCNV TYPE=FINAL
END

Figure 11. DFHCNV example for Link3270

Chapter 3. Using the Link3270 bridge 45

46 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 4. Managing the Link3270 bridge environment

Before you can use the Link3270 bridge you must define a DFHBRNSF file.

Defining a DFHBRNSF file is described in “Defining the bridge facility name” on
page 49.

Optionally, you can also:
v Allocate specific names to bridge facilities using the autoinstall user replaceable

program. See “Defining the bridge facility” on page 48 .
v Control the keeptime for bridge facilities. See “Defining Link3270 system

initialization parameters” .
v Use the dynamic transaction routing program to enable load balancing. See

“Using Link3270 bridge load routing” on page 57

This chapter describes the CICS interfaces provided to help you set up and control
a Link3270 bridge environment. It describes:
v “Defining Link3270 system initialization parameters”
v “Defining the bridge facility” on page 48
v “Managing Link3270 bridge resources” on page 54
v “Using Link3270 bridge load routing” on page 57

Defining Link3270 system initialization parameters
These system initialization parameters affect the operation of the Link3270 bridge.

AIBRIDGE={AUTO|YES}
Code this parameter to specify whether the autoinstall URM is called when
bridge facilities are created and deleted.

AUTO
The autoinstall URM is not called.

YES
The URM is called for all new bridge facilities and can change the termid
and netname, or can reject the request

BRMAXKEEPTIME={86400|timeout }
Bridge facilities are deleted after they have been unused for a given length
of time. The timeout value can be specified by the client when it sends in a
request to create a bridge facility in session mode. This parameter specifies
the maximum timeout value that a client can specify (in seconds). If the
client specifies a larger value than the BRMAXKEEPTIME value in the
AOR, then CICS will change this parameter in the link parameter list (but
does not return the reduced value to the client).

Use this parameter to ensure that CICS does not run short of bridge
facilities caused by clients reserving bridge facilities for too long a period.

86400
The default maximum timeout value (24 hours) that a client can
specify to retain an unused bridge facility before it is deleted.

timeout
The maximum timeout value that a client can specify (in seconds),

© Copyright IBM Corp. 1994, 2012 47

before an unused bridge facility is deleted. The value specified must be
in the range 0 to 86400. A value of 0 means that bridge facilities are
never kept at the end of a transaction. Therefore CICS will not be able
to run pseudoconversational transactions. This may be useful if the
region is only used for inquiry transactions. The default value is 24
hours (86400 seconds).

You can also specify the SPCTR and STNTR parameters to request standard and
special tracing for the bridge (BR) and partner (PT) domains:

BR domain tracing

v Exception tracing for disasters and significant user errors.
v Level 1 normal domain tracing.
v Level 2 additional information. Messages and vectors trace only up to 4000

bytes.

PT domain tracing

v Exception tracing for disasters and significant user errors.
v Level 1 normal domain tracing.
v Level 2 additional information.

See CICS startup in the System Definition Guide for further information.

Defining the bridge facility
The bridge facility is an emulated 3270 terminal. It is a virtual terminal, created by
Link3270 when it receives a single transaction mode request, or a session mode
request to allocate a bridge facility.

You do not provide a TERMINAL resource definition for the bridge facility, but
you can control the terminal properties used by providing a 3270 TERMINAL
resource definition to be used as a template. This TERMINAL definition, is known
as the facilitylike.

Defining the facilitylike
The facilitylike value is the name of a real terminal resource definition that is used
as a template for some of the properties of the bridge facility.

The name of the facilitylike definition to be used can be passed to CICS in one of
three ways (the first non-blank value found is used):
v From the BRIH-FACILITYLIKE parameter in the Link3270 call.
v From the PROFILE resource definition for the user transaction.
v The default is CBRF, a definition supplied by CICS to support the bridge.

.

Once the bridge facility has been defined, its facilitylike template cannot be
changed. Therefore, if the bridge facility is reused in session mode, CICS ignores
the facilitylike value passed in subsequent calls.

Note: If you are running in a CICS system started with the VTAM=NO system
initialization parameter, the resource definition specified by facilitylike must be
defined as REMOTE. A default definition of CBRF, defined as REMOTE, is
provided in the group DFHTERM.

48 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/topics/dfha2_cics_startup.dita.html

Note: VTAM® is now the z/OS Communications Server.

For information about the PROFILE resource definition, see PROFILE resources in
the Resource Definition Guide.

Defining the bridge facility name
When CICS creates a bridge facility, it creates both an eight-byte token to identify
it (the facilitytoken) and a four-character terminal identifier, which is used as both
TERMID and NETNAME.

The facilitytoken is returned on the Link3270 allocate call and must be supplied by
you on all subsequent session mode calls (See “Using Link3270 session mode” on
page 37).

For bridge facilities created by the Link320 bridge, the token and name are unique
across the CICSplex, and the TERMID and NETNAME are of the form AAA}.
Naming occurs in the routing region, at the time of processing an "allocate"
command in session mode, or the internal allocate step in single-transaction mode.
See Chapter 3, “Using the Link3270 bridge,” on page 27 for information about
session and single-transaction modes.

Link3270 bridge facility namespace allocation information is recorded in a shared
file, DFHBRNSF, to ensure uniqueness of the names. The router regions that share
file DFHBRNSF and their associated AOR's form the bridge CICSplex. Multi-bridge
CICSplexes can be set up within a larger CICSplex , each router region within a
bridge CICSplex sharing the same DFHBRNSF file. The AOR regions of a bridge
CICSplex can only be associated with router regions on one bridge CICSplex.

To improve performance, the Link3270 bridge namespace is split into allocation
ranges, so that a 'chunk' of names is allocated to each router region, and the
DFHBRNSF file is only accessed when a namespace range is allocated or released.
Names within the allocated chunks can be reused when keeptimes expire, and
chunks may also be reused in other regions, so you may see the same names
appearing in different regions, but they are only active in one region at any given
time.

Message DFHBR0505 is issued when 90% of the DFHBRNSF names have been
allocated and is issued for each percentage point increase in the names being
allocated. Message DFHBR0506 is issued for each percentage point reduction in
names allocated until below 90%. When no more names are available, message
DFHBR0507 is issued, and client application new allocation (or one shot) requests
receive a return code of BRIHRC_NO_FREE_NAME.

DFHBRNSF file types
The bridge facility namespace allocation file (DFHBRNSF) can be a local user data
table, a local VSAM file, a coupling facility data table (CFDT), a remote VSAM file
or a VSAM RLS file.

If only one router region is used a user maintained data table or local VSAM
version of DFHBRNSF is recommended.

If multi-router regions are used, the DFHBRNSF file can be defined as a local
VSAM file in a remote file owning region (FOR) and as a remote VSAM file in the
router regions; as a VSAM RLS in all the router regions, or as a coupling facility
data table in all the router regions.

Chapter 4. Managing the Link3270 bridge environment 49

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/profile/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/profile/dfha4_overview.html

If the user maintained data table version of DFHBRNSF is used, the VSAM data
set specified in the CICS file definition must be empty; no records should be
loaded from the file to the data table. The data table should not be closed when
the router region is running, because all bridge facility namespace data will be lost
and the next request to allocate or release a range of bridge facilities will fail. For
this reason, a user maintained data table is not recommended for a production
environment.

Defining DFHBRNSF
For VSAM files and data tables you will need to use IDCAMS to create file
DFHBRNSF.

Figure 12 shows a some sample IDCAMS statements that you can modify to create
the DFHBRNSF file. The cluster name and volume values should be changed to
comply with your own standards.

See the CICS System Definition Guide for guidance on creating coupling facility data
tables.

File DFHBRNSF contains two control records plus 1 record for each router region
that accesses the file. The maximum number of records that can be written to
DFHBRNSF is 731 (this includes the 2 control records).

You need to define file DFHBRNSF to CICS in the Link3270 router regions.
Resource definitions have been provided for all versions of the file. You should
include the appropriate group in your startup grouplist, or copy chosen definitions
into a group in the grouplist. You will need to edit the definitions to match your
IDCAMS statements. Change the DSN field to match the cluster name used with
IDCAMS to create the file, unless the CFDT version of the file is to be used. If the
CFDT definition is being used, change the CFDTPOOL value to the name of the
pool containing the table defined by the file definition. The table below shows the
groups provided that contain the DFHBRNSF definitions.

//DEFDS JOB accounting info,name,MSGCLASS=A
//TDINTRA EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE CLUSTER(NAME(CICSTS22.CICS.DFHBRNSF)-
INDEXED-
TRK(1 1)-
RECORDSIZE(384 384)-
KEYS(13 20)-
FREESPACE(0 50)-
SHAREOPTIONS(2 3)-
LOG(NONE)-
VOLUME(DISK01)-
CISZ(512)) -

DATA (NAME(CICSTS22.CICS.DFHBRNSF.DATA)-
CISZ(512)) -

INDEX (NAME(CICSTS22.CICS.DFHBRNSF.INDEX)-
CISZ(512))

/*
//

Figure 12. Sample IDCAMS job to create the DFHBRNSF file

50 CICS TS for z/OS 4.2: External Interfaces Guide

Table 8. Supplied resource definitions for DFHBRNSF

Group Type

DFHBRVR VSAM RLS

DFHBRVSL Local VSM, non-RLS

DFHBRVSR Remote VSAM, non-RLS

DFHBRCF Coupling facility data table

DFHBRUT User maintained data table

Note:

1. If DFHBRNSF becomes unavailable, only Link3270 requests that do not cause
an allocation or release of a bridge facility namespace range will still complete
successfully.

2. If DFHBRNSF file has to be redefined for any reason, all router regions that
access the file should be shut down before the file is redefined, and restarted
after the file has been redefined.

DFHBRNSF at CICS termination
During the normal termination of a CICS router region, new Link3270 requests are
rejected and existing Link3270 facilities are released. When all facilities have been
released, the DFHBRNSF name ranges associated with the router region are freed.

It is possible that the freeing of the DFHBRNSF name ranges will fail. For example,
if file DFHBRNSF is remote, the shutdown transaction CESD breaks the connection
to the file owning region before the name ranges have been freed. If this happens
an error message will be issued. The name ranges are only freed when the CICS
region is restarted and a Link3270 transaction has run in that region.

If the CICS termination is immediate, the Link3270 request is rejected with return
code BRIH-CICS-TERMINATION, but the Link3270 facilities and DFHBRNSF name
ranges associated with the facilities are not released. The name ranges are only
freed when the CICS region is restarted and a Link3270 transaction has run in that
region.

Defining a specific bridge facility name
If the name or netname of the 3270 terminal is important to the logic of the 3270
application, you can supply a specific name in the BRIH-TERMINAL or
BRIH-NETNAME parameter on the Link3270 call and also optionally request that
the autoinstall user replaceable module (URM) is called when the bridge facility is
allocated.

The autoinstall URM is called if you specify the system initialization parameter
AIBRIDGE=YES at CICS startup, or use SET AUTOINSTALL to activate this option
at a later time.

The AUTOINSTALL URM can accept, reject or modify the supplied or generated
terminal name and netname. See the CICS Customization Guide for information
about the autoinstall URM.

Initializing the TCTUA
The bridge facility can have a TCTUA (Terminal Control Table User Area), which
can be accessed by EXEC CICS ADDRESS TCTUA in the normal way.

Chapter 4. Managing the Link3270 bridge environment 51

The TCTUA is initialized to nulls when the bridge facility is created. A global user
exit (GLUE) called XFAINTU is called when a bridge facility is created and
discarded. XFAINTU is passed the address of the TCTUA, so you can use this exit
to initialize the TCTUA. For information about the XFAINTU global user exit, see
Global user exit points (by function) in the Customization Guide.

Accessing bridge facility properties
The user transaction can retrieve information about its principal facility (the bridge
facility) from the EIB or by using INQUIRE and ASSIGN commands, in exactly the
same way that it does when running normally, where the principal facility is a real
3270.

For example, the TERMID can be obtained from EIBTERMID or from an ASSIGN
FACILITY, INQUIRE TASK FACILITY or INQUIRE NETNAME command, and the
NETNAME can be obtained with ASSIGN NETNAME or INQUIRE TERMINAL.

You can use the INQUIRE BRFACILITY command to obtain information about any
bridge facility, identified by its facilitytoken, but all other INQUIRE commands
return only information about the bridge facility that is the principal facility of the
transaction issuing the command. To other transactions, a transaction running in a
bridged environment appears to be a non-terminal transaction, and an INQUIRE
TERMID against a bridge facility TERMID issued by another transaction will result
in TERMIDERR. INQUIRE NETNAME and INQUIRE TASK behave similarly.

Bridge facilities do not appear in response to INQUIRE TERMINAL browses.

All keywords of ASSIGN and INQUIRE are supported and return the values that
have been set for the bridge facility from the FACILITYLIKE terminal definition, or
that have been set during the execution of the transaction.

Some keywords return values fixed by CICS for the bridge environment. These are:

Table 9. INQUIRE TERMINAL values

Keyword Returned value

ACQSTATUS ACQUIRED

ACCESSMETHOD VTAM

CORRELID blanks

EXITTRACING NOTAPPLIC

LINKSYSTEM blanks

MODENAME blanks

REMOTENAME blanks

REMOTESYSTEM blanks

52 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3_glues_function.html

Table 9. INQUIRE TERMINAL values (continued)

Keyword Returned value

REMOTESYSNET blanks

SERVSTATUS INSERVICE

TCAMCONTROL X'FF'

TERMSTATUS ACQUIRED

TTISTATUS YES

ZCPTRACING NOZCPTRACE

Note: VTAM is now the z/OS Communications Server.

Table 10. INQUIRE TASK values

Keyword Returned value

FACILITY the bridge facility name

FACILITYTYPE TERM or TASK

STARTCODE S,SD,TO,TP

QUERY
The keywords listed represent terminal attributes that can be set by the 3270 Query
function at logon time for a real device.

ALTSCRNHT ALTSCRNWD APLKYBDST APLTEXTST
BACKTRANSST COLORST EXTENDEDDSST GCHARS
GCODES HILIGHTST MSRCONTROLST OUTLINEST
PARTITIONSST PROGSYMBOLST SOSIST VALIDATIONST

If the real FACILITYLIKE terminal is logged on when the bridge facility is created,
the QUERY will have been performed and the values returned will apply to the
bridge facility.

If the real FACILITYLIKE terminal is not logged on at the time that the bridge
facility is created, the QUERY will not have been performed and the bridge facility
will be created using values from the FACILITYLIKE resource definition.

SET TERMINAL/NETNAME
The following table shows the effect of each of the SET TERMINAL/NETNAME
keywords when issued by a user transaction for its bridge facility. Unless
otherwise specified, the response is DFHRESP(NORMAL).

Chapter 4. Managing the Link3270 bridge environment 53

KEYWORD EFFECT

ACQSTATUS Ignored.

ALTPRINTER Value is SET, and is returned on INQUIRE, but is never used by
CICS.

ALTPRTCOPYST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

ATISTATUS Works as for normal 3270.

CANCEL Ignored

CREATESESS Ignored.

DISCREQST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

EXITTRACING Ignored.

FORCE Ignored.

MAPNAME Works as for normal 3270.

MAPSETNAME Works as for normal 3270.

NEXTTRANSID Works as for normal 3270.

OBFORMATST Works as for normal 3270.

PAGESTATUS Ignored.

PRINTER Value is SET, and is returned on INQUIRE, but is never used by
CICS.

PRTCOPYST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

PURGE Ignored.

PURGETYPE Ignored.

RELREQST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

SERVSTATUS Works as for normal 3270.

TCAMCONTROL Returns INVREQ, as for normal 3270.

TERMPRIORITY Value is SET, and is returned on INQUIRE, but is never used by
CICS.

TERMSTATUS Ignored.

TRACING Value is SET, and is returned on INQUIRE, but is never used by
CICS.

TTISTATUS Ignored.

UCTRANST Works as for normal 3270.

ZCPTRACING Ignored.

Managing Link3270 bridge resources
You can use these commands and interfaces to obtain information about the
Link3270 bridge environment and the bridge facility.
v INQUIRE/SET AUTOINSTALL
v INQUIRE/SET BRFACILITY
v INQUIRE TERMINAL/NETNAME
v INQUIRE TASK
v INQUIRE/SET TRACETYPE

54 CICS TS for z/OS 4.2: External Interfaces Guide

v INQUIRE TRANSACTION
v CEMT
v The exit programming interface (XPI)

See System commands in CICS System Programming Reference for details of
INQUIRE and SET commands, and CEMT - master terminal in CICS Supplied
Transactions for information about the CEMT command.

Note: The BRIDGE option of the ASSIGN command returns the name of the
transaction that issued the Link3270 command. It returns blanks if the transaction
is not run in a bridge environment.

INQUIRE/SET AUTOINSTALL with the Link3270 bridge
You can use the AIBRIDGE option of the INQUIRE AUTOINSTALL command and CEMT
INQUIRE AUTOINSTALL to indicate whether the autoinstall URM is called when
bridge facilities are allocated. You can change this setting using the SET
AUTOINSTALL command and CEMT SET AUTOINSTALL.

Related reference

INQUIRE AUTOINSTALL in CICS System Programming Reference

CEMT INQUIRE AUTOINSTALL in CICS Supplied Transactions

SET AUTOINSTALL in CICS System Programming Reference

CEMT SET AUTOINSTALL in CICS Supplied Transactions

INQUIRE/SET BRFACILITY with the Link3270 bridge
You can use the INQUIRE BRFACILITY command and CEMT INQUIRE BRFACILITY to
return information about a bridge facility.
v The terminal name associated with the bridge facility (TERMID)
v The netname associated with the bridge facility
v The name of the user transaction running with this bridge facility
v The number of the task running the user transaction
v The applid of the AOR
v The sysid of the AOR
v The applid of the router region
v The sysid of the router region
v An indicator showing whether the Link3270 or START BREXIT bridge

mechanism is being used
v The length of time this bridge facility will be kept if unused
v The current status of the bridge facility

You can change the status setting of the bridge facility to RELEASED using the SET
BRFACILITY command and CEMT SET BRFACILITY.

Related reference

INQUIRE BRFACILITY in CICS System Programming Reference

CEMT INQUIRE BRFACILITY in CICS Supplied Transactions

SET BRFACILITY in CICS System Programming Reference

CEMT SET BRFACILITY in CICS Supplied Transactions

Chapter 4. Managing the Link3270 bridge environment 55

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/topics/dfha81j.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/topics/dfha721.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/topics/dfha721.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquireautoinstall.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7lm.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_setautoinstall.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7n1.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquirebrfacility.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7am.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_setbrfacility.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7an.html

INQUIRE TASK with the Link3270 bridge
You can use the BRFACILITY option of the EXEC CICS INQUIRE TASK or CEMT
INQUIRE TASK command to return an 8-byte field containing the facility token for
the bridge facility in use by the task.

Note: The BRIDGE and IDENTIFIER options return information about the START
BREXIT bridge mechanism, and are not used with Link3270.

Related reference

INQUIRE TASK in CICS System Programming Reference

CEMT INQUIRE TASK in CICS Supplied Transactions

INQUIRE/SET TRACETYPE with the Link3270 bridge
You can use the INQUIRE TRACETYPE command to indicate whether tracing is
enabled for the bridge (BR) and partner (PT) domains. You can change this setting
using the SET TRACETYPE command .

Related reference

INQUIRE TRACETYPE in CICS System Programming Reference

SET TRACETYPE in CICS System Programming Reference

INQUIRE TRANSACTION with the Link3270 bridge
You can use the FACILITYLIKE option of the INQUIRE TRANSACTION command and
CEMT INQUIRE TRANSACTION to return the 4-character name of the terminal defined
by the FACILITYLIKE parameter of the PROFILE associated with the named
transaction resource definition.

If FACILITYLIKE is not defined, blanks are returned.

Note: The BREXIT option returns information about the START BREXIT bridge
mechanism, and is not used with Link3270.

Related reference

INQUIRE TRANSACTION in CICS System Programming Reference

CEMT INQUIRE TRANSACTION in CICS Supplied Transactions

XPI commands for the Link3270 bridge
You can use the INQUIRE_CONTEXT function of the DFHBRIQX call to return the
following information for the Link3270 bridge.
v The name of the bridge exit program used by a task running the START

BREXIT bridge mechanism.
v The bridge facilitytoken associated with a user transaction running in a bridge

environment.
v The address of the bridge facility. This has the same format as a TCTTE and can

be mapped using the DSECT DFHTCTTE.
v The name of the bridge monitor transaction used to start a user transaction

using the START BREXIT bridge mechanism.
v A token that contains the address of the bridge exit area used by a task running

the START BREXIT bridge mechanism.
v The type of environment in which the transaction is running. This can be :

56 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquiretask.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha71l.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquiretracetype.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_settracetype.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquiretransaction.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7mk.html

NORMAL
A transaction that is not running in a bridge environment.

BRIDGE
A user transaction that was started using a bridge.

BREXIT
A bridge exit program.

See the CICS Customization Guide for full details of the INQUIRE-CONTEXT
interface.

Using Link3270 bridge load routing
The Link3270 bridge mechanism extends the dynamic routing capability of base
CICS to support dynamic routing of 3270 bridge transactions.

Figure 13 on page 58 shows that the DPL request from the Link3270 bridge
program to a remote user transaction can be sent to any of a number of application
owning regions (AORs) where the user transaction is enabled.

The dynamic transaction routing user replaceable program (URM) is called when
Link3270 bridge program DFHL3270 needs to identify the AOR to which an
eligible transaction should be routed. New parameters on the interface allow the
dynamic transaction routing program to identify Link3270 bridge requests and
obtain the names of the target transaction and the bridge facility token. You can
write your own transaction routing program to exploit these new parameters, use
the CICS supplied dynamic routing program (DFHDYP), or use workload routing
services provided by CICSPlex System Manager.

Chapter 4. Managing the Link3270 bridge environment 57

Using the dynamic transaction routing program with Link3270
When the dynamic transaction routing user replaceable program is called in the
Link3270 bridge environment, these input parameters are set.

DYRTYPE
8

DYRBRTK
bridge facilitytoken

DYRTRAN
name of user transaction as known in the router region

When a client links to the bridge routing program (DFHL3270) with the first
application transaction for that facility and that transaction is defined as dynamic,
the dynamic transaction routing program is called to determine if the request
should be routed (using DPL) to another server region. The dynamic transaction
routing program is passed the transaction id in the message, and determines the
SYSID of the region (AOR) where the user transaction will be started.

The dynamic transaction routing program is only called if the transaction is
defined as DYNAMIC(YES).

Once a bridge transaction has been routed successfully to an AOR, all transactions
executing with the same FACILITYTOKEN are routed to the same AOR. This
affinity continues until the bridge facility is deleted in the AOR.

CICSplex
AORs

User
application

Bridge
Attach

TaskPartner

User
application

Bridge
Attach

TaskPartner

User
application

Bridge

Driver

Driver

Driver

Attach

TaskPartner

Client
program

Router regions

DFHL3270

DFHL3270

ECI

DPL

ECI

ECI
DPL

DPL

DPL

Figure 13. Link3270 load balancing

58 CICS TS for z/OS 4.2: External Interfaces Guide

In session mode, subsequent transactions that are defined as dynamic will cause a
notify call to the dynamic transaction routing program, informing the routing
program that the transaction request is being routed to a specific region.

See the CICS Customization Guide for information about using a dynamic routing
program.

Chapter 4. Managing the Link3270 bridge environment 59

60 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 5. Link3270 message formats

This topic contains Product sensitive Programming Interface and Associated
Guidance Information.

Link3270 message components

Link3270 messages contain the following components:
v Link3270 message header (BRIH)
v Inbound Link3270 vectors
v Outbound Link3270 vectors
v The application data structure (ADS)

Copybook names and descriptions

To help simplify the programming of clients, CICS provides copybooks and header
files defining the BRIH and BRIV data structures in Assembler, COBOL, PLI and C.
Defaults are provided for each inbound vector. These vectors are used to initialize
the input message. There are two versions of the copybooks. When the basic
copybooks are used, which are listed in Link3270 message copybooks for basic
supportCopybooks and default vectors, the current version is set to indicate basic
support. The extended copybooks, which are listed in Link3270 message copybooks
for extended support, provide extended support, and when they are used the
current version is set to indicate extended support.

The copybook names for the basic copybooks are:

DFHBRIHx
BRIH and inbound and outbound BRIVs for C, PLI, and Assembler

DFHBRIIx
Inbound BRIVs for COBOL

DFHBRIOx
Outbound BRIVs for COBOL

DFHBRICx
Constants and default values

and the names for the extended copybooks are:

DFHBR2Hx
BRIH and inbound and outbound BRIVs for C, PLI, and Assembler

DFHBR2Ix
Inbound BRIVs for COBOL

DFHBR2Ox
Outbound BRIVs for COBOL

DFHBR2Cx
Constants and default values

where x is the language suffix:

D Assembler

© Copyright IBM Corp. 1994, 2012 61

H C

L PLI

O COBOL

Field names
Field names are shown in this documentation with "-" (dash) separators, as
used in earlier versions of COBOL supported by CICS. Other languages use _
(underscore) separators.

Constants
Constants are provided for all enumerated values (input and output). For
COBOL, these are provided as level 88 in the copybook.

Link3270 message header (BRIH)
The Link3270 bridge message header prefixes all input and output messages.

“Inbound BRIH message header” on page 63 describes the values of fields used for
input. “Outbound BRIH message header” on page 66 describes the values of fields
used for output.

Table 11. The BRIH message header on input

Offset
Hex

Type Len Name Default

(0) STRUCTURE 180 BRIH

(0) CHARACTER 4 BRIH-STRUCID
BRIH-STRUC-ID

(4) FULLWORD 4 BRIH-VERSION
BRIH-CURRENT-VERSION

(8) FULLWORD 4 BRIH-STRUCLENGTH
BRIH-CURRENT-LENGTH

(C) n/a 36 reserved

(30) FULLWORD 4 BRIH-GETWAITINTERVAL
BRIHGWI-MAXWAIT

(34) n/a 4 reserved

(38) FULLWORD 4 BRIH-DATALENGTH
BRIH-CURRENT-LENGTH

(3C) FULLWORD 4 BRIH-FACILITYKEEPTIME
BRIHKT-DEFAULT

(40) FULLWORD 4 BRIH-ADSDESCRIPTOR
BRIHADSD-YES

(44) FULLWORD 4 BRIH-CONVERSATIONALTASK
BRIHCT-NO

(48) n/a 4 reserved

(4C) CHARACTER 8 BRIH-FACILITY
BRIHFACT-NEW

62 CICS TS for z/OS 4.2: External Interfaces Guide

Table 11. The BRIH message header on input (continued)

Offset
Hex

Type Len Name Default

(54) n/a 40 reserved

(7C) CHARACTER 4 BRIH-TRANSACTIONID

(80) CHARACTER 4 BRIH-FACILITYLIKE
BRIHFACL-DEFAULT

(84) CHARACTER 4 BRIH-ATTENTIONID
DFHENTER

(88) CHARACTER 4 BRIH-STARTCODE
BRIHSC-TERMINPUT

(8C) CHARACTER 4 BRIH-CANCELCODE
blanks

(90) n/a 4 reserved

(94) CHARACTER 8 BRIH-NETNAME
BRIHNN-DEFAULT

(9C) CHARACTER 4 BRIH-TERMINAL
BRIHTN-DEFAULT

(A0) n/a 4 reserved

(A4) FULLWORD 4 BRIH-CURSORPOSITION
BRIHCP-DEFAULT

(A8) n/a 12 reserved

Inbound BRIH message header
The fields that are used in an input message are listed. You can supply values in
these fields; other fields are ignored on input. A BRIH structure primed with input
default values (BRIH-DEFAULT) is supplied in the DFHBRICx copybooks. If a
default value is not specified, the field is initialized to nulls.

Fields are valid on all calls, except where indicated. See also “Using Link3270
single transaction mode” on page 36 and “Using Link3270 session mode” on page
37.

BRIH-STRUCID
The identifier for the header structure. You must set this to BRIH-STRUC-ID,
which is the default.

BRIH-VERSION
The version number for the header structure. You must set this to
BRIH-CURRENT-VERSION, which is the default. Refer to “Link3270 bridge
basic and extended support” on page 34 for a description of the different levels
of support for the Link3270 bridge.

BRIH-STRUCLENGTH
The length of the header structure. You must set this to BRIH-CURRENT-
LENGTH, which is the default.

Chapter 5. Link3270 message formats 63

BRIH-DATALENGTH
The length of the input message, including the BRIH. The default is
BRIH-CURRENT-LENGTH.

BRIH-TRANSACTIONID
The transaction identifier of the user transaction, as defined in the routing
region. In session mode, this can also specify the following request values:

BRIHT-ALLOCATE-FACILITY
Allocate a new bridge facility

BRIHT-DELETE-FACILITY
Delete an existing bridge facility

BRIHT-CONTINUE-CONVERSATION
Reply to a conversational request message

BRIHT-GET-MORE-MESSAGE
Obtain the remainder (or next section) of the Link3270 message. This
applies if the COMMAREA in the original request was too small to
accommodate the output message.

BRIHT-RESEND-MESSAGE
Resend the previous saved Link3270 message. This is used if the
communications connection is broken in executing the previous request.
See “Recovery from connection failure” on page 41 for further information.

Note: A message is not saved if an error occurs before the message starts
the user transaction. The BRIH-SEQNO can be used to determine whether
a message returned by the RESEND-MESSAGE command is from the last
Link3270 request issued, or the previous request.

BRIH-FACILITY
The facilitytoken of the bridge facility. For single transaction mode this must be
set to BRIHFACT-NEW. For session mode, on allocation, this is set to
BRIHFACT-NEW. For subsequent requests, this must be set to the value
returned on the allocate.

The default is BRIHFACT-NEW.

BRIH-FACILITYLIKE
(Single transaction mode and allocation of a bridge facility in session mode)

The name of an installed terminal that is to be used as a model for the bridge
facility. If no value is supplied in single-transaction mode, and a
FACILITYLIKE value has been specified in the PROFILE definition of the user
transaction, this value is used. Otherwise, or if no value is specified in session
mode, a CICS-supplied definition, CBRF, is used.

The default BRIHFACL-DEFAULT means that no value is specified.

BRIH-NETNAME
(Single transaction mode and allocation of a bridge facility in session mode)

The NETNAME to be assigned to the bridge facility.

The default value, BRIHNN-DEFAULT, causes CICS to generate a name. The
name is subject to change or rejection by the autoinstall URM whether
specified by the user or generated by CICS. The name, as modified, is returned
in this field in the response from the Link3270 bridge.

64 CICS TS for z/OS 4.2: External Interfaces Guide

If you are specifying your own BRIH-NETNAME, the valid character set is the
same as that for the NETNAME attribute of the CICS TERMINAL definition.
See TERMINAL resources in the Resource Definition Guide.

BRIH-TERMINAL
(Single transaction mode and allocation of a bridge facility in session mode)

The TERMID to be assigned to the bridge facility.

The default value, BRIHTN-DEFAULT, causes CICS to generate a name. The
name is subject to change or rejection by the autoinstall URM whether
specified by the user or generated by CICS. The name, as modified, is returned
in this field in the response from the Link3270 bridge.

If you are specifying your own BRIH-TERMINAL, the valid character set is the
same as that for the TERMINAL attribute of the CICS TERMINAL definition.
See TERMINAL resources in the Resource Definition Guide.

If you plan to specify your own BRIH-TERMINAL and to allow
BRIH-NETNAME to default to this, you must use the BRIH-NETNAME
character set, which is more restricted.

BRIH-FACILITYKEEPTIME
(Allocation of a bridge facility in session mode)

The length of time that the bridge facility is kept after the user transaction has
ended (in seconds). The value used is the smaller of this value, and the value
specified in the router region's SIT parameter BRMAXKEEPTIME.

The default is BRIHKT-DEFAULT.

BRIH-CONVERSATIONALTASK
(Run transaction in session mode)

An indicator specifying what the Link3270 bridge should do if the user
transaction issues an input command for which no input vector has been
provided. Possible values are:

BRIHCT-YES
The Link3270 bridge suspends the transaction and adds a request
vector to the end of the output message. The client is expected to send
a CONTINUE-CONVERSATION message containing the requested
vector.

BRIHCT-NO
The Link3270 bridge abends the user transaction.

The default is BRIHCT-NO.

BRIH-GETWAITINTERVAL
(Run transaction in session mode)

The maximum wait interval for message input (in milliseconds). The value
used is the smaller of the BRIH-GETWAITINTERVAL and the RTIMEOUT
value for the transaction.

This value is used only when BRIH-CONVERSATIONALTASK is BRIHCT-YES

The default is BRIHGWI-MAXWAIT.

BRIH-CANCELCODE
(Session mode - continue conversation only)

The abend code with which the Link3270 bridge is to terminate a user
transaction. This value is meaningful only in CONTINUE-CONVERSATION

Chapter 5. Link3270 message formats 65

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/terminal/dfha4_overview.html

messages. If it is non-blank, Link3270 l abends the suspended user transaction
with an abend code of BRIH-CANCELCODE. It should be used only when the
client wants to terminate the transaction rather than supply the requested
vector.

BRIH-ADSDESCRIPTOR
(Single transaction mode and run transaction in session mode)

An indicator specifying whether ADS descriptors are sent on outbound SEND
MAP and RECEIVE MAP messages. Possible values are:

BRIHADSD-YES
ADS descriptors are sent.

BRIHADSD-NO
ADS descriptors are not sent.

The default is BRIHADSD-YES.

BRIH-ATTENTIONID
(Single transaction mode and run transaction in session mode)

The initial value of the AID key (EIBAID) when the user transaction is started.
This is a 1-byte value, left justified. EIBAID is reset after each RECEIVE,
RECEIVE, or CONVERSE command from the AID value in the input vector

The default is DFHENTER (The enter key).

BRIH-STARTCODE
(Single transaction mode and first run transaction in a session)

An indicator available to the first transaction in a session to show the type of
start that the request is emulating. The value generated depends on whether
there is a RETRIEVE vector present in the input. Possible values are:

BRIHSC-START
START command

BRIHSC-TERMINPUT
Terminal input

The default is BRIHSC-TERMINPUT.

BRIH-CURSORPOSITION
(Single transaction mode and run transaction in session mode)

The initial cursor position, EIBCPOSN, when the transaction is started.
EIBCPOSN is reset from the value in the input vector after every RECEIVE,
RECEIVE MAP or CONVERSE command.

The default is BRIHCP-DEFAULT, the top left of the screen.

Outbound BRIH message header
Table 12. The output BRIH message header

Offset
Hex

Type Len Name

(0) STRUCTURE 180 BRIH

(0) CHARACTER 4 BRIH-STRUCID

(4) FULLWORD 4 BRIH-VERSION

66 CICS TS for z/OS 4.2: External Interfaces Guide

Table 12. The output BRIH message header (continued)

Offset
Hex

Type Len Name

(8) FULLWORD 4 BRIH-STRUCLENGTH

(C) n/a 20 reserved

(20) BINARY 4 BRIH-RETURNCODE

(24) BINARY 4 BRIH-COMPCODE

(28) BINARY 4 BRIH-REASON

(2C) n/a 8 reserved

(34) BINARY 4 BRIH-REMAININGDATALENGTH

(38) FULLWORD 4 BRIH-DATALENGTH

(3C) n/a 12 reserved

(48) FULLWORD 4 BRIH-TASKENDSTATUS

(4C) CHARACTER 8 BRIH-FACILITY

(54) CHARACTER 4 BRIH-FUNCTION

(58) CHARACTER 4 BRIH-ABENDCODE

(5C) CHARACTER 4 BRIH-SYSID¹

(60) n/a 28 reserved

(7C) CHARACTER 4 BRIH-TRANSACTIONID

(80) n/a 16 reserved

(90) CHARACTER 4 BRIH-NEXTTRANSACTIONID

(94) CHARACTER 8 BRIH-NETNAME

(9C) CHARACTER 4 BRIH-TERMINAL

(A0) FULLWORD 8 BRIH-NEXTTRANIDSOURCE

(A8) FULLWORD 4 BRIH-ERROROFFSET

(AC) FULLWORD 4 BRIH-SEQNO

(B0) n/a 4 reserved

Note:

1. BRIH-SYSID is available only for the Link3270 bridge with extended support.

Chapter 5. Link3270 message formats 67

The following fields are returned in an output message. Other fields are not
relevant.

BRIH-RETURNCODE
Return code from the Link3270 interface. See “BRIH-RETURNCODE values”
on page 98 for a list of possible return codes, and their associated
BRIH-COMPCODE and BRIH-REASON values.

BRIH-COMPCODE
Additional error information. See “BRIH-RETURNCODE values” on page 98
for a list of possible return codes, and their associated BRIH-COMPCODE and
BRIH-REASON values.

BRIH-REASON
Additional error information. See “BRIH-RETURNCODE values” on page 98
for a list of possible return codes, and their associated BRIH-COMPCODE and
BRIH-REASON values.

BRIH-REMAININGDATALENGTH
(Session mode)

The length of the remaining message if the COMMAREA is too small to return
the complete outbound message. The remaining message is prefixed by
another BRIH (included in the length). If there is no more data , this field is set
to zero. See “Delivering large messages” on page 41 for information about
processing large messages.

BRIH-DATALENGTH
The length of the output message, including the BRIH.

BRIH-TASKENDSTATUS
The status of the user transaction. Possible values are:

BRIHTES-CONVERSATION
The user transaction has issued an input command for which no vector
has been supplied, and BRIH-CONVERSATIONALTASK was specified
in the inbound BRIH header.

BRIHTES-ENDTASK
The user transaction has ended (or abended).

BRIH-FACILITY
This value identifies the session. It is set on return from an allocate request and
must be supplied on every subsequent request in the session. On return from a
delete-facility request or a run request in single-transaction mode, it is reset to
BRIHFACT-NEW.

BRIH-FUNCTION
Additional error information returned for some return codes. See
“BRIH-RETURNCODE values” on page 98 for details.

BRIH-ABENDCODE
The abend code returned if the transaction abends. If the transaction completed
successfully, this is set to BRIHAC-NONE.

Transaction abends are indicated by the return code BRIHAC-APPLICATION-
ABEND. See “BRIH-RETURNCODE values” on page 98 for details.

BRIH-SYSID
The region in which the transaction ran. This is the system ID of the AOR as it
is known by the routing region. If the transaction ran in the routing region,
this field is set to blanks. This field is available only for the Link3270 bridge

68 CICS TS for z/OS 4.2: External Interfaces Guide

with extended support. See “Link3270 bridge basic and extended support” on
page 34 for a description of the different levels of support for the Link3270
bridge.

BRIH-TRANSACTIONID
BRIH-TRANSACTIONID is both an input and an output field. Normally the
output value is the same as the input value. The exceptions to this are:
1. When the request is for message recovery and the input

BRIH-TRANSACTIONID is set to BRIHT-RESEND-MESSAGE. See
“Recovery from connection failure” on page 41 for further information.

2. When the router region resource definition of the transaction is an alias of
the definition in the AOR, the transaction id in the AOR is returned.

BRIH-NEXTTRANSACTIONID
The name of the next transaction returned by the user transaction (usually by
EXEC CICS RETURN TRANSID). If there is no next transaction, this field is set
to blanks.

BRIH-NETNAME
(Allocation only)

The NETNAME assigned to the bridge facility.

BRIH-TERMINAL
(Allocation only)

The TERMID assigned to the bridge facility.

BRIH-NEXTTRANIDSOURCE
The source of the next transaction id. Possible values are:

BRIHNTS-NORMAL
Created by the TRANSID option of an EXEC CICS RETURN
command, or by SET TERMINAL NEXTTRANSID.

BRIHNTS-IMMEDIATE
Created by the TRANSID option of an EXEC CICS RETURN
IMMEDIATE command.

BRIHNTS-STARTED
Created by the TRANSID option of an EXEC CICS START command.

BRIH-ERROROFFSET
The offset from the start of the message to the location of the invalid data for
message validation errors.

BRIH-SEQNO
(Session mode only)

A sequence number returned on every message. The sequence number is set to
0 on an allocate facility request and incremented on subsequent requests. The
exceptions to this are:
1. A successful BRIHT-RESEND-MESSAGE request returns the previous

message and its sequence number.
2. If BRIHRC-INVALID-FACILITY-TOKEN is returned, the sequence number

is undefined.

Inbound Link3270 vectors
Inbound Link3270 bridge vectors all have a common header.

Chapter 5. Link3270 message formats 69

Supported inbound vector types

Table “Link3270 inbound vector header” shows the common header. One BRIV
vector is required to satisfy each input CICS command issued by the user
transaction. The following inbound vector types are supported:
v “Link3270 INPUT CONVERSE vector”
v “Link3270 RECEIVE vector” on page 72
v “Link3270 RECEIVE MAP vector” on page 73
v “Link3270 RETRIEVE vector” on page 75

Link3270 inbound vector header
This header precedes all the vectors (both inbound and outbound) in the message.

Offset
Hex

Type Len Name

(0) STRUCTURE 16 BRIV-INPUT-VECTOR-HEADER

(0) FULLWORD 4 BRIV-INPUT-VECTOR-LENGTH

(4) CHARACTER 4 BRIV-INPUT-VECTOR-DESCRIPTOR

(8) CHARACTER 4 BRIV-INPUT-VECTOR-TYPE

(C) n/a 4 reserved

BRIV-INPUT-VECTOR-LENGTH
The length of the vector. This is rounded up to the next multiple of 4, to
facilitate full word alignment of subsequent vectors in the message. The default
is the length of the default BRIV with no data.

BRIV-INPUT-VECTOR-DESCRIPTOR
An indicator to define the CICS command associated with this vector. Valid
values are:

BRIVDSC-CONVERSE (0406)
CONVERSE

BRIVDSC-RECEIVE (0402)
RECEIVE

BRIVDSC-RECEIVE- MAP (1802)
RECEIVE MAP

BRIVDSC-RETRIEVE (100A)
RETRIEVE

BRIV-INPUT-VECTOR-TYPE
This must be set to BRIVVT-INBOUND. This is the default.

Link3270 INPUT CONVERSE vector
This vector is used to supply data to an EXEC CICS CONVERSE command.

See CONVERSE (3270 logical) in CICS Application Programming for details of the
command options.

70 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_converse3270logical.html

The default vector is BRIV-CONVERSE-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-CONVERSE

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-CO-TRANSMIT-SEND-AREAS

(14) CHARACTER 4 reserved

(18) CHARACTER 4 BRIV-CO-AID

(1C) FULLWORD 4 BRIV-CO-CPOSN

(20) FULLWORD 4 BRIV-CO-DATA-LEN

(24) CHARACTER BRIV-CO-DATA

BRIV-CO-TRANSMIT-SEND-AREAS
This flag is a performance option that allows the client to limit the amount of
data returned in the output message. Valid values are:

BRIVCOTSA-YES
The whole output message is returned.

BRIVCOTSA-NO
All output vectors created before the command that uses this vector
are not returned in the output message.

The default is BRIVCOTSA-YES.

BRIV-CO-AID
The AID key used to transmit the input. This value is used to set EIBAID on
completion of the RECEIVE MAP command. The first byte of this field
contains equivalent values to EIBAID, as defined by DFHAID. The remaining
three bytes are ignored. The default is DFHENTER.

BRIV-CO-CPOSN
The position of the cursor in the data. This value is used to set EIBCPOSN on
completion of the RECEIVE MAP command. Valid values are:

BRIVCOCP-DEFAULT
top left of the screen

BRIVCOCP-MAX-CURSORPOSITION
bottom right of the screen

nn User specified value

The default is BRIVCOCP-DEFAULT.

BRIV-CO-DATA-LEN
The length of the data provided in this vector in BRIV-CO-DATA. This value is
copied into the LENGTH or FLENGTH field specified in the CONVERSE
command represented by this vector.

The default is zero (no data).

Chapter 5. Link3270 message formats 71

BRIV-CO-DATA
Character field of length BRIV-CO-DATA-LEN to be copied into the INTO area,
or referenced by the SET option, of the CONVERSE command represented by
this vector.

Link3270 RECEIVE vector
This vector is used to supply data to an EXEC CICS RECEIVE command.

See for details of the command options.

The default vector is BRIV-RECEIVE-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-RECEIVE

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-RE-TRANSMIT-SEND-AREAS

(14) CHARACTER 4 BRIV-RE-BUFFER-INDICATOR

(18) CHARACTER 4 BRIV-RE-AID

(1C) FULLWORD 4 BRIV-RE-CPOSN

(20) FULLWORD 4 BRIV-RE-DATA-LEN

(24) CHARACTER BRIV-RE-DATA

BRIV-RE-TRANSMIT-SEND-AREAS
This flag is a performance option that allows the client to limit the amount of
data returned in the output message. Valid values are:

BRIVRETSA-YES
The whole output message is returned.

BRIVRETSA-NO
All output vectors created before the command that uses this vector
are not returned in the output message.

The default is BRIVRETSA-YES.

BRIV-RE-BUFFER-INDICATOR
A flag indicating whether the data provided in the inbound vector is in a
format to be received by a CICS RECEIVE command with the BUFFER option.
Valid values are:

BRIVREBI-YES
Data in BUFFER format.

BRIVREBI-NO
Data not in BUFFER format.

The default is BRIVREBI-NO.

72 CICS TS for z/OS 4.2: External Interfaces Guide

BRIV-RE-AID
The AID key used to transmit the input. This value is used to set EIBAID on
completion of the RECEIVE MAP command. The first byte of this field
contains equivalent values to EIBAID, as defined by DFHAID. The remaining
three bytes are ignored.

The default is DFHENTER.

BRIV-RE-CPOSN
The position of the cursor in the data. This value is used to set EIBCPOSN on
completion of the RECEIVE MAP command. Valid values are:

BRIVRECP-DEFAULT

BRIVRECP-MAX-CURSORPOSITION

nn User specified value

The default is BRIVRECP-DEFAULT.

BRIV-RE-DATA-LEN
The length of the data provided in this vector in BRIV-RE-DATA. This value is
copied into the LENGTH or FLENGTH field specified in the RECEIVE
command represented by this vector.

The default is zero (no data).

BRIV-RE-DATA
Character field of length BRIV-RE-DATA-LEN to be copied into the INTO area,
or referenced by the SET option, of the RECEIVE command represented by this
vector.

Link3270 RECEIVE MAP vector
This vector is used to supply data to an EXEC CICS RECEIVE MAP command.

See RECEIVE MAP in CICS Application Programming for details of the command
options.

The default vector is BRIV-RECEIVE-MAP-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 48 BRIV-RECEIVE-MAP

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-RM-TRANSMIT-SEND-AREAS

(14) CHARACTER 8 BRIV-RM-MAPSET

(1C) CHARACTER 8 BRIV-RM-MAP

(24) CHARACTER 4 BRIV-RM-AID

(28) FULLWORD 4 BRIV-RM-CPOSN

(2C) FULLWORD 4 BRIV-RM-DATA-LEN

Chapter 5. Link3270 message formats 73

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_receivemap.html

Offset
Hex

Type Len Name

(30) CHARACTER BRIV-RM-DATA

BRIV-RM-TRANSMIT-SEND-AREAS
This flag is a performance option that allows the client to limit the amount of
data returned in the output message. Valid values are:

BRIVRMTSA-YES
The whole output message is returned.

BRIVRMTSA-NO
All output vectors created before the command that uses this vector
are not returned in the output message.

The default is BRIVRMTSA-YES.

BRIV-RM-MAPSET
The name of the MAPSET containing the map used to format the data, or
blanks. When the user transaction issues a RECEIVE MAP command, the
Link3270 bridge uses the first remaining RECEIVE MAP vector in the message
in which BRIV-RM-MAPSET matches MAPSET in the command or is blank
and BRIV-RM-MAP matches the MAP in the command or is blank. RECEIVE
MAP vectors which do not match the command are discarded.

The default is blanks.

BRIV-RM-MAP
The name of the MAP containing the map used to format the data, or blanks.
When the user transaction issues a RECEIVE MAP command, the Link3270
bridge uses the first remaining RECEIVE MAP vector in the message in which
BRIV-RM-MAPSET matches MAPSET in the command or is blank and
BRIV-RM-MAP matches the MAP in the command or is blank. RECEIVE MAP
vectors which do not match the command are discarded

The default is blanks.

BRIV-RM-AID
The AID key used to transmit the input. This value is used to set EIBAID on
completion of the RECEIVE MAP command. The first byte of this field
contains equivalent values to EIBAID, as defined by DFHAID. The remaining
three bytes are ignored. The default is DFHENTER.

BRIV-RM-CPOSN
The position of the cursor in the data. This value is used to set EIBCPOSN on
completion of the RECEIVE MAP command. Valid values are:

BRIVRMCP-DEFAULT

BRIVRMCP-MAX-CURSORPOSITION

nn User specified value

The default is BRIVRMCP-DEFAULT.

BRIV-RM-DATA-LEN
The length of the Application Data Structure (ADS) in BRIV-RM-DATA. This
value is copied into the LENGTH or FLENGTH field specified in the RECEIVE
MAP command represented by this vector.

74 CICS TS for z/OS 4.2: External Interfaces Guide

BRIV-RM-DATA
The ADS to be copied into the INTO area, or referenced by the SET option, of
the RECEIVE MAP command represented by this vector.

Link3270 RETRIEVE vector
This vector is used to supply data to an EXEC CICS RETRIEVE command.

See RETRIEVE in CICS Application Programming for details of the command
options.

The default vector is BRIV-CONVERSE-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-RETRIEVE

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-RT-RTRANSID

(14) CHARACTER 4 BRIV-RT-RTERMID

(18) CHARACTER 8 BRIV-RT-QUEUE

(20) FULLWORD 4 BRIV-RT-DATA-LEN

(24) CHARACTER BRIV-RT-DATA

BRIV-RT-RTRANSID
The value to be returned in the RTRANSID field to the program that issued
the RETRIEVE. A blank indicates that there is no RTRANSID. The default is
blank.

BRIV-RT-RTERMID
The value to be returned in the RTERMID field to the program that issued the
RETRIEVE. A blank indicates that there is no RTERMID. The default is blank.

BRIV-RT-QUEUE
The value to be returned in the QUEUE field to the program that issued the
RETRIEVE. A blank indicates that there is no QUEUE. The default is blank.

BRIV-RT-DATA-LEN
The length of the data provided in this vector in BRIV-RT-DATA that caused
the bridge to be called. This value is copied into the LENGTH or FLENGTH
field specified in the RETRIEVE command represented by this vector. The
default is zero (no data).

data
Character field of length BRIV-RT-DATA-LEN to be copied into the INTO area,
or referenced by the SET option of the RETRIEVE command represented by
this vector.

Note: The RETRIEVE vector is only valid in the first inbound message in session
mode, or in single transaction mode. It is ignored in other messages.

Chapter 5. Link3270 message formats 75

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_retrieve.html

Outbound Link3270 vectors
Outbound Link3270 bridge vectors all have a common header.

Table “Link3270 output vector header” shows the common header. One BRIV
vector is required for each output EXEC CICS command issued by the user
transaction. The following outbound vector types are supported:
v “Link3270 ISSUE ERASEAUP vector” on page 77
v “Link3270 SEND vector” on page 77
v “Link3270 SEND CONTROL vector” on page 79
v “Link3270 SEND MAP vector” on page 82
v “Link3270 SEND TEXT vector” on page 85
v “Link3270 SYNCPOINT vector” on page 89
v “Link3270 CONVERSE request vector” on page 90
v “Link3270 RECEIVE request vector” on page 92
v “Link3270 RECEIVE MAP request vector” on page 92
v “Link3270 SEND PAGE vector” on page 88
v “Link3270 PURGE MESSAGE vector” on page 89

Link3270 output vector header
This header precedes all the vectors in the message.

Offset
Hex

Type Len Name

(0) STRUCTURE 16 BRIV-OUTPUT-VECTOR-HEADER

(0) FULLWORD 4 BRIV-OUTPUT-VECTOR-LENGTH

(4) CHARACTER 4 BRIV-OUTPUT-VECTOR-DESCRIPTOR

(8) CHARACTER 4 BRIV-OUTPUT-VECTOR-TYPE

(C) n/a 4 reserved

BRIV-OUTPUT-VECTOR-LENGTH
The length of the vector. This is rounded up to the next multiple of 4, to
facilitate full word alignment of subsequent vectors in the message.

BRIV-OUTPUT-VECTOR-DESCRIPTOR
An indicator to define the CICS command associated with this vector. Valid
values are:

BRIVDSC-ISSUE-ERASEAUP (0418)
ISSUE ERASEAUP

BRIVDSC-SEND (0404)
SEND

BRIVDSC-SEND-MAP (1804)
SEND MAP

BRIVDSC-SEND-TEXT (1806)
SEND TEXT

76 CICS TS for z/OS 4.2: External Interfaces Guide

BRIVDSC-SEND-CONTROL (1812)
SEND CONTROL

BRIVDSC-SYNCPOINT (1602)
SYNCPOINT

BRIVDSC-CONVERSE-REQUEST (0406)
CONVERSE request

BRIVDSC-RECEIVE-REQUEST (0402)
RECEIVE request

BRIVDSC-RECEIVE-MAP-REQUEST (1802)
RECEIVE MAP request

BRIVDSC-SEND-PAGE (1808)
SEND PAGE

BRIVDSC-PURGE-MESSAGE (180A)
PURGE MESSAGE

BRIV-OUTPUT-VECTOR-TYPE
This must be set to BRIVVT-OUTBOUND. This is the default.

Link3270 ISSUE ERASEAUP vector
This vector is the data supplied by an EXEC CICS ISSUE ERASEAUP command.

See ISSUE ERASEAUP in CICS Application Programming for details of the
command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 20 BRIV-ISSUE-ERASEAUP

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-IE-WAIT-INDICATOR

BRIV-IE-WAIT-INDICATOR
The presence of the WAIT option on the ISSUE ERASEAUP command that
caused the bridge to be called. Valid values are:

BRIVIEWI-YES
WAIT specified.

BRIVIEWI-NO
WAIT not specified.

Link3270 SEND vector
This vector is the data supplied by an EXEC CICS SEND command, or the output
part of an EXEC CICS CONVERSE command, for which a RECEIVE vector was
supplied.

For more information about these commands, see SEND (3270 logical) in CICS
Application Programming and CONVERSE (VTAM default) in CICS Application
Programming.

Chapter 5. Link3270 message formats 77

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_issueeraseaup.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_send3270logical.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_send3270logical.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_conversevtam.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_conversevtam.html

Offset
Hex

Type Len Name

(0) STRUCTURE 48 BRIV-SEND

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SE-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-SE-CTLCHAR

(18) CHARACTER 4 BRIV-SE-STRFIELD-INDICATOR

(1C) CHARACTER 4 BRIV-SE-DEFRESP-INDICATOR

(20) CHARACTER 4 BRIV-SE-INVITE-INDICATOR

(24) CHARACTER 4 BRIV-SE-LAST-INDICATOR

(28) CHARACTER 4 BRIV-SE-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-SE-DATA-LEN

(30) CHARACTER BRIV-SE-DATA

BRIV-SE-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND or CONVERSE command. Valid
values are:

BRIVSEEI-NOERASE
No ERASE.

BRIVSEEI-ERASE
ERASE.

BRIVSEEI-ERASEALTERNATE
ERASE ALTERNATE.

BRIVSEEI-DEFAULT
ERASE DEFAULT.

BRIV-SE-CTLCHAR
The CTLCHAR value specified by the SEND or CONVERSE command. Valid values
are:

cc The value in CTLCHAR.

BRIVSECC-DEFAULT
X'C3'.

BRIV-SE-STRFIELD-INDICATOR
The presence of STRFIELD on the SEND or CONVERSE command. Valid values
are:

BRIVSESI-YES
STRFIELD specified.

BRIVSESI-NO
STRFIELD not specified.

78 CICS TS for z/OS 4.2: External Interfaces Guide

BRIV-SE-DEFRESP-INDICATOR
The presence of DEFRESP on the SEND or CONVERSE command. Valid values are:

BRIVSEDRI-YES
DEFRESP specified.

BRIVSEDRI-NO
DEFRESP not specified.

BRIV-SE-INVITE-INDICATOR
The presence of INVITE on the SEND or CONVERSE command. Valid values are:

BRIVSEII-YES
INVITE specified.

BRIVSEII-NO
INVITE not specified.

BRIV-SE-LAST-INDICATOR
The presence of LAST on the SEND or CONVERSE command. Valid values are:

BRIVSELI-YES
LAST specified.

BRIVSELI-NO
LAST not specified.

BRIV-SE-WAIT-INDICATOR
The presence of WAIT on the SEND or CONVERSE command. Valid values are:

BRIVSEWI-YES
WAIT specified.

BRIVSEWI-NO
WAIT not specified.

BRIV-SE-DATA-LEN
The length of the data associated with the FROM option of the SEND or
CONVERSE command. This is explicitly defined in the LENGTH or FLENGTH option,
or derived from the length of the field.

BRIV-SE-DATA
Character field of length BRIV-SE-DATA-LEN containing the data addressed by
the FROM option of the SEND or CONVERSE command.

Link3270 SEND CONTROL vector
This vector is the data supplied by an EXEC CICS SEND CONTROL command.

This vector is the data supplied by an EXEC CICS SEND CONTROL command. See
SEND CONTROL in CICS Application Programming for details of the command
options.

Offset
Hex

Type Len Name

(0) STRUCTURE 52 BRIV-SEND-CONTROL

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SC-ERASE-INDICATOR

Chapter 5. Link3270 message formats 79

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_sendcontrol.html

Offset
Hex

Type Len Name

(14) CHARACTER 4 BRIV-SC-ERASEAUP-INDICATOR

(18) CHARACTER 4 BRIV-SC-FREEKB-INDICATOR

(1C) CHARACTER 4 BRIV-SC-ALARM-INDICATOR

(20) CHARACTER 4 BRIV-SC-FRSET-INDICATOR

(24) CHARACTER 4 BRIV-SC-LAST-INDICATOR

(28) CHARACTER 4 BRIV-SC-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-SC-CURSOR

(30) CHARACTER 4 BRIV-SC-MSR-DATA

(34) CHARACTER 4 BRIV-SC-ACCUM-INDICATOR¹

Note:

1. BRIV-SC-ACCUM-INDICATOR is available only for the Link3270 bridge with
extended support.

BRIV-SC-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND CONTROL command. Valid
values are:

BRIVSCEI-NOERASE
No ERASE.

BRIVSCEI-ERASE
ERASE.

BRIVSCEI-ERASEALTERNATE
ERASE ALTERNATE.

BRIVSCEI-DEFAULT
ERASE DEFAULT.

BRIV-SC-ERASEAUP-INDICATOR
The presence of ERASEAUP on the SEND CONTROL command. Valid values
are:

BRIVSCEUI-YES
ERASEAUP specified.

BRIVSCEUI-NO
ERASEAUP not specified.

BRIV-SC-FREEKB-INDICATOR
The presence of FREEKB on the SEND CONTROL command. Valid values are:

BRIVSCFKI-YES
FREEKB specified.

BRIVSCFKI-NO
FREEKB not specified.

80 CICS TS for z/OS 4.2: External Interfaces Guide

BRIV-SC-ALARM-INDICATOR
The presence of ALARM on the SEND CONTROL command. Valid values are:

BRIVSCAI-YES
ALARM specified.

BRIVSCAI-NO
ALARM not specified.

BRIV-SC-FRSET-INDICATOR
The presence of FRSET on the SEND CONTROL command. Valid values are:

BRIVSCFSI-YES
FRSET specified.

BRIVSCFSI-NO
FRSET not specified.

BRIV-SC-LAST-INDICATOR
The presence of LAST on the SEND CONTROL command. Valid values are:

BRIVSCLI-YES
LAST specified.

BRIVSCLI-NO
LAST not specified.

BRIV-SC-WAIT-INDICATOR
The presence of WAIT on the SEND CONTROL command. Valid values are:

BRIVSCWI-YES
WAIT specified.

BRIVSCWI-NO
WAIT not specified.

BRIV-SC-CURSOR
The presence of CURSOR(data-value) on the SEND CONTROL command. Valid
values are:

BRIVSCCRS-DYNAMIC
CURSOR specified with dynamic cursor positioning.

BRIVSCCRS-NONE
CURSOR(data-value) not specified.

nn The value of CURSOR(data-value) specified.

BRIV-SC-MSR-DATA
The value of the MSR option specified on the SEND CONTROL command.
Valid values are:

BRIVSCMSR-NONE
MSR option not specified.

other The value of the MSR option specified.

BRIV-SC-ACCUM-INDICATOR
Indicates whether or not the ACCUM option is specified for EXEC CICS SEND
TEXT, EXEC CICS SEND MAP, or EXEC CICS SEND CONTROL. This parameter is only
available for the Link3270 bridge with extended support. See “Link3270 bridge
basic and extended support” on page 34 for a description of the different levels
of support for the Link3270 bridge. Values are:

Y The ACCUM option is specified.

Chapter 5. Link3270 message formats 81

N The ACCUM option is not specified.

Link3270 SEND MAP vector
This vector is the data supplied by an EXEC CICS SEND MAP command.

See SEND MAP in CICS Application Programming for details of the command
options.

Offset
Hex

Type Len Name

(0) STRUCTURE 88 BRIV-SEND-MAP

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SM-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-SM-ERASEAUP-INDICATOR

(18) CHARACTER 4 BRIV-SM-FREEKB-INDICATOR

(1C) CHARACTER 4 BRIV-SM-ALARM-INDICATOR

(20) CHARACTER 4 BRIV-SM-FRSET-INDICATOR

(24) CHARACTER 4 BRIV-SM-LAST-INDICATOR

(28) CHARACTER 4 BRIV-SM-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-SM-CURSOR

(30) CHARACTER 4 BRIV-SM-MSR-DATA

(34) CHARACTER 8 BRIV-SM-MAPSET

(3C) CHARACTER 8 BRIV-SM-MAP

(44) CHARACTER 4 BRIV-SM-DATA-INDICATOR

(48) FULLWORD 4 BRIV-SM-DATA-LEN

(4C) FULLWORD 4 BRIV-SM-DATA-OFFSET

(50) FULLWORD 4 BRIV-SM-ADSD-LEN

(54) FULLWORD 4 BRIV-SM-ADSD-OFFSET

(58) FULLWORD 4 BRIV-SM-ACCUM-INDICATOR¹

CHARACTER BRIV-SM-DATA²

Note:

1. BRIV-SM-ACCUM-INDICATOR is available only for the Link3270 bridge with
extended support.

82 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_sendmap.html

2. BRIV-SM-DATA is deprecated and included only for compatibility with the
basic support version of the Link3270 bridge provided by CICS Transaction
Server for z/OS, Version 2 Release 2. The recommended method for addressing
this field is by using BRIV-SM-DATA-OFFSET. Use BRIV-SM-ADSD-OFFSET to
address ADSD data.

BRIV-SM-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND MAP command. Valid values
are:

BRIVSMEI-NOERASE
No ERASE.

BRIVSMEI-ERASE
ERASE.

BRIVSMEI-ERASEALTERNATE
ERASE ALTERNATE.

BRIVSMEI-DEFAULT
ERASE DEFAULT.

BRIV-SM-ERASEAUP-INDICATOR
The presence of ERASEAUP on the SEND MAP command. Valid values are:

BRIVSMEUI-YES
ERASEAUP specified.

BRIVSMEUI-NO
ERASEAUP not specified.

BRIV-SM-FREEKB-INDICATOR
The presence of FREEKB on the SEND MAP command. Valid values are:

BRIVSMFKI-YES
FREEKB specified.

BRIVSMFKI-NO
FREEKB not specified.

BRIV-SM-ALARM-INDICATOR
The presence of ALARM on the SEND MAP command. Valid values are:

BRIVSMAI-YES
ALARM specified.

BRIVSMAI-NO
ALARM not specified.

BRIV-SM-FRSET-INDICATOR
The presence of FRSET on the SEND MAP command. Valid values are:

BRIVSMFSI-YES
FRSET specified.

BRIVSMFSI-NO
FRSET not specified.

BRIV-SM-LAST-INDICATOR
The presence of LAST on the SEND MAP command. Valid values are:

BRIVSMLI-YES
LAST specified.

BRIVSMLI-NO
LAST not specified.

Chapter 5. Link3270 message formats 83

BRIV-SM-WAIT-INDICATOR
The presence of WAIT on the SEND MAP command. Valid values are:

BRIVSMWI-YES
WAIT specified.

BRIVSMWI-NO
WAIT not specified.

BRIV-SM-CURSOR
The presence of CURSOR or CURSOR(data-value) on the SEND MAP
command. Valid values are:

BRIVSMCRS-DYNAMIC
CURSOR specified (dynamic cursor positioning).

BRIVSMCCRS-NONE
Neither CURSOR nor CURSOR(data-value) specified.

nn The value of CURSOR(data-value) specified.

BRIV-SM-MSR-DATA
The value of the MSR option specified on the SEND MAP command. Valid
values are:

BRIVSMMSR-NONE
MSR option not specified.

other The value of the MSR option specified.

BRIV-SM-MAPSET
The value of the MAPSET option specified by the SEND MAP command.

BRIV-SM-MAP
The value of the MAP option specified by the SEND MAP command.

BRIV-SM-DATA-INDICATOR
The presence of MAPONLY and DATAONLY options on the SEND MAP
command. Valid values are:

BRIVSMDI-DATAONLY
DATAONLY specified.

BRIVSMDI-MAPONLY
MAPONLY specified.

BRIVSMDI-DEFAULT
Neither DATAONLY nor MAPONLY specified.

BRIV-SM-DATA-LEN
The length of the data in BRIV-SM-DATA. This is the length of the symbolic
map or ADS (application data structure).

BRIV-SM-DATA-OFFSET
The offset from the beginning of the SEND MAP vector to the data associated
with the FROM option of the SEND MAP command.

BRIV-SM-ADSD-LEN
The length of the ADS descriptor associated with this map. This length is zero
if the ADSD is not available or was not requested (BRIH-ADSDESCRIPTOR set
to BRIHADSD-NONE).

BRIV-SM-ADSD-OFFSET
The offset from the beginning of the SEND MAP vector to the ADSD. This is
zero if the ADSD is not available or was not requested.

84 CICS TS for z/OS 4.2: External Interfaces Guide

BRIV-SM-ACCUM-INDICATOR
Indicates whether or not the ACCUM option is specified for EXEC CICS SEND
TEXT, EXEC CICS SEND MAP, or EXEC CICS SEND CONTROL. This
parameter is only available for the Link3270 bridge with extended support. See
“Link3270 bridge basic and extended support” on page 34 for a description of
the different levels of support for the Link3270 bridge. Values are:

Y The ACCUM option is specified.

N The ACCUM option is not specified.

BRIV-SM-DATA
This field is included only for compatibility with the basic support version of
the Link3270 bridge. (See “Link3270 bridge basic and extended support” on
page 34 for a description of the different levels of support for the Link3270
bridge.) It is recommended that you use BRIV-SM-DATA-OFFSET to address
this field.

Link3270 SEND TEXT vector
This vector is the data supplied by an EXEC CICS SEND TEXT command.

See SEND TEXT in CICS Application Programming for details of the command
options.

Offset
Hex

Type Len Name

(0) STRUCTURE 60 BRIV-SEND-TEXT

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-ST-ERASE-INDICATOR

(14) CHARACTER 4 FILLER

(18) CHARACTER 4 BRIV-ST-FREEKB-INDICATOR

(1C) CHARACTER 4 BRIV-ST-ALARM-INDICATOR

(20) CHARACTER 4 BRIV-ST-ACCUM-INDICATOR¹

(24) CHARACTER 4 BRIV-ST-LAST-INDICATOR

(28) CHARACTER 4 BRIV-ST-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-ST-CURSOR

(30) CHARACTER 4 BRIV-ST-MSR-DATA

(34) CHARACTER 4 BRIV-ST-TEXT-TYPE

(38) FULLWORD 4 BRIV-ST-DATA-LEN

(3C) FULLWORD 4 BRIV-ST-DATA-OFFSET¹

(40) FULLWORD 4 BRIV-ST-HEADER-LEN¹

Chapter 5. Link3270 message formats 85

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_sendtext.html

Offset
Hex

Type Len Name

(44) FULLWORD 4 BRIV-ST-HEADER-OFFSET¹

(48) FULLWORD 4 BRIV-ST-TRAILER-LEN¹

(4C) FULLWORD 4 BRIV-ST-TRAILER-OFFSET¹

50 CHARACTER BRIV-ST-DATA²

Note:

1. The fields in bold type are available only for the Link3270 bridge with
extended support.

2. BRIV-ST-DATA is deprecated and included only for backward compatibility
with the basic support version of the Link3270 bridge provided by CICS
Transaction Server for z/OS, Version 2 Release 2. The recommended method for
addressing this field is by using BRIV-ST-DATA-OFFSET.

BRIV-ST-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND TEXT command. Valid values
are:

BRIVSTEI-NOERASE
No ERASE.

BRIVSTEI-ERASE
ERASE.

BRIVSTEI-ERASEALTERNATE
ERASE ALTERNATE.

BRIVSTEI-DEFAULT
ERASE DEFAULT.

BRIV-ST-FREEKB-INDICATOR
The presence of FREEKB on the SEND TEXT command. Valid values are:

BRIVSTFKI-YES
FREEKB specified.

BRIVSTFKI-NO
FREEKB not specified.

BRIV-ST-ALARM-INDICATOR
The presence of ALARM on the SEND TEXT command. Valid values are:

BRIVSTAI-YES
ALARM specified.

BRIVSTAI-NO
ALARM not specified.

BRIV-ST-ACCUM-INDICATOR
Indicates whether or not the ACCUM option is specified for EXEC CICS SEND
TEXT, EXEC CICS SEND MAP, or EXEC CICS SEND CONTROL. This
parameter is only available for the Link3270 bridge with extended support. See
“Link3270 bridge basic and extended support” on page 34 for a description of
the different levels of support for the Link3270 bridge. Values are:

86 CICS TS for z/OS 4.2: External Interfaces Guide

Y The ACCUM option is specified.

N The ACCUM option is not specified.

BRIV-ST-LAST-INDICATOR
The presence of LAST on the SEND TEXT command. Valid values are:

BRIVSTLI-YES
LAST specified.

BRIVSTLI-NO
LAST not specified.

BRIV-ST-WAIT-INDICATOR
The presence of WAIT on the SEND TEXT command. Valid values are:

BRIVSTWI-YES
WAIT specified.

BRIVSTWI-NO
WAIT not specified.

BRIV-ST-CURSOR
The presence of CURSOR(data-value) on the SEND TEXT command. Valid
values are:

BRIVSTCRS-DYNAMIC
CURSOR specified (dynamic cursor positioning).

BRIVSTCRS-NONE
CURSOR(data-value) not specified.

nn The value of CURSOR(data-value) specified.

BRIV-ST-MSR-DATA
The value of the MSR option specified on the SEND TEXT command. Valid
values are:

BRIVSTMSR-NONE
MSR option not specified.

other The value of the MSR option specified.

BRIV-ST-TEXT-TYPE
The presence of MAPPED or NOEDIT options on the SEND TEXT command.
Valid values are:

BRIVSTTT-MAPPED
MAPPED specified.

BRIVSTTT-NOEDIT
NOEDIT specified.

BRIVSTTT-DEFAULT
Neither MAPPED nor NOEDIT specified.

BRIV-ST-DATA-LEN
The length of the data in BRIV-ST-DATA¹.

BRIV-ST-DATA-OFFSET
The offset of the data from the start of the vector. This parameter is only
available for the Link3270 bridge with extended support. See “Link3270 bridge
basic and extended support” on page 34 for a description of the different levels
of support for the Link3270 bridge.

Chapter 5. Link3270 message formats 87

BRIV-ST-HEADER-LEN
The length of the text header. This parameter is only available for the Link3270
bridge with extended support. See “Link3270 bridge basic and extended
support” on page 34 for a description of the different levels of support for the
Link3270 bridge.

BRIV-ST-HEADER-OFFSET
The offset of the text header from the start of the vector. Use this value to
address the header. This parameter is only available for the Link3270 bridge
with extended support. See “Link3270 bridge basic and extended support” on
page 34 for a description of the different levels of support for the Link3270
bridge.

BRIV-ST-TRAILER-LEN
The length of the text trailer. This parameter is only available for the Link3270
bridge with extended support. See “Link3270 bridge basic and extended
support” on page 34 for a description of the different levels of support for the
Link3270 bridge.

BRIV-ST-TRAILER-OFFSET
The offset of the text trailer from the start of the vector. Use this value to
address the trailer. This parameter is only available for the Link3270 bridge
with extended support. See “Link3270 bridge basic and extended support” on
page 34 for a description of the different levels of support for the Link3270
bridge.

BRIV-ST-DATA
This field is included only for compatibility with the basic support version of
the Link3270 bridge. See “Link3270 bridge basic and extended support” on
page 34 for a description of the different levels of support for the Link3270
bridge. It is recommended that you use BRIV-ST-DATA-OFFSET to access the
data contained in the FROM option of the SEND TEXT command.

Note:

1. If the MAPPED option is used, you must add a 4 byte page control area (PGA)
to the end of the data. See SEND TEXT in CICS Application Programming for a
description of the PGA. These 4 bytes are not included in BRIV-ST-DATA-LEN,
but are included in BRIV-OUTPUT-VECTOR-LENGTH and
BRIH-DATALENGTH.

Link3270 SEND PAGE vector
This vector is the data supplied by an EXEC CICS SEND PAGE command.

See SEND PAGE in CICS Application Programming for details of the command
options. This vector is only available for the Link3270 bridge with extended
support. See “Link3270 bridge basic and extended support” on page 34 for a
description of the different levels of support for the Link3270 bridge.

Offset
Hex

Type Len Name

(0) STRUCTURE 88 BRIV-SEND-PAGE

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-PG-RELEASE-INDICATOR

88 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_sendtext.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_sendpage.html

Offset
Hex

Type Len Name

(14) CHARACTER 4 BRIV-PG-RETAIN-INDICATOR

(18) CHARACTER 4 BRIV-PG-LAST-INDICATOR

(1C) CHARACTER 4 BRIV-PG-TRANSID

(20) FULLWORD 4 BRIV-PG-TRAILER-LEN

(24) FULLWORD 4 BRIV-PG-TRAILER-OFFSET

BRIV-PG-RELEASE-INDICATOR
Indicates whether or not the RELEASE option is specified. Valid values are:

Y RELEASE is specified.

N RELEASE is not specified.

BRIV-PG-RETAIN-INDICATOR
Indicates whether or not the RETAIN option is specified. Valid values are:

Y RETAIN is specified.

N RETAIN is not specified.

BRIV-PG-LAST-INDICATOR
Indicates whether or not LAST is specified. Valid values are:

Y LAST is specified.

N LAST is not specified.

BRIV-PG-TRANSID
The name of the transaction to be used on the next message.

BRIV-PG-TRAILER-LEN
The length of the trailer.

BRIV-PG-TRAILER-OFFSET
The offset of the trailer from the start of the vector.

Link3270 PURGE MESSAGE vector
This vector is the data supplied by an EXEC CICS PURGE MESSAGE command.

See PURGE MESSAGE in CICS Application Programming for details of the
command options. This vector is only available for the Link3270 bridge with
extended support. See “Link3270 bridge basic and extended support” on page 34
for a description of the different levels of support for the Link3270 bridge.

There are no parameters for this vector.

Link3270 SYNCPOINT vector
This vector is the data supplied by an EXEC CICS SYNCPOINT command.

See SYNCPOINT in CICS Application Programming for details of the command
options.

Chapter 5. Link3270 message formats 89

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_purgemessage.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_syncpoint.html

This vector is supplied when the application issues one of the following:
v An EXEC CICS SYNCPOINT command
v A CICS command such as EXEC CICS SYNCONRETURN or EXEC CICS CREATE which

issues an implicit syncpoint
v An RMI request which issues an implicit syncpoint

Note: The vector is not supplied on the implicit syncpoint which occurs when a
transaction completes.

Offset
Hex

Type Len Name

(0) STRUCTURE 20 BRIV-SYNCPOINT

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SP-ROLLBACK

(14) CHARACTER 4 BRIV-SP-EXPLICIT

(18) FULLWORD 4 BRIV-SP-RESP

BRIV-SP-ROLLBACK
The presence of ROLLBACK on the EXEC CICS SYNCPOINT command. Valid
values are:

BRIVSPR-YES
ROLLBACK specified.

BRIVSPR-NO
ROLLBACK not specified.

BRIV-SP-EXPLICIT
Whether the syncpoint was explicit (resulting from a SYNCPOINT command)
or implicit (resulting from a CICS or RMI command which issues an implicit
syncpoint). Refer to the description above for more information. Valid values
are:

BRIVSPE-YES
The SYNCPOINT command was issued.

BRIVSPE-NO
The syncpoint was implicit.

BRIV-SP-RESP
The EIBRESP value returned from the SYNCPOINT command.

Link3270 CONVERSE request vector
This vector is the data supplied by an EXEC CICS CONVERSE request that was issued
by the user application, but there was no CONVERSE vector in the input message.

See CONVERSE (3270 logical) in CICS Application Programming for details of the
command options.

90 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_converse3270logical.html

Offset
Hex

Type Len Name

(0) STRUCTURE 48 BRIV-CONVERSE-REQUEST

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-COR-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-COR-CTLCHAR

(18) CHARACTER 4 BRIV-COR-STRFIELD-INDICATOR

(1C) CHARACTER 4 BRIV-COR-DEFRESP-INDICATOR

(20) CHARACTER 12 (reserved)

(2C) FULLWORD 4 BRIV-COR-DATA-LEN

(30) CHARACTER BRIV-COR-DATA

BRIV-COR-ERASE-INDICATOR
The type of ERASE specified by the CICS CONVERSE command. Valid values
are:

BRIVCOREI-NOERASE
No ERASE.

BRIVCOREI-ERASE
ERASE.

BRIVCOREI-ERASEALTERNATE
ERASE ALTERNATE.

BRIVCOREI-DEFAULT
ERASE DEFAULT.

BRIV-COR-CTLCHAR
The CTLCHAR value specified by the CONVERSE command. Valid values are:

BRIVCORCC-DEFAULT
X'C3'.

cc The value in CTLCHAR.

BRIV-COR-STRFIELD-INDICATOR
The presence of STRFIELD on the CONVERSE command. Valid values are:

BRIVCORSI-YES
STRFIELD specified.

BRIVCORSI-NO
STRFIELD not specified.

BRIV-COR-DEFRESP-INDICATOR
The presence of DEFRESP on the CONVERSE command. Valid values are:

BRIVCORDRI-YES
DEFRESP specified.

Chapter 5. Link3270 message formats 91

BRIVCORDRI-NO
DEFRESP not specified.

BRIV-COR-DATA-LEN
The length of the data in BRIV-COR-DATA. This is explicitly defined in the
LENGTH or FLENGTH option, or derived from the length of the field.

BRIV-COR-DATA
Character field of length BRIV-COR-DATA-LEN containing the data addressed
by the FROM option of the CONVERSE command.

Link3270 RECEIVE request vector
This vector is the data supplied by an EXEC CICS RECEIVE request.

See RECEIVE (3270 logical) in CICS Application Programming for details of the
command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 20 BRIV-RECEIVE-REQUEST

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-RER-BUFFER-INDICATOR

BRIV-RER-BUFFER-INDICATOR
The presence of BUFFER on the CICS RECEIVE command. Valid values are:

BRIVRERBI-YES
BUFFER specified.

BRIVRERBI-NO
BUFFER not specified.

Link3270 RECEIVE MAP request vector
This vector is the data supplied by an EXEC CICS RECEIVE MAP request.

See RECEIVE MAP in CICS Application Programming for details of the command
options.

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-RECEIVE-MAP-REQUEST

(0) STRUCTURE 16 Output header

(10) CHARACTER 8 BRIV-RMR-MAPSET

(18) CHARACTER 8 BRIV-RMR-MAP

(20) FULLWORD 4 BRIV-RMR-ADSD-LEN

(24) CHARACTER BRIV-RMR-ADSD

92 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_receive3270logical.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_receivemap.html

BRIV-RMR-MAPSET
The value of the MAPSET option on the RECEIVE MAP command.

BRIV-RMR-MAP
The value of the MAP option on the RECEIVE MAP command.

BRIV-RMR-ADSD-LEN
The length of the ADS descriptor associated with this map. This length is zero
if the ADSD is not available or was not requested (BRIH-ADSDESCRIPTOR set
to BRIHADSD-NONE).

BRIV-RMR-ADSD
The ADS descriptor associated with the requested map. No data is sent if
BRIV-RMR-ADSD-LEN is zero.

Link3270 ADS descriptor
The ADS descriptor contains a header with general information about the map,
and a field descriptor for every field that appears in the ADS, corresponding to
every named field in the map definition macro. It can be located in the mapset
from an offset field in DFHMAPDS.

ADS descriptor header
The ADS descriptor header contains general information about the map and a
pointer to the first of a variable number of chained field descriptions.

Offset
Hex

Type Len Name

(0) STRUCTURE 38 ADS-DESCRIPTOR
(0) HALFWORD 2 ADSD-LENGTH
(2) CHARACTER 4 ADSD-EYECATCHER
(6) HALFWORD 2 ADSD-MAP-INDEX
(8) HALFWORD 2 ADSD-FIELD-COUNT

(A) HALFWORD 2 ADSD-STRUCTURE-LENGTH
(C) HALFWORD 2 ADSD-ATTRIBUTE-NUMBER
(E) CHARACTER 12 ADSD-ATTRIBUTE-TYPE-CODES

(1A) CHARACTER 1 ADSD-MAP-JUSTIFY-HOR
(1B) CHARACTER 1 ADSD-MAP-JUSTIFY-VER
(1C) HALFWORD 2 ADSD-MAP-STARTING-LINE
(1E) HALFWORD 2 ADSD-MAP-STARTING-COLUMN
(20) HALFWORD 2 ADSD-MAP-LINES
(22) HALFWORD 2 ADSD-MAP-COLUMNS
(24) CHARACTER 1 ADSD-WRITE-CONTROL-CHARACTER
(25) CHARACTER 1 (reserved)
(26) STRUCTURE ADSD-FIRST-FIELD

ADSD-LENGTH
The length of the ADS descriptor.

ADSD-EYECATCHER
An eye-catcher ('ADSD') to identify this as an ADS descriptor.

ADSD-MAP-INDEX
The index number of the map within the mapset.

ADSD-FIELD-COUNT
The number of fields within the ADS; that is, the number of named fields in

Chapter 5. Link3270 message formats 93

the map definition. A separate field is counted for each element of an array
defined with the OCCURS parameter, but subfields of group fields
(GRPNAME) are not counted. The field count may be zero, in which case there
are no field descriptors following the header.

ADSD-STRUCTURE-LENGTH
The length of the application data structure.

ADSD-ATTRIBUTE-NUMBER
The number of extended attributes in fields used in the map; that is, the
number of attributes specified in DSATTS in the map definition.

ADSD-ATTRIBUTE-TYPE-CODES
a 1-character code for the attribute types in each field, in order, derived from
DSATTS:
v C = COLOR
v P = PS
v H = HILIGHT
v V = VALIDN
v O = OUTLINE
v S = SOSI
v T = TRANSP

ADSD-MAP-JUSTIFY-HOR
The horizontal justification for the map, either L (LEFT) or R (RIGHT) from the
JUSTIFY operand on the map definition.

ADSD-MAP-JUSTIFY-VER
The vertical justification for the map, from the JUSTIFY operand on the map
definition. This can have the values F (FIRST), L (LAST), B (BOTTOM), or
blank (no vertical JUSTIFY operand).

ADSD-MAP-STARTING-LINE
The starting line for the map, from the LINE operand on the DFHMDI macro,
(LINE = NEXT gives a value of 255; LINE = SAME gives a value of 254.)

ADSD-MAP-STARTING-COLUMN
The starting column for the map, from the COLUMN operand on the DFHMDI
macro. (COLUMN = NEXT gives a value of 255; COLUMN = SAME gives a
value of 254.)

ADSD-MAP-LINES
The number of lines in the map from the SIZE operand.

ADSD-MAP-COLUMNS
The number of columns in the map from the SIZE operand.

ADSD-WRITE-CONTROL-CHAR
The 3270 encoded WCC derived from the CONTROL operand.

ADSD-FIRST-FIELD
The first field descriptor. The address of the first field descriptor in the ADSD
(zero if ADSD-FIELD-COUNT is zero).

ADS field descriptor
After the header, the ADS descriptor contains a variable number of field
descriptors.

Each field descriptor has the following format:

94 CICS TS for z/OS 4.2: External Interfaces Guide

Offset
Hex

Type Len Name

(0) STRUCTURE 42 ADS-FIELD-DESCRIPTOR
(0) CHARACTER 32 ADSD-FIELD-NAME

(20) HALFWORD 2 ADSD-FIELD-NAME-LEN
(22) HALFWORD 2 ADSD-OCCURS-INDEX
(24) HALFWORD 2 ADSD-FIELD-OFFSET
(26) HALFWORD 2 ADSD-FIELD-DATA-LEN
(28) CHARACTER 1 ADSD-FIELD-JUSTIFY
(29) CHARACTER 1 ADSD-FIELD-FILL-CHAR

(2A) CHARACTER ADSD-NEXT-FIELD

ADSD-FIELD-NAME
The unsuffixed field name padded with blanks on the right.

ADSD-FIELD-NAME-LEN
The number of characters in the field name.

ADSD-OCCURS-INDEX
When OCCURS is specified for a field definition there is a separate field
descriptor for each element of the array, and ADSD-OCCURS-INDEX indicates
the array index for the particular field. If OCCURS is not specified, then
ADSD-OCCURS-INDEX is 0.

ADSD-FIELD-OFFSET
The offset of the field within the ADS. The offset is to the beginning of the
(fullword) length field, and you must add 2 (for the length field) + 1 (for the
3270 attribute) + ADSD-ATTRIBUTE-NUMBER to obtain the offset of the data
part of the field.

ADSD-FIELD-DATA-LEN
The length of the field in the ADS.

ADSD-FIELD-JUSTIFY
A 1-character field indicating whether the data is to be justified left 'L' or right
'R' if the supplied length is less than the length in the ADS.

ADSD-FIELD-FILL-CHAR
The character (blank or '0') to be used to pad the remainder of the field in the
ADS.

ADSD-NEXT-FIELD
The next field descriptor. The address of ADSD-NEXT-FIELD can be used to
update a pointer for the field descriptor.

Chapter 5. Link3270 message formats 95

96 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 6. Link3270 diagnostics

Link3270 messages are subject to a number of validation stages.

The following types of validation error are described
v Invalid message
v Invalid BRIH
v Invalid facility
v Invalid BRIV
v Invalid application data

Return codes and abend codes provided to assist in diagnosis of errors. Note that
the order in which checks are made is subject to change, and therefore should not
be used as an interface. “BRIH-RETURNCODE values” on page 98 shows the
possible values of BRIH-RETURNCODE and the contents of any related diagnostic
fields (BRIH-COMPCODE and BRIH-REASON). Where no specific value is shown,
these fields are set to 0.

Invalid Message
If a COMMAREA is passed to Link3270 that is too small to contain a BRIH, or
does not have the appropriate BRIH header, this will result in a transaction
abend code:

ABR4 No COMMAREA

ABR5 COMMAREA too small to contain BRIH

ABR6 COMMAREA does not contain BRIH

Invalid BRIH
Only relevant fields are validated on each request. If these are invalid, then
BRIH-RETURNCODE is set to BRIHRC-VALIDATION-ERROR-BRIH and
BRIH-ERROROFFSET points to the field in error. The system state is not
changed by a validation error. Therefore user transactions are neither started
nor abended.

Invalid bridge facility
If the facility token is invalid, or has expired, this will result in
BRIH-RETURNCODE being set to BRIHRC-INVALID-FACILITYTOKEN.
Facilities which have expired are described by the state errors.

Invalid BRIV
BRIVs are validated as they are used. Therefore if a BRIV is not used, it is not
checked. If these are invalid then BRIH-RETURNCODE is set to
BRIHRC-VALIDATION-ERROR-BRIV and BRIH-ERROROFFSET points to the
field in error

The transaction is abended with an ABXF abend code. BRIH-ABENDCODE is
set to this value.

Invalid Application data
Application data cannot be checked by the bridge. Incorrect data will give
unexpected results that may result in transaction abends or erroneous
processing. You should ensure that your client program creates the data
correctly. If validation of the client data is essential, you can do this by creating
a program in the router region that accepts the COMMAREA, validates the
ADS and then passes it to the bridge with a link to Link3270.

© Copyright IBM Corp. 1994, 2012 97

BRIH-RETURNCODE values
BRIHRC-OK (0)

The request completed successfully.

BRIHRC-AI-LINK-FAILED (23)
The link to the autoinstall URM failed.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-AI-REJECTED (22)
The terminal autoinstall URM rejected the bridge install request.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-AI-NETNAME-INVALID (21)
The netname supplied by the terminal autoinstall URM is invalid.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-AI-TERMID-INVALID (20)
The terminal id returned by the autoinstall URM is invalid.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-APPLICATION-ABEND (160)
The user transaction abended. Additional diagnostics:

BRIH-ABENDCODE
The transaction abend code

BRIHRC-CICS-TERMINATION (66)
The CICS region is terminating and the Link3270 request has been rejected.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-CLIENT-NETNAME-INVALID (24)
The client supplied an invalid netname.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-CLIENT-TERMID-INVALID (25)
The client supplied an invalid terminal id.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-DFHBRNSF-UNAVAILABLE (65)
File DFHBRNSF is unavailable.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-FACILITYLIKE-INVALID (26)
The client supplied an invalid facilitylike.

98 CICS TS for z/OS 4.2: External Interfaces Guide

BRIH-COMPCODE

2 Set by router region code

BRIHRC-FACILITYTOKEN-IN-USE (63)
A transaction is already running with this facilitytoken.

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

BRIHRC-INVALID-BRIH-DATALENGTH (140)
The BRIH datalength value supplied by the client is not valid.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-INVALID-CONTINUE_REQ (143)
The message contained no BRIVs.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-INVALID-FACILITY-TOKEN (61)
The bridge facilitytoken in the BRIH is invalid.

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

BRIHRC-INVALID-KEEPTIME (142)
A KEEPTIME of zero was set on an allocate request.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-NO-DATA (120)
A BRIHT-GET-MORE-MESSAGE request failed because there was no more
data to send.

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

BRIHRC-NO-FREE-NAME (62)
All bridge facilities are already allocated.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-NO-STORAGE (64)
Insufficient storage in either the router region or AOR to run the request.

BRIH-COMPCODE

2 Set by driver code

BRIHRC-NOT-SHUTDOWN-ENABLED (80)
An attempt was made to run a transaction at shutdown that is not enabled for
running at shutdown.

Chapter 6. Link3270 diagnostics 99

BRIH-COMPCODE

2 Set by driver code

BRIHRC-PROFILE-NOT-FOUND (87)
The transaction PROFILE for the target transaction was not found.

BRIH-COMPCODE

2 Set by partner code

BRIHRC-RETRIEVE-NOT-SUPPORTED (121)
Retrieve vectors are only supported in the initial request.

BRIH-COMPCODE

2 Set by driver code

BRIHRC-ROUTING-BACKLEVEL-CICS (45)
The Link3270 request was routed to a back level CICS system that does not
support Link3270. Additional diagnostics:

BRIH-COMPCODE
EIBRESP

BRIH-REASON
EIBRESP2

BRIH-FUNCTION
EIBFN

BRIHRC-ROUTING-CONNECTION (43)
The Link3270 request could not be routed to the remote region because of a
connection error. Additional diagnostics:

BRIH-COMPCODE
EIBRESP

BRIH-REASON
EIBRESP2

BRIH-FUNCTION
EIBFN

BRIHRC-ROUTING-TERMERR (44)
The EXEC CICS LINK from the DFHL3270 to the AOR failed with TERMERR.
Additional diagnostics:

BRIH-COMPCODE
EIBRESP

BRIH-REASON
EIBRESP2

BRIH-FUNCTION
EIBFN

BRIHRC-ROUTING-TRANDEF-ERROR (42)
The TRANSACTION resource definition in the routing region does not allow
the transaction to be routed to the chosen target region.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-ROUTING-URM-LINK-FAILED (40)
The link to the dynamic routing URM failed. Additional diagnostics:

100 CICS TS for z/OS 4.2: External Interfaces Guide

BRIH-COMPCODE

3 URM abended

4 AMODE error

5 No PROGRAM definition

6 Fetch error

7 Disabled

8 Program defined as remote

BRIHRC-ROUTING-URM-REJECTED (41)
The dynamic routing URM rejected the bridge routing request. Additional
diagnostics:

BRIH-COMPCODE

3 Select rejected

4 Sysid not found

5 Sysid not in service

6 Allocate rejected

7 Queue purged

8 Function not shipped

9 Netname not found

10 Sysid/netname mismatch

BRIH-REASON
Return code from dynamic routing URM (DYRRETC).

BRIHRC-SECURITY-ERROR (100)
A Link3270 request in session mode has been issued with a different userid
than that used in the request that allocated the bridge facility token.

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

BRIHRC-STATE-SYSTEM-ATTACH (82)
The user transaction can only be system attached, and so cannot be run under
a bridge facility.

BRIH-COMPCODE

2 Set by driver code

BRIHRC-TRANSACTION-DISABLED (84)
The user transaction to be run under the bridge is disabled.

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

3 DTRTRAN disabled

BRIHRC-TRANSACTION-NOT-FOUND (85)
The user transaction to be run under the bridge was not found. Additional
diagnostics:

Chapter 6. Link3270 diagnostics 101

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

3 DTRTRAN rejected by routing program

BRIHRC-TRANSACTION-NOT-RUNNING (86)
The next leg of a pseudoconversation cannot be run because there is no
transaction running on the bridge facility.

BRIH-COMPCODE

1 Set by router region code

2 Set by driver code

BRIHRC-VALIDATION-ERROR-BRIV (141)
A BRIV is invalid. BRIH-ERROROFFSET points to the field in error.

BRIH-COMPCODE

2 Set by driver code

BRIHRC-ROUTER-BACKLEVEL
The router region does not support the version of the Link3270 message.

BRIH-COMPCODE

1 Set by router region code

BRIHRC-AOR-BACKLEVEL
The bridge driver task in the AOR does not support the version of the
Link3270 message.

BRIH-COMPCODE

2 Set by driver code

102 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 7. Using the Link3270 samples

CICS provides sample client programs that use the ECI, EXCI and LINK interfaces
to call the Link3270 bridge to run the sample transaction NACT.

The main objective of the sample programs is to provide coded examples that you
can use to help you write your own client programs. NACT was chosen for this
purpose as it has a well documented BMS interface.

The samples are not written to illustrate how a business client should process the
data, so the business clients do not perform any special formatting of the data
extracted from the user application.

The samples are designed to illustrate the two most common scenarios:
1. Host Client

The client program executes on the host system, using LINK or EXCI to drive
the user application. In this scenario, the sample programs show how you can
divide the client logic into a business-client that is concerned only with the
business data and its representation in the client end-user environment, and a
bridge-client that builds the bridge messages and manages the communication
with the bridge. In this way, you can develop the more complex back-end using
CICS , and can make it reusable.
The LINK and EXCI samples show how this common logic can be shared.
See Figure 7 on page 30 for an illustration of the host client.

2. Workstation Client

The client program executes on a remote workstation, using ECI to drive the
user application. In this scenario, a single sample program is used, combining
the business logic in the client environment and the interface to the bridge. In
this environment, the programmer needs some, but not extensive, CICS
knowledge.
See Figure 9 on page 31 for an illustration of the workstation client.

The following sample client programs and copybooks are supplied in source code,
in the SDFHSAMP library.

Lang. LINK ECI EXCI Copybook

C
DFH$BRCC
DFH$BRLC

DFH$BREC DFH$BRXC DFH$BRSH

COBOL
DFH0CBRC
DFH0CBRL

DFH0CBRX DFH0CBRA

DFH$BRCC
This is the C language host business client sample, driven by transaction
BRCH. DFH$BRCC formats a COMMAREA using the structures defined in the
DFH$BRSH header file, to contain the business data that will be passed to the
NACT transaction. DFH$BRCC then LINKS to DFH$BRLC (the C bridge
client) , passing the COMMAREA, to perform the following functions:
v Run the NACT search function to obtain an account number from a name.

© Copyright IBM Corp. 1994, 2012 103

v Run the NACT display function to obtain account details for the account
number.

When DFH$BRLC returns with the requested data, DFH$BRCC writes it to TS
queue BRCH.

DFH0CBRC
This is the COBOL language host business client sample, driven by transaction
BRCO. DFH0CBRC formats a COMMAREA using the structures defined in the
DFH0CBRA copybook, to contain the business data that will be passed to the
NACT transaction. DFH0CBRC then LINKS to DFH0CBRL, passing the
COMMAREA, to perform the following functions:
v Run the NACT search function to obtain an account number from a name.
v Run the NACT display function to obtain account details for the account

number.

When DFH0CBRL returns with the requested data, DFH0CBRC writes it to TS
queue BRCO.

DFH$BRLC/DFH0CBRL
DFH$BRLC and DFH0CBRL LINK to DFHL3270 to drive the NACT
transaction, using Link3270 in session mode. They do the following:
v Allocate the bridge facility
v Format the vectors to send in the Link3270 message
v Call the NACT transaction using the Link3270 bridge
v Return the requested data in the COMMAREA
v Delete the bridge facility

DFH$BRXC
This is the C language EXCI business client sample. DFH$BRXC formats a
COMMAREA using the structures defined in the DFH$BRSH header file, to
contain the business data that will be passed to the NACT transaction.
DFH$BRXC then LINKS to DFH$BRLC, using the EXCI interface, passing the
COMMAREA, to perform the following functions:
v Run the NACT search function to obtain an account number from a name.
v Run the NACT display function to obtain account details for the account

number.

When DFH$BRLC returns with the requested data, DFH$BRXC writes it to
SYSPRINT.

DFH0CBRX
This is the COBOL language EXCI business client sample. DFH0CBRX formats
a COMMAREA using the structures defined in the DFH0CBRA copy book, to
contain the business data that will be passed to the NACT transaction.
DFH0CBRX then LINKS to DFH0CBRL, using the EXCI interface, passing the
COMMAREA, to perform the following functions:
v Run the NACT search function to obtain an account number from a name.
v Run the NACT display function to obtain account details for the account

number.

When DFH0CBRL returns with the requested data, DFH0CBRX writes it to
SYSPRINT.

DFH$BREC

v Allocates the bridge facility

104 CICS TS for z/OS 4.2: External Interfaces Guide

v Sends an ECI request to program DFHL3270 to run NACT and obtain the
menu screen

v Formats a message with BRIV vectors to run the NACT search function to
obtain an account number from a name.

v Sends an ECI request to program DFHL3270 to run the NACT search
function.

v Extracts the search output data from the outbound message.
v Sends an ECI request to program DFHL3270 to run NACT and obtain the

menu screen
v Formats a message with BRIV vectors to run the NACT display function to

obtain account details for the account number.
v Extracts the account details from the outbound message.
v Formats a client response using the structures defined in the DFH$BRSH

header file and displays it to the client end-user.
v Deletes the bridge facility

The NACT transaction
The NACT sample transaction demonstrates the design and development of CICS
applications. It is a COBOL pseudoconversational 3270-based CICS application that
operates on the customer account file of a fictitious company, KanDoIT.

The NACT sample transaction is taken from the book Designing and Programming
CICS Applications , published by O'Reilly & Associates, Inc; ISBN 1–56592–676–5.

The NACT application provides the following services:
v access to an account record by account number
v addition of a new account number and account record
v modification of an account record
v deletion of an account record
v access to an account record by customer name

The logic of the application is divided into the following pseudoconversational
steps:
1. A menu is displayed to allow selection of the service required.
2. The updated menu screen is read; the requested record is obtained and

displayed
3. If the record is modified, the changes are received and the file updated; the

menu is re-displayed.

The Link3270 sample client programs request the record number for customer
name JACOB JONES; retrieve the record and display, or store, the retrieved record.

Running the sample client programs
You must perform the following setup to run the samples.

Chapter 7. Using the Link3270 samples 105

About this task

Setup the Link3270 environment
About this task

Set up the Link3270 environment as described in Chapter 4, “Managing the
Link3270 bridge environment,” on page 47. Ensure that you have defined:
v Link3270 system initialization parameters
v The DFHBRNSF file

Setup for the CICS-based clients
Add the load library containing the load modules to the RPL concatenation of your
CICS startup job.

Procedure
1. Install and setup the NACT transaction, as described in “Setup for the NACT

transaction” on page 108
2. Translate, compile and link the COBOL or C language programs DFH0CBRC,

DFH0CBRL, DFH$BRCC, and DFH$BRLC, using a Language Environment®

conforming compiler, ensuring the library containing the DFH$BRSH and
DFH0CBRA copybooks is accessible. See Device dependent support: DDS , in
the CICS Application Programming Guide for guidance on translating and
compiling CICS programs. Translate, compile and link the COBOL or C
language programs DFH0CBRC, DFH0CBRL, DFH$BRCC, and DFH$BRLC,
using a Language Environment conforming compiler, ensuring the library
containing the DFH$BRSH and DFH0CBRA copybooks is accessible. See Device
dependent support: DDS , in the CICS Application Programming Guide for
guidance on translating and compiling CICS programs.

3. Install resource definitions for the following CICS resources:

Table 13. Resource definitions for sample clients

Resource Description

DFH0CBRC COBOL sample business client

DFH0CBRL COBOL sample bridge client

DFH$BRCC C sample business client

DFH$BRLC C sample bridge client

BRCO Transaction to drive DFHC0BRC

BRCH Transaction to drive DFH$BRCC

Examples of these resource definitions are provided for you in group
DFH$BRLK. Install this group, or add it to the grouplist installed during CICS
startup.

4. Run the samples by entering the transaction name BRCO (for the COBOL
sample) or BRCH (for the C sample) at a CICS terminal.

Setup for z/OS based client
You must perform these tasks to set up the z/OS based client.

About this task
1. Install and setup the NACT transaction in CICS, as described in “Setup for the

NACT transaction” on page 108.

106 CICS TS for z/OS 4.2: External Interfaces Guide

2. Edit the DFH0CBRX or DFH$BRXC sample to pass the netname of the CICS
region where the bridge client program (DFH$BRLC or DFH0CBRL) is
installed. Compile and link the COBOL or C language programs DFH0CBRX or
DFH$BRXC, using a Language Environment conforming compile, ensuring the
library containing the DFH$BRSH and DFH0CBRA copybooks is accessible.
Ensure also that the CICS supplied SDFHEXCI data set is concatenated to
SYSLIB for your compile step. Place the output load modules in an appropriate
z/OS library.

3. Translate, compile and link the COBOL or C language programs DFH0CBRL,
and DFH$BRLC, using a Language Environment conforming compiler, ensuring
the library containing the DFH$BRSH and DFH0CBRA copybooks is accessible.
See Device dependent support: DDS , in the CICS Application Programming
Guide for guidance on translating and compiling CICS programs.
Add the load library containing the load modules to the RPL concatenation of
your CICS startup job.

4. Create and install a CONNECTION resource definition to define the interface
between CICS and z/OS that will be used by the EXCI request. See Chapter 13,
“Defining connections to CICS,” on page 161, and Chapter 8, “Introduction to
the external CICS interface,” on page 113 for an introduction and guidance on
how to use of the EXCI interface.

5. To run the EXCI samples, you can use the following JCL supplied in file
DFH$BRXJ in SDFHINST. You should edit this JCL to replace hlq with your
own prefix, assigned during CICS installation, and to replace application
library with the name of the library that contains the load modules created in
step 1. Run this job in the z/OS batch environment.

//DFH$BRXJ JOB (accounting information)
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),REGION=12M
//LINK3270 EXEC PGM=DFH0CBRX
//***
//* *
//* JCL NAME = DFH$BRXJ *
//* *
//* DESCRIPTIVE NAME = Link3270 bridge EXCI business client sample *
//* *
//* FUNCTION = *
//* *
//* Sample JCL for running the Link3270 bridge EXCI *
//* business client samples DFH0CBRX and DFH$BRXC. *
//* *
//* The file DSN qualifier hlq must be changed. *
//* This JCL runs the COBOL sample DFH0CBRX *
//* This must be compiled into application library *
//* before the JCL is run. *
//* application library must be changed. *
//* To run the C Sample change DFH0CBRX to DFH$BRXC. *
//* *
//* The CICS External Interface Guide contains a detailed *
//* description of the Link3270 bridge. *
//* *
//***
//STEPLIB DD DSN=application library,DISP=SHR
// DD DSN= hlq.SDFHEXCI,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//

Figure 14. EXCI sample JCL

Chapter 7. Using the Link3270 samples 107

Note: The output from the NACT sample is returned in the output from this
job.

Setup for the workstation client
You must perform the following steps to set up the workstation client.

Procedure
1. Install the CICS Transaction Gateway on your workstation, as described in the

relevant CICS Transaction Gateway administration manual for your workstation
platform, ensuring that the developer kit is included.

2. Download the following programs and header files:

Table 14. Required files

File Source library

dfh$brec.c CICSTS42.CICS.SDFHSAMP

dfh$brxc.h CICSTS42.CICS.SDFHSAMP

dfh$brmh.h CICSTS42.CICS.SDFHSAMP

dfhbrich.h CICSTS42.CICS.SDFHC370

dfhbrihh.h CICSTS42.CICS.SDFHC370

Compile dfh$brec, with these header files, and DFHAID.h in your path.
3. Setup the ECI connection in CICS as described in the CICS Family:

Communicating from CICS on zSeries manual.
4. Setup the ECI connection in your workstation as described in the appropriate

Client Administration manual.
5. Install and setup the NACT transaction in CICS, as described in “Setup for the

NACT transaction”

Setup for the NACT transaction
You can set up the NACT sample to use with the bridge sample clients

About this task

The following table shows the components that form the NACT sample
application, supplied during CICS installation.

Table 15. NACT sample components

File Type Library

DFH0CNA1 COBOL source SDFHSAMP

DFH0CNA2 COBOL source SDFHSAMP

DFH0CNA3 COBOL source SDFHSAMP

DFH0CNA4 COBOL source SDFHSAMP

DFH0CNA5 COBOL source SDFHSAMP

DFH0MNA Mapset SDFHSAMP

DFH0CNAA Copybook SDFHSAMP

DFH0CNAB Copybook SDFHSAMP

DFH0CNAC Copybook SDFHSAMP

DFH0CNAE Copybook SDFHSAMP

108 CICS TS for z/OS 4.2: External Interfaces Guide

Table 15. NACT sample components (continued)

File Type Library

DFH0CNAF Copybook SDFHSAMP

DFH0CNAG Copybook SDFHSAMP

DFH0CNAL Copybook SDFHSAMP

DFH0CNAM Copybook SDFHSAMP

DFH0CNAR Copybook SDFHSAMP

DFH0CNAU Copybook SDFHSAMP

DFH0CNAW Copybook SDFHSAMP

DFH$NACT RDO group CSD

DFHNADEF JCL XDFHINST

To set up the NACT sample to use with the bridge sample clients, use the
following procedure:
1. Assemble and link the map DFH0MNA. The map copybook can be created in

this step, but the map copybook DFH0CNAM is supplied. See Installing map
sets and partition sets in the CICS Application Programming Guide for guidance
on assembling CICS maps.
Add the load library containing the load modules to the RPL concatenation of
your CICS startup job.

2. Translate, compile and link the COBOL programs DFH0CNA1–5, ensuring that
the copybooks listed inTable 15 on page 108 are accessible. See Device
dependent support: DDS , in the CICS Application Programming Guide for
guidance on translating and compiling CICS programs.
Add the load library containing the load modules to the RPL concatenation of
your CICS startup job.

3. Create NACT files. Edit the JCL provided in file DFHNADEF to conform to
your own installation naming conventions, and run it to create the following
NACT files:

xxx.ACCTFILE
The account file

xxx.ACCTNAIX
The names alternate index

xxx.ACTINUSE
record locking file

4. Edit the resource definitions in sample group DFH$NACT to conform to the
naming conventions you used in step 3. Install this group, or add it to the
grouplist installed during CICS startup.

5. You can now test that installation is complete by entering the transaction
NACT on a CICS terminal.

Chapter 7. Using the Link3270 samples 109

110 CICS TS for z/OS 4.2: External Interfaces Guide

Part 3. External CICS Interface

The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in MVS to call a program (a server
program) running in a CICS region and to pass and receive data by means of a
communications area.

This part contains:
v Chapter 8, “Introduction to the external CICS interface,” on page 113
v Chapter 9, “The EXCI CALL interface,” on page 123
v Chapter 10, “The EXCI EXEC CICS interface,” on page 149
v Chapter 13, “Defining connections to CICS,” on page 161
v Chapter 14, “The EXCI user-replaceable module,” on page 167
v Chapter 15, “Using the EXCI options table, DFHXCOPT,” on page 169
v Chapter 16, “Compiling and link-editing EXCI client programs,” on page 175
v Chapter 17, “EXCI security,” on page 187
v Chapter 18, “Problem determination for the external CICS interface (EXCI),” on

page 191
v Chapter 19, “Response and reason codes returned on EXCI calls,” on page 215
v Chapter 20, “Messages and codes,” on page 243.

© Copyright IBM Corp. 1994, 2012 111

112 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 8. Introduction to the external CICS interface

The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in MVS to call a program (a server
program) running in a CICS region and to pass and receive data by using a
communications area.

The CICS application program is invoked as if linked to by another CICS
application program.

This programming interface allows a user to allocate and open sessions, or pipes (a
one-way communication path between a sending process and a receiving process)
to a CICS region, and to pass distributed program link (DPL) requests over them.
The multiregion operation (MRO) facility of CICS interregion communication (IRC)
facility supports these requests, and each pipe maps onto one MRO session, where
the client program represents the sending process and the CICS server region
represents the receiving process. There is a default limit of 100 pipes per EXCI
address space; the limit can be changed when MVS is IPLed.

This limit is implemented to avoid EXCI clients monopolizing MRO resources,
which could prevent CICS regions from using MRO. The limit is applied in both
MRO and cross system MRO (XCF/MRO) environments. An ALLOCATE_PIPE
request results in an MRO LOGON request being issued and there is a limit on the
total number of MRO LOGON requests allowed from all address spaces. This is
critical when using XCF/MRO, where the limit on the number of members in an
XCF group also limits the total number of MRO LOGONs.

The external CICS interface identifies the CICS region to communicate with by the
CICS region APPLID, as defined in the APPLID system initialization parameter. You
can specify the APPLID either on an EXCI API call or by using the DFHXCURM
user-replaceable program. For more information about DFHXCURM, see
Chapter 14, “The EXCI user-replaceable module,” on page 167.

Note: Do not confuse the term generic applid with generic resource name. Generic
resource names apply only to z/OS Communications Server generic resource
groups, which are not supported by EXCI.

The client program and the CICS server region (the region where the server
program runs or is defined) must be in the same MVS image unless:
v The CICS region is running in a sysplex that supports cross-system MRO.
v All DPL requests issued by the client program specify the SYNCONRETURN

option.

Alternatively, if there is no local CICS region in the MVS image, you must specify
the SVC parameter that the external CICS interface is to use, by coding a CICSSVC
parameter in the DFHXCOPT table. Although the external CICS interface does not
support the cross-memory access method, it can use the XCF access method
provided by the CICS XCF/MRO facility. See Chapter 15, “Using the EXCI options
table, DFHXCOPT,” on page 169 for information about XCF/MRO.

© Copyright IBM Corp. 1994, 2012 113

A client program that uses the external CICS interface can operate multiple
sessions for different users (either under the same or separate TCBs) all coexisting
in the same MVS address space without knowledge of, or interference from, each
other.

Where a client program attaches another client program, the attached program
runs under its own TCB.

This chapter describes:
v “The EXCI programming interfaces”
v “Resource recovery” on page 118
v “EXCI concepts” on page 12
v “Requirements for the external CICS interface” on page 122

The EXCI programming interfaces
The external CICS interface provides two forms of programming interface: the
EXCI CALL interface and the EXEC CICS interface.

The EXCI CALL interface: This interface consists of six commands that allow you
to:
v Allocate and open sessions to a CICS system from non-CICS programs running

under MVS
v Issue DPL requests on these sessions from the non-CICS programs
v Close and deallocate the sessions on completion of the DPL requests.

The six EXCI commands are:
v Initialize-User
v Allocate_Pipe
v Open_Pipe
v DPL call
v Close_Pipe
v Deallocate_Pipe

The EXEC CICS interface: The external CICS interface provides a single, composite
command EXEC CICS LINK PROGRAM that performs all six commands of the EXCI
CALL interface in one invocation.

This command is similar but not identical to the distributed program link
command of the CICS command-level application programming interface.

API restrictions for server programs
A CICS server program invoked by an external CICS interface request is
restricted to the DPL subset of the CICS application programming interface.
This subset (the DPL subset) of the API commands is the same as for a
CICS-to-CICS server program.

See Distributed Program Link (DPL) in CICS Application Programming for
details of the DPL subset for server programs.

Choosing between the EXEC CICS and the CALL interface
You can use both the CALL interface (all six commands) and the EXEC CICS LINK
command in the same program, to perform separate requests. As a general rule, it
is unlikely that you would want to do this in a production program.

114 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp365.html

“Using EXCI sample application programs” on page 178 illustrates the various
language versions of the CICS-supplied sample client program.

Each form of the external CICS interface has its particular benefits.
v For low-frequency or single DPL requests, you are recommended to use the

EXEC CICS LINK command.
It is easier to code, and therefore less prone to programming errors.
Note that each invocation of an EXEC CICS LINK command causes the external
CICS interface to perform all the functions of the CALL interface, which results
in unnecessary overhead.
Note also that this overhead is greatly increased if you use the EXEC CICS LINK
command to communicate with a CICS server region in a different LPAR. In this
case each invocation of the EXEC CICS LINK command generates a great deal of
XCF activity because of the IRP logon, connect, disconnect and logoff which is
required. You might find that you experience severe degradation of elapsed time
between EXEC CICS LINK commands issued to a CICS server region in a
separate LPAR, compared to the elapsed time of the same commands issued to a
CICS server region in the same LPAR.

v For multiple or frequent DPL requests from the same client program, you are
recommended to use the EXCI CALL interface.
This is more efficient, because you need only perform the Initialize_User and
Allocate_Pipe commands once, at or near the beginning of your program, and
the Deallocate_Pipe once on completion of all DPL activity. In between these
functions, you can open and close the pipe as necessary, and while the pipe is
opened, you can issue as many DPL calls as you want.

Illustrations of the external CICS CALL interface
These four diagrams illustrate the external CICS interface using the EXCI CALL
interface.

Note:

1. In Figure 15, the target CICS region is running with IRC open, and one EXCI
connection with three sessions installed, at the time the client application
program issues an INITIALIZE_USER call.

CICS Server RegionMVS Client Application

External CICS user
environment
established

MRO EXCI CONNECTION
installed with 3
sessions
(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 15. Stage 1: Status after an INITIALIZE_USER call

Chapter 8. Introduction to the external CICS interface 115

2. The client application program address space is initialized with the EXCI user
environment. There is no MRO activity at this stage, and no pipe exists.

Note: In Figure 16, the external CICS interface logs on to MRO, identifying the
target CICS server region.

Note:

1. In Figure 17, the external CICS interface connects to the CICS server region, and
the pipe is now available for use.

2. The remaining two EXCI sessions are free, and can be used by further open
pipe requests from the same, or a different, client application program
(provided the connection is generic).

CICS Server RegionMVS Client Application

Pipe allocated MRO EXCI CONNECTION
installed with 3
sessions
(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 16. Stage 2: Status after the first ALLOCATE_PIPE call

CICS Server RegionMVS Client Application

Pipe opened MRO EXCI CONNECTION
installed with 3
sessions
(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 17. Stage 3: Status after the OPEN_PIPE call

116 CICS TS for z/OS 4.2: External Interfaces Guide

Note: In Figure 18, the external CICS interface passes the DPL request over the
open pipe, with any associated data. The CICS server region returns a response
and data over the open pipe.

Closing pipes: When the client application program closes a pipe, it remains
allocated ready for use by the same user, and the status is as shown in Figure 16
on page 116. At this stage, the MRO session is available for use by another open
pipe request, from the same or from a different client application program
(provided the connection is generic).

Deallocating pipes: When the client application program deallocates a pipe, it logs
off from MRO and frees all the storage associated with the session. This leaves the
status as shown in Figure 15 on page 115.

Illustration of the EXCI EXEC CICS interface
This diagram illustrates the EXEC CICS interface, and how it resolves to the six
EXCI CALLs.

CICS Server RegionMVS Client Application

DPL Request and data

Pipe opened

Response and data

MRO EXCI CONNECTION

installed with 3
sessions
(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 18. Stage 4: Status with one open pipe, processing a DPL call

Chapter 8. Introduction to the external CICS interface 117

Resource recovery
Resource recovery consists of the protocols and program interfaces that allow an
application program to make consistent changes to multiple protected resources.
The external CICS interface supports resource recovery.

A CICS server program that is invoked by an external CICS interface request can
update recoverable resources; the changes are committed when the mirror
transaction in the CICS server region takes a sync point. The client program can
determine when sync pointing should occur. There are two options:
v Resource recovery controlled by the CICS server regions. In this case, changes to

recoverable resources are committed at the completion of each DPL request,
independently of the client program. Also, in addition to the sync point taken
when the server program returns control to CICS (the SYNCONRETURN
option), the server program can take explicit sync points during execution.

v Resource recovery controlled by the EXCI client program with the support of
recoverable resource management services (RRMS). When the client program
requests it, updates made by the server program in successive DPL requests are
committed together.
To support this option, CICS and the external CICS interface both use resource
recovery services (RRS), the z/OS sync point manager1, which is an MVS
component of recoverable resource management services (RRMS). In the context
of RRMS, CICS is a resource manager; the client program can issue requests to

1. RRMS comprises three z/OS components: registration services, context services, and resource recovery services (RRS)

MVS Client Application

EXEC CICS LINK command

The EXEC Interface Stub
(DFHXCSTB)

The stub calls the EXCI
EXEC interface program. EXEC interface program

issues following calls:

INITIALIZE_USER

ALLOCATE_PIPE pipe to CICS server
region is allocated

OPEN_PIPE > pipe opened

DPL > Request and data sent and
response and data received

CLOSE_PIPE pipe closed

DEALLOCATE_PIPE

Figure 19. Illustration of the external CICS interface using the EXEC CICS command

118 CICS TS for z/OS 4.2: External Interfaces Guide

other resource managers, and have resources owned by those resource managers
committed in the same unit-of-recovery (UR).2

These options are controlled as follows:
v By the DPL_opts parameter of the DPL_request.
v By the SYNCONRETURN option, either specified or omitted, on the EXEC CICS

LINK PROGRAM command.

If you specify SYNCONRETURN, a sync point is taken on completion of each DPL
request. If SYNCONRETURN is omitted, a sync point is taken when the client
program requests it using the interfaces described in “Use of sync points in the
client program” on page 122.

Use of RRMS with the external CICS interface
You can use z/OS recoverable resource management services (RRMS) to coordinate
distributed program link (DPL) requests.

To use RRMS to coordinate DPL requests, ensure that the following conditions are
met:
v The EXCI client and the CICS region to which it sends DPL requests run in the

same MVS image. This is an RRMS restriction, and does not apply to DPL
requests that specify SYNCONRETURN.

v The CICS region that receives the DPL requests is started with RRMS=YES
specified as a system initialization parameter (the default is RRMS=NO).

v Resource recovery services (RRS) run in the MVS image where CICS and the
client program execute. See z/OS MVS Programming: Resource Recovery.

The following figure shows how the external CICS interface and CICS use RRMS.
It shows the flow between the MVS batch region that contains the external CICS
interface and the EXCI client program, and the CICS server region that contains
the CICS mirror and a CICS application program. The numbers on the diagram
refer to the principal steps in a unit of recovery (UR), as listed after the figure.

2. A unit of recovery is analogous to a CICS unit of work

Chapter 8. Introduction to the external CICS interface 119

1. If the CICS system initialization parameter RRMS=YES is specified, CICS registers
with RRMS as a resource manager. This registration occurs during CICS
initialization.

2. When the EXCI client program issues a DPL_Request call in 2-phase commit
mode (a call that omits the SYNCONRETURN option), it receives the following
from RRMS:
v A unit-of-recovery identifier (URID)
v A context token
v A pass token

3. The URID and the tokens obtained by EXCI on behalf of the client program are
included on the DPL request that is passed to the CICS server region. If the
DPL request is the first one in the UR, CICS calls RRS to express an interest in
the UR, attaches a new mirror transaction, and validates the tokens. If the
request is valid, the mirror program links to the specified server application
program. The server program completes its work, which is all performed in the
UR. This work can include updating recoverable resources in the local server
region, or daisy chaining to other CICS regions.

4. When the server program completes, it returns the communications area
(COMMAREA) and return codes to the client program.

Note: Steps 3 and 4 can repeated many times for the same UR.
5. When the EXCI client program is ready to commit or back out its changes, the

program invokes RRS to begin the 2-phase commit protocol.
6. RRS acts as coordinator and completes one of the following actions:

v RRS asks the resource managers to prepare to commit all updates in the UR.
Resource managers other than the CICS server region might also express an
interest in the UR. If all vote yes, RRS tells them to go ahead and commit the
changes. If any vote no, RRS tells all the resource managers to back out all
the changes made in the UR.

MVS Batch Region CICS Server Region

Recoverable Resource Management Services
(RRMS)

Syncpoint manager (RRS)

(1)
Registration

Get
Token (2)

DPL_Request + token (3)

Server reply (4)

Syncpoint
request (5) Syncpoint

request (6)

CICS
Mirror

CICS
application
program

MVS

EXCI
Client
Program

Interface
External CICS

Recovery Manager

Recoverable EXCI domain

Figure 20. Conceptual view of EXCI client and CICS server region using RRMS

120 CICS TS for z/OS 4.2: External Interfaces Guide

v RRS tells all the resource managers that express an interest in the UR to back
out all the changes made in the UR.

The UR is now complete and CICS detaches the mirror task. If the EXCI client
sends any new DPL requests after this point, EXCI starts a new UR and CICS
attaches a new mirror transaction.

Each DPL request that specifies the SYNCONRETURN option attaches a new
mirror task in the target CICS region. The first DPL request that does not specify
SYNCONRETURN also attaches a new mirror task, but subsequent requests are
directed to the same mirror task. When a sync point takes place, the mirror task
ends, and the next non-SYNCONRETURN request attaches a new mirror. See
Figure 21. In this figure, an MVS client application issues DPL requests with and
without SYNCONRETURN. The numbers on the figure refer to the principal flow,
as listed after the figure.

1. Client issues a DPL request without the SYNCONRETURN option.
Because no mirror transaction is running, a new mirror (Mirror 1) is attached.

2. The DPL request completes, and because it was issued without the
SYNCONRETURN option, the mirror transaction waits for another request.

3. Client issues DPL request with the SYNCONRETURN option.
A new mirror transaction (Mirror 2) is attached.

4. On completion of the DPL request, resources updated by the mirror transaction
are committed, and the mirror transaction ends.

5. Client issues another DPL request without the SYNCONRETURN option.
Mirror 1 receives and executes the DPL request.

6. The DPL request completes, and once again, the mirror transaction waits for
another request.

7. Client issues DPL request with the SYNCONRETURN option.
A new mirror transaction (Mirror 3) is attached.

8. On completion of the DPL request, resources updated by the mirror transaction
are committed, and the mirror transaction ends.

9. The client program requests a syncpoint. Resources updated by mirror 1 are
committed, and the transaction ends.

MVS Client Application CICS server region

Mirror 1EXEC CICS LINK
(no SYNCONRETURN)

EXEC CICS LINK
SYNCONRETURN

EXEC CICS LINK
(no SYNCONRETURN)

EXEC CICS LINK
SYNCONRETURN

SYNCPOINT

1

2

3

4

5

6

7

8 Mirror 3

Mirror 2

Figure 21. Effect of mixing DPL requests with and without the SYNCONRETURN option

Chapter 8. Introduction to the external CICS interface 121

Use of sync points in the client program
A client program can request that a sync point is taken by using an MVS callable
service to commit or back out changes.

To commit changes instigated by the client program, use one of the following MVS
callable services:

Application_Commit_UR (SRRCMIT)
For a description of Application_Commit_UR, see z/OS MVS Programming:
Callable Services for High-Level Languages.

Commit_UR (ATRCMIT)
For a description of Commit_UR, see z/OS MVS Programming: Resource
Recovery.

To back out changes in the client program, use one of the following MVS callable
services:

Application_Backout_UR (SRRBACK)
For a description of Application_Backout_UR, see z/OS MVS Programming:
Callable Services for High-Level Languages.

Backout_UR (ATRBACK)
For a description of Backout_UR, see z/OS MVS Programming: Resource
Recovery.

If none of these interfaces are used, changes are committed or backed out explicitly
when the client program either ends normally or abends. It is not advisable to use
implicit commit or backout for the following reasons:
v The client program cannot tell whether updates were committed or backed out.

Even if the program ends normally, a resource manager might back out any
changes.

v The runtime environment for high level languages might intercept errors that
would otherwise result in an operating system abend. If such an error is
intercepted and the client program does not take any explicit action, the
program might terminate normally and updates might be committed. Code your
client program to ensure that resources are committed or backed out correctly in
these situations. For example, a PL/I program can include an ON unit that
issues an SRRBACK command when errors are encountered. Similarly, a COBOL
program can use the ON phrase on statements that might encounter errors.

Requirements for the external CICS interface
Client programs running in an MVS address space can communicate only with
CICS server regions running under Version 4 of CICS for MVS/ESA, or a later
release.

Also, the client program can connect to the server CICS region only through the
Version 4 of CICS for MVS/ESA (or later) level of the interregion communication
program, DFHIRP.

For information about DFHIRP, and its requirement to be installed in the MVS
extended link pack area (ELPA), see Installing MRO support, in the CICS
Transaction Server for z/OS Installation Guide.

When you use RRMS to coordinate DPL requests, the server CICS region must be
running CICS TS Release 3 or later.

122 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 9. The EXCI CALL interface

The EXCI CALL interface consists of six commands.

The commands allow you to:
v Allocate and open sessions to a CICS system from non-CICS programs running

under MVS
v Issue distributed program link (DPL) requests on these sessions from the

non-CICS programs
v Close and deallocate sessions on completion of DPL requests.

The six EXCI commands are:
v Initialize_User
v Allocate_Pipe
v Open_Pipe
v DPL_Request
v Close_Pipe
v Deallocate_Pipe

The application program stub, DFHXCSTB: The EXCI commands invoke the
external CICS interface via an application programming stub provided by CICS,
called DFHXCSTB. You must include this stub when you link-edit your non-CICS
program.

The EXCI CALL interface commands
In the description of each command that follows, the syntax box illustrates the
assembler form of the command. The syntax shows VL,MF=(E,(1)) for each
command, indicating the execute form of the CALL macro, with the parameter list
storage area addressed by Register 1.

The commands are also supported by C, COBOL, and PL/I programming
languages, using the CALL conventions appropriate for these languages.

There are examples of these CALLs, in all the supported languages, in the sample
client programs provided by CICS. See “Using EXCI sample application programs”
on page 178 for information about these.

Initialize_User
Initialize the user environment. This includes obtaining authority to use IRC
facilities. The environment is created for the lifetime of the TCB, so the command
needs to be issued only once per user per TCB. Further commands from this user
must be issued under the same TCB.

Syntax
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

user_name),VL,MF=(E,(1))

© Copyright IBM Corp. 1994, 2012 123

Parameters

version_number
A fullword binary input area indicating the version of the external CICS
interface parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See “Return area
and function call EQUATE copybooks” on page 144 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details see “Return area for the EXCI CALL interface”
on page 144.

user_token
A 1-word output area containing a 32-bit token supplied by the CICS external
interface to represent the client program.

The user token corresponds to the user-name parameter. The client program
must pass this token on all subsequent external CICS interface commands
made for the user defined on the user_name parameter.

call_type
A 1-word input area indicating the function of the command. It must be set to
1 in the client program to indicate that this is an Initialize_User command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is INIT_USER. See “Return area and function
call EQUATE copybooks” on page 144 for copybook details.

user_name
An input area holding a name that identifies the user of the external CICS
interface. Generally, this is the client program. If this user is to use a specific
pipe, then the value in user_name must match that of the NETNAME attribute
of the CONNECTION definition for the specific pipe.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Initialize_User call:

Response OK
Command executed successfully (RC 0). Reason code:

0 Normal response

Response WARNING
The command executed successfully, but with an error (RC 4). Reason
codes:

3 VERIFY_BLOCK_FM_ERROR

Initialize_User processing requires storage below 16MB to build the
parameter list for the SSI Verify call, and an error has occurred
during the FREEMAIN for this area.

4 WS_FREEMAIN_ERROR

124 CICS TS for z/OS 4.2: External Interfaces Guide

An attempt to FREEMAIN working storage has resulted in an MVS
FREEMAIN error.

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).
Reason code:

201 NO_CICS_IRC_STARTED

An Initialize_User command has been issued on an MVS image
that has had no IRC activity since the previous IPL, and the
external CICS interface cannot determine the CICS SVC number.

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

401 INVALID_CALL_TYPE

An invalid call-type parameter value is specified on this EXCI
request.

402 INVALID_VERSION_NUMBER

The version_number parameter does not specify a value of 1 or 2.

403 INVALID_USER_NAME

The user_name parameter consists of all blank characters (X'40').

410 DFHMEBM_LOAD_FAILED

During Initialize_User processing, the external CICS interface
attempted to load the main message module in preparation for
issuing external CICS interface messages, and the load of this
module failed.

411 DFHMET4E_LOAD_FAILED

The load of message module, DFHMET4E, has failed. During
Initialize_User processing, the external CICS interface attempted to
load its message table in preparation for issuing messages. The
load of this module failed.

412 DFHXCURM_LOAD_FAILED

During Initialize_User processing, the external CICS interface
attempted to load the user-replaceable module, DFHXCURM. The
load of this module failed.

413 DFHXCTRA_LOAD_FAILED

During Initialize_User processing, the external CICS interface
attempted to load the trap module (DFHXCTRA). The load of this
module has failed.

419 CICS_AFCB_PRESENT

An Initialize_User request has been issued on a TCB that has
already been used by CICS or by CICS batch shared database. The
external CICS interface cannot share a TCB with CICS, ensuring
that a CICS application program cannot issue EXCI requests.

420 DFHXCOPT_LOAD_FAILED

Chapter 9. The EXCI CALL interface 125

During Initialize_User processing, the external CICS interface
attempted to load its options module, DFHXCOPT. The load of this
module failed.

421 RUNNING_UNDER_AN_IRB

The EXCI call is issued under an MVS IRB, which is not permitted.

422 SERVER_ABENDED

While processing a DPL request, the CICS server application
program abended without handling the error.

423 SURROGATE_CHECK_FAILED

A DPL request has been issued specifying a USERID parameter.

424 RRMS_NOT_SUPPORTED

A DPL request omitting the SYNCONRETURN option has been
made on a system that is not running OS/390 Version 2 Release 5
or higher.

425 UOWID_NOT_ALLOWED

A DPL request omitted the SYNCONRETURN option, but specified
a value of UOWID. This combination of parameters is not
permitted on a DPL request.

426 INVALID_TRANSID2

A DPL request has been issued with a TRANSID2 parameter that
consists of all blanks.

427 INVALID_CCSID

A DPL request has been issued with a CCSID parameter that
specifies an invalid value.

428 INVALID_ENDIAN

A DPL request has been issued with a endian parameter that
specifies an invalid value.

429 DFHXCEIX_LOAD_FAILED

During Initialize_User processing, the external CICS interface
attempted to load the module (DFHXCEIX). The load of this
module has failed.

430 DFHXCPRX_LOAD_FAILED

During Initialize_User processing, the external CICS interface
attempted to load the module (DFHXCPRX). The load of this
module has failed.

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:

601 WS_GETMAIN_ERROR

During Initialize_User processing, a GETMAIN for working
storage failed.

602 XCGLOBAL_GETMAIN_ERROR

During Initialize_User processing, a GETMAIN failed for a critical
control block (XCGLOBAL).

126 CICS TS for z/OS 4.2: External Interfaces Guide

603 XCUSER_GETMAIN_ERROR

During Initialize_User processing, a GETMAIN request failed for
the user control block (XCUSER).

605 VERIFY_BLOCK_GM_ERROR

During Initialize_User processing, a GETMAIN failed for an EXCI
internal control block.

606 SSI_VERIFY_FAILED

A VERIFY call to the MVS subsystem interface (SSI) to obtain the
current CICS SVC number failed.

607 CICS_SVC_CALL_FAILURE

During Initialize_User processing, a call to the currently installed
CICS SVC failed.

622 ESTAE_SETUP_FAILURE

In order to protect itself from possible program checks the external
CICS interface establishes an MVS ESTAE. In this case, the MVS
ESTAE macro has failed.

623 ESTAE_INVOKED

A program check is encountered during call processing, and the
ESTAE is invoked.

627 INCORRECT_SVC_LEVEL

The release level of the CICS SVC (DFHCSVC) is not the same (or
higher) than the release level of the external CICS interface.

For more information about response codes, see “EXCI call response code values”
on page 143.

For information about the reason codes, see Chapter 19, “Response and reason
codes returned on EXCI calls,” on page 215.

Allocate_Pipe
Allocate a single session, or pipe, to a CICS region. This command does not
connect the client program to a CICS region; this happens on the Open_Pipe
command.

You can allocate up to 250 pipes in an EXCI address space. The default limit is 100
pipes. However, you can use the CICS system initialization parameter,
LOGONLIM, to change the limit when MVS is IPLed. This limit is set to prevent
EXCI clients from monopolizing MRO resources, which could prevent CICS
systems from using MRO. The limit is applied in both MRO and cross system
MRO (XCF/MRO) environments.

An ALLOCATE_PIPE request results in an MRO LOGON request being issued and
there is a limit on the total number of MRO LOGON requests allowed from all
address spaces. This is particularly critical when using XCF/MRO, where the limit
on the number of members in a XCF group also limits the total number of MRO
LOGONs

Chapter 9. The EXCI CALL interface 127

Syntax
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

pipe_token,CICS applid,allocate_opts),VL,MF=(E,(1))

Parameters

version_number
A fullword binary input area indicating the version of the external CICS
interface parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See Table 18 on
page 145 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details see “Return area for the EXCI CALL interface”
on page 144.

user_token
The 1-word token returned on the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. It must be set to
2 in the client program to indicate that this is an Allocate_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is ALLOCATE_PIPE. See Table 18 on page 145
for copybook details.

pipe_token
A 1-word output area. CICS returns a 32-bit token in this area to represent the
allocated session. This token must be used on any subsequent command that
uses this session.

CICS_applid (or null_ptr)
An 8-byte input area containing the generic applid of the CICS system to
which the allocated session is to be connected.

Although an applid is required to complete the Allocate_Pipe function, this
parameter is optional on the Allocate_Pipe call. You can either specify the
applid on this parameter to the Allocate_Pipe call, or in the user-replaceable
module, DFHXCURM, using the URMAPPL parameter (DFHXCURM is always
invoked during Allocate_Pipe processing). You can also use the URMAPPL
parameter in DFHXCURM to override an applid specified on the Allocate_Pipe
call. See Chapter 14, “The EXCI user-replaceable module,” on page 167 for
information about the URMAPPL parameter.

If you omit the applid from the call, you must ensure that the CALL parameter
list contains a null address for CICS_applid. How you do this depends on the
language you are using for the non-CICS client program. For an example of a
call that omits an optional parameter, see “Example of EXCI CALLs with null
parameters” on page 146.

allocate_opts
A 1-byte input area to represent options specified on this command. The
options specify which type of session is to be used—specific or generic. X'00'
represents a specific session. X'80' represents a generic session.

The equated value for these options in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) are SPECIFIC_PIPE and
GENERIC_PIPE. See Table 18 on page 145 for copybook details.

128 CICS TS for z/OS 4.2: External Interfaces Guide

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Allocate_Pipe call:

Response OK
Command executed successfully (RC 0). Reason code:

0 Normal response

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

401 INVALID_CALL_TYPE

402 INVALID_VERSION_NUMBER

404 INVALID_USER_TOKEN

421 RUNNING_UNDER_AN_IRB

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:

604 XCPIPE_GETMAIN_ERROR

608 IRC_LOGON_FAILURE

622 ESTAE_SETUP_FAILURE

623 ESTAE_INVOKED

628 IRP_LEVEL_CHECK_FAILURE

For information about response codes, see “EXCI call response code values” on
page 143.

For information about the reason codes, see Chapter 19, “Response and reason
codes returned on EXCI calls,” on page 215.

Open_Pipe
Cause IRC to connect an allocated pipe to a receive session.

Open_Pipe causes IRC to connect an allocated pipe to a receive session of the
appropriate connection defined in the CICS region named either on the
Allocate_Pipe command, or in DFHXCURM. The appropriate connection is either:
v The EXCI connection with a NETNAME value equal to the user_name parameter

on the Initialize_User command (that is, you are using a specific connection,
dedicated to this client program)

v The EXCI connection defined as generic.

In an XCF environment, the Open_Pipe command causes the interregion
communication program, DFHIRP, to connect to the LPAR that receives the
request. This request is asynchronous, so although the Open_Pipe command can
receive a good return code, the subsequent DPL_Request call might fail.

Chapter 9. The EXCI CALL interface 129

|
|
|
|

If you shut down CICS without the support of the supplied shutdown-assist
transaction (CESD) or an equivalent, and sessions are left open, CICS might not be
able to shut its IRC facility in an orderly manner. A normal shutdown of CICS
without the support of the shutdown assist transaction waits if any EXCI sessions
are not closed. CICS issues message DFHIR2321 indicating the following
information:
v The netname of the session if it is on a specific connection
v The word GENERIC if the open sessions are on a generic connection.

If you use the supplied shutdown-assist transaction, CESD, sessions left open do
not present a problem to normal shutdown, because CESD issues an immediate
close of IRC. Provided that at least one DPL_Request call has been issued on the
session, message DFHIR2321 also shows the job name, step name, and procedure
name of the client job that is using the session, and the MVS ID of the MVS image
on which the client program is running.

Syntax
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

pipe_token),VL,MF=(E,(1))

Parameters

version_number
A fullword binary input area indicating the version of the external CICS
interface parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See Table 18 on
page 145 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details, see “Return area for the EXCI CALL interface”
on page 144.

user_token
The 1-word token returned on the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. This must be set
to 3 in the client program to indicate that this is an Open_pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is OPEN_PIPE. See Table 18 on page 145 for
copybook details.

pipe_token
A 1-word output area containing the token passed by CICS on the
Allocate_Pipe command. It represents the pipe being opened on this command.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Open_Pipe call:

130 CICS TS for z/OS 4.2: External Interfaces Guide

Response OK
Command executed successfully (RC 0). Reason code:

0 NORMAL

Response WARNING
The command executed successfully, but with an error (RC 4). Reason
codes:

1 PIPE_ALREADY_OPEN

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).
Reason codes:

202 NO_PIPE

203 NO_CICS

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

401 INVALID_CALL_TYPE

402 INVALID_VERSION_NUMBER

404 INVALID_USER_TOKEN

418 INVALID_PIPE_TOKEN

421 RUNNING_UNDER_AN_IRB

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:

609 IRC_CONNECT_FAILURE

621 PIPE_RECOVERY_FAILURE

622 ESTAE_SETUP_FAILURE

623 ESTAE_INVOKED

For information about response codes, see “EXCI call response code values” on
page 143.

For information about the reason codes, see Chapter 19, “Response and reason
codes returned on EXCI calls,” on page 215.

DPL_Request
Issue a distributed program link request across an open pipe connected to the
CICS system on which the server (or target) application program resides.

The command is synchronous, and the TCB waits for a response from CICS. After
a pipe is opened, any number of DPL requests can be issued before the pipe is
closed. To the server program, the link request appears just like a standard EXEC
CICS LINK request from another CICS region, and it is not aware that it is sent
from a non-CICS client program using EXCI.

The syntax of the call is shown in two forms: the parameters that can be used
when version_number is set to VERSION_1, and the parameters that can be used
when version_number is set to VERSION_2.

Chapter 9. The EXCI CALL interface 131

Syntax

VERSION_1
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

pipe_token,pgmname,COMMAREA,COMMAREA_len,data_len,
transid,uowid,userid,dpl_retarea,DPL_opts),
VL,MF=(E,(1))

VERSION_2
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

pipe_token,pgmname,COMMAREA,COMMAREA_len,data_len,
transid,uowid,userid,dpl_retarea,DPL_opts,
transid2,ccsid,endian),
VL,MF=(E,(1))

Parameters

version_number
A fullword binary input area that indicates the version of the external CICS
interface parameter list being used. This can be set to 1 or 2 in the client
program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is either VERSION_1 or
VERSION_2. See “Return area and function call EQUATE copybooks” on page
144 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details, see “Return area for the EXCI CALL interface”
on page 144.

user_token
A 1-word input area that specifies the user token returned to the client
program on the Initialize_User command.

call_type
A 1-word input area that indicates the function of the command. This must be
set to 6 in the client program to indicate that the pipe is now being used for
the DPL_Request call.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is DPL_REQUEST. See “Return area and
function call EQUATE copybooks” on page 144 for copybook details.

pipe_token
A 1-word input area that specifies the token returned by EXCI on the
Allocate_Pipe command. It represents the pipe being used for the DPL_Request
call.

pgmname
The 8-character name of the CICS application program being called as the
server program.

This is either the name as specified on a predefined PROGRAM resource
definition installed in the CICS server region, or as it is known to a
user-written autoinstall program if the program is to be autoinstalled. The
program can be defined in the CICS server region as a local program, or it can
be defined as remote. Programs defined as remote enable daisy-chaining, where
EXCI-CICS DPL calls become EXCI-CICS-CICS DPL calls.

132 CICS TS for z/OS 4.2: External Interfaces Guide

COMMAREA (or null_ptr)
A variable length input area for the communications area (COMMAREA)
between the client and server programs. The length is defined by
COMMAREA_len.

This is the storage area that contains the data to be sent to the CICS
application program. This area is also used to receive the updated
COMMAREA from the CICS application program (the server program).

This parameter is optional. If it is not required, you must ensure that the CALL
parameter list contains a null address for this parameter. How you do this
depends on the language you are using for the non-CICS client program. For
an example of a call that omits an optional parameter, see “Example of EXCI
CALLs with null parameters” on page 146.

COMMAREA_len
A fullword binary input area. This parameter specifies the length of the
COMMAREA. It is also the length of the server program's COMMAREA
(EIBCALEN).

If you specify a COMMAREA, you must also specify this parameter to define
the length.

This value should not exceed 32 500 bytes if the COMMAREA is to be passed
between any two CICS servers (for any combination of product/version/
release). Otherwise, if you are confident that the COMMAREA will not be
passed on a further LINK request, you can use a COMMAREA up to 32K in
length.

If you do not specify a COMMAREA, this parameter is ignored.

data_len
A fullword binary input area. This parameter specifies the length of contiguous
storage, from the start of the COMMAREA, to be sent to the server program.

This parameter restricts the amount of data sent to the server program, and
should be used to optimize performance if, for example, the COMMAREA is
large but the amount of data being passed is small.

On return from the server program, the EXCI data transformer program
ensures that the COMMAREA in the non-CICS client program is the same as
that of the server program. This caters for the following conditions:
v The data returned is more than the data passed in the original

COMMAREA.
v The data returned is less than the data passed in the original COMMAREA.
v There is no data returned because it is unchanged.
v The server is returning null data.

The value of data_len must not be greater than the value of COMMAREA_len.
A value of zero is valid and results in no data being sent to the server
program.

If you do not specify a COMMAREA, this parameter is ignored.

transid (or null_ptr)
A 4-character input area that contains the id of the CICS mirror transaction
under which the server program is to run. This transaction must be defined to
the CICS server region, and its definition must specify:

PROGRAM(DFHMIRS)
The initial program must be the CICS supplied mirror program DFHMIRS.

Chapter 9. The EXCI CALL interface 133

Failure to specify DFHMIRS as the initial program means that a
COMMAREA passed from the client application program is not passed to
the CICS server program. Also, the DPL request fails and the client
application program receives a response of SYSTEM_ERROR and reason
SERVER_PROTOCOL_ERROR.

PROFILE(DFHCICSA)
The DFHCICSA profile specifies the correct value for the INBFMH
parameter, which must be specified as INBFMH(ALL) for a mirror
transaction.

When the CICS server region receives a DPL request, it attaches the mirror
transaction and invokes DFHMIRS. The mirror program then passes control to
the requested server program, passing the COMMAREA supplied by the client
program. The COMMAREA passed to the server program is primed with the
data only, the remainder of the COMMAREA being set to nulls.

The purpose of the transid parameter is to distinguish between different
invocations of the server program. This enables you to run different
invocations of the server program under transactions that specify different
attributes. For example, you can vary the transaction priorities, or the security
requirements.

A transid is optional. By default, the CICS server region uses the
CICS-supplied mirror transaction, CSMI. If you do not want to specify transid,
you must ensure that the CALL parameter list contains a null address for this
parameter. How you do this depends on the language you are using for the
non-CICS client program. For an example of a call that omits an optional
parameter, see “Example of EXCI CALLs with null parameters” on page 146.

If you issue multiple requests in the same MVS unit-of-recovery, the same
transid must be used in all of them.

uowid (or null_ptr)
An input area that contains a unit-of-work identifier, using the APPC
architected format, that is passed on the DPL_Request for correlation purposes.

For DPL requests that are committed when the CICS program returns control
to the MVS application, this parameter is optional.

For DPL requests that are part of an RRMS unit-of-recovery, null_ptr must be
specified. The unit-of-work identifier that is already associated with the RRMS
unit-of-recovery is used, if there is one; if not, CICS (or another RRMS resource
manager) generates a unique unit-of-work identifier and associates it with the
RRMS unit-of-recovery.

If you do not want to specify a uowid parameter , you must ensure that the
CALL parameter list contains a null address for this parameter. How you do
this depends on the language you are using for the non-CICS client program.
For an example of a call that omits an optional parameter, see “Example of
EXCI CALLs with null parameters” on page 146.

The uowid parameter is passed to the CICS server region, which uses it as the
UOWID for the first unit of work executed by the CICS server program. If the
server program issues intermediate sync points before returning to the client
program, CICS uses the supplied uowid for the subsequent units of work, but
with the two-byte sequence number incremented for each new logical unit of
work. If the CICS server program updates remote resources, the client-supplied
UOWID is distributed to the remote systems that own the resources.

134 CICS TS for z/OS 4.2: External Interfaces Guide

The uowid parameter is supplied on the EXCI CALL interface for correlation
purposes only, to allow units of work that originated from a particular client
program to be identified in CICS. The uowid is not provided for recovery
purposes between CICS and the client program.

The uowid can be a maximum of 27 bytes long and has the following format:
v A 1-byte length field that contains the overall length of the UOWID

(excluding this field).
v A 1-byte length field that contains the length of the logical unit name

(excluding this field).
v A logical unit name field of variable length up to a maximum of 17 bytes.

To conform to APPC architecture rules, the LUNAME must be of the form
AAAAAAAA.BBBBBBBB, where AAAAAAAA is optional and:
– AAAAAAAA and BBBBBBBB are 8-byte names separated by a period
– If AAAAAAAA is omitted, the period must also be omitted
– AAAAAAAA and BBBBBBBB must be type-1134 symbol strings (that is,

character strings consisting of one or more EBCDIC uppercase letters A -
Z and 0 - 9, the first character of which must be an uppercase letter).

v The clock value; the middle 6 bytes of an 8-byte store clock (STCK) value.
v A 2-byte sequence number.

If you omit a unit-of-work identifier (by specifying a null pointer), and the
DPL request is not part of an RRMS unit-of-recovery, the external CICS
interface generates one for you, consisting of the following:
v A 1-byte length field set to X'1A'.
v A 1-byte LU length field set to X'11'.
v A 17-byte LU name consisting of:

– An 8-byte eyecatcher set to DFHEXCIU.
– A 1-byte field that contains a period (.)
– A 4-byte field that contains the MVS system identifier (SYSID), in

characters, under which the client is running.
– A 4-byte field that contains the address space id (ASID) in which the MVS

client program is running. The field contains the four character EBCDIC
representation of the 2-byte hex address space id.

v The clock value; the middle 6 bytes of an 8-byte store clock (STCK) value
v A 2-byte sequence number set to X'0001'.

userid (or null_ptr)
An 8-character input area that contains the RACF userid for user security
checking in the CICS region. The external CICS interface passes this userid to
the CICS server region for user resource and command security checking in the
server application program.

A userid is required only if the MRO connection specifies the
ATTACHSEC(IDENTIFY) attribute. If the connection specifies
ATTACHSEC(LOCAL), the CICS server region applies link security checking.
See Intercommunication security in the RACF Security Guide for information
about link security on MRO connections.

See also Chapter 17, “EXCI security,” on page 187 for information about
external CICS interface security considerations.

This parameter is optional. However, if you do not specify a userid, the
external CICS interface passes the security userid under which the client

Chapter 9. The EXCI CALL interface 135

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/dfht5_part3.html

program is running. For example, if the client program is running as an MVS
batch job, the external CICS interface obtains and passes the userid specified
on the USER parameter of the JOB statement.

If you specify a userid and SURROGCHK=YES is specified in the EXCI options
table DFHXCOPT, the userid under which the EXCI job is running is subject to
a surrogate user check. This check is performed by the external CICS interface
to ensure that the client job userid is authorized to use the userid specified on
the DPL call. For more information about surrogate user security checking, see
Chapter 17, “EXCI security,” on page 187.

If you want to let userid default, you must ensure that the CALL parameter list
contains a null address for this parameter. How you do this depends on the
language you are using for the non-CICS client program. For an example of a
call that omits an optional parameter, see “Example of EXCI CALLs with null
parameters” on page 146.

If you issue multiple requests in the same MVS unit-of-recovery, the same
userid must be used in all of them. If the unit-of-recovery also includes EXEC
CICS calls, you should allow the userid on all DPL_requests to default to the
security userid under which the client program is running.

dpl_retarea
A 12-byte output area into which the DPL_Request processor places responses
to the DPL request. Generally, these responses are from CICS, but in some
cases the error detection occurs in the external CICS interface, which returns
exception conditions that are the equivalent of those returned by an EXEC
CICS LINK command.

This field is only meaningful in the following circumstances:
v The response field of the EXCI return-area has a zero value
v The EXCI return-area indicates that the server program has abended

(response=USER_ERROR and reason=SERVER_ABENDED).

The 12 bytes form three fields, providing the following information:

Field 1 (fullword value)
This field is a fullword that contains a RESP value from the DPL_Request
call. See “Error codes” on page 151 for the RESP values that can be
returned on a DPL_Request call.

If the DPL_Request call reaches CICS, this field contains the EIBRESP
value, otherwise it contains an equivalent response set by the external
CICS interface. If this field is set by the external CICS interface, RESP is
further qualified by a RESP2 value in the second field.

A zero value is the normal response, which equates to EXEC_NORMAL in
the return codes copybooks.

Field 2 (fullword value)
This field is a fullword that can contain a RESP2 value from the link
request, further qualifying the RESP value in field 1.

If the DPL_Request call reaches CICS, the RESP2 field generally is null
(CICS does not return RESP2 values across MRO links). However, if the
RESP field indicates SYSIDERR (value 53), this field provides a reason
code. See“Dpl_retarea return codes” on page 145 for more information.

If the RESP field is set by the external CICS interface, it is further qualified
by a RESP2 value in this second field. For example, if the data_len

136 CICS TS for z/OS 4.2: External Interfaces Guide

parameter specifies a value greater than the COMMAREA_len parameter,
the external CICS interface returns the RESP value 22 (which equates to
EXEC_LENGERR in the return codes copybooks), and a RESP2 value of 13.

See the LINK conditions in LINK in CICS Application Programming for
full details of the possible RESP and RESP2 values.

Note: The data transformer program makes special use of the RESP2 field.
If any error occurs in the transformer, the error is returned in RESP2.

Field 3 (fullword value)
The third field, a 4-character field, contains the following information:
v The abend code if the server program abended
v Four blanks if the server program did not abend.

If a server program abends, it is backed out to its last syncpoint, which can be
the start of the task, or an intermediate syncpoint. The server program can
issue intermediate syncpoints because SYNCONRETURN is forced.

DPL_opts (or null_ptr)
A 1-byte input area that indicates options to be used on the DPL_Request call.

If you omit this parameter, it defaults to the value X'00' (see below). If you
want to omit DPL_opts and let it default, ensure that the CALL parameter list
contains a null address for this parameter. How you do this depends on the
language you are using for the non-CICS program. For an example of a call
that omits an optional parameter, see “Example of EXCI CALLs with null
parameters” on page 146.

Currently, the DPL_opts parameter applies only to resource recovery, using the
following values:

X'00' Indicates that you specified NOSYNCONRETURN, because you want
the client batch program to control resource recovery, using 2-phase
commit protocols supported by MVS RRS. With this option, the CICS
server region does not perform a syncpoint when the server program
returns control to CICS. Furthermore, the CICS server application
program must not take any explicit syncpoints, otherwise it is abended
by CICS. For more information, see “Resource recovery” on page 118.

X'80' indicates that SYNCONRETURN is required in the CICS server region.

SYNCONRETURN specifies that the server region is to take a
syncpoint on successful completion of the server program,
independently of the client program. This option does not prevent a
server program from taking its own explicit syncpoints.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is SYNCONRETURN. See
“Return area and function call EQUATE copybooks” on page 144 for copybook
details.

transid2 (or null_ptr) VERSION_2 only
A 4-character input area that contains a CICS transaction id.

The server program runs under a CICS supplied mirror transaction, CSMI or
CPMI. However the transaction id made available to the server program
through the EIBTRNID field in the Exec Interface Block is the one specified by
the transid2 parameter. The transid2 parameter is ignored if the transid
parameter is specified. The following table gives an example of different
combinations of transid and transid2:

Chapter 9. The EXCI CALL interface 137

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_link.html

Table 16. Use of transid2

transid transid2 program executes under EIBTRNID seen by
program

UTRN omitted UTRN UTRN

UTRN UEIB UTRN UTRN

omitted omitted CSMI CSMI

omitted UEIB CSMI UEIB

The transid2 parameter is useful for server programs that access DB2, because
EIBTRNID is used to determine which DB2ENTRY definition to use.
Previously, EIBTRNID could only be set by using transid, which then required
you to define a mirror transaction to CICS. Using transid2, EIBTRNID is set,
but the mirror program executes under the CICS provided definition CSMI.

ccsid (or null_ptr)VERSION_2 only
A fullword binary input area that indicates the Coded Character Set Identifier
(CCSID) of the character data contained in the COMMAREA. The ccsid
parameter must be specified if character data has to be converted when the
COMMAREA is passed to, or returned from, the server program. The
parameter can take the following values:

-1 (X'FFFFFFFF')
Indicates that conversion of character data is required and that the
source CCSID is defined in the conversion template installed in the
server.

1 <= ccsid <= 65535
Indicates that conversion of character data is required and that the
value specified overrides the source CCSID defined in the conversion
template installed in the server.

endian (or null_ptr) VERSION_2 only
A fullword binary input area that indicates the format, big endian or little
endian, for binary data contained in the COMMAREA. Big endian indicates
that the leftmost byte contains the most significant digits, as used, for example,
in System 390 architecture. Little endian indicates that the rightmost byte
contains the most significant digits, as used, for example, in Intel architecture.
The endian parameter should be specified if binary data has to be converted
when the COMMAREA is passed to, or returned from, the server program. If
the ccsid parameter indicates that conversion is required, but endian is not
specified (defaults to null), conversion of binary data depends on what is
specified in the DFHCNV conversion template installed in the server. The
parameter can take the following values:

16909060 (X'01020304')
Binary data is held in big endian format.

67305985 (X'04030201')
Binary data is held in little endian format.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

138 CICS TS for z/OS 4.2: External Interfaces Guide

The following is a summary of the response and reason codes that the external
CICS interface can return on the DPL call:

Response OK
Command executed successfully (RC 0). Reason code:

0 NORMAL

Response WARNING
The command executed successfully, but with an error (RC 4). Reason
codes:

6 IRP_IOAREA_FM_FAILURE

7 SERVER_TERMINATED

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).
Reason codes:

203 NO_CICS

204 WRONG_MVS_FOR_RRMS

205 RRMS_NOT_AVAILABLE

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

401 INVALID_CALL_TYPE

402 INVALID_VERSION_NUMBER

404 INVALID_USER_TOKEN

406 PIPE_NOT_OPEN

407 INVALID_USERID

408 INVALID_UOWID

409 INVALID_TRANSID

414 IRP_ABORT_RECEIVED

415 INVALID_CONNECTION_DEFN

416 INVALID_CICS_RELEASE

417 PIPE_MUST_CLOSE

418 INVALID_PIPE_TOKEN

421 RUNNING_UNDER_AN_IRB

422 SERVER_ABENDED

423 SURROGATE_CHECK_FAILED

425 UOWID_NOT_ALLOWED

426 INVALID_TRANSID2

427 INVALID_CCSID

428 INVALID_ENDIAN

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:

Chapter 9. The EXCI CALL interface 139

612 TRANSFORM_1_ERROR

613 TRANSFORM_4_ERROR

614 IRP_NULL_DATA_RECEIVED

615 IRP_NEGATIVE_RESPONSE

616 IRP_SWITCH_PULL_FAILURE

617 IRP_IOAREA_GM_FAILURE

619 IRP_BAD_IOAREA

620 IRP_PROTOCOL_ERROR

622 ESTAE_SETUP_FAILURE

623 ESTAE_INVOKED

624 SERVER_TIMEDOUT

625 STIMER_SETUP_FAILURE

626 STIMER_CANCEL_FAILURE

629 SERVER_PROTOCOL_ERROR

630 RRMS_ERROR

631 RRMS_SEVERE_ERROR

632 XCGUR_GETMAIN_ERROR

For information about response codes, see “EXCI call response code values” on
page 143.

For information about the reason codes, see Chapter 19, “Response and reason
codes returned on EXCI calls,” on page 215.

Close_PIPE
Disconnect an open pipe from CICS. The pipe remains in an allocated state, and its
tokens remain valid for use by the same user. To reuse a closed pipe, the client
program must first reissue an Open_Pipe command using the pipe token returned
on the Allocate_Pipe command for the pipe.

Pipes should not be left open when not in use because this prevents CICS from
shutting down its IRC facility in an orderly manner. Therefore, the Close_Pipe
command should be issued as soon as possible after all DPL_Request calls have
completed.

Syntax
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

pipe_token),VL,MF=(E,(1))

Parameters

version_number
A fullword binary input area indicating the version of the external CICS
interface parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See
“Deallocate_Pipe” on page 142 for copybook details.

140 CICS TS for z/OS 4.2: External Interfaces Guide

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details, see “Return area for the EXCI CALL interface”
on page 144.

user_token
The 1-word input area specifying the token, returned to the client program by
EXCI on the Initialize_User command, that represents the user of the pipe
being closed.

call_type
A 1-word input area indicating the function of the command. This must be set
to 4 in the client program to indicate that this is a Close_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is CLOSE_PIPE. See “Return area and
function call EQUATE copybooks” on page 144 for copybook details.

pipe_token
A 1-word input area specifying the token, returned to the client program by
EXCI on the original Allocate_Pipe command, that represents the pipe being
closed.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Close_Pipe call:

Response OK
Command executed successfully (RC 0). Reason code:

0 NORMAL

Response WARNING
The command executed successfully, but with an error (RC 4). Reason
codes:

2 PIPE_ALREADY_CLOSED

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

401 INVALID_CALL_TYPE

402 INVALID_VERSION_NUMBER

404 INVALID_USER_TOKEN

418 INVALID_PIPE_TOKEN

421 RUNNING_UNDER_AN_IRB

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:

610 IRC_DISCONNECT_FAILURE

622 ESTAE_SETUP_FAILURE

Chapter 9. The EXCI CALL interface 141

623 ESTAE_INVOKED

For information about response codes, see “EXCI call response code values” on
page 143.

For information about the reason codes, see Chapter 19, “Response and reason
codes returned on EXCI calls,” on page 215.

Deallocate_Pipe
Deallocate a pipe from CICS. On completion of this command, the pipe can no
longer be used, and its associated tokens are invalid. This command should be
issued for pipes that are no longer required. This command frees storage
associated with the pipe.

Syntax
CALL DFHXCIS,(version_number,return_area,user_token,call_type,

pipe_token),VL,MF=(E,(1))

Parameters

version_number
A fullword binary input area indicating the version of the external CICS
interface parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See “Return area
and function call EQUATE copybooks” on page 144 for copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details, see “Return area for the EXCI CALL interface”
on page 144.

user_token
A 1-word input area containing the token returned on the Initialize_User
command.

call_type
A 1-word input area indicating the function of the command. This must be set
to 5 in the client program to indicate that this is a Deallocate_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is DEALLOCATE_PIPE. See “Return area and
function call EQUATE copybooks” on page 144 for copybook details.

pipe_token
A 1-word input area containing the token passed back on the original
Allocate_Pipe command, that represents the pipe now being deallocated.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Deallocate_Pipe call:

142 CICS TS for z/OS 4.2: External Interfaces Guide

Response OK
Command executed successfully (RC 0). Reason code:

0 NORMAL

Response WARNING
The command succeeded successfully, but with an error (RC 4). Reason
codes:

5 XCPIPE_FREEMAIN_ERROR

6 IRP_IOAREA_FM_FAILURE

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

401 INVALID_CALL_TYPE

402 INVALID_VERSION_NUMBER

404 INVALID_USER_TOKEN

405 PIPE_NOT_CLOSED

418 INVALID_PIPE_TOKEN

421 RUNNING_UNDER_AN_IRB

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:

611 IRC_LOGOFF_FAILURE

622 ESTAE_SETUP_FAILURE

623 ESTAE_INVOKED

For information about response codes, see “EXCI call response code values.”

For information about the reason codes, see Chapter 19, “Response and reason
codes returned on EXCI calls,” on page 215.

EXCI call response code values
This table shows the values that can be returned in the response field. All values
are in decimal.

Table 17. EXCI response codes (returned in response field of return_area)
Code Meaning Explanation

0 OK For all EXCI CALL commands other than the DPL_request,
the call was successful. If an OK response is received for a
DPL_request, you must also check dpl_retarea to ensure CICS
did not return a condition code. If the EIBRESP field of
Dpl_retarea is zero, the DPL call was successful.

4 WARNING The external CICS interface detected an error, but this did not
stop the CALL command completing successfully. The reason
code field describes the error detected.

Chapter 9. The EXCI CALL interface 143

Table 17. EXCI response codes (returned in response field of return_area) (continued)
Code Meaning Explanation

8 RETRYABLE The EXCI CALL command failed. This class of failure relates
to errors in the setup of the system environment, and not
errors in the external CICS interface or client program. The
reason code documents the specific error in the environment
setup.

The external CICS interface command can be reissued
without changing the client program once the environment
error has been corrected. The environmental errors concerned
are ones that do not require an MVS re-IPL. Each reason code
value for a RETRYABLE response documents whether the
CALL can be reissued directly, or whether the pipe being
used has to be closed and reopened first.

12 USER_ERROR The EXCI CALL command failed. This class of error means
there is an error either in the client program, or in the CICS
server program, or in the CICS server region. An example of
an error in the CICS server system would be a failed security
check, or an abend of the CICS server program, in which case
the abend code is set in the abend code field of dpl_retarea.
Each reason code value for a response of USER_ERROR
explains whether the command can be reissued directly, or
whether the pipe being used has to be closed and reopened
first.

16 SYSTEM_ ERROR The EXCI CALL command failed. This class of error means
that the external CICS interface has detected an error. The
reason code value identifies the specific error. If the error can
be corrected, then the command can be reissued. Each reason
code value for a SYSTEM_ERROR response explains whether
the command can be reissued directly, or whether the pipe
being used has to be closed and reopened first.

Return area for the EXCI CALL interface
This is the format of the 5-word return area for the EXCI CALL interface.
1. 1–word response field.
2. 1–word reason field.
3. Two 1–word subreason fields—subreason field-1 and subreason field-2.
4. 1–word CICS message pointer field. This is zero if there is no message present.

If a message is present, this field contains the address of the storage area
containing the message, which is formatted as follows:
v A 2-byte LL field. LL is the length of the message plus the length of the

LLBB field.
v A 2-byte BB field, set to binary zero.
v A variable length field containing the text of the message.

Return area and function call EQUATE copybooks
CICS provides four language-specific copybooks that map the storage areas for the
return_area and dpl_retarea parameters of the EXCI CALL commands. The
copybooks also provide EQUATE statements for each type of EXCI CALL.

These copybooks, and the libraries they are supplied in for the supported
languages, are shown in Table 18 on page 145.

144 CICS TS for z/OS 4.2: External Interfaces Guide

Table 18. Supplied copybooks of return areas and equated names

Copybook name Language Library

DFHXCPLD Assembler CICSTS42.CICS.SDFHMAC

DFHXCPLH C CICSTS42.CICS.SDFHC370

DFHXCPLO COBOL CICSTS42.CICS.SDFHCOB

DFHXCPLL PL/I CICSTS42.CICS.SDFHPL1

Return codes
All the possible return codes are contained in a CICS-supplied copybook, which
you must include in the program source of your external, non-CICS program.

The names of the copybooks for the supported languages, and the libraries that
they are supplied in, are shown in Table 19.

Table 19. Supplied copybooks of RESPONSE and REASON codes

Copybook name Language Library

DFHXCRCD Assembler CICSTS42.CICS.SDFHMAC

DFHXCRCH C CICSTS42.CICS.SDFHC370

DFHXCRCO COBOL CICSTS42.CICS.SDFHCOB

DFHXCRCL PL/I CICSTS42.CICS.SDFHPL1

z/OS provides copybooks for use with the interfaces described in “Use of sync
points in the client program” on page 122. These are described in z/OS MVS
Programming: Resource Recovery and z/OS MVS Programming: Callable Services for
High-Level Languages.

Dpl_retarea return codes
These are the same as for CICS-to-CICS EXEC CICS DPL commands but with the
following additions for the EXCI call interface.

Table 20. Exceptional conditions. RESP and RESP2 values returned to dpl_retarea
Condition RESP2 Meaning
LENGERR 22 COMMAREA_LEN_TOO_BIG
LENGERR 23 COMMAREA_BUT_NO_COMMAREA_LEN

SYSIDERR also can be returned on an EXCI DPL_Request, if the DPL_Request
specifies a program defined in the CICS server region as a remote program, and
the link between the server and the remote CICS region is not open. In this
situation, SYSIDERR is returned in the first word of the DPL_Retarea (code 53).
The reason code qualifying SYSIDERR is placed in the second word of this area
(the equivalent of a RESP2 value).For SYSIDERR, the information stored in this
field is derived from bytes 1 and 2 of the CICS EIBRCODE field. For example, if a
remote link is not available, the EIBRCODE value stored in bytes 2 and 3 of the
DPL_Retarea RESP2 field is X'0800'. For a list of the SYSIDERR reason codes that
can be returned in the RESP2 field, see the SYSIDERR section of the notes on
EIBRCODE in Attention identifier constants, DFHAID, in the CICS Application
Programming Reference manual.

TERMERR also may be returned on an EXCI DPL request if the DPL request was
to a program defined as remote, and an unrecoverable error occurs during

Chapter 9. The EXCI CALL interface 145

conversation with the mirror on the remote CICS system. For example, suppose
client program BATCH1 issues an EXCI DPL request to CICSA for program
PROG1, which is defined as remote, and the request is function-shipped to CICSB
where the program resides. If the session between CICSA and CICSB fails, or
CICSB itself fails while executing the program PROG1, then TERMERR is returned
to CICSA, and in turn to BATCH1.

No unique EXCI_DPL_RESP2 values are returned for TERMERR, PGMIDERR,
NOTAUTH, and ROLLBACK.

Example of EXCI CALLs with null parameters
If you omit an optional parameter, such as userid on a DPL_Request, you must
ensure that the parameter list is built with a null address for the missing
parameter.

The example that follows illustrates how to issue an EXCI DPL_Request with the
userid and uowid parameters omitted in a COBOL program.

DPL CALL without userid and uowid (COBOL): In this example, the DPL
parameters used on the call are defined in the WORKING-STORAGE SECTION, as
follows:

DPL parameter COBOL variable Field definition
version_number 01 VERSION-1 PIC S9(8) COMP VALUE 1.
return_area 01 EXCI-RETURN-CODE. (structure)
user_token 01 USER-TOKEN PIC S9(8) COMP VALUE ZERO.
call_type 03 DPL-REQUEST PIC S9(8) COMP VALUE 6.
pipe_token 01 PIPE-TOKEN PIC S9(8) COMP VALUE ZERO.

pgmname 01 TARGET-PROGRAM PIC X(8) VALUE "DFHœAXCS".
commarea 01 COMMAREA. (structure)
commarea_len 01 COMM-LENGTH PIC S9(8) COMP VALUE 98.
data_len 01 DATA-LENGTH PIC S9(8) COMP VALUE 18.
transid 01 TARGET-TRANSID PIC X(4) VALUE "EXCI".

dpl_retarea 01 EXCI-DPL-RETAREA. (structure)
dpl_opts 01 SYNCONRETURN PIC X VALUE X'80'.

The variable used for the null address is defined in the LINKAGE SECTION, as
follows:

LINKAGE SECTION.
01 NULL-PTR USAGE IS POINTER.

Using the data names specified in the WORKING-STORAGE SECTION as
described above, and the NULL-PTR name as described in the LINKAGE
SECTION, the following invocation of the DPL function omits the uowid and the
userid parameters, and replaces them in the parameter list with the NULL-PTR
variable:

DPL-SECTION.
*

SET ADDRESS OF NULL-PTR TO NULLS.
*

CALL ’DFHXCIS’ USING VERSION-1 EXCI-RETURN-CODE USER-TOKEN
DPL-REQUEST PIPE-TOKEN TARGET-PROGRAM

146 CICS TS for z/OS 4.2: External Interfaces Guide

COMMAREA COMM-LENGTH DATA-LENGTH
TARGET-TRANSID NULL-PTR NULL-PTR
EXCI-DPL-RETAREA SYNCONRETURN.

This example is taken from the CICS-supplied sample external CICS interface
program, DFH0CXCC, which is supplied in CICSTS42.CICS.SDFHSAMP. For an
example of how to omit the same parameters from the DPL call in the other
supported languages, see the following sample programs:

DFH$AXCC
The assembler sample

DFH$PXCC
The PL/I sample

DFH$DXCC
The C sample.

Chapter 9. The EXCI CALL interface 147

148 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 10. The EXCI EXEC CICS interface

The external CICS interface provides this as a single, composite command, to
invoke all the calls of the EXCI CALL interface. Each time you issue an EXEC CICS
LINK PROGRAM command in a client application program, the external CICS
interface invokes on your behalf each of the six EXCI calls.

This chapter describes:
v “Using EXEC CICS LINK command”
v “Retries on an EXEC CICS LINK command” on page 153
v “Translation required for EXEC CICS LINK command” on page 155

Using EXEC CICS LINK command
Link from an MVS client program to the specified server program in a server CICS
region.

Format

LINK

�� LINK PROGRAM (name) RETCODE (data-area)
SYNCONRETURN

�

�
COMMAREA (data-area) LENGTH (data-value)

�

�
APPLID (name) TRANSID (name)

�

�
DATALENGTH (data-value)

��

Error conditions:LENGERR, LINKERR, NOTAUTH, PGMIDERR, RESUNAVAIL,
ROLLEDBACK, SYSIDERR, TERMERR, WARNING

Comments

With the exception of the APPLID and RETCODE parameters, the external CICS
interface parameters for an EXEC CICS LINK command are the same as for a
CICS-CICS DPL command.

This information describes only those parameters that you can use with the
external CICS interface. For programming information about the EXEC CICS LINK
PROGRAM command, see LINK in CICS Application Programming .

Note that the LENGTH and DATALENGTH parameters specify halfword binary
values, unlike the corresponding COMMAREA_len and data_len parameters of the
EXCI CALL interface, which specify fullword values.

An external CICS interface EXEC CICS LINK command always uses a generic
connection.

© Copyright IBM Corp. 1994, 2012 149

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_link.html

Parameters

The parameters that you can use on the external CICS interface form of the LINK
command, are as follows:

APPLID(name)
Specifies the generic APPLID of the target CICS server region.

Although an applid is required for an external CICS interface command, this
parameter is optional on the LINK command itself because you can also
specify it in the user-replaceable module, DFHXCURM. If you omit the generic
APPLID from the LINK command, you must ensure it is specified by the
user-replaceable module, DFHXCURM, on the URMAPPL parameter. You can
also use the URMAPPL parameter in DFHXCURM to override an applid
specified on the LINK command. See Chapter 14, “The EXCI user-replaceable
module,” on page 167 for information about the URMAPPL parameter.

COMMAREA(data-area)
Specifies a communication area that is to be made available to the invoked
program. In this option, a pointer to the data area is passed.

See the CICS Application Programming Guide for more information about passing
data to CICS application programs.

DATALENGTH(data-value)
Specifies a halfword binary value that is the length of a contiguous area of
storage from the start of the COMMAREA. If the amount of data in a
COMMAREA is small, but the COMMAREA itself is large, specify
DATALENGTH to improve performance.

LENGTH(data-value)
Specifies a halfword binary value that is the length in bytes of the
COMMAREA.

This value should not exceed 32 500 bytes if the COMMAREA is to be passed
between any two CICS servers (for any combination of product/version/
release), otherwise, if you are confident that the COMMAREA will not be
passed on a further LINK request, you can use a COMMAREA up to 32K in
length.

PROGRAM(name)
Specifies the program name (1-8 characters) of the CICS server application
program to which control is to be passed unconditionally. The specified name
must either have been defined as a program to CICS, or the CICS server region
must be capable of autoinstalling a definition for the named program.

Note the use of quotes:
EXEC CICS LINK PROGRAM(’PROGX’)

PROGX is in quotes because it is the program name.
EXEC CICS LINK PROGRAM(DAREA)

DAREA is not in quotes because it is the name of a data area that contains the
8-character program name.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return
code information. This area is formatted into five 1–word fields as follows:

RESP The primary response code indicating whether the external CICS
interface LINK command caused an exception condition during its
execution.

150 CICS TS for z/OS 4.2: External Interfaces Guide

RESP2
The secondary response code that further qualifies, where necessary,
some of the conditions raised in the RESP parameter.

ABCODE
Contains a valid CICS abend code if the server program abended in
the server region.

MSGLEN
Indicates the length of the message (if any) issued by the CICS server
region during the execution of the server program. Note that the
length is the actual length of the message text only, and does not
include this 1—word length field.

MSGPTR
This is the address of the message text returned by the CICS server
region.

Note: MSGLEN and MSGPTR are only valid on a LINKERR condition, with
the RESP2 value 414.

SYNCONRETURN
Specifies that the CICS server region, named on the APPLID parameter, is to
take a syncpoint on successful completion of the server program.

TRANSID(name)
Specifies the name of the mirror transaction that the remote region is to attach,
and under which it is to run the server program. If you omit the TRANSID
option, the CICS server region attaches CSMI.

Note: The TRANSID option specified on the LINK command overrides any
TRANSID option specified on the program resource definition installed in the
CICS server region.

While you can specify your own name for the mirror transaction initiated by
DPL requests, the transaction must be defined in the server region, and the
transaction definition must specify the mirror program, DFHMIRS. Defining
your own transaction to invoke the mirror program gives you the freedom to
specify appropriate values for some other options on the transaction resource
definition.

See also the important rules about specifying transid with a DPL_Request on
transid, parameter of DPL_Request command.

Error codes

Most of the exception conditions that are returned on the external CICS interface
LINK command are the same as for the CICS-to-CICS distributed program link
command. Those that are the same, and their corresponding numeric values are as
follows:

LENGERR
22

PGMIDERR
27

SYSIDERR
53

Chapter 10. The EXCI EXEC CICS interface 151

NOTAUTH
70

TERMERR
81

ROLLEDBACK
82

RESUNAVAIL
121

These exception condition codes are returned in the RESP field.

RESP and RESP2: References to the RESP and RESP2 fields in this section are to
the first two fields of the RETCODE parameter.

The exception conditions that are specific to the external CICS interface are as
follows:
v The RESP2 values on the error condition LENGERR is specific to the external

CICS interface.
v The exception conditions WARNING and LINKERR are specific to the external

CICS interface.

The WARNING and LINKERR exceptions are a result of responses to individual
EXCI calls issued by the external CICS interface in response to an EXEC CICS
LINK command. These WARNING and LINKERR exceptions correspond to EXCI
call responses as follows:

WARNING (RESP value 4)
This is returned when the EXCI module handling the EXEC CICS LINK
request receives a USER_ERROR or SYSTEM_ERROR response to a Close_Pipe
or Deallocate_Pipe request issued on behalf of an EXEC CICS LINK command.
The RESP value is set to WARNING because the DPL request to CICS
completed successfully, but an error occurred in subsequent processing.

The RESP2 field is set to the EXCI reason code, which gives more information
about the error.

LINKERR (RESP value 88)
This is returned when the EXCI module handling the EXEC CICS LINK
request receives a RETRYABLE, USER_ERROR, or SYSTEM_ERROR response
to an EXCI call issued on behalf of the EXEC CICS LINK command. The DPL
request has failed. The RESP2 field is set to the EXCI reason code, which gives
more information about the error.

See Chapter 19, “Response and reason codes returned on EXCI calls,” on page 215
for descriptions of EXCI reason codes.

Note: The external CICS interface ignores any WARNING conditions that occur in
response to EXCI calls it issues on behalf of an EXEC CICS LINK command. It
treats the WARNING on an EXCI call as a good response and continues normally.
If no other errors occur, the EXEC CICS command completes with a zero response
in the EXEC_RESP field.

152 CICS TS for z/OS 4.2: External Interfaces Guide

Retries on an EXEC CICS LINK command
If the external CICS interface receives a RETRYABLE response on an EXCI call that
it makes on behalf of an EXEC CICS LINK command, it automatically retries the
EXEC CICS LINK command up to five times, providing more serious errors do not
occur.

If the RETRYABLE response is still received after the fifth retry, the RESP field is
set to LINKERR, and the reason returned on the EXCI CALL request that causes
the exception is returned in the RESP2 field.

The external CICS interface retries the EXEC CICS LINK command by first closing
and deallocating the pipe, then reissuing the six EXCI CALL commands. During
Allocate_Pipe processing, the EXCI CALL interface calls the user-replaceable
module, DFHXCURM, to give you the opportunity to change the APPLID of the
CICS system to which the request has been sent. See Chapter 14, “The EXCI
user-replaceable module,” on page 167 for details of DFHXCURM.

Table 21 lists all the exception conditions and RESP2 values that are specific to the
EXEC CICS LINK command for the external CICS interface.

Table 21. Exceptional conditions. RESP and RESP2 values returned from the EXEC API.
Condition
(RESP)

RESP2 Meaning

LENGERR (22) 22 COMMAREA length greater than 32763 bytes specified
23 COMMAREA specified but no LENGTH parameter specified

WARNING (4) 401 Invalid call_type parameter value specified on Close_Pipe or
Deallocate_Pipe call

402 Invalid version_number parameter specified on Close_Pipe or
Deallocate_Pipe call

404 Invalid user_token specified on Close_Pipe or Deallocate_Pipe call
405 A Deallocate_Pipe call has been issued against a pipe that is not

yet closed
418 An invalid pipe token has been issued on a Close_Pipe or

Deallocate_Pipe call
421 A Close_Pipe or Deallocate_Pipe command has been issued

under an IRB
610 There has been a CICS IRP logoff failure on a Deallocate_Pipe

call
611 There has been a CICS IRC disconnect failure on a Close_Pipe

call
622 There has been an MVS ESTAE setup failure on a Close_Pipe or

Deallocate_Pipe call
623 A program check on a Close_Pipe or Deallocate_Pipe call has

caused the ESTAE to be invoked
LINKERR (88) 201 Command has been issued on an MVS image which has had no

IRC activity since the previous IPL
202 There are no available sessions
203 CICS has not yet been brought up, or (2) has not yet opened

IRC, or (3) no generic connection is installed, or (4) no specific
connection is installed with the required netname.

204 An EXEC CICS LINK command without the SYNCONRETURN
option has been issued specifying a CICS system on a different
MVS image.

205 An EXEC CICS LINK command without the SYNCONRETURN
option has been issued when RRS is not available

401 Invalid parameter

Chapter 10. The EXCI EXEC CICS interface 153

Table 21. Exceptional conditions (continued). RESP and RESP2 values returned from the
EXEC API.
Condition
(RESP)

RESP2 Meaning

402 Invalid version number
403 User name is all blanks
404 Invalid address in user token
405 Command has been issued against a pipe that is not closed
406 Command has been issued against a pipe that is not open
407 Userid of all blanks has been passed
408 Error in UOWID parameter

LINKERR (88) 409 Transid consisting of all blanks or zero has been passed
410 Load of message module, DFHMEBMX, failed
411 Load of message module, DFHMET4E, failed
412 Load of DFHXCURM failed
413 Load of DFHXCTRA failed
414 If run as a CICS-to-CICS linked-to program, this server program

would have resulted in an error with an appropriate message
sent to the terminal. Running the program as an EXCI server
program returns the message addressed by the MSGPTR field of
the RETCODE area.

415 Target connection is an MRO connection, not an EXCI connection
416 Command has been issued against a CICS region running under

a release of CICS earlier than CICS for MVS/ESA 4.1
417 Command has been issued against a pipe in the MUST CLOSE

state. Further EXCI EXEC CICS LINK commands will have
unpredictable results and are, therefore, not permitted

418 Pipe_token does not address an XCPIPE control block, or there is
a mismatch between user_token and pipe_token

419 CICS runs, or did run, under the TCB that this command is
attempting to use. This is not permitted and the command fails

420 Load of DFHXCOPT failed
421 The command has been issued under an MVS IRB, which is not

permitted
422 The server has abended
423 Surrogate user check failed
424 An EXEC CICS LINK command without the SYNCONRETURN

option has been issued on a system that does not support RRMS
425

A DPL request omitted the SYNCONRETURN option, but
specified a value of UOWID.

601 A GETMAIN of working storage failed. This error leads to user
abend 408

602 A GETMAIN failed. This error leads to user abend 403.
603 A GETMAIN failed. This error leads to user abend 410
604 A GETMAIN failed
605 A GETMAIN for the VERIFY block failed. This error leads to

user abend 409.
606 An SSI verify request (to obtain CICS SVC instruction) failed.

This error leads to user abend 405.
607 An SVC call failed. This error leads to user abend 406.
608 Logon to IRP failed
609 Connect to IRP failed
610 Disconnect from IRP failed
611 Logoff from IRP failed
612 Invalid data input to transformer_1
613 Invalid data input to transformer_4

154 CICS TS for z/OS 4.2: External Interfaces Guide

Table 21. Exceptional conditions (continued). RESP and RESP2 values returned from the
EXEC API.
Condition
(RESP)

RESP2 Meaning

LINKERR (88) 614 CICS has responded but has not sent any data
615 CICS cannot satisfy the request
616 IRP_SWITCH_PULL request (to read data sent from CICS into a

larger input/output area) has failed
617 A GETMAIN for a larger input/output area failed
619 IRP has had a problem with the input/output area passed from

the client program
620 IRP has disconnected from EXCI
621 A DISCONNECT command is issued in an error situation

following an IRP CONNECT. The DISCONNECT has failed,
indicating a serious error.

622 XCPRH ESTAE setup command failed This error leads to user
abend 402.

623 XCPRH ESTAE invoked due to program check during the
processing of this command. ESTAE attempts backout and takes
a SYSMDUMP. Further requests are permitted although the pipe
is now in a MUST CLOSE state.

624 The DPL request has been passed to CICS but the time specified
in DFHXCOPT has been exceeded. The request is canceled.

625 An MVS STIMERM macro call failed
626 An MVS STIMERM CANCEL request failed
627 The CICS SVC is at the incorrect level. This error leads to user

abend 407.
628 DFHIRP is at the incorrect level.
629 A response to a DPL request has been returned by CICS but the

external CICS interface does not understand the response.
630 An unexpected return code was received from RRMS when

processing an EXEC CICS LINK command without the
SYNCONRETURN option .

631 An unexpected error was encountered when processing an EXEC
CICS LINK command without the SYNCONRETURN option.

632 A GETMAIN for DFHXCGUR's working storage failed while
processing an EXEC CICS LINK command without the
SYNCONRETURN option .

903 AN XCEIP ESTAE setup command failed
904 The server program abended with the abend code in the

ABCODE field of the RETCODE area
905 An XCEIP ESTAE invoked

See “Return codes” on page 145 for details of the various copybooks that contain
full details of all response and reason codes, including equated values.

Note: All numeric response and reason code values are shown in decimal.

Translation required for EXEC CICS LINK command
Application programs that use the EXEC CICS LINK form of the external CICS
interface command must translate their programs before assembly or compilation.
You do this using the version of the CICS translator that is appropriate for the
language of your client program, specifying the translator option EXCI.

Chapter 10. The EXCI EXEC CICS interface 155

The translator option EXCI is mutually exclusive with the CICS and DLI options.
For more information about translating programs that contain EXEC CICS
commands, see Translation and compilation in CICS Application Programming.

For information about compiling and link-editing external CICS interface client
programs, see Chapter 16, “Compiling and link-editing EXCI client programs,” on
page 175.

156 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_transl_intro.html

Chapter 11. Setting up EXCI for static routing

You can statically route requests to CICS programs from applications that use the
EXCI.

Before you begin

Before you begin, verify that the MVS parameter Maxmember is set to a high value.
This parameter controls how many connections can be made to the DFHIRP00
resource.

Procedure
1. Add RDO group EXCIXXXX to the grouplist of the CICS region. If EXCIXXXX

is not available, make a copy from the supplied DFH$EXCI RDO group. This
group contains all connections required for EXCI functions and can support up
to 100 connections for batch requests.

2. Add the RDO group for the application to the grouplist of the CICS region.
3. Assemble DFHXCOPT into the SDFHEXCI load library. Ensure that

DFHXCOPT has SURROGATE=YES.
4. Assemble and compile your application programs. If your application program

is written in Assembler, use the linkage editor parameters AMODE(31) and
RMODE(ANY). Link the program into your application load library.

5. Configure the batch JCL to run your application program.
a. Edit the JCL to specify to which CICS region the batch program will send

the EXCI request:
//step0010 EXEC PGM=program,PARM=’applid,userid’

applid is the CICS region and userid is a RACF user ID.
b. Ensure your load library is concatenated as follows:

//STELIB DD Disp=shr,Dsn=SYS5C.CICn.CICS670.SDFHEXCI
//DD Disp=shr,Dsn=Your.application.loadlib

6. Run the batch program and check that the results are as expected.

© Copyright IBM Corp. 1994, 2012 157

158 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 12. Setting up EXCI for dynamic routing

You can dynamically route requests to CICS programs from applications that use
the EXCI using CICSPlex SM.

About this task

Procedure
1. Specify the following system initialization parameters in the CICS region:

v DSRTPGM=EYU9XLOP
v DTRPGM=EYU9XLOP

2. Update your RDO group as follows:
a. Add an RDO entry for the EXCI server program, DFHMIRS. You can use

another transaction instead of EXCI if required, but it must point to
program DFHMIRS and have a profile of DFHCICSA. Model it after the
EXCI transaction in group DFH$EXCI. This transaction will point to
DFHMIRS program.

b. Add the RDO group to the terminal-owning region (TOR) LIST.

Ensure that the TOR region has program autoinstall disabled.
3. Log into CICSPlex SM and define the transaction for the routing region into

these CPSM groups: TXNGRP, WLMDEF, WLMGRP WLMSPEC.
4. For each application-owning region (AOR), create the RDO group in the same

way as the sample definition DFH$EXCI. This group must contain only the
connections, sessions, and application programs, or equivalent transactions. If
you used a different transaction instead of EXCI, you must specify it in this
group.

Results

When an application issues a distributed program link, CICSPlex SM checks if the
incoming transaction is under its control. When it finds that EXCI or its equivalent
is valid in its transaction group, CICSPlex SM routes the transaction to one of the
candidate AORs for processing.

An alternative to this approach is to define an RDO definition for the program or
transaction with DYNAMIC=Yes. CICSPlex SM routes the request to the selected
region.

© Copyright IBM Corp. 1994, 2012 159

160 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 13. Defining connections to CICS

Connections between an EXCI client program and a CICS region require
connection definitions in the CICS region. You define these using the
CONNECTION and the SESSIONS resource definition facilities provided by CICS.

The following options are provided specifically for the external CICS interface:
v CONNTYPE on the CONNECTION resource definition
v EXCI on the PROTOCOL attribute of the CONNECTION and SESSIONS

resource definitions.

This chapter describes:
v “CONNECTION resource definition for EXCI”
v “SESSIONS resource definitions for EXCI connections” on page 162
v “Inquiring on the state of EXCI connections” on page 165

CONNECTION resource definition for EXCI
The EXCI option is provided on the PROTOCOL attribute of the CONNECTION
resource definition to indicate that the connection is for use by an MVS program
using the external CICS interface.

The CONNTYPE attribute is provided on the CONNECTION resource definition.
For EXCI connections, this indicates whether the connection is generic or specific.
It is not to be used for any protocol other than the external CICS interface.

The following parameters are relevant to EXCI:

CONNTYPE({SPECIFIC|GENERIC})
For external CICS interface connections, indicates the nature of the connection.

SPECIFIC
The connection is for communication from a non-CICS client program to
the CICS region, and is specific. A specific connection is an MRO link with
one or more sessions dedicated to a single user in a client program.

Note: A user is a program that has issued an Initialize_User request (or for
which an Initialize_User request has been issued), with a unique name per
TCB. For example:
v A simple client program running under MVS can be a single user of the

external CICS interface.
v A client program running under MVS can open several pipes and issue

external CICS interface calls over them sequentially, on behalf of
different vendor packages. In this case, from the viewpoint of the client
program, each of the packages is a user, identified by a unique user
name. Thus a single client program can operate on behalf of multiple
users.

v A program running under MVS can attach several TCBs, under each of
which a vendor package issues external CICS interface calls on its own
behalf. Each package is a client program in its own right, and runs
under its own TCB. Each is also a user, with a unique user name.

For a specific connection, NETNAME is mandatory.

© Copyright IBM Corp. 1994, 2012 161

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/connection/dfha4_overview.html

GENERIC
The connection is for communication from a non-CICS client program to
the CICS system, and is generic. A generic connection is an MRO link with
a number of sessions to be shared by multiple EXCI users. For a generic
connection you cannot specify the NETNAME attribute.

Note: You must install only one generic EXCI connection in a CICS region.

NETNAME
For an external CICS interface connection, NETNAME corresponds to the
name of the user of a specific pipe, as specified on the user_name parameter of
an INITIALISE_USER call.

For an external CICS interface specific pipe, you must specify a NETNAME.

For external CICS interface generic pipes, you must leave NETNAME blank.

PROTOCOL({APPC|LU61|EXCI|blank})
The type of protocol that is to be used for the link.

blank
For MRO between CICS regions. You must leave the PROTOCOL blank for
MRO, and on the SESSIONS definition you must specify LU6.1 as the
PROTOCOL.

APPC (LUTYPE6.2 protocol)
Advanced program-to-program communication, or APPC protocol. This is
the default value for ACCESSMETHOD(VTAM). Specify this for CICS-CICS
ISC.

Note: VTAM is now the z/OS Communications Server.

LU61
LUTYPE6.1 protocol. Specify this for CICS-CICS ISC or CICS-IMS ISC, but
not for MRO.

EXCI
The external CICS interface. Specify this to indicate that this connection is
for use by a non-CICS client program using the external CICS interface.

If you specify PROTOCOL(EXCI), you must also specify
ACCESSMETHOD(IRC). EXCI is implemented in MRO using the CICS
interregion communication program, DFHIRP, and cannot use MRO links
that use MVS cross-memory services (XM). EXCI can use also XCF MRO
links, which also work through DFHIRP.

SESSIONS resource definitions for EXCI connections
You indicate on the PROTOCOL attribute of the SESSIONS resource definition
whether the sessions allocated on the MRO connection are for use by the external
CICS interface.

For full details of the SESSIONS resource definition, see SESSIONS resourcesin the
CICS Resource Definition Guide. The following parameters are relevant to EXCI:

PROTOCOL({APPC|LU61|EXCI})
Indicates the type of protocol that is to be used for an intercommunication link
(ISC or MRO).

162 CICS TS for z/OS 4.2: External Interfaces Guide

APPC (LUTYPE6.2)
Advanced program-to-program communication (APPC) protocol. Specify
this for CICS-CICS ISC.

LU61
LUTYPE6.1 protocol. Specify this for CICS-CICS ISC, for CICS-IMS, or for
MRO.

EXCI
The external CICS interface. Specify this to indicate that the sessions are for
use by a non-CICS client program using the external CICS interface. If you
specify EXCI, you must leave SENDCOUNT blank.

RECEIVECOUNT({blank|number})
The number of MRO, LUTYPE6.1, or EXCI sessions that usually receive before
sending.

For MRO, receive sessions can only receive before sending.

blank
These sessions can send only; there are no receive sessions.

number
Specifies the number of receive sessions on connections that specify blank,
LU61, or EXCI on the protocol parameter of the CONNECTION definition.
CICS uses the number to generate the last two or three characters of the
session names (see RECEIVEPFX for details).

If you are using the default receive prefix (<), or your own 1-character
prefix, specify a number in the range 1 through 999.

If you specify a 2-character prefix, the number is restricted to the range 1
through 99.

Except for external CICS interface (EXCI) connections, the
RECEIVECOUNT in this system should equal SENDCOUNT in the other
system.

RECEIVEPFX(<|prefix)
Specifies a 1- or 2-character prefix that CICS is to use as the first 1 or 2
characters of the receive session names (the names of the terminal control table
terminal entries (TCTTEs) for the sessions).

Prefixes must not cause a conflict with an existing connection or terminal
name.

< (MRO and EXCI sessions)
For MRO sessions, if you do not specify your own receive prefix, CICS
enforces the default prefix—the less-than symbol (<), which is used in
conjunction with the receive count to generate receive session names.

CICS creates the last three characters of the session names from the
alphanumeric characters A through Z, and 1 through 9. These 3-character
identifiers begin with the letters AAA, and continue in ascending sequence
until the number of session entries reaches the limit set by the
RECEIVECOUNT value. Note that receive session names are generated
after the send sessions, and they follow in the same sequence.

For example, if the last session name generated for the send sessions is
<AAJ, using the default prefix (<) CICS generates the receive session
names as <AAK, <AAL, <AAM, and so on. (This method of generation of
session identifiers is the same as for APPC sessions, except for the initial
prefix symbol.)

Chapter 13. Defining connections to CICS 163

Note: If you specify your own prefix, CICS generates the session names as
in earlier releases, which is the same as for LUTYPE6.1 sessions.

prefix (LUTYPE6.1 sessions)
If the sessions are on LUTYPE6.1 ISC connections, you must specify a 1- or
2-character prefix. Do not use the default < symbol for LUTYPE6.1
sessions.

For LUTYPE6.1 sessions (and MRO if you specify your own 1- or
2-character prefix) CICS generates session names by appending a number
to the prefix, either in the range 1 through 99, or 1 through 999. The
number begins with 1 and is incremented by 1 until the specified
RECEIVECOUNT is reached.

SENDCOUNT(blank|number)
The number of MRO or LUTYPE6.1 sessions that usually send before receiving.

For MRO, send sessions must send before they can receive.

blank
These sessions can receive only; there are no send sessions.

You must leave this field blank when the sessions are on an external CICS
interface (EXCI) connection.

number
Specifies the number of send sessions on connections that specify blank or
LU61 on the protocol parameter of the CONNECTION definition. CICS
uses the number to generate the last two or three characters of the session
names (see SENDPFX for details).

If you are using the default send prefix (>), or your own 1-character prefix,
specify a number in the range 1 through 999.

If you specify a 2-character prefix, the number is restricted to the range 1
through 99.

Except for external CICS interface (EXCI) connections the SENDCOUNT in
the sending system should equal RECEIVECOUNT in the receiving system.

SENDPFX(>|prefix)
Specifies a 1- or 2-character prefix that CICS is to use as the first 1 or 2
characters of the send session names (the names of the terminal control table
terminal entries (TCTTEs) for the sessions).

Prefixes must not cause a conflict with an existing connection or terminal
name.

> (MRO sessions)
For MRO sessions, if you do not specify your own send prefix, CICS
enforces the default prefix—the greater-than symbol (>), which is used in
conjunction with the send count to generate send session names.

CICS creates the last three characters of the session names from the
alphanumeric characters A through Z, and 1 through 9. These 3-character
identifiers begin with the letters AAA, and continue in ascending sequence
until the number of session entries reaches the limit set by the
SENDCOUNT value.

For example, using the default prefix (>) CICS generates session names as
>AAA, >AAB, >AAC, and so on. (This method of generation of session
identifiers is the same as for APPC sessions, except for the initial symbol.)

164 CICS TS for z/OS 4.2: External Interfaces Guide

Note: If you specify your own prefix, CICS generates the session names as
in earlier releases, which is the same as for LUTYPE6.1 sessions.

prefix (for LUTYPE6.1 sessions)
If the sessions are on LUTYPE6.1 ISC connections, you must specify a 1- or
2-character prefix. Do not use the default > symbol for LUTYPE6.1
sessions.

For LUTYPE6.1 sessions (and MRO if you specify your own 1- or
2-character prefix) CICS generates session names by appending a number
to the prefix, either in the range 1 through 99, or 1 through 999. The
number begins with 1 and is incremented by 1 until the specified
SENDCOUNT is reached.

USERID(userid)
The preset user identifier to be used for link security checking.

If you do not specify a preset userid for link security, CICS uses the userid
passed from the remote user as the userid for link security. For an external
CICS interface link, this is the client userid.

Inquiring on the state of EXCI connections
If you have access, through a CICS terminal, to the CICS server region, you can
inquire about batch jobs that are running a client application program, and which
are using the external CICS interface to link to a server program in CICS.

About this task

To obtain this information about batch jobs linked to CICS through MRO, you use
the CEMT INQUIRE EXCI command. This command enables you to identify the
names of external CICS interface batch jobs currently connected to CICS through
the interregion communication (IRC) facility.

CICS returns job identifications in the form:
jobname.stepname.procname - mvsid

Either stepname, or procname, or both may not be present, indicated by the periods
(.) being adjacent to one another.

The mvsid identifies the MVS system on which the job is running. If XCF/MRO is
in use, the job can reside on a different MVS image from that on which CICS is
running.

Information about jobs using the external CICS interface is available only when the
job has issued at least one DPL request. A non-zero task number indicates that a
DPL request is currently active. A zero task number indicates an external CICS
interface session is still open (connected) for that job, although no DPL request is
currently active.

See CEMT - master terminal, in the CICS Supplied Transactions manual for more
information about the CEMT command.

Chapter 13. Defining connections to CICS 165

166 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 14. The EXCI user-replaceable module

This section contains Product-sensitive Programming Interface information.

The external CICS interface provides a user-replaceable module, DFHXCURM. The
load module is supplied in CICSTS42.CICS.SDFHEXCI, and the source in
CICSTS42.CICS.SDFHSAMP. You can find information about assembling and
link-editing user-replaceable programs in the CICS Customization Guide.

DFHXCURM is invoked by the external CICS interface in the non-CICS region
during the processing of Allocate_Pipe commands, and after the occurrence of any
retryable error. The retryable responses are:
v The target CICS region is not available
v There are no pipes available on the target CICS region
v There has been no IRC activity since the MVS IPL.

To retry after a retryable error, issue the EXCI call again.

As supplied, DFHXCURM is effectively a dummy program because of a branch
instruction that bypasses the sample logic and returns control to the external CICS
interface caller. To use the sample logic, remove the branch instruction and
assemble and link-edit the module. Customizing DFHXCURM allows you to do
the following:
v When invoked during Allocate_Pipe processing, you can change the specified

CICS APPLID, in order to route the request to another CICS system.
v When invoked after a retryable error you can store information regarding CICS

availability. You can then use this information on the next invocation of
DFHXCURM for Allocate_Pipe processing, so that you can decide to which CICS
system to route the request.

DFHXCURM is called using standard MVS register conventions, with register 1
containing the address of the parameter list, and register 14 the return address of
the caller. The parameters addressed by register 1 are mapped in the
EXCI_URM_PARMS DSECT, which is contained within the DFHXCPLD copybook.
The parameters passed to DFHXCURM are as follows:

URMINV
The address of a fullword that contains the reason for the invocation of
DFHXCURM, defined by the following equates:
URM_ALLOCATE EQU 1 This invocation is for an Allocate_Pipe
URM_NO_CICS EQU 2 The target CICS region is not available
URM_NO_PIPE EQU 3 There are no pipes available
URM_NO_CICS_IRC EQU 4 There has been no IRC activity since the MVS IPL

URMCICS
The address of an 8-byte area that contains the generic APPLID of the target
CICS system, as specified on the CICS_applid parameter of the Allocate_Pipe
command, or on the APPLID parameter of the EXEC CICS LINK command.

When specified by one of these commands, you can change the APPLID to that
of a different target CICS region.

If the CICS_applid parameter is omitted from the Allocate_Pipe call, or APPLID
is omitted from the EXEC CICS LINK command, the field addressed by this

© Copyright IBM Corp. 1994, 2012 167

parameter contains 8 blanks. In this case, you must specify an APPLID in
DFHXCURM before returning control to the caller.

URMAPPL
The address of an 8-byte area that contains the client program's user name as
specified on the my_name parameter of the Initialize_User command. Note that
if DFHXCURM is invoked for an EXEC CICS LINK command, this name is
always set to DFHXCEIP.

URMPROG
The address of an 8-byte area that contains the name of the target program (if
available). This name is available only if DFHXCURM is invoked for an EXEC
CICS LINK command. For an external CICS interface Allocate_Pipe command,
the program name is not known until the DPL call is issued.

URMOPTS
The address of a 1-byte area that contains the allocate options, which can be
X'00' or X'80', as specified on the allocate_opts parameter. This address is valid
for an Allocate_Pipe request only.

URMANCH
The address of a 4-byte area that is provided for use by DFHXCURM only. A
typical use for this is to store a global anchor address of an area used to save
information across a number of invocations of DFHXCURM. For example, you
can GETMAIN the necessary storage and save the address in the 4-byte area
addressed by this parameter. The initial value of the 4-byte area is set to zero.

There is one URMANCH for each TCB in the address space using EXCI.

168 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 15. Using the EXCI options table, DFHXCOPT

The EXCI options table, generated by the DFHXCOPT macro, enables you to
specify a number of parameters that are required by the external CICS interface.

The format of the DFHXCOPT options table has changed since it was first
introduced. In CICS TS for z/OS, Version 3.2 (and, by APAR, also in CICS TS 2.1,
CICS TS 2.2, and CICS TS 3.1) the table now includes a version number, which is
intended to allow more flexibility for future extensions. You need to be aware of
this change if, for example, you plan to migrate a customized DFHXCOPT table
from an earlier release of CICS to CICS TS for z/OS, Version 3.2.

To distinguish between the old and newer formats, the new-format table is
link-edited with an alias called “DFHXCOPE”. The following sequence is used to
load the options table:
1. CICS tries to load the DFHXCOPT table using its alias name of DFHXCOPE. If

it finds a load module named DFHXCOPE, and successfully loads it, CICS
assumes that the table is in the new format.

2. If CICS does not find a load module named DFHXCOPE (or finds it but fails to
load it), it tries to load the table using its “base” name of DFHXCOPT. In this
case, CICS assumes that the table is in the older format.

CICS provides a default DFHXCOPT table. The source code of the default table,
which you can tailor to your own requirements, is supplied in the
CICSTS42.CICS.SDFHSAMP library. The load module of the default DFHXCOPT
table, with its alias DFHXCOPE, is in the CICSTS42.CICS.SDFHEXCI library.

If you create your own, customized, DFHXCOPT table, ensure that you link-edit
it using the DFHXCOPE alias. (Using the standard DFHAUPLE procedure,
described below, ensures that this happens.) If you reassemble and link-edit your
table without the alias, CICS will load the default table (found by means of its
DFHXCOPE alias), rather than your customized table.

You must assemble and link-edit your customized DFHXCOPT table into a suitable
library in the STEPLIB concatenation of the job that runs the MVS client program.
You can use your own version of the CICS DFHAUPLE procedure to do this. The
DFHAUPLE procedure is supplied in CICSTS42.CICS.SDFHINST.

Unlike the tables you specify for CICS regions, the DFHXCOPT table cannot be
suffixed.

Table 22 shows the format of the DFHXCOPT macro and its parameters.

Table 22. The DFHXCOPT macro parameters

DFHXCO TYPE={CSECT|DSECT}
[,ABENDBKOUT={NO|YES}]
[,CICSSVC={0|number}]
[,CONFDATA={SHOW|HIDETC}]
[,DURETRY={30|number-of-seconds}]
[,GTF={OFF|ON}]
[,MSGCASE={MIXED|UPPER}]
[,SURROGCHK={YES|NO}]

© Copyright IBM Corp. 1994, 2012 169

#
#
#

#
#
#

#
#
#

Table 22. The DFHXCOPT macro parameters (continued)

[,TIMEOUT={0|number}]
[,TRACE={OFF|1|2}]
[,TRACESZE={16|number-of-kilobytes}]
[,TRAP={OFF|ON}]
[,XCFGROUP={DFHIR000|name}]

You must terminate your parameters with the following END
statement.

END DFHXCOPT

TYPE={CSECT|DSECT}
Indicates the type of table to be generated.

CSECT
A regular control section that is normally used.

DSECT
A dummy control section.

ABENDBKOUT={NO|YES}
Specifies whether a task that abends within the CICS server is to trigger an
automatic rollback of the global unit of work. A global unit of work exists
when an EXCI client program is controlling resource recovery through MVS
RRS (that is, SYNCONRETURN is not specified on the DPL request). In this
case you may well want the global unit of work to be marked for rollback if
the CICS server program abends.

Note: ABENDBKOUT has no effect when SYNCONRETURN is specified on
the DPL request.

NO The global unit of work is not marked for rollback.

YES
When processing the abend of the server program, the CICS mirror
program marks the global unit of work for backout.

In both cases the EXCI client program receives a return code of 422,
SERVER_ABENDED, on the EXCI DPL request.

CICSSVC={0|number}
Specifies the CICS type 3 SVC number being used for MRO communication.

The external CICS interface must use the same SVC number that is in use by
the CICS MRO regions that reside in the MVS image in which the client
program is running.

If you do not specify a specific CICS SVC number, the external CICS interface
determines the SVC in use for MRO by means of an MVS VERIFY command.

0 Specify zero to indicate that the external CICS interface is to obtain the
CICS SVC number from MVS. This is the default.

You should only specify 0 when you are sure that at least one CICS region
has logged on to DFHIRP during the life of the MVS IPL.

number
Specify the CICS SVC number, in the range 200—255, that is in use for

170 CICS TS for z/OS 4.2: External Interfaces Guide

CICS interregion communications. This must be the SVC number that is
installed in the MVS image in which the client program is running (the
local MVS).

If no MRO CICS regions have ever logged on to DFHIRP in the local MVS
during the life of the IPL, you must specify the SVC number. If you allow
this parameter to default, and the external CICS interface requests the SVC
from MVS, the request will fail if no CICS region has logged on to
DFHIRP.

This parameter is required in those MVS images that do not run any CICS
regions, and the client program is issuing DPL requests to a server CICS
region that resides in another MVS. In these circumstances, the client
program logs on to the local DFHIRP using the locally defined SVC, and
communicates with the remote CICS region using XCF/MRO.

Note: All CICS regions using MRO within the same MVS image must use the
highest level of both DFHIRP and the CICS SVC, DFHCSVC. If your MRO
CICSplex consists of CICS regions at different release levels, the DFHIRP and
DFHCSVC installed in the LPA must be from highest release level of CICS
within the CICSplex.

MVS client programs using the external CICS interface can communicate only
with server regions running under CICS for MVS/ESA 4.1 or later.

CONFDATA={SHOW|HIDETC}
Code this parameter to indicate whether the external CICS interface is to
suppress (hide) user data that might otherwise appear in EXCI trace entries
output to GTF or in EXCI dumps. This option applies to the tracing of the
COMMAREA flowing between the EXCI client program and the CICS server
program.

SHOW
Data suppression is not in effect. User data is traced.

HIDETC
This specifies that you want EXCI to ‘hide' user COMMAREA data from
trace entries. Instead of the COMMAREA data, the trace entry contains a
character string stating that the data has been suppressed.

DURETRY={30|number-of-seconds|0}
Specifies the total time, in seconds, that the external CICS interface is to
continue trying to obtain an MVS system dump using the SDUMP macro.

DURETRY allows you to control whether, and for how long, the external CICS
interface is to reissue the SDUMP if another address space in the same MVS
system is already taking an SDUMP when the external CICS interface issues an
SDUMP request.

In the event of an SDUMP failure, the external CICS interface reacts as follows:
v If MVS is already taking an SDUMP for another address space, and the

DURETRY parameter is nonzero, the external CICS interface issues an MVS
STIMERM macro to wait for five seconds, before retrying the SDUMP macro.
The external CICS interface issues a message to say that it will retry the
SDUMP every five seconds until the DURETRY time limit.

v If the SDUMP fails for any other reason such as:
– There are no SYS1.DUMP data sets available, or
– There are I/O errors preventing completion of the dump, or
– The DURETRY limit expires while retrying SDUMP

Chapter 15. Using the EXCI options table, DFHXCOPT 171

the external CICS interface issues a message to inform you that the SDUMP
has failed, giving the reason why.

30 30 seconds allows the external CICS interface to retry up to six times (once
every five seconds).

number-of-seconds
Code the total number of seconds (up to 32767 seconds) during which you
want the external CICS interface to continue retrying the SDUMP macro.
The external CICS interface retries the SDUMP, once every five seconds,
until successful or until retries have been made over a period equal to or
greater than the DURETRY value.

0 Code a zero value if you do not want CICS to retry the SDUMP.

GTF={OFF|ON}
Specifies whether all trace entries normally written to the external CICS
interface trace table are also to be written to an MVS generalized trace facility
(GTF) data set (if GTF tracing is active).

OFF
Code this if trace entries are not to be written to GTF.

ON Code this if trace entries are to be written to GTF.

MSGCASE={MIXED|UPPER}
Specifies whether the DFHEXxxxx messages are to be issued in mixed or
uppercase.

MIXED
Code this if messages are to be issued in mixed case.

UPPER
Code this if messages are to be issued in uppercase.

SURROGCHK={YES|NO}
Specifies whether the external CICS interface is to perform surrogate user
checks against the client job user id (the user ID under which the EXCI job is
running).

YES
The external CICS interface is to perform a surrogate user check to verify
that the user ID under which the EXCI client job is running is authorized
as a surrogate for the user ID specified on a DPL call. The check is made
only when the client user ID is different from the user ID on the DPL call.

The client user ID must be authorized to the appropriate profile in the
SURROGAT general resource class. You do this by giving the client user ID
READ authority to a profile named userid.DFHEXCI in the SURROGAT
general resource class, where userid is the user ID specified on the DPL
call.

See “Surrogate user checking” on page 189 for an example of how to
authorize the batch region user ID as a surrogate user for a DPL user ID.

NO Surrogate user checks are not to be performed.

TIMEOUT={0|number}
Specifies the time interval, in hundredths of a second, during which the
external CICS interface waits for a DPL command to complete.

0 Specifies that you do not want any time limit applied, and that the external
CICS interface is to wait indefinitely for a DPL command to complete.

172 CICS TS for z/OS 4.2: External Interfaces Guide

number
Specifies the time interval, in hundredths of a second, that the external
CICS interface is to wait for a DPL command to complete. The number
represents hundredths of a second, from 1 up to a maximum of
2 147 483 647. For example:

6000 Represents a timeout value of one minute

30000 Represents a timeout value of five minutes

60000 Represents a timeout value of ten minutes.

TRACE={OFF|1|2}
Specifies whether you want internal tracing for the external CICS interface, and
at what level.

OFF
Internal tracing for the external CICS interface is not required. However,
even with normal tracing switched off, exception trace entries are always
written to the external CICS interface trace table in the CICS region.

1 Exception and level-1 trace entries are written to the external CICS
interface trace table.

2 Exception, level-1, and level-2 trace entries are written to the external CICS
interface trace table.

TRACESZE={16|number-of-kilobytes}
Specifies the size in kilobytes of the trace table that is used by the external
CICS interface. This trace table is allocated in 31-bit storage (above the line) in
the CICS region. .

16 16KB is the default size of the trace table, and also the minimum size.

number-of-kilobytes
The number of kilobytes of storage to be allocated for the trace table, in the
range 16 KB through 1 048 576 KB. Subpool 1 is used for the trace table
storage, which exists for the duration of the job step TCB. The table is
page-aligned and occupies a whole number of pages. If the value specified
is not a multiple of the page size (4 KB), it is rounded up to the next
multiple of 4 KB.

TRAP={OFF|ON}
Specifies whether the service trap module, DFHXCTRA, is to be used.
DFHXCTRA is supplied as a user-replaceable module, in which IBM service
personnel can add code to trap errors.

OFF
Code this if you do not want to use DFHXCTRA.

ON Code this if you require DFHXCTRA.

XCFGROUP={DFHIR000|name}
Specifies the name of the cross-system coupling facility (XCF) group to be
joined by this client program.

Note: XCF groups allow CICS regions in different MVS images within the
same sysplex to communicate with each other across multi-region operation
(MRO) connections. For introductory information about XCF/MRO, and
instructions on how to set up XCF groups, see Cross-system multiregion
operation (XCF/MRO) in the CICS Intercommunication Guide.

Each client program can join a maximum of one XCF group.

Chapter 15. Using the EXCI options table, DFHXCOPT 173

DFHIR000
The default XCF group name.

name
The group name must be eight characters long, padded on the right with
blanks if necessary. The valid characters are A-Z 0-9 and the national
characters $ # and @. To avoid using the names IBM uses for its XCF
groups, do not begin group names with the letters A through C, E through
I, or the character string “SYS”. Also, do not use the name “UNDESIG”,
which is reserved for use by the system programmer in your installation.

It is recommended that you use a group name beginning with the letters
“DFHIR”.

174 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 16. Compiling and link-editing EXCI client programs

All programs that use the external CICS interface to pass DPL requests to a CICS
server region must include the CICS-supplied program stub, DFHXCSTB.

The stub intercepts all external CICS interface commands, whether they are EXCI
CALL interface commands, or EXEC CICS LINK commands, and ensures they are
passed to the appropriate external CICS interface routine for processing.

DFHXCSTB is a common stub, designed for inclusion in programs written in all
the supported languages. It is supplied in the CICSTS42.CICS.SDFHEXCI library.

Note: The CICSTS42.CICS.SDFHEXCI also contains entries for DFHXCIE and
DFHXCIS, which are aliases for DFHXCSTB.

To help you ensure that the stub is included, CICS provides a number of
procedures, one for each language, which you can use for translating, compiling,
and link-editing.

You must specify AMODE(31) for your EXCI client program.

The CICS-supplied procedures for compiling and link-editing client programs
include the following parameters on the PARM statement of the linkage editor job
step:

LNKPARM=’AMODE(31),LIST,XREF’

The rest of this chapter describes:
v “Job control language to run an EXCI client program”
v “EXCI programming considerations” on page 177
v “Using EXCI sample application programs” on page 178

Job control language to run an EXCI client program
An EXCI client program runs in an MVS address space, for example, as a batch
job.

Note the following requirements when writing the JCL for your client program:
v Include in the STEPLIB concatenation those libraries that contain the

CICS-supplied external CICS interface modules and also the client program. The
external CICS interface modules are supplied in CICSTS42.CICS.SDFHEXCI,
which contains the following:

DFH$AXCC
DFHMEBMX
DFHMET4E
DFHXCEIX
DFHXCIE (alias of DFHXCSTB)
DFHXCIS (alias of DFHXCTSB)
DFHXCOPT
DFHXCPRX

© Copyright IBM Corp. 1994, 2012 175

DFHXCSTB
DFHXCTRA
DFHXCURM

v You are recommended to include a DD statement for SYSMDUMP. The external
CICS interface uses SYSMDUMP for some error conditions.

v The REGION parameter must specify a large enough region size to allow for the
size of the internal trace table specified by the TRACESZE parameter in the
DFHXCOPT options table.

v Include a SYSPRINT or equivalent DD statement for any output from the client
program.

Figure 22 shows a sample job that you can use or modify to start a client program.

Note:

1. The job user ID, specified on the USER parameter, must be defined to RACF ,
or an equivalent external security manager (ESM).

2. In addition to being used for job step initiation security, the job user ID is also
used for MRO logon and bind-time security checking.
See Chapter 17, “EXCI security,” on page 187 for information about security
when using the external CICS interface.

3. See “Installing the EXCI sample definitions” on page 183 for information about
modifying the sample connection definitions before you run the sample
application programs in an environment that does not have RACF, or an
equivalent external security manager (ESM), installed and active.

CICS-supplied procedures for the EXCI
CICS provides seven procedures to enable you to translate, compile, and link-edit
your client programs.

Four of these are for use with specific language compilers or assembler, the other
three being for use with Language Environment. These procedures, with the four
language-specific procedures shown first, are:

DFHEXTAL
The assembler procedure for assembler versions of client programs

DFHYXTEL
The procedure for C++ versions of client programs running under
Language Environment.

DFHYXTDL
The procedure for C versions of client programs running under Language
Environment.

//EXCI JOB (accounting_information),CLASS=A,TIME=1440,
// USER=userid,PASSWORD=pswd,REGION=100M
//*===*
//* JCL to execute an external CICS interface client program *
//*===*
// EXEC PGM=pgmname
//STEPLIB DD DSN=CICSTS42.CICS.EXCI.LOADLIB,DISP=SHR
// DD DSN=CICSTS42.CICS.SDFHEXCI,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSMDUMP DD DSN=SYS1.SYSMDP00,VOL=SER=volid,SPACE=(CYL,(1,1)),

DISP=OLD,UNIT=3390

Figure 22. Sample job for starting an EXCI client program

176 CICS TS for z/OS 4.2: External Interfaces Guide

DFHYXTPL
The procedure for PL/I versions of client programs running under
Language Environment

DFHYXTVL
The procedure for COBOL versions of client programs running under
Language Environment.

To ensure that the EXCI stub is included with your client program, all these
procedures include a step, COPYLINK, that unloads the stub into a temporary data
set defined with a block length suitable for the linkage-editor. This temporary data
set is then concatenated with the temporary data set containing your object
program on the SYSLIN DD statement in the LKED step.

These procedures are supplied in the CICSTS42.CICS.SDFHPROC library. You are
recommended to copy these to SYS1.PROCLIB or another suitable procedure
library.

EXCI programming considerations
There are some language requirements that apply to writing an MVS client
program that uses the external CICS interface. These affect programs written in
PL/I and C. Also, for all languages, consider how you handle return codes before
terminating your MVS client program.

PL/I considerations
PL/I programs written to the external CICS interface must provide their
parameters on the CALL to DFHXCIS in the form of an assembler-style parameter
list.

The EXCI copybook for PL/I, DFHXCPLL, contains the necessary definition of the
DFHXCIS entry point, as follows:
DCL DFHXCIS ENTRY OPTIONS(INTER ASSEMBLER);

The same rule applies for the EXCI LINK command, and in this case the CICS
translator ensures that the correct parameter list is built.

For an example of an EXCI client program written in PL/I, see the source of the
sample program, DFH$PXCC.

C considerations
C programs written to the external CICS interface must provide their parameters
on the CALL to DFHXCIS in the form of an assembler-style parameter list. You
ensure this by declaring the entry point to DFHXCIS with OS LINKAGE.

The EXCI copybook for PL/I, DFHXCPLH, contains the necessary definition of the
DFHXCIS entry point, as follows:

#pragma linkage(dfhxcis,OS)

The same rule applies for the EXCI LINK command, and in this case the CICS
translator ensures that the correct parameter list is built.

For an example of an EXCI client program written in C, see the source of the
sample program, DFH$DXCC.

Chapter 16. Compiling and link-editing EXCI client programs 177

Setting the return code (R15) at termination
The external CICS interface does not clear register 15 at termination, regardless of
whether your client program executes normally or not. Therefore, even if your
MVS client program terminates normally after successfully using the external CICS
interface, the job step could end with an undefined return code.

To ensure a meaningful return code is given at termination, set the job step return
code before terminating your program. The sample client programs illustrate how
you can do this, using the saved response code from last call to the external CICS
interface. For example, the COBOL sample DFH0CXCC program moves
SAVED-RESPONSE to special register RETURN-CODE before terminating.

Using EXCI sample application programs
CICS provides a number of sample programs that are designed to help you in
writing your own application programs. To help with writing programs that use
the external CICS interface, CICS provides sample MVS client programs and a
sample CICS server program.

The samples show you how to code client applications that use both the EXCI
CALL interface and EXEC CICS LINK command.

178 CICS TS for z/OS 4.2: External Interfaces Guide

==================== TEXCI Sample Batch Client Program =======================
*
* EXEC Level Processor.
* Setting up the EXEC level call.
* The Link Request has successfully completed.
* Server Response:
* The file is set to a browsable state.
*
* CALL Level Processor.
* Initialise_User call complete.
* Allocate_Pipe call complete.
* Open_Pipe call complete.
* The connection has been successful.
* The changed target file follows:
*
=========================== Top of File ======================================
000100W. DAVIS SURREY, ENGLAND 3215677826 11 81$0100.11COMMITTED
000102F. ALDSON WARWICK, ENGLAND 9835618326 11 81$1111.11COMMITTED
000104S. BOWLER LONDON,ENGLAND 1284629326 11 81$0999.99COMMITTED
000106B. ADAMS CROYDON, ENGLAND 1948567326 11 81$0087.71COMMITTED
000111GENE BARLOWE SARATOGA,CALIFORNIA 4612075301 02 74$0111.11COMMITTED
000762GEORGE BURROW SAN JOSE,CALIFORNIA 2231212101 06 74$0000.00COMMITTED
000983H. L. L. CALL WASHINGTON, DC 3451212021 04 75$9999.99COMMITTED
003210B.CREPIN NICE, FRANCE 1234567026 11 81$3349.99COMMITTED
003214HUBERT C HERBERT SUNNYVALE, CAL. 3411212000 06 73$0009.99COMMITTED
003890PHILIPPE SMITH, JR NICE, FRANCE 0000000028 05 74$0009.99COMMITTED
004004STAN SMITH DUBLIN, IRELAND 7111212102 11 73$1259.99COMMITTED
004445S. GALSON SOUTH BEND, S.DAK. 6121212026 11 81$0009.99COMMITTED
004878D.C. CURRENT SUNNYVALE, CALIF. 3221212010 06 73$5399.99COMMITTED
005005J. S. LAVERENCE SAN FRANCISCO, CA. 0000000101 08 73$0009.99COMMITTED
005444JEAN LAWRENCE SARATOGA, CALIF. 6771212020 10 74$0809.99COMMITTED
005581JOHN ALDEN III BOSTON, MASS. 4131212011 04 74$0259.99COMMITTED
006016DR W. T. KAR NEW DELHI, INDIA 7033121121 05 74$0009.88COMMITTED
006670WILLIAM KAPP NEW YORK, N.Y. 2121212031 01 75$3509.88COMMITTED
006968D. CONRAD WARWICK, ENGLAND 5671382126 11 81$0009.88COMMITTED
007248B. C. WILLIAMSON REDWOOD CITY, CALF. 3331212111 10 75$0009.88COMMITTED
007779MRS. W. WELCH SAN JOSE, CALIF. 4151212003 01 75$0009.88COMMITTED
100000G. NEADS TORONTO, ONTARIO 0341512126 11 81$0010.00COMMITTED
111111C. MEARS OTTAWA, ONTARIO 5121200326 11 81$0011.00COMMITTED
200000A. BONFIELD GLASGOW, SCOTLAND 6373829026 11 81$0020.00COMMITTED
300000K. TRENCHARD NEW YORK, U.S. 6473980126 11 81$0030.00COMMITTED
333333D. MYRING CARDIFF, WALES 7849302026 11 81$0033.00COMMITTED
400000W. TANNER MILAN, ITALY 2536373826 11 81$0040.00COMMITTED
444444A. FISHER CALGARY, ALBERTA 7788982026 11 81$0044.00COMMITTED
500000J. DENFORD MADRID, SPAIN 4445464026 11 81$0000.00COMMITTED
555555C. JARDINE KINGSTON, N.Y. 3994442026 11 81$0005.00BACKEDOUT
600000F. HUGHES DUBLIN, IRELAND 1239878026 11 81$0010.00BACKEDOUT
666666A. BROOKMAN LA HULPE, BRUSSELS 4298384026 11 81$0016.00BACKEDOUT
700000A. MACALLA DALLAS, TEXAS 5798432026 11 81$0002.00BACKEDOUT
777777D. PRYKE WILLIAMSBURG, VIRG. 9187613126 11 81$0027.00BACKEDOUT
800000H. BRISTOW WESTEND, LONDON 2423338926 11 81$0030.00BACKEDOUT
888888B. HOWARD NORTHAMPTON, ENG. 2369163926 11 81$0038.00BACKEDOUT
900000D. WOODSON TAMPA, FLA. 3566812026 11 81$0040.00BACKEDOUT
=========================== End of File ======================================
*
* Closing Dpl Request has been attempted.
* Close_Pipe call complete.
* Deallocate_Pipe call complete.
*
================== End of TEXCI Sample Batch Client Program ==================

Figure 23. Output from DFH$ATXC

Chapter 16. Compiling and link-editing EXCI client programs 179

===================== EXCI Sample Batch Client Program =======================
*
* EXEC Level Processor.
* Setting up the EXEC level call.
* The Link Request has successfully completed.
* Server Response:
* The file is set to a browsable state.
*
* CALL Level Processor.
* Initialise_User call complete.
* Allocate_Pipe call complete.
* Open_Pipe call complete.
* The connection has been successful.
* The target file follows:
*
=========================== Top of File ======================================
000100W. DAVIS SURREY, ENGLAND 3215677826 11 81$0100.11COMMITTED
000102F. ALDSON WARWICK, ENGLAND 9835618326 11 81$1111.11COMMITTED
000104S. BOWLER LONDON,ENGLAND 1284629326 11 81$0999.99COMMITTED
000106B. ADAMS CROYDON, ENGLAND 1948567326 11 81$0087.71COMMITTED
000111GENE BARLOWE SARATOGA,CALIFORNIA 4612075301 02 74$0111.11COMMITTED
000762GEORGE BURROW SAN JOSE,CALIFORNIA 2231212101 06 74$0000.00COMMITTED
000983H. L. L. CALL WASHINGTON, DC 3451212021 04 75$9999.99COMMITTED
003210B.CREPIN NICE, FRANCE 1234567026 11 81$3349.99COMMITTED
003214HUBERT C HERBERT SUNNYVALE, CAL. 3411212000 06 73$0009.99COMMITTED
003890PHILIPPE SMITH, JR NICE, FRANCE 0000000028 05 74$0009.99COMMITTED
004004STAN SMITH DUBLIN, IRELAND 7111212102 11 73$1259.99COMMITTED
004445S. GALSON SOUTH BEND, S.DAK. 6121212026 11 81$0009.99COMMITTED
004878D.C. CURRENT SUNNYVALE, CALIF. 3221212010 06 73$5399.99COMMITTED
005005J. S. LAVERENCE SAN FRANCISCO, CA. 0000000101 08 73$0009.99COMMITTED
005444JEAN LAWRENCE SARATOGA, CALIF. 6771212020 10 74$0809.99COMMITTED
05581JOHN ALDEN III BOSTON, MASS. 4131212011 04 74$0259.99COMMITTED
06016DR W. T. KAR NEW DELHI, INDIA 7033121121 05 74$0009.88COMMITTED
006670WILLIAM KAPP NEW YORK, N.Y. 2121212031 01 75$3509.88COMMITTED
006968D. CONRAD WARWICK, ENGLAND 5671382126 11 81$0009.88COMMITTED
007248B. C. WILLIAMSON REDWOOD CITY, CALF. 3331212111 10 75$0009.88COMMITTED
007779MRS. W. WELCH SAN JOSE, CALIF. 4151212003 01 75$0009.88COMMITTED
100000G. NEADS TORONTO, ONTARIO 0341512126 11 81$0010.00COMMITTED
111111C. MEARS OTTAWA, ONTARIO 5121200326 11 81$0011.00COMMITTED
200000A. BONFIELD GLASGOW, SCOTLAND 6373829026 11 81$0020.00COMMITTED
300000K. TRENCHARD NEW YORK, U.S. 6473980126 11 81$0030.00COMMITTED
333333D. MYRING CARDIFF, WALES 7849302026 11 81$0033.00COMMITTED
400000W. TANNER MILAN, ITALY 2536373826 11 81$0040.00COMMITTED
444444A. FISHER CALGARY, ALBERTA 7788982026 11 81$0044.00COMMITTED
500000J. DENFORD MADRID, SPAIN 4445464026 11 81$0000.00COMMITTED
555555C. JARDINE KINGSTON, N.Y. 3994442026 11 81$0005.00Y00010500
600000F. HUGHES DUBLIN, IRELAND 1239878026 11 81$0010.00Y00010600
666666A. BROOKMAN LA HULPE, BRUSSELS 4298384026 11 81$0016.00Y00010700
700000A. MACALLA DALLAS, TEXAS 5798432026 11 81$0002.00Y00010800
777777D. PRYKE WILLIAMSBURG, VIRG. 9187613126 11 81$0027.00Y00010900
800000H. BRISTOW WESTEND, LONDON 2423338926 11 81$0030.00Y00011000
888888B. HOWARD NORTHAMPTON, ENG. 2369163926 11 81$0038.00Y00011100
900000D. WOODSON TAMPA, FLA. 3566812026 11 81$0040.00Y00011200
=========================== End of File ======================================
*
* Closing Dpl Request has been attempted.
* Close_Pipe call complete.
* Deallocate_Pipe call complete.
*
=================== End of EXCI Sample Batch Client Program ==================

Figure 24. Successful execution of DFH$AXCC after DFH$ATXC has been successfully executed.

180 CICS TS for z/OS 4.2: External Interfaces Guide

Description of the sample applications
The sample external CICS interface programs are included on the CICS Transaction
Server for z/OS distribution tape.

Two sample MVS client programs are supplied. One is provided in assembler
language, COBOL, C, and PL/I. The other is only provided in assembler. The
sample CICS server program is provided in assembler only. Assembler language
programs are in source and executable form. COBOL, PL/I, and C programs are
provided in source form only. Each version of the client program has basically the
same function, but programming methods vary somewhat according to the
language used.

The sample programs, shown in Table 23, are supplied in source form in
CICSTS42.CICS.SDFHSAMP. The sample assembler server program is also supplied
in executable form in CICSTS42.CICS.SDFHLOAD. The assembler client program is
supplied in CICSTS42.CICS.SDFHEXCI.

Note:

1. The assembler versions of the client program use BSAM, which requires the
programs to be link-edited in RMODE(24), as a switch to AMODE(24) is made
around the BSAM call. The assembler source code includes the required
RMODE(24) statement. Normally, EXCI client programs run
AMODE(31),RMODE(ANY).

2. Because of this, the assembler versions of these client programs are unsuitable
for use as Language Environment MAIN programs.

3. SDFHEXCI and SDFHDLL1 are downwardly compatible with all supported
releases of CICS TS.

Table 23. The external CICS interface sample programs

Language Name Type of program

Assembler DFH$AXCC Client program

Assembler DFH$ATXC Client program

Assembler DFH$AXCS Server program

COBOL DFH0CXCC Client program

PL/I DFH$PXCC Client program

C DFH$DXCC Client program

The sample client programs show you how to code a simple MVS client
application using the EXCI CALL interface and the EXEC CICS LINK command.

Each version of the client is divided into three separate sections as follows:
1. The first section issues a single EXEC CICS LINK command to inquire on the

state of the sample VSAM file, FILEA, in the target CICS system.
If the file is in a suitable state, processing continues to sections two and three,
which together provide complete examples of the use of the EXCI CALL
interface.

2. The second section initiates a specific MRO connection to the target CICS
system and, once the pipe is open, performs a series of calls that each retrieve a
single sequential record from the sample VSAM file, until no more records are
available.

Chapter 16. Compiling and link-editing EXCI client programs 181

3. The third section is a simple routine to close the target sample file once
processing of the data is complete. It also terminates the MRO connection now
that the link is no longer required.

Some of the parameters used on the EXCI CALL and EXEC CICS LINK commands in
the client program need to be tailored for your own target CICS server region.
Change these as required, then retranslate, compile (or assemble), and link-edit the
program.

The variables and their values specified in the sample programs are given in
Table 24.

Table 24. Parameters used in the sample client programs

Variable name in sample program Default value

TARGET_FILE FILEA

TARGET_TRANSID EXCI

TARGET_SYSTEM DBDCCICS (applid)

TARGET_PROGRAM DFH$AXCS

TARGET_USERID Defaults to batch region's user ID

APPLICATION BATCHCLI

The assembler versions of the client programs are supplied pregenerated in an
executable form. All versions of the program accept two run-time parameters, as
follows:
1. The first (TARGET_SYSTEM) specifies the server region APPLID.

For the pregenerated assembler versions this avoids you having to reassemble
the programs to specify the applid of your own CICS server region. You can
also use the sample client programs with different CICS regions without
needing to modify the programs each time.

2. The second specifies the user ID to be used on the call interface DPL_request.

You specify these positional parameters on the PARM statement, separated by a
comma.

Using the COMMAREA in the sample programs
Data is passed between the sample client and server programs using a standard
CICS communications area (COMMAREA) for passing data between programs.
The definitions of this COMMAREA are identical on each side of the EXCI link to
ensure that data is mapped correctly.

The sample client program DFH$AXCC minimizes data transmission by specifying
a specific data length to avoid sending the whole COMMAREA over the link. The
data length option specifies a binary value that is the length of a contiguous area
of storage, from the start of the COMMAREA, to be passed to the server program.
This is because the amount of data being passed to the server is small, but the
COMMAREA itself is much larger so that the server can return the requested
records from FILEA. Specifying a data length when the amount of data being
passed is smaller than the COMMAREA improves performance.

Sample program DFH$ATXC passes the full COMMAREA to the server program
because it makes changes to the file records and the whole of the changed record
needs to be passed to the server.

182 CICS TS for z/OS 4.2: External Interfaces Guide

The first and third sections of the sample client programs define the COMMAREA
as only 18 bytes (no data is requested from the server in these sections). For the
second section, the sample client program defines the COMMAREA as 98 bytes,
the extra 80 bytes being required for the sample server program to return a record
from FILEA. In all sections, the data length is defined as 18 bytes. The
COMMAREA structure is defined in the sample programs as follows:

Bytes Data type Field description

0-3 Fullword Call type code.
4-11 Char(8) Target file name.
12-17 Char(6) Ridfield identifier.
18-97 Char(80) FILEA record data area.

Note that, although the COMMAREA structure is described in both the client and
server programs, the actual size of the COMMAREA made available by CICS to
the server is determined by the client program. If you modify the sample programs
to work with one of your own application programs, make sure you specify a
COMMAREA large enough to handle the maximum amount of data the server is
expected to return to the client. The server must not attempt to return data that is
larger than the COMMAREA specified by the client.

For more information about using a COMMAREA for passing data between CICS
programs, see Sharing data across transactions, in the CICS Application Programming
Guide.

Installing the EXCI sample definitions
Resource definitions that support the EXCI sample programs are included in the
CICS system definition file (CSD) in groups DFH$EXCI and DFH$FILA.

Note that the sample definitions, while included in the CSD, are not included in
the IBM-defined group list DFHLIST. Thus, if CICS is initialized with
GRPLIST=DFHLIST, you must install the EXCI resource definition groups before
using the samples. Alternatively, you can add the sample groups to your startup
group list, so that they are installed automatically at system initialization.

Transactions that are to be linked to from the batch program need to specify the
mirror program (DFHMIRS) as the program name in their transaction definitions.

The resource definition groups that must be installed are as follows:

DFH$EXCI
This contains definitions for the sample server transaction, server program,
EXCI connections, and sessions.

Only one server program is included—in assembler language, called
DFH$AXCS.

The sample application is designed to run the transaction EXCI, which is
defined to invoke the DFHMIRS mirror program and references profile
DFHCICSA. The required transaction definition for EXCI is included in the
group.

Sample CONNECTION and SESSIONS definitions for specific and generic
connections are included.

Chapter 16. Compiling and link-editing EXCI client programs 183

Note: Both the generic and specific connection definitions supplied in the
sample group DFH$EXCI specify ATTACHSEC(IDENTIFY). This security
option causes the server program DFH$EXCS to fail with an ATCY abend
if you run the sample programs in an environment that does not have
RACF, or an equivalent external security manager (ESM), installed and
active.

If you want to run the external CICS interface sample programs without
any security active, you must alter the connection resource definitions to
specify ATTACHSEC(LOCAL).

DFH$FILA
This contains the definition for the supplied sample VSAM file, FILEA,
which is referenced by the EXCI sample programs.

Once these are installed, you must ensure that interregion communication (IRC) is
open. If IRC is not opened during CICS initialization, set it open using the CEMT
SET IRC OPEN command.

Running the EXCI sample applications
If you want to use the COBOL, PL/I, or C version of the EXCI client program, you
must translate, compile, and link-edit the program into a suitable library.

You can use the sample JCL shown in Figure 22 on page 176 as a basis for creating
your own batch job to run the client program.

If you use the pregenerated assembler version, specify the APPLID of your target
CICS server region as a parameter on the EXEC statement for the client program,
as follows:
//*===*
//ASM EXEC PGM=DFH$AXCC,PARM=’applid,userid’

Where: applid is the applid of the CICS server region userid is the userid for the
DPL_request call. Note: If you omit applid, you must keep the comma preceding
the userid.

Change PGM=DFH$AXCC to PGM=DFH$ATXC to run the other client sample
program.

Results of running the EXCI sample applications
This is an example of the output produced by successful execution of the
pregenerated assembler version of the client program, DFH$AXCC.

184 CICS TS for z/OS 4.2: External Interfaces Guide

===================== EXCI Sample Client Program =============================
* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request has successfully completed. *
* Server Response: *
* The file is set to a browsable state. *
* *
* CALL Level Processor. *
* Initialize_User call complete. *
* Allocate_Pipe call complete. *
* Open_Pipe call complete. *
* The connection has been successful. *
* The target file follows: *
* *
=========================== Top of File ======================================
000102F. ALDSON WARWICK, ENGLAND 9835618326 11 81$1111.11Y00007300
000104S. BOWLER LONDON,ENGLAND 1284629326 11 81$0999.99Y00007400
000106B. ADAMS CROYDON, ENGLAND 1948567326 11 81$0087.71Y00007500
000111GENE BARLOWE SARATOGA,CALIFORNIA 4612075301 02 74$0111.11Y00007600
000762GEORGE BURROW SAN JOSE,CALIFORNIA 2231212101 06 74$0000.00Y00007700
000983H. L. L. CALL WASHINGTON, DC 3451212021 04 75$9999.99Y00007800
003210B.CREPIN NICE, FRANCE 1234567026 11 81$3349.99Y00008100
003214HUBERT C HERBERT SUNNYVALE, CAL. 3411212000 06 73$0009.99N00008200
003890PHILIPPE SMITH, JR NICE, FRANCE 0000000028 05 74$0009.99N00008300
004004STAN SMITH DUBLIN, IRELAND 7111212102 11 73$1259.99N00008400
004445S. GALSON SOUTH BEND, S.DAK. 6121212026 11 81$0009.99N00008500
004878D.C. CURRENT SUNNYVALE, CALIF. 3221212010 06 73$5399.99N00008600
005005J. S. LAVERENCE SAN FRANCISCO, CA. 0000000101 08 73$0009.99N00008700
005444JEAN LAWRENCE SARATOGA, CALIF. 6771212020 10 74$0809.99N00008800
005581JOHN ALDEN III BOSTON, MASS. 4131212011 04 74$0259.99N00008900
006016DR W. T. KAR NEW DELHI, INDIA 7033121121 05 74$0009.88Y00009000
006670WILLIAM KAPP NEW YORK, N.Y. 2121212031 01 75$3509.88N00009100
06968D. CONRAD WARWICK, ENGLAND 5671382126 11 81$0009.88Y00009200
007248B. C. WILLIAMSON REDWOOD CITY, CALF. 3331212111 10 75$0009.88N00009400
007779MRS. W. WELCH SAN JOSE, CALIF. 4151212003 01 75$0009.88Y00009500
100000G. NEADS TORONTO, ONTARIO 0341512126 11 81$0010.00Y00009600
111111C. MEARS OTTAWA, ONTARIO 5121200326 11 81$0011.00Y00009700
200000A. BONFIELD GLASCOW, SCOTLAND 6373829026 11 81$0020.00Y00009900
300000K. TRENCHARD NEW YORK, U.S. 6473980126 11 81$0030.00Y00010000
333333D. MYRING CARDIFF, WALES 7849302026 11 81$0033.00Y00010100
400000W. TANNER MILAN, ITALY 2536373826 11 81$0040.00Y00010200
444444A. FISHER CALGARY, ALBERTA 7788982026 11 81$0044.00Y00010300
500000J. DENFORD MADRID, SPAIN 4445464026 11 81$0000.00Y00010400
555555C. JARDINE KINGSTON, N.Y. 3994442026 11 81$0005.00Y00010500
600000F. HUGHES DUBLIN, IRELAND 1239878026 11 81$0010.00Y00010600
666666A. BROOKMAN LA HULPE, BRUSSELS 4298384026 11 81$0016.00Y00010700
700000A. MACALLA DALLAS, TEXAS 5798432026 11 81$0002.00Y00010800
777777D. PRYKE WILLIAMSBURG, VIRG. 9187613126 11 81$0027.00Y00010900
800000H. BRISTOW WESTEND, LONDON 2423338926 11 81$0030.00Y00011000
888888B. HOWARD NORTHAMPTON, ENG. 2369163926 11 81$0038.00Y00011100
900000D. WOODSON TAMPA, FLA. 3566812026 11 81$0040.00Y00011200
999999R. JACKSON RALEIGH, N.Y. 8459163926 11 81$0049.00Y00011300
=========================== End of File ======================================
* *
* Closing Dpl Request has been attempted. *
* Close_Pipe call complete. *
* Deallocate_Pipe call complete. *
* *
=================== End of EXCI Sample Client Program ========================

Figure 25. Successful execution

Chapter 16. Compiling and link-editing EXCI client programs 185

If an error occurs while running the application, then, assuming the error is not
severe, messages are written to the SYSPRINT output log displaying the reasons
and/or return codes that cause processing to be aborted. Several examples of
error-invoked output are shown in Figure 26, Figure 27, and Figure 28.

An example of the output produced by a successful execution of the pregenerated
assembler version of the client program DFH$ATXC is shown in Figure 23 on page
179. If an error occurs while running the application, errors are produced as for
DFH$AXCC.

After running DFH$ATXC, program DFH$AXCC should be re-run. The output
should be as shown in Figure 24 on page 180. The changes up to and including
records with RIDFLD values of 500000 were committed using an SRRCMIT call to
tell RRS to tell CICS to perform commit processing. Later changes were backed out
by issuing an SRRBACK call. This caused RRS to tell CICS to perform a
ROLLBACK of these changes.

Clearly, FILEA is changed as a result of running DFH$ATXC. It should be restored
to its original state by running the LOADFILE step of DFHDEFDS.

===================== EXCI Sample Client Program =============================
* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request has failed. Return codes are; *
* Resp = 00000088 Resp2 = 00000203 Abend Code: *
* >>>> Aborting further processing <<<< *
* *
=================== End of EXCI Sample Client Program ========================

Figure 26. No CICS return code. The target CICS region specified by the client program is not found, or IRC was not
opened.

===================== EXCI Sample Client Program =============================
* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request has successfully completed. *
* Server Response: *
* The file could not be found. *
* >>>> Aborting further processing <<<< *
* *
=================== End of EXCI Sample Client Program ========================

Figure 27. No file found. The target file name to the server program was not found on the target CICS system.

===================== EXCI Sample Client Program =============================
* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request has failed. Return codes are; *
* Resp = 00000088 Resp2 = 00000414 Abend Code: *
* A message was received from the target CICS system: *
* *
DFHAC2001 04/29/93 16:43:03 IYAHZCAZ Transaction ’BAD_’ is unrecognized. Check
that the transaction name is correct.

* *
* >>>> Aborting further processing <<<< *
* *
=================== End of EXCI Sample Client Program ========================

Figure 28. Incorrect transaction identifier. The target transid passed in the external CICS interface call is not defined
on the target CICS system. Note the message received from the target CICS system.

186 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 17. EXCI security

CICS applies security checks in a number of ways against requests received from
an MVS client program.

These are described in the following topics:
v “Using MRO logon and bind-time security”
v “Link security” on page 188
v “User security” on page 189
v “Surrogate user checking” on page 189

Using MRO logon and bind-time security
DFHIRP, the CICS interregion communication program, performs two security
checks against users that want to either; log on to IRP (specific connections only),
or connect to a CICS region (also referred to as bind-time security).

About this task

Generic EXCI connections: The discussion about logon security checking in this
section applies only to EXCI connections that are defined as SPECIFIC. The MRO
logon security check is not performed for generic connections.

The MVS client program is treated just the same as another CICS region as far as
MRO logon and connect (bind-time) security checking is concerned. This means
that when the client program logs on to the interregion communication program,
IRP performs logon and bind-time security checks against the user ID under which
the client program is running. This user ID is referred to as the batch region's user
ID.

To enable your client program to log on successfully to IRP, and to connect to the
target server region, first ensure that you define the batch region's user ID in a
user profile to RACF. When you have defined the batch region's user ID to RACF,
you can then give the batch region the appropriate logon and bind-time
authorizations.

1. Logon authorization
Authorize the batch region's user ID to the DFHAPPL.user_name RACF
FACILITY class profile, with UPDATE authority. The user_name part of the
profile name is the user name defined on the INITIALIZE_USER command.

Failure to authorize the batch region's user ID to the DFHAPPL profile of the
specific user ID logging on to IRP causes Allocate_Pipe processing to fail with
RESPONSE(SYSTEM_ERROR) REASON(IRC_LOGON_FAILURE). The
subreason field-1 for a logon security check failure returns decimal 204.

See “Defining DFHAPPL FACILITY class profiles for an EXCI region” on page
188 for information about FACILITY class profiles for an EXCI client program.

2. Bind-time authorization
Authorize the batch region's user ID to the DFHAPPL.applid RACF FACILITY
class profile of the target CICS server region, with READ authority.

Failure to authorize the batch region's user ID to the CICS server region's
DFHAPPL.applid profile causes Open_Pipe processing to fail with

© Copyright IBM Corp. 1994, 2012 187

RESPONSE(SYSTEM_ERROR) REASON(IRC_CONNECT_FAILURE). The
subreason field-1 for a bind-time security check failure returns decimal 176.

See the CICS RACF Security Guide for information about the MRO logon and
bind-time security checks, and for examples of how to define the RACF DFHAPPL
profiles.

Defining DFHAPPL FACILITY class profiles for an EXCI region
Define the user_name part of the DFHAPPL profile name as follows:
v For the EXCI CALL interface, the user_name must be the name you specify on

the user_name parameter of the INITIALIZE_USER command.
Define FACILITY class profiles, with appropriate authorizations, for each user
name specified in a client program if the program has INITIALIZE_USER
commands for more than one user name.
For example, if the user_name defined on an INITIALIZE_USER command is
DCEUSER1, define the DFHAPPL profile in the FACILITY class as follows:
RDEFINE FACILITY (DFHAPPL.DCEUSER1) UACC(NONE)

If the batch region's user ID is CLIENTA, authorize the batch region to log on to
IRP as follows:
PERMIT DFHAPPL.DCEUSER1 CLASS(FACILITY) ID(CLIENTA)

ACCESS(UPDATE)

v For the EXEC CICS LINK command, the user_name is preset by the external
CICS interface as DFHXCEIP. This does not require authorization for IRP logon,
because the EXEC CICS LINK interface uses a generic connection to which the
logon security check does not apply.

Link security
The target CICS server region performs link security checking against requests
from the client program.

These security checks cover transaction attach security (when attaching the mirror
transaction), and resource and command security checking within the server
application program. The link user ID that CICS uses for these security checks is
the batch region's user ID.

To ensure these link security checks do not cause security failures, you must
ensure that the link user ID is authorized to the following resource profiles, as
appropriate:
v The profile for the mirror transaction, either CSMI for the default, or the mirror

transaction specified on the transid parameter. This is required for transaction
attach security checking.

v The profiles for all the resources accessed by the CICS server application
program—files, queues (transient data and temporary storage), programs, and so
on. This is required for resource security checking.

v The CICS command profiles for the SPI commands issued by the CICS server
application program—INQUIRE, SET, DISCARD and so on. This is required for
command security checking.

See the CICS RACF Security Guide for information about MRO link security
checking.

188 CICS TS for z/OS 4.2: External Interfaces Guide

User security
The target CICS server region performs user security checking against the user ID
passed on a DPL_ Request call. User security checking is performed only when
connections specify ATTACHCSEC(IDENTIFY).

User security is performed in addition to any link security.

For user security, in addition to any authorizations you make for link security, you
must also authorize the user ID specified on the DPL_Request call.

Note that there is no provision for specifying a user ID on the EXEC CICS LINK
command. In this case, the external CICS interface passes the batch region's user
ID. User security checking is therefore performed against the batch region's user ID
if the connection definition specifies ATTACHSEC(IDENTIFY).

Note: If your connection resource definitions for the external CICS interface
specify ATTACHSEC(IDENTIFY), your server programs will fail with an ATCY
abend if you run them in an environment that does not have RACF, or an
equivalent external security manager (ESM), installed and active.

If you want to run external CICS interface server programs without any security
active, you must specify ATTACHSEC(LOCAL).

Surrogate user checking
A surrogate user check is performed to verify that the batch region's user ID is
authorized to issue DPL calls for another user (that is, is authorized as a surrogate
of the user ID specified on the DPL_Request call).

EXCI client jobs are subject to surrogate user checking if SURROGCHK=YES (the
default) is specified in the EXCI options table, DFHXCOPT. If you specify
SURROGCHK=YES (or allow it to default) authorize the batch region's user ID as a
surrogate of the user ID specified on all DPL_Request calls. This means the batch
region's user ID must have READ access to a profile named userid.DFHEXCI in the
SURROGAT general resource class (whereuserid is the user ID specified on the DPL
call). For example, the following commands define a surrogate profile for a DPL
userid, and grant READ access to the EXCI batch region:
RDEFINE SURROGAT dpl_userid.DFHEXCI UACC(NONE) OWNER(DPL_userid)
PERMIT userid.DFHEXCI CLASS(SURROGAT) ID(batch_region_userid)

ACCESS(READ)

If surrogate user checking is enabled (SURROGCHK=YES), but no user ID is
specified on the DPL_Request call, no surrogate user check is performed, because
the user ID on the DPL_Request call defaults to the batch region's user ID. For this
bypass of surrogate user checking to be successful, ensure that you have correctly
omitted the user ID on the DPL_Request call. See “Example of EXCI CALLs with
null parameters” on page 146 for information about the correct way to specify a
null pointer when omitting an EXCI call parameter.

If you don't want surrogate user security checking, specify SURROGCHK=NO in
the DFHXCOPT options table (note that SURROGCHK=YES is the default).

Surrogate user checking is useful when the batch region's user ID is the same as
the CICS server region user ID, in which case the link security check (see “Link
security” on page 188) is bypassed. In this case, a surrogate user check is

Chapter 17. EXCI security 189

recommended, because the user ID specified on the DPL_Request call is not an
authenticated user ID (no password is passed).

If the batch region's user ID and the CICS region user ID are different, link security
checking is enforced. With link security, a non-authenticated user ID passed on a
DPL_Request call cannot acquire more authority than that allowed by the link
security check. It can acquire only the same, or less, authority than that allowed by
the link security check.

For more information about CICS security, see the RACF security overview in the
RACF Security Guide.

190 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht5_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht5_overview.html

Chapter 18. Problem determination for the external CICS
interface (EXCI)

Important: This information contains Diagnosis, Modification or Tuning
information.

This topic describes some of the aids to problem determination provided by the
external CICS interface.

It covers:
v Trace
v System dumps
v MVS 04xx abends for the external CICS interface
v The EXCI service trap, DFHXCTRA
v EXCI trace entry points

Details of the external CICS interface messages and abend codes are given in
Chapter 20, “Messages and codes,” on page 243.

Trace
The external CICS interface writes trace data to two destinations: an internal trace
table and an external MVS GTF data set. The internal trace table resides in the
non-CICS MVS address space. Trace data is formatted and included in any dumps
produced by the external CICS interface.

Trace entries are issued by the external CICS interface destined for the internal
trace table, an MVS GTF data set, or both. They are listed in “EXCI trace entry
points” on page 201.

To use GTF for external CICS interface tracing, GTF user tracing must be active,
GTF must be started in the MVS image, and you must specify GTF=ON in the
DFHXCOPT options table.

If you use GTF trace for both the CICS server region and the external CICS
interface region, the trace entries are interleaved, which can help you with problem
determination in the CICS–EXCI environment.

Note: The external CICS interface maintains a separate trace table for each user
TCB in an external CICS interface application program.

The external CICS interface does not support any form of auxiliary trace.

Formatting GTF trace
To format external CICS interface trace entries written to GTF, you can use the
standard CICS DFHTR670 trace formatting routine.

To format external CICS interface trace entries you use the same FID and ID as for
CICS (that is, FID=X'EF', and ID=X'F6C').

© Copyright IBM Corp. 1994, 2012 191

Using System dumps
The external CICS interface produces MVS SYSMDUMPs for some error conditions
and MVS SDUMPs for other, more serious conditions. These dumps contain all the
external CICS interface control blocks, as well as trace entries.

Formatting system dumps
You can use the CICS IPCS verb exit, DFHPD670, to format the system dumps.

The following keywords are available for use when formatting an external CICS
interface dump using DFHPD670:

KE Formats PSW and registers, and all external CICS interface control blocks.

LD Formats a load map of where the external CICS interface modules are loaded
in the address space, and gives their PTF level.

MRO
Formats the MRO control blocks for the external CICS interface address space,
including common control blocks that reside in the MVS common service area
(CSA). This option also formats some MRO blocks that reside in the CICS
address space for pipes connected to CICS.

TR Formats the external CICS interface trace table. You can format the trace table
in abbreviated and full forms (TR=1 gives you the abbreviated trace).

SU Produces a dump summary.

Multiple TCBs
If the external CICS interface takes a system dump when there is more than one
TCB in use, it dumps only the control blocks and trace table for the TCB that
requested the dump.

If you take a dump of the external CICS address space using a console command,
the CICS verb exit routine, DFHPD670 formats the control blocks and trace tables
for every TCB it finds in the dump.

Capturing SYSMDUMPs
To capture SYSMDUMPs produced by the external CICS interface, ensure you
always include a DD statement for the SYSMDUMP data set in the client
application program's JCL.

Using the MVS DUMP command at the console for dumps
In addition to the dumps taken automatically by the external CICS interface, you
can also force a dump of an address space running a client application program by
entering the MVS DUMP command at the console.

You can use the CICS IPCS verb exit routine DFHPD670 to format dumps taken in
this way. You can also issue the DUMP command from TSO, SDSF, or NetView®.

You can also use the DUMP command to dump the CICS server address space as
well as the client address space. Use the CICS IPCS verb exit routine DFHPD670 to
format the dump that contains both address spaces.

192 CICS TS for z/OS 4.2: External Interfaces Guide

MVS 04xx abends for the external CICS interface
These MVS 04xx abends can occur when you are running an external CICS
interface job.

0401
An external CICS interface (EXCI) request was issued using the CALL API or the
EXEC API, and the EXCI stub DFHXCSTB link-edited with the application detected
that it was running in AMODE 24. The external CICS interface only supports calls
made in AMODE 31.

Explanation

System Action

The application terminates abnormally.

User Response

Change the application so that EXCI calls are made in AMODE 31, or relink-edit
the application AMODE 31.

Module

DFHXCSTB

0402
The external CICS interface module DFHXCPRH issued an MVS ESTAE macro to
establish a recovery environment, but a nonzero return code was returned from
MVS.

Explanation

System Action

The application terminates abnormally with a dump.

User Response

Examine the dump and any associated MVS messages produced to determine why
the MVS ESTAE request failed.

If the error occurred while processing an INITIALIZE_USER request on behalf of
the application, an attempt to format the dump using the CICS IPCS dump
formatter does not produce any formatted output. This is because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

Chapter 18. Problem determination for the external CICS interface (EXCI) 193

0403
The external CICS interface module DFHXCPRH issued an MVS GETMAIN
request to obtain storage for its XCGLOBAL block, but a nonzero return code was
returned from MVS.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0403 which invokes
its ESTAE routine to clear up its environment. A SYSMDUMP is taken before
returning control to the application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR) REASON(XCGLOBAL_GETMAIN_ERROR)
in its return area. The subreason1 field of the return area contains the R15 return
code from MVS indicating why the GETMAIN failed. An application using the
EXCI EXEC API receives RESP(LINKERR) RESP2(602).

User Response

Use the MVS R15 return code obtained from the application or from the dump to
determine why the MVS GETMAIN request failed. If the reason is insufficient
storage, increase the region size of the batch application.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

0404
The external CICS interface module DFHXCPRH needed to take an MVS SDUMP
for an earlier reported problem. However the error has occurred too early in EXCI
initialization for EXCI dump services to be available.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0404 which invokes
its ESTAE routine from which a SYSMDUMP is taken instead of an SDUMP to
capture the earlier reported problem.

User Response

Examine the SYSMDUMP to determine the cause of the earlier reported problem.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

194 CICS TS for z/OS 4.2: External Interfaces Guide

0405
The external CICS interface module DFHXCPRH issued an IEFSSREQ SSI verify
request to MVS to determine the number of the CICS SVC type 3 SVC to use. The
SSI VERIFY request failed.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0405 which invokes
its ESTAE routine to clear up its environment. A SYSMDUMP is taken before
returning control to the application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR) REASON(SSI_VERIFY_FAILED) in its
return area. The subreason1 field of the return area contains the R15 return code
from MVS indicating why the SSI verify failed. An application using the EXCI
EXEC API receives RESP(LINKERR) RESP2(606).

User Response

Use the MVS R15 return code obtained from the application or from the dump to
determine why the SSI VERIFY request failed.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

0406
The external CICS interface module DFHXCPRH called the CICS SVC to initialize
the EXCI environment. The CICS SVC call failed.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0406 which invokes
its ESTAE routine to clear up its environment. A SYSMDUMP is taken before
returning control to the application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR) REASON(CICS_SVC_CALL_FAILURE) in
its return area. The subreason1 field of the return area contains the R15 return code
from the CICS SVC indicating why it failed. An application using the EXCI EXEC
API receives RESP(LINKERR) RESP2(607).

User Response

Use the MVS R15 return code obtained from the application or from the dump to
determine why the CICS SVC call failed.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Chapter 18. Problem determination for the external CICS interface (EXCI) 195

Module

DFHXCPRH

0407
The external CICS interface module DFHXCPRH issued a call to the CICS SVC to
check whether the SVC in use is at the correct level to be used with the external
CICS interface. The check failed indicating that the CICS SVC is not at the correct
level.

Explanation

System Action

Message DFHEX0100 is output, and module DFHXCPRH issues an MVS abend
with abend code 0407 which invokes its ESTAE routine to clear up its
environment. A SYSMDUMP is taken before returning control to the application.
An application using the EXCI CALL API receives RESPONSE(SYSTEM_ERROR)
REASON(INCORRECT_SVC_LEVEL) in its return area. An application using the
EXCI EXEC API receives RESP(LINKERR) RESP2(627).

User Response

See the explanation of message DFHEX0100 for guidance.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

0408
The external CICS interface module DFHXCPRH issued an MVS GETMAIN
request for its working storage but a nonzero return code was returned from MVS.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0408 which invokes
its ESTAE routine to clear up its environment. A SYSMDUMP is taken before
returning control to the application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR) REASON(WS_GETMAIN_ERROR) in its
return area. The subreason1 field of the return area contains the R15 return code
from MVS indicating why the GETMAIN failed. An application using the EXCI
EXEC API receives RESP(LINKERR) RESP2(601).

User Response

Use the MVS R15 return code obtained from the application or from the dump to
determine why the MVS GETMAIN request failed. If the reason is insufficient
storage, increase the region size of the batch application.

196 CICS TS for z/OS 4.2: External Interfaces Guide

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

0409
The external CICS interface module DFHXCPRH issued an MVS GETMAIN
request for storage required for its SSI VERIFY request, but a nonzero return code
was returned from MVS.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0409 which invokes
its ESTAE routine to clear up its environment. A SYSMDUMP is taken before
returning control to the application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR) REASON(VERIFY_BLOCK_GM_ERROR) in
its return area. The subreason1 field of the return area contains the R15 return code
from MVS indicating why the GETMAIN failed. An application using the EXCI
EXEC API receives RESP(LINKERR) RESP2(605).

User Response

Use the MVS R15 return code obtained from the application or from the dump to
determine why the MVS GETMAIN request failed. If the reason is insufficient
storage, increase the region size of the batch application.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCPRH

0410
The external CICS interface module DFHXCPRH issued an MVS GETMAIN
request for an XCUSER block but a nonzero return code was returned from MVS.

Explanation

System Action

Module DFHXCPRH issues an MVS abend with abend code 0410 which invokes
its ESTAE routine to clear up its environment. A SYSMDUMP is taken before
returning control to the application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR) REASON(XCUSER_GETMAIN_ERROR) in
its return area. The subreason1 field of the return area contains the R15 return code
from MVS indicating why the GETMAIN failed. An application using the EXCI
EXEC API receives RESP(LINKERR) RESP2(603).

Chapter 18. Problem determination for the external CICS interface (EXCI) 197

User Response

Use the MVS R15 return code obtained from the application or from the dump to
determine why the MVS GETMAIN request failed. If the reason is insufficient
storage, increase the region size of the batch application.

Module

DFHXCPRH

0411
The external CICS interface dump module DFHXCDMP was attempting to call the
CICS SVC in order for an MVS SDUMP to be taken to capture an earlier problem.

Explanation

DFHXCDMP was unable to call the SVC as no SVC number was available.
DFHXCDMP issued an 0411 abend in order that the callers ESTAE routine is
invoked which takes a SYSMDUMP instead.

System Action

A SYSMDUMP is taken instead of an SDUMP for an earlier reported problem.

User Response

Use the SYSMDUMP produced to diagnose the earlier reported problem.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCDMP

0412
The external CICS interface dump module DFHXCEIP was processing an EXCI
EXEC API request and detected that the EXEC parameter list passed to it contained
a function that is not supported by the external CICS interface.

Explanation

System Action

The application is abnormally terminated with a dump.

User Response

This error indicates that the parameter list being passed to the EXCI has not been
generated by the CICS translator. The translator should always be used. Correct
the application to specify the correct EXCI EXEC API command.

198 CICS TS for z/OS 4.2: External Interfaces Guide

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter may not produce any formatted output for the job if this was the first
EXCI request for this TCB.

Module

DFHXCEIP

0413
The external CICS interface dump module DFHXCEIP was processing an EXCI
EXEC API request and detected that the EXEC parameter list passed to it did not
require the mandatory RETCODE parameter in which return codes are returned to
the application.

Explanation

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter may not produce any formatted output for the job if this was the first
EXCI request for this TCB.

System Action

The application is abnormally terminated with a dump.

User Response

This error indicates that the parameter list being passed to the EXCI has not been
generated by the CICS translator. The translator should always be used. Correct
the application to specify RETCODE.

Module

DFHXCEIP

0414
The external CICS interface module DFHXCEIP issued an MVS ESTAE macro to
establish a recovery environment but a nonzero return code was returned from
MVS.

Explanation

System Action

The application terminates abnormally with a dump.

User Response

Examine the dump and any associated MVS messages to determine why the MVS
ESTAE request failed.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter may not produce any formatted output for the job if this was the first
EXCI request for this TCB.

Chapter 18. Problem determination for the external CICS interface (EXCI) 199

Module

DFHXCEIP

0415
The external CICS interface module DFHXCEIP detected an error early in EXCI
initialization before EXCI dump services were available. DFHXCEIP issues abend
0415 so that its ESTAE routine is invoked from where an SYSMDUMP is taken
instead to capture the error.

Explanation

System Action

The application terminates abnormally with a dump.

User Response

Examine the SYSMDUMP to determine the cause of the earlier reported error.

An attempt to format the SYSMDUMP produced with the CICS IPCS dump
formatter does not produce any formatted output for the job because the error
occurred too early in EXCI initialization for there to be any control blocks.

Module

DFHXCEIP

The EXCI service trap, DFHXCTRA
A user-replaceable program, DFHXCTRA, is available for use under the guidance
of IBM service personnel. It is the equivalent of DFHTRAP used in CICS. It is
invoked every time the external CICS interface writes a trace entry.

DFHXCTRA can perform one or all of the following actions:
1. Request the external CICS interface to write a trace entry on its behalf
2. Instruct the external CICS interface to take an SDUMP
3. Instruct the external CICS interface to skip writing the current trace entry to

GTF
4. Instruct the external CICS interface to disable DFHXCTRA

The CICS-supplied sample version of DFHXCTRA performs all four of the above
functions if it detects a trace entry that indicates that a FREEMAIN error occurred
while trying to free an EXCI pipe control block.

The source for DFHXCTRA is supplied in CICSTS42.CICS.SDFHMAC. The
parameter list passed to DFHXCTRA is defined in the copybook DFHXCTRD,
which is supplied in CICSTS42.CICS.SDFHMAC.DFHXCTRD also defines all the
external CICS interface trace points for use by DFHXCTRA.

Problem determination with RRMS
When Recoverable Resource Management Services (RRMS) is used to coordinate
DPL requests, you can obtain additional problem determination information from
RRMS.

200 CICS TS for z/OS 4.2: External Interfaces Guide

To do this, you can use ISPF dialogs, provided by Resource Recovery Services
(RRS), as follows:
v You can browse the RRS log streams.
v You can display information about RRS resource managers.
v you can dsplay information about RRS Units of Recovery.

For information about how to install and use the dialogs, see z/OS MVS
Programming: Resource Recovery.

EXCI trace entry points
Table 25. External CICS interface trace entries

Point ID Module Lvl Type Data

EX 0001 DFHXCPRH Exc PIPE_ALREADY_OPEN 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

EX 0002 DFHXCPRH Exc PIPE_ALREADY_CLOSED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

EX 0003 DFHXCPRH Exc VERIFY_BLOCK_FM_ERROR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0005 DFHXCPRH Exc XCPIP_ FM_ERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

EX 0006 DFHXCPRH Exc IRP_IOAREA_FM_ERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0008 DFHXCPRH Exc XFRASTG1_FM_ERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

Chapter 18. Problem determination for the external CICS interface (EXCI) 201

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0201 DFHXCPRH Exc NO_CICS_IRC_STARTED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0202 DFHXCPRH Exc NO_PIPE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Target CICS applid

EX 0203 DFHXCPRH Exc NO_CICS_ON_OPEN 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Target CICS applid

EX 0204 DFHXCPRH Exc NO_CICS_ON_DPL_1 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Target CICS applid

EX 0205 DFHXCPRH Exc NO_CICS_ON_DPL_2 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Target CICS applid

EX 0206 DFHXCPRH Exc NO_CICS_ON_DPL_3 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Target CICS applid

202 CICS TS for z/OS 4.2: External Interfaces Guide

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0403 DFHXCPRH Exc INVALID_APPL_NAME 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0405 DFHXCPRH Exc PIPE_NOT_CLOSED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

EX 0406 DFHXCPRH Exc PIPE_NOT_OPEN 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

EX 0407 DFHXCPRH Exc INVALID_USERID 1. Caller’s parameter list

2. Call type

3. Caller’s user name

EX 0408 DFHXCPRH Exc INVALID_UOWID 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. UOWID

EX 0409 DFHXCPRH Exc INVALID_TRANSID 1. Caller’s parameter list

2. Call type

3. Caller’s user name

EX 0414 DFHXCPRH Exc ABORT_RECEIVED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. Message to be returned

EX 0415 DFHXCPRH Exc INVALID_CONNECTION 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Connection name

5. Target CICS applid

EX 0416 DFHXCPRH Exc INVALID_CICS_RELEASE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

Chapter 18. Problem determination for the external CICS interface (EXCI) 203

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0417 DFHXCPRH Exc PIPE_MUST_CLOSE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Pipe token

EX 0418 DFHXCPRH Exc INVALID_PIPE_TOKEN 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Pipe token

EX 0422 DFHXCPRH Exc SERVER_ABENDED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. DPL return area

EX 0423 DFHXCPRH Exc SURROGATE_CHECK_FAILED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Job user ID

5. Surrogate resource name

6. ESM return code and reason
code

EX 0426 DFHXCPRH Exc INVALID_TRANSID2 1. Caller’s parameter list

2. Call type

3. Caller’s user name

EX 0427 DFHXCPRH Exc INVALID_CCSID 1. Caller’s parameter list

2. Call type

3. Caller’s user name

EX 0428 DFHXCPRH Exc INVALID_ENDIAN 1. Caller’s parameter list

2. Call type

3. Caller’s user name

EX 0603 DFHXCPRH Exc XCUSER_GM_ERROR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0604 DFHXCPRH Exc XCPIPE_GM_ERROR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

204 CICS TS for z/OS 4.2: External Interfaces Guide

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0605 DFHXCPRH Exc VERIFY_BLOCK_GM_ERROR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0606 DFHXCPRH Exc SSI_VERIFY_FAILED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0607 DFHXCPRH Exc SVC_CALL_FAILED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0608 DFHXCPRH Exc IRP_LOGON_FAILURE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Target CICS applid

6. Logon name

EX 0609 DFHXCPRH Exc IRP_CONNECT_FAIL 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Target CICS applid

EX 0610 DFHXCPRH Exc IRP_DISC_FAIL 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Target CICS applid

6. Pipe token

EX 0611 DFHXCPRH Exc IRP_LOGOFF_FAILED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Target CICS applid

6. Pipe token

Chapter 18. Problem determination for the external CICS interface (EXCI) 205

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0612 DFHXCPRH Exc TRANSFORM_1_ERROR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0613 DFHXCPRH Exc TRANSFORM_4_ERROR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0614 DFHXCPRH Exc IRP_NULL_DATA 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Target CICS applid

EX 0615 DFHXCPRH Exc IRP_NEG_RESPONSE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Target CICS applid

EX 0616 DFHXCPRH Exc IRP_SWITCH_PULL_ERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Target CICS applid

6. Pipe token

EX 0617 DFHXCPRH Exc IRP_IOAREA_GM_ERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0619 DFHXCPRH Exc IRP_BAD_IOAREA 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. IOAREA address

EX 0620 DFHXCPRH Exc IRP_PROTOCOL_ERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. Pipe token

206 CICS TS for z/OS 4.2: External Interfaces Guide

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0621 DFHXCPRH Exc PIPE_RECOVERY_FAILURE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. Pipe token

EX 0622 DFHXCPRH Exc ESTAE_SETUP_FAIL 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0623 DFHXCPRH Exc ESTAE_INVOKED 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. MVS abend code

EX 0624 DFHXCPRH Exc TIMEDOUT 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Server program name

5. Target CICS applid

EX 0625 DFHXCPRH Exc STIMER_SETUP_FAIL 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0626 DFHXCPRH Exc STIMER_CANCEL_FAIL 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

EX 0627 DFHXCPRH Exc INCORRECT_SVC_LEVEL 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. SVC instruction

EX 0800 DFHXCPRH Exc RESP shows LENGERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. COMMAREA length

6. Data length

Chapter 18. Problem determination for the external CICS interface (EXCI) 207

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 0801 DFHXCPRH Exc RESP shows INVREQ 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. DPL options specified

EX 0802 DFHXCPRH Exc RESP shows PGMIDERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Program name

5. Target CICS applid

EX 0803 DFHXCPRH Exc RESP shows ROLLEDBACK 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Program name

5. Target CICS applid

EX 0804 DFHXCPRH Exc RESP shows NOTAUTH 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Program name

5. Target CICS applid

EX 0805 DFHXCPRH Exc RESP shows SYSIDERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Program name

5. Target CICS applid

6. DPL_Retarea

EX 0806 DFHXCPRH Exc RESP shows TERMERR 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Program name

5. Target CICS applid

EX 0904 DFHXCTRP Exc Overlength trace data field 1. XCTRP parameter list

EX 0905 DFHXCTRA Exc DFHXCTRA trace entry 1. User specified data

208 CICS TS for z/OS 4.2: External Interfaces Guide

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 1000 DFHXCPRH EX 1 Entry For INIT_USER commands:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Caller’s register 14

For Allocate_Pipe requests:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. CICS name

5. Allocate options

6. Caller’s register 14

For Open, Close, and Deallocate
requests:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. CICS name

5. Pipe token

6. Caller's register 14

For DPL requests:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. CICS name

5. Pipe token

6. Program name

7. Caller's register 14

Chapter 18. Problem determination for the external CICS interface (EXCI) 209

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 1001 DFHXCPRH EX 1 Exit For INIT_USER, OPEN, CLOSE,
and DEALLOCATE requests:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Caller's register14

For Allocate requests:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

5. Pipe token

6. Caller's register 14

For DPL requests:

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS system

5. Pipe token

EX 1010 DFHXCEIP EX 1 Entry 1. Program name

2. Target CICS applid

3. Transaction ID

4. Caller's register 14

5. Up to the first 100 bytes of
COMMAREA (if passed)

6. COMMAREA length, if
COMMAREA passed

7. Data length, if COMMAREA
passed

EX 1011 DFHXCEIP EX 1 Exit 1. EXEC retarea

2. Program name

3. Target CICS applid

4. Transaction ID

5. Caller's register 14

6. Up to the first 100 bytes of
COMMAREA (if passed)

7. COMMAREA length, if
COMMAREA passed

210 CICS TS for z/OS 4.2: External Interfaces Guide

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 2000 DFHXCPRH EX 2 IRP_LOGON 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. IRP user ID

6. SLCB address

7. Connection name

EX 2001 DFHXCPRH EX 2 IRP_CONN 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. IRP user ID

6. IRP thread ID

7. SCCB address

EX 2002 DFHXCPRH EX 2 IRP_DISC 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. Pipe token

EX 2003 DFHXCPRH EX 2 IRP_LOGOFF 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Pipe token

5. IRP user ID

EX 2004 DFHXCPRH EX 2 IRP_SWITCH 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. IRP user ID

6. IRP user thread

EX 2005 DFHXCPRH EX 2 IRP_SWITCH_DATA 1. User's appl name

2. Pipe token

3. Request header

4. Bind data

5. UOWID/USERID FMH

6. Transformed DPL request to
CICS (up to 1000 bytes)

7. Final 1000 bytes of
transformed DPL request

Chapter 18. Problem determination for the external CICS interface (EXCI) 211

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 2006 DFHXCPRH EX 2 IRP_DATA 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Target CICS applid

5. Length of data returned

6. Data (first 1000 bytes)

7. Data (final 1000 bytes)

EX 2007 DFHXCPRH EX 2 PRE_URM 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Parameters passed to
DFHXCURM

5. URMINV, reason for calling
URM

6. URMCICS, target CICS applid

7. URMANCH, URM anchor
point address

EX 2008 DFHXCPRH EX 2 POST_URM 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Parameters passed to
DFHXCURM

5. URMINV, reason for calling
URM

6. URMCICS, target CICS applid

7. URMANCH, URM anchor
point address

EX 2009 DFHXCPRH EX 2 PRE-RACROUTE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Userid

5. Surrogate resource name

6. RACROUTE parameter list

EX 200A DFHXCPRH EX 2 POST-RACROUTE 1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Userid

5. Surrogate resource name

6. RACROUTE parameter list

EX 3000 DFHXCEIP Exc ESTAE_SETUP_ERROR 1. Return area (20 bytes)

2. MVS return code

EX 3001 DFHXCEIP Exc ESTAE_INVOKED 1. Return area (20 bytes)

EX 3002 DFHXCEIP Exc INV_CTYPE_ON_INIT 1. Return area (20 bytes)

2. Call type

212 CICS TS for z/OS 4.2: External Interfaces Guide

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 3003 DFHXCEIP Exc INV_VNUM_ON_INIT 1. Return area (20 bytes)

2. Version number

EX 3004 DFHXCEIP Exc INV_APPL_NAME_ON_INIT 1. Return area (20 bytes)

2. User name

EX 3005 DFHXCEIP Exc INV_CTYPE_ON_ALLOC 1. Return area (20 bytes)

2. Call type

EX 3006 DFHXCEIP Exc INV_VNUM_ON_ALLOC 1. Return area (20 bytes)

2. Version number

EX 3007 DFHXCEIP Exc INV_UTOKEN_ON_ALLOC 1. Return area (20 bytes)

2. User token

EX 3008 DFHXCEIP Exc INV_CTYPE_ON_OPEN 1. Return area (20 bytes)

2. Call type

EX 3009 DFHXCEIP Exc INV_VNUM_ON_OPEN 1. Return area (20 bytes)

2. Version number

EX 3010 DFHXCEIP Exc INV_UTOKEN_ON_OPEN 1. Return area (20 bytes)

2. User token

EX 3011 DFHXCEIP Exc INV_PTOKEN_ON_OPEN 1. Return area (20 bytes)

2. Pipe token

EX 3012 DFHXCEIP Exc INV_CTYPE_ON_DPL 1. Return area (20 bytes)

2. Call type

EX 3013 DFHXCEIP Exc INV_VNUM_ON_DPL 1. Return area (20 bytes)

2. Version number

EX 3014 DFHXCEIP Exc INV_UTOKEN_ON_DPL 1. Return area (20 bytes)

2. User token

EX 3015 DFHXCEIP Exc INV_PTOKEN_ON_DPL 1. Return area (20 bytes)

2. Pipe token

EX 3017 DFHXCEIP Exc INV_USERID_ON_DPL 1. Return area (20 bytes)

EX 3018 DFHXCEIP Exc PIPE_NOT_OPEN_ON_DPL 1. Return area (20 bytes)

2. Pipe token

EX 3019 DFHXCEIP Exc PIPE_MUST_CLOSE_ON_DPL 1. Return area (20 bytes)

2. Pipe token

EX 3020 DFHXCEIP Exc INV_CTYPE_ON_CLOSE 1. Return area (20 bytes)

2. Call type

EX 3021 DFHXCEIP Exc INV_VNUM_ON_CLOSE 1. Return area (20 bytes)

2. Version number

EX 3022 DFHXCEIP Exc INV_UTOKEN_ON_CLOSE 1. Return area (20 bytes)

2. User token

Chapter 18. Problem determination for the external CICS interface (EXCI) 213

Table 25. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 3023 DFHXCEIP Exc INV_PTOKEN_ON_CLOSE 1. Return area (20 bytes)

2. Pipe token

EX 3024 DFHXCEIP Exc INV_CTYPE_ON_DEALL 1. Return area (20 bytes)

2. Call type

EX 3025 DFHXCEIP Exc INV_VNUM_ON_DEALL 1. Return area (20 bytes)

2. Version number

EX 3026 DFHXCEIP Exc INV_UTOKEN_ON_DEALL 1. Return area (20 bytes)

2. User token

EX 3027 DFHXCEIP Exc INV_PTOKEN_ON_DEALL 1. Return area (20 bytes)

2. Pipe token

EX 3028 DFHXCEIP Exc PIPE_NOT_CLOSED_ON_DEALL 1. Return area (20 bytes)

2. Pipe token

EX 3029 DFHXCEIP Exc XCEIP_RETRYING 1. Return area (20 bytes)

EX 3030 DFHXCEIP Exc SURROGATE_CHECK_FAILED 1. Return area (20 bytes)

EX 4000 DFHXCGUR EX 1 Entry 1. DFHXCGUR parameter list

EX 4001 DFHXCGUR EX 2 Exit 1. DFHXCGUR parameter list

EX 4002 DFHXCGUR EX 1 PRE_SVC1 1. SVC parameter list

EX 4003 DFHXCGUR EX 1 POST_SVC 1. SVC parameter list

EX 4004 DFHXCGUR Exc RRMS_NOT_SUPPORTED 1. None

EX 4005 DFHXCGUR Exc RRMS_ERROR 1. None

EX 4006 DFHXCGUR Exc SVC_EXCEPTION 1. SVC return code

214 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 19. Response and reason codes returned on EXCI
calls

This section gives details of the reason codes for the responses returned on the
EXCI call interface.

Note: All numeric response and reason code values shown are in decimal.

Reason code for response: OK

0: NORMAL
Call completed normally.

Explanation

Reason codes for response: WARNING

1: PIPE_ALREADY_OPEN
An Open_Pipe request has been issued for a pipe that is already open.

Explanation

System Action

None. The pipe remains open.

User Response

If this response is unexpected, investigate whether an incorrect pipe token has been
used on the Open_Pipe call.

2: PIPE_ALREADY_CLOSED
A Close_Pipe request has been issued for a pipe that is already closed.

Explanation

System Action

The external CICS interface ignores the request and the pipe remains closed.

User Response

If the response is unexpected, check that the Close_Pipe call is specifying the
correct pipe token.

3: VERIFY_BLOCK_FM_ERROR
Initialize_User processing requires storage below 16MB to build the parameter list
for the SSI Verify call, and an error has occurred during the FREEMAIN for this
area.

© Copyright IBM Corp. 1994, 2012 215

Explanation

System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1.
The Initialize_User request continues unaffected.

User Response

If the problem persists, take a dump of the batch region and use the dump,
together with the return code from the MVS FREEMAIN, to determine why the
FREEMAIN is failing.

4: WS_FREEMAIN_ERROR
An attempt to FREEMAIN working storage has resulted in an MVS FREEMAIN
error.

Explanation

System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1.
The Initialize_User request continues unaffected.

User Response

If the problem persists, take a dump of the batch region and use the dump,
together with the return code from the MVS FREEMAIN to determine why the
FREEMAIN is failing.

5: XCPIPE_FREEMAIN_ERROR
An attempt to FREEMAIN pipe storage has resulted in an MVS FREEMAIN error.

Explanation

System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1.
However, the external CICS interface continues processing the Deallocate_Pipe
request. If the request fails with another error, this reason code is overwritten.

User Response

If the problem persists, take a dump of the client application program address
space, and use the dump, with the return code from the MVS FREEMAIN to
determine why the FREEMAIN is failing.

6: IRP_IOAREA_FM_FAILURE
An attempt to FREEMAIN an MRO I/O area has resulted in an MVS FREEMAIN
error.

Explanation

216 CICS TS for z/OS 4.2: External Interfaces Guide

System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1,
but the DPL request continued to completion. Reason IRP_IOAREA_FM_FAILURE
is returned to your application only if the DPL request completes, otherwise it is
overwritten by subsequent response and reason codes.

User Response

If the problem persists, take a dump of the batch region and use it with the return
code from the MVS FREEMAIN to determine why the FREEMAIN is failing.

7: SERVER_TERMINATED
The CICS session, on which the server program has been executing, has been freed
by CICS.

Explanation

System Action

The CICS application server program has been detached at some point in its
processing, and control is returned to the external CICS interface, which writes a
trace entry for this error.

User Response

The most likely reason for this error is that the server program has caused CICS to
terminate, perhaps by an EXEC CICS PERFORM SHUTDOWN command. During
shutdown, CICS frees EXCI sessions so that shutdown can complete.

8: XFRASTG1_FM_FAILURE
An attempt to FREEMAIN the transmission area has resulted in an MVS
FREEMAIN error.

Explanation

System Action

The return code from the FREEMAIN is returned in the EXCI subreason field-1 but
the DPL request continued to completion. Reason XFRASTG1_FM_FAILURE is
returned to your application only if the DPL request completes, otherwise it is
overwritten by subsequent response and reason codes.

User Response

If the problem persists, take a dump of the batch region and use it with the return
code from the MVS FREEMAIN to determine why the FREEMAIN is failing.

Reason codes for response: RETRYABLE

201: NO_CICS_IRC_STARTED
An Initialize_User command has been issued on an MVS image that has had no
IRC activity since the previous IPL, and the external CICS interface cannot
determine the CICS SVC number.

Chapter 19. Response and reason codes returned on EXCI calls 217

Explanation

System Action

The Initialize_User call fails, and the external CICS interface invokes the
user-replaceable module, DFHXCURM.

User Response

Ensure that a CICS region in the MVS image has logged on to IRC (that is, has
started up with the system initialization parameter IRCSTRT=YES or has started
IRC dynamically with an OPEN IRC command). Alternatively, if there is no local
CICS region in the MVS image, you must specify the SVC parameter that the
external CICS interface is to use, by coding a CICSSVC parameter in the
DFHXCOPT table. This situation can occur if you are using XCF to communicate
to a CICS region in another MVS image. Once the problem has been resolved,
re-issue the Initialize_User request.

202: NO_PIPE
An attempt has been made to open a pipe, but the target CICS system associated
with the pipe has no free receive sessions.

Explanation

System Action

The Open_pipe call fails, and the external CICS interface invokes the
user-replaceable module, DFHXCURM.

User Response

This situation can occur even if the client application program has allocated (using
Allocate_Pipe calls) no more pipes than the number of receive sessions defined on
the target connection. This is because CICS can be in the process of cleaning up a
pipe from a Close_Pipe request. For this reason, you are recommended to specify a
larger RECEIVECOUNT value than is theoretically necessary when defining the
SESSIONS resource definition to CICS. The application program can reissue the
Open_Pipe request.

203 (on Open_Pipe call): NO_CICS
An attempt has been made to open a pipe but the target CICS system is not
available, or hasn't yet opened IRC, or the target connection is out of service, or
the relevant EXCI connection definition is not installed in the target CICS.

Explanation

System Action

The open pipe request fails, and the external CICS interface invokes the
user-replaceable module, DFHXCURM.

User Response

If subreason field-1 is non-zero (the IRP response code (R15)), subreason field-2
contains the IRP reason code. For an explanation of the IRP return codes, see the

218 CICS TS for z/OS 4.2: External Interfaces Guide

interregion control blocks in the CICS Data Areas manual. The IRP return codes are
in the DFHIRSPS copybook, listed under the heading IRC.

When you have corrected the problem, your client application program can reissue
the Open_Pipe call.

204: WRONG_MVS_FOR_RRMS
A DPL request omitting the SYNCONRETURN option has been made specifying a
CICS region that is on a different MVS system from the batch program. Because
the Recoverable Resource Management Services (RRMS) context is not recognised
in the target system, the request is rejected.

Explanation

System Action

The DPL request fails, and the external CICS interface invokes the user-replacable
module, DFHXCURM.

User Response

Ensure that the batch program that issued the DPL request and the CICS region it
was sent to are on the same MVS system.

205: RRMS_NOT_AVAILABLE
A DPL request omitting the SYNCONRETURN option has been made when the
Resource Recovery Services (RRS) is not available.

Explanation

There are two cases:
v When Resource Recovery Services (RRS) is not available.
v When Resource Recovery Services has restarted since the last DPL request

omitting the SYNCONRETURN option, and there has been no intervening
syncpoint.

- -

Note: RRS is a part of Recoverable Resource Management Services (RRMS).

System Action

The DPL request fails, and the external CICS interface invokes the user-replacable
module, DFHXCURM.

User Response

Retry the DPL request when Resource Recovery Services has restarted since the
last DPL request omitting the SYNCONRETURN option, and there has been no
intervening syncpoint.

Chapter 19. Response and reason codes returned on EXCI calls 219

Reason codes for response: USER_ERROR

401: INVALID_CALL_TYPE
An invalid call-type parameter value is specified on this EXCI request.

Explanation

System Action

The request is rejected.

User Response

Check your EXCI client program and ensure the call_type parameter specifies the
appropriate value for the EXCI call, as follows.

1 Initialize_User

2 Allocate_Pipe

3 Open_Pipe

4 Close_Pipe

5 Deallocate_Pipe

6 DPL

402: INVALID_VERSION_NUMBER
The version_number parameter does not specify a value of 1 or 2.

Explanation

System Action

The request is rejected.

User Response

Check the client application program and ensure that all EXCI calls specify the
value of 1 or 2 for the version number.

403: INVALID_APPL_NAME
The user_name parameter consists of all blank characters (X'40').

Explanation

System Action

The call is rejected.

User Response

Change the application program to specify a valid, non-blank user name.

220 CICS TS for z/OS 4.2: External Interfaces Guide

404: INVALID_USER_TOKEN
The client application program has issued an EXCI request using a user token that
is unknown to the external CICS interface.

Explanation

System Action

The request is rejected.

User Response

The Initialize_User call returns a 4-byte token that must be used on all further
requests for the that user. Check the client application program and correct the
error to ensure that the correct token is passed.

405: PIPE_NOT_CLOSED
A Deallocate_Pipe request has been issued against a pipe that has not yet been
closed.

Explanation

System Action

The external CICS interface ignores the request and the pipe remains open.

User Response

Check the client application program, and ensure that the Deallocate_Pipe request
is intended. If so, issue a Close_Pipe request for the pipe before issuing the
Deallocate_Pipe request.

406: PIPE_NOT_OPEN
A DPL call has been issued on a pipe that is not open.

Explanation

System Action

The external CICS interface rejects the DPL request.

User Response

Check the client application program, and ensure that an Open_Pipe request is
issued before using the pipe on a DPL request. If an Open_Pipe has been issued by
the application program, check that it has not been closed inadvertently before all
the DPL requests have been made.

407: INVALID_USERID
A DPL request has been issued with a USERID parameter that consists of all
blanks.

Explanation

Chapter 19. Response and reason codes returned on EXCI calls 221

System Action

The DPL request is rejected.

User Response

Check the EXCI client program and ensure that the DPL request passes a valid
USERID parameter. If you don't want to specify a userid, code the call parameter
list with a null address for userid. If you pass a null address, the external CICS
interface passes the userid under which the client application program is running
(the batch region's userid).

408: INVALID_UOWID
A DPL request has been issued with a uowid parameter that has invalid length
fields.

Explanation

System Action

The DPL request is rejected.

User Response

Check the client application program and ensure that the DPL request passes a
valid uowid parameter. If you don't want to specify a unit of work id, code the call
parameter list with a null address for uowid, in which case the external CICS
interface generates a unit of work id for you.

409: INVALID_TRANSID
A DPL request has been issued with a transid parameter that consists of all blanks.

Explanation

System Action

The DPL request is rejected.

User Response

Check the client application program and ensure that the transid parameter is
specified correctly or has not been overwritten in some way. If you don't want to
specify your own transid, code the call parameter list with a null address for
transid, in which case the external CICS interface uses the default CICS mirror
transaction, CSMI.

410: DFHMEBM_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the
main message module in preparation for issuing external CICS interface messages,
and the load of this module failed.

Explanation

222 CICS TS for z/OS 4.2: External Interfaces Guide

System Action

The Initialize_User call is rejected. The return code from the MVS load macro (R15)
is returned in the subreason field-1. The external CICS interface handles the error,
and returns the abend (R0) that would have occurred in the subreason field-2.

User Response

Using the MVS return code, determine why the load failed. The most likely reason
is that the message module, DFHMEBMX, is not in any library included in the
STEPLIB of the batch job. Ensure the CICSTS42.CICS.SDFHEXCI library is included
in the STEPLIB concatenation, and restart the client application program.

411: DFHMET4E_LOAD_FAILED
The load of message module, DFHMET4E, has failed. During Initialize_User
processing, the external CICS interface attempted to load its message table in
preparation for issuing messages. The load of this module failed.

Explanation

System Action

The Initialize_User call is rejected. The return code from the MVS load macro (R15)
is returned in the subreason field-1. The external CICS interface handles the error,
and returns the abend (R0) that would have occurred in the subreason field-2.

User Response

Using the MVS reason code, determine why the load failed. The most likely reason
is that the message table, DFHMET4E, is not in any library included in the
STEPLIB of the batch job. Ensure the CICSTS42.CICS.SDFHEXCI library is included
in the STEPLIB concatenation, and restart the client application program.

412: DFHXCURM_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the
user-replaceable module, DFHXCURM. The load of this module failed.

Explanation

System Action

The Initialize_User call is rejected. The return code from the MVS load macro (R15)
is returned in the subreason field-1. The external CICS interface handles the error,
and returns the abend (R0) that would have occurred in the subreason field-2.

User Response

Using the MVS reason code, determine why the load failed. The most likely reason
is that module DFHXCURM is not in any library included in the STEPLIB of the
batch job. Ensure the library containing the module is included in the STEPLIB
concatenation, and restart the client application program.

Chapter 19. Response and reason codes returned on EXCI calls 223

413: DFHXCTRA_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the
trap module (DFHXCTRA). The load of this module has failed.

Explanation

System Action

The Initialize_User call is rejected. The return code from the MVS load macro (R15)
is returned in the subreason field-1. The external CICS interface handles the error,
and returns the abend (R0) that would have occurred in the subreason field-2.

User Response

Using the MVS reason code, determine why the load failed. The most likely reason
is that DFHXCTRA is not in any library included in the STEPLIB of the batch job.
Ensure the library containing the module is included in the STEPLIB concatenation,
and restart the client application program.

414: IRP_ABORT_RECEIVED
While processing a DPL request, an error occurred in the CICS server region,
resulting in an abort FMH7 flow being returned to the external CICS interface.

Explanation

System Action

A message is returned to the client application program. This is the message that
would have been issued to the terminal if the server program had been initiated
from a terminal. A pointer to the message is returned to the client application
program in the message pointer field of the EXCI return area. See the description
of the EXCI return areas for the exact definition of the message format. The pipe is
put into a “must close” state.

User Response

Use the message to determine the cause of the error. A typical example is where
the server transaction cannot be attached, either because is disabled, or it has not
been defined, or because of a security failure. Correct the problem, close and
reopen the pipe, and reissue the DPL request.

415: INVALID_CONNECTION_DEFN
A DPL request has been rejected by CICS because the target connection is not
defined for use by an external CICS client application program.

Explanation

System Action

The DPL request is rejected and the pipe is put into a “must close” state.

224 CICS TS for z/OS 4.2: External Interfaces Guide

User Response

The most likely reason for this is that the connection definition in the CICS server
region has been defined incorrectly as a CICS-to-CICS MRO connection, instead of
an EXCI connection. Ensure that PROTOCOL(EXCI) is specified on the appropriate
CONNECTION and SESSIONS resource definitions. You must close and reopen the
pipe before reissuing the DPL request.

416: INVALID_CICS_RELEASE
A DPL request has been rejected by the target CICS server region because it doesn't
recognize the request.

Explanation

System Action

The DPL call is rejected and the pipe is put into a “must close” state.

User Response

The most likely reason for this is that the client application program has specified
a target CICS server region that does not support the external CICS interface. CICS
regions earlier than CICS for MVS/ESA 4.1 do not recognize EXCI call requests.
Correct the problem, close and reopen the pipe and then reissue the DPL request.

417: PIPE_MUST_CLOSE
A DPL request has been issued on a pipe that is in a “must close” state.

Explanation

System Action

The DPL request is rejected.

User Response

Some EXCI errors are serious enough to require that the pipe be closed and
reopened in order to restore the pipe to a point where it can be used for further
DPL requests. Others, more minor errors, allow further calls without closing and
reopening the pipe. A previous error on this pipe has been of the more serious
variety and the pipe is now in a “must close” state. Close and reopen the pipe and
reissue the DPL request.

418: INVALID_PIPE_TOKEN
An Open_Pipe, Close_Pipe, Deallocate_Pipe, or DPL request has been issued, but
the pipe token passed on the call is either not a valid pipe, or is not a valid pipe
allocated for this user (that is, there is mismatch between the user token and the
pipe token).

Explanation

System Action

The call is rejected.

Chapter 19. Response and reason codes returned on EXCI calls 225

User Response

Ensure that the pipe token has not been overwritten and is being passed correctly
on the call. Also ensure there is no mismatch between the user token and the pipe
token.

419: CICS_AFCB_PRESENT
An Initialize_User request has been issued on a TCB that has already been used by
CICS or by CICS batch shared database. The external CICS interface cannot share a
TCB with CICS, ensuring that a CICS application program cannot issue EXCI
requests.

Explanation

System Action

The Initialize_User request is rejected.

User Response

To use the external CICS interface, you must create a new TCB (or daughter TCB),
and issue the EXCI calls under that unique TCB.

420: DFHXCOPT_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load its
options module, DFHXCOPT. The load of this module failed.

Explanation

System Action

The Initialize_User call is rejected. The return code from the MVS load macro (R15)
is returned in the subreason field-1. The external CICS interface handles the error,
and returns the abend (R0) that would have occurred in the subreason field-2.

User Response

Using the MVS reason code, determine why the load failed. The most likely reason
is that DFHXCOPT is not in any library included in the STEPLIB of the batch job.
Correct the problem and restart the client application program.

421: RUNNING_UNDER_AN_IRB
The EXCI call is issued under an MVS IRB, which is not permitted.

Explanation

System Action

The call is rejected.

User Response

Determine why the call was issued under an IRB and change the client application
program.

226 CICS TS for z/OS 4.2: External Interfaces Guide

422: SERVER_ABENDED
While processing a DPL request, the CICS server application program abended
without handling the error.

Explanation

System Action

The server application program is abended and backout out. The abend code is
returned in the abend code field of the EXCI return area.

User Response

Determine why the server program abended and fix the problem.

423: SURROGATE_CHECK_FAILED
A DPL request has been issued specifying a USERID parameter.

Explanation

The userid specified was subject to a surrogate user security because
SURROGCHK=YES is specified in the EXCI options table, DFHXCOPT. The
surrogate user check failed. The surrogate security check verifies whether the EXCI
batch region's userid is authorized as a surrogate of the userid specified on the
DPL call.

System Action

The DPL call is rejected. The MVS external security manager's return code and
reason code are returned in subreason field-1 and field-2. For RACF, these
documented in the External Security Interface (RACROUTE) Macro Reference for MVS,
GC23-3733.

User Response

If you want surrogate user checking, ensure that the EXCI batch region's userid has
READ access to the profile userid.DFHEXCI in the SURROGAT general resource
class, where userid is the userid specified on the DPL call.

If you don't want surrogate user security checking, specify SURROGCHK=NO in
the DFHXCOPT options table.

See “Surrogate user checking” on page 189 for more information.

424: RRMS_NOT_SUPPORTED
A DPL request omitting the SYNCONRETURN option has been made on a system
that is not running z/OS Release 5 (or a later, upward-compatible, release).

Explanation

System Action

The call is rejected.

Chapter 19. Response and reason codes returned on EXCI calls 227

User Response

Ensure that the batch program is run on a system that is running the correct level
of z/OS.

425: UOWID_NOT_ALLOWED
A DPL request omitted the SYNCONRETURN option, but specified a value of
UOWID. This combination of parameters is not permitted on a DPL request.

Explanation

System Action

The DPL_Request is rejected.

User Response

Check the client application program and ensure that the correct combination of
parameters is used on the DPL call.

426: INVALID_TRANSID2
A DPL request has been issued with a transid2 parameter that consists of all
blanks.

Explanation

System Action

The DPL request is rejected.

User Response

Check the client application program and ensure that the transid2 parameter is
specified correctly or has not been overwritten in some way.

427: INVALID_CCSID
A DPL request has been issued with a ccsid parameter that specifies an invalid
value.

Explanation

System Action

The DPL request is rejected.

User Response

Check the client application program and ensure that the ccsid parameter is
specified correctly or has not been overwritten in some way.

428: INVALID_ENDIAN
A DPL request has been issued with a endian parameter that specifies an invalid
value.

228 CICS TS for z/OS 4.2: External Interfaces Guide

Explanation

System Action

The DPL request is rejected.

User Response

Check the client application program and ensure that the endian parameter is
specified correctly or has not been overwritten in some way.

429: DFHXCEIX_LOAD_FAILED
During processing of an EXEC CICS LINK call, the external CICS interface attempted
to load the module (DFHXCEIX). The load of this module has failed.

Explanation

System Action

The EXEC CICS LINK call is rejected.

User Response

The most likely reason is that DFHXCEIX is not in any library included in the
STEPLIB of the batch job. Ensure the library containing the module is included in
the STEPLIB concatenation, and restart the client application program.

430: DFHXCPRX_LOAD_FAILED
During Initialize_User processing, the external CICS interface attempted to load the
module (DFHXCPRX). The load of this module has failed.

Explanation

System Action

The Initialize_User call is rejected. The return code from the MVS load macro (R15)
is returned in the subreason field-1. The external CICS interface handles the error,
and returns the abend (R1) that would have occurred in the subreason field-2.

User Response

Using the MVS reason code, determine why the load failed. The most likely reason
is that DFHXCPRX is not in any library included in the STEPLIB of the batch job.
Ensure the library containing the module is included in the STEPLIB concatenation,
and restart the client application program.

Reason codes for response: SYSTEM_ERROR

601: WS_GETMAIN_ERROR
During Initialize_User processing, a GETMAIN for working storage failed.

Explanation

Chapter 19. Response and reason codes returned on EXCI calls 229

System Action

Processing cannot continue without working storage, so the request is terminated.
At this point the external CICS interface trace and dump services are not available
to provide diagnostic information, therefore EXCI issues an MVS abend (U0408) to
force a SYSMDUMP. The return code from the MVS GETMAIN request is returned
in the return area.

User Response

Locate the GETMAIN return code in the dump, and use this and the rest of the
dump to determine why the GETMAIN failed. A possible reason for this is that the
region size specified for the job is too small. If this is the case, increase the region
size and restart the client application program.

602: XCGLOBAL_GETMAIN_ERROR
During Initialize_User processing, a GETMAIN failed for a critical control block
(XCGLOBAL).

Explanation

System Action

Processing cannot continue without this control block, and the request is
terminated. At this point the external CICS interface trace and dump services are
not available to provide diagnostic information, therefore EXCI issues an MVS
abend (U0403) to force a SYSMDUMP. The return code from the MVS GETMAIN
request is returned in the return area.

User Response

Locate the GETMAIN return code in the dump, and use this and the rest of the
dump to determine why the GETMAIN failed. A possible reason for this is that the
region size specified for the job is too small. If this is the case, increase the region
size and restart the client application program.

603: XCUSER_GETMAIN_ERROR
During Initialize_User processing, a GETMAIN request failed for the user control
block (XCUSER).

Explanation

System Action

Initialize_User processing is terminated. The return code from the GETMAIN is
returned in subreason field-1 of the return area. The external CICS interface issues
message DFHEX0003 and issues an MVS user abend (0410) to force a SYSMDUMP.

User Response

Use the return code from the GETMAIN, with the dump, to determine why the
GETMAIN failed. A possible reason for this is that the region size of the job is too
small. If this is the case, increase the region size and restart the client application
program.

230 CICS TS for z/OS 4.2: External Interfaces Guide

604: XCPIPE_GETMAIN_ERROR
During Allocate_Pipe processing, a GETMAIN request for the pipe control block
(XCPIPE) failed.

Explanation

System Action

Allocate_Pipe processing is terminated. The return code from the GETMAIN is
returned in subreason field-1 of the EXCI return area. The external CICS interface
issues message DFHEX0003, and takes a system dump.

User Response

Use the return code from the GETMAIN, and the dump, to determine why the
GETMAIN failed. A possible reason for this is that the region size for the job is too
small. If this is the case, increase the region size and restart the client application
program.

605: VERIFY_BLOCK_GM_ERROR
During Initialize_User processing, a GETMAIN failed for an EXCI internal control
block.

Explanation

System Action

Initialize_User processing is terminated. The return code from the GETMAIN is
returned in the subreason field-1 of the EXCI return area. This error occurs before
EXCI dumping services are initialized, Therefore EXCI issues an MVS abend
(U0409) to force a SYSMDUMP The return code from the MVS GETMAIN request
is returned in the return area.

User Response

Locate the GETMAIN return code in the dump, and use this and the rest of the
dump to determine why the GETMAIN failed. A possible reason for this is that the
region size specified for the job is too small. If this is the case, increase the region
size and restart the client application program.

606: SSI_VERIFY_FAILED
A VERIFY call to the MVS subsystem interface (SSI) to obtain the current CICS
SVC number failed.

Explanation

System Action

The Initialize_User request is terminated. The return code from the SSI call is
returned in subreason field-1 of the return area. This error occurs before the
external CICS interface dump services are initialized, therefore EXCI issues an
MVS user abend (0405) to force a SYSMDUMP.

Chapter 19. Response and reason codes returned on EXCI calls 231

User Response

Locate the return code in the dump, and use this with the rest of the dump and
SSI documentation to determine why the VERIFY request failed. When the
problem is resolved, restart the client application program.

607: CICS_SVC_CALL_FAILURE
During Initialize_User processing, a call to the currently installed CICS SVC failed.

Explanation

System Action

The return code from the CICS SVC is returned in the subreason field-1 of the
EXCI return area. This error occurs before the external CICS interface dump
services are initialized, therefore EXCI issues an MVS user abend (0406) to force a
SYSMDUMP.

User Response

Contact your IBM support center for assistance, with the return code and the
dump available.

608: IRC_LOGON_FAILURE
During Allocate_Pipe processing, an attempt by the external CICS interface to
LOGON to DFHIRP failed.

Explanation

System Action

The Allocate_Pipe request fails. DFHIRP returns a R15 value to subreason field-1
and a R0 value (the reason code) to subreason field-2. The first two bytes of
subreason field-1 are the return code qualifier and the last two bytes are the return
code itself.

User Response

For an explanation of the IRP return codes, see the interregion control blocks in the
CICS Data Areas manual. The IRP return codes are in the DFHIRSPS copybook,
listed under the heading IRC. Use the return codes to determine why the logon
failed, or contact your IBM support personal with details of the failure.

609: IRC_CONNECT_FAILURE
During Open_Pipe processing, an attempt to connect to the target CICS system
failed.

Explanation

System Action

The Open_Pipe request fails. DFHIRP returns a R15 value to subreason field-1 and
a R0 value (the reason code) to subreason field-2. The first two bytes of subreason
field-1 are the return code qualifier and the last two bytes are the return code itself.

232 CICS TS for z/OS 4.2: External Interfaces Guide

User Response

For an explanation of the IRP return codes, see the interregion control blocks in the
CICS Data Areas manual. The IRP return codes are in the DFHIRSPS copybook,
listed under the heading IRC.

Use the return code to determine why the logon failed, and reissue the open pipe
request.

Note: This error is not caused by the target CICS being unavailable, which is
returned as a RETRYABLE condition (NO_CICS).

610: IRC_DISCONNECT_FAILURE
During Close_Pipe processing, CICS issued a DFHIRP disconnect call to terminate
the connection to CICS. This request has failed.

Explanation

System Action

The call fails and the pipe is left open. DFHIRP returns a R15 value to subreason
field-1 and a R0 value (the reason code) to subreason field-2. The first two bytes of
subreason field-1 are the return code qualifier and the last two bytes are the return
code itself.. The external CICS interface takes a system dump.

Although the disconnect failed, it is possible that the pipe is still connected to
CICS. However, all connections are automatically disconnected at the end of the
batch program.

User Response

For an explanation of the IRP return codes, see the interregion control blocks in the
CICS Data Areas manual. The IRP return codes are in the DFHIRSPS copybook,
listed under the heading IRC. Use the return code and the dump to determine the
cause of the error.

611: IRC_LOGOFF_FAILURE
During Deallocate_Pipe processing, CICS issued a DFHIRP logoff call. This request
failed.

Explanation

System Action

The Deallocate_Pipe call fails and the pipe remains allocated. DFHIRP returns a
R15 value to subreason field-1 and a R0 value (the reason code) to subreason
field-2. The first two bytes of subreason field-1 are the return code qualifier and
the last two bytes are the return code itself. The external CICS interface takes a
system dump.

Note: Because it remains allocated, the pipe is available for further calls. Any
storage associated with the pipe is not freed. However, this storage is freed at the
end of the client application program.

Chapter 19. Response and reason codes returned on EXCI calls 233

User Response

For an explanation of the IRP return codes, see the interregion control blocks in the
CICS Data Areas manual. The IRP return codes are in the DFHIRSPS copybook,
listed under the heading IRC. Use the return code and the dump to determine the
cause of the error.

612: TRANSFORM_1_ERROR
During DPL processing, while processing the data in preparation for sending to
CICS, an internal call to program DFHXFQ resulted in an error.

Explanation

System Action

The DPL request is terminated.

User Response

The return code from the call is returned in the EXCI subreason field-1, and the
external CICS interface takes a system dump.

This is an external CICS interface error. Contact your IBM support center with
details of the return code and the dump.

613: TRANSFORM_4_ERROR
During DPL processing, while processing the data returned by the CICS server
region, an internal call to module DFHXFQ resulted in an error.

Explanation

System Action

The DPL request is terminated. Note that the server application program has
executed. The return code from the call to DFHXFQ is returned in the EXCI
subreason field-1. This return code corresponds to any EIBRCODE information that
was available. The external CICS interface takes a system dump.

User Response

This is an external CICS interface error. Contact your IBM support center with
details of the return code and the dump.

614: IRP_NULL_DATA_RECEIVED
During DPL processing, a request has been sent to the target CICS and this target
CICS has replied without returning any data.

Explanation

System Action

The DPL processing is terminated and the external CICS interface takes a system
dump.

234 CICS TS for z/OS 4.2: External Interfaces Guide

User Response

This is an internal protocol error. Contact your IBM support center with details of
the dump.

615: IRP_NEGATIVE_RESPONSE
An internal protocol error has occurred while trying to communicate with the
target CICS region.

Explanation

System Action

The DPL request fails, the pipe is put into a “must close” state, and the external
CICS interface takes a system dump.

User Response

This is an external CICS interface error. Keep the dump and contact your IBM
support center.

Note: The pipe is in a “must close” state. Before attempting further calls, the pipe
must first be closed and reopened.

616: IRP_SWITCH_PULL_FAILURE
An internal protocol error has occurred while trying to communicate with the
target CICS region.

Explanation

System Action

The DPL request fails, the pipe is put into a “must close” state, and the external
CICS interface takes a system dump. The IRP return code (R15) and reason code if
any (R0) are returned in the EXCI subreason field-1 and subreason field-2.

User Response

This is an external CICS interface error. Keep the dump and contact your IBM
support center.

Note: The pipe is in a “must close” state, and before attempting further DPL calls,
the pipe must first be closed and reopened.

617: IRP_IOAREA_GM_FAILURE
During DPL processing, an MVS GETMAIN request for an internal control block
failed.

Explanation

System Action

The DPL request is terminated. The return code from the GETMAIN is returned in
the EXCI subreason field-1.

Chapter 19. Response and reason codes returned on EXCI calls 235

Note: This error occurs while processing the data returned by CICS, after the
server application program has completed execution. This error results in the pipe
being put into a “must close” state.

User Response

Use the return code to determine why the GETMAIN failed. A possible reason for
this is that the region size of the job is too small. If this is the case, increase the
region size and restart the batch job.

619: IRP_BAD_IOAREA
During a DPL request, an I/O area has been supplied to DFHIRP that could not be
used.

Explanation

System Action

The DPL request is terminated, the pipe is forced into a “must close” state, and the
external CICS interface takes a system dump.

User Response

This is an external CICS interface error. Contact the IBM support center with
details of the return code and the dump.

Note: The pipe is in a “must close” state after this error, and before attempting
further calls must first be closed and reopened.

620: IRP_PROTOCOL_ERROR
An internal protocol error has occurred while trying to communicate with the
target CICS system.

Explanation

System Action

The DPL request is terminated, the pipe is forced into a “must close” state, and the
external CICS interface takes a system dump.

User Response

This is an external CICS interface error. Keep the dump and contact your IBM
support center.

Note: The pipe is in a “must close” state after this error, and before attempting
further calls must first be closed and reopened.

621: PIPE_RECOVERY_FAILURE
An error has occurred during an open pipe request. The external CICS interface
attempts to recover by disconnecting the pipe again. During this disconnection,
further errors have occurred.

Explanation

236 CICS TS for z/OS 4.2: External Interfaces Guide

System Action

The Open_Pipe call is terminated and the pipe is placed in a “must close” state.
The return code from DFHIRP is returned in the EXCI subreason field-1, and a
system dump is taken.

User Response

For an explanation of the IRP return codes, see the interregion control blocks in the
CICS Data Areas manual. The IRP return codes are in the DFHIRSPS copybook,
listed under the heading IRC. Use the dump and IRP return codes to determine
why the disconnect failed. You may also want to use the EXCI trace to determine
the earlier error that caused the open pipe recovery routine to be invoked.

Note: The pipe is now in a “must close” state and if further calls are to be issued,
the pipe must be closed and reopened again first.

622: ESTAE_SETUP_FAILURE
In order to protect itself from possible program checks the external CICS interface
establishes an MVS ESTAE. In this case, the MVS ESTAE macro has failed.

Explanation

System Action

The call terminated, and the return code from the MVS ESTAE command is
returned in the EXCI subreason field-1. This error may occur before EXCI dump
services are initialized, therefore an EXCI issues an MVS abend (U0402) to force a
SYSMDUMP.

User Response

Use the return code and the dump to determine why the ESTAE command failed.
This may be an internal EXCI error and if the problem persists, contact your IBM
support center.

623: ESTAE_INVOKED
A program check is encountered during call processing, and the ESTAE is invoked.

Explanation

System Action

The program check is handled by the EXCI ESTAE and an attempt is made to
recover to a state that can support further EXCI calls. The MVS abend code is
returned in the EXCI subreason field-1 of the return area. To aid further diagnosis,
a SYSMDUMP is taken.

User Response

Use the return code and the dump to determine why a program check occurred in
the external CICS interface. The most likely reason for this is that the EXCI code
abended while trying to access the client program's parameters. Use the EXCI trace
to determine if any of the parameters might have caused this error. If this is not

Chapter 19. Response and reason codes returned on EXCI calls 237

the case, this may be an error in the external CICS interface. Keep the dump and
contact your IBM support center.

624: SERVER_TIMEDOUT
A DPL request has been issued and the target server program has executed in the
CICS server region. However, the server program has been executing for longer
than the time-out value specified in the DFHXCOPT table.

Explanation

System Action

The external CICS interface stops waiting for the server program to complete.
Because the server program might complete some time after the time-out, and try
to respond to the DPL call, the pipe is forced into a “must close” state.

User Response

Determine why the server application program timed out. Either there is a problem
with the server program itself (for example, it might be in a loop), or the timeout
value is too low.

625: STIMER_SETUP_FAILURE
In order to provide a TIMEOUT mechanism, the external CICS interface issues an
MVS STIMERM macro call. This call has failed.

Explanation

System Action

The return code from the call is returned in the subreason field-1 of the EXCI
return area. The DPL request is terminated and the external CICS interface takes a
system dump. The pipe is placed in a “must close” state.

User Response

Use the MVS return code and the dump to determine why the call failed. This
could be an external CICS interface error. Contact your IBM support center with
details of the dump.

Note: The pipe is in a “must close” state after this error, and before attempting
further calls must first be closed and reopened.

626: STIMER_CANCEL_FAILURE
On successful completion of a DPL request, the cancel of an STIMERM request
issued to check the TIMEOUT value has failed with an error.

Explanation

System Action

The return code from the STIMERM CANCEL is returned in the subreason field-1
of the EXCI return area. The pipe is placed in a “must close” state, and the
external CICS interface takes a system dump.

238 CICS TS for z/OS 4.2: External Interfaces Guide

User Response

Use the return code and the dump to determine why the MVS STIMERM
CANCEL command failed. This could be an external CICS interface error. Contact
your IBM support center with details of the dump.

Note: The pipe is in a “must close” state after this error, and before attempting
further calls must first be closed and reopened.

627: INCORRECT_SVC_LEVEL
The release level of the CICS SVC (DFHCSVC) is not the same (or higher) than the
release level of the external CICS interface.

Explanation

System Action

The Initialize_User request is terminated. This error occurs before the external
CICS interface SDUMP facilities are initialized, therefore EXCI issues an MVS
abend (U0407) to force a SYSMDUMP.

User Response

Determine the level of the CICS SVC being used and ensure it is the same release
level as the external CICS interface, or higher. If the SVC number is allowed to
default (CICSSVC=0 in DFHXCOPT), the SVC number being used is the SVC first
used by a CICS region on the MVS image. That is, the SVC used by the first CICS
region to open the CICS interregion communications (IRC). If the SVC number is
specified on CICSSVC in DFHXCOPT, the SVC number specified is at an incorrect
level. For more information, see the description of the CICSSVC parameter in
Chapter 15, “Using the EXCI options table, DFHXCOPT,” on page 169.

628: IRP_LEVEL_CHECK_FAILURE
The release level of the module DFHIRP is not at the same, or higher, level than
the release level of the external CICS interface.

Explanation

System Action

The Allocate_pipe request is terminated. The IRP return code (R15) is returned in
the EXCI subreason field-1, and the function level of DFHIRP being used is
returned in the EXCI subreason field-2. Subreason field-2 is only meaningful if
subreason field-1 is zero. The external CICS interface takes a system dump.

User Response

Check the level of the DFHIRP module installed in the LPA. Ensure that it is at
least the same as the external CICS interface. The installed level of DFHIRP must
be the highest level of CICS or external CICS interface in use in the MVS image.
For more details about installing DFHIRP, see the .

Chapter 19. Response and reason codes returned on EXCI calls 239

629: SERVER_PROTOCOL_ERROR
A response to a DPL request has been returned by CICS but the external CICS
interface does not understand the response.

Explanation

System Action

The DPL request is terminated and the external CICS interface takes a system
dump.

User Response

Use the dump to determine why the response was in error. The most likely reason
for this is that the CICS application server program was not running under the
control of a CICS mirror task. This can happen if the transaction definition named
by the transid parameter on the DPL call does not specify DFHMIRS as the
program name. This would cause unidentified responses being sent from the CICS
server region.

630: RRMS_ERROR
An unexpected return code was received from Recoverable Resource Management
Services (RRMS) while processing a DPL_Request.

Explanation

System Action

DPL_Request processing is terminated.

The value in subreason field-1 of the return area indicates which RRMS interface
returned the unexpected return code:

1 CTXRCC

2 ATRRURD

3 CTXSDTA

The return code from the RRMS request is returned in subreason field-2.

The external CICS interface issues message DFHEX0002, and takes a system dump.

User Response

Use the return code from the RRMS request and the dump, to determine why the
request failed. This may be an internal EXCI error or a problem with RRMS and
you may need the assistance of your IBM support center.

631: RRMS_SEVERE_ERROR
During the processing of a DPL_Request, the EXCI code encountered an
unexpected error while using its interface with Recoverable Resource Management
Services (RRMS).

Explanation

240 CICS TS for z/OS 4.2: External Interfaces Guide

System Action

DPL_Request processing is terminated.

The external CICS interface issues message DFHEX0002, and takes a system dump.

User Response

Use the dump, to determine why the request failed. This may be an internal EXCI
error and you may need the assistance of your IBM support center.

632: XCGUR_GETMAIN_ERROR
During DPL_Request processing, a GETMAIN request for working storage for
module DFHXCGUR failed.

Explanation

System Action

DPL_Request processing is terminated.

The return code from the GETMAIN is returned in subreason field-1 of the return
area. The external CICS interface issues message DFHEX0003, and takes a system
dump.

User Response

Use the return code from the GETMAIN, and the dump, to determine why the
GETMAIN failed. A possible reason is that the region size of the job is too small. If
this is the case, increase the region size and restart the client application program.

Chapter 19. Response and reason codes returned on EXCI calls 241

242 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 20. Messages and codes

This section lists messages and abend codes for the external CICS interface.

DFHEX0001: An abend (code aaa/bbbb) has occurred in module
modname.

An unexpected program check or abend aaa/bbbb has occurred in module modname.
This implies that there may be an error in external CICS interface code.

Explanation

Alternatively, unexpected data has been passed on an external CICS interface call
or storage has been overwritten.

The code aaa/bbbb is, if applicable, a 3-digit hexadecimal MVS system completion
code aaa (for example, 0C1 or D37). If an MVS code is not applicable, this field is
filled with three hyphens. The 4-digit code bbbb, which follows aaa is, if applicable,
a user abend code produced by the external CICS interface. If the user abend code
is not applicable, this field is filled with four hyphens.

System Action

An exception entry is made in the external CICS interface internal trace table, and
to the GTF trace data set (if GTF is active), and a SYSMDUMP is taken.

The external CICS interface terminates the current request, and attempts to recover
to a consistent state so that further EXCI requests can be serviced. For an
application using the EXCI CALL API, a response of EXCI_SYSTEM_ERROR with
a REASON of ESTAE_INVOKED is returned to the application. For an application
using the EXCI EXEC API, an EXEC_RESP of LINKERR is returned to the
application, together with an EXEC_RESP2 of ESTAE_INVOKED or
EXEC_ESTAE_INVOKED, depending on whether the call level ESTAE routine, or
the EXEC level ESTAE routine was invoked.

User Response

Look up the MVS code aaa, if there is one, in the relevant MVS codes manual
which is detailed in the book list in the front of this manual.

If applicable, see the description of abend code bbbb for further guidance.

You may need further assistance from IBM to resolve this problem. See the CICS
Problem Determination Guide for guidance on how to proceed.

Destination

Console

Module

DFHXCPRH, DFHXCEIP

© Copyright IBM Corp. 1994, 2012 243

DFHEX0002: A severe error (code X'code') has occurred in module
modname.

An error has been detected in module modname. The code code is the exception
trace point ID which uniquely identifies what the error is and where the error was
detected.

Explanation

System Action

An exception entry is made in the EXCI internal trace table and to GTF if it is
active, (X'code' in the message). A system dump is taken.

This is a critical error and the EXCI request is terminated. The external CICS
interface attempts to recover to a consistent state so that further EXCI requests can
be issued. For applications using the EXCI CALL API, the EXCI_REASON returned
to the application indicates the reason for the error. For applications using the
EXCI EXEC API, the reason is returned in the EXEC_RESP2 field of the RETCODE
area.

User Response

This failure indicates a serious error in the external CICS interface code. For further
information about the EXCI exception trace entries, refer to the CICS Problem
Determination Guide.

Destination

Console

Module

DFHXCPRH, DFHXCEIP

DFHEX0003: A GETMAIN request in module modname (code X'code')
has failed. Reason X'rc'.

An MVS GETMAIN was issued by module modname, but it failed with return code
rc.

Explanation

The code code is the exception trace point ID which uniquely identifies the place
where the MVS GETMAIN was issued.

System Action

An exception entry is made in the EXCI internal trace table (code code in the
message). This is a critical error and the EXCI request is terminated. The external
CICS interface attempts to recover to a consistent state so that further EXCI
requests can be issued.

For applications using the EXCI CALL API, the EXCI_REASON returned to the
application indicates the point of failure.

244 CICS TS for z/OS 4.2: External Interfaces Guide

For applications using the EXCI EXEC API, the point of failure is returned in the
EXEC_RESP2 field of the RETCODE area.

For EXCI_REASON and EXCI_RESP of 603, the EXCI module DFHXCPRH also
issues abend 0410 which drives the ESTAE exit. Message DFHEX0001 is issued and
a SYSMDUMP is taken

User Response

Look up the MVS GETMAIN return code rc in the relevant MVS codes manual.

If the reason is insufficient storage, try increasing the size of the region for the
batch EXCI job.

You may need further assistance from IBM to resolve this problem. See the CICS
Problem Determination Guide for guidance on how to proceed.

Destination

Console

Module

DFHXCPRH, DFHXCTRI

DFHEX0004: JOBNAME: jobname, STEPNAME: stepname, PROCNAME:
procname, SYSID IN SMF: sysid, APPLID: applid.

This message accompanies message DFHEX0001 and provides the jobname,
stepname, procname, Sysid in SMF and applid to which the EXCI job is
connecting.

Explanation

If an insert value is unknown or not specified, then the message insert will show
Unknown. For example, procname and stepname are not mandatory in an EXCI
job. If they are omitted and DFHEX0004 is issued, then the inserts for procname
and stepname show Unknown.

System Action

Follow system action for DFHEX0001.

User Response

Follow user response for DFHEX0001.

Destination

Console

Module

DFHXCPRH, DFHXCEIP

Chapter 20. Messages and codes 245

DFHEX0100: The installed level of CICS SVC does not support the
EXCI call.

The external CICS interface module DFHXCPRH detected that the level of CICS
SVC (DFHCSVC) in use does not support the external CICS interface.

Explanation

System Action

The EXCI request is terminated. An exception trace is made in the EXCI internal
trace table, and if GTF is active, in the GTF trace data set. The external CICS
interface module DFHXCPRH issues abend 0407 which drives the ESTAE exit.
Message DFHEX0001 is issued, and a SYSMDUMP is taken.

User Response

Check the level of DFHCSVC installed in the LPA, which Generally, the latest level
of DFHCSVC must be used when running CICS and the external CICS interface.
For more information about installing DFHCSVC see Installing the CICS Type 3
SVC, in the CICS Transaction Server for z/OS Installation Guide.

Destination

Console

Module

DFHXCPRH

DFHEX0101: Unable to start interregion communication because
DFHIRP services are down level.

The version of DFHIRP being used is at a lower level than that of the External
CICS Interface (EXCI) module DFHXCPRH.

Explanation

System Action

The EXCI allocate pipe request is rejected, and a return code passed back to the
batch application.

User Response

Update the level of the DFHIRP module in the LPA such that it matches the level
of the latest CICS version in use.

Destination

Console

Module

DFHXCPRH

246 CICS TS for z/OS 4.2: External Interfaces Guide

DFHEX0110: EXCI SDUMP has been taken. Dumpcode: dumpcode,
Dumpid: dumpid.

This message is issued on successful completion of a MVS SDUMP issued by
external CICS interface module DFHXCDMP. An error, signalled by a previous
message, caused a call to be made to DFHXCDMP to take a system dump.

Explanation

The dump code dumpcode is an 8-character system dump code identifying the
external CICS interface problem. A system dump code is the EXCI message
number with the DFH prefix removed.

dumpid is the unique 9-character string identifying this dump.

System Action

The EXCI request is terminated.

User Response

See the EXCI message indicated by dumpcode for further guidance.

You may need further assistance from IBM to resolve this problem. See the CICS
Problem Determination Guide for guidance on how to proceed.

Destination

Console

Module

DFHXCDMP.

DFHEX0111: EXCI SDUMP attempted but SDUMP is busy - will retry
every five seconds for nnnn seconds.

At the time of the MVS SDUMP request issued by DFHXCDMP another address
space in the same MVS system was in the process of taking an SDUMP.

Explanation

This causes MVS to reject the new request. A nonzero value for the dump retry
parameter in the DFHXCOPT table means that the external CICS interface waits
five seconds before retrying the SDUMP request. If necessary, the external CICS
interface retries every five seconds for the total time specified on the retry
parameter.

System Action

The external CICS interface issues an MVS STIMERM macro which causes it to
wait for five seconds. The request is reissued when the delay interval has expired.

Chapter 20. Messages and codes 247

User Response

None.

Destination

Console

Module

DFHXCDMP.

DFHEX0112: SDUMP request failed - reason X'nn'.
Explanation

An MVS SDUMP request issued from the external CICS interface has failed to
complete successfully. The possible reasons, (reason) for the failure are as follows:

ONLY PARTIAL DUMP
The SYS1.DUMP data set to which the dump is written is not large enough
to contain all of the dumped storage.

SDUMP BUSY
At the time of the MVS SDUMP request issued by the EXCI, another
address space in the same MVS system was in the process of taking an
SDUMP. This causes MVS to reject the new request. If a nonzero value is
specified for the dump retry parameter in DFHXOPTS table, the EXCI has
retried the SDUMP request every five seconds for the specified period.
This message is only issued if SDUMP is still busy after the final retry.

STIMERM FAILED
In order to delay for five seconds before retrying SDUMP after an SDUMP
BUSY condition, the EXCI issues an MVS STIMERM macro request. MVS
has indicated that the STIMERM request has failed.

NO DATA SET AVAILABLE
No SYS1.DUMP data sets were available at the time the SDUMP request
was issued.

REJECTED BY MVS, REASON = X'nn'
MVS has rejected the SDUMP request because of user action (for example,
specifying DUMP=NO in the MVS IPL) or because of an I/O error or
terminating error in the SDUMP routine. X'nn' is the SDUMP reason code.

NOT AUTHORIZED FOR EXCI
SDUMP is not authorized for the external CICS interface.

INSUFFICIENT STORAGE
The EXCI issued an MVS GETMAIN for subpool 253 storage during the
processing of the SDUMP request. The GETMAIN has been rejected by
MVS.

System Action

The EXCI proceeds as if the dump had been successful.

248 CICS TS for z/OS 4.2: External Interfaces Guide

User Response

The user response depends on the reasons, (reason), for the failure.

ONLY PARTIAL DUMP
Increase the size of the SYS1.DUMP data sets and cause the SDUMP
request to be reissued.

SDUMP BUSY
Cause the SDUMP to be reissued after, if appropriate, increasing the dump
retry time in DFHXCOPT.

STIMERM FAILED
Use MVS problem determination methods to fix the STIMERM failure and
then cause the SDUMP request to be reissued.

NO DATA SET AVAILABLE
Clear a SYS1.DUMP data set and then cause the SDUMP request to be
reissued.

REJECTED BY MVS, REASON = X'nn'
No action is required if the dump is suppressed deliberately. If the dump
has failed because of an error in the MVS SDUMP routine, use MVS
problem determination methods to fix the error and then cause the
SDUMP request to be reissued. See the z/OS MVS Programming: Assembler
Services Reference, for an explanation of the SDUMP reason code X'nn'.

NOT AUTHORIZED FOR EXCI
This reason is unlikely because SDUMP is unconditionally authorized
during EXCI initialization, and should be authorized throughout the EXCI
run. If you do get this reason, the EXCI AFCB (authorized function control
block) has probably been accidentally overwritten.

INSUFFICIENT STORAGE
Ensure sufficient storage is available to MVS for subpool 253 requests.

Destination

Console

Module

DFHXCDMP

DFHEX0113: EXCI trace Initialization has failed.
An attempt to initialize external CICS interface (EXCI) trace facilities during EXCI
initialization has failed.

Explanation

System Action

The EXCI request continues without trace facilities. An earlier message identifies
the cause of the failure.

User Response

Refer to the earlier message to determine the cause of the failure.

Chapter 20. Messages and codes 249

Destination

Console

Module

DFHXCTRI

DFHEX0114: Incorrect data has been passed for EXCI tracing causing
a program check in DFHXCTRP.

Some data passed to the external CICS interface (EXCI) trace module DFHXCTRP
for addition to the EXCI internal trace table, or GTF trace, caused a program check
to occur when an attempt was made to access it.

Explanation

The most likely cause of this error is incorrect data passed on an EXCI CALL API
request that the trace program DFHXCTRP is attempting to access.

System Action

The EXCI request is terminated and a SYSMDUMP is taken.

User Response

Examine the dump to determine the source of the incorrect data.

You may need further assistance from IBM to resolve this problem. See the CICS
Problem Determination Guide for guidance on how to proceed.

Destination

Console

Module

DFHXCTRI

DFHEX0115: EXCI trace services have been disabled due to a previous
error.

An error occurred in the external CICS interface (EXCI) trace module DFHXCTRP
indicated by message DFHEX0001. In trying to recover from the error, module
DFHXCTRI determined that the error was not caused by accessing incorrect data
passed to DFHXCTRP, but was due to a program check in DFHXCTRP.

Explanation

System Action

The EXCI trace facilities are disabled to prevent further errors. A SYSMDUMP is
taken.

250 CICS TS for z/OS 4.2: External Interfaces Guide

User Response

See the DFHEX0001 message and the SYSMDUMP to determine the cause of the
error.

You may need further assistance from IBM to resolve this problem. See the CICS
Problem Determination Guide for guidance on how to proceed.

Destination

Console

Module

DFHXCTRI

DFHEX0116: Program check occurred within global trap exit -
DFHXCTRA now marked unusable.

After making a trace entry, the external CICS interface (EXCI) trace program
DFHXCTRP called the EXCI field engineering global trap program DFHXCTRA. A
program check occurred during execution of DFHXCTRA.

Explanation

System Action

The EXCI marks the currently active version of DFHXCTRA as unusable and
ignores it on subsequent calls to DFHXCTRP for all subsequent calls made under
this TCB. The EXCI request is terminated, and a SYSMDUMP is taken.

User Response

Use the dump to find the cause of the program check.

You may need further assistance from IBM to resolve this problem. See the CICS
Problem Determination Guide for guidance on how to proceed.

You should use the global trap exit only in consultation with an IBM support
representative.

Destination

Console

Module

DFHXCTRI

Chapter 20. Messages and codes 251

252 CICS TS for z/OS 4.2: External Interfaces Guide

Part 4. CICS ONC RPC support

Client applications can use the Open Network Computing Remote Procedure Call
(ONC RPC) format to access CICS programs as remote procedures.

This part contains:
v Chapter 21, “Introduction to ONC RPC,” on page 255
v Chapter 22, “CICS ONC RPC concepts,” on page 263
v Chapter 23, “Setting up CICS ONC RPC,” on page 273
v Chapter 24, “Configuring CICS ONC RPC using the connection manager,” on

page 279
v Chapter 25, “Programming with CICS ONC RPC,” on page 303
v Chapter 26, “CICS ONC RPC security,” on page 327
v Chapter 27, “CICS ONC RPC problem determination,” on page 333
v Chapter 28, “CICS ONC RPC performance and tuning,” on page 339

© Copyright IBM Corp. 1994, 2012 253

254 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 21. Introduction to ONC RPC

CICS ONC RPC allows client applications to access CICS programs by calling them
as remote procedures using the ONC RPC format.

CICS ONC RPC can be used:
v To allow clients to use existing CICS programs and the transaction processing

services they provide
v To allow clients to use newly created CICS programs

TCP/IP for MVS is a prerequisite for CICS ONC RPC; it provides the library code
for Sun Microsystems' ONC RPC Version 3.9. Hence, CICS ONC RPC servers work
with any remote client compatible with ONC RPC Version 3.9, regardless of
operating system or machine type. See the z/OS Communications Server:
Programmer's Reference for information about the function of ONC RPC Version 3.9
supported by TCP/IP for MVS .

Figure 29 shows how CICS ONC RPC allows a variety of client applications to
communicate with CICS programs using ONC RPC.

The CICS program called to service a client request is executed by a transaction
that has no principal facility. It is therefore not allowed to use some commands of
the CICS application programming interface:
v Terminal control commands that reference the principal facility
v Options of EXEC CICS ASSIGN that return terminal attributes
v BMS commands
v Sign-on and sign-off commands.

The rest of this chapter describes:
v “ONC RPC concepts”
v “ONC RPC facilities” on page 257
v “ONC RPC naming and routing” on page 259

ONC RPC concepts
This section introduces the basics of ONC RPC operation, its place in TCP/IP
networks, and how its main facilities work. It does not cover all aspects of ONC
RPC or TCP/IP, only those that relate to CICS ONC RPC.

CICS ONC RPC: In the rest of this information, notes like this point out how
CICS ONC RPC implements the area of ONC RPC being described in the text.

Server Network Clients

OS/390

CICS Transaction Server

CICS
program

TCP/IP
for MVS

CICS
ONC RPC

Figure 29. How CICS ONC RPC might be used

© Copyright IBM Corp. 1994, 2012 255

RPC
When a process invokes or calls a process on a remote system, that call is a remote
procedure call (RPC).

The calling process is a client (that is, a process requesting a service); the remote
process is a server (a process offering a service). As shown in Figure 30, the client
sends a request for a procedure to be run, and supplies parameters for that
particular run. Once the server has run the procedure, it returns the reply.

In the RPC model, there is no provision for coordinating changes to recoverable
resources in different servers, nor for coordinating changes to recoverable resources
in successive calls to the same server. Committing changes to recoverable resources
is under the control of the remote procedure, not the client application.

Several RPC implementations have been developed and are now available on a
variety of systems. RPC allows a programmer to network an application by
distributing the procedures that make up the application across different
processors. This is done without the programmer becoming involved with the
details of the communication interface required to transmit the parameters to and
from the remote procedures.

ONC
ONC is Open Network Computing, a range of software developed by Sun
Microsystems.

ONC is Open Network Computing, a range of software developed by Sun
Microsystems. As well as the ONC RPC routines, Sun provides XDR (eXternal Data
Representation) routines, which are used for data conversion. The ONC RPC and
XDR protocols and formats are supported on many different platforms.

CICS ONC RPC: CICS ONC RPC allows users to run only ONC RPC servers
under CICS hosts. It does not support client applications running under CICS.

TCP/IP
ONC RPC applications use the TCP/IP family of protocols.

See “TCP/IP protocols” on page 8 for more information about TCP/IP.

RPC request and parameters

Remote
procedure

Client
application

reply returned

Figure 30. Basic RPC operation

256 CICS TS for z/OS 4.2: External Interfaces Guide

ONC RPC facilities
The ONC RPC implementation consists of XDR routines the RPCGEN compiler,
and the ONC RPC API library.

XDR routines
Data exchanged between systems engaged in ONC RPC must always flow in a
standard format specified by XDR, because different machine architectures have
different representations of the same information.

Both client and server use XDR routines to convert the input and output
parameters between XDR format and the local data format. You either write these
yourself, or specify an XDR library function, as described below. In Figure 31,
inproc and outproc are the XDR routines.

Notice that in Figure 31, the same XDR routine, inproc, is used to encode and
decode the data as it flows from client to server, and similarly for outproc as it
flows back to the client. The source for inproc is the same in the client and server,
but XDR library functions in the routines are compiled to encode or decode as
appropriate. Such routines are termed bidirectional, and they help to ensure that the
encoding and decoding is done symmetrically in the two routines.

Using XDR library functions
XDR library functions are a set of C functions supplied with ONC RPC, which
application programmers can use when writing XDR routines.

They can be used as follows, depending on the complexity of the structure pointed
to by the call argument and reply parameters.

For parameters that are simple single-field C data types
Use an XDR library function for inproc and outproc.

For parameters that are C data type vectors, arrays, strings, and so on
Use an XDR library function for inproc and outproc.

For more complex structures
Write an XDR routine, using XDR library functions as required.
Alternatively, use the RPCGEN compiler, described in “RPCGEN compiler”
on page 258, to create an XDR routine from an XDR data description.

CICS ONC RPC: CICS ONC RPC supports the use of the XDR library functions
that support data conversion.

ClientServer

remote
procedure

callerinprocinproc

outproc outproc

Figure 31. XDR routines used in a remote procedure call

Chapter 21. Introduction to ONC RPC 257

RPCGEN compiler
To use RPCGEN, you write a program definition in RPCL, a language similar to a
subset of C, designed for the definition of ONC RPC distributed programs.

To use RPCGEN, you write a program definition in RPCL, a language similar to a
subset of C, designed for the definition of ONC RPC distributed programs. The
definition defines the data to be transferred and procedures to be used for both
client and server. The client application source program is written as though the
remote procedure call were a call to a local program. The code to send the call and
get the reply are part of the client stub, which is generated by RPCGEN. Similarly
the code the server needs to accept the call and send back the reply are part of the
server stub, which is also generated by RPCGEN. Figure 32 illustrates the role of
RPCGEN in application development.

CICS ONC RPC: RPCGEN may only be used for:
v Generating pairs of XDR routines, as described in the previous section
v Generating a client stub to be linked with the application for the client system
v Generating header files

CICS ONC RPC does not use the server stub generated by RPCGEN.

ONC RPC API library
The ONC RPC API library contains two types of call: high level and low level.

Client
application
source

Client
stub

Server
stub

Server
application
source

Header
files

XDR
routines

RPCL
program

RPCGEN

Client
application

Server
application

Client
object

Client
stub
object

Server
stub
object

Server
object

Link Link

C C C C

Figure 32. Using the RPCGEN compiler

258 CICS TS for z/OS 4.2: External Interfaces Guide

The high-level ONC RPC API can be used only with UDP. It enables users to make
remote procedure calls very and with a minimum of library calls, but at a cost of
some restriction in available function. The main function of the API is provided by
three calls:

registerrpc
Used in the server to register a procedure to be called as a remote
procedure by clients.

svc_run
Used in the server to see if a request has arrived from a client.

callrpc
Used in the client to make a remote procedure call.

The low-level ONC RPC API contains many more calls, which give more control
and flexibility. For example:
v Low-level calls give the user the choice of transport below ONC RPC, including

TCP or UDP.
v With low-level calls, user-written network registration services other than the

Portmapper (the Portmapper is described below) can be used.
v Low-level calls allow the variation of ONC RPC time-outs and retry values.
v Low-level calls allow standard ONC RPC authorization to be applied. Only

UNIX authorization is available in ONC RPC Version 3.9.

CICS ONC RPC: CICS ONC RPC provides all the server function. You don’t
specify any server RPC calls.

The client can make its request with the high-level call callrpc, or can use low-level
calls. CICS ONC RPC is implemented using low-level ONC RPC calls. The
implementation allows concurrent dispatching of individual procedures and allows
TCP to be supported as well as UDP.

ONC RPC naming and routing
Remote procedures in ONC RPC are identified by the 3-tuple: program number,
version number, and procedure number.

It is usual to package several related procedures together into a single program.
When changes are made to the procedures, a new version of the program is
created, but the new version usually contains the same procedure numbers as the
previous version.

Procedure zero
Users define procedure numbers for each program, conventionally starting at 1 and
proceeding in sequence.

Procedure 0 is usually defined as a procedure with no parameters and no
processing that returns an empty reply. This is useful for clients, who can call
procedure 0 to see if a particular service exists and to test performance on a null
call.

Registration and the Portmapper
Servers on a host need to let clients know their logical addresses and which
services they offer.

Chapter 21. Introduction to ONC RPC 259

In ONC RPC, servers generally do this by registering with a utility service called
the Portmapper. This maintains a list of mappings from program/version numbers
(also qualified by protocol used) to TCP/IP port numbers on a host.

The Portmapper itself can always be located by clients because it is always on
well-known port 111 on a given host. If using low-level calls, the client first asks
the Portmapper for the port number for the particular remote procedure, and then
calls that port directly. The high-level call, callrpc, performs the same function
transparently to the user.

CICS ONC RPC: Registration is done by CICS ONC RPC automatically, or under
operator control.

Routing
Before calling a procedure, a client asks the Portmapper at the host for the port
number of the program and version that the client wants to call.

Before calling a procedure, a client asks the Portmapper at the host for the port
number of the program and version that the client wants to call. (The protocol is
determined when the connection between TCP/IP systems is set up.) In the remote
procedure call, the client supplies only the IP address, port number, and procedure
number. Figure 33 shows how the IP address, port number, and procedure number
identify the server procedure.

Types of remote procedure call
These are the five types of remote procedure call.

Synchronous
This is the normal method of operation. The client makes a call and does
not continue until the server returns the reply.

Nonblocking
The client makes a call and continues with its own processing. The server
does not reply.

Batching
This is a facility for sending several client nonblocking calls in one batch.

Broadcast RPC
RPC clients have a broadcast facility, that is, they can send messages to
many servers and then receive all the consequent replies.

Procedure number

IP address

Port number

Program number

Version number

Protocol

Figure 33. TCP/IP and RPC routing

260 CICS TS for z/OS 4.2: External Interfaces Guide

Callback RPC
The client makes a nonblocking client/server call, and the server signals
completion by calling a procedure associated with the client.

CICS ONC RPC: CICS ONC RPC cannot support callback RPC, because
callback requires that both ends contain both client and server procedures.

Chapter 21. Introduction to ONC RPC 261

262 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 22. CICS ONC RPC concepts

This section describes the CICS ONC RPC components and control flow.

It describes:
v “ONC RPC remote procedures and CICS programs”
v “CICS ONC RPC transactions” on page 264
v “CICS ONC RPC user-replaceable programs” on page 265
v “CICS ONC RPC control flow” on page 266
v “CICS ONC RPC data flow” on page 268

ONC RPC remote procedures and CICS programs
In CICS ONC RPC, the CICS programs are identified by a 4-tuple.
v Program number—same as the ONC RPC program number
v Version number—same as the ONC RPC version number
v Procedure number—same as the ONC RPC procedure number
v Protocol—determined by the protocol used to communicate between the client

system and z/OS Communications Server.

When a client request arrives, the CICS program chosen to service it is the one
associated with the 4-tuple just described. Figure 34 shows a state of CICS ONC
RPC in which five 4-tuples are associated with three CICS programs.

The program numbers are given in hexadecimal. The protocols are U for UDP and
T for TCP.
v If a client request arrives for program 24127AC0, version 5, procedure 1, the

CICS program PROGA is used to service it whether the protocol is TCP or UDP.
v If a request arrives for program CE00457F, version 3, procedure 1, and the

protocol is UDP, the CICS program PROGB is used to service it. But if the same
request arrives and the protocol is TCP, PROGC is used to service it.
It is, however, usual to use the same program, version, and procedure
irrespective of the protocol used to transmit the request.

v The CICS program PROGC is also used for procedure 2 of the same program
and version if the protocol is TCP.

24127AC0

24127AC0

CE00457F

CE00457F

CE00457F

5

5

3

3

3

1

1

1

1

2

U

T

U

T

T

PROGA

PROGB

PROGC

4-tuples CICS programs

Figure 34. Remote procedures and CICS programs

© Copyright IBM Corp. 1994, 2012 263

How you set up and control the relationship between 4-tuples and CICS programs
is described in Chapter 24, “Configuring CICS ONC RPC using the connection
manager,” on page 279.

Where the CICS program might be
The CICS program might be in one of three places.
v In the same CICS region as CICS ONC RPC
v In a different CICS region on the same host
v On a different host that supports CICS and inbound DPL

The CICS programs can reside on any CICS system accessible with DPL from the
CICS region running CICS ONC RPC. DPL operation is described in the Overview
of DPL.

CICS ONC RPC transactions
Three CICS transactions are supplied with CICS ONC RPC: connection manager,
server controller, and alias.

Connection manager (CRPC)
The connection manager is a transaction that allows you to enable and disable
CICS ONC RPC, and configure and inquire on it.

You run the connection manager transaction as required, and several instances of it
can be active at the same time. The connection manager is described in Chapter 24,
“Configuring CICS ONC RPC using the connection manager,” on page 279.

Server controller (CRPM)
The server controller monitors the z/OS Communications Server interface for client
requests, and starts instances of the alias transaction, using EXEC CICS START, to
service them.

The server controller is a transaction of long duration. It is started by the
connection manager when CICS ONC RPC is enabled, and stopped when CICS
ONC RPC is disabled. Only one instance of the server controller can be active in a
CICS system.

Alias (CRPA)
CICS ONC RPC supplies one alias program. Multiple instances of the alias
transaction can be run in parallel, each in response to a client request.

An alias is started by the server controller for each client request that arrives to be
processed, as shown in Figure 35 on page 265. This allows CICS ONC RPC to
process many client requests concurrently.

The alias program uses EXEC CICS LINK to transfer control to the CICS program.

264 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht1kd.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht1kd.html

CICS ONC RPC user-replaceable programs
Servicing a client request involves not only a CICS program, but a converter
program and XDR routines. For compatibility with earlier releases of CICS you can
use a resource checker program to validate incoming client requests, or you can
use CICS security facilities.

XDR routines
You need to provide one or two XDR routines for each 4-tuple. You always need
an inbound XDR routine, and unless the client call is nonblocking, you need an
outbound XDR routine as well.

XDR (eXternal Data Representation) is described in “XDR routines” on page 257.

The XDR routines for each 4-tuple are specified by using the connection manager.

Resource checker module
CICS ONC RPC provides an interface to a resource checker (which you write).

Converters
You can also supply a converter for each program-version-procedure-protocol
4-tuple.

Each converter can contain up to three functions.
v Getlengths function. The Getlengths function might be called by the connection

manager when a 4-tuple is registered. Getlengths can supply the following
information:
– The length of the input and output data for the CICS program
– Whether the output data overlays the input data in the communication area
Because its processing is done before any client requests are received, It is
appropriate to use Getlengths to provide the values of data lengths that do not

Alias
transactions

CICS
programs

Server
controller

EXEC CICS START

EXEC CICS LINK

Client requests
from
TCP/IP

Figure 35. The server controller and alias transactions

Chapter 22. CICS ONC RPC concepts 265

vary from call to call. Refer to “Lengths of the CICS program input and output
data” on page 307 for a fuller description of when Getlengths should be used
for this purpose.

v Decode function. The Decode function is called by the server controller on
receipt of a client request. Decode can do the following:
– Supply the length of the input and output data for the CICS program. If the

parameter lengths vary from call to call, Decode should return them for the
current call.

– Reconstruct the data from the client as a communication area for the CICS
program. “CICS ONC RPC data flow” on page 268 illustrates the kinds of
data that Decode might have to handle. The incoming data might include
pointers, and Decode must gather up the incoming data into the
communication area.

– Convert data structures from C format to the format appropriate to the
programming language in which the CICS program is written.

– Process data from the client that is not intended for the CICS program. For
example the data from the client might include the name of the CICS
program to be called, and Decode can feed this information back to the server
controller.

v Encode function. The Encode function is called by the alias when the CICS
program ends. Encode can do the following:
– Reconstruct the data from the communication area into the form expected by

the client. “CICS ONC RPC data flow” on page 268 illustrates the kinds of
data that Encode might have to handle. The client might expect to receive
data accessed by pointers, and Encode must build this structure from the data
in the communication area.

– Convert data structures from the format appropriate to the programming
language in which the CICS program is written into C format.

Not all 4-tuples need a converter with all three functions. You use the connection
manager to specify the converter and the use of Getlengths, Decode, and Encode
for each 4-tuple.

The way that particular language data structures are stored is documented in the
appropriate language manuals, and a correspondence between C data types and
those in other languages is given in the z/OS Language Environment Programming
Guide.

For detailed instructions on the writing of converters, refer to “Write the CICS
ONC RPC converter” on page 307.

CICS ONC RPC control flow
This shows the components involved in processing a typical client ONC RPC
request.

266 CICS TS for z/OS 4.2: External Interfaces Guide

Client requests are processed in the following steps:
1. A request from a client arrives in z/OS Communications Server.
2. The server controller monitors the z/OS Communications Server interface for

incoming client requests, and the client request is passed to it. (From the
4-tuple for the request, the server controller can find the corresponding XDR
routine and converter to call.)

3. The server controller invokes the inbound XDR routine.
4. The server controller calls the converter, requesting the Decode function, if it

is required for the 4-tuple. If Decode is not required, the server controller
allocates storage for the CICS program communication area.

5. The server controller then starts an alias to deal with all further processing of
the request within CICS.

6. The server controller returns to monitor the z/OS Communications Server
interface for client requests.

7. The alias optionally calls a user-written resource checker.
8. The alias issues an EXEC CICS LINK to the CICS program for the 4-tuple. The

communication area set up by Decode is passed in the LINK command.
9. The CICS program processes the request and returns its output to the alias

program in the communication area.
10. The alias calls the Encode function, if it is required for the 4-tuple.

OS/390

CICS Transaction Server

Request from

client

Reply to

client

TCP/IP for MVSServer
controller

XDR
inbound

XDR
outbound

Converter
(Decode)

Converter
(Encode)

Alias

CICS
program

Resource
checker

Figure 36. Call processing

Chapter 22. CICS ONC RPC concepts 267

11. The alias invokes the outbound XDR routine.
12. The alias returns the reply to z/OS Communications Server, and ends.
13. The reply is sent back to the client.

Updating recoverable resources
After Decode processing, the server controller uses EXEC CICS SYNCPOINT to commit
any changes to recoverable resources that Decode might have made.

If the CICS program makes updates to recoverable resources, whether the changes
are committed or backed out depends on the location of the CICS program, and on
whether it uses the EXEC CICS SYNCPOINT command.
v If the CICS program is in a CICS region different from the one in which CICS

ONC RPC is operating, the updates are committed when the CICS program
returns control to the alias.

v If the CICS program is in the same CICS region as CICS ONC RPC, and it uses
EXEC CICS SYNCPOINT, the updates are committed when the syncpoint is
processed.

v If the CICS program is in the same CICS region as CICS ONC RPC, but it does
not use EXEC CICS SYNCPOINT, the updates are committed when the alias
transaction ends normally, or are backed out when the alias transaction abends.

CICS ONC RPC data flow
This section describes data flow from a client to a CICS program, and from a CICS
program back to the client.

From client to CICS program
This diagram shows the progress of data from the client to the CICS program
during a remote procedure call.

268 CICS TS for z/OS 4.2: External Interfaces Guide

In this example the processing is as follows:
1. The client call has a parameter which includes a pointer to data that is to be

passed to the CICS program. The client's outbound XDR routine packages the
parameter and the indirect data for transmission to the host.

2. The data is transmitted over the network to the host.
3. In the host, the inbound XDR routine rebuilds the data as it was in the client.
4. The Decode function of the converter reorganizes the data into a

communication area for the CICS program.

Data format in the CICS program communication area
If the call is a blocking call, the position in the CICS program's communication
area of data to be returned to the client has to be specified. The data in the CICS
program's communication area can be organized in two ways.
v Contiguous—the data to be returned to the client does not start at the beginning

of the communication area, but at some offset into it.
v Overlaid—the data to be returned starts at the beginning of the communication

area. The CICS program overwrites the inbound client data in this area with any
data to be returned to the client.

Figure 38 on page 270 illustrates these two possibilities.

Data in host

Parameter

Parameter

pointer Data in client

XDR in host (inbound)

XDR in client (outbound)

Decode

Communication area
for CICS program

Data as transmitted

pointer

etc

etc

... int

... double

... int

... double

Figure 37. Data flow from client to CICS program

Chapter 22. CICS ONC RPC concepts 269

From CICS program to client
This shows the progress of data from the CICS program back to the client.

The processing is as follows:
1. The CICS program's output is in the communication area that was created by

the Decode function. The Encode function reorganizes the data in the manner
that the client expects. In this case the client is expecting to get back a structure

Contiguous Overlaid

input output
output

input

Figure 38. Use of communication area according to data format

Data as transmitted

pointer

pointer

pointer

pointer

Communication area
from CICS program

Data in host

Data in client

XDR in host (outbound)

XDR in client (inbound)

Encode

Parameter

Parameter

Parameter

Figure 39. Data flow from CICS program to client

270 CICS TS for z/OS 4.2: External Interfaces Guide

including two pointers to indirect data. The Encode function puts the data in a
single area of storage to simplify storage management processing when the
area is to be freed.

2. The outbound XDR routine packages the data for transmission.
3. The data is transmitted over the network to the client.
4. In the client, the inbound XDR routine rebuilds the data as it was in the host.

Chapter 22. CICS ONC RPC concepts 271

272 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 23. Setting up CICS ONC RPC
Clients

Clients must access servers on CICS ONC RPC over a TCP/IP network.

Client systems must use a library compatible with the library for ONC RPC
Version 3.9, as this is the ONC RPC version supported by TCP/IP for MVS
(Versions 2.2.1 and 3.1). To communicate over a TCP/IP network, appropriate
hardware and software must be in place.

MVS

The following items are prerequisite, that is, must be installed on the MVS
system for CICS ONC RPC to run.
v TCP/IP for MVS Version 2.2.1 or above. TCP/IP for MVS ports must be

made available for use by the CICS region involved.
v Language Environment. This provides the C runtime libraries that are a

prerequisite for running CICS ONC RPC.
v If you are using RPCGEN, or writing your own XDR routines, you need a C

compiler to compile RPCGEN output and your XDR routines.

CICS

CICS must be set up for Language Environment support, as described in the
CICS Transaction Server for z/OS Installation Guide and in the z/OS Language
Environment Customization.

Note: TCP/IP for MVS CICS Sockets is not a prerequisite for CICS ONC RPC.

TCP/IP for MVS

CICS ONC RPC and TCP/IP for MVS CICS Sockets Version 2.2.1 cannot
operate together from one CICS region to one TCP/IP for MVS region. You are
advised to run CICS Sockets and CICS ONC RPC in different CICS regions.

TCP/IP for MVS Version 3.1 users do not have this problem; CICS Sockets and
CICS ONC RPC can both be run from the same CICS region.

TCP/IP for MVS 2.2.1

There are no prerequisites for running CICS ONC RPC.

Note: CICS ONC RPC and TCP/IP for MVS CICS Sockets Version 2.2.1
cannot operate together from one CICS region to one TCP/IP for MVS region.
You are advised to run CICS Sockets and CICS ONC RPC from different CICS
regions.

TCP/IP for MVS 3.1

The following PTF is a prerequisite for running CICS ONC RPC:
v A PTF, number UN79963, related to the use of the xdr_text_char XDR

library function.

Note: CICS ONC RPC and TCP/IP for MVS CICS Sockets Version 2.2.1
cannot operate together from one CICS region to one TCP/IP for MVS region.
You are advised to run CICS Sockets and CICS ONC RPC from different CICS
regions.

Storage requirements

© Copyright IBM Corp. 1994, 2012 273

Except where otherwise noted, the storage used by CICS ONC RPC is obtained
from CICS subpools.

When CICS ONC RPC is enabled, its storage requirements are as follows:
v 40 KB base storage
v 100 bytes for each registered 4-tuple.

For each client request being processed the following storage is required:
v MVS-controlled storage used by the inbound XDR routine for internal data

structures
v Storage used by the inbound XDR routine for the data structure it builds for

the Decode function
v Storage for the CICS program communication area
v Storage used by the alias transaction while running the CICS program
v Storage used by the Encode function to create a data structure for the

outbound XDR routine
v MVS-controlled storage used by the outbound XDR routine

CICS ONC RPC setup tasks
There are tasks associated with the CICS ONC RPC data set, dump formatting, and
a warning about migration.

Creating the CICS ONC RCP data set
JCL is provided in the DFHCOMDS job to create the CICS ONC RPC data set.

The data set is defined as a VSAM key-sequenced data set by a DEFINE CLUSTER
command like the following:
DEFINE CLUSTER (-

NAME(xxxxxxxx.CICSONC.RESOURCE) -
CYL (2 1) -
KEYS(19 0) -
INDEXED -
VOLUME (vvvvvv) -
RECORDSIZE(150 150) -
FREESPACE(5 5) -
SHAREOPTIONS(1) -
)

The job to define the data set must be run before you start the connection manager
for the first time.

JCL entry for dump formatting
To switch dump formatting on for CICS ONC RPC (and for all running features),
change the IPCS VERBEXIT control statement.
IPCS VERBEXIT DFHPD670 FT=2

The VERBEXIT provides a formatted dump of CICS ONC RPC control blocks.

Migrating between CICS versions
CICS ONC RPC is part of the CICS Transaction Server base. None of the
IBM-supplied programs for CICS ONC RPC can be moved to CICS Transaction
Server from earlier releases.

274 CICS TS for z/OS 4.2: External Interfaces Guide

Modifying z/OS Communications Server data sets
You can define the CICS Transaction Server region to z/OS Communications
Server in the TCPIP.PROFILE. data set to reserve specific ports for ONC RPC
applications.

This is described in z/OS Communication Server: IP Configuration Guide.

Defining CICS ONC RPC resources to CICS
CICS ONC RPC provides two RDO groups defining CICS resources used by CICS
ONC RPC: DFHRP and DFHRPF.

Transaction definitions for CICS ONC RPC transactions
These CICS ONC RPC transactions are defined in the locked group DFHRP.

CRPA Alias

CRPC Connection manager

CRPM
Server controller

These definitions cannot be changed.

Transaction definitions for extra alias transactions
You may want to use other alias transaction names for various reasons.
v Auditing purposes
v Resource and command checking
v Allocating initiation priorities
v Allocating database plan selection
v Assigning different runaway values for different CICS programs

If you do, you must also define these to CICS, copying the definition from CRPA,
and making amendments as necessary. The CRPA definition is as follows:
DEFINE TRANSACTION(CRPA) GROUP(DFHRP)

PROGRAM(DFHRPAS) TWASIZE(0)
PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(BELOW) TASKDATAKEY(USER)
RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)
PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) INDOUBT(BACKOUT)
SPURGE(YES) TPURGE(NO)
RESSEC(NO) CMDSEC(NO)

If you want a CICS program to run under an alias with a name other than CRPA,
you can enter this in the connection manager when defining the attributes of the
4-tuple associated with the CICS program, as described in “Defining the attributes
of a 4-tuple” on page 287. The name of the alias can also be changed by the
Decode function, as described in “Changing the alias and CICS program” on page
308.

Changing the CMDSEC and RESSEC values
You might want to define new alias transactions with CMDSEC(YES) or
RESSEC(YES) in order to enforce security checking on the programs run under the
alias transaction, including the CICS program that services the client request.

Chapter 23. Setting up CICS ONC RPC 275

None of the IBM-supplied programs used by the alias use any of system
programmer interface (SPI) commands, so CMDSEC need not be changed.
However, if you want to oversee the use of SPI commands by the CICS program,
resource checker, or Encode function of the converter, CMDSEC(YES) is required.

Program definitions for CICS ONC RPC programs
All the CICS ONC RPC programs are defined in the locked group DFHRP.

Program definitions for user-written programs
You need to make definitions for: CICS programs, converters, user-written XDR
routines, and a resource checker.

LANGUAGE option
User-written XDR routines should be defined with LANGUAGE(C). Converters
and CICS programs should be defined with an appropriate LANGUAGE.

CEDF option
Program definitions for CICS programs must include CEDF(YES) if EDF is
required for debugging.

If you want to use EDF, you must enter a terminal ID in the connection manager
when defining the attributes of the 4-tuple associated with the CICS program, as
described in “Defining the attributes of a 4-tuple” on page 287.

EXECKEY option
CICS operates with storage protection only if the SIT parameter STGPROT is set to
YES, and the system has the required hardware and software.

Converters and the resource checker should not be regarded as application
programs when defining storage. You are recommended to define them as
EXECKEY(CICS). This allows them to modify CICS-key storage.

When the Decode and Encode functions allocate storage to hold the converted
data, that storage should be allocated as CICS-key.

User-written XDR routines must be defined as EXECKEY(CICS).

CICS programs should be defined as EXECKEY(USER), unless there is some reason
for defining them as CICS-key in your CICS system. Defining programs as
EXECKEY(USER) prevents them from overwriting CICS.

If you specify EXECKEY(USER) for the CICS program, ensure that
TASKDATAKEY(USER) is specified for the alias. USER is the default
TASKDATAKEY setting in the alias definition in the supplied group DFHRP.

If you have CICS programs that need to be specified with EXECKEY(CICS), you
are advised to specify TASKDATAKEY(CICS) for the alias that will execute them.

RELOAD option
You should specify RELOAD(YES) for any user-written XDR routines to prevent
errors in CICS ONC RPC disable processing.

276 CICS TS for z/OS 4.2: External Interfaces Guide

Definitions for remote CICS programs
If a CICS program that is to service a remote procedure call runs in a different
CICS system from CICS ONC RPC, a program definition is required on both the
local system and the remote system.

The program resides on the remote system, so its definition there is
straightforward. The program definition on the local system:
v Must include a REMOTESYSTEM parameter to specify the system on which the

program resides.
v Can optionally include a REMOTENAME parameter if you want the names on

the local system and remote system to be different.
v Can optionally include a TRANSID parameter:

– If TRANSID is not specified, the CICS program runs under the CICS mirror
transaction on the remote CICS system.

– If TRANSID is specified, the program in the remote CICS system runs under
the transaction name given. See “Transaction definitions for extra alias
transactions” on page 275 for reasons why you may want a different name.
If the remote transaction ID is specified, you must provide a matching
transaction definition in the remote CICS system. This definition must specify
the appropriate mirror program for the remote system (DFHMIRS for CICS
for MVS/ESA and CICS Transaction Server for z/OS systems).

If a CICS program is running on a CICS platform other than CICS for MVS/ESA
or CICS Transaction Server for z/OS similar considerations apply, but you should
refer to the DPL details for that platform.

Mapset definition
Mapset definitions are supplied in the group DFHRP for the connection manager
mapsets. The definitions cannot be changed.

Transient data definitions
CICS provides a resource definition for the CICS ONC RPC message transient data
queue CRPO. The resource definition is in group DFHDCTG, which is part of
DFHLIST.

Group DFHDCTG is not protected by a lock, so the definitions it contains can be
modified if required. CRPO is defined as an extrapartition queue, but you can
make the destination intrapartition or indirect if you prefer.

If you leave CRPO defined as an extrapartition queue, you must add a suitable DD
statement for the extrapartition queue in the CICS JCL, for example:
//CRPO DD SYSOUT=A

XLT definitions
The XLT system initialization parameter and its associated transaction list should
allow the connection manager, CRPC, to be started during normal CICS shutdown.
If CICS ONC RPC is delaying shutdown, the connection manager can be used to
force an immediate disable of CICS ONC RPC.

Chapter 23. Setting up CICS ONC RPC 277

|

|
|
|

|
|
|

|
|

|

|

278 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 24. Configuring CICS ONC RPC using the connection
manager

The connection manager has four main functions.
v Enabling CICS ONC RPC
v Disabling CICS ONC RPC
v Controlling the operating options and 4-tuple information stored in the CICS

ONC RPC data set
v Controlling the operating options and 4-tuple information in current use when

CICS ONC RPC is enabled

The rest of this chapter describes:
v “Starting the connection manager”
v “Updating CICS ONC RPC status” on page 282
v “Enabling CICS ONC RPC” on page 284
v “Defining, saving, modifying, and deleting 4-tuples” on page 286
v “Registering the 4-tuples” on page 291
v “Unregistering 4-tuples” on page 292
v “Disabling CICS ONC RPC” on page 294
v “Updating the CICS ONC RPC data set” on page 296
v “Processing the alias list” on page 300

Starting the connection manager
You can start the connection manager in various ways.
v From a terminal that supports BMS maps. You can work with the connection

manager panels described in this section.
v From a CICS console.
v Using an EXEC CICS START command.
v From a sequential terminal.

The effect of starting the connection manager depends on:
v Whether CICS ONC RPC is enabled or disabled
v Whether you start the connection manager from a terminal that permits the use

of BMS
v Whether you enter additional data with the transaction name
v Whether the Automatic Enable option in the CICS ONC RPC definition record is

set to YES

When CICS ONC RPC is disabled, the effect of entering the transaction name (and
optional additional data) on a terminal that supports BMS is as follows:

CRPC

v If Automatic Enable is YES, automatic enable processing occurs.
v If Automatic Enable is NO, a BMS panel (DFHRP01) is shown.
v If there is no CICS ONC RPC definition record yet, a BMS panel

(DFHRP01) is shown.

CRPC E A(N)

© Copyright IBM Corp. 1994, 2012 279

v A BMS panel (DFHRP01) is shown.

CRPC E A(Y)

v Automatic enable processing occurs. If there is no CICS ONC RPC
definition record, one is created using default values for the options, but
no 4-tuples are registered.

If you start the connection manager in a way that does not allow panels to be
shown (EXEC CICS START, or non-BMS terminal, for example) and the action is to
show a panel, error message DFHRP1505 is produced.

When CICS ONC RPC is enabled, the effect of entering the transaction name (and
optional additional data) is as follows:
v CRPC displays panel DFHRP04, or produces error message DFHRP1505 if

panels cannot be shown.
v CRPC D(N) causes normal disable processing.
v CRPC D(I) causes immediate disable processing.

The forms CRPC E A(N), CRPC E A(Y), CRPC D(N), and CRPC D(I) are called
fast-path commands.

z/OS Communications Server should be started before you try to enable CICS
ONC RPC with the connection manager, otherwise you cannot register 4-tuples,
and you have to reenable CICS ONC RPC after starting z/OS Communications
Server.

CRPC CICS ONC RPC for MVS/ESA DFHRP01

Select one of the following. Then press Enter.

_ 1. Enable CICS ONC RPC
2. View or modify the CICS ONC RPC data set

Current Status: Disabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 40. Panel DFHRP01

280 CICS TS for z/OS 4.2: External Interfaces Guide

Using the connection manager BMS panels
All leading and trailing blanks are ignored on BMS input.

At the top of all panels is a panel identifier in the right corner (for example,
DFHRP02) and CRPC in the left corner.

On the bottom of all panels, the fourth line from the bottom gives the status of
CICS ONC RPC, the third line from the bottom is a prompt line, while the bottom
line lists the available PF keys, which can include:

PF1 Help information (all panels)

PF2 Delete definition from the CICS ONC RPC data set (only where shown)

PF3 Exit CRPC (you are prompted to confirm by using PF3 again)

PF4 Write fields to the CICS ONC RPC data set (only where shown)

PF7 Scroll up (only where shown)

PF8 Scroll down (only where shown)

PF9 Display messages relating to current input

PF12 Cancel this panel and return to the previous panel

Connection manager error message output
The destination of connection manager messages depends on the nature of the
message.
v Severe errors requiring operator intervention are sent to the console. No other

messages go to the console.
v Messages relating to invalid input on the panel can be displayed by pressing

PF9.
v Messages reporting internal errors are sent to CRPO, and in most cases they can

be displayed on the terminal by pressing PF9.

CRPC CICS ONC RPC for MVS/ESA DFHRP04

Select one of the following. Then press Enter.

_ 1. Disable CICS ONC RPC
2. View or modify the CICS ONC RPC data set
3. View or modify CICS ONC RPC status

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages

Figure 41. Panel DFHRP04

Chapter 24. Configuring CICS ONC RPC using the connection manager 281

Using PF9 to display messages
During the operation of the connection manager, error messages might be issued.

These are not displayed immediately on the screen, but a prompt appears on the
prompt line to say that messages are waiting to be viewed. To see the messages,
press PF9. The number and text of the messages is displayed. You can look up the
messages in CICS Messages and Codes for more information about errors, and for
advice about what to do next.

When you have read the messages, you can press Enter, PF3, or PF12 to return to
the input panel.

Starting the connection manager when CICS ONC RPC is
disabled

If CICS ONC RPC is disabled, panel DFHRP01 is shown.

(See Figure 40 on page 280.)

Select an option, then press Enter.

Option For more information see:

1 “Enabling CICS ONC RPC” on page 284

2 “Updating the CICS ONC RPC data set” on page 296

Starting the connection manager when CICS ONC RPC is
enabled

If CICS ONC RPC is enabled, panel DFHRP04 is shown.

(See Figure 41 on page 281.)

Select an option, then press Enter.

Option For more information see:

1 “Disabling CICS ONC RPC” on page 294

2 “Updating the CICS ONC RPC data set” on page 296

3 “Updating CICS ONC RPC status”

Updating CICS ONC RPC status
If you select option 3 on panel DFHRP04, panel DFHRP10 is shown.

282 CICS TS for z/OS 4.2: External Interfaces Guide

Select an option, then press Enter.

Option For more information see:
1 “Changing the CICS ONC RPC status”
2 “Defining, saving, modifying, and deleting 4-tuples” on page 286
3 “Unregistering 4-tuples” on page 292
4 “Processing the alias list” on page 300

Changing the CICS ONC RPC status
If you select option 1 on panel DFHRP10, panel DFHRP16 is shown.

You can type over any of the entries except CRPM Userid to change the values
currently used by CICS ONC RPC. CRPM Userid is displayed only for
information. CRPM Userid cannot be changed without first disabling CICS ONC
RPC.

CRPC CICS ONC RPC for MVS/ESA Update Status DFHRP10

Select one of the following. Then press Enter.

_ 1. Change CICS ONC RPC settings
2. Register procedure(s)
3. Unregister procedure(s)
4. View or modify alias list

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 42. Panel DFHRP10

Chapter 24. Configuring CICS ONC RPC using the connection manager 283

Enabling CICS ONC RPC
You can enable CICS ONC RPC in two ways: operator-assisted enable, or
automatic enable.

When CICS ONC RPC is disabled, the connection manager allows you to:
v Create or update the CICS ONC RPC definition record in the data set
v Add, delete, and change 4-tuple records in the data set
v Enable CICS ONC RPC

You can use the connection manager to enable CICS ONC RPC in two ways:
v Operator-assisted enable—before you enable CICS ONC RPC, you can:

– Modify any or all of the options
– Select which 4-tuples are to be registered
– Modify the attributes of 4-tuples before registration
When you enable CICS ONC RPC, options to control its operation come into
play, and 4-tuples can be registered.
The changes you make during an operator-assisted enable can be temporary,
lasting only until the next time you disable CICS ONC RPC, or you can store
them into the CICS ONC RPC data set, and use them the next time you enable
CICS ONC RPC.

v Automatic enable—the contents of the CICS ONC RPC definition record
determine the options to control the operation of CICS ONC RPC until the next
time you disable it. Some 4-tuples might be registered, depending on an
attribute in the 4-tuple definition.

The CICS ONC RPC data set is a store of operating environment information. It
contains two kinds of records: the CICS ONC RPC definition record contains the
operating options, and 4-tuple records contain the 4-tuple information.

CRPC CICS ONC RPC for MVS/ESA Status DFHRP16

Trace(STARTED) Trace Level(1)
Resource Checker(NO) CRPM Userid(CICSUSER)

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 43. Panel DFHRP16

284 CICS TS for z/OS 4.2: External Interfaces Guide

Setting and modifying options
If you start the connection manager when CICS ONC RPC is disabled, and select
option 1 on panel DFHRP01, panel DFHRP02 is shown.

The values displayed in the Choice column are those stored in the CICS ONC RPC
data set. The data set is initialized with the values shown in Figure 44, except that
the value displayed for CRPM Userid is the default CICS user ID for the CICS
system in which CICS ONC RPC is operating.

You can make entries in the fields listed below. Entries may be in lowercase or
uppercase. Where entries to a field are restricted (for example, YES or NO) you can
enter the whole option (YES) or the minimum (Y). In the panels, the minimum
entry is shown in uppercase in the Possible Options column. In the reference
material in this manual, the minimum entry is given in parentheses after the full
entry.

Trace Specifies whether CICS ONC RPC tracing is active. STARTED (STA) means
it is active, STOPPED (STO) means it is not. The default value is STARTED.

CICS ONC RPC exception trace entries are always written to CICS internal
trace whatever the setting of this option. To get non-exception trace entries
written, CICS trace must be started, and this option must be set to
STARTED.

Trace Level
Specifies the trace level for CICS ONC RPC. The value 1 means that level 1
trace points are traced, and 2 means that both level 1 and 2 are traced. The
default value is 1.

Resource Checker
YES (Y) means that CICS ONC RPC is to call the user-written
resource-checking module on receipt of every incoming RPC request. NO
(N) means the resource checker is not to be called. The default is NO.

CRPC CICS ONC RPC for MVS/ESA Enable DFHRP02

Overtype to Modify
Choice Possible Options

Trace ===> STARTED STArted | STOpped

Trace Level ===> 1 1 | 2

Resource Checker ===> NO Yes | No

CRPM Userid ===> CICSUSER

Automatic Enable ===> NO Yes | No

Current Status: Disabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF4=Save PF9=Messages PF12=Return

Figure 44. Panel DFHRP02

Chapter 24. Configuring CICS ONC RPC using the connection manager 285

CRPM Userid
Specifies the CICS user ID under which the server controller is to run. The
default is the default user ID for the CICS system in which CICS ONC
RPC is operating.

Automatic Enable
Enter YES (Y) or NO (N). If YES is stored in the CICS ONC RPC data set,
you can enable CICS ONC RPC by just typing CRPC; all values are
defaulted from the CICS ONC RPC data set, CICS ONC RPC becomes
enabled without further user input, and all the 4-tuples with YES for their
Register from Data Set option are registered. The default value is NO.

Setting this field has an effect only when you enable CICS ONC RPC. If
you use PF4 to save the values to the CICS ONC RPC data set, this value
will be effective the next time you enable, unless you override it. A YES in
this field in the CICS ONC RPC data set may be overridden by the fast
path command CRPC E A(N).

Validating, saving, and activating options
After you have made your changes on panel DFHRP02, press Enter to get them
validated by the connection manager.

If you want to save the new values in the CICS ONC RPC data set, press PF4.

If you press Enter a second time, CICS ONC RPC becomes enabled, and panel
DFHRP03 is shown, as described in “Defining, saving, modifying, and deleting
4-tuples.”

When CICS ONC RPC is enabled
When CICS ONC RPC is enabled, the connection manager allows you to:
v Update the CICS ONC RPC definition record in the data set
v Add, delete, and change 4-tuple records in the data set
v Change the options being used to control the operation of CICS ONC RPC
v Register 4-tuple definitions from the data set
v Create temporary 4-tuple definitions and register them
v Unregister 4-tuple definitions
v Disable CICS ONC RPC

There are two ways of disabling CICS ONC RPC: normal, and immediate. The
effects of disable processing are described in “Disabling CICS ONC RPC” on page
294.

Defining, saving, modifying, and deleting 4-tuples
The first panel for defining, saving, modifying, and deleting 4-tuples is DFHRP03.

The first panel for defining, saving, modifying, and deleting 4-tuples is DFHRP03.
(See Figure 45 on page 287.) This panel is shown as soon as you have enabled
CICS ONC RPC, or if you choose option 2 on panel DFHRP10.

286 CICS TS for z/OS 4.2: External Interfaces Guide

Option For more information see:
1 See below.
2 “Defining the attributes of a 4-tuple”
3 “Unregistering 4-tuples” on page 292
4 See below.

If you select option 1, the 4-tuples in the CICS ONC RPC data set that have YES
for their Register from Data Set attribute are all registered.

If you specify a 4-tuple for which there is no definition in the CICS ONC RPC data
set, a message is issued when you press Enter, and panel DFHRP03 remains on the
screen.

Defining the attributes of a 4-tuple
When you select option 3 or option 4 on panel DFHRP03, panel DFHRP5 is shown.
If you chose option 3, some of the fields are empty, but if you chose option 4, the
details of the selected 4-tuple are shown. You have to supply more information on
panel DFHRP5B.

CRPC CICS ONC RPC for MVS/ESA DFHRP03
Remote Procedure Registration

Select one of the following. Then press Enter.

_ 1. Register procedures from the data set
2. List procedures sequentially
3. Register a new procedure
4. Retrieve a specified procedure from the data set (Enter required data)

Program Number ===> ________ 0-FFFFFFFF
Version Number ===> ________ 0-FFFFFFFF
Procedure Number ===> ________ 1-FFFFFFFF
Protocol ===> UDP Udp | Tcp

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 45. Panel DFHRP03

Chapter 24. Configuring CICS ONC RPC using the connection manager 287

After you have made your modifications to panel DFHRP5, you should press PF8
to move to panel DFHRP5B. From panel DFHRP5B you can press PF7 if you want
to go back to panel DFHRP5. After you have made your modifications to the
panels, you press Enter to get all the modifications validated.

The attributes of a 4-tuple are divided into three categories:
v ONC RPC attributes
v CICS attributes
v CICS ONC RPC attributes

ONC RPC attributes
The first four options establish the 4-tuple whose attributes are being defined.

ONC RPC Program Number
Specifies the program number of the 4-tuple as a hexadecimal string of 1

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Registration DFHRP5

Overtype to Modify. Then press Enter to Validate

ONC RPC ATTRIBUTES
ONC RPC Program Number ===> ________ 0-FFFFFFFF
ONC RPC Version Number ===> ________ 0-FFFFFFFF
ONC RPC Procedure Number ===> ________ 1-FFFFFFFF
Protocol ===> UDP Udp | Tcp
RPC Call Type ===> BLOCKING Blocking | Nonblocking
Inbound XDR Routine ===> ______________
Outbound XDR Routine ===> ______________

CICS ATTRIBUTES
ALIAS Transaction ID ===> CRPA
EDF Terminal ID ===> ____

+ Program Name ===> ________

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF4=Save PF8=Forward PF9=Messages PF12=Return

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Registration DFHRP5B

Overtype to Modify. Then press Enter to Validate

+ CICS ONC RPC ATTRIBUTES
Converter Program Name ===> ________
Encode ===> NO Yes | No
Decode ===> YES Yes | No
Getlengths ===> YES Yes | No

Server Input Length ===> _____ 0 - 32767 Bytes
Server Output Length ===> _____ 0 - 32767 Bytes
Server Data Format ===> CONTIGUOUS Contiguous | Overlaid

Register from Data set ===> YES Yes | No

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF4=Save PF7=Back PF9=Messages PF12=Return

Figure 46. Panels DFHRP5 and DFHRP5B

288 CICS TS for z/OS 4.2: External Interfaces Guide

through 8 characters. You are advised not to use numbers in the range 0
through 1FFFFFFF, as these numbers are reserved for public network
services and are allocated by Sun Microsystems.

ONC RPC Version Number
Specifies the version number of the 4-tuple as a hexadecimal string of 1
through 8 characters.

ONC RPC Procedure Number
Specifies the procedure number of the 4-tuple as a hexadecimal string of 1
through 8 characters. Procedure 0 is reserved by z/OS Communications
Server for a procedure with no parameters and no processing that returns
an empty reply.

Protocol
Specifies the protocol of the 4-tuple. UDP (U) for UDP, or TCP (T) for TCP.

The remaining options specify the attributes of the 4-tuple.

RPC Call Type
Specifies whether CICS ONC RPC is to treat calls from clients as
BLOCKING (B) or NONBLOCKING (N). If NONBLOCKING is specified,
the outbound XDR routine cannot be specified, and no reply is sent to the
client. The default is BLOCKING.

Inbound XDR Routine
Specifies the name of the inbound XDR routine. If an XDR library function
is used, its full name is specified. See Table 26 on page 305 to find out
which library routines can be specified here. If a user-defined routine is
used, its name (maximum 8 characters) is specified.

Outbound XDR Routine
Specifies the name of the outbound XDR routine, if RPC Call Type is
BLOCKING. If an XDR library function is used, its full name is specified.
See Table 26 on page 305 to find out which library routines can be specified
here. If a user-defined routine is used, its name (maximum 8 characters) is
specified. A blank input is valid only if RPC Call Type is NONBLOCKING.

CICS attributes
The alias transaction ID, EDF terminal ID, and program name are the attributes
you must specify for CICS.

ALIAS Transaction ID
Specifies the transaction ID to be used for the alias. If this is omitted, and
not provided by the Decode function, the alias transaction ID is CRPA. For
reasons why you might want a different name from CRPA, see
“Transaction definitions for extra alias transactions” on page 275.

EDF Terminal ID
Specifies the terminal ID to be used for the alias. You need a terminal ID
only if you want to use execution diagnostic facility (EDF) to debug the
resource checker, CICS program, or Encode function of the converter. A
blank means that you cannot use EDF. EDF setup is described in “Using
EDF” on page 338.

Program Name
Specifies the name of the CICS program that is to be called to service a
request for this 4-tuple.

Chapter 24. Configuring CICS ONC RPC using the connection manager 289

CICS ONC RPC attributes
Converter Program Name

Specifies the name of the converter program. This name must be specified.

Encode
YES (Y) means that CICS ONC RPC must call the Encode function of the
converter when servicing a client request for this 4-tuple; NO (N) means
that it must not. The default is NO.

Decode
YES (Y) means that CICS ONC RPC must call the Decode function of the
converter when servicing a client request for this 4-tuple; NO (N) means
that it must not. The default is YES.

Getlengths
YES (Y) means that the connection manager must call the Getlengths
function of the converter before registering this 4-tuple. NO (N) means that
it must not. If you specify YES here, you should ignore the next two
attributes, but you can set Server Data Format. If you specify NO here, you
must specify the next three attributes. The default is YES.

Server Input Length
For the use of this option, see the description of Server Data Format.

If you specified YES for the Getlengths option, leave this field blank.

Server Output Length
For the use of this option, see the description of Server Data Format.

If you specified YES for the Getlengths option, leave this field blank.

Server Data Format
A value that controls:
v How the input data pointer for Encode will be set up
v How the communication area length to be checked by the connection

manager is calculated

The values you can specify are as follows:

CONTIGUOUS
The value of the data pointer that will be passed to Encode, or to
the outbound XDR routine if Encode is not used for this 4-tuple, is
the address of the CICS program communication area plus the
value of Server Input Length, though Decode can modify this
offset.

The connection manager calculates a communication area length by
adding the values of Server Input Length and Server Output
Length. If this length exceeds 32 767 bytes, message DFHRP1965 is
issued. If this length is different from the actual length of the
communication area passed from Decode to the CICS program,
errors might occur in the processing of client requests.

OVERLAID
The value of the data pointer that will be passed to Encode, or to
the outbound XDR routine if Encode is not used for this 4-tuple, is
the address of the CICS program communication area.

The connection manager calculates a communication area length by
taking the larger of the output values of Server Input Length and
Server Output Length. If this length is different from the actual

290 CICS TS for z/OS 4.2: External Interfaces Guide

length of the communication area passed to the CICS program,
errors might occur in the processing of client requests.

If you specified YES for the Getlengths option, the value in this field is
used as an input to the Getlengths function of the converter.

Register from Data Set
YES (Y) means that the 4-tuple is to be registered:
v During automatic enable processing
v When option 1 is selected on panel DFHRP03, as described in

“Registering the 4-tuples”

NO (N) means that it is not. The default is YES. Entries specified as NO
can be stored in the CICS ONC RPC data set and you can register them at
any time when CICS ONC RPC is enabled.

Saving new 4-tuple definitions
There are five ways of saving new 4-tuple definitions.
v On panel DFHRP03, select option 3. Complete panels DFHRP5 and DFHRP5B,

and validate your input as described in “Defining the attributes of a 4-tuple” on
page 287. Press PF4 to save the definition in the CICS ONC RPC data set.

v On panel DFHRP03, select option 4. Modify the panels DFHRP5 and DFHRP5B,
and validate your input as described in “Defining the attributes of a 4-tuple” on
page 287. Press PF4 to save the definition in the CICS ONC RPC data set.

v On panel DFHRP20, select option 3. Complete panels DFHRP21 and DFHRP2B,
and validate your input as described in “Changing the attributes of a 4-tuple”
on page 299. Press Enter to save the definition in the CICS ONC RPC data set.

v On panel DFHRP20, select option 4. Modify the panels DFHRP21 and DFHRP2B,
and validate your input as described in “Changing the attributes of a 4-tuple”
on page 299. Press Enter to save the definition in the CICS ONC RPC data set.

v On panel DFHRP03, select option 2. Then on panel DFHRP14, enter command
M against a 4-tuple. Modify the panels DFHRP21 and DFHRP2B, and validate
your input as described in “Changing the attributes of a 4-tuple” on page 299.
Press Enter to save the definition in the CICS ONC RPC data set.

Modifying existing 4-tuple definitions
To change some of the attributes of a 4-tuple that already has a definition in the
CICS ONC RPC data set, select option 4 on panel DFHRP03 or panel DFHRP20.

Deleting existing 4-tuple definitions
You can delete existing 4-tuple definitions from the CICS ONC RPC data set in two
ways.
v On panel DFHRP03, select option 2. Then on panel DFHRP14 you can enter D

against 4-tuples in the list, and they are deleted from the data set when you
press Enter.

v On panel DFHRP21, by using key PF2, as described in “Changing the attributes
of a 4-tuple” on page 299.

Registering the 4-tuples
You can register 4-tuples in any of the following ways.

Chapter 24. Configuring CICS ONC RPC using the connection manager 291

v You can register all the 4-tuples in the CICS ONC RPC data set that are defined
with YES specified for Register from Data Set. To do this, select option 1 on
panel DFHRP03, and press Enter. After these 4-tuples have been registered,
panel DFHRP03 is still displayed, so you can make other selections.

v You can register 4-tuple definitions one at a time. To do this, you use option 3 or
option 4 on panel DFHRP03. Make changes, if you need any, to panels DFHRP5
and DFHRP5B and get them validated as described in “Defining the attributes of
a 4-tuple” on page 287. To register the definition, press Enter.

v You can register 4-tuples from a list. See “Working with a list of 4-tuples” on
page 298.

v When CICS ONC RPC is disabled, you can register all the 4-tuples in the CICS
ONC RPC data set that have YES for their Register from Data Set attribute by
initiating automatic enable processing.

When a 4-tuple is registered, two things happen:
v If the program-version-protocol 3-tuple has not yet been registered with TCP/IP

for MVS, it is registered. The Portmapper assigns a port number to this
combination, and that port number is the one that clients use to request the
service represented by this 4-tuple. Procedure 0 for the program, version, and
protocol becomes available to callers.

v The resources associated with the 4-tuple become available to service client
requests. When a client request arrives in CICS ONC RPC, the resources used to
service it are those of the 4-tuple whose program, version, and procedure
numbers match those of the request, and whose protocol matches the protocol
used to transmit the request from the client to the server.

Limits on registration
CICS ONC RPC makes a total of 252 sockets available for use. One socket is used
by each program/version/protocol 3-tuple from the time the first 4-tuple for that
program, version and protocol is registered. This socket remains in use until the
last 4-tuple with that program and version is unregistered. One socket is used by
each TCP call for the duration of the call.

If you register too many 4-tuples, you reduce the service that CICS ONC RPC can
give to incoming client requests. If you attempt to register more than 252
program-version-protocol 3-tuples with z/OS Communications Server, the results
are unpredictable.

Unregistering 4-tuples
You can unregister 4-tuples that have previously been registered with CICS ONC
RPC only when CICS ONC RPC is already enabled.

From panel DFHRP10, if you select option 3, panel DFHRP11 is shown. (See
Figure 47 on page 293.)

292 CICS TS for z/OS 4.2: External Interfaces Guide

Select an option, then press Enter.

Option For more information see:
1 “Unregistering 4-tuples from a list”
2 “Unregistering 4-tuples one by one”

Unregistering 4-tuples one by one
Before you select option 2 on panel DFHRP11, you must supply the program
number, version number, procedure number, and the protocol.

Program Number
The program number of the 4-tuple to be unregistered.

Version Number
The version number of the 4-tuple to be unregistered.

Procedure Number
The procedure number of the 4-tuple to be unregistered.

Protocol
The protocol of the 4-tuple to be unregistered.

If you specify a 4-tuple that is registered, it is unregistered when you press Enter,
and panel DFHRP11 remains on the screen.

If you specify a 4-tuple that is not registered, a message is issued when you press
Enter, and panel DFHRP11 remains on the screen.

Unregistering 4-tuples from a list
If you select option 1 on panel DFHRP11, the panel DFHRP12 is shown.

This panel presents a list of 4-tuples currently registered with CICS ONC RPC. If
you enter U against 4-tuples in the list, they are unregistered when you press
Enter. You can display the attributes of a 4-tuple by entering ? against it, and
pressing Enter. Panel DFHRP13 is shown. (See Figure 49 on page 294.)

CRPC CICS ONC RPC for MVS/ESA DFHRP11
Remote Procedure Unregister

Select one of the following. Then press Enter.

_ 1. Unregister procedures from a list
2. Unregister a specified procedure (Enter required data)

Program Number ===> ________ 0-FFFFFFFF
Version Number ===> ________ 0-FFFFFFFF
Procedure Number ===> ________ 1-FFFFFFFF
Protocol ===> UDP Udp | Tcp

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 47. Panel DFHRP11

Chapter 24. Configuring CICS ONC RPC using the connection manager 293

Disabling CICS ONC RPC
From panel DFHRP04, select option 1; panel DFHRP06 is shown.

CRPC CICS ONC RPC for MVS/ESA DFHRP12
Registered Procedures List

Enter ’U’ to Unregister, or ’?’ to display details of a procedure
_ Prog(20000002) Vers(00000001) Proc(00000006) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(00000007) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(00000007) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(00000008) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(00000009) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(0000000A) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(UDP)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Refresh PF3=Exit PF7=Back PF8=Forward PF9=Messages PF12=Return

Figure 48. Panel DFHRP12

CRPC CICS ONC RPC for MVS/ESA DFHRP13
Display Registered Procedure

Program Number(20000002) Version Number(00000001)
Procedure Number(00000006) Protocol(UDP)
RPC Call Type(Blocking) Inbound XDR(XDR_WRAPSTRING)
Outbound XDR(XDR_WRAPSTRING) Alias Transid(CRPA)
Alias Termid() Server Program Name(STRING6)
Converter Program Name(RINGCVNY) Getlengths(NO)
Decode(YES) Encode(NO)
Server Input Length(00001) Server Output Length(00001)
Server Data Format(CONTIGUOUS)

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF12=Return

Figure 49. Panel DFHRP13

294 CICS TS for z/OS 4.2: External Interfaces Guide

In this panel there is only one field to enter.

Type of Disable

NORMAL (N)
Normal disable processing is started.
v All program-version pairs are unregistered from z/OS

Communications Server.
v All work that has already entered CICS ONC RPC is allowed to

run to completion, and replies are sent to the relevant client.

IMMEDIATE (I)
Immediate disable processing is started.
v Aliases not yet started do not start at all.
v CICS programs running under aliases are allowed to end, and

then the alias abends. If the CICS program ends normally, and
was called using DPL, the changes it makes to recoverable
resources are committed. If the CICS program is a local program,
the changes it makes to recoverable resources are backed out
unless the CICS program takes a sync point with EXEC CICS
SYNCPOINT.

v All the program-version pairs are unregistered from z/OS
Communications Server.

v No replies are sent to clients, so they do not know whether the
CICS program has run or not.

Pressing Enter causes the entry you have made to be validated. Pressing Enter a
second time begins disable processing. The Current Status is changed to Disabling
or Disabled, depending on the progress of disable processing. When disable
processing is complete, pressing Enter changes the Current Status to Disabled.

The panel is displayed until you use PF3 or PF12.

CRPC CICS ONC RPC for MVS/ESA Disable DFHRP06

Select the type of disable required. Then press Enter.

Type of Disable ===> _________ Normal | Immediate

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 50. Panel DFHRP06

Chapter 24. Configuring CICS ONC RPC using the connection manager 295

On CICS normal shutdown
CICS normal shutdown starts normal disable processing for CICS ONC RPC.

On CICS immediate shutdown
On CICS immediate shutdown, all transactions are terminated. Clients are not
informed of the shutdown or its effects. The program-version-protocol 3-tuples that
are registered with z/OS Communications Server might remain registered.

Updating the CICS ONC RPC data set
If you select option 2 on panel DFHRP01, or option 2 on panel DFHRP04, panel
DFHRP20 is shown.

The Current Status field in this panel might show Enabled or Disabled, depending
on which panel you came from.

Before selecting option 4, you must supply the following information:

Program Number
The program number of the 4-tuple whose definition is to be retrieved.

Version Number
The version number of the 4-tuple whose definition is to be retrieved.

Procedure Number
The procedure number of the 4-tuple whose definition is to be retrieved.

Protocol
The protocol of the 4-tuple whose definition is to be retrieved.

Select an option, then press Enter.

Option For more information see:
1 “Updating the CICS ONC RPC definition record” on page 297
2 “Working with a list of 4-tuples” on page 298

CRPC CICS ONC RPC for MVS/ESA DFHRP20
Update CICS ONC RPC Data set

Select one of the following. Then press Enter.

_ 1. View or modify the CICS ONC RPC definition record
2. Display a list of remote procedure definitions
3. Define a new procedure
4. Retrieve a specified procedure from the data set (Enter required data)

Program Number ===> ________ 0-FFFFFFFF
Version Number ===> ________ 0-FFFFFFFF
Procedure Number ===> ________ 1-FFFFFFFF
Protocol ===> UDP Udp | Tcp

Current Status:

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 51. Panel DFHRP20

296 CICS TS for z/OS 4.2: External Interfaces Guide

3 “Changing the attributes of a 4-tuple” on page 299
4 “Changing the attributes of a 4-tuple” on page 299

If you specify a 4-tuple which is not defined in the CICS ONC RPC data set, a
message is issued when you press Enter, and panel DFHRP20 remains on the
screen.

Updating the CICS ONC RPC definition record
If you select option 1 on panel DFHRP20, panel DFHRP22 is shown.

The values displayed in the Choice column are those stored in the CICS ONC RPC
data set.

After you have made your changes you should press Enter to get them validated.
You can then press Enter again to update the CICS ONC RPC data set with the
values you have supplied. The next time you start the connection manager, the
saved options are used to set up panel DFHRP02

Trace Specifies whether CICS ONC RPC tracing is active. STARTED (STA) means
it is active, STOPPED (STO) means it is not. The default value is STARTED.

CICS ONC RPC exception trace entries are always written to CICS internal
trace whatever the setting of this option. To get non-exception trace entries
written, CICS trace must be started, and this option must be set to
STARTED.

Trace Level
Specifies the trace level for CICS ONC RPC. The value 1 means that level 1
trace points are traced, 2 means that both level 1 and level 2 are traced.
The default value is 1.

Resource Checker
YES (Y) means that CICS ONC RPC is to call the user-written
resource-checking module on receipt of every incoming RPC request. NO
(N) means the resource checker is not to be called. The default is NO.

CRPC CICS ONC RPC for MVS/ESA DFHRP22
Update CICS ONC RPC Definition Record

Overtype to Modify
Choice Possible Options

Trace ===> STARTED STArted | STOpped

Trace Level ===> 1 1 | 2

Resource Checker ===> NO Yes | No

CRPM Userid ===> CICSUSER

Automatic Enable ===> NO Yes | No

Current Status:

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 52. Panel DFHRP22

Chapter 24. Configuring CICS ONC RPC using the connection manager 297

CRPM Userid
Specifies the CICS user ID under which the server controller is to operate.
The default is the default user ID for the CICS system in which CICS ONC
RPC is operating.

Automatic Enable
Enter YES (Y) or NO (N). If YES is stored in the CICS ONC RPC data set,
you can enable CICS ONC RPC by just typing CRPC; all values are
defaulted from the CICS ONC RPC data set, CICS ONC RPC becomes
enabled without further user input, and all the 4-tuples with YES for their
Register from Data Set option are registered. The default value is NO.

Setting this field has an effect only when you enable CICS ONC RPC. If
you save the values to the CICS ONC RPC data set, this value will be
effective the next time you enable, unless you override it. The value of this
field in the CICS ONC RPC data set may be overridden by the fast path
command CRPC E A(N).

Working with a list of 4-tuples
If you select option 2 on panel DFHRP03, or option 2 on panel DFHRP20, panel
DFHRP14 is shown.

This panel presents a list of 4-tuples currently defined in the CICS ONC RPC data
set. If CICS ONC RPC is enabled, the 4-tuples that are currently registered are
shown highlighted. You can put a command against a 4-tuple, and it takes effect
when you press Enter. The following commands can be entered against a 4-tuple:

D Deletes the definition from the data set.

R If CICS ONC RPC is enabled, registers the 4-tuple with CICS ONC RPC. If
CICS ONC RPC is disabled, this command produces an error message.

M Shows panel DFHRP21. See “Changing the attributes of a 4-tuple” on page
299 for details.

? Shows panel DFHRP15, which displays the attributes of a 4-tuple, but does

CRPC CICS ONC RPC for MVS/ESA DFHRP14
Remote Procedure Definition List

Enter a command (press PF1 to view the list of valid commands).
_ Prog(20000002) Vers(00000001) Proc(00000006) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(00000007) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(00000007) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(00000008) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(00000009) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(0000000A) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(UDP)
_ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(TCP)
_ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(UDP)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Current Status:

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Refresh PF3=Exit PF7=Back PF8=Forward PF9=Messages PF12=Return

Figure 53. Panel DFHRP14

298 CICS TS for z/OS 4.2: External Interfaces Guide

not allow changes.

Changing the attributes of a 4-tuple
If you select option 3 or 4 on panel DFHRP20, or if you enter the M command on
panel DFHRP14, panel DFHRP21 is shown.

The attributes of a 4-tuple are divided into three categories:
v ONC RPC attributes—see “ONC RPC attributes” on page 288.
v CICS attributes—see “CICS attributes” on page 289.
v CICS ONC RPC attributes—see “CICS ONC RPC attributes” on page 290.

CRPC CICS ONC RPC for MVS/ESA DFHRP15
Display Registered Procedure

Program Number(20000002) Version Number(00000001)
Procedure Number(00000006) Protocol(UDP)
RPC Call Type(Blocking) Inbound XDR(XDR_WRAPSTRING)
Outbound XDR(XDR_WRAPSTRING) Alias Transid(CRPA)
Alias Termid() Server Program Name(STRING6)
Converter Program Name(RINGCVNY) Getlengths(NO)
Decode(YES) Encode(NO)
Server Input Length(00000) Server Output Length(00000)
Server Data Format(CONTIGUOUS) Register from Data set(Yes)

Current Status:

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF12=Return

Figure 54. Panel DFHRP15

Chapter 24. Configuring CICS ONC RPC using the connection manager 299

You can use these panels to delete a 4-tuple definition from the CICS ONC RPC
data set by pressing PF2.

If you want to modify the 4-tuple definition, you should first make modifications
to panel DFHRP21, and then press PF8 to move to panel DFHRP2B. From panel
DFHRP2B you can press PF7 if you want to go back to panel DFHRP21. After you
have made your modifications to the panels, you should press Enter to get all the
modifications validated, and then press Enter again to get the definition changed.

Processing the alias list
If you select option 4 on panel DFHRP10, panel DFHRP17 is shown.

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Definition DFHRP21

Overtype to Modify. Then press Enter to Validate

ONC RPC ATTRIBUTES
ONC RPC Program Number ===> ________ 0-FFFFFFFF
ONC RPC Version Number ===> ________ 0-FFFFFFFF
ONC RPC Procedure Number ===> ________ 1-FFFFFFFF
Protocol ===> UDP Udp | Tcp
RPC Call Type ===> BLOCKING Blocking | Nonblocking
Inbound XDR Routine ===> ______________
Outbound XDR Routine ===> ______________

CICS ATTRIBUTES
ALIAS Transaction ID ===> CRPA
EDF Terminal ID ===> ____

+ Program Name ===> ________

Current Status:

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Delete PF3=Exit PF8=Forward PF9=Messages PF12=Return

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Registration DFHRP2B

Overtype to Modify. Then press Enter to Validate

+ CICS ONC RPC ATTRIBUTES
Converter Program Name ===> ________
Encode ===> NO Yes | No
Decode ===> YES Yes | No
Getlengths ===> YES Yes | No

Server Input Length ===> _____ 0 - 32767 Bytes
Server Output Length ===> _____ 0 - 32767 Bytes
Server Data Format ===> CONTIGUOUS Contiguous | Overlaid

Register from Data set ===> YES Yes | No

Current Status:

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Delete PF3=Exit PF7=Back PF9=Messages PF12=Return

Figure 55. Panels DFHRP21 and DFHRP2B

300 CICS TS for z/OS 4.2: External Interfaces Guide

This panel gives a list of the aliases that have been started, or scheduled, by the
server controller, but have not yet ended. Each alias has two lines on the panel.
v The first line shows the 4-tuple for the client request.
v The second line shows the CICS task number of the alias that is processing the

client request.

If the alias is scheduled, but not yet started, the task number is blank. If the alias
has started, a task number is given and the line is highlighted.

You can enter the following commands against an alias:

P Purges the alias.

? Shows panel DFHRP18, which displays details of the alias and the
associated client request. (See Figure 57 on page 302.)

If the alias is scheduled, but not yet started, the task number and start time
are blank. If the alias has started, a task number and start time are given.

CRPC CICS ONC RPC for MVS/ESA DFHRP17
Alias List

Enter ’P’ to Purge, or ’?’ to display details of an alias task
_ Prog(00000103) Vers(00000114) Proc(00000001) Prot(UDP)

Task Number(00000033)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
_ Prog(________) Vers(________) Proc(________) Prot(___)

Task Number(________)
Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Refresh PF3=Exit PF7=Back PF8=Forward PF9=Messages PF12=Return

Figure 56. Panel DFHRP17

Chapter 24. Configuring CICS ONC RPC using the connection manager 301

CRPC CICS ONC RPC for MVS/ESA DFHRP18
Display Alias Task Details

Program Number(00000103) Version Number(00000114)
Procedure Number(00000001) Protocol(UDP)
Task Number(00000033) Client IP Addr(9.20.2.19)
CICS Program Name(RPROC103) Transid(CRPA)
Port Number(000007BC) Socket Descriptor(00000003)
Task Start Time(14:38:19) Termid()

Current Status: Enabled

SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF12=Return

Figure 57. Panel DFHRP18

302 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 25. Programming with CICS ONC RPC

Important: This information contains Product-sensitive Programming Interface and
Associated Guidance Information.

This section tells you how to write CICS ONC RPC user-replaceable programs. It
describes the general process of development, including details of the interfaces to
the converter functions.

Developing an ONC RPC application for CICS ONC RPC
ONC RPC applications are always developed as client/server pairs.

The process described in this section takes account of this, but concentrates on the
server, because CICS ONC RPC affects this and not the client. For details of the
client development process, read the documentation of the ONC RPC system
running on the client machine.

The process of developing all the material needed for an ONC RPC application
using CICS ONC RPC is summarized in Figure 58, which should be compared
with Figure 32 on page 258, which showed the process for ONC RPC without CICS
ONC RPC.

The figure shows the development process when RPCGEN is used to create source
text from the interface definition in the RPCL program. If you do not use

Client
application
source

Client
stub

Header
files

Converter
application
source

XDR
routines

RPCL
program

RPCGEN

Client
application

XDR
program

Client
object

Client
stub
object

XDR
object

Converter
object

C C C C

Link Link Link

Converter

Figure 58. Program development with CICS ONC RPC

© Copyright IBM Corp. 1994, 2012 303

RPCGEN, you must supply some of its output—XDR routines and header
files—yourself. The development of the CICS program to service client requests is
not shown.

The sequence of development of an ONC RPC application is summarized below.
Each step is described in detail in the sections following the summary.
1. Decide what data is to be sent from client to server and what is to be returned.

If the data structures the client uses are not simple, you might choose to use
RPCGEN to help with managing the data. If you choose to use RPCGEN, some
of its output is useful for writing the user-replaceable programs for CICS ONC
RPC.

2. Decide the format of the communication area to be used by the CICS program.
If the client is to use an existing CICS program, the format is already decided.

3. Write the XDR routines. If the translations you need can be done by an XDR
library function supported by the connection manager (see Table 26 on page
305), you do not need to write an XDR routine. If you used RPCGEN, it has
generated source for XDR routines. In any other case you must write the XDR
routines yourself.
XDR routines must be written in C.

4. Write the converter. If you used RPCGEN, and you are going to write your
converter in C, the header files produced by RPCGEN describe the data
structures that Decode receives and Encode returns. The format of the CICS
program communication area is also used by Decode and Encode.

5. Write the resource checker, if required. You may want to write your own
resource checker to validate incoming client requests. Chapter 26, “CICS ONC
RPC security,” on page 327 tells you about this and other security facilities
available for use with CICS ONC RPC. “Writing the resource checker” on page
329 gives you details on writing a resource checker.

6. Compile and link the user-replaceable programs. If you used RPCGEN, the
header files are needed for the compilation of the XDR routines and the
converter if it is in C.

7. Define the server application set to CICS. This means defining programs for the
CICS program, any XDR routines that are not just XDR library functions, and
the converter. One or more alias transaction definitions may also be required,
see “Defining CICS ONC RPC resources to CICS” on page 275.

8. Use the connection manager to define a 4-tuple and save it in the CICS ONC
RPC data set. The definition specifies the CICS program, XDR routines, and
converter, as described in “Defining the attributes of a 4-tuple” on page 287.

Step 1—Decide what data is to be sent
This step is outside the scope of this manual.

What you do depends on the nature of the data to be sent with the request and
with the reply. Defining data with RPCL and the use of RPCGEN are described in
Sun Microsystems’ publication Network Programming.

Step 2—Decide the format of the communication area
This step is also outside the scope of this manual.

You are reminded that if the CICS program that services a client request is not in
the same CICS region as CICS ONC RPC, the maximum communication area
length is 35 000 bytes. If the CICS program resides in a server other than CICS
Transaction Server for z/OS, other restrictions might also apply.

304 CICS TS for z/OS 4.2: External Interfaces Guide

Step 3—Write the XDR routines
If you used RPCGEN in Step 1, you use the XDR source programs generated by
RPCGEN. If the XDR source uses the xdr_char or xdr_u_char XDR library
functions, you must use the C #define directive to make the compiler use the
xdr_text_char function instead.

If the translations you need can be done by an XDR library function supported by
the connection manager (see Table 26), you do not need to write an XDR routine.
Instead you specify one of the XDR library functions described below when you
register a 4-tuple with the connection manager.

If you write your own XDR routine, you need to use the XDR library functions.
The full C definitions of these functions are documented in the z/OS
Communications Server: Programmer's Reference .

CICS ONC RPC supports only the functions listed below. You should use only
these functions in your own XDR routines. These functions convert C data types to
XDR formats, and XDR formats to C data types.

Some of these function names cannot be used in the connection manager when
specifying XDR library functions for the inbound and outbound XDR routines for a
4-tuple. In the column headed CM, an asterisk means that the XDR library routine
can be specified in the connection manager, while a blank means that it cannot.

Table 26. Supported XDR library functions
XDR library function CM C type

xdr_int * int
xdr_u_int * unsigned int
xdr_long * long
xdr_u_long * unsigned long
xdr_short * short int
xdr_u_short * unsigned short int
xdr_float * float
xdr_bool * bool_t (see note)
xdr_double * double
xdr_enum enum
xdr_void * void
xdr_array variable-length array
xdr_opaque fixed-length uninterrupted data
xdr_bytes variable-length array of bytes
xdr_pointer object references, including null pointers
xdr_reference object references
xdr_char * character
xdr_u_char * unsigned character
xdr_text_char * text character
xdr_string null-terminated character arrays
xdr_vector fixed-length array with arbitrary element size
xdr_wrapstring * variable-length null-terminated character arrays
xdr_union discriminated union

Note: bool_t is not a built-in C data type; it is defined in an ONC RPC header (as
a C int).

Chapter 25. Programming with CICS ONC RPC 305

Names of user-written XDR routines are subject to the same restrictions as CICS
programs.

You must take care when writing your own XDR routines. These run in the CICS
address space and can overwrite CICS code and other user application storage,
because they are defined with EXECKEY(CICS).

Code page conversions
Conversion between ASCII and EBCDIC (or vice versa) is done by XDR library
functions supplied as part of z/OS Communications Server.

The relevant XDR routines are xdr_text_char, xdr_string, and xdr_wrapstring.
These routines use EBCDIC-to-ASCII and ASCII-to-EBCDIC translate tables, which
are loaded at z/OS Communications Server initialization from a data set
containing one of the possible translate tables provided with z/OS
Communications Server.

Thus all ONC RPC requests from all clients use the same translate table. There is
no provision for ONC RPC data from different client workstations or from
different client end users to have different character sets.

Various single-byte character set (SBCS) translate tables are provided with z/OS
Communications Server, one of which is generated during z/OS Communications
Server customization. If none of these is suitable, you could provide your own, as
described in the z/OS Communications Server: Customization and Administration Guide
.

z/OS Communications Server provides several code pages for double-byte
character sets (DBCS). If you want to include DBCS in ONC RPC data you have to
write your own XDR routines to convert the double-byte characters.

Step 4—Write the converter
Write the converter as described in “Write the CICS ONC RPC converter” on page
307, using reference information supplied in “Reference information for the
converter functions” on page 315.

Step 5—Write a resource checker
This step is optional.

See “Writing the resource checker” on page 329 for details.

Step 6—Compile and link
This step puts the programs you have written into CICS load libraries.

Converter
The header files needed to compile the converter are discussed in “Organizing the
converter” on page 309.

The program is linked into a CICS load library, since it is a normal CICS program.

XDR routines
If your XDR routines are not just XDR library functions, you must compile each
XDR routine separately and link it into a CICS load library. If you used RPCL to
define the data, the XDR source and header files for the compilation have been
generated by RPCGEN.

306 CICS TS for z/OS 4.2: External Interfaces Guide

Resource checker
If you need a resource checker, you must link it into a CICS load library. It must be
called DFHRPRSC.

Step 7—Make CICS definitions
You must define the CICS program, converter program, resource checker, and any
XDR routines that are not just library routines to CICS.

See “Defining CICS ONC RPC resources to CICS” on page 275.

Step 8—Make a connection manager entry
Use the connection manager to define each 4-tuple. Completing an entry for a
4-tuple in the connection manager ensures that you provide CICS ONC RPC with
all the information that it needs to service the client request.

The fields used to define each 4-tuple are described in “Defining the attributes of a
4-tuple” on page 287.

Write the CICS ONC RPC converter
This section describes how you can write a converter to perform various tasks.
Some of these tasks are required for all 4-tuples, others only for some.

The section describes in turn each of the tasks, indicating the converter function
(Getlengths, Decode, or Encode) used.

The parameter details and responses of each of the converter functions are given at
the end of the section in “Getlengths” on page 316, “Decode” on page 318, and
“Encode” on page 323.

Tasks that can be performed by a converter
The tasks to be performed are:
v Telling the connection manager or the server controller the lengths of the input

and output data for the CICS program
v Telling the connection manager the CICS program data format
v Mapping data between client and CICS program formats, as illustrated in

Figure 37 on page 269 and Figure 39 on page 270
v Telling the server controller which alias and CICS program are to be used to

service a request, if those specified when the 4-tuple was defined are to be
changed

Lengths of the CICS program input and output data
CICS ONC RPC needs to know the length of the CICS program input and output
data for each 4-tuple.

For each 4-tuple, the lengths may be defined in one of three places:
v In the connection manager if the lengths do not vary from call to call. You

specify the lengths in the connection manager and specify NO for the Getlengths
attribute of the 4-tuple. In this case Getlengths is not called.

v In Getlengths if the lengths do not vary from call to call, returning the values in
the glength_server_input_data_len and glength_server_output_data_len output
fields. In the connection manager you specify YES for the Getlengths attribute of
the 4-tuple, and leave the length fields blank.

Chapter 25. Programming with CICS ONC RPC 307

In either of these first two cases, if Decode is specified for the 4-tuple, the
Decode function can change the lengths.

v In Decode, if the lengths of the data structures vary from call to call. You return
the lengths on each call by using the decode_server_input_data_len and
decode_server_output_data_len output fields. The lengths specified with the
connection manager or Getlengths are supplied as inputs to Decode in these
fields.

Setting the CICS program data format
CICS ONC RPC needs to know the CICS program data format for each 4-tuple.

You can set this either in Getlengths or in the connection manager. If you choose
Getlengths, use the output field glength_server_data_format. The value specified
with the connection manager is supplied as input to Getlengths in this field.

Mapping data between client and CICS program formats
You need to map the incoming data intended for the CICS program only if it is not
in the format required by the CICS program.

This is typically for:
v Client data structures that contain pointers to other data. These are rebuilt by the

inbound XDR routine in the same form as they existed in the client. The data for
the CICS program must be copied into a single area of storage to be passed to
the CICS program as its communication area.

v CICS programs that are written in a language other than C. The incoming client
request always has a C data structure. If your CICS program is written in
COBOL, for example, you need to perform a C-to-COBOL mapping in Decode.

The mapping is always done by Decode for the input data for the CICS program.
In most cases, the output data needs to be mapped in the opposite direction by
Encode.

On input, the client data is pointed to by the Decode input field
decode_client_data_ptr. Decode maps this data into the form which the CICS
program requires.

To achieve the mapping, Decode must allocate an area of CICS storage, using
EXEC CICS GETMAIN SHARED. Decode must set the output field
decode_returned_data_ptr to the address returned by the GETMAIN command,
and put the input data passed from the client into the storage, making changes
where applicable.

Changing the alias and CICS program
You can use Decode to redirect a client request to another CICS program.

CICS ONC RPC then ignores the original program name that was defined in the
connection manager for the requested 4-tuple. To reroute a client request, specify a
new CICS program name in the decode_server_program field in Decode. This
facility allows a client to pass a CICS program name in the data it sends in the
remote procedure call. The new CICS program must work with the same
communication area format, converter, and XDR output routine as the original
program.

You can use Decode to change the name of the alias transaction to run the CICS
program by setting the decode_alias_transid output field. CICS ONC RPC then

308 CICS TS for z/OS 4.2: External Interfaces Guide

ignores the transaction ID that was defined in the connection manager for the
requested 4-tuple. This facility allows a client to pass the alias transaction ID in the
data it sends with the remote procedure call.

Changing security information
You may want your CICS ONC RPC system to implement security checking on
incoming client requests. Such checking usually involves checks on the client user
ID and password. One of the ways the client can provide these is by including
them in the data structure it sends.

Decode can retrieve this information from the incoming data, and return it in the
output fields. The user ID should be returned in the output field decode_userid;
the password should be returned as part of the data pointed to by the
decode_returned_data_ptr field. These outputs can either be passed by the client
or generated by Decode in whatever way you want. For instance, Decode can
derive the CICS user ID and password for the client request by using the
decode_client_address field, or the authentication fields decode_aup_... that
identify the client.

Organizing the converter
You can write converters for any CICS-supported compiler. If you choose a
language other than C or COBOL, you must write your own header files to define
the CICS ONC RPC data structures and constants.

A converter is passed a communication area that contains a parameter that
specifies which of the three functions Getlengths, Decode, or Encode is required,
and parameters for the particular function, as described in the reference material:
“Getlengths” on page 316, “Decode” on page 318, and “Encode” on page 323.

The following C header files (in the SDFHC370 target library) and COBOL
copybooks (in the SDFHCOB target library) are provided to help with writing the
converter:
v DFHRPUCH for C (DFHRPUCO for COBOL)—contains definitions of the

constants that are used in the interface between CICS ONC RPC and the
converter.

v DFHRPCDH for C (DFHRPCDO for COBOL)—defines the format of the
communication area that is presented to the converter. The communication area
is in two parts. The format of the first part is independent of the function that
the converter is being asked to perform, and it contains:
– The eyecatcher for the requested function
– The function code for the requested function
– A response to be supplied by the converter
– A reason code to be supplied by the converter
The format of the rest of the communication area depends on the converter
function requested.

You need a header file produced by RPCGEN only if you used RPCL to define the
data structures, and you are writing Decode or Encode. If you are writing your
converter in a language other than C, you need to rewrite the header file in your
chosen language, since RPCGEN produces its output only in C.

You need definitions of the CICS structures that you use, and the definition of the
CICS program communication area.

Chapter 25. Programming with CICS ONC RPC 309

Writing a converter in C
The following discussion is based on a converter that consists of four main parts:
v A routing part that consults the function code in the communication area, and

then calls the appropriate function
v A function for Getlengths processing
v A function for Decode processing
v A function for Encode processing

Figure 59 shows how you can route control to the appropriate function.

In this program fragment, converter_parms_ptr is a locally declared pointer to the
converter_parms structure declared in DFHRPCDH. All the other names beginning
converter_ are names from this structure.

The processing is as follows:
1. The converter_parms_ptr pointer is set by using EXEC CICS ADDRESS

COMMAREA.
2. The switch statement is used to select the function to be called. If you are not

providing all the functions, you need fewer case statements.
3. If the function is not valid, the response URP_INVALID is returned from the

converter. This test is always advised, especially if the converter does not
provide all three functions.

EXEC CICS ADDRESS EIB(dfheiptr); /*Get addressability of EIB*/

EXEC CICS ADDRESS COMMAREA(converter_parms_ptr);

switch(converter_parms_ptr->converter_function) {

case URP_GETLENGTHS:
{

converter_getlengths();
break;

}
case URP_DECODE:
{

converter_decode();
break;

}
case URP_ENCODE:
{

converter_encode();
break;

}

default:
{

converter_parms_ptr->converter_response = URP_INVALID;
}

} /* end switch */

EXEC CICS RETURN;

} /* end main */

Figure 59. Routing control to the functions in C

310 CICS TS for z/OS 4.2: External Interfaces Guide

Figure 60 is an example of a Decode function.

In this program fragment, names beginning decode_, except decode_parms_ptr, are
names from the decode_parms structure defined in DFHRPCDH.

The processing is as follows:
1. The pointer decode_parms_ptr is set from converter_parms_ptr.
2. The eyecatcher is checked to see if it agrees with the function code. If it does:

a. EXEC CICS GETMAIN is used to get storage for the password and for the
communication area to be passed to the CICS program. The value of
PW_LEN is set elsewhere in the program to 8 by #define. The output
parameter decode_returned_data_ptr is used directly in the GETMAIN. In
this case there is no conversion of data to be done, and the communication
area size is the same as the size of the client data structure.
(rem_proc_parms_103 is a structure that defines the input data after XDR
conversion.)

b. If the response to the EXEC CICS GETMAIN is not NORMAL, an error
message is directed to a transient data queue, the converter response is set
to URP_EXCEPTION, and the reason code is set to NO_STORAGE, which is
locally declared.

void converter_decode(void)
{

decode_parms *decode_parms_ptr;

decode_parms_ptr = (decode_parms *)converter_parms_ptr;

if (strncmp
(decode_parms_ptr->decode_eyecatcher,DECODE_EYECATCHER_INIT,8)
== 0)
{

EXEC CICS GETMAIN
SET(decode_parms_ptr->decode_returned_data_ptr)
FLENGTH(sizeof(rem_proc_parms_103) + PW_LEN)
SHARED
NOSUSPEND
CICSDATAKEY
RESP(response)
RESP2(response2);

if (response != DFHRESP(NORMAL))
{

memcpy(outline,errmsg1,strlen(errmsg1));
EXEC CICS WRITEQ TD QUEUE(tdq) FROM(outline) LENGTH(30);
decode_parms_ptr->decode_response = URP_EXCEPTION;
decode_parms_ptr->decode_reason = NO_STORAGE;

}
else
{

/* move password and data to decode_password and
decode_server_input_data */

decode_parms_ptr->decode_response = URP_OK;
};

}
else

decode_parms_ptr->decode_response = URP_INVALID;
}

Figure 60. Example of a Decode function in C

Chapter 25. Programming with CICS ONC RPC 311

c. If the response to the EXEC CICS GETMAIN is NORMAL, the data and
password are transferred to the storage acquired by GETMAIN (not shown),
and the converter response is set to URP_OK.

3. If the eyecatcher is not the one for the function being called, the converter
response is set to URP_INVALID.

Writing a converter in COBOL
In the working storage section of the data division, you should use the COPY
statement to copy the copybook DFHRPUCO, and any other copybooks you need.
You should also define any other data items you need in working storage.

You use the COPY statement to include the definition of the communication area
in the linkage section of the data division.

Figure 61 on page 313 shows the layout of the data division. Comments, which
would be part of a well-documented converter, are omitted.

The following discussion is based on a converter that consists of four main parts:
v A routing part that consults the function code in the communication area, and

then calls the appropriate function
v A function for Getlengths processing
v A function for Decode processing
v A function for Encode processing

Figure 62 on page 314 shows how you can route control to the appropriate
function.

312 CICS TS for z/OS 4.2: External Interfaces Guide

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY DFHRPUCO.

01 RESP PIC S9(8) COMP.
01 RESP2 PIC S9(8) COMP.
01 REM-PROC-COMMSIZE PIC S9(8) COMP VALUE +12.
01 CLIENT-OUT-SIZE PIC S9(8) COMP VALUE +8.

LINKAGE SECTION.

01 DFHCOMMAREA.
02 COMM-PARMLIST PIC X(1).

01 CONVERTER-PARMS REDEFINES DFHCOMMAREA.
02 CONVERTER-EYECATCHER PIC X(8).
02 CONVERTER-FUNCTION PIC 9(8) COMP.
02 CONVERTER-RESPONSE PIC 9(8) COMP.
02 CONVERTER-REASON PIC 9(8) COMP.
02 CONVERTER-PARMLIST PIC X(1).

01 GLENGTH-PARMS REDEFINES DFHCOMMAREA.
02 GLENGTH-EYECATCHER PIC X(8).
02 GLENGTH-FUNCTION PIC 9(8) COMP.
02 GLENGTH-RESPONSE PIC 9(8) COMP.
02 GLENGTH-REASON PIC 9(8) COMP.
02 GLENGTH-SERVER-INPUT-DATA-LEN PIC S9(8) COMP.
02 ...

01 DECODE-PARMS REDEFINES DFHCOMMAREA.
02 ...

01 DECODE-RETURNED-DATA.
02 DECODE-PASSWORD PIC X(8).
02 DECODE-SERVER-INPUT-DATA PIC X(1).

01 ENCODE-PARMS REDEFINES DFHCOMMAREA.
02 ...

Figure 61. Layout of data division in COBOL

Chapter 25. Programming with CICS ONC RPC 313

In this program fragment:
1. The response URP-INVALID is set.
2. The IF statements examine the function code in the communication area, and

pass control to the appropriate function.
3. The converter returns to the program that called it. (If the IF statements

selected a function, the DECODE-RESPONSE value returned is the response
from that function.)

Figure 63 is an example of a Decode function.

PROCEDURE DIVISION.

A-CONTROL SECTION.

A-0000-MAIN-TASK.

MOVE URP-INVALID TO DECODE-RESPONSE.

IF CONVERTER-FUNCTION = URP-GETLENGTHS
PERFORM B-0000-GETLENGTHS END-IF.

IF CONVERTER-FUNCTION = URP-DECODE THEN
PERFORM C-0000-DECODE END-IF.

IF CONVERTER-FUNCTION = URP-ENCODE THEN
PERFORM D-0000-ENCODE END-IF.

A-9999-EXIT.

EXEC CICS RETURN END-EXEC.
GOBACK.

Figure 62. Routing control to the functions in COBOL

C-0000-DECODE.

IF DECODE-EYECATCHER IS NOT = DECODE-EYECATCHER-INIT
MOVE URP-INVALID TO DECODE-RESPONSE

ELSE
SET ADDRESS OF CLIENT-IN-DATA TO DECODE-CLIENT-DATA-PTR
ADD 8 TO REM-PROC-COMMSIZE
EXEC CICS GETMAIN

SET(DECODE-RETURNED-DATA-PTR)
FLENGTH(REM-PROC-COMMSIZE)
SHARED
NOSUSPEND
CICSDATAKEY
RESP(RESP)
RESP2(RESP2)
END-EXEC

SET ADDRESS OF DECODE-RETURNED-DATA
TO DECODE-RETURNED-DATA-PTR

MOVE "PASSWD" TO DECODE-PASSWORD
SET ADDRESS OF REM-PROC-DATA

TO ADDRESS OF DECODE-SERVER-INPUT-DATA
MOVE CLIENT-IN-U-CHAR TO REM-PROC-U-CHAR
MOVE CLIENT-IN-CHAR TO REM-PROC-CHAR
MOVE URP-OK TO DECODE-RESPONSE.

Figure 63. Example of a Decode function in COBOL

314 CICS TS for z/OS 4.2: External Interfaces Guide

In this program fragment, the names beginning DECODE- (except
DECODE-PASSWORD) are fields in the communication area for the Decode
function. DECODE-PASSWORD is the field at the beginning of the returned data.
The processing is as follows:
1. The eyecatcher is checked to see if it agrees with the function code. If it does

not, the URP-INVALID response is returned.
2. If it does:

a. The structure CLIENT-IN-DATA is overlaid on the data coming from the
inbound XDR routine addressed by DECODE-CLIENT-DATA-PTR.

b. The communication area size is increased by 8 to allow for the password
field.

c. EXEC CICS GETMAIN is used to get storage for the password and for the
communication area. REM-PROC-COMMSIZE is the size of the structure
REM-PROC-DATA, which defines the format of the communication area.
The address of the storage is put directly into DECODE-RETURNED-DATA-
PTR.

d. The structure DECODE-RETURNED-DATA is overlaid on the
newly-acquired storage addressed by DECODE-RETURNED-DATA-PTR.

e. The password is moved into DECODE-PASSWORD.
f. The data is moved from CLIENT-IN-DATA to REM-PROC-DATA, and the

response is set to URP-OK.

Using converters
Converters run as CICS programs under the connection manager, server controller,
and aliases. Converters must reside in the same CICS system as CICS ONC RPC.

Preparation
Before using a converter, you must:
1. Translate the converter using the appropriate CICS translator. If it is a COBOL

program, you must use the QUOTE translator directive.
2. Compile the output from the translator.
3. Link the converter as a standard CICS application program into a CICS load

library used by the CICS system on which CICS ONC RPC is installed.
4. Define the converter to CICS as a program.
5. Use the connection manager to specify the converter in one of the 4-tuple

definitions, and define which of the converter functions are required for that
4-tuple.

Reference information for the converter functions
This section contains reference material for each of the three functions of a
converter.

Each function is documented in the same way:
v A summary table of parameters, showing which are for input only, which for

input and output, and which for output only.
– Input is for parameters that your function may consult, but not change.
– Inout is for parameters that your function may consult, and change.
– Output is for parameters that your function must not consult, but may

change.
v A description of the processing that the function is expected to do.

Chapter 25. Programming with CICS ONC RPC 315

v A list of parameters in alphabetical order, with a description of how CICS ONC
RPC sets up the inputs, and what use it makes of the outputs.

v A list of the responses and reason codes that the converter can return, with a
description of the action that CICS ONC RPC takes for each response and reason
code.

The descriptions give the names of the program elements as they appear in C. In
COBOL the names are all in uppercase, and the underscores are replaced by
hyphens.

Getlengths
Getlengths is called when the definition of the 4-tuple is being registered.

Getlengths is called when the definition of the 4-tuple is being registered,
provided that the definition of the 4-tuple specified that Getlengths was to be
called. It is not called to process client requests.Getlengths is responsible for
providing CICS ONC RPC with:
v The size of the data that is passed to and from the CICS program
v The data format (contiguous or overlaid) of the CICS program data

Summary of parameters

The names of the parameters are given in abbreviated form: each name in the table
must be prefixed with glength_ to give the name of the parameter.

To find the C type of each parameter, consult the header file DFHRPCDH provided
with CICS ONC RPC. For COBOL, consult the copybook DFHRPCDO.

Input glength_ Inout glength_ Output glength_

eyecatcher
function

server_data_format
server_input_data_len
server_output_data_len
response
reason

Parameters

glength_eyecatcher
(Input only)

A string of length 8. (The values of the eyecatchers are defined in the
DFHRPUCH header file and the DFHRPUCO copybook.)

glength_function
(Input only)

A code indicating that Getlengths is being called. The value is
URP_GETLENGTHS.

glength_reason
(Output only)

A reason code—see “Response and reason codes” on page 317.

glength_response
(Output only)

A response code—see “Response and reason codes” on page 317.

316 CICS TS for z/OS 4.2: External Interfaces Guide

glength_server_data_format
(Input and output)

On input, that value specified for Server Data Format for the 4-tuple in the
connection manager.

On output, the value is to control:
v How the input data pointer for Encode will be set up
v How the communication area length to be checked by the connection

manager is calculated

The values you can supply are as follows:

URP_CONTIGUOUS
The value of the data pointer that will be passed to Encode, or to
the outbound XDR routine if Encode is not used for this 4-tuple, is
the address of the CICS program communication area plus the
output value of glength_server_input_data_len, though Decode
can modify this offset.

The connection manager calculates a communication area length by
adding the output values of glength_server_input_len and
glength_server_output_len. If this length is different from the
actual length of the communication area passed to the CICS
program, errors might occur in the processing of client requests.

URP_OVERLAID
The value of the data pointer that will be passed to Encode, or to
the outbound XDR routine if Encode is not used for this 4-tuple, is
the address of the CICS program communication area.

The connection manager calculates a communication area length by
taking the larger of the output values of glength_server_input_len
and glength_server_output_len. If this length is different from the
actual length of the communication area passed to the CICS
program, errors might occur in the processing of client requests.

glength_server_input_data_len
(Output only)

For the use of this field, see the description of glength_server_data_format.
If you do not set a value in this field, a default value of zero is used.

glength_server_output_data_len
(Output only)

For the use of this field, see the description of glength_server_data_format.
If you do not set a value in this field, a default value of zero is used.

Response and reason codes

You must return one of the following values in the glength_response field:

URP_OK
The connection manager checks that the communication area length does
not exceed 32 767. If it does not, the information is saved and used to
process incoming client requests, and the 4-tuple is registered. If it does,
the connection manager writes an exception trace entry (trace point 9EE6),
sends a message (DFHRP1991) describing the error to the terminal from
which the connection manager was started, and does not register the
4-tuple.

Chapter 25. Programming with CICS ONC RPC 317

URP_EXCEPTION
The connection manager writes an exception trace entry (trace point 9EE5),
sends a message (DFHRP1988) to the terminal from which the connection
manager was started, and does not register the 4-tuple.

URP_INVALID
The connection manager writes an exception trace entry (trace point 9EE5),
sends a message (DFHRP1989) to the terminal from which the connection
manager was started, and does not register the 4-tuple.

URP_DISASTER
The connection manager writes an exception trace entry (trace point 9EE5),
sends a message (DFHRP1990) to the terminal from which the connection
manager was started, and does not register the 4-tuple.

If you return any other value in glength_response, it is treated as URP_DISASTER.

You can supply a 32-bit reason code in conjunction with the response value to
provide further information in error cases. CICS ONC RPC does not take any
action on the reason code returned by Getlengths. The reason code is output in
any trace that results from the invocation of Getlengths, and you may use it as a
debugging aid.

See “Numeric values of response and reason codes” on page 337 for the numeric
values of the response codes in trace output.

Decode
Decode is invoked by the server controller after the inbound XDR routine. Decode
processing must avoid making the server controller wait for resources, because
waiting prevents the server controller from dealing efficiently with other requests.

Decode has four main responsibilities:
v To set data lengths for the CICS program when the lengths are not the same for

all requests.
v To map the input data passed from the inbound XDR routine to the input data

format required by the CICS program.
v To set the user ID and password that are used to control subsequent processing.
v To set the name of the alias and CICS program for the request if those specified

for the 4-tuple need to be changed.

Summary of parameters

The names of the parameters are given in abbreviated form; each name in the table
must be prefixed with decode_ to give the name of the parameter.

To find the C type of each parameter, consult the header file DFHRPCDH provided
with CICS ONC RPC. For COBOL, consult the copybook DFHRPCDO.

318 CICS TS for z/OS 4.2: External Interfaces Guide

Input decode_ Inout decode_ Output decode_

eyecatcher
function
client_address
client_data_ptr
server_data_format
program_number
version_number
procedure_number
aup_time
aup_machname_ptr
aup_machlen
aup_uid
aup_gid
aup_len
aup_gids_ptr

server_program
alias_transid
server_input_data_len
server_output_data_len

returned_data_ptr
userid
user_token
response
reason

Decode must issue an EXEC CICS GETMAIN command to allocate storage for the
communication area to be passed to the CICS program. Note the following points
about GETMAIN options:
v You must use the SHARED option, because the storage is acquired under the

server controller, but is used under the alias.
v You must use the FLENGTH option.
v You must use the NOSUSPEND option to prevent the server controller from

being made to wait for storage, because waiting prevents the server controller
from attending to incoming requests.

v To prevent overwriting by user-key programs, consider using the
CICSDATAKEY option in the following circumstances:
– The CICS program to be called by the alias is in another CICS system.
– The CICS program to be called by the alias is defined as EXECKEY(CICS).
– The CICS program to be called by the alias is defined as EXECKEY(USER),

but the amount of data to be copied is small.

If an overlaid data format is specified, the requested length must be the greater of
the output values of decode_server_input_data_len and
decode_server_output_data_len plus 8 for DECODE-PASSWORD. If the data
format is not overlaid, this length must be the sum of the output values of
decode_server_input_data_len and decode_server_output_data_len plus 8 for
DECODE-PASSWORD.

Because Decode specifies the SHARED option, the data remains available to CICS
ONC RPC modules and to CICS programs. CICS ONC RPC frees the storage when
it is no longer required.

Parameters

decode_alias_transid
(Input and output)

On input, the name of the alias associated with the 4-tuple for the client
request.

On output, the name of the transaction to be started by the server
controller to process this client request.

Chapter 25. Programming with CICS ONC RPC 319

See “Changing the alias and CICS program” on page 308.

decode_aup_gid
(Input only)

The UNIX group id of the client.

decode_aup_gids_ptr
(Input only)

A pointer to an array of 32-bit integers that are the UNIX group IDs of
which the client is a member.

decode_aup_len
(Input only)

The number of elements in the array of UNIX group identifiers pointed to
by decode_aup_gids_ptr.

decode_aup_machlen
(Input only)

The number of characters in the machine name.

decode_aup_machname_ptr
(Input only)

A pointer to a variable-length character string representing the name of the
machine on which the client is running.

decode_aup_time
(Input only)

The time at which the client created the credentials. The time is measured
in seconds since 00h00m GMT on 1 January 1970.

decode_aup_uid
(Input only)

The UNIX user ID of the client.

decode_client_address
(Input only)

The 32-bit internet address of the client from which the request was
received.

decode_client_data_ptr
(Input only)

A pointer to the data passed from the client. If no data exists, this pointer
points to a null string.

Note: The data area pointed to by this pointer must not be changed by
Decode, because CICS storage management errors are likely to occur.

decode_eyecatcher
(Input only)

A string of length 8. The values of the eyecatchers are defined in the
DFHRPUCH header file and the DFHRPUCO copybook.

decode_function
(Input only)

A code indicating that Decode is being called. The value is URP_DECODE.

320 CICS TS for z/OS 4.2: External Interfaces Guide

decode_procedure_number
(Input only)

The procedure number of the 4-tuple to which the client request was
made.

decode_program_number
(Input only)

The program number of the 4-tuple to which the client request was made.

decode_reason
(Output only)

A reason code; see “Response and reason codes” on page 322.

decode_response
(Output only)

A response code; see “Response and reason codes” on page 322.

decode_returned_data_ptr
(Output only)

A pointer to an area of storage allocated by the converter that contains
these fields:
v decode_password: the password to be used for user authentication
v decode_server_input_data: the data that is to be passed to the CICS

program as input.

The pointer might be null if no password exists and if no data is to be
passed to the CICS program.

decode_server_data_format
(Input only)

A value that controls these operations:
v How the input data pointer for Encode will be set up
v How the communication area length to be checked by the connection

manager is calculated

URP_CONTIGUOUS
The value of the data pointer that will be passed to Encode, or to
the outbound XDR routine if Encode is not used for this 4-tuple, is
the address of the CICS program communication area plus the
output value of decode_server_input_data_len.

The server controller calculates a communication area length by
adding the output values of decode_server_input_data_len and
decode_server_output_data_len. If this length is different from the
actual length of the communication area passed to the CICS
program, errors might occur in the processing of client requests.

URP_OVERLAID
The value of the data pointer that will be passed to Encode, or to
the outbound XDR routine if Encode is not used for this 4-tuple, is
the address of the CICS program communication area.

The server controller calculates a communication area length by
taking the larger of the output values specified of
decode_server_input_data_len and
decode_server_output_data_len. If this length is different from the

Chapter 25. Programming with CICS ONC RPC 321

length of the communication area passed to the CICS program,
errors might occur in the processing of client requests.

decode_server_input_data_len
(Input and output)

On input, the output value of glength_server_input_data_len, or the value
specified for Server Input Length for this 4-tuple in the connection
manager.

On output, see the description of decode_server_data_format.

decode_server_output_data_len
(Input and output)

On input, the output value of glength_server_output_data_len, or the
value specified for Server Output Length for this 4-tuple in the connection
manager.

On output, see the description of decode_server_data_format.

decode_server_program
(Input and output)

On input, the name of the CICS program associated with the 4-tuple for
the client request.

On output, the name of the CICS program to be linked to by the alias.

Use this field if you want to direct the client call to a different CICS
program.

decode_userid
(Output only)

An 8-character field, the user ID known to CICS that correlates to the
requesting client ID. If you store no value in this field, the user ID used in
subsequent processing is the default CICS user ID.

decode_user_token
(Output only)

A fullword that can be used to pass information to the Encode function
that is subsequently invoked for the client request.

decode_version_number
(Input only)

The version number of the 4-tuple to which the client request was made.

Response and reason codes

You must return one of the following values in the decode_response field:

URP_OK
The server controller checks that the communication area length does not
exceed 32 767. If it does not, the alias is started using the information
supplied as output. If it does, the server controller writes an exception
trace entry (trace point 9FC2) and issues a message (DFHRP0516)
describing the error. The alias is not started, and an svcerr_systemerr call
is used to send a reply to the client.

URP_EXCEPTION
The server controller writes an exception trace entry (trace point 9FAA),
and issues a message that depends on the reason code:

322 CICS TS for z/OS 4.2: External Interfaces Guide

v URP_CORRUPT_CLIENT_DATA: message DFHRP0626
An svcerr_decode call is used to send a reply to the client.

v URP_AUTH_BADCRED: message DFHRP0628
An svcerr_auth call with a why-value of AUTH_BADCRED is used to
send a reply to the client.

v URP_AUTH_TOOWEAK: message DFHRP0629
An svcerr_auth call with a why-value of AUTH_TOOWEAK is used to
send a reply to the client.

v Any other value: message DFHRP0631
An svcerr_systemerr call is used to send a reply to the client.

URP_INVALID
The server controller writes an exception trace entry (trace point 9FAA)
and issues a message (DFHRP0632).

An svcerr_systemerr call is used to send a reply to the client.

URP_DISASTER
The server controller writes an exception trace entry (trace point 9FAA)
and issues a message (DFHRP0635).

An svcerr_systemerr call is used to send a reply to the client.

If you return any other value in decode_response, the server controller writes an
exception trace entry (trace point 9FAA) and issues a message (DFHRP0625). An
svcerr_systemerr call is used to send a reply to the client.

You can supply a 32-bit reason code with the response value to provide further
information in error cases. CICS ONC RPC does not take any action on the reason
code returned by Decode, except as indicated above under URP_EXCEPTION. The
reason code is included in any trace that results from the invocation of Decode,
and you can use it as a debugging aid.

See “Numeric values of response and reason codes” on page 337 for the numeric
values of the response and CICS-defined reason codes in trace output.

Encode
Encode is called by the alias after the CICS program ends. Encode is responsible
for taking the data returned from the CICS program and changing its format so
that it is suitable to be passed to the outbound XDR routine for return to the
client.If no restructuring of outbound data is required, you can specify to the
connection manager that Encode is not to be called.The reference to the CICS
program data to be returned to the client is passed to Encode in the
encode_input_data_ptr input field. This data is in CICS program format, which is
a communication area structure in any CICS supported language. The CICS
program data may be mapped from this format into the format required by the
client, which is likely to be C, and might include pointer references, by allocating
an area of storage and mapping the server data into it.Encode must set
encode_output_data_ptr to point to the start of the allocated storage.

Summary of parameters

The names of the parameters are given in abbreviated form: each name in the table
must be prefixed with encode_ to give the name of the parameter.

Chapter 25. Programming with CICS ONC RPC 323

To find the C type of each parameter, consult the header file DFHRPCDH provided
with CICS ONC RPC. For COBOL, consult the copybook DFHRPCDO.

Input encode_ Inout encode_ Output encode_

eyecatcher
function
input_data_ptr
input_data_len
user_token

none output_data_ptr
output_data_len
response
reason

Encode must issue EXEC CICS GETMAIN to allocate storage for the data that it
returns. Note the following points about GETMAIN options:
v You do not need to use the SHARED option.
v You must use the FLENGTH option.
v If your CICS system is using storage protection, you can use the CICSDATAKEY

option to prevent overwriting by user-key programs.

Parameters

encode_eyecatcher
(Input only)

A string of length 8. (The values of the eyecatchers are defined in the
DFHRPUCH header file and the DFHRPUCO copybook.)

encode_function
(Input only)

A code indicating that Encode is being called. The value is URP_ENCODE.

encode_input_data_len
(Input only)

The length in bytes of the data returned from the CICS program. The value
is determined as follows:
1. It is the output value of decode_server_output_data_len, if Decode set

it.
2. If Decode did not set the value, it is the output value of

glength_server_output_data_len, if Getlengths was called when the
4-tuple was registered.

3. If neither of the above is the case, it is the value specified for Server
Output Length in the connection manager when the 4-tuple was
defined.

encode_input_data_ptr
(Input only)

A pointer to the data returned from the CICS program. The setting of this
pointer depends on the definition of the 4-tuple in the connection manager,
Getlengths processing when the 4-tuple was registered, and Decode
processing for the client request.

encode_output_data_len
(Output only)

The length in bytes of the data to be passed to the outbound XDR routine.

encode_output_data_ptr
(Output only)

324 CICS TS for z/OS 4.2: External Interfaces Guide

A pointer to an area of allocated storage that contains the data that is to be
passed to the outbound XDR routine.

encode_reason
(Output only)

A reason code—see “Response and reason codes.”

encode_response
(Output only)

A response code—see “Response and reason codes.”

encode_user_token
(Input only)

A fullword containing information which was output from Decode for this
client request.

Response and reason codes

You must return one of the following values in the encode_response field:

URP_OK
The alias passes the output data to the outbound XDR routine.

URP_EXCEPTION
The alias writes an exception trace entry (trace point 9F17), and issues a
message (DFHRP0161). An svcerr_systemerr call is used to send a reply to
the client.

URP_INVALID
The alias writes an exception trace entry (trace point 9F17), and issues a
message (DFHRP0162). An svcerr_systemerr call is used to send a reply to
the client.

URP_DISASTER
The alias writes an exception trace entry (trace point 9F17), and issues a
message (DFHRP0169). An svcerr_systemerr call is used to send a reply to
the client.

If you return any other value in encode_response, the alias writes an exception
trace entry (trace point 9F17), and issues a message (DFHRP0163). An
svcerr_systemerr call is used to send a reply to the client.

You can supply a 32-bit reason code in conjunction with the response value to
provide further information in error cases. CICS ONC RPC does not take any
action on the reason code returned by Encode. The reason code is output in any
trace that results from the invocation of Encode, and you may use it as a
debugging aid.

See “Numeric values of response and reason codes” on page 337 for the numeric
values of the response in trace output.

Chapter 25. Programming with CICS ONC RPC 325

326 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 26. CICS ONC RPC security

Important: This information contains Product-sensitive Programming Interface and
Associated Guidance Information.

Security is an important concern in the provision of ONC RPC support in the CICS
environment, because CICS ONC RPC provides an Open Systems communications
interface into CICS.

ONC RPC has its own security methods (called authentication in RPC) with
dedicated fields in the ONC RPC call and reply message headers. There are three
types of RPC authentication:
v UNIX authentication, which is used to transmit the client's UNIX user ID, group

ID, and other identification information.
v Data Encryption Standard (DES) authentication, which is not available at ONC

RPC Version 3.9, and so cannot be used with CICS ONC RPC.
v Null authentication, which offers no security checking.

This section describes how CICS ONC RPC interacts with the security facilities of
ONC RPC and CICS.

It covers the following topics:
v “Security in CICS and its effect on CICS ONC RPC operations”
v “Writing the resource checker” on page 329.

Security in ONC RPC
ONC RPC has its own security methods (called authentication in RPC) with
dedicated fields in the ONC RPC call and reply message headers.

There are three types of RPC authentication:
v UNIX authentication, which is used to transmit the client’s UNIX user ID,

group ID, and other identification information.
v Data Encryption Standard (DES) authentication, which is not available at ONC

RPC Version 3.9, and so cannot be used with CICS ONC RPC.
v Null authentication, which offers no security checking.

Security in CICS and its effect on CICS ONC RPC operations
During the operation of CICS ONC RPC, various CICS commands are used to
make security checks with an external security manager (ESM).

The checks will always give positive results if SEC=NO is specified as a system
initialization parameter. The checks will always give negative results if SEC=YES
was specified, but the ESM abended while CICS was operating. The following
discussion of the use made of CICS security commands assumes that SEC=YES is
specified, and that the ESM is active.
v When a transaction whose user ID is userid1 issues EXEC CICS START

USERID(userid2), a surrogate-user check is made with the ESM to see that
userid1 is authorized to use userid2. The check is made only if XUSER=YES is
specified as a system initialization parameter.

© Copyright IBM Corp. 1994, 2012 327

This command is issued when the connection manager starts the server
controller, and each time the server controller starts an alias transaction. In the
first case, the user ID used is the one supplied to the connection manager as
CRPM Userid on panel DFHRP02. In the second case, the user ID used is the
one output from Decode.

v EXEC CICS VERIFY PASSWORD is issued by the alias before it links to the
CICS program that services the client request. A check is made with the ESM
that the user ID and password are an acceptable combination.

v EXEC CICS QUERY SECURITY is used by the alias to check that the user ID
under which it is executing is authorized to use the CICS program. The check is
made only if XPPT=YES is specified as a system initialization parameter.

v During the operation of the CICS program, security checks are made each time
the program tries to access a protected resource. The check is made only if
RESSEC(YES) is specified in the definition of the alias transaction, and the
system initialization parameter controlling security checking for the resource
type is set to YES.

v During the operation of the CICS program, security checks are made each time
the program tries to use a command from the CICS SPI (system programming
interface). The check is made only if CMDSEC(YES) is specified in the definition
of the alias transaction, and if XCMD=YES is specified as a system initialization
parameter.

Figure 64 shows how CICS security interacts with the operation of CICS ONC
RPC.

The figure shows that the alias will link to the user-supplied resource checker
program if one is configured, but the use of the resource checker program is not
recommended. You should use the CICS security facilities, and make the
appropriate definitions in the ESM.

CRPC

CRPM

CRPA

EXEC CICS VERIFY PASSWORD

EXEC CICS QUERY SECURITY

EXEC CICS START() USERID()

EXEC CICS START() USERID()

Resource checker

CICS program

Figure 64. How CICS security interacts with CICS ONC RPC operations

328 CICS TS for z/OS 4.2: External Interfaces Guide

Using RACF Secured Sign-on
RACF Secured Sign-on support allows clients to gain security access to CICS
facilities by sending a PassTicket (that is, a one-time-only password). This avoids
the security hazard of a password being transmitted across the network in clear
text.

For further information, see Resource Access Control Facility: System Programmer's
Guide, Version 2 Release 2. This includes details of the algorithm that the RPC client
must use to generate the PassTicket. This algorithm includes the DES algorithm.

PassTicket generation
The algorithm that generates the PassTicket is a function of:
v The CICS user ID of the client
v The CICS application ID of the CICS region running CICS ONC RPC
v A secured sign-on application key, known to both sides
v A time and date stamp

To generate the PassTicket, the client must:
v Know its CICS user ID, the server CICS application ID, and the application key.
v Synchronize its clock to within ten minutes of the server.
v Have access to the encryption algorithm on its machine. Only the DES algorithm

may be used.

Writing the resource checker
Your resource checker program must be called DFHRPRSC. There can be only one
resource checker in a CICS region.

The resource checker allows you to check the credentials of inbound client
requests.

The resource checker can check the client address, passed as an input parameter,
against a list of known clients for the host on which the request has been received.
The password passed to the resource checker is blank.

Reference information for the resource checker
The resource checker is optionally invoked by the alias before it attempts to link to
the CICS program that is to service the client request. It must say whether the
client request is allowed to proceed.

The reference information for the resource checker is presented as follows:
v A summary table of parameters, showing which are for input only, and which

for output only.
– Input is for parameters that your resource checker may consult, but not

change.
– Output is for parameters that your resource checker must not consult, but

may change.
v A description of the processing that the resource checker is expected to do.
v A list of parameters in alphabetical order, with a description of how CICS ONC

RPC sets up the inputs, and what use it makes of the outputs.

Chapter 26. CICS ONC RPC security 329

v A list of the responses and reason codes that the resource checker can return,
with a description of the action that CICS ONC RPC takes for each response and
reason code.

The descriptions give the names of the program elements as they appear in C. In
COBOL the names are all in uppercase, and the underscores are replaced by
hyphens.

Summary of parameters

The format of the communication area containing the resource checker parameters
is in the C header file DFHRPRDH, and the COBOL copybook DFHRPRDO. You
will also need values defined in the C header file DFHRPUCH, or in the COBOL
copybook DFHRPUCO.

Input Output

res_check_alias_transid
res_check_cics_password_ptr
res_check_cics_userid
res_check_client_ip_address
res_check_eyecatcher
res_check_host_ip_address
res_check_server_program_name

res_check_reason
res_check_response

Parameters

res_check_alias_transid
(Input only)

The 4-character name of the alias transaction that has linked to the
resource checker.

res_check_cics_password_ptr
(Input only)

A pointer to the 8-character password passed from the requesting client or
supplied by Decode. The value of this field is blank, and it is provided for
compatibility with earlier versions of CICS ONC RPC.

res_check_cics_userid
(Input only)

The 8-character CICS user ID under which the alias is running.

res_check_client_ip_address
(Input only)

The fullword internet address of the client.

res_check_eyecatcher
(Input only)

A string of length 8. (Its value is defined in the header file DFHRPUCH
and the copybook DFHRPUCO).

res_check_host_ip_address
(Input only)

The fullword internet address of the z/OS Communications Server host
with which the server controller is in communication.

330 CICS TS for z/OS 4.2: External Interfaces Guide

res_check_reason
(Output only)

The reason to be returned to the alias.

res_check response
(Output only)

The response to be returned to the alias.

res_check_server_program_name
(Input only)

The 8-character name of the CICS program that is to be invoked to
perform the server function requested by the client.

Response and reason codes

You must return one of the following values in the res_check_response field.

URP_OK
The alias will continue to process the client request.

URP_EXCEPTION
The alias writes an exception trace entry (trace point 9F0E), and issues a
message that depends on the reason code:
v URP_AUTH_BADCRED—message DFHRP0130

An svcerr_auth call with a why-value of AUTH_BADCRED is used to
send a reply to the client.

v URP_AUTH_TOOWEAK—message DFHRP0184
An svcerr_auth call with a why-value of AUTH_TOOWEAK is used to
send a reply to the client.

v Any other value—message DFHRP0185
An svcerr_systemerr call is used to send a reply to the client.

URP_INVALID
The alias writes an exception trace entry (trace point 9F0E), and issues a
message (DFHRP0186).

An svcerr_systemerr call is used to send a reply to the client.

URP_DISASTER
The alias writes an exception trace entry (trace point 9F0E), and issues a
message (DFHRP0187).

An svcerr_systemerr call is used to send a reply to the client.

If you return any other value in res_check_response, the alias writes an exception
trace entry (trace point 9F0E), and issues a message (DFHRP0188). An
svcerr_systemerr call is used to send a reply to the client.

You can supply a 32-bit reason code in conjunction with the response value to
provide further information in error cases. CICS ONC RPC does not take any
action on the reason code returned by the resource checker, except as indicated
above under URP_EXCEPTION. The reason code is output in any trace or
messages that result from the resource checker, and you may use it as a debugging
aid.

See “Numeric values of response and reason codes” on page 337 for the numeric
values of the response and CICS-defined reason codes in trace output.

Chapter 26. CICS ONC RPC security 331

332 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 27. CICS ONC RPC problem determination

This section helps you debug problems in CICS ONC RPC user-replaceable
programs, the IBM-supplied parts of CICS ONC RPC, and in the system setup of
CICS ONC RPC.

If you suspect that you have a problem in another part of CICS, see .

The formats of messages and trace outputs in CICS ONC RPC are also described.

Diagnostic information is designed to provide first failure data capture, so that if
an error occurs, enough information about the error is available directly without
having to reproduce the error situation. The information is presented in the
following forms:

Messages
CICS ONC RPC provides CICS messages. The CICS ONC RPC messages
have the prefix DFHRP and are listed in CICS messages and codes
overview in Messages and Codes Vol 2.

Trace CICS ONC RPC outputs system trace entries containing all the important
information required for problem diagnosis.

Dump Dump formatting is provided for data areas relating to CICS ONC RPC.

Abend codes
Transaction abend codes are standard 4-character names. The abend codes
output by CICS ONC RPC are listed in CICS messages and codes overview
in Messages and Codes Vol 1.

The rest of this chapter describes:
v “CICS ONC RPC recovery procedures”
v “CICS ONC RPC operational considerations” on page 334.
v “Troubleshooting CICS ONC/RPC” on page 334
v “Using messages and codes for ONC RPC” on page 336
v “CICS ONC RPC trace information” on page 336
v “ONC RPC dump and trace formatting” on page 337
v “Debugging the ONC RPC user-replaceable programs” on page 337

CICS ONC RPC recovery procedures
Software errors within the server controller may cause it to perform an immediate
disable (if this is not prevented by the nature of the error). After an immediate
disable of CICS ONC RPC, CICS continues to run.

CICS ONC RPC is not included in CICS recovery. Registration details are not
saved on the CICS catalog. If CICS abends and is then restarted, RPC interface
registrations from the previous run are not preserved. After a CICS abend, you
must enable CICS ONC RPC as described in “Enabling CICS ONC RPC” on page
284. However, 4-tuple definitions can be stored in the CICS ONC RPC data set.
Each time you enable CICS ONC RPC, the definitions can be retrieved from the
CICS ONC RPC data set.

If z/OS Communications Server abends, CICS ONC RPC enters immediate disable
processing, but CICS continues to run.

© Copyright IBM Corp. 1994, 2012 333

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/cics_mc/dfhg4v2_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/cics_mc/dfhg4v2_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/cics_mc/dfhg4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/cics_mc/dfhg4_overview.html

The abending of an alias transaction might cause changes to recoverable resources
to be backed out. See “Updating recoverable resources” on page 268.

CICS immediate shutdown might leave 3-tuples registered with z/OS
Communications Server. These 3-tuples can be registered again when CICS ONC
RPC is enabled without loss of z/OS Communications Server resources, since CICS
ONC RPC always unregisters a 3-tuple before it registers it.

CICS ONC RPC operational considerations
The server controller uses EXEC CICS START to start the aliases that run the CICS
programs.

CICS limits on the numbers of tasks that can be started may prevent aliases from
running as soon as they are started by the server controller. This leads to delays in
servicing the client requests, and this may lead to time-outs in the client.

In the XDR routines, storage allocation is done using MVS facilities, not CICS
facilities. The storage is owned by the RP TCB. If an XDR routine abends, the
storage is not freed by the server controller or the alias, nor is it freed by MVS,
since the RP task does not end. Repeated abends in XDR routines may lead to
shortage of storage that can only be corrected by stopping CICS.

MVS task control blocks (TCBs) used by ONC RPC
The TCB that interacts with z/OS Communications Server goes into a wait as a
result of that interaction.

This is avoided by using an extra TCB, the RP TCB, for issuing calls to z/OS
Communications Server.

The RP TCB is used for some processing for every client request, but most of the
call processing done by CICS ONC RPC takes place under the QR TCB. The split
between the two TCBs is transparent to you for most of your work, but you need
to be aware of it for problem determination.

ONC RPC task-related user exit (TRUE)
CICS ONC RPC includes a task-related user exit; this is used to anchor shared
storage and to improve CICS ONC RPC's response to CICS shutdown. CICS ONC
RPC does not use a TRUE to pass commands and data to and from z/OS
Communications Server.

Troubleshooting CICS ONC/RPC
This section provides some hints on troubleshooting.

About this task

It follows the general outline:
1. Define the problem.
2. Obtain information (documentation) on the problem.

Defining the problem
When you have a problem, first try to define the circumstances that gave rise to it.

334 CICS TS for z/OS 4.2: External Interfaces Guide

About this task

If you need to report the problem to the IBM software support center, this
information is useful to the support personnel.
1. What is the system configuration?

v CICS Transaction Server release
v z/OS Communications Server release
v Language Environment release

2. What is the connection manager configuration?
v Operating options
v Registered 4-tuples

3. When did the problem first occur?
4. What were you trying to accomplish at the time the problem occurred?
5. What changes were made to the system before the occurrence of the problem?

v To CICS ONC RPC
v To the CICS program being called by the client
v To the converter being used in the call
v To the XDR routines being used in the call
v To the client
v To CICS Transaction Server
v To z/OS Communications Server

6. What is the problem?
v Incorrect output
v Hang/Wait: If you suspect that CICS ONC RPC aliases may be in a hung

state, you can use the connection manager to display a list of alias
transactions and can display associated details. See “Processing the alias list”
on page 300.

v Loop: Use CEMT INQUIRE to display the details of the transaction.
v Abend in user-replaceable program
v Abend in a CICS program
v Abend in the IBM-supplied part of CICS ONC RPC
v Performance problem
v Storage violation
v Logic Error

7. At what point in the processing did the problem occur? (Use Figure 36 on page
267.)

8. What was the state of z/OS Communications Server? (Try the rpcinfo
command.)

Documentation about the problem
To investigate most problems, you must look at the dumps, traces, and logs
provided with MVS and CICS.
v System Dump: This contains the CICS internal trace
v CICS auxiliary trace, if enabled
v z/OS Communications Server trace
v GTF trace, if enabled
v Console log

Chapter 27. CICS ONC RPC problem determination 335

v CSMT log
v CRPO log
v CICS job log

To identify which are likely to be useful for your problem, try to work out the area
of CICS ONC RPC giving rise to the problem, and read the relevant section in the
rest of this section.

Using messages and codes for ONC RPC
CICS ONC RPC messages have identifiers of the form DFHRPnnnn, where nnnn
are four numeric characters.

They are sent to the CICS ONC RPC message transient data queue CRPO, or the
terminal user, or both, depending on the event that is being reported. If you define
CRPO as an indirect destination for CSMT, the CICS ONC RPC messages appear in
CSMT. Some messages are sent to the console.

When CICS ONC RPC issues a message as a result of an error, it also makes an
exception trace entry. CICS ONC RPC also generates information messages, for
instance during enable processing and disable processing.

CICS ONC RPC messages are supplied in English, Kanji, and Chinese. The CICS
message editing utility can be used to translate them into other languages
supported by CICS.

CMAC (online help facility for messages and codes)
You can use utilities supplied as part of CICS to update your base CMAC file with
the CICS ONC RPC CMAC file.

The CICS ONC RPC abend codes are listed in CICS Messages and Codes.

CICS ONC RPC trace information
CICS ONC RPC outputs CICS system trace, which is formatted using software
supplied as part of CICS ONC RPC.

Exception trace entries produced by CICS ONC RPC are written to CICS internal
trace even when the Trace operating option is set to NO. See “Setting and
modifying options” on page 285 for information about the Trace option.

If selected, level 2 trace gives a full trace of the data being transmitted between the
client and the CICS program. CICS trace output is described in Trace entries
overview in Trace Entries.

Feature trace points
Trace points with domain identifier FT are feature trace points.

The format of these entries is slightly different from standard trace points in that
the Module identifier contains the short name of the feature and a full module
name. Feature trace point IDs are not globally defined. This means that a feature
can reuse the trace point IDs of another feature. You should obtain information
about the trace points of any other product from that product's documentation.

336 CICS TS for z/OS 4.2: External Interfaces Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs6/topics/overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs6/topics/overview.html

Numeric values of response and reason codes
The response codes from the converter and resource checker appear in the trace
output as numeric values.
v URP_OK (0)
v URP_EXCEPTION (4)
v URP_INVALID (8)
v URP_DISASTER (12)

The CICS-defined reason codes from the converter and resource checker appear in
the trace output as numeric codes as follows:
v URP_AUTH_BAD_CRED (1)
v URP_AUTH_TOO_WEAK (2)
v URP_CORRUPT_CLIENT_DATA (3)

ONC RPC dump and trace formatting
To switch dump formatting on and off for CICS ONC RPC, you change the CICS
VERBEXIT in the JCL for dump formatting.
IPCS VERBEXIT DFHPD670 FT=0|1|2|3,TR=1|2

The parameters have these meanings:

FT=0 Suppress system dump for all features

FT=1 Produce system dump summary listing for all registered features

FT=2 Produce system dump for all registered features

FT=3 Produce system dump summary listing and a system dump for all
registered features

TR=1 Produce abbreviated trace (includes trace for all registered features)

TR=2 Produce full trace (includes trace for all registered features)

Full details of these and other parameters are described in the Starting up CICS
regions in the Operations and Utilities Guide.

CICS ONC RPC output in the formatted dump consists of the major control blocks
of CICS ONC RPC, with interpretation of some of the fields. The CICS ONC RPC
output can be found in the IPCS output by searching for ===RP. It is under the
heading CICS ONC RPC Feature for z/OS.

Each trace entry for CICS ONC RPC has a comment ONC RPC to distinguish it from
other trace points with the FT prefix.

Debugging the ONC RPC user-replaceable programs
The user-replaceable programs are:
v The user-written XDR routines
v The converters
v The resource checker
v The CICS programs that service the client requests

The debugging of the CICS programs is not dealt with in this manual.

Chapter 27. CICS ONC RPC problem determination 337

https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha62b.html
https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.doc/dfha6/topics/dfha62b.html

XDR routines
The XDR routines, inbound and outbound, run under the RP TCB.

The CICS application programming interface is not available under the RP TCB, so
you cannot use EDF, CICS abend handling, or CICS trace to diagnose problems.
The printf function must not be used. If an XDR routine has a program check, a C
run-time message is written to the CICS job log.

Converter and resource checker
The converter and resource checker run under the QR TCB, and the CICS
application programming interface is available.

Using EDF
EDF is available for debugging the resource checker and the Encode function.

If you want to use EDF, you must:
v Ensure that the alias is terminal-attached. To do this, you must set the EDF

Terminal ID field in the connection manager, as described in EDF Terminal ID.
The chosen terminal must be a local terminal that is either logged on, or
predefined.

v Define CEDF(YES) in the program definition of converter, or resource checker.
The resource checker must run in the same CICS region as CICS ONC RPC if
you want to use EDF to debug it.

Using trace entries
Diagnostic information can be output to the CICS trace by the use of the EXEC
CICS ENTER TRACENUM command.

The amount of trace information and the information contained within trace
entries is at your discretion. See ENTER TRACENUM, in the CICS Application
Programming Reference for more information about this command.

Writing messages
Diagnostic messages can be output by using EXEC CICS WRITEQ TD.

Message information content, message format, frequency, and destination are at
your discretion.

Abends
You are recommended to use EXEC CICS HANDLE ABEND to trap abends. You
should collect the diagnostic information you need by tracing, and other forms of
diagnostic output, and then return a URP_DISASTER response.

338 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 28. CICS ONC RPC performance and tuning

Important: This information contains Diagnosis, Modification, or Tuning
Information.

The performance of a single client request is affected by various aspects of the
client, the network, CICS ONC RPC, the user-replaceable programs, and CICS.

The client

The client time-out interval must take account of the possible delays in
dealing with a client request in CICS ONC RPC and in CICS.

If a client request cannot be processed, an error reply is sent to the client.

The network

This manual does not deal with performance problems of TCP/IP
networks.

z/Os Communications Server resources

If, while registering 4-tuples, you cause the connection manager to register
too many 3-tuples with z/OS Communications Server, you might reduce
the service that CICS ONC RPC can give to incoming client requests. See
“Limits on registration” on page 292.

CICS ONC RPC
The allocation of different alias transaction names to different 4-tuples
must be coordinated with the priorities given to the transactions in CICS.

The converter URM

Getlengths is called only by the connection manager, and has no effect on
the performance of a single client request, or on throughput.

Decode is called by the server controller. Delays here can reduce the
throughput of CICS ONC RPC as well as reducing the performance of a
single client request. The following recommendations are made:
v Do not use CICS trace here except to solve specific problems.
v Use NOSUSPEND on EXEC CICS GETMAIN. If GETMAIN errors occur

because there is not enough storage, look for solutions that do not
involve using the SUSPEND option.

Encode is called by the alias. Delays here reduce the performance of single
client requests, but not the throughput of CICS ONC RPC.

The resource checker URM

The resource checker is called by the alias, so delays here affect the
performance of a single client request, but have no effect on throughput.

© Copyright IBM Corp. 1994, 2012 339

340 CICS TS for z/OS 4.2: External Interfaces Guide

Part 5. Using CICS as a DCE server

CICS support for DCE remote procedure calls (RPCs) enables a non-CICS client
program running in an open systems Distributed Computing Environment (DCE)
to call a server program running in a CICS system and to pass and receive data
using a communications area.

The CICS program is invoked as if linked-to by another CICS program.

This part contains:
v Chapter 29, “Introduction to the Distributed Computing Environment,” on page

343
v Chapter 30, “DCE remote procedure calls,” on page 347
v Chapter 31, “Defining CICS programs as DCE servers,” on page 351
v Chapter 32, “Application programming for DCE remote procedure calls,” on

page 353.

© Copyright IBM Corp. 1994, 2012 341

342 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 29. Introduction to the Distributed Computing
Environment

CICS Transaction Server for z/OS supports DCE remote procedure calls.

CICS Transaction Server for z/OS enables a CICS program to act as a server for a
DCE RPC. (Note that DCE RPC uses the DCE Security and Directory Services.)
This is described in Chapter 30, “DCE remote procedure calls,” on page 347.

The main advantage of a DCE remote procedure call over a CICS DPL call is that
you can call CICS programs from non-CICS environments.

This section tells you what the Distributed Computing Environment (DCE) is and
why you might want to use it. For more detailed information, see Chapter 30,
“DCE remote procedure calls,” on page 347.

What is DCE?
DCE (Distributed Computing Environment) is an architecture defined by the Open
Software Foundation (OSF) to provide an Open Systems platform to address the
challenges of distributed computing.

It is being ported to all major IBM and many non-IBM environments. Note that all
current DCE implementations use TCP/IP rather than SNA as their communication
protocol.

DCE is based on three distributed computing models:

Client/server
A way of organizing a distributed application

Remote procedure call
A way of communicating between parts of a distributed application

Shared files
A way of handling data in a distributed system, based on a personal
computer file access model.

Note: CICS alone (without DCE) also supports distributed computing. See
“Distributed computing” on page 6.

The rest of this section gives a high level view of the services provided by DCE.

Remote procedure call (RPC)
One way of implementing communications between a client and a server of a
distributed application is to use the procedure call model.

In this model, the client makes what looks like a procedure call, and waits for a
reply from the server. The procedure call is translated into network
communications by the underlying RPC mechanism. The server receives a request
and executes the procedure, returning the results to the client.

© Copyright IBM Corp. 1994, 2012 343

In DCE RPC, you define one or more DCE RPC interfaces, using the DCE interface
definition language (IDL). Each interface comprises a set of associated RPC calls
(called operations), each with their input and output parameters. You compile the
IDL, which generates data structure definitions and executable stubs for both the
client and the server. The matching parameter data structures ensure a common
view of the parameters by both client and server. The matching client and server
executable stubs handle the necessary data transformations to and from the
network transmission format, and between different machine formats (EBCDIC and
ASCII).

You use the DCE Directory Service to advertise that your server now supports the
new interface you defined using the IDL. Your client code can likewise use the
Directory Service to discover which servers provide the required interface.

You can also use the DCE Security Service to ensure that only authorized client
end users can access your newly defined server function.

Directory Service
The DCE Directory Service is a central repository for information about resources
in the distributed system.

Typical resources are users, machines, and RPC-based services. The information
consists of the name of the resource and its associated attributes. Typical attributes
could include a user's home directory, or the location of an RPC-based server.

The DCE Directory Service consists of several parts: the Cell Directory Service
(CDS), the Global Directory Service (GDS), the Global Directory Agent (GDA), and
a Directory Service programming interface. The CDS manages a database of
information about the resources in a group of machines called a DCE cell. The
Global Directory Service implements an international, standard directory service
and provides a global namespace that connects the local DCE cells into one
worldwide hierarchy. The GDA acts as a go-between for cell and global directory
services. Both CDS and GDS are accessed using a single Directory Service
application programming interface (API).

Security Service
There are three aspects to DCE security: authentication, secure communications,
and authorization. They are implemented by several services and facilities that
together comprise the DCE Security Service. These include the Registry Service, the
Authentication Service, the Privilege Service, the Access Control List (ACL) Facility,
and the Login Facility.

The identity of a DCE user or service is authenticated by the Authentication
Service. Communications are protected by the integration of DCE RPC with the
Security Service. Communication over the network can be checked for tampering
or encrypted for privacy. Finally, access to resources is controlled by comparing the
credentials conferred to a user by the Privilege Service with the rights to the
resource, which are specified in the resource’s Access Control List. The Login
Facility initializes a user’s security environment, and the Registry Service manages
the information (such as user passwords) in the DCE Security database.

Time Service
The DCE Time Service (DTS) provides synchronized time on the computers
participating in a Distributed Computing Environment.

344 CICS TS for z/OS 4.2: External Interfaces Guide

DTS synchronizes a DCE host’s time with Coordinated Universal Time (UTC), an
international time standard. DTS cannot keep the time in each machine precisely
the same, but can maintain it to a known accuracy. DTS also provides services
which return a time range to an application (rather than a single time value), and
which compare time ranges from different machines. They can be used to schedule
and synchronize events across the network.

File Service
The DCE File Service (DFS) allows users to access and share files stored on a File
Server anywhere on the network, without having to know the physical location of
the file.

Files are part of a single, global namespace. A user anywhere on a network can
access any file, just by knowing its name. The File Service achieves high
performance, particularly through caching of file system data. Many users can
access files that are located on a given File Server without a large amount of
network traffic or delays.

Note: The File Service is based on a personal computer view of files, and is not
relevant to the CICS Transaction Server for z/OS environment.

Threads
DCE Threads supports the creation, management, and synchronization of multiple
threads of control within a single process.

This component is conceptually a part of the operating system layer, the layer
below DCE. If the host operating system already supports threads, DCE can use
that software and DCE Threads is not necessary. Because all operating systems do
not provide a threads facility and DCE components require threads be present, this
user-level threads package is included in DCE.

Chapter 29. Introduction to the Distributed Computing Environment 345

346 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 30. DCE remote procedure calls

CICS works with the DCE Base Services and Application Support features in z/OS
so that a CICS program can act as a DCE server.

Refer to the following z/OS product documentation for information about DCE
Base Services:
v DCE: Understanding the Concepts

v Introducing the z/OS Distributed Computing Environment

v z/OS Distributed Computing Environment: Application Development Guide for
guidance information about developing the client code and using the DCE base
services.

v z/OS Distributed Computing Environment: Application Development Reference for
reference information about application programming interfaces (APIs).

Refer to the following z/OS product documentation for information about DCE
Application Support:
v z/OS DCE Application Support Programming Guide, for information about how to

install CICS remote procedure call server programs.
v z/OS Distributed Computing Environment: Application Support Configuration and

Administration Guide, for information about the administration tasks that
complement the programming tasks.

Overview of DCE with CICS
The optional DCE Application Support server in z/OS enables a DCE client
application anywhere in the DCE environment to access the resources of a CICS
system. The client program uses the simple DCE Remote Procedure Call (RPC), or
the DCE Transactional Remote Procedure Call (TRPC), mechanism to call a CICS
application program.

The client program does not need to know where the required CICS application is
located, because MVS provides the location information. When the client and
server are on different systems, the differences are transparent to the application
programmer.

The Application Support server supports client programs written in C, and CICS
application programs written in COBOL. The Application Support server
automatically handles the conversions of the COBOL and C data types.
Components of z/OS Unix DCE Base MVS handle conversions of EBCDIC and
ASCII data types, if needed.

Thus the Application Support server provides the powerful CICS application
environments on the host, and the familiar (to the client workstation programmer)
C language and RPC mechanism on the client.

The Application Support server:
v Coexists with all other ways of accessing CICS.
v Allows access to existing CICS applications and data.

© Copyright IBM Corp. 1994, 2012 347

v Allows new CICS applications to be developed as servers in the z/OS DCE
Executive MVS environment.

v Allows access to all files and databases available to CICS, including DB2
databases.

v Gives the host programmer continued access to all the facilities and tools in the
CICS environments. This includes requests to run other programs on the same
subsystem or different subsystems using the existing CICS mechanisms.

v Allows a client program to access CICS and does not require the client machine
to have CICS transaction processing function installed.

DCE terminology
The CICS server programs are called operations.

Each RPC requests the execution of one operation. The declarations for each
operation, including the specifications for the input and output parameters, are
contained in an interface definition. You define one or more related operations in an
interface, using the Interface Definition Language (IDL).

IDL defines the server functions that a client can call. IDL is a declarative language
with syntax similar to the C language. The Application Support server contains
IDL extensions that enable a programmer to use COBOL syntax to define the
parameters for the CICS application programs. The programmer coding the IDL
declarations may be a COBOL or a C programmer.

Note: There are restrictions on the COBOL and C data structures that can be
defined using the IDL..

What CICS server programs can do
The Application Support server and CICS are connected by the external CICS
interface (EXCI), which uses CICS interregion connection (IRC) facilities.

The Application Support server maps the DCE RPC parameters into a CICS
communications area, and then uses EXCI to invoke the required CICS program, as
if it had been called by an EXEC CICS LINK command.

TRPCs from a client program within the scope of a single client transaction are
handled by a single CICS task. A syncpoint issued by the client application
commits or backsout all resources owned by the CICS server task as well as any
owned by the client application.

Each RPC from a client program is handled as a CICS task, with an implied
syncpoint at the end of the task. Note that this syncpoint only commits resources
owned by the CICS server task. It does not commit any resources owned by the
client program.

Your server program can access any file or database available in the CICS
environment. It can use CICS distributed facilities to access data and programs that
are managed by other CICS, IMS™, or other APPC-connected systems.

You can use DCE RPCor TRPC to access CICS programs for one or more of the
following reasons:
v To access CICS data from a platform which does not support CICS, but which

does support DCE.

348 CICS TS for z/OS 4.2: External Interfaces Guide

v To access CICS data from workstation programs which do not run in a CICS
environment. You may want to do this even if the workstation platform supports
CICS.

v To use the DCE Security Service, with its high level of protection against
interception of network traffic.

v To use the DCE Directory Service, to provide client independence of the location
of the required server program.

For details of how to write CICS server programs, see Chapter 32, “Application
programming for DCE remote procedure calls,” on page 353.

What you need for DCE RPC to a CICS server
This is the list of products you need for DCE RPC to a CICS server.
v Connectivity through TCP/IP protocols to the client workstation, and to the

DCE directory and security servers. This normally means a TCP/IP network,
though for some partner platforms it may be possible to use an SNA network
with ANYNET support at both ends to transport TCP/IP protocols using SNA
transmission protocols.

v IBM z/OS Communications Server to present a TCP/IP interface to the DCE
software, even if you are using an SNA network and ANYNET software.

v OS/390 Unix Systems Services Distributed Computing Environment Base
Services MVS, Version 5 Release 1 or later.

v OS/390 Unix Systems Services Distributed Computing Environment Application
Support MVS CICS Feature, Version 1 Release 1 or later.

Chapter 30. DCE remote procedure calls 349

350 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 31. Defining CICS programs as DCE servers

You can define CICS programs as servers to DCE remote procedure calls (RPCs) by
using the Interface Definition Language (IDL) to define one or more related
operations.

CICS DCE server programs are called operations in DCE terminology. Each RPC
requests the execution of one operation. The declarations for each operation,
including the specifications for the input and output parameters, are contained in
an interface definition. You define one or more related operations in an interface,
using the Interface Definition Language (IDL).

For more detailed information, see the z/OS DCE Application Support Programming
Guide and the z/OS DCE Application Support Configuration and Administration Guide.

Interface definition

When you write your CICS server program and your DCE client program you
must:
1. Use the GENUUID command of the z/OS DCE Application Support server

to obtain a skeleton interface definition. (An interface defines one or more
related operations. Each operation relates to a server program.) The skeleton
includes a Universal Unique Identifier (UUID) that uniquely identifies the
interface.

2. Use the DCE Interface Definition Language (IDL) to identify each operation
in the interface and define its input and output parameters.

3. Use the IDL compiler to generate data structure definitions for the RPC
parameters and execution stubs for both client and server programs.
The client stub packages (marshalls) the RPC parameters for transmission
over the network to the server, and unpackages (unmarshalls) the
parameters received from the server.
The server stubs contain function that converts host COBOL data types to
C data types and vice versa. They also package and unpackage RPC
parameters, and convert data between EBCDIC and ASCII representations.

4. Link edit and load the server stubs into the server stub library.
5. Link edit the client stub with the client program.

You must also define your server programs to CICS using RDO, as described
in PROGRAM resources in the Resource Definition Guide. The definitions can
be statically defined and installed, or autoinstalled when the programs are first
called.

Interface Installation

When you have completed your CICS server program you need to advertise its
availability to potential clients. You do this by using the Application Support
server administration facilities to install the interface. This exports details of
the interface to the DCE distributed directory. Client programs can then use
DCE facilities to locate servers which support required interfaces.

© Copyright IBM Corp. 1994, 2012 351

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html

352 CICS TS for z/OS 4.2: External Interfaces Guide

Chapter 32. Application programming for DCE remote
procedure calls

Support for DCE remote procedure calls (RPCs) enables a non-CICS client program
running in an Open Systems Distributed Computing Environment (DCE) to link to
a server program running in a CICS system.

For an introduction to DCE RPCs, see Chapter 30, “DCE remote procedure calls,”
on page 347.

Writing a server program

Note: This is an overview only of how to write CICS programs to act as
servers to DCE remote procedure calls. For further related information, see
Chapter 31, “Defining CICS programs as DCE servers,” on page 351.

CICS server programs must:
v Use a communications area to pass input and output parameters.
v Pass input and output parameters by value (not by pointer).
v Contain only data-handling logic. Existing applications that have their

data-handling and terminal input/output logic in separate programs can be
used without modification.

v Ideally, be written in COBOL. This is because the Application Support server
compiler produces only COBOL data structure definitions for your CICS
communications area, to match the RPC parameters. You can, however, write
your server application in another programming language, by manually
defining a communications area data structure that exactly overlays that
produced in COBOL by DCE.

CICS server programs can:
v Use the same subset of EXEC CICS commands as CICS DPL server

programs. The restricted commands are listed in the programming
information in Exception conditions for LINK command, in CICS Application
Programming Reference.

v Use CICS intercommunication facilities to access data and programs owned
by other APPC-connected systems. For example, they can use the Front End
Programming Interface (FEPI) to emulate a 3270 terminal, and thereby act as
a front end for other unchanged CICS or IMS applications.

v Communicate with applications in remote CICS systems, using function
shipping, DPL, or distributed transaction processing.

The Application Support server does not support CICS application programs
that:
v Contain terminal input/output logic to the principal facility. (Note that you

can use APPC terminal control commands to do distributed transaction
processing to a remote back-end system.)

v Use basic mapping support (BMS).

These restrictions are the same as those for CICS distributed program link
servers. Thus, you may be able to use server programs written for
CICS-to-CICS DPL as servers to DCE clients.

© Copyright IBM Corp. 1994, 2012 353

As described in Interface definition, you must use the DCE MVS Application
Support server compiler to generate a data structure definition for the RPC
parameters passed to your server program, and an execution stub for the
server. You must link edit and load the stub into the server stub library.

Writing a client program

For information about coding DCE client programs, see the z/OS Distributed
Computing Environment: Application Development Guide and the z/OS Distributed
Computing Environment: Application Development Reference.

Writing a server program

This information gives an overview only of how to write CICS programs to act as
servers to DCE remote procedure calls. For further related information, see
Chapter 31, “Defining CICS programs as DCE servers,” on page 351.

CICS server programs must do the following:
v Use a communications area to pass input and output parameters.
v Pass input and output parameters by value (not by pointer).
v Contain only data-handling logic. Existing applications that have their

data-handling and terminal input/output logic in separate programs can be used
without modification.

v Ideally, be written in COBOL. This is because the Application Support server
compiler produces only COBOL data structure definitions for your CICS
communications area, to match the RPC parameters. You can, however, write
your server application in another programming language, by manually defining
a communications area data structure that exactly overlays that produced in
COBOL by DCE.

CICS server programs can do the following:
v Use the same subset of EXEC CICS commands as CICS DPL server programs.

For a list of the restricted commands, see Exception conditions for LINK
command in the CICS Application Programming Reference.

v Use CICS intercommunication facilities to access data and programs owned by
other APPC-connected systems. For example, they can use the Front End
Programming Interface (FEPI) to emulate a 3270 terminal, and thereby act as a
front end for other unchanged CICS or IMS applications.

v Communicate with applications in remote CICS systems, using function
shipping, DPL, or distributed transaction processing.

The Application Support server does not support CICS application programs that
do the following:
v Contain terminal input/output logic to the principal facility. (Note that you can

use APPC terminal control commands to do distributed transaction processing to
a remote back-end system.)

v Use basic mapping support (BMS).

These restrictions are the same as those for CICS distributed program link servers.
Thus, you may be able to use server programs written for CICS-to-CICS DPL as
servers to DCE clients.

As described in Interface definition, you must use the DCE MVS Application
Support server compiler to generate a data structure definition for the RPC

354 CICS TS for z/OS 4.2: External Interfaces Guide

parameters passed to your server program, and an execution stub for the server.
You must link-edit and load the stub into the server stub library.

Chapter 32. Application programming for DCE remote procedure calls 355

356 CICS TS for z/OS 4.2: External Interfaces Guide

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2012 357

358 CICS TS for z/OS 4.2: External Interfaces Guide

Appendix. Routing program-link requests

“Traditional” CICS-to-CICS distributed program link (DPL) calls, instigated by
EXEC CICS LINK PROGRAM commands, can be “daisy-chained” from region to
region, by defining the program as remote in each region except the last (server)
region, where it is to execute.

Important: For detailed information about routing program-link requests, see CICS
distributed program link, in the CICS Intercommunication Guide. This appendix is an
overview of how program-link requests received from outside CICS can be routed
to other regions.

The same applies to program-link requests received from outside CICS. For
example, all of the following types of program-link request can be routed:
v Calls received from:

– CICS Web support
– The CICS Transaction Gateway

v Calls from external CICS interface (EXCI) client programs
v External Call Interface (ECI) calls from any of the CICS Client workstation

products
v Distributed Computing Environment (DCE) remote procedure calls (RPCs)
v ONC/RPC calls.

Static routing
A program-link request received from outside CICS can be statically routed to a
remote CICS region by specifying the name of the remote region on the
REMOTESYSTEM option of the installed program definition.

Dynamic routing
A program-link request received from outside CICS can be dynamically routed by
defining the program to CICS as DYNAMIC(YES), and coding your dynamic
routing program to route the request.

© Copyright IBM Corp. 1994, 2012 359

360 CICS TS for z/OS 4.2: External Interfaces Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1994, 2012 361

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

362 CICS TS for z/OS 4.2: External Interfaces Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0565
CICS Transaction Server for z/OS What's New, GC34-7192
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-7188
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-7189
CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1, GC34-7190
CICS Transaction Server for z/OS Installation Guide, GC34-7171

Access to CICS
CICS Internet Guide, SC34-7173
CICS Web Services Guide, SC34-7191

Administration
CICS System Definition Guide, SC34-7185
CICS Customization Guide, SC34-7161
CICS Resource Definition Guide, SC34-7181
CICS Operations and Utilities Guide, SC34-7213
CICS RACF Security Guide, SC34-7179
CICS Supplied Transactions, SC34-7184

Programming
CICS Application Programming Guide, SC34-7158
CICS Application Programming Reference, SC34-7159
CICS System Programming Reference, SC34-7186
CICS Front End Programming Interface User's Guide, SC34-7169
CICS C++ OO Class Libraries, SC34-7162
CICS Distributed Transaction Programming Guide, SC34-7167
CICS Business Transaction Services, SC34-7160
Java Applications in CICS, SC34-7174

Diagnosis
CICS Problem Determination Guide, GC34-7178
CICS Performance Guide, SC34-7177
CICS Messages and Codes Vol 1, GC34-7175
CICS Messages and Codes Vol 2, GC34-7176
CICS Diagnosis Reference, GC34-7166
CICS Recovery and Restart Guide, SC34-7180
CICS Data Areas, GC34-7163
CICS Trace Entries, SC34-7187
CICS Debugging Tools Interfaces Reference, GC34-7165

Communication
CICS Intercommunication Guide, SC34-7172
CICS External Interfaces Guide, SC34-7168

Databases
CICS DB2 Guide, SC34-7164
CICS IMS Database Control Guide, SC34-7170

© Copyright IBM Corp. 1994, 2012 363

CICS Shared Data Tables Guide, SC34-7182

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7196
CICSPlex SM Web User Interface Guide, SC34-7214

Administration and Management
CICSPlex SM Administration, SC34-7193
CICSPlex SM Operations Views Reference, SC34-7202
CICSPlex SM Monitor Views Reference, SC34-7200
CICSPlex SM Managing Workloads, SC34-7199
CICSPlex SM Managing Resource Usage, SC34-7198
CICSPlex SM Managing Business Applications, SC34-7197

Programming
CICSPlex SM Application Programming Guide, SC34-7194
CICSPlex SM Application Programming Reference, SC34-7195

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7204
CICSPlex SM Resource Tables Reference Vol 2, SC34-7205
CICSPlex SM Messages and Codes, GC34-7201
CICSPlex SM Problem Determination, GC34-7203

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 2.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

364 CICS TS for z/OS 4.2: External Interfaces Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1994, 2012 365

366 CICS TS for z/OS 4.2: External Interfaces Guide

Index

Numerics
2–phase commit

DPL_Request 119
protocol invoked by RRS 119

3270 bridge
benefits 12
bridge facility properties 52
mechanism 17
Transaction routing 24

4-tuple 263
4-tuple records 284

A
abend codes 193
addressing mode (AMODE)

assembler sample program 181
client program requirements 175

ADS 19
ADSD 19
AIBRIDGE 47
alias (CICS ONC RPC)

definition 275
role in call processing 266
specifying 289
specifying EDF terminal ID 289
transaction definition 275

alias transaction 264
allocate_opts, parameter of

ALLOCATE_PIPE command 128
Allocate_Pipe command 127
ALLOCATE_PIPE command

invocation of DFHXCURM
during 167

security check failure 187
allocating a pipe 127
ANYNET software 273
Application data structure (ADS) 19
Application data structure descriptor

(ADSD) 19
application programming

commands 123
copybooks 144
DCE remote procedure calls 353
DPL subset 114
exception conditions returned on

LINK command 151
language considerations 177
RESP and RESP2 fields 151
restrictions for server programs 114
sample programs 178
stub 175
translation required for EXEC CICS

LINK command 156
applid, specifying on ALLOCATE_PIPE

command 128
assembler

CICS-supplied procedure,
DFHEXTAL 176

copybook 144

assembler (continued)
EXCI CALL interface 123
sample program 147, 181

authentication, RPC 327
Automatic Enable option 286, 298
automatic retry of EXEC CICS LINK 153

B
basic sequential access method (BSAM)

use of by assembler sample client
program 181

batch jobs, querying the status of 165
batched RPC requests 260
benefits of external CICS interface 12
bind-time security 187
BMS ACCUM option 20
BMS and the Link 3270 bridge 20
BMS support 20
bridge

ADS 19
ADSD 19
bridge facility definition 48
BRIH copybooks 61
BRIV copybooks 61
conversational transactions 39
driver 17
dynamic routing 58
inbound vectors 70
INQUIRE AUTOINSTALL 55
INQUIRE BRFACILITY 55
INQUIRE TASK 56
INQUIRE TRACETYPE 56
INQUIRE TRANSACTION 56
load routing 57
mechanism 17
message formats 61
message header (BRIH) 62
outbound vectors 76
pseudoconversational transactions 39
router 17
SET BRFACILITY 55
SET TRACETYPE 56
system initialization parameters 47

bridge (3270) 17
benefits 12
BMS ACCUM option 20
BMS support 20
bridge facility definition 48
bridge facility properties 52
CEDF 21
CEDX 21
CSFE 21
CSGM 21
DLI 22
FACILITYLIKE 48
global user exits 21
inbound vectors 70
INQUIRE AUTOINSTALL 55
INQUIRE BRFACILITY 55
INQUIRE TASK 56

bridge (3270) (continued)
INQUIRE TRACETYPE 56
INQUIRE TRANSACTION 56
ISSUE PASS 22
ISSUE PRINT 22
mechanism 17
message header (BRIH) 62
Monitoring 22
outbound vectors 76
programming restrictions 20
security 22
SET BRFACILITY 55
SET TRACETYPE 56
START 22
STARTed transactions 23
system initialization parameters 47
TCTUA 23
use of ASSIGN 20

BRIH 62
inbound parameters 63
outbound message header 68

BRIV outbound 76
BRIV- inbound 70
BRMAXKEEPTIME 47
broadcast RPC 260

C
C language

CICS-supplied procedure,
DFHYXTDL 176

copybook 144
EXCI CALL interface 123
sample program 147, 181
special considerations for client

program 177
call_type

parameter of ALLOCATE_PIPE
command 128

parameter of CLOSE_PIPE
command 141

parameter of DEALLOCATE_PIPE
command 142

parameter of DPL_Request
command 132

parameter of INITIALIZE_USER
command 124

parameter of OPEN_PIPE
command 130

callback RPC 261
capturing dumps 192
ccsid, parameter of DPL_Request

command 138
CEDF 21
CEDX 21
CEMT INQUIRE EXCI command 165
CICS ONC RPC data set 284
CICS ONC RPC definition record 284
CICS ONC RPC options 285
CICS program

API restrictions 255

© Copyright IBM Corp. 1994, 2012 367

CICS system definition file, EXCI sample
definitions 183

CICS system initialization parameters
IRCSTRT 218
SEC 327
XCMD 328
XPPT 328
XUSER 327

CICS TCP/IP Socket Interface 273
CICS_applid, parameter of

ALLOCATE_PIPE command 128
CICS-key storage 276
CICSDATAKEY option on

GETMAIN 319, 324
CICSSVC, parameter of DFHXCOPT 170
client program

addressing mode 175
BSAM, use of by assembler sample

program 181
compiling 176
connection through DFHIRP 122
definition of 113
JCL needed

capturing SYSMDUMPs 192
running an EXCI client 175

link-editing 176
linking to server with EXEC CICS

LINK 149
MRO logon and bind-time

security 187
PL/I and C language

considerations 177
sample job for starting 176
sample program 181
translating 156, 176
use of multiple sessions 113

client stub 258
clients supported by CICS ONC

RPC 273
Close_Pipe command 140
closing a pipe 140
CMDSEC 276, 328
COBOL

CICS-supplied procedure,
DFHYXTVL 177

copybook 144
example of EXCI DPL call 146
EXCI CALL interface 123
sample program 181

code page conversions 306
codes, abend 193
command security 276
COMMAREA_len, parameter of

DPL_Request command 133
COMMAREA, parameter of DPL_Request

command 133
compiling 306
CONFDATA, parameter of

DFHXCOPT 171
connecting an allocated pipe 129
CONNECTION definition

CONNTYPE attribute 161
PROTOCOL attribute 162

connection manager 264
connection manager (CICS ONC RPC)

definition 275
panel format 281

connection manager panels
DFHRP01 279
DFHRP02 285
DFHRP03 286
DFHRP04 279
DFHRP06 294
DFHRP10 282
DFHRP11 292
DFHRP12 293
DFHRP13 293
DFHRP14 298
DFHRP15 298
DFHRP16 283
DFHRP17 301
DFHRP18 301
DFHRP20 296
DFHRP21 299
DFHRP22 297
DFHRP2B 300
DFHRP5 287
DFHRP5B 288

connection-oriented data transmission 8
connectionless data transmission 8
CONNTYPE attribute, CONNECTION

definition 161
contiguous communication area 317, 321
converter 265
converter (CICS ONC RPC)

defining functions provided 290
role in call processing 266
writing 307

copybooks for assembler, C language,
COBOL, PL/I 144

cross-system multiregion operation
(XCF/MRO) 113

CRPA transaction 264
CRPC transaction 264, 279
CRPM transaction 264
CRPO transient data queue 277, 281
CSFE 21
CSGM 21
CSMI

attached by CICS server 151
CSMI (CICS-supplied mirror transaction)

authorizing the link user ID 188
default transid 134
security 188

D
data format 269, 290, 317, 321
data_len, parameter of DPL_Request

command 133
datagram 8
DCE (distributed computing

environment) 12
and CICS 343
benefits of 11
overview 343
remote procedure call (RPC)

application programming 353
benefits of 348
calling CICS programs 351
CICS server programs 348, 353
overview 341, 347
requirements for use with

CICS 349

DCE (distributed computing
environment) (continued)

remote procedure call (RPC)
(continued)

resource definition 351
DCE RPC servers 11
Deallocate_Pipe command 142
deallocating a pipe 142
Decode function 266
decode_alias_transid field 319
decode_aup_gid field 320
decode_aup_gids_ptr field 320
decode_aup_len field 320
decode_aup_machlen field 320
decode_aup_machname_ptr field 320
decode_aup_time field 320
decode_aup_uid field 320
decode_client_address field 320
decode_client_data_ptr field 320
decode_eyecatcher field 320
decode_function field 320
decode_procedure_number field 321
decode_program_number field 321
decode_reason field 321
decode_response field 321
decode_returned_data_ptr field 321
decode_server_data_format field 321
decode_server_input_data_len field 308,

322
decode_server_output_data_len

field 308, 322
decode_server_program field 322
decode_user_token field 322
decode_userid field 322
decode_version_number field 322
DES authentication 327
DFH$AXCC, assembler sample program

example of output 184
DFH$EXCI, sample server

definitions 183
DFH$FILA, sample file definitions 184
DFH¢AXCC, assembler sample

program 147
DFH¢DXCC, sample program 147
DFH¢PXCC, PL/I sample program 147
DFHAPPL FACILITY class profiles,

defining 188
DFHAUPLE procedure 169
DFHEXTAL, procedure for assembler

client programs 176
DFHIRP (interregion communication

program)
connection of client and server 122
security checks performed by 187

DFHLIST, note about sample
definitions 183

DFHXCIE, alias for DFHXCSTB
stub 175

DFHXCIS, alias for DFHXCSTB stub 175
DFHXCOPT, options table 169
DFHXCPLD, return area and equate

copybook for assembler 145
DFHXCPLH, return area and equate

copybook for C language 145
DFHXCPLL, return area and equate

copybook for PL/I 145

368 CICS TS for z/OS 4.2: External Interfaces Guide

DFHXCPLO, return area and equate
copybook for COBOL 145

DFHXCRCD, return code copybook for
assembler 145

DFHXCRCH, return code copybook for C
language 145

DFHXCRCL, return code copybook for
PL/I 145

DFHXCRCO, return code copybook for
COBOL 145

DFHXCSTB, stub for client
programs 175

DFHXCTRA, EXCI service trap 200
DFHXCTRD, parameter list 200
DFHXCURM, user-replaceable

module 167
DFHYXTDL, procedure for client

programs 176
DFHYXTEL, procedure for ++ client

programs 176
DFHYXTPL, procedure for PL/I client

programs 177
DFHYXTVL, procedure for COBOL client

programs 177
disable processing

types 295
disabling CICS ONC RPC 294
disconnecting a pipe 140
distributed computing environment

(DCE) 12
and CICS 343
benefits of 11
overview 343
remote procedure call (RPC)

application programming 353
benefits of 348
calling CICS programs 351
CICS server programs 348, 353
overview 341, 347
requirements for use with

CICS 349
resource definition 351

distributed program link (DPL)
API subset for server programs 114
example COBOL call without userid

and uowid 146
request program call 131

DLI 22
DPL_opts, parameter of DPL_Request

command 137
DPL_Request call 131
dpl_retarea, parameter of DPL_Request

command 136
driver

bridge 17
dumps 192, 337

formatting 192
SYSMDUMP 192

DURETRY, parameter of
DFHXCOPT 171

dynamic routing
EXCI 159

E
EDF 338
ELPA (extended link pack area),

installation of DFHIRP 122
enabling CICS ONC RPC 286
Encode (CICS ONC RPC)

whether required 323
Encode function 266
encode_eyecatcher field 324
encode_function field 324
encode_input_data_len field 324
encode_input_data_ptr field 324
encode_output_data_len field 324
encode_output_data_ptr field 324
encode_reason field 325
encode_response field 325
encode_user_token field 325
endian, parameter of DPL_Request

command 138
ENTER TRACENUM command 338
ephemeral port numbers 10
EQUATE copybooks 144
exception conditions returned on LINK

command 151
EXCI

dynamic routing 159
static routing 157

EXCI on CEMT INQUIRE command 165
EXEC CICS GETMAIN

CICSDATAKEY option in
Decode 319

CICSDATAKEY option in
Encode 324

FLENGTH option in Decode 319
FLENGTH option in Encode 324
NOSUSPEND option in Decode 319
SHARED option in Decode 319
SHARED option in Encode 324

EXEC CICS LINK command 149
automatic retry 153
choosing between EXEC CICS and

CALL interface 115
DFHAPPL profile definition 188
security checking 188, 189
translation 156

EXEC CICS QUERY SECURITY 328
EXEC CICS START USERID 327
EXEC CICS SYNCPOINT 268
EXEC CICS VERIFY PASSWORD 328
EXEC CICS WRITEQ TD 338
EXECKEY option 276
extended link pack area (ELPA),

installation of DFHIRP 122
external CICS interface (EXCI) 113, 149

benefits 12
CALL interface

choosing between EXEC CICS and
CALL interface 115

DFHAPPL profile definition 188
return area 144
syntax 123

CICS releases supported 122
compiling and link-editing client

programs 175
defining connections 161
description of 113

external CICS interface (EXCI) (continued)
inquiring on the state of

connections 165
languages supported 123
messages 243
options table, DFHXCOPT 169
PL/I and C language

considerations 177
problem determination 191
programming languages

supported 123
reason codes 215
resource and recovery 118
response codes 215
security 187
taking a syncpoint in the client

program 122
user-replaceable module

(DFHXCURM) 167
using RRMS 119

F
FACILITY class profiles, defining 188
FACILITYLIKE 48
fast-path commands 280
File Transfer Protocol 10
FLENGTH option on GETMAIN 319,

324
freeing storage associated with a

pipe 142
function call EQUATE copybooks 144

G
generic connection

definition of 161
note about lack of security

checks 187
Getlengths function 265

whether required 307
glength_eyecatcher field 316
glength_function field 316
glength_reason field 316
glength_response field 316
glength_server_data_format field 308,

317
glength_server_input_data_len field 307,

317
glength_server_output_data_len

field 307, 317
global user exits 21
GTF, parameter of DFHXCOPT 172

I
inbound XDR routine 265, 267, 269
Initialize_User command 123
internet address 9
Internet address 9
Internet Protocol (IP) 8
interregion communication (IRC)

opening after installation of sample
definitions 184

IP address 9
IPCS VERBEXIT 274

Index 369

IPv4 addresses and IPv6 addresses 9
IRCSTRT system initialization

parametert 218
ISSUE PASS 22
ISSUE PRINT 22

J
JCL for dump formatting

CICS ONC RPC 274
job control language (JCL)

for capturing SYSMDUMPs 192
for running an EXCI client

program 175

L
Language Environment 273
LINK command 149

choosing between EXEC CICS and
CALL interface 115

link-editing
DFHXCOPT options table 169
for client program 175
translation required for EXEC CICS

LINK command 156
use of DFHXCSTB stub 123
using DFHAUPLE 169

Link3270
Transactuion routing 24

linking 306
local resources, defining

CICS programs as DCE servers 351
logon security 187

M
mapset definition 277
messages 243, 336
migrating between CICS versions 275
Monitoring 22
MSGCASE, parameter of

DFHXCOPT 172
multiregion operation (MRO)

cross-system (XCF/MRO) 113
logon and bind time security 187

MVS abends 193

N
nonblocking call type

specifying 289
nonblocking RPC call 260
NOSUSPEND option on GETMAIN 319
Null authentication 327
null parameters, example of EXCI CALLs

with 146

O
ONC 256
ONC RPC 255
open system interface (OSI) 12
Open_Pipe command 129
opening a pipe 129

options table, DFHXCOPT 169
OSI (open system interface) 12
outbound XDR routine 265, 268, 271
overlaid communication area 317, 321

P
parameters

null 146
specifying with options table 169

PassTicket 329
performance 339
pgmname

parameter of DPL_Request
command 132

pipe
allocating 127
closing 140
connecting 129
deallocating 142
definition of 113
disconnecting 140
freeing storage associated with 142
invocation of DFHXCURM during

ALLOCATE_PIPE 167
opening 129
restriction on leaving open 130
reusing a closed pipe 140

pipe_token
parameter of ALLOCATE_PIPE

command 128
parameter of CLOSE_PIPE

command 141
parameter of DEALLOCATE_PIPE

command 142
parameter of DPL_Request

command 132
parameter of OPEN_PIPE

command 130
PL/I

CICS-supplied procedure,
DFHYXTPL 177

copybook 144
EXCI CALL interface 123
sample program 147, 181
special considerations for client

program 177
port number 9
Portmapper 260
prerequisites for CICS ONC RPC 273
problem determination 191

dumps 192
MVS abends 193
service trap 200
trace 191

procedure number 259
procedure zero 259
program number 259
programming restrictions for server

programs 114
programs for CICS ONC RPC

defining in CICS 276
protocol 263
PROTOCOL attribute

CONNECTION definition 162
SESSIONS definition 162

Q
QR TCB 334

R
RACF Secured Sign-on 329
reason codes 215

Allocate_Pipe call 129
Close_Pipe call 141
Deallocate_Pipe call 142
DPL call 138
Initialize_User call 124
Open_Pipe call 130

RECEIVECOUNT attribute, SESSIONS
definition 163

RECEIVEPFX attribute, SESSIONS
definition 163

Register from Data Set option 291
registering 4-tuples 292
registration

with CICS ONC RPC 292
with TCP/IP for MVS 292

remote procedure call (RPC)
benefits of 348
calling CICS programs 351
CICS server programs 348, 353

resource definition 351
overview 341, 347
requirements for use with CICS 349

remote procedures
procedure number 259
procedure zero 259
program number 259
version number 259

REMOTENAME parameter 277
REMOTESYSTEM parameter 277
residence mode (RMODE)

assembler sample program 181
resource access control facility

(RACF) 187
specifying userid on DPL_Request

command 135
resource checker (CICS ONC RPC)

specifying option 285, 297
writing 329

resource definition
CONNECTION definition 161
DCE remote procedure call

server programs 351
sample programs 183
SESSIONS definition 162

resource definition in CICS 275
resource recovery services (RRS)

2–phase commit protocol 119
resource security 276
RESP and RESP2 fields 151
response codes 143, 215

Allocate_Pipe call 129
Close_Pipe call 141
Deallocate_Pipe call 142
DPL call 138
Initialize_User call 124
Open_Pipe call 130

RESSEC 276, 328
restrictions

bridge 20

370 CICS TS for z/OS 4.2: External Interfaces Guide

retries on an EXEC CICS LINK
command 153

return code
clearing R15 178

return_area
parameter of ALLOCATE_PIPE

command 128
parameter of CLOSE_PIPE

command 141
parameter of DEALLOCATE_PIPE

command 142
parameter of DPL_Request

command 132
parameter of INITIALIZE_USER

command 124
parameter of OPEN_PIPE

command 130
reusing a closed pipe 140
router

bridge 17
RP TCB 334
RPC 256
RPC library calls 259
RPCGEN compiler 258
RPCL specification

definition 258
RRMS

used by external CICS interface
(EXCI) 119

running the sample applications 184

S
sample programs 147, 178

description 181
SBCS translate tables 306
SEC system initialization parameter 327
Secured Sign-on 329
security 22, 187, 327
SENDCOUNT attribute, SESSIONS

definition 164
SENDPFX attribute, SESSIONS

definition 164
server application set 304
server controller 264

user ID 286, 298
server controller (CICS ONC RPC)

definition 275
role in call processing 266

server program
API restrictions 114
connection through DFHIRP 122
definition of 113
DPL subset 114
linking from client with EXEC CICS

LINK 149
programming restrictions 114
sample program 181
security considerations 188

server stub 258
service trap 200
SESSIONS definition

PROTOCOL attribute 162
RECEIVECOUNT attribute 163
RECEIVEPFX attribute 163
SENDCOUNT attribute 164
SENDPFX attribute 164

SHARED option on GETMAIN 319, 324
sockets interface 9
specific connection

definition of 161
MRO logon security checks 187

START 22
STARTed transactions 23
starting the connection manager 279
static routing

EXCI 157
STGPROT parameter 276
storage (CICS ONC RPC)

user-key/CICS-key 276
XDR routines overwriting 306

storage protection 276
storage requirements (CICS ONC

RPC) 274
storage, freeing 142
stub for client programs

DFHXCIE 175
DFHXCIS 175
DFHXCSTB 175

suppressing user data in trace
CONFDATA option 171

SURROGCHK, parameter of
DFHXCOPT 172

synchronous RPC call 260
SYNCONRETURN

DPL requests 119
omitted by DPL_Request 119

SYSMDUMPs, capturing 192
sysplex, use of cross-system MRO 113
system definition file (CSD), CICS 183

T
task control blocks 334
task-related user exit (TRUE) 334
TASKDATAKEY option 276
TCP/IP 8, 256
TCP/IP for MVS

CICS TCP/IP Socket Interface 273
TCTUA 23
Telnet 10
TIMEOUT, parameter of

DFHXCOPT 172
trace 191

TRACE parameter of
DFHXCOPT 173

trace points 201
TRACESZE parameter of

DFHXCOPT 173
trace (CICS ONC RPC)

information 336
setting trace level 285, 297
setting trace option 285, 297

trademarks 362
Transaction routing

Link3270 24
transid, parameter of DPL_Request

command 133
transid2, parameter of DPL_Request

command 137
transient data definitions 277
translation of EXEC CICS LINK

command 156
Transmission Control Protocol (TCP) 8

trap, DFHXCTRA 200
TRAP, parameter of DFHXCOPT 173

TYPE, parameter of DFHXCOPT 170

U
unit-of-work identifier,

DPL_Request 134
UNIX authentication 327
uowid, parameter of DPL_Request 134
URP_DISASTER response

to resource checker 331
URP_DISASTER response (CICS ONC

RPC)
to Decode 323
to Encode 325
to Getlengths 318

URP_EXCEPTION response
to resource checker 331

URP_EXCEPTION response (CICS ONC
RPC)

to Decode 322
to Encode 325
to Getlengths 318

URP_INVALID response
to resource checker 331

URP_INVALID response (CICS ONC
RPC)

to Decode 323
to Encode 325
to Getlengths 318

URP_OK response
to resource checker 331

URP_OK response (CICS ONC RPC)
to Decode 322
to Encode 325
to Getlengths 317

use of ASSIGN 20
User Datagram Protocol (UDP) 8
user environment, initializing 123
user security 189
user_name, parameter of

INITIALIZE_USER command 124
user_token

parameter of ALLOCATE_PIPE
command 128

parameter of CLOSE_PIPE
command 141

parameter of DEALLOCATE_PIPE
command 142

parameter of DPL_Request
command 132

parameter of INITIALIZE_USER
command 124

parameter of OPEN_PIPE
command 130

user-key storage 276
user-replaceable module

DFHXCURM 167
userid, parameter of DPL_Request

command 135

V
vector

default vectors 35

Index 371

vector (continued)
inbound BRIV vectors 33
outbound BRIV vectors 34

version number 259
version_number

parameter of ALLOCATE_PIPE
command 128

parameter of CLOSE_PIPE
command 140

parameter of DEALLOCATE_PIPE
command 142

parameter of DPL_Request
command 132

parameter of INITIALIZE_USER
command 124

parameter of OPEN_PIPE
command 130

W
well-known ports 10

X
XCFGROUP, parameter of

DFHXCOPT 173
XCMD system initialization

parameter 328
XDR 256, 257
XDR routines 265

inbound 265, 267, 269
library functions 305
outbound 265, 268, 271
specifying 289
writing 305

XLT definitions 279
XPPT system initialization

parameter 328
XUSER system initialization

parameter 327

Z
z/OS Communications Server 334

372 CICS TS for z/OS 4.2: External Interfaces Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 2
External Interfaces Guide

Publication No. SC34-7168-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7168-01

SC34-7168-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7168-01

	Contents
	What this manual is about
	How to use this manual
	What you need to know to understand this manual
	Notes on terminology
	Changes in CICS Transaction Server for z/OS, Version 4 Release 2
	Part 1. Overview of CICS external interfaces
	Chapter 1. Interfaces to CICS transactions and programs
	The client/server model
	Distributed computing
	Security support

	TCP/IP protocols
	TCP/IP internet addresses and ports
	IP addresses
	Port numbers (for servers)
	Port numbers (for clients)

	ONC and DCE concepts
	DCE

	EXCI concepts
	3270 bridge concepts
	The 3270 bridge and FEPI

	Part 2. Bridging to 3270 transactions
	Chapter 2. Introduction to the 3270 bridge
	The Link3270 bridge mechanism
	The bridge facility
	Lifetime of the bridge facility

	The application data structure (ADS)
	The ADS descriptor (ADSD)
	DFHBMSUP

	Link3270 programming considerations
	Transaction Routing considerations
	Allocating a bridge facility name for a pseudoconversation when using the Link3270 bridge for transaction routing

	Chapter 3. Using the Link3270 bridge
	Establish Link3270 suitability
	Using the Load Module Scanner Utility
	Using the 3270 Bridge Passthrough SupportPac

	Writing the Link3270 client
	Select Link3270 client scenarios
	Analyze the 3270 application

	Using Link3270 messages
	Inbound BRIV vectors
	Outbound BRIV vectors
	Link3270 bridge basic and extended support
	Copybooks and default vectors

	Using Link3270 single transaction mode
	Updating data length fields

	Using Link3270 session mode
	How to create a message
	Allocating a bridge facility
	Running transactions
	Conversational transactions
	Pseudoconversational transactions

	Deleting a bridge facility
	Delivering large messages
	Recovery from connection failure
	Validity of Link3270 requests
	Expiry of facilitytoken

	Calling the Link3270 bridge
	Calling Link3270 using LINK
	Calling Link3270 using EXCI
	Calling Link3270 using ECI
	Multiple Router regions

	Using data conversion with Link3270
	Converting BRIH and BRIV header data
	DFHCNV example for Link3270

	Converting RETRIEVE data
	Converting user data

	Chapter 4. Managing the Link3270 bridge environment
	Defining Link3270 system initialization parameters
	Defining the bridge facility
	Defining the facilitylike
	Defining the bridge facility name
	DFHBRNSF file types
	Defining DFHBRNSF
	DFHBRNSF at CICS termination

	Defining a specific bridge facility name
	Initializing the TCTUA
	Accessing bridge facility properties
	QUERY
	SET TERMINAL/NETNAME

	Managing Link3270 bridge resources
	INQUIRE/SET AUTOINSTALL with the Link3270 bridge
	INQUIRE/SET BRFACILITY with the Link3270 bridge
	INQUIRE TASK with the Link3270 bridge
	INQUIRE/SET TRACETYPE with the Link3270 bridge
	INQUIRE TRANSACTION with the Link3270 bridge
	XPI commands for the Link3270 bridge

	Using Link3270 bridge load routing
	Using the dynamic transaction routing program with Link3270

	Chapter 5. Link3270 message formats
	Link3270 message header (BRIH)
	Inbound BRIH message header
	Outbound BRIH message header

	Inbound Link3270 vectors
	Link3270 inbound vector header
	Link3270 INPUT CONVERSE vector
	Link3270 RECEIVE vector
	Link3270 RECEIVE MAP vector
	Link3270 RETRIEVE vector

	Outbound Link3270 vectors
	Link3270 output vector header
	Link3270 ISSUE ERASEAUP vector
	Link3270 SEND vector
	Link3270 SEND CONTROL vector
	Link3270 SEND MAP vector
	Link3270 SEND TEXT vector
	Link3270 SEND PAGE vector
	Link3270 PURGE MESSAGE vector
	Link3270 SYNCPOINT vector
	Link3270 CONVERSE request vector
	Link3270 RECEIVE request vector
	Link3270 RECEIVE MAP request vector

	Link3270 ADS descriptor
	ADS descriptor header
	ADS field descriptor

	Chapter 6. Link3270 diagnostics
	BRIH-RETURNCODE values

	Chapter 7. Using the Link3270 samples
	The NACT transaction
	Running the sample client programs
	Setup the Link3270 environment
	Setup for the CICS-based clients
	Setup for z/OS based client
	Setup for the workstation client

	Setup for the NACT transaction

	Part 3. External CICS Interface
	Chapter 8. Introduction to the external CICS interface
	The EXCI programming interfaces
	Choosing between the EXEC CICS and the CALL interface
	Illustrations of the external CICS CALL interface
	Illustration of the EXCI EXEC CICS interface

	Resource recovery
	Use of RRMS with the external CICS interface
	Use of sync points in the client program

	Requirements for the external CICS interface

	Chapter 9. The EXCI CALL interface
	The EXCI CALL interface commands
	Initialize_User
	Allocate_Pipe
	Open_Pipe
	DPL_Request
	Close_PIPE
	Deallocate_Pipe

	EXCI call response code values
	Return area for the EXCI CALL interface
	Return area and function call EQUATE copybooks
	Return codes
	Dpl_retarea return codes

	Example of EXCI CALLs with null parameters

	Chapter 10. The EXCI EXEC CICS interface
	Using EXEC CICS LINK command
	Retries on an EXEC CICS LINK command
	Translation required for EXEC CICS LINK command

	Chapter 11. Setting up EXCI for static routing
	Chapter 12. Setting up EXCI for dynamic routing
	Chapter 13. Defining connections to CICS
	CONNECTION resource definition for EXCI
	SESSIONS resource definitions for EXCI connections
	Inquiring on the state of EXCI connections

	Chapter 14. The EXCI user-replaceable module
	Chapter 15. Using the EXCI options table, DFHXCOPT
	Chapter 16. Compiling and link-editing EXCI client programs
	Job control language to run an EXCI client program
	CICS-supplied procedures for the EXCI

	EXCI programming considerations
	PL/I considerations
	C considerations
	Setting the return code (R15) at termination

	Using EXCI sample application programs
	Description of the sample applications
	Using the COMMAREA in the sample programs

	Installing the EXCI sample definitions
	Running the EXCI sample applications
	Results of running the EXCI sample applications

	Chapter 17. EXCI security
	Using MRO logon and bind-time security
	Defining DFHAPPL FACILITY class profiles for an EXCI region

	Link security
	User security
	Surrogate user checking

	Chapter 18. Problem determination for the external CICS interface (EXCI)
	Trace
	Formatting GTF trace

	Using System dumps
	Formatting system dumps
	Multiple TCBs

	Capturing SYSMDUMPs
	Using the MVS DUMP command at the console for dumps

	MVS 04xx abends for the external CICS interface
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415

	The EXCI service trap, DFHXCTRA
	Problem determination with RRMS
	EXCI trace entry points

	Chapter 19. Response and reason codes returned on EXCI calls
	Reason code for response: OK
	0: NORMAL

	Reason codes for response: WARNING
	1: PIPE_ALREADY_OPEN
	2: PIPE_ALREADY_CLOSED
	3: VERIFY_BLOCK_FM_ERROR
	4: WS_FREEMAIN_ERROR
	5: XCPIPE_FREEMAIN_ERROR
	6: IRP_IOAREA_FM_FAILURE
	7: SERVER_TERMINATED
	8: XFRASTG1_FM_FAILURE

	Reason codes for response: RETRYABLE
	201: NO_CICS_IRC_STARTED
	202: NO_PIPE
	203 (on Open_Pipe call): NO_CICS
	204: WRONG_MVS_FOR_RRMS
	205: RRMS_NOT_AVAILABLE

	Reason codes for response: USER_ERROR
	401: INVALID_CALL_TYPE
	402: INVALID_VERSION_NUMBER
	403: INVALID_APPL_NAME
	404: INVALID_USER_TOKEN
	405: PIPE_NOT_CLOSED
	406: PIPE_NOT_OPEN
	407: INVALID_USERID
	408: INVALID_UOWID
	409: INVALID_TRANSID
	410: DFHMEBM_LOAD_FAILED
	411: DFHMET4E_LOAD_FAILED
	412: DFHXCURM_LOAD_FAILED
	413: DFHXCTRA_LOAD_FAILED
	414: IRP_ABORT_RECEIVED
	415: INVALID_CONNECTION_DEFN
	416: INVALID_CICS_RELEASE
	417: PIPE_MUST_CLOSE
	418: INVALID_PIPE_TOKEN
	419: CICS_AFCB_PRESENT
	420: DFHXCOPT_LOAD_FAILED
	421: RUNNING_UNDER_AN_IRB
	422: SERVER_ABENDED
	423: SURROGATE_CHECK_FAILED
	424: RRMS_NOT_SUPPORTED
	425: UOWID_NOT_ALLOWED
	426: INVALID_TRANSID2
	427: INVALID_CCSID
	428: INVALID_ENDIAN
	429: DFHXCEIX_LOAD_FAILED
	430: DFHXCPRX_LOAD_FAILED

	Reason codes for response: SYSTEM_ERROR
	601: WS_GETMAIN_ERROR
	602: XCGLOBAL_GETMAIN_ERROR
	603: XCUSER_GETMAIN_ERROR
	604: XCPIPE_GETMAIN_ERROR
	605: VERIFY_BLOCK_GM_ERROR
	606: SSI_VERIFY_FAILED
	607: CICS_SVC_CALL_FAILURE
	608: IRC_LOGON_FAILURE
	609: IRC_CONNECT_FAILURE
	610: IRC_DISCONNECT_FAILURE
	611: IRC_LOGOFF_FAILURE
	612: TRANSFORM_1_ERROR
	613: TRANSFORM_4_ERROR
	614: IRP_NULL_DATA_RECEIVED
	615: IRP_NEGATIVE_RESPONSE
	616: IRP_SWITCH_PULL_FAILURE
	617: IRP_IOAREA_GM_FAILURE
	619: IRP_BAD_IOAREA
	620: IRP_PROTOCOL_ERROR
	621: PIPE_RECOVERY_FAILURE
	622: ESTAE_SETUP_FAILURE
	623: ESTAE_INVOKED
	624: SERVER_TIMEDOUT
	625: STIMER_SETUP_FAILURE
	626: STIMER_CANCEL_FAILURE
	627: INCORRECT_SVC_LEVEL
	628: IRP_LEVEL_CHECK_FAILURE
	629: SERVER_PROTOCOL_ERROR
	630: RRMS_ERROR
	631: RRMS_SEVERE_ERROR
	632: XCGUR_GETMAIN_ERROR

	Chapter 20. Messages and codes
	DFHEX0001: An abend (code aaa/bbbb) has occurred in module modname.
	DFHEX0002: A severe error (code X'code') has occurred in module modname.
	DFHEX0003: A GETMAIN request in module modname (code X'code') has failed. Reason X'rc'.
	DFHEX0004: JOBNAME: jobname, STEPNAME: stepname, PROCNAME: procname, SYSID IN SMF: sysid, APPLID: applid.
	DFHEX0100: The installed level of CICS SVC does not support the EXCI call.
	DFHEX0101: Unable to start interregion communication because DFHIRP services are down level.
	DFHEX0110: EXCI SDUMP has been taken. Dumpcode: dumpcode, Dumpid: dumpid.
	DFHEX0111: EXCI SDUMP attempted but SDUMP is busy - will retry every five seconds for nnnn seconds.
	DFHEX0112: SDUMP request failed - reason X'nn'.
	DFHEX0113: EXCI trace Initialization has failed.
	DFHEX0114: Incorrect data has been passed for EXCI tracing causing a program check in DFHXCTRP.
	DFHEX0115: EXCI trace services have been disabled due to a previous error.
	DFHEX0116: Program check occurred within global trap exit - DFHXCTRA now marked unusable.

	Part 4. CICS ONC RPC support
	Chapter 21. Introduction to ONC RPC
	ONC RPC concepts
	RPC
	ONC
	TCP/IP

	ONC RPC facilities
	XDR routines
	Using XDR library functions

	RPCGEN compiler
	ONC RPC API library

	ONC RPC naming and routing
	Procedure zero
	Registration and the Portmapper
	Routing
	Types of remote procedure call

	Chapter 22. CICS ONC RPC concepts
	ONC RPC remote procedures and CICS programs
	Where the CICS program might be

	CICS ONC RPC transactions
	Connection manager (CRPC)
	Server controller (CRPM)
	Alias (CRPA)

	CICS ONC RPC user-replaceable programs
	XDR routines
	Resource checker module
	Converters

	CICS ONC RPC control flow
	Updating recoverable resources

	CICS ONC RPC data flow
	From client to CICS program
	Data format in the CICS program communication area
	From CICS program to client

	Chapter 23. Setting up CICS ONC RPC
	CICS ONC RPC setup tasks
	Creating the CICS ONC RCP data set
	JCL entry for dump formatting
	Migrating between CICS versions
	Modifying z/OS Communications Server data sets

	Defining CICS ONC RPC resources to CICS
	Transaction definitions for CICS ONC RPC transactions
	Transaction definitions for extra alias transactions
	Changing the CMDSEC and RESSEC values

	Program definitions for CICS ONC RPC programs
	Program definitions for user-written programs
	LANGUAGE option
	CEDF option
	EXECKEY option
	RELOAD option
	Definitions for remote CICS programs

	Mapset definition
	Transient data definitions
	XLT definitions

	Chapter 24. Configuring CICS ONC RPC using the connection manager
	Starting the connection manager
	Using the connection manager BMS panels
	Connection manager error message output
	Using PF9 to display messages

	Starting the connection manager when CICS ONC RPC is disabled
	Starting the connection manager when CICS ONC RPC is enabled

	Updating CICS ONC RPC status
	Changing the CICS ONC RPC status

	Enabling CICS ONC RPC
	Setting and modifying options
	Validating, saving, and activating options
	When CICS ONC RPC is enabled

	Defining, saving, modifying, and deleting 4-tuples
	Defining the attributes of a 4-tuple
	ONC RPC attributes
	CICS attributes
	CICS ONC RPC attributes

	Saving new 4-tuple definitions
	Modifying existing 4-tuple definitions
	Deleting existing 4-tuple definitions

	Registering the 4-tuples
	Limits on registration

	Unregistering 4-tuples
	Unregistering 4-tuples one by one
	Unregistering 4-tuples from a list

	Disabling CICS ONC RPC
	On CICS normal shutdown
	On CICS immediate shutdown

	Updating the CICS ONC RPC data set
	Updating the CICS ONC RPC definition record
	Working with a list of 4-tuples
	Changing the attributes of a 4-tuple

	Processing the alias list

	Chapter 25. Programming with CICS ONC RPC
	Developing an ONC RPC application for CICS ONC RPC
	Step 1—Decide what data is to be sent
	Step 2—Decide the format of the communication area
	Step 3—Write the XDR routines
	Code page conversions

	Step 4—Write the converter
	Step 5—Write a resource checker
	Step 6—Compile and link
	Converter
	XDR routines
	Resource checker

	Step 7—Make CICS definitions
	Step 8—Make a connection manager entry

	Write the CICS ONC RPC converter
	Tasks that can be performed by a converter
	Lengths of the CICS program input and output data
	Setting the CICS program data format
	Mapping data between client and CICS program formats
	Changing the alias and CICS program
	Changing security information

	Organizing the converter
	Writing a converter in C
	Writing a converter in COBOL
	Using converters
	Preparation

	Reference information for the converter functions
	Getlengths
	Decode
	Encode

	Chapter 26. CICS ONC RPC security
	Security in ONC RPC
	Security in CICS and its effect on CICS ONC RPC operations
	Using RACF Secured Sign-on
	PassTicket generation

	Writing the resource checker
	Reference information for the resource checker

	Chapter 27. CICS ONC RPC problem determination
	CICS ONC RPC recovery procedures
	CICS ONC RPC operational considerations
	MVS task control blocks (TCBs) used by ONC RPC
	ONC RPC task-related user exit (TRUE)

	Troubleshooting CICS ONC/RPC
	Defining the problem
	Documentation about the problem

	Using messages and codes for ONC RPC
	CMAC (online help facility for messages and codes)

	CICS ONC RPC trace information
	Feature trace points
	Numeric values of response and reason codes

	ONC RPC dump and trace formatting
	Debugging the ONC RPC user-replaceable programs
	XDR routines
	Converter and resource checker
	Using EDF
	Using trace entries
	Writing messages
	Abends

	Chapter 28. CICS ONC RPC performance and tuning
	Part 5. Using CICS as a DCE server
	Chapter 29. Introduction to the Distributed Computing Environment
	What is DCE?
	Remote procedure call (RPC)
	Directory Service
	Security Service
	Time Service
	File Service
	Threads

	Chapter 30. DCE remote procedure calls
	Overview of DCE with CICS
	DCE terminology

	What CICS server programs can do
	What you need for DCE RPC to a CICS server

	Chapter 31. Defining CICS programs as DCE servers
	Chapter 32. Application programming for DCE remote procedure calls
	Part 6. Appendixes
	Appendix. Routing program-link requests
	Static routing
	Dynamic routing

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

