
CICS Transaction Server for z/OS

Web Services Guide
Version 3 Release 2

SC34-6838-04

���

CICS Transaction Server for z/OS

Web Services Guide
Version 3 Release 2

SC34-6838-04

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
305.

This edition applies to Version 3 Release 2 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2005, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . vii
What this book is about . vii
Who should read this book . vii

Chapter 1. CICS and Web services 1
What is a Web service? . 1
How Web services can help your business 2
Web services terminology . 2

Chapter 2. The Web services architecture 5
The Web service description . 6
Service publication . 8

Chapter 3. What is SOAP? . 9
The structure of a SOAP message 9

The SOAP header . 11
The SOAP body . 13
The SOAP fault . 13

SOAP nodes . 14
The SOAP message path . 15

Chapter 4. How CICS supports Web services 17
Message handlers and pipelines 17

Transport-related handlers . 18
Interrupting the flow . 19
A service provider pipeline . 19
A service requester pipeline 20
CICS pipelines and SOAP . 21

SOAP messages and the application data structure 22
WSDL and the application data structure 24
WSDL and message exchange patterns 26
The Web service binding file . 26
External standards . 26

Extensible Markup Language Version 1.0 27
SOAP 1.1 and 1.2 . 27
SOAP 1.1 Binding for MTOM 1.0 27
SOAP Message Transmission Optimization Mechanism (MTOM) 28
Web Services Atomic Transaction Version 1.0 28
Web Services Coordination Version 1.0 29
Web Services Description Language Version 1.1 and 2.0 29
Web Services Security: SOAP Message Security 29
Web Services Trust Language 30
WSDL 1.1 Binding Extension for SOAP 1.2 30
WS-I Basic Profile Version 1.1 31
WS-I Simple SOAP Binding Profile Version 1.0 31
XML-binary Optimized Packaging (XOP) 32
XML Encryption Syntax and Processing 32
XML-Signature Syntax and Processing 32
CICS compliance with Web services standards 32

Chapter 5. Getting started with Web services 39
Planning to use Web services 39

Planning a service provider application 41

© Copyright IBM Corp. 2005, 2011 iii

||

||
||

||

||

Planning a service requester application 42
Migrating from the SOAP for CICS feature 44

Chapter 6. Configuring your CICS system for Web services 47
CICS resources for Web services 47
Configuring CICS to use the WebSphere MQ transport 49

The WebSphere MQ transport 50
Defining local queues in a service provider 51
Defining local queues in a service requester 52
The URI for the WMQ transport 52
Configuring CICS to support persistent messages 54
Persistent message processing 54

Chapter 7. Creating the Web services infrastructure 57
Creating the CICS infrastructure for a service provider 57
Creating the CICS infrastructure for a service requester 58
The pipeline configuration file 59

Transport-related handlers . 61
The pipeline definition for a service provider 63
The pipeline definition for a service requester 64
Elements used only in service providers 66
Elements used in service requesters 68
Elements used in service provider and requesters 69
Pipeline configuration for WS-Security 78
Pipeline configuration for MTOM/XOP 88

Message handlers . 92
Message handler protocols 93
Supplying your own message handlers 95
Working with messages in a non-terminal message handler 96
Working with messages in a terminal message handler 97
Handling errors . 98
The message handler interface 99

The SOAP message handlers 99
Header processing programs 99
The header processing program interface 101
The SOAP handler interfaces 103
Dynamic routing of inbound requests in a terminal handler 104

Containers used in the pipeline 105
The control containers . 106
How containers control the pipeline protocols 111
The context containers . 114
The security containers . 120
Containers generated by CICS 122
User containers . 123

Customizing pipeline processing 123

Chapter 8. Creating a Web service 125
The CICS Web services assistant 125

DFHLS2WS: high-level language to WSDL conversion 126
DFHWS2LS: WSDL to high-level language conversion 135
Syntax notation . 145
Mapping levels for the CICS Web services assistant 146
High-level language and XML schema mapping 150

Creating a Web service provider using the Web services assistant 193
Creating a service provider application from a Web service description 193
Creating a service provider application from a data structure 194

iv Web Services Guide

||

Customizing generated Web service description documents 196
Sending a SOAP fault . 198

Creating a Web service requester using the Web services assistant 199
Creating a service requester application from a Web service description 199

Creating a Web service using tooling 201
Creating XML-aware Web service applications 201

Creating an XML-aware service provider application 201
Creating an XML-aware service requester application 203

Validating SOAP messages . 204

Chapter 9. Interfacing with service provider and requester applications 207
How an application is invoked in a service provider 207

How CICS invokes a service provider program deployed with the Web
services assistant . 207

Invoking a Web service from a CICS program 208
Invoking a Web service from an application deployed with the Web services

assistant . 208
Runtime limitations for code generated by the Web services assistant 209

Chapter 10. Support for Web Services transactions 213
Registration services . 213
Configuring CICS for Web service transactions 215
Configuring a service provider for Web service transactions 216
Configuring a service requester for Web service transactions 217
Determining if the SOAP message is part of an atomic transaction 219
Checking the progress of an atomic transaction 220

Chapter 11. Support for MTOM/XOP optimization of binary data 221
MTOM/XOP and SOAP . 221
MTOM messages and binary attachments in CICS 223

Inbound MTOM message processing 224
Outbound MTOM message processing 225

Restrictions when using MTOM/XOP 226
Configuring CICS to support MTOM/XOP 227

Chapter 12. Support for securing Web services 229
Prerequisites . 229
Planning for securing Web services 230
The options for securing SOAP messages 231
Authentication using a Security Token Service 232

The Trust client interface . 234
Signing of SOAP messages . 234

Signature algorithms . 235
Example of a signed SOAP message 235

CICS support for encrypted SOAP messages 236
Encryption algorithms . 237
Example of an encrypted SOAP message 237

Configuring RACF for Web Services Security 238
Configuring the pipeline for Web Services Security 240
Writing a custom security handler 243
Invoking the Trust client from a message handler 244

Chapter 13. Diagnosing problems 247
Diagnosing deployment errors 247
Diagnosing service provider runtime errors 248
Diagnosing service requester runtime errors 249

Contents v

||
||
||
||
||
||
||

Diagnosing MTOM/XOP errors 251
Diagnosing data conversion errors 253

Why data conversion errors occur 253
Conversion errors in trace points 254
SOAP fault messages for conversion errors 255

Chapter 14. The CICS catalog manager example application 257
The base application . 257

BMS presentation manager 259
Data handler . 259
Dispatch manager . 259
Order dispatch endpoint . 259
Stock manager . 259
Application configuration . 260

Running the example application with the BMS interface 260
Installing and setting up the base application 261

Creating and defining the VSAM data sets 261
Defining the 3270 interface 263
Completing the installation 264
Configuring the example application 264

Web service support for the example application 266
Configuring code page support 268
Defining the Web service client and wrapper programs 269
Installing Web service support 269

Configuring the Web client . 274
Running the Web service enabled application 276
Deploying the example application 280

Extracting the program interface 280
Running the Web services assistant program DFHLS2WS 281
An example of the generated WSDL document 283
Deploying the Web services binding file 284

Components of the base application 285
The catalog manager program 288

File Structures and Definitions 292
Catalog file . 292
Configuration file . 293

Bibliography . 295
The CICS Transaction Server for z/OS library 295

The entitlement set . 295
PDF-only books . 295

Other CICS books . 297
Determining if a publication is current 297

Accessibility . 299

Index . 301

Notices . 305

Trademarks . 307

vi Web Services Guide

||
||
||
||
||

Preface

What this book is about
This book describes how to use Web Services in CICS®.

Who should read this book
This book is for:

v Planners and architects considering deploying CICS applications in a Web
services environment.

v Systems programmers who are responsible for configuring CICS to support Web
services

v Applications programmers who are responsible for applications that will be
deployed in a Web services environment.

© Copyright IBM Corp. 2005, 2011 vii

viii Web Services Guide

Chapter 1. CICS and Web services

What the World Wide Web did for interactions between programs and end users,
Web services can do for program-to-program interactions. With Web services, you
can integrate applications more rapidly, efficiently, and cheaply than ever before.

CICS Transaction Server for z/OS® provides comprehensive support for Web
services:

v A CICS application can participate in a heterogeneous Web services environment
as a service requester, as a service provider, or both.

v CICS supports the HTTP and WebSphere MQ transport protocols.

v CICS Transaction Server for z/OS includes the CICS Web services assistant, a
set of utility programs that help you map WSDL service descriptions into
high-level programming language data structures, and vice versa. The utility
programs support these programming languages:

 COBOL

 PL/I

 C

 C++

v The CICS support for Web services conforms to open standards including:

 SOAP 1.1 and 1.2

 HTTP 1.1

 WSDL 1.1 and 2.0

v CICS support for Web services ensures maximum interoperability with other Web
services implementations by conditionally or fully complying with many Web
Service specifications, including the “WS-I Basic Profile Version 1.1” on page 31.
The profile is a set of non-proprietary Web services specifications, along with
clarifications and amendments to those specifications, which, taken together,
promote interoperability between different implementations of Web services.

What is a Web service?
A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically, Web Service Definition Language, or
WSDL).

Web services fulfill a specific task or a set of tasks. A Web service is described
using a standard, formal XML notion, called its service description, that provides all
of the details necessary to interact with the service, including message formats (that
detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service so that it
can be used independently of the hardware or software platform on which it is
implemented and independently of the programming language in which it is written.

This allows and encourages Web service based applications to be loosely coupled,
component oriented, cross-technology implementations. Web services can be used
alone or in conjunction with other Web services to carry out a complex aggregation
or a business transaction.

© Copyright IBM Corp. 2005, 2011 1

|

How Web services can help your business
Web services is a technology for deploying, and providing access to, business
functions over the World Wide Web. Web services make it possible for applications
to be integrated more rapidly, easily, and cheaply than ever before.

Web services can help your business by:

v Reducing the cost of doing business

v Making it possible to deploy solutions more rapidly

v Opening up new opportunities.

The key to achieving all these things is a common program-to-program
communication model, built on existing and emerging standards such as HTTP,
XML, SOAP, and WSDL.

The support that CICS provides for Web services makes it possible for your existing
applications to be deployed in new ways, with the minimum amount of
reprogramming.

Web services terminology
Extensible Markup Language (XML)

A standard for document markup, which uses a generic syntax to mark up
data with simple, human-readable tags. The standard is endorsed by the
World Wide Web Consortium (W3C) (http://www.w3.org).

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of
a SOAP message path.

Service provider
The collection of software that provides a Web service.

Service provider application
An application that is used in a service provider. Typically, a service
provider application provides the business logic component of a service
provider.

Service requester
The collection of software that is responsible for requesting a Web service
from a service provider.

Service requester application
An application that is used in a service requester. Typically, a service
requester application provides the business logic component of a service
requester.

Simple Object Access Protocol
See SOAP.

SOAP Formerly an acronym for Simple Object Access Protocol. A lightweight
protocol for exchange of information in a decentralized, distributed
environment. It is an XML based protocol that consists of three parts:

v An envelope that defines a framework for describing what is in a
message and how to process it.

v A set of encoding rules for expressing instances of application-defined
data types.

v A convention for representing remote procedure calls and responses.

2 Web Services Guide

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at http://www.w3.org/TR/SOAP.

The specification for SOAP 1.2 is published at:

 http://www.w3.org/TR/soap12-part0

 http://www.w3.org/TR/soap12-part1

 http://www.w3.org/TR/soap12-part2

SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is
targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and acts to forward a SOAP message towards an
ultimate SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes.
This includes the initial SOAP sender, zero or more SOAP intermediaries,
and an ultimate SOAP receiver.

SOAP node
Processing logic which operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is
responsible for processing the contents of the SOAP body and any SOAP
header blocks targeted at it.

UDDI Universal Description, Discovery and Integration

Universal Description, Discovery and Integration
Universal Description, Discovery and Integration (UDDI) is a specification
for distributed Web-based information registries of Web services. UDDI is
also a publicly accessible set of implementations of the specification that
allow businesses to register information about the Web services they offer
so that other businesses can find them. The specification is published by
OASIS (http://www.oasis-open.org)

Web service
A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically, Web Service Description
Language, or WSDL).

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction
coordination type used to coordinate activities having an "all or nothing"
property.

 The specification is published at http://www.ibm.com/developerworks/library/
specification/ws-tx/#atomhttp://www.ibm.com/developerworks/library/
specification/ws-tx/#atom.

Web service binding file
A file, associated with a WEBSERVICE resource, which contains

Chapter 1. CICS and Web services 3

http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom

information that CICS uses to map data between input and output
messages, and application data structures.

Web service description
An XML document by which a service provider communicates the
specifications for invoking a Web service to a service requester. Web
service descriptions are written in Web Service Description Language
(WSDL).

Web Service Description Language
An XML application for describing Web services. It is designed to separate
the descriptions of the abstract functions offered by a service, and the
concrete details of a service, such as how and where that functionality is
offered.

 The specification is published at http://www.w3.org/TR/wsdlhttp://
www.w3.org/TR/wsdl.

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity
and confidentiality. The specification is published by OASIS
(http://www.oasis-open.org) at http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf.

WS-Atomic Transaction
Web Services Atomic Transaction

WS-I Basic Profile
A set of non-proprietary Web services specifications, along with
clarifications and amendments to those specifications, which, taken
together, promote interoperability between different implementations of Web
services. The profile is defined by the Web Services Interoperability
Organization (WS-I) and version 1.0 is available at http://www.ws-i.org/
Profiles/BasicProfile-1.0.html.

WSDL Web Service Description Language.

WSS Web Services Security

XML Extensible Markup Language.

 The specifications for XML are published at:

 http://www.w3.org/TR/soap12-part0

 http://www.w3.org/TR/soap12-part1

 http://www.w3.org/TR/soap12-part2

XML namespace
A collection of names, identified by a URI reference, which are used in XML
documents as element types and attribute names.

XML schema
An XML document that describes the structure, and constrains the contents
of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the World Wide
Web Consortium (W3C).

4 Web Services Guide

http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org
http://www.w3.org

Chapter 2. The Web services architecture

The Web services architecture is based on interactions between three components:
a service provider, a service requester, and an optional service registry.

The service provider
The collection of software that provides a Web service. It includes:

v The application program

v The middleware

v The platform on which they run

The service requester
The collection of software that is responsible for requesting a Web service
from a service provider. It includes:

v The application program

v The middleware

v The platform on which they run

The service registry
A place where service providers publish descriptions of the services they
provide, and where service requesters find them.

 The registry is an optional component of the Web services architecture,
because there are many situations where service requesters and providers
can communicate without it. For example, the organization that provides a
service can distribute the service description directly to the users of the
service, using an attachment in an e-mail, or a download from an FTP site,
or even a CD-ROM distribution.

CICS provides direct support for implementing the requester and provider
components; you will need additional software to deploy a service registry in CICS.
But, because the Web service architecture is platform-independent, you can, if you
need a service registry, deploy it on another platform.

The interactions between the components involve the following operations:

Service
Registry

Service
Provider

Service
Requestor

PublishFind

Bind

Figure 1. Web service components and interactions

© Copyright IBM Corp. 2005, 2011 5

Bind The service requester uses the service description to bind with the service
provider and interact with the Web service implementation.

Publish
When a service registry is used, a service provider publishes its description
in a registry so that the requester can find it.

Find When a service registry is used, a service requester finds the service
description in the registry.

The Web service description
A Web service description is a document by which the service provider
communicates the specifications for invoking the Web service to the service
requester. Web service descriptions are expressed in the XML application known as
Web Service Description Language (WSDL).

The service description describes the Web service in such a way as to minimize the
amount of shared knowledge and customized programming that is needed to
ensure communication between the service provider and the service requester. For
example, neither the requester nor the provider needs to be aware of the platform
on which the other runs, nor of the programming language in which the other is
written.

A service description can conform to either the WSDL 1.1 or WSDL 2.0
specification, and there are differences in both the terminology and major elements
that can be included in the service description. The following information uses
WSDL 1.1 terminology and elements to explain the purpose of the service
description.

The structure of WSDL allows a service description to be partitioned into:

v An abstract service interface definition that describes the interfaces of the
service, and makes it possible to write programs that implement, and invoke, the
service.

v A concrete service implementation definition that describes the location on the
network (or endpoint) of the provider's Web service, and other implementation
specific details, and that makes it possible for a service requester to connect to
the service provider.

This is illustrated in Figure 2 on page 7.

A WSDL 1.1 document uses the following major elements in the definition of
network services:

<types>
A container for data type definitions using some type system (such as XML
Schema). Defines the data types used within the message. The <types>
element is not required when all messages consist of simple data types.

<message>
Specifies which XML data types are used to define the input and output
parameters of an operation.

<portType>
Defines the set of operations supported by one or more endpoints. Within a
<portType> element, each operation is described by an <operation>
element.

6 Web Services Guide

<operation>
Specifies which XML messages can appear in the input and output data
flows. An operation is comparable with a method signature in a
programming language.

<binding>
Describes the protocol, data format, security and other attributes for a
particular <portType> element.

<port> Specifies the network address of an endpoint, and associates it with a
<binding> element.

<service>
Defines the Web service as a collection of related endpoints. A <service>
element contains one or more <port> elements.

The ability to partition the Web service description makes it possible to divide
responsibility for creating a complete service description. As an illustration, consider
a service which is defined by a standards body for use across an industry, and
implemented by individual companies within that industry:

v The standards body provides a service interface definition, containing the
following elements:

 <types>

 <message>

 <portType>

 <binding

v A service provider who wishes to offer an implementation of the service provides
a service implementation definition, containing the following elements:

 <port>

 <service>

Web
service

description

Service
interface
definition

Service
implementation

definition

<service>

<port>

<binding>

<message>

<types>

<portType>

<operation>

Figure 2. Structure of a Web service description

Chapter 2. The Web services architecture 7

Service publication
A service description can be published using a number of different mechanisms;
each mechanism has different capabilities, and is suitable for use in different
situations. When necessary, a service description can be published in more than
one way. Although CICS does not provide direct support for service publication, any
of the mechanisms described can be used with CICS.

Direct publishing
This is the simplest mechanism for publishing service descriptions: the
service provider sends the service description directly to the service
requester. Ways to accomplish this include using an e-mail attachment, an
FTP site, or a CD ROM distribution.

Advertisement and Discovery of Services (ADS)
DISCO

These proprietary protocols provide a dynamic publication mechanism. The
service requester uses a simple HTTP GET mechanism to retrieve a Web
service descriptions from a network location that is specified by the service
provider, and identified with a URL.

Universal Description, Discovery and Integration (UDDI)
A specification for distributed Web-based information registries of Web
services. UDDI is also a publicly accessible set of implementations of the
specification that allow businesses to register information about the Web
services they offer so that other businesses can find them.

8 Web Services Guide

Chapter 3. What is SOAP?

SOAP is a protocol for the exchange of information in a distributed environment.
SOAP messages are encoded as XML documents and can be exchanged using a
variety of underlying protocols.

Formerly an acronym for Simple Object Access Protocol, SOAP is developed by the
World Wide Web Consortium (W3C), and is defined in the following documents
issued by W3C. Consult these documents for complete, and authoritative,
information about SOAP.

 Simple Object Access Protocol (SOAP) 1.1 (W3C note)

 SOAP Version 1.2 Part 0: Primer (W3C recommendation)

 SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation)

 SOAP Version 1.2 Part 2: Adjuncts (W3C recommendation)

The SOAP specifications describe a distributed processing model in which a SOAP
message is passed between SOAP nodes. The message originates at a SOAP
sender and is sent to a SOAP receiver. Between the sender and the receiver, the
message might be processed by one or more SOAP intermediaries.

A SOAP message is a one-way transmission between SOAP nodes, from a SOAP
sender to a SOAP receiver, but messages can be combined to construct more
complex interactions, such as request and response, and peer-to-peer
conversations.

The specification also describes:

v A set of encoding rules for expressing instances of application-defined data
types.

v A convention for representing remote procedure calls and responses.

The structure of a SOAP message
A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained within the <Body>, is used for reporting
errors.

The SOAP envelope
The SOAP <Envelope> is the root element in every SOAP message, and
contains two child elements, an optional <Header> and a mandatory <Body>.

The SOAP header
The SOAP <Header> is an optional sub-element of the SOAP envelope, and
is used to pass application-related information that is to be processed by
SOAP nodes along the message path.

The SOAP body
The SOAP <Body> is a mandatory sub-element of the SOAP envelope,
which contains information intended for the ultimate recipient of the
message.

The SOAP fault
The SOAP <Fault> is a sub-element of the SOAP body, which is used for
reporting errors.

© Copyright IBM Corp. 2005, 2011 9

http://www.w3.org
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2

With the exception of the <Fault> element, which is contained in the <Body> of a
SOAP message, XML elements within the <Header> and the <Body> are defined by
the applications that make use of them, although the SOAP specification imposes
some constraints on their structure.

Figure 3 shows the main elements of a SOAP message.
 Figure 4 on page 11 is an example of a SOAP message that contains header

blocks (the <m:reservation> and <n:passenger> elements) and a body (containing
the <p:itinerary> and <q:lodging> elements).

SOAP envelope

SOAP body

Body subelement

Body subelement

SOAP header

Header block

Header block

Figure 3. The structure of a SOAP message

10 Web Services Guide

The SOAP header
The SOAP <Header> is an optional element within a SOAP message. It is used to
pass application-related information that is to be processed by SOAP nodes along
the message path.

The immediate child elements of the <Header> element are called header blocks; a
header block is an application-defined XML element, and represents a logical
grouping of data which can be targeted at SOAP nodes that might be encountered
in the path of a message from a sender to an ultimate receiver.

SOAP header blocks can be processed by SOAP intermediary nodes, and by the
ultimate SOAP receiver node; however, in a real application, not every node will
process every header block. Rather, each node is typically designed to process
particular header blocks, and - conversely - each header block is intended to be
processed by particular nodes.

The SOAP header allows features to be added to a SOAP message in a
decentralized manner without prior agreement between the communicating parties.

<?xml version=’1.0’ ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>New York</p:departing>
 <p:arriving>Los Angeles</p:arriving>
 <p:departureDate>2001-12-14</p:departureDate>
 <p:departureTime>late afternoon</p:departureTime>
 <p:seatPreference>aisle</p:seatPreference>
 </p:departure>
 <p:return>
 <p:departing>Los Angeles</p:departing>
 <p:arriving>New York</p:arriving>
 <p:departureDate>2001-12-20</p:departureDate>
 <p:departureTime>mid-morning</p:departureTime>
 <p:seatPreference/>
 </p:return>
 </p:itinerary>
 <q:lodging
 xmlns:q="http://travelcompany.example.org/reservation/hotels">
 <q:preference>none</q:preference>
 </q:lodging>
 </env:Body>
</env:Envelope>

Figure 4. An example of a SOAP 1.2 message

Chapter 3. What is SOAP? 11

SOAP defines a few attributes that can be used to indicate who should deal with a
feature and whether it is optional or mandatory. Such "control" information includes,
for example, passing directives or contextual information related to the processing
of the message. This allows a SOAP message to be extended in an
application-specific manner.

Although the header blocks are application-defined, SOAP-defined attributes on the
header blocks indicate how the header blocks are to be processed by the SOAP
nodes. Some of the important attributes are:

encodingStyle
Indicates the rules used to encode the parts of a SOAP message: SOAP
defines a narrower set of rules for encoding data than the very flexible encoding
that XML allows.

role (SOAP 1.2)
actor (SOAP 1.1)

 In SOAP 1.2, the role attribute specifies whether a particular node will operate
on a message. If the role specified for the node matches the role attribute of the
header block, the node processes the header; if the roles do not match, the
node does not process the header block. In SOAP 1.1, the actor attribute
performs the same function.

Roles can be defined by the application, and are designated by a URI. For
example, http://example.com/Log might designate the role of a node which
performs logging. Header blocks which are to be processed by this node
specify env:role="http://example.com/Log" (where the namespace prefix env
is associated with the SOAP namespace name of http://www.w3.org/2003/05/
soap-envelope).

The SOAP 1.2 specification defines three standard roles in addition to those
which are defined by the application:

http://www.w3.org/2003/05/soap-envelope/none
None of the SOAP nodes on the message path should process the header
block directly. Header blocks with this role can be used to carry data that is
required for processing of other SOAP header blocks.

http://www.w3.org/2003/05/soap-envelope/next
All SOAP nodes on the message path are expected to examine the header
block (provided that the header has not been removed by a node earlier in
the message path).

http://www.w3.org/2003/05/soap-envelope/ultimateReceiver
Only the ultimate receiver node is expected to examine the header block.

mustUnderstand
This attribute is used to ensure that SOAP nodes do not ignore header blocks
which are important to the overall purpose of the application. If a SOAP node
determines (using the role or actor attribute) that it should process a header
block, and the mustUnderstand attribute has a value of “true”, then the node
must either process the header block in a manner consistent with its
specification, or not at all (and throw a fault). But if the attribute has a value of
“false”, the node is not obliged to process the header block.

 In effect, the mustUnderstand attribute indicates whether processing of the
header block is mandatory or optional.

Values of the mustUnderstand attribute are:

true (SOAP 1.2)

12 Web Services Guide

1 (SOAP 1.1)
the node must either process the header block in a manner consistent with
its specification, or not at all (and throw a fault).

false (SOAP 1.2)
0 (SOAP 1.1)

the node is not obliged to process the header block.

relay (SOAP 1.2 only)
When a SOAP intermediary node processes a header block, it removes it from
the SOAP message. By default, it also removes any header blocks that it
ignored (because the mustUnderstand attribute had a value of “false”).
However, when the relay attribute is specified with a value of “true”, the node
retains the unprocessed header block in the message.

The SOAP body
The <Body> is the mandatory element within the SOAP envelope in which the main
end-to-end information conveyed in a SOAP message is carried.

The <Body> element and its associated child elements are used to exchange
information between the initial SOAP sender and the ultimate SOAP receiver. SOAP
defines one child element for the <Body>: the <Fault> element is used for reporting
errors. Other elements within the <Body> are defined by the Web service that uses
them.

The SOAP fault
The SOAP <Fault> element is used to carry error and status information within a
SOAP message.

If present, the SOAP <Fault> element must appear as a body entry and must not
appear more than once within a Body element. The subelements of the SOAP
<Fault> element are different in SOAP 1.1 and SOAP 1.2.

SOAP 1.1

In SOAP 1.1, the SOAP <Fault> element contains the following subelements:

<faultcode>
The <faultcode> element is a mandatory element within the <Fault>
element. It provides information about the fault in a form that can be
processed by software. SOAP defines a small set of SOAP fault codes
covering basic SOAP faults, and this set can be extended by applications.

<faultstring>
The <faultstring> element is is a mandatory element within the<Fault>
element. It provides information about the fault in a form intended for a
human reader.

<faultactor>
The <faultactor> element contains the URI of the SOAP node that
generated the fault. A SOAP node that is not the ultimate SOAP receiver
must include the <faultactor> element when it creates a fault; an ultimate
SOAP receiver is not obliged to include this element, but may do so.

<detail>
The <detail> element carries application-specific error information related
to the <Body> element. It must be present if the contents of the <Body>
element could not be successfully processed; it must not be used to carry

Chapter 3. What is SOAP? 13

information about error information belonging to header entries - detailed
error information belonging to header entries must be carried within header
entries.

SOAP 1.2

In SOAP 1.2, the SOAP <Fault> element contains the following subelements:

<Code> The <Code> element is a mandatory element within the <Fault> element. It
provides information about the fault in a form that can be processed by
software. It contains a <Value> element and an optional <Subcode> element.

<Reason>
The <Reason> element is a mandatory element within the <Fault> element.
It provides information about the fault in a form intended for a human
reader. The <Reason> element contains one or more <Text> elements, each
of which contains information about the fault in a different language.

<Node> The <Node> element contains the URI of the SOAP node that generated the
fault. A SOAP node that is not the ultimate SOAP receiver must include the
<Node> element when it creates a fault; an ultimate SOAP receiver is not
obliged to include this element, but may do so.

<Role> The <Role> element contains a URI that identifies the role the node was
operating in at the point the fault occurred.

<Detail>
The <Detail> element is an optional element, which contains
application-specific error information related to the SOAP fault codes
describing the fault. The presence of the <Detail> element has no
significance as to which parts of the faulty SOAP message were processed.

SOAP nodes
A SOAP node is the processing logic which operates on a SOAP message.

A SOAP node can:

v transmit a SOAP message

v receive a SOAP message

v process a SOAP message

v relay a SOAP message.

A SOAP node can be:

SOAP sender
A SOAP node that transmits a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of
a SOAP message path.

SOAP intermediary
A SOAP intermediary is both a SOAP receiver and a SOAP sender and is
targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and acts to forward a SOAP message towards an
ultimate SOAP receiver.

14 Web Services Guide

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is
responsible for processing the contents of the SOAP body and any SOAP
header blocks targeted at it. In some circumstances, a SOAP message
might not reach an ultimate SOAP receiver, for example because of a
problem at a SOAP intermediary.

The SOAP message path
The SOAP message path is the set of SOAP nodes through which a single SOAP
message passes. This includes the initial SOAP sender, zero or more SOAP
intermediaries, and an ultimate SOAP receiver

In the simplest case, a SOAP message is transmitted between two nodes, that is
from a SOAP sender to a SOAP receiver. However, in more complex cases,
messages can be processed by SOAP intermediary nodes, which receive a SOAP
message, and then send it to the next node. Figure 5 shows an example of a SOAP
message path, in which a SOAP message is transmitted from the initial SOAP
sender node, to the ultimate SOAP receiver node, passing through two SOAP
intermediary nodes on its route.

A SOAP intermediary is both a SOAP receiver and a SOAP sender. It can (and in
some cases must) process the header blocks in the SOAP message, and it
forwards the SOAP message towards its ultimate receiver.

The ultimate SOAP receiver is the final destination of a SOAP message. As well as
processing the header blocks, it is responsible for processing the SOAP body. In
some circumstances, a SOAP message might not reach an ultimate SOAP receiver,
for example because of a problem at a SOAP intermediary.

Initial
SOAP
sender

Ultimate
SOAP

receiver

SOAP
intermediary

SOAP
intermediary

S
O

A
P

m
essage S

O
A
P

m
es

sa
ge

S
O

A
P

m
es

sa
ge

Figure 5. An example of a SOAP message path

Chapter 3. What is SOAP? 15

16 Web Services Guide

Chapter 4. How CICS supports Web services

CICS supports two different approaches to the deployment of your CICS
applications in a Web services environment. One approach enables rapid
deployment, with the least amount of programming effort; the other approach gives
you complete flexibility and control over your Web service applications, using code
that you write to suit your particular needs. Both approaches are underpinned by an
infrastructure consisting of one or more pipelines and message handler programs
that operate on Web service requests and responses.

When you deploy your CICS applications in a Web services environment you can
choose from the following options:

v Use the CICS Web services assistant to help you deploy an application with the
least amount of programming effort.

For example, if you want to expose an existing application as a Web service, you
can start with a high-level language data structure and generate the Web
services description. Alternatively, if you want to communicate with an existing
Web service, you can start with its Web service description and generate a
high-level language structure that you can use in your program.

The CICS Web services assistant also generates the CICS resources that you
need to deploy your application. And when your application runs, CICS
transforms your application data into a SOAP message on output and transforms
the SOAP message back to application data on input.

v Take complete control over the processing of your data by writing your own code
to map between your application data and the message that flows between the
service requester and provider.

For example, if you want to use non-SOAP messages within the Web service
infrastructure, you can write your own code to transform between the message
format and the format used by your application.

Whichever approach you follow, you can use your own message handlers to
perform additional processing on your request and response messages, or use
CICS-supplied message handlers that are designed especially to help you process
SOAP messages.

Message handlers and pipelines
A message handler is a program in which you can perform your own processing of
Web service requests and responses. A pipeline is a set of message handlers that
are executed in sequence.

There are two distinct phases in the operation of a pipeline:

1. The request phase, during which CICS invokes each handler in the pipeline in
turn. Each message handler can process the request before returning control to
CICS.

2. This is followed by the response phase, during which CICS again invokes each
handler in turn, but with the sequence reversed. That is, the message handler
that is invoked first in the request phase, is invoked last in the response phase.
Each message handler can process the response during this phase.

Not every request is succeeded by a response; some applications use a
one-way message flow from service requester to provider. In this case, although
there is no message to be processed, each handler is invoked in turn during the
response phase.

© Copyright IBM Corp. 2005, 2011 17

Figure 6 shows a pipeline of three message handlers:

 In this example, the handlers are executed in the following sequence:

In the request phase
1. Handler 1
2. Handler 2
3. Handler 3

In the response phase
1. Handler 3
2. Handler 2
3. Handler 1

In a service provider, the transition between the phases normally occurs in the last
handler in the pipeline (known as the terminal handler) which absorbs the request,
and generates a response; in a service requester, the transition occurs when the
request is processed in the service provider. However, a message handler in the
request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For
example:

v A message handler that performs encryption and decryption will receive an
encrypted message on input, and pass the decrypted message to the next
handler. On output, it will do the opposite: receive a plain text message, and
pass an encrypted version to the following handler.

v A message handler that performs logging will examine a message, and copy the
relevant information from that message to the log. The message that is passed to
the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be
aware that the structure of the pipeline in this release of CICS is not
the same as that used in the feature.

Transport-related handlers
CICS supports the use of two transport mechanisms between the Web service
requester and the provider. In some cases, you might require different message
handlers to be invoked, depending upon which transport mechanism is in use. For
example, you might wish to include message handlers that perform encryption of
parts of your messages when you are using the HTTP transport to communicate on
an external network. But encryption might not be required when you are using the
MQ transport on a secure internal network.

To support this, you can configure your pipeline to specify handlers that are invoked
only when a particular transport (HTTP or MQ) is in use. For a service provider, you
can be even more specific, and specify handlers that are invoked only when a
particular named resource (a TCPIPSERVICE for the HTTP transport, a QUEUE for
the MQ transport) is in use.

Request

Response

Handler
1

Handler
2

Handler
3

Request

Response

Figure 6. A generic CICS pipeline

18 Web Services Guide

This is illustrated in Figure 7:

 In this example, which applies to a service provider:

v Handler 1 is invoked for messages that use the MQ transport.

v Handlers 2 and 3 are invoked for messages that use the HTTP transport.

v Handlers 4 and 5 are invoked for all messages.

v Handler 5 is the terminal handler.

Interrupting the flow
During processing of a request, a message handler can decide not to pass a
message to the next handler, but can, instead, generate a response. Normal
processing of the message is interrupted, and some handlers in the pipeline are not
invoked. For example, suppose that handler 2 in Figure 8 is responsible for
performing security checks.

 If the request does not bear the correct security credentials, then, instead of
passing the request to handler 3, handler 2 suppresses the request and constructs
a suitable response. The pipeline is now in the response phase, and when handler
2 returns control to CICS, the next handler invoked is handler 1, and handler 3 is
bypassed altogether.

A handler that interrupts the normal message flow in this way must only do so if the
originator of the message expects a response; for example, a handler should not
generate a response when an application uses a one-way message flow from
service requester to provider.

A service provider pipeline
In a service provider pipeline, CICS receives a request, which is passed through a
pipeline to the target application program. The response from the application is
returned to the service requester through the same pipeline.

When CICS is in the role of service provider, it performs the following operations:

1. Receive the request from the service requester.

2. Examine the request, and extract the contents that are relevant to the target
application program.

Request

Response

Handler
1

Handler
4

Handler
5

Handler
2

Handler
3

Request

Response

HTTP

WebSphere MQ

Figure 7. Pipeline with transport-related handlers

Request

Response

Handler
1

Handler
2

Handler
3

Figure 8. Interrupting the pipeline flow

Chapter 4. How CICS supports Web services 19

3. Invoke the application program, passing data extracted from the request.

4. When the application program returns control, construct a response, using data
returned by the application program.

5. Send a response to the service requester.

Figure 9 illustrates a pipeline of three message handlers in a service provider
setting:

1. CICS receives a request from the service requester. It passes the request to
message handler 1.

2. Message handler 1 performs some processing, and passes the request to
handler 2 (To be precise, it returns control to CICS, which manages the pipeline.
CICS then passes control to the next message handler).

3. Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

4. Message handler 3 is the terminal handler of the pipeline. It uses the
information in the request to invoke the application program. It then uses the
output from the application program to generate a response, which it passes
back to handler 2.

5. Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

6. Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the service requester.

A service requester pipeline
In a service requester pipeline, an application program creates a request, which is
passed through a pipeline to the service provider. The response from the service
provider is returned to the application program through the same pipeline.

When CICS is in the role of service requester, it performs the following operations:

1. Use data provided by the application program to construct a request.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response, and extract the contents that are relevant to the original
application program.

5. Return control to the application program.

Figure 10 on page 21 illustrates a pipeline of three message handlers in a service
requester setting:

CICS
Application

program

Request

Response

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
requester

CICS Transaction Server

Figure 9. A service provider pipeline

20 Web Services Guide

1. An application program creates a request.

2. Message handler 1 receives the request from the application program, performs
some processing, and passes the request to handler 2 (To be precise, it returns
control to CICS, which manages the pipeline. CICS then passes control to the
next message handler).

3. Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

4. Message handler 3 receives the request from handler 2, performs some
processing, and passes the request to the service provider.

5. Message handler 3 receives the response from the service provider, performs
some processing, and passes it to handler 2.

6. Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

7. Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the application program.

CICS pipelines and SOAP
The pipeline which CICS uses to process Web service requests and responses is
generic, in that there are few restrictions on what processing can be performed in
each message handler. However, many Web service applications use SOAP
messages, and any processing of those messages should comply with the SOAP
specification. Therefore, CICS provides special SOAP message handler programs
that can help you to configure your pipeline as a SOAP node.

v A pipeline can be configured for use in a service requester, or in a service
provider:

– A service requester pipeline is the initial SOAP sender for the request, and the
ultimate SOAP receiver for the response

– A service provider pipeline is the ultimate SOAP receiver for the request, and
the initial SOAP sender for the response

You cannot configure a CICS pipeline to function as a SOAP intermediary.

v A service requester pipeline can be configured to support SOAP 1.1 or SOAP
1.2, but not both. However, a service provider pipeline can be configured to
support both SOAP 1.1 and SOAP 1.2. Within your CICS system, you can have
many pipelines, some of which support SOAP 1.1 or SOAP 1.2 and some of
which support both.

v You can configure a CICS pipeline to have more than one SOAP message
handler.

v The CICS-provided SOAP message handlers can be configured to invoke one or
more user-written header-handling routines.

Request

Response

CICS
Application

program

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
provider

CICS Transaction Server

Figure 10. A service requester pipeline

Chapter 4. How CICS supports Web services 21

v The CICS-provided SOAP message handlers can be configured to enforce some
aspects of compliance with the WS-I Basic Profile Version 1.1, and to enforce the
presence of particular headers in the SOAP message.

The SOAP message handlers, and their header handling routines are specified in
the pipeline configuration file.

SOAP messages and the application data structure
In many cases, the CICS Web services assistant can generate the code to
transform the data between a high-level data structure used in an application
program, and the contents of the <Body> element of a SOAP message. In these
cases, when you write your application program, you do not need to parse or
construct the SOAP body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the
application data structure, and about the format of the SOAP messages. This
information is held in two files:

v The Web service binding file

This file is generated by the CICS Web services assistant from an application
language data structure, using utility program DFHLS2WS, or from a Web
service description, using utility program DFHWS2LS. CICS uses the binding file
to generate the resources used by the Web service application, and to perform
the mapping between the application's data structure and the SOAP messages.

v The Web service description

This may be an existing Web service description, or it may be generated from an
application language data structure, using utility program DFHLS2WS. CICS uses
the Web service description to perform full validation of SOAP messages.

Figure 11 shows where these files are used in a service provider.

 A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from an inbound request, and passes the
SOAP body to the data mapper function. This uses the Web service binding file to
map the contents of the SOAP body to the application's data structure. If full
validation of the SOAP message is active, then the SOAP body is validated against
the Web service description. If there is an outbound response, the process is
reversed.

CICS
Application

program

Request

Response

CICS Web services

Pipeline
Data

mapper

Service
requester

CICS Transaction Server

Web
service

description

Web
service
binding

SOAP body interface

HLL data structure interface

SOAP envelope

Figure 11. Mapping the SOAP body to the application data structure in a service provider

22 Web Services Guide

Figure 12 shows where these files are used in a service requester.

 For an outbound request, the data mapper function constructs a SOAP body from
the application's data structure, using information from the Web service binding file.
A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) adds the SOAP envelope. If there is an inbound response, the process is
reversed. If full validation of the SOAP message is active, then the inbound SOAP
body is validated against the Web service description.

In both cases, the execution environment that allows a particular CICS application
program to operate in a Web services setting is defined by three objects. These are
the pipeline, the Web service binding file, and the Web service description. The
three objects are defined to CICS as attributes of the WEBSERVICE resource
definition.

There are some situations in which, even though you are using SOAP messages,
you cannot use the transformation that the CICS Web services assistant generates:

v When the same data cannot be represented in the SOAP message and in the
high-level language.

All the high-level languages that CICS supports, and XML Schema, support a
variety of different data types. However, there is not a one-to-one
correspondence between the data types used in the high-level languages, and
those used in XML Schema, and there are cases where data can be represented
in one, but not in the other. In this situations, you should consider one of the
following:

– Change your application data structure. This may not be feasible, as it might
entail changes to the application program itself.

– Construct a wrapper program, which transforms the application data into a
form that CICS can then transform into a SOAP message body. If you do this,
you can leave your application program unchanged. In this case CICS Web
service support interacts directly with the wrapper program, and only indirectly
with the application program.

v When your application program is in a language which is not supported by the
CICS Web services assistant.

In this situation, you should consider one of the following:

– Construct a wrapper program that is written in one of the languages that the
CICS Web services assistant does support (COBOL, PL/I, C or C++).

CICS
Application

program

Request

Response

CICS Web services

Pipeline
Data

mapper

Service
provider

CICS Transaction Server

Web
service

description

Web
service
binding

SOAP body interface

EXEC CICS INVOKE WEBSERVICE
with HLL data structure interface

SOAP envelope

Figure 12. Mapping the SOAP body to the application data structure in a service requester

Chapter 4. How CICS supports Web services 23

– Instead of using the CICS Web services assistant, write your own program to
perform the mapping between the SOAP messages and the application
program's data structure.

WSDL and the application data structure
A Web service description contains abstract representations of the input and output
messages used by the service. CICS uses the Web service description to construct
the data structures used by application programs. At run time, CICS performs the
mapping between the application data structures and the messages.

The description of a Web service contains, among other things:

v One or more operations

v For each operation, an input message and an optional output message

v For each message, the message structure, defined in terms of XML data types.
Complex data types used in the messages are defined in an XML schema which
is contained in the <types> element within the Web service description. Simple
messages can be described without using the <types> element.

WSDL contains an abstract definition of an operation, and the associated
messages; it cannot be used directly in an application program. To implement the
operation, a service provider must do the following:

v It must parse the WSDL, in order to understand the structure of the messages

v It must parse each input message, and construct the output message

v It must perform the mappings between the contents of the input and output
messages, and the data structures used in the application program

A service requester must do the same in order to invoke the operation.

When you use the the CICS Web services assistant, much of this is done for you,
and you can write your application program without detailed understanding of
WSDL, or of the way the input and output messages are constructed.

The CICS Web services assistant consists of two utility programs:

DFHWS2LS
This utility program takes a Web service description as a starting point. It
uses the descriptions of the messages, and the data types used in those
messages, to construct high-level language data structures that you can
use in your application programs.

DFHLS2WS
This utility program takes a high-level language data structure as a starting
point. It uses the structure to construct a Web services description that
contains descriptions of messages, and the data types used in those
messages derived from the language structure.

Both utility programs generate a Web services binding file that CICS uses at run
time to perform the mapping between the application program's data structures and
the SOAP messages.

An example of COBOL to WSDL mapping

This example shows how the data structure used in a COBOL program is
represented in the Web services description that is generated by the CICS Web
services assistant.

24 Web Services Guide

Figure 13 shows a simple COBOL data structure:

The key elements in the corresponding fragment of the Web services description
are shown in Figure 14:

 * Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

Figure 13. COBOL record definition of an input message defined in WSDL

<xsd:sequence>
 <xsd:element name="CA-REQUEST-ID" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="6"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CA-RETURN-CODE" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="99"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CA-RESPONSE-MESSAGE" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="CA-ORDER-REQUEST" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="CA-USERID" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CA-CHARGE-DEPT" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="CA-ITEM-REF-NUMBER" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="CA-QUANTITY-REQ" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="FILLER" nillable="false">
 ...
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:sequence>

Figure 14. WSDL fragment derived from a COBOL data structure

Chapter 4. How CICS supports Web services 25

WSDL and message exchange patterns
A WSDL 2.0 document contains a message exchange pattern (MEP) that defines
the way that SOAP 1.2 messages should be exchanged between the Web service
requester and Web service provider.

CICS supports four out of the eight message exchange patterns that are defined in
the WSDL 2.0 Part 2: Adjuncts specification for both service provider and service
requester applications. These are:

In-Only
A request message is sent to the Web service provider, but the provider is
not allowed to send any type of response to the Web service requester.

In-Out A request message is sent to the Web service provider, and a response
message is returned to the Web service requester. The response message
could be a normal SOAP message or a SOAP fault.

In-Optional-Out
A request message is sent to the Web service provider, and a response
message is optionally returned to the Web service requester. If there is a
response, it could be either a normal SOAP message or a SOAP fault.

Robust In-Only
A request message is sent to the Web service provider, and no response
message is returned to the Web service requester unless an error occurs. If
there is an error, a SOAP fault message is sent to the requester.

The Web service binding file

The Web service binding file contains information that CICS uses to map data
between input and output messages, and application data structures.

A Web service description contains abstract representations of the input and output
messages used by the service. When a service provider or service requester
application executes, CICS needs information about how the contents of the
messages maps to the data structures used by the application. This information is
held in a Web service binding file.

Web service binding files are created:

v By utility program DFHWS2LS when language structures are generated from
WSDL.

v By utility program DFHLS2WS when WSDL is generated from a language
structure.

At run time, CICS uses information in the Web service binding file to perform the
mapping between application data structures and SOAP messages. Web service
binding files are defined to CICS in the WSBIND attribute of the WEBSERVICE
resource.

Related information

WEBSERVICE resource definitions

External standards
CICS support for Web services conforms to a number of industry standards and
specifications.

26 Web Services Guide

|

|
|
|

|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|
|

|

Extensible Markup Language Version 1.0
Extensible Markup Language (XML) 1.0 is a subset of SGML. Its goal is to enable
generic SGML to be served, received, and processed on the Web in the way that is
now possible with HTML.

XML has been designed for ease of implementation and for interoperability with
both SGML and HTML.

The specification for XML 1.0 and its errata is published by the World Wide Web
Consortium (W3C) as a W3C Recommendation at http://www.w3.org/TR/REC-xml.

SOAP 1.1 and 1.2
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.

The protocol consists of three parts:

v An envelope that defines a framework for describing what is in a message and
how to process it.

v A set of encoding rules for expressing instances of application-defined data
types.

v A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specifications for SOAP are published by the World Wide Web Consortium
(W3C). The specification for SOAP 1.1 is described as a note at
http://www.w3.org/TR/SOAP. This specification has not been endorsed by the W3C,
but forms the basis for the SOAP 1.2 specification. It expands the SOAP acronym
to Simple Object Access Protocol.

SOAP 1.2 is a W3C recommendation and is published in two parts:

v Part 1: Messaging Framework is published at http://www.w3.org/TR/soap12-
part1/ .

v Part 2: Adjuncts is published at http://www.w3.org/TR/soap12-part2/.

The specification also includes a primer that is intended to provide a tutorial on the
features of the SOAP Version 1.2 specification, including usage scenarios. The
primer is published at http://www.w3.org/TR/soap12-part0/. The specification for
SOAP 1.2 does not expand the acronym.

SOAP 1.1 Binding for MTOM 1.0
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

The aim of this specification is to define the minimum changes to MTOM and XOP
to enable these facilities to be used interoperably with SOAP 1.1 and to largely
reuse the SOAP 1.2 MTOM/XOP implementation.

The SOAP 1.1 Binding for MTOM 1.0 specification is published as a formal
submission by theWorld Wide Web Consortium (W3C) at http://www.w3.org/
Submission/soap11mtom10/.

Chapter 4. How CICS supports Web services 27

|

|
|
|

|
|
|

|
|
|

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/REC-xml
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org/Submission/soap11mtom10/

Related concepts

“XML-binary Optimized Packaging (XOP)” on page 32
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications
that defines how to efficiently serialize XML Infosets that have certain types of
content.

“SOAP Message Transmission Optimization Mechanism (MTOM)”
SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related
pair of specifications that defines conceptually how to optimize the transmission and
format of a SOAP message.

SOAP Message Transmission Optimization Mechanism (MTOM)
SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related
pair of specifications that defines conceptually how to optimize the transmission and
format of a SOAP message.

MTOM defines:

1. how to optimize the transmission of base64binary data in SOAP messages in
abstract terms

2. how to implement optimized MIME multipart serialization of SOAP messages in
a binding independent way using XOP

The implementation of MTOM relies on the related XML-binary Optimized
Packaging (XOP) specification. As these two specifications are so closely linked,
they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a W3C
Recommendation at http://www.w3.org/TR/soap12-mtom/.

Related concepts

“XML-binary Optimized Packaging (XOP)” on page 32
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications
that defines how to efficiently serialize XML Infosets that have certain types of
content.

“SOAP 1.1 Binding for MTOM 1.0” on page 27
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

Web Services Atomic Transaction Version 1.0
Web Services Atomic Transaction Version 1.0 (or WS-AtomicTransaction) is a
protocol that defines the atomic transaction coordination type for transactions of a
short duration. It is used with the extensible coordination framework described in
the Web Services Coordination Version 1.0 (or WS-Coordination) specification.

The WS-AtomicTransaction specification and the WS-Coordination specification
define protocols for short term transactions that enable transaction processing
systems to interoperate in a Web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency, isolation,
and durability.

The specification for WS-AtomicTransaction is published at http://www.ibm.com/
developerworks/library/specification/ws-tx/.

28 Web Services Guide

|

|
|
|
|

|
|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|

http://www.w3.org
http://www.w3.org/TR/soap12-mtom/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

Web Services Coordination Version 1.0
Web Services Coordination Version 1.0 (or WS-Coordination) is an extensible
framework for providing protocols that coordinate the actions of distributed
applications. These coordination protocols are used to support a number of
applications, including those that need to reach consistent agreement on the
outcome of distributed activities.

The framework enables an application service to create a context needed to
propagate an activity to other services and to register for coordination protocols.
The framework enables existing transaction processing, workflow, and other
systems for coordination to hide their proprietary protocols and to operate in a
heterogeneous environment.

The specification for WS-Coordination is published at http://www.ibm.com/
developerworks/library/specification/ws-tx/.

Web Services Description Language Version 1.1 and 2.0
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

The operations and messages are described abstractly, and then bound to a
concrete network protocol and message format to define an endpoint. Related
concrete end points are combined into abstract endpoints (services).

WSDL is extensible to allow the description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.
The WSDL 1.1 specification only defines bindings that describe how to use WSDL
in conjunction with SOAP 1.1, HTTP GET and POST, and MIME.

WSDL 2.0 provides a model as well as an XML format for describing Web services.
It enables you to separate the description of the abstract functionality offered by a
service from the concrete details of a service description, such as "how" and
"where" that functionality is offered. It also describes extensions for Message
Exchange Patterns, SOAP modules, and a language for describing such concrete
details for SOAP 1.2 and HTTP. The WSDL 2.0 specification also resolves many
technical issues and limitations that are present in WSDL 1.1.

The specification for WSDL 1.1 is published by the World Wide Web Consortium
(W3C) as a W3C Note at http://www.w3.org/TR/wsdl.

The latest specification for WSDL 2.0 is published as a W3C candidate
recommendation at http://www.w3.org/TR/wsdl20.

Related concepts

“How CICS complies with WSDL 2.0” on page 33
CICS conditionally complies with WSDL 2.0, and support is subject to the following
restrictions.

Web Services Security: SOAP Message Security
Web Services Security (WSS): SOAP Message Security is a set of enhancements
to SOAP messaging that provides message integrity and confidentiality. WSS:
SOAP Message Security is extensible, and can accommodate a variety of security
models and encryption technologies.

Chapter 4. How CICS supports Web services 29

|
|
|
|
|
|
|

|
|

http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20

WSS: SOAP Message Security provides three main mechanisms that can be used
independently or together. They are:

v The ability to send security tokens as part of a message, and for associating the
security tokens with message content

v The ability to protect the contents of a message from unauthorized and
undetected modification (message integrity)

v The ability to protect the contents of a message from unauthorized disclosure
(message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service
extensions and application-specific protocols to satisfy a variety of security
requirements.

The specification is published by the Organization for the Advancement of
Structured Information Standards (OASIS) at http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0.pdf.

Related concepts

“How CICS complies with Web Services Security specifications” on page 33
CICS conditionally complies with Web Services Security: SOAP Message Security
and related specifications by supporting the following aspects.

Web Services Trust Language
Web Services Trust Language (or WS-Trust) defines extensions that build on Web
Services Security to provide a framework for requesting and issuing security tokens,
and to broker trust relationships.

WS-Trust describes:

1. Methods for issuing, renewing, and validating security tokens.

2. Ways to establish, access the presence of, and broker trust relationships.

CICS supports the February 2005 version of the specification that is published at
http://www-128.ibm.com/developerworks/library/specification/ws-trust/.

Related concepts

“How CICS complies with WS-Trust” on page 36
CICS conditionally complies with WS-Trust, and support is subject to the following
restrictions.

WSDL 1.1 Binding Extension for SOAP 1.2
WSDL 1.1 Binding Extension for SOAP 1.2 is a specification that defines the
binding extensions that are required to indicate that Web service messages are
bound to the SOAP 1.2 protocol.

The aim of this specification is to provide functionality that is comparable with the
binding for SOAP 1.1.

This specification is published as a formal submission request by the World Wide
Web Consortium (W3C) at http://www.w3.org/Submission/wsdl11soap12/.

30 Web Services Guide

|

|
|
|

|
|

|
|

http://www.oasis-open.org
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www-128.ibm.com/developerworks/library/specification/ws-trust/
http://www.w3.org
http://www.w3.org
http://www.w3.org/Submission/wsdl11soap12/

WS-I Basic Profile Version 1.1
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web
services specifications, along with clarifications and amendments to those
specifications, which together promote interoperability between different
implementations of Web services.

The WS-I BP 1.1 is derived from Basic Profile Version 1.0 by incorporating its
published errata and separating out the requirements that relate to the serialization
of envelopes and their representation in messages. These requirements are now
part of the Simple SOAP Binding Profile Version 1.0.

To summarize, the WS-I Basic Profile Version 1.0 has now been split into two
separately published profiles. These are:

v WS-I Basic Profile Version 1.1

v WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

The reason for this separation is to enable the Basic Profile 1.1 to be composed
with any profile that specifies envelope serialization, including the Simple SOAP
Binding Profile 1.0.

The specification for WS-I BP 1.1 is published by the Web Services Interoperability
Organization (WS-I), and can be found at http://www.ws-i.org/Profiles/BasicProfile-
1.1.html.

Related concepts

“How CICS complies with WS-I Basic Profile 1.1” on page 37
CICS conditionally complies with WS-I Basic Profile 1.1 in that it adheres to all the
MUST level requirements. However, CICS does not specifically implement support
for UDDI registries, and therefore the points relating to this in the specification are
ignored. Also the Web services assistant jobs and associated runtime environment
are not fully compliant with this Profile, as there are limitations in the support of
mapping certain schema elements.

WS-I Simple SOAP Binding Profile Version 1.0
WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of
non-proprietary Web services specifications, along with clarifications and
amendments to those specifications which promote interoperability.

The SSBP 1.0 is derived from the WS-I Basic Profile 1.0 requirements that relate to
the serialization of the envelope and its representation in the message.

WS-I Basic Profile 1.0 has now been split into two separately published profiles.
These are:

v WS-I Basic Profile Version 1.1

v WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

The specification for SSBP 1.0 is published by the Web Services Interoperability
Organization (WS-I), and can be found at http://www.ws-i.org/Profiles/
SimpleSoapBindingProfile-1.0.html.

Chapter 4. How CICS supports Web services 31

http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

XML-binary Optimized Packaging (XOP)
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications
that defines how to efficiently serialize XML Infosets that have certain types of
content.

XOP does this by:

1. packaging the XML in some format. This is called the XOP package. The
specification mentions MIME Multipart/Related but does not limit it to this format.

2. Re-encoding all or part of base64binary content to reduce its size.

3. Placing the base64binary content elsewhere in the package and replacing the
encoded content with XML that references it.

XOP is used as an implementation of the MTOM specification, which defines the
optimization of SOAP messages. As these two specifications are so closely linked,
they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a W3C
Recommendation at http://www.w3.org/TR/xop10/

Related concepts

“SOAP Message Transmission Optimization Mechanism (MTOM)” on page 28
SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related
pair of specifications that defines conceptually how to optimize the transmission and
format of a SOAP message.

“SOAP 1.1 Binding for MTOM 1.0” on page 27
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

XML Encryption Syntax and Processing
XML Encryption Syntax and Processing specifies a process for encrypting data and
representing the result in XML. The data may be arbitrary data (including an XML
document), an XML element, or XML element content. The result of encrypting data
is an XML Encryption element which contains or references the cipher data.

XML Encryption Syntax and Processing is a recommendation of the World Wide
Web Consortium (W3C) and is published at http://www.w3.org/TR/xmlenc-core.

XML-Signature Syntax and Processing
XML-Signature Syntax and Processing specifies processing rules and syntax for
XML digital signatures.

XML digital signatures provide integrity, message authentication, and signer
authentication services for data of any type, whether located within the XML that
includes the signature or elsewhere.

The specification for XML-Signature is published by World Wide Web Consortium
(W3C) at http://www.w3.org/TR/xmldsig-core.

CICS compliance with Web services standards
CICS is compliant with the supported Web services standards and specifications, in
that it allows you to generate and deploy Web services that are compliant.

32 Web Services Guide

|

|
|
|

|

|
|

|

|
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|

http://www.w3.org
 http://www.w3.org/TR/xop10/
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmlenc-core
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmldsig-core/

It should be noted that CICS does not enforce this compliancy. For example, in the
case of support for the WS-I Basic Profile 1.1 specification, CICS allows you to
apply additional qualities of service to your Web service that could break the
interoperability outlined in this Profile.

How CICS complies with WSDL 2.0
CICS conditionally complies with WSDL 2.0, and support is subject to the following
restrictions.

Mandatory requirements

v Only the message exchange patterns in-only, in-out, robust in-only, and
in-optional-out may be used in the WSDL.

v Only one Endpoint is allowed for each Service.

v There must be at least one Operation.

v Endpoints may only be specified with a URI.

v There must be a SOAP binding

v The XML schema type system must be used.

Aspects that are tolerated

v The following HTTP binding properties are ignored:

– whttp:location

– whttp:header

– whttp:transferCodingDefault

– whttp:transferCoding

– whttp:cookies

– whttp:authenticationType

– whttp:authenticationRealm

v SOAP header information is ignored by DFHWS2LS. However, you can
add your own message handlers to the pipeline to create and process
the required SOAP header information for inbound and outbound
messages.

Aspects that are not supported

v The #any and #other message content models.

v The out-only, robust-out-only, out-in and out-optional-in message
exchange patterns.

v WS-Addressing for Endpoints.

v HTTP GET is not supported. This is defined using the soap-response
message exchange pattern in the WSDL document. If your WSDL
defines this message exchange pattern, DFHWS2LS issues an error
message.

Related concepts

“Web Services Description Language Version 1.1 and 2.0” on page 29
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

How CICS complies with Web Services Security specifications
CICS conditionally complies with Web Services Security: SOAP Message Security
and related specifications by supporting the following aspects.

Chapter 4. How CICS supports Web services 33

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|
|

|

|
|
|
|

|

|
|
|
|

Compliance with Web Services Security: SOAP Message Security

Security header
The <wsse:Security> header provides a mechanism for attaching
security-related information targeted at a specific recipient in the form of a
SOAP actor or role. This could be the ultimate recipient of the message or
an intermediary. The following attributes are supported in CICS:

v S11:actor (for an intermediary)

v S11:mustUnderstand

v S12:role (for an intermediary)

v S12:mustUnderstand

Security tokens
The following security tokens are supported in the security header:

v User name and password

v Binary security token (X.509 certificate)

Token references
A security token conveys a set of claims. Sometimes these claims reside
elsewhere and need to be accessed by the receiving application. The
<wsse:SecurityTokenReference> element provides an extensible
mechanism for referencing security tokens. The following mechanisms are
supported:

v Direct reference

v Key identifier

v Key name

v Embedded reference

Signature algorithms
This specification builds on XML Signature and therefore has the same
algorithm requirements as those specified in the XML Signature
specification. CICS supports:

 Algorithm type Algorithm URI

Digest SHA1 http://www.w3.org/2000/09/
xmldsig#sha1

Signature DSA with SHA1 (validation
only)

http://www.w3.org/2000/09/
xmldsig#dsa-sha1

Signature RSA with SHA1 http://www.w3.org/2000/09/
xmldsig#rsa-sha1

Canonicalization Exclusive XML
canonicalization (without
comments)

http://www.w3.org/2001/10/
xml-exc-c14n#

Signature signed parts
CICS allows the following SOAP elements to be signed:

v the SOAP message body

v the identity token (a type of security token), that is used as an asserted
identity

Encryption algorithms
The following data encryption algorithms are supported:

34 Web Services Guide

Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

The following key encryption algorithm is supported:

 Algorithm URI

Key transport (public key cryptography) RSA
Version 1.5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Encryption message parts
CICS allow the following SOAP elements to be encrypted:

v the SOAP body

Timestamp
The <wsu:Timestamp> element provides a mechanism for expressing the
creation and expiration times of the security semantics in a message. CICS
tolerates the use of timestamps within the Web services security header on
inbound SOAP messages.

Error handling
CICS generates SOAP fault messages using the standard list of response
codes listed in the specification.

Compliance with Web Services Security: UsernameToken Profile 1.0

The following aspects of this specification are supported:

Password types
Text

Token references
Direct reference

Compliance with Web Services Security: X.509 Certificate Token Profile
1.0

The following aspects of this specification are supported:

Token types

v X.509 Version 3: Single certificate. See http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3.

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists
(CRL). See http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509- token-profile-1.0#X509PKIPathv1.

Chapter 4. How CICS supports Web services 35

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509PKIPathv1
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509PKIPathv1

v X.509 Version 3: PKCS7 with or without CRLs. The IBM® software
development kit (SDK) supports both. The Sun Java Development Kit
(JDK) supports PKCS7 without CRL only.

Token references

v Key identifier - subject key identifier

v Direct reference

v Custom reference - issuer name and serial number

Aspects that are not supported

The following items are not supported in CICS:

v Validation of Timestamps for freshness

v Nonces

v Web services security for SOAP attachments

v Security Assertion Markup Language (SAML) token profile, WS-SecurityKerberos
token profile, and XrML token profile

v Web Services Interoperability (WS-I) Basic Security Profile

v XML enveloping digital signature

v XML enveloping digital encryption

v The following transport algorithms for digital signatures are not supported:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116

– SOAP Message Normalization. For more information, see
http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/

v The Diffie-Hellman key agreement algorithm for encryption is not supported. For
more information, see http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
Overview.html#sec-DHKeyValue.

v The following canonicalization algorithm for encryption, which is optional in the
XML encryption specification, is not supported:

– Canonical XML with or without comments

– Exclusive XML canonicalization with or without comments

v In the Username Token Version 1.0 Profile specification, the digest password
type is not supported.

Related concepts

“Web Services Security: SOAP Message Security” on page 29
Web Services Security (WSS): SOAP Message Security is a set of enhancements
to SOAP messaging that provides message integrity and confidentiality. WSS:
SOAP Message Security is extensible, and can accommodate a variety of security
models and encryption technologies.

How CICS complies with WS-Trust
CICS conditionally complies with WS-Trust, and support is subject to the following
restrictions.

Aspects that are supported

v Validation binding

v Issuance binding where one token is returned

v AppliesTo in the Issuance binding

Aspects that are tolerated

v Requested references

36 Web Services Guide

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

v Keys and entropy

v Returning computed keys

Aspects that are not supported

v Returning multiple security tokens

v Returning security tokens in headers

v Renewal bindings

v Cancel bindings

v Negotiation and challenge extensions

v Key and Token parameter extensions

v Key exchange token binding

Related concepts

“Web Services Trust Language” on page 30
Web Services Trust Language (or WS-Trust) defines extensions that build on Web
Services Security to provide a framework for requesting and issuing security tokens,
and to broker trust relationships.

How CICS complies with WS-I Basic Profile 1.1
CICS conditionally complies with WS-I Basic Profile 1.1 in that it adheres to all the
MUST level requirements. However, CICS does not specifically implement support
for UDDI registries, and therefore the points relating to this in the specification are
ignored. Also the Web services assistant jobs and associated runtime environment
are not fully compliant with this Profile, as there are limitations in the support of
mapping certain schema elements.

See “High-level language and XML schema mapping” on page 150 for a list of
unsupported schema elements.

Conformance targets identify what artifacts (e.g. SOAP message, WSDL
description) or parties (e.g. SOAP processor, end user) that the requirements apply
to. The conformance targets supported by CICS are:

MESSAGE
Protocol elements that transport the ENVELOPE (e.g. SOAP over HTTP
messages).

ENVELOPE
The serialization of the soap:Envelope element and its content.

DESCRIPTION
The description of types, messages, interfaces and their protocol and data
format bindings, and network access points associated with Web services
(e.g. WSDL descriptions).

INSTANCE
Software that implements a wsdl:port.

CONSUMER
Software that invokes an INSTANCE.

SENDER
Software that generates a message according to the protocol associated
with it

RECEIVER
Software that consumes a message according to the protocol associated
with it.

Chapter 4. How CICS supports Web services 37

Related concepts

“WS-I Basic Profile Version 1.1” on page 31
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web
services specifications, along with clarifications and amendments to those
specifications, which together promote interoperability between different
implementations of Web services.

38 Web Services Guide

Chapter 5. Getting started with Web services

There are several ways to get started with Web services in CICS. The most
appropriate way for you will depend upon how much you already know about the
subject and upon how well advanced your plans are for using Web services.

Here are some starting points for Web services in CICS:

v Install the example application. CICS provides an example of a catalog
management application, which can be enabled as a Web service provider. The
example includes all the code and resource definitions that you need to get the
application working in CICS with the minimum amount of work. It also includes
code to interact with the service that runs on a number of common Web service
clients.

Use the example application if you want a rapid “proof-of-concept” demonstration
that you can deploy a Web service in CICS or if you want a “hands-on” way to
learn about Web services in CICS.

The example application is described in Chapter 14, “The CICS catalog manager
example application,” on page 257

v Get straight to work planning to deploy an application as a service provider or a
requester. You might already know enough about how you will use Web services
in CICS to start planning your applications and the related infrastructure.

v Migrate from the SOAP feature for CICS. If you have an existing application that
uses the feature, you might be ready to start planning how you will redeploy the
application.

Planning to use Web services

Before you can plan to use Web services in CICS, you need to consider these
questions for each application:

Do you plan to deploy your CICS application in the role of a service provider
or a service requester?

 You may have a pair of applications that you want to connect using CICS
support for Web services. In this case, one application will be the service
provider; the other will be the service requester.

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to the
business logic, you will probably be able to use them in a Web services
setting, either as a service provider or a service requester. However, in
most cases, you will need to write a wrapper program that connects your
business logic to the Web services logic.

 If you plan to write new applications, you should aim to keep your business
logic separated from your Web services logic, and, once again, you will
need to write a wrapper program to provide this separation. However, if
your application is designed with Web services in mind, the wrapper may
prove to be simpler to write.

Do you intend to use SOAP messages?
SOAP is fundamental to the Web services architecture, and much of the
support that is provided in CICS assumes that you will use SOAP. However,
there may be situations where you wish to use other message formats. For
example, you may have developed your own message formats that you

© Copyright IBM Corp. 2005, 2011 39

want to deploy with the CICS Web services infrastructure. CICS allows you
to do this, but you will not be able to use some of the functions that CICS
provides, such as the Web services assistant, and the SOAP message
handlers.

 If you decide not to use SOAP, your application programs will be
responsible for parsing inbound messages, and constructing outbound
messages.

Do you intend to use the CICS Web services assistant to generate the
mappings between your data structures and SOAP messages?

The assistant provides a rapid deployment of many applications into a Web
services setting with little or no additional programming. And when
additional programming is required, it is usually straightforward, and can be
done without changing existing business logic.

 However, there are cases which are better handled without using the Web
services assistant. For example, if you have existing code that maps data
structures to SOAP messages, there is no advantage in reengineering your
application with the Web services assistant.

Although the CICS Web services assistant supports the most common data
types and structures, there are some which are not supported. In this
situation, you should check the list of unsupported data types and
structures for the language in question, and consider providing a program
layer that maps your application's data to a format that the assistant can
support. If this is not possible, you will need to parse the message yourself.
For details on what the assistant can and can't support, see “High-level
language and XML schema mapping” on page 150.

If you decide not to use the CICS Web services assistant, you can use a
tool such as WebSphere Developer for System z to create the necessary
artifacts, and provide your own code for parsing inbound messages, and
constructing outbound messages. You can also use the provided vendor
interface API.

Do you intend to use an existing service description, or create a new one?
In some situations, you will be obliged to use an existing service description
as a starting point. For example:

v Your application is a service requester, and it is designed to invoke an
existing Web service.

v Your application is a service provider, and you want it to conform to an
existing industry-standard service description.

In other situations, you may need to create a new service description for
your application.

Next steps:

v Planning a service provider

v Planning a service requester

40 Web Services Guide

Related information

Chapter 14, “The CICS catalog manager example application,” on page 257
The CICS catalog example application is a working COBOL application that is
designed to illustrate best practice when connecting CICS applications to external
clients and servers.

Planning a service provider application
In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy new
and existing applications in a Web service provider in a straightforward way. You
will, in some situations, need to interpose a simple wrapper program between your
application program and CICS Web service support.

Figure 15 shows a typical application which is partitioned to ensure a separation
between communication logic and business logic.

 In many cases, you can deploy the business logic directly as a service provider
application. This is illustrated in Figure 16.

To use this simple model, the following conditions apply:

When you are using the CICS Web services assistant to generate the mapping
between SOAP messages and application data structures:

The data types used in the interface to the business logic must be
supported by the CICS Web services assistant. If this is not the case, you
must interpose a wrapper program between CICS Web service support and
your business logic.

 You will also need a wrapper program when you deploy an existing program
to provide a service that conforms to an existing Web service description: if
you process the Web service description using the assistant, the resulting
data structures are very unlikely to match the interface to your business
logic.

When you are not using the CICS Web services assistant:
Message handlers in your service provider pipeline must interact directly
with your business logic.

EXEC CICS
LINKCommunications

logic
Business

logicClient

CICS Transaction Server

Figure 15. Application partitioned into communications and business logic

Business
logic

CICS
Web service

support
Client

CICS Transaction Server

Figure 16. Simple deployment of CICS application as a Web service provider

Chapter 5. Getting started with Web services 41

Using a wrapper program

Use a wrapper program when the CICS Web services assistant cannot generate
code to interact directly with the business logic. For example, the interface to the
business logic might use a data structure which the CICS Web services assistant
cannot map directly into a SOAP message. In this situation, you can use a wrapper
program to provide any additional data manipulation that is required:

You will need to design a second data structure that the assistant can support, and
use this as the interface to your wrapper program. The wrapper program then has
two simple functions to perform:

v move data between the two data structures

v invoke the business logic using its existing interface

Error handling

If you are planning to use the CICS Web services assistant, you should also
consider how to handle rolling back changes when errors occur. When a SOAP
request message is received from a service requester, the SOAP message is
transformed by CICS just before it is passed to your application program. If an error
occurs during this transformation, CICS does not automatically roll back any work
that has been performed on the message. For example, if you plan to add some
additional processing on the SOAP message using handlers in the pipeline, you
need to decide if they should roll back any recoverable changes that they have
already performed.

On outbound SOAP messages, for example when your service provider application
program is sending a response message to a service requester, if CICS encounters
an error when generating the response SOAP message, all of the recoverable
changes made by the application program are automatically backed out. You should
consider whether adding synchronization points is appropriate for your application
program.

If you are planning to use Web service atomic transactions in your provider
application, and the Web service requester also supports atomic transactions, any
error that causes CICS to roll back a transaction would also cause the remote
requester to roll back its changes.

Planning a service requester application
In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy new
and existing applications in a Web service requester in a straightforward way. You
will, in almost every situation, need to interpose a simple wrapper program between
your application program and CICS Web service support.

CICS
Web service

support

Business
logic

EXEC CICS
LINKwrapper

programClient

CICS Transaction Server

Figure 17. Deployment of CICS application as a Web service provider using a wrapper
program

42 Web Services Guide

Figure 18 shows a typical application which is partitioned to ensure a separation
between communication logic and business logic. The application is ideally
structured for reuse of the business logic in a Web service requester.

 You cannot use the existing EXEC CICS LINK command to invoke CICS Web
services support in this situation:

v When you are using the CICS Web services assistant to generate the mapping
between SOAP messages and application data structures, you must use an EXEC
CICS INVOKE WEBSERVICE command, and pass the application's data structure to
CICS Web services support. Also, the data types used in the interface to the
business logic must be supported by the CICS Web services assistant.

However, if the target WEBSERVICE that your application program invokes is
provider mode, i.e. a value has been defined for the PROGRAM attribute, CICS
automatically optimizes the request using the EXEC CICS LINK command.

v When you are not using the CICS Web services assistant, you must construct
your own messages, and link to program DFHPIRT.

Either way, it follows that your business logic cannot invoke a Web service directly
unless you are prepared to change the program. For the Web services assistant,
this option is shown in Figure 19, but it is not advisable in either case.

Using a wrapper program

A better solution, which keeps the business logic almost unchanged, is to use a
wrapper program. The wrapper, in this case, has two purposes:

v It issues an EXEC CICS INVOKE WEBSERVICE command, or an EXEC CICS LINK
PROGRAM(DFHPIRT), on behalf of the business logic. The only change in the
business logic is the name of the program to which it links.

v It can, if necessary, provide any data manipulation that is required if your
application uses a data structure which the CICS Web services assistant cannot
map directly into a SOAP message.

For the case when the Web services assistant is used, this structure is illustrated in
Figure 20 on page 44.

EXEC CICS
LINK Communications

logic
Business

logic Server

CICS Transaction Server

Figure 18. Application partitioned into communications and business logic

EXEC CICS
INVOKE

WEBSERVICEBusiness
logic

CICS
Web service

support
Server

CICS Transaction Server

Figure 19. Simple deployment of CICS application as a Web service requester

Chapter 5. Getting started with Web services 43

Error handling

If you are planning to use the CICS Web services assistant, you should also
consider how to handle rolling back changes when errors occur. If your service
requester application receives a SOAP fault message from the service provider, you
need to decide how your application program should handle the fault message.
CICS does not automatically roll back any changes when a SOAP fault message is
received.

If you are planning to implement Web service atomic transactions in your requester
application program, the error handling is different. If the remote service provider
encounters an error and rolls back its changes, a SOAP fault message is returned
and the local transaction in CICS also rolls back. If local optimization is in effect, the
service requester and provider use the same transaction. If the provider encounters
an error, any changes made by the transaction in the requester are also rolled
back.

Migrating from the SOAP for CICS feature
If you use the SOAP for CICS feature, you must perform a number of tasks to
migrate applications that use the feature. The support for Web services provided in
CICS Transaction Server is substantially different from that provided in the feature.

The SOAP for CICS feature relies to a considerable extent upon user-written code,
and therefore it is not possible to set out a step-by-step migration task. However,
here are some of the things you will need to think about.

v Consider using the Web services assistant to construct and parse SOAP
messages. If you decide to do so, you are advised to discard your existing
message adapters, and design new wrapper programs to replace them, as it is
unlikely that you will be able to reuse significant amounts of code in your
adapters.

v If you use SOAP messages, but decide not to use the Web services assistant,
you may be able to reuse your existing code for constructing and parsing the
messages. However, you should consider whether to use the CICS-provided
SOAP message handlers, because they are designed to work with SOAP 1.1 and
SOAP 1.2 messages.

v Review your use of containers. The SOAP for CICS feature uses BTS containers,
whereas CICS Transaction Server uses channel containers. You will need to
review your programs and change any BTS-related commands required by the
feature. You will also need to review the name and usage of each container, as
most of these have changed.

v Consider how to migrate the function that was provided by your pipeline
programs. The pipeline in the SOAP for CICS feature has a fixed number of
user-written programs, each with a designated purpose. The function provided by

CICS
Web service

support

EXEC CICS
LINKBusiness

logic

EXEC CICS
INVOKE

WEBSERVICEwrapper
program Server

CICS Transaction Server

Figure 20. Deployment of CICS application as a Web service requester using a wrapper
program

44 Web Services Guide

some of these programs is provided in CICS Transaction Server by the
CICS-provided SOAP message handlers, so you may be able to dispense with
these programs altogether.

On the other hand, CICS Transaction Server lets you define as many programs
in your pipeline as you need. Therefore, you should consider whether the
function performed by your pipeline programs should be restructured to take
advantage of the new framework.

In any case, the way that pipeline programs communicate with CICS, and with
one another, has changed, so you will need to review these programs to see if
they can be reused in the new environment.

In the SOAP for CICS feature, you could have just one pipeline for all your
service provider applications, and one for all your service requesters. In CICS
Transaction Server, you can configure many different pipelines. Therefore, it is
possible that the logic you provided in your pipeline programs to distinguish one
application from another can be replaced by CICS resource definitions. For
example, in a service provider, code that distinguishes between applications
based upon a URI, can be replaced with a suitable set of URIMAP resources

Chapter 5. Getting started with Web services 45

46 Web Services Guide

Chapter 6. Configuring your CICS system for Web services

Before you can use Web services, your CICS system must be correctly configured.

1. Ensure that you have installed Language Environment® support for PL/I. For
more information, see the CICS Transaction Server for z/OS Installation Guide.

2. Activate z/OS Support for Unicode. You must enable the z/OS conversion
services and install a conversion image that specifies the data conversions that
you want CICS to perform between SOAP messages and an application
program. For more information, see z/OS Support for Unicode: Using
Conversion Services.

CICS resources for Web services

The following CICS resources support Web services in CICS:

PIPELINE
A PIPELINE resource definition is required in every case. It provides
information about the message handler programs that act on a service
request and on the response. Typically, a single PIPELINE definition defines
an infrastructure that can be used by many applications. The information
about the message handlers is supplied indirectly: the PIPELINE specifies
the name of a z/OS UNIX file which contains an XML description of the
handlers and their configuration.

 A PIPELINE resource that is created for a service requester cannot be used
for a service provider, and vice versa. The two sorts of PIPELINE are
distinguished by the contents of the pipeline configuration file that is
specified in the CONFIGFILE attribute: for a service provider, the top level
element is <provider_pipeline>; for a service requester it is
<requester_pipeline>.

WEBSERVICE
A WEBSERVICE resource definition is required only when the mapping
between application data structure and SOAP messages has been
generated using the CICS Web services assistant. It defines aspects of the
run time environment for a CICS application program deployed in a Web
services setting.

 Although CICS provides the usual resource definition mechanisms for
WEBSERVICE resources, they are typically created automatically from a
Web service binding file when the PIPELINE's pickup directory is scanned.
This happens when the PIPELINE resource is installed, or as a result of a
PERFORM PIPELINE SCAN command. The attributes applied to the
WEBSERVICE resource in this case come from a Web services binding file,
which is created by the Web services assistant; information in the binding
file comes from the Web service description, or is supplied as a parameter
of the Web services assistant.

A WEBSERVICE resource that is created for a service requester cannot be
used for a service provider, and vice versa. The two sorts of WEBSERVICE
are distinguished by the PROGRAM attribute: for a service provider, the
attribute must be specified; for a service requester it must be omitted.

URIMAP
A URIMAP definition is required only in a service provider, and contains

© Copyright IBM Corp. 2005, 2011 47

information that maps the URI of an inbound Web service request to the
other resources (such as the PIPELINE) that will service the request.

 Although CICS provides the usual resource definition mechanisms, for
service providers deployed using the CICS Web services assistant the
URIMAP resources are typically created automatically from a Web service
binding file when the PIPELINE's pickup directory is scanned. This happens
when the PIPELINE resource is installed, or as a result of a PERFORM
PIPELINE SCAN command. The attributes applied to the URIMAP resource
in this case come from a Web services binding file, which is created by the
Web services assistant; information in the binding file comes from the Web
service description, or is supplied as a parameter of the Web services
assistant.

TCPIPSERVICE
A TCPIPSERVICE definition is required in a service provider that uses the
HTTP transport, and contains information about the port on which inbound
requests are received.

The resources that are required to support a particular application program depends
upon the following:

v Whether the application program is a service provide or a service requester.

v Whether the application is deployed with the CICS Web services assistant.

Service
requester
or provider

CICS Web
services
assistant
used

PIPELINE
required

WEBSERVICE
required

URIMAP
required

TCPIPSERVICE
required

Provider Yes Yes Yes (but see note
1)

Yes (but see note
1)

See note 2

No Yes No Yes See note 2

Requester Yes Yes Yes No No

No Yes No No No

Notes:

1. When the CICS Web service assistant is used to deploy an application program, the WEBSERVICE
and URIMAP resources can be created automatically when the PIPELINE's pickup directory is
scanned. This happens when the PIPELINE resource is installed, or as a result of a PERFORM
PIPELINE SCAN command.

2. A TCPIPSERVICE resource is required when the HTTP transport is used. When the WebSphere®

MQ transport is used, a TCPIPSERVICE resource is not required.

Typically, when you deploy many Web services applications in a CICS system, you
will have more than one of each type of resource. In this case, you can share some
resources between applications.

 For each ... You can have ...

Pipeline configuration file v More than one PIPELINE resource that
refers to the file

PIPELINE resource v More than one URIMAP resource that
refers to the PIPELINE

v More than one WEBSERVICE resource
that refers to the PIPELINE

v More than one Web service binding file in
the PIPELINE's pickup directory

48 Web Services Guide

For each ... You can have ...

Web service binding file v Just one URIMAP resource that is
automatically generated from the binding
file. But you can define further URIMAPs
using RDO.

v Just one WEBSERVICE resource that is
automatically generated from the binding
file. But you can define further
WEBSERVICEs using RDO.

WEBSERVICE v More than one URIMAP resource. If the
WEBSERVICE resource is automatically
generated from the binding file, there is
just one corresponding URIMAP resource.
But you can define further URIMAP
resources using RDO.

URIMAP v Just one TCPIPSERVICE when it is
explicitly named in the URIMAP resource.

TCPIPSERVICE v Many URIMAP resources.

Configuring CICS to use the WebSphere MQ transport
To use the WebSphere MQ (WMQ) transport with Web services in CICS, you must
configure your CICS region accordingly.

1. Include the following libraries in the STEPLIB concatenation. Note that they
must be included after the CICS libraries to ensure that the correct Adapter,
trigger monitor and bridge code is used.

 thlqual.SCSQANLx

 thlqual.SCSQAUTH

where:

 thlqual is the high-level qualifier for the WMQ libraries.

 x is the language letter for national language.

2. Include the following libraries in the DFHRPL concatenation. Note that they must
be included after the CICS libraries to ensure that the correct Adapter, trigger
monitor and bridge code is used.

 thlqual.SCSQLOAD

 thlqual.SCSQANLx

 thlqual.SCSQCICS

 thlqual.SCSQAUTH

 thlqual is the high-level qualifier for the WMQ libraries.

 x is the language letter for national language.

The SCSQANLx and SCSQCICS libraries are required only if you are running
WebSphere MQ V531 and wish to use the MQ Bridge function, or if you wish to
run WebSphere MQ supplied samples. Otherwise they can be removed from the
CICS procedure. When using the bridge function with WebSphere MQ V531,
the CICS shipped bridge transfers control to the WebSphere MQ V531 bridge
contained in the SCSQCICS library

3. Specify the following CICS system initialization parameters.

Chapter 6. Configuring your CICS system for Web services 49

INITPARM=(DFHMQPRM='SN=queuemanager,IQ=initiation_queue')
MQCONN=YES

where:

 queuemanager is the subsystem name.

 initiation_queue is the name of the default initiation queue.

4. Ensure that the coded character set identifiers (CCSIDs) used by your queue
manager and by CICS, and the UTF-8 and UTF-16 code pages are configured
to z/OS conversion services. The CICS code page is specified in the
LOCALCCSID system initialization parameter.

5. Update your CSD as appropriate.

v If you want to share a CICS TS 3.2 CSD with earlier CICS releases, ensure
that the groups CSQCAT1 and CSQCKB are not installed for CICS TS 3.2.
Delete the CKQQ TDQUEUE definition from group CSQCAT1, and then
install the group as part of a group list for earlier CICS releases, after
installing DFHLIST. This overrides group DFHMQ and correctly installs the
required definitions.

v If you do not need to share your CSD with earlier releases of CICS, remove
the existing groups CSQCAT1 and CSQCKB from your CSD.

You can find more detailed information in the WebSphere MQ z/OS System Setup
Guide.

The WebSphere MQ transport
CICS can receive and send SOAP messages to WebSphere MQ (WMQ) using the
WMQ transport, both in the role of service provider and service requester.

As a service provider, CICS uses WMQ triggering to process SOAP messages
from an application queue. Triggering works by using an initiation queue and local
queues. A local (application) queue definition includes:

v The criteria for when a trigger message should be generated. For example, when
the first message arrives on the local queue, or for every message that arrives
on the local queue. For CICS SOAP processing, you should specify that
triggering occurs when the first message arrives on the local queue.

The local queue definition can also specify that trigger data should be passed to
the target application, and in the case of CICS SOAP processing (transaction
CPIL), this specifies the default target URL to be used if this is not passed with
the inbound message.

v The process name that identifies the process definition. The process definition
describes how the message should be processed. In the case of CICS SOAP
processing, specify the CPIL transaction.

v The name of the initiation queue that the trigger message should be sent to.

When a message arrives on the local queue, the Queue Manager generates and
sends a trigger message to the specified initiation queue. The trigger message
includes the information from the process definition. The trigger monitor retrieves
the trigger message from the initiation queue and schedules the CPIL transaction to
start processing the messages on the local queue. For more information about
triggering, see the CICS integration with WebSphere MQ manual.

50 Web Services Guide

You can configure CICS, so that when a message arrives on a local queue, the
trigger monitor (provided by WMQ) schedules the CPIL transaction to process the
messages on the local queue and drive the CICS SOAP pipeline to process the
SOAP messages on the queue.

When CICS constructs a response to a SOAP message that is received from
WebSphere MQ, the correlation ID field is populated with the message ID of the
input message, unless the report option MQRO_PASS_CORREL_ID has been set.
If this report option has been set, the correlation id is propagated from the input
message to the response.

As a service requester, on outbound requests you can specify that the responses
for the target Web service should be returned on a particular reply queue.

In both cases, CICS and WMQ require configuration to define the necessary
resources and queues.

Defining local queues in a service provider
To use the WebSphere MQ transport in a service provider, you must define one or
more local queues that store request messages until they are processed, and one
trigger process that specifies the CICS transaction that will process the request
messages.

1. Define an initiation queue. Use the following command:

DEFINE
QLOCAL('initiation_queue')
DESCR('description')

where initiation_queue is the same as the value specified in IQ= in DFHMQPRM
in the INITPARM system initialization parameter.

2. For each local request queue, define a QLOCAL object. Use the following
command:

DEFINE
QLOCAL('queuename')
DESCR('description')
PROCESS(processname)
INITQ('initiation_queue')
TRIGGER
TRIGTYPE(FIRST)
TRIGDATA('default_target_service')
BOTHRESH(nnn)
BOQNAME('requeuename')

where:

 queuename is the local queue name.

 processname is the name of the process instance that identifies the
application started by the queue manager when a trigger event occurs.
Specify the same name on each QLOCAL object.

 initiation_queue is the name of the initiation queue to be used (e.g. as
specified in IQ= in the DFHMQPRM INITPARM system initialization
parameters for Websphere MQ).

 default_target_service is the default target service to be used if a service
is not specified on the request . The target service is of the form '/string' and

Chapter 6. Configuring your CICS system for Web services 51

is used to match the path of a URIMAP definition. for example
'/SOAP/test/test1'. Note that the first character must be '/' .

 nnn is the number of retries that will be attempted.

 requeuename is the name of the queue to which failed messages will be sent.

3. Define a PROCESS object that specifies the trigger process. Use the following
command:

DEFINE
PROCESS(processname)
APPLTYPE(CICS)
APPLICID(CPIL)

where:

 processname is the name of the process, and must be the same as the name
that is used when defining the request queues.

Defining local queues in a service requester
When you use the WebSphere MQ transport for outbound requests in a service
requester, you can specify in the URI for the target Web service that your
responses should be returned on a predefined reply queue. If you do so, you must
define each reply queue with a QLOCAL object.

If the URI associated with a request does not specify a reply queue, CICS will use
a dynamic queue for the reply.

Optional: To define each QLOCAL object that specifies a predefined reply queue,
use the following command.

DEFINE
QLOCAL('reply_queue')
DESCR('description')
BOTHRESH(nnn)

where:

 reply_queue is the local queue name.

 nnn is the number of retries that will be attempted.

The URI for the WMQ transport
When communication between the service requester and service provider uses
WMQ, the URI of the target is in a form that identifies the target as a queue and
includes information to specify how the request and response should be handled by
WMQ.

52 Web Services Guide

Syntax

��

jms:/queue?

�

 &

destination=queuename

@queuemanagername

persistence=message_persistence

priority=message_priority

replyDestination=reply_queue

timeout=timeout

timeToLive=expiry_time

targetService=string

��

CICS uses the following options; other Web service providers might use further
options that are not described here. The entire URI is passed to the service
provider, but CICS ignores any options that it does not support and that are coded
in the URI. CICS is not sensitive to the case of the option names. However, some
other implementations that support this style of URI are case-sensitive.

destination=queuename [@queuemanagername]

 queuename is the name of the input queue in the target queue manager

 queuemanagername is the name of the target queue manager

persistence=message_persistence
Specify one of the following:

0 Persistence is defined by the default queue persistence.

1 Messages are not persistent.

2 Messages are persistent.

If the option is not specified or is specified incorrectly, the default queue
persistence is used.

priority=message_priority
Specifies the message priority as an integer in the range 0 to 99999999.

replyDestination=reply_queue

Specifies the queue to be used for the response message. If this option is not
specified, CICS will use a dynamic queue for the response message. You must
define the reply queue in a QLOCAL object before using this option.

timeout=timeout
The timeout in milliseconds for which the service requester will wait for a
response. If a value of zero is specified, or if this option is omitted, the request
will not time out.

timeToLive=expiry-time
Specifies the expiry time for the request in milliseconds. If the option is not
specified or is specified incorrectly, the request will not expire.

targetService=string
Identifies the target service. If CICS is the service provider, then the target
service should be of the form '/string', as CICS will use this as the path when
attempting to match with URIMAP. If not specified, the value specified in
TRIGDATA on the input queue at the service provider is used.

This example shows a URI for the WMQ transport:

Chapter 6. Configuring your CICS system for Web services 53

jms:/queue?destination=queue01@cics007&timeToLive=10&replyDestination=rqueue05&targetService=/myservice

Configuring CICS to support persistent messages
CICS provides support for sending persistent messages using the WMQ transport
protocol to a Web service provider application that is deployed in a CICS region.

CICS uses Business Transaction Services (BTS) to ensure that persistent
messages are recovered in the event of a CICS system failure. For this to work
correctly, follows these steps:

1. Use IDCAMS to define the local request queue and repository file to MVS. You
must specify a suitable value for STRINGS for the file definition. The default
value of 1 is unlikely to be sufficient, and you are recommended to use 10
instead.

2. Define the local request queue and repository file to CICS. Details of how to
define the local request queue to CICS are described in “Defining local queues
in a service provider” on page 51. You must specify a suitable value for
STRINGS in the file definition. The default value of 1 is unlikely to be sufficient,
and it is recommended that you use 10 instead.

3. Define a PROCESSTYPE resource with the name DFHMQSOA, using the
repository file name as the value for the FILE option.

4. Ensure that during the processing of a persistent message, a program issues an
EXEC CICS SYNCPOINT command before the first implicit syncpoint is requested;
for example, using an SPI command such as EXEC CICS CREATE TDQUEUE
implicitly takes a syncpoint. Issuing an EXEC CICS SYNCPOINT command confirms
that the persistent message has been processed successfully. If a program
does not explicitly request a syncpoint before trying to implicitly take a
syncpoint, CICS issues an ASP7 abend.

For one way request messages, if the Web service abends or backs out, sufficient
information is retained to allow a transaction or program to retry the failing request,
or to report the failure appropriately. You need to provide this recovery transaction
or program. See “Persistent message processing” for details.

Persistent message processing
When a Web service request is received in a WMQ persistent message, CICS
creates a unique BTS process with the process type DFHMQSOA. Data relating to
the inbound request is captured in BTS data-containers that are associated with the
process.

The process is then scheduled to run asynchronously. If the Web service completes
successfully and commits, CICS deletes the BTS process. This includes the case
when a SOAP fault is generated and returned to the Web service requester.

Error processing

If an error occurs when creating the required BTS process, the Web service
transaction abends, and the inbound Web service request is not processed. If BTS
is not usable, message DFHPI0117 is issued, and CICS continues without BTS,
using the existing channel-based container mechanism.

If a CICS failure occurs before the Web service starts or completes processing,
BTS recovery ensures that the process is rescheduled when CICS is restarted.

54 Web Services Guide

If the Web service abends and backs out, the BTS process is marked complete with
an ABENDED status. For request messages that require a response, a SOAP fault
is returned to the Web service requester. The BTS process is cancelled, and CICS
retains no information about the failed request. CICS issues message DFHBA0104
on transient data queue CSBA, and message DFHPI0117 on transient data queue
CPIO.

For one way messages, there is no way to return information about the failure to
the requester so the BTS process is retained in a COMPLETE ABENDED state.
CICS issues message DFHBA0104 on transient data queue CSBA, and DFHPI0116
on transient data queue CPIO.

You can use the CBAM transaction to display any COMPLETE ABENDED
processes, or you can supply a recovery transaction to check for COMPLETE
ABENDED processes of the DFHMQSOA and take appropriate action.

For example, your recovery transaction could:

1. Reset the BTS process using the RESET ACQPROCESS command.

2. Issue the RUN ASYNC command to retry the failing Web service. It could keep a
retry count in another data-container on the process, to avoid repeated failure.

3. Use information in the associated data-containers to report on the problem:

 The DFHMQORIGINALMSG data-container contains the message received
from WMQ, which might contain RFH2 headers.

 The DFHMQMSG data-container contains the WMQ message with any
RFH2 headers removed.

 The DFHMQDLQ data-container contains the name of the dead letter queue
associated with the original message.

 The DFHMQCONT data-container contains the WMQ MQMD control block
relating to the MQ GET for the original message.

Chapter 6. Configuring your CICS system for Web services 55

56 Web Services Guide

Chapter 7. Creating the Web services infrastructure

To deploy a Web service to CICS, you must create the necessary transport
infrastructure and define one or more pipelines that will process your Web services
requests. Typically, one pipeline can process requests for many different Web
services, and, when you deploy a new Web service in your CICS system, you can
choose to use an existing pipeline.

Creating the CICS infrastructure for a service provider
To create the CICS infrastructure for a service provider, you need to create a
pipeline configuration file and define and install a number of CICS resources.

Perform the following steps to create the infrastructure for your service provider:

1. Define the transport infrastructure.

v If you are using the WMQ transport, you must define one or more local
queues that store input messages until they are processed, and one trigger
process that specifies the CICS transaction that will process the input
messages. See “Configuring CICS to use the WebSphere MQ transport” on
page 49 for details.

v If you are using the HTTP transport, you must define a TCPIPSERVICE
resource that defines the port on which inbound requests are received. See
“CICS resources for Web services” on page 47 for details.

Repeat this step for each different transport configuration you need.

2. Create a pipeline configuration file. This is an XML file that is stored in the z/OS
UNIX System Services file system. It defines what message handler programs
are used to process inbound Web service requests, and the responses. CICS
provides a standard set of message handlers that you can use to enable
different options in your pipeline. A basic pipeline sample
basicsoap11provider.xml, is provided in library /usr/lpp/cicsts/samples/
pipelines, which you can use as a basis for adding in additional message
handlers as appropriate.

a. Define the message handlers that you want to include in the pipeline
configuration file. If you create any custom message handler programs, to
optimize performance it is recommended that you make them threadsafe.
For more information about the options that you can enable in the pipeline,
see “The pipeline configuration file” on page 59.

b. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

c. Change the pipeline configuration file permissions to allow the CICS region
to read the file.

Repeat this step for each different pipeline configuration you need.

3. Define and install a PIPELINE resource. The PIPELINE resource defines the
location of the pipeline configuration file. It also specifies a pickup directory,
which is the z/OS UNIX directory that will contain the Web service binding files
and optionally the WSDL.

Repeat this step for each pipeline configuration you need.

4. Unless you use autoinstalled PROGRAM definitions, you need to supply a
PROGRAM resource definition for each program that runs in the pipeline. These
include the target application program, which normally run under transaction
CPIH. The transaction is defined with the attribute TASKDATALOC(ANY). Therefore,
when you link-edit the program, you must specify the AMODE(31) option.

© Copyright IBM Corp. 2005, 2011 57

Your CICS system now contains the infrastructure needed for each service provider:

v One or more transport infrastructures

v One or more pipelines

You can extend the configuration when you need to do so, to either define
additional transport infrastructure, or to create additional pipelines.

Creating the CICS infrastructure for a service requester
To create the CICS infrastructure for a service requester, you need to create a
pipeline configuration file and define and install a number of CICS resources.

Perform the following steps to create the CICS infrastructure for your service
requester:

1. Create a pipeline configuration file. This is an XML file that is stored in z/OS
UNIX System Services file system. It defines what message handler programs
and header processing programs are used to process outbound Web service
requests, and the responses.

CICS provides a standard set of message handlers and header processing
programs that you can use to enable different options in your pipeline, for
example sending SOAP 1.1 or SOAP 1.2 messages. A basic pipeline sample
basicsoap11requester.xml is provided in library /usr/lpp/cicsts/samples/
pipelines, which you can use as a basis for adding in additional message
handlers as appropriate.

a. Review the CICS-supplied message handlers to see if they meet your
processing requirements. CICS provides the following handlers and header
programs:

v SOAP message handlers, to process SOAP 1.1 or 1.2 messages. You
can only support one level of SOAP in a service requester pipeline.

v MTOM handler, to process MIME Multipart/Related messages that
conform to the MTOM/XOP specifications.

v Security handler, to process secure Web service messages.

v WS-AT header processing program, to process atomic transaction
messages.

b. Define the message handlers that you want to include in the pipeline
configuration file. For more information about the options that you can
enable in the pipeline, see “The pipeline configuration file” on page 59.

If you want to perform your own processing in the pipeline, you need to
create a message handler or header processing program. See “Message
handlers” on page 92 for details. If you decide to create custom message
handler programs, to optimize performance it is recommended that you
make them threadsafe.

c. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

d. Change the pipeline configuration file permissions to allow the CICS region
to read the file.

2. Define and install a PIPELINE resource. The PIPELINE resource defines the
location of the pipeline configuration file. It also specifies a pickup directory,
which is the z/OS UNIX directory that will contain the Web service binding files
and optionally the WSDL. For a requester mode pipeline, you can also specify a
timeout in seconds, which determines how long CICS waits for a response from
Web service providers. Repeat this step for each different pipeline configuration

58 Web Services Guide

you need. When you install a PIPELINE resource, CICS reads any files in the
specified pickup directory, and creates the WEBSERVICE resources
dynamically.

3. Unless you use autoinstall PROGRAM definitions, you need to supply a
PROGRAM resource definition for each program that runs in the pipeline. These
include the service requester application program, which normally run under
transaction CPIH. The transaction is defined with the attribute
TASKDATALOC(ANY). Therefore, when you link-edit the program, you must specify
the AMODE(31) option.

Your CICS system now contains the infrastructure needed for each service
requester.

You can extend the configuration when you need to do so, to create additional
pipelines.

The pipeline configuration file
The configuration of a pipeline used to handle a Web service request is specified in
an XML document, known as a pipeline configuration file.

The pipeline configuration file is stored in the z/OS UNIX System Services file
system, and its name is specified in the CONFIGFILE attribute of a PIPELINE
resource definition. Use a suitable XML editor or text editor to work with your
pipeline configuration files. When you work with configuration files, ensure that the
character set encoding is US EBCDIC (Code page 037).

When CICS processes a Web service request, it uses a pipeline of one or more
message handlers to handle the request. A pipeline is configured to provide aspects
of the execution environment that apply to different categories of applications, such
as support for Web Service Security, and Web Service transactions. Typically, a
CICS region that has a large number of service provider or service requester
applications will need several different pipeline configurations. However, where
different applications have similar requirements, they can share the same pipeline
configuration.

There are two kinds of pipeline configuration: one describes the configuration of a
service provider pipeline; the other describes a service requester pipeline. Each is
defined by its own schema, and each has a different root element.

 Pipeline Schema Root element

Service provider Provider.xsd <provider_pipeline>

Service requester Requester.xsd <requester_pipeline>

Although many of the XML elements used are common to both kinds of pipeline
configuration, others are used only in one or the other, so you cannot use the same
configuration file for both a provider and requester.

Restriction: Namespace-qualified element names are not supported in the pipeline
configuration file.

The immediate sub-elements of the <provider_pipeline> and
<requester_pipeline> elements are:

Chapter 7. Creating the Web services infrastructure 59

v A <service> element, which specifies the message handlers that are invoked for
every request. This element is mandatory when used within the
<provider_pipeline> element, and optional within the <requester_pipeline>
element.

v An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport.

v For the <provider_pipeline> only, an <apphandler> element, which is used in
some cases to specify the target application (or wrapper program) that provides
the service.

v An optional <service_parameter_list> element, which contains the parameters
that are available to the message handlers in the pipeline.

Certain elements can have attributes associated with them. Each attribute value
must have quotes around it to produce a valid XML document.

Associated with the pipeline configuration file is a PIPELINE resource. The
attributes include CONFIGFILE, which specifies the name of the pipeline
configuration file in z/OS UNIX. When you install a PIPELINE definition, CICS reads
the information that it needs in order to configure the pipeline from the file.

CICS supplies sample configuration files that you can use as a basis for developing
your own. They are provided in library /usr/lpp/cicts/samples/pipelines.

File Description

basicsoap11provider.xml
A pipeline definition for a service provider that uses the CICS-provided
SOAP 1.1 handler, for use when the application has been deployed using
the CICS Web services assistant.

basicsoap11requester.xml
A pipeline definition for a service requester that uses the CICS-provided
SOAP 1.1 handler, for use when the application has been deployed using
the CICS Web services assistant.

wsatprovider.xml
A pipeline definition that adds configuration information for Web Services
transactions to basicsoap11provider.xml.

wsatrequester.xml
A pipeline definition that adds configuration information for Web Services
transactions to basicsoap11requester.xml.

Example pipeline configuration file

This is a simple example of a configuration file for a service provider pipeline:
<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline/provider.xsd">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

60 Web Services Guide

The pipeline contains just one message handler, the CICS-supplied SOAP 1.1
message handler. The handler links to program DFHPITP.

v The <provider_pipeline> element is the root element of the pipeline
configuration file for a service provider pipeline.

v The <service> element specifies the message handlers that are invoked for
every request. In the example, there is just one message handler.

v The <terminal_handler> element contains the definition of the terminal message
handler of the pipeline.

v The <cics_soap_1.1_handler> indicates that the terminal handler of the pipeline
is the CICS-supplied handler program for SOAP 1.1 messages.

v The <apphandler> element specifies the name of the program to which the
terminal handler of the pipeline will link by default. In this case, the program is
DFHPITP, which is the CICS-supplied target program for applications deployed
with the CICS Web services assistant. For programs that are not deployed with
the Web services assistant, this is the name of the target application program.

Transport-related handlers
In the configuration file for each pipeline, you can specify more than one set of
message handlers. At run time, CICS selects the message handlers that are called,
based upon the resources that are being used for the message transport.

In a service provider, and in a service requester, you can specify that some
message handlers should be called only when a particular transport (HTTP or
WebSphere MQ) is in use. For example, consider a Web service that you make
available to your employees. Those who work at a company location access the
service using the WebSphere MQ transport on a secure internal network; however,
employees working at a business partner location access the service using the
HTTP transport over the internet. In this situation, you might want to use message
handlers to encrypt parts of the message when the HTTP transport is used,
because of the sensitive nature of the information.

In a service provider, inbound messages are associated with a named resource (a
TCPIPSERVICE for the HTTP transport, a QUEUE for the MQ transport). You can
specify that some message handlers should be called only when a particular
resource is used for an inbound request.

To make this possible, the message handlers are specified in two distinct parts of
the pipeline configuration file:

The service section
Specifies the message handlers that are called each time the pipeline
executes.

The transport section
Specifies the message handlers that might or might not be called,
depending upon the transport resources that are in use.

Remember: At run time, a message handler can choose to curtail the execution of
the pipeline. Therefore, even if CICS decides that a particular
message handler should be called based on what is in the pipeline
configuration file, the decision might be overruled by an earlier
message handler.

The message handlers that are specified within the transport section (the
transport-related handlers) are organized into several lists. At run time, CICS

Chapter 7. Creating the Web services infrastructure 61

selects the handlers in just one of these lists for execution, based on which
transport resources are in use. If more than one list matches the transport
resources that are being used, CICS uses the list that is most selective. The lists
that are used in both service provider and service requester pipelines are:

<default_transport_handler_list>
This is the least selective list of transport-related handlers; the handlers
specified in this list are called when none of the following lists matches the
transport resources that are being used.

<default_http_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the
HTTP transport is in use.

 In a service provider pipeline, the handlers in this list are called when the
HTTP transport is in use, and no <named_transport_entry> names the
TCPIPSERVICE for the TCP/IP connection.

<default_mq_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the
WebSphere MQ transport is in use.

 In a service provider pipeline, the handlers in this list are called when the
WebSphere MQ transport is in use, and no <named_transport_entry>
names the message queue on which inbound messages are received.

The following list of message handlers is used only in the configuration file for a
service provider pipeline:

<named_transport_entry>
As well as a list of handlers, the <named_transport_entry> specifies the
name of a resource, and the transport type.

v For the HTTP transport, the handlers in this list are called when the
resource name matches the name of the TCPIPSERVICE for the inbound
TCP/IP connection.

v For the WebSphere MQ transport, the handlers in this list are called
when the resource name matches the name of the message queue that
receives the inbound message.

Example

This is an example of a <transport> element from the pipeline configuration file for
a service provider pipeline:
<transport>

 <!-- HANDLER1 and HANDLER2 are the default transport handlers -->
 <default_transport_handler_list>
 <handler><program>HANDLER1</program><handler_parameter_list/></handler>
 <handler><program>HANDLER2</program><handler_parameter_list/></handler>
 </default_transport_handler_list>

 <!-- HANDLER3 overrides defaults for MQ transport -->
 <default_mq_transport_handler_list>
 <handler><program>HANDLER3</program><handler_parameter_list/></handler>
 </default_mq_transport_handler_list>

 <!-- HANDLER4 overrides defaults for http transport with TCPIPSERVICE(WS00) -->
 <named_transport_entry type="http">
 <name>WS00</name>
 <transport_handler_list>
 <handler><program>HANDLER4</program><handler_parameter_list/></handler>

62 Web Services Guide

</transport_handler_list>
 </named_transport_entry>

</transport>

The effect of this definition is this:

v The <default_mq_transport_handler_list> ensures that messages that use the
MQ transport are processed by handler HANDLER3.

v The <named_transport_entry> ensures that messages that use the TCP/IP
connection associated with TCPIPSERVICE(WS00) are processed by handler
HANDLER4.

v The <default_transport_handler_list> ensures that all remaining messages,
that is, those that use the HTTP transport, but not TCPISERVICE(WS00), are
processed by handlers HANDLER1 and HANDLER2.

Remember: Any handlers specified in the service section of the pipeline definition
will be called in addition to those specified in the transport section.

The pipeline definition for a service provider
The message handlers are defined in an XML document, which is stored in z/OS
UNIX. The name of the file that contains the document is specified in the CFGFILE
attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the <provider_pipeline>
element. The high-level structure of the document is shown in Figure 21 on page
64.

Chapter 7. Creating the Web services infrastructure 63

The following elements are used only in the pipeline configuration for a service
provider:

 <named_transport_entry>

 <terminal_handler>

Other elements are common to a service provider and a service requester.

The pipeline definition for a service requester
The message handlers are defined in an XML document, which is stored in z/OS
UNIX. The name of the file that contains the document is specified in the CFGFILE
attribute of a PIPELINE definition.

provider_
pipeline

transport

default_mq_
transport_

handler_list

named_
transport_

entry

transport_
handler_

list

name

default_
transport_

handler_list

default_http_
transport_

handler_list

service

terminal_
handler

service_
parameter_

list

cics_
soap_1.2_
handler

cics_
soap_1.1_
handler

handler
cics_

soap_1.2_
handler

cics_
soap_1.1_
handler

handler

service_
handler_

list

apphandler

handler handlerhandler

wsse_
handler

handler

cics_mtom_
handler

dfhmtom_
configuration

Figure 21. Structure of the pipeline definition for a service provider.

Note: In order to simplify the figure, child elements of the <handler>,
<cics_soap_1.1_handler>, and <cics_soap_1.2_handler> elements are not shown.

64 Web Services Guide

The root element of the pipeline configuration document is the
<requester_pipeline> element. The high-level structure of the document is shown
in Figure 22.

Some elements used in the pipeline configuration for a service provider are also
used in a service requester.

requester_
pipeline

service_
parameter_

list

cics_mtom_
handler

dfhmtom_
configuration

service

service_
handler_

list

cics_
soap_1.2_
handler

cics_
soap_1.1_
handler

handler
wsse_

handler

transport

default_
target

handler handlerhandler

default_mq_
transport_

handler_list

default_
transport_

handler_list

default_http_
transport_

handler_list

Figure 22. Structure of the pipeline definition for a service requester.

Note: In order to simplify the figure, child elements of the <handler>,
<cics_soap_1.1_handler>, and <cics_soap_1.2_handler> elements are not shown.

Chapter 7. Creating the Web services infrastructure 65

Elements used only in service providers
Some of the XML elements used in a pipeline configuration file apply only to service
provider pipelines.

The <named_transport_entry> element
Contains a list of handlers that are to be invoked when a named transport resource
is being used by a service provider.

v For the MQ transport, the named resource is the local input queue on which the
request is received.

v For the HTTP transport, the resource is the TCPIPSERVICE that defines the port
on which the request was received.

Used in:
v Service provider

Contained by:
 <transport>

Attributes:

 Name Description

type The transport mechanism with which the named resource is
associated:

wmq The named resource is a queue

http The named resource is a TCPIPSERVICE

Contains:
1. A <name> element, containing the name of the resource

2. An optional <transport_handler_list> element. Each
<transport_handler_list> contains one or more <handler> elements.

If you do not code a <transport_handler_list> element, then the only message
handlers that are invoked when the named transport is used are those that are
specified in the <service> element.

Example
<named_transport_entry type="http">
 <name>PORT80</name>
 <transport_handler_list>
 <handler><program>HANDLER1</program><handler_parameter_list/></handler>
 <handler><program>HANDLER2</program><handler_parameter_list/></handler>
 </transport_handler_list>
</named_transport_entry>

In this example, the message handlers specified (HANDLER1 and HANDLER2) are
invoked for messages received on the TCPIPSERVICE with the name PORT80.

The <provider_pipeline> element
The root element of the XML document that describes the configuration of the CICS
pipeline for a Web service provider.

Used in:
v Service provider

66 Web Services Guide

Contains:
1. Optional <cics_mtom_handler> element

2. Optional <transport> element

3. <service> element

4. Optional <apphandler> element, that specifies the name of the program that the
terminal handler of the pipeline will link to by default.

Use the <apphandler> when the terminal handler is one of the CICS-supplied
SOAP message handlers, that is when the <terminal_handler> element
contains a <cics_soap_1.1_handler> element or a <cics_soap_1.2_handler>
element.

Message handlers can specify a different program at run time, so the name
coded here is not always the program that is linked to. If you do not code an
<apphandler> element, one of the message handlers must use the
DFHWS-APPHANDLER container to specify the name of the program at run
time.

Important: When you use the CICS Web services assistant to deploy your
service provider, the <apphandler> element (or the
DFHWS-APPHANDLER container) must specify DFHPITP, and not
the name of your target application or wrapper program. In this
case, you specify the name of your program in the PGMNAME
parameter when you run DFHWS2LS or DFHLS2WS.

5. Optional <service_parameter_list> element, containing XML elements that are
made available to all the message handlers in the pipeline in container
DFH-SERVICEPLIST.

Example
<provider_pipeline>
 <service>
 ...
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <terminal_handler> element
Contains the definition of the terminal message handler of the service provider
pipeline.

Used in:
v Service provider

Contained by:
v <service> element

Contains:

One of the following elements:

 <handler>

 <cics_soap_1.1_handler>

 <cics_soap_1.2_handler>

However, you should not define <cics_soap_1.1_handler> and
<cics_soap_1.2_handler> elements in the same pipeline. If you expect your pipeline

Chapter 7. Creating the Web services infrastructure 67

to process both SOAP 1.1 and SOAP 1.2 messages, you should use the
CICS-supplied SOAP 1.2 message handler.

Remember: In a service provider, you can specify these handlers in the
<service_handler_list> element as well as in the
<terminal_handler> element.

Example
<terminal_handler>
 <cics_soap_1.1_handler>
 ...
 </cics_soap_1.1_handler>
<service_handler_list>

The <transport_handler_list> element
Contains a list of message handlers that are invoked when a named resource is
used.

v For the MQ transport, the named resource is the name of the local input queue.

v For the HTTP transport, the resource is the TCPIPSERVICE that defines the port
on which the request was received.

Used in:
v Service provider

Contained by:
v <named_transport_entry> element

Contains:
v One or more <handler> elements.

Example
<transport_handler_list>
 <handler>
 ...
 </handler>
 <handler>
 ...
 </handler>
<transport_handler_list>

Elements used in service requesters
Some of the XML elements used in a pipeline configuration file apply only to service
requester pipelines.

The <requester_pipeline> element
The root element of the XML document that describes the configuration of a
pipeline in a service requester.

Used in:
v Service requester

Contains:
1. Optional <service> element

2. Optional <transport> element

3. Optional <cics_mtom_handler> element

68 Web Services Guide

4. Optional <service_parameter_list> element, containing XML elements that are
made available to the message handlers in container DFH-SERVICEPLIST.

Example
<requester_pipeline>
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler/>
 </service_handler_list>
 </service>
</requester_pipeline>

Elements used in service provider and requesters
Some of the XML elements used in a pipeline configuration file apply to both
service provider and service requester pipelines.

The <cics_soap_1.1_handler> element
Defines the attributes of the CICS-supplied handler program for SOAP 1.1
messages.

Used in:
v Service requester

v Service provider

Contained by:
 <service_handler_list> element

 <terminal_handler> element

Contains:

Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A <program_name> element, containing the name of a header processing
program

2. A <namespace> element, which is used with the following <localname> element to
determine which header blocks in a SOAP message should be processed by
the header processing program. The <namespace> element contains the URI
(Universal Resource Identifier) of the header block's namespace.

3. A <localname> element, which is used with the preceding <namespace> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <localname> contains the element name of
the header block.

For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

v The namespace name is http://mynamespace

v The element name is myheaderblock

To make a header program match this header block, code the <namespace> and
<localname> elements like this:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:

Chapter 7. Creating the Web services infrastructure 69

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message
can match more than one <headerprogram> element. For example, this header
block
<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:
<headerprogram>
 <program_name>HDRPROG1</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG2</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myhead*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG3</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in the
<headerprogram> element in which the element name of the header block is
most precisely stated. In the example, that is HDRPROG3.

When the SOAP message contains more than one header, the header
processing program is invoked once for each matching header, but the
sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname>, but that specify different header programs, only
one of the header programs will be called to process the header. The header
will be passed in the DFHHEADER container to the selected program. The
other header programs will not be called unless they are defined
with<mandatory>true</mandatory> in which case they will be called without
having the header passed in the DFHHEADER container.

4. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and service
response processing in a service requester pipeline, the header processing
program is to be invoked at least once, even if none of the headers in the
SOAP messages matches the <namespace> and <localname> elements:

v If none of the headers matches, the header processing program is
invoked once.

v If any of the headers match, the header processing program is invoked
once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the SOAP
message that CICS creates has no headers initially. If you want to add

70 Web Services Guide

headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</mandatory>
or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:

v If none of the headers matches, the header processing program is not
invoked.

v If any of the headers match, the header processing program is invoked
once for each matching header.

Example
<cics_soap_1.1_handler>
 <headerprogram>
 <program_name> ... </program_name>
 <namespace>...</namespace>
 <localname>...</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.1_handler>

The <cics_soap_1.2_handler> element
Defines the attributes of the CICS-supplied SOAP 1.2 message handler program.

Used in:
v Service requester

v Service provider

Contained by:
 <service_handler_list> element

 <terminal_handler> element

Contains:

Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A <program_name> element, containing the name of a header processing
program

2. A <namespace> element, which is used with the following <localname> element to
determine which header blocks in a SOAP message should be processed by
the header processing program. The <namespace> element contains the URI
(Universal Resource Identifier) of the header block's namespace.

3. A <localname> element, which is used with the preceding <namespace> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <localname> contains the element name of
the header block.

For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

v The namespace name is http://mynamespace

v The element name is myheaderblock

To make a header program match this header block, code the <namespace> and
<localname> elements like this:

Chapter 7. Creating the Web services infrastructure 71

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message
can match more than one <headerprogram> element. For example, this header
block
<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:
<headerprogram>
 <program_name>HDRPROG1</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG2</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myhead*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG3</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in the
<headerprogram> element in which the element name of the header block is
most precisely stated. In the example, that is HDRPROG3.

When the SOAP message contains more than one header, the header
processing program is invoked once for each matching header, but the
sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname>, but that specify different header programs, only
one of the header programs will be called to process the header. The header
will be passed in the DFHHEADER container to the selected program. The
other header programs will not be called unless they are defined
with<mandatory>true</mandatory> in which case they will be called without
having the header passed in the DFHHEADER container.

4. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and service
response processing in a service requester pipeline, the header processing
program is to be invoked at least once, even if none of the headers in the
SOAP messages matches the <namespace> and <localname> elements:

v If none of the headers matches, the header processing program is
invoked once.

v If any of the headers match, the header processing program is invoked
once for each matching header.

72 Web Services Guide

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the SOAP
message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</mandatory>
or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:

v If none of the headers matches, the header processing program is not
invoked.

v If any of the headers match, the header processing program is invoked
once for each matching header.

Example
<cics_soap_1.2_handler>
 <headerprogram>
 <program_name> ... </program_name>
 <namespace>...</namespace>
 <localname>...</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.2_handler>

The <default_http_transport_handler_list> element
Specifies the message handlers that are invoked by default when the HTTP
transport is in use.

In a service provider, message handlers specified in this list are invoked only if the
list of handlers defined in a <named_transport_entry> element is less specific.

Used in:
v Service provider

v Service requester

Contained by:
v <transport> element

Contains:
v One or more <handler> elements.

Example
<default_http_transport_handler_list>
 <handler>
 ...
 </handler>
 <handler>
 ...
 </handler>
</default_http_transport_handler_list>

The <default_mq_transport_handler_list> element
Specifies the message handlers that are invoked by default when the WebSphere
MQ transport is in use.

Chapter 7. Creating the Web services infrastructure 73

In a service provider, message handlers specified in this list are invoked only if the
list of handlers defined in a <named_transport_entry> element is less specific.

Used in:
v Service provider

v Service requester

Contained by:
v <transport> element

Contains:
v One or more <handler> elements.

Example
<default_mq_transport_handler_list>
 <handler>
 ...
 </handler>
 <handler>
 ...
 </handler>
</default_mq_transport_handler_list>

The <default_transport_handler_list> element
Specifies the message handlers that are invoked by default when any transport is in
use.

In a service provider, message handlers specified in this list are invoked when the
list of handlers defined in any of the following elements is less specific:

 <default_http_transport_handler_list>

 <default_mq_transport_handler_list>

 <named_transport_entry>

Used in:
v Service provider

v Service requester

Contained by:
v <transport> element

Contains:
v One or more <handler> elements.

Example
<default_transport_handler_list>
 <handler>
 <program>HANDLER1</program>
 <handler_parameter_list/>
 </handler>
 <handler>
 <program>HANDLER2</program>
 <handler_parameter_list/>
 </handler>
</default_transport_handler_list>

74 Web Services Guide

The <handler> element
Defines the attributes of a message handler program.

Some CICS-supplied handler programs do not use the <handler> element. For
example, the CICS-supplied SOAP message handler programs are defined using
the <cics_soap_1.1_handler> and <cics_soap_1.2_handler> elements.

Used in:
v Service provider

v Service requester

Contained by:
 <default_transport_handler_list>

 <transport_handler_list>

 <service_handler_list>

 <terminal_handler>

 <default_http_transport_handler_list>

 <default_mq_transport_handler_list>

Contains:
1. <program> element, containing the name of the handler program

2. <handler_parameter_list> element, containing XML elements that are made
available to the message handlers in container DFH-HANDLERPLIST.

Example
<?xml version="1.0"?>
<provider_pipeline>
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <service_handler_list>
 <handler>
 <program>MYPROG</program>
 <handler_parameter_list><output print="yes"/></handler_parameter_list>
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler>
 ...
 </cics_soap_1.1_handler>
 </terminal_handler>
 </service
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

In this example, the handler program is MYPROG. The handler parameter list
consists of a single <output> element; the contents of the parameter list are known
to MYPROG.

The <service> element
Specifies the message handlers that are invoked for every request.

Used in:
v Service provider

v Service requester

Chapter 7. Creating the Web services infrastructure 75

Contained by:
 <provider_pipeline>

 <requester_pipeline>

Contains:
1. <service_handler_list> element

2. In a service provider only, a <terminal_handler> element

Example
<service>
 <service_handler_list>
 ...
 </service_handler_list>
 <terminal_handler>
 ...
 </terminal_handler>
</service>

The <service_handler_list> element
Specifies a list of message handlers that are invoked for every request.

Used in:
v Service provider

v Service requester

Contained by:
v <service> element

Contains:

One or more of the following elements:

 <handler>

 <cics_soap_1.1_handler>

 <cics_soap_1.2_handler>

 <wsse_handler>

You determine the order that each handler is called at run time by the order that
you specify the handler elements in the <service_handler_list> element. For
example, if your pipeline supports WS-Security, encrypted SOAP messages remain
encrypted until the <wsse_handler> element is called. Therefore, you must specify
the <wsse_handler> element before any other handler program that processes
unencrypted messages.

You should not define <cics_soap_1.1_handler> and <cics_soap_1.2_handler>
elements in the same pipeline.

If you expect your service provider pipeline to process both SOAP 1.1 and SOAP
1.2 messages, you should use the CICS-supplied SOAP 1.2 message handler. This
supports both SOAP 1.1 and SOAP 1.2 messages.

You can use either a SOAP 1.1 or a SOAP 1.2 handler in a service requester
pipeline, but in this case the SOAP 1.2 handler does not support SOAP 1.1
messages. Do not specify the SOAP 1.1 or SOAP 1.2 handler in the pipeline if your

76 Web Services Guide

|
|
|
|
|
|

service requester applications are sending complete SOAP envelopes in the
DFHREQUEST container. This avoids duplicating the SOAP message headers in
outbound messages.

Remember: In a service provider, you can specify the generic handler and SOAP
handlers in the <terminal_handler> element as well as in the
<service_handler_list> element.

Example
<service_handler_list>
 <wsse_handler>
 ...
 </wsse_handler>
 <cics_soap_1.1_handler_java>
 ...
 </cics_soap_1.1_handler_java>
 <handler>
 ...
 </handler>
</service_handler_list>

The <service_parameter_list> element
An optional element containing XML elements that are made available to all the
message handlers in the pipeline in container DFH-SERVICEPLIST.

Used in:
v Service requester

v Service provider

Contains:
v If you are using WS-AT: a <registration_service_endpoint> element

v In a service requester if you are using WS-AT: an optional
<new_tx_context_required/> element

v Optional user defined tags

Example
<requester_pipeline>
 <service_parameter_list>
 <registration_service_endpoint>
 http://provider.example.com:7160/cicswsat/RegistrationService
 </registration_service_endpoint>
 <new_tx_context_required/>
 <user_defined_tag1>
 ...
 </user_defined_tag1>
 </service_parameter_list>
</requester_pipeline>

Related reference

“The <requester_pipeline> element” on page 68
The root element of the XML document that describes the configuration of a
pipeline in a service requester.

“The <provider_pipeline> element” on page 66
The root element of the XML document that describes the configuration of the CICS
pipeline for a Web service provider.

The <transport> element
Specifies handlers that are to be invoked only when a particular transport is in use.

Chapter 7. Creating the Web services infrastructure 77

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

Used in:
v Service provider

v Service requester

Contained by:
 <provider_pipeline>

 <requester_pipeline>

Contains:

In a service provider:

1. An optional <default_transport_handler_list> element

2. An optional <default_http_transport_handler_list> element

3. An optional <default_mq_transport_handler_list> element

4. Zero, one, or more <named_transport_entry> elements

In a service requester:

1. An optional <default_target> element. The <default_target> contains a URI
that CICS uses to locate the target Web service when the service requester
application does not provide a URI. In many cases, however, the URI of the
target will be provided by the service requester application, and whatever you
specify in the <default_target> will be ignored. For example, service provider
applications that are deployed using the CICS Web services assistant normally
get the URI from the Web service description.

2. An optional <default_http_transport_handler_list> element

3. An optional <default_mq_transport_handler_list> element

4. An optional <default_transport_handler_list> element

Example
<transport>
 <default_transport_handler_list>
 ...
 </default_transport_handler_list>
</transport>

Pipeline configuration for WS-Security
In order for Web service requester and provider applications to participate in
WS-Security protocols, you must configure your pipelines accordingly, by including
message handler DFHWSSE, and by providing configuration information for the
handler.

A provider pipeline configuration file that uses WS-Security might take the following
form:
<?xml version="1.0"?>
<provider_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <service_handler_list>
 <wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="blind" mode="basic"/>
 </dfhwsse_configuration>
 </wsse_handler>
 <handler>
 ...

78 Web Services Guide

</handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.2_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <wsse_handler> element
Specifies parameters used by the CICS-supplied message handler that provides
support for WS-Security.

Used in:
v Service provider

v Service requester

Contained by:
 <service_handler_list>

Contains:
v A <dfhwsse_configuration> element.

The <dfhwsse_configuration> element
Specifies configuration information for the security handler DFHWSSE1, which
provides support for securing Web services.

Used in:
v Service provider

v Service requester

Contained by:
 <wsse_handler>

Attributes:

 Name Description

version An integer denoting the version of the configuration
information. The only valid value is 1.

Contains:
1. Either of the following elements:

v An optional <authentication> element.

– In a service requester pipeline, the <authentication> element specifies
the type of authentication that the security header of outbound SOAP
messages will use.

– In a service provider pipeline, the element specifies whether CICS will use
the security tokens in an inbound SOAP message to determine the user
ID under which work will be processed.

v An optional <sts_authentication> element.

Chapter 7. Creating the Web services infrastructure 79

The action attribute on this element specifies what type of request should be
sent to the Security Token Service. If the request is to issue an identity token,
then CICS uses the values in the nested elements to request an identity
token of the specified type.

2. If you specify an <sts_authentication> element, you must also specify an
<sts_endpoint> element.

When this element is present, CICS uses the URI in the <endpoint> element to
send a request to the Security Token Service.

3. An optional, empty <expect_signed_body/> element.

The <expect_signed_body/> element indicates that the <body> of the inbound
message must be signed. If the body of an inbound message is not correctly
signed, CICS rejects the message with a security fault.

4. An optional, empty <expect_encrypted_body/> element.

The <expect_encrypted_body/> element indicates that the <body> of the inbound
message must be encrypted. If the body of an inbound message is not correctly
encrypted, CICS rejects the message with a security fault.

5. An optional <sign_body> element.

If this element is present, CICS will sign the <body> of the outbound message,
using the algorithm specified in the <algorithm> element contained in the
<sign_body> element.

6. An optional <encrypt_body> element.

If this element is present, CICS will encrypt the <body> of the outbound
message, using the algorithm specified in the <algorithm> element contained in
the <encrypt_body> element.

7. In provider pipelines only, an optional <reject_signature/> element.

If this element is present, CICS rejects any message that includes a certificate
in its header that signs part or all of the message body. A SOAP fault is issued
to the Web service requester.

8. In provider pipelines only, an optional <reject_encryption/> element.

If this element is present, CICS rejects any message that is partially or fully
encrypted. A SOAP fault is issued to the Web service requester.

Example
<dfhwsse_configuration version="1">
 <sts_authentication action="issue">
 <auth_token_type>
 <namespace>http://example.org.tokens</namespace>
 <element>UsernameToken</element>
 </auth_token_type>
 <suppress/>
 </sts_authentication>
 <sts_endpoint>
 <endpoint>https://example.com/SecurityTokenService</endpoint>
 </sts_endpoint>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
</dfhwsse_configuration>

80 Web Services Guide

The <authentication> element
Specifies the use of security tokens in the headers of inbound and outbound SOAP
messages.

Used in:
v Service provider

v Service requester

Contained by:
 <dfhwsse_configuration>

Attributes:

 Attribute Description

trust Taken together, the trust and mode attributes specify:

v whether asserted identity is used

v the combination of security tokens that are used in SOAP messages.

Asserted identity allows a trusted user to assert that work should run
under an different identity, the asserted identity, without the trusted user
having the credentials associated with that identity.

When asserted identity is used, messages contain a trust token and an
identity token. The trust token is used to check that the sender has the
correct permissions to assert identities, and the identity token holds the
asserted identity, that is, the user ID under which the request is
executed.

Use of asserted identity requires that a service provider trusts the
requester to make this assertion. In CICS, the trust relationship is
established with security manager surrogate definitions: the requesting
identity must have the correct authority to start work on behalf of the
asserted identity.

The allowable combinations of the these attributes, and their meanings,
are described in Table 1 and Table 2 on page 82.

mode

 Table 1. The mode and trust attributes in a service requester pipeline

trust mode Meaning

none none No credentials are added to the message

basic Invalid combination of attribute values

signature Asserted identity is not used. CICS uses a single
X.509 security token which is added to the message,
and used to sign the message body. The certificate is
identified with the <certificate_label> element, and
the algorithm is specified in the <algorithm> element.

blind none Invalid combination of attribute values

basic Asserted identity is not used. CICS adds an identity
token to the message, but does not provide a trust
token. The identity token is a username with no
password. The user ID placed in the identity token is
the contents of the DFHWS-USERID container
(which, by default, contains the running task's user
ID).

signature Invalid combination of attribute values

Chapter 7. Creating the Web services infrastructure 81

Table 1. The mode and trust attributes in a service requester pipeline (continued)

trust mode Meaning

basic (any) Invalid combination of attribute values

signature none Invalid combination of attribute values

basic Asserted identity is used. CICS adds the following
tokens to the message:

v The trust token is an X.509 security token.

v The identity token is a username with no
password.

The certificate used to sign the identity token and
message body is specified by the
<certificate_label>. The user ID placed in the
identity token is the contents of the DFHWS-USERID
container (which, by default, contains the running
task's user ID).

signature Invalid combination of attribute values

 Table 2. The mode and trust attributes in a service provider pipeline

trust mode Meaning

none none Inbound messages need not contain any credentials,
and CICS does not attempt to extract or verify any
credentials that are found in a message. However,
CICS will check that any signed elements have been
correctly signed.

basic Inbound messages must contain a username security
token with a password. CICS puts the username in
the DFHWS-USERID container.

signature Inbound messages must contain an X.509 security
token that has been used to sign the message body.

blind none Invalid combination of attribute values

basic Inbound messages must contain an identity token,
where the identity token contains a user ID and
optionally a password. CICS puts the user ID in the
DFHWS-USERID container. If no password is
included, CICS uses the user ID without verifying it. If
a password is included, the security handler
DFHWSSE1 verifies it.

signature Inbound messages must contain an identity token,
where the identity token is the first X.509 certificate
in the SOAP message header. The certificate does
not need to have signed the message. The security
handler extracts the matching user ID and places it in
the DFHWS-USERID container.

82 Web Services Guide

Table 2. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning

basic none Invalid combination of attribute values

basic Inbound messages must use asserted identity:
v The trust token is a username token with a

password
v The identity token is a second username token

without a password. CICS puts this username in
container DFHWS-USERID.

signature Inbound messages must use asserted identity:
v The trust token is a username token with a

password
v The identity token is an X.509 certificate. CICS

puts the user ID associated with the certificate in
container DFHWS-USERID.

signature none Invalid combination of attribute values

basic Inbound messages must use asserted identity:
v The trust token is an X.509 certificate
v The identity token is a username token without a

password. CICS puts the username in container
DFHWS-USERID.

The identity token and the body must be signed with
the X.509 certificate.

signature Inbound messages must use asserted identity:
v The trust token is an X.509 certificate
v The identity token is a second X.509 certificate.

CICS puts the user ID associated with this
certificate in container DFHWS-USERID.

The identity token and the body must be signed with
the first X.509 certificate (the trust token).

Notes:

1. The combinations of the trust and mode attribute values are checked
when the PIPELINE is installed. The installation will fail if the attributes
are incorrectly coded.

Contains:
1. An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler will not
attempt to use any security tokens in the message to determine under which
user ID the work will run.

If this element is specified in a service requester pipeline, the handler will not
attempt to add to the outbound SOAP message any of the security tokens that
are required for authentication.

2. An optional <algorithm> element that specifies the URI of the algorithm used to
sign the body of the SOAP message. You must specify this element if the
combination of trust and mode attribute values indicate that the messages are
signed.

You can specify the following algorithms:

Chapter 7. Creating the Web services infrastructure 83

Algorithm URI

Digital Signature Algorithm
with Secure Hash Algorithm 1
(DSA with SHA1)

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

3. An optional <certificate_label> element that specifies the label associated
with an X.509 digital certificate installed in RACF®. If this element is specified in
a service requester pipeline, and the <suppress> element is not specified, the
certificate is added to the security header in the SOAP message. If you do not
specify a <certificate_label> element, CICS uses the default certificate in the
RACF key ring.

This element is ignored in a service provider pipeline.

Example
<authentication trust="signature" mode="basic">
 <suppress/>
 <certificate_label>AUTHCERT03</certificate_label>
</authentication>

The <sts_authentication> element
Specifies that a Security Token Service (STS) should be used for authentication and
determines what type of request is sent.

Used in:
v Service provider

v Service requester

Contained by:
 <dfhwsse_configuration>

Attributes:

 Name Description

action Specifies what type of request CICS should send to the
STS when a message is received in the service provider
pipeline. Valid values are:

issue The STS issues an identity token for the SOAP
message.

validate
The STS validates the provided identity token and
returns whether the token is valid to the security
handler.

If you do not specify this attribute, CICS assumes that the
action is to request an identity token.

In a service requester pipeline, you cannot specify this
attribute because CICS always requests that the STS issues
a token.

84 Web Services Guide

Contains:
1. An <auth_token_type> element. This element is required when you specify a

<sts_authentication> element in a service requester pipeline and optional in a
service provider pipeline.

v In a service requester pipeline, the <auth_token_type> element indicates the
type of token the STS will issue when CICS sends it the user ID contained in
the DFHWS-USERID container. The token that CICS receives from the STS
is placed in the header of the outbound message.

v In a service provider pipeline, the <auth_token_type> element is used to
determine which identity token CICS takes from the message header and
send to the STS to exchange or validate. CICS uses the first identity token of
the specified type in the message header. If you do not specify this element,
CICS uses the first identity token that it finds in the message header. CICS
does not consider the following as identity tokens:

– wsu:Timestamp

– xenc:ReferenceList

– xenc:EncryptedKey

– ds:Signature

2. In a service provider pipeline only, an optional, empty <suppress/> element. If
this element is specified, the handler does not attempt to use any security
tokens in the message to determine under which user ID the work will run,
including the identity token that is returned by the STS.

Example

The following example shows a service provider pipeline, where the security
handler requests a token from the STS.
<sts_authentication action="issue">
 <auth_token_type>
 <namespace>http://example.org.tokens</namespace>
 <element>UsernameToken</element>
 </auth_token_type>
 <suppress/>
</sts_authentication>

The <auth_token_type> element
Specifies what type of identity token is required.

This element is mandatory when you specify the <sts_authentication> element in
a service requester pipeline, and optional in a service provider.

v In a service requester pipeline, the <auth_token_type> element indicates the type
of token the STS will issue when CICS sends it the user ID contained in the
DFHWS-USERID container. The token that CICS receives from the STS is
placed in the header of the outbound message.

v In a service provider pipeline, the <auth_token_type> element is used to
determine which identity token CICS takes from the message header and send to
the STS to exchange or validate. CICS uses the first identity token of the
specified type in the message header. If you do not specify this element, CICS
uses the first identity token that it finds in the message header. CICS does not
consider the following as identity tokens:

– wsu:Timestamp

– xenc:ReferenceList

– xenc:EncryptedKey

Chapter 7. Creating the Web services infrastructure 85

– ds:Signature

Used in:
v Service provider

v Service requester

Contained by:
 <sts_authentication>

Contains:
1. A <namespace> element. This element contains the namespace of the token type

that should be validated or exchanged.

2. An <element> element. This element contains the local name of the token type
that should be validated or exchanged.

The values of these elements form the Qname of the token.

Example
<auth_token_type>
 <namespace>http://example.org.tokens</namespace>
 <element>UsernameToken</element>
</auth_token_type>

The <sts_endpoint> element
Specifies the location of the Security Token Service (STS).

Used in:
v Service provider

v Service requester

Contained by:
 <dfhwsse_configuration>

Contains:
v An <endpoint> element. This element contains a URI that points to the location

of the Security Token Service (STS) on the network. You are recommended to
use SSL or TLS to keep the connection to the STS secure, rather than using
HTTP.

You can also specify a WebSphere MQ endpoint using the JMS format of URI.

Example

In this example, the endpoint is configured to use a secure connection to the STS
that is located at the specified URI.
<sts_endpoint>
 <endpoint>https://example.com/SecurityTokenService</endpoint>
</sts_endpoint>

The <sign_body> element
Directs DFHWSSE to sign the body of outbound SOAP messages, and provides
information about how the messages are to be signed.

86 Web Services Guide

Used in:
v Service provider

v Service requester

Contained by:
 <dfhwsse_configuration>

Contains:
1. An <algorithm> element that contains the URI that identifies the algorithm used

to sign the body of the SOAP message.

You can specify the following algorithms:

 Algorithm URI

Digital Signature Algorithm
with Secure Hash Algorithm 1
(DSA with SHA1)

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

2. A <certificate_label> element that specifies the label associated with a digital
certificate installed in RACF. The digital certificate provides the key that is used
to sign the message.

Example
<sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
</sign_body>

The <encrypt_body> element
Directs DFHWSSE to encrypt the body of outbound SOAP messages, and provides
information about how the messages are to be encrypted.

Used in:
v Service provider

v Service requester

Contained by:
 <dfhwsse_configuration>

Contains:
1. An <algorithm> element containing the URI that identifies the algorithm used to

encrypt the body of the SOAP message.

You can specify the following algorithms:

 Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Chapter 7. Creating the Web services infrastructure 87

Algorithm URI

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

2. A <certificate_label> element that specifies the label that is associated with a
digital certificate in RACF. The digital certificate provides the key that is used to
encrypt the message.

Example
<encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#aes256-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
</encrypt_body>

Pipeline configuration for MTOM/XOP
To enable Web service requester and provider applications to receive and send
MIME messages that include binary attachments, you must configure your pipelines
accordingly. This enables an MTOM handler to process MIME messages in the
pipeline using the configuration options that you have defined.

The <cics_mtom_handler> element
Enables the CICS-supplied MTOM handler program, that provides support for
MTOM MIME multipart/related messages that contain XOP documents and binary
attachments. MTOM support is enabled for all inbound messages that are received
in the pipeline, but MTOM support for outbound messages is conditionally enabled
subject to further options.

Used in:
v Service provider

v Service requester

Contained by:
 <provider_pipeline>

 <requester_pipeline>

In a provider pipeline configuration file, the <cics_mtom_handler> element should be
defined before the <transport> element. At run time, the MTOM handler program
needs to unpackage the inbound MTOM message before other handlers including
the transport handler process it. It will also then be invoked as the last handler for
the response message, to package an MTOM message to send to the Web service
requester.

In a requester pipeline configuration file, <cics_mtom_handler> element should be
defined after the <transport> element. At run time, the outbound request message
is not converted into MTOM format until all other handlers have processed it. It will
then also be invoked as the first handler for the inbound response message to
unpackage the MTOM message before other handlers process it and return to the
requesting program.

88 Web Services Guide

|

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

Contains:
 <dfhmtom_configuration> element

Default options can be changed using configuration options specified in the
<dfhmtom_configuration> element. If you do not want to change the default options,
you can use an empty element.

Example

For a provider mode pipeline, you could specify:
<provider_pipeline>
 <cics_mtom_handler/>
 <transport>

 </transport>
 <service>

 </service>
</provider_pipeline>

The <dfhmtom_configuration> element
Specifies configuration information for the CICS-supplied MTOM handler program,
which provides support for MIME messages that contain XOP documents and
binary attachments. If you do not specify any configuration for MTOM, CICS
assumes default values.

Used in:
v Service provider

v Service requester

Contained by:
 <cics_mtom_handler>

Attributes:

 Name Description

version An integer denoting the version of the configuration
information. The only valid value is 1.

Contains:
1. An optional <mtom_options> element

2. An optional <xop_options> element

3. An optional <mime_options> element

Example
<dfhmtom_configuration version="1">
 <mtom_options send_mtom="same" send_when_no_xop="no"/>
 <xop_options apphandler_supports_xop="yes"/>
 <mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>

The <mtom_options> element
Specifies when to use MTOM for outbound SOAP messages.

Chapter 7. Creating the Web services infrastructure 89

|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|||

||
|
|

|

|

|

|

|

|
|
|
|
|

|
|

Used in:
v Service provider

v Service requester

Contained by:
 <dfhmtom_configuration>

Attributes:

 Attribute Description

send_mtom Specifies if MTOM should be used to convert the outbound
SOAP message into a MIME message:

no MTOM is not used for outbound SOAP messages.

same In service provider mode, MTOM is used for SOAP
response messages whenever the requester uses
MTOM. This is the default value in a service
provider pipeline.

 In service requester mode, specifying this value is
the same as when you specify send_mtom="yes".

yes MTOM is used for all outbound SOAP messages.
This is the default value in a service requester
pipeline.

send_when_no_xop Specifies if an MTOM message should be sent, even when
there are no binary attachments present in the message.

no MTOM is only used when binary attachments are
being sent with the message.

yes MTOM is used for all outbound SOAP messages,
even when there are no binary attachments to
send in the message. This is the default value, and
is primarily used as an indicator to the receiving
program that the sender supports MTOM/XOP.

This attribute can be combined with any of the send_mtom
attribute values, but has no effect if you specify
send_mtom="no".

Example
<provider_pipeline>
 <cics_mtom_handler>
 <dfhmtom_configuration version="1">
 <mtom_options send_mtom="same" send_when_no_xop="no"/>
 </dfhmtom_configuration>
 </cics_mtom_handler>
...
</provider_pipeline>

In this provider pipeline example, SOAP messages are converted into MTOM
messages only when binary attachments need to be sent with the message and the
service requester sent an MTOM message.

The <xop_options> element
Specifies whether XOP processing can take place in direct or compatibility mode.

90 Web Services Guide

|

|

|

|

|

|

|||

||
|

||

||
|
|
|

|
|

||
|
|

||
|

||
|

||
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

Used in:
v Service provider

v Service requester

Contained by:
 <dfhmtom_configuration>

Attributes:

 Attribute Description

apphandler_supports_xop In provider mode, specifies if the application handler is
capable of handling XOP documents in direct mode:

no The application handler cannot handle XOP
documents directly. This is the default value if the
<apphandler> element does not specify DFHPITP.

 Compatibility mode is used in the pipeline to
handle any inbound or outbound messages that
are received or sent in MTOM format.

yes The application handler can handle XOP
documents. This is the default value if the
<apphandler> element specifies DFHPITP.

 Direct mode is used in the pipeline to handle any
inbound or outbound messages that are received
or sent in MTOM format. This is subject to
restrictions at run time. For example, if you have
specified WS-Security related elements in the
pipeline configuration file, the MTOM handler
determines that the pipeline should use
compatibility mode rather than direct mode for
processing XOP documents.

In requester mode, specifies if service requester
applications use the CICS Web services support to create
and handle XOP documents in direct mode.

no Service requester applications do not use the CICS
Web services support. Specify this value if your
requester application links to DFHPIRT to drive the
pipeline, and is therefore not capable of creating
and handling XOP documents in direct mode.

yes Service requester applications do use the CICS
Web services support. Specify this value if your
requester application uses the EXEC CICS INVOKE
WEBSERVICE command.

Example
<provider_pipeline>
 <cics_mtom_handler>
 <dfhmtom_configuration version="1">
 <xop_options apphandler_supports_xop="no"/>
 </dfhmtom_configuration>
 </cics_mtom_handler>
 ...
</provider_pipeline>

In this provider pipeline example, inbound MTOM messages and outbound
response messages are processed in the pipeline using compatibility mode.

Chapter 7. Creating the Web services infrastructure 91

|

|

|

|

|

|

|||

||
|

||
|
|

|
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

The <mime_options> element
Specifies the domain name that should be used when generating MIME content-ID
values, that are used to identify binary attachments.

Used in:
v Service provider

v Service requester

Contained by:
 <dfhmtom_configuration>

Attributes:

 Attribute Description

content_id_domain The syntax to use is domain.name.

To conform to Internet standards, the name should be a
valid internet host name and should be unique to the CICS
system where the pipeline is installed. Note that this is not
checked by CICS.

If this element is omitted, CICS uses the value cicsts.

Example
<provider_pipeline>
<dfhmtom_configuration version="1">
 <mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>
...
</provider_pipeline>

In this example, references to binary attachments are created using
cid:unique_value@example.org.

Message handlers
A message handler is a CICS program that is used to process a Web service
request during input and to process the response during output. Message handlers
use channels and containers to interact with one another and with the system.

The message handler interface lets you perform the following tasks in a message
handler program:

v Examine the contents of an XML request or response, without changing it

v Change the contents of an XML request or response

v In a non-terminal message handler, pass an XML request or response to the next
message handler in the pipeline

v In a terminal message handler, call an application program, and generate a
response

v In the request phase of the pipeline, force a transition to the response phase, by
absorbing the request, and generating a response

v Handle errors

92 Web Services Guide

|
|
|

|

|

|

|

|

|

|||

||

|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

Tip: It is advisable to use the CICS-provided SOAP 1.1 and SOAP 1.2 handlers to
work with SOAP messages. These handlers let you work directly with the
major elements in a SOAP message (the SOAP headers and the SOAP body).

All programs which are used as message handlers are invoked with the same
interface: they are invoked with a channel which holds a number of containers. The
containers can be categorized as:

Control containers
These are essential to the operation of the pipeline. Message handlers can
use the control containers to modify the sequence in which subsequent
handlers are processed.

Context containers
In some situations, message handler programs need information about the
context in which they are invoked. CICS provides this information in a set of
context containers which are passed to the programs.

 Some of the context containers hold information which you can change in
your message handler. For example, in a service provider pipeline, you can
change the user ID and transaction ID of the target application program by
modifying the contents of the appropriate context containers.

User containers
These contain information which one message handler needs to pass to
another. The use of user containers is entirely a matter for the message
handlers.

Restriction: Do not use names starting with DFH for user containers.

Message handler protocols
Message handlers in a pipeline process request and response messages. The
behavior of the handlers is governed by a set of protocols which describe what
actions the message handlers can take in a given situation.

Each non-terminal message handler in a pipeline is invoked twice:

1. The first time, it is driven to process a request (an inbound request for a service
provider pipeline, an outbound request for a service requester)

2. The second time, it is driven for one of three reasons:

v to process a response (an outbound response for a service provider pipeline,
an inbound response for a service requester)

v to perform recovery following an error elsewhere in the pipeline

v to perform any further processing that is required when there is no response.

The terminal message handler in a service provider pipeline is invoked once, to
process a request.

Message handlers may be provided in a pipeline for a variety of reasons, and the
processing that each handler performs may be very different. In particular:

v Some message handlers do not change the message contents, nor do they
change the normal processing sequence of a pipeline

v Some message handlers change the message contents, but do not change the
normal processing sequence of a pipeline

v Some message handlers change the processing sequence of a pipeline.

Each handler has a choice of actions that it can perform. The choice depends upon:

Chapter 7. Creating the Web services infrastructure 93

v whether the handler is invoked in a service provider or a service requester

v in a service provider, whether the handler is a terminal handler or not

v whether the handler is invoked for a request or a response message.

Terminal handler protocols

Normal request and response
This is the normal protocol for a terminal handler. The handler is invoked for
a request message, and constructs a response.

 In order to construct the response, a typical terminal handler will link to the
target application program, but this is not mandatory.

Normal request, with no response
This is another common protocol for a terminal handler.

 This protocol is usually encountered when the target application determines
that there should be no response to the request (although the decision may
also be made in the terminal handler).

Non-terminal handler protocols

Normal request and response
This is the usual protocol for a non-terminal handler. The handler is invoked
for a request message, and again for the response message. In each case,
the handler processes the message, and passes it to the next handler in
the pipeline.

Normal request, no response
This is another common protocol for a non-terminal handler. The handler is
invoked for a request message, and after processing it, passes to the next
handler in the pipeline. The target application (or another handler)
determines that there should be no response. When the handler is invoked
for the second time, there is no response message to process.

Terminal
handler

Request

Response

Terminal
handler

Request

Request

Response

Non-terminal
handler

Request

Response

Request

Non-terminal
handler

Request

94 Web Services Guide

Handler creates the response
This protocol is typically used in abnormal situations, because the
non-terminal handler does not pass the request to the next handler. Instead
it constructs a response, and returns it to the pipeline.

 This protocol could be used when the handler determines that the request
is in some way invalid, and that no further processing of the request should
be attempted. In this situation, the handler is not invoked a second time.

Handler suppresses the response
This is another protocol that is typically used in abnormal situations,
because the non-terminal handler does not pass the request to the next
handler. In this protocol, the handler determines that there should be no
response to the request.

 This protocol could be used when no response is expected to the original
request, and, because the request is in some way invalid, no further
processing of the request should be attempted.

Supplying your own message handlers
When you want to perform specialized processing on the messages that flow
between a service requester and a service provider, and CICS does not supply a
message handler that meets your needs, you will need to supply your own.

In most situations, you can perform all the processing you need with the
CICS-supplied message handlers. For example, you can use the SOAP 1.1 and 1.2
message handlers which CICS supplies to process SOAP messages. But there are
occasions when you will want to perform your own, specialized, operations on Web
service requests and responses. To do this, you must supply your own message
handlers.

1. Write your message handler program. A message handler is a CICS program
with a channel interface. You can write your program in any of the languages
which CICS supports, and use any CICS command in the DPL subset within
your program.

2. Compile and link-edit your program. Message handler programs normally run
under transaction CPIH, which is defined with the attribute TASKDATALOC(ANY).
Therefore, when you link-edit the program, you must specify the AMODE(31)
option.

3. Install the program in your CICS system in the usual way.

4. Define the program in the pipeline configuration file. Use the <handler> element
to define your message handler. Within the <handler> element, code a
<program> element containing the name of the program.

Non-terminal
handler

Request

Response

Non-terminal
handler

Request

Chapter 7. Creating the Web services infrastructure 95

Working with messages in a non-terminal message handler
A typical non-terminal message handler processes a message, then passes control
to another message handler in the pipeline.

In a non-terminal message handler, you can work with a request or response, with
or without changing it, and pass it on to the next message handler.

Note: Although Web services typically use SOAP messages which contain XML,
your message handlers will work as well with other message formats

1. Using the contents of container DFHFUNCTION, determine if the message
passed to this message handler is a request or a response.

 DFHFUNCTION Request or
response

Type of message
handler

Inbound or
outbound

RECEIVE-REQUEST Request Non-terminal Inbound

SEND-RESPONSE response Non-terminal Outbound

SEND-REQUEST Request Non-terminal Outbound

RECEIVE-RESPONSE response Non-terminal Inbound

Tip:

v If DFHFUNCTION contains PROCESS-REQUEST, the message handler
is a terminal message handler, and these steps do not apply.

v If DFHFUNCTION contains HANDLER-ERROR, the handler is being
called for error processing, and these steps do not apply.

2. Retrieve the request or the response from the appropriate container.

v If the message is a request, it is passed to the program in container
DFHREQUEST. Container DFHRESPONSE is also present, with a length of
zero.

v If the message is a response, it is passed to the program in container
DFHRESPONSE.

3. Perform any processing of the message which is required. Depending upon the
purpose of the message handler, you might:

v Examine the message without changing it, and pass it to the next message
handler in the pipeline.

v Change the request, and pass it to the next message handler in the pipeline.

v If the message is a request, you can bypass the following message handlers
in the pipeline, and, instead, construct a response message.

Note: It is the contents of the containers which a message handler returns that
determines which message handler is invoked next. It is an error if a
message handler does nothing (that is, it makes no changes to any of
the containers passed to it).

Passing a message to the next message handler in the pipeline
In a typical non-terminal message handler, you will process a request or response,
with or without changing it, and pass it on to the next message handler.

1. Return the message to the pipeline - changed or unchanged - in the appropriate
container.

v If the message is a request and you have changed it, return it in container
DFHREQUEST

96 Web Services Guide

v If the message is a response and you have changed it, put it in container
DFHRESPONSE

v If you have not changed the message, it is already in the appropriate
container

2. If the message is a request, delete container DFHRESPONSE. When a
message handler is invoked for a request, containers DFHREQUEST and
DFHRESPONSE are passed to the program; DFHRESPONSE has a length of
zero. However, it is an error to return both DFHREQUEST and
DFHRESPONSE.

The message is passed to the next message handler on the pipeline.

Forcing a transition to the response phase of the pipeline
When you are processing a request, there are times when you will want to generate
an immediate response, instead of passing the request to the next message
handler in the pipeline.

1. Delete container DFHREQUEST.

2. Construct your response, and put it in container DFHRESPONSE.

The response is passed to the next message handler on the response phase of the
pipeline.

Suppressing the response
In some situations, you will want to absorb a request without sending a response.

1. Delete container DFHREQUEST.

2. Delete container DFHRESPONSE.

Handling one way messages in a service requester pipeline
When a service requester pipeline sends a request to a service provider, there is
normally an expectation that there will be a response, and that, following the
sending of the request, the message handlers in the pipeline will be invoked again
when the response arrives. Some Web services do not send a response, and so
you must take special action to indicate that CICS should not wait for a response
before invoking the message handlers for a second time.

To do this, ensure that container DFHNORESPONSE is present at the end of
pipeline processing in the request phase. Typically, this is done by application level
code, because the knowledge of whether a response is expected is lodged in the
application:

v For applications deployed with the CICS Web services assistant, CICS code will
create the container.

v Applications that are not deployed with the assistant will typically create the
container before invoking the application.

If you create or destroy container DFHNORESPONSE in a message handler, you
must be sure that doing so will not disturb the message protocol between the
service requester and the provider.

Working with messages in a terminal message handler
A typical terminal handler processes a request, invokes an application program, and
generates a response.

Note: Although Web services typically use SOAP messages which contain XML,
your message handlers will work as well with other message formats

Chapter 7. Creating the Web services infrastructure 97

In a terminal message handler, you can work with a request, and - optionally -
generate a response and pass it back along the pipeline. A typical terminal handler
will use the request as input to an application program, and use the application
program's response to construct the response.

1. Using the contents of container DFHFUNCTION, determine that the message
passed to this handler is a request, and that the handler is being called as a
terminal handler.

 DFHFUNCTION Request or
response

Type of handler Inbound or
outbound

PROCESS-REQUEST Request Terminal Inbound

Tip:

v If DFHFUNCTION contains any other value, the handler is not a
terminal handler, and these steps do not apply.

2. Retrieve the request from container DFHREQUEST. Container DFHRESPONSE
is also present, with a length of zero.

3. Perform any processing of the message which is required. Typically, a terminal
handler will invoke an application program.

4. Construct your response, and put it in container DFHRESPONSE. If there is no
response, you must delete container DFHRESPONSE.

The response is passed to the next handler in the response phase of the pipeline.
The handler is invoked for function SEND-RESPONSE. If there is no response, the
next handler is invoked for function NO-RESPONSE.

Handling errors
Message handlers should be designed to handle errors that may occur in the
pipeline.

When an error occurs in a message handler program, the program is invoked again
for error processing. Error processing always takes place in the response phase of
the pipeline; if the error occurred in the request phase, subsequent handlers in the
request phase are bypassed.

In most cases, therefore, you should write your handler program to handle any
errors that may occur.

1. Check that container DFHFUNCTION contains HANDLER-ERROR, indicating
that the message handler has been called for error processing.

Tip:

v If DFHFUNCTION contains any other value, the message handler has
not been invoked for error processing, and these steps do not apply.

2. Analyze the error information, and determine if the message handler can
recover from the error by constructing a suitable response.

Container DFHERROR holds information about the error. For detailed
information about this container, see “Container DFHERROR” on page 106.

Container DFHRESPONSE is also present, with a length of zero.

3. Perform any recovery processing.

v If the message handler can recover, construct a response, and return it in
container DFHRESPONSE.

98 Web Services Guide

v If the message handler can recover, but no response is required, delete
container DFHRESPONSE, and return container DFHNORESPONSE
instead.

v If the message handler cannot recover, return container DFHRESPONSE
unchanged (that is, with a length of zero).

If your message handler is able to recover from the error, pipeline processing
continues normally. If not, CICS generates a SOAP fault that contains information
about the error. In the case of a transaction abend, the abend code is included in
the fault.

The message handler interface
The CICS pipeline links to the message handlers using a channel containing a
number of containers. Some containers are optional, others are required by all
message handlers, and others are used by some message handlers, and not by
others.

Before a handler is invoked, some or all of the containers are populated with
information which the handler can use to perform its work. The containers returned
by the handler determine the subsequent processing, and are passed on to later
handlers in the pipeline.

The SOAP message handlers
The SOAP message handlers are CICS-provided message handlers that you can
include in your pipeline to process SOAP 1.1 and SOAP 1.2 messages. You can
use the SOAP message handlers in a service requester or in a service provider
pipeline.

On input , the SOAP message handlers parse inbound SOAP messages, and
extract the SOAP <Body> element for use by your application program. On output,
the handlers construct the complete SOAP message, using the <Body> element
which your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke
user-written header processing programs that allow you to process the headers on
inbound messages, and to add them to outbound messages.

SOAP message handlers, and any header processing programs, are specified in
the pipeline configuration file, using the <cics_soap_1.1_handler> and the
<cics_soap_1.2_handler> elements, and their sub-elements.

Typically, you will need just one SOAP handler in a pipeline. However, there are
some situations where more than one is needed. For example, you can ensure that
SOAP headers are processed in a particular sequence by defining multiple SOAP
handlers.

Header processing programs
Header processing programs are user-written CICS programs that are linked to
from the CICS-provided SOAP 1.1 and SOAP 1.2 message handlers, in order to
process SOAP header blocks.

You can write your header processing program in any of the languages that CICS
supports, and use any CICS command in the DPL subset. Your header processing
program can link to other CICS programs.

Chapter 7. Creating the Web services infrastructure 99

The header processing programs have a channel interface; the containers hold
information which the header program can examine or modify, including:

 The SOAP header block for which the program is invoked

 The SOAP message body

This interface and the containers that the header processing program can use are
described in “The header processing program interface” on page 101.

Other containers hold information about the environment in which the header
program is invoked, such as:

 The transaction ID under which the header program was invoked

 Whether the program was invoked for a service provider or requester pipeline

 Whether the message being processed is a request or response

Header processing programs normally run under transaction CPIH, which is defined
with the attribute TASKDATALOC(ANY). Therefore, when you link-edit the program, you
must specify the AMODE(31) option.

How header processing programs are invoked for a SOAP
request

The <cics_soap_1.1_ handler> and <cics_soap_1.2_ handler> elements in a
pipeline configuration contain zero, one, or more, <headerprogram> elements, each
of which contains the following children:

 <program_name>

 <namespace>

 <localname>

 <mandatory>

When a pipeline is processing an inbound SOAP message (a request in the case of
a service provider, a response in the case of a service requester), the header
program specified in the <program_name> element is invoked or not, depending
upon:

v The contents of the <namespace>, <localname>, and <mandatory> elements

v The value of certain attributes of the root element of the SOAP header itself (the
actor attribute for SOAP 1.1; the role attribute for SOAP 1.2)

The following rules determine if the header program will be invoked in a given case:

The <mandatory> element in the pipeline configuration file
If the element contains true (or 1), the header processing program is
invoked at least once, even if none of the headers in the SOAP message is
selected for processing by the remaining rules:

v If none of the header blocks is selected, the header processing program
is invoked once.

v If any of the header blocks is selected by the remaining rules, the header
processing program is invoked once for each selected header.

Attributes in the SOAP header block
For SOAP 1.1, a header block is eligible for processing only if the actor
attribute is absent, or has a value of http://schemas.xmlsoap.org/soap/
actor/next

 For SOAP 1.2, a header block is eligible for processing only if the role
attribute is absent, or has one of the following values:

100 Web Services Guide

http://www.w3.org/2003/05/soap-envelope/role/next

 http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver

A header block that is eligible for processing is not processed unless it is
selected by the next rule.

The <namespace> and <localname> elements in the pipeline configuration file
A header block that is eligible for processing according to the previous rule
is selected for processing only if:

v the name of the root element of the header block matches the
<localname> element in the pipeline configuration file

v and the root element's namespace matches the <namespace> element in
the pipeline configuration file

For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

Subject to the other rules, the header block will be selected for processing
when the following is coded in the pipeline configuration file:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

The <localname> can contain an * to indicate that all header blocks in the
namespace should be processed. Therefore, the same header block will be
selected by the following:
<namespace>http://mynamespace</namespace>
<localname>*</localname>

When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which the
headers are processed is undefined.

The CICS-provided SOAP message handlers select the header processing
programs that will be invoked based upon the header blocks that are present in the
SOAP message at the time when the message handler receives it. Therefore, a
header processing program is never invoked as a result of a header block that is
added to a message in the same SOAP message handler. If you want to process
the new header (or any modified headers) in your pipeline, you must define another
SOAP message handler in your pipeline.

For an outbound message (a request in a service requester, a response in a
service provider) the CICS-provided SOAP message handlers create a SOAP
message that does not contain any headers. In order to add one or more headers
to the message, you must write a header handler program to add the headers. To
ensure that this header handler is invoked, you must define it in your pipeline
configuration file, and specify <mandatory>true</mandatory>.

If a header handler is invoked in the request phase of a pipeline, it will be invoked
again in the response phase, even if the message that flows in the response phase
does not contain a matching header.

The header processing program interface
The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header
processing programs using channel DFHHHC-V1. The containers that are passed
on the channel include several that are specific to the header processing program
interface, and sets of context containers and user containers that are accessible to
all the header processing programs and message handler programs in the pipeline.

Chapter 7. Creating the Web services infrastructure 101

Container DFHHEADER is specific to the header processing program interface.
Other containers are available elsewhere in your pipeline, but have specific uses in
a header processing program. The containers in this category are:

 DFHWS-XMLNS

 DFHWS-BODY

Container DFHHEADER

When the header processing program is invoked, DFHHEADER contains the single
header block which caused the header processing program to be driven. When the
header program is specified with <mandatory>true</mandatory> or
<mandatory>1</mandatory> in the pipeline configuration file, it is be invoked even
when there is no matching header block in the SOAP message. In this case,
container DFHHEADER has a length of zero. This will be the case when a header
processing program is invoked to add a header block to a SOAP message that
does not have header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header processing
program is invoked, by specifying <mandatory>true</mandatory> or
<mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one,
or more header blocks which CICS inserts in the SOAP message in place of the
original:

v You can return the original header block unchanged.

v You can modify the contents of the header block.

v You can append one or more new header blocks to the original block.

v You can replace the original header block with one or more different blocks.

v You can delete the header block completely.

Container DFHWS-XMLNS

When the header processing program is invoked, DFHWS-XMLNS contains
information about XML namespaces that are declared in the SOAP envelope. The
header program can use this information:

v to resolve qualified names that it encounters in the header block

v to construct qualified names in new or modified header blocks.

The namespace information consists of a list of namespace declarations, which use
the standard XML notation for declaring namespaces. The namespace declarations
in DFHWS-XMLNS are separated by spaces. For example:
xmlns:na=’http://abc.example.org/schema’ xmlns:nx=’http://xyz.example.org/schema’

You can add further namespace declarations to the SOAP envelope by appending
them to the contents of DFHWS-XMLNS. However, namespaces whose scope is a
SOAP header block or a SOAP body are best declared in the header block or the
body respectively. You are advised not to delete namespace declarations from
container DFHWS-XMLNS in a header processing program, because XML elements
which are not visible in the program may rely on them.

102 Web Services Guide

Container DFHWS-BODY

Contains the body section of the SOAP envelope. The header processing program
can modify the contents.

When the header processing program is invoked, DFHWS-BODY contains the
SOAP <Body> element.

When the header program returns, container DFHWS-BODY must again contain a
valid SOAP <Body>, which CICS inserts in the SOAP message in place of the
original:

v You can return the original body unchanged.

v You can modify the contents of the body.

You must not delete the SOAP body completely, as every SOAP message must
contain a <Body> element.

Context containers and user containers

As well as the containers described, the interface passes the control containers,
context containers, and user containers on channel DFHHHC-V1.

For more information about these containers, see “Containers used in the pipeline”
on page 105.

The SOAP handler interfaces
The SOAP handler has two interfaces with user-written programs: the header
processing program interface, which passes information between the SOAP handler
and a header processing program; and the application interface, which passes
information between the SOAP handler and the target application.

The application interface
The application interface is a channel that is passed between a SOAP handler and
the target application program when it is invoked with a channel interface. When the
target is invoked with a COMMAREA interface, the channel is not available to the
target application program..

The channel (named DFHAHC-V1) used by the application interface passes the
following containers:

DFHWS-XMLNS
Contains a list of name-value pairs that map namespace prefixes to
namespaces.

v On input, the list contains the namespaces that are in scope from the
SOAP envelope.

v On output, the list contains the namespace data that is assumed to be in
the envelope tag.

DFHWS-BODY
Contains the body section of the SOAP envelope. Typically, the application
will modify the contents. If the application does not modify the contents, the
application handler program must update the contents of this container,
even if it's putting the same content back into the container before returning
to the terminal handler.

DFHNORESPONSE
In the request phase of a service requester pipeline, indicates that the

Chapter 7. Creating the Web services infrastructure 103

service provider is not expected to return a response. The contents of
container DFHNORESPONSE are undefined; message handlers that need
to know if the service provider is expected to return a response need only
determine if the container is present or not:

v If container DFHNORESPONSE is present, then no response is
expected.

v If container DFHNORESPONSE is absent, then a response is expected.

The channel also passes all the context containers that were passed to the calling
message handler. A header processing program may add containers to the channel;
the added containers are passed as user containers to the next handler in the
pipeline.

Dynamic routing of inbound requests in a terminal handler
When the terminal handler of a service provider pipeline is one of the
CICS-supplied SOAP message handlers, the target application handler program
specified in container DFHWS-APPHANDLER is, in some cases, eligible for
dynamic routing. All pipeline processing prior to the application handler program is
always performed locally in the CICS region that received the SOAP message.

The transaction that runs the target application handler program is eligible for
routing when one of the following is true:

v The transaction under which the pipeline is processing the message is defined as
DYNAMIC or REMOTE. This transaction is defined in the URIMAP that is used to
map the URI from the inbound SOAP message.

v A program in the pipeline has changed the contents of container
DFHWS-USERID from its initial value.

v A program in the pipeline has changed the contents of container
DFHWS-TRANID from its initial value.

v A WS-AT SOAP header exists in the inbound SOAP message.

In all of the above scenarios, a task switch occurs during the pipeline processing.
The second task runs under the transaction specified in the DFHWS-TRANID
container. This task switch provides an opportunity for dynamic routing to take
place, but only if MRO is used to connect the CICS regions together. In addition,
the CICS region that you are routing to must support channels and containers.

The routing will only take place if the TRANSACTION definition for the transaction
named in DFHWS-TRANID specifies one of the following sets of attributes:

DYNAMIC(YES)
The transaction is routed using the distributed routing model, in which the
routing program is specified in the DSRTPGM system initialization parameter.

DYNAMIC(NO) REMOTESYSTEM(sysid)
The transaction is routed to the system identified by sysid.

For more information, see the CICS Customization Guide.

For applications deployed with the CICS Web services assistant, there is a second
opportunity to dynamically route the request, at the point where CICS links to the
user's program. At this point, the request is routed using the dynamic routing model,
in which the routing program is specified in the DTRPGM system initialization
parameter. Eligibility for routing is determined, in this case, by the characteristics of
the program. If you are using a channel and containers when linking to the

104 Web Services Guide

program, you can only dynamically route the request to CICS regions that are at
V3.1 or higher. If you are using a COMMAREA, this restriction does not apply.

For more information, see the CICS Customization Guide.

Containers used in the pipeline
A pipeline typically consists of a number of message handler programs and, when
the CICS-supplied SOAP message handlers are used, a number of header
processing programs. CICS uses containers to pass information to and from these
programs. The programs also use containers to communicate with other programs
in the pipeline.

The CICS pipeline links to the message handlers and to the header processing
programs using a channel with a number of containers. Some containers are
optional, others are required by all message handlers, and others are used by some
message handlers, and not by others.

Before a handler is invoked, some or all of the containers are populated with
information which the handler can use to perform its work. The containers returned
by the handler determine the subsequent processing, and are passed on to later
handlers in the pipeline.

The containers can be categorized as:

Control containers
These are essential to the operation of the pipeline. Handlers can use the
control containers to modify the sequence in which the handlers are
processed. The names of the control containers are defined by CICS, and
begin with the characters DFH.

Context containers
These contain information about the environment in which the handlers are
called. CICS puts information in these containers before it invokes the first
message handler, but, in some cases, the handlers are free to change the
contents, or delete the containers. Changes to the context containers do not
directly affect the sequence in which the handlers are invoked. The names
of the context containers are defined by CICS, and begin with the
characters DFH.

Header processing program containers
These contain information that is used by header processing programs that
are invoked from the CICS-supplied SOAP message handlers.

Security containers
These contain information that are used by the Trust client interface and the
security message handler to process security tokens using a Security Token
Service (STS). The names of the security containers are defined by CICS,
and begin with the characters DFH.

Generated containers
These contain the data from the SOAP message, such as variable arrays
and long strings, that are passed to and from the application program for
processing. CICS automatically creates these containers during pipeline
processing, and the names begin with the characters DFH.

User containers
These contain information which one message handler needs to pass to
another. The use of user containers is entirely a matter for the message

Chapter 7. Creating the Web services infrastructure 105

handlers. You can choose your own names for these containers, but you
must not use names that start with DFH.

The control containers
The control containers are essential to the operation of the pipeline. Handlers can
use the control containers to modify the sequence in which the handlers are
processed.

Container DFHERROR
DFHERROR is a container of DATATYPE(BIT) that is used to convey information
about pipeline errors to other message handlers.

 Table 3. Structure of container DFHERROR. All fields in the structure contain character
data.

Field name Length (bytes) Contents

PIISNEB-MAJOR-VERSION 1 “1”

PIISNEB-MINOR-VERSION 1 “1”

PIISNEB-ERROR-TYPE 1 A numeric value denoting the
type of error. The values are
described in Table 4.

PIISNEB-ERROR-MODE 1
P The error occurred

in a provider
pipeline

R The error occurred
in a requester
pipeline

T The error occurred
in a Trust client

PIISNEB-ABCODE 4 The abend code when the
error is associated with a
transaction abend.

PIISNEB-ERROR-
CONTAINER1

16 The name of the container
when the error is associated
with a container.

PIISNEB-ERROR-
CONTAINER2

16 The name of the second
container when the error is
associated with more than
one container.

PIISNEB-ERROR-NODE 8 The name of the handler
program in which the error
occurred.

 Table 4. Values for field PIISNEB-ERROR-TYPE

Value of PIISNEB-ERROR-TYPE Meaning

1 The handler program abended. The abend
code is in field PIISNEB-ABCODE.

2 A container required by the handler was
empty. The name of the container is in field
PIISNEB-ERROR-CONTAINER1.

106 Web Services Guide

||
|

Table 4. Values for field PIISNEB-ERROR-TYPE (continued)

Value of PIISNEB-ERROR-TYPE Meaning

3 A container required by the handler was
missing. The name of the container is in field
PIISNEB-ERROR-CONTAINER1.

4 Two containers were passed to the handler
when only one was expected. The names of
the containers are in fields
PIISNEB-ERROR-CONTAINER1 and
PIISNEB-ERROR-CONTAINER2.

5 An attempt to link to the target program
failed. If target program abended, the abend
code is in container PIISNEB-ABCODE.

6 The pipeline manager failed to communicate
with a remote server due to an error in the
underlying transport.

7 There is an error with the
DFHWS-STSACTION container. It is missing,
corrupt or contains an invalid value.

8 DFHPIRT failed to start the pipeline.

9 DFHPIRT failed to put a message in a
container.

10 DFHPIRT failed to get a message from a
container.

11 An unhandled error has occurred.

The COBOL declaration of the container's structure is this:
01 PIISNEB.
 02 PIISNEB-MAJOR-VERSION PIC X(1).
 02 PIISNEB-MINOR-VERSION PIC X(1).
 02 PIISNEB-ERROR-TYPE PIC X(1).
 02 PIISNEB-ERROR-MODE PIC X(1).
 02 PIISNEB-ABCODE PIC X(4).
 02 PIISNEB-ERROR-CONTAINER1 PIC X(16).
 02 PIISNEB-ERROR-CONTAINER2 PIC X(16).
 02 PIISNEB-ERROR-NODE PIC X(8).

The language copybooks that map the container are:

 Table 5.

Language Copybook

COBOL DFHPIUCO

PL/I DFHPIUCL

C and C++ dfhpiuch.h

Assembler DFHPIUCD

Container DFHFUNCTION
DFHFUNCTION is a container of DATATYPE(CHAR) that contains a 16-character
string that indicates where in a pipeline a program is being invoked.

The string has one of the following values. The rightmost character positions are
padded with blank characters.

Chapter 7. Creating the Web services infrastructure 107

||
|
|

||

||
|

||
|

||

RECEIVE-REQUEST
The handler is a non-terminal handler in a service provider pipeline, and is
being invoked to process an inbound request message. On entry to the handler,
the message is in control container DFHREQUEST.

SEND-RESPONSE
The handler is a non-terminal handler in a service provider pipeline, and is
being invoked to process an outbound response message. On entry to the
handler, the message is in control container DFHRESPONSE.

SEND-REQUEST
The handler is being invoked by a pipeline that is sending a request; that is, in
a service requester that is processing an outbound message

RECEIVE-RESPONSE
The handler is being invoked by a pipeline that is receiving a response; that is,
in a service requester that is processing an inbound message

PROCESS-REQUEST
The handler is being invoked as the terminal handler of a service provider
pipeline

NO-RESPONSE
The handler is being invoked after processing a request, when there is no
response to be processed.

HANDLER-ERROR
The handler is being invoked because an error has been detected.

In a service provider pipeline that processes a request and returns a response, the
values of DFHFUNCTION that occur are RECEIVE-REQUEST, PROCESS-REQUEST, and
SEND-RESPONSE. Figure 23 shows the sequence in which the handlers are invoked,
and the values of DFHFUNCTION that are passed to each handler.

 Sequence Handler DFHFUNCTION

1 Handler 1 RECEIVE-REQUEST

2 Handler 2 RECEIVE-REQUEST

3 Handler 3 PROCESS-REQUEST

4 Handler 2 SEND-RESPONSE

5 Handler 1 SEND-RESPONSE

In a service requester pipeline, that sends a request and receives a response, the
values of DFHFUNCTION that occur are SEND-REQUEST and RECEIVE-RESPONSE.
Figure 24 on page 109 shows the sequence in which the handlers are invoked, and

CICS
Application

program

Request

Response

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
requester

CICS Transaction Server

Figure 23. Sequence of handlers in a service provider pipeline

108 Web Services Guide

the values of DFHFUNCTION that are passed to each handler.

 Sequence Handler DFHFUNCTION

1 Handler 1 SEND-REQUEST

2 Handler 2 SEND-REQUEST

3 Handler 3 SEND-REQUEST

4 Handler 3 RECEIVE-RESPONSE

5 Handler 2 RECEIVE-RESPONSE

6 Handler 1 RECEIVE-RESPONSE

The values of DFHFUNCTION that can be encountered in a given message handler
depends upon whether the pipeline is a provider or requester, whether the pipeline
is in the request or response phase, and whether the handler is a terminal handler
or a non-terminal handler. The following table summarizes when each value can
occur:

 Value of
DFHFUNCTION

Provider or requester
pipeline

Pipeline phase Terminal or
non-terminal handler

RECEIVE-REQUEST Provider Request phase Non-terminal

SEND-RESPONSE Provider Response phase Non-terminal

SEND-REQUEST Requester Request phase Non-terminal

RECEIVE-RESPONSE Requester Response phase Non-terminal

PROCESS-REQUEST Provider Request phase Terminal

NO-RESPONSE Both Response phase Non-terminal

HANDLER-ERROR Both Both Both

Container DFHHTTPSTATUS
DFHHTTPSTATUS is a container of DATATYPE(CHAR) that is used to specify the
HTTP status code and status text for a message produced in the response phase
of a service provider pipeline.

The content of the DFHHTTPSTATUS container must be the same as the initial
status line of an HTTP response message, which has the following structure:

HTTP/1.1 nnn tttttttt

HTTP/1.1
The version and release of HTTP.

nnn The 3-digit decimal HTTP status code to return.

Request

Response

CICS
Application

program

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
provider

CICS Transaction Server

Figure 24. Sequence of handlers in a service requester pipeline

Chapter 7. Creating the Web services infrastructure 109

|
|
|
|

|
|

|
|

|
|

||

tttttttt
The human-readable status text associated with the status code nnn.

The following string is an example of the content:

 HTTP/1.1 412 Precondition Failed

The DFHHTTPSTATUS container is ignored when the pipeline uses the WebSphere
MQ transport.

Container DFHMEDIATYPE
DFHMEDIATYPE is a container of DATATYPE(CHAR) that is used to specify the media
type for a message produced in the response phase of a service provider pipeline.

The content of the DFHMEDIATYPE container must consist of a type and a subtype
separated by a slash character. The following strings show two examples of correct
content for the DFHMEDIATYPE container:
text/plain

image/svg+xml

The DFHMEDIATYPE container is ignored when the pipeline uses the WebSphere
MQ transport.

Container DFHNORESPONSE
DFHNORESPONSE is a container of DATATYPE(CHAR) that, in the request phase
of a service requester pipeline, indicates that the service provider is not expected to
return a response.

The contents of container DFHNORESPONSE are undefined; message handlers
that need to know if the service provider is expected to return a response need only
determine if the container is present or not:

v If container DFHNORESPONSE is present, then no response is expected.

v If container DFHNORESPONSE is absent, then a response is expected.

This information is provided, initially, by the service requester application, based
upon the protocol used with the service provider. Therefore, it is inadvisable to
delete this container in a message handler (or to create it, if it does not exist), as
doing so may disturb the protocol between the end points.

Other than in the request phase of a service requester pipeline, the use of this
container is not defined.

Container DFHREQUEST
DFHREQUEST is a container of DATATYPE(CHAR) that contains the request
message that is processed in the request phase of a pipeline.

If one of the CICS-supplied SOAP message handlers is configured in the pipeline,
the container DFHREQUEST is updated to include the SOAP message headers in
the SOAP envelope. If the message is constructed by a CICS-supplied SOAP
message handler, and has not been changed subsequently, DFHREQUEST
contains a complete SOAP envelope and all of its contents is in the UTF-8 code
page.

Container DFHREQUEST is present in the request when a message handler is
invoked, and container DFHFUNCTION contains RECEIVE-REQUEST or SEND-REQUEST.

110 Web Services Guide

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|

|
|

In this situation, the normal protocol is to return DFHREQUEST to the pipeline with
the same or modified contents. Processing of the pipeline's request phase
continues normally, with the next message handler program in the pipeline (if there
is one).

As an alternative, your message handler can delete container DFHREQUEST, and
put a response in container DFHRESPONSE . If you do this, the normal sequence
of processing is reversed, and the processing continues with the response phase of
the pipeline.

Container DFHRESPONSE
DFHRESPONSE is a container of DATATYPE(CHAR) that contains the response
message that is processed in the response phase of a pipeline. If the message was
constructed by a CICS-supplied SOAP message handler, and has not been
changed subsequently, DFHRESPONSE contains a complete SOAP envelope and
all its contents in UTF-8 code page.

Container DFHRESPONSE is present when a message handler is invoked, and
container DFHFUNCTION contains SEND-RESPONSE or RECEIVE-RESPONSE.

In this situation, the normal protocol is to return DFHRESPONSE to the pipeline
with the same or modified contents. Pipeline processing continues normally, with
the next message handler program in the pipeline (if there is one).

Container DFHRESPONSE is also present (with a length of zero) when
DFHFUNCTION contains RECEIVE-REQUEST, SEND-REQUEST, PROCESS-REQUEST, or
HANDLER-ERROR.

How containers control the pipeline protocols
The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE
containers together control the pipeline protocols.

During the two phases of a pipeline's execution (the request phase and the
response phase) the value of DFHFUNCTION determines which control containers
are passed to each message handler:

 DFHFUNCTION Context DFHREQUEST DFHRESPONSE

RECEIVE-REQUEST Service provider;
request phase

Present (length >
0)

Present (length =
0)

SEND-RESPONSE Service provider;
response phase

Absent Present (length >
0)

SEND-REQUEST Service requester;
request phase

Present (length >
0)

Present (length =
0)

RECEIVE-RESPONSE Service requester;
response phase

Absent Present (length >
0)

PROCESS-REQUEST Service provider;
terminal handler

Present (length >
0)

Present (length =
0)

HANDLER-ERROR Service requester
or provider; either
phase

Absent Present (length =
0)

NO-RESPONSE Service requester
or provider;
response phase

Absent Absent

Chapter 7. Creating the Web services infrastructure 111

Subsequent processing is determined by which containers your message handler
passes back to the pipeline:

During the request phase

v Your message handler can return container DFHREQUEST. Processing
continues in the request phase with the next handler. The length of the
data in the container must not be zero.

v Your message handler can return container DFHRESPONSE. Processing
switches to the response phase, and the same handler is invoked with
DFHFUNCTION set to SEND-RESPONSE in a service provider, and
RECEIVE-RESPONSE in a service requester. The length of the data in
the container must not be zero.

v Your message handler can return no containers. Processing switches to
the response phase, and the same handler is invoked with
DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

v Your message handler can return container DFHRESPONSE. Processing
switches to the response phase, and the previous handler is invoked with
a new value of DFHFUNCTION (SEND-RESPONSE). The length of the
data in the container must not be zero.

v Your message handler can return no containers. Processing switches to
the response phase, and the previous handler is invoked with a new
value of DFHFUNCTION (NO-RESPONSE).

During the response phase

v Your message handler can return container DFHRESPONSE. Processing
continues in the response phase, and next handler is invoked. The length
of the data in the container must not be zero.

v Your message handler can return no containers. Processing continues in
the response phase, and the next handler in sequence is invoked with a
new value of DFHFUNCTION (NO-RESPONSE).

Important: During the request phase, your message handler can return
DFHREQUEST or DFHRESPONSE, but not both. Since both
containers are present when your message handler is invoked, you
must delete one of them.

This table shows the action taken by the pipeline for all values of DFHFUNCTION
and all combinations of DFHREQUEST and DFHRESPONSE returned by each
message handler.

112 Web Services Guide

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

RECEIVE-REQUEST Service
provider;
request phase

Present (length
> 0)

Present (error)

Absent Invoke the next handler
with function
RECEIVE-REQUEST

Present (length
= 0)

Not applicable (error)

Absent Present (length
> 0)

Switch to response
phase, and invoke the
same handler with
function
SEND-RESPONSE

Present (length
= 0)

(error)

Absent Invoke the same
handler with function
NO-RESPONSE

SEND-RESPONSE Service
provider;
response phase

Not applicable Present (length
> 0)

Invoke the previous
handler with function
SEND-RESPONSE

Present (length
= 0)

(error)

Absent Invoke the same
handler with function
NO-RESPONSE

SEND-REQUEST Service
requester;
request phase

Present (length
> 0)

Present (length
≥ 0)

(error)

Absent Invoke the next handler
with function
SEND-REQUEST

Present (length
= 0)

Not applicable (error)

Absent Present (length
> 0)

Switch to response
phase, and invoke the
previous handler with
function
RECEIVE-RESPONSE

Present (length
= 0)

(error)

Absent Invoke the same
handler with function
NO-RESPONSE

RECEIVE-RESPONSE Service
requester;
response phase

Not applicable Present (length
> 0)

Invoke the previous
handler with function
RECEIVE-RESPONSE

Present (length
= 0)

(error)

Absent Invoke the same
handler with function
NO-RESPONSE

PROCESS-REQUEST Service
provider;
terminal handler

Not applicable Present (length
> 0)

Invoke the previous
handler with function
RECEIVE-RESPONSE

Present (length
= 0)

(error)

Absent Invoke the same
handler with function
NO-RESPONSE

Chapter 7. Creating the Web services infrastructure 113

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

HANDLER-ERROR Service
requester or
provider; either
phase

Not applicable Present (length
> 0)

Invoke the previous
handler with function
SEND-RESPONSE or
RECEIVE-RESPONSE

Present (length
= 0)

(error)

Absent Invoke the same
handler with function
NO-RESPONSE

The context containers
In some situations, user-written message handler programs, and header processing
programs, need information about the context in which they are invoked. CICS
provides this information in a set of context containers which are passed to the
programs.

CICS initializes the contents of each context container, but, in some cases, you can
change the contents in your message handler programs, and header processing
program. For example, in a service provider pipeline in which the terminal handler is
one of the CICS-provided SOAP handlers, you can change the userid and
transaction ID of the target application program by modifying the contents of the
appropriate context containers.

Some of the information provided in the containers applies only to a service
provider, or only to a service requester, and therefore some of the context
containers are not available in both.

Container DFH-HANDLERPLIST
DFH-HANDLERPLIST is a container of DATATYPE(CHAR) that is initialized with the
contents of the appropriate <handler_parameter_list> element of the pipeline
configuration file.

If you have not specified a handler parameter list in the pipeline configuration file,
then the container is empty (that is, it has a length of zero).

You cannot change the contents of this container.

Container DFH-SERVICEPLIST
DFH-SERVICEPLIST is a container of DATATYPE(CHAR) that contains the
contents of the <service_parameter_list> element of the pipeline configuration file.

If you have not specified a service parameter list in the pipeline configuration file,
then the container is empty (that is, it has a length of zero).

You cannot change the contents of this container.

Container DFHWS-APPHANDLER
DFHWS-APPHANDLER is a container of DATATYPE(CHAR) that, in a service
provider pipeline, is initialized with the contents of the <apphandler> element of the
pipeline configuration file.

In the terminal handler of the pipeline, the CICS-supplied SOAP handlers get the
name of the target application program from this container.

114 Web Services Guide

You can change the contents of this container in your message handlers or header
processing programs.

CICS does not provide this container in a service requester pipeline.

Container DFHWS-DATA
DFHWS-DATA is a container of DATATYPE(BIT) that is used in service requester
applications and optionally in service provider applications that are deployed with
the CICS Web services assistant. It holds the top level data structure that is
mapped to and from a SOAP request.

In service requester applications, container DFHWS-DATA must be present when
the service requester program issues an EXEC CICS INVOKE WEBSERVICE command.
When the command is issued, CICS converts the data structure that is in the
container into a SOAP request. When the SOAP response is received, CICS
converts it into another data structure that is returned to the application in the same
container.

In service provider applications, container DFHWS-DATA is used by default when
you do not specify the CONTID parameter on the DFHLS2WS or DFHWS2LS batch
jobs. CICS converts the SOAP request message into the data structure that is
passed to the application in the DFHWS-DATA container. The response is then
saved in the same container, and CICS converts the data structure into a SOAP
response message.

Container DFHWS-MEP
DFHWS-MEP is a container of DATATYPE(BIT) that holds a representative value
for the message exchange pattern (MEP) of an inbound or outbound SOAP
message. This value is one byte in length.

CICS supports four message exchange patterns for both service requesters and
service providers. The message exchange pattern is defined in the WSDL 2.0
document for the Web service and determines whether CICS should respond as the
provider, and if CICS should expect a response from an external provider. In
requester mode, the time that CICS waits for a response is configured using the
PIPELINE resource.

If you used the CICS Web services assistant to deploy your application, this
container is populated by CICS:

v In a service provider pipeline, this container is populated by the application
handler DFHPITP when it receives the inbound message from the terminal
handler.

v In a service requester pipeline, this container is populated when the application
uses the INVOKE WEBSERVICE command.

If the application uses the DFHPIRT channel to start the pipeline, the application is
responsible for populating this container. If the container is not present or has no
value, CICS assumes that the request is using either the In-Out or In-Only MEP,
depending on whether the DFHNORESPONSE container is present in the channel.

 Table 6. Values that can appear in container DFHWS-MEP

Value MEP URI

1 In-Only http://www.w3.org/ns/wsdl/in-only

2 In-Out http://www.w3.org/ns/wsdl/in-out

Chapter 7. Creating the Web services infrastructure 115

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

||

|||

|||

|||

Table 6. Values that can appear in container DFHWS-MEP (continued)

Value MEP URI

4 Robust-In-Only http://www.w3.org/ns/wsdl/robust-in-only

8 In-Optional-Out http://www.w3.org/ns/wsdl/in-opt-out

Container DFHWS-OPERATION
DFHWS-OPERATION is a container of DATATYPE(CHAR) that is normally used in
a service provider application deployed with the CICS Web services assistant. It
holds the name of the operation that is specified in a SOAP request.

In a service provider, the container supplies the name of the operation for which the
application is being invoked. It is populated when a CICS-supplied SOAP message
handler passes control to the target application program, and is visible only when
the target program is invoked with a channel interface.

In a service requester pipeline, the container holds the name specified in the
OPERATION option of the EXEC CICS INVOKE WEBSERVICE command. The
container is not available to the application that issues the command.

Container DFHWS-PIPELINE
DFHWS-PIPELINE is a container of DATATYPE(CHAR) that contains the name of
the PIPELINE in which the program is being run.

You cannot change the contents of this container.

Container DFHWS-RESPWAIT
DFHWS-RESPWAIT is a container of DATATYPE(BIT) that contains an unsigned
fullword binary number to represent the timeout in seconds that applies to outbound
Web service request messages.

The initial value of this container is based upon the RESPWAIT attribute of the
PIPELINE resource, but you can change this value during pipeline processing if
appropriate.

This container is used only in requester mode pipelines.

Container DFHWS-SOAPLEVEL
DFHWS-SOAPLEVEL is a container of DATATYPE(BIT) that holds information
about the level of SOAP used in the message that you are processing.

The container hold a binary fullword that indicates which level of SOAP is used for
a Web service request or response:

1 The request or response is a SOAP 1.1 message.

2 The request or response is a SOAP 1.2 message.

10 The request or response is not a SOAP message.

You cannot change the contents of this container.

Container DFHWS-TRANID
DFHWS-TRANID is a container of DATATYPE(CHAR) that is initialized with the
transaction ID of the task in which the pipeline is running.

116 Web Services Guide

|

|||

|||

|||
|

|

|
|
|
|

|
|
|

|

If you change the contents of this container in a service provider pipeline in which
the terminal handler is one of the CICS-supplied SOAP handlers (and you do so
before control is passed to the target application program), the target application will
execute in a new task with the new transaction ID.

Container DFHWS-URI
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the Web
service.

In a service provider pipeline, CICS extracts the relative URI from the incoming
message and places it in the DFHWS-URI container. For example, if the URI of the
Web services is http://example.com/location/address or jms://
queue?destination=INPUT.QUEUE&targetService=/location/address, then the
relative URI is /location/address.

In a service requester pipeline, CICS puts the URI that is specified on the INVOKE
WEBSERVICE command, or if missing the WEBSERVICE resource definition, in the
DFHWS-URI container.

Container DFHWS-USERID
DFHWS-USERID is a container of DATATYPE(CHAR) that is initialized with the
user ID of the task in which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which
the terminal handler is one of the CICS-supplied SOAP handlers (and you do so
before control is passed to the target application program), the target application will
execute in a new task that is associated with the new userid. Unless you change
the contents of container DFHWS-TRANID, the new task has the same transaction
ID as the pipeline's task.

Container DFHWS-WEBSERVICE
DFHWS-WEBSERVICE is a container of DATATYPE(CHAR) that is used in a
service provider pipeline only. It holds the name of the WEBSERVICE that specifies
the execution environment when the target application has been deployed using the
Web services assistant.

CICS does not provide this container in a service requester pipeline.

Container DFHWS-CID-DOMAIN
DFHWS-CID-DOMAIN is a container of DATATYPE(CHAR). It contains the domain
name that is used to generate content-ID values for referencing binary attachments.

The value of the domain name is cicsts by default. You can override the value by
specifying the <mime_options> element in the pipeline configuration file.

You cannot change the contents of this container.

Container DFHWS-MTOM-IN
DFHWS-MTOM-IN is a container of DATATYPE(BIT) that holds information about
the specified options for the <cics_mtom_handler> element of the pipeline
configuration file, and information about the message format that has been received
in the pipeline.

It contains the information to process an inbound MTOM message in the pipeline.
The inbound message could be a request message from a Web service requester
or a response message from a Web service provider.

Chapter 7. Creating the Web services infrastructure 117

|
|
|

|
|

|

|
|
|
|
|

|
|
|

If you do not specify a <cics_mtom_handler> element in the pipeline configuration
file, or if a SOAP message is received instead of an MTOM message, this container
is not created.

If Web services security is configured in the pipeline, or if validation is switched on
for a Web service, the contents of field XOP_MODE in DFHWS-MTOM-IN can be
overridden by CICS when the container is created. For example, if you configure
the pipeline to process the content of MTOM messages in direct mode, and you
then switch validation on for the Web service, CICS overrides the defined value in
the pipeline configuration file and sets the XOP processing to run in compatibility
mode. This is due to the restrictions in support for processing XOP documents and
binary attachments in the pipeline.

You cannot change the contents of this container.

 Table 7. Structure of container DFHWS-MTOM-IN

Field name
Length
(bytes) Contents

MTOM_STATUS 4 Contains the value "1", indicating that the message
received by CICS is in MTOM format.

MTOMNOXOP_STATUS 4 Contains one of the following values:

0 The MTOM message contains binary
attachments.

1 The MTOM message does not contain
binary attachments.

XOP_MODE 4 Contains one of the following values:

0 No XOP processing takes place.

1 XOP processing takes place in compatibility
mode.

2 XOP processing takes place in direct mode.

Container DFHWS-MTOM-OUT
DFHWS-MTOM-OUT is a container of DATATYPE(BIT) that holds information about
the specified options for the <cics_mtom_handler> element of the pipeline
configuration file.

It contains the information to process an outbound MTOM message in the pipeline,
whether it is a response message for a Web service requester or a request
message for a Web service provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration
file, or if the <mtom_options> element in the pipeline configuration file has the
attribute send_mtom="no", this container is not created.

In provider mode, this container is created at the same time as the
DFHWS-MTOM-IN container. If the <mtom_options> element in the pipeline
configuration file has the attribute send_mtom="same", the MTOM_STATUS field is
set to indicate whether the Web service requester wants an MTOM or SOAP
response message.

If Web services security is configured in the pipeline, or if validation is switched on
for a Web service, the XOP_MODE field of DFHWS-MTOM-OUT can be changed
by CICS when the container is created. For example, if you configure the pipeline to

118 Web Services Guide

|
|
|

|
|
|
|
|
|
|
|

|

||

|
|
||

|||
|

|||

||
|

||
|

|||

||

||
|

||
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

process the XOP document and any binary attachments using direct mode, and you
then switch validation on for a Web service, CICS overrides the defined value in the
pipeline configuration file and sets the XOP processing to run in compatibility mode
when it creates the container. This is due to the restrictions in support for
processing XOP documents and binary attachments in the pipeline.

You cannot change the contents of this container.

 Table 8. Structure of container DFHWS-MTOM-OUT

Field name
Length
(bytes) Contents

MTOM_STATUS 4 Indicates whether MTOM is enabled:

0 MTOM is not enabled. The outbound message
should be sent in SOAP format.

1 MTOM is enabled. The outbound message
should be sent in MTOM format

MTOMNOXOP_STATUS 4 Indicates whether to use MTOM when there are no
binary attachments:

0 Do not send an MTOM message when there
are no binary attachments.

1 Send an MTOM message when there are no
binary attachments.

XOP_MODE 4 Indicates what XOP processing should take place:

0 No XOP processing takes place.

1 XOP processing takes place in compatibility
mode.

2 XOP processing takes place in direct mode.

Container DFHWS-WSDL-CTX
DFHWS-WSDL-CTX is a container of DATATYPE(CHAR), that is used in either a
service provider or a service requester application deployed with the CICS Web
services assistant. It holds WSDL context information that can be used for
monitoring purposes.

DFHWS-WSDL-CTX holds the following context information for the WSDL
document:

v The name and namespace of the operation for which the application is being
invoked.

v If known, the name and namespace for the WSDL 1.1 port or WSDL 2.0 endpoint
that is being used.

These values are separated by space characters. DFHWS-WSDL-CTX is populated
by CICS only at runtime level 2.1 and above.

If you used the CICS Web services assistant to deploy your application, this
container is populated by CICS:

v In a service provider pipeline, this container is populated by the application
handler DFHPITP when it receives the inbound message from the terminal
handler.

v In a service requester pipeline, this container is populated when the application
uses the INVOKE WEBSERVICE command.

Chapter 7. Creating the Web services infrastructure 119

|
|
|
|
|

|

||

|
|
||

|||

||
|

||
|

|||
|

||
|

||
|

|||

||

||
|

||
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

If the application uses the DFHPIRT program to start the pipeline, the application
populates the DFHWS-WSDL-CTX container if required.

Container DFHWS-XOP-IN
DFHWS-XOP-IN is a container of DATATYPE(BIT). It contains a list of references to
the binary attachments that have been unpackaged from an inbound MIME
message and placed in containers using XOP processing.

Each attachment record in the DFHWS-XOP-IN container consists of:

v The 16-byte name of the container that holds the MIME headers.

v The 16-byte name of the container that holds the binary attachment.

v The 2-byte length of the content-ID, in signed halfword binary format.

v The content-ID, including the < and > delimiters, stored as an ASCII character
string.

You cannot change the contents of this container.

Container DFHWS-XOP-OUT
DFHWS-XOP-OUT is a container of DATATYPE(BIT). It contains a list of references
to the containers that hold binary attachments. The binary attachments are
packaged into an outbound MIME message by the MTOM handler program.

Each attachment record in the DFHWS-XOP-OUT container consists of:

v The 16-byte name of the container that holds the MIME headers for the binary
attachment.

v The 16-byte name of the container that holds the binary attachment.

v The 2-byte length of the content-ID, in signed halfword binary format.

v The content-ID, including the < and > delimiters, stored as an ASCII character
string.

You cannot change the contents of this container.

The security containers
Security containers are used on the DFHWSTC-V1 channel to send and receive
identity tokens from a Security Token Service (STS) such as Tivoli Federated
Identity Manager. This interface is called the Trust client interface and can be used
in Web service requester and provider pipelines.

Container DFHWS-IDTOKEN
DFHWS-IDTOKEN is a container of DATATYPE(CHAR). It contains the token that
the Security Token Service (STS) should validate or use to issue an identity token
for the message.

The token should be in XML format.

This container should only be used with channel DFHWSTC-V1 for the Trust client
interface.

Container DFHWS-RESTOKEN
DFHWS-RESTOKEN is a container of DATATYPE(CHAR). It contains the response
from the Security Token Service (STS).

The response depends on the action that was requested from the STS in the
DFHWS-STSACTION container.

120 Web Services Guide

|
|

|
|
|
|

|

|

|

|

|
|

|

v If the action is issue, this container holds the token that the STS has exchanged
for the one that was sent in the DFHWS-IDTOKEN container.

v If the action is validate, this container holds a URI to indicate whether the
security token that was sent in the DFHWS-IDTOKEN container is valid or
invalid. The URIs that can be returned are:

 URI Description

http://schemas.xmlsoap.org/ws/2005/02/
trust/status/valid

The security token is valid.

http://schemas.xmlsoap.org/ws/2005/02/
trust/status/invalid

The security token is invalid.

This container is returned on the channel DFHWSTC-V1 when using the Trust client
interface.

Container DFHWS-SERVICEURI
DFHWS-SERVICEURI is a container of DATATYPE(CHAR). It contains the URI that
the Security Token Service (STS) should use as the AppliesTo scope.

The AppliesTo scope is used to determine which Web service the security token is
associated with.

This container should only be used with channel DFHWSTC-V1 for the Trust client
interface.

Container DFHWS-STSACTION
DFHWS-STSACTION is a container of DATATYPE(CHAR). It contains the URI of
the action that the Security Token Service (STS) should take to either validate or
issue a security token.

The URI values that you can specify in this container are:

 URI Description

http://schemas.xmlsoap.org/ws/2005/02/
trust/Issue

The STS should issue a token in exchange
for the one that is sent in the
DFHWS-IDTOKEN container.

http://schemas.xmlsoap.org/ws/2005/02/
trust/Validate

The STS should validate the token that is
sent in the DFHWS-IDTOKEN container.

This container should only be used with channel DFHWSTC-V1 for the Trust client
interface.

Container DFHWS-STSFAULT
DFHWS-STSFAULT is a container of DATATYPE(CHAR). It contains the error that
was returned by the Security Token Service (STS).

If an error occurs, the STS issues a SOAP fault. The contents of the SOAP fault are
returned in this container.

This container is returned on the channel DFHWSTC-V1 when using the Trust client
interface.

Chapter 7. Creating the Web services infrastructure 121

Container DFHWS-STSREASON
DFHWS-STSREASON is a container of DATATYPE(CHAR). It contains the contents
of the <wst:Reason> element, if this element is present in the response message
from the Security Token Service (STS).

The <wst:Reason> element contains an optional string that provides information
relating to the status of the validation request that was sent to the STS by CICS. If
the security token is invalid, the information provided by the STS in this element
could help you determine why this has occurred.

For more information, see the Web Services Trust Language specification that is
published at http://www.ibm.com/developerworks/library/specification/ws-trust/.

Container DFHWS-STSURI
DFHWS-STSURI is a container of DATATYPE(CHAR). It contains the absolute URI
of the Security Token Service (STS) that should be used to validate or issue an
identity token for the SOAP message.

The format of the URI is http://www.example.com:8080/TrustServer/
SecurityTokenService. You can use HTTP or HTTPS, depending on your security
requirements.

This container should only be used with channel DFHWSTC-V1 for the Trust client
interface.

Container DFHWS-TOKENTYPE
DFHWS-TOKENTYPE is a container of DATATYPE(CHAR). It contains the URI of
the requested token type that the Security Token Service (STS) should issue as an
identity token for the SOAP message.

You can specify any valid token type, but it must be supported by the STS.

This container should only be used with channel DFHWSTC-V1 for the Trust client
interface.

Containers generated by CICS
CICS generates containers to store data such as variable arrays and long strings.
These containers are created during pipeline processing and are used as input to,
or output from, the application program. These containers are prefixed with DFH.

The naming convention for these containers is to use the CICS module that created
them, combined with a numeric suffix to make the container name unique within the
request. The container names that occur during pipeline processing are:

DFHPICC-nnnnnnnn
Containers that are used to store strings and variable arrays, that are
passed to the application. This can also include binary data.

DFHPIII-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with
the MTOM message handler and is running in direct mode. These
containers are created when binary data is provided in a field rather than in
a container by the application program.

DFHPIMM-nnnnnnnn
Inbound attachment containers created during the processing of MIME
messages. These containers are generated by CICS when the MTOM

122 Web Services Guide

http://www.ibm.com/developerworks/library/specification/ws-trust/

message handler is enabled in the pipeline. When direct mode processing
is enabled, these containers may be passed through to the application
directly.

DFHPIXO-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with
the MTOM message handler and is running in compatibility mode.

The numbered container names start from 1 for each Web service request, for
example DFHPICC-00000001. However, if an application program uses INVOKE
WEBSERVICE to initiate more than one Web service request in the same channel, it is
possible that the containers returned to the application for one response could still
exist when a further request is made. In this situation, CICS checks to see if the
container already exists and increments the number of the generated container to
avoid a naming conflict.

User containers
These contain information which one message handler needs to pass to another.
The use of user containers is entirely a matter for the message handlers. You can
choose your own names for these containers, but you must not use names that
start with DFH.

Customizing pipeline processing
In addition to providing your own message handlers, you can also use a global user
exit point to customize the processing of provider mode pipelines.

You must understand the best practices for writing global user exit programs before
customizing the pipeline. You must be using the DFHPITP application handler in
your pipeline to use the global user exit point.

The XWSPRROO exit point enables you to access containers on the current
channel after the Web services provider application has issued the Web service
response message and before CICS creates the body of the response message.

1. Use the DFH$PIEX sample exit program to write your own global user exit
program. DFH$PIEX is in the SDFHSAMP library. You are recommended to
make the program threadsafe.

2. Enable the global user exit program.

3. Test your global user exit program to ensure it works correctly.

Chapter 7. Creating the Web services infrastructure 123

124 Web Services Guide

Chapter 8. Creating a Web service

You can expose existing CICS applications as Web services and create new CICS
applications to act as Web service providers or requesters.

Before you begin, ensure that you have correctly configured your CICS system to
support Web services and that you have created the necessary infrastructure to
support the deployment of your Web service. As part of your planning activities, you
should have also decided whether you want to use the Web services assistant,
which enables you to use the CICS Web services support at run time.

The CICS Web services assistant is a supplied utility that simplifies the process of
creating the necessary artifacts for a new Web service provider or service requester
application, or enabling an existing application as a Web service provider.

It can create a WSDL document from a simple language structure, or a language
structure from an existing WSDL document, and supports COBOL, C/C++ and PL/I.
It also generates information used to enable automatic runtime conversion of the
SOAP messages to containers and COMMAREAs, and vice versa, which is used by
the CICS Web services support during pipeline processing.

1. Create a Web service by either:

v Using the Web services assistant to create the Web service description or
language structures and deploy them into CICS. You can perform a PIPELINE
SCAN to automatically create the required CICS resources.

v Using WebSphere Developer for System z or the Java API to create the Web
service description or language structures and deploy them into CICS. Using
this method, you can also perform a PIPELINE SCAN to automatically create
the required CICS resources.

v Creating or changing an application program to handle the XML in the
inbound and outbound messages, including the data conversion, and
populate the correct containers in the pipeline. You must create the required
CICS resources manually.

2. Invoke the Web service to test that it works as you intended. If you are using
the Web services assistant to deploy your Web service, you can use the SET
WEBSERVICE command to turn validation on. This checks that the data is
converted correctly.

These steps are explained in more detail in the following section.

The CICS Web services assistant
The CICS Web services assistant is a set of batch utilities which can help you to
transform existing CICS applications into Web services and to enable CICS
applications to use Web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with the minimum of programming effort.

When you use the Web services assistant for CICS, you do not have to write your
own code for parsing inbound messages and for constructing outbound messages;
CICS maps data between the body of a SOAP message and the application
program's data structure.

© Copyright IBM Corp. 2005, 2011 125

The assistant can create a WSDL document from a simple language structure, or a
language structure from an existing WSDL document, and supports COBOL, C/C++,
and PL/I. It also generates information used to enable automatic runtime conversion
of the SOAP messages to containers and COMMAREAs, and vice versa.

The CICS Web services assistant comprises two utility programs:

DFHLS2WS
Generates a Web service binding file from a language structure. This utility
also generates a Web service description.

DFHWS2LS
Generates a Web service binding file from a Web service description. This
utility also generates a language structure that you can use in your
application programs.

The JCL procedures to run both programs are in the hlq.XDFHINST library.

DFHLS2WS: high-level language to WSDL conversion
The DFHLS2WS procedure generates a Web service description and a Web service
binding file from a high-level language data structure. You can use DFHLS2WS
when you expose a CICS application program as a service provider.

As per the W3C recommendation for WSDL documents, DFHLS2WS uses a top
level wrapper element to contain the body of the SOAP message. The wrapper
element takes the name of the WSDL operation and is represented as a
complexType in the WSDL document.

The job control statements for DFHLS2WS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHLS2WS

JOB Starts the job.

EXEC Specifies the procedure name (DFHLS2WS).

 DFHLS2WS requires sufficient storage to run a Java virtual machine (JVM).
You are advised to specify REGION=200M on the EXEC statement.

INPUT.SYSUT1 DD
Specifies the input. The input parameters are usually specified in the input
stream. However, they can be defined in a data set or in a member of a
partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in cataloged procedure DFHLS2WS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHLS2WS. The value
of this parameter is appended to /usr/lpp/ to produce a complete path name
of /usr/lpp/path.

 Usually, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR parameter.

126 Web Services Guide

PATHPREF=prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used on
other parameters. The default is the empty string.

 Usually, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM support.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2WS uses as a
temporary work space. The user ID under which the job runs must have read
and write permission to this directory.

 The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHLS2WS uses to construct the names of the
temporary workspace files.

 The default value is LS2WS

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file
system. The value of this parameter is appended to /usr/lpp/cicsts/ to
produce a complete path name of /usr/lpp/cicsts/path

 Usually, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary work space

DFHLS2WS creates the following three temporary files when it runs:

 tmpdir/tmpprefix.in

 tmpdir/tmpprefix.out

 tmpdir/tmpprefix.err

where

 tmpdir is the value specified in the TMPDIR parameter

 tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are:

 /tmp/LS2WS.in

 /tmp/LS2WS.out

 /tmp/LS2WS.err

DFHLS2WS does not lock access to the generated z/OS UNIX file names.
Therefore, if two or more instances of DFHLS2WS run concurrently, and use the
same temporary workspace files, nothing prevents one job from overwriting the
workspace files while another job is using them. Overwriting can lead to
unpredictable failures. Therefore, you are advised to devise a naming convention,
and operating procedures, that avoids this situation. For example, you can use the
system symbolic parameter SYSUID to generate workspace file names that are
unique to an individual user. These temporary files are deleted before the end of
the job.

Chapter 8. Creating a Web service 127

Input parameters for DFHLS2WS

�� PDSLIB=value
PDSCP=value

REQMEM=value

RESPMEM=value

 �

� LANG=COBOL
LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP

DFHREQUEST

DFHRESPONSE

STRUCTURE=(

,

)

request

response

 �

�

 PGMINT=CHANNEL
CONTID=value

PGMNAME=value

TRANSACTION=name

USERID=id

URI=value

PGMINT=COMMAREA

�

�
 MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

CHAR-VARYING=NO

MAPPING-LEVEL=1.2

MAPPING-LEVEL=2.0

CHAR-VARYING=NULL

CHAR-VARYING=NO

MAPPING-LEVEL=2.1

MAPPING-LEVEL=2.2

CHAR-VARYING=NULL

CHAR-VARYING=COLLAPSE

CHAR-VARYING=BINARY

 MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1

SOAPVER=

1.1

MINIMUM-RUNTIME-LEVEL=2.2

1.2

ALL

MINIMUM-RUNTIME-LEVEL=CURRENT

�

�

CCSID=value

REQUEST-NAMESPACE=value

RESPONSE-NAMESPACE=value

 SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=value

�

�
 WSDL=value

WSDL_1.1=value

WSDL_2.0=value

LOGFILE=value

 WSDLCP=LOCAL

WSDLCP=UTF-8

WSDL-NAMESPACE=value

��

Parameter use
v You can specify the input parameters in any order.

v Each parameter must start on a new line.

v A parameter, and its continuation character, if you use one, must not extend
beyond column 72; columns 73 to 80 must contain blanks.

v If a parameter is too long to fit on a single line, use an asterisk (*) character at
the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces, before the asterisk is considered part of the
parameter. For example:

WSBIND=wsbinddir*
/app1

is equivalent to

WSBIND=wsbinddir/app1

v A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an EBCDIC

128 Web Services Guide

||

||||||||||||||||||||||||

|||

||||||

|
|
|
|

CCSID that is supported by Java and z/OS conversion services. If you do not
specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

 You can use this parameter with any mapping level. However, if you want to
deploy the generated files into a CICS TS 3.1 region, you must apply APAR
PK23547 to achieve the minimum runtime level of code to install the Web
service binding file.

CHAR-VARYING=NO|NULL|COLLAPSE|BINARY
Specifies how character fields in the language structure are mapped when the
mapping level is 1.2 or higher. A character field in COBOL is a Picture clause of
type X, for example PIC(X) 10; a character field in C/C++ is a character array.
This parameter does not apply to Enterprise and Other PL/I language
structures. You can select these options:

NO Character fields are mapped to an xsd:string and are processed as
fixed-length fields. The maximum length of the data is equal to the
length of the field. NO is the default value for the CHAR-VARYING
parameter for COBOL and PL/I at mapping levels 2.0 and earlier.

NULL Character fields are mapped to an xsd:string and are processed as
null-terminated strings. CICS adds a terminating null character when
transforming from a SOAP message. The maximum length of the
character string is calculated as one character less than the length
indicated in the language structure. NULL is the default value for the
CHAR-VARYING parameter for C/C++.

COLLAPSE
Character fields are mapped to an xsd:string. Trailing white space in
the field is not included in the SOAP message. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at
mapping level 2.1 onwards.

BINARY
Character fields are mapped to an xsd:base64binary and are
processed as fixed-length fields. The BINARY value on the
CHAR-VARYING parameter is available only at mapping levels 2.1 and
onwards.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure used to represent a SOAP message.

LANG=COBOL
Specifies that the programming language of the high-level language structure is
COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure is
Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure is
a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure is
C.

Chapter 8. Creating a Web service 129

|
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|

||
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

LANG=CPP
Specifies that the programming language of the high-level language structure is
C++.

LOGFILE=value
The fully qualified z/OS UNIX name of the file into which DFHLS2WS writes its
activity log and trace information. DFHLS2WS creates the file, but not the
directory structure, if it does not already exist.

 Usually, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with DFHLS2WS.

MAPPING-LEVEL={1.0|1.1|1.2|2.0|2.1|2.2}
Specifies the level of mapping that DFHLS2WS uses when generating the Web
service binding file and Web service description. You can select these options:

1.0 This mapping level is the default. It indicates that the Web service
binding file is generated using CICS TS 3.1 mapping levels.

1.1 Use this mapping to regenerate a binding file at this specific level.

1.2 At this mapping level, you can use the parameter CHAR-VARYING to
control how character arrays are processed at runtime. VARYING and
VARYINGZ arrays are also supported in PL/I.

2.0 Use this mapping level in a CICS TS 3.2 region to take advantage of
the enhancements to the mapping between the language structure and
Web services binding file.

2.1 Use this mapping level with a CICS TS 3.2 region that has APAR
PK59794 applied. At this mapping level you can take advantage of the
new values for the CHAR-VARYING parameter, COLLAPSE and BINARY.
FILLER fields in COBOL and * fields in PL/I are systematically ignored
at this mapping level, the fields do not appear in the generated WSDL
document and an appropriate gap is left in the data-structures at run
time.

2.2 Use this mapping level with a CICS TS 3.2 region that has APAR
PK69738 applied to take advantage of mapping enhancements when
using DFHWS2LS.

For details of what is supported at each level of mapping, see “Mapping levels
for the CICS Web services assistant” on page 146.

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|2.0|2.1|2.2|CURRENT}
Specifies the minimum CICS runtime environment into which the Web service
binding file can be deployed. If you select a level that does not match the other
parameters that you have specified, you receive an error message. You can
select these options:

MINIMUM
The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

1.0 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. Some parameters are not available at this runtime level.

1.1 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You can
use a mapping level of 1.1 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

130 Web Services Guide

|

|

|

1.2 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547
applied. You can use a mapping level of 1.2 or below for the
MAPPING-LEVEL parameter. Some parameters are not available at this
runtime level.

2.0 The generated Web service binding file deploys successfully into a
CICS TS 3.2 region. You can use a mapping level of 2.0 or below for
the MAPPING-LEVEL parameter. Some parameters are not available at
this runtime level.

2.1 The generated Web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK59794 applied. You can use a
mapping level of 2.1 or below for the MAPPING-LEVEL parameter. You can
use any optional parameter at this level.

2.2 The generated Web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK69738 applied. With this runtime
level, you can use a mapping level of 2.2 or below for the
MAPPING-LEVEL parameter. You can use any optional parameter at this
level.

CURRENT
The generated Web service binding file deploys successfully into a
CICS region at the same runtime level as the one used to generate the
Web service binding file.

PDSLIB=value
Specifies the name of the partitioned data set that contains the high-level
language data structures to be processed. The data set members used for the
request and response are specified in the REQMEM and RESPMEM parameters
respectively.

Restriction: The records in the partitioned data set must have a fixed-length of
80 bytes.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or a Java
code page number. If this parameter is not specified, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

CHANNEL
CICS uses a channel interface to pass data to the target application
program.

 A single container is identified for the application data for both the input
and the output. Use the CONTID parameter to specify the name of this
container. The default name is DFHWS-DATA.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

Chapter 8. Creating a Web service 131

|

|
|
|

PGMNAME=value
Specifies the name of the CICS PROGRAM resource for the target application
program that will be exposed as a Web service. The CICS Web service support
will link to this program.

REQMEM=value
Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service request. For a service
provider, the Web service request is the input to the application program.

REQUEST-NAMESPACE=value
Specifies the namespace of the XML schema for the request message in the
generated Web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

RESPMEM=value
Specifies the name of the partitioned data set member which contains the
high-level language structure for the Web service response. For a service
provider, the Web service response is the output from the application program.

 Omit this parameter if there is no response, that is, for one way messages.

RESPONSE-NAMESPACE=value
Specifies the namespace of the XML schema for the response message in the
generated Web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

SOAPVER=1.1|1.2|ALL
Specifies the SOAP level to use in the generated Web service description. This
parameter is only available when the MINIMUM-RUNTIME-LEVEL is set to 2.0 or
above.

1.1 The SOAP 1.1 protocol should be used as the binding for the Web
service description.

1.2 The SOAP 1.2 protocol should be used as the binding for the Web
service description.

ALL Both the SOAP 1.1 or 1.2 protocol can be used as the binding for the
Web service description.

If you do not specify a value for this parameter, the default value depends on
the version of WSDL that you want to create:

v If you require only WSDL 1.1, the SOAP 1.1 binding is used.

v If you require only WSDL 2.0, the SOAP 1.2 binding is used.

v If you require both WSDL 1.1 and WSDL 2.0, both SOAP 1.1 and 1.2
bindings are used for each Web service description.

STRUCTURE=(request,response)
For C and C++ only, specifies the names of the high-level structures contained
in the partitioned data set members that are specified in the REQMEM and RESPMEM
parameters:

request
Specifies the name of the high-level structure that contains the request
when the REQMEM parameter is specified. The default value is
DFHREQUEST.

 The partitioned data set member must contain a high-level structure with
the name that you specify, or a structure named DFHREQUEST if you do
not specify a name.

132 Web Services Guide

|
|
|
|

||
|

||
|

||
|

|
|

|

|

|
|

response
Specifies the name of the high-level structure that contains the response
when the RESPMEM parameter is specified. The default value is
DFHRESPONSE.

 If you specify a value, the partitioned data set member must contain a
high-level structure with the name that you specify, or a structure named
DFHRESPONSE if you do not specify a name.

SYNCONRETURN=NO|YES
Specifies whether the remote Web service can issue a sync point.

NO The remote Web service cannot issue a sync point. This value is the
default. If the remote Web service issues a sync point, it fails with an
ADPL abend.

YES The remote Web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote Web service. If the remote Web service
updates a recoverable resource and a failure occurs after it returns, the
update to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1 to 4 character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is
created automatically using the PIPELINE scan command.

 Acceptable characters:
A-Z a-z 0-9 $ @ # _ < >

URI=value
This parameter specifies the relative or absolute URI that a client will use to
access the Web service. CICS uses the value specified when it generates a
URIMAP resource from the Web service binding file created by DFHLS2WS.
The parameter specifies the path component of the URI to which the URIMAP
definition applies.

USERID=id
In a service provider, this parameter specifies a 1 to 8 character user ID, which
can be used by any Web client. For an application-generated response or a
Web service, the alias transaction is attached under this user ID. The value of
this parameter is used to define the USERID attribute of the URIMAP resource
when it is created automatically using the PIPELINE scan command.

 Acceptable characters:
A-Z a-z 0-9 $ @ #

WSBIND=value
The fully qualified z/OS UNIX name of the Web service binding file. DFHLS2WS
creates the file, but not the directory structure, if it does not already exist. The
file extension is .wsbind.

WSDL=value
The fully qualified z/OS UNIX name of the file into which the Web service
description is written. The Web service description conforms to the WSDL 1.1
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist.

Chapter 8. Creating a Web service 133

|
|

||
|
|

||
|
|
|
|

|
|
|
|
|

||
|
|

|
|
|
|
|
|

|
|
|
|
|
|

||
|
|

|

WSDL_1.1=value
The fully qualified z/OS UNIX name of the file into which the Web service
description is written. The Web service description conforms to the WSDL 1.1
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsdl. This parameter produces the
same result as the WSDL parameter, so you can specify only one or the other.

WSDL_2.0=value
The fully qualified z/OS UNIX name of the file into which the Web service
description is written. The Web service description conforms to the WSDL 2.0
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsdl. This parameter can be used
in conjunction with the WSDL or WSDL_1.1 parameters. It is available only when
the MINIMUM-RUNTIME-LEVEL is set to 2.0 or higher.

WSDLCP=LOCAL|UTF-8
Specifies the code page that is used to generate the WSDL document.

LOCAL
Specifies that the WSDL document is generated using the local code
page and no encoding tag is generated in the WSDL document.

UTF-8 Specifies that the WSDL document is generated using the UTF-8 code
page. An encoding tag is generated in the WSDL document. If you
specify this option, you must ensure that the encoding remains correct
when copying the WSDL document between different platforms.

WSDL-NAMESPACE=value
Specifies the namespace for CICS to use in the generated WSDL document.

 If you do not specify this parameter, CICS generates a namespace
automatically.

Other information
v The user ID under which DFHLS2WS runs must be defined to OMVS. The user

ID must have read permission to the CICS z/OS UNIX file structure and PDS
libraries and write permission to the directories specified on the LOGFILE, WSBIND,
and WSDL parameters.

v The user ID must have a sufficiently large storage allocation to run Java.

Example
//LS2WS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHLS2WS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MINIMUM-RUNTIME-LEVEL=2.2
MAPPING-LEVEL=2.2
CHAR-VARYING=COLLAPSEPGMNAME=DFH0XCMN
URI=http://myserver.example.org:8080/exampleApp/example
PGMINT=COMMAREA
SOAPVER=ALL
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind

134 Web Services Guide

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

||
|
|
|

|
|

|
|

|
|
|
|

|
|

WSDL=/u/exampleapp/wsdl/example.wsdl
WSDL_2.0=/u/exampleapp/wsdl/example_20.wsdl
WSDLCP=LOCAL
WSDL-NAMESPACE=http://mywsdlnamespace/*

DFHWS2LS: WSDL to high-level language conversion
Cataloged procedure DFHWS2LS generates a high-level language data structure
and a Web service binding file from a Web service description. You can use
DFHWS2LS when you expose a CICS application program as a service provider or
when you construct a service requester.

The job control statements for DFHWS2LS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHWS2LS

JOB Starts the job.

EXEC Specifies the procedure name (DFHWS2LS).

 DFHWS2LS requires sufficient storage to run a Java virtual machine (JVM).
You are advised to specify REGION=200M on the EXEC statement.

INPUT.SYSUT1 DD
Specifies the input. The input parameters are usually specified in the input
stream. However, they can be defined in a data set or in a member of a
partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in cataloged procedure DFHWS2LS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHWS2LS. The value
of this parameter is appended to /usr/lpp/ to produce a complete path name
of /usr/lpp/path.

 Usually, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF=prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used on
other parameters. The default is the empty string.

 Usually, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR parameter.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHWS2LS uses as a
temporary work space. The user ID under which the job runs must have read
and write permission to this directory.

 The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHWS2LS uses to construct the names of the
temporary workspace files.

 The default value is WS2LS.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file

Chapter 8. Creating a Web service 135

|
|
|

|

system. The value of this parameter is appended to /usr/lpp/cicsts/ to
produce a complete path name of /usr/lpp/cicsts/path.

 Usually, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the USSDIR parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM support.

The temporary work space

DFHWS2LS creates the following three temporary files when it runs:

 tmpdir/tmpprefix.in

 tmpdir/tmpprefix.out

 tmpdir/tmpprefix.err

where

 tmpdir is the value specified in the TMPDIR parameter

 tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are:

 /tmp/WS2LS.in

 /tmp/WS2LS.out

 /tmp/WS2LS.err

DFHWS2LS does not lock access to the generated z/OS UNIX file names.
Therefore, if two or more instances of DFHWS2LS run concurrently, and use the
same temporary workspace files, nothing prevents one job from overwriting the
workspace files while another job is using them. Overwritting can lead to
unpredictable failures. Therefore, you are advised to devise a naming convention,
and operating procedures, that will avoid this situation. For example, you can use
the system symbolic parameter SYSUID to generate workspace file names that are
unique to an individual user. These temporary files are deleted before the end of
the job.

136 Web Services Guide

Input parameters for DFHWS2LS

�� PDSLIB=value
PDSCP=value

REQMEM=value

RESPMEM=value

 �

� LANG=COBOL
LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP

DFHREQUEST

DFHRESPONSE

STRUCTURE=(

,

)

request

response

 �

�
PGMINT=CHANNEL

CONTID=value

PGMNAME=value

URI=value

PGMINT=COMMAREA

TRANSACTION=name

USERID=id

 �

�

 MAPPING-LEVEL=1.0
MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2

Advanced

data

mapping

(mapping

level

1.2

and

higher)

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1

Advanced

data

mapping

(mapping

level

2.1

and

higher)

MAPPING-LEVEL=2.2

Advanced

data

mapping

(mapping

level

2.1

and

higher)

�

�
 MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1

Advanced

data

mapping

(runtime

level

2.1

and

higher)

MINIMUM-RUNTIME-LEVEL=2.2

Advanced

data

mapping

(runtime

level

2.1

and

higher)

MINIMUM-RUNTIME-LEVEL=CURRENT

�

�
HTTPPROXY=

domain name

:port number

HTTPPROXY-USERNAME=value

HTTPPROXY-PASSWORD=value

IP address

 �

�

BINDING=value

CCSID=value

LOGFILE=value

OPERATIONS=value

 SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=value

�

� WSDL=value
WSDL-SERVICE=value

 ��

Advanced data mapping (mapping level 1.2 and higher):

CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=YES

 CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=value

�

�
 CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=value

 DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=value

Advanced data mapping (mapping level 2.1 and higher):

 INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=value

Chapter 8. Creating a Web service 137

||

|||||||

||

||||||

|||

||

Advanced data mapping (runtime level 2.1 and higher):

 XML-ONLY=FALSE

XML-ONLY=TRUE

Parameter use
v You can specify the input parameters in any order.

v Each parameter must start on a new line.

v A parameter, and its continuation character, if you use one, must not extend
beyond column 72; columns 73 to 80 must contain blanks.

v If a parameter is too long to fit on a single line, use an asterisk (*) character at
the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces, before the asterisk is considered part of the
parameter. For example:

WSBIND=wsbinddir*
/app1

is equivalent to

WSBIND=wsbinddir/app1

v A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

BINDING=value
If the Web service description contains more than one wsdl:Binding element,
use this parameter to specify which one is to be used to generate the language
structure and Web service binding file. Specify the value of the name attribute
that is used on the wsdl:Binding element in the Web service description.

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an EBCDIC
CCSID that is supported by Java and z/OS conversion services. If you do not
specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

 You can use this parameter with any mapping level. However, if you want to
deploy the generated files into a CICS TS 3.1 region, you must apply APAR
PK23547 to achieve the minimum runtime level of code to install the Web
service binding file.

CHAR-MULTIPLIER=1|value
Specifies the number of bytes to allow for each character when the mapping
level is 1.2 or higher. The value of this parameter can be a positive integer in
the range of 1 to 2 147 483 647. All nonnumeric character-based mappings
are subject to this multiplier. Binary, numeric, zoned, and packed decimal fields
are not subject to this multiplier.

138 Web Services Guide

||

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

This parameter can be useful if, for example, you are planning to use DBCS
characters where you could opt for a multiplier of 3 to allow space for potential
shift-out and shift-in characters around every double-byte character at run time.

CHAR-VARYING=NO|NULL|YES
Specifies how variable-length character data is mapped when the mapping level
is 1.2 or higher. Variable-length binary data types are always mapped to either
a container or a varying structure. If you do not specify this parameter, the
default mapping depends on the language specified. The options that you can
select are:

NO Variable-length character data is mapped as fixed-length strings.

NULL Variable-length character data is mapped to null-terminated strings.

YES Variable-length character data is mapped to a CHAR VARYING data
type in PL/I. In the COBOL, C, and C++ languages, variable-length
character data is mapped to an equivalent representation that
comprises two related elements: data length and the data.

CHAR-VARYING-LIMIT=32767|value
Specifies the maximum size of binary data and variable-length character data
that is mapped to the language structure when the mapping level is 1.2 or
higher. If the character or binary data is larger than the value specified in this
parameter, it is mapped to a container and the container name is used in the
generated language structure. The value can range from 0 to the default
32 767 bytes.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure used to represent a SOAP message.

DEFAULT-CHAR-MAXLENGTH=255|value
Specifies the default array length of character data in characters for mappings
where no length is implied in the Web service description document, when the
mapping level is 1.2 or higher. The value of this parameter can be a positive
integer in the range of 1 to 2 147 483 647.

HTTPPROXY={domain name|IP address}:port number
If your WSDL contains references to other WSDL files that are located on the
internet, and the system on which you are running DFHWS2LS uses a proxy
server to access the internet, specify the domain name or IP address and the
port number of the proxy server. For example:
HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-USERNAME=value
Specifies the HTTP proxy username that must be used with
HTTPPROXY-PASSWORD if the system on which you are running DFHWS2LS uses a
HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-PASSWORD=value
Specifies the HTTP proxy password that must be used with HTTPPROXY-USERNAME
if the system on which you are running DFHWS2LS uses a HTTP proxy server
to access the Internet, and the HTTP proxy server uses basic authentication.
You can use this parameter only when you also specify HTTPPROXY.

Chapter 8. Creating a Web service 139

|
|
|

|
|
|
|
|
|

||

||

||
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

INLINE-MAXOCCURS-LIMIT=1|value
Specifies whether or not inline variable repeating content is used based on the
maxOccurs attribute. Variably repeating content that is mapped inline is placed in
the current container with the rest of the generated language structure. The
variably repeating content is stored in two parts, as a counter which stores the
number of occurrences of the data and as an array which stores each
occurrence of the data. The alternative mapping for variably repeating content is
container-based mapping which stores the number of occurrences of the data
and the name of the container where the data is placed. Storing the data in a
separate container has performance implications which might make inline
mapping preferable.

 The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1
onwards. The value of INLINE-MAXOCCURS-LIMIT can be a positive integer in the
range of 0 to 32 767. A value of 0 indicates that inline mapping is not used. A
value of 1 ensures that optional elements are mapped inline. If the value of the
maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-LIMIT
container based mapping is used, otherwise inline mapping is used.

When deciding if you want variably repeating lists to be mapped inline, consider
the length of a single item of recurring data. If few instances of long length
occur, container-based mapping is preferable; if many instances of short length
occur, inline mapping is preferable. For more information on variably repeating
content, see “Variable arrays of elements in DFHWS2LS” on page 177.

LANG=COBOL
Specifies that the programming language of the high-level language structure is
COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure is
Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure is
a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure is
C.

LANG=CPP
Specifies that the programming language of the high-level language structure is
C++.

LOGFILE=value
The fully qualified z/OS UNIX name of the file into which DFHWS2LS writes its
activity log and trace information. DFHWS2LS creates the file, but not the
directory structure, if it does not already exist.

 Usually, you do not use this file, but it may be requested by the IBM service
organization if you encounter problems with DFHWS2LS.

MAPPING-LEVEL={1.0|1.1|1.2|2.0|2.1|2.2}
Specifies the level of mapping that DFHWS2LS uses when generating the Web
service binding file and language structure. You can select these options:

1.0 The Web service binding file and language structure are generated
using CICS TS 3.1 mapping levels.

1.1 XML attributes and <list> and <union> data types are mapped to the
language structure. Character and binary data that have a maximum

140 Web Services Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

length of more than 32 767 bytes is mapped to a container. The
container name is created in the language structure.

1.2 Use the parameters CHAR-VARYING and CHAR-VARYING-LIMIT to control
how character data is mapped and processed at run time. If you do not
specify either of these parameters, binary and character data that has a
maximum length of less than 32 768 bytes is mapped to a VARYING
structure for all languages except C++, where character data is mapped
to a null-terminated string.

2.0 Use this mapping level in a CICS TS 3.2 region or above to take
advantage of the enhancements to the mapping between the language
structure and Web services binding file.

2.1 Use this mapping level with a CICS TS 3.2 region that has APAR
PK59794 applied. Mapping level 2.1 provides <xsd:any> and
xsd:anyType support, the option to map variably repeating content inline
with the INLINE-MAXOCCURS-LIMIT parameter, and support for
minOccurs="0" on <xsd:sequence>, <xsd:choice> and <xsd:all>.

2.2 Use this mapping level with a CICS TS 3.2 region that has APAR
PK69738 applied. Mapping level 2.2 provides the following support:

v Elements with fixed values

v Enhanced support for <xsd:choice> elements

v Abstract data types

v Abstract elements

v Substitution groups

For details of what is supported at each level of mapping, see “Mapping levels
for the CICS Web services assistant” on page 146.

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|2.0|2.1|2.2|CURRENT}
Specifies the minimum CICS runtime environment into which the Web service
binding file can be deployed. If you select a level that does not match the other
parameters that you have specified, you receive an error message. You can
select these options:

MINIMUM
The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

1.0 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. Some parameters are not available at this runtime level.

1.1 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You can
use a mapping level of 1.1 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

1.2 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547
applied. You can use a mapping level of 1.2 or below for the
MAPPING-LEVEL parameter. Some parameters are not available at this
runtime level.

2.0 The generated Web service binding file deploys successfully into a
CICS TS 3.2 region. You can use a mapping level of 2.0 or below for
the MAPPING-LEVEL parameter. Some parameters are not available at
this runtime level.

Chapter 8. Creating a Web service 141

||
|
|
|
|

||
|

|

|

|

|

|

|

2.1 The generated Web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK59794 applied. You can use a
mapping level of 2.1 or below for the MAPPING-LEVEL parameter. You can
use any optional parameter at this level.

2.2 The generated Web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK69738 applied. With this runtime
level, you can use a mapping level of 2.2 or below for the
MAPPING-LEVEL parameter. You can use any optional parameter at this
level.

CURRENT
The generated Web service binding file deploys successfully into a
CICS region at the same runtime level as the one used to generate the
Web service binding file.

OPERATIONS=value
For Web service requester applications, specifies a subset of valid
wsdl:Operation elements from the Web service description that is used to
generate the Web service binding file. Each Operation element is separated by
a space; the list can span more than one line if necessary. You can use this
parameter for both WSDL 1.1 and WSDL 2.0 documents.

PDSLIB=value
Specifies the name of the partitioned data set that contains the generated
high-level language. The data set members used for the request and response
are specified in the REQMEM and RESPMEM parameters respectively.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or a Java
code page number. If this parameter is not specified, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

CHANNEL
CICS uses a channel interface to pass data to the target application
program. There might be several containers involved in the program
interface, however a single container is identified for the top-level of the
application data for both the input and the output. Use the CONTID
parameter to specify the name of this container. The default name is
DFHWS-DATA.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

This parameter is ignored when the output from DFHWS2LS is used in a
service requester.

PGMNAME=value
Specifies the name of a CICS PROGRAM resource.

 When DFHWS2LS is used to generate a Web service binding file that will be
used in a service provider, you must supply this parameter. It specifies the
resource name of the application program that is exposed as a Web service.

142 Web Services Guide

|

|
|
|
|
|
|

When DFHWS2LS is used to generate a Web service binding file that will be
used in a service requester, omit this parameter.

REQMEM=value
Specifies a 1 to 6 character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high-level language
structures for the Web service request:
v For a service provider, the Web service request is the input to the application

program
v For a service requester, the Web service request is the output from the

application program

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a 2 digit number to the prefix.

Although this parameter is optional, you must specify it if the Web service
description contains a definition of a request.

RESPMEM=value
Specifies a 1 to 6 character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high-level language
structures for the Web service response:
v For a service provider, the Web service response is the output from the

application program
v For a service requester, the Web service response is the input to the

application program

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a two digit number to the prefix.

Omit this parameter if no response is invoked; that is, for one way messages.

STRUCTURE=(request,response)
For C and C++ only, specifies how the names of the request and response
structures are generated.

 The generated request and response structures are given names of requestnn
and responsenn where nn is a numeric suffix that is generated to distinguish the
structures for each operation.
If one or both names is omitted, the structures have the same name as the
partitioned data set member names generated from the REQMEM and RESPMEM
parameters that you specify.

SYNCONRETURN=NO|YES
Specifies whether the remote Web service can issue a sync point.

NO The remote Web service cannot issue a sync point. This value is the
default. If the remote Web service issues a sync point, it fails with an
ADPL abend.

YES The remote Web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote Web service. If the remote Web service
updates a recoverable resource and a failure occurs after it returns, the
update to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1 to 4 character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is
created automatically using the PIPELINE scan command.

Chapter 8. Creating a Web service 143

|
|

||
|
|

||
|
|
|
|

|
|
|
|
|

Acceptable characters:
A-Z a-z 0-9 $ @ # _ < >

URI=value
In a service provider, this parameter specifies the relative URI that a client uses
to access the Web service. CICS uses the value specified when it generates a
URIMAP resource from the Web service binding file created by DFHWS2LS.
The parameter specifies the path component of the URI to which the URIMAP
definition applies.

 In a service requester, the URI of the target Web service is not specified with
this parameter. The soap:address location from the wsdl:port specified in the
Web service description is used if present, although you can override that with
the URI option on the EXEC CICS INVOKE WEBSERVICE command.

USERID=id
In a service provider, this parameter specifies a 1 to 8 character user ID, which
can be used by any Web client. For an application-generated response or a
Web service, the alias transaction is attached under this user ID. The value of
this parameter is used to define the USERID attribute of the URIMAP resource
when it is created automatically using the PIPELINE scan command.

 Acceptable characters:
A-Z a-z 0-9 $ @ #

WSBIND=value
The fully qualified z/OS UNIX name of the Web service binding file. DFHWS2LS
creates the file, but not the directory structure, if it does not already exist. The
file extension defaults to .wsbind.

WSDL=value
The fully qualified z/OS UNIX name of the file that contains the Web service
description.

WSDL-SERVICE=value
Specifies the wsdl:Service element that is used when the Web service
description contains more than one Service element for a Binding element. If
you specify a value for the BINDING parameter, the Service element that you
specify for this parameter must be consistent with the specified Binding
element. You can use this parameter with either WSDL 1.1 or WSDL 2.0
documents.

XML-ONLY=TRUE|FALSE
Specifies whether or not CICS transforms the XML in the SOAP message to
application data. Use the XML-ONLY parameter to write Web service
applications that process the XML themselves.

TRUE CICS does not perform any transformations to the XML. The service
requester or provider application must work with the contents of the
DFHWS-BODY container directly to map data between XML and the
high-level language.

FALSE
CICS does transform the XML to a high-level language.

This parameter is available only at runtime level 2.1 onwards.

144 Web Services Guide

||
|
|

|

|
|
|
|
|
|

||
|
|

|

|
|
|
|
|
|
|

|
|
|
|

||
|
|
|

|
|

|

Other information
v The user ID under which DFHWS2LS runs must be defined to OMVS. The user

ID must have read permission to the CICS z/OS UNIX file structure and PDS
libraries and write permission to the directories specified on the LOGFILE ,
WSBIND, and WSDL parameters.

v The user ID must have a sufficiently large storage allocation to run Java.

Example
//WS2LS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHWS2LS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=2.2
CHAR-VARYING=NULL
INLINE-MAXOCCURS-LIMIT=2
PGMNAME=DFH0XCMN
URI=exampleApp/example
PGMINT=COMMAREA
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
WSDL=/u/exampleapp/wsdl/example.wsdl
/*

Syntax notation
Syntax notation specifies the permissible combinations of options or attributes that
you can specify on CICS commands, resource definitions, and many other things.

The conventions used in the syntax notation are:

 Notation Explanation

�� A
B

C

 ��

Denotes a set of required alternatives. You
must specify one (and only one) of the
values shown.

��

�

A

B

C

��

Denotes a set of required alternatives. You
must specify at least one of the values
shown. You can specify more than one of
them, in any sequence.

��
A

B

C

 ��

Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown.

Chapter 8. Creating a Web service 145

|
|

|

Notation Explanation

��

�

A

B

C

��

Denotes a set of optional alternatives. You
can specify none, one, or more than one of
the values shown, in any sequence.

��
 A

B

C

��

Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown. A is the default value that is used if
you do not specify anything.

�� Name ��

Name:

 A
B

A reference to a named section of syntax
notation.

�� A=value ��
A= denote characters that should be entered
exactly as shown.

value denotes a variable, for which you
should specify an appropriate value.

Mapping levels for the CICS Web services assistant
A mapping is the set of rules that specifies how information is converted between
language structures and XML schemas. To benefit from the most sophisticated
mappings available, you are recommended to set the MAPPING-LEVEL parameter to
the latest level.

Each level of mapping inherits the function of the previous mapping, with the
highest level of mapping offering the best capabilities available. The highest
mapping level provides more control over data conversion at run time and removes
restrictions on support for certain data types and XML elements. For details of these
restrictions for each supported high-level language, see “Data mapping limitations
when using the CICS Web services assistant” on page 151.

You can set the MAPPING-LEVEL parameter to an earlier level if you want to redeploy
applications that were previously enabled at that level.

Mapping level 2.2 and higher

Mapping level 2.2 is compatible with a CICS TS 3.2 region, with APAR PK69738
applied.

At mapping level 2.2 and higher, DFHWS2LS supports the following XML mappings:

v Fixed values for elements

v Substitution groups

v Abstract data types

146 Web Services Guide

|

|
|

|

|

|

|

v <xsd:sequence> elements inside <xsd:choice> elements

DFHWS2LS provides enhanced support for the following XML mappings:

v Abstract elements

v <xsd:choice> elements

Mapping level 2.1 and higher

Mapping level 2.1 is compatible with a CICS TS 3.2 region, with APAR PK59794
applied, and higher.

This mapping level includes greater control over the way variable content is handled
with the new INLINE-MAXOCCURS-LIMIT parameter and new values on the
CHAR-VARYING parameter.

At mapping level 2.1 and higher, DFHWS2LS offers the following new and improved
support for XML mappings:

v The <xsd:any> element

v The xsd:anyType type

v Abstract elements

v The INLINE-MAXOCCURS-LIMIT parameter

v The minOccurs attribute

The INLINE-MAXOCCURS-LIMIT parameter specifies whether variably repeating lists
are mapped inline. For more information on mapping variably repeating content
inline, see “Variable arrays of elements in DFHWS2LS” on page 177.

Support for the minOccurs attribute has been enhanced on the <xsd:sequence>,
<xsd:choice> and <xsd:all> elements. If minOccurs="0", the CICS Web services
assistant treats these element as though the minOccurs="0" attribute is also an
attribute of all its child elements.

At mapping level 2.1 and higher, DFHLS2WS offers the following new and improved
support for XML mappings:

v FILLER fields in COBOL and PL/I are ignored

v A value of COLLAPSE for the CHAR-VARYING parameter

v A value of BINARY for the CHAR-VARYING parameter

FILLER fields in COBOL and PL/I are ignored, they do not appear in the generated
XML schema and an appropriate gap is left in the data structures at run time.

COLLAPSE causes CICS to ignore trailing spaces in text fields.

BINARY provides support for binary fields. This value is useful when converting
COBOL into an XML schema. This option is available only on SBCS character
arrays and allows the array to be mapped to fixed-length xsd:base64Binary fields
rather than to xsd:string fields.

Mapping level 1.2 and higher

Mapping level 1.2 is compatible with a CICS TS 3.1 region and higher.

Greater control is available over the way character and binary data are transformed
at run time with these additional parameters on the batch tools:

Chapter 8. Creating a Web service 147

|

|

|

|

v CHAR-VARYING

v CHAR-VARYING-LIMIT

v CHAR-MULTIPLIER

v DEFAULT-CHAR-MAXLENGTH

If you decide to use the CHAR-MULTIPLIER parameter in DFHWS2LS, note that the
following rules apply after the value of this parameter is used to calculate the
amount of space required for character data.

v DFHWS2LS provides these mappings:

– Variable-length character data types that have a maximum length of more
than 32 767 bytes map to a container. You can use the CHAR-VARYING-LIMIT
parameter to set a lower limit. A 16-byte field is created in the language
structure to store the name of the container. At run time, the character data is
stored in a container and the container name is put in the language structure.

– Variable-length character data types that have a maximum length of less than
32 768 bytes map to a VARYING structure for all languages except C/C++
and Enterprise PL/I. In C/C++, these data types are mapped to null-terminated
strings, and in Enterprise PL/I these data types are mapped to VARYINGZ
structures. You can use the CHAR-VARYING parameter to select the way that
variable-length character data is mapped.

– Variable-length binary data that has a maximum length of less than 32 768
bytes maps to a VARYING structure for all languages. If the maximum length
is equal to or greater than 32 768 bytes, the data is mapped to a container. A
16-byte field is created in the language structure to store the name of the
container. At run time, the binary data is stored in a container and the
container name is put in the language structure.

If you have character data types in the XML schema that do not have a length
associated with them, you can assign a default length using the
DEFAULT-CHAR-MAXLENGTH parameter in DFHWS2LS.

DFHLS2WS provides these mappings:

v Character fields map to an xsd:string data type and can be processed as
fixed-length fields or null-terminated strings at run time. You can use the
CHAR-VARYING parameter to select the way that variable-length character data is
handled at run time for all languages except PL/I.

v Base64Binary data types map to a container if the maximum length of the data is
greater than 32 767 bytes or when the length is not defined. If the length of the
data is 32 767 or less, the base64Binary data type is mapped to a VARYING
structure for all languages.

Mapping level 1.1 and higher

Mapping level 1.1 is compatible with a CICS TS 3.1 region and higher.

This mapping level provides improved mapping of XML character and binary data
types, in particular when mapping data of variable length that has maxLength and
minLength attributes defined with different values in the XML schema. Data is
handled in the following ways:

v Character and binary data types that have a fixed-length that is greater than 16
MB map to a container for all languages except PL/I. In PL/I, fixed-length
character and binary data types that are greater than 32 767 bytes are mapped
to a container. A 16-byte field is created in the language structure to store the

148 Web Services Guide

name of the container. At run time, the fixed-length data is stored in a container
and the container name is put in the language structure.

Because containers are variable in length, fixed-length data that is mapped to a
container is not padded with spaces or nulls, or truncated, to match the fixed
length specified in the XML schema or Web service description. If the length of
the data is significant, you can either write your application to check it or, if you
are using DFHWS2LS, turn SOAP validation on in the CICS region. Note that
SOAP validation has a significant performance impact.

v XML schema <list> and <union> data types map to character fields.

v Schema-defined XML attributes are mapped rather than ignored. A maximum of
255 attributes is allowed for each XML element. See “Support for XML attributes”
on page 181 for further information.

v The xsi:nil attribute is supported. See “Support for XML attributes” on page 181
for further information.

Mapping level 1.1 only

Mapping level 1.1 is compatible with a CICS TS 3.1 region and higher.

This mapping level provides improved mapping of XML character and binary data
types, in particular when mapping data of variable length that has maxLength and
minLength attributes defined with different values in the XML schema. Data is
handled in the following ways:

v Variable-length binary data types map to a container. A 16-byte field is created in
the language structure to store the name of the container. At run time, the binary
data is stored in a container and the container name is put in the language
structure.

v Variable-length character data types that have a maximum length greater than
32 767 bytes map to a container. A 16-byte field is created in the language
structure to store the name of the container. At run time, the character data is
stored in a container and the container name is put in the language structure.

v Character and binary data types that have a fixed length of less than 16 MB map
to fixed-length fields for all languages except PL/I. In PL/I, fixed-length character
and binary data types that are 32 767 bytes or less map to fixed-length fields.

v CICS encodes and decodes data in the hexBinary format but not in
base64Binary format. Base64Binary data types in the XML schema map to a field
in the language structure. The size of the field is calculated using the formula:
4×(ceil(z/3)) where:

– z is the length of the data type in the XML schema

– ceil(x) is the smallest integer greater than or equal to x

If the length of z is greater than 24 566 bytes, the resulting language structure
fails to compile. If you have base64Binary data that is greater than 24 566 bytes,
you are recommended to use a mapping level of 1.2. Mapping level 1.2 allows
you to map the base64Binary data to a container instead of using a field in the
language structure.

Mapping level 1.0 only

Mapping level 1.0 is compatible with a CICS TS 3.1 region and higher.

Note the following limitations, which have been modified in later mapping levels:

v DFHWS2LS maps character and binary data types in the XML schema to
fixed-length fields in the language structure. Look at this partial XML schema:

Chapter 8. Creating a Web service 149

<xsd:element name="example">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="33000"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

That partial XML schema appears in a COBOL language structure like this:
15 example PIC X(33000)

v CICS encodes and decodes data in the hexBinary format but not in
base64Binary format. DFHWS2LS maps Base64Binary data to a fixed-length
character field, the contents of which must be encoded or decoded by the
application program.

v DFHWS2LS ignores XML attributes during processing.

v DFHLS2WS interprets character and binary fields in the language structure as
fixed-length fields and maps those fields to XML elements that have a maxLength
attribute. At run time, the fields in the language structure are filled with spaces or
nulls if insufficient data is available.

High-level language and XML schema mapping
Use the CICS Web services assistant to help you map high-level language
structures to WSDL documents, and to map WSDL documents to high-level
language structures. When the Web services assistant generates WSDL documents
from high-level language data structures, or vice-versa, it generates a mapping
between the language structures and the XML data types.

Utility programs DFHWS2LS and DFHLS2WS are collectively known as the CICS
Web services assistant:

v DFHLS2WS maps high-level language structures to WSDL documents.

v DFHWS2LS maps WSDL documents to high-level language structures.

The two mappings are not symmetrical:

v If you process a language data structure with DFHLS2WS and then process the
resulting WSDL document with the complementary utility program, DFHWS2LS,
do not expect the final data structure to be the same as the one you started with.
However, the final data structure is logically equivalent to the one that you started
with.

v If you process a WSDL document with DFHWS2LS and then process the
resulting language structure with the complementary utility program, DFHLS2WS,
do not expect the XML schema in the final WSDL document to be the same as
the one you started with.

v In some cases, DFHWS2LS generates language structures that are not
supported by DFHLS2WS.

You must code language structures processed by DFHLS2WS according to the
rules of the language, as implemented in the language compilers that CICS
supports.

150 Web Services Guide

Related reference

“Data mapping limitations when using the CICS Web services assistant”
CICS supports bidirectional data mappings between high-level language structures
and XML schemas, or WSDL documents that conform to WSDL version 1.1 or 2.0,
with certain limitations. These limitations apply only to the DFHWS2LS tool and vary
according to the mapping level.

Data mapping limitations when using the CICS Web services
assistant
CICS supports bidirectional data mappings between high-level language structures
and XML schemas, or WSDL documents that conform to WSDL version 1.1 or 2.0,
with certain limitations. These limitations apply only to the DFHWS2LS tool and vary
according to the mapping level.

Limitations at all mapping levels
v Only SOAP bindings that use literal encoding are supported. Therefore, you must

set the use attribute to a value of literal; use="encoded" is not supported.

v Data type definitions must be encoded using the XML Schema Definition
language (XSD). In the schema, data types used in the SOAP message must be
explicitly declared.

v The length of some keywords in the Web services description is limited. For
example, operation, binding, and part names are limited to 255 characters. In
some cases the maximum operation name length might be slightly shorter.

v Any SOAP faults defined in the Web service description are ignored. If you want
a service provider application to send a SOAP fault message, use the EXEC CICS
SOAPFAULT command.

v DFHWS2LS supports only a single <xsd:any> in a particular scope. For example,
the following schema fragment is not supported:
<xsd:sequence>
 <xsd:any/>
 <xsd:any/>
</xsd:sequence>

This <xsd:any> can specify minOccurs and maxOccurs if required. For example,
the following schema fragment is supported:
<xsd:sequence>
 <xsd:any minOccurs="2" maxOccurs="2"/>
</xsd:sequence>

v Cyclic references are not supported. For example, where type A contains type B
which, in turn, contains type A.

v Recurrence is not generally supported in group elements, such as <xsd:choice>,
<xsd:sequence>, <xsd:group>, or <xsd:all> elements. For example, the following
schema fragment is not supported:
<xsd:choice maxOccurs="2">
 <xsd:element name="name1" type="string"/>
</xsd:choice>

The exception to this is at mapping level 2.1 and higher, when maxOccurs="1"
and minOccurs="0" are supported on these elements.

v DFHWS2LS does not support data types and elements in the SOAP message
that are derived from the declared data types and elements in the XML schema
either from the xsi:type attribute or from a substitution group, except at mapping
level 2.2 and higher if the parent element or type is defined as abstract.

Chapter 8. Creating a Web service 151

v Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice>
element are not supported prior to mapping level 2.2. Embedded <xsd:choice>
and <xsd:all> elements inside an <xsd:choice> element are never supported.

Improved support at mapping level 1.1 and higher

When the mapping level is 1.1 or higher, DFHWS2LS provides support for the
following XML elements and element type:

v The <xsd:list> element

v The <xsd:union> element

v The xsd:anySimpleType type

v The <xsd:attribute> element, at mapping level 1.0 this is ignored

Improved support at mapping level 2.1 and higher

When the mapping level is 2.1 or higher, DFHWS2LS supports the following XML
elements and element attributes:

v The <xsd:any> element

v The xsd:anyType type

v Abstract elements. In earlier mapping levels abstract elements are only
supported as nonterminal types in an inheritance hierarchy.

v The maxOccurs and minOccurs attributes on the <xsd:all>, <xsd:choice>, and
<xsd:sequence> elements, only when maxOccurs="1" and minOccurs="0"

v "FILLER" fields in COBOL and "*" fields in PL/I are suppressed. The fields do not
appear in the generated WSDL and an appropriate gap is left in the data
structures at run time.

Improved support at mapping level 2.2 and higher

When the mapping level is 2.2 or higher, DFHWS2LS provides improved support for
the <xsd:choice> element, supporting a maximum of 255 options in the
<xsd:choice> element. For more information on <xsd:choice> support, see “Support
for <xsd:choice>” on page 185.

At mapping level 2.2 and higher, the CICS Web services assistant support the
following XML mappings:

v Substitution groups

v Fixed values for elements

v Abstract data types

Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice>
element are supported at mapping level 2.2 and higher. For example, the following
schema fragment is supported:
<xsd:choice>
 <xsd:element name="name1" type="string"/>
 <xsd:sequence/>
</xsd:choice>

If the parent element or type in the SOAP message is defined as abstract,
DFHWS2LS supports data types and elements that are derived from the declared
data types and elements in the XML schema.

152 Web Services Guide

|

|
|
|
|

|
|

|

|

|

|
|
|

|
|
|
|

|
|
|

Related reference

“High-level language and XML schema mapping” on page 150
Use the CICS Web services assistant to help you map high-level language
structures to WSDL documents, and to map WSDL documents to high-level
language structures. When the Web services assistant generates WSDL documents
from high-level language data structures, or vice-versa, it generates a mapping
between the language structures and the XML data types.

“Mapping levels for the CICS Web services assistant” on page 146
A mapping is the set of rules that specifies how information is converted between
language structures and XML schemas. To benefit from the most sophisticated
mappings available, you are recommended to set the MAPPING-LEVEL parameter to
the latest level.

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

“Support for abstract elements and abstract data types” on page 188
The CICS Web service assistant provides support for abstract elements and
abstract data types at mapping level 2.2 and higher. The Web services assistant
maps abstract elements and abstract data types in a similar way to substitution
groups.

“Support for substitution groups” on page 187
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS Web services assistant provides support for substitution
groups at mapping level 2.2 and higher.

COBOL to XML schema mapping
The DFHLS2WS utility program supports mappings between COBOL data
structures and the XML schema definitions that are included in each Web service
description.

COBOL names are converted to XML names according to the following rules:

1. Duplicate names are made unique by the addition of one or more numeric
digits.

For example, two instances of year become year and year1.

2. Hyphens are replaced by underscore characters. Strings of contiguous hyphens
are replaced by contiguous underscores.

For example, current-user--id becomes current_user__id.

3. Segments of names that are delimited by hyphens and that contain only upper
case characters are converted to lower case.

For example, CA-REQUEST-ID becomes ca_request_id.

4. A leading underscore character is added to names that start with a numeric
character.

For example, 9A-REQUEST-ID becomes _9a_request_id.

DFHLS2WS maps COBOL data description elements to schema elements
according to the following table. COBOL data description elements that are not
shown in the table are not supported by DFHLS2WS. The following restrictions also
apply:

v Data description items with level-numbers of 66 and 77 are not supported. Data
description items with a level-number of 88 are ignored.

Chapter 8. Creating a Web service 153

|
|

v The following clauses on data description entries are not supported:

 OCCURS DEPENDING ON

 OCCURS INDEXED BY

 REDEFINES

 RENAMES (that is level 66)

 DATE FORMAT

v The following clauses on data description items are ignored:

 BLANK WHEN ZERO

 JUSTIFIED

 VALUE

v The SIGN clause SIGN TRAILING is supported. The SIGN clause SIGN
LEADING is only supported when the mapping level specified in DFHLS2WS is
1.2 or higher.

v SEPARATE CHARACTER is supported at a mapping level of 1.2 or higher for
both SIGN TRAILING and SIGN LEADING clauses.

v The following phrases on the USAGE clause are not supported:

 OBJECT REFERENCE

 POINTER

 FUNCTION-POINTER

 PROCEDURE-POINTER

v The following phrases on the USAGE clause are supported at a mapping level of
1.2 or higher.

 COMPUTATIONAL-1

 COMPUTATIONAL-2

v The only PICTURE characters supported for DISPLAY and COMPUTATIONAL-5
data description items are 9, S, and Z.

v The PICTURE characters supported for PACKED-DECIMAL data description
items are 9, S, V, and Z.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and
are processed as null-terminated strings.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, trailing white space is ignored for strings.

 COBOL data description Schema simpleType

PIC X(n)
PIC A(n)
PIC G(n) DISPLAY-1
PIC N(n)

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

where m=n

154 Web Services Guide

|
|
|

|
|

|
|

|
|

|
|
|

|
|

COBOL data description Schema simpleType

PIC S9 DISPLAY
PIC S99 DISPLAY
PIC S999 DISPLAY
PIC S9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:minInclusive value="-n"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC S9(z) DISPLAY

where 5 ≤ z ≤ 9

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <xsd:minInclusive value="-n"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC S9(z) DISPLAY

where 9 < z

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 <xsd:minInclusive value="-n"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9 DISPLAY
PIC 99 DISPLAY
PIC 999 DISPLAY
PIC 9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9(z) DISPLAY

where 5 ≤ z ≤ 9

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9(z) DISPLAY

where 9 < z

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

Chapter 8. Creating a Web service 155

COBOL data description Schema simpleType

PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where n ≤ 4.

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpleType>

PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where 5 ≤ n ≤ 9.

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpleType>

PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where 9 <n.

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpleType>

PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where n ≤ 4.

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpleType>

PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where 5 ≤ n ≤ 9.

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpleType>

PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where 9 <n.

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpleType>

PIC S9(m)V9(n) COMP-3 <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="p"/>
 <xsd:fractionDigits value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where p = m + n.

PIC 9(m)V9(n) COMP-3 <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="p"/>
 <xsd:fractionDigits value="n"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
</xsd:simpleType>

where p = m + n.

156 Web Services Guide

COBOL data description Schema simpleType

PIC S9(m)V9(n) DISPLAY

Supported at mapping level 1.2 only

<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="p"/>
 <xsd:fractionDigits value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where p = m + n.

COMP-1

Supported at mapping level 1.2 only

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

COMP-2

Supported at mapping level 1.2 only

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Related reference

“XML schema to COBOL mapping”
The DFHWS2LS utility program supports mappings between the XML schema
definitions that are included in each Web service description and COBOL data
structures.

“Example of how to handle variably repeating content in COBOL” on page 190
In COBOL, you cannot process variably repeating content by using pointer
arithmetic to address each instance of the data. Other programming languages do
not have this limitation. This example shows you how to handle variably repeating
content in COBOL.

XML schema to COBOL mapping
The DFHWS2LS utility program supports mappings between the XML schema
definitions that are included in each Web service description and COBOL data
structures.

The CICS Web services assistant generates unique and valid names for COBOL
variables from the schema element names using the following rules:

1. COBOL reserved words are prefixed with 'X'.

For example, DISPLAY becomes XDISPLAY.

2. Characters other than A-Z, a-z, 0-9 or hyphen are replaced with 'X'.

For example, monthly_total becomes monthlyXtotal.

3. If the last character is a hyphen, it is replaced with 'X'.

For example, ca-request- becomes ca-requestX.

4. If the schema specifies that the variable has varying cardinality (that is,
minOccurs and maxOccurs are specified on an xsd:element with different values),
and the schema element name is longer than 23 characters, it is truncated to
that length.

If the schema specifies that the variable has fixed cardinality, and the schema
element name is longer than 28 characters, it is truncated to that length.

5. Duplicate names in the same scope are made unique by the addition of one or
two numeric digits to the second and subsequent instances of the name.

For example, three instances of year become year, year1 and year2.

Chapter 8. Creating a Web service 157

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|

|

|

|
|
|
|

6. Five characters are reserved for the strings -cont or -num which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs are specified with different values.

For more information, see “Variable arrays of elements in DFHWS2LS” on page
177.

7. For attributes, the previous rules are applied to the element name. The prefix
attr- is added to the element name, and this is followed by -value or -exist. If
the total length is longer than 28 characters, the element name is truncated. For
more information, see “Support for XML attributes” on page 181.

The nillable attribute has special rules. The prefix attr- is added, but nil- is
also added to the beginning of the element name. The element name is
followed by -value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 30 characters or less.

DFHWS2LS maps schema types to COBOL data description elements using the
specified mapping level according to the following table. You should also note the
following points:

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to YES, variable-length character data is mapped to two related
elements: a length field and a data field. For example:
<xsd:simpleType name="VariableStringType">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="10000"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:element name="textString" type="tns:VariableStringType"/>

maps to
15 textString-length PIC S9999 COMP-5 SYNC
15 textString PIC X(10000)

 Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:anyType">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below
 Not supported

Mapping level 2.1

 Supported

<xsd:simpleType>
 <xsd:restriction base="xsd:anySimpletype">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.0
Not supported

Mapping level 1.1 and higher

 PIC X(255)

158 Web Services Guide

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:type"
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:
 string
 normalizedString
 token
 Name
 NMTOKEN
 language
 NCName
 ID
 IDREF
 ENTITY
 hexBinary

All mapping levels
 PIC X(z)

<xsd:simpleType>
 <xsd:restriction base="xsd:type"
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

 duration

 date

 time

 gDay

 gMonth

 gYear

 gMonthDay

 gYearMonth

All mapping levels
PIC X(32)

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime"
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below
PIC X(32)

Mapping level 2.0 and higher

 PIC X(40)

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:
 byte
 unsignedByte

All mapping levels
PIC X DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC S9999 COMP-5 SYNC
or
PIC S9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC 9999 COMP-5 SYNC
or
PIC 9999 DISPLAY

Chapter 8. Creating a Web service 159

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC S9(18) COMP-3

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC S9(9) COMP-5 SYNC
or
PIC S9(9) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC 9(9) COMP-5 SYNC
or
PIC 9(9) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC S9(18) COMP-5 SYNC
or
PIC S9(18) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC 9(18) COMP-5 SYNC
or
PIC 9(18) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="m"
 <xsd:fractionDigits value="n"
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC 9(p)V9(n) COMP-3

where p = m - n.

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels
PIC X DISPLAY
The value x'00' implies false, x'01' implies true.

<xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

Mapping level 1.0
Not supported

Mapping level 1.1 and higher

 PIC X(255)

<xsd:simpleType>
 <xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

Mapping level 1.0
Not supported

Mapping level 1.1 and higher

 PIC X(255)

160 Web Services Guide

|

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 </xsd:restriction>
</xsd:simpleType>

where the length is not defined.

Mapping level 1.0
Not supported

Mapping level 1.1

 PIC X(y)

where y =4×(ceil(z/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher

 PIC X(z)

where the length is fixed.

 PIC X(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary data.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below
PIC X(32)

Mapping level 1.2 and higher

 COMP-1

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below
PIC X(32)

Mapping level 1.2 and higher

 COMP-2

Some of the Schema types shown in the table map to a COBOL format of COMP-5
SYNC or of DISPLAY, depending upon what values (if any) are specified in the
minInclusive and maxInclusive facets:

v For signed types (short, int, and long), DISPLAY is used when the following are
specified:
<xsd:minInclusive value="-a"/>
<xsd:maxInclusive value="a"/>

where a is a string of 9s.

v For unsigned types (unsignedShort, unsignedInt, and unsignedLong), DISPLAY is
used when the following are specified:
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="a"/>

where a is a string of 9s.

When any other value is specified, or no value is specified, COMP-5 SYNC is used.

Chapter 8. Creating a Web service 161

Related reference

“COBOL to XML schema mapping” on page 153
The DFHLS2WS utility program supports mappings between COBOL data
structures and the XML schema definitions that are included in each Web service
description.

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

“Example of how to handle variably repeating content in COBOL” on page 190
In COBOL, you cannot process variably repeating content by using pointer
arithmetic to address each instance of the data. Other programming languages do
not have this limitation. This example shows you how to handle variably repeating
content in COBOL.

C and C++ to XML schema mapping
The DFHLS2WS utility program supports mappings between C and C++ data types
and the XML schema definitions that are included in each Web service description.

C and C++ names are converted to XML names according to the following rules:

1. Characters that are not valid in XML element names are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.

2. Duplicate names are made unique by the addition of one or more numeric
digits.

For example, two instances of year become year and year1.

DFHLS2WS maps C and C++ data types to schema elements according to the
following table. C and C++ types that are not shown in the table are not supported
by DFHLS2WS. The following restrictions also apply:

v Header files must contain a top level struct instance.

v You cannot declare a structure type that contains itself as a member

v The following C and C++ data types are not supported:
 decimal
 long double
 wchar_t (C++ only)

v The following are ignored if they are present in the header file.
Storage class specifiers:

 auto
 register
 static
 extern
 mutable

Qualifiers
 const
 volatile
 _Export (C++ only)
 _Packed (C only)

Function specifiers
 inline (C++ only)
 virtual (C++ only)

Initial values

162 Web Services Guide

v The header file must not contain the following:

 Unions

 Class declarations

 Enumeration data types

 Pointer type variables

 Template declarations

 Predefined macros - that is, macros with names which start and end with two
underscore characters (__)

 The line continuation sequence (a \ symbol that is immediately followed by a
newline character)

 Prototype function declarators

 Preprocessor directives

 Bit fields

 The __cdecl (or _cdecl) keyword (C++ only)

v The application programmer must use a 32 bit compiler to ensure that an int
masp to 4 bytes.

v The following C++ reserved keywords are not supported:

 explicit

 using

 namespace

 typename

 typeid

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and
are processed as null-terminated strings.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, <xsd:whiteSpace value="collapse"/> is
generated for strings.

 C and C++ data type Schema simpleType

char[z] <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpletype>

char <xsd:simpleType>
 <xsd:restriction base="xsd:byte">
 </xsd:restriction>
</xsd:simpletype>

unsigned char <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 </xsd:restriction>
</xsd:simpletype>

short <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpletype>

Chapter 8. Creating a Web service 163

|
|
|

|
|
|

|
|
|

C and C++ data type Schema simpleType

unsigned short <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpletype>

int
long

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpletype>

unsigned int
unsigned long

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpletype>

long long <xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpletype>

unsigned long long <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpletype>

bool

(C++ only)

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpletype>

float

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

double

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Related reference

“XML schema to C and C++ mapping”
The DFHWS2LS utility program supports mappings between the XML schema
definitions that are included in each Web service description and C and C++ data
types.

XML schema to C and C++ mapping
The DFHWS2LS utility program supports mappings between the XML schema
definitions that are included in each Web service description and C and C++ data
types.

The CICS Web services assistant generates unique and valid names for C and C++
variables from the schema element names using the following rules:

1. Characters other than A-Z, a-z, 0-9, or _ are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.

2. If the first character is not an alphabetic character it is replaced by a leading 'X'.

For example, _monthlysummary becomes Xmonthlysummary.

3. If the schema element name is longer than 50 characters, it is truncated to that
length.

4. Duplicate names in the same scope are made unique by the addition of one or
more numeric digits.

164 Web Services Guide

|

|
|

|
|
|
|

|

|
|

|
|
|
|

For example, two instances of year become year and year1.

5. Five characters are reserved for the strings _cont or _num which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs are specified on an xsd:element.

For more information, see “Variable arrays of elements in DFHWS2LS” on page
177.

6. For attributes, the previous rules are applied to the element name. The prefix
attr_ is added to the element name, and this is followed by _value or _exist. If
the total length is longer than 28 characters, the element name is truncated.

The nillable attribute has special rules. The prefix attr_ is added, but nil_ is
also added to the beginning of the element name. The element name is
followed by _value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 57 characters or less.

DFHWS2LS maps schema types to C and C++ data types according to the
following table. The following rules also apply:

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, variable-length character data is mapped to
null-terminated strings.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to YES, variable-length character data is mapped to two related
elements: a length field and a data field.

 Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:anyType">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below
Not supported

Mapping level 2.1 and higher

 Supported (see Note 1)

<xsd:simpleType>
 <xsd:restriction base="xsd:anySimpletype">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.0
Not supported

Mapping level 1.1 and higher

 char[255]

Chapter 8. Creating a Web service 165

|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

 string

 normalizedString

 token

 Name

 NMTOKEN

 language

 NCName

 ID

 IDREF

 ENTITY

 hexBinary

All mapping levels
char[z]

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

 duration

 date

 decimal

 time

 gDay

 gMonth

 gYear

 gMonthDay

 gYearMonth

All mapping levels
char[32]

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below
char[32]

Mapping level 2.0 and higher

 char[40]

<xsd:simpleType>
 <xsd:restriction base="xsd:byte">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
signed char

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
char

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
short

166 Web Services Guide

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
unsigned short

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
char[33]

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
int

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
unsigned int

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
long long

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
unsigned long long

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels
bool (C++ only)
short (C only)

<xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

Mapping level 1.0
Not supported

Mapping level 1.1 and higher

 char[255]

<xsd:simpleType>
 <xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

Mapping level 1.0
Not supported

Mapping level 1.1 and higher

 char[255]

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:base64binary">
 </xsd:restriction>
</xsd:simpletype>

where the length is not defined

Mapping level 1.1 and below
char[y]

where y =4×(ceil(z/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher

 char[z]

where the length is fixed.

 char[16]

is the name of the container that stores the binary data
when the length is not defined.

Chapter 8. Creating a Web service 167

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below
char[32]

Mapping level 1.2 and higher

 float(*)

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.0 and below
char[32]

Mapping level 1.2 and higher

 double(*)

Related reference

“C and C++ to XML schema mapping” on page 162
The DFHLS2WS utility program supports mappings between C and C++ data types
and the XML schema definitions that are included in each Web service description.

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

PL/I to XML schema mapping
The DFHLS2WS utility program supports mappings between PL/I data structures
and the XML schema definitions that are included in each Web service description.
Because there are differences between the Enterprise PL/I compiler and older PL/I
compilers two language options are supported, PLI-ENTERPRISE and PLI-OTHER.

PL/I names are converted to XML names according to the following rules:

1. Characters that are not valid in XML element names are replaced with 'x'.

For example, monthly$total becomes monthlyxtotal.

2. Duplicate names are made unique by the addition of one or more numeric
digits.

For example, two instances of year become year and year1.

DFHLS2WS maps PL/I data types to schema elements according to the following
table. PL/I types that are not shown in the table are not supported by DFHLS2WS.
The following restrictions also apply:

v Data items with the COMPLEX attribute are not supported.

v Data items with the FLOAT attribute are supported at a mapping level of 1.2 or
higher. Enterprise PL/I FLOAT IEEE is not supported.

v VARYING and VARYINGZ pure DBCS strings are supported at a mapping level
of 1.2 or higher.

v Data items specified as DECIMAL(p,q) are supported only when p ≥ q

v Data items specified as BINARY(p,q) are supported only when q = 0.

v If the PRECISION attribute is specified for a data item, it is ignored.

v PICTURE strings are not supported.

v ORDINAL data items are treated as FIXED BINARY(7) data types.

168 Web Services Guide

|
|

|
|

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and
are processed as null-terminated strings; this does not apply for Enterprise PL/I.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, <xsd:whiteSpace value="collapse"/> is
generated for strings.

DFHLS2WS does not fully implement the padding algorithms of PL/I, and therefore
you must declare padding bytes explicitly in your data structure. DFHLS2WS issues
a message if it detects that padding bytes are missing. Each top level structure
must start on a double word boundary and each byte within the structure must be
mapped to the correct boundary. Consider this code fragment:
 3 FIELD1 FIXED BINARY(7),
 3 FIELD2 FIXED BINARY(31),
 3 FIELD3 FIXED BINARY(63);

In this example:
v FIELD1 is 1 byte long and can be aligned on any boundary.
v FIELD2 is 4 bytes long and must be aligned on a full word boundary.
v FIELD3 is 8 bytes long and must be aligned on a double word boundary.

The Enterprise PL/I compiler aligns FIELD3 first, because it has the strongest
boundary requirements. It then aligns FIELD2 at the fullword boundary immediately
before FIELD3, and FIELD1 at the byte boundary immediately before FIELD3.
Finally, so that the entire structure will be aligned at a fullword boundary, the
compiler inserts three padding bytes immediately before FIELD1.

Because DFHLS2WS does not insert equivalent padding bytes, you must declare
them explicitly before the structure is processed by DFHLS2WS. For example:
 3 PAD1 FIXED BINARY(7),
 3 PAD2 FIXED BINARY(7),
 3 PAD3 FIXED BINARY(7),
 3 FIELD1 FIXED BINARY(7),
 3 FIELD2 FIXED BINARY(31),
 3 FIELD3 FIXED BINARY(63);

Alternatively, you can change the structure to declare all the fields as unaligned and
recompile the application which uses the structure. For further information on PL/I
structural memory alignment requirements refer to Enterprise PL/I Language
Reference.

 PL/I data description Schema

FIXED BINARY (n)
where n ≤ 7

<xsd:simpleType>
 <xsd:restriction base="xsd:byte"/>
</xsd:simpleType>

FIXED BINARY (n)

where 8 ≤ n ≤ 15

<xsd:simpleType>
 <xsd:restriction base="xsd:short"/>
</xsd:simpleType>

FIXED BINARY (n)

where 16 ≤ n ≤ 31

<xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
</xsd:simpleType>

Chapter 8. Creating a Web service 169

|
|
|

|
|
|

|
|
|

PL/I data description Schema

FIXED BINARY (n)

where 32 ≤ n ≤ 63
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:long"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where n ≤ 8
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 9 ≤ n ≤ 16
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 17 ≤ n ≤ 32
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 33 ≤ n ≤ 64
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong"/>
</xsd:simpleType>

FIXED DECIMAL(n,m) <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="n"/>
 <xsd:fractionDigits value="m"/>
 </xsd:restriction>
</xsd:simpleType>

BIT(n)

where n is a multiple of 8. Other
values are not supported.

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="m"/>
 </xsd:restriction>
</xsd:simpleType>

where m = n/8

CHARACTER(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.
Restriction: VARYINGZ is only
supported by Enterprise PL/I

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

GRAPHIC(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.
Restriction: VARYINGZ is only
supported by Enterprise PL/I

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="m"/>
 </xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.0 and 1.1, where m = 2*n

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.2 or higher

170 Web Services Guide

|
|
|
|
|
|

|

PL/I data description Schema

WIDECHAR(n)
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="m"/>
 </xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.0 and 1.1, where m = 2*n

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="n"/>
 </xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.2 or higher

ORDINAL
Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:byte"/>
</xsd:simpleType>

BINARY FLOAT(n) where n <= 21

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

BINARY FLOAT(n) where 21 < n <= 53

Values greater than 53 are not
supported.

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

DECIMAL FLOAT(n)where n <= 6

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

DECIMAL FLOAT(n)where 6 < n <= 16

Values greater than 16 are not
supported.

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Related reference

“XML schema to PL/I mapping”
The DFHWS2LS utility program supports mappings between the XML schema
definitions that are included in each Web service description and the PL/I data
structures. Because there are differences between the Enterprise PL/I compiler and
older PL/I compilers two language options are supported, PLI-ENTERPRISE and
PLI-OTHER.

XML schema to PL/I mapping
The DFHWS2LS utility program supports mappings between the XML schema
definitions that are included in each Web service description and the PL/I data
structures. Because there are differences between the Enterprise PL/I compiler and
older PL/I compilers two language options are supported, PLI-ENTERPRISE and
PLI-OTHER.

The CICS Web services assistant generates unique and valid names for PL/I
variables from the schema element names using the following rules:

Chapter 8. Creating a Web service 171

|
|
|
|
|

|

|

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

1. Characters other than A-Z, a-z, 0-9, @ # or $ are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.

2. If the schema specifies that the variable has varying cardinality (that is,
minOccurs and maxOccurs attributes are specified with different values on the
xsd:element), and the schema element name is longer than 24 characters, it is
truncated to that length.

If the schema specifies that the variable has fixed cardinality, and the schema
element name is longer than 29 characters, it is truncated to that length.

3. Duplicate names in the same scope are made unique by the addition of one or
more numeric digits to the second and subsequent instances of the name.

For example, three instances of year become year, year1 and year2.

4. Five characters are reserved for the strings _cont or _num which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs attributes are specified with different values.

For more information, see “Variable arrays of elements in DFHWS2LS” on page
177.

5. For attributes, the previous rules are applied to the element name. The prefix
attr- is added to the element name, and this is followed by -value or -exist. If
the total length is longer than 28 characters, the element name is truncated. For
more information, see “Support for XML attributes” on page 181.

The nillable attribute has special rules. The prefix attr- is added, but nil- is
also added to the beginning of the element name. The element name is
followed by -value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 31 characters or less.

DFHWS2LS maps schema types to PL/I data types according to the following table.
You should also note the following points:

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is not specified, by default variable-length character data is mapped to
a VARYINGZ data type for Enterprise PL/I and VARYING data type for Other
PL/I.

v Variable-length binary data is mapped to a VARYING data type if it less than 32
768 bytes and a container if it is more than 32 768 bytes.

 Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:anyType">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below
 Not supported

Mapping level 2.1 and higher

 Supported

<xsd:simpleType>
 <xsd:restriction base="xsd:anySimpletype">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and higherCHAR(255)

172 Web Services Guide

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|

|

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:maxLength value="z"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:
 string
 normalizedString
 token
 Name
 NMTOKEN
 language
 NCName
 ID
 IDREF
 ENTITY

All mapping levelsCHARACTER(z)

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

 duration

 date

 time

 gDay

 gMonth

 gYear

 gMonthDay

 gYearMonth

All mapping levelsCHAR(32)

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below
CHAR(32)

Mapping level 2.0 and higher

 CHAR(40)

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="y"/>
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below
BIT(z)

where z = 8 ×y and z < 4095 bytes.
CHAR(z)

where z = 8 ×y and z > 4095 bytes.

Mapping levels 1.2 and higher

 CHAR(y)

<xsd:simpleType>
 <xsd:restriction base="xsd:byte">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

Chapter 8. Creating a Web service 173

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels

Enterprise PL/I
UNSIGNED FIXED BINARY (8)

Other PL/I
FIXED BINARY (8)

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels

Enterprise PL/I
SIGNED FIXED BINARY (15)

Other PL/I
FIXED BINARY (15)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels

Enterprise PL/I
UNSIGNED FIXED BINARY (16)

Other PL/I
FIXED BINARY (16)

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels

Enterprise PL/I
FIXED DECIMAL(31,0)

Other PL/I
FIXED DECIMAL(15,0)

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels

Enterprise PL/I
SIGNED FIXED BINARY (31)

Other PL/I
FIXED BINARY (31)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below

Enterprise PL/I
UNSIGNED FIXED BINARY(32)

Mapping level 1.2 and higher

Enterprise PL/I
CHAR(y)

 where y is a fixed length that is less than 16MB.

All mapping levels

Other PL/I
BIT(64)

174 Web Services Guide

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below

Enterprise PL/I
SIGNED FIXED BINARY(63)

Mapping level 1.2 and higher

Enterprise PL/I
CHAR(y)

 where y is a fixed length that is less than 16MB.

All mapping levels

Other PL/I
BIT(64)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below

Enterprise PL/I
UNSIGNED FIXED BINARY(64)

Mapping level 1.2 and higher

Enterprise PL/I
CHAR(y)

 where y is a fixed length that is less than 16MB.

All mapping levels

Other PL/I
BIT(64)

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

Mapping level 1.2 and higher

Enterprise PL/I
BIT(7)

 BIT(1)

Other PL/I
BIT(7)

 BIT(1)
where BIT(7) is provided for alignment and BIT(1)
contains the boolean mapped value.

<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="n"/>
 <xsd:fractionDigits value="m"/>
 </xsd:restriction>
</xsd:simpleType>

All mapping levelsFIXED DECIMAL(n,m)

Chapter 8. Creating a Web service 175

Schema PL/I data description

<xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

All mapping levelsCHAR(255)

<xsd:simpleType>
 <xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

All mapping levelsCHAR(255)

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 <xsd:length value="y"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 </xsd:restriction>
</xsd:simpleType>

where the length is not defined

Mapping level 1.0
Not supported

Mapping level 1.1

 CHAR(z)

where z =4×(ceil(y/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher

 CHAR(y)

where the length is fixed.

 CHAR(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary data.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Mapping levels 1.0 and 1.1
CHAR(32)

Mapping level 1.2 and higher

Enterprise PL/I
DECIMAL FLOAT(6) HEXADEC

Other PL/I
DECIMAL FLOAT(6)

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Mapping levels 1.0 and 1.1
CHAR(32)

Mapping level 1.2 and higher

Enterprise PL/I
DECIMAL FLOAT(16) HEXADEC

Other PL/I
DECIMAL FLOAT(16)

176 Web Services Guide

Related reference

“PL/I to XML schema mapping” on page 168
The DFHLS2WS utility program supports mappings between PL/I data structures
and the XML schema definitions that are included in each Web service description.
Because there are differences between the Enterprise PL/I compiler and older PL/I
compilers two language options are supported, PLI-ENTERPRISE and PLI-OTHER.

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

Variable arrays of elements in DFHWS2LS
A SOAP message can contain an array with varying numbers of elements. In
general, WSDL documents that contain varying numbers of elements do not map
efficiently into a single high-level language data structure. CICS uses
container-based mappings or inline mappings to handle varying numbers of
elements in SOAP messages.

An array with a varying number of elements is represented in the XML schema by
using the minOccurs and maxOccurs attributes on the element declaration:

 The minOccurs attribute specifies the minimum number of times the element can
occur. It can have a value of 0 or any positive integer.

 The maxOccurs attribute specifies the maximum number of time the element can
occur. It can have a value of any positive integer greater than or equal to the
value of the minOccurs attribute. It can also take a value of unbounded, which
indicates that there is no upper limit to the number of times the element can
occur.

The default value for both attributes is 1.

This example denotes an 8-byte string that is optional, that is, it can occur zero or
one times in the SOAP message:
<xsd:element name="component" minOccurs="0" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

The following example denotes a 8-byte string that must occur at least once:
<xsd:element name="component" minOccurs="1" maxOccurs="unbounded">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

In general, WSDL documents that contain varying numbers of elements do not map
efficiently into a single high-level language data structure. Therefore, to handle
these cases, CICS uses a series of connected data structures that are passed to
the application program in a series of containers. These structures are used as
input and output from the application. When CICS receives a SOAP message, it is
responsible for populating these structures and the application is responsible for

Chapter 8. Creating a Web service 177

reading them. Where CICS is sending a SOAP message, the application is
responsible for populating these structures and CICS is responsible for reading
them.

The format of these data structures is best explained with a series of examples.
These examples use an array of simple 8-byte fields. However, the model supports
arrays of complex data types and arrays of data types that contain other arrays.

Fixed number of elements

The first example illustrates an element that occurs exactly three times:
<xsd:element name="component" minOccurs="3" maxOccurs="3">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

In this example, because the number of times that the element occurs is known in
advance, it can be represented as a fixed length array in a simple COBOL
declaration (or the equivalent in other languages):
05 component PIC X(8) OCCURS 3 TIMES

Varying number of elements at mapping level 2 and below

This example illustrates a mandatory element that can occur from one to five times.
<xsd:element name="component" minOccurs="1" maxOccurs="5">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

The main data structure contains a declaration of two fields. At run time, the first
field component-num contains the number of times that the element appears in the
SOAP message, and the second field, component-cont, contains the name of a
container.
05 component-num PIC S9(9) COMP-5
05 component-cont PIC X(16)

A second data structure contains the declaration of the element itself:
01 DFHWS-component
 02 component PIC X(8)

You must examine the value of component-num (which will contain a value in the
range 1-5) to find out how many times the element occurs. The element contents
are located in the container named in component-cont, the container holds an array
of elements, where each element is mapped by the DFHWS-component data structure.

If minOccurs="0" and maxOccurs="1" the element is optional. To process the data
structure in your application program, you must examine the value of
component-num. If it is zero, there is no component element in the message, and the
contents of component-cont is undefined. If it is one, the component element is in
the container named in component-cont. The contents of the container are mapped
by the DFHWS-component data structure.

178 Web Services Guide

Note: If the SOAP message consists of a single recurring element, DFHWS2LS
generates two language structures. The main language structure contains
the number of elements in the array and the name of a container which
holds the array of elements. The second language structure maps a single
instance of the recurring element.

Varying number of elements at mapping level 2.1 and above

At mapping level 2.1 and above, DFHWS2LS includes the INLINE-MAXOCCURS-LIMIT
parameter. The INLINE-MAXOCCURS-LIMIT parameter specifies the way that varying
numbers of elements are handled. The mapping options for varying numbers of
elements are container-based mapping, described in the “Varying number of
elements at mapping level 2 and below” on page 178 section, or inline mapping.
The value of this parameter can be a positive integer in the range 0 - 32 767:

 The default value of INLINE-MAXOCCURS-LIMIT is 1, this ensures that optional
elements are mapped inline.

 A value of 0 for the INLINE-MAXOCCURS-LIMIT parameter means that inline
mapping never occurs.

 If maxOccurs is less than or equal to the value of INLINE-MAXOCCURS-LIMIT, inline
mapping is used.

 If maxOccurs is greater than the value of INLINE-MAXOCCURS-LIMIT,
container-based mapping, is used.

Mapping varying numbers of elements inline results in the generation of both an
array, as happens with the fixed occurrence example above, and a counter. The
component-num field indicates how many instances of the element are present, and
these are addressed via the array. For the example shown in the “Varying number
of elements at mapping level 2 and below” on page 178 section, when
INLINE-MAXOCCURS-LIMIT is less than or equal to 5, the generated data structure is:
05 component-num PIC S9(9) COMP-5 SYNC.
05 component OCCURS 5 PIC X(8).

The first field, component-num, is identical to the output for the container-based
mapping example in the previous section. The second field contains an array of
length 5 which is large enough to contain the maximum number of elements that
could be generated.

Inline mapping differs from container-based mapping, which stores the number of
occurrences of the element and the name of the container where the data is placed,
because it stores all the data in the current container. Storing the data in the current
container will generally improve performance and make inline mapping preferable.

Nested variable arrays

Complex WSDL documents may contain variably recurring elements which in turn
contain variably recurring elements. When this is the case, the structure described
is extended beyond the two levels described in the examples.

This example illustrates an optional element (<component2>) nested in a mandatory
element (<component1>) that can occur from one to five times.
<xsd:element name="component1" minOccurs="1" maxOccurs="5">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="component2" minOccurs="0" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

Chapter 8. Creating a Web service 179

|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

<xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The top level data structure is exactly the same as in the previous examples:
05 component1-num PIC S9(9) COMP-5
05 component1-cont PIC X(16)

But the second data structure contains:
01 DFHWS-component1
 02 component2-num PIC S9(9) COMP-5
 02 component2-cont PIC X(16)

And a third level structure contains:
01 DFHWS-component2
 02 component2 PIC X(8)

The number of occurrences of the outermost element (<component1>) is in
component1-num.

The container named in component1-cont contains an array with that number of
instances of the second data structure (DFHWS-component1).

Each instance of component2-cont names a different container, each of which
contains the data structure mapped by the third level structure (DFHWS-component2).

To illustrate this, consider the fragment of XML that matches the example:
<component1><component2>string1</component2></component1>
<component1><component2>string2</component2></component1>
<component1></component1>

There are three instances of <component1>. The first two each contain an instance
of <component2>; the third instance does not.

In the top level data structure, component1-num contains a value of 3. In the
container named in component1-cont are three instances of DFHWS-component1:

1. In the first, component2-num has a value of 1, and the container named in
component2-cont holds string1.

2. In the second, component2-num has a value of 1, and the container named in
component2-cont holds string2.

3. In the third, component2-num has a value of 0, and the contents of
component2-cont is undefined.

In this instance, the complete data structure is represented by four containers in all:

v The root data structure in container DFHWS-DATA.

v The container named in component1-cont.

v Two containers named in the first two instances of component2-cont.

Optional structures and xsd:choice

DFHWS2LS supports the use of maxOccurs and minOccurs on xsd:sequence,
xsd:choice and xsd:all elements only at mapping level 2.1, and above where the

180 Web Services Guide

|

|
|

minOccurs and maxOccurs attributes are set to minOccurs="0" and maxOccurs="1".
DFHWS2LS generates mappings that treat these elements as though each child
element in them is optional. When you implement an application with these
elements take care to ensure that invalid combinations of options are not generated
by the application. Each of the elements has its own count field in the generated
languages structure, these fields should either all be set to "0" or all be set to"1".
Any other combination of values is invalid, except for with xsd:choice elements.

xsd:choice is used to indicate that only one of the options within the element can
be used. It is supported at all mapping levels. DFHWS2LS handles each of the
options in an xsd:choice as though it is in an xsd:sequence element with
minOccurs="0" and maxOccurs="1". Take care when you implement an application
using the xsd:choice element to ensure that invalid combinations of options are not
generated by the application. Each of the elements has its own count field in the
generated languages structure, exactly one of which must be set to '1' and the
others must all be set to '0'. Any other combination of values is invalid, except when
the xsd:choice is itself optional, in which case it is valid for all of the fields to be set
to '0'.

Related reference

“Example of how to handle variably repeating content in COBOL” on page 190
In COBOL, you cannot process variably repeating content by using pointer
arithmetic to address each instance of the data. Other programming languages do
not have this limitation. This example shows you how to handle variably repeating
content in COBOL.

Support for XML attributes
XML schemas can specify attributes that are allowed or required in a SOAP
message. The Web services assistant utility DFHWS2LS ignores XML attributes by
default. To process XML attributes that are defined in the XML Schema, the value of
the MAPPING-LEVEL parameter in DFHWS2LS should be 1.1 or higher.

Optional attributes

Attributes can be optional or required and can be associated with any element in
the SOAP message. For every optional attribute defined in the schema, two fields
are generated in the appropriate language structure.

1. An existence flag - this field is treated as a boolean data type and is typically
one byte in length.

2. A value - this field is mapped in the same way as an equivalently typed XML
element. For example, an attribute of type NMTOKEN is mapped in the same way
as an XML element of type NMTOKEN.

The attribute existence and value fields appear in the generated language structure
before the field for the element they are associated with. Unexpected attributes that
appear in the instance document are ignored.

For example, consider the following schema attribute definition:
<xsd:attribute name="age" type="xsd:short" use="optional" />

This optional attribute would be mapped to the following COBOL structure:
05 attr-age-exist PIC X DISPLAY
05 attr-age-value PIC S9999 COMP-5 SYNC

Chapter 8. Creating a Web service 181

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|

|

|

|
|

Runtime processing of optional attributes

When CICS receives and reads SOAP messages, the following runtime processing
takes place for optional attributes:

v If the attribute is present, the existence flag is set and the value is mapped.

v If the attribute is not present, the existence flag is not set.

v If the attribute has a default value and is present, the value is mapped.

v If the attribute has a default value and is not present, the default value is
mapped.

Optional attributes that have default values are treated as required attributes.

When CICS produces a SOAP message based on the contents of a COMMAREA
or a container, the following runtime processing takes place:

v If the existence flag is set, the attribute is transformed and included in the
message.

v If the existence flag is not set, the attribute is not included in the message.

Required attributes and runtime processing

For every attribute that is required, only the value field is generated in the
appropriate language structure.

When CICS receives and reads SOAP messages at run time, if the attribute is
present then the value is mapped. If the attribute is not present:

v As the provider, CICS generates a SOAP fault message indicating there is an
error in the client's SOAP message.

v As the requester, CICS returns a conversion error resp2 code of 13 to the
application.

When CICS produces a SOAP message based on the contents of a COMMAREA
or container, the attribute is transformed and included in the message.

The nillable attribute

The nillable attribute is a special attribute that can appear on an xsd:element within
an XML schema. It specifies that the xsi:nil attribute is valid for the element in a
SOAP message. If an element has the xsi:nil attribute specified, it indicates that
the element is present but has no value, and therefore no content is associated with
it.

If an XML schema has defined the nillable attribute as true, then it is mapped as a
required attribute that takes a boolean value.

In runtime processing, when CICS receives a SOAP message and reads an
xsi:nil attribute:

v The value of the attribute is true or false.

v If the value is true, the values of the element or nested elements within the
scope of the xsi:nil attribute must be ignored by the application.

When CICS produces a SOAP message based on the contents of a COMMAREA
or container for which the value for the xsi:nil attribute is true:

v The xsi:nil attribute is generated into the SOAP message.

v The value of the associated element is ignored.

182 Web Services Guide

|

|
|

|

|

|

|
|

|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

|

|
|

|
|

|

|

v Any nested elements within the element are ignored.

Consider the following example XML schema, which could be part of a WSDL
document:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="root" nillable=”true”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element nillable="true" name="num" type="xsd:int" maxOccurs=”3” minOccurs=”3”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

An example of a partial SOAP message that conforms to this schema is:
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <num xsi:nil="true"/>
 <num>15</num>
 <num xsi:nil=”true”/>
</root>

In COBOL, this SOAP message would map to:
05 root
10 attr-nil-root-value PIC X DISPLAY
10 num OCCURS 3
15 num1 PIC S9(9) COMP-5 SYNC
15 attr-nil-num-value PIC X DISPLAY
10 filler PIC X(3)

Support for <xsd:any> and xsd:anyType
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

Before you can use <xsd:any> and xsd:anyType with DFHWS2LS you must set the
following parameters:

v Set the MAPPING-LEVEL parameter to 2.1 or higher.

v In provider mode, set the PGMINT parameter to CHANNEL.

<xsd:any> example

This example uses <xsd:any> to describe some optional unstructured XML content
following the "Surname" tag in the "Customer" tag:
<xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="FirstName" type="xsd:string"/>
 <xsd:element name="Surname" type="xsd:string"/>
 <xsd:any minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

An example SOAP message that conforms to this XML schema is:

Chapter 8. Creating a Web service 183

|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

<xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Customer xmlns="http://www.example.org/anyExample">
 <Title xmlns="">Mr</Title>
 <FirstName xmlns="">John</FirstName>
 <Surname xmlns="">Smith</Surname>
 <ExtraInformation xmlns="http://www.example.org/ExtraInformation">
 <!-- This ’ExtraInformation’ tag is associated with the optional xsd:any from the XML schema.
 It can contain any well formed XML. -->
 <ExampleField1>one</ExampleField1>
 <ExampleField2>two</ExampleField2>
 </ExtraInformation>
 </Customer>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If this SOAP message was sent to CICS, CICS populates the Customer-xml-cont
container with the following XML data:
<ExtraInformation xmlns="http://www.example.org/ExtraInformation">
 <!-- This ’ExtraInformation’ tag is associated with the optional xsd:any from the XML schema.
 It can contain any well formed XML. -->
 <ExampleField1>one</ExampleField1>
 <ExampleField2>two</ExampleField2>
</ExtraInformation>

CICS also populates the Customer-xmlns-cont container with the following in-scope
XML namespace declarations:
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"xmlns="http://www.example.org/anyExample"

xsd:anyType example

The xsd:anyType is the base data type from which all simple and complex data
types are derived. It does not restrict the data content. If you do not specify a data
type, it defaults to xsd:anyType; for example, these two XML fragments are
equivalent:
<xsd:element name="Name" type="xsd:anyType"/>

<xsd:element name="Name"/>

Generated language structures

The language structures generated for <xsd:any> or xsd:anyType take the following
form in COBOL and an equivalent form for the other languages:

elementName-xml-cont PIC X(16)
The name of a container that holds the raw XML. When CICS processes an
incoming SOAP message, it places the subset of the SOAP message that
the <xsd:any> or xsd:anyType defines into this container. The application
can only process the XML data natively. The application must generate the
XML, populate this container, and supply the container name.

 This container must be populated in text mode. If CICS populates this
container, it does so using the same variant of EBCDIC as the Web service
is defined to use. Characters that do not exist in the target EBCDIC
codepage are replaced with substitute characters, even if the container is
read by the application in UTF-8.

elementName-xmlns-cont PIC X(16)
The name of a container that holds any in-scope namespace prefix
declarations. The contents of this container are similar to those of the

184 Web Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|

|

|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

DFHWS-XMLNS container, except that it includes all of the in-scope
namespace declarations that are relevant rather than only the subset from
the SOAP Envelope tag.

 This container must be populated in text mode. If CICS populates this
container, it does so using the same variant of EBCDIC as the Web service
is defined to use. Characters that do not exist in the target EBCDIC
codepage are replaced with substitute characters, even if the container is
read by the application in UTF-8.

This container is used only when processing SOAP messages sent to
CICS. If the application tries to supply a container with namespace
declarations when an output SOAP message is generated, the container
and its contents are ignored by CICS. CICS requires that the XML supplied
by the application is entirely self-contained with respect to namespace
declarations.

For <xsd:any>, the two variable names use the enclosing XML element name; in the
<xsd:any> example, the variable names are Customer-xml-cont PIC X(16) and
Customer-xmlns-cont PIC X(16). For xsd:anyType, the direct XML element name is
used; in the xsd:anyType example, the variable names are Name-xml-cont PIC
X(16) and Name-xmlns-cont PIC X(16).

Support for <xsd:choice>
An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS Web services assistant provides varying degrees of support for
<xsd:choice> elements at the various mapping levels.

Support for <xsd:choice> at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHWS2LS provides improved support for
<xsd:choice> elements. The assistant generates a new container that stores the
value associated with the <xsd:choice> element. The assistant generate language
structures containing the name of a new container and an extra field:

fieldname-enum
The discriminating field to indicate which of the options the <xsd:choice>
element will use.

fieldname-cont
The name of the container that stores the option to be used. A further
language structure is generated to map the value of the option.

The following XML schema fragment includes an <xsd:choice> element:
<xsd:element name="choiceExample">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="option1" type="xsd:string" />
 <xsd:element name="option2" type="xsd:int" />
 <xsd:element name="option3" type="xsd:short" maxOccurs="2" minOccurs="2" />
 </xsd:choice>
 </xsd:complexType>
</xsd:element>

If this XML schema fragment is processed at mapping level 2.2 or higher, the
assistant generates the following COBOL language structures:
 03 choiceExample.
 06 choiceExample-enum PIC X DISPLAY.
 88 empty VALUE X’00’.
 88 option1 VALUE X’01’.

Chapter 8. Creating a Web service 185

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

88 option2 VALUE X’02’.
 88 option3 VALUE X’03’.
 06 choiceExample-cont PIC X(16).

01 Example-option1.
 03 option1-length PIC S9999 COMP-5 SYNC.
 03 option1 PIC X(255).

01 Example-option2.
 03 option2 PIC S9(9) COMP-5 SYNC.

01 Example-option3.
 03 option3 OCCURS 2 PIC S9999 COMP-5 SYNC.

Limitations for <xsd:choice> at mapping level 2.2 and higher

DFHWS2LS does not support nested <xsd:choice> elements; for example, the
following XML is not supported:
<xsd:choice>
 <xsd:element name ="name1" type="string"/>
 <xsd:choice>
 <xsd:element name ="name2a" type="string"/>
 <xsd:element name ="name2b" type="string"/>
 </xsd:choice>
</xsd:choice>

DFHWS2LS does not support recurring <xsd:choice> elements; for example, the
following XML is not supported:
<xsd:choice maxOccurs="2">
 <xsd:element name ="name1" type="string"/>
</xsd:choice>

DFHWS2LS supports a maximum of 255 options in an <xsd:choice> element.

Support for <xsd:choice> at mapping level 2.1 and below

At mapping level 2.1 and below, DFHWS2LS provides limited support for
<xsd:choice> elements. DFHWS2LS treats each of the options in an <xsd:choice>
element as though it is an <xsd:sequence> element that can occur at most once.

Only one of the options in an <xsd:choice> element can be used, so take care
when you implement an application using the <xsd:choice> element that you
generate only valid combinations of options. Each of the elements has its own
count field in the generated languages structure, exactly one of which must be set
to 1 and the others must all be set to 0. Any other combination of values is
incorrect, except when the <xsd:choice> is itself optional, in which case it is valid
for all of the fields to be set to 0.

186 Web Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|

|
|
|

|
|
|
|
|
|
|

Related reference

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

“Support for abstract elements and abstract data types” on page 188
The CICS Web service assistant provides support for abstract elements and
abstract data types at mapping level 2.2 and higher. The Web services assistant
maps abstract elements and abstract data types in a similar way to substitution
groups.

“Support for substitution groups”
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS Web services assistant provides support for substitution
groups at mapping level 2.2 and higher.

Support for substitution groups
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS Web services assistant provides support for substitution
groups at mapping level 2.2 and higher.

At mapping level 2.2 and higher, DFHWS2LS supports substitution groups using
similar mappings to those used for <xsd:choice> elements. The assistant generates
an enumeration field and a new container name in the language structure.

The following XML schema fragment includes an array of two subGroupParent
elements, each of which can be replaced with replacementOption1 or
replacementOption2:

<xsd:element name="subGroupExample" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="subGroupParent" maxOccurs="2" minOccurs="2" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name="subGroupParent" type="xsd:anySimpleType" />
<xsd:element name="replacementOption1" type="xsd:int" substitutionGroup="subGroupParent" />
<xsd:element name="replacementOption2" type="xsd:short" substitutionGroup="subGroupParent" />

Processing this XML fragment with the assistant generates the following COBOL
language structures:
 03 subGroupExample.
 06 subGroupParent OCCURS2.
 09 subGroupExample-enum PIC X DISPLAY.
 88 empty VALUE X ’00’.
 88 replacementOption1 VALUE X ’01’.
 88 replacementOption2 VALUE X ’02’.
 88 subGroupParent VALUE X ’03’.
 09 subGroupExample-cont PIC X (16).

01 Example-replacementOption1.
 03 replacementOption1 PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
 03 replacementOption2 PIC S9999 COMP-5 SYNC.

Chapter 8. Creating a Web service 187

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

01 Example-subGroupParent.
 03 subGroupParent-length PIC S9999 COMP-5 SYNC.
 03 subGroupParent PIC X(255).

For more information about substitution groups, see the W3C XML Schema Part 1:
Structures Second Edition specification: http://www.w3.org/TR/xmlschema-1/
#Elements_Equivalence_Class

Related reference

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

“Support for <xsd:choice>” on page 185
An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS Web services assistant provides varying degrees of support for
<xsd:choice> elements at the various mapping levels.

“Support for abstract elements and abstract data types”
The CICS Web service assistant provides support for abstract elements and
abstract data types at mapping level 2.2 and higher. The Web services assistant
maps abstract elements and abstract data types in a similar way to substitution
groups.

Support for abstract elements and abstract data types
The CICS Web service assistant provides support for abstract elements and
abstract data types at mapping level 2.2 and higher. The Web services assistant
maps abstract elements and abstract data types in a similar way to substitution
groups.

Support for abstract elements at mapping level 2.2 and higher

At mapping level 2.2 and above, DFHWS2LS treats abstract elements in almost the
same way as substitution groups except that the abstract element is not a valid
member of the group. If there are no substitutable elements, the abstract element is
treated as an <xsd:any> element and uses the same mappings as an <xsd:any>
element at mapping level 2.1.

The following XML schema fragment specifies two options that can be used in place
of the abstract element. The abstract element itself is not a valid option:
<xsd:element name="abstractElementExample" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="abstractElementParent" maxOccurs="2" minOccurs="2" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name="abstractElementParent" type="xsd:anySimpleType" abstract="true" />
<xsd:element name="replacementOption1" type="xsd:int" substitutionGroup="abstractElementParent" />
<xsd:element name="replacementOption2" type="xsd:short" substitutionGroup="abstractElementParent" />

Processing this XML fragment with the assistant generates the following COBOL
language structures:

188 Web Services Guide

|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

http://www.w3.org/TR/xmlschema-1/#Elements_Equivalence_Class
http://www.w3.org/TR/xmlschema-1/#Elements_Equivalence_Class

03 abstractElementExample.
 06 abstractElementParent OCCURS 2.
 09 abstractElementExample-enum PIC X DISPLAY.
 88 empty VALUE X ’00’.
 88 replacementOption1 VALUE X ’01’.
 88 replacementOption2 VALUE X ’02’.
 09 abstractElementExample-cont PIC X (16).

01 Example-replacementOption1.
 03 replacementOption1 PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
 03 replacementOption2 PIC S9999 COMP-5 SYNC.

For more information about abstract elements, see the W3C XML Schema Part 0:
Primer Second Edition specification: http://www.w3.org/TR/xmlschema-0/
#SubsGroups

Support for abstract data types at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHWS2LS treats abstract data types as
substitution groups. The assistant generates an enumeration field and a new
container name in the language structure.

The following XML schema fragment specifies two alternatives that can be used in
place of the abstract type:
<xsd:element name="AbstractDataTypeExample" type="abstractDataType" />

<xsd:complexType name="abstractDataType" abstract="true">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string" />
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="option1">
 <xsd:simpleContent>
 <xsd:restriction base="abstractDataType">
 <xsd:length value="5" />
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="option2">
 <xsd:simpleContent>
 <xsd:restriction base="abstractDataType">
 <xsd:length value="10" />
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>

Processing this XML fragment with the assistant generates the following COBOL
language structures:
 03 AbstractDataTypeExamp-enum PIC X DISPLAY.
 88 empty VALUE X’00’.
 88 option1 VALUE X’01’.
 88 option2 VALUE X’02’.
 03 AbstractDataTypeExamp-cont PIC X(16).

The language structures are generated into separate copybooks. The language
structure generated for option1 is generated into one copybook:
 03 option1 PIC X(5).

The language structure for option2 is generated into a different copybook:

Chapter 8. Creating a Web service 189

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|

|

http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-0/#SubsGroups

03 option2 PIC X(10).

For more information about abstract data types, see the W3C XML Schema Part 0:
Primer Second Edition specification: http://www.w3.org/TR/xmlschema-0/
#SubsGroups

Related reference

“Support for <xsd:any> and xsd:anyType” on page 183
DFHWS2LS supports the use of <xsd:any> and xsd:anyType in the XML schema.
You can use the <xsd:any> XML schema element to describe a section of an XML
document with undefined content. xsd:anyType is the base data type from which all
simple and complex data types are derived; it has no restrictions or constraints on
the data content.

“Support for <xsd:choice>” on page 185
An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS Web services assistant provides varying degrees of support for
<xsd:choice> elements at the various mapping levels.

“Support for substitution groups” on page 187
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS Web services assistant provides support for substitution
groups at mapping level 2.2 and higher.

Example of how to handle variably repeating content in COBOL
In COBOL, you cannot process variably repeating content by using pointer
arithmetic to address each instance of the data. Other programming languages do
not have this limitation. This example shows you how to handle variably repeating
content in COBOL.

The following example WSDL document represents a Web service with application
data that consists of an 8-character string that recurs a variable number of times:
<?xml version="1.0"?>
<definitions name="ExampleWSDL"
 targetNamespace="http://www.example.org/variablyRepeatingData/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.example.org/variablyRepeatingData/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <xsd:schema targetNamespace="http://www.example.org/variablyRepeatingData/">
 <xsd:element name="applicationData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="component" minOccurs="1" maxOccurs="unbounded">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>

 <message name="exampleMessage">
 <part element="tns:applicationData" name="messagePart"/>
 </message>

 <portType name="examplePortType">

190 Web Services Guide

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-0/#SubsGroups

<operation name="exampleOperation">
 <input message="tns:exampleMessage"/>
 <output message="tns:exampleMessage"/>
 </operation>
 </portType>

 <binding name="exampleBinding" type="tns:examplePortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="exampleOperation">
 <soap:operation soapAction=""/>
 <input><soap:body parts="messagePart" encodingStyle="" use="literal"/></input>
 <output><soap:body parts="messagePart" encodingStyle="" use="literal"/></output>
 </operation>
 </binding>
</definitions>

Processing this WSDL document through DFHWS2LS generates the following
COBOL language structures:
 03 applicationData.

 06 component-num PIC S9(9) COMP-5 SYNC.
 06 component-cont PIC X(16).

 01 DFHWS-component.
 03 component PIC X(8).

Note that the 8–character component field is defined in a separate structure called
DFHWS-component. The main data structure is called applicationData and it contains
two fields, component-num and component-cont. The component-num field indicates
how many instances of the component data are present and the component-cont
field indicates the name of a container that holds the concatenated list of component
fields.

The following COBOL code demonstrates one way to process the list of variably
recurring data. It makes use of a linkage section array to address subsequent
instances of the data, each of which is displayed by using the DISPLAY statement:
IDENTIFICATION DIVISION.
 PROGRAM-ID. EXVARY.

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * working storage variables
 01 APP-DATA-PTR USAGE IS POINTER.
 01 APP-DATA-LENGTH PIC S9(8) COMP.
 01 COMPONENT-PTR USAGE IS POINTER.
 01 COMPONENT-DATA-LENGTH PIC S9(8) COMP.
 01 COMPONENT-COUNT PIC S9(8) COMP-4 VALUE 0.
 01 COMPONENT-LENGTH PIC S9(8) COMP.

 LINKAGE SECTION.

 * a large linkage section array
 01 BIG-ARRAY PIC X(659999).

 * application data structures produced by DFHWS2LS
 * this is normally referenced with a COPY statement
 01 DFHWS2LS-data.
 03 applicationData.
 06 component-num PIC S9(9) COMP-5 SYNC.
 06 component-cont PIC X(16).

Chapter 8. Creating a Web service 191

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

01 DFHWS-component.
 03 component PIC X(8).

 PROCEDURE DIVISION USING DFHEIBLK.
 A-CONTROL SECTION.
 A010-CONTROL.

 * Get the DFHWS-DATA container
 EXEC CICS GET CONTAINER(’DFHWS-DATA’)
 SET(APP-DATA-PTR)
 FLENGTH(APP-DATA-LENGTH)
 END-EXEC
 SET ADDRESS OF DFHWS2LS-data TO APP-DATA-PTR

 * Get the recurring component data
 EXEC CICS GET CONTAINER(component-cont)
 SET(COMPONENT-PTR)
 FLENGTH(COMPONENT-DATA-LENGTH)
 END-EXEC

 * Point the component structure at the first instance of the data
 SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

 * Store the length of a single component
 MOVE LENGTH OF DFHWS-component TO COMPONENT-LENGTH

 * process each instance of component data in turn
 PERFORM WITH TEST AFTER
 UNTIL COMPONENT-COUNT = component-num

 * display the current instance of the data
 DISPLAY ’component value is: ’ component

 * address the next instance of the component data
 SET ADDRESS OF BIG-ARRAY TO ADDRESS OF DFHWS-component
 SET ADDRESS OF DFHWS-component
 TO ADDRESS OF BIG-ARRAY (COMPONENT-LENGTH + 1:1)
 ADD 1 TO COMPONENT-COUNT

 * end the loop
 END-PERFORM.

 * Point the component structure back at the first instance of
 * of the data, for any further processing we may want to perform
 SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

 * return to CICS.

 EXEC CICS
 RETURN
 END-EXEC

 GOBACK.

The code above provides a generic solution to handling variably repeating content.
The array, BIG-ARRAY, moves to the start of each component in turn and does not
remain fixed at the start of the data. The component data structure is then moved to
point at the first byte of the next component. COMPONENT-PTR can be used to recover
the start position of the component data if required.

Here is an example SOAP message that conforms to the WSDL document:

192 Web Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <applicationData xmlns="http://www.example.org/variablyRepeatingData/">
 <component xmlns="">VALUE1</component>
 <component xmlns="">VALUE2</component>
 <component xmlns="">VALUE3</component>
 </applicationData>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is the output produced by the COBOL program when it processes the SOAP
message:
CPIH 20080115103151 component value is: VALUE1
CPIH 20080115103151 component value is: VALUE2
CPIH 20080115103151 component value is: VALUE3

Creating a Web service provider using the Web services assistant
The CICS Web services assistant simplifies the task of deploying your CICS
applications in a service provider setting.

When you use the assistant to deploy a CICS application as a service provider, you
have two options:

v Start with a Web service description, and use the assistant to generate the
language data structures.

Use this option when you are implementing a service provider that conforms with
an existing Web service description.

v Start with the language data structures, and use the assistant to generate the
Web service description.

Use this option when you are exposing an existing program as a Web service,
and are willing to expose aspects of the program's interfaces in the Web service
description and the SOAP messages.

Creating a service provider application from a Web service description
Using the CICS Web services assistant, you can create a service provider
application from a Web service description that complies with WSDL 1.1 or WSDL
2.0.

Your Web services description must be in a file in z/OS UNIX and a suitable
provider mode pipeline must be installed in the CICS region. The user ID under
which DFHWS2LS runs must be defined to OMVS. The user ID must have read
permission to z/OS UNIX and PDS libraries, and write permission to the directories
specified on the LOGFILE, WSBIND, and WSDL parameters. The user ID must also have
a sufficiently large storage allocation to run Java.

Follow these steps for the Web service description that you want to use as input.

1. Use batch program DFHWS2LS to generate a Web service binding file, and one
or more language data structures. DFHWS2LS contains a large set of optional
parameters that provide you with flexibility to create the binding file and
language structures that your application requires. The options that you should
consider when Web service enabling an existing application are:

a. What mechanism should CICS use for passing data to the service provider
application program? You can opt to use channels and pass the data in
containers, or use a COMMAREA. It is recommended that you use channels
and containers. Specify this using the PGMINT parameter.

Chapter 8. Creating a Web service 193

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

b. What language do you want to generate? DFHWS2LS can generate
COBOL, C/C++, or PL/I language data structures. Specify this using the
LANG parameter.

c. What mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are also only
available at the higher mapping levels. It is recommended that you use the
highest level of mapping available.

d. What URI do you want the Web service requester to use? Specify a relative
URI using the URI parameter, for example URI=/my/test/webservice. This
indicates the URI that CICS associates with your Web service. The value is
used by CICS when creating the URIMAP resource.

e. What transaction and user id do you want to use to run the Web service
request and response under? You can use an alias transaction to run the
application to compose a response to the service requester. The alias
transaction is attached under the user ID. Specify this using the TRANSACTION
and USERID parameters. These values are used when creating the URIMAP
resource. If you don't want to use a specific transaction, do not use these
parameters.

When you submit DFHWS2LS, CICS generates the Web service binding file
and places it in the location that you specified using the WSBIND parameter. The
language structures are placed in the partitioned data set that you specified
using the PDSLIB parameter.

2. Copy the generated Web service binding file to the pickup directory of the
provider mode PIPELINE resource that you want to use for your Web service
application. You must copy the binding file in binary mode.

3. Optional: Copy the Web service description to the same directory as the Web
service binding file. This allows you to perform validation to test that your Web
service is working as expected at run time.

4. Write a service provider application program to interface with the generated
language structures and implement the required business logic.

5. Although you can use RDO to create the necessary resources, it is
recommended that you use the PIPELINE SCAN command to dynamically create
the WEBSERVICE and URIMAP resources.

v The WEBSERVICE resource encapsulates the Web service binding file in
CICS and is used at run time.

v The URIMAP resource tells CICS to associate the WEBSERVICE resource
with a specific URI.

If you have any problems submitting DFHWS2LS, or the resources do not install
correctly, see “Diagnosing deployment errors” on page 247.

Creating a service provider application from a data structure
Using the CICS Web services assistant, you can create a service provider
application from a high-level language data structure.

Before you can process your high-level language data structures, you must ensure
that:

v The data structures are defined separately from the source program (for example
in a COBOL copy book).

v If your PL/I or COBOL application program uses different data structures for its
input and its output, the data structures are defined in two different members in a

194 Web Services Guide

partitioned data set. If the same structure is used for input and output, the
structure should be defined in a single member.

For C and C++, your data structures can be in the same member in a partitioned
data set.

Which data structures you process depend upon whether you are using a wrapper
program:

v If you are using a wrapper program, the copy book is the interface to the wrapper
program.

v If you are not using a wrapper program, the copy book is the interface to the
business logic.

The language structures must be available in a partitioned data set and a suitable
pipeline must be installed in the CICS region. The user ID under which DFHLS2WS
runs must be defined to OMVS. The user ID must have read permission to z/OS
UNIX and PDS libraries, and write permission to the directories specified on the
LOGFILE, WSBIND, and WSDL parameters. The user ID must also have a sufficiently
large storage allocation to run Java.

1. Use batch program DFHLS2WS to generate a Web service binding file and Web
service description from the language structure. DFHLS2WS contains a large
set of optional parameters that provide you with flexibility to create the binding
file and language structures that your application requires. The options you
should consider when Web service enabling an existing application are:

a. What mechanism should CICS use for passing data to the service provider
application program? You can opt to use channels and pass the data in
containers, or use a COMMAREA. Specify this using the PGMINT parameter.

b. What level of Web service description (WSDL document) do you want to
generate? CICS generates descriptions that comply with either WSDL 1.1 or
WSDL 2.0 documents. If you want the service provider application to support
requests that comply with both levels of WSDL, specify values for the
WSDL_1.1 and WSDL_2.0 parameters. Ensure that the file names are different
when using more than one WSDL parameter. This produces two Web
service descriptions and a binding file.

c. What version of the SOAP protocol do you want to use? You can specify
this using the SOAPVER parameter. It is recommended that you use the ALL
value. This gives the flexibility to use either SOAP 1.1 or SOAP 1.2 as the
binding for the Web service description, although you must install the Web
service into a pipeline that is configured with the SOAP 1.2 message
handler. You can only use this parameter when the MINIMUM-RUNTIME-LEVEL
is 2.0.

d. What mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are also only
available at the higher mapping levels. It is recommended that you use the
highest level of mapping available.

e. What URI do you want the Web service requester to use? Specify an
absolute URI using the URI parameter, for example URI=http://
www.example.org:80/my/test/webservice. The relative part of this address,
i.e. /my/test/webservice, is used when creating the URIMAP resource. The
full URI is used as the soap:address element in the Web service description.
This is true for both HTTP and WMQ URIs.

When you submit DFHLS2WS, CICS generates the Web service binding file
and places it in the location that you specified using the WSBIND parameter. The

Chapter 8. Creating a Web service 195

generated Web service description is placed in the location that you specified
using the WSDL, WSDL_1.1, or WSDL_2.0 parameter.

2. Review the generated Web service description and perform any necessary
customization. This is explained in “Customizing generated Web service
description documents.”

3. Copy the Web service binding file to the pickup directory of the provider mode
pipeline that you want to use for your Web service application. You must copy
the Web service binding file in binary mode.

4. Optional: Copy the Web service description to the same directory as the Web
service binding file. This allows you to perform validation to test that your Web
service is working as expected at run time.

5. Although you can use RDO to create the necessary resources, it is
recommended that you use the PIPELINE SCAN command to dynamically create
the WEBSERVICE and URIMAP resources.

v The WEBSERVICE resource encapsulates the Web service binding file in
CICS and is used at run time.

v The URIMAP resource tells CICS to associate the WEBSERVICE resource
with a specific URI.

If you have any problems submitting DFHLS2WS, or the resources do not install
correctly, see “Diagnosing deployment errors” on page 247.

You should make the Web services description available to anyone who needs to
develop a Web service requester that will access your service.

Customizing generated Web service description documents
The Web service description (WSDL) documents that are generated by DFHLS2WS
contain some automatically generated content that might be appropriate for you to
change before publishing.

Customizing WSDL documents can result in regenerating the Web services binding
file and in some cases, writing a wrapper program.

1. If you want to advertise support for HTTPS or communicate using WebSphere
MQ, it is recommended that you use the URI parameter in DFHLS2WS to set an
absolute URI. If you have not done this, then you need to change the
wsdl:service and wsdl:binding elements at the end of the WSDL document.
The generated WSDL includes comments to assist you in making these
changes. Changing these elements does not require you to regenerate the Web
services binding file.

2. If you want to supply the network location of your Web service, it is
recommended that you use the URI parameter in DFHLS2WS to set an absolute
URI. If you have not done this, add the details to the soap:address within the
wsdl:service element.

a. If you are using an HTTP-based protocol, replace my-server with the TCP/IP
host name of your CICS region and my-port with the port number of the
TCPIPSERVICE resource.

b. If you are using WebSphere MQ as the transport protocol, replace myQueue
with the name of the appropriate queue.

These changes can be made without requiring any change to the Web services
binding file.

196 Web Services Guide

|
|
|
|

|
|
|
|

Note: If you are changing the port name and namespace without regenerating
the WSBind file then the monitoring information may be wrong at runtime
level 2.1 onwards.

3. Consider if the automatically generated names in the WSDL document are
appropriate for your purposes. The values that you can rename are:

v The targetNamespace of the WSDL document

v The targetNamespace of the XML schemas within the WSDL document

v The wsdl:portType name

v The wsdl:operation name

v The wsdl:binding name

v The wsdl:service name

v The names of the fields in the XML schemas within the WSDL document.

These values form part of the programmatic interface to which a client program
must be coded. If the generated names are not sufficiently meaningful, it could
make maintenance of your application code harder over a long period of time. It
is recommended that you use the DFHLS2WS parameters REQUEST-NAMESPACE
and RESPONSE-NAMESPACE to change the targetNamespace of the XML schemas,
and the WSDL-NAMESPACE parameter to change the targetNamespace of the
WSDL document.

If you change any of these values, you need to regenerate the Web services
binding file using DFHWS2LS. The language structures that are produced will
not be the same as your existing language structures, but are compatible with
your existing application, so no application changes are required. However, you
can ignore the new language structures and use the new Web services binding
file with the original structures.

4. Consider if the COMMAREA fields exposed in the XML schemas are
appropriate. You might want to consider removing those fields that are not
helpful to a Web service client developer. For example:

v fields that are only used for output values could be removed from the schema
that maps the input data structures

v filler fields

v automatically generated annotations

If you make any of these changes, you need to regenerate the Web services
binding file using DFHWS2LS. The new language structures that are generated
are not compatible with the original language structures, so you need to write a
wrapper program to map data from the new representation to the old one. This
wrapper program needs to perform an EXEC CICS LINK command to the target
application program and then map the returned data.

This level of customization requires the most effort, but results in the most
meaningful programmatic interfaces for your Web services client developers to
work with.

5. If you want to put the generated WSDL document through DFHWS2LS to create
new language structures, decide whether to keep the annotations in the WSDL
document. The annotations override the normal mapping rules when
DFHWS2LS generates the language structures. Overriding the mapping rules
ensures that the generated language structures are compatible with the version
that was used by DFHLS2WS. If you want to use the default mapping rules to
produce the language structures, remove the annotations.

For an example of a WSDL document, see “An example of the generated WSDL
document” on page 283.

Chapter 8. Creating a Web service 197

|
|
|

|
|

|
|
|
|
|
|
|

Sending a SOAP fault
In a service provider, you can use the CICS API to send a SOAP fault to a Web
service requester. This could either be issued by the service provider application, or
by a header processing program in the pipeline.

To use the API, the service provider application must use channels and containers.
If the application uses COMMAREAs, you need to write a wrapper program that
does use channels and containers to create the SOAP fault message. You can only
use the API in a header processing program if it is invoked directly from a
CICS-supplied SOAP message handler.

You might want to issue a SOAP fault to the Web service requester if your
application logic cannot satisfy the request for example, or if there is an underlying
problem with the request message. Note that CICS does not consider issuing a
SOAP fault as an error, so the normal message response pipeline processing takes
place rather than any error processing. If you do want to roll back any transactions,
this must be performed by the application program.

1. In your program, use the EXEC CICS SOAPFAULT CREATE command to send a
SOAP fault.

2. Code the CLIENT or SERVER option on the command. This indicates where the
problem has occurred, either on the client side or on the server.

v CLIENT indicates that there is a problem with the request message that was
received.

v SERVER indicates that there was a problem when the request message was
processed by CICS. This could be an application problem, for example it is
unable to satisfy the request, or it could be an underlying problem that occurs
during the pipeline processing.

3. Add the FAULTSTRING option and its length in the FAULTSTRLEN option to provide
a summary of why the fault has been issued by the service provider. The
contents of this option are in XML. Any data supplied by the application must be
in a format that is suitable for direct inclusion in an XML document. The
application might have to specify some characters as XML entities. For
example, if the < character is used anywhere other than the start of an XML tag,
the application must change it to <. The following example shows an
incorrect FAULTSTRING option:
dcl msg_faultString char(*) constant(’Error: Value A < Value B’);

The correct way to specify this FAULTSTRING option is as follows:
dcl msg_faultString char(*) constant(’Error: Value A < Value B’);

Tip: To avoid using XML entities, you can wrapper the data in an XML CDATA
construct. XML processors do not parse character data in this construct.
Using this method, you could specify the following FAULTSTRING option:
dcl msg_faultString char(*) constant(’<![CDATA[Error: Value A < Value B]]>’);

4. Code the DETAIL option and its length in the DETAILLENGTH option to provide the
details of why the fault has been issued by the service provider. The contents of
this option are in XML. The same guidance applies to the DETAIL option as to
the FAULSTRING option.

5. Optional: If you are invoking the API from a header processing program, define
the program in the pipeline configuration file. The header processing program
should be defined in either the <cics_soap_1.1_handler> or
<cics_soap_1.2_handler> element.

198 Web Services Guide

When your program issues this command, CICS creates the SOAP fault response
message at the appropriate SOAP level. If your service provider application issues
the command, it does not need to create a SOAP response and put it in the
DFHRESPONSE container. The pipeline processes the SOAP fault through the
message handlers and sends the response to the Web service provider.

Example

The SOAPFAULT CREATE command has a number of options to provide you with
flexibility to respond appropriately to a Web service requester. Here is a simple
example of a completed command that creates a SOAP fault that can be used for
both SOAP 1.1 and SOAP 1.2.
EXEC CICS SOAPFAULT CREATE CLIENT
 DETAIL(msg_detail)
 DETAILLENGTH(length(msg_detail))
 FAULTSTRING(msg_faultString)
 FAULTSTRLEN(length(msg_faultString));

where msg_detail and msg_faultString could be coded with the following values:
dcl msg_detail char(*) constant(’<ati:ExampleFault xmlns="http://www.example.org/faults"
xmlns:ati="http://www.example.org/faults">Detailed error message goes here.</ati:ExampleFault>’);
dcl msg_faultString char(*) constant(’Something went wrong’);

Creating a Web service requester using the Web services assistant
The CICS Web services assistant simplifies the task of deploying your CICS
applications in a service requester setting.

When you use the CICS Web services assistant to deploy a CICS application as a
service requester, you must start with a Web service description, and generate the
language data structures from it.

Creating a service requester application from a Web service
description

Using the CICS Web services assistant, you can create a service requester
application from a Web service description that complies with WSDL 1.1 or WSDL
2.0.

Your Web services description must be in a file in HFS and a suitable requester
mode pipeline must be installed in the CICS region.

1. Use batch program DFHWS2LS to generate a Web service binding file and one
or more language structures.

a. What mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are also only
available at the higher mapping levels. It is recommended that you use the
highest level of mapping available.

b. What code page do you want to use when transforming data at run time? If
you want to use a specific code page for your application that is different
from the code page for the CICS region, use the CCSID parameter. The code
page must be EBCDIC, and supported by both Java and z/OS conversion
services.

c. Do you want to support a subset of the Operations that are declared in the
Web service description? If you have a very large Web service description,
and only want your service requester application to support a certain number

Chapter 8. Creating a Web service 199

of Operations, use the OPERATION parameter to list which ones you want.
Each operation should be separated with a space and is case sensitive.

Important: Do not specify parameters such as PROGRAM, URI, TRANSACTION and
USERID when you use DFHWS2LS. These parameters apply only to
a service provider application, and if specified, cause a provider
mode Web service binding file to be produced.

As well as the Web service binding file, the program generates a language data
structure.

2. Check the log file to see if there were any problems when DHWS2LS generated
the binding file and language structures. There might be some elements or
options in the Web service description that CICS does not support. If there are
any warning or error messages, read through the advice that is provided and
take any appropriate action. You might need to rerun the batch program.

3. Copy the Web service binding file to the pickup directory of the requester mode
pipeline that you want to use for your Web service application. Use the INQUIRE
PIPELINE command to:

a. Ensure that the PIPELINE resource is configured for service requester
applications. The value of the MODE attribute shows whether the installed
pipeline supports requester or provider Web service applications.

b. Ensure that the correct SOAP protocol is supported in the pipeline for your
Web service. The SOAPlevel attribute indicates which version is supported.
In service requester mode, the binding of the Web service must match the
version of SOAP that is supported in the pipeline. You cannot install a Web
service with a SOAP 1.1 binding into a service requester pipeline that
supports SOAP 1.2.

c. Ensure that the configured timeout for the pipeline is suitable for your
service requester application. The timeout is displayed as the value of the
RESPWAIT attribute on the PIPELINE resource. If no timeout is specified on
the pipeline, the default for the transport is used.

v The default timeout for HTTP is 10 seconds.

v The default timeout for WMQ is 60 seconds.

There is also a dispatcher timeout for each transaction in the CICS region. If
this value is less than the default for either protocol, the timeout occurs with
the dispatcher.

4. Optional: Copy the Web service description to the same pickup directory as the
Web service binding file. This allows you to turn validation on for the Web
service at run time.

5. Use the language data structure generated in step 1 on page 199 to write your
wrapper program. Use an EXEC CICS INVOKE WEBSERVICE command in your
wrapper program to communicate with the Web service. The options on the
command include:

v The name of the WEBSERVICE resource

v The operation for which the Web service is being invoked

6. Although you can use RDO to create the necessary resources, it is
recommended that you use the PIPELINE SCAN command to dynamically create
the WEBSERVICE and URIMAP resources.

v The WEBSERVICE resource encapsulates the Web service binding file in
CICS and is used at run time.

v The URIMAP resource tells CICS to associate the WEBSERVICE resource
with a specific URI.

7. Write a wrapper program that you can substitute for your communications logic.

200 Web Services Guide

Creating a Web service using tooling
Instead of using the Web services assistant JCL, you can use WebSphere
Developer for System z or write your own Java program to create the required files
in CICS.

1. You can either:

v Use the tool WebSphere Developer for System z to create a Web service
binding file, and the Web service description or language structures. For
more information about this tool see http://www-306.ibm.com/software/
awdtools/devzseries/.

v Write your own Java program, using the provided API, to invoke the Web
services assistant. This API is described in the Web services assistant: Class
Reference Javadoc. It includes comments that explain the classes and
sample code is also provided to give an example of how you might invoke
the Web services assistant. The Javadoc also contains a complete list of the
JAR files that are required and where they can be found in z/OS UNIX.

You can run your Java program on the z/OS or Windows platform. If you run
the program on Windows, you should transfer the generated Web services
binding file to a suitable pickup directory in binary mode using FTP or an
equivalent process.

2. If you are generating a Web service description from a language structure,
review the file and perform any necessary customization. This is explained in
“Customizing generated Web service description documents” on page 196.

3. Deploy the generated Web service binding file into a suitable pipeline pickup
directory.

4. Optional: Copy the Web service description into the pickup directory of the
pipeline. This enables you to perform validation of the Web service to check that
it is working as expected.

5. If you started with a Web service description, write a service provider or
requester application program to interface with the generated language
structures.

6. Perform a PIPELINE SCAN to automatically create the required CICS resources.

Creating XML-aware Web service applications
If you decide not to use the CICS-supplied data mappings and write your own
XML-aware data applications instead, there are two ways to do this. You can either
use the XML-ONLY option on DFHWS2LS, or you can write your own application
without using any of the tooling. The most straightforward way to create an
XML-aware application is with the XML-ONLY option.

Writing your own XML-aware applications involves writing code to both parse and
generate XML documents. One way to write your own XML-aware application is to
use the XML PARSE and XML GENERATE statements in COBOL. Another way to write
your own XML-aware applications uses other IBM tools; for example, you can use
the IBM Rational® Developer for System z® tool to generate COBOL XML converter
programs that can be invoked from your applications.

Creating an XML-aware service provider application
Your XML-aware service provider application must work with the containers that are
passed to it and handle the data conversion between the XML and the program
language.

Chapter 8. Creating a Web service 201

|
|
|
|

http://www-306.ibm.com/software/awdtools/devzseries/
http://www-306.ibm.com/software/awdtools/devzseries/

The following steps guide you through the creation of your XML-aware application,
including whether to use any of the CICS tooling.

1. Decide if you want to generate a Web service binding file for your XML-aware
application using DFHWS2LS. The advantage of generating a Web service
binding file is that you can use CICS services, such as validation to test your
Web service and CICS monitoring using global user exits.

v If you want to generate a Web service binding file, run DFHWS2LS specifying
the XML-ONLY parameter and a MINIMUM-RUNTIME-LEVEL of 2.1 or higher. The
Web service binding file enables the application program to work directly with
the contents of the DFHWS-BODY container. In all other respects the
generated binding file shares the same deployment characteristics and the
same runtime behavior as a file generated without the XML-ONLY parameter.

v If you do not want to use a Web service binding file, configure your service
provider pipeline so that the Web service request reaches your XML-aware
application. You can either configure the terminal handler in the pipeline
configuration file to use your XML-aware application program or create a
message handler that dynamically switches to your application depending on
the URI that is received in the pipeline.

2. Write your application to handle the Web service request that is held in the
following containers:

DFHWS-BODY
For an inbound SOAP request when the pipeline includes a
CICS-provided SOAP message handler, the contents of the SOAP body.

DFHREQUEST
The complete request (including the envelope for a SOAP request)
received from the pipeline.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces
for the XML content of the request.

DFHWS-SOAPACTION
The SOAPAction header associated with the SOAP message in
container DFHWS-BODY.

When you code API commands to work with the containers, you do not need to
specify the CHANNEL option, because all the containers are associated with the
current channel (the channel that was passed to the program). If you need to
know the name of the channel, use the EXEC CICS ASSIGN CHANNEL command.

3. Optional: Your application can also use additional containers that are available
to message handlers in the pipeline, as well as any other containers that the
message handlers create as part of their processing. For a complete list of
containers, see “Containers used in the pipeline” on page 105.

4. When your application has processed the request, construct a Web service
response using the following containers:

DFHRESPONSE
The complete response message to be passed to the pipeline. Use this
container if you do not use SOAP for your messages, or if you want to
build the complete SOAP message (including the envelope) in your
program.

 If you supply a SOAP body in container DFHWS-BODY,
DFHRESPONSE should be empty. If you supply content in both
DFHWS-BODY and DFHRESPONSE, CICS uses DFHRESPONSE.

202 Web Services Guide

|
|
|
|
|
|

DFHWS-BODY
For an outbound SOAP response, the contents of the SOAP body.
Provide this container when the terminal handler of your pipeline is a
CICS-provided SOAP message handler. The message handler will
construct the full SOAP message containing the body.

 Your program must create this container, even if the request and
response are identical. If you do not, CICS issues an internal server
error.

You can also use any of the other containers to pass information that your
pipeline needs for processing the outbound response.

If your Web service does not return a response, you must return container
DFHNORESPONSE to indicate that there is no response. The contents of the
container are unimportant, as the message handler checks only whether the
container is present or not.

5. Create a URIMAP resource. If you are using the XML-ONLY parameter and you
have specified a value for the URI parameter of DFHWS2LS, the URIMAP is
created automatically for you during the PIPELINE SCAN process.

Creating an XML-aware service requester application
Your XML-aware Web service requester application must handle the data
conversion between the XML and the programming language, and populate the
control containers in the pipeline.

You can write your own XML-aware service requester application using the
XML-ONLY parameter on DFHWS2LS, or you can write it without using any of the
tooling. The most straightforward way to write your own XML-aware service
requester application is by using the XML-ONLY parameter on DFHWS2LS; the
XML-ONLY parameter is available at runtime level 2.1 and above.

Using the XML-ONLY parameter will result in a WSBind file being generated that
instructs CICS that the application will work directly with the contents of the
DFHWS-BODY container. The generated WSBind file must be installed into a
requester mode PIPELINE and this will result in a requester mode WEBSERVICE
resource being created. The application must generate XML for the body of the
Web service request and store it in the DFHWS-BODY container. It must then call
the EXEC CICS INVOKE WEBSERVICE command. The outbound message will be sent to
the Web services provider. The body of the response message will also be in the
DFHWS-BODY container after the call completes.

XML aware requester applications may receive SOAP Fault messages back from
the remote provider mode application. Where this happens the requester application
is responsible for interpreting the SOAP Fault and distinguishing it from a regular
response message. If the INVOKE WEBSERVICE command is used with an XML-ONLY
WEBSERVICE, CICS will not set the response code which is normally used to
indicate that a SOAP Fault was received.

If you are writing your own XML-aware service requester application without using
the XML-ONLY option, complete the following steps:

1. Create a channel and populate it with containers. Provide the following
information in each container:

DFHWS-PIPELINE
The name of the PIPELINE resource used for the outbound request.

Chapter 8. Creating a Web service 203

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

DFHWS-URI
The URI of the target Web service

DFHWS-BODY
For an outbound SOAP request, the contents of the SOAP body.
Provide this container when the pipeline includes a CICS-provided
SOAP message handler. The message handler will construct the full
SOAP message containing the body.

DFHREQUEST
The complete request message to be passed to the pipeline. Use this
container if you do not use SOAP for your messages, or if you want to
build the complete SOAP message (including the envelope) in your
program. The pipeline should not include a CICS-provided SOAP
message handler. This avoids duplicate SOAP headers being sent in
the outbound message.

 If you supply a SOAP body in container DFHWS-BODY, DFHREQUEST
should be empty. If you supply content in both DFHWS-BODY and
DFHREQUEST, CICS uses DFHREQUEST.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces
for the XML content of the request.

DFHWS-SOAPACTION
The SOAPAction header to be added to the SOAP message specified in
container DFHWS-BODY.

2. Link to program DFHPIRT. Use this command:

EXEC CICS LINK PROGRAM(DFHPIRT) CHANNEL(userchannel)

where userchannel is the channel which holds your containers. The outbound
message is processed by the message handlers and header processing
programs in the pipeline and sent to the Web service provider.

3. Retrieve the containers that contain the Web service response from the same
channel. The response from the Web service provider could be a successful
response or a SOAP fault. The Web service requester application must be able
to handle both types of response from the service provider. The complete
response is contained in the following containers:

DFHRESPONSE
The complete response (including the envelope for a SOAP response)
received from the Web service provider.

DFHWS-BODY
When the pipeline includes a CICS-provided SOAP message handler,
the contents of the SOAP body.

DFHERROR
Error information from the pipeline.

Validating SOAP messages
When you use the CICS Web services assistant to deploy your applications, you
can specify that the SOAP messages should be validated at run time, to ensure
that they conform to the Schema that is contained in the Web service description.
You can perform validation in both provider and requester mode.

204 Web Services Guide

CICS uses a Java program to validate SOAP messages. Therefore, you must have
Java support enabled in your CICS region to perform validation.

Validation of the SOAP message takes place before it is transformed into an
application data structure, and when a SOAP message is generated from the
application data structure. The SOAP message is validated using the XML schema
in the WSDL, before then being validated against the transformation requirements
of CICS.

When validation is turned off, CICS does not use the Java program. CICS validates
SOAP messages only to the extent that is necessary to confirm that they contain
well-formed XML, and to transform them. This means that it is possible for a SOAP
message to be successfully validated using the WSDL, but then fail in the runtime
environment and vice versa.

Important: During development and testing of your Web service deployment, using
full validation will assist in detecting problems in the message exchange
between a service requester and a service provider. However, there is
a substantial overhead associated with performing complete validation
of the SOAP messages, and it is inadvisable to validate messages in a
fully tested production application.

To have your SOAP message validated, perform the following steps:

1. Ensure that you have a Web service description associated with your
WEBSERVICE resource. This will be the case for WEBSERVICE resource
definitions that were created automatically if the Web service description was
present in the PIPELINE's pickup directory when the directory was scanned.

For WEBSERVICE definitions that were created with RDO, the Web service
description is specified with the WSDLFILE attribute.

2. Turn validation on for the WEBSERVICE. Use the following CEMT or SPI
command: SET WEBSERVICE(name) VALIDATION. For WEBSERVICEs that are
defined with RDO you can specify whether validation is required or not in the
VALIDATION attribute, but you can change this setting after the WEBSERVICE
is installed with the SET WEBSERVICE command.

Check the system log to find out if the SOAP message is valid. Message
DFHPI1002 indicates that the SOAP message was successfully validated, and
message DFHPI1001 indicates that the validation failed.

When you no longer need validation for the Web service, use the following
command to turn it off: SET WEBSERVICE(name) NOVALIDATION.

Chapter 8. Creating a Web service 205

|
|
|
|
|

206 Web Services Guide

Chapter 9. Interfacing with service provider and requester
applications

You must code your service provider and service requester applications (or wrapper
programs) to interact with the Web services support in CICS. How you code your
program depends upon whether you are developing a service provider application
or a service requester, and whether you are using the CICS Web services assistant
to deploy your application.

How an application is invoked in a service provider
The way you invoke an application program (or a wrapper program) in a service
provider depends upon whether or not you are using the Web services assistant to
deploy your application.

How CICS invokes a service provider program deployed with the Web
services assistant

When a service provider application that has been deployed using the CICS Web
services assistant is invoked, CICS links to it with a COMMAREA or a channel.

You specify which sort of interface is used when you run JCL procedure
DFHWS2LS or DFHLS2WS with the PGMINT parameter. If you specify a channel,
you can name the container in the CONTID parameter.

v If the program is invoked with a COMMAREA interface, the COMMAREA
contains the top level data structure that CICS created from the SOAP request.

v If the program is invoked with a channel interface, the top level data structure is
passed to your program in the container that was specified in the CONTID
parameter of DFHWS2LS or DFHLS2WS. If you did not specify the CONTID
parameter, the data is passed in container DFHWS-DATA. The channel interface
supports arrays with varying numbers of elements, which are represented as
series of connected data structures in a series of containers. These containers
will also be present.

When you code API commands to work with the containers, you do not need to
specify the CHANNEL option, because all the containers are associated with the
current channel (the channel that was passed to the program). If you need to
know the name of the channel, use the EXEC CICS ASSIGN CHANNEL command.

When your program has processed the request, it must use the same mechanism
to return the response: if the request was received in a COMMAREA, then the
response must be returned in the COMMAREA; if the request was received in a
container, the response must be returned in the same container.

If an error is encountered when the application program is issuing a response
message, CICS rolls back all of the changes unless the application has performed a
syncpoint.

If the Web service provided by your program is not designed to return a response,
CICS will ignore anything in the COMMAREA or container when the program
returns.

© Copyright IBM Corp. 2005, 2011 207

Invoking a Web service from a CICS program
The way you invoke a Web service from an application program (or from a wrapper
program) depends upon whether or not you are using the Web services assistant to
deploy your application.

Invoking a Web service from an application deployed with the Web
services assistant

A service requester application that is deployed with the Web services assistant
uses the EXEC CICS INVOKE WEBSERVICE command to invoke a Web service. The
request and response are mapped to a data structure in container DFHWS-DATA.

1. Create a channel and populate it with containers. At the minimum, container
DFHWS-DATA must be present. It holds the top level data structure that CICS
will convert into a SOAP request. If the SOAP request contains any arrays that
have varying numbers of elements, they are represented as a series of
connected data structures in a series of containers. These containers must also
be present in the channel.

2. Invoke the target Web service. Use this command:

EXEC CICS INVOKE WEBSERVICE(webservice)
 CHANNEL(userchannel)
 OPERATION(operation)

where:

 webservice is the name of the WEBSERVICE resource that defines the Web
service to be invoked. The WEBSERVICE resource specifies the location of
the Web service description, and the Web service binding file that CICS
uses when it communicates with the Web service.

 userchannel is the channel that holds container DFHWS-DATA and any
other containers associated with the application's data structure.

 operation is the name of the operation that is to be invoked in the target
Web service.

You can also specify URI(uri) where uri is the URI of the Web service to be
invoked. If this option is omitted, then the Web service binding file associated
with the WEBSERVICE resource definition must include either a provider URI
(obtained from the Web service description by DFHWS2LS) or a provider
application name (specified as the PGMNAME input parameter to DFHWS2LS).

The provider application name in the Web service binding file associated with
the WEBSERVICE resource is used to enable local optimization of the Web
service request. If you use this optimization, the EXEC CICS INVOKE WEBSERVICE
command is optimized to an EXEC CICS LINK command. This optimization has
an effect on the behavior of the EXEC CICS INVOKE WEBSERVICE command when
the Web service is not expected to send a response:

v When the optimization is not in effect, control returns from the EXEC CICS
INVOKE WEBSERVICE command as soon as the request message is sent.

v When the optimization is in effect, control returns from the EXEC CICS INVOKE
WEBSERVICE command only when the target program returns.

When the Web service is expected to send a response, control returns from the
command when the response is available.

3. If the command was successful, retrieve the response containers from the
channel. At the minimum, container DFHWS-DATA will be present. It holds the
top level data structure that CICS created from the SOAP response. If the

208 Web Services Guide

response contains any arrays that have varying numbers of elements, they are
a represented as series of connected data structures in a series of containers.
These containers will be present in the channel.

4. If the service requester receives a SOAP fault message from the invoked Web
service, you need to decide if the application program should roll back any
changes. If this occurs, an INVREQ error with a RESP2 value of 6 is returned to
the application program. However, if optimization is in effect, the same
transaction is used in both the requester and provider. If an error occurs in a
locally optimized Web service provider, all of the work done by the transaction
rolls back in both the provider and the requester. An INVREQ error is returned
to the requester with a RESP2 value of 16.

Runtime limitations for code generated by the Web services assistant
At runtime, CICS is capable of transforming almost any valid SOAP message that
conforms to the Web service description (WSDL) into the equivalent data structures.
However, there are some limitations that you should be aware of when developing a
service requester or service provider application using the Web services assistant
batch jobs.

Code pages

CICS can support SOAP messages sent to it in any code page if there is an
appropriate HTTP or WMQ header identifying the code page. CICS converts the
SOAP message to UTF-8 to process it in the pipeline, before transforming it to the
code page required by the application program. To minimize the performance
impact, it is recommended that you use the UTF-8 code page when sending SOAP
messages to CICS. CICS always sends SOAP messages in UTF-8.

CICS can only transform SOAP messages if the code page used to convert data
between the SOAP message and the application program is EBCDIC. Applications
that expect data to be encoded in code pages such as UTF-8, ASCII and
ISO8859-1 are unsupported. If you want to use DBCS characters within your data
structures and SOAP messages, then you must specify a code page that supports
DBCS. The EBCDIC code page that you select must also be supported by both
Java and z/OS conversion services. z/OS conversion services must also be
configured to support the conversion from the code page of the SOAP message to
UTF-8.

To set an appropriate code page, you can either use the LOCALCCSID system
initialization parameter or the optional CCSID parameter in the Web services
assistant jobs. If you use the CCSID parameter, the value that you specify overrides
the LOCALCCSID code page for that particular Web service. If you do not specify the
CCSID parameter, the LOCALCCSID code page is used to convert the data and the
Web service binding file is encoded in US EBCDIC (Cp037).

Containers

In service provider mode, if you specify that the PGMINT parameter has a value of
CHANNEL, then the container that holds your application data must be written to and
read from in binary mode. This container is DFHWS-DATA by default. The PUT
CONTAINER command must either have the DATATYPE option set to BIT, or you must
omit the FROMCCSID option so that BIT remains the default. For example, the
following code explicitly states that the data in the container CUSTOMER-RECORD
on the current channel should be written in binary mode.

Chapter 9. Interfacing with service provider and requester applications 209

EXEC CICS PUT CONTAINER (CUSTOMER-RECORD)
 FROM (CREC)
 DATATYPE(BIT)

Although the containers themselves are all in BIT mode, any text fields within the
language structure that map this data must use an EBCDIC code page - the same
code page as you have specified in the LOCALCCSID or CCSID parameter. If you are
using DFHWS2LS to generate the Web service binding file, there could be many
containers on the channel that hold parts of the complete data structure. If this is
the case, then the text fields in each of these containers must be read from and
written to using the same code page.

If the application program is populating containers that are going to be converted to
SOAP messages, the application is responsible for ensuring that the containers
have the correct amount of content. If a container holds less data than expected,
CICS issues a conversion error.

If an application program uses the INVOKE WEBSERVICE command, then any
containers it passes to CICS could potentially be reused and the data within them
replaced. If you want to keep the data in these containers, create a new channel
and copy the containers to it before you run the program. If you have a provider
mode Web service that is also a requester mode Web service, it is recommended
that you use a different channel when using the INVOKE WEBSERVICE command,
rather than using the default channel that it was originally attached to. If your
application program is using the INVOKE WEBSERVICE command many times, it is
recommended that you either use different channels on each call to CICS, or
ensure that all the important data from the first request is saved before making the
second request.

Conforming with the Web services description

A Web service description could describe some of the possible content of a SOAP
message as optional. If this is the case, DFHWS2LS allocates fields within the
generated language structure to indicate whether the content is present or not. At
runtime, CICS populates these fields accordingly. If a field, for example an
existence flag or an occurrence field, indicates that the information is not present,
the application program should not attempt to process the fields associated with
that optional content.

If a SOAP message is missing some of its content when CICS transforms it, the
equivalent fields within the data structures are not initialized when passed to the
application program.

A Web service description can also specify the white space processing rules to use
when reading a SOAP message, and CICS implements these rules at runtime.

v If the value of the xsd:whiteSpace facet is replace, the white space characters
such as “tab” and “carriage return” are replaced with spaces.

v If the value of the xsd:whiteSpace facet is collapse, any leading and trailing
white space characters are removed when generating SOAP messages.

SOAP messages

CICS does not support SOAP message content derivation. For example, a SOAP
message could use the xsi:type attribute to specify that an element has a
particular type, together with an xsi:schemaLocation attribute to specify the location
of the schema that describes the element. CICS does not support the capability of

210 Web Services Guide

dynamically retrieving the schema and transforming the value of the element based
on the content of the schema. CICS does support the xsi:nil attribute when the
mapping level set in the Web services assistant is 1.1 or higher, but this is the only
XML schema instance attribute that is supported.

DFHWS2LS might have to make assumptions about the maximum length or size of
some values in the SOAP message. For example, if the XML schema does not
specify a maximum length for an xsd:string, then DFHWS2LS assumes that the
maximum length is 255 characters and generates a language structure accordingly.
You can change this value by using the DEFAULT-CHAR-MAXLENGTH parameter in
DFHWS2LS. At runtime, if CICS encounters a SOAP message with a value that is
larger than the space that has been allocated in the language structure, CICS
issues a conversion error.

If CICS is the service provider, a SOAP fault message is returned to the requester.
If CICS is the service requester, then an appropriate RESP2 code is returned from
the INVOKE WEBSERVICE command.

Some characters have special meanings in XML, such as the < and > characters. If
any of these special characters appear within a character array that is processed by
CICS at runtime, then it is replaced with the equivalent entity. The XML entities that
are supported are:

 Character XML entity

& &

< <

> >

" "

' '

CICS also supports the canonical forms of the numeric character references used
for white space codes:

 Character XML entity

Tab 	

Carriage return

Line feed 

Note that this support does not extend to any pipeline handler programs that are
invoked.

The null character (x'00') is invalid in any XML document. If a character type field
that is provided by the application program contains the null character, CICS
truncates the data at that point. This allows you to treat character arrays as null
terminated strings. Character type fields generated by DFHWS2LS from
base64Binary or hexBinary XML schema data types represent binary data and
could contain null characters without truncation.

SOAP fault messages

If CICS is the service provider, and you want the application program to issue a
SOAP fault message, use the SOAPFAULT CREATE command. In order to use this API
command, you must specify that the Web services assistant PGMINT parameter has
a value of CHANNEL. If you do not specify this value, and the application program

Chapter 9. Interfacing with service provider and requester applications 211

invokes the SOAPFAULT CREATE command, CICS does not attempt to generate a
SOAP response message.

212 Web Services Guide

Chapter 10. Support for Web Services transactions

The Web Services Atomic Transaction (or WS-AtomicTransaction) specification and
the Web Services Coordination (or WS-Coordination) specification define protocols
for short-term transactions that enable transaction processing systems to
interoperate in a Web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency, isolation,
and durability.

The specifications can be found at http://www.ibm.com/developerworks/library/
specification/ws-tx/.

Note: CICS supports the November 2004 level of the specifications.

CICS applications that are deployed as Web service providers or requesters can
participate in distributed transactions with other Web service implementations that
support the specifications.

Registration services
Registration services is that part of the WS-Coordination model that enables an
application to register for coordination protocols. In a distributed transaction, the
registration services in the participating systems communicate with one another to
enable the connected applications to participate in those protocols.

 Figure 25 shows two CICS systems, CICS1 and CICS2. A service requester
application in CICS1 invokes a service provider application in CICS2. The two CICS
regions and the applications are configured so that the two applications participate
in a single distributed transaction, using the WS-Coordination protocols. The service
requester application is the coordinator, and the service provider application is the
participant.

Registration
services

Requester pipeline

Provider pipeline

Service requester
application

Requester pipeline

Requester pipeline

Registration
services

Provider pipeline

Provider pipeline
Service provider

application
Service requester

application

requester.example.com provider.example.com

Application
request and response

Registration request

Registration response

CICS1 CICS2

Figure 25. Registration services

© Copyright IBM Corp. 2005, 2011 213

http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

In support of these protocols, the registration services in the two CICS regions
interact at the start of the transaction, and again during transaction termination.
During these interactions, registration services in both regions can operate at
different times as a service provider and as a requester. Therefore, in each region,
registration services use a service provider pipeline, and a service requester
pipeline. The pipelines are defined to CICS with the PIPELINE and associated
resources.

The registration services in each region are associated with an endpoint address.
Thus, in the example, registration services in CICS1 has an endpoint address of
requester.example.com; that in CICS2 has an endpoint address of
provider.example.com.

In a CICSplex, you can distribute the registration services provider pipeline to a
different region. This is shown in Figure 26.

 In this configuration, the provider pipeline communicates with registration services
using MRO or APPC. The registration services requester pipeline must remain in
the same region as the application's requester pipeline.

This configuration is useful when your service requester and provider applications
are distributed across a large number of regions. When you configure the
application's pipelines to participate in Web service transactions, you must provide

Provider pipeline Provider pipeline

requester.example.com provider.example.com

CICS1 CICS2

Registration
services

Requester pipeline

Service requester
application

Requester pipeline

Requester pipeline

Registration
services

Provider pipeline
Service provider

application
Service requester

application Application
request and response

Registration
request

Registration
response

CICS1A CICS2A

MRO or
APPC

MRO or
APPC

Figure 26. Registration services in a CICSPlex®

214 Web Services Guide

information about the registration services endpoint by providing the IP address and
port number of the registration services provider pipeline. By having a single
endpoint, you can simplify configuration, because all your pipelines will contain the
same information. For example, in Figure 26 on page 214 the IP address that you
specify in the application's requester pipeline is requester.example.com.

The same arguments apply to the service provider application. In the example, the
provider application's pipeline will specify an IP address of requester.example.com.

Configuring CICS for Web service transactions
For Web service requester and provider applications to participate in Web service
transactions, you must configure CICS accordingly by installing a number of CICS
resources.

Before you can install these resources you must know the location of the pipeline
configuration files that CICS supplies in support of Web service transactions. By
default, the configuration files are supplied in the /usr/lpp/cicsts/cicsts32/
pipeline/configs directory, but the default file path might have been changed
during CICS installation.

CICS support for Web service transactions uses a CICS-supplied registration
services service provider and service requester, and you must install resources for
both of these. Even if your applications are all service providers, or all service
requesters, you must install both.

You must also install a program definition for the header handler program that is
invoked when you run your service provider and requester applications.

The resources you require to configure CICS for Web service transactions are all
supplied in the DFWSAT group, except for DFHPIDIR which is supplied in one of
the following groups: DFHPIVS, DFHPIVR, or DFHPICF. The DFHWSAT group is
not included in the DFHLIST list, and therefore is not installed automatically. You
cannot change the resources supplied by CICS in the DFHWSAT group.

To configure CICS for Web service transactions:

1. Add the DFHPIDIR data set to your startup JCL. DFHPIDIR stores a mapping
between contexts and tasks.

a. Add a new DD statement for the DFHPIDIR data set to your CICS startup
JCL

b. Create the DFHPIDIR data set using information in DFHDEFDS.JCL. The
default RECORDSIZE of DFHPIDIR is 1 KB, which is adequate for most
uses. You can create DFHPIDIR with a larger RECORDSIZE if you need to.

c. Install the appropriate group for the data set on your CICS system:
DFHPIVS, DFHPIVR, or DFHPICF.

If you want to share the DFHPIDIR file across CICS regions, the regions must
be logically connected over MRO.

2. Copy the contents of the DFHWSAT group to another group. You cannot change
the resources supplied by CICS in the DFHWSAT group. However, you must
change the CONFIGFILE attribute in the PIPELINE resources.

3. Modify the CICS-supplied registration services provider PIPELINE resource. The
PIPELINE is named DFHWSATP, and specifies pipeline configuration file
/usr/lpp/cicsts/cicsts32/pipeline/configs/registrationservicePROV.xml in
the CONFIGFILE attribute.

Chapter 10. Support for Web Services transactions 215

|
|

|
|

|
|
|

|
|

|
|

a. Change the CONFIGFILE attribute to reflect the location of the file in your
system.

b. Leave the other attributes unchanged.

Use the pipeline configuration file exactly as provided; do not change its
contents.

4. Install the PIPELINE resource. The registration services provider PIPELINE
resource need not be in the same CICS region as your service requester or
provider applications, but must be connected to that region with a suitable MRO
or APPC connection.

5. Without changing it, install the URIMAP that is used by the registration services
provider in the same region as the PIPELINE. The URIMAP is named
DFHRSURI.

6. Modify the CICS-supplied registration services requester PIPELINE resource.
The PIPELINE is named DFHWSATR, and specifies pipeline configuration file
/usr/lpp/cicsts/cicsts32/pipeline/configs/registrationserviceREQ.xml in
the CONFIGFILE attribute.

a. Change the CONFIGFILE attribute to reflect the location of the file in your
system.

b. Leave the other attributes unchanged.

Use the pipeline configuration file exactly as provided; do not change its
contents.

7. Install the PIPELINE resource. The registration services requester PIPELINE
resource must be in the same CICS region as the service requester and
provider applications.

8. Install the programs used by the registration service provider pipeline in the
same region as your PIPELINE resources. The programs are DFHWSATX,
DFHWSATR, and DFHPIRS. If both your PIPELINE resources are in different
regions, you must install these programs in both regions.

9. Install the PROGRAM resource definition for the header handler program. The
program is named DFHWSATH. Install the PROGRAM in the regions where
your service provider and requester applications run.

CICS is now configured so that your service provider and requester applications
can participate in distributed transactions using WS-AtomicTransaction and
WS-Coordination protocols.

You must now configure each participating application individually.

Configuring a service provider for Web service transactions
If a service provider application is to participate in Web service transactions, the
pipeline configuration file must specify a <headerprogram> and a
<service_parameter_list>.

So that your service provider application can participate in Web service
transactions, it must use SOAP protocols to communicate with the service
requester, and you must configure your pipeline to use one of the CICS-provided
SOAP message handlers. Even if you have configured your service provider
application correctly, it will participate in Web service transactions with the service
requester only if the requester application has been set up to participate.

216 Web Services Guide

In addition to the pipeline configuration information that is specific to your
application, the configuration file must contain information that CICS uses to ensure
that your application participates in Web service transactions.

CICS provides an example of a pipeline configuration file containing this information
in file /usr/lpp/cicsts/cicsts32/samples/pipelines/wsatprovider.xml.

To configure a service provider for Web service transactions:

1. In the definition of your terminal handler, code a <headerprogram> element in the
<cics_soap_1.1_handler> or <cics_soap_1.2_handler> element. Code the
<program_name>, <namespace>, <localname>, and <mandatory> elements exactly
as shown in this example:
<terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
 <localname>CoordinationContext</localname>
 <mandatory>false</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
</terminal_handler>

Include other <headerprogram> elements if your application needs them.

2. Code a <registration_service_endpoint> element in a
<service_parameter_list>. Code the <registration_service_endpoint> as
follows:
<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

where

 address is the IP address of the CICS region where the registration service
provider pipeline is installed.

 port is the port number used by the registration service provider pipeline.

Code everything else exactly as shown; the string cicswsat/
RegistrationService matches the PATH attribute of URIMAP DFHRSURI:
<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>

Configuring a service requester for Web service transactions
If a service requester application is to participate in Web service transactions, the
pipeline configuration file must specify a <headerprogram> and a
<service_parameter_list>.

In order that your service requester application can participate in Web service
transactions, it must use SOAP protocols to communicate with the service provider,
and your pipeline must be configured to use one of the CICS-provided SOAP
message handlers. Even if you have configured your service requester application
correctly, it will only participate in Web service transactions with the service provider
if the provider application has been set up to participate.

Chapter 10. Support for Web Services transactions 217

In addition to the pipeline configuration information that is specific to your
application, the configuration file must contain information which CICS uses to
ensure that your application participates in Web service transactions.

CICS provides an example of a pipeline configuration file containing this information
in file /usr/lpp/cicsts/cicsts32/samples/pipelines/wsatrequester.xml.

1. Code a <headerprogram> element in the <cics_soap_1.1_handler> or
<cics_soap_1.2_handler> element. Code the <program_name>, <namespace>,
<localname>, and <mandatory> elements exactly as shown in the example
below. For example:
<cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
 <localname>CoordinationContext</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.1_handler>

You can include other <headerprogram> elements if your application needs them.

2. Code a <registration_service_endpoint> element in a
<service_parameter_list>. Code the <registration_service_endpoint> as
follows:
<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

where

 address is the IP address of the CICS region where the registration service
provider pipeline is installed.

 port is the port number used by the registration service provider pipeline.

There must be no space between the start the
<registration_service_endpoint> element, its contents, and the end of the
<registration_service_endpoint> element. Spaces have been included in this
example for clarity.

3. If you want CICS to create a new transactional context for each request, rather
than using the same one for requests in the same unit of work, add the empty
element, <new_tx_context_required/>, in a <service_parameter_list> to your
pipeline configuration file:
<service_parameter_list>
 <registration_service_endpoint>
 http://requester.example.com:7159/cicswsat/RegistrationService
 </registration_service_endpoint>
 <new_tx_context_required/>
</service_parameter_list>

There must be no space between the start the
<registration_service_endpoint> element, its contents, and the end of the
<registration_service_endpoint> element. Spaces have been included in this
example for clarity.

The <new_tx_context_required/> setting is not the default for CICS, and is not
included in the example pipeline configuration file, wsatprovider.xml. If you add
<new_tx_context_required/> in a <service_parameter_list> to your pipeline
configuration file, loopback calls to CICS are allowed, so be aware that a
deadlock might occur in this situation.

218 Web Services Guide

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

Determining if the SOAP message is part of an atomic transaction
When a CICS Web service is invoked in the atomic transaction pipeline, the SOAP
message does not necessarily have to be part of an atomic transaction.

The <soapenv:Header> element contains specific information when the SOAP
message is part of an atomic transaction. To find out if the SOAP message is part
of an atomic transaction, you can either:

v Look inside the contents of the <soapenv:Header> element using a trace.

1. Perform an auxiliary trace using component PI and set the tracing level to 2.

2. Look for trace point PI 0A31, which contains the information for the request
container. In particular, look for PIIS EVENT - REQUEST_CNT which appears just
before the <wsa:Action> element.

v Use a user-written message handler program in the DFHWSATP pipeline to
display the content of the DFHREQUEST container when it contains the data
RECEIVE-REQUEST. If you opt for this approach, make sure that you define the
message handler program in the pipeline configuration file.

The following example shows the information that you could see in the SOAP
envelope header for an atomic transaction.

<soapenv:Header>
 <wscoor:CoordinationContext soapenv:mustUnderstand="1"> �1�
 <wscoor:Expires>500</wscoor:Expires>
 <wscoor:Identifier>com.ibm.ws.wstx:
 0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
 </wscoor:Identifier>
 <wscoor:CoordinationType>http://schemas.xmlsoap.org/ws/2004/10/wsat</wscoor:CoordinationType> �2�
 <wscoor:RegistrationService �3�
 xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 http://clientIPaddress:clientPort/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort
 </wsa:Address>
 <wsa:ReferenceProperties
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <websphere-wsat:txID
 xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
 0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
 </websphere-wsat:txID>
 <websphere-wsat:instanceID
 xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
 0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
 </websphere-wsat:instanceID>
 </wsa:ReferenceProperties>
 </wscoor:RegistrationService>
 </wscoor:CoordinationContext>
</soapenv:Header>

1. The CoordinationContext indicates that the SOAP message is intended to
participate in an atomic transaction. It contains the necessary information for the
Web service provider to be part of the coordination service, assuming that the
provider is configured to recognize and process the header.

2. The CoordinationType indicates the version of the WS-AT specification that the
coordination context complies with.

3. The coordination RegistrationService describes where the coordinator's
registration point is, and the information that the participating Web service must
return to the coordinator when it attempts to register as a component of the
atomic transaction.

Chapter 10. Support for Web Services transactions 219

Checking the progress of an atomic transaction
When a CICS Web service is invoked as part of an atomic transaction, the
transaction passes through a number of states. These states indicate whether the
transaction was successful or had to roll back.

If you need to access this information, you can either:

v Look inside the contents of the <wsa:Action> element using a trace.

1. Perform an auxiliary trace using component PI and set the tracing level to 2.

2. Look for trace point PI 0A31, which contains the information for the request
container. In particular, look for PIIS EVENT - REQUEST_CNT which appears just
before the <wsa:Action> element.

v Use a user-written message handler program in the DFHWSATR and
DFHWSATP pipelines to display the content of DFHWS-SOAPACTION
containers. If you opt for this approach, make sure that you define the message
handler program in the pipeline configuration files.

The states for a transaction that completes successfully and is committed are:
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepare"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepared"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Committed "

The states for a transaction that is rolled back are:
 "http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Rollback"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Aborted"

220 Web Services Guide

Chapter 11. Support for MTOM/XOP optimization of binary
data

In standard SOAP messages, binary objects are base64-encoded and included in
the message body. This increases their size by 33%, which for very large binary
objects can significantly impact transmission time. Implementing MTOM/XOP
provides a solution to this problem.

The SOAP Message Transmission Optimization Mechanism (MTOM) and
XML-binary Optimized Packaging (XOP) specifications, often referred to as
MTOM/XOP, define a method for optimizing the transmission of large base64Binary
data objects within SOAP messages:

v The MTOM specification conceptually defines a method for optimizing SOAP
messages by separating out binary data, which is otherwise base64-encoded,
and sending it in separate binary attachments using a MIME Multipart/Related
message. This type of MIME message is called an MTOM message. Sending the
data in binary format significantly reduces its size, thus optimizing the
transmission of the SOAP message.

v The XOP specification defines an implementation for optimizing XML messages
using binary attachments in a packaging format that includes but is not limited to
MIME messages.

CICS implements support for these specifications in both requester and provider
pipelines when the transport protocol is WebSphere MQ, HTTP, or HTTPS. As an
alternative to including the base64Binary data directly in the SOAP message, CICS
applications that are deployed as Web service providers or requesters can use this
support to send and receive MTOM messages with binary attachments.

You can configure this support by using additional options in the pipeline
configuration file.

MTOM/XOP and SOAP
When you use MTOM/XOP to optimize a SOAP message, the XOP processing
serializes it into a MIME Multipart/Related message. The XOP processing extracts
the base64Binary data from the SOAP message and packages it as separate binary
attachments within the MIME message, in a similar manner to e-mail attachments.

The size of the base64Binary data is significantly smaller because the attachments
are encoded in binary format. The XOP processing converts the XML in the SOAP
message to XOP format by replacing the base64Binary data with a special
<xop:Include> element that references the relevant MIME attachment using a URI.

The modified SOAP message is called the XOP document and it forms the root
document within the message. The XOP document and binary attachments together
form the XOP package. When applied to the SOAP MTOM specification, the XOP
package is a MIME message in MTOM format.

The overall content-type header of the MIME message identifies the root document
by using a Content-ID. Here is an example of a content-type header:
Content-Type: Multipart/Related; boundary=MIME_boundary;
 type="application/soap+xml"; start="<claim@insurance.com>"

© Copyright IBM Corp. 2005, 2011 221

|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

The start parameter contains the Content-ID of the XOP document. If the
content-type header does not include this parameter, the first part in the MIME
message is assumed to be the XOP document.

The order of the attachments in the MIME message is unimportant. In some
messages for example, the binary attachments could appear before the XOP
document. An application that handles MIME messages must not rely on the
attachments appearing in a specific order. For detailed information, read the
MTOM/XOP specifications.

The following example demonstrates how XOP processing can optimize a simple
SOAP message that contains a JPEG image. The SOAP message is as follows:
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xmime="http://www.w3.org/2003/12/xop/mime">
 <soap:Body>
 <submitClaim>
 <accountNumber>5XJ45-3B2</accountNumber>
 <eventType>accident</eventType>
 <image xmime:contentType="image/jpeg" xsi:type="base64binary">4f3e..(encoded image)</image>
 </submitClaim>
 </soap:Body>
</soap:Envelope>

An MTOM/XOP version of this SOAP message is below.
MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;
 type="application/soap+xml"; start="<claim@insurance.com>"�1�

--MIME_boundary
Content-Type: application/soap+xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim@insurance.com>�2�

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xop=’http://www.w3.org/2004/08/xop/include’
 xmlns:xop-mime=’http://www.w3.org/2005/05/xmlmime’>
 <soap:Body>
 <submitClaim>
 <accountNumber>5XJ45-3B2</accountNumber>
 <eventType>accident</eventType>
 <image xop-mime:content-type=’image/jpeg’><xop:Include href="cid:image@insurance.com"/></image>�3�
 </submitClaim>
 </soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <image@insurance.com>�4�

...binary JPG image...

--MIME_boundary--

1. The start parameter indicates which part of the MIME message is the root
XOP document.

2. The Content-ID value identifies a part of the MIME message. In this case, it is
the root XOP document.

3. The <xop:Include> element references the JPEG binary attachment.

222 Web Services Guide

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

4. The Content-ID identifies the JPEG in the binary attachment.

MTOM messages and binary attachments in CICS
CICS supports and controls the handling of MTOM messages in both Web service
provider and requester pipelines using an MTOM handler program and XOP
processing.

You enable and configure the MTOM handler and XOP processing using options
that are defined in the pipeline configuration file. When enabled, the MTOM handler
accepts and unpackages inbound MTOM messages containing XOP documents
and binary attachments, and outbound MTOM messages are packaged and sent. If
the MTOM handler is not enabled in the pipeline and CICS receives an MTOM
message, it is rejected with a SOAP fault.

You can configure a provider pipeline to perform the following processing:

v Accept MTOM messages, but never send MTOM response messages.

v Accept MTOM messages and send the same type of response message.

v Accept MTOM messages, but only send MTOM messages when there are binary
attachments present.

v Accept MTOM messages and always send MTOM response messages.

v Process XOP documents and binary attachments in direct or compatibility mode.

You can configure a requester pipeline to perform the following processing:

v Never send an MTOM message, but accept MTOM response messages.

v Send MTOM messages only when there are binary attachments and accept
MTOM response messages.

v Always send MTOM messages and accept MTOM response messages.

v Process XOP documents and binary attachments in direct or compatibility mode.

Modes of support

There are certain scenarios in which CICS cannot support the XOP document
format in messages directly. For example, the Web Services Security support and
Web service validation cannot parse the <xop:Include> elements in the XOP
document. Therefore, the pipeline provides two modes of support to handle XOP
documents and any associated binary attachments:

direct mode

 In direct mode, the binary attachments associated with an inbound or
outbound MTOM message are passed in containers through the pipeline
and handled directly by the application, without the need to perform any
data conversion.

compatibility mode
Compatibility mode is used when the pipeline processing requires the
message to be in standard XML format, with any binary data stored as
base64Binary fields in the message. For inbound messages, the XOP
document and binary attachments are reconstituted into a standard XML
message, either at the beginning of the pipeline when Web Services
Security is enabled, or at the end of the pipeline when Web service
validation is enabled. For outbound messages, a standard XML message is
created and passed along the pipeline. The MTOM handler converts it to
XOP format just before CICS sends it.

Chapter 11. Support for MTOM/XOP optimization of binary data 223

|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Compatibility mode is much less efficient than direct mode because binary data is
converted to base64 format and back again. However, it does allow your Web
services to interoperate with other MTOM/XOP Web service requesters and
providers without needing to change your applications.

Inbound MTOM message processing
When the MTOM handler is enabled in the pipeline, it checks the headers of the
inbound message in the DFHREQUEST or DFHRESPONSE container to determine
the format of the message during the transport handling processing.

When a MIME Multipart/Related message is received, the MTOM handler
unpackages the message as follows:

1. Puts the headers and binary data from each binary attachment into separate
containers.

2. Puts the list of containers in the DFHWS-XOP-IN container.

3. Puts the XOP document, which formed the root of the message, back in the
DFHREQUEST or DFHRESPONSE container, replacing the original message.

If the XOP document has no binary attachments, it is handled as a normal XML
message and does not require XOP processing. If the XOP document does have
binary attachments, XOP processing is enabled for the message.

If XOP processing is enabled, the MTOM handler checks the pipeline properties to
determine if the current message is to be processed in direct or compatibility mode,
and puts this information in the DFHWS-MTOM-IN container.

In provider mode, the MTOM handler also creates the DFHWS-MTOM-OUT
container to determine how the outbound response message should be processed.

Direct mode

When you are using CICS Web services support, either when a service provider
pipeline uses the DFHPITP application handler or a service requester application
uses the INVOKE WEBSERVICE command, the pipeline can process the XOP
document and binary attachments in direct mode.

In this mode, the MTOM handler passes the XOP document and associated
containers to the next message handler in the pipeline for processing. The CICS
Web services support interprets the <xop:Include> elements. If the base64Binary
field is represented as a container in the application data structure, the attachment
container name is stored in the structure. If the field is represented as a variable or
fixed length string, the contents of the container are copied to the relevant
application data structure field. The data structure is then passed to the application
program.

Compatibility mode

If you have configured your pipeline to use a custom application handler, or you
have enabled Web Services Security, the message is processed in compatibility
mode. In this mode, the XOP processing immediately reconstitutes the XOP
document and binary attachments into a SOAP message, so that the content can
be successfully processed in the pipeline. The XOP processing is as follows:

224 Web Services Guide

|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

1. Scans the XOP document for <xop:Include> elements, replacing each
occurrence with the binary data from the referenced attachment in
base64-encoded format.

2. Discards the DFHWS-XOP-IN container and all of the attachment containers.

The reconstituted SOAP message is then passed to the next handler in the pipeline
to be processed as normal.

If you have enabled Web service validation, the pipeline switches to compatibility
mode when the message reaches the application handler. The message is
reconstituted into a SOAP message, validated, and passed to the application.

Outbound MTOM message processing
When the pipeline is configured to send outbound MTOM messages, the Web
service and pipeline properties are checked to determine how the message is to be
processed and sent.

Two containers, DFHWS-MTOM-OUT and DFHWS-XOP-OUT, store these
properties. In a requester mode pipeline, CICS creates these containers when the
application issues the EXEC CICS INVOKE WEBSERVICE command. In a provider mode
pipeline, the DFHWS-MTOM-OUT container is already initialized with the options
that are determined by the MTOM handler from the inbound message.

If the outbound message can be processed in direct mode, the optimization of the
message takes place immediately. If the outbound message has to be processed in
compatibility mode, the optimization takes place at the very end of the pipeline
processing.

If you have not deployed your Web service provider or requester application using
the CICS Web services assistant, or if you have Web service validation enabled or
Web Services Security enabled in your pipeline, the outbound message is
processed in compatibility mode.

Direct mode

In direct mode, the following processing takes place:

1. A XOP document is constructed from the application's data structure in
container DFHWS-DATA. Any binary fields that are equal to or larger in size
than 1,500 bytes are identified, and the binary data and MIME headers
describing the binary attachment are put in separate containers. If the binary
data is already in a container, that container is used directly as the attachment.
A <xop:Include> element is then inserted in the XML in place of the usual
base64-encoded binary data using a generated Content-ID. For example:
<xop:Include href="cid:generated-content-ID-value"
 xmlns:xop="http://www.w3.org/2004/08/xop/include">

2. All of the containers are added to the attachment list in the DFHWS-XOP-OUT
container.

3. When the SOAP handler has processed DFHWS-DATA, the XOP document and
SOAP envelope are stored in the DFHREQUEST or DFHRESPONSE container
and processed through the pipeline.

4. When the last message handler has finished, the MTOM handler packages the
XOP document and binary attachments into a MIME Multipart/Related message
and sends it to the Web service requester or provider. The DFHWS-XOP-OUT
container and any associated containers are then discarded.

Chapter 11. Support for MTOM/XOP optimization of binary data 225

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

Compatibility mode

If the pipeline cannot handle the XOP document directly, the following processing
takes place:

1. The SOAP body is constructed in DFHWS-DATA from the application data
structure and processed in the pipeline as normal.

2. When the final handler has finished processing the message, the MTOM
handler checks the options in the DFHWS-MTOM-OUT container to determine
whether MTOM should be used, optionally taking into account whether any
binary attachments are present. If the MTOM handler determines that MTOM is
not required, no XOP processing takes place and CICS sends a SOAP
message as normal.

3. If the MTOM handler determines that the outbound message is to be sent in
MTOM format, the XOP processing scans the message for eligible fields to split
the data out into binary attachments. For a field to be eligible, it must have the
MIME contentType attribute specified on the element and the associated binary
value must consist of valid base64Binary data in canonical form. The size of the
data must be greater than 1,500 bytes. The XOP processing creates the binary
attachments and attachment list and then replaces the fields with <xop:Include>
elements.

4. The MTOM handler packages the XOP document and binary attachments as a
MIME Multipart/Related message and CICS sends it to the Web service
requester or provider.

Restrictions when using MTOM/XOP
By enabling the MTOM handler in the pipeline, you can support Web service
implementations that use the MTOM/XOP optimization. With the compatibility mode
option, you can interoperate with these Web services without having to change your
Web service applications. However, in certain situations you cannot use
MTOM/XOP or its use is restricted.

Using the CICS Web services assistant
The direct mode optimization for MTOM/XOP is only available if you are
using DFHWS2LS at a mapping level of at least 1.2, and the WSDL
document contains at least one field of type xsd:base64Binary. Web
services that are enabled using DFHLS2WS are not eligible for XOP
optimization.

 Web services generated using DFHLS2WS with CHAR-VARYING=BINARY
specified may be eligible for the MTOM/XOP optimizations. Other Web
services generated using DFHLS2WS do not contain binary data and are
not eligible for the MTOM/XOP optimizations, but will work normally in a
PIPELINE that supports MTOM/XOP.

Provider pipelines
CICS provides a default application handler called DFHPITP that can be
configured in a provider pipeline. This application handler is capable of
handling XOP documents and creating the necessary containers to support
the pipeline processing in both direct and compatibility mode. If you are
using your own application handler in a provider pipeline, and you want to
enable MTOM/XOP, you must configure the pipeline to run in compatibility
mode.

Requester pipelines
If your applications use the INVOKE WEBSERVICE command, CICS handles
the optimization of the SOAP message for you in direct and compatibility

226 Web Services Guide

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

mode. If you are using the program DFHPIRT to start the pipeline, you can
send and receive MIME Multipart/Related messages in compatibility mode
only.

Web Services Security
If you enable the MTOM handler in the pipeline configuration file to run in
direct mode, and you also enable the Web Services Security message
handler, the pipeline supports the handling of MTOM messages in
compatibility mode only.

Handling binary data
When you have large binary data to include in your Web service, for
example a graphic file such as a JPEG, you can use MTOM/XOP to
optimize the size of the message that is sent to the service provider or
requester. The minimum size of binary data that can be optimized using
MTOM/XOP is 1500 bytes. If the binary data in a field is less than 1500
bytes, CICS does not optimize the field.

 As stated in the XOP specification, base64Binary data must not contain any
white space. Any application programs that produce base64Binary data
must use the canonical form. If the base64Binary data in an outbound
message does contain white space, CICS does not convert the data to a
binary attachment. When CICS generates base64Binary data, the fields are
provided in canonical form and therefore contain no white space.

The contentType attribute must be present on base64Binary fields for XOP
processing to occur in compatibility mode on outbound messages. The
contentType attribute must not be present on hexBinary fields.

Web service validation
If you switch on Web service validation, the following pipeline processing
takes place:

v If an inbound XOP document has been passed through the pipeline in
direct mode, CICS automatically switches to compatibility mode and
converts it back to standard XML when CICS Web service support is
about to validate the document.

v An outbound SOAP message is generated as standard XML and
processed in compatibility mode.

This processing occurs because validation cannot handle the contents of
XOP documents.

Configuring CICS to support MTOM/XOP
To configure support for MTOM messages in CICS, you must add the MTOM
handler to your pipeline configuration files.

Before performing this task, you must identify or create the pipeline configuration
files to which you will add configuration information for MTOM/XOP.

1. Add a <cics_mtom_handler> element to your pipeline configuration file. This
element must be first in the <provider_pipeline> element and the last element
before the <service_parameter_list> in the <requester_pipeline> element.
Code the following elements:
<cics_mtom_handler>
 <dfhmtom_configuration version="1">
 </dfhmtom_configuration>
</cics_mtom_handler>

Chapter 11. Support for MTOM/XOP optimization of binary data 227

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

The <dfhmtom_configuration> element is a container for the other elements in
the configuration. If you want to accept the default settings for MTOM/XOP
processing, you can specify an empty element as follows:
 <cics_mtom_handler/>

2. Optional: Code an <mtom_options> element. In both a service provider and
service requester pipeline, this element specifies whether the outbound
message is packaged as an MTOM message.

a. Code the send_mtom attribute to define if the outbound message should be
sent as an MTOM message. For details of this attribute, see “The
<mtom_options> element” on page 89.

b. Code the send_when_no_xop attribute to define if the outbound message
should be sent as an MTOM message when there are no binary
attachments present. For details of this attribute, see “The <mtom_options>
element” on page 89.

3. Optional: Code a <xop_options> element with an apphandler_supports_xop
attribute. The value of this attribute specifies if the application handler can
handle XOP documents directly. If you do not include this element, the default
depends on whether the <apphandler> element specifies DFHPITP or another
program. For details of this attribute, see “The <xop_options> element” on page
90.

4. Optional: Code a <mime_options> element with a content_id_domain attribute.
The value of this attribute specifies the domain name that is used when
generating MIME content-ID values, which are used to identify binary
attachments. For details of this attribute, see “The <mime_options> element” on
page 92.

Example

The following example shows a completed <cics_mtom_handler> in which all the
optional elements are present:
<provider_pipeline>
 <cics_mtom_handler>
 <dfhmtom_configuration version="1">
 <mtom_options send_mtom="same" send_when_no_xop="no" />
 <xop_options apphandler_supports_xop="yes" />
 <mime_options content_id_domain="example.org" />
 </dfhmtom_configuration>
 </cics_mtom_handler>
....
</provider_pipeline>

228 Web Services Guide

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

Chapter 12. Support for securing Web services

CICS Transaction Server for z/OS provides support for a number of related
specifications that enable you to secure SOAP messages.

The Web Services Security (WSS): SOAP Message Security 1.0 specification
describes the use of security tokens and digital signatures to protect and
authenticate SOAP messages.

Web Services Security protects the privacy and integrity of SOAP messages by,
respectively, protecting messages from unauthorized disclosure and preventing
unauthorized and undetected modification. WSS provides this protection by digitally
signing and encrypting XML elements in the message. The elements that can be
protected are the body or any elements in the body or the header. You can give
different levels of protection to different elements within the SOAP message.

The Web Services Trust Language specification enhances Web Services Security
further by providing a framework for requesting and issuing security tokens and
managing trust relationships between Web service requesters and providers. This
extension to the authentication of SOAP messages enables Web services to
validate and exchange security tokens of different types using a trusted third party.
This third party is called a Security Token Service (STS).

CICS Transaction Server for z/OS provides support for these specifications through
the use of a CICS-supplied security handler. When the security handler is enabled
in the pipeline, CICS provides the following support:

v For outbound messages, CICS provides support for digital signing and encryption
of the entire SOAP body. CICS can also exchange a username token for a
security token of a different type with an STS.

v For inbound messages, CICS supports messages in which the body or elements
of the body and header are encrypted or digitally signed. CICS can also
exchange and validate security tokens with an STS.

CICS also provides a separate Trust client interface so that you can interact with an
STS without using the CICS security handler.

Prerequisites
To implement Web Services Security, you must apply a number of updates to your
CICS region.

1. Install the free IBM XML Toolkit for z/OS v1.9. You can download it from the
following site: http://www.ibm.com/servers/eserver/zseries/software/xml/. You
must install version 1.9. Later versions do not work with Web Services Security
support in CICS.

2. Apply ICSF APAR OA14956 if it is not already installed in your CICS region.

3. Add the following libraries to the DFHRPL concatenation:

v hlq.SIXMLOD1

v hlq.SCEERUN

v hlq.SDFHWSLD

where hlq is the high-level qualifier of the CICS region.

The first two libraries contain DLLs that the security handler requires at run
time:

© Copyright IBM Corp. 2005, 2011 229

http://www.ibm.com/servers/eserver/zseries/software/xml/

v The XML toolkit provides IXM4C56 in hlq.SIXMLOD1.

v The Language Environment runtime provides C128N in hlq.SCEERUN.

The hlq.SDFHWSLD library enables CICS to find the DFHWSSE1 and
DFHWSXXX Web Services Security modules.

4. You might need to increase the value of the EDSALIM system initialization
parameter. The three DLLs that must be loaded require approximately 15 MB of
EDSA storage.

If you do not have the libraries specified, you get the following message:
CEE3501S The module module_name was not found.

The module_name varies depending on which library is missing.

Planning for securing Web services
You must decide the best way of securing your Web services. CICS supports a
number of options, including a configurable security message handler and a
separate Trust client interface.

CICS implements Web Services Security at a pipeline level rather than for each
Web service. CICS does not support Web Services Security (WSS) or WS-Trust in
pipelines that are used for atomic transactions, so you cannot specify the
CICS-supplied security handler in these pipelines. Answer the following questions to
decide how best to implement security:

1. Is the performance of your pipeline processing important? Using WSS to secure
your Web services incurs a significant performance impact.

The main advantage of implementing WSS is that, by encrypting part of a
SOAP message, you can send the message through a chain of intermediate
nodes, all of which might have legitimate reasons to look at the SOAP header to
make routing or processing decisions, but are not allowed to view the content of
the message. By encrypting those sections that must be confidential you obtain
these advantages:

v You do not incur the overhead of encrypting and decrypting at every node in
a chain of intermediate processes.

v You can route a confidential message over a public network of untrusted
nodes, where only the ultimate recipient of the data can understand it.

As an alternative to using Web Services Security, you can use SSL to encrypt
the whole data stream.

2. If you want to use Web Services Security, what level of security do you want?
The options range from basic authentication, where the message header
includes a user name and a password, through to combining digital signatures
and encryption in the message. The options that the CICS security handler
supports are described in “The options for securing SOAP messages” on page
231.

3. Does the CICS-supplied security handler meet your requirements? If you want
to perform more advanced security processing, you must write your own custom
security handler. This handler must perform the necessary authentication of
messages, either directly with RACF or using a Security Token Service, and
handle the processing of digital certificates and encrypted elements. See
“Writing a custom security handler” on page 243 for details.

4. Does your pipeline include an MTOM handler? If you are planning to enable
both the MTOM handler and the security handler in your pipeline configuration
file, any MIME Multipart/Related messages are processed in compatibility mode.

230 Web Services Guide

CICS uses compatibility mode because the security handler cannot parse the
XOP elements in the body of the message. This mode can have a further effect
on the performance of the pipeline processing.

The options for securing SOAP messages
CICS supports both signing and encrypting SOAP messages, so you can select the
level of security that is most appropriate for the data that you are sending or
receiving in the SOAP message.

You can choose from these options:

Trusted authentication
In service provider pipelines, CICS can accept a username token in the
SOAP message header as trusted. This type of security token usually
contains a user name and password, but, in this case, the password is not
required. CICS trusts the provided user name and places it in container
DFHWS-USERID and the message is processed in the pipeline.

 In service requester pipelines, CICS can send a username token without
the password in the SOAP message header to the service provider.

Basic authentication
In service provider mode, CICS can accept a username token in the SOAP
message header for authentication on inbound SOAP messages. This type
of security token contains a user name and password. CICS verifies the
username token using an external security manager such as RACF. If
successful, the user name is placed in container DFHWS-USERID and the
SOAP message is processed in the pipeline. If CICS cannot verify the
username token, a SOAP fault message is returned to the service
requester.

 Username tokens that contain passwords are not supported in service
requester mode or on outbound SOAP messages.

Advanced authentication
In service provider and requester pipelines, you can verify or exchange
security tokens with a Security Token Service (STS) for authentication
purposes. The STS enables CICS to accept and send messages that have
security tokens in the message header that are not normally supported; for
example, Kerberos tokens or SAML assertions.

 For an inbound message, you can select to verify or exchange a security
token. If the request is to exchange the security token, CICS must receive a
username token back from the STS. For an outbound message, you can
only exchange a username token for a security token.

Signing with X.509 certificates
In service provider and service requester mode, you can provide an X.509
certificate in the SOAP message header to sign the body of the SOAP
message for authentication. This type of security token is known as a binary
security token. To accept binary security tokens from inbound SOAP
messages, the public key associated with the certificate must be imported
into an external security manager, such as RACF, and associated with the
key ring that is specified in the KEYRING system initialization parameter. For
outbound SOAP messages, you must generate and publish the public key
to the intended recipients. The Integrated Cryptographic Service Facility
(ICSF) is used to generate public keys.

Chapter 12. Support for securing Web services 231

When you specify the label associated with an X.509 digital certificate, do
not use the following characters:
< > : ! =

You can also include a second X.509 certificate in the header and sign it
using the first certificate. Signing the second certificate with the first
certificate allows you to run the work in CICS under the user ID associated
with the second X.509 certificate. The certificate that you are using to sign
the SOAP message must be associated with a trusted user ID, and have
surrogate authority in order to assert that work will run under a different
identity, the asserted identity, without the trusted user ID having the
password associated with that identity.

Encrypting
In service provider and service requester mode, you can encrypt the SOAP
message body using a symmetric algorithm such as Triple DES or AES. A
symmetric algorithm is where the same key is used to encrypt and decrypt
the data. This key is known as a symmetric key. It is then included in the
message and encrypted using a combination of the intended recipient's
public key and the asymmetric key encryption algorithm RSA 1.5. This
combination provides you with increased security, because the asymmetric
algorithm is complex and it is difficult to decrypt the symmetric key.
However, you obtain better performance because the majority of the SOAP
message is encrypted with the symmetric algorithm, which is faster to
decrypt.

 For inbound SOAP messages, the service requester or provider can encrypt
an element in the SOAP body and then encrypt the SOAP body as a whole.
This encryption might be particularly appropriate for an element that
contains sensitive data. If CICS receives a SOAP message with two levels
of encryption, CICS decrypts both levels automatically. Outbound SOAP
messages do not support two levelsof encryption.

CICS does not support inbound SOAP messages that have an encrypted
element in the message header and no encrypted elements in the SOAP
body.

Signing and encrypting
In service provider and service requester mode, you can choose to both
sign and encrypt a SOAP message. CICS always signs the SOAP message
body first and then encrypts it. The advantage of this method is that it gives
you both message confidentiality and integrity.

Authentication using a Security Token Service
CICS can interoperate with a Security Token Service (STS), such as Tivoli
Federated Identity Manager, to provide more advanced authentication of Web
services.

An STS is a Web service that acts as a trusted third party to broker trust
relationships between a Web service requester and a Web service provider. In a
similar manner to a certificate authority in an SSL handshake, the STS guarantees
that the requester and provider can "trust" the credentials that are provided in the
message. This trust is represented through the exchange of security tokens. An
STS can issue, exchange, and validate these security tokens, and establish trust
relationships, allowing Web services from different trust domains to communicate
successfully. For more details, see the WS-Trust specification.

232 Web Services Guide

CICS acts as a Trust client and can send two types of Web service request to an
STS. The first type of request is to validate the security token in the WS-Security
message header; the second type of request is to exchange the security token for a
different type. This exchange of tokens enables CICS to send and receive
messages that contain different security tokens from a wide variety of trust
domains, such as SAML assertions and Kerberos tokens.

You can either configure the CICS security handler to define how CICS should
interact with an STS or write your own message handler to use a separately
provided Trust client interface. Whichever method you choose, you are
recommended to use SSL to secure the connection between CICS and the STS.

How the security handler invokes the STS

The CICS security handler uses the information in the pipeline configuration file to
send a Web service request to the Security Token Service (STS). The type of
request that is sent depends on the action that you want the STS to perform.

In a service provider pipeline
In a service provider pipeline, the security handler supports two types of
actions. You can configure the security handler to perform one of the
following actions:

v Send a request to the STS to validate the first instance of a security
token, or the first security token of a specific type, in the WS-Security
header of the inbound message.

v Send a request to the STS to exchange the first instance of a security
token, or the first security token of a specific type, in the WS-Security
header of the inbound message, for a security token that CICS can
understand.

The security handler dynamically creates a pipeline to send the Web
service request to the STS. This pipeline exists until a response is received
from the STS, after which it is deleted. If the request is successful, the STS
returns an identity token or the status of the token's validity. The security
handler places the token in the DFHWS-USERID container.

If the STS encounters an error, it returns a SOAP fault to the security
handler. The security handler then passes a fault back to the Web service
requester.

In a service requester pipeline
In a service requester pipeline, the security handler can request to
exchange a token with the STS only. The pipeline configuration file defines
what type of token the STS should issue to the security handler.

 If the request is successful, the token is placed in DFHWS-USERID and
then included in the outbound message header. If the STS encounters an
error, it returns a SOAP fault to the security handler. The security handler
then passes the fault back through the pipeline to the Web service
requester application.

The security handler can request only one type of action from the STS for the
pipeline. It can also exchange only one type of token for an outbound request
message, and is limited to handling the first token in the WS-Security message
header, either the first instance or of a specific type. These options cover the most
common scenarios for using an STS, but might not offer you the processing that
you require for handling inbound and outbound messages.

Chapter 12. Support for securing Web services 233

If you want to provide more specific processing to handle many tokens in the
inbound message headers or exchange multiple types of tokens for outbound
messages, you are recommended to use the Trust client interface. Using this
interface, you can create a custom message handler to send your own Web service
request to the STS.

The Trust client interface
The Trust client interface enables you to interact with a Security Token Service
(STS) directly, rather than using the security handler, giving you the flexibility to
provide more advanced processing of tokens than the security handler.

The Trust client interface is an enhancement to the CICS-supplied program
DFHPIRT. This program is normally used to start a pipeline when a Web service
requester application has not been deployed using the CICS Web services
assistant. However, the program DFHPIRT can also act as the Trust client interface
to the STS.

You can invoke the Trust client interface by linking to DFHPIRT from a message
handler or header processing program, passing a channel called DFHWSTC-V1
and a set of security containers. Using these containers, you have the flexibility to
request either a validate or issue action from the STS, select what token type to
exchange, and pass the appropriate token from the message header. DFHPIRT
dynamically creates a pipeline, composes a Web service request from the security
containers, and sends it to the STS.

DFHPIRT waits for the response from the STS and passes this back in the
DFHWS-RESTOKEN container to the message handler. If the STS encounters an
error, it returns a SOAP fault. DFHPIRT puts the fault in the DFHWS-STSFAULT
container and returns to the linking program in the pipeline.

You can use the Trust client interface without enabling the security handler in your
service provider and service requester pipelines or you can use the Trust client
interface in addition to the security handler.

Signing of SOAP messages
For inbound messages, CICS supports digital signatures on elements in the SOAP
body and on SOAP header blocks. For outbound messages, CICS signs all
elements in the SOAP body.

A SOAP message is an XML document, consisting of an <Envelope> element, which
contains an optional <Header> element, and a mandatory <Body> element.

The WSS: SOAP Message Security specification permits the contents of the
<Header> and the <Body> to be signed at the element level. That is, in a given
message, individual elements can be signed or not, or can be signed with different
signatures or using different algorithms. For example, in a SOAP message used in
an online purchasing application, it is appropriate to sign elements that confirm
receipt of an order, because these elements might have legal status. However, to
avoid the overhead of signing the entire message, other information might safely be
left unsigned.

For inbound messages, the security message handler can verify the digital
signature on individual elements in the SOAP <Header> and the <Body>. The
security handler verifies the following elements:

234 Web Services Guide

v Verify signed elements it encounters in the <Header>.

v Verify signed elements in the SOAP <Body>. If the handler is configured to expect
a signed body, CICS will reject with a fault any SOAP message in which the body
is not signed.

For outbound messages, the security message handler can sign the SOAP <Body>
only; it does not sign the <Header>. The security handler's configuration information
specifies the algorithm and key used to sign the body.

Signature algorithms
CICS supports the signature algorithms required by the XML Signature
specification. A universal resource identifier (URI) identifies each algorithm.

 Algorithm URI

Digital Signature Algorithm
with Secure Hash Algorithm 1
(DSA with SHA1)

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Inbound SOAP messages support only the DSA with SHA1 signature algorithm.

Example of a signed SOAP message
This example of a SOAP message has been signed by CICS.

<?xml version="1.0" encoding="UTF8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
 <wsse:Security xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" SOAP-ENV:mustUnderstand="1">
 <wsse:BinarySecurityToken �1�
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
 wsu:Id="x509cert00">MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJHQjEMMAoGA1UEChMD
 SUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEzMTAwMDAwMFoXDTA3MDEzMTIzNTk1OVow
 MDELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkq
 hkiG9w0BAQEFAAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiogePsR
 6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8JXPFzA+BqV63JqRgJyxN6
 msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhC
 AQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgG
 ZQVRFU0BVSy5JQk0uQ09ggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO
 </wsse:BinarySecurityToken>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <c14n:InclusiveNamespaces xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="ds wsu xenc SOAP-ENV "/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#TheBody">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <c14n:InclusiveNamespaces xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="wsu SOAP-ENV "/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>�2�

Chapter 12. Support for securing Web services 235

<ds:DigestValue>QORZEA+gpafluShspHxhrjaFlXE=</ds:DigestValue>�3�
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>drDH0XESiyN6YJm27mfK1ZMG4Q4IsZqQ9N9V6kEnw2lk7aM3if77XNFnyKS4deglbC3ga11kkaFJ�4�
 p4jLOmYRqqycDPpqPm+UEu7mzfHRQGe7H0EnFqZpikNqZK5FF6fvYlv2JgTDPwrOSYXmhzwegUDT
 lTVjOvuUgXYrFyaO3pw=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509cert00"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/>�5�
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="TheBody">
 <getVersion xmlns="http://msgsec.wssecfvt.ws.ibm.com"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The binary security token contains the base64Binary encoding of the X.509
certificate. This encoding includes the public key that the intended recipient of
the SOAP message uses to verify the signature.

2. The algorithm that is used during the hashing process to produce the message
digest.

3. The value of the message digest.

4. The digest value is then encrypted with the user's private key and included here
as the signature value.

5. References the binary security token that contains the public key that is used to
verify the signature.

CICS support for encrypted SOAP messages
For inbound messages, CICS can decrypt any encrypted elements in the SOAP
body and encrypted SOAP header blocks where the body is also encrypted. For
outbound messages, CICS encrypts the entire SOAP body.

A SOAP message is an XML document, consisting of an <Envelope> element, which
contains an optional <Header> element, and a mandatory <Body> element.

The WSS: SOAP Message Security specification allows some of the contents of the
<Header> and all of the contents of the <Body> to be encrypted at the element level.
That is, in a given message, individual elements can have different levels of
encryption or can be encrypted using different algorithms. For example, in a SOAP
message used in an online purchasing application, it would be appropriate to
encrypt an individual's credit card details to ensure that they remain confidential.
However, to avoid the overhead of encrypting the entire message, some information
might safely be encrypted using a less secure (but faster) algorithm and other
information might safely be left unencrypted.

For inbound messages, the CICS-supplied security message handler can decrypt
individual elements in the SOAP <Body>, and can decrypt elements in the SOAP
<Header> if the SOAP body is also encrypted. The security message handler always
decrypts the following:

v Elements it encounters in the <Header> in the order that the elements are found.

v Elements in the SOAP <Body>. If you want to reject a SOAP message that does
not have an encrypted <Body>, configure the handler to expect an encrypted body
using the <expect_encrypted_body> element.

236 Web Services Guide

For outbound messages, the security message handler supports encryption of the
contents of the SOAP <Body> only; it does not encrypt any elements in the
<Header>. When the security message handler encrypts the <Body>, all elements in
the body are encrypted with the same algorithm and using the same key. The
algorithm and information about the key are specified in the handler's configuration
information.

Encryption algorithms
CICS supports the encryption algorithms required by the XML Encryption
specification. A universal resource identifier (URI) identifies each algorithm.

 Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

Example of an encrypted SOAP message
This example of a SOAP message has been encrypted by CICS.

<?xml version="1.0" encoding="UTF8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
 <wsse:Security xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" SOAP-ENV:mustUnderstand="1">

 <wsse:BinarySecurityToken
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"�1�
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
 wsu:Id="x509cert00">MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJHQjEMMAoGA1UEChMD
 SUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEzMTAwMDAwMFoXDTA3MDEzMTIzNTk1OVow
 MDELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkq
 hkiG9w0BAQEFAAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiogePsR
 6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8JXPFzA+BqV63JqRgJyxN6
 msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhC
 AQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgG
 A1UdEQQxMC+BEVdZQVRFU0BVSy5JQk0uQ09NggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO
 BgNVHQ8BAf8EBAMCAfYwHQYDVR0OBBYEFMiPX6VZKP5+mSOY1TLNQGVvJzu+MA0GCSqGSIb3DQEB
 BQUAA4GBAHdrS409Jhoe67pHL2gs7x4SpV/NOuJnn/w25sjjop3RLgJ2bKtK6RiEevhCDim6tnYW
 NyjBL1VdN7u5M6kTfd+HutR/HnIrQ3qPkXZK4ipgC0RWDJ+8APLySCxtFL+J0LN9Eo6yjiHL68mq
 uZbTH2LvzFMy4PqEbmVKbmA87alF
 </wsse:BinarySecurityToken>
 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>�2�
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509cert00"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/> �3�
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>M6bDQtJrvX0pEjAEIcf6bq6MP3ySmB4TQOa/B5UlQj1vWjD56V+GRJbF7ZCES5ojwCJHRVKW1ZB5�4�
 Mb+aUzSWlsoHzHQixc1JchgwCiyIn+E2TbG3R9m0zHD3XQsKTyVaOTlR7VPoMBd1ZLNDIomxjZn2
 p7JfxywXkObcSLhdZnc=</xenc:CipherValue>
 </xenc:CipherData>

Chapter 12. Support for securing Web services 237

<xenc:ReferenceList>
 <xenc:DataReference URI="#Enc1"/>
 </xenc:ReferenceList>
 </xenc:EncryptedKey>
 </wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Id="Enc1" Type="http://www.w3.org/2001/04/xmlenc#Content">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>�5�
 <xenc:CipherData>
 <xenc:CipherValue>kgvqKnMcgIUn7rl1vkFXF0g4SodEd3dxAJo/mVN6ef211B1MZelg7OyjEHf4ZXwlCdtOFebIdlnK�6�
 rrksql1Mpw6So7ID8zav+KPQUKGm4+E=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The binary security token contains the base64Binary encoding of the X.509
certificate. This encoding includes the public key that was used to encrypt the
symmetric key.

2. States the algorithm that was used to encrypt the symmetric key.

3. References the binary security token that contains the public key used to
encrypt the symmetric key.

4. The encrypted symmetric key that was used to encrypt the message.

5. The encryption algorithm that was used to encrypt the message.

6. The encrypted message.

Configuring RACF for Web Services Security
You must configure an external security manager, such as RACF, to create
public-private key pairs and X.509 certificates for signing and encrypting outbound
SOAP messages, and to authenticate and decrypt signed and encrypted inbound
SOAP messages.

Before you perform this task, you must have RACF set up to work with CICS.
Specify the DFLTUSER, KEYRING, and SEC=YES system initialization parameters in the
CICS region that contains your Web services pipelines.

1. To authenticate inbound SOAP messages that are signed:

a. Import the X.509 certificate into RACF as an ICSF key.

b. Attach the certificate to the key ring specified in the KEYRING system
initialization parameter, using the RACDCERT command.
RACDCERT ID(userid1)
CONNECT(ID(userid2) LABEL(’label-name’) RING(ring-name)

where:

v userid1 is the default user ID of the key ring or has authority to attach
certificates to the key ring for other user IDs.

v userid2 is the user ID that you want to associate with the certificate

v label-name is the name of the certificate

v ring-name is the name of the key ring that is specified in the KEYRING
system initialization parameter.

c. Optional: If you want to use asserted identities, ensure that the user ID
associated with the certificate has surrogate authority to allow work to run
under other user IDs. You should also make sure that any additional
certificates included in the SOAP message header are also imported into
RACF.

238 Web Services Guide

The SOAP message can contain a binary security token in the header that
either includes the certificate or contains a reference to the certificate. This
reference can be the KEYNAME (the certificate label in RACF), a combination
of the ISSUER and SERIAL number, or the SubjectKeyIdentifier. CICS can only
recognize the SubjectKeyIdentifier if it has been specified as an attribute in the
definition of the certificate in RACF.

2. To sign outbound SOAP messages:

a. Create an X.509 certificate and a public-private key pair using the following
RACDCERT command.
RACDCERT ID(userid2) GENCERT
SUBJECTSDN(CN(’common-name’)
 T(’title’)
 OU(’organizational-unit’)
 O(’organization’)
 L(’locality’)
 SP(’state-or-province’)
 C(’country’))
WITHLABEL(’label-name’)

where userid2 is the user ID that you want to associate with the certificate.
When you specify the certificate label-name value, do not use the following
characters:
< > : ! =

b. Attach the certificate to the key ring specified in the KEYRING system
initialization parameter. Use the RACDCERT command.

c. Export the certificate and publish it to the intended recipient of the SOAP
message.

You can edit the pipeline configuration file so that CICS automatically includes
the X.509 certificate in the binary security token of the SOAP message header
for the intended recipient to validate the signature.

3. To decrypt inbound SOAP messages that are encrypted, the SOAP message
must include the public key that is part of a key pair, where the private key is
defined in CICS.

a. Generate a public-private key pair and certificate in RACF for encryption.
Use ICSF to generate the key pair and certificate.

b. Attach the certificate to the key ring specified in the KEYRING system
initialization parameter. Use the RACDCERT command.

c. Export the certificate and publish it to the generator of the SOAP messages
that you want to decrypt.

The generator of the SOAP message can then import the certificate that
contains the public key and use it to encrypt the SOAP message. The SOAP
message can contain a binary security token in the header that either includes
the public key or contains a reference to it. This reference can be the
KEYNAME, a combination of the ISSUER and SERIAL number, or the
SubjectKeyIdentifier. CICS can only recognize the SubjectKeyIdentifier if it has
been specified as an attribute in the definition of the public key in RACF.

4. To encrypt outbound SOAP messages:

a. Import the certificate that contains the public key that you want to use for
encryption into RACF as an ICSF key. The intended recipient must have the
private key associated with the public key to decrypt the SOAP message.

b. Attach the certificate that contains the public key to the key ring specified in
the KEYRING system initialization parameter. Use the RACDCERT command.

Chapter 12. Support for securing Web services 239

CICS uses the public key in the certificate to encrypt the SOAP body and sends
the certificate containing the public key as a binary security token in the SOAP
message header, as defined in the pipeline configuration file.

The above configuration for signing and encrypting outbound messages requires
that the certificate used is owned by the CICS region userid. The certificate must be
owned by the CICS region userid because RACF allows only the certificate owner
to extract the private key, which is used for the signing or encryption process.

If CICS needs to sign or encrypt a message using a certificate that it does not own,
for example a single certificate shared by multiple CICS systems where each
system has a different region userid, the following conditions must be true:

1. You must be using one of the following z/OS releases:

v z/OS 1.9 or above

v z/OS 1.8 with PTF UA37039

v z/OS 1.7 with PTF UA37038

2. The certificate must be connected to its key ring with the PERSONAL usage
option.

3. If the certificate is a USER certificate, the CICS region userid that wishes to use
the certificate must have READ or UPDATE authority for the
<ringOwner>.<ringName>.LST resource in the RDATALIB class.

4. The RDATALIB class must have been activated using the RACLIST option.

CICS uses the RACF R_datalib callable service to extract the private key from the
certificate. For more information, see the z/OS Security Server RACF Callable
Services guide.

Configuring the pipeline for Web Services Security
To configure a pipeline to support Web Services Security (WSS), you must add a
security handler to your pipeline configuration files. You can use the CICS-supplied
security handler or create your own. This information describes how to define the
CICS security handler.

Before performing this task, you must identify or create the pipeline configuration
files to which you will add configuration information for WSS.

 1. Add a <wsse_handler> element to your pipeline. The handler must be included
in the <service_handler_list> element in a service provider or requester
pipeline. Code the following elements:
<wsse_handler>
 <dfhwsse_configuration version="1">

 </dfhwsse_configuration>
</wsse_handler>

The <dfhwsse_configuration> element is a container for the other elements in
the configuration.

 2. Optional: Code an <authentication> element.

v In a service requester pipeline, the <authentication> element specifies the
type of authentication that the security header of outbound SOAP messages
will use.

v In a service provider pipeline, the element specifies whether CICS will use
the security tokens in an inbound SOAP message to determine the user ID
under which work will be processed.

240 Web Services Guide

a. Code the trust attribute to specify whether asserted identity is used and
the nature of the trust relationship between service provider and requester.
For details of the trust attribute, see “The <authentication> element” on
page 81.

b. Optional: If you specified trust=none, code the mode attribute to specify
how credentials found in the message are processed. For details of the
mode attribute, see “The <authentication> element” on page 81.

c. Within the <authentication> element, code the following:

1) An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler
will not attempt to use any security tokens in the message to determine
under which user ID the work will run.

If this element is specified in a service requester pipeline, the handler
will not attempt to add to the outbound SOAP message any of the
security tokens that are required for authentication.

2) An optional <algorithm> element that specifies the URI of the algorithm
used to sign the body of the SOAP message. You must specify this
element if the combination of trust and mode attribute values indicate
that the messages are signed.

You can specify the following algorithms:

 Algorithm URI

Digital Signature Algorithm
with Secure Hash Algorithm 1
(DSA with SHA1)

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

3) An optional <certificate_label> element that specifies the label
associated with an X.509 digital certificate installed in RACF. If this
element is specified in a service requester pipeline, and the <suppress>
element is not specified, the certificate is added to the security header
in the SOAP message. If you do not specify a <certificate_label>
element, CICS uses the default certificate in the RACF key ring.

This element is ignored in a service provider pipeline.

 3. Optional: Code an <sts_authentication> element. This element is an
alternative to the <authentication> element and you must not code both in
your pipeline configuration file. This element specifies that a Security Token
Service (STS) is used for authentication and determines what type of request
is sent.

a. Optional: In service provider mode only, code the action attribute to specify
whether the STS will verify or exchange a security token. For details of the
action attribute, see “The <sts_authentication> element” on page 84.

b. Within the <sts_authentication> element, code the following:

1) An <auth_token_type> element. This element is required when you
specify a <sts_authentication> element in a service requester pipeline
and optional in a service provider pipeline.

v In a service requester pipeline, the <auth_token_type> element
indicates the type of token the STS will issue when CICS sends it

Chapter 12. Support for securing Web services 241

the user ID contained in the DFHWS-USERID container. The token
that CICS receives from the STS is placed in the header of the
outbound message.

v In a service provider pipeline, the <auth_token_type> element is
used to determine which identity token CICS takes from the
message header and send to the STS to exchange or validate. CICS
uses the first identity token of the specified type in the message
header. If you do not specify this element, CICS uses the first
identity token that it finds in the message header. CICS does not
consider the following as identity tokens:

– wsu:Timestamp

– xenc:ReferenceList

– xenc:EncryptedKey

– ds:Signature

2) In a service provider pipeline only, an optional, empty <suppress/>
element. If this element is specified, the handler does not attempt to
use any security tokens in the message to determine under which user
ID the work will run, including the identity token that is returned by the
STS.

 4. Optional: Code an <sts_endpoint> element. Use this element only if you have
also specified an <sts_authentication> element. In the <sts_endpoint>
element, code the following:

v An <endpoint> element. This element contains a URI that points to the
location of the Security Token Service (STS) on the network. You are
recommended to use SSL or TLS to keep the connection to the STS secure,
rather than using HTTP.

You can also specify a WebSphere MQ endpoint using the JMS format of
URI.

 5. Optional: If you require inbound SOAP messages to be digitally signed, code
an empty <expect_signed_body/> element.

The <expect_signed_body/> element indicates that the <body> of the inbound
message must be signed. If the body of an inbound message is not correctly
signed, CICS rejects the message with a security fault.

 6. Optional: If you want to reject inbound SOAP messages that are digitally
signed, code an empty <reject_signature/> element.

 7. Optional: If you require inbound SOAP messages to be encrypted, code an
empty <expect_encrypted_body/> element.

The <expect_encrypted_body/> element indicates that the <body> of the
inbound message must be encrypted. If the body of an inbound message is
not correctly encrypted, CICS rejects the message with a security fault.

 8. If you want to reject inbound SOAP messages that are partially or fully
encrypted, code an empty <reject_encryption/> element.

 9. Optional: If you require outbound SOAP messages to be signed, code a
<sign_body> element.

a. In the <sign_body> element, code an <algorithm> element.

b. Following the <algorithm> element, code a <certificate_label> element.

This example is of a completed <sign_body> element:
<sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
</sign_body>

242 Web Services Guide

10. Optional: If you require outbound SOAP messages to be encrypted, code an
<encrypt_body> element.

a. In the <encrypt_body> element, code an <algorithm> element.

b. Following the <algorithm> element, code a <certificate_label> element.

This example is of a completed <encrypt_body> element:
<encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
</encrypt_body>

Example

The following example shows a completed security handler in which most of the
optional elements are present:
<wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <suppress/>
 <certificate_label>AUTHCERT03</certificate_label>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
</wsse_handler>

Writing a custom security handler
If you want to use your own security procedures and processing, you can write a
custom message handler to process secure SOAP messages in the pipeline.

You must decide the level of security that your security handler will support and
ensure that an appropriate SOAP fault is returned when a message includes
security that is not supported.

The message handler must also be able to cope with security on inbound and
outbound messages.

1. Retrieve the DFHREQUEST or DFHRESPONSE container using an EXEC CICS
GET CONTAINER command.

2. Parse the XML to find the security token that is in the WS-Security message
header. The header starts with the <wsse:Security> element. The security token
might be a user name and password, a digital certificate, or an encryption key.
A message can have many tokens in the security header, so your handler must
identify the correct one to process.

3. Perform the appropriate processing, depending on what security is implemented
in the message.

a. If you want to perform basic authentication, issue an EXEC CICS VERIFY
PASSWORD command. This command checks the user name and password in
the security header of the message. If this command is successful, update

Chapter 12. Support for securing Web services 243

the DFHWS-USERID container with an EXEC CICS PUT CONTAINER.
Otherwise, issue an EXEC CICS SOAPFAULT CREATE command.

b. If you want to perform advanced authentication, either by exchanging or
validating a range of tokens with a Security Token Service, use the Trust
client interface. See “Invoking the Trust client from a message handler” for
details.

c. Validate the credentials of the digital certificate if the message is signed.

d. If parts of the message are encrypted, decrypt the message using the
information in the security header. The “Web Services Security: SOAP
Message Security” on page 29 specification tells you how to do this.

Define your security handler program in CICS and update the pipeline configuration
file, ensuring that it is correctly placed in the XML. In a service requester pipeline
configuration file, the security handler should be configured to run at the end of the
pipeline. In a service provider pipeline configuration file, configure the security
handler to run at the beginning of the pipeline.

For general information on how to write a custom message handler, see Application
Development for CICS Web Services, an IBM Redbooks® publication, which is
available from http://www.redbooks.ibm.com/abstracts/sg247126.html.

Invoking the Trust client from a message handler
CICS provides an interface so that you can write your own message handler to
invoke a Security Token Service (STS). Providing your own message handler
enables you to perform more advanced processing than the CICS-supplied security
handler.

You can use the Trust client instead of the security handler or in addition to it. To
use the Trust client interface:

1. Extract the correct token from the security message header of the inbound or
outbound message.

2. Link to program DFHPIRT, passing the channel DFHWSTC-V1 and the following
required containers:

v DFHWS-STSURI, containing the location of the STS on the network.

v DFHWS-STSACTION, containing the URI of the type of request that the STS
will perform. The two supported actions are issue and validate.

v DFHWS-IDTOKEN, containing the token that will either be verified or
exchanged by the STS.

v DFHWS-TOKENTYPE, containing the type of token that the STS will send
back in the response.

v DFHWS-SERVICEURI, containing the URI of the Web service operation that
is being invoked.

You can optionally include the DFHWS-XMLNS container to provide the
namespaces of the SOAP message that contains the security token. This
container is described in more detail in “The header processing program
interface” on page 101.

3. DFHPIRT returns with the response from the STS. A successful response is
stored in the DFHWS-RESTOKEN container.

244 Web Services Guide

http://www.redbooks.ibm.com/abstracts/sg247126.html

If the STS encounters a problem with the request, it returns a SOAP fault.
DFHPIRT puts the SOAP fault in the DFHWS-STSFAULT container. If the STS
provides a reason for issuing the SOAP fault, this reason is put in the
DFHWS-STSREASON container.

If an abend occurs, a DFHERROR container is returned that contains details of
the processing error.

Your message handler must handle these responses and perform suitable
processing in the event of an error. For example, the message handler might
pass back a suitable SOAP fault to the Web service requester.

4. Process the response as appropriate. In provider mode, your pipeline
processing must ensure that a user name and password that CICS can
understand are placed in the DFHWS-USERID container by the time the
message reaches the application handler. In requester mode, your message
handler must add the correct token to the outbound message security header.

When you have written your message handler, define and install the program in
CICS and update the appropriate pipeline configuration files. In service requester
pipelines, define your message handler to occur at the end of the pipeline
processing but before the CICS-supplied security handler. In service provider
pipelines, define your message handler at the beginning of the pipeline but after the
CICS-supplied security handler.

Chapter 12. Support for securing Web services 245

246 Web Services Guide

Chapter 13. Diagnosing problems

The problems that you might encounter when implementing Web services in CICS
can occur during the deployment process or at run time, when CICS is transforming
SOAP messages.

Diagnosing deployment errors
Deployment errors can occur when you try to run the Web services assistant batch
jobs or install a PIPELINE or WEBSERVICE resource in CICS. If a deployment
error occurs, PIPELINE resources usually install in a DISABLED state and
WEBSERVICE resources install in an UNUSABLE state. The most common
deployment errors are described here, including the symptom of the problem, the
cause, and the solution.

Information and error messages associated with the Web services assistant batch
jobs are in the job log. Error messages associated with installing resources are in
the system log.

v You receive a return code of 4, 8, or 12 when running the Web services assistant
batch jobs DFHWS2LS or DFHLS2WS. The return codes mean the following:

– 4 - Warning. The job completed successfully, but one or more warning
messages have been issued.

– 8 - Input error. The job did not complete successfully. One or more error
messages were issued while validating the input parameters.

– 12 - Error. The job did not complete successfully. One or more error
messages were issued during execution.

1. Check the job log for any warning or error messages. Look up the detailed
explanations for the messages. The explanations normally describe actions
that you can take to fix the problem.

2. Ensure that you have entered the correct values for each of the parameters
in the job. Treat parameter values such as file names and elements in the
Web service description as case-sensitive.

3. Ensure that you have specified the correct combination of parameters. For
example, if you include the PGMNAME parameter in DFHWS2LS when
generating a Web service binding file for a service requester, you receive an
error and the job does not complete successfully.

v You receive a return code of 1, 136, or 139 when running the Web services
assistant batch jobs DFHWS2LS or DFHLS2WS. These return codes indicate
that the JVM has failed, usually because insufficient storage is available. The
Web services assistants require a JCL region size of at least 200 MB.

1. Increase the region size or consider setting the region size to 0 MB.

2. Check for any active IEFUSI exits, which can limit the region size.

v You receive a DFHPI0914 error message when attempting to install a
WEBSERVICE resource. The message includes some information about the
cause of the install failure.

1. Check that you have authorized CICS to read the Web service binding file in
z/OS UNIX.

2. Check that the Web service binding file is not corrupt. This corruption can
occur, for example, if you use FTP to transfer the file to z/OS UNIX in text
mode rather than binary mode.

© Copyright IBM Corp. 2005, 2011 247

3. Check that two Web service binding files with the same name are not in
different pick-up directories.

4. If you are attempting to install a resource for a Web service requester
application, check that the version of the SOAP binding matches the level
supported in the pipeline. You cannot install a SOAP 1.1 WEBSERVICE
resource into a service requester pipeline that supports SOAP 1.2.

5. Check that you are not installing a provider mode WEBSERVICE resource
into a requester mode pipeline. Provider mode Web service binding files
specify a PROGRAM value, but requester mode binding files do not.

6. If you are using DFHWS2LS or DFHLS2WS, check that you have specified
the correct parameters when generating the Web service binding file. Some
parameters, such as PGMNAME, are allowed for Web service providers only and
must be excluded if you are creating a Web service requester.

7. If you are using DFHWS2LS or DFHLS2WS, check the messages issued by
the job to see if you need to resolve any problems before creating the
WEBSERVICE resource.

v The PIPELINE resource fails to install and you receive a DFHPI0700,
DFHPI0712, DFHPI0714, or similar error message.

1. If you received a DFHPI0700 error message, you must enable PL/I language
support in your CICS region. This support is required before you can install
any PIPELINE resources. See the CICS Transaction Server for z/OS
Installation Guide for more information.

2. Check that you have authorized CICS to access the z/OS UNIX directories to
read the pipeline configuration files.

3. Check that the directory you are specifying in the WSDIR parameter is valid. In
particular, check the case because directory and file names in z/OS UNIX are
case-sensitive.

4. Ensure that you do not have a PIPELINE resource of the same name in an
ENABLED state in the CICS region.

v The PIPELINE resource installs in a DISABLED state. You get an error message
in the range of DFHPI0702 to DFHPI0711.

1. Check that no errors occur in the pipeline configuration file. The elements in
the pipeline configuration file can appear only in certain places. If you specify
these elements incorrectly you receive a DFHPI0702 error message. This
message includes the name of the element that is causing the problem.
Check the element description to make sure you have coded it in the correct
place.

2. Check that you do not have any unprintable characters, such as tabs, in the
pipeline configuration file.

3. Check that the XML is valid. If the XML is not valid, it can cause parsing
errors when you attempt to install the PIPELINE resource.

4. Ensure that the pipeline configuration file is encoded in US EBCDIC. If you
try to use a different EBCDIC encoding, CICS cannot process the file.

Diagnosing service provider runtime errors
If you are having problems receiving or processing inbound messages in a provider
mode pipeline, the problem might be with the transport or a specific SOAP
message.

v You receive a DFHPI0401, DFHPI0502, or similar message, indicating that an
HTTP or WMQ transport error has occurred. If the transport is HTTP, the client
receives a 500 Server Internal Error message. If the transport is WMQ, the

248 Web Services Guide

message is written to the dead letter queue (DLQ). A SOAP fault is not returned
to the Web service requester, because CICS cannot determine what type of
message was received.

v You receive a DFHPIxxxx message and a 404 Not Found error message.

1. If you are not using the Web services assistant, you must create a URIMAP
resource. If you are using the Web services assistant, the URIMAP is created
automatically for you when you run the PIPELINE SCAN command. The system
log provides information on any errors that occurred as a result of running
this command.

2. Check that the WEBSERVICE resource is enabled and that the URIMAP with
which it is associated with is as expected. If your WEBSERVICE resource
has installed in an UNUSABLE state, see “Diagnosing deployment errors” on
page 247.

3. Check that you have correctly specified the URI and port number. In
particular, check the case because the attribute PATH on the URIMAP
resource is case-sensitive.

v If unexpected errors are being reported, consider using CEDX to debug the Web
service application.

1. Check the system log to see what error messages are being reported by
CICS. The system log might give you an indication of what type of error is
occurring. If CICS is not reporting any errors, ensure that the request is
reaching CICS through the network.

2. Run CEDX against CPIH for the HTTP transport, CPIQ for the WMQ
transport, or the transaction that you specified in the URIMAP if it is different.

If a task switch occurs during the pipeline processing before the application
handler, then, unless the DFHWS-TRANID container is populated, the new
task runs under the same transaction id as the first one. Running under the
same transaction id can interfere with running CEDX, because the first task
has a lock on the CEDX session. You can avoid this problem by using
DFHWS-TRANID to change the transaction id when the task switches,
allowing you to use CEDX on both the pipeline and application tasks
separately.For more information on CEDX, see Using the CEDX transaction
in CICS Supplied Transactions.

3. If CEDX does not activate or allow you to solve the problem, consider
running auxiliary trace with the PI, SO, AP, EI, and XS domains active.
Auxiliary trace might indicate whether there is a security problem, TCP/IP
problem, application program problem, or pipeline problem in your CICS
region. Look for any exception trace points or abends.

v If you are receiving conversion errors, see “Diagnosing data conversion errors”
on page 253.

v If you think your problem is related to MTOM messages, see “Diagnosing
MTOM/XOP errors” on page 251.

Diagnosing service requester runtime errors
Problems can occur when sending Web service requests from your service
requester application or when receiving SOAP fault messages from the Web service
provider.

Problems that occur can be caused by errors in individual Web services or
problems at the transport level.

v If you are using the INVOKE WEBSERVICE command in your application program,
RESP and RESP2 codes are returned when a problem occurs.

Chapter 13. Diagnosing problems 249

1. Look up the meaning of the RESP and RESP2 codes for the INVOKE
WEBSERVICE command to give you an indication of what the problem might
be.

2. Check the CICS system log for any messages that can help you determine
the cause of the problem.

v If you cannot send a SOAP request message and the pipeline is returning a
DFHERROR container, a problem occurred when the pipeline tried to process the
SOAP message.

1. Look at the contents of the DFHERROR container. It usually contains an
error message and some data describing the problem that occurred.

2. Have you introduced any new message handlers or header processing
programs in the pipeline? If you have, try removing the new program and
rerunning the Web service to see if the problem still occurs. If your message
handler is trying to perform some processing using a container that is not
present in the pipeline, or is trying to update a container that is read-only, the
pipeline stops processing and returns an error in the DFHERROR container.
Header processing programs can update only a limited set of containers in
the pipeline. See “The header processing program interface” on page 101 for
details.

3. If the Web service requester application is not using the INVOKE WEBSERVICE
command to send a Web service request, check that it has created all of the
necessary control containers and that they are the right datatype. In
particular, check that the DFHREQUEST container has a datatype of CHAR
rather than BIT.

4. If the Web service requester application is using the INVOKE WEBSERVICE
command, an INVREQ and a RESP2 code of 14 are returned, indicating that
a data conversion error has occurred. See “Diagnosing data conversion
errors” on page 253.

5. Check that a custom message handler has not invalidated the XML in your
SOAP message during pipeline processing. CICS does not perform any
validation on outbound messages in the pipeline. If your application uses the
INVOKE WEBSERVICE command, the XML is generated by CICS and is
well-formed when the body of the SOAP message is placed in the
DFHREQUEST container. However, if you have any additional message
handlers that change the contents of the SOAP message, these changes are
not validated in the pipeline.

v If you can send a SOAP message, but are getting a timeout or transport error, a
SOAP fault is normally returned. If your program is using the INVOKE WEBSERVICE
command, CICS returns a RESP value of TIMEDOUT and RESP2 code of 2 for
a timeout error, and a RESP value of INVREQ and RESP2 code of 17 for a
transport error.

1. Check that the network endpoint is present.

2. Ensure that you have correctly configured the RESPWAIT attribute on the
PIPELINE resource to meet your application's requirements. The RESPWAIT
attribute defines how long CICS waits for a reply from the Web service
provider before returning to the application. If you do not specify a value,
CICS uses the defaults of 10 seconds for HTTP and 60 seconds for WMQ.
However, CICS also has a timeout in the dispatcher for each transaction,
and, if this is less than the default of the protocol that is being used, CICS
uses the dispatcher timeout instead.

v If you can send a SOAP message, but are getting a SOAP fault response back
from the Web service provider that you did not expect, look at the contents of the
DFHWS-BODY container for details of the SOAP fault.

250 Web Services Guide

1. If you sent a complete SOAP envelope in DFHREQUEST using the DFHPIRT
interface, ensure that the outbound message does not contain duplicate
SOAP headers. Duplication can occur when the requester pipeline uses a
SOAP 1.1 or SOAP 1.2 message handler. The SOAP message handlers add
SOAP headers, even if they are already specified in the SOAP envelope by
the service requester application. In this scenario, you can do one of the
following:

– Remove the SOAP 1.1 or SOAP 1.2 message handler from the pipeline. The
removal will affect any other service requester applications that use this
pipeline.

– Remove the SOAP headers from the SOAP envelope that the application puts
in DFHREQUEST. CICS adds the necessary SOAP headers for you. If you
want to perform additional processing on the headers, you can use the header
processing program interface.

– Use a WEB SEND command instead in your application and opt out of the Web
services support.

v If you think the problem is related to sending or receiving MTOM messages, see
“Diagnosing MTOM/XOP errors.”

Diagnosing MTOM/XOP errors
MTOM/XOP errors can occur at run time, in both requester and provider mode
pipelines.

If you are having problems configuring a pipeline to support MTOM/XOP, read
“Diagnosing deployment errors” on page 247. If you are having problems with
MTOM/XOP at runtime, read the following points:

v If you are able to send a Web service request message in MTOM format, but are
receiving a SOAP fault message from the Web service provider, look at the
contents of the DFHWS-BODY container for details of the SOAP fault.

1. Is the Web service provider able to receive MIME Multipart/Related
messages? If the Web service provider does not support the MTOM format,
the fault that you receive can vary depending on the implementation. If the
Web service provider is another CICS application, the SOAP fault indicates
that the MIME message is not a valid content type. Use the CEMT INQUIRE
WEBSERVICE command to find out if the Web service supports MTOM/XOP.

2. If the Web service provider can receive MIME messages, check if the
pipeline is sending the message in direct or compatibility mode. Use the
INQUIRE PIPELINE command to retrieve the status of the pipeline. If you are
sending an MTOM message in direct mode, there might be a problem with
the XML.

3. To find out if the problem is with the XML, turn validation on for the Web
service. Validation causes the MTOM message to be processed in
compatibility mode through the pipeline. As part of this processing, the MTOM
handler parses the message contents to optimize the base64Binary data. If
the error is in the XML, CICS puts the error in the DFHERROR container and
issues an MTOM transport failure in the pipeline. Look for message
DFHPI0602.

4. Examine the contents of the DFHERROR container to see if it indicates
which problem occurred. If you do not have enough information to diagnose
the cause of the problem, run a level 2 trace of the PI domain.

Chapter 13. Diagnosing problems 251

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

5. Look for trace point PI 0C16. This trace point describes the problem that was
encountered in more detail, and will help you to fix the problem with the XML
that is provided by the requester application.

v If expected binary attachments are missing from the outbound MTOM message,
the binary data might be considered too small to optimize as a binary
attachment. CICS creates binary attachments only for data that is large enough
to justify the processing overhead of optimizing it in the pipeline. Any binary data
below 1,500 bytes in size is not optimized.

v If you cannot send an outbound MTOM message in compatibility mode and the
pipeline is returning a DFHERROR container, a problem is occurring when the
pipeline tries to process the MTOM message.

1. Look at the contents of the DFHERROR container. This will contain an error
message and some data describing the problem that occurred.

2. Check that the XML in your outbound MTOM message is valid. CICS does
not perform any validation on outbound messages in the pipeline.

v If you receive a DFHPI1100E message, a problem has occurred with the MIME
headers of an MTOM message that was received by CICS. The CICS message
contains the general class of MIME error that occurred. To find the exact problem
that occurred:

1. If you have auxiliary trace active in your CICS region, check for any
exception trace entries.

2. Look for trace point PI 1305. This trace point describes the nature of the
MIME header error, the location of the error in the header, and up to 80 bytes
of text before and after the error so that you can understand the context of
where the error occurred.

For example, the following excerpt of trace indicates that the MIME content-type
start parameter was invalid because it was not enclosed in quotes, but included
characters that are not valid outside a quoted string.

PI 1305 PIMM *EXC* - MIME_PARSE_ERROR -

 TASK-01151 KE_NUM-0214 TCB-QR /009C7B68 RET-9C42790A TIME-10:33:41.3667303015 INTERVAL-00.0000053281 =000599=
 1-0000 C5A79785 83A38584 40978199 819485A3 859940A5 8193A485 40A39692 85954096 *Expected parameter value token o*
 0020 994098A4 96A38584 40A2A399 899587 *r quoted string *
 2-0000 D4C9D4C5 40A2A895 A381A740 85999996 994081A3 404EF0F0 F0F0F1F1 F2408995 *MIME syntax error at +0000112 in*
 0020 40C39695 A38595A3 60A3A897 85408885 81848599 * Content-type header *
 3-0000 5F626F75 6E646172 793B2074 7970653D 22617070 6C696361 74696F6E 2F786F70 *_boundary; type="application/xop*
 0020 2B786D6C 223B2073 74617274 2D696E66 6F3D2261 70706C69 63617469 6F6E2F73 *+xml"; start-info="application/s*
 0040 6F61702B 786D6C22 3B207374 6172743D *oap+xml"; start= *
 4-0000 3C736F61 70736C75 6E674074 6573742E 68757273 6C65792E 69626D2E 636F6D3E *<soapslung@test.hursley.ibm.com>*
 0020 3B206368 61727365 743D7574 662D38 *; charset=utf-8 *

v The pipeline processing fails to parse an inbound MTOM message and the Web
service requester receives a SOAP fault message. This combination indicates
that a problem has occurred with the XOP document in the MTOM message. In
direct mode, the application handler generates the SOAP fault. If the pipeline is
running in compatibility mode, the MTOM handler parses the message when
constructing the SOAP message. In this case, CICS issues a DFHPI prefixed
error message and a SOAP fault.

1. The DFHPI prefixed error message indicates what was wrong with the XOP
document. For example, it might be an invalid MIME header or a missing
binary attachment.

2. To find the exact cause of the problem, check for any exception trace points.
In particular, look for trace points beginning with PI 13xx. They describes the
exception that occurred in more detail.

You can also run a PI level 2 trace to establish the sequence of events leading
up to the error, but running level 2 trace can have a significant performance
impact and is not recommended on production regions.

252 Web Services Guide

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

Diagnosing data conversion errors
Data conversion errors can occur at run time when converting a SOAP message
into a CICS COMMAREA or container and from a COMMAREA or container into a
SOAP message.

Symptoms include the generation of SOAP fault messages and CICS messages
indicating that a failure has occurred.

If you have a data conversion problem, you perform the following steps:

1. Ensure that the WEBSERVICE resource is up-to-date. Regenerate the Web
service binding file for the Web service and redeploy it to CICS.

2. Ensure that the remote Web service has been generated using the same
version of the Web service document (WSDL) as used or generated by CICS.

3. If you are sure that the WEBSERVICE resource is using a current Web service
binding file, perform the following steps:

a. Enable runtime validation for the WEBSERVICE resource using the
command CEMT SET WEBSERVICE(name) VALIDATION where name is the
WEBSERVICE resource name.

b. Check for the CICS messages DFHPI1001 or DFHPI1002 in the message
log. DFHPI1001 describes the precise nature of the data conversion
problem, and will help you to identify the source of the conversion error.
DFHPI1002 indicates that no problems were found.

c. When you no longer need validation for the Web service, use the following
command to turn validation off: CEMT SET WEBSERVICE(name) NOVALIDATION.

4. If you still have not determined the reason for the conversion error, take a CICS
trace of the failing Web service. Look for the following PI domain exception
trace entries:
PI 0F39 - PICC *EXC* - CONVERSION_ERROR
PI 0F08 - PIII *EXC* - CONVERSION_ERROR

A PICC conversion error indicates that a problem occurred when transforming a
SOAP message received by CICS into a COMMAREA or container. A PIII
conversion error indicates that a problem occurred when generating a SOAP
message from a COMMAREA or container supplied by the application program.
In both cases, the trace point identifies the name of the field associated with the
conversion error and might also identify the value that is causing the problem. If
either of these trace points appear, it will be followed by a conversion error. For
a possible interpretation of these conversion errors, see “Conversion errors in
trace points” on page 254.

Why data conversion errors occur
CICS validates SOAP messages only to the extent that it is necessary to confirm
that they contain well-formed XML and to transform them. So a SOAP message
might be successfully validated using the WSDL, but then fail in the runtime
environment and vice versa.

The WEBSERVICE resource encapsulates the mapping instructions to enable CICS
to perform data conversion at run time. A conversion error occurs when the input
does not match the expected data, as described in the WEBSERVICE resource.

This mismatch can occur for any of the following reasons:

Chapter 13. Diagnosing problems 253

|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|

v A SOAP message that is received by CICS is not well-formed and valid when
checked against the Web service description (WSDL) associated with the
WEBSERVICE resource.

v A SOAP message that is received by CICS is well-formed and valid but contains
values that are out of range for the WEBSERVICE resource.

v The contents of a COMMAREA or container are not consistent with the
WEBSERVICE resource and the language structure from which the Web service
was generated.

For example, the WSDL document might specify range restrictions on a field, such
as an unsignedInt that can have a value only between 10 and 20. If a SOAP
message contains a value of 25, validating the SOAP message will cause it to be
rejected as invalid. The value 25 is accepted as a valid value for an integer and is
passed to the application.

As a second example, the WSDL document might specify a string without specifying
a maximum length. DFHWS2LS assumes a maximum length of 255 characters by
default when generating the Web service binding file. If the SOAP message
contains 300 characters, then, although the check against the WSDL will validate
the message because no maximum length is set, an error is reported when
attempting to transform the message because the value does not fit the 255
character buffer allocated by CICS.

Code page issues

CICS uses the value of the LOCALCCSID system initialization parameter to encode
the application program data. However, the Web service binding file is encoded in
US EBCDIC (Cp037). This encoding can lead to problems converting data when the
code page used by the application program encodes characters differently from the
US EBCDIC code page. To avoid this problem, you can use the CCSID parameter in
the Web services assistant batch jobs to specify a different code page to encode
data between the application program and the Web services binding file. The value
of this parameter overrides the LOCALCCSID system initialization parameter for that
particular WEBSERVICE resource. The value of CCSID must be an EBCDIC CCSID.

Conversion errors in trace points
When you run tracing for a failing Web service and find the PI domain exception
trace points PI 0F39 or PI 0F08, CICS provides a conversion error. Possible
interpretations for these conversion errors are provided to help you diagnose the
cause of the conversion error and, where appropriate, next steps are also given.

The following conversion errors refer to COMMAREAs, but these errors can equally
apply to containers.

INPUT_TOO_LONG
This conversion error occurs in these cases:

v A SOAP element that is declared as numeric contains more than 31
digits

v A numeric field in the COMMAREA contains a value that is more than 31
digits in length.

OUTPUT_OVERFLOW
This conversion error occurs in these cases:

v A SOAP element contains a value that is too long to fit in the associated
field of the COMMAREA

254 Web Services Guide

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

v A SOAP element contains a numeric value that is outside the permitted
range for the associated field in the COMMAREA.

Consider changing the Web service description (WSDL) to explicitly supply
a maxLength facet for this field. If a maxLength is specified in the WSDL,
CICS ensures that this much space is set aside in the COMMAREA for the
field. If a maxLength facet is not specified, CICS uses a default of 255
characters. The default might be an inappropriate value for the field.

 You can also add a whitespace facet for character-based fields and set it to
“collapse”. This setting ensures that white space is removed from the field.
By default, white space is preserved.

NEGATIVE_UNSIGNED
This conversion error occurs in these cases:

v A negative number has been found in a SOAP element that is declared
as unsigned.

v A negative number has been found in a COMMAREA field that is
declared as unsigned.

NO_FRACTION_DIGITS
This conversion error occurs when a SOAP element contains a number that
has a decimal point but is not followed by any valid fractional digits.

FRACTION_TOO_LONG
This conversion error occurs when a SOAP element contains a number with
more nonzero fraction digits than the WSDL allows.

INVALID_CHARACTER
This conversion error occurs in these cases:

v A SOAP element that is declared as a Boolean contains a value other
than 0, 1, true, or false.

v A SOAP element that is declared as hexBinary contains a value that is
not in the range 0-9, a-f, A-F.

v A SOAP element that is declared as numeric contains a nonnumeric
character

v A SOAP message is not well-formed.

ODD_HEX_DIGITS
This conversion error occurs when a SOAP element that is declared as
hexBinary contains an odd number of hexadecimal characters.

INVALID_PACKED_DEC
This conversion error occurs when a packed decimal field in the
COMMAREA contains an illegal value that cannot be converted to XML.

INVALID_ZONED_DEC
This conversion error occurs when a zoned decimal field in the
COMMAREA contains an illegal value that cannot be converted to XML.

INCOMPLETE_DBCS
This conversion error occurs when a DBCS sequence in the COMMAREA
is missing a shift in (SI) character.

SOAP fault messages for conversion errors
If a conversion error occurs at run time and CICS is acting as a Web service
provider, a SOAP fault message is issued to the service requester. This SOAP fault
message includes the message that CICS issues.

Chapter 13. Diagnosing problems 255

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

The service requester can receive one of the following SOAP fault messages:
v Cannot convert SOAP message

This fault message implies that either the SOAP message is not well-formed and
valid, or its values are out of range.

v Outbound data cannot be converted

This fault message implies that the contents of a COMMAREA or container are
not consistent.

v Operation not part of web service

This fault message is a special variation of when CICS receives an invalid SOAP
message.

If CICS is the Web service requester, the INVOKE WEBSERVICE command returns a
RESP code of INVREQ and a RESP2 value of 14.

256 Web Services Guide

|
|

|
|
|

|
|
|

|
|

|
|

Chapter 14. The CICS catalog manager example application

The CICS catalog example application is a working COBOL application that is
designed to illustrate best practice when connecting CICS applications to external
clients and servers.

The example is constructed around a simple sales catalog and order processing
application, in which the end user can perform these functions:

v List the items in a catalog.

v Inquire on individual items in the catalog.

v Order items from the catalog.

The catalog is implemented as a VSAM file.

The base application has a 3270 user interface, but the modular structure, with
well-defined interfaces between the components, makes it possible to add further
components. In particular, the application comes with Web service support, which is
designed to illustrate how you can extend an existing application into the Web
services environment.

The base application
The base application, with its 3270 user interface, provides functions with which you
can list the contents of a stored catalog, select an item from the list, and enter a
quantity to order. The application has a modular design which makes it simple to
extend the application to support newer technology, such as Web services.

Figure 27 on page 258 shows the structure of the base application.

© Copyright IBM Corp. 2005, 2011 257

The components of the base application are:

1. A BMS presentation manager (DFH0XGUI) that supports a 3270 terminal or
emulator, and that interacts with the main catalog manager program.

2. A catalog manager program (DFH0XCMN) that is the core of the example
application, and that interacts with several back-end components.

3. The back-end components are:

v A data handler program that provides the interface between the catalog
manager program and the data store. The base application provides two
versions of this program. They are the VSAM data handler program
(DFH0XVDS), which stores data in a VSAM data set; and a dummy data
handler (DFH0XSDS), which does not store data, but simply returns valid
responses to its caller. Configuration options let you choose between the two
programs.

v A dispatch manager program that provides an interface for dispatching an
order to a customer. Again, configuration options let you choose between the
two versions of this program: DFHX0WOD is a Web service requester that

Dummy
stock manager
(DFH0XSSM)

Dispatch
manager

(DFH0XWOD)

Dummy
dispatch manager

(DFH0XSOD)

Dummy
data handler
(DFH0XSDS)

VSAM
data handler
(DFH0XVDS)

Catalog manager
(DFH0XCMN)

BMS presentation
manager

(DFH0XGUI)

Datastore Type
= VSAM

Datastore Type
= STUB

Outbound WebService
= NO

Outbound WebService
= YES

Catalog
data

(EXMPCAT)

VSAM

Order dispatch
endpoint

(DFH0XODE)

Order dispatch
endpoint

ExampleApp

DispatchOrder.ear

CICS1

CICS2 WebSphere Application Server

Pipeline
(EXPIPE02)

3270 emulation

Figure 27. Structure of the base application

258 Web Services Guide

invokes a remote order dispatch end point, and DFHX0SOD is a dummy
program that simply returns valid responses to its caller.

There are two equivalent order dispatch endpoints: DFH0XODE is a CICS
service provider program; ExampleAppDispatchOrder.ear is an enterprise
archive that can be deployed in WebSphere Application Server or similar
environments.

v A dummy stock manager program (DFH0XSSM) that returns valid responses
to its caller, but takes no other action.

BMS presentation manager
The presentation manager is responsible for all interactions with the end user via
3270 BMS panels. No business decisions are made in this program.

The BMS presentation manager can be used in two ways:

v As part of the base application.

v As a CICS Web service client that communicates with the base application using
SOAP messages.

Data handler
The data handler provides the interface between the catalog manager and the data
store.

The example application provides two versions of the data handler:

v The first version uses a VSAM file as the data store.

v The second version is a dummy program that always returns the same data on
an inquire and does not store the results of any update requests.

Dispatch manager
The dispatch manager is responsible for dispatching the order to the customer once
the order has been confirmed.

The example application provides two versions of the dispatch manager program:

v The first version is a dummy program that returns a correct response to the
caller, but takes no other action.

v The second version is a Web service requester program that makes a request to
the endpoint address defined in the configuration file.

Order dispatch endpoint
The order dispatch program is a Web service provider program that is responsible
for dispatching the item to the customer.

In the example application, the order dispatcher is a dummy program that returns a
correct response to the caller, but takes no other action. It makes it possible for all
configurations of the example Web services to be operable.

Stock manager
The stock manager is responsible for managing the replenishment of the stock.

In the example program, the stock manager is a dummy program that returns a
correct response to the caller, but takes no other action.

Chapter 14. The CICS catalog manager example application 259

Application configuration
The example application includes a program that lets you configure the base
application.

Running the example application with the BMS interface
The base application can be invoked using its BMS interface.

1. Enter transaction EGUI from a CICS terminal. The example application displays
the following menu:

CICS EXAMPLE CATALOG APPLICATION - Main Menu

Select an action, then press ENTER

Action 1. List Items
 2. Order Item Number ____
 3. Exit

F3=EXIT F12=CANCEL

The options on the menu enable you to list the items in the catalog, order an
item, or exit the application.

2. Type 1 and press ENTER to select the LIST ITEMS option. The application
displays a list of items in the catalog.

CICS EXAMPLE CATALOG APPLICATION - Inquire Catalog

Select a single item to order with /, then press ENTER

Item Description Cost Order

0010 Ball Pens Black 24pk 2.90 /
0020 Ball Pens Blue 24pk 2.90 _
0030 Ball Pens Red 24pk 2.90 _
0040 Ball Pens Green 24pk 2.90 _
0050 Pencil with eraser 12pk 1.78 _
0060 Highlighters Assorted 5pk 3.89 _
0070 Laser Paper 28-lb 108 Bright 500/ream 7.44 _
0080 Laser Paper 28-lb 108 Bright 2500/case 33.54 _
0090 Blue Laser Paper 20lb 500/ream 5.35 _
0100 Green Laser Paper 20lb 500/ream 5.35 _
0110 IBM Network Printer 24 - Toner cart 169.56 _
0120 Standard Diary: Week to view 8 1/4x5 3/4 25.99 _
0130 Wall Planner: Eraseable 36x24 18.85 _
0140 70 Sheet Hard Back wire bound notepad 5.89 _
0150 Sticky Notes 3x3 Assorted Colors 5pk 5.35 _

F3=EXIT F7=BACK F8=FORWARD F12=CANCEL

3. Type / in the ORDER column, and press ENTER to order an item. The
application displays details of the item to be ordered.

260 Web Services Guide

CICS EXAMPLE CATALOG APPLICATION - Details of your order

Enter order details, then press ENTER

Item Description Cost Stock On Order

0010 Ball Pens Black 24pk 2.90 0011 000

 Order Quantity: 5
 User Name: CHRISB
 Charge Dept: CICSDEV1

F3=EXIT F12=CANCEL

4. If there is sufficient stock to fulfil the order, enter the following information.

a. Complete the ORDER QUANTITY field. Specify the number of items you want to
order.

b. Complete the USERID field. Enter a 1 to 8-character string. The base
application does not check the value that is entered here.

c. Complete the CHARGE DEPT field. Enter a 1 to 8-character string. The base
application does not check the value that is entered here.

5. Press ENTER to submit the order and return to the main menu.

6. Select the EXIT option to end the application.

Installing and setting up the base application
Before you can run the base application you must define and populate two VSAM
data sets, and install two transaction definitions.

Creating and defining the VSAM data sets
The example application uses two KSDS VSAM data sets to be defined and
populated. One data set contains configuration information for the example
application. The other contains the sales catalog.

1. Locate the JCL to create the VSAM data sets. During CICS installation, the JCL
is placed in the hlq.SDFHINST library:
v Member DFH$ECNF contains the JCL to generate the configuration data set.
v Member DFH$ECAT contains the JCL to generate the catalog data set.

2. Modify the JCL and access method services commands.

a. Supply a valid JOB card.

b. Supply a suitable high-level qualifier for the data set names in the access
method services commands. As supplied, the JCL uses a high-level qualifier
of HLQ.

The following command defines the catalog file:
DEFINE CLUSTER (NAME(hlq.EXMPLAPP.catname)-
 TRK(1 1) -
 KEYS(4 0) -
 RECORDSIZE(80,80) -

Chapter 14. The CICS catalog manager example application 261

SHAREOPTIONS(2 3) -
 INDEXED -
) -
 DATA (NAME(hlq.EXMPLAPP.catname.DATA) -
) -
 INDEX (NAME(hlq.EXMPLAPP.catname.INDEX) -
)

where

v hlq is a high-level qualifier of your choice

v catname is a name of your choice. The name used in the example
application as supplied is EXMPCAT.

.

The following command defines the configuration file:
DEFINE CLUSTER (NAME(hlq.EXMPLAPP.EXMPCONF)-
 TRK(1 1) -
 KEYS(9 0) -
 RECORDSIZE(350,350) -
 SHAREOPTIONS(2 3) -
 INDEXED -
) -
 DATA (NAME(hlq.EXMPLAPP.EXMPCONF.DATA) -
) -
 INDEX (NAME(hlq.EXMPLAPP.EXMPCONF.INDEX) -
)

where hlq is a high-level qualifier of your choice.

3. Run both jobs to create and populate the data sets.

4. Use the CEDA transaction to create a FILE definition for the catalog file.

a. Enter the following: CEDA DEF FILE(EXMPCAT)G(EXAMPLE). Alternatively, you
can copy the FILE definition from CICS supplied group DFH$EXBS.

b. Enter the following additional attributes:

 DSNAME(hlq.EXMPLAPP.EXMPCAT)

 ADD(YES)

 BROWSE(YES)

 DELETE(YES)

 READ(YES)

 UPDATE(YES)

c. Use the default values for all other attributes.

5. Use the CEDA transaction to create a FILE definition for the configuration file.

a. Enter the following: CEDA DEF FILE(EXMPCONF) G(EXAMPLE). Alternatively, you
can copy the FILE definition from CICS supplied group DFH$EXBS.

b. Enter the following additional attributes:

 DSNAME(hlq.EXMPLAPP.EXMPCONF)

 ADD(YES)

 BROWSE(YES)

 DELETE(YES)

 READ(YES)

 UPDATE(YES)

c. Use the default values for all other attributes.

262 Web Services Guide

Defining the 3270 interface
The example application is supplied with a 3270 user interface to run the
application and to customize it. The user interface consists of two transactions,
EGUI and ECFG. A third transaction, ECLI, is used for the CICS Web service client.

1. Use the CEDA transaction to create TRANSACTION definitions for the
transactions.

a. To define transaction EGUI, enter the following: CEDA DEF TRANS(EGUI)
G(EXAMPLE) PROG(DFH0XGUI).

b. To define transaction ECFG, enter the following: CEDA DEF TRANS(ECFG)
G(EXAMPLE) PROG(DFH0XCFG)

c. Optional: To define transaction ECLI, enter the following: CEDA DEF
TRANS(ECLI) G(EXAMPLE) PROG(DFH0XCUI)

Use the default values for all other attributes.

Note: The correct operation of the example application does not depend on the
names of the transactions, so you can use different names if you wish.

Alternatively, you can copy the TRANSACTION definitions for EGUI and ECFG
from CICS supplied group DFH$EXBS, and the definition for ECLI from group
DFH$EXWS.

2. Optional: If you do not wish to use program autoinstall, use the CEDA
transaction to create PROGRAM definitions for the base application programs
and MAPSET definitions for the BMS maps.

a. Define MAPSET resource definitions for the BMS maps in members
DFH0XS1, DFH0XS2, and DFH0XS3. For details of what is in each
member, see “Components of the base application” on page 285.

b. Define PROGRAM resource definitions, using the command CEDA DEF
PROG(program) G(EXAMPLE). You should create definitions for the following
COBOL programs:

 Table 9. SDFHSAMP members containing COBOL source for the base application.

Member name Description

DFH0XCFG Program invoked by transaction ECFG to read and update the
VSAM configuration file

DFH0XCMN Controller program for the catalog application. All requests pass
through it.

DFH0XGUI Program invoked by transaction EGUI to manage the sending of the
BMS maps to the terminal user and the receiving of the maps from
the terminal user. It links to program DFH0XCMN.

DFH0XODE One of two versions of the endpoint for the order dispatch Web
service. This is the version that runs in CICS. It simply sets the text
"Order in dispatch" in the return COMMAREA.

DFH0XSDS A stubbed or dummy version of the data store program that allows
the application to work when the VSAM catalog file has not been
set up. It uses data defined in the program rather than data stored
in a VSAM file.

DFH0XSOD A stubbed version of the order dispatch program. It sets the return
code in the COMMAREA to 0 and returns to its caller. It is used
when outbound Web services are not required.

DFH0XSSM A stubbed version of the stock manager (replenishment) program. It
sets the return code in the COMMAREA to 0 and returns to its
caller.

Chapter 14. The CICS catalog manager example application 263

Table 9. SDFHSAMP members containing COBOL source for the base
application. (continued)

Member name Description

DFH0XVDS The VSAM version of the data store program. It accesses the
VSAM file to perform reads and updates of the catalog.

DFH0XWOD The Web service version of the order dispatch program. It issues
an EXEC CICS INVOKE WEBSERVICE to make an outbound Web
service call to an order dispatcher

Use the default values for all other attributes.

c. Optional: To define COBOL program DFH0XCUI, enter the following: CEDA
DEF PROG(DFH0XCUI) G(EXAMPLE). Use the default values for all other
attributes. This program is required if you want to use transaction ECLI that
starts the Web service client.

Completing the installation
To complete the installation, install the RDO group that contains your resource
definitions.

Enter the following command at a CICS terminal: CEDA I G(EXAMPLE).

The application is now ready for use.

Configuring the example application
The base application includes a transaction (ECFG) that you can use to configure
the example application.

The configuration transaction uses mixed case information. You must use a terminal
that can handle mixed case information correctly.

The transaction lets you specify a number of aspects of the example application.
These include:

v The overall configuration of the application, such as the use of Web services

v The network addresses used by the Web services components of the application

v The names of resources, such as the file used for the data store

v The names of programs used for each component of the application

The configuration transaction lets you replace CICS-supplied components of the
example application with your own, without restarting the application.

1. Enter the transaction ECFG to start the configuration application. CICS displays
the following screen:

264 Web Services Guide

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> NO YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> myserver:99999
 Outbound WebService URI ==> http://myserver:80/exampleApp/dispatchOrder
 ==>
 ==>
 ==>
 ==>
 ==>

PF 3 END 12 CNCL

2. Complete the fields.

Datastore Type
Specify STUB if you want to use the Data Store Stub program.

 Specify VSAM if you want to use the VSAM data store program.

Outbound WebService
Specify YES if you want to use a remote Web service for your Order
Dispatch function, that is, if you want the catalog manager program to link to
the Order Dispatch Web service program.

 Specify NO if you want to use a stub program for your Order Dispatch
function, that is, if you want the catalog manager program to link to the
Order Dispatch Stub program.

Catalog Manager
Specify the name of the Catalog Manager program. The program supplied
with the example application is DFH0XCMN.

Data Store Stub
If you specified STUB in the Datastore Type field, specify the name of the
Data Store Stub program. The program supplied with the example
application is DFH0XSDS.

Data Store VSAM
If you specified VSAM in the Datastore Type field, specify the name of the
VSAM data store program. The program supplied with the example
application is DFH0XVDS.

Order Dispatch Stub
If you specified NO in the Outbound WebService field, specify the name of
the Order Dispatch Stub program. The program supplied with the example
application is DFH0XSOD.

Order Dispatch WebService
If you specified YES in the Outbound WebService field, specify the name
of the program that functions as a service requester. The program supplied
with the example application is DFH0XWOD.

Chapter 14. The CICS catalog manager example application 265

Stock Manager
Specify the name of the Stock Manager program. The program supplied
with the example application is DFH0XSSM.

VSAM File Name
If you specified VSAM in the Datastore Type field, specify the name of the
CICS FILE definition. The name used in the example application as supplied
is EXMPCAT.

Server Address and Port
If you are using the CICS Web service client, specify the IP address and
port of the system on which the example application is deployed as a Web
service.

Outbound WebService URI
If you specified YES in the Outbound WebService field, specify the
location of the Web service that implements the dispatch order function. If
you are using the supplied CICS endpoint set this to: http://
myserver:myport/exampleApp/dispatchOrder where myserver and myport
are your CICS server address and port respectively.

Web service support for the example application
The Web service support extends the example application, providing a Web client
front end and two versions of a Web service endpoint for the order dispatcher
component.

The Web client front end and one version of the Web service endpoint are supplied
as enterprise archives (EARs) that will run in the following environments:

 Environment EAR files

WebSphere Application Server Version 5.1 ExampleAppClient.ear
ExampleAppWrapperClient.ear
ExampleAppDispatchOrder.ear

WebSphere Application Server Version 6.1 ExampleAppClientV6.ear
ExampleAppWrapperClient.ear
DispatchOrderV6.ear

WebSphere Developer for System z Version 7 uses the Web service endpoint for
WebSphere Application Server Version 6.1.

The second version of the Web service endpoint is supplied as a CICS service
provider application program (DFH0XODE).

Figure 28 on page 267 shows one configuration of the example application.

266 Web Services Guide

In this configuration, the application is accessed through two different clients:

v A Web browser client connected to WebSphere Application Server, in which
ExampleAppClient.ear is deployed.

v CICS Web service client DFH0XECC. This client uses the same BMS
presentation logic as the base application but uses module DFH0XCUI instead of
DFH0XGUI.

Figure 29 on page 268 shows another way to configure the example application as
a Web service.

WebSphere Application Server

CICS2

Dummy
stock manager
(DFH0XSSM)

Dispatch
manager

(DFH0XWOD)

VSAM
data handler
(DFH0XVDS)

Catalog manager
(DFH0XCMN)

Catalog
data

(EXMPCAT)

VSAM

Order dispatch
endpoint

(DFH0XODE)

CICS1

BMS presentation
manager

(DFH0XCUI)

CICS Web Service
client

(DFH0XECC)

Pipeline
(EXPIPE02)

Pipeline
(EXPIPE02)

ExampleApp
Client.ear

Web browser

3270 emulation

Pipeline
(EXPIPE01)

CICS3

Figure 28. The example application configured as a Web service provider

Chapter 14. The CICS catalog manager example application 267

In this configuration, the Web browser client is connected to WebSphere Application
Server, in which ExampleAppWrapperClient.ear is deployed. In CICS, three wrapper
applications (for the inquire catalog, inquire single, and place order functions) are
deployed as service provider applications. They in turn link to the base application.

Configuring code page support
As supplied, the example application uses two coded character sets. You must
configure your system to enable data conversion between the two character sets.

The coded character sets used in the example application are:

CCSID Description

037 EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal, Brazil,
Australia, New Zealand)

WebSphere Application Server

CICS2

Dummy
stock manager
(DFH0XSSM)

Dispatch
manager

(DFH0XWOD)

VSAM
data handler
(DFH0XVDS)

Catalog manager
(DFH0XCMN)

Catalog
data

(EXMPCAT)

VSAM

Order dispatch
endpoint

(DFH0XODE)

CICS1

Pipeline
(EXPIPE02)

Web browser

Wrapper for
inquire catalog
(DFH0XICW)

Wrapper for
inquire single
(DFH0XISW)

Wrapper for
place order

(DFH0XPOW)

Pipeline
(EXPIPE01)

ExampleAppWrapperClient.ear

Figure 29. Alternate Web service provider configuration

268 Web Services Guide

1208 UTF-8 Level 3

Add the following statements to the conversion image for your z/OS system:

CONVERSION 037,1208;
CONVERSION 1208,037;

For more information, see the CICS Transaction Server for z/OS Installation Guide.

Defining the Web service client and wrapper programs
If you are not using program autoinstall, you need to define resource definitions for
the Web service client and wrapper programs.

1. Define PROGRAM resource definitions for the wrapper programs, using the
command CEDA DEF PROG(program) G(EXAMPLE) You should create definitions for
the following COBOL programs:

 Table 10. SDFHSAMP members containing COBOL source code for the wrapper modules

Member name Description

DFH0XICW Wrapper program for the inquireCatalog service.

DFH0XISW Wrapper program for the inquireSingle service.

DFH0XPOW Wrapper program for the purchaseOrder service.

2. Define a PROGRAM resource definition for the Web services client program
DFH0XECC, using the command CEDA DEF PROG(DFH0XECC) G(EXAMPLE). This is
a COBOL program. You can use default values for all of the other attributes.

Installing Web service support
Before you can run the Web service support for the example application, you must
create two z/OS UNIX directories, and create and install a number of CICS
resource definitions.

Creating z/OS UNIX directories
Web service support for the example application requires a shelf directory and a
pickup directory in z/OS UNIX.

The shelf directory is used to store the Web service binding files that are associated
with WEBSERVICE resources. Each WEBSERVICE resource is, in turn, associated
with a PIPELINE. The shelf directory is managed by the PIPELINE resource and
you should not modify its contents directly. Several PIPELINES can use the same
shelf directory, as CICS ensures a unique directory structure beneath the shelf
directory for each PIPELINE.

The pickup directory is the directory that contains the Web service binding files
associated with a PIPELINE. When a PIPELINE is installed, or in response to a
PERFORM PIPELINE SCAN command, information in the binding files is used to
dynamically create the WEBSERVICE and URIMAP definitions associated with the
PIPELINE.

The example application uses /var/cicsts for the shelf directory.

A pipeline will read in an XML pipeline configuration file at install time. It is therefore
also useful to define a directory in which to store these.

Chapter 14. The CICS catalog manager example application 269

Creating the PIPELINE definition
The complete definition of a pipeline consists of a PIPELINE resource and a
pipeline configuration file. The file contains the details of the message handlers that
will act on Web service requests and responses as they pass through the pipeline.

The example application uses the CICS-supplied SOAP 1.1 handler to deal with the
SOAP envelopes of inbound and outbound requests. CICS provides sample
pipeline configuration files which you can use in your service provider and service
requester.

More than one WEBSERVICE can share a single PIPELINE, therefore you need
define only one pipeline for the inbound requests of the example application. You
must, however, define a second PIPELINE for the outbound requests as a single
PIPELINE cannot be configured to be both a provider and requester pipeline at the
same time.

1. Use the CEDA transaction to create a PIPELINE definition for the service
provider.

a. Enter the following: CEDA DEF PIPE(EXPIPE01) G(EXAMPLE). Alternatively, you
can copy the PIPELINE definition from CICS supplied group DFH$EXWS.

b. Enter the following additional attributes:

STATUS(Enabled)
CONFIGFILE(/usr/lpp/cicsts
 /samples/pipelines/basicsoap11provider.xml)
SHELF(var/cicsts)
WSDIR(/usr/lpp/cicsts/samples/webservices/wsbind/provider/)

Note that the z/OS UNIX entries are case sensitive and assume a default
CICS z/OS UNIX install root of /usr/lpp/cicsts.

2. Use the CEDA transaction to create a PIPELINE definition for the service
requester.

a. Enter the following: CEDA DEF PIPE(EXPIPE02) G(EXAMPLE). Alternatively, you
can copy the PIPELINE definition from CICS supplied group DFH$EXWS.

b. Enter the following additional attributes:

STATUS(Enabled)
CONFIGFILE(/usr/lpp/cicsts
 /samples/pipelines/basicsoap11requester.xml)
SHELF(var/cicsts)
WSDIR(/usr/lpp/cicsts/samples/webservices/wsbind/requester/)

Note that the z/OS UNIX entries are case sensitive and assume a default
CICS z/OS UNIX install root of /usr/lpp/cicsts.

Creating a TCPIPSERVICE
As the client connects to your Web services over an HTTP transport you must
define a TCPIPSERVICE to receive the inbound HTTP traffic.

Use the CEDA transaction to create a TCPIPSERVICE definition to handle inbound
HTTP requests.

1. Enter the following: CEDA DEF TCPIPSERVICE(EXMPPORT) G(EXAMPLE).
Alternatively, you can copy the TCPIPSERVICE definition from CICS supplied
group DFH$EXWS.

2. Enter the following additional attributes:

 URM(DFHWBAAX)

270 Web Services Guide

PORTNUMBER(port) where port is an unused port number in your CICS
system.

 PROTOCOL(HTTP)

 TRANSACTION(CWXN)

3. Use the default values for all other attributes.

Dynamically installing the WEBSERVICE and URIMAP resources
Each function exposed as a Web service requires a WEBSERVICE resource to
map between the incoming XML of the SOAP BODY and the COMMAREA interface
of the program, and a URIMAP resource that routes incoming requests to the
correct PIPELINE and WEBSERVICE. Although you can use RDO to define and
install your WEBSERVICE and URIMAP resources, you can also have CICS create
them dynamically when you install a PIPELINE resource.

Install the PIPELINE resources. Use the following commands:

 CEDA INSTALL PIPELINE(EXPIPE01) G(EXAMPLE)

 CEDA INSTALL PIPELINE(EXPIPE02) G(EXAMPLE)

When you install each PIPELINE resource, CICS scans the directory specified in
the PIPELINE's WSDIR attribute (the pickup directory). For each Web service
binding file in the directory, that is for each file with the .wsbind suffix, CICS installs
a WEBSERVICE and a URIMAP if one does not already exist. Existing resources
are replaced if the information in the binding file is newer than the existing
resources.
When the PIPELINE is later disabled and discarded all associated WEBSERVICE
and URIMAP resources will also be discarded.
If you have already installed the PIPELINE, use the PERFORM PIPELINE SCAN
command to initiate the scan of the PIPELINE's pickup directory.
When you have installed the PIPELINEs, the following WEBSERVICEs and their
associated URIMAPs will be installed in your system:

 dispatchOrder

 dispatchOrderEndpoint

 inquireCatalog

 inquireSingle

 placeOrder

The names of the WEBSERVICEs are derived from the names of the Web service
binding files; the names of the URIMAPs are generated dynamically. You can view
the resources with a CEMT INQUIRE WEBSERVICE command:

I WEBS
STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(dispatchOrder) Pip(EXPIPE02)
 Ins Dat(20041203)
 Webs(dispatchOrderEndpoint) Pip(EXPIPE01)
 Ins Uri(£539140) Pro(DFH0XODE) Com Dat(20041203)
 Webs(inquireCatalog) Pip(EXPIPE01)
 Ins Uri(£539141) Pro(DFH0XCMN) Com Dat(20041203)
 Webs(inquireSingle) Pip(EXPIPE01)
 Ins Uri(£539142) Pro(DFH0XCMN) Com Dat(20041203)
 Webs(placeOrder) Pip(EXPIPE01)
 Ins Uri(£539150) Pro(DFH0XCMN) Com Dat(20041203)

The display shows the names of the PIPELINE, the URIMAP, and the target
program that is associated with each WEBSERVICE. Note that in this example,
there is no URIMAP or target program displayed for WEBSERVICE(dispatchOrder)

Chapter 14. The CICS catalog manager example application 271

because the WEBSERVICE is for an outbound request.
WEBSERVICE(dispatchOrderEndpoint) represents the local CICS implementation of
the dispatch order service.

Creating the WEBSERVICE resources with RDO
As an alternative to using the PIPELINE scanning mechanism to install
WEBSERVICE resources, you can create and install them using Resource
Definition Online (RDO).

Important: If you use RDO to define the WEBSERVICE and URIMAP resources,
you must ensure that their Web service binding files are not in the
pickup directory of the PIPELINE. This ensures that the WEBSERVICE
and URIMAP resources are not dynamically installed during a pipeline
scan of the pickup directory. Alternatively, you can ensure that no value
is specified for WSDIR in the PIPELINE. However, if you do not specify
a value for WSDIR, no pipeline scans of the pickup directory occur.
Therefore, all WEBSERVICE and URIMAP resources have to be
created and installed using RDO.

1. Use the CEDA transaction to create a WEBSERVICE definition for the inquire
catalog function of the example application.

a. Enter the following: CEDA DEF WEBSERVICE(EXINQCWS) G(EXAMPLE).

b. Enter the following additional attributes:

PIPELINE(EXPIPE01)
WSBIND(/usr/lpp/cicsts/samples
 /webservices/wsbind/provider/inquireCatalog.wsbind)

2. Repeat the preceding step for each of the following functions of the example
application.

Function

WEBSERVICE
name

PIPELINE
attribute WSBIND attribute

INQUIRE
SINGLE ITEM

EXINQSWS EXPIPE01 /usr/lpp/cicsts/samples
/webservices/wsbind
/provider/inquireSingle.wsbind

PLACE ORDER EXORDRWS EXPIPE01 /usr/lpp/cicsts/samples
/webservices/wsbind
/provider/placeOrder.wsbind

DISPATCH
STOCK

EXODRQWS EXPIPE02 /usr/lpp/cicsts/samples
/webservices/wsbind
/requester/dispatchOrder.wsbind

DISPATCH
STOCK
endpoint
(optional)

EXODEPWS EXPIPE01 /usr/lpp/cicsts/samples
/webservices/wsbind
/provider/dispatchOrderEndpoint.wsbind

Creating the URIMAP resources with RDO
As an alternative to using the PIPELINE scanning mechanism to install URIMAP
resources, you can create and install them using Resource Definition Online (RDO).

Important: If you use RDO to define the WEBSERVICE and URIMAP resources,
you must ensure that their Web service binding files are not in the
pickup directory of the PIPELINE. This ensures that the WEBSERVICE
and URIMAP resources are not dynamically installed during a pipeline
scan of the pickup directory. Alternatively, you can ensure that no value
is specified for WSDIR in the PIPELINE. However, if you do not specify

272 Web Services Guide

a value for WSDIR, no pipeline scans of the pickup directory occur.
Therefore, all WEBSERVICE and URIMAP resources have to be
created and installed using RDO.

1. Use the CEDA transaction to create a URIMAP definition for the inquire catalog
function of the example application.

a. Enter the following: CEDA DEF URIMAP(INQCURI) G(EXAMPLE).

b. Enter the following additional attributes:

USAGE(PIPELINE)
HOST(*)
PATH(/exampleApp/inquireCatalog)
TCPIPSERVICE(SOAPPORT)
PIPELINE(EXPIPE01)
WEBSERVICE(EXINQCWS)

2. Repeat the preceding step for each of the remaining functions of the example
application. Use the following names for your URIMAPs:

 Function URIMAP name

INQUIRE SINGLE ITEM INQSURI

PLACE ORDER ORDRURI

DISPATCH STOCK Not required

DISPATCH STOCK endpoint (optional) ODEPURI

a. Specify the following distinct attributes for each URIMAP:

 Function URIMAP name PATH WEBSERVICE

INQUIRE
SINGLE ITEM

INQSURI /exampleApp/inquireSingle EXINQSWS

PLACE ORDER ORDRURI /exampleApp/placeOrder EXORDRWS

DISPATCH
STOCK endpoint
(optional)

ODEPURI /exampleApp/dispatchOrder EXODEPWS

b. Enter the following additional attributes, which are the same for all the
URIMAPs:

 USAGE(PIPELINE)

 HOST(*)

 TCPIPSERVICE(SOAPPORT)

 PIPELINE(EXPIPE01)

Completing the installation
To complete the installation, install the RDO group that contains your resource
definitions.

Enter the following command at a CICS terminal: CEDA I G(EXAMPLE).

The application is now ready for use.

Chapter 14. The CICS catalog manager example application 273

Configuring the Web client
Before you can use the Web client, you must deploy the enterprise archive (EAR)
for the client into one of the supported environments and configure it to call the
appropriate end points in your CICS system.

The supported environments are:

v WebSphere Application Server Version 5 Release 1 or later

v WebSphere Studio Application Developer Version 5 Release 1 or later with a
WebSphere unit test environment

v WebSphere Studio Enterprise Developer Version 5 Release 1 later with a
WebSphere unit test environment.

The supported environments for the ExampleAppClientV6.ear client application are:

v WebSphere Application Server Version 6

v Rational Application Developer Version 6 or later with a WebSphere unit test
environment

v WebSphere Developer for zSeries® Version 6 or later with a WebSphere unit test
environment

The EAR files are located in the hlq/samples/webservices/client directory in z/OS
UNIX.

1. If you are using a Version 5 WebSphere product, to start the Web client enter
the following in your Web browser: http://myserver:9080/
ExampleAppClientWeb/, where myserver is the hostname of the server on which
the Web service client is installed. If you are using a Version 6 WebSphere
product, to start the Web client enter the following in your Web browser:
http://myserver:9080/ExampleAppClientV6Web/ The example application
displays the following page:

274 Web Services Guide

2. Click the CONFIGURE button to bring up the configuration page. The
configuration page is displayed.

3. Enter the new endpoints for the Web service. There are three endpoints to
configure:

 Inquire catalog

 Inquire item

 Place order

a. In the URLs replace the string 'myCicsServer' with the name of the system
on which your CICS is running.

b. Replace the port number '9999' with the port number configured in the
TCPIPSERVICE resource, in the example this to 30000.

4. Click the SUBMIT button.

The Web application is now ready to run.

Chapter 14. The CICS catalog manager example application 275

Note: The URL the Web services invoke is stored in an HTTP session. It is
therefore necessary to repeat this configuration step each time a browser is
first connected to the client.

Running the Web service enabled application
You can invoke the example application from a Web browser.

1. Enter the following in your Web browser: http://myserver:9080/
ExampleAppClientWeb/, where myserver is the host name of the server on which
the Web service client is installed. The example application displays the
following page:

2. Click the INQUIRE button. The example application displays the following page:

276 Web Services Guide

3. Enter an item number, and click the SUBMIT button.

Tip: The base application is primed with item numbers in the sequence 0010,
0020, ... through 0210.

The application displays the following page, which contains a list of items in the
catalog, starting with the item number that you entered.

Chapter 14. The CICS catalog manager example application 277

4. Select the item that you want to order.

a. Click the radio button in the Select column for the item you want to order.

b. Click the SUBMIT button.

The application displays the following page:

278 Web Services Guide

5. To place an order, enter the following information.

a. Complete the Quantity field. Specify the number of items you want to order.

b. Complete the User Name field. Enter a 1 to 8-character string. The base
application does not check the value that is entered here.

c. Complete the Department Name field. Enter a 1 to 8-character string. The
base application does not check the value that is entered here.

d. Click the SUBMIT button.

The application displays the following page to confirm that the order has been
placed:

Chapter 14. The CICS catalog manager example application 279

Deploying the example application
You can use the Web services assistant to deploy parts of the example application
as a Web service. Although the application as supplied will work without performing
this task, you will need to perform a similar task if you want to deploy your own
applications to extend the example application.

Extracting the program interface
In order to deploy a program with the CICS Web services assistant, you must
create a copybook that matches the program's COMMAREA or container interface.

In this example, the INQUIRE SINGLE ITEM function of the central Catalog
Manager program (DFH0XCMN) will be deployed as a Web service. The interface
to this program is a COMMAREA; the structure of the COMMAREA is defined in the
copy book DFH0XCP1:
* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-REQUEST-SPECIFIC PIC X(911).
 * Fields used in Inquire Catalog
 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-LIST-START-REF PIC 9(4).
 05 CA-LAST-ITEM-REF PIC 9(4).
 05 CA-ITEM-COUNT PIC 9(3).
 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).

280 Web Services Guide

05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA
 OCCURS 15 TIMES.
 07 CA-ITEM-REF PIC 9(4).
 07 CA-DESCRIPTION PIC X(40).
 07 CA-DEPARTMENT PIC 9(3).
 07 CA-COST PIC X(6).
 07 IN-STOCK PIC 9(4).
 07 ON-ORDER PIC 9(3).
 * Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-ITEM-REF-REQ PIC 9(4).
 05 FILLER PIC 9(4).
 05 FILLER PIC 9(3).
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4).
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3).
 07 CA-SNGL-COST PIC X(6).
 07 IN-SNGL-STOCK PIC 9(4).
 07 ON-SNGL-ORDER PIC 9(3).
 05 FILLER PIC X(840).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

The copybook defines 3 separate interfaces for the INQUIRE CATALOG, INQUIRE
SINGLE ITEM and the PLACE ORDER functions, which are overlaid on one
another in the copybook. However, the DFHLS2WS utility does not support the
REDEFINES statement. Therefore you must extract from the combined copybook
just those sections that relate to the inquire single function:
* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2) DISPLAY.
 03 CA-RESPONSE-MESSAGE PIC X(79).
 * Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE.
 05 CA-ITEM-REF-REQ PIC 9(4) DISPLAY.
 05 FILLER PIC X(4) DISPLAY.
 05 FILLER PIC X(3) DISPLAY.
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4) DISPLAY.
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3) DISPLAY.
 07 CA-SNGL-COST PIC X(6).
 07 IN-SNGL-STOCK PIC 9(4) DISPLAY.
 07 ON-SNGL-ORDER PIC 9(3) DISPLAY.
 05 FILLER PIC X(840).

The redefined element CA-REQUEST-SPECIFIC has been removed and replaced
by the section of the copybook that redefined it for the inquire single function. This
copybook is now suitable for use with the Web service assistant.

This copybook is supplied with the example application as copybook DFH0XCP4.

Running the Web services assistant program DFHLS2WS
The CICS Web services assistant consists of two batch programs which can help
you to transform existing CICS applications into Web services, and to enable CICS

Chapter 14. The CICS catalog manager example application 281

applications to use Web services provided by external providers. Program
DFHLS2WS transforms a language structure to generate a Web service binding file
and a Web service description.

1. Copy the supplied sample JCL to a suitable working file. The JCL is supplied in
samples/webservices/JCL/LS2WS.

2. Add a valid JOB card to the JCL.

3. Code the parameters for DFHLS2WS. The required parameters for the
INQUIRE SINGLE ITEM function of the example application are:
//INPUT.SYSUT1 DD *
LOGFILE=/u/exampleapp/wsbind/inquireSingle.log
PDSLIB=CICSHLQ.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
PGMNAME=DFH0XCMN
PGMINT=COMMAREA
URI=exampleApp/inquireSingle
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
*/

The parameters are as follows:

LOGFILE=/u/exampleapp/wsbind/inquireSingle.log
The file that is used to record diagnostic information from DFHLS2WS. The
file is normally used only by IBM's software support organization.

PDSLIB=CICSHLQ.SDFHSAMP
The name of the partitioned data set (PDS) where the Web service
assistant will look for copybooks that define the request and response
structures. In the example this is SDFHSAMP of the CICS installed
datasets.

REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4

These parameters define the language structure for the request and the
response to the program. In the example the request and the response
have the same structure and are defined by the same copybook.

LANG=COBOL
The target program and the data structures are written in COBOL

PGMNAME=DFH0XCMN
The name of the target program that will be invoked when a Web service
request is received.

PGMINT=COMMAREA
The target program is invoked with a COMMAREA interface.

URI=exampleApp/inquireSingle

 The unique part of the URI that will be used in the generated Web service
definition, and used to create the URIMAP resource that will map incoming
requests to the correct Web service. The value specified will result in the
service being available to external clients at:
http://mycicsserver:myport/exampleApp/inquireSingle

where mycicsserver and myport are the CICS server address and the port
onto which this WEBSERVICE has been installed.

Note: The parameter does not have a leading '/'.

282 Web Services Guide

WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
The location on z/OS UNIX to which the Web service binding file will be
written.

Note: If the file is to be used with the PIPELINE scanning mechanism it
must have the extension .wsbind.

WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
The location on z/OS UNIX to which the file containing the generated Web
service description will be written. It is good practice to use matching names
for the Web service binding file and its corresponding Web service
description.

Tip: Conventionally, files containing Web service descriptions have the
extension .wsdl.

The Web services description provides the information that a client needs to
access the Web service. It contains an XML schema definition of the
request and response, and location information for the service.

4. Run the job. A Web service description and Web service binding file will be
created in the locations specified.

5. Customize the service location in the Web service description. As generated,
the <service> element contains the following:
<service name="DFHCMNService">
<port binding="tns:DFH0XCMNHTTPSoapBinding" name="DFH0XCMNPort">
<soap:address location="http://my-server:my-port/exampleApp/inquireSingle"/>
</port>
</service>

Before the Web service description can be published to clients, you must make
the following changes:

a. Replace my-server with the CICS server location.

b. Replace my-port with the port number.

An example of the generated WSDL document
<?xml version="1.0" ?>
<definitions targetNamespace="http://www.DFH0XCMN.DFH0XCP4.com" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.DFH0XCMN.DFH0XCP4.Request.com" xmlns:resns="http://www.DFH0XCMN.DFH0XCP4.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.com">
 <types>
 <xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Request.com" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complextype abstract="false" block="#all" final="#all" mixed="false" name="ProgramInterface">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services assistant.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="ca_request_id" nillable="false">
 <xsd:simpletype>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 #Thu Nov 03 11:55:26 GMT 2005 com.ibm.cics.wsdl.properties.synchronized=false
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="6"/>
 <xsd:whitespace value="preserve"/>

Chapter 14. The CICS catalog manager example application 283

</xsd:restriction>
 </xsd:simpletype>
 </xsd:element>

.... most of the schema for the request is removed

 </xsd:sequence>
 </xsd:complextype>
 <xsd:element name="DFH0XCMNOperation" nillable="false" type="tns:ProgramInterface"/>
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Response.com" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

... schema content for the reply is removed

 </xsd:schema>
 </types>
 <message name="DFH0XCMNOperationResponse">
 <part element="resns:DFH0XCMNOperationResponse" name="ResponsePart"/>
 </message>
 <message name="DFH0XCMNOperationRequest">
 <part element="reqns:DFH0XCMNOperation" name="RequestPart"/>
 </message>
 <porttype name="DFH0XCMNPort">
 <operation name="DFH0XCMNOperation">
 <input message="tns:DFH0XCMNOperationRequest" name="DFH0XCMNOperationRequest"/>
 <output message="tns:DFH0XCMNOperationResponse" name="DFH0XCMNOperationResponse"/>
 </operation>
 </porttype>
 <binding name="DFH0XCMNHTTPSoapBinding" type="tns:DFH0XCMNPort">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- This soap:binding indicates the use of SOAP 1.2 -->
 <!-- <soap:binding style="document" transport="http://www.w3.org/2003/05/soap-http"/> -->
 <operation name="DFH0XCMNOperation">
 <soap:operation soapAction="" style="document"/>
 <input name="DFH0XCMNOperationRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="DFH0XCMNOperationResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="DFH0XCMNService">
 <port binding="tns:DFH0XCMNHTTPSoapBinding" name="DFH0XCMNPort">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS region.
 Please replace "my-port" with the port number of your CICS TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/exampleApp/inquireSingles.log"/>
 <!-- This soap:address indicates the location of the Web service over HTTPS. -->
 <!-- <soap:address location="https://my-server:my-port/exampleApp/inquireSingles.log"/> -->
 <!-- This soap:address indicates the location of the Web service over MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address location="jms:/queue?destination=my-queue&connectionFactory=()&
 targetService=/exampleApp/inquireSingles.log&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>

Deploying the Web services binding file
The Web services binding file created by DFHLS2WS is deployed into your CICS
region dynamically when you install a PIPELINE resource.

284 Web Services Guide

When a PIPELINE scan command is issued, either explicitly via a CEMT P
PIPELINE() SCAN or automatically during a PIPELINE installation, CICS scans the
pickup directory to search for Web service binding files - that is, for file names with
the .wsbind extension. For each binding file found, CICS determines whether to
install a WEBSERVICE resource.

A URIMAP resource is also created to map the URI, as provided in the JCL, to the
installed WEBSERVICE and the PIPELINE onto which the WEBSERVICE is
installed. When a scanned WEBSERVICE is discarded the URIMAP associated with
it is also discarded.

1. Modify PIPELINE(EXPIPE01), which is the PIPELINE definition for your provider
pipeline. Change the WSDIR parameter to /u/exampleapp/wsbind. This pickup
directory contains the Web service binding file that you generated with
DFHLS2WS.

2. Copy any other Web service binding files used by the application to the same
directory. In this example, the files to copy are:

 inquireCatalog

 placeOrder

They are provided in directory /usr/lpp/cicsts/samples/webservices/wsbind/
provider.

3. Install the PIPELINE. CICS will create a WEBSERVICE resource and a
URIMAP resource from your Web service binding file.

Components of the base application
 Table 11. SDFHSAMP members containing BMS maps

Member name Description

DFH0XS1 BMS macros for the mapset consisting of the map (EXMENU) for
the Main Menu screen and the map (EXORDR) for the Details of
your order screen.

DFH0XS2 BMS macros for the mapset consisting of the map (EXINQC) for
the Inquire Catalog screen.

DFH0XS3 BMS macros for the mapset consisting of the map (EXCONF) for
the Configure CICS example catalog application screen.

DFH0XM1 Cobol copy book generated by assembling DFH0XS1. DFH0XGUI
and DFH0XCUI include this copy book

DFH0XM2U Cobol copy book generated by assembling DFH0XS2 and editing
the result to include an indexed array structure for ease of copy
book programming. DFH0XGUI and DFH0XCUI include this copy
book.

DFH0XM3 Cobol copy book generated by assembling DFH0XS3. DFH0XCFG
includes this copy book

 Table 12. SDFHSAMP members containing COBOL source for the base application.

Member name Description

DFH0XCFG Program invoked by transaction ECFG to read and update the
VSAM configuration file

DFH0XCMN Controller program for the catalog application. All requests pass
through it.

Chapter 14. The CICS catalog manager example application 285

Table 12. SDFHSAMP members containing COBOL source for the base
application. (continued)

Member name Description

DFH0XGUI Program invoked by transaction EGUI to manage the sending of the
BMS maps to the terminal user and the receiving of the maps from
the terminal user. It links to program DFH0XCMN.

DFH0XODE One of two versions of the endpoint for the order dispatch Web
service. This is the version that runs in CICS. It simply sets the text
"Order in dispatch" in the return COMMAREA.

DFH0XSDS A stubbed or dummy version of the data store program that allows
the application to work when the VSAM catalog file has not been
set up. It uses data defined in the program rather than data stored
in a VSAM file.

DFH0XSOD A stubbed version of the order dispatch program. It sets the return
code in the COMMAREA to 0 and returns to its caller. It is used
when outbound Web services are not required.

DFH0XSSM A stubbed version of the stock manager (replenishment) program. It
sets the return code in the COMMAREA to 0 and returns to its
caller.

DFH0XVDS The VSAM version of the data store program. It accesses the
VSAM file to perform reads and updates of the catalog.

DFH0XWOD The Web service version of the order dispatch program. It issues
an EXEC CICS INVOKE WEBSERVICE to make an outbound Web
service call to an order dispatcher

 Table 13. SDFHSAMP members containing COBOL copy books for the basic application

Member name Description

DFH0XCP1 Defines a COMMAREA structure which includes the request and
response for the inquire catalog, inquire single, and place order
functions. Programs DFH0XCMN, DFH0XCUI, DFH0XECC,
DFH0XGUI, DFH0XICW, DFH0XISW, DFH0XPOW, DFH0XSDS,
and DFH0XVDS include this copy book.

DFH0XCP2 Defines a COMMAREA structure for the order dispatcher and stock
manager modules. Programs DFH0XCMN, DFH0XSOD,
DFH0XSSM, and DFH0XWOD include this copy book

DFH0XCP3 Defines a data structure for an inquire catalog request and
response. Used as input to DFHLS2WS in order to produce
inquireCatalog.wsdl and inquireCatalog.wsbind .

DFH0XCP4 Defines a data structure for an inquire single request and response.
Used as input to DFHLS2WS in order to produce
inquireSingle.wsdl and inquireSingle.wsbind.

DFH0XCP5 Defines a data structure for a place order request and response.
Used as input to DFHLS2WS in order to produce placeOrder.wsdl
and placeOrder.wsbind

DFH0XCP6 Defines a data structure for a dispatch order request and response.
Used as input to DFHLS2WS in order to produce
dispatchOrder.wsdl and dispatchOrder.wsbind

DFH0XCP7 Defines the data structure for a dispatch order request. Programs
DFH0XODE and DFH0XWOD include this copy book

DFH0XCP8 Defines the data structure for a dispatch order response. Programs
DFH0XODE and DFH0XWOD include this copy book.

286 Web Services Guide

Table 14. SDFHSAMP members containing COBOL source code for the Web service client
application which runs in CICS

Member name Description

DFH0XCUI Program invoked by transaction ECLI to manage the sending of the
BMS maps to the terminal user and the receiving of the maps from
the terminal user. It links to program DFH0XECC.

DFH0XECC Makes outbound Web service requests to the base application,
using the EXEC CICS INVOKE WEBSERVICE command. The
WEBSERVICE specified is one of the following:
 inquireCatalogClient
 inquireSingleClient
 placeOrderClient

 Table 15. SDFHSAMP members containing COBOL copy books for the Web service client
application which runs in CICS.. They are all generated by DFHWS2LS, and are included
by program DFH0XECC.

Member name Description

DFH0XCPA Defines the data structure for the inquire catalog request.

DFH0XCPB Defines the data structure for the inquire catalog response.

DFH0XCPC Defines the data structure for the inquire single request.

DFH0XCPD Defines the data structure for the inquire single response.

DFH0XCPE Defines the data structure for the place order request.

DFH0XCPF Defines the data structure for the place order response.

 Table 16. SDFHSAMP members containing COBOL source code for the wrapper modules

Member name Description

DFH0XICW Wrapper program for the inquireCatalog service.

DFH0XISW Wrapper program for the inquireSingle service.

DFH0XPOW Wrapper program for the purchaseOrder service.

 Table 17. SDFHSAMP members containing COBOL copy books for the wrapper modules

Member name Description

DFH0XWC1 Defines the data structure for the inquire catalog request. Program
DFH0XICW includes this copy book.

DFH0XWC2 Defines the data structure for the inquire catalog response.
Program DFH0XICW includes this copy book.

DFH0XWC3 Defines the data structure for the inquire single request. Program
DFH0XISW includes this copy book.

DFH0XWC4 Defines the data structure for the inquire single response. Program
DFH0XISW includes this copy book.

DFH0XWC5 Defines the data structure for the place order request. Program
DFH0XPOW includes this copy book.

DFH0XWC6 Defines the data structure for the place order response. Program
DFH0XPOW includes this copy book

Chapter 14. The CICS catalog manager example application 287

Table 18. CICS Resource Definitions

Resource name Resource type Comment

EXAMPLE CICS Resource definition
group

CICS resource definitions
required for the example
application

EGUI TRANSACTION Transaction to invoke
program DFH0XGUI to start
the BMS interface to the
application (Customizable)

ECFG TRANSACTION Transaction to invoke the
program DFH0XCFG to start
the example configuration
BMS interface
(Customizable)

EXMPCAT FILE File definition of the
EXMPCAT VSAM file for the
application catalog
(Customizable)

EXMPCONF FILE File definition of the
EXMPCONF application
configuration file.

The catalog manager program
The catalog manager is the controlling program for the business logic of the
example application, and all interactions with the example application pass through
it.

To ensure that the program logic is simple, the catalog manager performs only
limited type checking and error recovery.

The catalog manager supports a number of operations. Input and output
parameters for each operation are defined in a single data structure, which is
passed to and from the program in a COMMAREA.

COMMAREA structures
* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-REQUEST-SPECIFIC PIC X(911).
 * Fields used in Inquire Catalog
 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-LIST-START-REF PIC 9(4).
 05 CA-LAST-ITEM-REF PIC 9(4).
 05 CA-ITEM-COUNT PIC 9(3).
 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).
 05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA
 OCCURS 15 TIMES.
 07 CA-ITEM-REF PIC 9(4).
 07 CA-DESCRIPTION PIC X(40).
 07 CA-DEPARTMENT PIC 9(3).
 07 CA-COST PIC X(6).
 07 IN-STOCK PIC 9(4).
 07 ON-ORDER PIC 9(3).
 * Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-ITEM-REF-REQ PIC 9(4).

288 Web Services Guide

05 FILLER PIC 9(4).
 05 FILLER PIC 9(3).
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4).
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3).
 07 CA-SNGL-COST PIC X(6).
 07 IN-SNGL-STOCK PIC 9(4).
 07 ON-SNGL-ORDER PIC 9(3).
 05 FILLER PIC X(840).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

 * Dispatcher/Stock Manager COMMAREA structure
 03 CA-ORD-REQUEST-ID PIC X(6).
 03 CA-ORD-RETURN-CODE PIC 9(2).
 03 CA-ORD-RESPONSE-MESSAGE PIC X(79).
 03 CA-ORD-REQUEST-SPECIFIC PIC X(23).
 * Fields used in Dispatcher
 03 CA-DISPATCH-ORDER REDEFINES CA-ORD-REQUEST-SPECIFIC.
 05 CA-ORD-ITEM-REF-NUMBER PIC 9(4).
 05 CA-ORD-QUANTITY-REQ PIC 9(3).
 05 CA-ORD-USERID PIC X(8).
 05 CA-ORD-CHARGE-DEPT PIC X(8).
 * Fields used in Stock Manager
 03 CA-STOCK-MANAGER-UPDATE REDEFINES CA-ORD-REQUEST-SPECIFIC.
 05 CA-STK-ITEM-REF-NUMBER PIC 9(4).
 05 CA-STK-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(16).

Return codes
Each operation of the catalog manager can return a number of return codes.

 Type Code Explanation

General 00 Function completed without
error

Catalog file 20 Item reference not found

21 Error opening, reading, or
ending browse of catalog file

22 Error updating file

Configuration file 50 Error opening configuration
file

51 Data store type was neither
STUB nor VSAM

52 Outbound Web service switch
was neither Y nor N

Chapter 14. The CICS catalog manager example application 289

Type Code Explanation

Remote Web service 30 The EXEC CICS INVOKE
WEBSERVICE command
returned an INVREQ
condition

31 The EXEC CICS INVOKE
WEBSERVICE command
returned an NOTFND
condition

32 The EXEC CICS INVOKE
WEBSERVICE command
returned a condition other
than INVREQ or NOTFND

Application 97 Insufficient stock to complete
order

98 Order quantity was not a
positive number

99 DFH0XCMN received a
COMMAREA in which the
CA-REQUEST-ID field was
not set to one of the
following: 01INQC, 01INQS,
or 01ORDR

INQUIRE CATALOG operation
This operation returns a list of up to 15 catalog items, starting with the item
specified by the caller.

Input parameters

CA-REQUEST-ID
A string that identifies the operation. For the INQUIRE CATALOG command, the
string contains “01INQC”

CA-LIST-START-REF
The reference number of the first item to be returned.

Output parameters

CA-RETURN-CODE

CA-RESPONSE-MESSAGE
A human readable string, containing “num ITEMS RETURNED” where num is the
number of items returned.

CA-LAST-ITEM-REF
The reference number of the last item returned.

CA-ITEM-COUNT
The number of items returned.

CA-CAT-ITEM
An array containing the list of catalog items returned. The array has 15
elements; if fewer than 15 items are returned, the remaining array elements
contain blanks.

INQUIRE SINGLE ITEM operation
This operation returns a single catalog item specified by the caller.

290 Web Services Guide

Input parameters

CA-REQUEST-ID
A string that identifies the operation. For the INQUIRE SINGLE ITEM command,
the string contains “01INQS”

CA-ITEM-REF-REQ
The reference number of the item to be returned.

Output parameters

CA-RETURN-CODE

CA-RESPONSE-MESSAGE
A human readable string, containing RETURNED ITEM: REF=item-reference'
where item-reference is the reference number of the returned item.

CA-SINGLE-ITEM
An array containing in its first element the returned catalog item.

PLACE ORDER operation
This operation places an order for a single item. If the required quantity is not
available a message is returned to the user. If the order is successful, a call is
made to the Stock Manager informing it what item has been ordered and the
quantity ordered.

Input parameters

CA-REQUEST-ID
A string that identifies the operation. For the PLACE ORDER operation, the
string contains '01ORDR'

CA-USERID
An 8-character user ID which the application uses for dispatch and billing.

CA-CHARGE-DEPT
An 8-character department ID which the application uses for dispatch and
billing.

CA-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-QUANTITY-REQ
The number of items required.

Output parameters

CA-RETURN-CODE

CA-RESPONSE-MESSAGE
A human readable string, containing 'ORDER SUCCESSFULLY PLACED'.

DISPATCH STOCK operation
This operation places a call to the stock dispatcher program, which in turn
dispatches the order to the customer.

Input parameters

CA-ORD-REQUEST-ID
A string that identifies the operation. For the DISPATCH ORDER operation, the
string contains '01DSPO'

Chapter 14. The CICS catalog manager example application 291

CA-ORD-USERID
An 8-character user ID which the application uses for dispatch and billing.

CA-ORD-CHARGE-DEPT
An 8-character department ID which the application uses for dispatch and
billing.

CA-ORD-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-ORD-QUANTITY-REQ
The number of items required.

Output parameters

CA-ORD-RETURN-CODE

NOTIFY STOCK MANAGER operation
This operation takes details of the order that has been placed to decide if stock
replenishment is necessary.

Input parameters

CA-ORD-REQUEST-ID
A string that identifies the operation. For the NOTIFY STOCK MANAGER
operation, the string contains '01STKO'

CA-STK-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-STK-QUANTITY-REQ
The number of items required.

Output parameters

CA-ORD-RETURN-CODE

File Structures and Definitions
The example application uses two VSAM files: the catalog file which contains the
details of all items stocked and their stock levels, and the configuration file which
holds user-selected options for the application.

Catalog file
The catalog file is a KSDS VSAM file which contains all information relating to the
product inventory.

Records in the file have the following structure:

 Name COBOL data type Description

WS-ITEM-REF-NUM PIC 9(4) Item reference number

WS-DESCRIPTION PIC X(40) Item description

WS-DEPARTMENT PIC 9(3) Department identification
number

WS-COST PIC ZZZ.99 Item price

WS-IN-STOCK PIC 9(4) Number of items in stock

WS-ON-ORDER PIC 9(3) Number of items on order

292 Web Services Guide

Configuration file
The configuration file is a KSDS VSAM file which contains information used to
configure the example application.

The configuration file is a KSDS VSAM file with four distinct records.

 Table 19. General information record

Name COBOL data type Description

PROGS-KEY PIC X(9) Key field for the general
information record, containing
'EXMP-CONF'

filler PIC X

DATASTORE PIC X(4) A character string that
specifies the type of data
store program to be used.
Values are:

 'STUB'

 'VSAM'

filler PIC X

DO-OUTBOUND-WS PIC X A character that specifies
whether the dispatch
manager is make an
outbound Web service
request. Values are:

 'Y'

 'N'

filler PIC X

CATMAN-PROG PIC X(8) The name of the catalog
manager program

filler PIC X

DSSTUB-PROG PIC X(8) The name of the dummy data
handler program

filler PIC X

DSVSAM-PROG PIC X(8) The name of the VSAM data
handler program

filler PIC X

ODSTUB-PROG PIC X(8) The name of the dummy
order dispatcher module

filler PIC X

ODWEBS-PROG PIC X(8) The name of the outbound
Web service order dispatcher
program

filler PIC X

STKMAN-PROG PIC X(8) The name of the stock
manager program

filler PIC X(10)

Chapter 14. The CICS catalog manager example application 293

Table 20. Outbound URL record

Name COBOL data type Description

URL-KEY PIC X(9) Key field for the general
information record, containing
'OUTBNDURL'

filler PIC X

OUTBOUND-URL PIC X(255) Outbound URL for the order
dispatcher Web service
request

 Table 21. Catalog file information record

Name COBOL data type Description

URL-FILE-KEY PIC X(9) Key field for the general
information record, containing
'VSAM-NAME'

filler PIC X

CATALOG-FILE-NAME PIC X(8) Name of the CICS FILE
resource used for the catalog
file

 Table 22. Server information record

Name COBOL data type Description

WS-SERVER-KEY PIC X(9) Key field for the server
information record, containing
'WS-SERVER'

filler PIC X

CATALOG-FILE-NAME PIC X(8) For the CICS Web service
client only, the IP address
and port of the system on
which the example
application is deployed as a
Web service

294 Web Services Guide

Bibliography

The CICS Transaction Server for z/OS library
The published information for CICS Transaction Server for z/OS is delivered in the
following forms:

The CICS Transaction Server for z/OS Information Center
The CICS Transaction Server for z/OS Information Center is the primary source
of user information for CICS Transaction Server. The Information Center
contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe
Portable Document Format (PDF) files. You can use these files to print
hardcopy of the books. For more information, see “PDF-only books.”

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided
automatically with the product. Further copies can be ordered, at no additional
charge, by specifying the Information Center feature number, 7014.

Licensed documentation is available only to licensees of the product. A version
of the Information Center that contains only unlicensed information is available
through the publications ordering system, order number SK3T-6945.

Entitlement hardcopy books
The following essential publications, in hardcopy form, are provided
automatically with the product. For more information, see “The entitlement set.”

The entitlement set
The entitlement set comprises the following hardcopy books, which are provided
automatically when you order CICS Transaction Server for z/OS, Version 3 Release
2:
 Memo to Licensees, GI10-2559
 CICS Transaction Server for z/OS Program Directory, GI13-0515
 CICS Transaction Server for z/OS Release Guide, GC34-6811
 CICS Transaction Server for z/OS Installation Guide, GC34-6812
 CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books in the entitlement set, using the
order number quoted above:
 CICS Transaction Server for z/OS Release Guide
 CICS Transaction Server for z/OS Installation Guide
 CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books
The following books are available in the CICS Information Center as Adobe
Portable Document Format (PDF) files:

CICS books for CICS Transaction Server for z/OS
General

 CICS Transaction Server for z/OS Program Directory, GI13-0515
 CICS Transaction Server for z/OS Release Guide, GC34-6811
 CICS Transaction Server for z/OS Migration from CICS TS Version 3.1,

GC34-6858

© Copyright IBM Corp. 2005, 2011 295

CICS Transaction Server for z/OS Migration from CICS TS Version 1.3,
GC34-6855

 CICS Transaction Server for z/OS Migration from CICS TS Version 2.2,
GC34-6856

 CICS Transaction Server for z/OS Installation Guide, GC34-6812
Administration

 CICS System Definition Guide, SC34-6813
 CICS Customization Guide, SC34-6814
 CICS Resource Definition Guide, SC34-6815
 CICS Operations and Utilities Guide, SC34-6816
 CICS Supplied Transactions, SC34-6817

Programming
 CICS Application Programming Guide, SC34-6818
 CICS Application Programming Reference, SC34-6819
 CICS System Programming Reference, SC34-6820
 CICS Front End Programming Interface User's Guide, SC34-6821
 CICS C++ OO Class Libraries, SC34-6822
 CICS Distributed Transaction Programming Guide, SC34-6823
 CICS Business Transaction Services, SC34-6824
 Java Applications in CICS, SC34-6825
 JCICS Class Reference, SC34-6001

Diagnosis
 CICS Problem Determination Guide, SC34-6826
 CICS Messages and Codes, GC34-6827
 CICS Diagnosis Reference, GC34-6862
 CICS Data Areas, GC34-6863-00
 CICS Trace Entries, SC34-6828
 CICS Supplementary Data Areas, GC34-6864-00

Communication
 CICS Intercommunication Guide, SC34-6829
 CICS External Interfaces Guide, SC34-6830
 CICS Internet Guide, SC34-6831

Special topics
 CICS Recovery and Restart Guide, SC34-6832
 CICS Performance Guide, SC34-6833
 CICS IMS Database Control Guide, SC34-6834
 CICS RACF Security Guide, SC34-6835
 CICS Shared Data Tables Guide, SC34-6836
 CICS DB2 Guide, SC34-6837
 CICS Debugging Tools Interfaces Reference, GC34-6865

CICSPlex SM books for CICS Transaction Server for z/OS
General

 CICSPlex SM Concepts and Planning, SC34-6839
 CICSPlex SM User Interface Guide, SC34-6840
 CICSPlex SM Web User Interface Guide, SC34-6841

Administration and Management
 CICSPlex SM Administration, SC34-6842
 CICSPlex SM Operations Views Reference, SC34-6843
 CICSPlex SM Monitor Views Reference, SC34-6844
 CICSPlex SM Managing Workloads, SC34-6845
 CICSPlex SM Managing Resource Usage, SC34-6846
 CICSPlex SM Managing Business Applications, SC34-6847

Programming
 CICSPlex SM Application Programming Guide, SC34-6848
 CICSPlex SM Application Programming Reference, SC34-6849

296 Web Services Guide

Diagnosis
 CICSPlex SM Resource Tables Reference, SC34-6850
 CICSPlex SM Messages and Codes, GC34-6851
 CICSPlex SM Problem Determination, GC34-6852

CICS family books
Communication

 CICS Family: Interproduct Communication, SC34-6853
 CICS Family: Communicating from CICS on zSeries, SC34-6854

Licensed publications
The following licensed publications are not included in the unlicensed version of the
Information Center:
 CICS Diagnosis Reference, GC34-6862
 CICS Data Areas, GC34-6863-00
 CICS Supplementary Data Areas, GC34-6864-00
 CICS Debugging Tools Interfaces Reference, GC34-6865

Other CICS books
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 3 Release 2.

 Designing and Programming CICS Applications SR23-9692
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway for z/OS Administration SC34-5528
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager® softcopy versions of a publication are
usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a #
character) to the left of the changes.

Bibliography 297

298 Web Services Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system
in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS™ system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 2005, 2011 299

300 Web Services Guide

Index

Special characters
<apphandler>

pipeline configuration element 66
<auth_token_type>

pipeline configuration element 85
<authentication>

pipeline configuration element 81
<cics_mtom_handler>

pipeline configuration element 88
<cics_soap_1.1_handler>

pipeline configuration element 69
<cics_soap_1.2_handler>

pipeline configuration element 71
<default_http_transport_handler_list>

pipeline configuration element 73
<default_mq_transport_handler_list>

pipeline configuration element 74
<default_target>

pipeline configuration element 78
<default_transport_handler_list>

pipeline configuration element 74
<dfhmtom_configuration>

pipeline configuration element 89
<dfhwsse_configuration>

pipeline configuration element 79
<encrypt_body>

pipeline configuration element 87
<handler>

pipeline configuration element 75
<mime_options>

pipeline configuration element 92
<mtom_options>

pipeline configuration element 90
<named_transport_entry>

pipeline configuration element 66
<provider_pipeline>

pipeline configuration element 66
<requester_pipeline>

pipeline configuration element 68
<service_handler_list>

pipeline configuration element 76
<service_parameter_list>

pipeline configuration element 77
<service>

pipeline configuration element 75
<sign_body>

pipeline configuration element 87
<sts_authentication>

pipeline configuration element 84
<sts_endpoint>

pipeline configuration element 86
<terminal_handler>

pipeline configuration element 67
<transport_handler_list>

pipeline configuration element 68
<transport>

pipeline configuration element 78

<wsse_handler>
pipeline configuration element 79

<xop_options>
pipeline configuration element 91

A
algorithm 235, 237
apphandler

pipeline configuration element 66
assistant, Web services 125
atomic transaction 213, 219

configuring CICS 215
configuring service provider 216
configuring service requester 217
registration services 213
states 220

auth_token_type
pipeline configuration element 85

authentication
pipeline configuration element 81

B
batch utility

Web services assistant 125
binary attachment

pipeline configuration 88
body, SOAP 9

C
C and C++

mapping to XML Schema 162, 164
cics_mtom_handler

pipeline configuration element 88
cics_soap_1.1_handler

pipeline configuration element 69
cics_soap_1.2_handler

pipeline configuration element 71
COBOL

mapping to XML Schema 153, 157
variable repeating content 190

compatibility mode 223
configuration file, pipeline 59
configuring RACF 238
configuring the pipeline 240
container

context container
DFH-HANDLERPLIST 114
DFH-SERVICEPLIST 114
DFHWS-APPHANDLER 114, 116
DFHWS-DATA 115
DFHWS-PIPELINE 116
DFHWS-SOAPLEVEL 116
DFHWS-STSREASON 122
DFHWS-TRANID 117

© Copyright IBM Corp. 2005, 2011 301

container (continued)
context container (continued)

DFHWS-URI 117
DFHWS-USERID 117
DFHWS-WEBSERVICE 117

control container
DFHERROR 106
DFHFUNCTION 107
DFHHTTPSTATUS 109
DFHMEDIATYPE 110
DFHNORESPONSE 110
DFHREQUEST 110
DFHRESPONSE 111

DFH-HANDLERPLIST 114
DFH-SERVICEPLIST 114
DFHERROR 106
DFHFUNCTION 107
DFHHTTPSTATUS 109
DFHMEDIATYPE 110
DFHNORESPONSE 110
DFHREQUEST 110
DFHRESPONSE 111
DFHWS-APPHANDLER 114, 116
DFHWS-CID-DOMAIN 117
DFHWS-DATA 115
DFHWS-IDTOKEN 120
DFHWS-MEP 115
DFHWS-MTOM-IN 117
DFHWS-MTOM-OUT 118
DFHWS-PIPELINE 116
DFHWS-RESPWAIT 116
DFHWS-RESTOKEN 120
DFHWS-SERVICEURI 121
DFHWS-SOAPLEVEL 116
DFHWS-STSACTION 121
DFHWS-STSFAULT 121
DFHWS-STSREASON 122
DFHWS-STSURI 122
DFHWS-TOKENTYPE 122
DFHWS-TRANID 117
DFHWS-URI 117
DFHWS-USERID 117
DFHWS-WEBSERVICE 117
DFHWS-XOP-IN 120
DFHWS-XOP-OUT 119, 120

Container DFHWS-CID-DOMAIN 117
Container DFHWS-IDTOKEN 120
Container DFHWS-MEP 115
Container DFHWS-MTOM-IN 117
Container DFHWS-MTOM-OUT 118
Container DFHWS-RESPWAIT 116
Container DFHWS-RESTOKEN 120
Container DFHWS-SERVICEURI 121
Container DFHWS-STSACTION 121
Container DFHWS-STSFAULT 121
Container DFHWS-STSURI 122
Container DFHWS-TOKENTYPE 122
Container DFHWS-WSDL-CTX 119
Container DFHWS-XOP-IN 120
Container DFHWS-XOP-OUT 120

containers
used in a pipeline 105

context container
DFHWS-CID-DOMAIN 117
DFHWS-IDTOKEN 120
DFHWS-MEP 115
DFHWS-MTOM-IN 117
DFHWS-MTOM-OUT 118
DFHWS-RESPWAIT 116
DFHWS-RESTOKEN 120
DFHWS-SERVICEURI 121
DFHWS-STSACTION 121
DFHWS-STSFAULT 121
DFHWS-STSURI 122
DFHWS-TOKENTYPE 122
DFHWS-WSDL-CTX 119
DFHWS-XOP-IN 120
DFHWS-XOP-OUT 120

context containers 114
control containers 106
custom security handler 243
customizing pipeline processing 123

D
default_http_transport_handler_list

pipeline configuration element 73
default_mq_transport_handler_list

pipeline configuration element 74
default_target

pipeline configuration element 78
default_transport_handler_list

pipeline configuration element 74
DFH-HANDLERPLIST container 114
DFH-SERVICEPLIST container 114
DFHERROR container 106
DFHFUNCTION container 107
DFHHTTPSTATUS container 109
DFHLS2WS

cataloged procedure 126
DFHMEDIATYPE container 110
dfhmtom_configuration

pipeline configuration element 89
DFHNORESPONSE container 110
DFHREQUEST container 110
DFHRESPONSE container 111
DFHWS-APPHANDLER container 114, 116
DFHWS-DATA container 115
DFHWS-PIPELINE container 116
DFHWS-SOAPLEVEL container 116
DFHWS-STSREASON container 122
DFHWS-TRANID container 117
DFHWS-URI container 117
DFHWS-USERID container 117
DFHWS-WEBSERVICE container 117
DFHWS2LS

cataloged procedure 135
dfhwsse_configuration

pipeline configuration element 79
diagnosing problems

service requester 249

302 Web Services Guide

diagram
syntax 145

direct mode 223
dynamic routing

in a service provider 104
in a terminal handler 104

E
encrypt_body

pipeline configuration element 87
envelope, SOAP 9
EXEC CICS SOAPFAULT CREATE command 198

F
fault, SOAP 9

G
global user exits 123

H
handler

pipeline configuration element 75
header, SOAP 9
high level language structure

converting to WSDL 126

I
invoking the trust client 244

L
language structure

converting to WSDL 126
limitations at runtime 209

M
mapping to C and C++ 162, 164
mapping to COBOL 153, 157
mapping to PL/I 168, 171
maxOccurs

in XML schema 177
MEP 26
message exchange pattern (MEP) 26
message handler

invoking trust client 244
non-terminal 96, 97

MIME message
pipeline configuration 88

mime_options
pipeline configuration element 92

minOccurs
in XML schema 177

mtom_options
pipeline configuration element 90

MTOM/XOP
pipeline configuration 88

N
named_transport_entry

pipeline configuration element 66
non-terminal message handler 96, 97
notation

syntax 145

P
persistent message 54
persistent message support 54
pipeline configuration

MTOM/XOP 88
Web Services Security 78

pipeline configuration element
<apphandler> 66
<auth_token_type> 85
<authentication> 81
<cics_mtom_handler> 88
<cics_soap_1.1_handler> 69
<cics_soap_1.2_handler> 71
<default_http_transport_ handler_list> 73
<default_mq_transport_ handler_list> 74
<default_transport_handler_list> 74
<dfhmtom_configuration> 89
<dfhwsse_configuration> 79
<encrypt_body> 87
<handler> 75
<mime_options> 92
<mtom_options> 90
<named_transport_entry> 66
<provider_pipeline> 66
<requester_pipeline> 68
<service_handler_list> 76
<service> 75
<sign_body> 87
<sts_authentication> 84
<sts_endpoint> 86
<terminal_handler> 67
<transport_handler_list> 68
<transport> 78
<wsse_handler> 79
<xop_options> 91

pipeline configuration file 59
pipeline definition

service requester 65
pipeline processing

customizing 123
PL/I

mapping to XML Schema 168, 171
provider_pipeline

pipeline configuration element 66

R
repeating content 190

Index 303

requester_pipeline
element of pipeline definition 65
pipeline configuration element 68

runtime limitations 209

S
security containers 120
security for Web services 229
security handler

writing your own 243
Security Token Service

trust client interface 234
service

pipeline configuration element 75
service parameter list

<service_parameter_list> 77
service provider application

creating from a data structure 194
using atomic transactions 216

service requester
diagnosing problems 249
pipeline definition 65

service requester application
using atomic transactions 217

service_handler_list
pipeline configuration element 76

service_parameter_list
service parameter list 77

sign_body
pipeline configuration element 87

SOAP
body 9
envelope 9
fault 9
header 9
overview 9
overview of SOAP 9

SOAP faults 198
SOAP message

encrypting 236
example 9
signing 234
structure 9

SOAP message path 15
SOAP Message Security 30
SOAP messages

validating against XML Schema 205
XML Schema

validating SOAP message 205
sts_authentication

pipeline configuration element 84
sts_endpoint

pipeline configuration element 86
syntax notation 145

T
terminal_handler

pipeline configuration element 67

transport
pipeline configuration element 78

transport_handler_list
pipeline configuration element 68

trust client
interface 234
invoking 244

U
URI

for MQ transport 53
user containers 123
utility program

Web services assistant 125

V
validating SOAP messages 205
Variable arrays 177

W
Web services assistant 125

creating a service provider application 194
Web Services Security

pipeline configuration 78
Web Services Security (WSS) 229, 238, 240
Web Services Security: SOAP Message Security 30
workload management

in a service provider 104
in a terminal handler 104

WS-AT 213
WSDL

and application data structure 24
converting to language structure 135

WSDL specifications 29
WSS: SOAP Message Security 30
wsse_handler

pipeline configuration element 79

X
XML Schema 153, 157, 162, 164, 168, 171
xop_options

pipeline configuration element 91

304 Web Services Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 2005, 2011 305

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

306 Web Services Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide. A
current list of IBM trademarks is available on the Web at Copyright and trademark
information at www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

© Copyright IBM Corp. 2005, 2011 307

308 Web Services Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Web Services Guide
Version 3 Release 2

 Publication No. SC34-6838-04

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44–1962–816151
v Send your comments via email to: idrcf@hursley.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
 SC34-6838-04

SC34-6838-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5655-M15

SC34-6838-04

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

C
IC

S
Tr

an
sa

ct
io

n
Se

rv
er

 fo
r

z/
O

S
W

eb
 S

er
vi

ce
s

G
ui

de

Ve
rs

io
n

3
R

el
ea

se
 2

	Contents
	Preface
	What this book is about
	Who should read this book

	Chapter 1. CICS and Web services
	What is a Web service?
	How Web services can help your business
	Web services terminology

	Chapter 2. The Web services architecture
	The Web service description
	Service publication

	Chapter 3. What is SOAP?
	The structure of a SOAP message
	The SOAP header
	The SOAP body
	The SOAP fault

	SOAP nodes
	The SOAP message path

	Chapter 4. How CICS supports Web services
	Message handlers and pipelines
	Transport-related handlers
	Interrupting the flow
	A service provider pipeline
	A service requester pipeline
	CICS pipelines and SOAP

	SOAP messages and the application data structure
	WSDL and the application data structure
	WSDL and message exchange patterns
	The Web service binding file
	External standards
	Extensible Markup Language Version 1.0
	SOAP 1.1 and 1.2
	SOAP 1.1 Binding for MTOM 1.0
	SOAP Message Transmission Optimization Mechanism (MTOM)
	Web Services Atomic Transaction Version 1.0
	Web Services Coordination Version 1.0
	Web Services Description Language Version 1.1 and 2.0
	Web Services Security: SOAP Message Security
	Web Services Trust Language
	WSDL 1.1 Binding Extension for SOAP 1.2
	WS-I Basic Profile Version 1.1
	WS-I Simple SOAP Binding Profile Version 1.0
	XML-binary Optimized Packaging (XOP)
	XML Encryption Syntax and Processing
	XML-Signature Syntax and Processing
	CICS compliance with Web services standards
	How CICS complies with WSDL 2.0
	How CICS complies with Web Services Security specifications
	How CICS complies with WS-Trust
	How CICS complies with WS-I Basic Profile 1.1

	Chapter 5. Getting started with Web services
	Planning to use Web services
	Planning a service provider application
	Planning a service requester application

	Migrating from the SOAP for CICS feature

	Chapter 6. Configuring your CICS system for Web services
	CICS resources for Web services
	Configuring CICS to use the WebSphere MQ transport
	The WebSphere MQ transport
	Defining local queues in a service provider
	Defining local queues in a service requester
	The URI for the WMQ transport
	Configuring CICS to support persistent messages
	Persistent message processing

	Chapter 7. Creating the Web services infrastructure
	Creating the CICS infrastructure for a service provider
	Creating the CICS infrastructure for a service requester
	The pipeline configuration file
	Transport-related handlers
	The pipeline definition for a service provider
	The pipeline definition for a service requester
	Elements used only in service providers
	The <named_transport_entry> element
	The <provider_pipeline> element
	The <terminal_handler> element
	The <transport_handler_list> element

	Elements used in service requesters
	The <requester_pipeline> element

	Elements used in service provider and requesters
	The <cics_soap_1.1_handler> element
	The <cics_soap_1.2_handler> element
	The <default_http_transport_handler_list> element
	The <default_mq_transport_handler_list> element
	The <default_transport_handler_list> element
	The <handler> element
	The <service> element
	The <service_handler_list> element
	The <service_parameter_list> element
	The <transport> element

	Pipeline configuration for WS-Security
	The <wsse_handler> element
	The <dfhwsse_configuration> element
	The <authentication> element
	The <sts_authentication> element
	The <auth_token_type> element
	The <sts_endpoint> element
	The <sign_body> element
	The <encrypt_body> element

	Pipeline configuration for MTOM/XOP
	The <cics_mtom_handler> element
	The <dfhmtom_configuration> element
	The <mtom_options> element
	The <xop_options> element
	The <mime_options> element

	Message handlers
	Message handler protocols
	Supplying your own message handlers
	Working with messages in a non-terminal message handler
	Passing a message to the next message handler in the pipeline
	Forcing a transition to the response phase of the pipeline
	Suppressing the response
	Handling one way messages in a service requester pipeline

	Working with messages in a terminal message handler
	Handling errors
	The message handler interface

	The SOAP message handlers
	Header processing programs
	The header processing program interface
	The SOAP handler interfaces
	The application interface

	Dynamic routing of inbound requests in a terminal handler

	Containers used in the pipeline
	The control containers
	Container DFHERROR
	Container DFHFUNCTION
	Container DFHHTTPSTATUS
	Container DFHMEDIATYPE
	Container DFHNORESPONSE
	Container DFHREQUEST
	Container DFHRESPONSE

	How containers control the pipeline protocols
	The context containers
	Container DFH-HANDLERPLIST
	Container DFH-SERVICEPLIST
	Container DFHWS-APPHANDLER
	Container DFHWS-DATA
	Container DFHWS-MEP
	Container DFHWS-OPERATION
	Container DFHWS-PIPELINE
	Container DFHWS-RESPWAIT
	Container DFHWS-SOAPLEVEL
	Container DFHWS-TRANID
	Container DFHWS-URI
	Container DFHWS-USERID
	Container DFHWS-WEBSERVICE
	Container DFHWS-CID-DOMAIN
	Container DFHWS-MTOM-IN
	Container DFHWS-MTOM-OUT
	Container DFHWS-WSDL-CTX
	Container DFHWS-XOP-IN
	Container DFHWS-XOP-OUT

	The security containers
	Container DFHWS-IDTOKEN
	Container DFHWS-RESTOKEN
	Container DFHWS-SERVICEURI
	Container DFHWS-STSACTION
	Container DFHWS-STSFAULT
	Container DFHWS-STSREASON
	Container DFHWS-STSURI
	Container DFHWS-TOKENTYPE

	Containers generated by CICS
	User containers

	Customizing pipeline processing

	Chapter 8. Creating a Web service
	The CICS Web services assistant
	DFHLS2WS: high-level language to WSDL conversion
	DFHWS2LS: WSDL to high-level language conversion
	Syntax notation
	Mapping levels for the CICS Web services assistant
	High-level language and XML schema mapping
	Data mapping limitations when using the CICS Web services assistant
	COBOL to XML schema mapping
	XML schema to COBOL mapping
	C and C++ to XML schema mapping
	XML schema to C and C++ mapping
	PL/I to XML schema mapping
	XML schema to PL/I mapping
	Variable arrays of elements in DFHWS2LS
	Support for XML attributes
	Support for <xsd:any> and xsd:anyType
	Support for <xsd:choice>
	Support for substitution groups
	Support for abstract elements and abstract data types
	Example of how to handle variably repeating content in COBOL

	Creating a Web service provider using the Web services assistant
	Creating a service provider application from a Web service description
	Creating a service provider application from a data structure
	Customizing generated Web service description documents
	Sending a SOAP fault

	Creating a Web service requester using the Web services assistant
	Creating a service requester application from a Web service description

	Creating a Web service using tooling
	Creating XML-aware Web service applications
	Creating an XML-aware service provider application
	Creating an XML-aware service requester application

	Validating SOAP messages

	Chapter 9. Interfacing with service provider and requester applications
	How an application is invoked in a service provider
	How CICS invokes a service provider program deployed with the Web services assistant

	Invoking a Web service from a CICS program
	Invoking a Web service from an application deployed with the Web services assistant

	Runtime limitations for code generated by the Web services assistant

	Chapter 10. Support for Web Services transactions
	Registration services
	Configuring CICS for Web service transactions
	Configuring a service provider for Web service transactions
	Configuring a service requester for Web service transactions
	Determining if the SOAP message is part of an atomic transaction
	Checking the progress of an atomic transaction

	Chapter 11. Support for MTOM/XOP optimization of binary data
	MTOM/XOP and SOAP
	MTOM messages and binary attachments in CICS
	Inbound MTOM message processing
	Outbound MTOM message processing

	Restrictions when using MTOM/XOP
	Configuring CICS to support MTOM/XOP

	Chapter 12. Support for securing Web services
	Prerequisites
	Planning for securing Web services
	The options for securing SOAP messages
	Authentication using a Security Token Service
	The Trust client interface

	Signing of SOAP messages
	Signature algorithms
	Example of a signed SOAP message

	CICS support for encrypted SOAP messages
	Encryption algorithms
	Example of an encrypted SOAP message

	Configuring RACF for Web Services Security
	Configuring the pipeline for Web Services Security
	Writing a custom security handler
	Invoking the Trust client from a message handler

	Chapter 13. Diagnosing problems
	Diagnosing deployment errors
	Diagnosing service provider runtime errors
	Diagnosing service requester runtime errors
	Diagnosing MTOM/XOP errors
	Diagnosing data conversion errors
	Why data conversion errors occur
	Conversion errors in trace points
	SOAP fault messages for conversion errors

	Chapter 14. The CICS catalog manager example application
	The base application
	BMS presentation manager
	Data handler
	Dispatch manager
	Order dispatch endpoint
	Stock manager
	Application configuration

	Running the example application with the BMS interface
	Installing and setting up the base application
	Creating and defining the VSAM data sets
	Defining the 3270 interface
	Completing the installation
	Configuring the example application

	Web service support for the example application
	Configuring code page support
	Defining the Web service client and wrapper programs
	Installing Web service support
	Creating z/OS UNIX directories
	Creating the PIPELINE definition
	Creating a TCPIPSERVICE
	Dynamically installing the WEBSERVICE and URIMAP resources
	Creating the WEBSERVICE resources with RDO
	Creating the URIMAP resources with RDO
	Completing the installation

	Configuring the Web client
	Running the Web service enabled application
	Deploying the example application
	Extracting the program interface
	Running the Web services assistant program DFHLS2WS
	An example of the generated WSDL document
	Deploying the Web services binding file

	Components of the base application
	The catalog manager program
	COMMAREA structures
	Return codes
	INQUIRE CATALOG operation
	INQUIRE SINGLE ITEM operation
	PLACE ORDER operation
	DISPATCH STOCK operation
	NOTIFY STOCK MANAGER operation

	File Structures and Definitions
	Catalog file
	Configuration file

	Bibliography
	The CICS Transaction Server for z/OS library
	The entitlement set
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books
	Licensed publications

	Other CICS books
	Determining if a publication is current

	Accessibility
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	X

	Notices
	Trademarks
	Readers’ Comments — We'd Like to Hear from You

