
CICS Transaction Server for z/OS
Version 4 Release 2

Web Services Guide

SC34-7191-02

���

CICS Transaction Server for z/OS
Version 4 Release 2

Web Services Guide

SC34-7191-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 379.

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2005, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface vii
What this book is about vii
Who should read this book vii

Changes in CICS Transaction Server for
z/OS, Version 4 Release 2 ix

Chapter 1. CICS and web services . . . 1
What is a web service? 1
How web services can help your business 2
Web services terminology 2

Chapter 2. Web services architecture . . 7
Web service description. 8
Service publication 10

Chapter 3. SOAP 11
Structure of a SOAP message 11

The SOAP header 13
The SOAP body 15
The SOAP fault 15

SOAP nodes 17
The SOAP message path 18

Chapter 4. How CICS supports web
services 21
Message handlers and pipelines 21

Transport-related handlers 22
Interrupting the flow 23
A service provider pipeline 24
A service requester pipeline 24
CICS pipelines and SOAP 25

SOAP messages and the application data structure 26
WSDL and the application data structure 28
WSDL and message exchange patterns 30
The web service binding file 32
External standards 32

SOAP 1.1 and 1.2 32
SOAP 1.1 Binding for MTOM 1.0 33
SOAP Message Transmission Optimization
Mechanism (MTOM) 33
Web Services Addressing 1.0. 33
Web Services Atomic Transaction Version 1.0 . . 34
Web Services Coordination Version 1.0 34
Web Services Description Language Version 1.1
and 2.0 34
Web Services Security: SOAP Message Security 35
Web Services Trust Language 35
WSDL 1.1 Binding Extension for SOAP 1.2 . . . 36
WS-I Basic Profile Version 1.1 36
WS-I Simple SOAP Binding Profile Version 1.0 . 36
XML (Extensible Markup Language) Version 1.0 37
XML-binary Optimized Packaging (XOP) . . . 37
XML Encryption Syntax and Processing 37

XML-Signature Syntax and Processing 37
CICS compliance with Web services standards. . 38

Chapter 5. Getting started with web
services 45
Planning to use web services 45

Planning a service provider application 47
Planning a service requester application 48

Chapter 6. Creating the web services
infrastructure 51
Configuring your CICS system for web services . . 51

CICS resources for web services 51
Configuring CICS to use the WebSphere MQ
transport 54

The web services infrastructure 61
CICS as a service provider 61
CICS as a service requester 63
Java-based SOAP pipelines 64

Creating the CICS infrastructure for a service
provider 66
Creating the CICS infrastructure for a service
requester 67
Pipeline configuration files 68

Transport-related handlers 72
The pipeline definition for a service provider . . 74
The pipeline definition for a service requester . . 75
Elements used only in service providers 76
Elements used in service requesters 80
Elements used in service provider and service
requester pipelines 81
Pipeline configuration for MTOM/XOP 96
Pipeline configuration for WS-Security 101

Application handlers 112
Channel-attached application handlers 113

Message handlers 114
Message handler protocols 114
Supplying your own message handlers 117
Working with messages in a non-terminal
message handler 117
Working with messages in a terminal message
handler 120
Handling errors 120
The message handler interface. 121

The SOAP message handlers 121
Header processing programs 122
The header processing program interface . . . 124
Dynamic routing of inbound requests in a
terminal handler 126

Containers used in the pipeline 127
Control containers 128
How containers control the pipeline protocols 134
Context containers. 136
Security containers 147
Containers generated by CICS 149

© Copyright IBM Corp. 2005, 2012 iii

||

User containers 150

Chapter 7. Creating a web service . . 151
The CICS web services assistant 152

DFHLS2WS: high-level language to WSDL
conversion 152
DFHWS2LS: WSDL to high-level language
conversion 164
Syntax notation. 178
Mapping levels for the CICS assistants 179
High-level language and XML schema mapping 183

Creating a web service provider by using the web
services assistant 227

Creating a service provider application from a
web service description 228
Creating a service provider application from a
data structure 230
Creating a channel description document . . . 232
Customizing generated web service description
documents 234
Sending a SOAP fault 236

Creating a web service requester using the web
services assistant 237
Creating a web service using tooling 240
Creating your own XML-aware web service
applications 241

Creating an XML-aware service provider
application 241
Creating an XML-aware service requester
application 242

Using Java with web services 244
Deploying a provider-mode Axis2 web service 244
Creating a Java web service that generates and
parses XML 247
Creating a Java web service that has a COBOL
interface 247
Deploying a requester-mode Axis2 web service 247

Validating SOAP messages 248

Chapter 8. Runtime processing for
web services 251
How CICS invokes a service provider program
deployed with the web services assistant 251
Invoking a web service from an application
deployed with the web services assistant 251
Runtime limitations for code generated by the web
services assistant 253
Customizing pipeline processing 256
Options for controlling requester pipeline
processing 256
Controlling requester pipeline processing using a
URI 258

Chapter 9. Support for Web Services
transactions 261
Registration services 261
Configuring CICS for web service transactions . . 263
Configuring a service provider for web service
transactions 265

Configuring a service requester for web service
transactions 266
Determining if the SOAP message is part of an
atomic transaction 267
Checking the progress of an atomic transaction . . 268

Chapter 10. Support for MTOM/XOP
optimization of binary data 271
MTOM/XOP and SOAP. 271
MTOM messages and binary attachments in CICS 273

Inbound MTOM message processing for
pipelines that do not support Java 274
Outbound MTOM message processing for
pipelines that do not support Java 275

Restrictions when using MTOM/XOP 276
Restrictions for Java-based pipelines 276
Restrictions for other SOAP pipelines 277

Configuring CICS to support MTOM/XOP . . . 278
Configuring MTOM/XOP support for
Java-based pipelines 278
Configuring MTOM/XOP for other SOAP
pipelines 279

Chapter 11. Support for Web Services
Addressing 281
Web Services Addressing overview 282
Configuring a requester pipeline for Web Services
Addressing 285
Configuring a provider pipeline for Web Services
Addressing 286
Creating a web service that uses WS-Addressing 288

Default end point references 289
Explicit actions 290
Default actions for WSDL 1.1 291
Default actions for WSDL 2.0 292

Message exchanges 293
Mandatory message addressing properties for
WS-Addressing. 295
Web Services Addressing security 297
Web Services Addressing example 297
Web Services Addressing terminology 302

Chapter 12. Support for securing web
services. 303
Prerequisites for Web Services Security 303
Planning to secure web services 304
Options for securing SOAP messages 305
Authentication using a Security Token Service . . 307

The Trust client interface 308
Signing of SOAP messages 309

Signature algorithms 309
Example of a signed SOAP message 310

CICS support for encrypted SOAP messages . . . 311
Encryption algorithms 311
Example of an encrypted SOAP message . . . 312

Configuring RACF for Web Services Security . . . 312
Configuring provider mode web services for
identity propagation 315
Configuring the pipeline for Web Services Security 317
Writing a custom security handler 320

iv CICS TS for z/OS 4.2: Web Services Guide

||
||
||
||
|
||
|
||

|
||
|
||

Invoking the Trust client from a message handler 321

Chapter 13. Interoperability between
the web services assistant and WSRR 325
Example of how to use SSL with the web services
assistant and WSRR 325

Chapter 14. Diagnosing problems . . 327
Diagnosing deployment errors. 327
Diagnosing service provider runtime errors . . . 329
Diagnosing service requester runtime errors . . . 330
Diagnosing MTOM/XOP errors 331
Diagnosing data conversion errors 334

Why data conversion errors occur 335
SOAP fault messages for conversion errors . . 335

Chapter 15. The CICS catalog
manager example application 337
The base application 337

BMS presentation manager 339
Data handler 339
Dispatch manager 339
Order dispatch program 339
Stock manager 339
Application configuration 340

Installing and setting up the base application. . . 340
Creating and defining the VSAM data sets . . 340
Defining the 3270 interface 341
Completing the installation 343
Configuring the example application 343

Running the example application with the BMS
interface 345

Web service support for the example application 347
Configuring code page support 349
Defining the web service client and wrapper
programs 350
Installing web service support 350

Configuring the web client 356
Running the web service enabled application. . . 359
Deploying the example application 363

Extracting the program interface 363
Running the web services assistant program
DFHLS2WS 364
An example of the generated WSDL document 366
Deploying the web services binding file . . . 367

Components of the base application 368
The catalog manager program 371

File structures and definitions 375
Catalog file 375
Configuration file 376

Notices 379
Trademarks 380

Bibliography. 381
CICS books for CICS Transaction Server for z/OS 381
CICSPlex SM books for CICS Transaction Server
for z/OS 382
Other CICS publications 382

Accessibility 383

Index 385

Contents v

vi CICS TS for z/OS 4.2: Web Services Guide

Preface

What this book is about
This book describes how to use Web Services in CICS®.

Who should read this book
This book is for the following roles:
v Planners and architects considering deploying CICS applications in a web

services environment.
v Systems programmers who are responsible for configuring CICS to support web

services.
v Applications programmers who are responsible for applications that will be

deployed in a web services environment.

© Copyright IBM Corp. 2005, 2012 vii

viii CICS TS for z/OS 4.2: Web Services Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 2005, 2012 ix

x CICS TS for z/OS 4.2: Web Services Guide

Chapter 1. CICS and web services

CICS Transaction Server for z/OS® provides comprehensive support for web
services.
v A CICS application can participate in a heterogeneous web services environment

as a service requester, as a service provider, or both.
v CICS supports the HTTP and WebSphere MQ transport protocols.
v CICS Transaction Server for z/OS includes the CICS web services assistant, a set

of utility programs that help you map WSDL service descriptions into high-level
programming language data structures and vice versa. The utility programs
support these programming languages:

COBOL
PL/I
C
C++

v CICS support for web services conforms to open standards, including these
standards:

SOAP 1.1 and 1.2
HTTP 1.1
WSDL 1.1 and 2.0

v CICS support for web services ensures maximum interoperability with other
web services implementations by conditionally or fully complying with many
web services specifications, including the WS-I Basic Profile Version 1.1. The
profile is a set of nonproprietary web services specifications, with clarifications
and amendments to those specifications, which, taken together, promote
interoperability between different implementations of web services.

v CICS support for web services includes support for web services pipelines that
are Java-based and non-Java -based. Java-based pipelines are processed using the
T8 TCBs and non-Java-based pipelines are processed using the L8 TCBs. This
reduces the amount of QR TCB processing required to process the web service.

v CICS uses the IBM® z/OS XML System Services (XMLSS) parser to parse SOAP
envelopes. This parser improves performance because it uses 64-bit
(above-the-bar) storage in the CICS region, leaving more storage below the bar
for user programs. The XMLSS parser also allows XML parsing to be offloaded
to a IBM System z® Application Assist Processor (zAAP), reducing the cost of
transactions because the CPU time is free. For more information, see the IBM
Redbooks® publication zSeries Application Assist Processor (zAAP)
Implementation.

v Web Services Atomic Transactions (WS-AT) use Web Services Addressing
(WS-Addressing) elements in their SOAP headers. The default namespace prefix
for these WS-Addressing elements has changed from wsa to cicswsa.

What is a web service?
A web service is a software system that supports interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically, web Service Definition Language, or WSDL).

© Copyright IBM Corp. 2005, 2012 1

|
|
|
|

http://www.redbooks.ibm.com/abstracts/sg246386.html
http://www.redbooks.ibm.com/abstracts/sg246386.html

web services fulfill a specific task or a set of tasks. A web service is described
using a standard, formal XML notion, called its service description, that provides
all of the details necessary to interact with the service, including message formats
(that detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service so that it
can be used independently of the hardware or software platform on which it is
implemented and independently of the programming language in which it is
written.

This independence allows and encourages web service based applications to be
loosely coupled, component oriented, cross-technology implementations. web
services can be used alone or with other web services to carry out a complex
aggregation or a business transaction.

How web services can help your business
Web services is a technology for deploying, and providing access to, business
functions over the World Wide Web. Use web services to integrate your
applications into the Web.

Web services can help your business in these ways:
v Reducing the cost of doing business
v Making it possible to deploy solutions more rapidly
v Opening up new opportunities

The key to achieving all these benefits is a common program-to-program
communication model, built on existing and emerging standards such as HTTP,
XML, SOAP, and WSDL.

With the support that CICS provides for web services, you can deploy your
existing applications in new ways, with the minimum amount of reprogramming.

Web services terminology
You must be familiar with these terms to understand the topics in the web services
section.

Extensible Markup Language (XML)
A standard for document markup, which uses a generic syntax to mark up
data with simple, human-readable tags. The standard is endorsed by the
World Wide Web Consortium (W3C).

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a
SOAP message path.

Service provider
The collection of software that provides a web service.

Service provider application
An application that is used in a service provider. Typically, a service
provider application provides the business logic component of a service
provider.

Service requester
The collection of software that is responsible for requesting a web service
from a service provider.

2 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org

Service requester application
An application that is used in a service requester. Typically, a service
requester application provides the business logic component of a service
requester.

Simple Object Access Protocol
See SOAP.

SOAP Formerly an acronym for Simple Object Access Protocol. A lightweight
protocol for exchange of information in a decentralized, distributed
environment. It is an XML-based protocol that consists of three parts:
v An envelope that defines a framework for describing what is in a

message and how to process it
v A set of encoding rules for expressing instances of application-defined

data types
v A convention for representing remote procedure calls and responses

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at Simple Object Access
Protocol (SOAP) 1.1.

The specification for SOAP 1.2 is published here:
SOAP Version 1.2 Part 0: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is
targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and forwards a SOAP message toward an ultimate
SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes.
These nodes include the initial SOAP sender, zero or more SOAP
intermediaries, and an ultimate SOAP receiver.

SOAP node
Processing logic that operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is
responsible for processing the contents of the SOAP body and any SOAP
header blocks targeted at it.

UDDI See Universal Description, Discovery and Integration.

Universal Description, Discovery and Integration
Universal Description, Discovery and Integration (UDDI) is a specification
for distributed web-based information registries of web services. UDDI is
also a publicly accessible set of implementations of the specification that
allow businesses to register information about the web services that they
offer, so that other businesses can find them. The specification is published
by OASIS.

Chapter 1. CICS and web services 3

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.oasis-open.org

Web service
A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically, Web Service Description
Language, or WSDL).

Web Services Addressing
Web Services Addressing (WS-Addressing) provides a transport-neutral
mechanism to address web services and messages.

The specifications for WS-Addressing are published here:
v Web Services Addressing 1.0 - Core
v Web Services Addressing 1.0 - SOAP Binding
v Web Services Addressing 1.0 - Metadata
v Web Services Addressing- Submission

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction
coordination type used to coordinate activities having an "all or nothing"
property.

The specification is published at http://www.ibm.com/developerworks/
library/specification/ws-tx/#atom.

Web service binding file
A file, associated with a WEBSERVICE resource, that contains information
that CICS uses to map data between input and output messages, and
application data structures.

Web service description
An XML document by which a service provider communicates the
specifications for invoking a web service to a service requester. Web service
descriptions are written in Web Service Description Language (WSDL).

Web Service Description Language
An XML application for describing web services. It is designed to separate
the descriptions of the abstract functions offered by a service and the
concrete details of a service, such as how and where that function is
offered.

The specification is published at http://www.w3.org/TR/wsdl.

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity
and confidentiality. The specification is published by OASIS at Web
Services Security: SOAP Message Security 1.0 (WS-Security 2004).

WS-Atomic Transaction
See Web Services Atomic Transaction.

WS-I Basic Profile
A set of nonproprietary web services specifications, with clarifications and
amendments to those specifications, which, taken together, promote
interoperability between different implementations of web services. The
profile is defined by the Web Services Interoperability Organization (WS-I)
and version 1.0 is available at Web Services Interoperability Organization
(WS-I) Basic Profile 1.0.

WSDL
See Web Service Description Language.

4 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.w3.org/TR/wsdl
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html

WSS See Web Services Security.

XML Extensible Markup Language.

The specifications for XML are published here:
SOAP Version 1.2 Part 0: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

XML namespace
A collection of names, identified by a URI reference, that are used in XML
documents as element types and attribute names.

XML schema
An XML document that describes the structure and constrains the contents
of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the World
Wide Web Consortium (W3C).

Chapter 1. CICS and web services 5

http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org
http://www.w3.org

6 CICS TS for z/OS 4.2: Web Services Guide

Chapter 2. Web services architecture

The web services architecture is based on interactions between three components: a
service provider, a service requester, and an optional service registry.

The service provider
The collection of software that provides a web service.
v The application program
v The middleware
v The platform on which they run

The service requester
The collection of software that is responsible for requesting a web service
from a service provider.
v The application program
v The middleware
v The platform on which they run

The service registry
The service registry is a central location where service providers can
publish their service descriptions and where service requesters can find
those service descriptions.

The registry is an optional component of the web services architecture
because service requesters and providers can communicate without it in
many situations. For example, the organization that provides a service can
distribute the service description directly to the users of the service in a
number of ways, including offering the service as a download from an FTP
site.

Using a service registry offers a number of advantages to both the
requester and provider; for example, using the IBM WebSphere® Service
Registry and Repository (WSRR) can help the requester to find services
more quickly and can help the provider to enforce version control of the
services being offered.

CICS provides direct support for implementing service requester and service
provider components. However, you need additional software to deploy a service
registry in CICS. If you use the IBM WebSphere Service Registry and Repository
(WSRR), CICS provides support for WSRR through the web services assistant.
Alternatively, you can deploy a service registry on another platform.

Interactions between a service provider, a service requester, and,
a service registry

The interactions between the service provider, service requester, and service
registry involve the following operations:

Publish
When a service registry is used, a service provider publishes its service
description in a service registry for the service requester to find.

Find When a service registry is used, a service requester finds the service
description in the registry.

© Copyright IBM Corp. 2005, 2012 7

Bind The service requester uses the service description to bind with the service
provider and interact with the web service implementation.

Web service description
A web service description is a document by which the service provider
communicates the specifications for starting the web service to the service requester.
Web service descriptions are expressed in the XML application known as Web
Service Description Language (WSDL).

The service description describes the web service in such a way as to minimize the
amount of shared knowledge and customized programming that is needed to
ensure communication between the service provider and the service requester. For
example, neither the requester nor the provider needs to be aware of the platform
on which the other runs, nor of the programming language in which the other is
written.

A service description can conform to either the WSDL 1.1 or WSDL 2.0
specification. Each has differences in both the terminology and major elements that
can be included in the service description. The following information uses WSDL
1.1 terminology and elements to explain the purpose of the service description.

The structure of WSDL allows a service description to be partitioned into two
definitions:
v An abstract service interface definition that describes the interfaces of the service

and makes it possible to write programs that implement and start the service.
v A concrete service implementation definition that describes the location on the

network (or endpoint) of the web service of the provider and other
implementation-specific details. It enables a service requester to connect to the
service provider.

See Figure 2 on page 9.

A WSDL 1.1 document uses the following major elements in the definition of
network services:

Service
Registry

Service
Provider

Service
Requester

PublishFind

Bind

Figure 1. web services components and interactions

8 CICS TS for z/OS 4.2: Web Services Guide

<types>
A container for data type definitions using some type system (such as XML
Schema). Defines the data types used within the message. The <types>
element is not required when all messages consist of simple data types.

<message>
Specifies which XML data types are used to define the input and output
parameters of an operation.

<portType>
Defines the set of operations supported by one or more endpoints. Within
a <portType> element, each operation is described by an <operation>
element.

<operation>
Specifies which XML messages can appear in the input and output data
flows. An operation is comparable with a method signature in a
programming language.

<binding>
Describes the protocol, data format, security, and other attributes for a
particular <portType> element.

<port>
Specifies the network address of an endpoint and associates it with a
<binding> element.

<service>
Defines the web service as a collection of related endpoints. A <service>
element contains one or more <port> elements.

Because you can partition the web service description, you can divide
responsibility for creating a complete service description. As an illustration,
consider a service that is defined by a standards body for use across an industry
and is implemented by individual companies in that industry:
v The standards body provides a service interface definition, containing the

following elements:

Web
service

description

Service
interface
definition

Service
implementation

definition

<service>

<port>

<binding>

<message>

<types>

<portType>

<operation>

Figure 2. Structure of a web service description

Chapter 2. Web services architecture 9

<types>
<message>
<portType>
<binding

v A service provider wanting to offer an implementation of the service provides a
service implementation definition, containing the following elements:

<port>
<service>

Service publication
You can publish a service description using a number of different mechanisms.
Each mechanism is suitable for use in different situations. CICS supports the use of
the IBM WebSphere Service Registry and Repository (WSRR) for publishing service
descriptions. Alternatively, you can use other methods to publish a service
description.

WSSR CICS supports the use of WSRR for publishing service descriptions. For
more information about the support that CICS provides for WSSR, see the
"Interoperability between the web services assistant and WSRR" topic in
the Information Center.

Any of the following mechanisms, none of which is directly supported by CICS,
can be used with CICS to publish service descriptions:

Direct publishing
This mechanism is the most straightforward for publishing service
descriptions; the service provider sends the service description directly to
the service requester, using an e-mail attachment, an FTP site, or a CD
ROM distribution.

DISCO
These proprietary protocols provide a dynamic publication mechanism.
The service requester uses a simple HTTP GET mechanism to retrieve a
web service description from a network location that is specified by the
service provider and identified with a URL.

Universal Description, Discovery and Integration (UDDI)
A specification for distributed web-based information registries of web
services. UDDI is also a publicly accessible set of implementations of the
specification that allow businesses to register information about the web
services that they offer so that other businesses can find them.

A service description can be published in more than one form if required.

10 CICS TS for z/OS 4.2: Web Services Guide

Chapter 3. SOAP

SOAP is a protocol for the exchange of information in a distributed environment.
SOAP messages are encoded as XML documents and can be exchanged using
various underlying protocols.

Formerly an acronym for Simple Object Access Protocol, SOAP is developed by the
World Wide Web Consortium (W3C), and is defined in the following documents
issued by W3C. Consult these documents for complete, and authoritative,
information about SOAP.

Simple Object Access Protocol (SOAP) 1.1 (W3C note)
SOAP Version 1.2 Part 0: Primer (W3C recommendation)
SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation)
SOAP Version 1.2 Part 2: Adjuncts (W3C recommendation)

The SOAP specifications describe a distributed processing model in which a SOAP
message is passed between SOAP nodes. The message originates at a SOAP sender
and is sent to a SOAP receiver. Between the sender and the receiver, the message
might be processed by one or more SOAP intermediaries.

A SOAP message is a one-way transmission between SOAP nodes, from a SOAP
sender to a SOAP receiver, but messages can be combined to construct more
complex interactions, such as request and response, and peer-to-peer conversations.

The specification also includes this information:
v A set of encoding rules for expressing instances of application-defined data

types.
v A convention for representing remote procedure calls and responses.

Structure of a SOAP message
A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained in the <Body>, is used for reporting
errors.

The SOAP envelope
The SOAP <Envelope> is the root element in every SOAP message. It
contains two child elements, an optional <Header>, and a mandatory
<Body>.

The SOAP header
The SOAP <Header> is an optional subelement of the SOAP envelope. It is
used to pass application-related information that is to be processed by
SOAP nodes along the message path.

The SOAP body
The SOAP <Body> is a mandatory subelement of the SOAP envelope. It
contains information intended for the ultimate recipient of the message.

The SOAP fault
The SOAP <Fault> is a subelement of the SOAP body, which is used for
reporting errors.

© Copyright IBM Corp. 2005, 2012 11

http://www.w3.org
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2

With the exception of the <Fault> element, which is contained in the <Body> of a
SOAP message, XML elements in the <Header> and the <Body> are defined by the
applications that make use of them. However, the SOAP specification imposes
some constraints on their structure.

Figure 3 shows the main elements of a SOAP message.
Figure 4 on page 13 is an example of a SOAP message that contains header blocks

(the <m:reservation> and <n:passenger> elements) and a body (containing the
<p:itinerary> and <q:lodging> elements).

SOAP envelope

SOAP body
Body subelement

Body subelement

SOAP header
Header block

Header block

Figure 3. The structure of a SOAP message

12 CICS TS for z/OS 4.2: Web Services Guide

The SOAP header
The SOAP <Header> is an optional element in a SOAP message. It is used to pass
application-related information that is to be processed by SOAP nodes along the
message path.

The immediate child elements of the <Header> element are called header blocks. A
header block is an application-defined XML element It represents a logical
grouping of data that can be targeted at SOAP nodes that might be encountered in
the path of a message from a sender to an ultimate receiver.

SOAP header blocks can be processed by SOAP intermediary nodes and by the
ultimate SOAP receiver node. However, in a real application, not every node
processes every header block. Rather, each node is typically designed to process
particular header blocks, and, conversely, each header block is intended to be
processed by particular nodes.

The SOAP header allows features to be added to a SOAP message in a
decentralized manner without prior agreement between the communicating parties.

<?xml version=’1.0’ ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
<m:reservation xmlns:m="http://travelcompany.example.org/reservation"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
</m:reservation>
<n:passenger xmlns:n="http://mycompany.example.com/employees"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<n:name>Åke Jógvan Øyvind</n:name>
</n:passenger>
</env:Header>
<env:Body>
<p:itinerary

xmlns:p="http://travelcompany.example.org/reservation/travel">
<p:departure>

<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-14</p:departureDate>
<p:departureTime>late afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>

</p:departure>
<p:return>

<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12-20</p:departureDate>
<p:departureTime>mid-morning</p:departureTime>
<p:seatPreference/>

</p:return>
</p:itinerary>
<q:lodging
xmlns:q="http://travelcompany.example.org/reservation/hotels">
<q:preference>none</q:preference>
</q:lodging>
</env:Body>
</env:Envelope>

Figure 4. An example of a SOAP 1.2 message

Chapter 3. SOAP 13

SOAP defines a few attributes that can be used to indicate what will deal with a
feature and whether it is optional or mandatory. Such "control" information
includes, for example, passing directives or contextual information related to the
processing of the message. In this way, a SOAP message can be extended in an
application-specific manner.

Although the header blocks are application-defined, SOAP-defined attributes on
the header blocks indicate how the header blocks are to be processed by the SOAP
nodes. Note these important attributes:

encodingStyle
Indicates the rules used to encode the parts of a SOAP message. SOAP defines
a narrower set of rules for encoding data than the very flexible encoding that
XML allows.

role (SOAP 1.2)
actor (SOAP 1.1)

In SOAP 1.2, the role attribute specifies whether a particular node operates on
a message. If the role specified for the node matches the role attribute of the
header block, the node processes the header. If the roles do not match, the
node does not process the header block. In SOAP 1.1, the actor attribute has
the same function.

Roles can be defined by the application, and are designated by a URI. For
example, http://example.com/Log might designate the role of a node that
performs logging. Header blocks that are to be processed by this node specify
env:role="http://example.com/Log", where the namespace prefix env is
associated with the SOAP namespace name of http://www.w3.org/2003/05/
soap-envelope.

The SOAP 1.2 specification defines three standard roles in addition to the ones
that are defined by the application:

http://www.w3.org/2003/05/soap-envelope/none
None of the SOAP nodes on the message path will process the header
block directly. Header blocks with this role can be used to carry data that
is required for processing of other SOAP header blocks.

http://www.w3.org/2003/05/soap-envelope/next
All SOAP nodes on the message path are expected to examine the header
block, provided that the header has not been removed by a node earlier in
the message path.

http://www.w3.org/2003/05/soap-envelope/ultimateReceiver
Only the ultimate receiver node is expected to examine the header block.

mustUnderstand
This attribute is used to ensure that SOAP nodes do not ignore header blocks
that are important to the overall purpose of the application. If a SOAP node
determines, using the role or actor attribute, that it will process a header block,
and the mustUnderstand attribute has a value of “true”, the node must either
process the header block in a manner consistent with its specification or not at
all (and throw a fault). But if the attribute has a value of “false”, the node is
not obliged to process the header block.

In effect, the mustUnderstand attribute indicates whether processing of the
header block is mandatory or optional.

The mustUnderstand attribute has these values:

true (SOAP 1.2)

14 CICS TS for z/OS 4.2: Web Services Guide

1 (SOAP 1.1)
The node must either process the header block in a manner consistent with
its specification, or not at all (and throw a fault).

false (SOAP 1.2)
0 (SOAP 1.1)

The node is not obliged to process the header block.

relay (SOAP 1.2 only)
When a SOAP intermediary node processes a header block, it removes it from
the SOAP message. By default, it also removes any header blocks that it
ignored, because the mustUnderstand attribute had a value of “false”.
However, when the relay attribute is specified with a value of “true”, the node
retains the unprocessed header block in the message.

The SOAP body
The <Body> is the mandatory element in the SOAP envelope, in which the main
end-to-end information conveyed in a SOAP message is carried.

The <Body> element and its associated child elements are used to exchange
information between the initial SOAP sender and the ultimate SOAP receiver.
SOAP defines one child element for the <Body>: the <Fault> element, which is
used for reporting errors. Other elements in the <Body> are defined by the web
service that uses them.

The SOAP fault
The SOAP <Fault> element carries error and status information in the SOAP
message.

If an error occurs in a web service, a fault message is returned to the client. The
basic structure of the fault message is defined in the SOAP specifications. Each
fault message can include XML that describes the specific error condition. For
example, if an application abend occurs in a CICS web service, a fault message is
returned to the client reporting the abend.

CICS can send different types of fault message:
v Standard SOAP fault messages are defined by the SOAP specifications or one of

the web service specifications that are supported in CICS. The faults report
common error conditions, such as malformed SOAP envelopes.

v Application SOAP fault messages are generated using the EXEC CICS SOAPFAULT
API commands in response to conditions that are detected or handled by the
application. The structure of these fault messages is known to the application,
but not to CICS.

v SOAP handler fault messages are generated by the SOAP handler programs in
response to general error handling in CICS. For example, the SOAP handler
programs send SOAP faults for abends, XML parsing failures, and other
common errors.

v Application handler fault messages are generated by CICS SOAP application
handlers in response to finding errors when processing the body of a SOAP
message. These faults occur during the process of transforming the XML into
binary application data or when generating the response.

If an error occurs, the SOAP <Fault> element must be a body entry and must not
be present more than once in a <Body> element. The XML elements inside the
SOAP <Fault> element are different in SOAP 1.1 and SOAP 1.2.

Chapter 3. SOAP 15

|
|
|
|

SOAP 1.1

In SOAP 1.1, the SOAP <Fault> element contains the following elements:

<faultcode>
The <faultcode> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form that can be processed by
software. SOAP defines a small set of SOAP fault codes covering basic
SOAP faults, and this set can be extended by applications.

<faultstring>
The <faultstring> element is a mandatory element in the <Fault> element.
It provides information about the fault in a form intended for a human
reader.

<faultactor>
The <faultactor> element contains the URI of the SOAP node that
generated the fault. A SOAP node that is not the ultimate SOAP receiver
must include the <faultactor> element when it creates a fault. An ultimate
SOAP receiver is not obliged to include this element, but may do so.

<detail>
The <detail> element carries application-specific error information related
to the <Body> element. It must be present if the contents of the <Body>
element were not successfully processed. It must not be used to carry
information about error information belonging to header entries. Detailed
error information belonging to header entries must be carried in header
entries.

SOAP 1.2

In SOAP 1.2, the SOAP <Fault> element contains the following elements:

<Code>
The <Code> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form that can be processed by
software. It contains a <Value> element and an optional <Subcode> element.

<Reason>
The <Reason> element is a mandatory element in the <Fault> element. The
<Reason> element contains one or more <Text> elements, each of which
contains information about the fault in a different native language.

<Node>
The <Node> element contains the URI of the SOAP node that generated the
fault. A SOAP node that is not the ultimate SOAP receiver must include
the <Node> element when it creates a fault. An ultimate SOAP receiver is
not obliged to include this element, but may do so.

<Role>
The <Role> element contains a URI that identifies the role in which the
node was operating at the point the fault occurred.

<Detail>
The <Detail> element is an optional element, which contains
application-specific error information related to the SOAP fault codes
describing the fault. The presence of the <Detail> element has no
significance regarding which parts of the faulty SOAP message were
processed.

16 CICS TS for z/OS 4.2: Web Services Guide

SOAP fault example and schemas

The following example shows a SOAP fault message that is generated by the
application handler, DFHPITP, when processing the body of a SOAP message.
<SOAP-ENV:Fault xmlns="">

<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Conversion to SOAP failed</faultstring>

<detail>
<CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
DFHPI1008 25/01/2010 14:16:50 IYCWZCFU 00340 XML
generation failed because of incorrect input
(CONTAINER_NOT_FOUND container name) for WEBSERVICE
servicename.
</CICSFault>

</detail>
</SOAP-ENV:Fault>

Most of the content in this example is common to all fault messages. The <Detail>
element contains the unique information that describes the problem that was
encountered by the application handler. This specific fault message contains a copy
of an error message that is written to the CICS message logs. If you want to parse
application handler SOAP faults programmatically, use the following XML schema:
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ibm.com/software/htp/cics/WSFault"
xmlns:tns="http://www.ibm.com/software/htp/cics/WSFault"
elementFormDefault="qualified">

<element name="CICSFault" type="string">
<annotation>

<documentation>
The value of this element is a text string that describes a
problem encountered during the processing of the Body of a
SOAP message.

</documentation>
</annotation>

</element>
</schema>

The general purpose fault messages are more complicated because the <Detail>
section can be structured in several different ways. If you want to parse SOAP
handler faults programmatically, use the XML schema that is supplied in
usshome/schemas/soapfault/soapfault.xsd, where usshome is the value of the
USSHOME system initialization parameter.

SOAP nodes
A SOAP node is the processing logic that operates on a SOAP message.

A SOAP node can perform these operations:
v Transmit a SOAP message
v Receive a SOAP message
v Process a SOAP message
v Relay a SOAP message

A SOAP node can be one of these types:

SOAP sender
A SOAP node that transmits a SOAP message.

Chapter 3. SOAP 17

SOAP receiver
A SOAP node that accepts a SOAP message.

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a
SOAP message path.

SOAP intermediary
A SOAP intermediary is both a SOAP receiver and a SOAP sender,
targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and acts to forward a SOAP message toward an
ultimate SOAP receiver.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It
processes the contents of the SOAP body and any SOAP header blocks
targeted at it. In some circumstances, a SOAP message might not reach an
ultimate SOAP receiver; for example, because of a problem at a SOAP
intermediary.

The SOAP message path
The SOAP message path is the set of SOAP nodes through which a single SOAP
message passes, including the initial SOAP sender, zero or more SOAP
intermediaries, and an ultimate SOAP receiver

In the simplest case, a SOAP message is transmitted between two nodes; that is,
from a SOAP sender to a SOAP receiver. However, in more complex cases, messages
can be processed by SOAP intermediary nodes, which receive a SOAP message and
then send it to the next node. Figure 5 shows an example of a SOAP message path,
in which a SOAP message is transmitted from the initial SOAP sender node to the
ultimate SOAP receiver node, passing through two SOAP intermediary nodes on
its route.

A SOAP intermediary is both a SOAP receiver and a SOAP sender. It can, and in
some cases must, process the header blocks in the SOAP message, and it forwards
the SOAP message toward its ultimate receiver.

Initial
SOAP
sender

Ultimate
SOAP

receiver

SOAP
intermediary

SOAP
intermediary

SOAP
message

SOAP
message

SOAP
message

Figure 5. An example of a SOAP message path

18 CICS TS for z/OS 4.2: Web Services Guide

The ultimate SOAP receiver is the final destination of a SOAP message. As well as
processing the header blocks, it processes the SOAP body. In some circumstances, a
SOAP message might not reach an ultimate SOAP receiver; for example, because of
a problem at a SOAP intermediary.

Chapter 3. SOAP 19

20 CICS TS for z/OS 4.2: Web Services Guide

Chapter 4. How CICS supports web services

CICS supports two different approaches to the deployment of your CICS
applications in a web services environment. One approach enables rapid
deployment, with the least amount of programming effort; the other approach
gives you complete flexibility and control over your web service applications,
using code that you write to suit your particular needs. Both approaches are
underpinned by an infrastructure consisting of one or more pipelines and message
handler programs that operate on web service requests and responses.

When you deploy your CICS applications in a web services environment you can
choose from the following options:
v Use the CICS web services assistant to help you deploy an application with the

least amount of programming effort.
For example, if you want to expose an existing application as a web service, you
can start with a high-level language data structure and generate the web services
description. Alternatively, if you want to communicate with an existing web
service, you can start with its web service description and generate a high-level
language structure that you can use in your program.
The CICS web services assistant also generates the CICS resources that you need
to deploy your application. And when your application runs, CICS transforms
your application data into a SOAP message on output and transforms the SOAP
message back to application data on input.

v Take complete control over the processing of your data by writing your own
code to map between your application data and the message that flows between
the service requester and provider.
For example, if you want to use non-SOAP messages within the web service
infrastructure, you can write your own code to transform between the message
format and the format used by your application.

Whichever approach you follow, you can use your own message handlers to
perform additional processing on your request and response messages, or use
CICS-supplied message handlers that are designed especially to help you process
SOAP messages.

Message handlers and pipelines
A message handler is a program in which you can perform your own processing of
web service requests and responses. A pipeline is a set of message handlers that are
executed in sequence.

There are two distinct phases in the operation of a pipeline:
1. The request phase, during which CICS invokes each handler in the pipeline in

turn. Each message handler can process the request before returning control to
CICS.

2. This is followed by the response phase, during which CICS again invokes each
handler in turn, but with the sequence reversed. That is, the message handler
that is invoked first in the request phase, is invoked last in the response phase.
Each message handler can process the response during this phase.

© Copyright IBM Corp. 2005, 2012 21

Not every request is succeeded by a response; some applications use a one-way
message flow from service requester to provider. In this case, although there is
no message to be processed, each handler is invoked in turn during the
response phase.

Figure 6 shows a pipeline of three message handlers:

In this example, the handlers are executed in the following sequence:

In the request phase
1. Handler 1
2. Handler 2
3. Handler 3

In the response phase
1. Handler 3
2. Handler 2
3. Handler 1

In a service provider, the transition between the phases normally occurs in the last
handler in the pipeline (known as the terminal handler) which absorbs the request,
and generates a response; in a service requester, the transition occurs when the
request is processed in the service provider. However, a message handler in the
request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For
example:
v A message handler that performs encryption and decryption will receive an

encrypted message on input, and pass the decrypted message to the next
handler. On output, it will do the opposite: receive a plain text message, and
pass an encrypted version to the following handler.

v A message handler that performs logging will examine a message, and copy the
relevant information from that message to the log. The message that is passed to
the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be
aware that the structure of the pipeline in this release of CICS is not the same as
that used in the feature.

Transport-related handlers
CICS supports the use of two transport mechanisms between the web service
requester and the provider. In some cases, you might require different message
handlers to be invoked, depending upon which transport mechanism is in use. For
example, you might want to include message handlers that perform encryption of
parts of your messages when you are using the HTTP transport to communicate

Request

Response

Handler
1

Handler
2

Handler
3

Request

Response

Figure 6. A generic CICS pipeline

22 CICS TS for z/OS 4.2: Web Services Guide

on an external network. But encryption might not be required when you are using
the MQ transport on a secure internal network.

To support this, you can configure your pipeline to specify handlers that are
invoked only when a particular transport (HTTP or MQ) is in use. For a service
provider, you can be even more specific, and specify handlers that are invoked
only when a particular named resource (a TCPIPSERVICE for the HTTP transport,
a QUEUE for the MQ transport) is in use.

This is illustrated in Figure 7:

In this example, which applies to a service provider:
v Handler 1 is invoked for messages that use the MQ transport.
v Handlers 2 and 3 are invoked for messages that use the HTTP transport.
v Handlers 4 and 5 are invoked for all messages.
v Handler 5 is the terminal handler.

Interrupting the flow
During processing of a request, a message handler can decide not to pass a
message to the next handler, but can, instead, generate a response. Normal
processing of the message is interrupted, and some handlers in the pipeline are not
invoked. For example, suppose that handler 2 in Figure 8 is responsible for
performing security checks.

If the request does not bear the correct security credentials, then, instead of passing
the request to handler 3, handler 2 suppresses the request and constructs a suitable
response. The pipeline is now in the response phase, and when handler 2 returns
control to CICS, the next handler invoked is handler 1, and handler 3 is bypassed
altogether.

A handler that interrupts the normal message flow in this way must only do so if
the originator of the message expects a response; for example, a handler should
not generate a response when an application uses a one-way message flow from
service requester to provider.

Request

Response

Handler
1

Handler
4

Handler
5

Handler
2

Handler
3

Request

Response

HTTP

WebSphere MQ

Figure 7. Pipeline with transport-related handlers

Request

Response

Handler
1

Handler
2

Handler
3

Figure 8. Interrupting the pipeline flow

Chapter 4. How CICS supports web services 23

A service provider pipeline
In a service provider pipeline, CICS receives a request, which is passed through a
pipeline to the target application program. The response from the application is
returned to the service requester through the same pipeline.

When CICS is in the role of service provider, it performs the following operations:
1. Receive the request from the service requester.
2. Examine the request, and extract the contents that are relevant to the target

application program.
3. Invoke the application program, passing data extracted from the request.
4. When the application program returns control, construct a response, using data

returned by the application program.
5. Send a response to the service requester.

Figure 9 illustrates a pipeline of three message handlers in a service provider
setting:

1. CICS receives a request from the service requester. It passes the request to
message handler 1.

2. Message handler 1 performs some processing, and passes the request to
handler 2 (To be precise, it returns control to CICS, which manages the
pipeline. CICS then passes control to the next message handler).

3. Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

4. Message handler 3 is the terminal handler of the pipeline. It uses the
information in the request to invoke the application program. It then uses the
output from the application program to generate a response, which it passes
back to handler 2.

5. Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

6. Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the service requester.

A service requester pipeline
In a service requester pipeline, an application program creates a request, which is
passed through a pipeline to the service provider. The response from the service
provider is returned to the application program through the same pipeline.

CICS
Application

program

Request

Response

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
requester

CICS Transaction Server

Figure 9. A service provider pipeline

24 CICS TS for z/OS 4.2: Web Services Guide

When CICS is in the role of service requester, it performs the following operations:
1. Use data provided by the application program to construct a request.
2. Send the request to the service provider.
3. Receive a response from the service provider.
4. Examine the response, and extract the contents that are relevant to the original

application program.
5. Return control to the application program.

Figure 10 illustrates a pipeline of three message handlers in a service requester
setting:

1. An application program creates a request.
2. Message handler 1 receives the request from the application program, performs

some processing, and passes the request to handler 2 (To be precise, it returns
control to CICS, which manages the pipeline. CICS then passes control to the
next message handler).

3. Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

4. Message handler 3 receives the request from handler 2, performs some
processing, and passes the request to the service provider.

5. Message handler 3 receives the response from the service provider, performs
some processing, and passes it to handler 2.

6. Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

7. Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the application program.

CICS pipelines and SOAP
The pipeline which CICS uses to process web service requests and responses is
generic, in that there are few restrictions on what processing can be performed in
each message handler. However, many web service applications use SOAP
messages, and any processing of those messages should comply with the SOAP
specification. Therefore, CICS provides special SOAP message handler programs that
can help you to configure your pipeline as a SOAP node.
v A pipeline can be configured for use in a service requester, or in a service

provider:
– A service requester pipeline is the initial SOAP sender for the request, and the

ultimate SOAP receiver for the response
– A service provider pipeline is the ultimate SOAP receiver for the request, and

the initial SOAP sender for the response

Request

Response

CICS
Application

program

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
provider

CICS Transaction Server

Figure 10. A service requester pipeline

Chapter 4. How CICS supports web services 25

You cannot configure a CICS pipeline to function as a SOAP intermediary.
v A service requester pipeline can be configured to support SOAP 1.1 or SOAP 1.2,

but not both. However, a service provider pipeline can be configured to support
both SOAP 1.1 and SOAP 1.2. Within your CICS system, you can have many
pipelines, some of which support SOAP 1.1 or SOAP 1.2 and some of which
support both.

v You can configure a CICS pipeline to have more than one SOAP message
handler.

v The CICS-provided SOAP message handlers can be configured to invoke one or
more user-written header-handling routines.

v The CICS-provided SOAP message handlers can be configured to enforce some
aspects of compliance with the WS-I Basic Profile Version 1.1, and to enforce the
presence of particular headers in the SOAP message.

The SOAP message handlers, and their header handling routines are specified in
the pipeline configuration file.

SOAP messages and the application data structure
In many cases, the CICS web services assistant can generate the code to transform
the data between a high-level data structure used in an application program, and
the contents of the <Body> element of a SOAP message. In these cases, when you
write your application program, you do not need to parse or construct the SOAP
body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the
application data structure, and about the format of the SOAP messages. This
information is held in two files:
v The web service binding file

This file is generated by the CICS web services assistant from an application
language data structure, using utility program DFHLS2WS, or from a web
service description, using utility program DFHWS2LS. CICS uses the binding file
to generate the resources used by the web service application, and to perform
the mapping between the application's data structure and the SOAP messages.

v The web service description
This may be an existing web service description, or it may be generated from an
application language data structure, using utility program DFHLS2WS. CICS
uses the web service description to perform full validation of SOAP messages.

Figure 11 on page 27 shows where these files are used in a service provider.

26 CICS TS for z/OS 4.2: Web Services Guide

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from an inbound request, and passes the
SOAP body to the data mapper function. This uses the web service binding file to
map the contents of the SOAP body to the application's data structure. If full
validation of the SOAP message is active, then the SOAP body is validated against
the web service description. If there is an outbound response, the process is
reversed.

Figure 12 shows where these files are used in a service requester.

For an outbound request, the data mapper function constructs a SOAP body from
the application's data structure, using information from the web service binding
file. A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) adds the SOAP envelope. If there is an inbound response, the process is
reversed. If full validation of the SOAP message is active, then the inbound SOAP
body is validated against the web service description.

CICS
Application

program

Request

Response

CICS Web services

Pipeline Data
mapper

Service
requester

CICS Transaction Server

Web
service

description

Web
service
binding

SOAP body interface

HLL data structure interfaceSOAP envelope

Figure 11. Mapping the SOAP body to the application data structure in a service provider

CICS
Application

program

Request

Response

CICS Web services

PipelineData
mapper

Service
provider

CICS Transaction Server

Web
service

description

Web
service
binding

SOAP body interface

EXEC CICS INVOKE WEBSERVICE
with HLL data structure interface

SOAP envelope

Figure 12. Mapping the SOAP body to the application data structure in a service requester

Chapter 4. How CICS supports web services 27

In both cases, the execution environment that allows a particular CICS application
program to operate in a web services setting is defined by three objects. These are
the pipeline, the web service binding file, and the web service description. The
three objects are defined to CICS as attributes of the WEBSERVICE resource
definition.

There are some situations in which, even though you are using SOAP messages,
you cannot use the transformation that the CICS web services assistant generates:
v When the same data cannot be represented in the SOAP message and in the

high-level language.
All the high-level languages that CICS supports, and XML Schema, support a
variety of different data types. However, there is not a one-to-one
correspondence between the data types used in the high-level languages, and
those used in XML Schema, and there are cases where data can be represented
in one, but not in the other. In this situations, you should consider one of the
following:
– Change your application data structure. This may not be feasible, as it might

entail changes to the application program itself.
– Construct a wrapper program, which transforms the application data into a

form that CICS can then transform into a SOAP message body. If you do this,
you can leave your application program unchanged. In this case CICS web
service support interacts directly with the wrapper program, and only
indirectly with the application program.

v When your application program is in a language which is not supported by the
CICS web services assistant.
In this situation, you should consider one of the following:
– Construct a wrapper program that is written in one of the languages that the

CICS web services assistant does support (COBOL, PL/I, C or C++).
– Instead of using the CICS web services assistant, write your own program to

perform the mapping between the SOAP messages and the application
program's data structure.

WSDL and the application data structure
A web service description contains abstract representations of the input and output
messages used by the service. CICS uses the web service description to construct
the data structures used by application programs. At run time, CICS performs the
mapping between the application data structures and the messages.

The description of a web service contains, among other things:
v One or more operations
v For each operation, an input message and an optional output message
v For each message, the message structure, defined in terms of XML data types.

Complex data types used in the messages are defined in an XML schema which
is contained in the <types> element within the web service description. Simple
messages can be described without using the <types> element.

WSDL contains an abstract definition of an operation, and the associated messages;
it cannot be used directly in an application program. To implement the operation, a
service provider must do the following:
v It must parse the WSDL, in order to understand the structure of the messages
v It must parse each input message, and construct the output message

28 CICS TS for z/OS 4.2: Web Services Guide

v It must perform the mappings between the contents of the input and output
messages, and the data structures used in the application program

A service requester must do the same in order to invoke the operation.

When you use the the CICS web services assistant, much of this is done for you,
and you can write your application program without detailed understanding of
WSDL, or of the way the input and output messages are constructed.

The CICS web services assistant consists of two utility programs:

DFHWS2LS
This utility program takes a web service description as a starting point. It
uses the descriptions of the messages, and the data types used in those
messages, to construct high-level language data structures that you can use
in your application programs.

DFHLS2WS
This utility program takes a high-level language data structure as a starting
point. It uses the structure to construct a web services description that
contains descriptions of messages, and the data types used in those
messages derived from the language structure.

Both utility programs generate a web services binding file that CICS uses at run
time to perform the mapping between the application program's data structures
and the SOAP messages.

An example of COBOL to WSDL mapping

This example shows how the data structure used in a COBOL program is
represented in the web services description that is generated by the CICS web
services assistant.

Figure 13 shows a simple COBOL data structure:

The key elements in the corresponding fragment of the web services description
are shown in Figure 14 on page 30:

* Catalogue COMMAREA structure
03 CA-REQUEST-ID PIC X(6).
03 CA-RETURN-CODE PIC 9(2).
03 CA-RESPONSE-MESSAGE PIC X(79).

* Fields used in Place Order
03 CA-ORDER-REQUEST.

05 CA-USERID PIC X(8).
05 CA-CHARGE-DEPT PIC X(8).
05 CA-ITEM-REF-NUMBER PIC 9(4).
05 CA-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(888).

Figure 13. COBOL record definition of an input message defined in WSDL

Chapter 4. How CICS supports web services 29

WSDL and message exchange patterns
A WSDL 2.0 document contains a message exchange pattern (MEP) that defines the
way that SOAP 1.2 messages are exchanged between the web service requester and
web service provider.

CICS supports four out of the eight message exchange patterns that are defined in
the WSDL 2.0 Part 2: Adjuncts specification and the WSDL 2.0 Part 2: Additional
MEPs specification for both service provider and service requester applications.
The following MEPs are supported:

In-Only
A request message is sent to the web service provider, but the provider is
not allowed to send any type of response to the web service requester.
v In provider mode, when CICS receives a request message from a web

service that uses the In-Only MEP, it does not return a response
message. The DFHNORESPONSE container is put in the SOAP handler
channel to indicate that the pipeline must not send a response message.

<xsd:sequence>
<xsd:element name="CA-REQUEST-ID" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="6"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="CA-RETURN-CODE" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:short">

<xsd:maxInclusive value="99"/>
<xsd:minInclusive value="0"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="CA-RESPONSE-MESSAGE" nillable="false">

...
</xsd:element>
<xsd:element name="CA-ORDER-REQUEST" nillable="false">

<xsd:complexType mixed="false">
<xsd:sequence>

<xsd:element name="CA-USERID" nillable="false">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="CA-CHARGE-DEPT" nillable="false">

...
</xsd:element>
<xsd:element name="CA-ITEM-REF-NUMBER" nillable="false">

...
</xsd:element>
<xsd:element name="CA-QUANTITY-REQ" nillable="false">

...
</xsd:element>
<xsd:element name="FILLER" nillable="false">

...
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

Figure 14. WSDL fragment derived from a COBOL data structure

30 CICS TS for z/OS 4.2: Web Services Guide

v In requester mode, CICS sends the request message to the web service
provider and does not wait for a response.

In-Out
A request message is sent to the web service provider, and a response
message is returned to the web service requester. The response message
could be a normal SOAP message or a SOAP fault.
v In provider mode, when CICS receives a request message from a web

service that uses the In-Out MEP, it returns a response message to the
requester.

v In requester mode, CICS sends a request message and waits for a
response. This response is either a normal response message or a SOAP
fault message. The length of time that CICS waits for a response is
configured in the pipeline and applies to all web services using that
pipeline. If the request times out before CICS receives a response, an
error is returned to the service requester application.

In-Optional-Out
A request message is sent to the web service provider, and a response
message is optionally returned to the web service requester. If there is a
response, it could be either a normal SOAP message or a SOAP fault.
v In provider mode, the decision about whether to return a SOAP

response message, a SOAP fault, or no response, happens at run time
and is dependant on the service provider application logic. If CICS does
not send a response to the web service requester, the DFHNORESPONSE
container is put in the SOAP handler channel to indicate that the
pipeline must not send a response message. If no message is sent, the
service provider application must delete the DFHWS-DATA container
from the channel.

v In requester mode, CICS sends a request message and waits for a
response from the web service requester. If the request times out before
a response is received, CICS assumes that the message was received
successfully and that the provider did not need to send a response. The
length of time that CICS waits for a response is configured in the
pipeline and applies to all web services using that pipeline.

Robust In-Only
A request message is sent to the web service provider, and a response
message is only returned to the web service requester if an error occurs. If
there is an error, a SOAP fault message is sent to the requester.
v In provider mode, if the pipeline successfully passes the request message

to the application, a DFHNORESPONSE container is put in the SOAP
handler channel to indicate that the pipeline must not send a response
message. If an error occurs in the pipeline, a SOAP fault message is
returned to the requester.

v In requester mode, CICS sends the request message to the web service
provider and waits for a specified period before timing out. The length
of time that CICS waits for a response is configured in the pipeline and
applies to all web services using that pipeline. If there is a timeout, CICS
assumes that the request message was received successfully.

For more information on message exchange patterns in WSDL 2.0, see the
following W3C specifications:
v WSDL 2.0 Part 2: Adjuncts: .
v WSDL 2.0 Part 2: Additional MEPs: .

Chapter 4. How CICS supports web services 31

Related concepts:
“Message exchanges” on page 293
Web Services Addressing (WS-Addressing) supports these message exchanges:
one-way, two-way request-response, synchronous request-response, and
asynchronous request-response.

The web service binding file
The web service binding file contains information that CICS uses to map data
between input and output messages, and application data structures.

A web service description contains abstract representations of the input and output
messages used by the service. When a service provider or service requester
application executes, CICS needs information about how the contents of the
messages maps to the data structures used by the application. This information is
held in a web service binding file.

web service binding files are created:
v By utility program DFHWS2LS when language structures are generated from

WSDL.
v By utility program DFHLS2WS when WSDL is generated from a language

structure.

At run time, CICS uses information in the web service binding file to perform the
mapping between application data structures and SOAP messages. web service
binding files are defined to CICS in the WSBIND attribute of the WEBSERVICE
resource.
Related information:
WEBSERVICE resource definitions

External standards
CICS support for web services conforms to a number of industry standards and
specifications.

SOAP 1.1 and 1.2
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.

The protocol consists of three parts:
v An envelope that defines a framework for describing what is in a message and

how to process it.
v A set of encoding rules for expressing instances of application-defined data

types.
v A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specifications for SOAP are published by the World Wide Web Consortium
(W3C). The specification for SOAP 1.1 is described as a note at
http://www.w3.org/TR/SOAP. This specification has not been endorsed by the
W3C, but forms the basis for the SOAP 1.2 specification. It expands the SOAP
acronym to Simple Object Access Protocol.

32 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/SOAP

SOAP 1.2 is a W3C recommendation and is published in two parts:
v Part 1: Messaging Framework is published at http://www.w3.org/TR/soap12-

part1/ .
v Part 2: Adjuncts is published at http://www.w3.org/TR/soap12-part2/.

The specification also includes a primer that is intended to provide a tutorial on
the features of the SOAP Version 1.2 specification, including usage scenarios. The
primer is published at http://www.w3.org/TR/soap12-part0/. The specification
for SOAP 1.2 does not expand the acronym.

SOAP 1.1 Binding for MTOM 1.0
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

The aim of this specification is to define the minimum changes to MTOM and XOP
to enable these facilities to be used interoperably with SOAP 1.1 and to largely
reuse the SOAP 1.2 MTOM/XOP implementation.

The SOAP 1.1 Binding for MTOM 1.0 specification is published as a formal
submission by the World Wide Web Consortium (W3C) at http://www.w3.org/
Submission/soap11mtom10/.

SOAP Message Transmission Optimization Mechanism
(MTOM)

SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related pair
of specifications that defines conceptually how to optimize the transmission and
format of a SOAP message.

MTOM defines:
1. how to optimize the transmission of base64binary data in SOAP messages in

abstract terms
2. how to implement optimized MIME multipart serialization of SOAP messages

in a binding independent way using XOP

The implementation of MTOM relies on the related XML-binary Optimized
Packaging (XOP) specification. As these two specifications are so closely linked,
they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a
W3C Recommendation at http://www.w3.org/TR/soap12-mtom/.

Web Services Addressing 1.0
Web Services Addressing 1.0 (WS-Addressing) is a specification that defines a
transport-independent mechanism for passing messaging information between Web
services.

The WS-Addressing specification defines two constructs, message addressing
properties and endpoint references, that normalize the information that is typically
provided by transport protocols and messaging systems.

The specification is published by the World Wide Web Consortium (W3C) as a
W3C recommendation and is published in three parts:
v WS-Addressing 1.0 - Core

Chapter 4. How CICS supports web services 33

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/
http://www.w3.org/TR/ws-addr-core

v WS-Addressing 1.0 - SOAP binding
v WS-Addressing 1.0 - Metadata

You are recommended to follow these W3C specifications when using
WS-Addressing with CICS.

For interoperability, CICS tolerates the W3C WS-Addressing submission
specification only when the namespace is set to: http://schemas.xmlsoap.org/ws/
2004/08/addressing.

The CICS API commands support MAPs and EPRs that follow the WS-Addressing
recommendation specifications; however, the API commands do not support MAPs
and EPRs that follow the WS-Addressing submission specification.

The addressing context maintains all the MAPs at the level of the recommendation
specifications. If required, these MAPs can be converted to, or from, the submission
specification level when they are applied to, or extracted from, the SOAP message.

Web Services Atomic Transaction Version 1.0
Web Services Atomic Transaction Version 1.0 (or WS-AtomicTransaction) is a protocol
that defines the atomic transaction coordination type for transactions of a short
duration. It is used with the extensible coordination framework described in the
Web Services Coordination Version 1.0 (or WS-Coordination) specification.

The WS-AtomicTransaction specification and the WS-Coordination specification
define protocols for short term transactions that enable transaction processing
systems to interoperate in a Web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency,
isolation, and durability.

The specification for WS-AtomicTransaction is published at http://www.ibm.com/
developerworks/library/specification/ws-tx/.

Web Services Coordination Version 1.0
Web Services Coordination Version 1.0 (or WS-Coordination) is an extensible
framework for providing protocols that coordinate the actions of distributed
applications. These coordination protocols are used to support a number of
applications, including those that need to reach consistent agreement on the
outcome of distributed activities.

The framework enables an application service to create a context needed to
propagate an activity to other services and to register for coordination protocols.
The framework enables existing transaction processing, workflow, and other
systems for coordination to hide their proprietary protocols and to operate in a
heterogeneous environment.

The specification for WS-Coordination is published at http://www.ibm.com/
developerworks/library/specification/ws-tx/.

Web Services Description Language Version 1.1 and 2.0
Web Services Description Language (WSDL) is an XML format for describing network
services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

34 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/ws-addr-soap
http://www.w3.org/TR/ws-addr-metadata
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

The operations and messages are described abstractly, and then bound to a
concrete network protocol and message format to define an endpoint. Related
concrete end points are combined into abstract endpoints (services).

WSDL is extensible to allow the description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.
The WSDL 1.1 specification only defines bindings that describe how to use WSDL
in conjunction with SOAP 1.1, HTTP GET and POST, and MIME.

WSDL 2.0 provides a model as well as an XML format for describing Web services.
It enables you to separate the description of the abstract functionality offered by a
service from the concrete details of a service description, such as "how" and
"where" that functionality is offered. It also describes extensions for Message
Exchange Patterns, SOAP modules, and a language for describing such concrete
details for SOAP 1.2 and HTTP. The WSDL 2.0 specification also resolves many
technical issues and limitations that are present in WSDL 1.1.

The specification for WSDL 1.1 is published by the World Wide Web Consortium
(W3C) as a W3C Note at http://www.w3.org/TR/wsdl.

The latest specification for WSDL 2.0 is published as a W3C candidate
recommendation at http://www.w3.org/TR/wsdl20.

Web Services Security: SOAP Message Security
Web Services Security (WSS): SOAP Message Security is a set of enhancements to
SOAP messaging that provides message integrity and confidentiality. WSS: SOAP
Message Security is extensible, and can accommodate a variety of security models
and encryption technologies.

WSS: SOAP Message Security provides three main mechanisms that can be used
independently or together. They are:
v The ability to send security tokens as part of a message, and for associating the

security tokens with message content
v The ability to protect the contents of a message from unauthorized and

undetected modification (message integrity)
v The ability to protect the contents of a message from unauthorized disclosure

(message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service
extensions and application-specific protocols to satisfy a variety of security
requirements.

The specification is published by the Organization for the Advancement of
Structured Information Standards (OASIS) at http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

Web Services Trust Language
Web Services Trust Language (or WS-Trust) defines extensions that build on Web
Services Security to provide a framework for requesting and issuing security
tokens, and to broker trust relationships.

WS-Trust describes:
1. Methods for issuing, renewing, and validating security tokens.
2. Ways to establish, access the presence of, and broker trust relationships.

Chapter 4. How CICS supports web services 35

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.oasis-open.org
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

CICS supports the February 2005 version of the specification which is published at
http://www-128.ibm.com/developerworks/library/specification/ws-trust/.

WSDL 1.1 Binding Extension for SOAP 1.2
WSDL 1.1 Binding Extension for SOAP 1.2 is a specification that defines the binding
extensions that are required to indicate that Web service messages are bound to the
SOAP 1.2 protocol.

The aim of this specification is to provide functionality that is comparable with the
binding for SOAP 1.1.

This specification is published as a formal submission request by the World Wide
Web Consortium (W3C) at http://www.w3.org/Submission/wsdl11soap12/.

WS-I Basic Profile Version 1.1
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web services
specifications, along with clarifications and amendments to those specifications,
which together promote interoperability between different implementations of Web
services.

The WS-I BP 1.1 is derived from Basic Profile Version 1.0 by incorporating its
published errata and separating out the requirements that relate to the serialization
of envelopes and their representation in messages. These requirements are now
part of the Simple SOAP Binding Profile Version 1.0.

To summarize, the WS-I Basic Profile Version 1.0 has now been split into two
separately published profiles. These are:
v WS-I Basic Profile Version 1.1
v WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

The reason for this separation is to enable the Basic Profile 1.1 to be composed
with any profile that specifies envelope serialization, including the Simple SOAP
Binding Profile 1.0.

The specification for WS-I BP 1.1 is published by the Web Services Interoperability
Organization (WS-I), and can be found at http://www.ws-i.org/Profiles/
BasicProfile-1.1.html.

WS-I Simple SOAP Binding Profile Version 1.0
WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of non-proprietary
Web services specifications, along with clarifications and amendments to those
specifications which promote interoperability.

The SSBP 1.0 is derived from the WS-I Basic Profile 1.0 requirements that relate to
the serialization of the envelope and its representation in the message.

WS-I Basic Profile 1.0 has now been split into two separately published profiles.
These are:
v WS-I Basic Profile Version 1.1
v WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

36 CICS TS for z/OS 4.2: Web Services Guide

http://www-128.ibm.com/developerworks/library/specification/ws-trust/
http://www.w3.org
http://www.w3.org
http://www.w3.org/Submission/wsdl11soap12/
http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

The specification for SSBP 1.0 is published by the Web Services Interoperability
Organization (WS-I), and can be found at http://www.ws-i.org/Profiles/
SimpleSoapBindingProfile-1.0.html.

XML (Extensible Markup Language) Version 1.0
Extensible Markup Language (XML) 1.0 is a subset of SGML. Its goal is to enable
generic SGML to be served, received, and processed on the World Wide Web in the
way that is now possible with HTML.

XML has been designed for ease of implementation and for interoperability with
both SGML and HTML.

CICS supports the fourth edition of the XML Version 1.0 specification. The
specification and its errata is published by the World Wide Web Consortium (W3C)
as a W3C Recommendation at XML Version 1.0.

XML-binary Optimized Packaging (XOP)
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications that
defines how to efficiently serialize XML Infosets that have certain types of content.

XOP does this by:
1. packaging the XML in some format. This is called the XOP package. The

specification mentions MIME Multipart/Related but does not limit it to this
format.

2. Re-encoding all or part of base64binary content to reduce its size.
3. Placing the base64binary content elsewhere in the package and replacing the

encoded content with XML that references it.

XOP is used as an implementation of the MTOM specification, which defines the
optimization of SOAP messages. As these two specifications are so closely linked,
they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a
W3C Recommendation at http://www.w3.org/TR/xop10/

XML Encryption Syntax and Processing
XML Encryption Syntax and Processing specifies a process for encrypting data and
representing the result in XML. The data may be arbitrary data (including an XML
document), an XML element, or XML element content. The result of encrypting
data is an XML Encryption element which contains or references the cipher data.

XML Encryption Syntax and Processing is a recommendation of the World Wide Web
Consortium (W3C) and is published at http://www.w3.org/TR/xmlenc-core.

XML-Signature Syntax and Processing
XML-Signature Syntax and Processing specifies processing rules and syntax for XML
digital signatures.

XML digital signatures provide integrity, message authentication, and signer
authentication services for data of any type, whether located within the XML that
includes the signature or elsewhere.

Chapter 4. How CICS supports web services 37

http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.w3.org
http://www.w3.org/TR/REC-xml
http://www.w3.org
 http://www.w3.org/TR/xop10/
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmlenc-core

The specification for XML-Signature is published by World Wide Web Consortium
(W3C) at http://www.w3.org/TR/xmldsig-core.

CICS compliance with Web services standards
CICS is compliant with the supported Web services standards and specifications, in
that it allows you to generate and deploy Web services that are compliant.

It should be noted that CICS does not enforce this compliancy. For example, in the
case of support for the WS-I Basic Profile 1.1 specification, CICS allows you to
apply additional qualities of service to your Web service that could break the
interoperability outlined in this Profile.

How CICS complies with WS-Addressing
CICS complies with the Core and SOAP binding parts of the WS-Addressing
specification. CICS complies with the Metadata part of the specification with one
exception.

When CICS issues a WS-Addressing fault, it does not conform to the specification.
CICS follows the format described in the Metadata specification for the default
action when building a WS-Addressing fault, but it does not include the final
delimiter and Fault name.

For WSDL 1.1, the default action according to the specification is:
[target namespace][delimiter][port type name][delimiter][operation name][delimiter]Fault[delimiter][fault name]

However, CICS omits the fault name and builds the default action as follows:
[target namespace][delimiter][port type name][delimiter][operation name][delimiter]Fault[delimiter]

For WSDL 2.0, the default action according to the specification is:
[target namespace][delimiter][interface name][delimiter][fault name]

However, CICS omits the fault name and builds the default action as follows:
[target namespace][delimiter][interface name][delimiter]

How CICS complies with WSDL 2.0
CICS conditionally complies with WSDL 2.0, and support is subject to the
following restrictions.

Mandatory requirements

v Only the message exchange patterns in-only, in-out, robust in-only, and
in-optional-out may be used in the WSDL.

v Only one Endpoint is allowed for each Service.
v There must be at least one Operation.
v Endpoints may only be specified with a URI.
v There must be a SOAP binding
v The XML schema type system must be used.

Aspects that are tolerated

v The following HTTP binding properties are ignored:
– whttp:location
– whttp:header
– whttp:transferCodingDefault
– whttp:transferCoding

38 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmldsig-core/

– whttp:cookies
– whttp:authenticationType
– whttp:authenticationRealm

v SOAP header information is ignored by DFHWS2LS. However, you can
add your own message handlers to the pipeline to create and process the
required SOAP header information for inbound and outbound messages.

Aspects that are not supported

v The #any and #other message content models.
v The out-only, robust-out-only, out-in and out-optional-in message

exchange patterns.
v WS-Addressing for Endpoints.
v HTTP GET is not supported. This is defined using the soap-response

message exchange pattern in the WSDL document. If your WSDL defines
this message exchange pattern, DFHWS2LS issues an error message.

How CICS complies with Web Services Security specifications
CICS conditionally complies with Web Services Security: SOAP Message Security
and related specifications by supporting the following aspects.

Compliance with Web Services Security: SOAP Message Security

Security header
The <wsse:Security> header provides a mechanism for attaching
security-related information targeted at a specific recipient in the form of a
SOAP actor or role. This could be the ultimate recipient of the message or
an intermediary. The following attributes are supported in CICS:
v S11:actor (for an intermediary)
v S11:mustUnderstand
v S12:role (for an intermediary)
v S12:mustUnderstand

Security tokens
The following security tokens are supported in the security header:
v User name and password
v Binary security token (X.509 certificate)

Token references
A security token conveys a set of claims. Sometimes these claims reside
elsewhere and need to be accessed by the receiving application. The
<wsse:SecurityTokenReference> element provides an extensible mechanism
for referencing security tokens. The following mechanisms are supported:
v Direct reference
v Key identifier
v Key name
v Embedded reference

Signature algorithms
This specification builds on XML Signature and therefore has the same
algorithm requirements as those specified in the XML Signature
specification. CICS supports:

Chapter 4. How CICS supports web services 39

Algorithm type Algorithm URI

Digest SHA1 http://www.w3.org/2000/09/
xmldsig#sha1

Signature DSA with SHA1 (validation
only)

http://www.w3.org/2000/09/
xmldsig#dsa-sha1

Signature RSA with SHA1 http://www.w3.org/2000/09/
xmldsig#rsa-sha1

Canonicalization Exclusive XML
canonicalization (without
comments)

http://www.w3.org/2001/10/
xml-exc-c14n#

Signature signed parts
CICS allows the following SOAP elements to be signed:
v The SOAP message body
v The identity token (a type of security token), that is used as an asserted

identity

Encryption algorithms
The following data encryption algorithms are supported:

Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

The following key encryption algorithm is supported:

Algorithm URI

Key transport (public key cryptography)
RSA Version 1.5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Encryption message parts
CICS allow the following SOAP elements to be encrypted:
v The SOAP body

Timestamp
The <wsu:Timestamp> element provides a mechanism for expressing the
creation and expiration times of the security semantics in a message. CICS
tolerates the use of timestamps within the Web services security header on
inbound SOAP messages.

Error handling
CICS generates SOAP fault messages using the standard list of response
codes listed in the specification.

40 CICS TS for z/OS 4.2: Web Services Guide

Compliance with Web Services Security: UsernameToken Profile 1.0

The following aspects of this specification are supported:

Password types
Text

Token references
Direct reference

Compliance with Web Services Security: X.509 Certificate Token Profile
1.0

The following aspects of this specification are supported:

Token types

v X.509 Version 3: Single certificate. See http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf.

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists
(CRL). See http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0.pdf.

v X.509 Version 3: PKCS7 with or without CRLs. The IBM Software
Development Kit (SDK) supports both.

Token references

v Key identifier - subject key identifier
v Direct reference
v Custom reference - issuer name and serial number

Aspects that are not supported

The following items are not supported in CICS:
v Validation of Timestamps for freshness
v Nonces
v Web services security for SOAP attachments
v References to X509 certificates from a <wsse:SecurityTokenReference> using a

<wsse:KeyIdentifier>
v Security Assertion Markup Language (SAML) token profile,

WS-SecurityKerberos token profile, and XrML token profile
v Web Services Interoperability (WS-I) Basic Security Profile
v XML enveloping digital signature
v XML enveloping digital encryption
v The following transport algorithms for digital signatures are not supported:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116
– SOAP Message Normalization. For more information, see

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
v The Diffie-Hellman key agreement algorithm for encryption is not supported.

For more information, see http://www.w3.org/TR/2002/REC-xmlenc-core-
20021210/Overview.html#sec-DHKeyValue.

v The following canonicalization algorithm for encryption, which is optional in the
XML encryption specification, is not supported:
– Canonical XML with or without comments
– Exclusive XML canonicalization with or without comments

Chapter 4. How CICS supports web services 41

|
|

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

v In the Username Token Version 1.0 Profile specification, the digest password
type is not supported.

How CICS complies with WS-Trust
CICS conditionally complies with WS-Trust, and support is subject to the following
restrictions.

Aspects that are supported

v Validation binding
v Issuance binding where one token is returned
v AppliesTo in the Issuance binding

Aspects that are tolerated

v Requested references
v Keys and entropy
v Returning computed keys

Aspects that are not supported

v Returning multiple security tokens
v Returning security tokens in headers
v Renewal bindings
v Cancel bindings
v Negotiation and challenge extensions
v Key and Token parameter extensions
v Key exchange token binding

How CICS complies with WS-I Basic Profile 1.1
CICS conditionally complies with WS-I Basic Profile 1.1 in that it adheres to all the
MUST level requirements. However, CICS does not specifically implement support
for UDDI registries, and therefore the points relating to this in the specification are
ignored. Also the Web services assistant jobs and associated runtime environment
are not fully compliant with this Profile, as there are limitations in the support of
mapping certain schema elements.

See High-level language and XML schema mapping for a list of unsupported
schema elements.

Conformance targets identify what artifacts (e.g. SOAP message, WSDL
description) or parties (e.g. SOAP processor, end user) that the requirements apply
to. The conformance targets supported by CICS are:

MESSAGE
Protocol elements that transport the ENVELOPE (e.g. SOAP over HTTP
messages).

ENVELOPE
The serialization of the soap:Envelope element and its content.

DESCRIPTION
The description of types, messages, interfaces and their protocol and data
format bindings, and network access points associated with Web services
(e.g. WSDL descriptions).

INSTANCE
Software that implements a wsdl:port.

42 CICS TS for z/OS 4.2: Web Services Guide

CONSUMER
Software that invokes an INSTANCE.

SENDER
Software that generates a message according to the protocol associated
with it

RECEIVER
Software that consumes a message according to the protocol associated
with it.

Chapter 4. How CICS supports web services 43

44 CICS TS for z/OS 4.2: Web Services Guide

Chapter 5. Getting started with web services

There are several ways to get started with web services in CICS. The most
appropriate way for you depends on how much you already know and how
advanced your plans are for using web services.

About this task

Here are some starting points for web services in CICS:

Procedure
v Install the example application. CICS provides an example of a catalog

management application, which can be enabled as a web service provider. The
example includes all the code and resource definitions that you need to get the
application working in CICS with the minimum amount of work. It also
includes code to interact with the service that runs on a number of common web
service clients.
Use the example application if you want a rapid proof-of-concept demonstration
that you can deploy a web service in CICS or if you want a hands-on way to
learn about web services in CICS.
The example application is described in Chapter 15, “The CICS catalog manager
example application,” on page 337

v Plan for the deployment of an application as a service provider or a requester.
You might already know enough about how you will use web services in CICS
to start planning your applications and the related infrastructure.

Planning to use web services
Before you begin

Before you can plan to use web services in CICS, you need to consider these
questions for each application:

Do you plan to deploy your CICS application in the role of a service provider or
a service requester?

You may have a pair of applications that you want to connect using CICS
support for web services. In this case, one application will be the service
provider; the other will be the service requester.

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to
the business logic, you will probably be able to use them in a web services
setting, either as a service provider or a service requester. However, in
most cases, you will need to write a wrapper program that connects your
business logic to the web services logic.

If you plan to write new applications, you should aim to keep your
business logic separated from your web services logic, and, once again,
you will need to write a wrapper program to provide this separation.
However, if your application is designed with web services in mind, the
wrapper might be simpler to write.

© Copyright IBM Corp. 2005, 2012 45

Do you intend to use SOAP messages?
SOAP is fundamental to the web services architecture, and much of the
support that is provided in CICS assumes that you will use SOAP.
However, there may be situations where you want to use other message
formats. For example, you might have developed your own message
formats that you want to deploy with the CICS web services infrastructure.
You can do this with CICS, but you will not be able to use some of the
functions that CICS provides, such as the web services assistant, and the
SOAP message handlers.

If you decide not to use SOAP, your application programs will be
responsible for parsing inbound messages, and constructing outbound
messages.

Do you intend to use the CICS web services assistant to generate the mappings
between your data structures and SOAP messages?

The assistant provides a rapid deployment of many applications into a web
services setting with little or no additional programming. And when
additional programming is required, it is usually straightforward, and can
be done without changing existing business logic.

However, there are cases which are better handled without using the web
services assistant. For example, if you have existing code that maps data
structures to SOAP messages, there is no advantage in reengineering your
application with the web services assistant.

Although the CICS web services assistant supports the most common data
types and structures, there are some that are not supported. In this
situation, you should check the list of unsupported data types and
structures for the language in question, and consider providing a program
layer that maps your application data to a format that the assistant can
support. If this is not possible, you will need to parse the message
yourself. For details on what the assistant can and cannot support, see
High-level language and XML schema mapping.

If you decide not to use the CICS web services assistant, you can use a tool
such as Rational® Developer for System z to create the necessary artifacts,
and you can then provide your own code for parsing inbound messages,
and constructing outbound messages. You can also use the provided
vendor interface API.

Do you intend to use an existing service description, or create a new one?
In some situations, you will be obliged to use an existing service
description as a starting point. For example:
v Your application is a service requester, and it is designed to invoke an

existing web service.
v Your application is a service provider, and you want it to conform to an

existing industry-standard service description.

In other situations, you may need to create a new service description for
your application.

46 CICS TS for z/OS 4.2: Web Services Guide

What to do next
Related information:
The CICS catalog manager example application
The CICS catalog manager example application is a working COBOL application
that is designed to illustrate best practice when connecting CICS applications to
external clients and servers.

Planning a service provider application
In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy
new and existing applications in a web service provider in a straightforward way.
You will, in some situations, need to interpose a simple wrapper program between
your application program and CICS web service support.

Figure 15 shows a typical application which is partitioned to ensure a separation
between communication logic and business logic.

In many cases, you can deploy the business logic directly as a service provider
application. This is illustrated in Figure 16.

To use this simple model, the following conditions apply:

When you are using the CICS web services assistant to generate the mapping
between SOAP messages and application data structures:

The data types used in the interface to the business logic must be
supported by the CICS web services assistant. If this is not the case, you
must interpose a wrapper program between CICS web service support and
your business logic.

You will also need a wrapper program when you deploy an existing
program to provide a service that conforms to an existing web service
description: if you process the web service description using the assistant,
the resulting data structures are very unlikely to match the interface to
your business logic.

EXEC CICS
LINK

Communications
logic

Business
logicClient

CICS Transaction Server

Figure 15. Application partitioned into communications and business logic

Business
logic

CICS
Web service

support
Client

CICS Transaction Server

Figure 16. Simple deployment of CICS application as a web service provider

Chapter 5. Getting started with web services 47

When you are not using the CICS web services assistant:
Message handlers in your service provider pipeline must interact directly
with your business logic.

Using a wrapper program

Use a wrapper program when the CICS web services assistant cannot generate
code to interact directly with the business logic. For example, the interface to the
business logic might use a data structure which the CICS web services assistant
cannot map directly into a SOAP message. In this situation, you can use a wrapper
program to provide any additional data manipulation that is required:

You will need to design a second data structure that the assistant can support, and
use this as the interface to your wrapper program. The wrapper program then has
two simple functions to perform:
v move data between the two data structures
v invoke the business logic using its existing interface

Error handling

If you are planning to use the CICS web services assistant, you should also
consider how to handle rolling back changes when errors occur. When a SOAP
request message is received from a service requester, the SOAP message is
transformed by CICS just before it is passed to your application program. If an
error occurs during this transformation, CICS does not automatically roll back any
work that has been performed on the message. For example, if you plan to add
some additional processing on the SOAP message using handlers in the pipeline,
you need to decide if they should roll back any recoverable changes that they have
already performed.

On outbound SOAP messages, for example when your service provider application
program is sending a response message to a service requester, if CICS encounters
an error when generating the response SOAP message, all of the recoverable
changes made by the application program are automatically backed out. You
should consider whether adding synchronization points is appropriate for your
application program.

If you are planning to use web service atomic transactions in your provider
application, and the web service requester also supports atomic transactions, any
error that causes CICS to roll back a transaction would also cause the remote
requester to roll back its changes.

Planning a service requester application
In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy

CICS
Web service

support

Business
logic

EXEC CICS
LINK

wrapper
programClient

CICS Transaction Server

Figure 17. Deployment of CICS application as a web service provider using a wrapper
program

48 CICS TS for z/OS 4.2: Web Services Guide

new and existing applications in a web service requester in a straightforward way.
You will, in almost every situation, need to interpose a simple wrapper program
between your application program and CICS web service support.

Figure 18 shows a typical application which is partitioned to ensure a separation
between communication logic and business logic. The application is ideally
structured for reuse of the business logic in a web service requester.

You cannot use the existing EXEC CICS LINK command to invoke CICS web services
support in this situation:
v When you are using the CICS web services assistant to generate the mapping

between SOAP messages and application data structures, you must use an EXEC
CICS INVOKE SERVICE command, and pass the application's data structure to
CICS web services support. Also, the data types used in the interface to the
business logic must be supported by the CICS web services assistant.
However, if the target WEBSERVICE that your application program invokes is
provider mode, i.e. a value has been defined for the PROGRAM attribute, CICS
automatically optimizes the request using the EXEC CICS LINK command.

v When you are not using the CICS web services assistant, you must construct
your own messages, and link to program DFHPIRT.

Either way, it follows that your business logic cannot invoke a web service directly
unless you are prepared to change the program. For the web services assistant, this
option is shown in Figure 19, but it is not advisable in either case.

Using a wrapper program

A better solution, which keeps the business logic almost unchanged, is to use a
wrapper program. The wrapper, in this case, has two purposes:
v It issues an EXEC CICS INVOKE SERVICE command, or an EXEC CICS LINK

PROGRAM(DFHPIRT), on behalf of the business logic. The only change in the
business logic is the name of the program to which it links.

v It can, if necessary, provide any data manipulation that is required if your
application uses a data structure which the CICS web services assistant cannot
map directly into a SOAP message.

EXEC CICS
LINK

Communications
logic

Business
logic Server

CICS Transaction Server

Figure 18. Application partitioned into communications and business logic

EXEC CICS
INVOKE

WEBSERVICE
Business

logic

CICS
Web service

support
Server

CICS Transaction Server

Figure 19. Simple deployment of CICS application as a web service requester

Chapter 5. Getting started with web services 49

For the case when the web services assistant is used, this structure is illustrated in
Figure 20.

Error handling

If you are planning to use the CICS web services assistant, you should also
consider how to handle rolling back changes when errors occur. If your service
requester application receives a SOAP fault message from the service provider, you
need to decide how your application program should handle the fault message.
CICS does not automatically roll back any changes when a SOAP fault message is
received.

If you are planning to implement web service atomic transactions in your requester
application program, the error handling is different. If the remote service provider
encounters an error and rolls back its changes, a SOAP fault message is returned
and the local transaction in CICS also rolls back. If local optimization is in effect,
the service requester and provider use the same transaction. If the provider
encounters an error, any changes made by the transaction in the requester are also
rolled back.

CICS
Web service

support

EXEC CICS
LINK

Business
logic

EXEC CICS
INVOKE

WEBSERVICE

wrapper
program Server

CICS Transaction Server

Figure 20. Deployment of CICS application as a web service requester using a wrapper
program

50 CICS TS for z/OS 4.2: Web Services Guide

Chapter 6. Creating the web services infrastructure

To deploy a web service to CICS, you must create the necessary transport
infrastructure and define one or more pipelines that will process your web services
requests. Typically, one pipeline can process requests for many different web
services, and, when you deploy a new web service in your CICS system, you can
choose to use an existing pipeline.

Configuring your CICS system for web services
Before you can use web services, your CICS system must be correctly configured.

Procedure
1. Ensure that you have installed Language Environment® support for PL/I. For

more information, see the CICS Transaction Server for z/OS Installation Guide.
2. Activate z/OS Support for Unicode. You must enable the z/OS conversion

services and install a conversion image that specifies the data conversions that
you want CICS to perform between SOAP messages and an application
program. For more information, see z/OS Support for Unicode: Using Conversion
Services.

CICS resources for web services
PIPELINE, WEBSERVICE, URIMAP and TCPIPSERVICE resources support web
services in CICS.

PIPELINE
A PIPELINE resource definition is required for every web service. It
provides information about the message handler programs that act on a
service request and on the response. Typically, a single PIPELINE resource
definition defines an infrastructure that can be used by many applications.
The information about the message handlers is supplied indirectly: the
PIPELINE resource definition specifies the name of a z/OS UNIX file that
contains an XML description of the handlers and their configuration.

A PIPELINE resource that is created for a service requester cannot be used
for a service provider, and vice versa. The two sorts of PIPELINE
definitions are distinguished by the contents of the pipeline configuration
file that is specified in the CONFIGFILE attribute: for a service provider,
the top-level element is <provider_pipeline>; for a service requester, it is
<requester_pipeline>.

WEBSERVICE
A WEBSERVICE resource definition is required only when the mapping
between application data structure and SOAP messages has been generated
using the CICS web services assistant. It defines aspects of the runtime
environment for a CICS application program deployed in a web services
setting.

Although CICS provides the usual resource definition mechanisms for
WEBSERVICE resources, they are typically created automatically from a
web service binding file when the pickup directory for the PIPELINE
resource definition is scanned. This can occur when the PIPELINE resource
is installed or as a result of a PERFORM PIPELINE SCAN command. The
attributes applied to the WEBSERVICE resource in this case come from a

© Copyright IBM Corp. 2005, 2012 51

web services binding file, which is created by the web services assistant;
information in the binding file comes from the web service description, or
is supplied as a parameter of the web services assistant.

A WEBSERVICE resource that is created for a service requester cannot be
used for a service provider, and vice versa. The two sorts of WEBSERVICE
resource are distinguished by the PROGRAM attribute in the resource
definition: for a service provider, the attribute must be specified; for a
service requester, it must be omitted.

URIMAP
A URIMAP definition is required in a service provider when it contains
information that maps the URI of an inbound web service request to the
other resources (such as the PIPELINE resource) that will service the
request. This URIMAP definition is also required if you are using HTTP
basic authentication, because the URIMAP resource definition specifies that
the service requester user ID information is passed in an HTTP
authorization header to the service provider.

A second optional URIMAP definition can exist in a service provider for
WSDL discovery. This URIMAP resource definition contains information
that maps the URI of an inbound request for the WSDL document or
documents associated with the web service.

For service providers deployed using the CICS web services assistant,
although CICS provides the usual resource definition mechanisms, the
URIMAP resources are typically created automatically when the pick
directory is scanned. This scan occurs when the PIPELINE resource is
installed or as a result of a PERFORM PIPELINE SCAN command. The
URIMAP resource that provides CICS with the information to associate the
WEBSERVICE resource with a specific URI is a required resource. The
attributes for this resource are specified by a web service binding file in the
pickup directory. The URIMAP resource that provides CICS with the
information to associate the WSDL archive file or WSDL document with a
specific URI is an optional resource and is created if either a WSDL file or
WSDL archive file are present in the pickup directory. For more
information about creating URIMAP resources for web service providers,
see “Creating a web service provider by using the web services assistant”
on page 227.

For service requesters, CICS does not create any URIMAP resources
automatically when the PIPELINE resource is installed or as a result of a
PERFORM PIPELINE SCAN command. Service requesters are not required
to use URIMAP resources when they make requests; they can specify the
URI of the outbound request directly in the application program. However,
if you create a URIMAP resource for the client request, and your service
requesters use the URIMAP resource to provide the URI, you gain these
advantages:
v System administrators can manage any changes to the endpoint of the

connection, so you do not need to recompile your applications if the URI
of a service provider changes.

v You can choose to make CICS keep the connections that were opened
with the URIMAP resource open after use, and place them in a pool for
reuse by the application for subsequent requests, or by another
application that calls the same service. Connection pooling is only
available when you specify a URIMAP resource that has the
SOCKETCLOSE attribute set. For more information about the

52 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

performance benefits of connection pooling, see Connection pooling for
HTTP client performance in the Internet Guide.

TCPIPSERVICE
A TCPIPSERVICE definition is required in a service provider that uses the
HTTP transport. It contains information about the port on which inbound
requests are received.

The resources that are required to support a particular application program depend
on the following criteria:
v Whether the application program is a service provider or a service requester.
v Whether the application is deployed with the CICS web services assistant.

Service
requester
or provider

CICS web
services
assistant
used

PIPELINE
required

WEBSERVICE
required

URIMAP
required

TCPIPSERVICE
required

Provider Yes Yes Yes (but see note
1)

Yes (but see note
1)

See note 2

No Yes No Yes See note 2

Requester Yes Yes Yes See note 3 No

No Yes No 3 No

Notes:

1. When the CICS web service assistant is used to deploy an application program, the WEBSERVICE
and two URIMAP resources can be created automatically when the pickup directory of the
PIPELINE is scanned. The first URIMAP resource is required and provides CICS with the
information to associate the WEBSERVICE resource with a specific URI. The second URIMAP
resource is optional and provides CICS with the information to associate the WSDL archive file or
WSDL document with a specific URI so that external requesters can use the URI to discover the
WSDL archive file or WSDL document. The pickup directory of the PIPELINE scan occurs when
the PIPELINE resource is installed or as a result of a PERFORM PIPELINE SCAN command.

2. A TCPIPSERVICE resource is required when the HTTP transport is used. When the webSphere MQ
transport is used, a TCPIPSERVICE resource is not required.

3. A URIMAP resource is optional for a service requester, and the CICS web service assistant does not
generate one automatically. When you define your own URIMAP resources for service requesters
to use, you can implement connection pooling, and manage changes to the URIs for service
providers.

Typically, when you deploy many web services applications in a CICS system, you
have more than one of each type of resource. In this case, you can share some
resources between applications. Each web services file or resource is associated
with one or more CICS resources of other types.

Table 1. Other CICS resources that are associated with each web services file and resource

web services file or resource Associated resources

Pipeline configuration file v More than one PIPELINE resource that
refers to the file.

PIPELINE v More than one URIMAP resource that
refers to the PIPELINE resource.

v More than one WEBSERVICE resource
that refers to the PIPELINE resource.

v More than one web service binding file in
the pickup directory of the PIPELINE
resource.

Chapter 6. Creating the web services infrastructure 53

|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfht3_connpool.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfht3_connpool.html

Table 1. Other CICS resources that are associated with each web services file and
resource (continued)

web services file or resource Associated resources

web service binding file v One URIMAP resource that is
automatically generated from the binding
file. You can define further URIMAP
resources for a service provider, and you
can define URIMAP resources for a
service requester.

v One WEBSERVICE resource that is
automatically generated from the binding
file. You can define further WEBSERVICE
resources if you need to.

WEBSERVICE v More than one URIMAP resource. If the
WEBSERVICE resource is automatically
generated from the binding file for a
service provider, CICS generates one
corresponding URIMAP resource. You can
define further URIMAP resources for a
service provider, and you can define
URIMAP resources for a service requester.

URIMAP v Just one TCPIPSERVICE resource when it
is explicitly named in the URIMAP
resource.

TCPIPSERVICE v Many URIMAP resources.

Configuring CICS to use the WebSphere MQ transport
To use the WebSphere MQ transport with web services in CICS, you must
configure your CICS region accordingly.

Procedure
1. Include the WebSphere MQ library thlqual.SCSQAUTH in the STEPLIB

concatenation in your CICS procedure. Include the library after the CICS
libraries to ensure that the correct code is used. thlqual is the high-level qualifier
for the WebSphere MQ libraries.

2. Include the following WebSphere MQ libraries in the DFHRPL concatenation in
your CICS procedure. Include the libraries after the CICS libraries to ensure
that the correct code is used.

thlqual.SCSQCICS

thlqual.SCSQLOAD

thlqual.SCSQAUTH

thlqual is the high-level qualifier for the WebSphere MQ libraries. If you are
using the CICS-WebSphere MQ API-crossing exit (CSQCAPX), also add the
name of the library that contains the load module for the program. The
SCSQCICS library is required only if you want to run WebSphere MQ supplied
samples. Otherwise it can be removed from the CICS procedure.

3. Install an MQCONN resource for the CICS region. The MQCONN resource
specifies the attributes of the connection between CICS and WebSphere MQ,
including the name of the default WebSphere MQ queue manager or
queue-sharing group for the connection. For more information, see Setting up
an MQCONN resource in the CICS-WebSphere MQ Adapter.

54 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/mqconn_setup.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/mqconn_setup.html

4. Specify the CICS system initialization parameter MQCONN=YES to start the
CICS-WebSphere MQ connection automatically at CICS initialization.
An MQCONN resource definition must be installed before CICS can start the
connection to WebSphere MQ. When you start the connection automatically at
CICS initialization, for an initial or cold start, the MQCONN resource definition
must be present in one of the groups named in the list or lists named by the
GRPLIST system initialization parameter. For a warm or emergency start of
CICS, the MQCONN resource definition must have been installed by the end of
the previous CICS run.

5. If you are using the CICS-WebSphere MQ adapter in a CICS system that has
interregion communication (IRC) to remote CICS systems, ensure that the IRC
facility is OPEN before you start the adapter, by specifying the CICS system
initialization parameter IRCSTRT=YES. The IRC facility must be OPEN if the
IRC access method is defined as cross-memory; that is, ACCESSMETHOD(XM).

6. Ensure that the coded character set identifiers (CCSIDs) used by your queue
manager and by CICS, and the UTF-8 and UTF-16 code pages are configured to
z/OS conversion services. The CICS code page is specified in the LOCALCCSID
system initialization parameter.

7. Update your CICS CSD as follows:
a. If you do not share your CSD with earlier releases of CICS, remove the

groups CSQCAT1 and CSQCKB from your CSD. You must also delete the
CKQQ TDQUEUE from group CSQCAT1. The definition for CKQQ is now
supplied in the CICS CSD group DFHDCTG.

b. If you do share your CSD with earlier CICS releases, ensure that CSQCAT1
and CSQCKB are not installed for CICS TS 4.1 or CICS TS 3.2. You must
also delete the CKQQ TDQUEUE from group CSQCAT1. The definition for
CKQQ is now supplied in the CICS CSD group DFHDCTG. For CICS TS
releases earlier than CICS TS 3.2, install the CSQCAT1 and CSQCKB groups
as part of a group list, after installing DFHLIST, to override group DFHMQ
and correctly install the required definitions.

8. Update the WebSphere MQ definitions for the dead-letter queue, default
transmission queue, and CICS-WebSphere MQ adapter objects. You can use the
sample CSQ4INYG, but you might need to change the initiation queue name to
match the default initiation queue name in the MQINI resource definition for
your CICS region. You can use this member in the CSQINP2 DD concatenation
of the queue manager startup procedure, or you can use it as input to the
COMMAND function of the CSQUTIL utility to issue the required DEFINE
commands. Using the CSQUTIL utility is preferable because you do not then
have to redefine these objects each time that you restart WebSphere MQ.

The WebSphere MQ transport
CICS can receive and send SOAP messages to WebSphere MQ using the
WebSphere MQ transport, both in the role of service provider and service
requester.

As a service provider, CICS uses WebSphere MQ triggering to process SOAP
messages from an application queue. Triggering works by using an initiation queue
and local queues. A local (application) queue definition includes the following
information:
v The criteria for when a trigger message is generated. For example, when the first

message arrives on the local queue, or for every message that arrives on the
local queue. For CICS SOAP processing, specify that triggering occurs when the
first message arrives on the local queue.

Chapter 6. Creating the web services infrastructure 55

The local queue definition can also specify that trigger data is passed to the
target application, and in the case of CICS SOAP processing (transaction CPIL),
this specifies the default target URL to be used if this is not passed with the
inbound message.

v The process name that identifies the process definition. The process definition
describes how the message is processed. In the case of CICS SOAP processing,
specify the CPIL transaction.

v The name of the initiation queue that the trigger message should be sent to.

When a message arrives on the local queue, the Queue Manager generates and
sends a trigger message to the specified initiation queue. The trigger message
includes the information from the process definition. The trigger monitor retrieves
the trigger message from the initiation queue and schedules the CPIL transaction
to start processing the messages on the local queue. For more information about
triggering, see Task initiator or trigger monitor (CKTI) in the CICS-WebSphere MQ
Adapter.

You can configure CICS, so that when a message arrives on a local queue, the
trigger monitor (provided by WebSphere MQ) schedules the CPIL transaction to
process the messages on the local queue and drive the CICS SOAP pipeline to
process the SOAP messages on the queue.

When CICS constructs a response to a SOAP message that is received from
WebSphere MQ, the correlation ID field is populated with the message ID of the
input message, unless the report option MQRO_PASS_CORREL_ID has been set. If
this report option has been set, the correlation ID is propagated from the input
message to the response.

As a service requester, on outbound requests you can specify that the responses
for the target web service is returned on a particular reply queue.

In both cases, CICS and WebSphere MQ require configuration to define the
required resources and queues.

Defining local queues in a service provider
To use the WebSphere MQ transport in a service provider, you must define one or
more local queues that store request messages until they are processed, and one
trigger process that specifies the CICS transaction that will process the request
messages.

Procedure
1. Define an initiation queue. Use the following command:

DEFINE
QLOCAL('initiation_queue')
DESCR('description')

where initiation_queue is the same as the value specified for the INITQNAME
attribute of the MQINI resource definition for the CICS region. MQINI is an
implicit resource that CICS creates when you install an MQCONN resource.

2. For each local request queue, define a QLOCAL object. Use the following
command:

DEFINE
QLOCAL('queuename')
DESCR('description')

56 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/zc12120_.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/zc12120_.html

PROCESS(processname)
INITQ('initiation_queue')
TRIGGER
TRIGTYPE(FIRST)
TRIGDATA('default_target_service')
BOTHRESH(nnn)
BOQNAME('requeuename')

where:
v queuename is the local queue name.
v processname is the name of the process instance that identifies the application

started by the queue manager when a trigger event occurs. Specify the same
name on each QLOCAL object.

v initiation_queue is the name of the initiation queue to be used; for example,
the initiation queue specified in the MQINI definition for the CICS region.

v default_target_service is the default target service to be used if a service is
not specified on the request. The target service is of the form '/string' and is
used to match the path of a URIMAP definition; for example,
'/SOAP/test/test1'. The first character must be '/' .

v nnn is the number of retries that are attempted.
v requeuename is the name of the queue to which failed messages are sent.

3. Define a PROCESS object that specifies the trigger process. Use the following
command:

DEFINE
PROCESS(processname)
APPLTYPE(CICS)
APPLICID(CPIL)

where:
processname is the name of the process, and must be the same as the name
that is used when defining the request queues.

Working with initiation queues

You can inquire on the name of the initiation queue with these interfaces:

CICS Explorer®

The CICS Explorer operations views
Use the Name attribute in the Websphere MQ Initiation Queues view.

CICSPlex® SM

The MQINI operations view

CEMT

The INQUIRE MQINI command

The CICS SPI

The INQUIRE MQINI command

Chapter 6. Creating the web services infrastructure 57

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/eyua3/topics/eyua3_mqini.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7_inquiremqini.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquiremqini.html

Defining local queues in a service requester
When you use the WebSphere MQ transport for outbound requests in a service
requester, you can specify in the URI for the target web service that your responses
should be returned on a predefined reply queue. If you do so, you must define
each reply queue with a QLOCAL object.

About this task

If the URI associated with a request does not specify a reply queue, CICS will use
a dynamic queue for the reply.

Procedure

Optional: To define each QLOCAL object that specifies a predefined reply queue,
use the following command.

DEFINE
QLOCAL('reply_queue')
DESCR('description')
BOTHRESH(nnn)

where:
reply_queue is the local queue name.
nnn is the number of retries that will be attempted.

The URI for the WebSphere MQ transport
When communication between the service requester and service provider uses
WebSphere MQ, the URI of the target is in a form that identifies the target as a
queue and includes information to specify how the request and response should be
handled by WebSphere MQ.

Syntax

�� jms:/queue? �

&

destination=queuename
@queuemanagername

persistence=message_persistence
priority=message_priority
replyDestination=reply_queue
timeout=timeout
timeToLive=expiry_time
targetService=string

��

CICS uses the following options; other web service providers might use further
options that are not described here. The entire URI is passed to the service
provider, but CICS ignores any options that it does not support and that are coded
in the URI. CICS is not sensitive to the case of the option names. However, some
other implementations that support this style of URI are case-sensitive.

destination=queuename [@queuemanagername]

queuename is the name of the input queue in the target queue manager
queuemanagername is the name of the target queue manager

persistence=message_persistence
Specify one of the following:

58 CICS TS for z/OS 4.2: Web Services Guide

0 Persistence is defined by the default queue persistence.

1 Messages are not persistent.

2 Messages are persistent.

If the option is not specified or is specified incorrectly, the default queue
persistence is used.

priority=message_priority
Specifies the message priority as an integer in the range 0 to 99999999.

replyDestination=reply_queue
Specifies the queue to be used for the response message. If this option is not
specified, CICS will use a dynamic queue for the response message. You must
define the reply queue in a QLOCAL object before using this option.

timeout=timeout
The timeout in milliseconds for which the service requester will wait for a
response. If a value of zero is specified, or if this option is omitted, the request
will not time out.

timeToLive=expiry-time
Specifies the expiry time for the request in milliseconds. If the option is not
specified or is specified incorrectly, the request will not expire.

targetService=string
Identifies the target service. If CICS is the service provider, then the target
service should be of the form '/string', as CICS will use this as the path when
attempting to match with URIMAP. If not specified, the value specified in
TRIGDATA on the input queue at the service provider is used.

This example shows a URI for the WebSphere MQ transport:
jms:/queue?destination=queue01@cics007&timeToLive=10&replyDestination=rqueue05&targetService=/myservice

Configuring CICS to support persistent messages
CICS provides support for sending persistent messages using the WebSphere MQ
transport protocol to a web service provider application that is deployed in a CICS
region.

About this task

CICS uses Business Transaction Services (BTS) to ensure that persistent messages
are recovered in the event of a CICS system failure. For this to work correctly,
follows these steps:

Procedure
1. Use IDCAMS to define the local request queue and repository file to MVS™.

You must specify a suitable value for STRINGS for the file definition. The
default value of 1 is unlikely to be sufficient, and you are recommended to use
10 instead.

2. Define the local request queue and repository file to CICS. Details of how to
define the local request queue to CICS are described in “Defining local queues
in a service provider” on page 56. You must specify a suitable value for
STRINGS in the file definition. The default value of 1 is unlikely to be
sufficient, and it is recommended that you use 10 instead.

3. Define a PROCESSTYPE resource with the name DFHMQSOA, using the
repository file name as the value for the FILE option.

Chapter 6. Creating the web services infrastructure 59

4. Ensure that during the processing of a persistent message, a program issues an
EXEC CICS SYNCPOINT command before the first implicit syncpoint is requested;
for example, using an SPI command such as EXEC CICS CREATE TDQUEUE
implicitly takes a syncpoint. Issuing an EXEC CICS SYNCPOINT command
confirms that the persistent message has been processed successfully. If a
program does not explicitly request a syncpoint before trying to implicitly take
a syncpoint, an ASP7 abend is issued.

Results

What to do next

For one way request messages, if the web service abends or backs out, sufficient
information is retained to allow a transaction or program to retry the failing
request, or to report the failure appropriately. You need to provide this recovery
transaction or program. See “Persistent message processing” for details.

Persistent message processing
When a web service request is received in a WebSphere MQ persistent message,
CICS creates a unique BTS process with the process type DFHMQSOA. Data
relating to the inbound request is captured in BTS data-containers that are
associated with the process.

The process is then scheduled to run asynchronously. If the web service completes
successfully and commits, CICS deletes the BTS process. This includes the case
when a SOAP fault is generated and returned to the web service requester.

Error processing

If an error occurs when creating the required BTS process, the web service
transaction abends, and the inbound web service request is not processed. If BTS is
not usable, message DFHPI0117 is issued, and CICS continues without BTS, using
the existing channel-based container mechanism.

If a CICS failure occurs before the web service starts or completes processing, BTS
recovery ensures that the process is rescheduled when CICS is restarted.

If the web service ends abnormally and backs out, the BTS process is marked
complete with an ABENDED status. For request messages that require a response,
a SOAP fault is returned to the web service requester. The BTS process is canceled,
and CICS retains no information about the failed request. CICS issues message
DFHBA0104 on transient data queue CSBA, and message DFHPI0117 on transient
data queue CPIO.

For one way messages, there is no way to return information about the failure to
the requester so the BTS process is retained in a COMPLETE ABENDED state.
CICS issues message DFHBA0104 on transient data queue CSBA, and DFHPI0116
on transient data queue CPIO.

You can use the CBAM transaction to display any COMPLETE ABENDED
processes, or you can supply a recovery transaction to check for COMPLETE
ABENDED processes of the DFHMQSOA and take appropriate action.

For example, your recovery transaction could:
1. Reset the BTS process using the RESET ACQPROCESS command.

60 CICS TS for z/OS 4.2: Web Services Guide

2. Issue the RUN ASYNC command to retry the failing web service. It could keep a
retry count in another data-container on the process, to avoid repeated failure.

3. Use information in the associated data-containers to report on the problem:
The DFHMQORIGINALMSG data-container contains the message received
from WebSphere MQ, which might contain RFH2 headers.
The DFHMQMSG data-container contains the WebSphere MQ message with
any RFH2 headers removed.
The DFHMQDLQ data-container contains the name of the dead letter queue
associated with the original message.
The DFHMQCONT data-container contains the WebSphere MQ MQMD
control block relating to the MQ GET for the original message.

The web services infrastructure
CICS applications in a CICS region can either provide a service to, or request a
service from, applications that are external to that region by using a web services
pipeline. When CICS is a service provider, the CICS application supplies a service
to the external application. When CICS is a service requester, the external
application supplies a service to the CICS application. Web services pipelines can
be configured to use IBM System z Application Assist Processors where available.

CICS as a service provider
For CICS to provide a service to an external service requester, it must receive the
service request and pass it through a pipeline to the target application program.
The response from the application is returned to the service requester through the
same pipeline.

Figure 21 on page 62 shows an example configuration of the architecture and
resources that are required to process a request from an external service requester
when CICS is a service provider using a Java pipeline.

Chapter 6. Creating the web services infrastructure 61

To process a request, CICS must perform the following operations:
1. Receive the request from the service requester.

The TCPIPSERVICE resource specifies a port for incoming requests. This port is
monitored by the CICS-supplied sockets listener transaction (CSOL).

2. Examine the request, and extract the contents that are relevant to the target
application program.
When the request message is received on the appropriate port, the URIMAP
resource definitions are scanned for a URIMAP definition that has its USAGE
attribute set to PIPELINE and its PATH attribute set to the URI found in the
request. If an appropriate URIMAP definition is found, the PIPELINE and
WEBSERVICE definitions from the PIPELINE and WEBSERVICE attributes of
the URIMAP definition are used. The TRANSACTION attribute of the URIMAP
definition determines the name of the transaction that should be attached to
process the pipeline. By default the CPIH transaction is used. The URIMAP
definition also identifies the PIPELINE and WEBSERVICE resources to use.
These resources control the processing that CICS performs.

3. Invoke the application program, passing data extracted from the request.
The message handlers in the pipeline and the application handler convert the
request message into application language structure that the service provider
application program expects. The program processes this input and returns a
response to the application handler.

4. Construct a response using data returned by the application program, and send
a response to the service requester.
The application handler and message handlers convert the response message
received from the service provider application into a message in the format of
the original request. This message is sent back to the service requester.

CICS Region

URIMAP

PIPELINE

TCPIPSERVICE

T
C

P
/IP

 P
or

trequest
message

response
message

CPIH
transaction

Pipeline

message
handler

message
handler

message
handler

application
handler

CICS
application

program
WEBSERVICE

RESOURCES

JVM server

Service
Requester

Figure 21. The architecture and resources for a service provider

62 CICS TS for z/OS 4.2: Web Services Guide

Some of the processing within the pipeline can be performed using z/Series
Application Assist Processors if the pipeline is configured appropriately. For more
information, see “Java-based SOAP pipelines” on page 64.

CICS as a service requester
For CICS to invoke an external service, an application program sends a request
that is passed through a pipeline to a target service. The response from the service
is returned to the application program through the same pipeline.

Figure 22 shows an example configuration of the architecture and resources that
are required to process a request from a CICS application program for data from a
service provider that is external to the CICS region, using a Java pipeline.

To process a request, CICS must perform the following operations:
1. Build a request using data provided by the application program.

When the CICS application program initiates a request to a service provider
that is external to the CICS region, the requestor application calls the EXEC
CICS INVOKE SERVICE command. The EXEC CICS INVOKE SERVICE
command invokes the pipeline. The pipeline converts the application language
structure into a language that the service provider can process, for example a
SOAP message.

2. Send the request to the service provider.
CICS sends the request message to the remote service provider by using either
HTTP or WebSphere MQ.

3. Receive a response from the service provider.
When the service provider response message is received, CICS passes the
message back to the pipeline.

4. Examine the response, and extract the contents that are relevant to the original
application program.
The pipeline converts the service provider response message into the
application language structure, which is passed to the application program.
Control is then returned to the application program.

CICS Region

request
message

request
message

response
message

response
message

Service
Provider

EXEC
CICS

INVOKE

CICS application
program

User transaction
Pipeline

message
handler

message
handler

message
handler

JVM server

PIPELINE

WEBSERVICE

RESOURCES

Figure 22. The architecture and resources for a service requester

Chapter 6. Creating the web services infrastructure 63

Some of the processing within the pipeline can be performed using z/Series
Application Assist Processors if the pipeline is configured appropriately. For more
information, see “Java-based SOAP pipelines.”

Java-based SOAP pipelines
CICS supports using the Axis2 Java-based SOAP engine to process web service
requests in provider and requester pipelines. Because Axis2 uses Java, the SOAP
processing is eligible for offloading to the IBM System z Application Assist
Processor (zAAP).

Axis2 is an open source web services engine from the Apache foundation and is
provided with CICS to process SOAP messages in a Java environment. You can opt
to use Axis2 by adding a Java SOAP handler to your pipeline configuration file
and creating a JVM server to handle the Axis2 processing.

Enabling Axis2 does not require regenerating the binding files for any existing web
services that use the pipeline. The response times might be slower when using
Axis2, but you can offload the SOAP processing to zAAP. For more information
about offloading to zAAP, see JVM servers and pooled JVMs in Java Applications
in CICS.

When CICS is a service provider, the Java-based terminal handler uses Axis2 to
parse the SOAP envelope for a request message. You can use header processing
programs to process any SOAP headers associated with the SOAP message. Axis2
also constructs the SOAP response message. This process is shown in the following
diagram:

Header
processing

program

Java SOAP
handler

Axis2

JVM server

Service
handler

Transport
handler

Service
handler

Transport
handler

Request

CICS pipeline

Response

Service
provider

application

When CICS is a service requester, the Java-based initial handler in the pipeline
uses Axis2 to generate the SOAP envelope for a request message. You can use
header processing programs to process any SOAP headers associated with the
SOAP message. Axis2 also parses the SOAP response message.

Web service applications and Java

For provider-mode SOAP pipelines, request and response messages are passed
between the terminal handler of the pipeline and the web service application by
using an application handler. The application handler processes the body of a

64 CICS TS for z/OS 4.2: Web Services Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

http://ws.apache.org/axis2/
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport

SOAP request so that the request can be used by the application. The application
handler also generates a response by using the returned data from the application.
If the terminal handler of your pipeline is a Java-based message handler, you can
specify the supplied Axis2 application handler in the pipeline configuration file, as
opposed to specifying the supplied DFHPITP application handler. The application
handler processing can then be offloaded to zAAP. For more information about
application handlers, see “Application handlers” on page 112.

For requester-mode SOAP pipelines, the web service application invokes the
pipeline by using the EXEC CICS INVOKE SERVICE command. The request and
response messages are then passed between the web service application and the
initial handler in the pipeline. If you specify a Java-based handler as the initial
handler in the pipeline, then the EXEC CICS INVOKE SERVICE command is processed
by Axis2, making it possible to offload this process to zAAP. If the first handler is
not a Java-based handler, then the EXEC CICS INVOKE SERVICE command is
processed by CICS.

Axis2 processing in a JVM server

Axis2 requires a JVM server, which is represented by a JVMSERVER resource in
CICS. The JVM server is a runtime environment that can handle multiple
concurrent requests from different Java programs in a single JVM. The class path
for the JVM server must include the Axis2 Java archive files. You can automatically
add all of the required JAR files to the class path by specifying the JAVA_PIPELINE
option in the JVM profile. The pipeline configuration file must also point to the
JVMSERVER resource that is configured to support Axis2.

For more information about JVM servers, see JVM servers and pooled JVMs in
Java Applications in CICS.

Axis2 header handlers

Although you can use existing header processing programs, it is more efficient to
write Axis2 handlers in Java to process the SOAP headers. These handlers can also
run in the JVM server and are therefore eligible for offloading. For more
information about creating Axis2 handlers, see Writing Your Own Axis2 Module.

A header handler program can use Axis2 APIs to modify or interact with the Axis2
environment, SOAP messages, and individual web services. Do not use these APIs
to customize Axis2, as you might change Axis2 in a way that means CICS cannot
run the engine correctly. Axis2 handlers are supported only if they interact with
the Axis2 environment in a way that is compatible with how CICS uses Axis2.

Axis2 repository

Axis2 uses a repository to store all of its configuration files, services, and modules.
CICS provides a default repository in the usshome/lib/pipeline/repository
directory on z/OS UNIX, where usshome is the value of the USSHOME system
initialization parameter.

The default repository contains the configuration file, axis2.xml, which is required
by CICS to use Axis2. This file is in the /conf subdirectory in the repository. If you
create your own repository, you must copy this file to your repository for CICS to
work with Axis2.

Chapter 6. Creating the web services infrastructure 65

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport
http://axis.apache.org/axis2/java/core/docs/modules.html

Do not edit the axis2.xml file, unless you are registering handler programs. This
file is managed as an internal part of CICS, so you must not make any other
changes to this file unless directed to do so by IBM support.

Creating the CICS infrastructure for a service provider
To create the CICS infrastructure for a service provider, you must create a pipeline
configuration file and create a number of CICS resources.

Procedure
1. Optional: If you want to use a Java pipeline, ensure that a JVMSERVER

resource exists with the JAVA_PIPELINE=YES option specified in the JVM
Profile. A JVM server can handle SOAP processing for many Java pipelines.

2. Define the transport infrastructure.
v If you are using the WebSphere MQ transport, you must define one or more

local queues that store input messages until they are processed, and one
trigger process that specifies the CICS transaction that will process the input
messages. See “Configuring CICS to use the WebSphere MQ transport” on
page 54 for details.

v If you are using the HTTP transport, you must define a TCPIPSERVICE
resource that defines the port on which inbound requests are received. See
“CICS resources for web services” on page 51 for details.

Repeat this step for each different transport configuration you need.
3. Define the message handlers and header processing programs that you want to

include in the pipeline configuration file to process inbound web service
requests, and their responses. CICS provides the following handlers and header
processing programs:
v SOAP message handlers, to process SOAP 1.1 or 1.2 messages. You can

support only one level of SOAP in a service provider pipeline.
v MTOM handler, to process MIME Multipart/Related messages that conform

to the MTOM/XOP specifications.
v Security handler, to process secure web service messages.
v WS-AT header processing program, to process atomic transaction messages.

If you want to perform your own processing in the pipeline, you must create a
message handler or header processing program. See “Message handlers” on
page 114 for details. If you decide to create custom message handler programs,
to optimize performance you must make them threadsafe.

4. Create an XML pipeline configuration file containing your message handlers,
header processing programs, and application handler. CICS provides two basic
provider mode pipeline configuration file samples, basicsoap11provider.xml
and basicsoap11javaprovider.xml. You can edit these samples, or add
additional message handlers as appropriate. The samples are provided in the
library /usr/lpp/cicsts/cicsts42/samples/pipelines (where
/usr/lpp/cicsts/cicsts42 is the default install directory for CICS files on z/OS
UNIX). For more information about options available in the pipeline
configuration file, see “Pipeline configuration files” on page 68

5. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.
6. Change the pipeline configuration file permissions to allow the CICS region to

read the file.
7. Repeat steps 3 through 6 for each different pipeline configuration that you

require.

66 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

8. Create a PIPELINE resource. The PIPELINE resource defines the location of the
pipeline configuration file. It also specifies a pickup directory, which is the z/OS
UNIX directory that contains the web service binding files and optionally the
WSDL. Repeat this step for each different pipeline configuration. When you
create a PIPELINE resource, CICS reads any files in the specified pickup
directory, and creates the WEBSERVICE resource and URIMAP resource
dynamically.

9. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM
resource for each program that runs in the pipeline. These include the target
application program, which normally runs under transaction CPIH. The
transaction is defined with the attribute TASKDATALOC(ANY). Therefore, when you
link-edit the program, you must specify the AMODE(31) option.

Results

Your CICS system now contains the infrastructure needed for each service
provider.

What to do next

You can extend the configuration when you need to do so, either to define
additional transport infrastructure, or to create additional pipelines.

Creating the CICS infrastructure for a service requester
To create the CICS infrastructure for a service requester, you must create a pipeline
configuration file and create a number of CICS resources.

Procedure
1. Optional: If you want to use a Java pipeline, ensure that a JVMSERVER

resource exists with the JAVA_PIPELINE=YES option specified in the JVM
Profile. A JVM server can handle SOAP processing for many Java pipelines.

2. Define the message handlers and header processing programs that you want to
include in the pipeline configuration file to process inbound web service
requests, and their responses. CICS provides the following handlers and header
processing programs:
v SOAP message handlers, to process SOAP 1.1 or 1.2 messages. You can only

support one level of SOAP in a service requester pipeline.
v MTOM handler, to process MIME Multipart/Related messages that conform

to the MTOM/XOP specifications.
v Security handler, to process secure web service messages.
v WS-AT header processing program, to process atomic transaction messages.

If you want to perform your own processing in the pipeline, you must create a
message handler or header processing program. See “Message handlers” on
page 114 for details. If you decide to create custom message handler programs,
to optimize performance you must make them threadsafe.

3. Create an XML pipeline configuration file containing your message handlers
and header processing programs. CICS provides two basic requester mode
pipeline configuration file samples, basicsoap11provider.xml and
basicsoap11javaprovider.xml, which you can copy and edit as appropriate.
These samples are provided in the library /usr/lpp/cicsts/cicsts42/samples/
pipelines (where /usr/lpp/cicsts/cicsts42 is the default install directory for

Chapter 6. Creating the web services infrastructure 67

|
|
|

|
|
|
|

|
|

|
|

|

|

|
|
|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/pipeline/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/webservice/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/urimap/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

CICS files on z/OS UNIX). For more information about options available in the
pipeline configuration file, see “Pipeline configuration files”

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.
5. Change the pipeline configuration file permissions to allow the CICS region to

read the file.
6. Repeat steps 2 to 5 for each different pipeline configuration that you require.
7. Create a PIPELINE resource. The PIPELINE resource defines the location of the

pipeline configuration file. It also specifies a pickup directory, which is the z/OS
UNIX directory that contains the web service binding files and optionally the
WSDL. You can also specify a timeout in seconds, which determines how long
CICS waits for a response from web service providers. Repeat this step for each
pipeline configuration file. When you create a PIPELINE resource, CICS reads
any files in the specified pickup directory and creates the WEBSERVICE
resources dynamically.

8. Unless you use autoinstall PROGRAM definitions, create a PROGRAM resource
for each program that runs in the pipeline. These programs include the service
requester application program, which normally runs under transaction CPIH.
The transaction is defined with the attribute TASKDATALOC(ANY). Therefore, when
you link edit the program, you must specify the AMODE(31) option.

9. Optional: Create a URIMAP resource for client requests to each URI that your
service requesters use to make requests, following the instructions in Creating a
URIMAP resource for CICS as an HTTP client in the Internet Guide. You can
specify the URI directly on the INVOKE SERVICE command in your programs,
instead of using a URIMAP resource. However, using a URIMAP resource
means that you do not need to recompile your applications if the URI of a
service provider changes. With a URIMAP resource you can also choose to
implement connection pooling, where CICS keeps the client connection open
after use, so that it can be reused by the application for subsequent requests, or
by another application that calls the same service.

Results

Your CICS system now contains the infrastructure needed for each service
requester.

What to do next

You can extend the configuration when you need to do so, to create additional
pipelines.

Pipeline configuration files
The configuration of a pipeline used to handle a web service request is specified in
an XML document, known as a pipeline configuration file.

The pipeline configuration file is stored in the z/OS UNIX System Services file
system and its name is specified in the CONFIGFILE attribute of a PIPELINE
resource definition. Use a suitable XML editor or text editor to work with your
pipeline configuration files. The XML schemas for the pipeline configuration files
are in the directory /usr/lpp/cicsts/cicsts42/schemas/pipeline/ (where
/usr/lpp/cicsts/cicsts42 is the default install directory for CICS files on z/OS
UNIX). When you work with configuration files, ensure that the character set
encoding is US EBCDIC (Code page 037).

68 CICS TS for z/OS 4.2: Web Services Guide

|
|

|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/pipeline/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/webservice/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/urimap/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound

When CICS processes a web service request, it uses a pipeline of one or more
message handlers to handle the request. A pipeline is configured to provide aspects
of the execution environment that apply to different categories of applications,
such as support for web Service Security, and web service transactions. Typically, a
CICS region that has a large number of service provider or service requester
applications needs several different pipeline configurations. However, where
different applications have similar requirements, they can share the same pipeline
configuration.

There are two kinds of pipeline configurations: one describes the configuration of a
service provider pipeline; the other describes a service requester pipeline. Each is
defined by its own schema, and each has a different root element.

Pipeline Schema Root element

Service provider Provider.xsd <provider_pipeline>

Service requester Requester.xsd <requester_pipeline>

Although many of the XML elements used are common to both kinds of pipeline
configuration, others are used only in one or the other, so you cannot use the same
configuration file for both a provider and requester.

Restriction: Namespace-qualified element names are not supported in the pipeline
configuration file.

The <provider_pipeline> and <requester_pipeline> elements have the following
immediate sub-elements:
v A <service> element, which specifies the message handlers that are invoked for

every request. This element is mandatory when used within the
<provider_pipeline> element, and optional within the <requester_pipeline>
element.

v An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport.

v For the <provider_pipeline> only, an optional <apphandler> element, which is
used to specify channel-attached application handlers.

v For the <provider_pipeline> only, an optional <apphandler_class> element,
which is used to specify an Axis2 application handler.

v An optional <service_parameter_list> element, which contains the parameters
that are available to the message handlers in the pipeline.

Certain elements can have attributes associated with them. Each attribute value
must have quotes around it to produce a valid XML document.

Associated with the pipeline configuration file is a PIPELINE resource. The
attributes include CONFIGFILE, which specifies the name of the pipeline
configuration file in z/OS UNIX. When you install a PIPELINE definition, CICS
reads the information that it needs in order to configure the pipeline from the file.

CICS supplies sample configuration files that you can use as a basis for developing
your own configuration files. They are provided in library /usr/lpp/cicts/
samples/pipelines.

basicsoap11provider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a
pipeline that does not support Java. The pipeline uses the

Chapter 6. Creating the web services infrastructure 69

|
|

|
|

|
|
|

<cics_soap_1.1_handler> message handler and is used when the CICS
application has been deployed using the CICS web services assistant.

basicsoap11requester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for
a pipeline that does not support Java. The pipeline uses the
<cics_soap_1.1_handler> message handler and is used when the CICS
application has been deployed using the CICS web services assistant.

basicsoap11javaprovider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a
pipeline that supports Java. The pipeline uses the
<cics_soap_1.1_handler_java> message handler and is used when the
application has been deployed using the CICS web services assistant. This
configuration contains the element <jvmserver>. This message handler has
to be edited to specify the appropriate JVM server before the configuration
can be used.

basicsoap11javarequester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for
a pipeline that supports Java. The pipeline uses the
<cics_soap_1.1_handler_java> message handler and is used when the
application has been deployed using the CICS web services assistant. This
configuration contains the element <jvmserver>. This message handler has
to be edited to specify the appropriate JVM server before the configuration
can be used.

wsatprovider.xml
A pipeline definition that adds configuration information for web services
transactions to basicsoap11provider.xml.

wsatrequester.xml
A pipeline definition that adds configuration information for web services
transactions to basicsoap11requester.xml.

Example provider pipeline configuration file (Channel-attached
application handler)

This is a simple example of a configuration file for a service provider pipeline that
uses the <cics_soap_1.1_handler> element:
<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
<service>
<terminal_handler>
<cics_soap_1.1_handler/>

</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>

</provider_pipeline>

The pipeline contains just one message handler. The handler links to program
DFHPITP.
v The <provider_pipeline> element is the root element of the pipeline

configuration file for a service provider pipeline.
v The <service> element specifies the message handlers that are invoked for every

request. In the example, there is just one message handler.
v The <terminal_handler> element contains the definition of the terminal message

handler of the pipeline.

70 CICS TS for z/OS 4.2: Web Services Guide

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

v The <cics_soap_1.1_handler> element indicates that the pipeline is not a
Java-based pipeline and the terminal handler of the pipeline is a message
handler that supports SOAP 1.1 messages.

v The <apphandler> element specifies the name of the application handler that the
terminal handler of the pipeline links to by default. In this case, the program is
DFHPITP, which is the CICS-supplied program for applications deployed with
the CICS web services assistant.

Example provider pipeline configuration file (Axis2 application
handler)

This is a simple example of a configuration file for a service provider pipeline that
uses the <cics_soap_1.1_handler_java> element:
<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
<service>
<terminal_handler>
<cics_soap_1.1_handler_java>
<jvmserver>DFH$AXIS</jvmserver>
<cics_soap_1.1_handler_java>

</terminal_handler>
</service>
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>

</provider_pipeline>

The pipeline contains just one message handler. The handler links to program
DFHPITP.
v The <provider_pipeline> element is the root element of the pipeline

configuration file for a service provider pipeline.
v The <service> element specifies the message handlers that are invoked for every

request. In the example, there is just one message handler.
v The <terminal_handler> element contains the definition of the terminal message

handler of the pipeline.
v The <cics_soap_1.1_handler_java> element indicates that the pipeline is a

Java-based pipeline and the service handler of the pipeline is a message handler
that supports SOAP 1.1 messages.

v The <apphandler_class> element specifies the supplied Axis2 application
handler.

Example requester pipeline configuration file

This is a simple example of a configuration file for a service requester pipeline that
uses the <cics_soap_1.2_handler_java> element with Axis2 MTOM/XOP support:
<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<cics_soap_1.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<mtom>

</cics_soap_1.2_handler_java>
</service_handler_list>

</service>
</requester_pipeline>

The pipeline contains just one message handler.
v The <requester_pipeline> element is the root element of the pipeline

configuration file for a service requester pipeline.

Chapter 6. Creating the web services infrastructure 71

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

v The <service> element specifies the message handlers that are invoked for every
request. In the example, there is just one message handler.

v The <service_handler_list> specifies a list of message handlers that are
invoked for every request.

v The <cics_soap_1.2_handler_java> element indicates that the pipeline supports
Java and the service handler of the pipeline is a message handler that supports
SOAP 1.2 messages.

v The <jvmserver> element specifies the JVM server to be used.
v The <mtom/> element specifies that outbound XOP documents are packaged into

MTOM messages and sent. By default, inbound MTOM messages are accepted
and unpackaged for Java-based pipelines.

Transport-related handlers
In the configuration file for each pipeline, you can specify more than one set of
message handlers. At run time, CICS selects the message handlers that are called,
based upon the resources that are being used for the message transport.

In a service provider, and in a service requester, you can specify that some
message handlers should be called only when a particular transport (HTTP or
WebSphere MQ) is in use. For example, consider a web service that you make
available to your employees. Those who work at a company location access the
service using the WebSphere MQ transport on a secure internal network; however,
employees working at a business partner location access the service using the
HTTP transport over the internet. In this situation, you might want to use message
handlers to encrypt parts of the message when the HTTP transport is used,
because of the sensitive nature of the information.

In a service provider, inbound messages are associated with a named resource (a
TCPIPSERVICE for the HTTP transport, a QUEUE for the MQ transport). You can
specify that some message handlers should be called only when a particular
resource is used for an inbound request.

To make this possible, the message handlers are specified in two distinct parts of
the pipeline configuration file:

The service section
Specifies the message handlers that are called each time the pipeline
executes.

The transport section
Specifies the message handlers that might or might not be called,
depending upon the transport resources that are in use.

Remember: At run time, a message handler can choose to curtail the execution of
the pipeline. Therefore, even if CICS decides that a particular message handler
should be called based on what is in the pipeline configuration file, the decision
might be overruled by an earlier message handler.

The message handlers that are specified within the transport section (the
transport-related handlers) are organized into several lists. At run time, CICS selects
the handlers in just one of these lists for execution, based on which transport
resources are in use. If more than one list matches the transport resources that are
being used, CICS uses the list that is most selective. The lists that are used in both
service provider and service requester pipelines are:

72 CICS TS for z/OS 4.2: Web Services Guide

|
|

|
|

|
|
|

|

|
|
|

<default_transport_handler_list>
This is the least selective list of transport-related handlers; the handlers
specified in this list are called when none of the following lists matches the
transport resources that are being used.

<default_http_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the
HTTP transport is in use.

In a service provider pipeline, the handlers in this list are called when the
HTTP transport is in use, and no <named_transport_entry> names the
TCPIPSERVICE for the TCP/IP connection.

<default_mq_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the
WebSphere MQ transport is in use.

In a service provider pipeline, the handlers in this list are called when the
WebSphere MQ transport is in use, and no <named_transport_entry>
names the message queue on which inbound messages are received.

The following list of message handlers is used only in the configuration file for a
service provider pipeline:

<named_transport_entry>
As well as a list of handlers, the <named_transport_entry> specifies the
name of a resource, and the transport type.
v For the HTTP transport, the handlers in this list are called when the

resource name matches the name of the TCPIPSERVICE for the inbound
TCP/IP connection.

v For the WebSphere MQ transport, the handlers in this list are called
when the resource name matches the name of the message queue that
receives the inbound message.

Example

This is an example of a <transport> element from the pipeline configuration file
for a service provider pipeline:
<transport>

<!-- HANDLER1 and HANDLER2 are the default transport handlers -->
<default_transport_handler_list>

<handler><program>HANDLER1</program><handler_parameter_list/></handler>
<handler><program>HANDLER2</program><handler_parameter_list/></handler>

</default_transport_handler_list>

<!-- HANDLER3 overrides defaults for MQ transport -->
<default_mq_transport_handler_list>

<handler><program>HANDLER3</program><handler_parameter_list/></handler>
</default_mq_transport_handler_list>

<!-- HANDLER4 overrides defaults for http transport with TCPIPSERVICE(WS00) -->
<named_transport_entry type="http">

<name>WS00</name>
<transport_handler_list>

<handler><program>HANDLER4</program><handler_parameter_list/></handler>
</transport_handler_list>

</named_transport_entry>

</transport>

Chapter 6. Creating the web services infrastructure 73

The effect of this definition is this:
v The <default_mq_transport_handler_list> ensures that messages that use the

MQ transport are processed by handler HANDLER3.
v The <named_transport_entry> ensures that messages that use the TCP/IP

connection associated with TCPIPSERVICE(WS00) are processed by handler
HANDLER4.

v The <default_transport_handler_list> ensures that all remaining messages,
that is, those that use the HTTP transport, but not TCPISERVICE(WS00), are
processed by handlers HANDLER1 and HANDLER2.

Remember: Any handlers specified in the service section of the pipeline definition
will be called in addition to those specified in the transport section.

The pipeline definition for a service provider
The message handlers are defined in an XML document, which is stored in z/OS
UNIX. The name of the file that contains the document is specified in the CFGFILE
attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the
<provider_pipeline> element. The high-level structure of the document is shown
in Figure 23 on page 75.

74 CICS TS for z/OS 4.2: Web Services Guide

The pipeline definition for a service requester
The message handlers are defined in an XML document, which is stored in z/OS
UNIX. The name of the file that contains the document is specified in the CFGFILE
attribute of a PIPELINE definition.

provider_
pipeline

transport

default_mq_
transport_

handler_list

named_
transport_

entry

transport_
handler_

list
name

default_
transport_

handler_list

default_http_
transport_

handler_list

service

terminal_
handler

service_
parameter_

list

cics_
soap_1.2_

handler

cics_
soap_1.1_

handler
handler

cics_
soap_1.2_

handler

cics_
soap_1.2_

handler_java

cics_
soap_1.1_

handler

cics_
soap_1.1_

handler_java

handler

service_
handler_

list

apphandler

handler handlerhandler

wsse_
handler

handler

cics_mtom_
handler

dfhmtom_
configuration

Figure 23. Structure of the pipeline definition for a service provider.

Note: In order to simplify the figure, child elements of the <handler>,
<cics_soap_1.1_handler>, <cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>, and
<cics_soap_1.2_handler_java> elements are not shown.

Chapter 6. Creating the web services infrastructure 75

The root element of the pipeline configuration document is the
<requester_pipeline> element. The high-level structure of the document is shown
in Figure 24.

Elements used only in service providers
Some of the XML elements used in a pipeline configuration file apply only to
service provider pipelines.

The <apphandler> element
Specifies the name of the application handler that the terminal handler of the
pipeline links to by default.

The <apphandler> element is used when the terminal handler is one of the
supplied SOAP message handlers. This situation occurs when the

requester_
pipeline

service_
parameter_

list

cics_mtom_
handler

dfhmtom_
configuration

service

service_
handler_

list

cics_
soap_1.2_

handler

cics_
soap_1.2_

handler_java

cics_
soap_1.1_

handler_java

cics_
soap_1.1_

handler
handler

wsse_
handler

transport

default_
target

handler handlerhandler

default_mq_
transport_

handler_list

default_
transport_

handler_list

default_http_
transport_

handler_list

Figure 24. Structure of the pipeline definition for a service requester.

Note: In order to simplify the figure, child elements of the <handler>,
<cics_soap_1.1_handler>, <cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>, and
<cics_soap_1.2_handler_java> elements are not shown.

76 CICS TS for z/OS 4.2: Web Services Guide

<terminal_handler> element contains a <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>, or
<cics_soap_1.2_handler_java> element. However, if your <terminal_handler>
element contains a <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java> element, you can use the supplied Axis2
application handler by specifying the <apphandler_class> element instead of the
<apphandler> element. For more information see the <apphandler_class> element.
However, you must not specify <apphandler_class> and <apphandler> elements in
the same pipeline configuration file.

If you deploy your web service applications using the CICS web services assistant,
you must specify one of the following application handlers in the <apphandler>
element.
v The supplied application handler DFHPITP if you do not want to process your

application handler using Java.
v Your own application handler that uses DFHPITP.
v The name of the PROGRAM resource that you create.

For more information about application handlers, see “Application handlers” on
page 112.

Used in:
v Service provider

Contained by:
v <provider_pipeline> element

Example
<apphandler>DFHPITP</apphandler>

The <apphandler_class> element
Specifies that the terminal handler of the pipeline links to an Axis2 application
handler.

The <apphandler_class> element is used to specify an Axis2 application handler
when your <terminal_handler> element contains either a
<cics_soap_1.1_handler_java> or <cics_soap_1.2_handler_java> element. To use
the supplied Axis2 application handler, specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class>
element, however you can specify your own Axis2 application handler class.

Alternatively, you can specify the <apphandler> element in your pipeline
configuration file if you want to use a channel-attached application handler, for
more information see the <apphandler> element. However, you must not specify
<apphandler_class> and <apphandler> elements in the same pipeline configuration
file.

You must not use the <apphandler_class> element if your <terminal_handler>
element contains either a <cics_soap_1.1_handler> or <cics_soap_1.2_handler>
element.

For more information about application handlers, see “Application handlers” on
page 112.

Chapter 6. Creating the web services infrastructure 77

|
|
|

|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

Used in:
v Service provider

Contained by:
v <provider_pipeline> element

Example
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>

The <named_transport_entry> element
Contains a list of handlers that are to be invoked when a named transport resource
is being used by a service provider.
v For the WebSphere MQ transport, the named resource is the local input queue

on which the request is received.
v For the HTTP transport, the resource is the TCPIPSERVICE that defines the port

on which the request was received.

Used in:
v Service provider

Contained by:
<transport>

Attributes:

Name Description

type The transport mechanism with which the named resource is
associated:

wmq The named resource is a queue

http The named resource is a TCPIPSERVICE

Contains:
1. A <name> element, containing the name of the resource
2. An optional <transport_handler_list> element. Each

<transport_handler_list> contains one or more <handler> elements.
If you do not code a <transport_handler_list> element, then the only message
handlers that are invoked when the named transport is used are those that are
specified in the <service> element.

Example
<named_transport_entry type="http">

<name>PORT80</name>
<transport_handler_list>

<handler><program>HANDLER1</program><handler_parameter_list/></handler>
<handler><program>HANDLER2</program><handler_parameter_list/></handler>

</transport_handler_list>
</named_transport_entry>

In this example, the message handlers specified (HANDLER1 and HANDLER2) are
invoked for messages received on the TCPIPSERVICE with the name PORT80.

78 CICS TS for z/OS 4.2: Web Services Guide

|

|

|

|

|

|

The <provider_pipeline> element
Specifies the root element of the XML document that describes the configuration of
the CICS pipeline for a web service provider.

Used in:
v Service provider

Contains:
1. Optional <cics_mtom_handler> element
2. Optional <transport> element
3. <service> element
4. Optional <apphandler> element
5. Optional <apphandler_class> element
6. Optional <service_parameter_list> element, containing XML elements that are

made available to all the message handlers in the pipeline in container
DFH-SERVICEPLIST.

Example
<provider_pipeline>

<service>
...

</service>
<apphandler>DFHPITP</apphandler>

</provider_pipeline>

The <terminal_handler> element
Contains the definition of the terminal message handler of the service provider
pipeline.

Used in:
v Service provider

Contained by:
v <service> element

Contains:

One of the following elements:
<handler>

<cics_soap_1.1_handler>

<cics_soap_1.2_handler>

<cics_soap_1.1_handler_java>

<cics_soap_1.2_handler_java>

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you
must use either the <cics_soap_1.2_handler> or <cics_soap_1.2_handler_java>
element.

Remember: In a service provider, you can specify the <cics_soap_1.1_handler>
and <cics_soap_1.2_handler> in the <service_handler_list> element, as well as
in the <terminal_handler> element. However, in a service provider, you can only
specify <cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java> in the
<terminal_handler> element.

Chapter 6. Creating the web services infrastructure 79

|

|

|

|

|
|
|

|
|
|
|
|

Example
<terminal_handler>

<cics_soap_1.1_handler>
...

</cics_soap_1.1_handler>
<service_handler_list>

The <transport_handler_list> element
Contains a list of message handlers that are invoked when a named resource is
used.
v For the MQ transport, the named resource is the name of the local input queue.
v For the HTTP transport, the resource is the TCPIPSERVICE that defines the port

on which the request was received.

Used in:
v Service provider

Contained by:
v <named_transport_entry> element

Contains:
v One or more <handler> elements.

Example
<transport_handler_list>

<handler>
...

</handler>
<handler>

...
</handler>

<transport_handler_list>

Elements used in service requesters
Some of the XML elements used in a pipeline configuration file apply only to
service requester pipelines.

The <requester_pipeline> element
The root element of the XML document that describes the configuration of a
pipeline in a service requester.

Used in:
v Service requester

Contains:
1. Optional <service> element
2. Optional <transport> element
3. Optional <cics_mtom_handler> element
4. Optional <service_parameter_list> element, containing XML elements that are

made available to the message handlers in container DFH-SERVICEPLIST.

Example
<requester_pipeline>

<service>
<service_handler_list>

80 CICS TS for z/OS 4.2: Web Services Guide

<cics_soap_1.1_handler/>
</service_handler_list>

</service>
</requester_pipeline>

Elements used in service provider and service requester
pipelines

Some of the XML elements used in a pipeline configuration file apply to both
service provider and service requester pipelines.

The <addressing> element
Specifies the support for Web Services Addressing in Java-based SOAP processing.

Used in:
v Service provider
v Service requester

Contained by:
<cics_soap_1.1_handler_java> element
<cics_soap_1.2_handler_java> element

Contains:
A <namespace> element. In a service provider, this element is optional. The
element contains one of the two WS-Addressing schemas that are supported by
CICS. For inbound messages, Axis2 supports both specifications. For outbound
messages, the namespace specified in this element is used. If you do not specify
this element or you have two elements, CICS uses the same specification on the
outbound message as the inbound message. In a service requester, this element
is required and you can specify only one namespace for the outbound message.

This example shows the configuration for a service provider pipeline, where both
WS-Addressing specifications are supported. CICS uses the same specification on
the outbound message as the inbound message. You can get the same results by
specifying an empty <addressing> element.
<addressing>

<namespace>http://www.w3.org/2005/08/addressing</namespace>
<namespace>http://schemas.xmlsoap.org/ws/2004/08/addressing</namespace>

</addressing>

The <cics_soap_1.1_handler> element
Specifies the attributes of the handler program for SOAP 1.1 messages in non-Java
pipelines

Used in:
v Service requester
v Service provider

Contained by:
<service_handler_list> element
<terminal_handler> element

Contains:

Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

Chapter 6. Creating the web services infrastructure 81

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

1. A <program_name> element, containing the name of a header processing
program

2. A <namespace> element, which is used with the following <localname> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <namespace> element contains the URI
(Uniform Resource Identifier) of the header block's namespace.

3. A <localname> element, which is used with the preceding <namespace> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <localname> contains the element name of
the header block.
For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

v The namespace name is http://mynamespace

v The element name is myheaderblock

To make a header program match this header block, code the <namespace> and
<localname> elements like this:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message
can match more than one <headerprogram> element. For example, this header
block
<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:
<headerprogram>

<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the
<headerprogram> element in which the element name of the header block is
most precisely stated. In the example, that is HDRPROG3.
When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which
the headers are processed is undefined.

82 CICS TS for z/OS 4.2: Web Services Guide

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname>, but that specify different header programs, only
one of the header programs will run, but which of the programs will run is not
defined.

4. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:
v If none of the headers matches, the header processing program is

invoked once.
v If any of the headers match, the header processing program is invoked

once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the SOAP
message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</mandatory>
or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:
v If none of the headers matches, the header processing program is not

invoked.
v If any of the headers match, the header processing program is invoked

once for each matching header.

Example
<cics_soap_1.1_handler>

<headerprogram>
<program_name> ... </program_name>
<namespace>...</namespace>
<localname>...</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.1_handler>

The <cics_soap_1.1_handler_java> element
Specifies the attributes of the handler program for SOAP 1.1 messages in
Java-based SOAP pipelines.

Used in:
v Service requester
v Service provider

Contained by:
<service_handler_list> element
<terminal_handler> element

Chapter 6. Creating the web services infrastructure 83

|
|
|

|

|

|

|

|

|

Contains:
1. A <jvmserver> element.
2. An optional <repository> element.
3. An optional <addressing> element. If you enable Web Services Addressing in

Axis2, do not use the DFHWSADH header processing program.
4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element

contains:
a. A <program_name> element, containing the name of a header processing

program. You can write Axis2 handlers in Java to process the SOAP
headers.

b. A <namespace> element, which is used with the following <localname>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <namespace> element
contains the URI (Uniform Resource Identifier) of the header block's
namespace.

c. A <localname> element, which is used with the preceding <namespace>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <localname> contains the
element name of the header block.
For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is
myheaderblock.
To make a header program match this header block, code the <namespace>
and <localname> elements like this:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a
message can match more than one <headerprogram> element. For example,
this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:
<headerprogram>

<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG3</program_name>

84 CICS TS for z/OS 4.2: Web Services Guide

|

|

|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in
the <headerprogram> element in which the element name of the header
block is most precisely stated. In the example, that is HDRPROG3.
When the SOAP message contains more than one header, the header
processing program is invoked once for each matching header, but the
sequence in which the headers are processed is undefined.
If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname> elements, but that specify different header
programs, only one of the header programs will run, but which of the
programs will run is not defined.

d. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and
<localname> elements:
v If none of the headers matches, the header processing program is

invoked once.
v If any of the headers match, the header processing program is

invoked once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the
SOAP message that CICS creates has no headers initially. If you want to
add headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</
mandatory> or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of
the headers in the SOAP messages matches the <namespace> and
<localname> elements:
v If none of the headers matches, the header processing program is not

invoked.
v If any of the headers match, the header processing program is

invoked once for each matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its
nested elements:
<cics_soap_1.1_handler_java>

<jvmserver>JVMSERV1</jvmserver>
<headerprogram>

<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>

Chapter 6. Creating the web services infrastructure 85

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

<localname>myheaderblock</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.1_handler_java>

The <cics_soap_1.2_handler> element
Specifies the attributes of the handler program for SOAP 1.2 messages in non-Java
pipelines.

Used in:
v Service requester
v Service provider

Contained by:
<service_handler_list> element
<terminal_handler> element

Contains:

Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:
1. A <program_name> element, containing the name of a header processing

program
2. A <namespace> element, which is used with the following <localname> element

to determine which header blocks in a SOAP message should be processed by
the header processing program. The <namespace> element contains the URI
(Uniform Resource Identifier) of the header block's namespace.

3. A <localname> element, which is used with the preceding <namespace> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <localname> contains the element name of
the header block.
For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

v The namespace name is http://mynamespace

v The element name is myheaderblock

To make a header program match this header block, code the <namespace> and
<localname> elements like this:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message
can match more than one <headerprogram> element. For example, this header
block
<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:
<headerprogram>

<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>

86 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the
<headerprogram> element in which the element name of the header block is
most precisely stated. In the example, that is HDRPROG3.
When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which
the headers are processed is undefined.
If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname>, but that specify different header programs, only
one of the header programs will run, but which of the programs will run is not
defined.

4. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:
v If none of the headers matches, the header processing program is

invoked once.
v If any of the headers match, the header processing program is invoked

once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the SOAP
message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</mandatory>
or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:
v If none of the headers matches, the header processing program is not

invoked.
v If any of the headers match, the header processing program is invoked

once for each matching header.

Chapter 6. Creating the web services infrastructure 87

Example
<cics_soap_1.2_handler>

<headerprogram>
<program_name> ... </program_name>
<namespace>...</namespace>
<localname>...</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.2_handler>

The <cics_soap_1.2_handler_java> element
Specifies the attributes of the handler program for SOAP 1.2 messages in
Java-based SOAP pipelines.

Used in:
v Service requester
v Service provider

Contained by:
<service_handler_list> element
<terminal_handler> element

Contains:
1. A <jvmserver> element.
2. An optional <repository> element.
3. An optional <addressing> element. If you enable support for Web Services

Addressing in Axis2, do not use header processing programs. You can write
Axis2 handlers in Java to process the SOAP headers.

4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element
contains:
a. A <program_name> element, containing the name of a header processing

program
b. A <namespace> element, which is used with the following <localname>

element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <namespace> element
contains the URI (Uniform Resource Identifier) of the header block's
namespace.

c. A <localname> element, which is used with the preceding <namespace>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <localname> contains the
element name of the header block.
For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is
myheaderblock

To make a header program match this header block, code the <namespace>
and <localname> elements like this:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:

88 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

|
|

|
|

|
|
|

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a
message can match more than one <headerprogram> element. For example,
this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:
<headerprogram>

<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>
<mandatory>false</mandatory>

</headerprogram>
<headerprogram>

<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in
the <headerprogram> element in which the element name of the header
block is most precisely stated. In the example, that is HDRPROG3.
When the SOAP message contains more than one header, the header
processing program is invoked once for each matching header, but the
sequence in which the headers are processed is undefined.
If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname> elements, but that specify different header
programs, only one of the header programs will run, but which of the
programs will run is not defined.

d. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and
<localname> elements:
v If none of the headers matches, the header processing program is

invoked once.
v If any of the headers match, the header processing program is

invoked once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the
SOAP message that CICS creates has no headers initially. If you want to
add headers to your message, you must ensure that at least one header

Chapter 6. Creating the web services infrastructure 89

|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

processing program is invoked, by specifying <mandatory>true</
mandatory> or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of
the headers in the SOAP messages matches the <namespace> and
<localname> elements:
v If none of the headers matches, the header processing program is not

invoked.
v If any of the headers match, the header processing program is

invoked once for each matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its
nested elements:
<cics_soap_1.2_handler_java>

<jvmserver>JVMSERV1</jvmserver>
<headerprogram>

<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.2_handler_java>

The <default_http_transport_handler_list> element
Specifies the message handlers that are invoked by default when the HTTP
transport is in use.

In a service provider, message handlers specified in this list are invoked only if the
list of handlers defined in a <named_transport_entry> element is less specific.

Used in:
v Service provider
v Service requester

Contained by:
v <transport> element

Contains:
v One or more <handler> elements.

Example
<default_http_transport_handler_list>

<handler>
...

</handler>
<handler>

...
</handler>

</default_http_transport_handler_list>

The <default_mq_transport_handler_list> element
Specifies the message handlers that are invoked by default when the WebSphere
MQ transport is in use.

90 CICS TS for z/OS 4.2: Web Services Guide

|
|

|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

In a service provider, message handlers specified in this list are invoked only if the
list of handlers defined in a <named_transport_entry> element is less specific.

Used in:
v Service provider
v Service requester

Contained by:
v <transport> element

Contains:
v One or more <handler> elements.

Example
<default_mq_transport_handler_list>

<handler>
...

</handler>
<handler>

...
</handler>

</default_mq_transport_handler_list>

The <default_transport_handler_list> element
Specifies the message handlers that are invoked by default when any transport is
in use.

In a service provider, message handlers specified in this list are invoked when the
list of handlers defined in any of the following elements is less specific:

<default_http_transport_handler_list>

<default_mq_transport_handler_list>

<named_transport_entry>

Used in:
v Service provider
v Service requester

Contained by:
v <transport> element

Contains:
v One or more <handler> elements.

Example
<default_transport_handler_list>

<handler>
<program>HANDLER1</program>
<handler_parameter_list/>

</handler>
<handler>

<program>HANDLER2</program>
<handler_parameter_list/>

</handler>
</default_transport_handler_list>

Chapter 6. Creating the web services infrastructure 91

The <handler> element
Specifies the attributes of a message handler program.

Some CICS-supplied handler programs do not use the <handler> element. For
example, the CICS-supplied SOAP message handler programs are defined using
the <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java>, and <cics_soap_1.2_handler_java> elements.

Used in:
v Service provider
v Service requester

Contained by:
<default_transport_handler_list>

<transport_handler_list>

<service_handler_list>

<terminal_handler>

<default_http_transport_handler_list>

<default_mq_transport_handler_list>

Contains:
1. <program> element, containing the name of the handler program
2. <handler_parameter_list> element, containing XML elements that are made

available to the message handlers in container DFH-HANDLERPLIST.

Example
<?xml version="1.0"?>
<provider_pipeline>

xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<handler>

<program>MYPROG</program>
<handler_parameter_list><output print="yes"/></handler_parameter_list>

</handler>
</service_handler_list>
<terminal_handler>
<cics_soap_1.1_handler>
...
</cics_soap_1.1_handler>
</terminal_handler>
</service
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

In this example, the handler program is MYPROG. The handler parameter list
consists of a single <output> element; the contents of the parameter list are known
to MYPROG.

The <jvmserver> element
Specifies the name of the JVMSERVER resource.

This element identifies the name of the JVMSERVER resource, which will process
the request. If a value is not supplied, an error message is generated and the
PIPELINE is installed in the DISABLED state.

92 CICS TS for z/OS 4.2: Web Services Guide

|

|
|

|
|
|

Used in:
v Service provider
v Service requester

Contained by:
v <cics_soap_1.1_handler_java> element
v <cics_soap_1.2_handler_java> element

Example
<jvmserver>JVMSERVER_NAME</jvmserver>

The <repository> element
Specifies the directory name of the Axis2 repository.

This optional element identifies the directory name of the Axis2 repository. If you
use this option, you must specify “The <jvmserver> element” on page 92
beforehand in the handler XML. If it is not supplied then, the sample repository
will be used. When you install CICS Transaction Server the sample Axis2
repository is installed in the /usr/lpp/cicsts/cicsts42/lib/pipeline/repository
directory, where /usr/lpp/cicsts/cicsts42 is the default installation directory for
CICS files on z/OS UNIX.

Used in:
v Service provider
v Service requester

Contained by:
v <cics_soap_1.1_handler_java> element
v <cics_soap_1.2_handler_java> element

Example
<cics_soap_1.1_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<repository>/lib/pipeline/repository</repository>
</cics_soap_1.1_handler_java>

The <service> element
Specifies the message handlers that are invoked for every request.

Used in:
v Service provider
v Service requester

Contained by:
<provider_pipeline>

<requester_pipeline>

Contains:
1. <service_handler_list> element
2. In a service provider only, a <terminal_handler> element

Chapter 6. Creating the web services infrastructure 93

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

Example
<service>

<service_handler_list>
...
</service_handler_list>
<terminal_handler>
...
</terminal_handler>

</service>

The <service_handler_list> element
Specifies a list of message handlers that are invoked for every request.

Used in:
v Service provider
v Service requester

Contained by:
v <service> element

Contains:

One or more of the following elements:
<cics_soap_1.1_handler>

<cics_soap_1.2_handler>

<cics_soap_1.1_handler_java>

<cics_soap_1.2_handler_java>

<handler>

<wsse_handler>

You determine the order that each handler is called at run time by the order that
you specify the handler elements in the <service_handler_list> element. For
example, if your pipeline supports WS-Security, encrypted SOAP messages remain
encrypted until the <wsse_handler> element is called. Therefore, you must specify
the <wsse_handler> element before any other handler program that processes
unencrypted messages.

The <service_handler_list> element for a service provider cannot contain the
<cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java> elements,
because these elements must be specified in the <terminal_handler> element for
Java-based pipelines. A service requestor can contain the
<cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java>, however if
these elements are used, they must be the first element listed in the
<service_handler_list> element.

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you
must use either the <cics_soap_1.2_handler> or <cics_soap_1.2_handler_java>
element.

You can use either a SOAP 1.1 or a SOAP 1.2 handler in a service requester
pipeline, but in this case the SOAP 1.2 handler does not support SOAP 1.1
messages. Do not specify the SOAP 1.1 or SOAP 1.2 handler in the pipeline if your
service requester applications are sending complete SOAP envelopes in the
DFHREQUEST container. This avoids duplicating the SOAP message headers in
outbound messages.

94 CICS TS for z/OS 4.2: Web Services Guide

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

In a service provider, you can specify the generic handler and SOAP handlers in
the <terminal_handler> element as well as in the <service_handler_list> element.
For more information about processing SOAP header, see “Header processing
programs” on page 122.

Example
<service_handler_list>

<wsse_handler>
...

</wsse_handler>
<cics_soap_1.1_handler_java>

...
</cics_soap_1.1_handler_java>
<handler>

...
</handler>
</service_handler_list>

The <service_parameter_list> element
Specifies the XML elements that are made available to all the message handlers in
the pipeline in container DFH-SERVICEPLIST. This is an optional element.

Used in:
v Service requester
v Service provider

Contains:
v If you are using WS-AT: a <registration_service_endpoint> element
v In a service requester if you are using WS-AT: an optional

<new_tx_context_required/> element
v Optional user defined tags

Example
<requester_pipeline>
<service_parameter_list>
<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>
<new_tx_context_required/>
<user_defined_tag1>
...
</user_defined_tag1>
</service_parameter_list>
</requester_pipeline>

Related reference:
“The <requester_pipeline> element” on page 80
The root element of the XML document that describes the configuration of a
pipeline in a service requester.
“The <provider_pipeline> element” on page 79
Specifies the root element of the XML document that describes the configuration of
the CICS pipeline for a web service provider.

The <transport> element
Specifies handlers that are to be invoked only when a particular transport is in use.

Chapter 6. Creating the web services infrastructure 95

Used in:
v Service provider
v Service requester

Contained by:
<provider_pipeline>

<requester_pipeline>

Contains:

In a service provider:
1. An optional <default_transport_handler_list> element
2. An optional <default_http_transport_handler_list> element
3. An optional <default_mq_transport_handler_list> element
4. Zero, one, or more <named_transport_entry> elements

In a service requester:
1. An optional <default_target> element. The <default_target> contains a URI

that CICS uses to locate the target Web service when the service requester
application does not provide a URI. In many cases, however, the URI of the
target will be provided by the service requester application, and whatever you
specify in the <default_target> will be ignored. For example, service provider
applications that are deployed using the CICS Web services assistant normally
get the URI from the Web service description.

2. An optional <default_http_transport_handler_list> element
3. An optional <default_mq_transport_handler_list> element
4. An optional <default_transport_handler_list> element

Example
<transport>

<default_transport_handler_list>
...
</default_transport_handler_list>

</transport>

Pipeline configuration for MTOM/XOP
CICS SOAP pipelines can support the Message Transmission Optimization
Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) specifications.
These specifications define a mechanism for sending and receiving binary data
using SOAP, without incurring the overhead of base64 encoding. To enable MTOM
support, you must configure your pipelines accordingly.

The <mtom> element
Enables MTOM/XOP support for Java-based pipelines. If this element is defined in
the pipeline configuration file, MTOM support is enabled for all inbound and
outbound messages. However, if this element is not specified in the pipeline
configuration file, then MTOM support is enabled for only inbound messages.

Used in:
v Service provider
v Service requester

96 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|
|

|

|

|

Contained by:
<cics_soap_1.1_handler_java>

<cics_soap_1.2_handler_java>

For both provider and requester pipeline configuration files, the <mtom> element
should be defined after the optional <addressing> element and before the optional
<headerprogram> element.

Example

For a provider or requester mode pipeline, you could specify:
<cics_soap_1.2_handler_java>

<jvmserver>JVMSERV1</jvmserver>
<addressing></addressing>
<mtom></mtom>
<headerprogram>

<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.2_handler_java>

The <cics_mtom_handler> element
Enables the supplied MTOM handler program for SOAP pipelines. This program
provides support for MTOM MIME multipart/related messages that contain XOP
documents and binary attachments. MTOM support is enabled for all inbound
messages that are received in the pipeline, but MTOM support for outbound
messages is conditionally enabled subject to further options.

Used in:
v Service provider
v Service requester

Contained by:
<provider_pipeline>

<requester_pipeline>

In a provider pipeline configuration file, the <cics_mtom_handler> element should
be defined before the <transport> element. At run time, the MTOM handler
program needs to unpackage the inbound MTOM message before other handlers
including the transport handler process it. It is then invoked as the last handler for
the response message, to package an MTOM message to send to the web service
requester.

In a requester pipeline configuration file the <cics_mtom_handler> element should
be defined after the <transport> element. At run time, the outbound request
message is not converted into MTOM format until all other handlers have
processed it. It is then invoked as the first handler for the inbound response
message to unpackage the MTOM message before other handlers process it and
return to the requesting program.

Note: You must not use this handler program with Java-based pipelines. For
Java-based pipelines, specify the <mtom> element.

Chapter 6. Creating the web services infrastructure 97

|

|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Contains:
<dfhmtom_configuration> element

Default options can be changed using configuration options specified in the
<dfhmtom_configuration> element. If you do not want to change the default
options, you can use an empty element.

Example

For a provider mode pipeline, you could specify:
<provider_pipeline>

<cics_mtom_handler></cics_mtom_handler>
<transport>
....
</transport>
<service>
....
</service>

</provider_pipeline>

The <dfhmtom_configuration> element
Specifies configuration information for the supplied MTOM handler program for
pipelines that do not support Java. This program provides support for MIME
messages that contain XOP documents and binary attachments. If you do not
specify any configuration for MTOM, CICS assumes default values.

Used in:
v Service provider
v Service requester

Contained by:
<cics_mtom_handler>

Attributes:

Name Description

version An integer denoting the version of the configuration
information. The only valid value is 1.

Contains:
v An optional <mtom_options> element
v An optional <xop_options> element
v An optional <mime_options> element

Example
<dfhmtom_configuration version="1">

<mtom_options send_mtom="same" send_when_no_xop="no"/>
<xop_options apphandler_supports_xop="yes"/>
<mime_options content_id_domain="example.org"/>

</dfhmtom_configuration>

The <mtom_options> element
Specifies when to use MTOM for outbound SOAP messages for pipelines that do
not support Java.

98 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

|
|

Used in:
v Service provider
v Service requester

Contained by:
<dfhmtom_configuration>

Attributes:

Attribute Description

send_mtom Specifies if MTOM should be used to convert the outbound
SOAP message into a MIME message:

no MTOM is not used for outbound SOAP messages.

same In service provider mode, MTOM is used for
SOAP response messages whenever the requester
uses MTOM. This is the default value in a service
provider pipeline.

In service requester mode, specifying this value is
the same as when you specify send_mtom="yes".

yes MTOM is used for all outbound SOAP messages.
This is the default value in a service requester
pipeline.

send_when_no_xop Specifies if an MTOM message should be sent, even when
there are no binary attachments present in the message.

no MTOM is only used when binary attachments are
being sent with the message.

yes MTOM is used for all outbound SOAP messages,
even when there are no binary attachments to send
in the message. This is the default value, and is
primarily used as an indicator to the receiving
program that the sender supports MTOM/XOP.

This attribute can be combined with any of the send_mtom
attribute values, but has no effect if you specify
send_mtom="no".

Example
<provider_pipeline>
<cics_mtom_handler>
<dfhmtom_configuration version="1">

<mtom_options send_mtom="same" send_when_no_xop="no"/>
</dfhmtom_configuration>
</cics_mtom_handler>
...
</provider_pipeline>

In this provider pipeline example, SOAP messages are converted into MTOM
messages only when binary attachments need to be sent with the message, and the
service requester sent an MTOM message.

The <xop_options> element
Specifies whether XOP processing can take place in direct or compatibility mode
for pipelines that do not support Java.

Chapter 6. Creating the web services infrastructure 99

|
|

Used in:
v Service provider
v Service requester

Contained by:
<dfhmtom_configuration>

Attributes:

Attribute Description

apphandler_supports_xop In provider mode, specifies if the application handler is
capable of handling XOP documents in direct mode:

no The application handler cannot handle XOP
documents directly. This is the default value if the
<apphandler> element does not specify DFHPITP.

Compatibility mode is used in the pipeline to
handle any inbound or outbound messages that
are received or sent in MTOM format.

yes The application handler can handle XOP
documents. This is the default value if the
<apphandler> element specifies DFHPITP.

Direct mode is used in the pipeline to handle any
inbound or outbound messages that are received
or sent in MTOM format. This is subject to
restrictions at run time. For example, if you have
specified WS-Security related elements in the
pipeline configuration file, the MTOM handler
determines that the pipeline should use
compatibility mode rather than direct mode for
processing XOP documents.

In requester mode, specifies if service requester applications
use the CICS web services support to create and handle
XOP documents in direct mode.

no Service requester applications do not use the CICS
web services support. Specify this value if your
requester application links to DFHPIRT to drive
the pipeline, and is therefore not capable of
creating and handling XOP documents in direct
mode.

yes Service requester applications do use the CICS
web services support. Specify this value if your
requester application uses the EXEC CICS INVOKE
WEBSERVICE command.

Example
<provider_pipeline>
<cics_mtom_handler>
<dfhmtom_configuration version="1">

<xop_options apphandler_supports_xop="no"/>
</dfhmtom_configuration>
</cics_mtom_handler>
...
</provider_pipeline>

100 CICS TS for z/OS 4.2: Web Services Guide

In this provider pipeline example, inbound MTOM messages and outbound
response messages are processed in the pipeline using compatibility mode.

The <mime_options> element
Specifies the domain name that should be used when generating MIME content-ID
values for pipelines that do not support Java. The MIME content-ID values are
used to identify binary attachments.

Used in:
v Service provider
v Service requester

Contained by:
<dfhmtom_configuration>

Attributes:

Attribute Description

content_id_domain The syntax to use is domain.name.

To conform to Internet standards, the name should be a
valid internet host name and should be unique to the CICS
system where the pipeline is installed. Note that this is not
checked by CICS.

If this element is omitted, CICS uses the value cicsts.

Example
<provider_pipeline>
<dfhmtom_configuration version="1">

<mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>
...
</provider_pipeline>

In this example, references to binary attachments are created using
cid:unique_value@example.org.

Pipeline configuration for WS-Security
In order for web service requester and provider applications to participate in
WS-Security protocols, you must configure your pipelines accordingly, by
including message handler DFHWSSE, and by providing configuration information
for the handler.

Example

A provider pipeline configuration file that uses WS-Security might take the
following form:
<?xml version="1.0"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline">
<service>

<service_handler_list>
<wsse_handler>

<dfhwsse_configuration version="1">
<authentication trust="blind" mode="basic"/>

</dfhwsse_configuration>

Chapter 6. Creating the web services infrastructure 101

|
|
|

</wsse_handler>
<handler>
...
</handler>

</service_handler_list>
<terminal_handler>

<cics_soap_1.2_handler/>
</terminal_handler>

</service>
<apphandler>DFHPITP</apphandler>

</provider_pipeline>

The <wsse_handler> element
Specifies parameters used by the CICS-supplied message handler that provides
support for WS-Security.

Used in:
v Service provider
v Service requester

Contained by:
<service_handler_list>

Contains:
v A <dfhwsse_configuration> element.

The <dfhwsse_configuration> element
Specifies configuration information for the security handler DFHWSSE1, which
provides support for securing web services.

Used in:
v Service provider
v Service requester

Contained by:
<wsse_handler>

Attributes:

Name Description

version An integer denoting the version of the configuration
information. The only valid value is 1.

Contains:
1. Either of the following elements:

v An optional <authentication> element.
– In a service requester pipeline, the <authentication> element specifies the

type of authentication that must be used in the security header of
outbound SOAP messages.

– In a service provider pipeline, the element specifies whether CICS uses the
security tokens in an inbound SOAP message to determine the user ID
under which work is processed.

v An optional <sts_authentication> element.

102 CICS TS for z/OS 4.2: Web Services Guide

The action attribute on this element specifies what type of request to send to
the Security Token Service. If the request is to issue an identity token, then
CICS uses the values in the nested elements to request an identity token of
the specified type.

2. If you specify an <sts_authentication> element, you must also specify an
<sts_endpoint> element.
When this element is present, CICS uses the URI in the <endpoint> element to
send a request to the Security Token Service.

3. An optional, empty <expect_signed_body/> element.
The <expect_signed_body/> element indicates that the <body> of the inbound
message must be signed. If the body of an inbound message is not correctly
signed, CICS rejects the message with a security fault.

4. An optional, empty <expect_encrypted_body/> element.
The <expect_encrypted_body/> element indicates that the <body> of the
inbound message must be encrypted. If the body of an inbound message is not
correctly encrypted, CICS rejects the message with a security fault.

5. An optional <sign_body> element.
If this element is present, CICS will sign the <body> of the outbound message,
using the algorithm specified in the <algorithm> element contained in the
<sign_body> element.

6. An optional <encrypt_body> element.
If this element is present, CICS will encrypt the <body> of the outbound
message, using the algorithm specified in the <algorithm> element contained in
the <encrypt_body> element.

7. In provider pipelines only, an optional <reject_signature/> element.
If this element is present, CICS rejects any message that includes a certificate in
its header that signs part or all of the message body. A SOAP fault is issued to
the web service requester.

8. In provider pipelines only, an optional <reject_encryption/> element.
If this element is present, CICS rejects any message that is partially or fully
encrypted. A SOAP fault is issued to the web service requester.

Example
<dfhwsse_configuration version="1">

<sts_authentication action="issue">
<auth_token_type>

<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>

</auth_token_type>
<suppress/>

</sts_authentication>
<sts_endpoint>

<endpoint>https://example.com/SecurityTokenService</endpoint>
</sts_endpoint>
<expect_signed_body/>
<expect_encrypted_body/>
<sign_body>

<algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
<certificate_label>SIGCERT01</certificate_label>

</sign_body>
<encrypt_body>

<algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
<certificate_label>ENCCERT02</certificate_label>

</encrypt_body>
</dfhwsse_configuration>

Chapter 6. Creating the web services infrastructure 103

The <authentication> element
Specifies the use of security tokens in the headers of inbound and outbound SOAP
messages.

Used in:
v Service provider
v Service requester

Contained by:
<dfhwsse_configuration>

Attributes:

Attribute Description

trust Taken together, the trust and mode attributes specify:

v whether asserted identity is used

v the combination of security tokens that are used in SOAP messages.

Asserted identity allows a trusted user to assert that work must run
under an different identity, the asserted identity, without the trusted user
having the credentials associated with that identity.

When asserted identity is used, messages contain a trust token and an
identity token. The trust token is used to check that the sender has the
correct permissions to assert identities, and the identity token holds the
asserted identity, that is, the user ID under which the request is
executed.

Use of asserted identity requires that a service provider trusts the
requester to make this assertion. In CICS, the trust relationship is
established with security manager surrogate definitions: the requesting
identity must have the correct authority to start work on behalf of the
asserted identity.

The allowable combinations of the these attributes, and their meanings,
are described in Table 2 and Table 3 on page 105.

mode

Table 2. The mode and trust attributes in a service requester pipeline

trust mode Meaning

none none No credentials are added to the message

basic Invalid combination of attribute values

signature Asserted identity is not used. CICS uses a single
X.509 security token which is added to the message,
and used to sign the message body. The certificate is
identified with the <certificate_label> element,
and the algorithm is specified in the <algorithm>
element.

104 CICS TS for z/OS 4.2: Web Services Guide

Table 2. The mode and trust attributes in a service requester pipeline (continued)

trust mode Meaning

blind none Invalid combination of attribute values

basic Asserted identity is not used. CICS adds an identity
token to the message, but does not provide a trust
token. The identity token is a username with no
password. The user ID placed in the identity token
is the contents of the DFHWS-USERID container
(which, by default, contains the running task's user
ID).

signature Invalid combination of attribute values

basic (any) Invalid combination of attribute values

signature none Invalid combination of attribute values

basic Asserted identity is used. CICS adds the following
tokens to the message:

v The trust token is an X.509 security token.

v The identity token is a username with no
password.

The certificate used to sign the identity token and
message body is specified by the
<certificate_label>. The user ID placed in the
identity token is the contents of the DFHWS-USERID
container (which, by default, contains the running
task's user ID).

signature Invalid combination of attribute values

Table 3. The mode and trust attributes in a service provider pipeline

trust mode Meaning

none none Inbound messages need not contain any credentials,
and CICS does not attempt to extract or verify any
credentials that are found in a message. However,
CICS will check that any signed elements have been
correctly signed.

basic Inbound messages must contain a username security
token with a password. CICS puts the username in
the DFHWS-USERID container.

basic-ICRX Invalid combination of attribute values

signature Inbound messages must contain an X.509 security
token that has been used to sign the message body.

Chapter 6. Creating the web services infrastructure 105

Table 3. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning

blind none Invalid combination of attribute values

basic Inbound messages must contain an identity token,
where the identity token contains a user ID and
optionally a password. CICS puts the user ID in the
DFHWS-USERID container. If no password is
included, CICS uses the user ID without verifying it.
If a password is included, the security handler
DFHWSSE1 verifies it.

basic-ICRX Inbound messages must contain an ICRX identity
token. CICS resolves the identity, puts the user ID in
the DFHWS-USERID container, and puts the ICRX in
container DFHWS-ICRX. Authentication, if required,
uses client-certified SSL or another security protocol.

signature Inbound messages must contain an identity token,
where the identity token is the first X.509 certificate
in the SOAP message header. The certificate does not
need to have signed the message. The security
handler extracts the matching user ID and places it
in the DFHWS-USERID container.

basic none Invalid combination of attribute values

basic Inbound messages must use asserted identity:
v The trust token is a username token with a

password
v The identity token is a second username token

without a password. CICS puts this username in
container DFHWS-USERID.

basic-ICRX Inbound messages must use asserted identity:
v The trust token is a user name token with a

password.

CICS establishes whether the user ID and
password combination are valid, and, if they are
valid, CICS resolves the asserted ICRX-based
identity to a user ID. CICS then performs a
surrogate security check from the authenticated
identity to the asserted identity.

v The identity token is an ICRX, which identifies the
specific client user. CICS puts the user name in
container DFHWS-USERID and the ICRX in
container DFHWS-ICRX.

signature Inbound messages must use asserted identity:
v The trust token is a username token with a

password
v The identity token is an X.509 certificate. CICS

puts the user ID associated with the certificate in
container DFHWS-USERID.

106 CICS TS for z/OS 4.2: Web Services Guide

Table 3. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning

signature none Invalid combination of attribute values

basic Inbound messages must use asserted identity:
v The trust token is an X.509 certificate
v The identity token is a username token without a

password. CICS puts the username in container
DFHWS-USERID.

The identity token and the body must be signed
with the X.509 certificate.

basic-ICRX Inbound messages must use asserted identity.
v The trust token is an ICRX signed with an X.509

certificate.

CICS resolves the X.509 certificate to a user ID
and ensures that the XML signature is valid. CICS
resolves the asserted ICRX-based identity to a user
ID. CICS then performs a surrogate security check
from the authenticated X.509 identity to the
asserted ICRX identity.

v The identity token is a user name token without a
password. CICS puts the user name in container
DFHWS-USERID and the ICRX in container
DFHWS-ICRX.

signature Inbound messages must use asserted identity:
v The trust token is an X.509 certificate
v The identity token is a second X.509 certificate.

CICS puts the user ID associated with this
certificate in container DFHWS-USERID.

The identity token and the body must be signed
with the first X.509 certificate (the trust token).

Notes:

1. The combinations of the trust and mode attribute values are checked when the
PIPELINE is installed. The installation will fail if the attributes are incorrectly
coded.

Contains:
1. An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler does not
attempt to use any security tokens in the message to determine under which
user ID the work will run.
If this element is specified in a service requester pipeline, the handler does not
attempt to add to the outbound SOAP message any of the security tokens that
are required for authentication.

2. In a requester pipeline, an optional <algorithm> element that specifies the URI
of the algorithm used to sign the body of the SOAP message. You must specify
this element if the combination of trust and mode attribute values indicate that
the messages are signed. You can specify only the RSA with SHA1 algorithm in
this element. The URI is http://www.w3.org/2000/09/xmldsig#rsa-sha1.

3. An optional <certificate_label> element that specifies the label associated
with an X.509 digital certificate installed in RACF®. If you specify this element
in a service requester pipeline and the <suppress> element is not specified, the

Chapter 6. Creating the web services infrastructure 107

certificate is added to the security header in the SOAP message. If you do not
specify a <certificate_label> element, CICS uses the default certificate in the
RACF key ring.
This element is ignored in a service provider pipeline.

Example
<authentication trust="signature" mode="basic">

<suppress/>
<algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
<certificate_label>AUTHCERT03</certificate_label>

</authentication>

The <sts_authentication> element
Specifies that a Security Token Service (STS) must be used for authentication and
determines what type of request is sent.

Used in:
v Service provider
v Service requester

Contained by:
<dfhwsse_configuration>

Attributes:

Name Description

action Specifies what type of request CICS sends to the STS when
a message is received in the service provider pipeline. Valid
values are:

issue The STS issues an identity token for the SOAP
message.

validate
The STS validates the provided identity token and
returns whether the token is valid to the security
handler.

If you do not specify this attribute, CICS assumes that the
action is to request an identity token.

In a service requester pipeline, you cannot specify this
attribute because CICS always requests that the STS issues
a token.

Contains:
1. An <auth_token_type> element. This element is required when you specify a

<sts_authentication> element in a service requester pipeline and is optional in
a service provider pipeline. For more information, see <auth_token_type>.
v In a service requester pipeline, the <auth_token_type> element indicates the

type of token that STS issues when CICS sends it the user ID contained in
the DFHWS-USERID container. The token that CICS receives from the STS is
placed in the header of the outbound message.

v In a service provider pipeline, the <auth_token_type> element is used to
determine the identity token that CICS takes from the message header and
sends to the STS to exchange or validate. CICS uses the first identity token of
the specified type in the message header. If you do not specify this element,

108 CICS TS for z/OS 4.2: Web Services Guide

CICS uses the first identity token that it finds in the message header. CICS
does not consider the following as identity tokens:
– wsu:Timestamp

– xenc:ReferenceList

– xenc:EncryptedKey

– ds:Signature

2. In a service provider pipeline only, an optional, empty <suppress/> element. If
this element is specified, the handler does not attempt to use any security
tokens in the message to determine under which user ID the work will run.
The <suppress/> element includes the identity token that is returned by the
STS.

Example

The following example shows a service provider pipeline, where the security
handler requests a token from the STS.
<sts_authentication action="issue">

<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>

</auth_token_type>
<suppress/>

</sts_authentication>

The <auth_token_type> element
Specifies what type of identity token is required.

This element is mandatory when you specify the <sts_authentication> element in
a service requester pipeline, and optional in a service provider.
v In a service requester pipeline, the <auth_token_type> element indicates the type

of token that STS issues when CICS sends it the user ID contained in the
DFHWS-USERID container. The token that CICS receives from the STS is placed
in the header of the outbound message.

v In a service provider pipeline, the <auth_token_type> element is used to
determine the identity token that CICS takes from the message header and sends
to the STS to exchange or validate. CICS uses the first identity token of the
specified type in the message header. If you do not specify this element, CICS
uses the first identity token that it finds in the message header. CICS does not
consider the following as identity tokens:
– wsu:Timestamp

– xenc:ReferenceList

– xenc:EncryptedKey

– ds:Signature

Used in:
v Service provider
v Service requester

Contained by:
<sts_authentication>

Chapter 6. Creating the web services infrastructure 109

Contains:
1. A <namespace> element. This element contains the namespace of the token type

that should be validated or exchanged.
2. An <element> element. This element contains the local name of the token type

that should be validated or exchanged.

The values of these elements form the Qname of the token.

Example
<auth_token_type>

<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>

</auth_token_type>

The <sts_endpoint> element
Specifies the location of the Security Token Service (STS).

Used in:
v Service provider
v Service requester

Contained by:
<dfhwsse_configuration>

Contains:
v An <endpoint> element. This element contains a URI that points to the location

of the Security Token Service (STS) on the network. It is recommended that you
use SSL or TLS to keep the connection to the STS secure, rather than using
HTTP.
You can also specify a WebSphere MQ endpoint using the JMS format of URI.

Example

In this example, the endpoint is configured to use a secure connection to the STS
that is located at the specified URI.
<sts_endpoint>

<endpoint>https://example.com/SecurityTokenService</endpoint>
</sts_endpoint>

The <sign_body> element
Directs DFHWSSE to sign the body of outbound SOAP messages, and provides
information about how the messages are to be signed.

Used in:
v Service provider
v Service requester

Contained by:
<dfhwsse_configuration>

Contains:
1. An <algorithm> element that contains the URI that identifies the algorithm

used to sign the body of the SOAP message.
You can specify the following algorithms:

110 CICS TS for z/OS 4.2: Web Services Guide

Algorithm URI

Digital Signature Algorithm
with Secure Hash Algorithm
1 (DSA with SHA1)

Supported on inbound SOAP
messages only.

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with
SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

2. A <certificate_label> element that specifies the label associated with a digital
certificate installed in RACF. The digital certificate provides the key that is used
to sign the message.

Example
<sign_body>
<algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
<certificate_label>SIGCERT01</certificate_label>
</sign_body>

The <encrypt_body> element
Directs DFHWSSE to encrypt the body of outbound SOAP messages, and provides
information about how the messages are to be encrypted.

Used in:
v Service provider
v Service requester

Contained by:
<dfhwsse_configuration>

Contains:
1. An <algorithm> element containing the URI that identifies the algorithm used

to encrypt the body of the SOAP message.
You can specify the following algorithms:

Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

Chapter 6. Creating the web services infrastructure 111

2. A <certificate_label> element that specifies the label that is associated with a
digital certificate in RACF. The digital certificate provides the key that is used
to encrypt the message.

Example
<encrypt_body>

<algorithm>http://www.w3.org/2001/04/xmlenc#aes256-cbc</algorithm>
<certificate_label>ENCCERT02</certificate_label>

</encrypt_body>

Application handlers
An application handler is a CICS program that the terminal handler of a SOAP
service provider pipeline links to at run time.

Application handlers are used in provider mode pipelines in which the terminal
handler is one of the supplied SOAP message handlers. This situation occurs when
the <terminal_handler> element contains a <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java> or a
<cics_soap_1.2_handler_java> element.

The application handler is responsible for processing the body of a SOAP request,
and for generating a response using the returned data. The application handler can
call other programs to complete this processing. Typically the application handler
acts as a general-purpose presentation layer around one or more business
applications. It is responsible for mapping XML into a form that an application can
use, attaching that application, and then generating a response using the data
returned.

An application handler can be attached by CICS in two ways. The typical
mechanism involves a channel and control containers; the other method involves
Java bindings for Axis2.

Channel-attached application handlers are specified in the <apphandler> element of
the <provider_pipeline> element. At run time, the DFHWS-APPHANDLER container is
populated by the contents of <apphandler>. However, the DFHWS-APPHANDLER
container can be dynamically updated by any of the other message handlers.
Therefore, the program that is linked to at run time can be different to the program
specified in the <apphandler> element. The following application handlers can be
specified in the <apphandler> element or the DFHWS-APPHANDLER container:
v The supplied channel-attached SOAP application handler, DFHPITP. For more

information about channel-attached application handlers, see “Channel-attached
application handlers” on page 113

v Your own channel-attached application handler. This application handler can be
written in languages other than Java. For more information about the control
containers that can be used in your channel-attached application handler, see
“Control containers” on page 128.

v Your own Java application handler for Java-based pipelines, which implements
the ApplicationHandler Java interface and that is attached to the pipeline using
Axis2 MessageContext. For more information about the ApplicationHandler Java
interface, see Interface ApplicationHandler.

To use an application handler that uses Java bindings for Axis2, you must specify
the <apphandler_class> element of the <provider_pipeline> element. Axis2
application handlers also require that a JVM server must exist for the web services

112 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.jcics.javadoc/com/ibm/cics/server/pipeline/ApplicationHandler.html

pipeline and application handler to run on and that the terminal handler of your
web services pipeline must be either the <cics_soap_1.1_handler_java> or the
<cics_soap_1.2_handler_java> message handler. To use the supplied Axis2
application handler, you must specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class>
element, however you can specify your own Axis2 application handler class. At
run time, the DFHWS-APPHANCLAS container is populated by the contents of
<apphandler_class>.

For web service applications that are deployed using the CICS web services
assistant, you must specify either DFHPITP or your own application handler that
uses DFHPITP in the <apphandler> element, or specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class>
element. For more information about the CICS web services assistant, see “The
CICS web services assistant” on page 152.

It is also possible to deploy Axis2 applications as provider mode web services in
CICS using the Axis2 style of web service deployment. For more information, see
“Deploying a provider-mode Axis2 web service” on page 244.

Channel-attached application handlers
Channel-attached application handlers are application handlers that are attached to
CICS using a channel and control containers.

The channel that is used by the application handler is the DFHAHC-V1 channel.
This channel passes the following containers between the terminal handler and the
provider-mode web service application:

DFHWS-XMLNS
Contains a list of name-value pairs that map namespace prefixes to
namespaces.
v On input, the list contains the namespaces that are in scope from the

SOAP envelope.
v On output, the list contains the namespace data that is assumed to be in

the envelope tag.

DFHWS-BODY
Contains the body section of the SOAP envelope. Typically, the application
will modify the contents. If the application does not modify the contents,
the application handler program must update the contents of this
container, even if it is putting the same content back into the container
before returning to the terminal handler.

DFHNORESPONSE
In the request phase of a service requester pipeline, indicates that the
service provider is not expected to return a response. The contents of
container DFHNORESPONSE are undefined; message handlers that need
to know if the service provider is expected to return a response need only
determine if the container is present or not:
v If container DFHNORESPONSE is present, then no response is expected.
v If container DFHNORESPONSE is absent, then a response is expected.

The channel also passes all the context containers that were passed to the terminal
handler. For example, a header processing program can add containers to the
channel. These containers are passed as user containers. For more information
about application handlers, see “Application handlers” on page 112.

Chapter 6. Creating the web services infrastructure 113

Message handlers
A message handler is a CICS program that is used to process a web service request
during input and to process the response during output. Message handlers use
channels and containers to interact with one another and with the system.

The message handler interface lets you perform the following tasks in a message
handler program:
v Examine the contents of an XML request or response, without changing it
v Change the contents of an XML request or response
v In a non-terminal message handler, pass an XML request or response to the next

message handler in the pipeline
v In a terminal message handler, call an application program, and generate a

response
v In the request phase of the pipeline, force a transition to the response phase, by

absorbing the request, and generating a response
v Handle errors

Tip: It is advisable to use the SOAP handlers, <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java>, to work with SOAP messages. These handlers let
you work directly with the major elements in a SOAP message (the SOAP headers
and the SOAP body).

All programs that are used as message handlers are invoked with the same
interface: they are invoked with a channel that holds a number of containers. The
containers can be categorized as the following types:

Control containers
These are essential to the operation of the pipeline. Message handlers can
use the control containers to modify the sequence in which subsequent
handlers are processed.

Context containers
In some situations, message handler programs need information about the
context in which they are invoked. CICS provides this information in a set
of context containers that are passed to the programs.

Some of the context containers hold information that you can change in
your message handler. For example, in a service provider pipeline, you can
change the user ID and transaction ID of the target application program by
modifying the contents of the appropriate context containers.

User containers
These contain information that one message handler needs to pass to
another. The use of user containers is entirely a matter for the message
handlers.

Restriction: Do not use names that start with DFH for user containers.

Message handler protocols
Message handlers in a pipeline process request and response messages. The
behavior of the handlers is governed by a set of protocols which describe what
actions the message handlers can take in a given situation.

Each non-terminal message handler in a pipeline is invoked twice:

114 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

1. The first time, it is driven to process a request (an inbound request for a service
provider pipeline, an outbound request for a service requester)

2. The second time, it is driven for one of three reasons:
v to process a response (an outbound response for a service provider pipeline,

an inbound response for a service requester)
v to perform recovery following an error elsewhere in the pipeline
v to perform any further processing that is required when there is no response.

The terminal message handler in a service provider pipeline is invoked once, to
process a request.

Message handlers may be provided in a pipeline for a variety of reasons, and the
processing that each handler performs may be very different. In particular:
v Some message handlers do not change the message contents, nor do they change

the normal processing sequence of a pipeline
v Some message handlers change the message contents, but do not change the

normal processing sequence of a pipeline
v Some message handlers change the processing sequence of a pipeline.

Each handler has a choice of actions that it can perform. The choice depends upon:
v whether the handler is invoked in a service provider or a service requester
v in a service provider, whether the handler is a terminal handler or not
v whether the handler is invoked for a request or a response message.

Terminal handler protocols

Normal request and response
This is the normal protocol for a terminal handler. The handler is invoked
for a request message, and constructs a response.

In order to construct the response, a typical terminal handler will link to
the target application program, but this is not mandatory.

Normal request, with no response
This is another common protocol for a terminal handler.

This protocol is usually encountered when the target application
determines that there should be no response to the request (although the
decision may also be made in the terminal handler).

Terminal
handler

Request

Response

Terminal
handler

Request

Chapter 6. Creating the web services infrastructure 115

Non-terminal handler protocols

Normal request and response
This is the usual protocol for a non-terminal handler. The handler is
invoked for a request message, and again for the response message. In
each case, the handler processes the message, and passes it to the next
handler in the pipeline.

Normal request, no response
This is another common protocol for a non-terminal handler. The handler
is invoked for a request message, and after processing it, passes to the next
handler in the pipeline. The target application (or another handler)
determines that there should be no response. When the handler is invoked
for the second time, there is no response message to process.

Handler creates the response
This protocol is typically used in abnormal situations, because the
non-terminal handler does not pass the request to the next handler. Instead
it constructs a response, and returns it to the pipeline.

This protocol could be used when the handler determines that the request
is in some way invalid, and that no further processing of the request
should be attempted. In this situation, the handler is not invoked a second
time.

Handler suppresses the response
This is another protocol that is typically used in abnormal situations,
because the non-terminal handler does not pass the request to the next
handler. In this protocol, the handler determines that there should be no
response to the request.

Request

Response

Non-terminal
handler

Request

Response

Request
Non-terminal

handler

Request

Non-terminal
handler

Request

Response

116 CICS TS for z/OS 4.2: Web Services Guide

This protocol could be used when no response is expected to the original
request, and, because the request is in some way invalid, no further
processing of the request should be attempted.

Supplying your own message handlers
When you want to perform specialized processing on the messages that flow
between a service requester and a service provider, and CICS does not supply a
message handler that meets your needs, you will need to supply your own.

About this task

In most situations, you can perform all the processing you need with the
CICS-supplied message handlers. For example, you can use the SOAP 1.1 and 1.2
message handlers which CICS supplies to process SOAP messages. But there are
occasions when you will want to perform your own, specialized, operations on
web service requests and responses. To do this, you must supply your own
message handlers.

Procedure
1. Write your message handler program. A message handler is a CICS program

with a channel interface. You can write your program in any of the languages
which CICS supports, and use any CICS command in the DPL subset within
your program.

2. Compile and link-edit your program. Message handler programs normally run
under transaction CPIH, which is defined with the attribute TASKDATALOC(ANY).
Therefore, when you link-edit the program, you must specify the AMODE(31)
option.

3. Install the program in your CICS system in the usual way.
4. Define the program in the pipeline configuration file. Use the <handler>

element to define your message handler. Within the <handler> element, code a
<program> element containing the name of the program.

Working with messages in a non-terminal message handler
A typical non-terminal message handler processes a message, then passes control
to another message handler in the pipeline.

About this task

In a non-terminal message handler, you can work with a request or response, with
or without changing it, and pass it on to the next message handler.

Note: Although web services typically use SOAP messages which contain XML,
your message handlers will work as well with other message formats

Non-terminal
handler

Request

Chapter 6. Creating the web services infrastructure 117

Procedure
1. Using the contents of container DFHFUNCTION, determine if the message

passed to this message handler is a request or a response.

DFHFUNCTION Request or
response

Type of message
handler

Inbound or
outbound

RECEIVE-REQUEST Request Non-terminal Inbound

SEND-RESPONSE response Non-terminal Outbound

SEND-REQUEST Request Non-terminal Outbound

RECEIVE-RESPONSE response Non-terminal Inbound

Tip:

v If DFHFUNCTION contains PROCESS-REQUEST, the message handler is a
terminal message handler, and these steps do not apply.

v If DFHFUNCTION contains HANDLER-ERROR, the handler is being called
for error processing, and these steps do not apply.

2. Retrieve the request or the response from the appropriate container.
v If the message is a request, it is passed to the program in container

DFHREQUEST. Container DFHRESPONSE is also present, with a length of
zero.

v If the message is a response, it is passed to the program in container
DFHRESPONSE.

3. Perform any processing of the message which is required. Depending upon the
purpose of the message handler, you might:
v Examine the message without changing it, and pass it to the next message

handler in the pipeline.
v Change the request, and pass it to the next message handler in the pipeline.
v If the message is a request, you can bypass the following message handlers

in the pipeline, and, instead, construct a response message.

Note: It is the contents of the containers which a message handler returns that
determines which message handler is invoked next.

It is an error if a message handler makes no changes to any of the containers
passed to it.

It is an error for a message handler program to return any of the following:
v An empty DFHRESPONSE container.
v A non-empty DFHREQUEST container and a non-empty DFHRESPONSE

container.
v An empty DFHREQUEST container on the outbound request.

Passing a message to the next message handler in the pipeline
In a typical non-terminal message handler, you will process a request or response,
with or without changing it, and pass it on to the next message handler.

Procedure
1. Return the message to the pipeline - changed or unchanged - in the appropriate

container.

118 CICS TS for z/OS 4.2: Web Services Guide

v If the message is a request and you have changed it, return it in container
DFHREQUEST

v If the message is a response and you have changed it, put it in container
DFHRESPONSE

v If you have not changed the message, it is already in the appropriate
container

2. If the message is a request, delete container DFHRESPONSE. When a message
handler is invoked for a request, containers DFHREQUEST and
DFHRESPONSE are passed to the program; DFHRESPONSE has a length of
zero. However, it is an error to return both DFHREQUEST and
DFHRESPONSE.

Results

The message is passed to the next message handler on the pipeline.

Forcing a transition to the response phase of the pipeline
When you are processing a request, there are times when you will want to
generate an immediate response, instead of passing the request to the next message
handler in the pipeline.

Procedure
1. Delete container DFHREQUEST.
2. Construct your response, and put it in container DFHRESPONSE.

Results

The response is passed to the next message handler on the response phase of the
pipeline.

Suppressing the response
In some situations, you will want to absorb a request without sending a response.

Procedure
1. Delete container DFHREQUEST.
2. Delete container DFHRESPONSE.

Handling one way messages in a service requester pipeline
When a service requester pipeline sends a request to a service provider, there is
normally an expectation that there will be a response, and that, following the
sending of the request, the message handlers in the pipeline will be invoked again
when the response arrives. Some web services do not send a response, and so you
must take special action to indicate that CICS should not wait for a response before
invoking the message handlers for a second time.

About this task

To do this, ensure that container DFHNORESPONSE is present at the end of
pipeline processing in the request phase. Typically, this is done by application level
code, because the knowledge of whether a response is expected is lodged in the
application:
v For applications deployed with the CICS web services assistant, CICS code will

create the container.

Chapter 6. Creating the web services infrastructure 119

v Applications that are not deployed with the assistant will typically create the
container before invoking the application.

If you create or destroy container DFHNORESPONSE in a message handler, you
must be sure that doing so will not disturb the message protocol between the
service requester and the provider.

Working with messages in a terminal message handler
A typical terminal handler processes a request, invokes an application program,
and generates a response.

About this task

Note: Although web services typically use SOAP messages which contain XML,
your message handlers will work as well with other message formats

In a terminal message handler, you can work with a request, and - optionally -
generate a response and pass it back along the pipeline. A typical terminal handler
will use the request as input to an application program, and use the application
program's response to construct the response.

Procedure
1. Using the contents of container DFHFUNCTION, determine that the message

passed to this handler is a request, and that the handler is being called as a
terminal handler.

DFHFUNCTION Request or
response

Type of handler Inbound or
outbound

PROCESS-REQUEST Request Terminal Inbound

Tip:

v If DFHFUNCTION contains any other value, the handler is not a terminal
handler, and these steps do not apply.

2. Retrieve the request from container DFHREQUEST. Container DFHRESPONSE
is also present, with a length of zero.

3. Perform any processing of the message which is required. Typically, a terminal
handler will invoke an application program.

4. Construct your response, and put it in container DFHRESPONSE. If there is no
response, you must delete container DFHRESPONSE.

Results

The response is passed to the next handler in the response phase of the pipeline.
The handler is invoked for function SEND-RESPONSE. If there is no response, the
next handler is invoked for function NO-RESPONSE.

Handling errors
Message handlers should be designed to handle errors that might occur in the
pipeline.

120 CICS TS for z/OS 4.2: Web Services Guide

About this task

When an error occurs in a message handler program, the program is invoked again
for error processing. Error processing always takes place in the response phase of
the pipeline; if the error occurred in the request phase, subsequent handlers in the
request phase are bypassed.

In most cases, therefore, you must write your handler program to handle any
errors that might occur.

Procedure
1. Check that container DFHFUNCTION contains HANDLER-ERROR, indicating

that the message handler has been called for error processing.

Tip:

v If DFHFUNCTION contains any other value, the message handler has not
been invoked for error processing and these steps do not apply.

2. Analyze the error information, and determine if the message handler can
recover from the error by constructing a suitable response.
Container DFHERROR holds information about the error. For detailed
information about this container, see “DFHERROR container” on page 128.
Container DFHRESPONSE is also present, with a length of zero.

3. Perform any recovery processing.
v If the message handler can recover, construct a response, and return it in

container DFHRESPONSE.
v If the message handler can recover, but no response is required, delete

container DFHRESPONSE, and return container DFHNORESPONSE instead.
v If the message handler cannot recover, return container DFHRESPONSE

unchanged (that is, with a length of zero).

Results

If your message handler is able to recover from the error, pipeline processing
continues normally. If not, CICS generates a SOAP fault that contains information
about the error. In the case of a transaction abend, the abend code is included in
the fault.

The message handler interface
The CICS pipeline links to the message handlers using a channel containing a
number of containers. Some containers are optional, others are required by all
message handlers, and others are used by some message handlers, and not by
others.

Before a handler is invoked, some or all of the containers are populated with
information which the handler can use to perform its work. The containers
returned by the handler determine the subsequent processing, and are passed on to
later handlers in the pipeline.

The SOAP message handlers
The SOAP message handlers are CICS-provided message handlers that you can
include in your pipeline to process SOAP 1.1 and SOAP 1.2 messages. You can use
the SOAP message handlers in a service requester or in a service provider pipeline.

Chapter 6. Creating the web services infrastructure 121

On input, the SOAP message handlers parse inbound SOAP messages, and extract
the SOAP <Body> element for use by your application program. On output, the
handlers construct the complete SOAP message, using the <Body> element that
your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke
user-written header processing programs that allow you to process the headers on
inbound messages, and to add them to outbound messages.

SOAP message handlers, and any header processing programs, are specified in the
pipeline configuration file. For pipelines that do not support Java, the
<cics_soap_1.1_handler> or <cics_soap_1.2_handler> message handlers must be
specified. For pipelines that support Java, the <cics_soap_1.1_handler_java>, or
<cics_soap_1.2_handler_java> message handlers must be specified.

Typically, you will need just one SOAP handler in a pipeline. However, there are
some situations where more than one is needed. For example, you can ensure that
SOAP headers are processed in a particular sequence by defining multiple SOAP
handlers.

You must not define <cics_soap_1.1_handler> and <cics_soap_1.2_handler>
message handlers, or <cics_soap_1.1_handler_java> and
<cics_soap_1.2_handler_java> message handlers in the same pipeline. If you
expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you should
use either the <cics_soap_1.2_handler> or <cics_soap_1.2_handler_java> message
handler.

Header processing programs
Header processing programs are user-written CICS programs that are linked to
from the CICS-provided SOAP 1.1 and SOAP 1.2 message handlers, in order to
process SOAP header blocks.

You can write your header processing program in any of the languages that CICS
supports, and use any CICS command in the DPL subset. Your header processing
program can link to other CICS programs.

The header processing programs have a channel interface; the containers hold
information that the header program can examine or modify, including the SOAP
header block for which the program is invoked, and the SOAP message body.

The channel and the containers that the header processing program can use are
described in “The header processing program interface” on page 124.

Other containers hold information about the environment in which the header
program is invoked, for example:
v The transaction ID under which the header program was invoked
v Whether the program was invoked for a service provider or requester pipeline
v Whether the message being processed is a request or response

Header processing programs normally run under transaction CPIH, which is
defined with the attribute TASKDATALOC(ANY). Therefore, when you link-edit the
program, you must specify the AMODE(31) option.

122 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|
|

|
|
|
|
|
|

How header processing programs are invoked for a SOAP
request

The <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java>, and <cics_soap_1.2_handler_java> elements in a
pipeline configuration contain zero, one, or more <headerprogram> elements, each
of which contains the following children:

<program_name>

<namespace>

<localname>

<mandatory>

When a pipeline is processing an inbound SOAP message (a request in the case of
a service provider, a response in the case of a service requester), the header
program specified in the <program_name> element is invoked or not, depending
upon the following items:
v The contents of the <namespace>, <localname>, and <mandatory> elements
v The value of certain attributes of the root element of the SOAP header itself (the

actor attribute for SOAP 1.1; the role attribute for SOAP 1.2)

The following rules determine if the header program will be invoked in a given
case:

The <mandatory> element in the pipeline configuration file
If the element contains true (or 1), the header processing program is
invoked at least once, even if none of the headers in the SOAP message are
selected for processing by the remaining rules:
v If none of the header blocks are selected, the header processing program

is invoked once.
v If any of the header blocks are selected by the remaining rules, the

header processing program is invoked once for each selected header.

Attributes in the SOAP header block
For SOAP 1.1, a header block is eligible for processing only if the actor
attribute is absent, or has a value of http://schemas.xmlsoap.org/soap/
actor/next

For SOAP 1.2, a header block is eligible for processing only if the role
attribute is absent, or has one of the following values:

http://www.w3.org/2003/05/soap-envelope/role/next

http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver

A header block that is eligible for processing is not processed unless it is
selected by the next rule.

The <namespace> and <localname> elements in the pipeline configuration file
A header block that is eligible for processing according to the previous rule
is selected for processing only if the following conditions are satisfied:
v The name of the root element of the header block matches the

<localname> element in the pipeline configuration file
v The namespace of the root element matches the <namespace> element in

the pipeline configuration file

For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

Chapter 6. Creating the web services infrastructure 123

|

Subject to the other rules, the header block is selected for processing when
the following lines are coded in the pipeline configuration file:
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

The <localname> elements can contain an * to indicate that all header
blocks in the namespace should be processed. Therefore, the same header
block is selected by the following code:
<namespace>http://mynamespace</namespace>
<localname>*</localname>

When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which the
headers are processed is undefined.

The CICS-provided SOAP message handlers select the header processing programs
that are invoked based upon the header blocks that are present in the SOAP
message at the time when the message handler receives it. Therefore, a header
processing program is never invoked as a result of a header block that is added to
a message in the same SOAP message handler. If you want to process the new
header (or any modified headers) in your pipeline, you must define another SOAP
message handler in your pipeline.

For an outbound message (a request in a service requester, a response in a service
provider) the CICS-provided SOAP message handlers create a SOAP message that
does not contain any headers. In order to add one or more headers to the message,
you must write a header handler program to add the headers. To ensure that this
header handler is invoked, you must define it in your pipeline configuration file,
and specify <mandatory>true</mandatory>.

If a header handler is invoked in the request phase of a pipeline, it is invoked
again in the response phase, even if the message that flows in the response phase
does not contain a matching header.

The header processing program interface
The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header
processing programs using channel DFHHHC-V1. The containers that are passed
on the channel include several that are specific to the header processing program
interface, and sets of context containers and user containers that are accessible to all
the header processing programs and message handler programs in the pipeline.

Container DFHHEADER is specific to the header processing program interface.
Other containers are available elsewhere in your pipeline, but have specific uses in
a header processing program. The containers in this category are DFHWS-XMLNS,
DFHWS-BODY, and DFHXMLSS-PARSE.

Note: Although web service that use Axis2 to process SOAP messages can use the
header processing program interface, it is more efficient to write your own Axis2
handlers in Java to process the SOAP headers. For more information on creating
Axis2 handlers, see Writing Your Own Axis2 Module

Container DFHHEADER

When the header processing program is called, DFHHEADER contains the single
header block that caused the header processing program to be driven. When the
header program is specified with <mandatory>true</mandatory> or

124 CICS TS for z/OS 4.2: Web Services Guide

http://axis.apache.org/axis2/java/core/docs/modules.html

<mandatory>1</mandatory> in the pipeline configuration file, it is called even when
there is no matching header block in the SOAP message. In this case, container
DFHHEADER has a length of zero. This is the case when a header processing
program is called to add a header block to a SOAP message that does not have
header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header processing
program is called, by specifying <mandatory>true</mandatory> or
<mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one,
or more header blocks that CICS inserts in the SOAP message in place of the
original:
v You can return the original header block unchanged.
v You can modify the contents of the header block.
v You can append one or more new header blocks to the original block.
v You can replace the original header block with one or more different blocks.
v You can delete the header block completely.

Container DFHWS-XMLNS

When the header processing program is called, DFHWS-XMLNS contains
information about XML namespaces that are declared in the SOAP envelope. The
header program can use this information to perform the following tasks:
v Resolve qualified names that it encounters in the header block
v Construct qualified names in new or modified header blocks.

The namespace information consists of a list of namespace declarations, which use
the standard XML notation for declaring namespaces. The namespace declarations
in DFHWS-XMLNS are separated by spaces. For example:
xmlns:na=’http://abc.example.org/schema’ xmlns:nx=’http://xyz.example.org/schema’

You can add further namespace declarations to the SOAP envelope by appending
them to the contents of DFHWS-XMLNS. However, namespaces whose scope is a
SOAP header block or a SOAP body are best declared in the header block or the
body respectively. You are advised not to delete namespace declarations from
container DFHWS-XMLNS in a header processing program, because XML elements
that are not visible in the program may rely on them.

Container DFHWS-BODY

This container contains the body section of the SOAP envelope. The header
processing program can modify the contents.

When the header processing program is called, DFHWS-BODY contains the SOAP
<Body> element.

When the header program returns, container DFHWS-BODY must again contain a
valid SOAP <Body>, which CICS inserts in the SOAP message in place of the
original:
v You can return the original body unchanged.
v You can modify the contents of the body.

Chapter 6. Creating the web services infrastructure 125

You must not delete the SOAP body completely, as every SOAP message must
contain a <Body> element.

Container DFHXMLSS-PARSE

When you use either the <cics_soap_1.1_handler> or <cics_soap_1.2_handler>
elements in your pipeline configuration, and header program is called,
DFHXMLSS-PARSE contains the XML System Services (XMLSS) records for that
header. This container is not created when <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java> elements are used.

Control, context, and user containers

As well as the containers described, the interface passes the control containers,
context containers, and user containers on channel DFHHHC-V1.

For more information about these containers, see “Containers used in the pipeline”
on page 127.

Dynamic routing of inbound requests in a terminal handler
When the terminal handler of a service provider pipeline is one of the
CICS-supplied SOAP message handlers, the target application handler program
specified in container DFHWS-APPHANDLER is, in some cases, eligible for
dynamic routing. All pipeline processing before the application handler program is
always performed locally in the CICS region that received the SOAP message.

The transaction that runs the target application handler program is eligible for
routing when one of the following conditions is true:
v The transaction under which the pipeline is processing the message is defined as

DYNAMIC or REMOTE. This transaction is defined in the URIMAP that is used
to map the URI from the inbound SOAP message.

v A program in the pipeline has changed the contents of container
DFHWS-USERID from its initial value.

v A program in the pipeline has changed the contents of container
DFHWS-TRANID from its initial value.

v A WS-AT SOAP header exists in the inbound SOAP message.

In all the preceding scenarios, a task switch occurs during the pipeline processing.
The second task runs under the transaction specified in the DFHWS-TRANID
container. This task switch provides an opportunity for dynamic routing to take
place, but only if MRO is used to connect the CICS regions together. In addition,
the CICS region that you are routing to must support channels and containers.

The routing only takes place if the TRANSACTION definition for the transaction
named in DFHWS-TRANID specifies one of the following sets of attributes:

DYNAMIC(YES)
The transaction is routed using the distributed routing model, in which the
routing program is specified in the DSRTPGM system initialization parameter.

DYNAMIC(NO) REMOTESYSTEM(sysid)
The transaction is routed to the system identified by sysid.

For more information about the routing of web service requests, see technote:
Routing of provider mode CICS web services.

126 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|
|

For applications deployed with the CICS web services assistant, there is a second
opportunity to dynamically route the request, at the point where CICS links to the
users program. The request is then routed using the dynamic routing model, in
which the routing program is specified in the DTRPGM system initialization
parameter. Eligibility for routing is determined, in this case, by the characteristics
of the program. If you are using a channel and containers when linking to the
program, you can only dynamically route the request to CICS regions that are at
V3.1 or higher. If you are using a COMMAREA, this restriction does not apply.

“Daisy-chaining” is not supported. That is, once a request has been dynamically
routed to a target region it cannot be dynamically routed from the target to a third
region, even though the transaction is defined as ROUTABLE(YES) and
DYNAMIC(YES). The transaction can, however, be statically routed from the target
region to a third region.

For more information, see the CICS Customization Guide.

Containers used in the pipeline
A pipeline typically consists of a number of message handler programs and, when
the CICS-supplied SOAP message handlers are used, a number of header
processing programs. CICS uses containers to pass information to and from these
programs. The programs also use containers to communicate with other programs
in the pipeline.

The CICS pipeline links to the message handlers and to the header processing
programs using a channel that has a number of containers. Some containers are
optional, others are required by all message handlers, and others are used by some
message handlers and not by others.

Before a handler is invoked, some or all of the containers are populated with
information that the handler can use to perform its work. The containers returned
by the handler determine the subsequent processing, and are passed on to later
handlers in the pipeline.

The containers can be categorized in these ways:

Control containers
These containers are essential to the operation of the pipeline. Handlers
can use the control containers to modify the sequence in which the
handlers are processed. The names of the control containers are defined by
CICS, and begin with the characters DFH.

Context containers
These containers contain information about the environment in which the
handlers are called. CICS puts information in these containers before it
invokes the first message handler, but, in some cases, the handlers are free
to change the contents, or to delete the containers. Changes to the context
containers do not directly affect the sequence in which the handlers are
invoked. The names of the context containers are defined by CICS, and
begin with the characters DFH.

Header processing program containers
These containers contain information that is used by header processing
programs that are called from the CICS-supplied SOAP message handlers.

Security containers
These containers contain information that is used by the Trust client

Chapter 6. Creating the web services infrastructure 127

interface and the security message handler to process security tokens using
a Security Token Service (STS). The names of the security containers are
defined by CICS, and begin with the characters DFH.

Generated containers
These containers contain the data from the SOAP message, such as variable
arrays and long strings, that is passed to and from the application program
for processing. CICS automatically creates these containers during pipeline
processing, and the names begin with the characters DFH.

User containers
These containers contain information that one message handler needs to
pass to another. The use of user containers is entirely a matter for the
message handlers. You can choose your own names for these containers,
but you must not use names that start with DFH.

Control containers
The control containers are essential to the operation of the pipeline. Handlers can
use the control containers to modify the sequence in which the handlers are
processed.

DFHERROR container
DFHERROR is a container of DATATYPE(BIT) that is used to convey information
about pipeline errors to other message handlers.

Table 4. Structure of the DFHERROR container.. All fields in the structure contain character
data.

Field name Length (bytes) Contents

PIISNEB-MAJOR-VERSION 1 “1”

PIISNEB-MINOR-VERSION 1 “1”

PIISNEB-ERROR-TYPE 1 A numeric value denoting
the type of error. The values
are described in Table 5 on
page 129.

PIISNEB-ERROR-MODE 1
P The error occurred

in a provider
pipeline

R The error occurred
in a requester
pipeline

T The error occurred
in a Trust client

PIISNEB-ABCODE 4 The abend code when the
error is associated with a
transaction abend.

PIISNEB-ERROR-
CONTAINER1

16 The name of the container
when the error is associated
with a container.

PIISNEB-ERROR-
CONTAINER2

16 The name of the second
container when the error is
associated with more than
one container.

128 CICS TS for z/OS 4.2: Web Services Guide

Table 4. Structure of the DFHERROR container. (continued). All fields in the structure
contain character data.

Field name Length (bytes) Contents

PIISNEB-ERROR-NODE 8 The name of the handler
program in which the error
occurred.

Table 5. Values for the PIISNEB-ERROR-TYPE field

Value of PIISNEB-ERROR-TYPE Meaning

1 The handler program failed. The abend code
is in field PIISNEB-ABCODE.

2 A container required by the handler was
empty. The name of the container is in field
PIISNEB-ERROR-CONTAINER1.

3 A container required by the handler was
missing. The name of the container is in
field PIISNEB-ERROR-CONTAINER1.

4 Two containers were passed to the handler
when only one was expected. The names of
the containers are in fields
PIISNEB-ERROR-CONTAINER1 and
PIISNEB-ERROR-CONTAINER2.

5 An attempt to link to the target program
failed. If the target program failed, the
abend code is in container
PIISNEB-ABCODE.

6 The pipeline manager failed to communicate
with a remote server because of an error in
the underlying transport.

7 The DFHWS-STSACTION container has an
error. It is missing, corrupt, or contains an
incorrect value.

8 DFHPIRT failed to start the pipeline.

9 DFHPIRT failed to put a message in a
container.

10 DFHPIRT failed to get a message from a
container.

11 An unhandled error has occurred.

The COBOL declaration of the container's structure is this:
01 PIISNEB.

02 PIISNEB-MAJOR-VERSION PIC X(1).
02 PIISNEB-MINOR-VERSION PIC X(1).
02 PIISNEB-ERROR-TYPE PIC X(1).
02 PIISNEB-ERROR-MODE PIC X(1).
02 PIISNEB-ABCODE PIC X(4).
02 PIISNEB-ERROR-CONTAINER1 PIC X(16).
02 PIISNEB-ERROR-CONTAINER2 PIC X(16).
02 PIISNEB-ERROR-NODE PIC X(8).

The language copybooks that map the container are:

Chapter 6. Creating the web services infrastructure 129

Table 6.

Language Copybook

COBOL DFHPIUCO

PL/I DFHPIUCL

C and C++ dfhpiuch.h

Assembler DFHPIUCD

DFHFUNCTION container
DFHFUNCTION is a container of DATATYPE(CHAR) that contains a 16-character
string that indicates where in a pipeline a program is being called.

The string has one of the following values. The rightmost character positions are
padded with blank characters.

RECEIVE-REQUEST
The handler is a nonterminal handler in a service provider pipeline, and is
being called to process an inbound request message. On entry to the handler,
the message is in control container DFHREQUEST.

SEND-RESPONSE
The handler is a nonterminal handler in a service provider pipeline, and is
being called to process an outbound response message. On entry to the
handler, the message is in control container DFHRESPONSE.

SEND-REQUEST
The handler is being called by a pipeline that is sending a request; that is, in a
service requester that is processing an outbound message

RECEIVE-RESPONSE
The handler is being called by a pipeline that is receiving a response; that is, in
a service requester that is processing an inbound message

PROCESS-REQUEST
The handler is being called as the terminal handler of a service provider
pipeline

NO-RESPONSE
The handler is being called after processing a request, when no response is to
be processed.

HANDLER-ERROR
The handler is being called because an error has been detected.

In a service provider pipeline that processes a request and returns a response, the
values of DFHFUNCTION that occur are RECEIVE-REQUEST, PROCESS-REQUEST, and
SEND-RESPONSE. Figure 25 on page 131 shows the sequence in which the handlers
are called and the values of DFHFUNCTION that are passed to each handler.

130 CICS TS for z/OS 4.2: Web Services Guide

Sequence Handler DFHFUNCTION

1 Handler 1 RECEIVE-REQUEST

2 Handler 2 RECEIVE-REQUEST

3 Handler 3 PROCESS-REQUEST

4 Handler 2 SEND-RESPONSE

5 Handler 1 SEND-RESPONSE

In a service requester pipeline that sends a request and receives a response, the
values of DFHFUNCTION that occur are SEND-REQUEST and RECEIVE-RESPONSE.
Figure 26 shows the sequence in which the handlers are called, and the values of
DFHFUNCTION that are passed to each handler.

Sequence Handler DFHFUNCTION

1 Handler 1 SEND-REQUEST

2 Handler 2 SEND-REQUEST

3 Handler 3 SEND-REQUEST

4 Handler 3 RECEIVE-RESPONSE

5 Handler 2 RECEIVE-RESPONSE

6 Handler 1 RECEIVE-RESPONSE

The values of DFHFUNCTION that can be encountered in a given message
handler depend on whether the pipeline is a provider or requester, whether the

CICS
Application

program

Request

Response

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
requester

CICS Transaction Server

Figure 25. Sequence of handlers in a service provider pipeline

Request

Response

CICS
Application

program

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
provider

CICS Transaction Server

Figure 26. Sequence of handlers in a service requester pipeline

Chapter 6. Creating the web services infrastructure 131

pipeline is in the request or response phase, and whether the handler is a terminal
handler or a nonterminal handler. The following table summarizes when each
value can occur:

Value of
DFHFUNCTION

Provider or requester
pipeline

Pipeline phase Terminal or
nonterminal handler

RECEIVE-REQUEST Provider Request phase Nonterminal

SEND-RESPONSE Provider Response phase Nonterminal

SEND-REQUEST Requester Request phase Nonterminal

RECEIVE-RESPONSE Requester Response phase Nonterminal

PROCESS-REQUEST Provider Request phase Terminal

NO-RESPONSE Both Response phase Nonterminal

HANDLER-ERROR Both Both Both

DFHHTTPSTATUS container
DFHHTTPSTATUS is a container of DATATYPE(CHAR) that is used to specify the
HTTP status code and status text for a message produced in the response phase of
a service provider pipeline.

The content of the DFHHTTPSTATUS container must be the same as the initial
status line of an HTTP response message, which has the following structure:

HTTP/1.1 nnn tttttttt

HTTP/1.1
The version and release of HTTP.

nnn The 3-digit decimal HTTP status code to return.

tttttttt
The human-readable status text associated with the status code nnn.

The following string is an example of the content:

HTTP/1.1 412 Precondition Failed

The DFHHTTPSTATUS container is ignored when the pipeline uses the WebSphere
MQ transport.

DFHMEDIATYPE container
DFHMEDIATYPE is a container of DATATYPE(CHAR) that is used to specify the
media type for a message produced in the response phase of a service provider
pipeline.

The content of the DFHMEDIATYPE container must consist of a type and a
subtype separated by a slash character. The following strings show two examples
of correct content for the DFHMEDIATYPE container:
text/plain

image/svg+xml

The DFHMEDIATYPE container is ignored when the pipeline uses the WebSphere
MQ transport.

132 CICS TS for z/OS 4.2: Web Services Guide

DFHNORESPONSE container
DFHNORESPONSE is a container of DATATYPE(CHAR) that, in the request phase
of a service requester pipeline, indicates that the service provider is not expected to
return a response.

The contents of the DFHNORESPONSE container are undefined; message handlers
that need to know if the service provider is expected to return a response need
only determine if the container is present or not:
v If container DFHNORESPONSE is present, no response is expected.
v If container DFHNORESPONSE is absent, a response is expected.

This information is provided, initially, by the service requester application, based
on the protocol used with the service provider. Therefore, you are advised not to
delete this container in a message handler (or to create it, if it does not exist),
because doing so might disturb the protocol between the endpoints.

Other than in the request phase of a service requester pipeline, the use of this
container is not defined.

DFHREQUEST container
DFHREQUEST is a container of DATATYPE(CHAR) that contains the request
message that is processed in the request phase of a pipeline.

If one of the CICS-supplied SOAP message handlers is configured in the pipeline,
the container DFHREQUEST is updated to include the SOAP message headers in
the SOAP envelope. If the message is constructed by a CICS-supplied SOAP
message handler, and has not been changed subsequently, DFHREQUEST contains
a complete SOAP envelope and all of its contents is in the UTF-8 code page.

The DFHREQUEST container is present in the request when a message handler is
called, and the DFHFUNCTION container contains RECEIVE-REQUEST or
SEND-REQUEST.

In this situation, the normal protocol is to return DFHREQUEST to the pipeline
with the same or modified contents. Processing of the pipeline request phase
continues normally, with the next message handler program in the pipeline, if
there is one.

As an alternative, your message handler can delete container DFHREQUEST, and
put a response in the DFHRESPONSE container. In this way, the normal sequence
of processing is reversed, and the processing continues with the response phase of
the pipeline.

DFHRESPONSE container
DFHRESPONSE is a container of DATATYPE(CHAR) that contains the response
message that is processed in the response phase of a pipeline. If the message was
constructed by a CICS-supplied SOAP message handler, and has not been changed
subsequently, DFHRESPONSE contains a complete SOAP envelope and all its
contents in UTF-8 code page.

The DFHRESPONSE container is present when a message handler is called, and
the DFHFUNCTION container contains SEND-RESPONSE or RECEIVE-RESPONSE.

Chapter 6. Creating the web services infrastructure 133

In this situation, the normal protocol is to return DFHRESPONSE to the pipeline
with the same or modified contents. Pipeline processing continues normally, with
the next message handler program in the pipeline, if there is one.

The DFHRESPONSE container is also present, with a length of zero, when
DFHFUNCTION contains RECEIVE-REQUEST, SEND-REQUEST, PROCESS-REQUEST, or
HANDLER-ERROR.

DFHWS-CCSID container
DFHWS-CCSID is a container of DATATYPE(BIT) that contains a fullword (4 bytes)
specifying the CCSID of the data in the response container.

The container is valid only for a provider mode pipeline that uses CICS code to
transform the language structure into XML.

The CCSID must be compatible with the CCSID used to generate the WSBIND file.
If it is not, the SOAP response that is produced might contain incorrect or invalid
characters.

The CCSID is not allowed to be changed to or from 930, 1390, 5026 and 1026. Also
CICS does not allow the CCSID to be changed to one that is usable as a client
CCSID.

If there are any problems processing the value in the DFHWS-CCSID container,
processing continues using the CCSID from the WSBIND file.

The DFHWS-CCSID container is checked only on return from a channel driven
application program.

How containers control the pipeline protocols
The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE
containers together control the pipeline protocols.

During the two phases of the execution of a pipeline (the request phase and the
response phase) the value of DFHFUNCTION determines which control containers
are passed to each message handler:

DFHFUNCTION Context DFHREQUEST DFHRESPONSE

RECEIVE-REQUEST Service provider;
request phase

Present (length >
0)

Present (length =
0)

SEND-RESPONSE Service provider;
response phase

Absent Present (length >
0)

SEND-REQUEST Service requester;
request phase

Present (length >
0)

Present (length =
0)

RECEIVE-RESPONSE Service requester;
response phase

Absent Present (length >
0)

PROCESS-REQUEST Service provider;
terminal handler

Present (length >
0)

Present (length =
0)

HANDLER-ERROR Service requester
or provider; either
phase

Absent Present (length =
0)

NO-RESPONSE Service requester
or provider;
response phase

Absent Absent

134 CICS TS for z/OS 4.2: Web Services Guide

Subsequent processing is determined by the containers that your message handler
passes back to the pipeline:

During the request phase

v Your message handler can return the DFHREQUEST container.
Processing continues in the request phase with the next handler. The
length of the data in the container must not be zero.

v Your message handler can return the DFHRESPONSE container.
Processing switches to the response phase, and the same handler is
called with DFHFUNCTION set to SEND-RESPONSE in a service
provider and to RECEIVE-RESPONSE in a service requester. The length
of the data in the container must not be zero.

v Your message handler can return no containers. Processing switches to
the response phase, and the same handler is called with
DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

v Your message handler can return the DFHRESPONSE container.
Processing switches to the response phase, and the previous handler is
called with a new value of DFHFUNCTION (SEND-RESPONSE). The
length of the data in the container must not be zero.

v Your message handler can return no containers. Processing switches to
the response phase, and the previous handler is called with a new value
of DFHFUNCTION (NO-RESPONSE).

During the response phase

v Your message handler can return the DFHRESPONSE container.
Processing continues in the response phase, and the next handler is
called. The length of the data in the container must not be zero.

v Your message handler can return no containers. Processing continues in
the response phase, and the next handler in sequence is called with a
new value of DFHFUNCTION (NO-RESPONSE).

Important: During the request phase, your message handler can return
DFHREQUEST or DFHRESPONSE, but not both. Because both containers are
present when your message handler is called, you must delete one of them.
This table shows the action taken by the pipeline for all values of DFHFUNCTION
and all combinations of DFHREQUEST and DFHRESPONSE returned by each
message handler.

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Present (error)

Absent Call the next handler with the
RECEIVE-REQUEST function

Present (length = 0) Not applicable (error)

Absent Present (length > 0) Switch to response phase, and
invoke the same handler with
the SEND-RESPONSE function

Present (length = 0) (error)

Absent Call the same handler with the
NO-RESPONSE function

Chapter 6. Creating the web services infrastructure 135

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

SEND-RESPONSE Service provider;
response phase

Not applicable Present (length > 0) Call the previous handler with
the SEND-RESPONSE function

Present (length = 0) (error)

Absent Call the same handler with the
NO-RESPONSE function

SEND-REQUEST Service requester;
request phase

Present (length > 0) Present (length ≥ 0) (error)

Absent Call the next handler with the
SEND-REQUEST function

Present (length = 0) Not applicable (error)

Absent Present (length > 0) Switch to response phase, and
call the previous handler with
the RECEIVE-RESPONSE
function

Present (length = 0) (error)

Absent Call the same handler with the
NO-RESPONSE function

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Present (length > 0) Call the previous handler with
the RECEIVE-RESPONSE
function

Present (length = 0) (error)

Absent Call the same handler with the
NO-RESPONSE function

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Present (length > 0) Call the previous handler with
the RECEIVE-RESPONSE
function

Present (length = 0) (error)

Absent Call the same handler with the
NO-RESPONSE function

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Present (length > 0) Call the previous handler with
the SEND-RESPONSE function
or the RECEIVE-RESPONSE
function

Present (length = 0) (error)

Absent Call the same handler with the
NO-RESPONSE function

Context containers
In some situations, user-written message handler programs, and header processing
programs, need information about the context in which they are called. CICS
provides this information in a set of context containers, which are passed to the
programs.

CICS initializes the contents of each context container, but, in some cases, you can
change the contents in your message handler programs, and header processing
program. For example, in a service provider pipeline in which the terminal handler
is one of the CICS-provided SOAP handlers, you can change the user ID and
transaction ID of the target application program by modifying the contents of the
appropriate context containers.

Some of the information provided in the containers applies only to a service
provider, or only to a service requester, and therefore some of the context
containers are not available in both.

136 CICS TS for z/OS 4.2: Web Services Guide

DFH-EXIT-HEADER1 container
DFH-EXIT-HEADER1 is a container of DATATYPE(CHAR). It contains one or more
SOAP headers that are added to a response from a web service provider
application in CICS.

Programs running global user exit XWSPRRWO can add a header to a SOAP
response. The header must be valid SOAP and the name spaces must be
self-contained in the header XML. A program that puts data in this container must
check for its presence and add the new header to the end of the data. By following
this best practice, multiple programs can be driven at the same exit point if
required.

DFH-HANDLERPLIST container
DFH-HANDLERPLIST is a container of DATATYPE(CHAR) that is initialized with
the contents of the appropriate <handler_parameter_list> element of the pipeline
configuration file.

If you have not specified a handler parameter list in the pipeline configuration file,
the container is empty; that is, it has a length of zero.

You cannot change the contents of this container.

DFH-SERVICEPLIST container
DFH-SERVICEPLIST is a container of DATATYPE(CHAR) that contains the
contents of the <service_parameter_list> element of the pipeline configuration
file.

If you have not specified a service parameter list in the pipeline configuration file,
“DFHWS-STSURI container” on page 149“DFHWS-URI container” on page 140the
container is empty; that is, it has a length of zero.

You cannot change the contents of this container.

DFHWS-APPHANDLER container
DFHWS-APPHANDLER is a container of DATATYPE(CHAR) that, in a service
provider pipeline, is initialized with the contents of the <apphandler> element of
the pipeline configuration file.

In the terminal handler of a pipeline that contains the <apphandler> element, the
supplied SOAP handlers get the name of the target application program from this
container.

You can change the contents of this container in your message handlers or
header-processing programs.

CICS does not provide this container in a service requester pipeline.

Chapter 6. Creating the web services infrastructure 137

Related concepts:
“Application handlers” on page 112
An application handler is a CICS program that the terminal handler of a SOAP
service provider pipeline links to at run time.
Related reference:
“The <apphandler> element” on page 76
Specifies the name of the application handler that the terminal handler of the
pipeline links to by default.

DFHWS-APPHANCLAS container
DFHWS-APPHANCLAS is a container of DATATYPE(CHAR) that, in a service
provider pipeline, is initialized with the contents of the <apphandler_class>
element of the pipeline configuration file.

In the terminal handler of a Java-based pipeline, the supplied SOAP handlers,
<cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java>, get the name
of the target application program from this container.

CICS does not provide this container in a service requester pipeline.
Related concepts:
“Application handlers” on page 112
An application handler is a CICS program that the terminal handler of a SOAP
service provider pipeline links to at run time.
Related reference:
“The <apphandler_class> element” on page 77
Specifies that the terminal handler of the pipeline links to an Axis2 application
handler.

DFHWS-DATA container
DFHWS-DATA is a container of DATATYPE(BIT) that is used in service requester
applications and optionally in service provider applications that are deployed with
the CICS web services assistant. It holds the top-level data structure that is
mapped to and from a SOAP request.

In service requester applications, the DFHWS-DATA container must be present
when the service requester program issues an EXEC CICS INVOKE SERVICE
command. When the command is issued, CICS converts the data structure that is
in the container into a SOAP request. When the SOAP response is received, CICS
converts it into another data structure that is returned to the application in the
same container.

In service provider applications, the DFHWS-DATA container is used by default
when you do not specify the CONTID parameter on the DFHLS2WS or DFHWS2LS
batch jobs. CICS converts the SOAP request message into the data structure that is
passed to the application in the DFHWS-DATA container. The response is then
saved in the same container, and CICS converts the data structure into a SOAP
response message.

DFHWS-MEP container
DFHWS-MEP is a container of DATATYPE(BIT) that holds a representative value
for the message exchange pattern (MEP) of an inbound or outbound SOAP
message. This value is one byte in length.

138 CICS TS for z/OS 4.2: Web Services Guide

|

|
|
|

|

|
|
|

|

|
|
|

|

|
|
|

CICS supports four message exchange patterns for both service requesters and
service providers. The message exchange pattern is defined in the WSDL 2.0
document for the web service and determines whether CICS responds as the
provider, and if CICS expects a response from an external provider. In requester
mode, the time that CICS waits for a response is configured using the PIPELINE
resource.

If you used the CICS web services assistant to deploy your application, this
container is populated by CICS:
v In a service provider pipeline, this container is populated by the DFHPITP

application handler when it receives the inbound message from the terminal
handler.

v In a service requester pipeline, this container is populated when the application
uses the INVOKE SERVICE command.

If the application uses the DFHPIRT channel to start the pipeline, the application
populates this container. If the container is not present or has no value, CICS
assumes that the request is using either the In-Out or In-Only MEP, depending on
whether the DFHNORESPONSE container is present in the channel.

This container is populated by the supplied application handler program,
DFHPITP. If you use a different application handler then this container is not
available for use.

Table 7. Values that can appear in container DFHWS-MEP

Value MEP URI

1 In-Only http://www.w3.org/ns/wsdl/in-only

2 In-Out http://www.w3.org/ns/wsdl/in-out

4 Robust-In-Only http://www.w3.org/ns/wsdl/robust-in-only

8 In-Optional-Out http://www.w3.org/ns/wsdl/in-opt-out

DFHWS-OPERATION container
DFHWS-OPERATION is a container of DATATYPE(CHAR) that is usually used in
a service provider application deployed with the CICS web services assistant. It
holds the name of the operation that is specified in a SOAP request.

In a service provider, the container supplies the name of the operation for which
the application is being called. It is populated when a supplied SOAP message
handler passes control to the target application program, and is visible only when
the target program is called with a channel interface.

In a service requester pipeline, the container holds the name specified in the
OPERATION option of the EXEC CICS INVOKE SERVICE command. The container is
not available to the application that issues the command.

This container is populated by the supplied application handler program,
DFHPITP. If you use a different application handler then this container is not
available for use.

DFHWS-PIPELINE container
DFHWS-PIPELINE is a container of DATATYPE(CHAR) that contains the name of
the PIPELINE in which the program is being run.

Chapter 6. Creating the web services infrastructure 139

|
|
|

|
|
|

You cannot change the contents of this container.

DFHWS-RESPWAIT container
DFHWS-RESPWAIT is a container of DATATYPE(BIT) that contains an unsigned
fullword binary number to represent the timeout in seconds that applies to
outbound web service request messages.

The value of this container is defined by the RESPWAIT attribute of the PIPELINE
definition. However, applications can overwrite the value of the
DFHWS-RESPWAIT container. The value used in the pipeline is determined by the
value of the DFHWS-RESPWAIT container when the INVOKE SERVICE command
is issued. Applications can update the value of the DFHWS-RESPWAIT container
after the INVOKE SERVICE command has been issued, however the value used in
the pipeline is not updated.

This container is used only in requester mode pipelines.

DFHWS-SOAPLEVEL container
DFHWS-SOAPLEVEL is a container of DATATYPE(BIT) that holds information
about the level of SOAP used in the message that you are processing.

The container holds a binary fullword that indicates the level of SOAP that is used
for a web service request or response:

1 The request or response is a SOAP 1.1 message.

2 The request or response is a SOAP 1.2 message.

10 The request or response is not a SOAP message.

You cannot change the contents of this container.

DFHWS-TRANID container
DFHWS-TRANID is a container of DATATYPE(CHAR) that is initialized with the
transaction ID of the task in which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which
the terminal handler is one of the CICS-supplied SOAP handlers (and you do so
before control is passed to the target application program), the target application
runs in a new task with the new transaction ID.

New tasks cannot be started when both the terminal handler and the application
handler of a pipeline run in the same JVM server. For this reason, if you deploy
Axis2 applications into CICS, DFHWS-USERID cannot be used to change the user
ID.

DFHWS-URI container
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the
service.

In a service provider pipeline, CICS extracts the relative URI from the incoming
message and places it in the DFHWS-URI container.

For example, if the URI of the Web services is http://example.com/location/
address or jms://queue?destination=INPUT.QUEUE&targetService=/location/
address, the relative URI is /location/address.

140 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

If you are using Web services addressing in your requester pipeline, this container
will be created and updated in the following order:
1. When the INVOKE SERVICE command runs, it creates the DFHWS-URI container

and initiates it with the value of the WSDL service endpoint address. If the
WSACONTEXT BUILD API command was used to create an addressing context, you
must not specify the URI or URIMAP parameters on the INVOKE SERVICE
command.

2. When the web services addressing handler (DFHWSADH) runs, if a <wsa:To>
EPR exists in the addressing context with a non-anonymous URI, the URI in
the DFHWS-URI container is overwritten with the value of the <wsa:To> EPR.
The anonymous URI is ignored.

The SOAP message is sent to the service defined by the URI in DFHWS-URI.

In a service requester pipeline, CICS puts the URI that is specified on the INVOKE
SERVICE command, or, if missing, the URI from the Web service binding, in the
DFHWS-URI container. You can override this URI by using a message handler in
the pipeline.

A service can use an HTTP, HTTPS, JMS, or WebSphere MQ URI for external
services. A service can also use a CICS URI for a service that is provided by
another CICS application:

URI Query string Description

cics://PROGRAM/program ?options The CICS transport handler uses an
EXEC CICS LINK PROGRAM command to
link to the specified program, passing
the current channel and containers.
No data transformation takes place
on the application data.

cics://SERVICE/service ?targetServiceUri=targetServiceUri
&options

The CICS transport handler uses the
path of the service, expressed as the
targetServiceUri, to match a URIMAP
resource to run the request through a
provider pipeline.

You must specify a value for the
targetServiceUri parameter if you
use this URI type.

cics://PIPELINE/pipeline ?targetServiceUri=targetServiceUri The CICS transport handler starts
another service requester pipeline.

You can add parameters to each type of CICS URI using the format
parameter=value, where each parameter is separated by an ampersand. The
following rules apply to the CICS URI:
v The first parameter in the query string must be prefixed with a question mark.

You cannot use a question mark before this point in the URI.
v To include an ampersand in a parameter value, you must escape the character.

See the example section below for details.
v CICS changes any lowercase values for program and pipeline to uppercase.

The parameters on the query string determine how CICS processes the request at
the end of the requester pipeline:

Chapter 6. Creating the web services infrastructure 141

maxCommareaLength=value
Specify the maximum size of the COMMAREA in bytes, that is required for the
target application program. The value must not exceed 32 763. If this
parameter is present in the query string, CICS links to the specified program
using a COMMAREA. If this parameter is not present in the query string, CICS
links to the specified program using a channel.

This parameter not case-sensitive and is valid only for the cics://PROGRAM
URI.

newTask=yes|no
Specify whether the transport handler will run the request as a new task.

This parameter is not case-sensitive. cics://PROGRAM/testapp?newTask=yes and
cics://PROGRAM/testapp?NEWTASK=Yes are the same.

targetServiceUri=uri
Specify the path of the service to be called. On a SERVICE destination type, the
transport handler uses the value with host=localhost to locate the URIMAP
resource to start a service provider pipeline. On a PIPELINE destination type,
the transport handler uses the value to start another requester pipeline.

This parameter is case-sensitive.

transid=char(4)
Specify a transaction under which the request will run. The transport handler
starts a request stream using the specified transaction ID.

This parameter is case-sensitive.

userid=char(8)
Specify a user ID under which the request will run. The transport handler
starts a request stream using the specified user ID.

This parameter is not case-sensitive.

Destination type Parameters on URI

PROGRAM userid Optional

transid Optional

maxCommareaLength Optional

newTask Optional. Must be yes or not
specified at all if you specify userid
or transid.

targetServiceUri Not supported

SERVICE userid Optional

transid Optional

maxCommareaLength Not supported

newTask Optional. Must be yes or not
specified at all if you specify userid
or transid.

targetServiceUri Required

PIPELINE userid Not supported

transid Not supported

maxCommareaLength Not supported

newTask Not supported

targetServiceUri Required

142 CICS TS for z/OS 4.2: Web Services Guide

Examples of CICS URIs

In this first example, the DFHWS-URI container has the following URI by the time
it reaches the end of the pipeline:
cics://PROGRAM/testapp?newTask=yes&userid=user1

The transport handler links to the CICS program called testapp, passing the
channel and containers. No data transformation takes place, so the target program
must be able to process the contents of the containers on the current channel. CICS
links to the program under a new unit of work and a different user ID of user1.

In this second example, the DFHWS-URI container has the following URI by the
time it reaches the end of the pipeline:
cics://SERVICE/getStockQuote?targetServiceUri=/stock/getQuote&newTask=yes&userid=user2

The transport handler replaces the URI in the DFHWS-URI container with the
value /stock/getQuote, finds the URIMAP using the path in the targetServiceUri
parameter to resolve the URI, and starts the provider pipeline under a new task
and different user ID.

In this third example, the DFHWS-URI container has the following URI by the
time it reaches the end of the pipeline:
cics://PIPELINE/reqpipeA?targetServiceUri=cics://PROGRAM/testapp?newTask=yes%26userid=user1

The transport handler replaces the URI in the DFHWS-URI container with the
value cics://PROGRAM/testapp?newTask=yes&userid=user1 and starts the requester
pipeline called reqpipeA, passing the current channel and containers. The %26
characters escape the ampersand, so the transport handler puts the whole URI in
the DFHWS-URI container.
Related concepts:
“Options for controlling requester pipeline processing” on page 256
In service requester pipelines, message handlers can determine where the web
service request is sent by changing the URI. CICS provides support for different
URI formats so that you have much more flexibility in the way that the pipeline
processes web service requests.
Related tasks:
“Controlling requester pipeline processing using a URI” on page 258
In service requester pipelines, a message handler can determine where to send the
web service request by changing the URI. By changing the URI format, you can
choose to perform certain optimizations, such as starting another requester pipeline
or starting a service provider pipeline without sending the request over the
network.

DFHWS-USERID container
DFHWS-USERID is a container of DATATYPE(CHAR) that is initialized with the
user ID of the task in which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which
the terminal handler is one of the CICS-supplied SOAP handlers (and you do so
before control is passed to the target application program), the target application
runs in a new task that is associated with the new user ID. Unless you change the
contents of container DFHWS-TRANID, the new task has the same transaction ID
as the task in which the pipeline is running.

Chapter 6. Creating the web services infrastructure 143

New tasks cannot be started when both the terminal handler and the application
handler of a pipeline run in the same JVM server. For this reason, if you deploy
Axis2 applications into CICS, DFHWS-USERID cannot be used to change the user
ID.

DFHWS-WEBSERVICE container
DFHWS-WEBSERVICE is a container of DATATYPE(CHAR) that is used in a
service provider pipeline only. It holds the name of the web service that specifies
the execution environment when the target application has been deployed using
the web services assistant.

CICS does not provide this container in a service requester pipeline.

DFHWS-CID-DOMAIN container
DFHWS-CID-DOMAIN is a container of DATATYPE(CHAR). It contains the
domain name that is used to generate content-ID values for referencing binary
attachments.

The value of the domain name is cicsts by default. You can override the value by
specifying the <mime_options> element in the pipeline configuration file.

You cannot change the contents of this container.

DFHWS-MTOM-IN container
DFHWS-MTOM-IN is a container of DATATYPE(BIT) that holds information about
the specified options for the <cics_mtom_handler> element of the pipeline
configuration file and information about the message format that has been received
in the pipeline.

It contains the information to process an inbound MTOM message in the pipeline.
The inbound message can be a request message from a web service requester or a
response message from a web service provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration
file, or if a SOAP message is received instead of an MTOM message, this container
is not created.

If web services security is configured in the pipeline, or if validation is switched on
for a web service, the contents of field XOP_MODE in DFHWS-MTOM-IN can be
overridden by CICS when the container is created. For example, if you configure
the pipeline to process the content of MTOM messages in direct mode, and you
then switch validation on for the web service, CICS overrides the defined value in
the pipeline configuration file and sets the XOP processing to run in compatibility
mode. CICS performs the override because of the restrictions in support for
processing XOP documents and binary attachments in the pipeline.

You cannot change the contents of this container.

Table 8. Structure of the DFHWS-MTOM-IN container

Field name
Length
(bytes) Contents

MTOM_STATUS 4 Contains the value "1", indicating that the message
received by CICS is in MTOM format.

144 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

Table 8. Structure of the DFHWS-MTOM-IN container (continued)

Field name
Length
(bytes) Contents

MTOMNOXOP_STATUS 4 Contains one of the following values:

0 The MTOM message contains binary
attachments.

1 The MTOM message does not contain
binary attachments.

XOP_MODE 4 Contains one of the following values:

0 No XOP processing takes place.

1 XOP processing takes place in compatibility
mode.

2 XOP processing takes place in direct mode.

DFHWS-MTOM-OUT container
DFHWS-MTOM-OUT is a container of DATATYPE(BIT) that holds information
about the specified options for the <cics_mtom_handler> element of the pipeline
configuration file.

It contains the information to process an outbound MTOM message in the pipeline,
whether it is a response message for a web service requester or a request message
for a web service provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration
file, or if the <mtom_options> element in the pipeline configuration file has the
attribute send_mtom="no", this container is not created.

In provider mode, this container is created at the same time as the
DFHWS-MTOM-IN container. If the <mtom_options> element in the pipeline
configuration file has the attribute send_mtom="same", the MTOM_STATUS field is
set to indicate whether the web service requester wants an MTOM or SOAP
response message.

If web services security is configured in the pipeline, or if validation is switched on
for a web service, the XOP_MODE field of DFHWS-MTOM-OUT can be changed
by CICS when the container is created. For example, if you configure the pipeline
to process the XOP document and any binary attachments using direct mode, and
you then switch validation on for a web service, CICS overrides the defined value
in the pipeline configuration file and sets the XOP processing to run in
compatibility mode when it creates the container. CICS performs the override
because of restrictions in support for processing XOP documents and binary
attachments in the pipeline.

You cannot change the contents of this container.

Chapter 6. Creating the web services infrastructure 145

Table 9. Structure of the DFHWS-MTOM-OUT container

Field name
Length
(bytes) Contents

MTOM_STATUS 4 Indicates whether MTOM is enabled:

0 MTOM is not enabled. The outbound message is sent in
SOAP format.

1 MTOM is enabled. The outbound message is sent in MTOM
format.

MTOMNOXOP_STATUS 4 Indicates whether to use MTOM when there are no binary
attachments:

0 Do not send an MTOM message when there are no binary
attachments.

1 Send an MTOM message when there are no binary
attachments.

XOP_MODE 4 Indicates what XOP processing should take place:

0 No XOP processing takes place.

1 XOP processing takes place in compatibility mode.

2 XOP processing takes place in direct mode.

DFHWS-WSDL-CTX container
DFHWS-WSDL-CTX is a container of DATATYPE(CHAR) that is used in either a
service provider or a service requester application deployed with the CICS web
services assistant. It holds WSDL context information that can be used for
monitoring purposes.

DFHWS-WSDL-CTX holds the following context information for the WSDL
document:
v The name and namespace of the operation for which the application is being

invoked.
v If known, the name and namespace for the WSDL 1.1 port or WSDL 2.0

endpoint that is being used.

These values are separated by space characters. DFHWS-WSDL-CTX is populated
by CICS only at runtime level 2.1 and above.

If you used the CICS web services assistant to deploy your application, this
container is populated by CICS:
v In a service provider pipeline, this container is populated by the DFHPITP

application handler when it receives the inbound message from the terminal
handler.

v In a service requester pipeline, this container is populated when the application
uses the INVOKE SERVICE command.

If the application uses the DFHPIRT program to start the pipeline, the application
populates the DFHWS-WSDL-CTX container if required.

DFHWS-XOP-IN container
DFHWS-XOP-IN is a container of DATATYPE(BIT). It contains a list of references
to the binary attachments that have been unpackaged from an inbound MIME
message and placed in containers using XOP processing.

146 CICS TS for z/OS 4.2: Web Services Guide

Each attachment record in the DFHWS-XOP-IN container consists of these items:
v The 16-byte name of the container that holds the MIME headers for the binary

attachment
v The 16-byte name of the container that holds the binary attachment
v The 2-byte length of the content-ID, in signed halfword binary format
v The content-ID, including the < and > delimiters, stored as an ASCII character

string

You cannot change the contents of this container.

DFHWS-XOP-OUT container
DFHWS-XOP-OUT is a container of DATATYPE(BIT). It contains a list of references
to the containers that hold binary attachments. The binary attachments are
packaged into an outbound MIME message by the MTOM handler program.

Each attachment record in the DFHWS-XOP-OUT container consists of these items:
v The 16-byte name of the container that holds the MIME headers for the binary

attachment
v The 16-byte name of the container that holds the binary attachment
v The 2-byte length of the content-ID, in signed halfword binary format
v The content-ID, including the < and > delimiters, stored as an ASCII character

string

You cannot change the contents of this container.

Security containers
Security containers are used on the DFHWSTC-V1 channel to send and receive
identity tokens from a Security Token Service (STS) such as Tivoli Federated
Identity Manager. This interface is called the Trust client interface and can be used
in web service requester and provider pipelines.

DFHWS-IDTOKEN container
DFHWS-IDTOKEN is a container of DATATYPE(CHAR). It contains the token that
the Security Token Service (STS) either validates or uses to issue an identity token
for the message.

The token must be in XML format.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-RESTOKEN container
DFHWS-RESTOKEN is a container of DATATYPE(CHAR). It contains the response
from the Security Token Service (STS).

The response depends on the action that was requested from the STS in the
DFHWS-STSACTION container.
v If the action is issue, this container holds the token that the STS has exchanged

for the one that was sent in the DFHWS-IDTOKEN container.
v If the action is validate, this container holds a URI to indicate whether the

security token that was sent in the DFHWS-IDTOKEN container is valid or not
valid. The URIs that can be returned are as follows:

Chapter 6. Creating the web services infrastructure 147

URI Description

http://schemas.xmlsoap.org/ws/2005/02/
trust/status/valid

The security token is valid.

http://schemas.xmlsoap.org/ws/2005/02/
trust/status/invalid

The security token is not valid.

This container is returned on the channel DFHWSTC-V1 when using the Trust
client interface.

DFHWS-SERVICEURI container
DFHWS-SERVICEURI is a container of DATATYPE(CHAR). It contains the URI
that the Security Token Service (STS) uses as the AppliesTo scope.

The AppliesTo scope is used to determine the web service with which the security
token is associated.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSACTION container
DFHWS-STSACTION is a container of DATATYPE(CHAR). It contains the URI of
the action that the Security Token Service (STS) takes to either validate or issue a
security token.

The URI values that you can specify in this container are as follows:

URI Description

http://schemas.xmlsoap.org/ws/2005/02/
trust/Issue

The STS issues a token in exchange for the
one that is sent in the DFHWS-IDTOKEN
container.

http://schemas.xmlsoap.org/ws/2005/02/
trust/Validate

The STS validates the token that is sent in
the DFHWS-IDTOKEN container.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSFAULT container
DFHWS-STSFAULT is a container of DATATYPE(CHAR). It contains the error that
was returned by the Security Token Service (STS).

If an error occurs, the STS issues a SOAP fault. The contents of the SOAP fault are
returned in this container.

This container is returned on the channel DFHWSTC-V1 when using the Trust
client interface.

DFHWS-STSREASON container
DFHWS-STSREASON is a container of DATATYPE(CHAR). It contains the contents
of the <wst:Reason> element, if this element is present in the response message
from the Security Token Service (STS).

The <wst:Reason> element contains an optional string that provides information
relating to the status of the validation request that was sent to the STS by CICS. If
the security token is not valid, the information provided by the STS in this element
can help you to determine why the token is not valid.

148 CICS TS for z/OS 4.2: Web Services Guide

For more information, see the Web Services Trust Language specification that is
published at http://www.ibm.com/developerworks/library/specification/ws-
trust/.

DFHWS-STSURI container
DFHWS-STSURI is a container of DATATYPE(CHAR). It contains the absolute URI
of the Security Token Service (STS) that is used to validate or issue an identity
token for the SOAP message.

The format of the URI is http://www.example.com:8080/TrustServer/
SecurityTokenService. You can use HTTP or HTTPS, depending on your security
requirements.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-TOKENTYPE container
DFHWS-TOKENTYPE is a container of DATATYPE(CHAR). It contains the URI of
the requested token type that the Security Token Service (STS) issues as an identity
token for the SOAP message.

You can specify any valid token type, but it must be supported by the STS.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

Containers generated by CICS
CICS generates containers to store data such as variable arrays and long strings.
These containers are created during pipeline processing and are used as input to,
or output from, the application program. These containers are prefixed with DFH.

The naming convention for these containers is to use the CICS module that created
them, combined with a numeric suffix to make the container name unique in the
request. These container names occur during pipeline processing:

DFHPIAXIS-nnnnnnnn
Containers that are used to store strings and variable arrays that are
passed to the application in Axis2 pipelines. This container can also
include binary data.

DFHPICC-nnnnnnnn
Containers that are used to store strings and variable arrays that are
passed to the application. This container can also include binary data.

DFHPIII-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with
the MTOM message handler and is running in direct mode. These
containers are created when binary data is provided in a field rather than
in a container by the application program.

DFHPIMM-nnnnnnnn
Inbound attachment containers created during the processing of MIME
messages. These containers are generated by CICS when the MTOM
message handler is enabled in the pipeline. When direct mode processing
is enabled, these containers can be passed through to the application
directly.

DFHPIXO-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with
the MTOM message handler and is running in compatibility mode.

Chapter 6. Creating the web services infrastructure 149

http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-trust/

The numbered container names start from 1 for each web service request; for
example, DFHPICC-00000001. However, if an application program uses the INVOKE
SERVICE command to initiate more than one web service request in the same
channel, the containers that were returned to the application for one response
might still exist when a further request is made. In this situation, CICS checks to
see if the container already exists and increments the number of the generated
container to avoid a naming conflict.

User containers
These containers contain information that one message handler needs to pass to
another. The use of user containers is entirely a matter for the message handlers.
You can choose your own names for these containers, but you must not use names
that start with DFH.

150 CICS TS for z/OS 4.2: Web Services Guide

Chapter 7. Creating a web service

You can expose existing CICS applications as web services and create new CICS
applications to act as web service providers or requesters.

Before you begin

Before you begin to create a web service, perform these tasks:
1. Configure your CICS system to support web services; see “Configuring your

CICS system for web services” on page 51.
2. Create the necessary infrastructure to support the deployment of your web

services; see Chapter 6, “Creating the web services infrastructure,” on page 51.
3. Decide whether you want to use the web services assistant; see “Planning to

use web services” on page 45.

About this task

The CICS web services assistant is a supplied utility that helps you to create the
necessary artifacts for a new web service provider or a service requester
application, or to enable an existing application as a web service provider.

The CICS web services assistant can create a WSDL document from a simple
language structure or a language structure from an existing WSDL document; it
supports COBOL, C/C++, and PL/I. It also generates information that is used to
enable automatic runtime conversion of the SOAP messages to containers and
COMMAREAs, and vice versa. This information is used by the CICS web services
support during pipeline processing.

Create your web service, as described below, and validate that it works correctly:

Procedure
1. Create a web service in one of four ways:

v Use the web services assistant to create the web service description or
language structures and deploy them into CICS. Use the PIPELINE SCAN
command to automatically create the required CICS resources.

v Use Rational Developer for System z or the Java API to create the web
service description or language structures and deploy them into CICS. Use
the PIPELINE SCAN command to automatically create the required CICS
resources.

v Create or change an application program to handle the XML in the inbound
and outbound messages, including the data conversion, and populate the
correct containers in the pipeline. You must create the required CICS
resources manually.

v Deploy an Axis2 application as a web service.
2. Start the web service to test that it works as you intended. If you are using the

web services assistant to deploy your web service, you can use the SET
WEBSERVICE command to turn on validation. This validation checks that the data
is converted correctly.

© Copyright IBM Corp. 2005, 2012 151

|

What to do next

These steps are explained in more detail in the following topics.

The CICS web services assistant
The CICS web services assistant is a set of batch utilities that can help you to
transform existing CICS applications into web services and to enable CICS
applications to use web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with the minimum of programming effort.

When you use the web services assistant for CICS, you do not have to write your
own code for parsing inbound messages and for constructing outbound messages;
CICS maps data between the body of a SOAP message and the application
program's data structure.

The assistant can create a WSDL document from a simple language structure or a
language structure from an existing WSDL document, and supports COBOL,
C/C++, and PL/I. It also generates information used to enable automatic runtime
conversion of the SOAP messages to containers and COMMAREAs, and vice versa.

The CICS web services assistant comprises two utility programs:

DFHLS2WS
Generates a web service binding file from a language structure. This utility
also generates a web service description.

DFHWS2LS
Generates a web service binding file from a web service description. This
utility also generates a language structure that you can use in your
application programs.

The JCL procedures to run both programs are in the hlq.XDFHINST library.

For more information on the web services assistant's utility programs and data
mappings, see the following topics.

DFHLS2WS: high-level language to WSDL conversion
The DFHLS2WS procedure generates a web service description and a web service
binding file from a high-level language data structure. You can use DFHLS2WS
when you expose a CICS application program as a service provider.

The job control statements for DFHLS2WS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHLS2WS

JOB Starts the job.

EXEC Specifies the procedure name (DFHLS2WS).

INPUT.SYSUT1 DD
Specifies the input. The input parameters are typically specified in the
input stream. However, they can be defined in a data set or in a member
of a partitioned data set.

152 CICS TS for z/OS 4.2: Web Services Guide

Symbolic parameters

The following symbolic parameters are defined in DFHLS2WS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHLS2WS. The value
of this parameter is appended to /usr/lpp/ to produce a complete path name
of /usr/lpp/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

PATHPREF=prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used
on other parameters. The default is the empty string.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM Support.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2WS uses as a
temporary work space. The user ID under which the job runs must have read
and write permission to this directory.

The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHLS2WS uses to construct the names of the
temporary workspace files.

The default value is LS2WS.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file
system. The value of this parameter is appended to /usr/lpp/cicsts/ to
produce a complete path name of /usr/lpp/cicsts/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary work space

DFHLS2WS creates the following three temporary files at run time:
tmpdir/tmpprefix.in

tmpdir/tmpprefix.out

tmpdir/tmpprefix.err

where:
tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as
follows:

/tmp/LS2WS.in

/tmp/LS2WS.out

Chapter 7. Creating a web service 153

/tmp/LS2WS.err

Important: DFHLS2WS does not lock access to the generated z/OS UNIX file
names. Therefore, if two or more instances of DFHLS2WS run concurrently, and
use the same temporary workspace files, nothing prevents one job from
overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating
procedures, that avoid this situation. For example, you can use the system
symbolic parameter SYSUID to generate workspace file names that are unique to an
individual user. These temporary files are deleted before the end of the job.

Input parameters for DFHLS2WS

�� PDSLIB=value
PDSCP=value REQMEM=value

RESPMEM=value
REQUEST-CHANNEL=value

RESPONSE-CHANNEL=value

�

� LANG=COBOL
LANG=PLI-ENTERPRISE
LANG=PLI-OTHER
LANG=C
LANG=CPP DFHREQUEST DFHRESPONSE

STRUCTURE=(,)
request response

�

�

PGMINT=CHANNEL
CONTID=value

PGMNAME=value
TRANSACTION=name USERID=id URI=value PGMINT=COMMAREA

�

�
MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1
CHAR-VARYING=NO

MAPPING-LEVEL=1.2
MAPPING-LEVEL=2.0 CHAR-VARYING=NULL
MAPPING-LEVEL=2.1
MAPPING-LEVEL=2.2 CHAR-VARYING=COLLAPSE

DATETIME=UNUSED DATA-TRUNCATION=DISABLED CHAR-VARYING=BINARY
MAPPING-LEVEL=3.0

DATETIME=PACKED15 DATA-TRUNCATION=ENABLED

�

�
MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=CURRENT
MINIMUM-RUNTIME-LEVEL=1.0
MINIMUM-RUNTIME-LEVEL=1.1
MINIMUM-RUNTIME-LEVEL=1.2
MINIMUM-RUNTIME-LEVEL=2.0
MINIMUM-RUNTIME-LEVEL=2.1 1.1
MINIMUM-RUNTIME-LEVEL=2.2 SOAPVER= 1.2
MINIMUM-RUNTIME-LEVEL=3.0 ALL

�

�
HTTPPROXY= domain name :port number HTTPPROXY-USERNAME=value HTTPPROXY-PASSWORD=value

IP address
CCSID=value

�

�
REQUEST-NAMESPACE=value RESPONSE-NAMESPACE=value

SYNCONRETURN=NO

SYNCONRETURN=YES
WSBIND=value

WSDL=value

WSDL_1.1=value WSDL_2.0=value
�

� LOGFILE=value
WSDLCP=LOCAL

WSDLCP=UTF-8
WSDLCP=EBCDIC-CP-US

WSDL-NAMESPACE=value OPERATION-NAME=value
�

154 CICS TS for z/OS 4.2: Web Services Guide

�

�

�

1
(1)

WSRR-SERVER=scheme:// domain name :port number
IP address WSRR-DESCRIPTION=value

WSRR-ENCODING=value
WSRR-LOCATION=value
WSRR-USERNAME=value WSRR-PASSWORD=value
WSRR-VERSION=1

WSRR-VERSION=value
SSL-KEYSTORE=value

SSL-KEYPWD=value
SSL-TRUSTSTORE=value

SSL-TRUSTPWD=value

WSRR-CUSTOM-PropertyName=value

��

Notes:

1 Each of the WSRR parameters that can be specified when the WSRR-SERVER parameter is set can be
specified only once. The exception to this rule is the WSRR-CUSTOM parameter, which you can specify
a maximum of 255 times.

Parameter use
v You can specify the input parameters in any order.
v Each parameter must start on a new line.
v A parameter, and its continuation character, if you use one, must not extend

beyond column 72; columns 73 to 80 must contain blanks.
v If a parameter is too long to fit on a single line, use an asterisk (*) character at

the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces, before the asterisk is considered part of the
parameter. For example:
WSBIND=wsbinddir*
/app1

is equivalent to
WSBIND=wsbinddir/app1

v A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an EBCDIC
CCSID that is supported by Java and z/OS conversion services. If you do not
specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level. However, if you want to
deploy the generated files into a CICS TS 3.1 region, you must apply APAR
PK23547 to achieve the minimum runtime level of code to install the web
service binding file.

CHAR-VARYING=NO|NULL|COLLAPSE|BINARY
Specifies how character fields in the language structure are mapped when the

Chapter 7. Creating a web service 155

http://publib.boulder.ibm.com/infocenter/zos/v1r11/topic/com.ibm.zos.r11.cunu100/toc.htm

mapping level is 1.2 or higher. A character field in COBOL is a Picture clause
of type X, for example PIC(X) 10; a character field in C/C++ is a character
array. You can select these options:

NO Character fields are mapped to an <xsd:string> and are processed as
fixed-length fields. The maximum length of the data is equal to the
length of the field. NO is the default value for the CHAR-VARYING
parameter for COBOL and PL/I at mapping levels 2.0 and earlier.

This value does not apply to Enterprise and Other PL/I language
structures.

NULL Character fields are mapped to an <xsd:string> and are processed as
null-terminated strings. CICS adds a terminating null character when
transforming from a SOAP message. The maximum length of the
character string is calculated as one character less than the length
indicated in the language structure. NULL is the default value for the
CHAR-VARYING parameter for C/C++.

This value does not apply to Enterprise and Other PL/I language
structures.

COLLAPSE
Character fields are mapped to an <xsd:string>. Trailing white space in
the field is not included in the SOAP message. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at
mapping level 2.1 onwards.

BINARY
Character fields are mapped to an <xsd:base64binary> and are
processed as fixed-length fields. The BINARY value on the
CHAR-VARYING parameter is available only at mapping levels 2.1 and
onwards.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure used to represent a SOAP message.

DATA-TRUNCATION=DISABLED|ENABLED
Specifies if variable length data is tolerated in a fixed length field structure:

DISABLED
If the data is less than the fixed length that CICS is expecting, CICS
rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS
tolerates the truncated data and processes the missing data as null
values.

DATETIME=UNUSED|PACKED15
Specifies if dateTime fields in the high-level language structure are mapped as
timestamps:

PACKED15
Any dateTime fields are mapped as timestamps.

UNUSED
Any dateTime fields are not mapped as timestamps.

You can set this parameter at a mapping level of 3.0.

156 CICS TS for z/OS 4.2: Web Services Guide

HTTPPROXY={domain name:port number}|{IP address:port number}
If your WSDL contains references to other WSDL files that are located on the
internet, and the system on which you are running DFHLS2WS uses a proxy
server to access the internet, specify the domain name or IP address and the
port number of the proxy server. For example:
HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-PASSWORD=value
Specifies the HTTP proxy password that must be used with
HTTPPROXY-USERNAME if the system on which you are running DFHLS2WS uses
a HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-USERNAME=value
Specifies the HTTP proxy username that must be used with
HTTPPROXY-PASSWORD if the system on which you are running DFHLS2WS uses
a HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified z/OS UNIX name of the file into which DFHLS2WS writes
its activity log and trace information. DFHLS2WS creates the file, but not the
directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with DFHLS2WS.

MAPPING-LEVEL={1.0|1.1|1.2|2.0|2.1|2.2|3.0}
Specifies the level of mapping that DFHLS2WS uses when generating the web
service binding file and web service description. You can select these options:

1.0 This mapping level is the default. It indicates that the web service
binding file is generated using CICS TS 3.1 mapping levels.

1.1 Use this mapping to regenerate a binding file at this specific level.

1.2 At this mapping level, you can use the CHAR-VARYING parameter to

Chapter 7. Creating a web service 157

control how character arrays are processed at run time. VARYING and
VARYINGZ arrays are also supported in PL/I.

2.0 Use this mapping level in a CICS TS 3.2 region or above to take
advantage of the enhancements to the mapping between the language
structure and web services binding file.

2.1 Use this mapping level with a CICS TS 3.2 region that has APAR
PK59794 applied or with any region above CICS TS 3.2. At this
mapping level you can take advantage of the new values for the
CHAR-VARYING parameter, COLLAPSE and BINARY. FILLER fields in
COBOL and * fields in PL/I are systematically ignored at this mapping
level, the fields do not appear in the generated WSDL document, and
an appropriate gap is left in the data structures at run time.

2.2 Use this mapping level with a CICS TS 3.2 region that has APAR
PK69738 applied or with any region above CICS TS 3.2 to take
advantage of mapping enhancements when using DFHWS2LS.

3.0 Use this mapping level with a CICS TS 4.1 region. At this mapping
level you can create a web service from an application that uses many
containers in its interface by setting the REQUEST-CHANNEL and
RESPONSE-CHANNEL parameters. You can also map dateTime fields to
XML timestamps by setting the DATETIME parameter.

For more information about mapping levels, see Mapping levels for the CICS
assistants

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|2.0|2.1|2.2|3.0|CURRENT}
Specifies the minimum CICS runtime environment into which the web service
binding file can be deployed. If you select a level that does not match the other
parameters that you have specified, you receive an error message. You can
select these options:

MINIMUM
The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

1.0 The generated web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. Some parameters are not available at this runtime level.

1.1 The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You can
use a mapping level of 1.1 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

1.2 The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547 applied.
You can use a mapping level of 1.2 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

2.0 The generated web service binding file deploys successfully into a
CICS TS 3.2 region or above. You can use a mapping level of 2.0 or
below for the MAPPING-LEVEL parameter. Some parameters are not
available at this runtime level.

2.1 The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK59794 applied or into any region

158 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html

above CICS TS 3.2. You can use a mapping level of 2.1 or below for the
MAPPING-LEVEL parameter. You can use any optional parameter at this
level.

2.2 The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK69738 applied or into any region
above CICS TS 3.2. With this runtime level, you can use a mapping
level of 2.2 or below for the MAPPING-LEVEL parameter. You can use any
optional parameter at this level.

3.0 The generated web service binding file deploys successfully into a
CICS TS 4.1 region or above. With this runtime level, you can use a
mapping level of 3.0 or below for the MAPPING-LEVEL parameter. You
can use any optional parameter at this level.

CURRENT
The generated web service binding file deploys successfully into a
CICS region at the same runtime level as the one you are using to
generate the web service binding file.

OPERATION-NAME=value
Specifies the operation name that is used in the generated WSDL document. If
no value is supplied, then a default name is generated using the value of the
PGMNAME parameter followed by value operation.

PDSLIB=value
Specifies the name of the partitioned data set that contains the high-level
language data structures to be processed. The data set members used for the
request and response are specified in the REQMEM and RESPMEM parameters
respectively.

Restriction: The records in the partitioned data set must have a fixed length of
80 bytes.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or a Java
code page number. If this parameter is not specified, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

CHANNEL
CICS uses a channel interface to pass data to the target application
program.
v In mapping levels below 3.0, the channel can contain only one

container, which is used for both input and output. Use the CONTID
parameter to specify the name of the container. The default name is
DFHWS-DATA.

v At mapping level 3.0, the channel can contain multiple containers.
Use the REQUEST-CHANNEL and RESPONSE-CHANNEL parameters. Do not
specify PDSLIB, REQMEM, or RESPMEM.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

Chapter 7. Creating a web service 159

PGMNAME=value
Specifies the name of the CICS PROGRAM resource for the target application
program that will be exposed as a web service. The CICS web service support
will link to this program.

REQMEM=value
Specifies the name of the partitioned data set member that contains the
high-level language structure for the web service request. For a service
provider, the web service request is the input to the application program.

REQUEST-CHANNEL=value
Specifies the name and location of a channel description document. The
channel description describes the containers that the web service provider
application can use in its interface when receiving a SOAP message from a
web service requester. The channel description is an XML document that must
conform to the CICS-supplied channel schema.

You can use this parameter at mapping level 3.0 only.

REQUEST-NAMESPACE=value
Specifies the namespace of the XML schema for the request message in the
generated web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

RESPMEM=value
Specifies the name of the partitioned data set member that contains the
high-level language structure for the web service response. For a service
provider, the web service response is the output from the application program.

Omit this parameter if no response is involved; that is, for one-way messages.

RESPONSE-CHANNEL=value
Specifies the name and location of a channel description document. The
channel description describes the containers that the web service provider
application can use in its interface when sending a SOAP response message to
a web service requester. The channel description is an XML document that
must conform to the CICS-supplied channel schema.

You can use this parameter at mapping level 3.0 only.

RESPONSE-NAMESPACE=value
Specifies the namespace of the XML schema for the response message in the
generated web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

SOAPVER=1.1|1.2|ALL
Specifies the SOAP level to use in the generated web service description. This
parameter is available only when the MINIMUM-RUNTIME-LEVEL is set to 2.0 or
higher.

1.1 The SOAP 1.1 protocol is used as the binding for the web service
description.

1.2 The SOAP 1.2 protocol is used as the binding for the web service
description.

ALL Both the SOAP 1.1 or 1.2 protocol can be used as the binding for the
web service description.

If you do not specify a value for this parameter, the default value depends on
the version of WSDL that you want to create:
v If you require only WSDL 1.1, the SOAP 1.1 binding is used.

160 CICS TS for z/OS 4.2: Web Services Guide

v If you require only WSDL 2.0, the SOAP 1.2 binding is used.
v If you require both WSDL 1.1 and WSDL 2.0, both SOAP 1.1 and 1.2

bindings are used for each web service description.

SSL-KEYSTORE=value
This optional parameter specifies the fully qualified location of the key store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-KEYPWD=value
This optional parameter specifies the password for the key store.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTSTORE=value
This optional parameter specifies the fully qualified location of the trust store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTPWD=value
This optional parameter specifies the password for the trust store.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

STRUCTURE=(request,response)
For C and C++ only, specifies the names of the high-level structures contained
in the partitioned data set members that are specified in the REQMEM and
RESPMEM parameters:

request
Specifies the name of the high-level structure that contains the request
when the REQMEM parameter is specified. The default value is
DFHREQUEST.

The partitioned data set member must contain a high-level structure with
the name that you specify or a structure named DFHREQUEST if you do
not specify a name.

response
Specifies the name of the high-level structure containing the response when
the RESPMEM parameter is specified. The default value is DFHRESPONSE.

If you specify a value, the partitioned data set member must contain a
high-level structure with the name that you specify or a structure named
DFHRESPONSE if you do not specify a name.

SYNCONRETURN=NO|YES
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the

Chapter 7. Creating a web service 161

remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1- to 4-character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is created
automatically using the PIPELINE scan command.

Acceptable characters:

A - Z, a - z, 0 - 9, $, @, #, _, <, >

URI=value
This parameter specifies the relative or absolute URI that a client will use to
access the web service. CICS uses the value specified when it generates a
URIMAP resource from the web service binding file created by DFHLS2WS.
The parameter specifies the path component of the URI to which the URIMAP
definition applies.

USERID=id
In a service provider, this parameter specifies a 1- to 8-character user ID, which
can be used by any web client. For an application-generated response or a web
service, the alias transaction is attached under this user ID. The value of this
parameter is used to define the USERID attribute of the URIMAP resource when
it is created automatically using the PIPELINE scan command.

Acceptable characters:

A - Z, a - z, 0 - 9, $, @, #

WSBIND=value
The fully qualified z/OS UNIX name of the web service binding file.
DFHLS2WS creates the file, but not the directory structure, if it does not
already exist. The file extension is .wsbind.

WSDL=value
The fully qualified z/OS UNIX name of the file into which the web service
description is written. The web service description conforms to the WSDL 1.1
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsdl.

WSDL_1.1=value
The fully qualified z/OS UNIX name of the file into which the web service
description is written. The web service description conforms to the WSDL 1.1
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsdl. This parameter produces the
same result as the WSDL parameter, so you can specify only one or the other.

WSDL_2.0=value
The fully qualified z/OS UNIX name of the file into which the web service
description is written. The web service description conforms to the WSDL 2.0
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsdl. This parameter can be used
with the WSDL or WSDL_1.1 parameters. It is available only when the
MINIMUM-RUNTIME-LEVEL is set to 2.0 or higher.

162 CICS TS for z/OS 4.2: Web Services Guide

WSDLCP=LOCAL|UTF-8|EBCDIC-CP-US
Specifies the code page that is used to generate the WSDL document.

LOCAL
Specifies that the WSDL document is generated using the local code
page and no encoding tag is generated in the WSDL document.

UTF-8 Specifies that the WSDL document is generated using the UTF-8 code
page. An encoding tag is generated in the WSDL document. If you
specify this option, you must ensure that the encoding remains correct
when copying the WSDL document between different platforms.

EBCDIC-CP-US
This value specifies that the WSDL document is generated using the
US EBCDIC code page. An encoding tag is generated in the WSDL
document.

WSDL-NAMESPACE=value
Specifies the namespace for CICS to use in the generated WSDL document.

If you do not specify this parameter, CICS generates a namespace
automatically.

WSRR-CUSTOM-PropertyName=value
Use this optional parameter to add customized metadata to the WSDL
document in the WSRR. The WSRR-CUSTOM-PropertyName=value pairs are
added into the WSDL document and appear in WSRR without the
WSSR-CUSTOM prefix.

You can specify a maximum of 255 custom PropertyName=value pairs. Avoid
duplicate and blank PropertyName=value pairs.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-DESCRIPTION=value
Use this optional parameter to specify the metadata that describes the WSDL
document being published.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-ENCODING=value
Use this optional parameter to specify the character set encoding of the WSDL
document. If the WSRR-ENCODING parameter is not specified, WSRR uses the
value specified in the WSDL document.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-LOCATION=value
Use this optional parameter to specify the URI that identifies the location of
the WSDL document. If this parameter is not specified, the URI defaults to the
filename specified in the WSDL parameter. For example, if the value of the WSDL
parameter is wsrr/example.wsdl, the value of the WSRR-LOCATION parameter
defaults to example.wsdl.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-PASSWORD=value
Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

Chapter 7. Creating a web service 163

WSRR-SERVER={domain name:port number}|{IP address:port number}
Use this parameter to specify the location of the IBM WebSphere Service
Registry and Repository (WSRR) server. If this parameter is specified, WSRR
parameter validation is used.

WSRR-USERNAME=value
Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-VERSION=1|value
Use this parameter to set the version property of the WSDL document in
WSRR.

Use this parameter only when the WSRR-SERVER parameter is specified.

Other information
v The user ID under which DFHLS2SC runs must be configured to use UNIX

System Services. The user ID must have read permission to the CICS z/OS
UNIX file structure and PDS libraries and write permission to the directories
specified on the LOGFILE, WSBIND, and WSDL parameters.

v The user ID must have a sufficiently large storage allocation to run Java.
v The JCL has a maximum parameter length of 100 characters. This can be

increased by using the STDPARM statement, for more information, see z/OS UNIX
System Services User Guide.

Example
//LS2WS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHLS2WS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MINIMUM-RUNTIME-LEVEL=2.1
MAPPING-LEVEL=2.1
CHAR-VARYING=COLLAPSE
PGMNAME=DFH0XCMN
URI=http://myserver.example.org:8080/exampleApp/example
PGMINT=COMMAREA
SOAPVER=ALL
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
WSDL=/u/exampleapp/wsdl/example.wsdl
WSDL_2.0=/u/exampleapp/wsdl/example_20.wsdl
WSDLCP=LOCAL
WSDL-NAMESPACE=http://mywsdlnamespace
/*

DFHWS2LS: WSDL to high-level language conversion
The DFHWS2LS procedure generates a high-level language data structure and a
web service binding file from a web service description. You can use DFHWS2LS
when you expose a CICS application program as a service provider or when you
construct a service requester.

164 CICS TS for z/OS 4.2: Web Services Guide

The job control statements for DFHWS2LS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHWS2LS

JOB Starts the job.

EXEC Specifies the procedure name (DFHWS2LS).

INPUT.SYSUT1 DD
Specifies the input. The input parameters are usually specified in the input
stream. However, they can be defined in a data set or in a member of a
partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHWS2LS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHWS2LS. The value
of this parameter is appended to /usr/lpp/ to produce a complete path name
of /usr/lpp/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

PATHPREF=prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used
on other parameters. The default is the empty string.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHWS2LS uses as a
temporary workspace. The user ID under which the job runs must have read
and write permission to this directory.

The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHWS2LS uses to construct the names of the
temporary workspace files.

The default value is WS2LS.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file
system. The value of this parameter is appended to /usr/lpp/cicsts/ to
produce a complete path name of /usr/lpp/cicsts/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the USSDIR parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM Support.

Chapter 7. Creating a web service 165

The temporary work space

DFHWS2LS creates the following three temporary files at run time:
tmpdir/tmpprefix.in

tmpdir/tmpprefix.out

tmpdir/tmpprefix.err

where:
tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as
follows:

/tmp/WS2LS.in

/tmp/WS2LS.out

/tmp/WS2LS.err

Important: DFHWS2LS does not lock access to the generated z/OS UNIX file
names. Therefore, if two or more instances of DFHWS2LS run concurrently, and
use the same temporary workspace files, nothing prevents one job overwriting the
workspace files while another job is using them, leading to unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating
procedures, that avoid this situation. For example, you can use the system
symbolic parameter SYSUID to generate workspace file names that are unique to an
individual user. These temporary files are deleted before the end of the job.

Input parameters for DFHWS2LS

�� PDSLIB=value
PDSCP=value REQMEM=value RESPMEM=value

�

� LANG=COBOL
LANG=PLI-ENTERPRISE
LANG=PLI-OTHER
LANG=C
LANG=CPP STRUCTURE=(,)

request response

�

�
PGMINT=CHANNEL

CONTID=value
PGMNAME=value

URI=value PGMINT=COMMAREA TRANSACTION=name USERID=id

�

�
MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1
MAPPING-LEVEL=1.2 Advanced data mapping (mapping level 1.2 and higher)
MAPPING-LEVEL=2.0
MAPPING-LEVEL=2.1 Advanced data mapping (mapping level 2.1 and higher)
MAPPING-LEVEL=2.2 Advanced data mapping (mapping level 2.2 and higher)

DATETIME=PACKED15 DATA-TRUNCATION=DISABLED
MAPPING-LEVEL=3.0

DATETIME=STRING DATA-TRUNCATION=ENABLED

�

�
MAPPING-OVERRIDES=SAME-AS-MAPPING-LEVEL

MAPPING-OVERRIDES=LESS-DUP-NAMES
�

166 CICS TS for z/OS 4.2: Web Services Guide

||

�
MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0
MINIMUM-RUNTIME-LEVEL=1.1
MINIMUM-RUNTIME-LEVEL=1.2
MINIMUM-RUNTIME-LEVEL=2.0
MINIMUM-RUNTIME-LEVEL=2.1 Advanced data mapping (runtime level 2.1 and higher)
MINIMUM-RUNTIME-LEVEL=2.2 Advanced data mapping (runtime level 2.2 and higher)
MINIMUM-RUNTIME-LEVEL=3.0 Advanced data mapping (runtime level 3.0 and higher)
MINIMUM-RUNTIME-LEVEL=CURRENT

�

�
HTTPPROXY= domain name :port number HTTPPROXY-USERNAME=value HTTPPROXY-PASSWORD=value

IP address

�

�
BINDING=value CCSID=value NAME-TRUNCATION=value

LOGFILE=value
OPERATIONS=value

SYNCONRETURN=NO

SYNCONRETURN=YES
�

� WSBIND=value WSDL=value
WSDL-SERVICE=value

�

�

�

(1)

WSRR-SERVER=scheme:// domain name :port number WSRR-NAME=value
IP address WSRR-NAMESPACE=value

WSRR-USERNAME=value WSRR-PASSWORD=value
WSRR-VERSION=value
SSL-KEYSTORE=value

SSL-KEYPWD=value
SSL-TRUSTSTORE=value

SSL-TRUSTPWD=value

�

�
WIDE-COMP3=NO

WIDE-COMP3=YES
��

Advanced data mapping (mapping level 1.2 and higher):

CHAR-VARYING=NO
CHAR-VARYING=NULL
CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=value
�

�
DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=value

Advanced data mapping (mapping level 2.1 and higher):

INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=value

Advanced data mapping (mapping level 2.2 and higher):

PDSMEM=value

Chapter 7. Creating a web service 167

Advanced data mapping (runtime level 2.1 and higher):

XML-ONLY=FALSE

XML-ONLY=TRUE

Advanced data mapping (runtime level 3.0 and higher):

WSADDR-EPR-ANY=FALSE

WSADDR-EPR-ANY=TRUE

Notes:

1 Each of the WSRR parameters that can be specified when the WSRR-SERVER parameter is set can be
specified only once.

Parameter use
v You can specify the input parameters in any order.
v Each parameter must start on a new line.
v A parameter, and its continuation character, if you use one, must not extend

beyond column 72; columns 73 to 80 must contain blanks.
v If a parameter is too long to fit on a single line, use an asterisk (*) character at

the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces, before the asterisk is considered part of the
parameter. For example:
WSBIND=wsbinddir*
/app1

is equivalent to
WSBIND=wsbinddir/app1

v A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

BINDING=value
If the web service description contains more than one <wsdl:Binding> element,
use this parameter to specify which one is to be used to generate the language
structure and web service binding file. Specify the value of the name attribute
that is used on the <wsdl:Binding> element in the web service description.

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an EBCDIC
CCSID that is supported by Java and z/OS conversion services. If you do not
specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level. However, if you want to
deploy the generated files into a CICS TS 3.1 region, you must apply APAR
PK23547 to achieve the minimum runtime level of code to install the web
service binding file.

168 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/zos/v1r11/topic/com.ibm.zos.r11.cunu100/toc.htm

CHAR-MULTIPLIER=1|value
Specifies the number of bytes to allow for each character when the mapping
level is 1.2 or higher. The value of this parameter can be a positive integer in
the range of 1 - 2,147,483,647. All nonnumeric character-based mappings, are
subject to this multiplier. Binary, numeric, zoned, and packed decimal fields are
not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS
characters where you might opt for a multiplier of 3 to allow space for
potential shift-out and shift-in characters around every double-byte character at
run time.

CHAR-VARYING=NO|NULL|YES
Specifies how variable-length character data is mapped when the mapping
level is 1.2 or higher. Variable-length binary data types are always mapped to
either a container or a varying structure. If you do not specify this parameter,
the default mapping depends on the language specified. You can select these
options:

NO Variable-length character data is mapped as fixed-length strings.

NULL Variable-length character data is mapped to null-terminated strings.

YES Variable-length character data is mapped to a CHAR VARYING data
type in PL/I. In the COBOL, C, and C++ languages, variable-length
character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT=32767|value
Specifies the maximum size of binary data and variable-length character data
that is mapped to the language structure when the mapping level is 1.2 or
higher. If the character or binary data is larger than the value specified in this
parameter, it is mapped to a container and the container name is used in the
generated language structure. The value can range from 0 to the default 32,767
bytes.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure used to represent a SOAP message.

DATA-TRUNCATION=DISABLED|ENABLED
Specifies if variable length data is tolerated in a fixed length field structure:

DISABLED
If the data is less than the fixed length that CICS is expecting, CICS
rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS
tolerates the truncated data and processes the missing data as null
values.

DATETIME=PACKED15|STRING
Specifies how <xsd:dateTime> elements are mapped to the language structure.

PACKED15
The default is that any <xsd:dateTime> element is processed as a
timestamp and is mapped to CICS ABSTIME format.

STRING
The <xsd:dateTime> element is processed as text.

Chapter 7. Creating a web service 169

DEFAULT-CHAR-MAXLENGTH=255|value
Specifies the default array length of character data in characters for mappings
where no length is implied in the web service description document, when the
mapping level is 1.2 or higher. The value of this parameter can be a positive
integer in the range of 1 - 2,147,483,647.

HTTPPROXY={domain name:port number}|{IP address:port number}
If your WSDL contains references to other WSDL files that are located on the
internet, and the system on which you are running DFHWS2LS uses a proxy
server to access the internet, specify the domain name or IP address and the
port number of the proxy server. For example:
HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-PASSWORD=value
Specifies the HTTP proxy password that must be used with
HTTPPROXY-USERNAME if the system on which you are running DFHWS2LS uses
an HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-USERNAME=value
Specifies the HTTP proxy username that must be used with
HTTPPROXY-PASSWORD if the system on which you are running DFHWS2LS uses
an HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

INLINE-MAXOCCURS-LIMIT=1|value
Specifies whether or not inline variable repeating content is used based on the
maxOccurs attribute. Variably repeating content that is mapped inline is placed
in the current container with the rest of the generated language structure. The
variably repeating content is stored in two parts, as a counter that stores the
number of occurrences of the data and as an array that stores each occurrence
of the data. The alternative mapping for variably repeating content is
container-based mapping, which stores the number of occurrences of the data
and the name of the container where the data is placed. Storing the data in a
separate container has performance implications that might make inline
mapping preferable.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1
onwards. The value of INLINE-MAXOCCURS-LIMIT can be a positive integer in the
range of 0 - 32,767. A value of 0 indicates that inline mapping is not used. A
value of 1 ensures that optional elements are mapped inline. If the value of the
maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-LIMIT,
container-based mapping is used; otherwise inline mapping is used.

When deciding if you want variably repeating lists to be mapped inline,
consider the length of a single item of recurring data. If few instances of long
length occur, container-based mapping is preferable; if many instances of short
length occur, inline mapping is preferable.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/I.

170 CICS TS for z/OS 4.2: Web Services Guide

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified z/OS UNIX name of the file into which DFHWS2LS writes
its activity log and trace information. DFHWS2LS creates the file, but not the
directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with DFHWS2LS.

MAPPING-LEVEL={1.0|1.1|1.2|2.0|2.1|2.2|3.0}
Specifies the level of mapping that DFHWS2LS uses when generating the web
service binding file and language structure. You can select these options:

1.0 The web service binding file and language structure are generated
using CICS TS 3.1 mapping levels.

1.1 XML attributes and <list> and <union> data types are mapped to the
language structure. Character and binary data that have a maximum
length of more than 32,767 bytes are mapped to a container. The
container name is created in the language structure.

1.2 Use the CHAR-VARYING and CHAR-VARYING-LIMIT parameters to control
how character data is mapped and processed at run time. If you do not
specify either of these parameters, binary and character data that have
a maximum length of less than 32,768 bytes are mapped to a
VARYING structure for all languages except C++, where character data
is mapped to a null-terminated string.

2.0 Use this mapping level in a CICS TS 3.2 region or above to take
advantage of the enhancements to the mapping between the language
structure and web services binding file.

2.1 Use this mapping level with a CICS TS 3.2 region that has APAR
PK59794 applied, or any region above CICS TS 3.2 for <xsd:any> and
xsd:anyType support, the option to map variably repeating content
inline with the INLINE-MAXOCCURS-LIMIT parameter, and support for
minOccurs="0" on <xsd:sequence>, <xsd:choice>, and <xsd:all>.

2.2 Use this mapping level with a CICS TS 3.2 region that has APAR
PK69738 applied or with any region above CICS TS 3.2. It provides the
following support:
v Elements with fixed values
v Enhanced support for <xsd:choice> elements
v Abstract data types
v Abstract elements
v Substitution groups

3.0 Use this mapping level with a CICS TS 4.1 region. At this mapping
level you can transform timestamps to CICS ABSTIME format.

Chapter 7. Creating a web service 171

For more information about mapping levels, see Mapping levels for the CICS
assistants

MAPPING-OVERRIDES={SAME-AS-MAPPING-LEVEL ¦ LESS-DUP-NAMES}
Provides the options to override mapping level defaults when generating
language structures.

SAME-AS-MAPPING-LEVEL
This is the default. This parameter generates language structures in the
same style as the mapping level.

LESS-DUP-NAMES
This parameter generates non-structural structure field names with
“_value” at the end of the name to enable direct referencing to the
field. For example, level 12 field streetName in the following PLI
language structure:
09 streetName,

12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

is suffixed with '_value' at the end when specifying
MAPPING-OVERRIDES = LESS-DUP-NAMES, as shown in the
resulting structure:
09 streetName,

12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|2.0|2.1|2.2|3.0|CURRENT}
Specifies the minimum CICS runtime environment into which the web service
binding file can be deployed. If you select a level that does not match the other
parameters that you have specified, you receive an error message. You can
select these options:

MINIMUM
The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

1.0 The generated web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. Some parameters are not available at this runtime level.

1.1 The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You can
use a mapping level of 1.1 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

1.2 The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547 applied.
You can use a mapping level of 1.2 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

2.0 The generated web service binding file deploys successfully into a
CICS TS 3.2 region or above. You can use a mapping level of 2.0 or
below for the MAPPING-LEVEL parameter. Some parameters are not
available at this runtime level.

2.1 The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK59794 applied or into any region

172 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html

above CICS TS 3.2. You can use a mapping level of 2.1 or below for the
MAPPING-LEVEL parameter. You can use any optional parameter at this
level.

2.2 The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK69738 applied or into any region
above CICS TS 3.2. With this runtime level, you can use a mapping
level of 2.2 or below for the MAPPING-LEVEL parameter. You can use any
optional parameter at this level.

3.0 The generated web service binding file deploys successfully into a
CICS TS 4.1 region or above. With this runtime level, you can use a
mapping level of 3.0 or below for the MAPPING-LEVEL parameter. You
can use any optional parameter at this level.

CURRENT
The generated web service binding file deploys successfully into a
CICS region at the same runtime level as the one you are using to
generate the web service binding file.

NAME-TRUNCATION={LEFT|RIGHT}
Specifies whether XML element names are truncated from the left or the right.
The CICS web services assistant truncates XML element names to the
appropriate length for the high-level language specified; by default names are
truncated from the right.

OPERATIONS=value
For web service requester applications, specifies a subset of valid
<wsdl:Operation> elements from the web service description that is used to
generate the web service binding file. Each <wsdl:Operation> element is
separated by a space; the list can span more than one line if necessary. You can
use this parameter for both WSDL 1.1 and WSDL 2.0 documents.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or a Java
code page number. If this parameter is not specified, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PDSLIB=value
Specifies the name of the partitioned data set that contains the generated
high-level language. The data set members used for the request and response
are specified in the REQMEM and RESPMEM parameters respectively.

PDSMEM=value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high-level language
structures for abstract data types. It generates the member name by appending
a 2-digit number to the prefix.

Use this parameter at a mapping level of 2.2 or higher for naming the
language structures associated with abstract data types. If the PDSMEM
parameter is omitted, language structures for abstract data types are named
using the value in the REQMEM parameter.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

Chapter 7. Creating a web service 173

CHANNEL
CICS uses a channel interface to pass data to the target application
program.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

This parameter is ignored when the output from DFHWS2LS is used in a
service requester.

PGMNAME=value
Specifies the name of a CICS PROGRAM resource.

When DFHWS2LS is used to generate a web service binding file that will be
used in a service provider, you must supply this parameter. It specifies the
resource name of the application program that is exposed as a web service.

When DFHWS2LS is used to generate a web service binding file that will be
used in a service requester, omit this parameter.

REQMEM=value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high-level language
structures for the web service request:
v For a service provider, the web service request is the input to the application

program.
v For a service requester, the web service request is the output from the

application program.

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a 2-digit number to the prefix.

Although this parameter is optional, you must specify it if the web service
description contains a definition of a request.

RESPMEM=value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high-level language
structures for the web service response:
v For a service provider, the web service response is the output from the

application program.
v For a service requester, the web service response is the input to the

application program.

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a 2-digit number to the prefix.

Omit this parameter if no response is involved; that is, for one-way messages.

SSL-KEYSTORE=value
This optional parameter specifies the fully qualified location of the key store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-KEYPWD=value
This optional parameter specifies the password for the key store.

174 CICS TS for z/OS 4.2: Web Services Guide

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTSTORE=value
This optional parameter specifies the fully qualified location of the trust store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTPWD=value
This optional parameter specifies the password for the trust store.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

STRUCTURE=(request,response)
For C and C++ only, specifies how the names of the request and response
structures are generated.

The generated request and response structures are given names of requestnn
and responsenn where nn is a numeric suffix that is generated to distinguish
the structures for each operation.
If one or both names is omitted, the structures have the same name as the
partitioned data set member names generated from the REQMEM and RESPMEM
parameters that you specify.

SYNCONRETURN=NO|YES
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1- to 4-character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is created
automatically using the PIPELINE scan command.

Acceptable characters:

A - Z, a - z, 0 - 9, $, @, #, _, <, >

URI=value
In a service provider, this parameter specifies the relative URI that a client uses
to access the web service. CICS uses the value specified when it generates a
URIMAP resource from the web service binding file created by DFHWS2LS.
The parameter specifies the path component of the URI to which the URIMAP
definition applies.

In a service requester, the URI of the target web service is not specified with
this parameter. CICS does not generate a URIMAP resource for a service

Chapter 7. Creating a web service 175

|
|

requester. You can define your own URIMAP resource for service requesters to
use when they make client requests to the URI of the target web service. When
a service requester issues the INVOKE SERVICE command, CICS uses the
soap:address location from the wsdl:port specified in the web service
description if present. You can override that and specify a different URI using
the URIMAP or URI options on the INVOKE SERVICE command.

USERID=id
In a service provider, this parameter specifies a 1- to 8-character user ID, which
can be used by any web client. For an application-generated response or a web
service, the alias transaction is attached under this user ID. The value of this
parameter is used to define the USERID attribute of the URIMAP resource when
it is created automatically using the PIPELINE scan command.

Acceptable characters:

A - Z, a - z, 0 - 9, $, @, #

WIDE-COMP3=NO|YES
For COBOL only. Controls the maximum size of the packed decimal variable
length in the COBOL language structure.

NO DFHWS2LS limits the packed decimal variable length to 18 when
generating the COBOL language structure type COMP-3. If the packed
decimal size is greater than 18, message DFHPI9022W is issued to
indicate that the specified type is being restricted to a total of 18 digits.

YES DFHWS2LS supports the maximum size of 31 when generating the
COBOL language structure type COMP-3.

WSADDR-EPR-ANY=TRUE|FALSE
Specifies whether CICS transforms a WS-Addressing endpoint reference (EPR)
into its components parts in the language structures or treats the EPR as an
<xsd:any> type. Treating the EPR as an <xsd:any> type means that the
WSACONTEXT BUILD API can use the EPR XML directly.

FALSE
DFHWS2LS behaves typically, transforming the XML to a high-level
language structure.

TRUE Setting this option to TRUE means that at run time CICS treats the
whole EPR as an <xsd:any> type and places the EPR XML into a
container that can be referenced by the application. The application can
use the EPR XML with the WSACONTEXT BUILD API to construct an EPR
in the addressing context.

This parameter is available only at runtime level 3.0 onwards.

WSBIND=value
The fully qualified z/OS UNIX name of the web service binding file.
DFHWS2LS creates the file, but not the directory structure, if it does not
already exist. The file extension defaults to .wsbind.

WSDL=value
The fully qualified z/OS UNIX name of the file that contains the web service
description. If you are using WSRR to retrieve the WSDL document, this
parameter specifies the location on the file system to which a local copy of the
WSDL document will be written.

WSDL-SERVICE=value
Specifies the wsdl:Service element that is used when the web service

176 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|
|
|

|
|
|

||
|
|
|

||
|

description contains more than one Service element for a Binding element. If
you specify a value for the BINDING parameter, the Service element that you
specify for this parameter must be consistent with the specified Binding
element. You can use this parameter with either WSDL 1.1 or WSDL 2.0
documents.

WSRR-NAME=value
Specifies the name of the WSDL document to retrieve from WSRR. Use this
parameter only when the WSRR-SERVER parameter is specified.

WSRR-NAMESPACE=value
Specifies the namespace of the WSDL document to retrieve from WSRR. You
can optionally use this parameter when the WSRR-SERVER parameter is specified
to fully qualify the WSDL document name specified in the WSRR-NAME
parameter.

WSRR-PASSWORD=value
Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-SERVER={domain name:port number}|{IP address:port number}
Use this parameter to specify the location of the IBM WebSphere Service
Registry and Repository (WSRR) server. If this parameter is specified, WSRR
parameter validation is used.

WSRR-USERNAME=value
Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-VERSION=value
Specifies the version of the WSDL document to retrieve from WSRR. You can
use this parameter only when the WSRR-SERVER parameter is specified.

XML-ONLY=TRUE|FALSE
Specifies whether or not CICS transforms the XML in the SOAP message to
application data. Use the XML-ONLY parameter to write web service applications
that process the XML themselves.

TRUE CICS does not perform any transformations to the XML. The service
requester or provider application must work with the contents of the
DFHWS-BODY container directly to map data between XML and the
high-level language.

FALSE
CICS transforms the XML to a high-level language.

This parameter is available only at runtime level 2.1 onwards.

Other information
v The user ID under which DFHLS2SC runs must be configured to use UNIX

System Services. The user ID must have read permission to the CICS z/OS
UNIX file structure and PDS libraries and write permission to the directories
specified on the LOGFILE , WSBIND, and WSDL parameters.

v The user ID must have a sufficiently large storage allocation to run Java.

Chapter 7. Creating a web service 177

v The JCL has a maximum parameter length of 100 characters. This can be
increased by using the STDPARM statement, for more information, see z/OS UNIX
System Services User Guide.

Example
//WS2LS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHWS2LS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=3.0
CHAR-VARYING=NULL
INLINE-MAXOCCURS-LIMIT=2
PGMNAME=DFH0XCMN
URI=exampleApp/example
PGMINT=COMMAREA
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
WSDL=/u/exampleapp/wsdl/example.wsdl
/*

Syntax notation
Syntax notation specifies the permissible combinations of options or attributes that
you can specify on CICS commands, resource definitions, and many other things.

The conventions used in the syntax notation are:

Notation Explanation

�� A
B
C

��
Denotes a set of required alternatives. You
must specify one (and only one) of the
values shown.

�� � A
B
C

��

Denotes a set of required alternatives. You
must specify at least one of the values
shown. You can specify more than one of
them, in any sequence.

��
A
B
C

��
Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown.

�� �

A
B
C

��

Denotes a set of optional alternatives. You
can specify none, one, or more than one of
the values shown, in any sequence.

178 CICS TS for z/OS 4.2: Web Services Guide

Notation Explanation

��
A

B
C

��

Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown. A is the default value that is used if
you do not specify anything.

�� Name ��

Name:

A
B

A reference to a named section of syntax
notation.

�� A=value ��
A= denote characters that should be entered
exactly as shown.

value denotes a variable, for which you
should specify an appropriate value.

Mapping levels for the CICS assistants
A mapping is the set of rules that specifies how information is converted between
language structures and XML schemas. To benefit from the most sophisticated
mappings available, you are recommended to set the MAPPING-LEVEL parameter in
the CICS assistants to the latest level.

Each level of mapping inherits the function of the previous mapping, with the
highest level of mapping offering the best capabilities available. The highest
mapping level provides more control over data conversion at run time and
removes restrictions on support for certain data types and XML elements.

You can set the MAPPING-LEVEL parameter to an earlier level if you want to
redeploy applications that were previously enabled at that level.

Mapping level 3.0

Mapping level 3.0 is compatible with a region.

This mapping level provides the following support:
v DFHSC2LS and DFHWS2LS map xsd:dateTime data types to CICS ASKTIME

format.
v DFHLS2WS can generate a WSDL document and web service binding from an

application that uses many containers rather than just one container.
v Tolerating truncated data that is described by a fixed length data structure. You

can set this behavior by using the DATA-TRUNCATION parameter on the CICS
assistants.

Mapping level 2.2 and higher

Mapping level 2.2 is compatible with a region, with APAR PK69738 applied, and
higher.

Chapter 7. Creating a web service 179

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS support the
following XML mappings:
v Fixed values for elements
v Substitution groups
v Abstract data types
v XML schema <sequence> elements can nest inside <choice> elements

DFHSC2LS and DFHWS2LS provide enhanced support for the following XML
mappings:
v Abstract elements
v XML schema <choice> elements

Mapping level 2.1 and higher

Mapping level 2.1 is compatible with a region, with APAR PK59794 applied, and
higher.

This mapping level includes greater control over the way variable content is
handled with the new INLINE-MAXOCCURS-LIMIT parameter and new values on the
CHAR-VARYING parameter.

At mapping level 2.1 and higher, DFHSC2LS and DFHWS2LS offer the following
new and improved support for XML mappings:
v The XML schema <any> element
v The xsd:anyType type
v Toleration of abstract elements
v The INLINE-MAXOCCURS-LIMIT parameter
v The minOccurs attribute

The INLINE-MAXOCCURS-LIMIT parameter specifies whether variably repeating lists
are mapped inline. For more information on mapping variably repeating content
inline, see Variable arrays of elements.

Support for the minOccurs attribute has been enhanced on the XML schema
<sequence>, <choice>, and <all> elements. If minOccurs="0", the CICS assistant
treats these element as though the minOccurs="0" attribute is also an attribute of all
its child elements.

At mapping level 2.1 and higher, DFHLS2SC and DFHLS2WS support the
following XML mappings:
v FILLER fields in COBOL and PL/I are ignored
v A value of COLLAPSE for the CHAR-VARYING parameter
v A value of BINARY for the CHAR-VARYING parameter

FILLER fields in COBOL and PL/I are ignored; they do not appear in the
generated XML schema and an appropriate gap is left in the data structures at run
time.

COLLAPSE causes CICS to ignore trailing spaces in text fields.

BINARY provides support for binary fields. This value is useful when converting
COBOL into an XML schema. This option is available only on SBCS character

180 CICS TS for z/OS 4.2: Web Services Guide

arrays and allows the array to be mapped to fixed-length xsd:base64Binary fields
rather than to xsd:string fields.

Mapping level 1.2 and higher

Mapping level 1.2 is compatible with a region and higher.

Greater control is available over the way character and binary data are transformed
at run time with these additional parameters on the batch tools:
v CHAR-VARYING

v CHAR-VARYING-LIMIT

v CHAR-MULTIPLIER

v DEFAULT-CHAR-MAXLENGTH

If you decide to use the CHAR-MULTIPLIER parameter in DFHSC2LS or DFHWS2LS,
note that the following rules apply after the value of this parameter is used to
calculate the amount of space required for character data.
v DFHSC2LS and DFHWS2LS provide these mappings:

– Variable-length character data types that have a maximum length of more
than 32 767 bytes map to a container. You can use the CHAR-VARYING-LIMIT
parameter to set a lower limit. A 16-byte field is created in the language
structure to store the name of the container. At run time, the character data is
stored in a container and the container name is put in the language structure.

– Variable-length character data types that have a maximum length of less than
32 768 bytes map to a VARYING structure for all languages except C/C++
and Enterprise PL/I. In C/C++, these data types are mapped to
null-terminated strings, and in Enterprise PL/I these data types are mapped
to VARYINGZ structures. You can use the CHAR-VARYING parameter to select
the way that variable-length character data is mapped.

– Variable-length binary data that has a maximum length of less than 32 768
bytes maps to a VARYING structure for all languages. If the maximum length
is equal to or greater than 32 768 bytes, the data is mapped to a container. A
16-byte field is created in the language structure to store the name of the
container. At run time, the binary data is stored in a container and the
container name is put in the language structure.

If you have character data types in the XML schema that do not have a length
associated with them, you can assign a default length using the
DEFAULT-CHAR-MAXLENGTH parameter in DFHWS2LS or DFHSC2LS.

DFHLS2SC and DFHLS2WS provide these mappings:
v Character fields map to an xsd:string data type and can be processed as

fixed-length fields or null-terminated strings at run time. You can use the
CHAR-VARYING parameter to select the way that variable-length character data is
handled at run time for all languages except PL/I.

v Base64Binary data types map to a container if the maximum length of the data
is greater than 32 767 bytes or when the length is not defined. If the length of
the data is 32 767 or less, the base64Binary data type is mapped to a VARYING
structure for all languages.

Mapping level 1.1 and higher

Mapping level 1.1 is compatible with a region and higher.

Chapter 7. Creating a web service 181

This mapping level provides improved mapping of XML character and binary data
types, in particular when mapping data of variable length that has maxLength and
minLength attributes defined with different values in the XML schema. Data is
handled in the following ways:
v Character and binary data types that have a fixed length that is greater than 16

MB map to a container for all languages except PL/I. In PL/I, fixed-length
character and binary data types that are greater than 32 767 bytes are mapped to
a container. A 16-byte field is created in the language structure to store the name
of the container. At run time, the fixed-length data is stored in a container and
the container name is put in the language structure.
Because containers are variable in length, fixed-length data that is mapped to a
container is not padded with spaces or nulls, or truncated, to match the fixed
length specified in the XML schema or web service description. If the length of
the data is significant, you can either write your application to check it or turn
validation on in the CICS region. Both SOAP and XML validation have a
significant performance impact.

v XML schema <list> and <union> data types map to character fields.
v Schema-defined XML attributes are mapped rather than ignored. A maximum of

255 attributes is allowed for each XML element. See Support for XML attributes
for further information.

v The xsi:nil attribute is supported. See Support for XML attributes for further
information.

Mapping level 1.1 only

Mapping level 1.1 is compatible with a region and higher.

This mapping level provides improved mapping of XML character and binary data
types, in particular when mapping data of variable length that has maxLength and
minLength attributes defined with different values in the XML schema. Data is
handled in the following ways:
v Variable-length binary data types map to a container. A 16-byte field is created

in the language structure to store the name of the container. At run time, the
binary data is stored in a container and the container name is put in the
language structure.

v Variable-length character data types that have a maximum length greater than
32 767 bytes map to a container. A 16-byte field is created in the language
structure to store the name of the container. At run time, the character data is
stored in a container and the container name is put in the language structure.

v Character and binary data types that have a fixed length of less than 16 MB map
to fixed-length fields for all languages except PL/I. In PL/I, fixed-length
character and binary data types that are 32 767 bytes or less map to fixed-length
fields.

v CICS encodes and decodes data in the hexBinary format but not in base64Binary
format. Base64Binary data types in the XML schema map to a field in the
language structure. The size of the field is calculated using the formula:
4×(ceil(z/3)) where:
– z is the length of the data type in the XML schema.
– ceil(x) is the smallest integer greater than or equal to x.

If the length of z is greater than 24 566 bytes, the resulting language structure
fails to compile. If you have base64Binary data that is greater than 24 566 bytes,

182 CICS TS for z/OS 4.2: Web Services Guide

you are recommended to use a mapping level of 1.2. With mapping level 1.2,
you can map the base64Binary data to a container instead of using a field in the
language structure.

Mapping level 1.0 only

Mapping level 1.0 is compatible with a region and higher.

Note the following limitations, which have been modified in later mapping levels:
v DFHSC2LS and DFHWS2LS map character and binary data types in the XML

schema to fixed-length fields in the language structure. Look at this partial XML
schema:
<xsd:element name="example">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="33000"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

That partial XML schema appears in a COBOL language structure like this:
15 example PIC X(33000)

v CICS encodes and decodes data in the hexBinary format but not in base64Binary
format. DFHSC2LS and DFHWS2LS map Base64Binary data to a fixed-length
character field, the contents of which must be encoded or decoded by the
application program.

v DFHSC2LS and DFHWS2LS ignore XML attributes during processing.
v DFHLS2SC and DFHLS2WS interpret character and binary fields in the language

structure as fixed-length fields and map those fields to XML elements that have
a maxLength attribute. At run time, the fields in the language structure are filled
with spaces or nulls if insufficient data is available.

High-level language and XML schema mapping
Use the CICS assistants to generate mappings between high-level language
structures and XML schemas or WSDL documents. The CICS assistants also
generate XML schemas or WSDL documents from high-level language data
structures, or vice-versa.

Utility programs DFHSC2LS and DFHLS2SC are collectively known as the CICS
XML assistant. Utility programs DFHWS2LS and DFHLS2WS are collectively
known as the CICS Web services assistant.
v DFHLS2SC and DFHLS2WS map high-level language structures to XML

schemas and WSDL documents respectively.
v DFHSC2LS and DFHWS2LS map XML schemas and WSDL documents to

high-level language structures.

The two mappings are not symmetrical:
v If you process a language data structure with DFHLS2SC or DFHLS2WS and

then process the resulting XML schema or WSDL document with the
complementary utility program (DFHSC2LS or DFHWS2LS respectively), do not
expect the final data structure to be the same as the original. However, the final
data structure is logically equivalent to the original.

v If you process an XML schema or WSDL document with DFHSC2LS or
DFHWS2LS and then process the resulting language structure with the

Chapter 7. Creating a web service 183

complementary utility program (DFHLS2SC or DFHLS2WS respectively), do not
expect the XML schema in the final XML schema or WSDL document to be the
same as the original.

v In some cases, DFHSC2LS and DFHWS2LS generate language structures that are
not supported by DFHLS2SC and DFHLS2WS.

You must code language structures processed by DFHLS2SC and DFHLS2WS
according to the rules of the language, as implemented in the language compilers
that CICS supports.

Data mapping limitations when using the CICS assistants
CICS supports bidirectional data mappings between high-level language structures
and XML schemas or WSDL documents that conform to WSDL version 1.1 or 2.0,
with certain limitations. These limitations apply only to the DFHWS2LS and
DFHSC2LS tools and vary according to the mapping level.

Limitations at all mapping levels
v Only SOAP bindings that use literal encoding are supported. Therefore, you

must set the use attribute to a value of literal; use="encoded" is not supported.
v Data type definitions must be encoded using the XML Schema Definition

language (XSD). In the schema, data types used in the SOAP message must be
explicitly declared.

v The length of some keywords in the Web services description is limited. For
example, operation, binding, and part names are limited to 255 characters. In
some cases, the maximum operation name length might be slightly shorter.

v Any SOAP faults defined in the Web service description are ignored. If you want
a service provider application to send a SOAP fault message, use the EXEC CICS
SOAPFAULT command.

v DFHWS2LS and DFHSC2LS support only a single <xsd:any> element in a
particular scope. For example, the following schema fragment is not supported:
<xsd:sequence>
<xsd:any/>
<xsd:any/>
</xsd:sequence>

Here, <xsd:any> can specify minOccurs and maxOccurs if required. For example,
the following schema fragment is supported:
<xsd:sequence>
<xsd:any minOccurs="2" maxOccurs="2"/>
</xsd:sequence>

v Cyclic references are not supported. For example, where type A contains type B
which, in turn, contains type A.

v Recurrence is not supported in group elements, such as <xsd:choice>,
<xsd:sequence>, <xsd:group>, or <xsd:all> elements. For example, the following
schema fragment is not supported:
<xsd:choice maxOccurs="2">

<xsd:element name="name1" type="string"/>
</xsd:choice>

The exception is at mapping level 2.1 and higher, where maxOccurs="1" and
minOccurs="0" are supported on these elements.

v DFHSC2LS and DFHWS2LS do not support data types and elements in the
SOAP message that are derived from the declared data types and elements in

184 CICS TS for z/OS 4.2: Web Services Guide

the XML schema either from the xsi:type attribute or from a substitution group,
except at mapping level 2.2 and higher if the parent element or type is defined
as abstract.

v Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice>
element are not supported prior to mapping level 2.2. Embedded <xsd:choice>
and <xsd:all> elements inside an <xsd:choice> element are never supported.

Improved support at mapping level 1.1 and higher

When the mapping level is 1.1 or higher, DFHWS2LS provides support for the
following XML elements and element type:
v The <xsd:list> element.
v The <xsd:union> element.
v The xsd:anySimpleType type.
v The <xsd:attribute> element. At mapping level 1.0 this element is ignored.

Improved support at mapping level 2.1 and higher

When the mapping level is 2.1 or higher, DFHWS2LS supports the following XML
elements and element attributes:
v The <xsd:any> element.
v The xsd:anyType type.
v Abstract elements. In earlier mapping levels, abstract elements are supported

only as nonterminal types in an inheritance hierarchy.
v The maxOccurs and minOccurs attributes on the <xsd:all>, <xsd:choice>, and

<xsd:sequence> elements, only when maxOccurs="1" and minOccurs="0".
v "FILLER" fields in COBOL and "*" fields in PL/I are suppressed. The fields do

not appear in the generated WSDL and an appropriate gap is left in the data
structures at run time.

Improved support at mapping level 2.2 and higher

When the mapping level is 2.2 or higher, DFHSC2LS and DFHWS2LS provide
improved support for the <xsd:choice> element, supporting a maximum of 255
options in the <xsd:choice> element. For more information on <xsd:choice>
support, see “Support for <xsd:choice>” on page 219.

At mapping level 2.2 and higher, the CICS assistants support the following XML
mappings:
v Substitution groups
v Fixed values for elements
v Abstract data types

Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice>
element are supported at mapping level 2.2 and higher. For example, the following
schema fragment is supported:
<xsd:choice>

<xsd:element name="name1" type="string"/>
<xsd:sequence/>

</xsd:choice>

If the parent element or type in the SOAP message is defined as abstract,
DFHSC2LS and DFHWS2LS support data types and elements that are derived

Chapter 7. Creating a web service 185

from the declared data types and elements in the XML schema.

Improved support at mapping level 3.0 and higher

When the mapping level is 3.0 or higher, the CICS assistants support the following
mapping improvements:
v DFHSC2LS and DFHWS2LS map xsd:dateTime data types to CICS ASKTIME

format.
v DFHLS2WS can generate a WSDL document and web service binding from an

application that uses many containers rather than just one container.
v Tolerating truncated data that is described by a fixed length data structure. You

can set this behavior by using the DATA-TRUNCATION parameter on the CICS
assistants.

COBOL to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between
COBOL data structures and XML schema definitions.

COBOL names are converted to XML names according to the following rules:
1. Duplicate names are made unique by the addition of one or more numeric

digits.
For example, two instances of year become year and year1.

2. Hyphens are replaced by underscore characters. Strings of contiguous hyphens
are replaced by contiguous underscores.
For example, current-user--id becomes current_user__id.

3. Segments of names that are delimited by hyphens and that contain only
uppercase characters are converted to lowercase.
For example, CA-REQUEST-ID becomes ca_request_id.

4. A leading underscore character is added to names that start with a numeric
character.
For example, 9A-REQUEST-ID becomes _9a_request_id.

CICS maps COBOL data description elements to schema elements according to the
following table. COBOL data description elements that are not shown in the table
are not supported by DFHLS2SC or DFHLS2WS. The following restrictions also
apply:
v Data description items with level numbers of 66 and 77 are not supported. Data

description items with a level number of 88 are ignored.
v The following clauses on data description entries are not supported:

OCCURS DEPENDING ON
OCCURS INDEXED BY
REDEFINES
RENAMES; that is level 66
DATE FORMAT

v The following clauses on data description items are ignored:
BLANK WHEN ZERO
JUSTIFIED
VALUE

186 CICS TS for z/OS 4.2: Web Services Guide

v The SIGN clause SIGN TRAILING is supported. The SIGN clause SIGN
LEADING is supported only when the mapping level specified in DFHLS2SC or
DFHLS2WS is 1.2 or higher.

v SEPARATE CHARACTER is supported at a mapping level of 1.2 or higher for
both SIGN TRAILING and SIGN LEADING clauses.

v The following phrases on the USAGE clause are not supported:
OBJECT REFERENCE
POINTER
FUNCTION-POINTER
PROCEDURE-POINTER

v The following phrases on the USAGE clause are supported at a mapping level of
1.2 or higher:

COMPUTATIONAL-1
COMPUTATIONAL-2

v The only PICTURE characters supported for DISPLAY and COMPUTATIONAL-5
data description items are 9, S, and Z.

v The PICTURE characters supported for PACKED-DECIMAL data description
items are 9, S, V, and Z.

v The only PICTURE characters supported for edited numeric data description
items are 9 and Z.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and are
processed as null-terminated strings.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, trailing white space is ignored for strings.

COBOL data description Schema simpleType

PIC X(n)
PIC A(n)
PIC G(n) DISPLAY-1
PIC N(n)

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:maxlength value="n"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

where m =n

PIC S9 DISPLAY
PIC S99 DISPLAY
PIC S999 DISPLAY
PIC S9999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:short">

<xsd:minInclusive value="-n"/>
<xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

Chapter 7. Creating a web service 187

COBOL data description Schema simpleType

PIC S9(z) DISPLAY

where 5 ≤ z ≤ 9

<xsd:simpleType>
<xsd:restriction base="xsd:int">

<xsd:minInclusive value="-n"/>
<xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC S9(z) DISPLAY

where 9 < z

<xsd:simpleType>
<xsd:restriction base="xsd:long">

<xsd:minInclusive value="-n"/>
<xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9 DISPLAY
PIC 99 DISPLAY
PIC 999 DISPLAY
PIC 9999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9(z) DISPLAY

where 5 ≤ z ≤ 9

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9(z) DISPLAY

where 9 < z

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the pattern of '9'
characters.

PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where n ≤ 4.

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>

</xsd:simpleType>

PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where 5 ≤ n ≤ 9.

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>

</xsd:simpleType>

188 CICS TS for z/OS 4.2: Web Services Guide

COBOL data description Schema simpleType

PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where 9 <n.

<xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>

</xsd:simpleType>

PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where n ≤ 4.

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpleType>

PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where 5 ≤ n ≤ 9.

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpleType>

PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where 9 <n.

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpleType>

PIC S9(m)V9(n) COMP-3 <xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="p"/>
<xsd:fractionDigits value="n"/>

</xsd:restriction>
</xsd:simpleType>

where p = m + n.

PIC 9(m)V9(n) COMP-3 <xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="p"/>
<xsd:fractionDigits value="n"/>
<xsd:minInclusive value="0"/>

</xsd:restriction>
</xsd:simpleType>

where p = m + n.

PIC S9(m) COMP-3

Supported at mapping level 3.0 when
DATETIME=PACKED15

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>

</xsd:simpleType>

The format of the timestamp is CICS ABSTIME.

PIC S9(m)V9(n) DISPLAY

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="p"/>
<xsd:fractionDigits value="n"/>

</xsd:restriction>
</xsd:simpleType>

where p = m + n.

Chapter 7. Creating a web service 189

COBOL data description Schema simpleType

COMP-1

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

COMP-2

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

XML schema to COBOL mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between XML
schema definitions and COBOL data structures.

The CICS assistants generate unique and valid names for COBOL variables from
the schema element names using the following rules:
1. COBOL reserved words are prefixed with 'X'.

For example, DISPLAY becomes XDISPLAY.
2. Characters other than A-Z, a-z, 0-9, or hyphen are replaced with 'X'.

For example, monthly_total becomes monthlyXtotal.
3. If the last character is a hyphen, it is replaced with 'X'.

For example, ca-request- becomes ca-requestX.
4. If the schema specifies that the variable has varying cardinality (that is,

minOccurs and maxOccurs are specified on an xsd:element with different
values), and the schema element name is longer than 23 characters, it is
truncated to that length.
If the schema specifies that the variable has fixed cardinality and the schema
element name is longer than 28 characters, it is truncated to that length.

5. Duplicate names in the same scope are made unique by the addition of one or
two numeric digits to the second and subsequent instances of the name.
For example, three instances of year become year, year1, and year2.

6. Five characters are reserved for the strings -cont or -num, which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs are specified with different values.
For more information, see “Variable arrays of elements” on page 209.

7. For attributes, the previous rules are applied to the element name. The prefix
attr- is added to the element name, and is followed by -value or -exist. If the
total length is longer than 28 characters, the element name is truncated. For
more information, see “Support for XML attributes” on page 215.
The nillable attribute has special rules. The prefix attr- is added, but nil- is
also added to the beginning of the element name. The element name is
followed by -value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 30 characters or less.

DFHSC2LS and DFHWS2LS map schema types to COBOL data description
elements by using the specified mapping level according to the following table.
Note the following points:
v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING

parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

190 CICS TS for z/OS 4.2: Web Services Guide

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to YES, variable-length character data is mapped to two related
elements: a length field and a data field. For example:
<xsd:simpleType name="VariableStringType">

<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="10000"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:element name="textString" type="tns:VariableStringType"/>

maps to:
15 textString-length PIC S9999 COMP-5 SYNC
15 textString PIC X(10000)

Schema simple type COBOL data description

<xsd:simpleType>
<xsd:restriction base="xsd:anyType">
</xsd:restriction>

</xsd:simpleType>

Mapping level 2.0 and below:
Not supported

Mapping level 2.1:

Supported

<xsd:simpleType>
<xsd:restriction base="xsd:anySimpletype">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

PIC X(255)

<xsd:simpleType>
<xsd:restriction base="xsd:type"

<xsd:length value="z"/>
</xsd:restriction>

</xsd:simpleType>

where type is one of:
string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY
hexBinary

All mapping levels:
PIC X(z)

Chapter 7. Creating a web service 191

Schema simple type COBOL data description

<xsd:simpleType>
<xsd:restriction base="xsd:type"
</xsd:restriction>

</xsd:simpleType>

where type is one of:

duration

date

time

gDay

gMonth

gYear

gMonthDay

gYearMonth

All mapping levels:
PIC X(32)

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.2 and below:
PIC X(32)

Mapping level 2.0 and higher:

PIC X(40)

Mapping level 3.0 and higher:
PIC S9(15) COMP-3

The format is CICS ABSTIME.

<xsd:simpleType>
<xsd:restriction base="xsd:type">
</xsd:restriction>

</xsd:simpleType>

where type is one of:
byte
unsignedByte

All mapping levels:
PIC X DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC S9999 COMP-5 SYNC
or
PIC S9999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC 9999 COMP-5 SYNC
or
PIC 9999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC S9(18) COMP-3

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC S9(9) COMP-5 SYNC
or
PIC S9(9) DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC 9(9) COMP-5 SYNC
or
PIC 9(9) DISPLAY

192 CICS TS for z/OS 4.2: Web Services Guide

Schema simple type COBOL data description

<xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC S9(18) COMP-5 SYNC
or
PIC S9(18) DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC 9(18) COMP-5 SYNC
or
PIC 9(18) DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="m"
<xsd:fractionDigits value="n"

</xsd:restriction>
</xsd:simpleType>

All mapping levels:
PIC 9(p)V9(n) COMP-3

where p = m - n.

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC X DISPLAY

The value x'00' implies false, x'01' implies true.

<xsd:simpleType>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base="xsd:int"/>

</xsd:simpleType>
</xsd:list>

</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

PIC X(255)

<xsd:simpleType>
<xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

PIC X(255)

<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">

<xsd:length value="z"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">

</xsd:restriction>
</xsd:simpleType>

where the length is not defined.

Mapping level 1.0:
Not supported

Mapping level 1.1:

PIC X(y)

where y =4×(ceil(z/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:

PIC X(z)

where the length is fixed.

PIC X(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary data.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

Mapping level 1.1 and below:
PIC X(32)

Mapping level 1.2 and higher:

COMP-1

Chapter 7. Creating a web service 193

Schema simple type COBOL data description

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

Mapping level 1.1 and below:
PIC X(32)

Mapping level 1.2 and higher:

COMP-2

Some of the schema types shown in the table map to a COBOL format of COMP-5
SYNC or of DISPLAY, depending on the values (if any) that are specified in the
minInclusive and maxInclusive facets:
v For signed types (short, int, and long), DISPLAY is used when the following

are specified:
<xsd:minInclusive value="-a"/>
<xsd:maxInclusive value="a"/>

where a is a string of '9's.
v For unsigned types (unsignedShort, unsignedInt, and unsignedLong), DISPLAY is

used when the following are specified:
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="a"/>

where a is a string of '9's.

When any other value is specified, or no value is specified, COMP-5 SYNC is used.

C and C++ to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between C
and C++ data types and XML schema definitions.

C and C++ names are converted to XML names according to the following rules:
1. Characters that are not valid in XML element names are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.
2. Duplicate names are made unique by the addition of one or more numeric

digits.
For example, two instances of year become year and year1.

DFHLS2SC and DFHLS2WS map C and C++ data types to schema elements
according to the following table. C and C++ types that are not shown in the table
are not supported by DFHLS2SC or DFHLS2WS. The _Packed qualifier is
supported for structures. These restrictions apply:
v Header files must contain a top level struct instance.
v You cannot declare a structure type that contains itself as a member.
v The following C and C++ data types are not supported:

decimal
long double
wchar_t (C++ only)

v The following are ignored if they are present in the header file.
Storage class specifiers:

auto
register
static
extern

194 CICS TS for z/OS 4.2: Web Services Guide

mutable
Qualifiers

const
volatile
_Export (C++ only)

Function specifiers
inline (C++ only)
virtual (C++ only)

Initial values

v The header file must not contain these items:
Unions
Class declarations
Enumeration data types
Pointer type variables
Template declarations
Predefined macros; that is, macros with names that start and end with two
underscore characters (__)
The line continuation sequence (a \ symbol that is immediately followed by
a newline character)
Prototype function declarators
Preprocessor directives
Bit fields
The __cdecl (or _cdecl) keyword (C++ only)

v The application programmer must use a 32-bit compiler to ensure that an int
maps to 4 bytes.

v The following C++ reserved keywords are not supported:
explicit

using

namespace

typename

typeid

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and are
processed as null-terminated strings.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, <xsd:whiteSpace value="collapse"/> is
generated for strings.

C and C++ data type Schema simpleType

char[z] <xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="z"/>
</xsd:restriction>

</xsd:simpletype>

Chapter 7. Creating a web service 195

C and C++ data type Schema simpleType

char[8]

Supported at mapping level 3.0 and
higher when DATETIME=PACKED15

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>

</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

char <xsd:simpleType>
<xsd:restriction base="xsd:byte">
</xsd:restriction>

</xsd:simpletype>

unsigned char <xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte">
</xsd:restriction>

</xsd:simpletype>

short <xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>

</xsd:simpletype>

unsigned short <xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpletype>

int
long

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>

</xsd:simpletype>

unsigned int
unsigned long

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpletype>

long long <xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>

</xsd:simpletype>

unsigned long long <xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpletype>

bool

(C++ only)

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>

</xsd:simpletype>

float

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

double

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

XML schema to C and C++ mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between the
XML schema definitions that are included in each Web service description and C
and C++ data types.

196 CICS TS for z/OS 4.2: Web Services Guide

The CICS assistants generate unique and valid names for C and C++ variables
from the schema element names using the following rules:
1. Characters other than A-Z, a-z, 0-9, or _ are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.
2. If the first character is not an alphabetic character, it is replaced by a leading 'X'.

For example, _monthlysummary becomes Xmonthlysummary.
3. If the schema element name is longer than 50 characters, it is truncated to that

length.
4. Duplicate names in the same scope are made unique by the addition of one or

more numeric digits.
For example, two instances of year become year and year1.

5. Five characters are reserved for the strings _cont or _num, which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs are specified on an xsd:element.
For more information, see “Variable arrays of elements” on page 209.

6. For attributes, the previous rules are applied to the element name. The prefix
attr_ is added to the element name, and it is followed by _value or _exist. If
the total length is longer than 28 characters, the element name is truncated.
The nillable attribute has special rules. The prefix attr_ is added, but nil_ is
also added to the beginning of the element name. The element name is
followed by _value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 57 characters or less.

DFHSC2LS and DFHWS2LS map schema types to C and C++ data types according
to the following table. The following rules also apply:
v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING

parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to YES, variable-length character data is mapped to two related
elements: a length field and a data field.

Schema simpleType C and C++ data type

<xsd:simpleType>
<xsd:restriction base="xsd:anyType">
</xsd:restriction>

</xsd:simpleType>

Mapping level 2.0 and below:
Not supported

Mapping level 2.1 and higher:

Supported

<xsd:simpleType>
<xsd:restriction base="xsd:anySimpletype">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

char[255]

Chapter 7. Creating a web service 197

Schema simpleType C and C++ data type

<xsd:simpleType>
<xsd:restriction base="xsd:type">
<xsd:length value="z"/>
</xsd:restriction>

</xsd:simpleType>

where type is one of:

string

normalizedString

token

Name

NMTOKEN

language

NCName

ID

IDREF

ENTITY

hexBinary

All mapping levels:
char[z]

<xsd:simpleType>
<xsd:restriction base="xsd:type">
</xsd:restriction>

</xsd:simpleType>

where type is one of:

duration

date

decimal

time

gDay

gMonth

gYear

gMonthDay

gYearMonth

All mapping levels:
char[32]

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.2 and below:
char[32]

Mapping level 2.0 and higher:

char[40]

Mapping level 3.0 and higher:
char[8]

The format of the time stamp is CICS ABSTIME.

<xsd:simpleType>
<xsd:restriction base="xsd:byte">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
signed char

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
char

198 CICS TS for z/OS 4.2: Web Services Guide

Schema simpleType C and C++ data type

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
short

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
unsigned short

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
char[33]

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
int

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
unsigned int

<xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
long long

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
unsigned long long

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
bool (C++ only)
short (C only)

<xsd:simpleType>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base="xsd:int"/>

</xsd:simpleType>
</xsd:list>

</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

char[255]

<xsd:simpleType>
<xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

char[255]

Chapter 7. Creating a web service 199

Schema simpleType C and C++ data type

<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">

<xsd:length value="z"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>
<xsd:restriction base="xsd:base64binary">
</xsd:restriction>

</xsd:simpletype>

where the length is not defined

Mapping level 1.1 and below:
char[y]

where y =4×(ceil(z/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:

char[z]

where the length is fixed.

char[16]

is the name of the container that stores the binary data
when the length is not defined.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

Mapping level 1.1 and below:
char[32]

Mapping level 1.2 and higher:

float(*)

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

Mapping level 1.0 and below:
char[32]

Mapping level 1.2 and higher:

double(*)

PL/I to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between PL/I
data structures and XML schema definitions. Because the Enterprise PL/I compiler
and older PL/I compilers differ, two language options are supported:
PLI-ENTERPRISE and PLI-OTHER.

PL/I names are converted to XML names according to the following rules:
1. Characters that are not valid in XML element names are replaced with 'x'.

For example, monthly$total becomes monthlyxtotal.
2. Duplicate names are made unique by the addition of one or more numeric

digits.
For example, two instances of year become year and year1.

DFHLS2SC and DFHLS2WS map PL/I data types to schema elements according to
the following table. PL/I types that are not shown in the table are not supported
by DFHLS2SC or DFHLS2WS. The following restrictions also apply:
v Data items with the COMPLEX attribute are not supported.
v Data items with the FLOAT attribute are supported at a mapping level of 1.2 or

higher. Enterprise PL/I FLOAT IEEE is not supported.
v VARYING and VARYINGZ pure DBCS strings are supported at a mapping level

of 1.2 or higher.
v Data items specified as DECIMAL(p,q) are supported only when p ≥ q

v Data items specified as BINARY(p,q) are supported only when q = 0.

200 CICS TS for z/OS 4.2: Web Services Guide

v If the PRECISION attribute is specified for a data item, it is ignored.
v PICTURE strings are not supported.
v ORDINAL data items are treated as FIXED BINARY(7) data types.
v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING

parameter is set to NULL, character arrays are mapped to an xsd:string and are
processed as null-terminated strings; this mapping does not apply for Enterprise
PL/I.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, <xsd:whiteSpace value="collapse"/> is
generated for strings.

DFHLS2SC and DFHLS2WS do not fully implement the padding algorithms of
PL/I; therefore, you must declare padding bytes explicitly in your data structure.
DFHLS2SC and DFHLS2WS issue a message if they detect that padding bytes are
missing. Each top-level structure must start on a double-word boundary and each
byte in the structure must be mapped to the correct boundary. Consider this code
fragment:
3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

In this example:
v FIELD1 is 1 byte long and can be aligned on any boundary.
v FIELD2 is 4 bytes long and must be aligned on a full word boundary.
v FIELD3 is 8 bytes long and must be aligned on a double word boundary.

The Enterprise PL/I compiler aligns the fields in the following order:
1. FIELD3 is aligned first because it has the strongest boundary requirements.
2. FIELD2 is aligned at the fullword boundary immediately before FIELD3.
3. FIELD1 is aligned at the byte boundary immediately before FIELD3.

Finally, so that the entire structure will be aligned at a fullword boundary, the
compiler inserts three padding bytes immediately before FIELD1.

Because DFHLS2WS does not insert equivalent padding bytes, you must declare
them explicitly before the structure is processed by DFHLS2WS. For example:

3 PAD1 FIXED BINARY(7),
3 PAD2 FIXED BINARY(7),
3 PAD3 FIXED BINARY(7),
3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

Alternatively, you can change the structure to declare all the fields as unaligned
and recompile the application that uses the structure. For further information on
PL/I structural memory alignment requirements, refer to Enterprise PL/I Language
Reference.

PL/I data description Schema

FIXED BINARY (n)
where n ≤ 7

<xsd:simpleType>
<xsd:restriction base="xsd:byte"/>

</xsd:simpleType>

Chapter 7. Creating a web service 201

PL/I data description Schema

FIXED BINARY (n)

where 8 ≤ n ≤ 15

<xsd:simpleType>
<xsd:restriction base="xsd:short"/>

</xsd:simpleType>

FIXED BINARY (n)

where 16 ≤ n ≤ 31

<xsd:simpleType>
<xsd:restriction base="xsd:int"/>

</xsd:simpleType>

FIXED BINARY (n)

where 32 ≤ n ≤ 63
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:long"/>

</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where n ≤ 8
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte"/>

</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 9 ≤ n ≤ 16
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort"/>

</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 17 ≤ n ≤ 32
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt"/>

</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 33 ≤ n ≤ 64
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong"/>

</xsd:simpleType>

FIXED DECIMAL(n,m) <xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="n"/>
<xsd:fractionDigits value="m"/>

</xsd:restriction>
</xsd:simpleType>

FIXED DECIMAL(15)

Supported at mapping level 3.0 and
higher when DATETIME=PACKED15

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>

</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

BIT(n)

where n is a multiple of 8. Other
values are not supported.

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">

<xsd:length value="m"/>
</xsd:restriction>

</xsd:simpleType>

where m = n/8

CHARACTER(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.
Restriction: VARYINGZ is supported
only by Enterprise PL/I

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="n"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

202 CICS TS for z/OS 4.2: Web Services Guide

PL/I data description Schema

GRAPHIC(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.
Restriction: VARYINGZ is supported
only by Enterprise PL/I

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">

<xsd:length value="m"/>
</xsd:restriction>

</xsd:simpleType>

at a mapping level of 1.0 and 1.1, where m = 2*n

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="n"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.2 or higher

WIDECHAR(n)
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">

<xsd:length value="m"/>
</xsd:restriction>

</xsd:simpleType>

at a mapping level of 1.0 and 1.1, where m = 2*n

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">

<xsd:length value="n"/>
</xsd:restriction>

</xsd:simpleType>

at a mapping level of 1.2 or higher

ORDINAL
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:byte"/>

</xsd:simpleType>

BINARY FLOAT(n) where n <= 21

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

BINARY FLOAT(n) where 21 < n <= 53

Values greater than 53 are not
supported.

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

DECIMAL FLOAT(n)where n <= 6

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

DECIMAL FLOAT(n)where 6 < n <= 16

Values greater than 16 are not
supported.

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

Chapter 7. Creating a web service 203

XML schema to PL/I mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between XML
schema definitions and PL/I data structures. Because the Enterprise PL/I compiler
and older PL/I compilers differ, two language options are supported:
PLI-ENTERPRISE and PLI-OTHER.

The CICS assistants generate unique and valid names for PL/I variables from the
schema element names using the following rules:
1. Characters other than A-Z, a-z, 0-9, @, #, or $ are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.
2. If the schema specifies that the variable has varying cardinality (that is,

minOccurs and maxOccurs attributes are specified with different values on the
xsd:element), and the schema element name is longer than 24 characters, it is
truncated to that length.
If the schema specifies that the variable has fixed cardinality and the schema
element name is longer than 29 characters, it is truncated to that length.

3. Duplicate names in the same scope are made unique by the addition of one or
more numeric digits to the second and subsequent instances of the name.
For example, three instances of year become year, year1, and year2.

4. Five characters are reserved for the strings _cont or _num, which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs attributes are specified with different values.
For more information, see “Variable arrays of elements” on page 209.

5. For attributes, the previous rules are applied to the element name. The prefix
attr- is added to the element name and is followed by -value or -exist. If the
total length is longer than 28 characters, the element name is truncated. For
more information, see “Support for XML attributes” on page 215.
The nillable attribute has special rules. The prefix attr- is added, but nil- is
also added to the beginning of the element name. The element name is
followed by -value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 31 characters or less.

DFHSC2LS and DFHWS2LS map schema types to PL/I data types according to the
following table. Also note the following points:
v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING

parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

v If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is not specified, by default variable-length character data is mapped
to a VARYINGZ data type for Enterprise PL/I and VARYING data type for
Other PL/I.

v Variable-length binary data is mapped to a VARYING data type if it less than 32
768 bytes and to a container if it is more than 32 768 bytes.

Schema PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:anyType">
</xsd:restriction>

</xsd:simpleType>

Mapping level 2.0 and below:
Not supported

Mapping level 2.1 and higher:

Supported

204 CICS TS for z/OS 4.2: Web Services Guide

Schema PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:anySimpletype">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and higher:CHAR(255)

<xsd:simpleType>
<xsd:restriction base="xsd:type">

<xsd:maxLength value="z"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

where type is one of:
string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY

All mapping levels:CHARACTER(z)

<xsd:simpleType>
<xsd:restriction base="xsd:type">
</xsd:restriction>

</xsd:simpleType>

where type is one of:

duration

date

time

gDay

gMonth

gYear

gMonthDay

gYearMonth

All mapping levels:CHAR(32)

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.2 and below:
CHAR(32)

Mapping level 2.0 and higher:

CHAR(40)

Mapping level 3.0 and higher:
FIXED DECIMAL(15)

The format of the time stamp is CICS ABSTIME.

Chapter 7. Creating a web service 205

Schema PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">

<xsd:length value="y"/>
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:
BIT(z)

where z = 8 ×y and z < 4095 bytes.
CHAR(z)

where z = 8 ×y and z > 4095 bytes.

Mapping levels 1.2 and higher:

CHAR(y)

<xsd:simpleType>
<xsd:restriction base="xsd:byte">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
UNSIGNED FIXED BINARY (8)

Other PL/I
FIXED BINARY (8)

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
SIGNED FIXED BINARY (15)

Other PL/I
FIXED BINARY (15)

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
UNSIGNED FIXED BINARY (16)

Other PL/I
FIXED BINARY (16)

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
FIXED DECIMAL(31,0)

Other PL/I
FIXED DECIMAL(15,0)

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
SIGNED FIXED BINARY (31)

Other PL/I
FIXED BINARY (31)

206 CICS TS for z/OS 4.2: Web Services Guide

Schema PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
UNSIGNED FIXED BINARY(32)

Mapping level 1.2 and higher:

Enterprise PL/I
CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:

Other PL/I
BIT(64)

<xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
SIGNED FIXED BINARY(63)

Mapping level 1.2 and higher:

Enterprise PL/I
CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:

Other PL/I
BIT(64)

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
UNSIGNED FIXED BINARY(64)

Mapping level 1.2 and higher:

Enterprise PL/I
CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:

Other PL/I
BIT(64)

Chapter 7. Creating a web service 207

Schema PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

Mapping level 1.2 and higher:

Enterprise PL/I
BIT(7)

BIT(1)

Other PL/I
BIT(7)

BIT(1)
where BIT(7) is provided for alignment and BIT(1)
contains the Boolean mapped value.

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="n"/>
<xsd:fractionDigits value="m"/>

</xsd:restriction>
</xsd:simpleType>

All mapping levels:FIXED DECIMAL(n,m)

<xsd:simpleType>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base="xsd:int"/>

</xsd:simpleType>
</xsd:list>

</xsd:simpleType>

All mapping levels:CHAR(255)

<xsd:simpleType>
<xsd:union memberTypes="xsd:int xsd:string"/>

</xsd:simpleType>

All mapping levels:CHAR(255)

<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">

<xsd:length value="y"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">
</xsd:restriction>

</xsd:simpleType>

where the length is not defined

Mapping level 1.0:
Not supported

Mapping level 1.1:

CHAR(z)

where z =4×(ceil(y/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:

CHAR(y)

where the length is fixed.

CHAR(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary data.

208 CICS TS for z/OS 4.2: Web Services Guide

Schema PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>

</xsd:simpletype>

Mapping levels 1.0 and 1.1:
CHAR(32)

Mapping level 1.2 and higher:

Enterprise PL/I
DECIMAL FLOAT(6) HEXADEC

Other PL/I
DECIMAL FLOAT(6)

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>

</xsd:simpletype>

Mapping levels 1.0 and 1.1:
CHAR(32)

Mapping level 1.2 and higher:

Enterprise PL/I
DECIMAL FLOAT(16) HEXADEC

Other PL/I
DECIMAL FLOAT(16)

Variable arrays of elements
XML can contain an array with varying numbers of elements. In general, WSDL
documents and XML schemas that contain varying numbers of elements do not
map efficiently into a single high-level language data structure. CICS uses
container-based mappings or inline mappings to handle varying numbers of
elements in XML.

An array with a varying number of elements is represented in the XML schema by
using the minOccurs and maxOccurs attributes on the element declaration:
v The minOccurs attribute specifies the minimum number of times that the element

can occur. It can have a value of 0 or any positive integer.
v The maxOccurs attribute specifies the maximum number of times that the

element can occur. It can have a value of any positive integer greater than or
equal to the value of the minOccurs attribute. It can also take a value of
unbounded, which indicates that no upper limit applies to the number of times
the element can occur.

v The default value for both attributes is 1.

This example denotes an 8-byte string that is optional; that is, it can occur never or
once in the application XML or SOAP message:
<xsd:element name="component" minOccurs="0" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="8"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

The following example denotes an 8-byte string that must occur at least once:
<xsd:element name="component" minOccurs="1" maxOccurs="unbounded">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="8"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Chapter 7. Creating a web service 209

In general, WSDL documents that contain varying numbers of elements do not
map efficiently into a single high-level language data structure. Therefore, to
handle these cases, CICS uses a series of connected data structures that are passed
to the application program in a series of containers. These structures are used as
input and output from the application:
v When CICS transforms XML to application data, it populates these structures

with the application data and the application reads them.
v When CICS transforms the application data to XML, it reads the application data

in the structures that have been populated by the application.

The format of these data structures is best explained with a series of examples. The
XML can be from a SOAP message or from an application. These examples use an
array of simple 8-byte fields. However, the model supports arrays of complex data
types and arrays of data types that contain other arrays.

Fixed number of elements

The first example illustrates an element that occurs exactly three times:
<xsd:element name="component" minOccurs="3" maxOccurs="3">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="8"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

In this example, because the number of times that the element occurs is known in
advance, it can be represented as a fixed-length array in a simple COBOL
declaration (or the equivalent in other languages):
05 component PIC X(8) OCCURS 3 TIMES

Varying number of elements at mapping level 2 and below

This example illustrates a mandatory element that can occur from one to five
times:
<xsd:element name="component" minOccurs="1" maxOccurs="5">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="8"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

The main data structure contains a declaration of two fields. When CICS
transforms the XML to binary data, the first field component-num contains the
number of times that the element appears in the XML, and the second field,
component-cont, contains the name of a container:
05 component-num PIC S9(9) COMP-5
05 component-cont PIC X(16)

A second data structure contains the declaration of the element itself:
01 DFHWS-component

02 component PIC X(8)

You must examine the value of component-num (which will contain a value in the
range 1 to 5) to find out how many times the element occurs. The element contents

210 CICS TS for z/OS 4.2: Web Services Guide

are in the container named in component-cont; the container holds an array of
elements, where each element is mapped by the DFHWS-component data structure.

If minOccurs="0" and maxOccurs="1", the element is optional. To process the data
structure in your application program, you must examine the value of
component-num:
v If it is zero, the message has no component element and the contents of

component-cont is undefined.
v If it is one, the component element is in the container named in component-cont.

The contents of the container are mapped by the DFHWS-component data structure.

Note: If the SOAP message consists of a single recurring element, DFHWS2LS
generates two language structures. The main language structure contains the
number of elements in the array and the name of a container which holds the
array of elements. The second language structure maps a single instance of the
recurring element.

Varying number of elements at mapping level 2.1 and above

At mapping level 2.1 and above, you can use the INLINE-MAXOCCURS-LIMIT
parameter in the CICS assistants. The INLINE-MAXOCCURS-LIMIT parameter specifies
the way that varying numbers of elements are handled. The mapping options for
varying numbers of elements are container-based mapping, described in “Varying
number of elements at mapping level 2 and below” on page 210, or inline
mapping. The value of this parameter can be a positive integer in the range 0 -
32767:
v The default value of INLINE-MAXOCCURS-LIMIT is 1, which ensures that optional

elements are mapped inline.
v A value of 0 for the INLINE-MAXOCCURS-LIMIT parameter prevents inline mapping.
v If maxOccurs is less than or equal to the value of INLINE-MAXOCCURS-LIMIT, inline

mapping is used.
v If maxOccurs is greater than the value of INLINE-MAXOCCURS-LIMIT,

container-based mapping is used.

Mapping varying numbers of elements inline results in the generation of both an
array, as happens with the fixed occurrence example above, and a counter. The
component-num field indicates how many instances of the element are present, and
these are pointed to by the array. For the example shown in “Varying number of
elements at mapping level 2 and below” on page 210, when INLINE-MAXOCCURS-
LIMIT is less than or equal to 5, the generated data structure is like this:
05 component-num PIC S9(9) COMP-5 SYNC.
05 component OCCURS 5 PIC X(8).

The first field, component-num, is identical to the output for the container-based
mapping example in the previous section. The second field contains an array of
length 5 which is large enough to contain the maximum number of elements that
can be generated.

Inline mapping differs from container-based mapping, which stores the number of
occurrences of the element and the name of the container where the data is placed,
because it stores all the data in the current container. Storing the data in the
current container will generally improve performance and make inline mapping
preferable.

Chapter 7. Creating a web service 211

Nested variable arrays

Complex WSDL documents and XML schemas can contain variably recurring
elements, which in turn contain variably recurring elements. In this case, the
structure described extends beyond the two levels described in the examples.

This example illustrates an optional element called <component2> that is nested in a
mandatory element called <component1>, where the mandatory element can occur
from one to five times:
<xsd:element name="component1" minOccurs="1" maxOccurs="5">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="component2" minOccurs="0" maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:length value="8"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

The top-level data structure is exactly the same as in the previous examples:
05 component1-num PIC S9(9) COMP-5
05 component1-cont PIC X(16)

However, the second data structure contains these elements:
01 DFHWS-component1

02 component2-num PIC S9(9) COMP-5
02 component2-cont PIC X(16)

A third-level structure contains these elements:
01 DFHWS-component2

02 component2 PIC X(8)

The number of occurrences of the outermost element <component1> is in
component1-num.

The container named in component1-cont contains an array with that number of
instances of the second data structure DFHWS-component1.

Each instance of component2-cont names a different container, each of which
contains the data structure mapped by the third-level structure DFHWS-component2.

To illustrate this structure, consider the fragment of XML that matches the
example:
<component1><component2>string1</component2></component1>
<component1><component2>string2</component2></component1>
<component1></component1>

<component1> occurs three times. The first two each contain an instance of
<component2>; the third instance does not.

In the top-level data structure, component1-num contains a value of 3. The container
named in component1-cont has three instances of DFHWS-component1:
1. In the first, component2-num has a value of 1, and the container named in

component2-cont holds string1.

212 CICS TS for z/OS 4.2: Web Services Guide

2. In the second, component2-num has a value of 1, and the container named in
component2-cont holds string2.

3. In the third, component2-num has a value of 0, and the contents of
component2-cont are undefined.

In this instance, the complete data structure is represented by four containers in all:
v The root data structure in container DFHWS-DATA
v The container named in component1-cont

v Two containers named in the first two instances of component2-cont

Optional structures and xsd:choice

DFHWS2LS and DFHSC2LS support the use of maxOccurs and minOccurs on
<xsd:sequence>, <xsd:choice>, and <xsd:all> elements only at mapping level 2.1
and above, where the minOccurs and maxOccurs attributes are set to minOccurs="0"
and maxOccurs="1".

The assistants generate mappings that treat these elements as though each child
element in them is optional. When you implement an application with these
elements, ensure that invalid combinations of options are not generated by the
application. Each of the elements has its own count field in the generated
languages structure, these fields must either all be set to "0" or all be set to"1".
Any other combination of values is invalid, except for with <xsd:choice> elements.

<xsd:choice> elements indicate that only one of the options in the element can be
used. It is supported at all mapping levels. The assistants handle each of the
options in an <xsd:choice> as though it is in an <xsd:sequence> element with
minOccurs="0" and maxOccurs="1". Take care when you implement an application
using the <xsd:choice> element to ensure that invalid combinations of options are
not generated by the application. Each of the elements has its own count field in
the generated languages structure, exactly one of which must be set to '1' and the
others must all be set to '0'. Any other combination of values is invalid, except
when the <xsd:choice> element is itself optional, in which case it is valid for all the
fields to be set to '0'.

Support for variable-length values and white space
You can customize the way in which variable-length values and white space are
handled by using settings on the CICS assistants and by adding facets directly into
the XML schema.

Typically, the CICS XML assistant and the CICS Web services assistant map data
strings to fixed-length character arrays; these arrays require padding with spaces
or nulls. Mapping variable-length values to fixed-length data arrays can be
inefficient and waste storage. If the length of your data is variable, you are
recommended to customize the way these mappings are handled.

If you are converting from a language structure to an XML schema or WSDL
document, you are recommended to specify the whiteSpace and maxLength facets in
your XML schema and to set the CHAR-VARYING-LIMIT parameter on the assistants.

If you are converting from an XML schema or WSDL document to a language
structure, you are recommended to set an appropriate value for the CHAR-VARYING
parameter on the assistants.

Note: Null characters ('x00') are not valid in XML documents. Any null characters
from application data parsed by CICS are seen to signify the end of a string and

Chapter 7. Creating a web service 213

the value is truncated. When CICS generates application data it does so according
to the value of the CHAR-VARYING parameter. For example, if the CHAR-VARYING=NULL
option is specified, variable-length strings generated by CICS are ended with a null
character.

Mapping variable-length values from XML to language structures

Use facets in the XML schema or specify certain parameters on the CICS assistants
to customize the way in which mappings between your XML schema or WSDL
document and the language structure are handled.

XML data types can be restricted using facets. Use the length facets (length,
maxLength, and minLength) and the whiteSpace facet to customize how
variable-length data in your XML is handled.

length Used to specify that the data is of fixed length.

maxLength
Used to specify the maximum length for the data type. If this value is not
set for a string-based data type, the maximum length is unbounded.

minLength
Used to specify the minimum length for the data type. If this value is not
set for a string-based data type, the minimum length is 0.

whiteSpace
Used to specify how white space around a data value is handled. White
space includes spaces, tabs, and new lines. The whiteSpace facet can be set
to preserve, replace, or collapse:
v A value of preserve maintains any white space in the data value.
v A value of replace means that any tabs or new lines are replaced with

the appropriate number of spaces.
v A value of collapse means that leading, trailing, and embedded white

space is removed and that all tabs, new lines, and consecutive spaces are
replaced with single space characters.

If the whiteSpace facet is not set, white space is preserved.

For more information about XML schema facets, see the W3C recommendation
schema XML Schema Part 2: Datatypes Second Edition at http://www.w3.org/TR/
xmlschema-2/#facets

The following parameters on the CICS assistants, DFHSC2LS and DFHWS2LS, can
be used to alter the way that variable-length data is mapped from the XML schema
to the language structure. These parameters are available at mapping level 1.2 or
higher.

DEFAULT-CHAR-MAXLENGTH
Specifies the default array length of character data in characters for
mappings where no length is implied in the XML schema or WSDL
document. The value of this parameter can be a positive integer in the
range of 1 - 2 147 483 647.

However, you are recommended to specify the maximum character length
that you want DFHSC2LS or DFHWS2LS to use directly in your XML
schema or WSDL document with the maxLength facet. Specifying the
maximum length directly in the XML schema or WSDL document avoids
problems associated with having one global default applied to all
string-based data types.

214 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/xmlschema-2/#facets
http://www.w3.org/TR/xmlschema-2/#facets

CHAR-VARYING-LIMIT
Specifies the maximum size of variable-length character data that is
mapped to the language structure. If the character data is larger than the
value specified in this parameter, it is mapped to a container and the
container name is used in the generated language structure. The value can
range from 0 to the default 32 767 bytes.

CHAR-VARYING
Specifies how variable-length character data is mapped. If you do not
specify this parameter, the default mapping depends on the language
specified. You can select these options:
v CHAR-VARYING=NO specifies that variable-length character data is mapped

as fixed-length strings.
v CHAR-VARYING=NULL specifies that variable-length character data is

mapped to null-terminated strings.
v CHAR-VARYING=YES specifies that variable-length character data is mapped

to a CHAR VARYING data type in PL/I. In the COBOL, C, and C++
languages, variable-length character data is mapped to an equivalent
representation that comprises two related elements: data-length and the
data.

Setting CHAR-VARYING=YES typically results in the best performance.

Mapping variable-length values from language structures to XML

You can customize the way in which mappings between your language structure
and the XML schema, or WSDL document are handled. Set the CHAR-VARYING
parameter on DFHLS2SC or DFHLS2WS,to COLLAPSE or NULL to change the way
that character arrays are generated.

Setting the CHAR-VARYING=NULL option tells CICS to add a null character at the end
of each character array when generating XML.

Setting the CHAR-VARYING=COLLAPSE option tells CICS to automatically remove any
trailing spaces from the end of character arrays when generating XML. This option
is available only at mapping level 2.1 or higher and CHAR-VARYING=COLLAPSE is the
default value at mapping level 2.1 or higher for all languages other than C and
C++. When the XML is parsed, all leading, trailing, and embedded white space is
removed.

For more information, see Support for white space and variable length values in
CICS Web services (Technote).

Support for XML attributes
XML schemas can specify attributes that are allowed or required in XML. The CICS
assistant utilities DFHWS2LS and DFHSC2LS ignore XML attributes by default. To
process XML attributes that are defined in the XML schema, the value of the
MAPPING-LEVEL parameter must be 1.1 or higher.

Optional attributes

Attributes can be optional or required and can be associated with any element in a
SOAP message or XML for an application. For every optional attribute defined in
the schema, two fields are generated in the appropriate language structure:
1. An existence flag; this field is treated as a Boolean data type and is typically 1

byte in length.

Chapter 7. Creating a web service 215

http://www-01.ibm.com/support/docview.wss?uid=swg21248612
http://www-01.ibm.com/support/docview.wss?uid=swg21248612

2. A value; this field is mapped in the same way as an equivalently typed XML
element. For example, an attribute of type NMTOKEN is mapped in the same way
as an XML element of type NMTOKEN.

The attribute existence and value fields appear in the generated language structure
before the field for the element with which they are associated. Unexpected
attributes that appear in the instance document are ignored.

For example, consider the following schema attribute definition:
<xsd:attribute name="age" type="xsd:short" use="optional" />

This optional attribute maps to the following COBOL structure:
05 attr-age-exist PIC X DISPLAY
05 attr-age-value PIC S9999 COMP-5 SYNC

Runtime processing of optional attributes

The following runtime processing takes place for optional attributes:
v If the attribute is present, the existence flag is set and the value is mapped.
v If the attribute is not present, the existence flag is not set.
v If the attribute has a default value and is present, the value is mapped.
v If the attribute has a default value and is not present, the default value is

mapped.

Optional attributes that have default values are treated as required attributes.

When CICS transforms the data to XML, the following runtime processing takes
place:
v If the existence flag is set, the attribute is transformed and included in the XML.
v If the existence flag is not set, the attribute is not included in the XML.

Required attributes and runtime processing

For every attribute that is required, only the value field is generated in the
appropriate language structure.

If the attribute is present in the XML, the value is mapped. If the attribute is not
present, the following processing occurs:
v If the application is a Web service provider, CICS generates a SOAP fault

message indicating an error in the client SOAP message.
v If the application is a Web service requester, CICS issues a message and returns

a conversion error response with a RESP2 code of 13 to the application.
v If the application is using the TRANSFORM XMLTODATA command, CICS issues a

message and returns an invalid request response with a RESP2 code of 3 to the
application.

When CICS produces a SOAP message based on the contents of a COMMAREA or
container, the attribute is transformed and included in the message. When an
application uses the TRANSFORM DATATOXML command, CICS also transforms the
attribute and includes it in the XML.

216 CICS TS for z/OS 4.2: Web Services Guide

The nillable attribute

The nillable attribute is a special attribute that can appear on an xsd:element in an
XML schema. It specifies that the xsi:nil attribute is valid for the element in XML.
If an element has the xsi:nil attribute specified, it indicates that the element is
present but has no value, and therefore no content is associated with it.

If an XML schema has defined the nillable attribute as true, it is mapped as a
required attribute that takes a Boolean value.

When CICS receives a SOAP message or has to transform XML for an application
that contains an xsi:nil attribute, the value of the attribute is true or false. If the
value is true, the application must ignore the values of the element or nested
elements in the scope of the xsi:nil attribute.

When CICS produces a SOAP message or XML based on the contents of a
COMMAREA or container for which the value for the xsi:nil attribute is true, the
following processing occurs:
v The xsi:nil attribute is generated into the XML or SOAP message.
v The value of the associated element is ignored.
v Any nested elements within the element are ignored.

SOAP message example

Consider the following example XML schema, which could be part of a WSDL
document:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="root" nillable=”true”>
<xsd:complexType>
<xsd:sequence>
<xsd:element nillable="true" name="num" type="xsd:int" maxOccurs=”3” minOccurs=”3”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Here is an example of a partial SOAP message that conforms to this schema:
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<num xsi:nil="true"/>
<num>15</num>
<num xsi:nil=”true”/>
</root>

In COBOL, this SOAP message maps to these elements:
05 root
10 attr-nil-root-value PIC X DISPLAY
10 num OCCURS 3
15 num1 PIC S9(9) COMP-5 SYNC
15 attr-nil-num-value PIC X DISPLAY
10 filler PIC X(3)

Support for <xsd:any> and xsd:anyType
DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.

Chapter 7. Creating a web service 217

Before you can use <xsd:any> and xsd:anyType with the CICS assistants, set the
following parameters:
v Set the MAPPING-LEVEL parameter to 2.1 or higher.
v For a Web service provider application, set the PGMINT parameter to CHANNEL.

<xsd:any> example

This example uses an <xsd:any> element to describe some optional unstructured
XML content following the "Surname" tag in the "Customer" tag:
<xsd:element name="Customer">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="FirstName" type="xsd:string"/>
<xsd:element name="Surname" type="xsd:string"/>
<xsd:any minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

An example SOAP message that conforms to this XML schema is:
<xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<Customer xmlns="http://www.example.org/anyExample">

<Title xmlns="">Mr</Title>
<FirstName xmlns="">John</FirstName>
<Surname xmlns="">Smith</Surname>
<ExtraInformation xmlns="http://www.example.org/ExtraInformation">

<!-- This ’ExtraInformation’ tag is associated with the optional xsd:any from the XML schema.
It can contain any well formed XML. -->

<ExampleField1>one</ExampleField1>
<ExampleField2>two</ExampleField2>

</ExtraInformation>
</Customer>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If this SOAP message is sent to CICS, CICS populates the Customer-xml-cont
container with the following XML data:

<ExtraInformation xmlns="http://www.example.org/ExtraInformation">
<!-- This ’ExtraInformation’ tag is associated with the optional xsd:any from the XML schema.

It can contain any well formed XML. -->
<ExampleField1>one</ExampleField1>
<ExampleField2>two</ExampleField2>

</ExtraInformation>

CICS also populates the Customer-xmlns-cont container with the following XML
namespace declarations that are in scope; these declarations are separated by a
space:

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns="http://www.example.org/anyExample"

xsd:anyType example

The xsd:anyType is the base data type from which all simple and complex data
types are derived. It does not restrict the data content. If you do not specify a data
type, it defaults to xsd:anyType; for example, these two XML fragments are
equivalent:
<xsd:element name="Name" type="xsd:anyType"/>

218 CICS TS for z/OS 4.2: Web Services Guide

<xsd:element name="Name"/>

Generated language structures

The language structures generated for <xsd:any> or xsd:anyType take the following
form in COBOL and an equivalent form for the other languages:

elementName-xml-cont PIC X(16)
The name of a container that holds the raw XML. When CICS processes an
incoming SOAP message, it places the subset of the SOAP message that the
<xsd:any> or xsd:anyType defines into this container. The application can
process the XML data only natively. The application must generate the
XML, populate this container, and supply the container name.

This container must be populated in text mode. If CICS populates this
container, it does so using the same variant of EBCDIC as the Web service
is defined to use. Characters that do not exist in the target EBCDIC code
page are replaced with substitute characters, even if the container is read
by the application in UTF-8.

elementName-xmlns-cont PIC X(16)
The name of a container that holds any namespace prefix declarations that
are in scope. The contents of this container are similar to those of the
DFHWS-XMLNS container, except that it includes all the namespace
declarations that are in scope and that are relevant, rather than only the
subset from the SOAP Envelope tag.

This container must be populated in text mode. If CICS populates this
container, it does so using the same variant of EBCDIC as the Web service
is defined to use. Characters that do not exist in the target EBCDIC code
page are replaced with substitute characters, even if the container is read
by the application in UTF-8.

This container is used only when processing SOAP messages sent to CICS.
If the application tries to supply a container with namespace declarations
when an output SOAP message is generated, the container and its contents
are ignored by CICS. CICS requires that the XML supplied by the
application is entirely self-contained with respect to namespace
declarations.

The name of the XML element that contains the <xsd:any> element is included in
the variable names that are generated for the <xsd:any> element. In the <xsd:any>
example, the <xsd:any> element is nested inside the <xsd:element
name="Customer"> element and the variable names that are generated for the
<xsd:any> element are Customer-xml-cont PIC X(16) and Customer-xmlns-cont
PIC X(16).

For an xsd:anyType type, the direct XML element name is used; in the xsd:anyType
example above, the variable names are Name-xml-cont PIC X(16) and
Name-xmlns-cont PIC X(16).

Support for <xsd:choice>
An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS assistants provide varying degrees of support for <xsd:choice>
elements at the various mapping levels.

Chapter 7. Creating a web service 219

Support for <xsd:choice> at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHWS2LS and DFHSC2LS provide improved
support for <xsd:choice> elements. The assistants generate a new container that
stores the value associated with the <xsd:choice> element. The assistants generate
language structures containing the name of a new container and an extra field:

fieldname-enum
The discriminating field to indicate which of the options the <xsd:choice>
element will use.

fieldname-cont
The name of the container that stores the option to be used. A further
language structure is generated to map the value of the option.

The following XML schema fragment includes an <xsd:choice> element:
<xsd:element name="choiceExample">

<xsd:complexType>
<xsd:choice>

<xsd:element name="option1" type="xsd:string" />
<xsd:element name="option2" type="xsd:int" />
<xsd:element name="option3" type="xsd:short" maxOccurs="2" minOccurs="2" />

</xsd:choice>
</xsd:complexType>

</xsd:element>

If this XML schema fragment is processed at mapping level 2.2 or higher, the
assistant generates the following COBOL language structures:

03 choiceExample.
06 choiceExample-enum PIC X DISPLAY.

88 empty VALUE X’00’.
88 option1 VALUE X’01’.
88 option2 VALUE X’02’.
88 option3 VALUE X’03’.

06 choiceExample-cont PIC X(16).

01 Example-option1.
03 option1-length PIC S9999 COMP-5 SYNC.
03 option1 PIC X(255).

01 Example-option2.
03 option2 PIC S9(9) COMP-5 SYNC.

01 Example-option3.
03 option3 OCCURS 2 PIC S9999 COMP-5 SYNC.

Limitations for <xsd:choice> at mapping level 2.2 and higher

DFHSC2LS and DFHWS2LS do not support nested <xsd:choice> elements; for
example, the following XML is not supported:
<xsd:choice>

<xsd:element name ="name1" type="string"/>
<xsd:choice>

<xsd:element name ="name2a" type="string"/>
<xsd:element name ="name2b" type="string"/>

</xsd:choice>
</xsd:choice>

DFHSC2LS and DFHWS2LS do not support recurring <xsd:choice> elements; for
example, the following XML is not supported:

220 CICS TS for z/OS 4.2: Web Services Guide

<xsd:choice maxOccurs="2">
<xsd:element name ="name1" type="string"/>

</xsd:choice>

DFHSC2LS and DFHWS2LS support a maximum of 255 options in an
<xsd:choice> element.

Support for <xsd:choice> at mapping level 2.1 and below

At mapping level 2.1 and below, DFHWS2LS provides limited support for
<xsd:choice> elements. DFHWS2LS treats each of the options in an <xsd:choice>
element as though it is an <xsd:sequence> element that can occur at most once.

Only one of the options in an <xsd:choice> element can be used, so take care
when you implement an application using the <xsd:choice> element that you
generate only valid combinations of options. Each of the elements has its own
count field in the generated languages structure, exactly one of which must be set
to 1 and the others must all be set to 0. Any other combination of values is
incorrect, except when the <xsd:choice> is itself optional, in which case it is valid
for all of the fields to be set to 0.
Related reference:
“Support for <xsd:any> and xsd:anyType” on page 217
DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.
“Support for abstract elements and abstract data types” on page 222
The CICS assistants provide support for abstract elements and abstract data types
at mapping level 2.2 and higher. The CICS assistants map abstract elements and
abstract data types in a similar way to substitution groups.
“Support for substitution groups”
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS assistants provide support for substitution groups at
mapping level 2.2 and higher.

Support for substitution groups
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS assistants provide support for substitution groups at
mapping level 2.2 and higher.

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS support substitution
groups using similar mappings to those used for <xsd:choice> elements. The
assistant generates an enumeration field and a new container name in the language
structure.

The following XML schema fragment includes an array of two subGroupParent
elements, each of which can be replaced with replacementOption1 or
replacementOption2:

<xsd:element name="subGroupExample" >
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="subGroupParent" maxOccurs="2" minOccurs="2" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Chapter 7. Creating a web service 221

<xsd:element name="subGroupParent" type="xsd:anySimpleType" />
<xsd:element name="replacementOption1" type="xsd:int" substitutionGroup="subGroupParent" />
<xsd:element name="replacementOption2" type="xsd:short" substitutionGroup="subGroupParent" />

Processing this XML fragment with the assistant generates the following COBOL
language structures:

03 subGroupExample.
06 subGroupParent OCCURS2.

09 subGroupExample-enum PIC X DISPLAY.
88 empty VALUE X ’00’.
88 replacementOption1 VALUE X ’01’.
88 replacementOption2 VALUE X ’02’.
88 subGroupParent VALUE X ’03’.

09 subGroupExample-cont PIC X (16).

01 Example-replacementOption1.
03 replacementOption1 PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
03 replacementOption2 PIC S9999 COMP-5 SYNC.

01 Example-subGroupParent.
03 subGroupParent-length PIC S9999 COMP-5 SYNC.
03 subGroupParent PIC X(255).

For more information about substitution groups, see the W3C XML Schema Part 1:
Structures Second Edition specification: http://www.w3.org/TR/xmlschema-1/
#Elements_Equivalence_Class
Related reference:
“Support for <xsd:any> and xsd:anyType” on page 217
DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.
“Support for <xsd:choice>” on page 219
An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS assistants provide varying degrees of support for <xsd:choice>
elements at the various mapping levels.
“Support for abstract elements and abstract data types”
The CICS assistants provide support for abstract elements and abstract data types
at mapping level 2.2 and higher. The CICS assistants map abstract elements and
abstract data types in a similar way to substitution groups.

Support for abstract elements and abstract data types
The CICS assistants provide support for abstract elements and abstract data types
at mapping level 2.2 and higher. The CICS assistants map abstract elements and
abstract data types in a similar way to substitution groups.

Support for abstract elements at mapping level 2.2 and higher

At mapping level 2.2 and above, DFHSC2LS and DFHWS2LS treat abstract
elements in almost the same way as substitution groups except that the abstract
element is not a valid member of the group. If there are no substitutable elements,
the abstract element is treated as an <xsd:any> element and uses the same
mappings as an <xsd:any> element at mapping level 2.1.

222 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/xmlschema-1/#Elements_Equivalence_Class
http://www.w3.org/TR/xmlschema-1/#Elements_Equivalence_Class

The following XML schema fragment specifies two options that can be used in
place of the abstract element. The abstract element itself is not a valid option:

<xsd:element name="abstractElementExample" >
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="abstractElementParent" maxOccurs="2" minOccurs="2" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="abstractElementParent" type="xsd:anySimpleType" abstract="true" />
<xsd:element name="replacementOption1" type="xsd:int" substitutionGroup="abstractElementParent" />
<xsd:element name="replacementOption2" type="xsd:short" substitutionGroup="abstractElementParent" />

Processing this XML fragment with the assistant generates the following COBOL
language structures:

03 abstractElementExample.
06 abstractElementParent OCCURS 2.

09 abstractElementExample-enum PIC X DISPLAY.
88 empty VALUE X ’00’.
88 replacementOption1 VALUE X ’01’.
88 replacementOption2 VALUE X ’02’.

09 abstractElementExample-cont PIC X (16).

01 Example-replacementOption1.
03 replacementOption1 PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
03 replacementOption2 PIC S9999 COMP-5 SYNC.

For more information about abstract elements, see the W3C XML Schema Part 0:
Primer Second Edition specification: http://www.w3.org/TR/xmlschema-0/
#SubsGroups

Support for abstract data types at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS treat abstract data
types as substitution groups. The assistant generates an enumeration field and a
new container name in the language structure.

The following XML schema fragment specifies two alternatives that can be used in
place of the abstract type:
<xsd:element name="AbstractDataTypeExample" type="abstractDataType" />

<xsd:complexType name="abstractDataType" abstract="true">
<xsd:simpleContent>

<xsd:extension base="xsd:string" />
</xsd:simpleContent>

</xsd:complexType>
<xsd:complexType name="option1">

<xsd:simpleContent>
<xsd:restriction base="abstractDataType">

<xsd:length value="5" />
</xsd:restriction>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="option2">

<xsd:simpleContent>
<xsd:restriction base="abstractDataType">

Chapter 7. Creating a web service 223

http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-0/#SubsGroups

<xsd:length value="10" />
</xsd:restriction>

</xsd:simpleContent>
</xsd:complexType>

Processing this XML fragment with the assistant generates the following COBOL
language structures:

03 AbstractDataTypeExamp-enum PIC X DISPLAY.
88 empty VALUE X’00’.
88 option1 VALUE X’01’.
88 option2 VALUE X’02’.

03 AbstractDataTypeExamp-cont PIC X(16).

The language structures are generated into separate copy books. The language
structure generated for option1 is generated into one copybook:

03 option1 PIC X(5).

The language structure for option2 is generated into a different copybook:
03 option2 PIC X(10).

For more information about abstract data types, see the W3C XML Schema Part 0:
Primer Second Edition specification: http://www.w3.org/TR/xmlschema-0/
#SubsGroups
Related reference:
“Support for <xsd:any> and xsd:anyType” on page 217
DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.
“Support for <xsd:choice>” on page 219
An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS assistants provide varying degrees of support for <xsd:choice>
elements at the various mapping levels.
“Support for substitution groups” on page 221
You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS assistants provide support for substitution groups at
mapping level 2.2 and higher.

How to handle variably repeating content in COBOL
In COBOL, you cannot process variably repeating content by using pointer
arithmetic to address each instance of the data. Other programming languages do
not have this limitation. This example shows you how to handle variably repeating
content in COBOL for a Web service application.

This technique also applies to transforming XML to application data using the
TRANSFORM API commands. The following example WSDL document represents a
Web service with application data that consists of an 8-character string that recurs
a variable number of times:
<?xml version="1.0"?>
<definitions name="ExampleWSDL"

targetNamespace="http://www.example.org/variablyRepeatingData/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/variablyRepeatingData/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

224 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-0/#SubsGroups

<types>
<xsd:schema targetNamespace="http://www.example.org/variablyRepeatingData/">
<xsd:element name="applicationData">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="component" minOccurs="1" maxOccurs="unbounded">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<message name="exampleMessage">
<part element="tns:applicationData" name="messagePart"/>

</message>

<portType name="examplePortType">
<operation name="exampleOperation">
<input message="tns:exampleMessage"/>
<output message="tns:exampleMessage"/>

</operation>
</portType>

<binding name="exampleBinding" type="tns:examplePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="exampleOperation">
<soap:operation soapAction=""/>
<input><soap:body parts="messagePart" encodingStyle="" use="literal"/></input>
<output><soap:body parts="messagePart" encodingStyle="" use="literal"/></output>

</operation>
</binding>
</definitions>

Processing this WSDL document through DFHWS2LS generates the following
COBOL language structures:

03 applicationData.

06 component-num PIC S9(9) COMP-5 SYNC.
06 component-cont PIC X(16).

01 DFHWS-component.
03 component PIC X(8).

Note that the 8-character component field is defined in a separate structure called
DFHWS-component. The main data structure is called applicationData and it contains
two fields, component-num and component-cont. The component-num field indicates
how many instances of the component data are present and the component-cont
field indicates the name of a container that holds the concatenated list of component
fields.

The following COBOL code demonstrates one way to process the list of variably
recurring data. It makes use of a linkage section array to address subsequent
instances of the data, each of which is displayed by using the DISPLAY statement:
IDENTIFICATION DIVISION.

PROGRAM-ID. EXVARY.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

Chapter 7. Creating a web service 225

* working storage variables
01 APP-DATA-PTR USAGE IS POINTER.
01 APP-DATA-LENGTH PIC S9(8) COMP.
01 COMPONENT-PTR USAGE IS POINTER.
01 COMPONENT-DATA-LENGTH PIC S9(8) COMP.
01 COMPONENT-COUNT PIC S9(8) COMP-4 VALUE 0.
01 COMPONENT-LENGTH PIC S9(8) COMP.

LINKAGE SECTION.

* a large linkage section array
01 BIG-ARRAY PIC X(659999).

* application data structures produced by DFHWS2LS
* this is normally referenced with a COPY statement
01 DFHWS2LS-data.

03 applicationData.
06 component-num PIC S9(9) COMP-5 SYNC.
06 component-cont PIC X(16).

01 DFHWS-component.
03 component PIC X(8).

PROCEDURE DIVISION USING DFHEIBLK.
A-CONTROL SECTION.
A010-CONTROL.

* Get the DFHWS-DATA container
EXEC CICS GET CONTAINER(’DFHWS-DATA’)

SET(APP-DATA-PTR)
FLENGTH(APP-DATA-LENGTH)

END-EXEC
SET ADDRESS OF DFHWS2LS-data TO APP-DATA-PTR

* Get the recurring component data
EXEC CICS GET CONTAINER(component-cont)

SET(COMPONENT-PTR)
FLENGTH(COMPONENT-DATA-LENGTH)

END-EXEC

* Point the component structure at the first instance of the data
SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

* Store the length of a single component
MOVE LENGTH OF DFHWS-component TO COMPONENT-LENGTH

* process each instance of component data in turn
PERFORM WITH TEST AFTER

UNTIL COMPONENT-COUNT = component-num

* display the current instance of the data
DISPLAY ’component value is: ’ component

* address the next instance of the component data
SET ADDRESS OF BIG-ARRAY TO ADDRESS OF DFHWS-component
SET ADDRESS OF DFHWS-component

TO ADDRESS OF BIG-ARRAY (COMPONENT-LENGTH + 1:1)
ADD 1 TO COMPONENT-COUNT

* end the loop
END-PERFORM.

* Point the component structure back at the first instance of
* of the data, for any further processing we may want to perform

226 CICS TS for z/OS 4.2: Web Services Guide

SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

* return to CICS.

EXEC CICS
RETURN

END-EXEC

GOBACK.

The code above provides a generic solution to handling variably repeating content.
The array, BIG-ARRAY, moves to the start of each component in turn and does not
remain fixed at the start of the data. The component data structure is then moved
to point at the first byte of the next component. COMPONENT-PTR can be used to
recover the start position of the component data if required.

Here is an example SOAP message that conforms to the WSDL document:
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<applicationData xmlns="http://www.example.org/variablyRepeatingData/">
<component xmlns="">VALUE1</component>
<component xmlns="">VALUE2</component>
<component xmlns="">VALUE3</component>

</applicationData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is the output produced by the COBOL program when it processes the SOAP
message:
CPIH 20080115103151 component value is: VALUE1
CPIH 20080115103151 component value is: VALUE2
CPIH 20080115103151 component value is: VALUE3

Creating a web service provider by using the web services assistant
You can create a service provider application from a web service description that
complies with WSDL 1.1 or WSDL 2.0, or from a high-level language data
structure. The CICS web services assistant helps you to deploy your CICS
applications in a service provider setting.

About this task

When you use the assistant to deploy a CICS application as a service provider, you
have two options:
v Start with a web service description and use the assistant to generate the

language data structures.
Use this option when you are implementing a service provider that conforms
with an existing web service description.

v Start with the language data structures and use the assistant to generate the web
service description.
Use this option when you are exposing an existing program as a web service
and are willing to expose aspects of the program interfaces in the web service
description and the SOAP messages.

You can expose the web service description associated with your service provider
using a URI. This URI has the same path as the URI associated with the
WEBSERVICE with the suffix ?wsdl appended. This enables requesters within your

Chapter 7. Creating a web service 227

business, or external to it, to discover the WSDL files associated with your service
providers.

Creating a service provider application from a web service
description

Using the CICS web services assistant, you can create a service provider
application from a web service description that complies with WSDL 1.1 or WSDL
2.0.

Before you begin

Before you can create a service provider application, the following conditions must
be satisfied:
v Your web services description must be in a UNIX file in z/OS and you must

create a suitable provider mode pipeline in the CICS region.
v You must define to OMVS the user ID under which DFHWS2LS runs.
v The user ID must have read permission to z/OS UNIX and PDS libraries and

write permission to the directories specified on the LOGFILE, WSBIND, and WSDL
parameters.

v You must allocate sufficient storage to the user ID for the ID to run Java. You
can use any supported version of Java. By default, DFHWS2LS uses the Java
version specified in the JAVADIR parameter.

About this task

You can use the web services assistant to create language structures from your
WSDL for the service provider application. You can also use a WSDL document
that is stored in an IBM webSphere Service Registry and Repository (WSRR) server.

Procedure
1. Use the DFHWS2LS batch program to generate a web service binding file and

one or more language data structures. DFHWS2LS contains a large set of
optional parameters that provide you with flexibility to create the binding file
and language structures that your application requires. Consider these options
when you enable an existing application for web services:
v Which mechanism will CICS use to pass data to the service provider

application program? You can use channels and pass the data in containers
or use a COMMAREA. Channels and containers are recommended. Specify
them with the PGMINT parameter.

v Which language do you want to generate? DFHWS2LS can generate
COBOL, C/C++, or PL/I language data structures. Specify the language
using the LANG parameter.

v Which mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are available only at
the higher mapping levels. You are recommended to use the highest level of
mapping available. Specify the mapping level with the MAPPING-LEVEL
parameter.

v Which URI do you want the web service requester to use? Specify a relative
URI using the URI parameter; for example, URI=/my/test/webservice. The
value is used by CICS when it creates the URIMAP resource.

v Under which transaction and user ID will you run the web service request
and response? You can use an alias transaction to run the application to

228 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

compose a response to the service requester. The alias transaction is attached
under the user ID. Specify it with the TRANSACTION and USERID parameters.
These values are used when creating the URIMAP resource. If you do not
want to use a specific transaction, do not use these parameters.

v Where is the WSDL document stored? If you want to retrieve a WSDL
document from a WSRR server, instead of from the local file system, you
must specify certain parameters in DFHWS2LS. As a minimum, you must
specify the WSRR-SERVER parameter with the location of the WSRR server and
the WSRR-NAME parameter with the name of the WSDL document that you
want to retrieve from WSRR. For information about other parameters that
you might want to specify if you are using WSRR, see “DFHWS2LS: WSDL
to high-level language conversion” on page 164.

v If you intend to retrieve your WSDL document from a WSRR server, do you
want to do so using a secure connection? You can use secure socket layer
(SSL) encryption by setting the appropriate parameters to interoperate
securely with WSRR. For an example, see “Example of how to use SSL with
the web services assistant and WSRR” on page 325.

When you submit DFHWS2LS, CICS generates the web service binding file and
places it in the location that you specified with the WSBIND parameter. The
language structures are placed in the partitioned data set that you specified
with the PDSLIB parameter.

2. Copy the generated web service binding file to the pickup directory of the
provider mode PIPELINE resource that you want to use for your web service
application. You must copy the binding file in binary mode.

3. Optional: Copy the web service description or the archive file containing one or
more web service descriptions to the same directory as the web service binding
file. The archive file must be a .zip file and the file name must match the
WSDL file name. With this copy, you can discover the WSDL.

4. Write a service provider application program to interface with the generated
language structures and implement the required business logic.

5. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE
resource and two URIMAP resources.
v The WEBSERVICE resource encapsulates the web service binding file in CICS

and is used at run time.
v The first URIMAP resource provides CICS with the information to associate

the WEBSERVICE resource with a specific URI.
v The second URIMAP resource provides CICS with the information to

associate the WSDL archive file or WSDL document with a specific URI. This
URI has the same path as the URI associated with the WEBSERVICE with the
suffix ?wsdl appended. This URIMAP resource is created so that external
requesters can use the URI to discover the WSDL archive file or WSDL
document. This URIMAP resource is created only if the web service
description or the archive file containing one or more web service
descriptions has been copied to the same directory as the web service
binding file. If the pickup directory contains a WSDL archive file and a
WSDL document, the URI returns only the WSDL in the archive file. This
function is only available for web services installed using the pipeline scan
operation.

Alternatively, you can define the resources yourself, although this is not
recommended.

Chapter 7. Creating a web service 229

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

Results

If you have any problems submitting DFHWS2LS, or the resources do not install
correctly, see “Diagnosing deployment errors” on page 327.

Creating a service provider application from a data structure
Using the CICS web services assistant, you can create a service provider
application from a high-level language data structure.

Before you begin

Before you create a service provider application, make sure that these
preconditions have been completed:
v Your high-level language data structures must meet the following criteria:

– The data structures must be defined separately from the source program; for
example, in a COBOL copybook.

– If your PL/I or COBOL application program uses different data structures for
input and output, the data structures must be defined in two different
members in a partitioned data set. If the same structure is used for input and
output, the structure must be defined in a single member.
For C and C++, your data structures can be in the same member in a
partitioned data set.

v The data structures you process depend on whether you are using a wrapper
program:
– If you are using a wrapper program, the copybook is the interface to the

wrapper program.
– If you are not using a wrapper program, the copybook is the interface to the

business logic.
v The language structures must be available in a partitioned data set and you

must create a suitable PIPELINE resource in the CICS region:
– You must define to OMVS the user ID under which DFHLS2WS runs.
– The user ID must have read permission to z/OS UNIX and PDS libraries and

write permission to the directories specified on the LOGFILE, WSBIND, and WSDL
parameters.

– The user ID must have a sufficiently large storage allocation to run Java. You
can use any supported version of Java. By default, DFHLS2WS uses the Java
version specified in the JAVADIR parameter.

Procedure

Follow these steps to create a service provider application from a data structure:
1. If the service provider application interface uses channels and many containers,

create a channel description document that describes the interface in XML. You
must put the channel description document in a suitable directory on z/OS
UNIX. CICS uses this document to construct and deconstruct a SOAP message
from the containers on a channel. Alternatively, you can use one container on a
channel and not create a channel description document.
For more information on how to create a channel description document, see
“Creating a channel description document” on page 232.

2. Use the DFHLS2WS batch program to generate a web service binding file and
web service description from the language structure. DFHLS2WS contains a
large set of optional parameters that provide you with flexibility to create the

230 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

binding file and language structures that your application requires. Consider
these options when web service enabling an existing application:
v Which mechanism will CICS use to pass data to the service provider

application program? You can use channels and pass the data in containers
or use a COMMAREA. Specify the mechanism using the PGMINT parameter. If
your application interface uses channels and many containers, specify the
REQUEST-CHANNEL parameter and optionally the RESPONSE-CHANNEL. You can
only use these parameters when the mapping level is 3.0 or higher.

v Which level of web service description (WSDL document) do you want to
generate? CICS generates descriptions that comply with either WSDL 1.1 or
WSDL 2.0 documents. If you want the service provider application to
support requests that comply with both levels of WSDL, specify values for
the WSDL_1.1 and WSDL_2.0 parameters. Ensure that the file names are
different when using more than one WSDL parameter. This specification
produces two web service descriptions and a binding file.

v Which version of the SOAP protocol do you want to use? You can specify the
version with the SOAPVER parameter. You are recommended to use the ALL
value, which gives the flexibility to use either SOAP 1.1 or SOAP 1.2 as the
binding for the web service description, although you must install the web
service into a pipeline that is configured with the SOAP 1.2 message handler.
You can use this parameter only when the MINIMUM-RUNTIME-LEVEL is 2.0 or
higher.

v Which mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are available only at
the higher mapping levels. You are recommended to specify the highest level
of mapping available in the MAPPING-LEVEL parameter.

v Which URI do you want the web service requester to use? Specify an
absolute URI using the URI parameter; for example, URI=http://
www.example.org:80/my/test/webservice. The relative part of this address,
/my/test/webservice, is used when creating the URIMAP resource. The full
URI is used as the<soap:address> element in the web service description.
This usage is true for both HTTP and WebSphere MQ URIs.

v Do you want to publish your WSDL document to an IBM WebSphere Service
Registry and Repository (WSRR)? If you want to publish your WSDL
document to a WSRR, you must specify the WSRR-SERVER parameter in
DFHLS2WS. For more information on the parameters that you can specify
when using WSRR, see “DFHLS2WS: high-level language to WSDL
conversion” on page 152.

v If you intend to publish your WSDL document on a WSRR server, do you
want to do so using a secure connection? You can use secure socket layer
(SSL) encryption by setting the appropriate parameters to interoperate
securely with WSRR. For an example, see “Example of how to use SSL with
the web services assistant and WSRR” on page 325.

When you submit DFHLS2WS, CICS generates the web service binding file and
places it in the location that you specified with the WSBIND parameter. The
generated web service description is placed in the location that you specified
with the WSDL, WSDL_1.1, or WSDL_2.0 parameter.
If you have used the WSRR parameters in DFHLS2WS, your WSDL document
is published to the WSRR server that you specified.

3. Review the generated web service description and perform any necessary
customization. For more information, see “Customizing generated web service
description documents” on page 234.

Chapter 7. Creating a web service 231

4. Copy the web service binding file to the pickup directory of the provider mode
pipeline that you want to use for your web service application. You must copy
the web service binding file in binary mode.

5. Optional: Copy the web service description or the archive file containing one or
more web service descriptions to the same directory as the web service binding
file. The archive file must be a .zip file and the file name must match the
WSDL file name. With this copy, you can discover the WSDL.

6. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE
resource and two URIMAP resources.
v The WEBSERVICE resource encapsulates the web service binding file in CICS

and is used at run time.
v The first URIMAP resource provides CICS with the information to associate

the WEBSERVICE resource with a specific URI.
v The second URIMAP resource provides CICS with the information to

associate the WSDL archive file or WSDL document with a specific URI. This
URI has the same path as the URI associated with the WEBSERVICE with the
suffix ?wsdl appended. This URIMAP resource is created so that external
requesters can use the URI to discover the WSDL archive file or WSDL
document. This URIMAP resource is created only if the web service
description or the archive file containing one or more web service
descriptions has been copied to the same directory as the web service
binding file. If the pickup directory contains a WSDL archive file and a
WSDL document, the URI returns only the WSDL in the archive file. This
function is only available for web services installed using the pipeline scan
operation.

Alternatively, you can define the resources yourself, although this is not
recommended.

Results

When you have successfully created the CICS resources, the creation of your
service provider application is complete.

If you have any problems submitting DFHLS2WS, or the resources do not install
correctly, see “Diagnosing deployment errors” on page 327.

What to do next

Make the web services description available to anyone who needs to develop a
web service requester that will access your service.

Creating a channel description document
Create a channel description document when your service provider application
uses a channel interface with many containers.

About this task

Use an XML editor to create the channel description document. The schema for the
channel description is called channel.xsd and is in the /usr/lpp/cicsts/cicsts42/
schemas/channel directory (where /usr/lpp/cicsts/cicsts42 is the default install
directory for CICS files on z/OS UNIX).

232 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

Procedure
1. Create an XML document with a <channel> element and the CICS channel

namespace:
<channel name="myChannel" xmlns="http://www.ibm.com/xmlns/prod/CICS/channel">
</channel>

2. Add a <container> element for every container that the application program
interface uses on the channel. You must use name, type and use attributes to
describe each container. The following example shows six containers with
different attribute values:
<container name="cont1" type="char" use="required"/>
<container name="cont2" type="char" use="optional"/>
<container name="cont3" type="bit" use="required"/>
<container name="cont4" type="bit" use="optional"/>
<container name="cont5" type="bit" use="required">

<structure location="//HLQ.PDSNAME(MEMBER)"/>
</container>
<container name="cont6" type="bit" use="optional">

<structure location="//HLQ.PDSNAME(MEMBER2)"/>
</container>

The structure element indicates that the content is defined in a language
structure located in a partitioned data set member.

3. Save the XML document in z/OS UNIX.

Channel schema

The channel description document must conform to the following schema:
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com/xmlns/prod/CICS/channel"
xmlns:tns="http://www.ibm.com/xmlns/prod/CICS/channel" elementFormDefault="qualified">
<element name="channel">�1�

<complexType>
<sequence>

<element name="container" maxOccurs="unbounded" "unbounded" minOccurs="0">�2�
<complexType>

<sequence>
<element name="structure" minOccurs="0">�3�
<complexType>

<attribute name="location" type="string" use="required"/>
<attribute name="structure" type="string" use="optional"/>

</complexType>
</element>

</sequence>
<attribute name="name" type="tns:name16Type" use="required"/>
<attribute name="type" type="tns:typeType" use="required"/>
<attribute name="use" type="tns:useType" use="required"/>

</complexType>
</element>

</sequence>
<attribute name="name" type="tns:name16Type" use="optional" />

</complexType>
</element>
<simpleType name="name16Type">

<restriction base="string">
<maxLength value="16"/>

</restriction>
</simpleType>
<simpleType name="typeType">

<restriction base="string">
<enumeration value="char"/>
<enumeration value="bit"/>

</restriction>
</simpleType>
<simpleType name="useType">

Chapter 7. Creating a web service 233

<restriction base="string">
<enumeration value="required"/>
<enumeration value="optional"/>

</restriction>
</simpleType>

</schema>

1. This element represents a CICS channel.
2. This element represents a CICS container within the channel.
3. A structure can only be used with 'bit' mode containers. The 'location' attribute

indicates the location of a file that maps the contents of container. The
'structure' attribute may be used in C and C++ to indicate the name of
structure.

What to do next

Run DFHLS2WS to create the mappings and WSDL document for the web service
provider application. DFHLS2WS puts the mappings for the channel in the WSDL
document in the order that the containers are specified in the channel description
document.

Customizing generated web service description documents
The web service description (WSDL) documents that are generated by DFHLS2WS
contain some automatically generated content that might be appropriate for you to
change before publishing. Customizing WSDL documents can result in
regenerating the web services binding file and, in some cases, writing a wrapper
program.

About this task

Follow these steps to customize generated web service description documents:

Procedure
1. If you want to advertise support for HTTPS or communicate using WebSphere

MQ, use the URI parameter in DFHLS2WS to set an absolute URI. If you have
not used the URI parameter, you must change the <wsdl:service> and
<wsdl:binding> elements at the end of the WSDL document. The generated
WSDL includes comments to assist you in making these changes. Changing
these elements does not require you to regenerate the web services binding file.

2. If you want to supply the network location of your web service, use the URI
parameter in DFHLS2WS to set an absolute URI. If you have not used the URI
parameter, add the details to the soap:address in the wsdl:service element.
a. If you are using an HTTP-based protocol, replace my-server with the TCP/IP

host name of your CICS region and my-port with the port number of the
TCPIPSERVICE resource.

b. If you are using WebSphere MQ as the transport protocol, replace myQueue
with the name of the appropriate queue.

You can make these changes without requiring any change to the web services
binding file.
If you are changing the port name and namespace without regenerating the
WSBind file, the monitoring information might be wrong at runtime level 2.1
onwards.

3. Consider whether the automatically generated names in the WSDL document
are appropriate for your purposes. You can rename these values:
v The targetNamespace of the WSDL document

234 CICS TS for z/OS 4.2: Web Services Guide

v The targetNamespace of the XML schemas within the WSDL document
v The <wsdl:portType> name
v The <wsdl:operation> name
v The <wsdl:binding> name
v The <wsdl:service> name
v The names of the fields in the XML schemas in the WSDL document.

These values form part of the programmatic interface to which you code a
client program. If the generated names are not sufficiently meaningful,
maintenance of your application code might be more difficult over a long
period of time. Use the DFHLS2WS REQUEST-NAMESPACE and
RESPONSE-NAMESPACE parameters to change the targetNamespace of the XML
schemas, and the WSDL-NAMESPACE parameter to change the targetNamespace of
the WSDL document.
If you change any of these values, you must use DFHWS2LS to regenerate the
web services binding file. The language structures that are produced will not be
the same as your existing language structures, but are compatible with your
existing application, so no application changes are required. However, you can
ignore the new language structures and use the new web services binding file
with the original structures.

4. Consider if the COMMAREA fields exposed in the XML schemas are
appropriate. You might consider removing any fields that are not helpful to a
web service client developer:
v Fields that are used only for output values can be removed from the schema

that maps the input data structures.
v Filler fields.
v Automatically generated annotations.

If you make any of these changes, you must regenerate the web services
binding file using DFHWS2LS. The new language structures that are generated
are not compatible with the original language structures, so you must write a
wrapper program to map data from the new representation to the old one. This
wrapper program needs to perform an EXEC CICS LINK command to the target
application program and then map the returned data.
This level of customization requires the most effort, but results in the most
meaningful programmatic interfaces for your web services client developers.

5. If you want to put the generated WSDL document through DFHWS2LS to
create new language structures, decide whether to keep the annotations in the
WSDL document. The annotations override the normal mapping rules when
DFHWS2LS generates the language structures. When you override the mapping
rules, ensure that the generated language structures are compatible with the
version that was used by DFHLS2WS. If you want to use the default mapping
rules to produce the language structures, remove the annotations.

Results

If you want to publish your customized WSDL document to an IBM WebSphere
Service Registry and Repository (WSRR) server, you must publish it manually
using the WSRR interface. You can find more information about WSRR at the
following location: WebSphere Service Registry and Repository.

Chapter 7. Creating a web service 235

http://www.ibm.com/software/integration/wsrr/

Example

For an example of a WSDL document, see An example of the generated WSDL
document.

Sending a SOAP fault
In a service provider, you can use the CICS API to send a SOAP fault to a web
service requester. The fault can be issued by the service provider application or by
a header processing program in the pipeline.

Before you begin

To use the API, the service provider application must use channels and containers.
If the application uses COMMAREAs, write a wrapper program that does use
channels and containers to create the SOAP fault message. You can use the API in
a header processing program only if it is invoked directly from a CICS-supplied
SOAP message handler.

About this task

You might want to issue a SOAP fault to the web service requester if your
application logic cannot satisfy the request, for example, or if there is an
underlying problem with the request message. Note that CICS does not consider
issuing a SOAP fault as an error, so the normal message response pipeline
processing takes place rather than any error processing. If you do want to roll back
any transactions, you must use the application program.

Procedure
1. In your program, use the EXEC CICS SOAPFAULT CREATE command to send a

SOAP fault, seeSOAPFAULT CREATE.
2. Add the CLIENT or SERVER option on the command. This option indicates

where the problem has occurred, either on the client side or on the server.
v CLIENT indicates that the problem is with the request message that was

received.
v SERVER indicates that the problem occurs when the request message was

processed by CICS. This problem might be in an application program, for
example, it might be unable to satisfy the request, or it might be an
underlying problem that occurs during the pipeline processing.

3. Add the FAULTSTRING option and its length in the FAULTSTRLEN option to
provide a summary of why the fault has been issued by the service provider.
The contents of this option are in XML. Any data supplied by the application
must be in a format that is suitable for direct inclusion in an XML document.
The application might have to specify some characters as XML entities. For
example, if the < character is used anywhere other than the start of an XML
tag, the application must change it to <. The following example shows an
incorrect FAULTSTRING option:
dcl msg_faultString char(*) constant(’Error: Value A < Value B’);

The correct way to specify this FAULTSTRING option is as follows:
dcl msg_faultString char(*) constant(’Error: Value A < Value B’);

Tip: To avoid using XML entities, you can wrapper the data in an XML
CDATA construct. XML processors do not parse character data in this construct.
Using this method, you could specify the following FAULTSTRING option:

236 CICS TS for z/OS 4.2: Web Services Guide

dcl msg_faultString char(*) constant(’<![CDATA[Error: Value A < Value B]]>’);

4. Code the DETAIL option and its length in the DETAILLENGTH option to provide
the details of why the fault has been issued by the service provider. The
contents of this option are in XML. The same guidance applies to the DETAIL
option as to the FAULSTRING option.

5. Optional: If you are invoking the API from a header processing program,
define the program in the pipeline configuration file. The header processing
program is defined in either the <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java> element.

Results

When your program issues this command, CICS creates the SOAP fault response
message at the appropriate SOAP level. If your service provider application issues
the command, it does not need to create a SOAP response and put it in the
DFHRESPONSE container. The pipeline processes the SOAP fault through the
message handlers and sends the response to the web service provider.

Example

The SOAPFAULT CREATE command has a number of options to provide you with
flexibility to respond appropriately to a web service requester. Here is a simple
example of a completed command that creates a SOAP fault that can be used for
both SOAP 1.1 and SOAP 1.2:
EXEC CICS SOAPFAULT CREATE CLIENT

DETAIL(msg_detail)
DETAILLENGTH(length(msg_detail))
FAULTSTRING(msg_faultString)
FAULTSTRLEN(length(msg_faultString));

You can code msg_detail and msg_faultString with the following values:
dcl msg_detail char(*) constant(’<ati:ExampleFault xmlns="http://www.example.org/faults"
xmlns:ati="http://www.example.org/faults">Detailed error message goes here.</ati:ExampleFault>’);
dcl msg_faultString char(*) constant(’Something went wrong’);

Creating a web service requester using the web services assistant
You can create a service requester application from a web service description that
complies with WSDL 1.1 or WSDL 2.0. The CICS web services assistant helps you
to deploy your CICS applications in a service requester setting.

Before you begin

Your web services description must be in a file in z/OS UNIX or it must be
published on an IBM WebSphere Services Registry and Repository (WSRR) server,
and a requester mode pipeline must be installed in the CICS region.

You must allocate sufficient storage to the user ID so that the ID can run Java. You
can use any supported version of Java. By default, DFHWS2LS uses the Java
version specified in the JAVADIR parameter.

Chapter 7. Creating a web service 237

|
|

|
|
|

About this task

When you use the CICS web services assistant to deploy a CICS application as a
service requester, you must start with a web service description and generate the
language data structures from it.

Procedure
1. Use the DFHWS2LS batch program to generate a web service binding file and

one or more language structures. Consider these options when creating a
service requester application from a web service description:
v Which mapping level do you want to use? The higher the mapping level, the

more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are available only at
the higher mapping levels. You are recommended to use the highest level of
mapping available.

v Which code page do you want to use when transforming data at run time? If
you want to use a specific code page for your application that is different
from the code page for the CICS region, use the CCSID parameter. The code
page must be EBCDIC and it must be supported by both Java and z/OS
conversion services.

v Do you want to support a subset of the operations that are declared in the
web service description? If you have a very large web service description,
and want your service requester application to support only a certain
number of operations, use the OPERATION parameter to list the ones you want.
Each operation must be separated with a space and is case sensitive.

v Where is the WSDL document stored? If the WSDL document that you want
to use as input to DFHWS2LS is stored on a WSRR server, you can retrieve it
by running DFHWS2LS with certain parameters specified. Use the
WSRR-SERVER parameter to specify the location of the WSRR server and use
the WSRR-NAME parameter to specify the name of the WSDL document that
you want to retrieve. For information about other parameters on DFHWS2LS
that you might want to use to interact with WSRR, see “DFHWS2LS: WSDL
to high-level language conversion” on page 164.

v If you want to retrieve the WSDL document from a WSRR server, do you
want to do so using a secure connection? You can use secure socket layer
(SSL) encryption with the web services assistant to interoperate securely with
WSRR. For an example, see “Example of how to use SSL with the web
services assistant and WSRR” on page 325.

Do not specify parameters such as PROGRAM, URI, TRANSACTION, and USERID when
you use DFHWS2LS. These parameters apply only to a service provider
application and, if specified, cause a provider mode web service binding file to
be produced.In addition to the web service binding file, the program generates
a language data structure.

2. Check the log file to see whether any problems occurred when DHWS2LS
generated the binding file and language structures. CICS might not support
some elements or options in the web service description. If any warning or
error messages are issued, read the advice that is provided and take
appropriate action. You might need to rerun the batch program.

3. Copy the web service binding file to the pickup directory of the requester mode
pipeline that you want to use for your web service application.

4. Ensure that the PIPELINE resource is configured for service requester
applications. The value of the MODE parameter shows whether the pipeline
supports requester or provider web service applications.

238 CICS TS for z/OS 4.2: Web Services Guide

5. Ensure that the correct SOAP protocol is supported in the pipeline for your
web service. The SOAPLEVEL parameter indicates which version is supported. In
service requester mode, the binding of the web service must match the version
of SOAP that is supported in the pipeline. You cannot install a web service
with a SOAP 1.1 binding into a service requester pipeline that supports SOAP
1.2.

6. Ensure that the configured timeout for the pipeline is suitable for your service
requester application. The timeout is displayed as the value of the RESPWAIT
attribute on the PIPELINE resource. If no timeout is specified on the pipeline,
the default for the transport is used.
v The default timeout for HTTP is 10 seconds.
v The default timeout for WebSphere MQ is 60 seconds.

Each transaction in the CICS region has a dispatcher timeout. If this value is
less than the default for either protocol, the timeout occurs with the dispatcher.

7. Optional: Copy the web service description to the same pickup directory as the
web service binding file, so that you can turn on validation for the web service
at run time.

8. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE
resource. The WEBSERVICE resource encapsulates the web service binding file
in CICS and is used at run time. Alternatively, you can define the resource
yourself, although this is not recommended.

9. Write a wrapper program that you can substitute for your communications
logic. Use the language data structure generated in step 1 to write your
wrapper program. Use an EXEC CICS INVOKE SERVICE command in your
wrapper program to communicate with the web service. The command
includes these options:
v The URI of the web service
v The operation for which the web service is being called

When you call the web service, you can specify a URIMAP resource that
contains the information about the URI of the web service. You can specify this
information directly on the INVOKE SERVICE command instead of using a
URIMAP resource. However, using a URIMAP resource means that you do not
need to recompile your applications if the URI of a service provider changes.
With a URIMAP resource you can also choose to implement connection
pooling, where CICS keeps the client connection open after use, so that it can
be reused by the application for subsequent requests, or by another application
that calls the same service. The PIPELINE SCAN command does not create
URIMAP resources for a service provider, so you must define the URIMAP
resource yourself following the instructions in Creating a URIMAP resource for
CICS as an HTTP client in the Internet Guide.

Results

When you have successfully created the CICS resources, the creation of your
service requester application is complete.

Checking the configuration of a PIPELINE resource

You can check the configuration of a PIPELINE with the following interfaces:

CICS Explorer

The CICS Explorer administration views
Use the Pipelines view.

Chapter 7. Creating a web service 239

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/urimap/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_administration.html

CICSPlex SM

The PIPELINE definitions view

CEMT

The INQUIRE PIPELINE command

The CICS SPI

The INQUIRE PIPELINE command

Creating a web service using tooling
Instead of using the web services assistant JCL, you can use Rational Developer for
System z or write your own Java program to create the required files in CICS.

Procedure
1. You have two choices:

v Use the Rational Developer for System z tool to create a web service binding
file and the web service description or language structures. For more
information about this tool, see http://www-306.ibm.com/software/
awdtools/devzseries/.

v Write your own Java program, using the provided API, to invoke the web
services assistant. This API is described in the Web services assistant: Class
Reference Javadoc. It includes comments that explain the classes, and sample
code is provided to give an example of how you might invoke the web
services assistant. The Javadoc also contains a complete list of the JAR files
that are required and their location in z/OS UNIX.
You can run your Java program on the z/OS, Windows, or Linux platform. If
you run the program on Windows or Linux, transfer the generated web
services binding file to a suitable pickup directory in binary mode using FTP
or an equivalent process.

2. Optional: If you are generating a web service description from a language
structure, review the file and perform any necessary customization. For more
information, see “Customizing generated web service description documents”
on page 234.

3. Deploy the generated web service binding file into a suitable pipeline pickup
directory.

4. Optional: Copy the web service description into the pickup directory of the
pipeline, so that you can perform validation of the web service to check that it
is working as expected.

5. If you started with a web service description, write a service provider or
requester application program to interface with the generated language
structures.

6. Run a PIPELINE SCAN command to automatically create the required CICS
resources.

240 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7cl.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquirepipeline.html
http://www-306.ibm.com/software/awdtools/devzseries/
http://www-306.ibm.com/software/awdtools/devzseries/

Creating your own XML-aware web service applications
If you decide not to use the CICS-supplied data mappings, you can write your
own XML-aware data applications in two ways instead. You can either use the
XML-ONLY parameter on DFHWS2LS or you can write your own application without
using any of the tooling. Using the XML-ONLY parameter is the most straightforward
way to configure the CICS pipeline process to pass the XML data to the application
to be handled.

About this task

Writing your own XML-aware applications involves writing code to both parse and
generate XML documents. One way to write your own XML-aware application
uses the XML PARSE and XML GENERATE statements in COBOL. Another way to write
your own XML-aware applications uses other IBM tools; for example, you can use
the IBM Rational Developer for System z tool to generate COBOL XML converter
programs that can be invoked from your applications.

Creating an XML-aware service provider application
Your XML-aware service provider application must work with the containers that
are passed to it and handle the data conversion between the XML and the program
language.

About this task

The following steps guide you through the creation of your XML-aware
application, including the decision about the use of any of the CICS tooling.

Procedure
1. Decide if you want to generate a web service binding file for your XML-aware

application using DFHWS2LS. The advantage of generating a web service
binding file is that you can use CICS services, such as validation, to test your
web service and CICS monitoring using global user exits.
v If you want to generate a web service binding file, run DFHWS2LS

specifying the XML-ONLY parameter and a MINIMUM-RUNTIME-LEVEL of 2.1 or
higher. The web service binding file enables the application program to work
directly with the contents of the DFHWS-BODY container. In all other
respects, the generated binding file shares the same deployment
characteristics and the same runtime behavior as a file generated without the
XML-ONLY parameter, including parsing of the XML during SOAP message
handling. To prevent this parsing, you must not specify SOAP message
handlers in your pipeline configuration file.

v If you do not want to use a web service binding file, configure your service
provider pipeline so that the web service request reaches your XML-aware
application. You can either configure the terminal handler in the pipeline
configuration file to use your XML-aware application program or create a
message handler that dynamically switches to your application depending on
the URI that is received in the pipeline.

2. Write your application to handle the web service request that is held in the
following containers:

DFHWS-BODY
The contents of the SOAP body for an inbound SOAP request when the
pipeline includes a CICS-provided SOAP message handler.

Chapter 7. Creating a web service 241

|
|
|

DFHREQUEST
The complete request, including the envelope for a SOAP request,
received from the pipeline.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces
for the XML content of the request.

DFHWS-SOAPACTION
The SOAPAction header associated with the SOAP message in
container DFHWS-BODY.

When you code API commands to work with the containers, do not specify the
CHANNEL option, because all the containers are associated with the current
channel (the channel that was passed to the program). If you need to know the
name of the channel, use the EXEC CICS ASSIGN CHANNEL command.

3. Optional: Your application can also use additional containers that are available
to message handlers in the pipeline, as well as any other containers that the
message handlers create as part of their processing. For a complete list of
containers, see “Containers used in the pipeline” on page 127.

4. When your application has processed the request, construct a web service
response using the following containers:

DFHRESPONSE
The complete response message to be passed to the pipeline. Use this
container if you do not use SOAP for your messages, or if you want to
build the complete SOAP message, including the envelope, in your
program instead of using the CICS-provided SOAP message handler.

If you supply a SOAP body in container DFHWS-BODY,
DFHRESPONSE is ignored.

DFHWS-BODY
For an outbound SOAP response, the contents of the SOAP body.
Provide this container when the terminal handler of your pipeline is a
CICS-provided SOAP message handler. The message handler constructs
the full SOAP message containing the body.

Your program must create this container, even if the request and
response are identical. If you do not, CICS issues an internal server
error.

You can also use any of the other containers to pass information that your
pipeline needs for processing the outbound response.
If your web service does not return a response, you must return container
DFHNORESPONSE to indicate that there is no response. The contents of the
container are unimportant, because the message handler checks only whether
the container is present or not.

5. Create a URIMAP resource. If you are using the XML-ONLY parameter and you
have specified a value for the URI parameter of DFHWS2LS, the URIMAP is
created automatically for you during the PIPELINE SCAN process.

Creating an XML-aware service requester application
Your XML-aware web service requester application handles the data conversion
between the XML and the programming language and populates the control
containers in the pipeline.

242 CICS TS for z/OS 4.2: Web Services Guide

Before you begin

You can write your own XML-aware service requester application using the
XML-ONLY parameter on DFHWS2LS or you can write it without using any of the
tooling. The most straightforward way to write your own XML-aware service
requester application is by using the XML-ONLY parameter on DFHWS2LS; the
XML-ONLY parameter is available at runtime level 2.1 and above.

About this task

Using the XML-ONLY parameter results in the generation of a WSBind file that
instructs CICS that the application will work directly with the contents of the
DFHWS-BODY container. The generated WSBind file must be installed into a
requester mode PIPELINE to create a requester mode WEBSERVICE resource. The
application must generate XML for the body of the web service request and store it
in the DFHWS-BODY container. It must then call the EXEC CICS INVOKE SERVICE
command. The outbound message is sent to the web services provider. The body
of the response message is also in the DFHWS-BODY container after the call
completes.

The XML of the response messages is parsed during SOAP message handling. To
prevent this parsing, you must not specify SOAP message handlers in your
pipeline configuration file.

XML-aware requester applications can receive SOAP Fault messages back from the
remote provider mode application. In this case, the requester application is
responsible for interpreting the SOAP Fault and distinguishing it from a regular
response message. If the INVOKE SERVICE command is used with an XML-ONLY
WEBSERVICE, CICS does not set the response code which is normally used to
indicate that a SOAP Fault was received.

If you are writing your own XML-aware service requester application without
using the XML-ONLY option, complete the following steps:

Procedure
1. Create a channel and populate it with containers. Provide the following

information in each container:

DFHWS-PIPELINE
The name of the PIPELINE resource used for the outbound request.

DFHWS-URI
The URI of the target web service

DFHWS-BODY
For an outbound SOAP request, the contents of the SOAP body.
Provide this container when the pipeline includes a CICS-provided
SOAP message handler. The message handler constructs the full SOAP
message containing the body.

DFHREQUEST
The complete request message to be passed to the pipeline. Use this
container if you do not use SOAP for your messages or if you want to
build the complete SOAP message, including the envelope, in your
program. The pipeline must not include a CICS-provided SOAP
message handler to avoid duplicate SOAP headers being sent in the
outbound message.

Chapter 7. Creating a web service 243

|
|
|

If you supply a SOAP body in container DFHWS-BODY,
DFHREQUEST must be empty. If you supply content in both
DFHWS-BODY and DFHREQUEST, CICS uses DFHREQUEST.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces
for the XML content of the request.

DFHWS-SOAPACTION
The SOAPAction header to be added to the SOAP message specified in
container DFHWS-BODY.

Tip: If you add container DFHWS-NOABEND to the channel, when DFHPIRT
is called any abends will not be issued from within DFHPIRT. This is useful if
you are running a C/C++ program because you can handle errors via the
DFHERROR container.

2. Link to program DFHPIRT. Use this command:

EXEC CICS LINK PROGRAM(DFHPIRT) CHANNEL(userchannel)

where userchannel is the channel that holds your containers. The outbound
message is processed by the message handlers and header processing programs
in the pipeline and sent to the web service provider.

3. Retrieve the containers that contain the web service response from the same
channel. The response from the web service provider might be a successful
response or a SOAP fault. The web service requester application must be able
to handle both types of response from the service provider. The complete
response is contained in the following containers:

DFHRESPONSE
The complete response, including the envelope for a SOAP response,
received from the web service provider.

DFHWS-BODY
When the pipeline includes a CICS-provided SOAP message handler,
the contents of the SOAP body.

DFHERROR
Error information from the pipeline.

Using Java with web services
You can use Java to create web service applications. Different techniques are used
to create these applications compared with the techniques used with other
programming languages.

For most non-Java programming languages, you use the web services assistants to
enable applications. Using the web services assistant means that the data is shared
between CICS and the application by using a container or COMMAREA. You can
use the web services assistant with Java applications, however, the following tasks
provide more suitable methods for creating Java web services for Java applications.

Deploying a provider-mode Axis2 web service
You can deploy an Axis2 application as a provider mode web service in CICS.
These applications are typically generated using JAX-WS and can be hosted in a
Java enabled pipeline.

244 CICS TS for z/OS 4.2: Web Services Guide

You might want to deploy Java applications using this method for one of the
following reasons:
v You want to create web services in Java.
v You have experience of Axis2 web services on other platforms and want to

create web services in CICS.
v You have complicated WSDL documents that would be difficult to handle using

the CICS web services assistants.
v You want to offload the handling of the web service application to the IBM

System z Application Assist Processor (zAAP).

Note: Axis2-style applications do not use the WEBSERVICE resources. They
interact with CICS using the Axis2 programming model and therefore cannot use
the some of the CICS web services support. The following services are not fully
supported for Axis2-style applications:
v SOAPFAULT CREATE in CICS Application Programming
v WSACONTEXT GET in CICS Application Programming
v “DFHWS-OPERATION container” on page 139
v “DFHWS-MEP container” on page 138
v “DFHWS-USERID container” on page 143
v “DFHWS-TRANID container” on page 140
v Web services security

Before you begin

You must have a Java application that is suitable for deployment in Axis2, for
example a POJO application using JAX-WS. For this task, the following POJO
application is used as an example:
/**
* Simple example
*/
@javax.jws.WebService(targetNamespace = "com.ibm.cics.example", name = "pojoExample")
public class TestAxis2
{

public String getMessage(String input)
{

return "CICS got this: ’" + input + "’";
}

}

This application specifies the XML namespace that is used to generate the WSDL,
and a name to associate with the web service.

The Java code for this application must be compiled, and the JAX-WS generator
run, to package the application into a jar file called TestAxis2.jar. You can do this
by issuing the following code:
javac TestAxis2.java
wsgen -cp . TestAxis2 -wsdl
jar -cvf TestAxis2.jar *

The JAX-WS generator also creates a WSDL document and the bindings used by
Axis2.

Chapter 7. Creating a web service 245

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_soapfaultcreate.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_wsacontextget.html

About this task

To deploy an Axis2 web service you must create the pipeline infrastructure for
your web services. When you have created the pipeline, you can create your web
services. You can reuse the created pipeline for as many web services as you need.
The following steps describe how to create the pipeline and web services.

Note: No WEBSERVICE resource is created or installed as part of this task.

Procedure
1. Create the pipeline infrastructure.

a. Create a web service infrastructure for a Java pipeline. For more
information, see “Creating the CICS infrastructure for a service provider” on
page 66.

b. Create an Axis2 repository. To do this, create a copy of the supplied
repository located in $CICS_HOME/lib/pipeline/repository.

c. Add the <repository> element to your pipeline configuration file. This
element must specify the name of the Axis2 repository that you created.

d. Create and enable a PIPELINE resource.
2. Create the web service.

a. Deploy the Axis2 application to the Axis2 repository. For example, the jar
file created in the example must be deployed to a directory called
servicejars within the repository directory. You must create this directory
if it does not exist.

b. Define and install a URIMAP resource for the web service. The URIMAP
resource must specify the URI and PIPELINE resource associated with the
web service. The URI must follow the Axis2 naming conventions for URIs.
The default Axis2 naming convention is:
/name_of_serviceService.name_of_portPort/suffix, where name_of_service
is the name of the web service in the WSDL, name_of_port is the name of the
port in the WSDL and suffix is an optional suffix of your can define. For the
preceding example, the following URIMAP resource could be used:
Urimap : EXAMPLE
Group : EXAMPLE
STatus : Enabled
USAge : Pipeline
SCheme : HTTP
POrt : No
HOST : *
PAth : /TestAxis2Service.pojoExamplePort/example/TestAxis2
TRansaction : CPIH
PIpeline : EXAMPLE

This example assumes that the PIPELINE resource used is called
EXAMPLE.

c. Repeat steps 2a and 2b for each web service associated with the pipeline.

What to do next

Test that your web services run correctly.

246 CICS TS for z/OS 4.2: Web Services Guide

Creating a Java web service that generates and parses XML
You can create Java applications that parse and generate XML themselves. These
applications are consistent with XML-aware applications written in other
programming languages, but they benefit from using standard Java technologies
for processing the XML.

Procedure
1. Create an XML-ONLY WEBSERVICE resource. For more information, see

Creating an XML-aware service provider application or Creating an XML-aware
service requester application.

2. Write a Java web service that can parse and generate XML for the body of the
SOAP message. You can use various tools, such as the Java 6 Java Architecture
for XML Binding (JAXB) library, to help you create a Java web service with
these capabilities.

3. Optional: If you are using a provider pipeline and you want to add the
capability for a SOAP Fault message to be returned to the requester, use the
JCICS SoapFault class to issue the EXEC CICS SOAPFAULT CREATE command.

4. Optional: If you are using a requester pipeline, use the JCICS Service class to
issue the EXEC CICS INVOKE SERVICE command.

What to do next

Creating a Java web service that has a COBOL interface
You can create Java applications that interact with CICS using the same techniques
used in other programming languages. To create these applications, you must write
or generate Java code to create structured COMMERA- or container-style data.

Procedure
1. Use DFHWS2LS to create COBOL language structures for the web service.
2. Write a Java web service that generates and parses COBOL language structures.

For more information about tools that allow Java programs to access existing
CICS application data and links to examples of how to create a Java web
service that can generate and parse COBOL language structures, see Interacting
with structured data from Java in Java Applications in CICS.

3. Optional: If you are using a provider pipeline and you want to add the
capability for a SOAP Fault message to be returned to the requester, use the
JCICS SoapFault class to issue the EXEC CICS SOAPFAULT CREATE command.

4. Optional: If you are using a requester pipeline, use the JCICS Service class to
interface with the CICS SERVICE API and issue the EXEC CICS INVOKE SERVICE
command.

What to do next

Deploying a requester-mode Axis2 web service
You can deploy an Axis2 application as a requester mode web service in CICS.
However, these applications do not use the EXEC CICS INVOKE command,
instead they interact with the remote web services using Axis2.

About this task

The advantage of deploying an Axis2 application as a requester mode web service
is that you create a platform-independent web service requester application, which

Chapter 7. Creating a web service 247

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/tasks/dfhws_xml_provider.dita
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.webservices.doc/tasks/dfhws_xml_requester.dita
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.webservices.doc/tasks/dfhws_xml_requester.dita
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

uses the IBM System z Application Assist Processor (zAAP). Using zAAP can
reduce the cost of transactions; for more information, see the IBM Redbooks
publication: zSeries Application Assist Processor (zAAP) Implementation.

Procedure
1. Create a web service requester application in Java and use an appropriate API,

such as the Java API for XML web Services (JAX-WS), to call the remote web
service.

2. Optional: If you use JAX-WS to start a remote web service, you must also use
JAX-WS to generate the SOAP messages, handle the network communication,
and process the SOAP response.

What to do next

Test that your web services start correctly.

Validating SOAP messages
When you use the CICS web services assistant to deploy your applications, you
can specify that the SOAP messages are validated at run time, to ensure that they
conform to the schema that is contained in the web service description. You can
perform validation in both provider and requester mode.

Before you begin

During development and testing of your web service deployment, full validation
assists in detecting problems in the message exchange between a service requester
and a service provider. However, complete validation of the SOAP messages
carries a substantial overhead, and it is inadvisable to validate messages in a fully
tested production application.

CICS uses a Java program to validate SOAP messages. Therefore, you must have
Java support enabled in your CICS region to perform validation.

About this task

The SOAP message is validated before it is transformed into an application data
structure and when a SOAP message is generated from the application data
structure. The SOAP message is validated using the XML schema in the WSDL and
is validated again against the transformation requirements of CICS. The WSDL
used for validation can either be the WSDL file specified in the WSDLFILE attribute
of the WEBSERVICE resource or a WSDL file contained in the .zip archive file
specified in the ARCHIVEFILE attribute of the WEBSERVICE resource. If a WSDL file
is specified in the WSDLFILE attribute and an archive file is specified in the
ARCHIVEFILE attribute, the WSDL file specified in the archive file in the ARCHIVEFILE
attribute is used.

When validation is turned off, CICS does not use the Java program. CICS validates
SOAP messages only to the extent that is necessary to confirm that they contain
well-formed XML, and to transform them. Therefore a SOAP message might be
successfully validated using the WSDL but then fail in the runtime environment
and vice versa.

To have your SOAP message validated, perform the following steps:

248 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|
|
|
|

http://www.redbooks.ibm.com/abstracts/sg246386.html

Procedure
1. Ensure that you have a web service description associated with your

WEBSERVICE resource. This association is created for WEBSERVICE resource
definitions that are automatically created when a WSDL file or a .zip file
containing one or more WSDL is present in the pickup directory of the pipeline
during a pipeline scan.
For WEBSERVICE definitions that are created with RDO, the web service
description is specified with the WSDLFILE attribute.

2. Turn validation on for the web service. You can specify whether validation is
required when you define the resource, and you can change this setting after
the resource is installed

Results

Check the system log to find out if the SOAP message is valid. Message
DFHPI1002 indicates that the SOAP message was successfully validated, and
message DFHPI1001 indicates that the validation failed.

What to do next

Turn validation off when you no longer need it.
Changing the validation status of a web service

You can change the validation status of a web service with the following
interfaces:

CICS Explorer

The CICS Explorer administration views
Use the Validation Status attribute in the Web Services view.

CICSPlex SM

The WEBSERVICE definitions view

CEMT

The SET WEBSERVICE command

The CICS SPI

The SET WEBSERVICE command

Chapter 7. Creating a web service 249

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_administration.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7cq.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_setwebservice.html

250 CICS TS for z/OS 4.2: Web Services Guide

Chapter 8. Runtime processing for web services

To send a request to a web service provider or to receive a request from a web
service requester, your application (or wrapper program) must interact correctly
with the web services support in CICS. You can also control the processing that
takes place in the pipeline to determine how the inbound and outbound requests
are handled.

How CICS invokes a service provider program deployed with the web
services assistant

When a service provider application that has been deployed using the CICS web
services assistant is invoked, CICS links to it with a COMMAREA or a channel.

You specify which sort of interface is used when you run JCL procedure
DFHWS2LS or DFHLS2WS with the PGMINT parameter. If you specify a channel,
you can name the container in the CONTID parameter.
v If the program is invoked with a COMMAREA interface, the COMMAREA

contains the top level data structure that CICS created from the SOAP request.
v If the program is invoked with a channel interface, the top level data structure is

passed to your program in the container that was specified in the CONTID
parameter of DFHWS2LS or DFHLS2WS. If you did not specify the CONTID
parameter, the data is passed in container DFHWS-DATA. The channel interface
supports arrays with varying numbers of elements, which are represented as
series of connected data structures in a series of containers. These containers will
also be present.
When you code API commands to work with the containers, you do not need to
specify the CHANNEL option, because all the containers are associated with the
current channel (the channel that was passed to the program). If you need to
know the name of the channel, use the EXEC CICS ASSIGN CHANNEL command.

When your program has processed the request, it must use the same mechanism to
return the response: if the request was received in a COMMAREA, then the
response must be returned in the COMMAREA; if the request was received in a
container, the response must be returned in the same container.

If an error is encountered when the application program is issuing a response
message, CICS rolls back all of the changes unless the application has performed a
syncpoint.

If the web service provided by your program is not designed to return a response,
CICS will ignore anything in the COMMAREA or container when the program
returns.

Invoking a web service from an application deployed with the web
services assistant

A service requester application that is deployed with the web services assistant
uses the EXEC CICS INVOKE SERVICE command to invoke a web service. The request
and response are mapped to a data structure in container DFHWS-DATA.

© Copyright IBM Corp. 2005, 2012 251

Procedure
1. Create a channel and populate it with containers. At the minimum, container

DFHWS-DATA must be present. DFHWS-DATA holds the top level data
structure that CICS will convert into a SOAP request. If the SOAP request
contains any arrays that have varying numbers of elements, they are
represented as a series of connected data structures in a series of containers.
These containers must also be present in the channel.

2. Invoke the target web service. Use this command:

EXEC CICS INVOKE SERVICE(webservice)
CHANNEL(userchannel)
OPERATION(operation)

where:
v webservice is the name of the WEBSERVICE resource that defines the web

service to be invoked. The WEBSERVICE resource specifies the location of
the web service description and the web service binding file that CICS uses
when it communicates with the web service.

v userchannel is the channel that holds container DFHWS-DATA and any
other containers associated with the application's data structure.

v operation is the name of the operation that is to be invoked in the target
web service.

If you have created a URIMAP resource for client requests to the URI of the
target web service, also specify URIMAP(urimap) where urimap is the name of
your URIMAP resource. Alternatively, you can specify URI(uri) where uri is
the URI of the web service to be invoked. If you omit both the URIMAP and
URI options, then the web service binding file associated with the
WEBSERVICE resource definition must include either a provider URI (obtained
from the web service description by DFHWS2LS) or a provider application
name (specified as the PGMNAME input parameter to DFHWS2LS).
The provider application name in the web service binding file associated with
the WEBSERVICE resource is used to enable local optimization of the web
service request. If you use this optimization, the EXEC CICS INVOKE SERVICE
command is optimized to an EXEC CICS LINK command. This optimization has
an effect on the behavior of the EXEC CICS INVOKE SERVICE command when the
web service is not expected to send a response:
v When the optimization is not in effect, control returns from the EXEC CICS

INVOKE SERVICE command as soon as the request message is sent.
v When the optimization is in effect, control returns from the EXEC CICS INVOKE

SERVICE command only when the target program returns.

When the web service is expected to send a response, control returns from the
command when the response is available.

3. If the command was successful, retrieve the response containers from the
channel. At the minimum, container DFHWS-DATA will be present. It holds the
top level data structure that CICS created from the SOAP response. If the
response contains any arrays that have varying numbers of elements, they are a
represented as series of connected data structures in a series of containers.
These containers will be present in the channel.

4. If the service requester receives a SOAP fault message from the invoked web
service, you must decide if the application program should roll back any
changes. If a SOAP fault occurs, an INVREQ error with a RESP2 value of 6 is
returned to the application program. However, if optimization is in effect, the

252 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

same transaction is used in both the requester and provider. If an error occurs
in a locally optimized web service provider, all of the work done by the
transaction rolls back in both the provider and the requester. An INVREQ error
is returned to the requester with a RESP2 value of 16.

Runtime limitations for code generated by the web services assistant
At runtime, CICS is capable of transforming almost any valid SOAP message that
conforms to the web service description (WSDL) into the equivalent data
structures. However, there are some limitations that you should be aware of when
developing a service requester or service provider application using the web
services assistant batch jobs.

Code pages

CICS can support SOAP messages sent to it in any code page if there is an
appropriate HTTP or WebSphere MQ header identifying the code page. CICS
converts the SOAP message to UTF-8 to process it in the pipeline, before
transforming it to the code page required by the application program. To minimize
the performance impact, it is recommended that you use the UTF-8 code page
when sending SOAP messages to CICS. CICS always sends SOAP messages in
UTF-8.

CICS can only transform SOAP messages if the code page used to convert data
between the SOAP message and the application program is EBCDIC. Applications
that expect data to be encoded in code pages such as UTF-8, ASCII and ISO8859-1
are unsupported. If you want to use DBCS characters within your data structures
and SOAP messages, then you must specify a code page that supports DBCS. The
EBCDIC code page that you select must also be supported by both Java and z/OS
conversion services. z/OS conversion services must also be configured to support
the conversion from the code page of the SOAP message to UTF-8.

To set an appropriate code page, you can either use the LOCALCCSID system
initialization parameter or the optional CCSID parameter in the web services
assistant jobs. If you use the CCSID parameter, the value that you specify overrides
the LOCALCCSID code page for that particular web service. If you do not specify the
CCSID parameter, the LOCALCCSID code page is used to convert the data and the
web service binding file is encoded in US EBCDIC (Cp037).

Containers

In service provider mode, if you specify that the PGMINT parameter has a value of
CHANNEL, then the container that holds your application data must be written to
and read from in binary mode. This container is DFHWS-DATA by default. The
PUT CONTAINER command must either have the DATATYPE option set to BIT, or you
must omit the FROMCCSID option so that BIT remains the default. For example, the
following code explicitly states that the data in the container CUSTOMER-
RECORD on the current channel should be written in binary mode.
EXEC CICS PUT CONTAINER (CUSTOMER-RECORD)

FROM (CREC)
DATATYPE(BIT)

Although the containers themselves are all in BIT mode, any text fields within the
language structure that map this data must use an EBCDIC code page - the same
code page as you have specified in the LOCALCCSID or CCSID parameter. If you are
using DFHWS2LS to generate the web service binding file, there could be many

Chapter 8. Runtime processing for web services 253

containers on the channel that hold parts of the complete data structure. If this is
the case, then the text fields in each of these containers must be read from and
written to using the same code page.

If the application program is populating containers that are going to be converted
to SOAP messages, the application is responsible for ensuring that the containers
have the correct amount of content. If a container holds less data than expected,
CICS issues a conversion error.

If an application program uses the INVOKE SERVICE command, then any containers
it passes to CICS could potentially be reused and the data within them replaced. If
you want to keep the data in these containers, create a new channel and copy the
containers to it before you run the program. If you have a provider mode web
service that is also a requester mode web service, it is recommended that you use a
different channel when using the INVOKE SERVICE command, rather than using the
default channel that it was originally attached to. If your application program is
using the INVOKE SERVICE command many times, it is recommended that you
either use different channels on each call to CICS, or ensure that all the important
data from the first request is saved before making the second request.

Conforming with the web services description

A web service description could describe some of the possible content of a SOAP
message as optional. If this is the case, DFHWS2LS allocates fields within the
generated language structure to indicate whether the content is present or not. At
runtime, CICS populates these fields accordingly. If a field, for example an
existence flag or an occurrence field, indicates that the information is not present,
the application program should not attempt to process the fields associated with
that optional content.

If a SOAP message is missing some of its content when CICS transforms it, the
equivalent fields within the data structures are not initialized when passed to the
application program.

A web service description can also specify the white space processing rules to use
when reading a SOAP message, and CICS implements these rules at runtime.
v If the value of the xsd:whiteSpace facet is replace, the white space characters

such as “tab” and “carriage return” are replaced with spaces.
v If the value of the xsd:whiteSpace facet is collapse, any trailing white space

characters are removed when generating SOAP messages. At runtime, inbound
SOAP messages are parsed according to the XML Schema specification and all
leading, trailing, and embedded white space is removed.

SOAP messages

CICS does not support SOAP message content derivation. For example, a SOAP
message could use the xsi:type attribute to specify that an element has a
particular type, together with an xsi:schemaLocation attribute to specify the
location of the schema that describes the element. CICS does not support the
capability of dynamically retrieving the schema and transforming the value of the
element based on the content of the schema. CICS does support the xsi:nil
attribute when the mapping level set in the web services assistant is 1.1 or higher,
but this is the only XML schema instance attribute that is supported.

254 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

DFHWS2LS might have to make assumptions about the maximum length or size of
some values in the SOAP message. For example, if the XML schema does not
specify a maximum length for an xsd:string, then DFHWS2LS assumes that the
maximum length is 255 characters and generates a language structure accordingly.
You can change this value by using the DEFAULT-CHAR-MAXLENGTH parameter in
DFHWS2LS. At runtime, if CICS encounters a SOAP message with a value that is
larger than the space that has been allocated in the language structure, CICS issues
a conversion error.

If CICS is the service provider, a SOAP fault message is returned to the requester.
If CICS is the service requester, then an appropriate RESP2 code is returned from
the INVOKE SERVICE command.

Some characters have special meanings in XML, such as the < and > characters. If
any of these special characters appear within a character array that is processed by
CICS at runtime, then it is replaced with the equivalent entity. The XML entities
that are supported are:

Character XML entity

& &

< <

> >

" "

' '

CICS also supports the canonical forms of the numeric character references used
for white space codes:

Character XML entity

Tab 	

Carriage return

Line feed 

Note that this support does not extend to any pipeline handler programs that are
invoked.

The null character (x'00') is invalid in any XML document. If a character type field
that is provided by the application program contains the null character, CICS
truncates the data at that point. This allows you to treat character arrays as null
terminated strings. Character type fields generated by DFHWS2LS from
base64Binary or hexBinary XML schema data types represent binary data and
could contain null characters without truncation.

SOAP fault messages

If CICS is the service provider, and you want the application program to issue a
SOAP fault message, use the SOAPFAULT CREATE command. In order to use this API
command, you must specify that the web services assistant PGMINT parameter has a
value of CHANNEL. If you do not specify this value, and the application program
invokes the SOAPFAULT CREATE command, CICS does not attempt to generate a
SOAP response message.

Chapter 8. Runtime processing for web services 255

Customizing pipeline processing
In addition to providing your own message handlers, you can also use a set of
global user exit points (GLUEs) to customize the processing that occurs for
inbound and outbound web services in the pipeline.

Before you begin

You must understand the best practices for writing global user exit programs
before customizing the pipeline. If you are customizing a service provider pipeline,
you must be using the supplied DFHPITP or Axis2 application handler in your
pipeline.

About this task

You can use the pipeline domain exits to access containers on a web services
provider pipeline, a web services requester pipeline, or a web services requester
pipeline that contains a security handler. The pipeline global user exits are
described in detail in the CICS Customization Guide.

Procedure
1. Select which global user exit points to use:

v Use XWSPRRWI, XWSPRROI, XWSPRROO, or XWSPRRWO GLUEs to access
containers in a web services provider pipeline.

v Use XWSRQRWO, XWSRQROO, XWSROROI, or XWSRQRWI GLUEs to
access containers in a web services requester pipeline.

v Use XWSSRRWO, XWSSRROO, XWSSRROI, or XWSSRRWI GLUEs to access
containers in a secured web services requester pipeline.

2. Use the DFH$PIEX sample exit program to write your own global user exit
program. DFH$PIEX is in the SDFHSAMP library. You are recommended to
make the program threadsafe.

3. Enable the global user exit program.
4. Test your global user exit program to ensure it works correctly.
Related information:
Pipeline domain exits
The pipeline sample exit program
Writing global user exit programs
Defining, enabling, and disabling an exit program

Options for controlling requester pipeline processing
In service requester pipelines, message handlers can determine where the web
service request is sent by changing the URI. CICS provides support for different
URI formats so that you have much more flexibility in the way that the pipeline
processes web service requests.

When the service requester pipeline reaches the end of its processing, you have the
following options:

Linking to a program
If you change the URI to the format cics://PROGRAM/program, where

256 CICS TS for z/OS 4.2: Web Services Guide

|

|
|
|
|

program is the name of the target application program, CICS passes the
current channel and its containers or COMMAREA to the program using
an EXEC CICS LINK command.

This processing is similar to the local optimization that occurs when the
service requester and service provider applications are in the same CICS
region. However, using this URI format provides the benefit of running the
request through the pipeline and any custom message handlers first. The
target application program must be able to handle the contents of the
containers or COMMAREA.

Starting another requester mode pipeline
If you change the URI to the format cics://PIPELINE/
pipeline?targetServiceUri=targetServiceUri, where pipeline is the name
of a PIPELINE resource and targetServiceUri is the URI that you want to
put in the DFHWS-URI container, CICS passes the current channel and its
containers to the specified requester pipeline. Use this URI when you want
to link two or more requester pipelines together before sending the request
to the service provider. The number of requester pipelines that you can
chain together is not limited.

In the following example, one generic requester pipeline supports one
application. Message handlers 1 or 2 can change the URI for each request
depending on the application data in the containers, sending the request to
one of two requester pipelines that contain different message handlers.

Application
program

CICS Transaction Server

Requester pipeline

Handler
1

Handler
2

Requester pipeline

Handler
3

Handler
4

Handler
5

Requester pipeline

Handler
6

Handler
7

Handler
8

Service
provider

Service
provider

Although the example shows only one service requester application, many
applications could use the same generic requester pipeline and have their
requests sent to different requester pipelines before the request is finally
sent to the appropriate web service provider.

Sending the request straight to the provider mode pipeline
If you change the URI to the format cics://SERVICE/
service?targetServiceUri=targetServiceUri, where service is the name of
the target service and targetServiceUri is the path to the service, CICS
resolves the request by matching the path to a URIMAP and passes the
request to the correct provider pipeline. Use this option when you want to
take advantage of processing the request through both the requester and
provider pipelines without using the network.

This URI might also be useful where the requester and provider
applications are written in different languages, or use different mapping
levels, and expect different binary data.

Chapter 8. Runtime processing for web services 257

Related tasks:
“Controlling requester pipeline processing using a URI”
In service requester pipelines, a message handler can determine where to send the
web service request by changing the URI. By changing the URI format, you can
choose to perform certain optimizations, such as starting another requester pipeline
or starting a service provider pipeline without sending the request over the
network.
Related reference:
“DFHWS-URI container” on page 140
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the
service.

Controlling requester pipeline processing using a URI
In service requester pipelines, a message handler can determine where to send the
web service request by changing the URI. By changing the URI format, you can
choose to perform certain optimizations, such as starting another requester pipeline
or starting a service provider pipeline without sending the request over the
network.

Before you begin

Decide which options you want to implement in your requester pipeline. See
“Options for controlling requester pipeline processing” on page 256 for details.

About this task

The web service requester application can populate the DFHWS-URI container
using the EXEC CICS INVOKE SERVICE command or, if no value is supplied by the
application, CICS populates the container using the value in the web service
binding file. To modify the URI, you must write a message handler that changes
the contents of this container.

Procedure
1. Write a message handler to modify the DFHWS-URI container according to one

of the following URI formats:
v To link to an application program, use the URI cics://PROGRAM/program,

where program is the target application program. No data transformation
takes place, so you must ensure that the application program can process the
contents of the containers on the current channel. The application program
can pass either the current channel and containers or a COMMAREA.

v To start a provider pipeline without going through the network, use the URI
cics://SERVICE/service?targetServiceUri=targetServiceUri, where service
is the name of the service and targetServiceUri is the path of the service. The
transport handler uses the path of the service to locate the URIMAP resource
that resolves the request and passes it to the correct provider pipeline. CICS
does not use the name of the service in its processing.
An error occurs if no URIMAP resource is installed for the service. The
URIMAP resource definition must also specify USAGE(PIPELINE). The
transport handler puts the value of the targetServiceUri parameter in the
DFHWS-URI container and starts the provider pipeline.

v To start another requester pipeline, use the URI cics://PIPELINE/
pipeline?targetServiceUri=targetServiceUri, where pipeline is the name of

258 CICS TS for z/OS 4.2: Web Services Guide

the PIPELINE resource that you want to start and targetServiceUri is the value
that you want to pass to the next pipeline in the DFHWS-URI container.

Each type of URI has additional parameters that you can add as a query string.
For more information about the format of these URIs and the rules for coding
them, see the “DFHWS-URI container” on page 140.

2. Use an XML editor to add the message handler to the pipeline configuration
file:
<service>

<service_handler_list>
<handler>

<program>MYPROG</program>
</handler>

</service_handler_list>
</service>

3. Disable, discard, and reinstall the PIPELINE resource for the requester pipeline
to include your new message handler program in the pipeline.

4. Install the message handler program in the CICS region.

Results

The next service request to run through the requester pipeline is processed by your
new message handler.

What to do next

Test out the changes to your requester pipeline to make sure that the service
requests are going to the correct location and that your message handler program
is behaving as designed.
Related concepts:
“Options for controlling requester pipeline processing” on page 256
In service requester pipelines, message handlers can determine where the web
service request is sent by changing the URI. CICS provides support for different
URI formats so that you have much more flexibility in the way that the pipeline
processes web service requests.
Related reference:
“DFHWS-URI container” on page 140
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the
service.

Chapter 8. Runtime processing for web services 259

260 CICS TS for z/OS 4.2: Web Services Guide

Chapter 9. Support for Web Services transactions

The Web Services Atomic Transaction (or WS-AtomicTransaction) specification and
the Web Services Coordination (or WS-Coordination) specification define protocols
for short term transactions that enable transaction processing systems to
interoperate in a web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency,
isolation, and durability.

The specifications can be found at http://www.ibm.com/developerworks/library/
specification/ws-tx/.

Note: CICS supports the November 2004 level of the specifications.

CICS applications that are deployed as web service providers or requesters can
participate in distributed transactions with other web service implementations that
support the specifications.

Registration services
Registration services is that part of the WS-Coordination model that enables an
application to register for coordination protocols. In a distributed transaction, the
registration services in the participating systems communicate with one another to
enable the connected applications to participate in those protocols.

Figure 27 shows two CICS systems, CICS1 and CICS2. A service requester
application in CICS1 invokes a service provider application in CICS2. The two
CICS regions and the applications are configured so that the two applications
participate in a single distributed transaction, using the WS-Coordination protocols.
The service requester application is the coordinator, and the service provider
application is the participant.

Registration
services

Requester pipeline

Provider pipeline

Service requester
application

Requester pipeline

Requester pipeline

Registration
services

Provider pipeline

Provider pipeline
Service requester

application

requester.example.com provider.example.com

Application
request and response

Registration request

Registration response

CICS1 CICS2

Figure 27. Registration services

© Copyright IBM Corp. 2005, 2012 261

http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

In support of these protocols, the registration services in the two CICS regions
interact at the start of the transaction, and again during transaction termination.
During these interactions, registration services in both regions can operate at
different times as a service provider and as a requester. Therefore, in each region,
registration services use a service provider pipeline, and a service requester
pipeline. The pipelines are defined to CICS with the PIPELINE and associated
resources.

The registration services in each region are associated with an endpoint address.
Thus, in the example, registration services in CICS1 has an endpoint address of
requester.example.com; that in CICS2 has an endpoint address of
provider.example.com.

In a CICSplex, you can distribute the registration services provider pipeline to a
different region. This is shown in Figure 28.

In this configuration, the provider pipeline communicates with registration services
using MRO or APPC. The registration services requester pipeline must remain in
the same region as the application's requester pipeline.

This configuration is useful when your service requester and provider applications
are distributed across a large number of regions. When you configure the
application's pipelines to participate in web service transactions, you must provide
information about the registration services endpoint by providing the IP address
and port number of the registration services provider pipeline. By having a single
endpoint, you can simplify configuration, because all your pipelines will contain

Provider pipeline Provider pipeline

requester.example.com provider.example.com

CICS1 CICS2

Registration
servicesRequester pipeline

Service requester
application

Requester pipeline

Requester pipeline

Registration
services

Provider pipeline
Service requester

application
Application

request and response

Registration
request

Registration
response

CICS1A CICS2A

MRO or
APPC

MRO or
APPC

Figure 28. Registration services in a CICSPlex

262 CICS TS for z/OS 4.2: Web Services Guide

the same information. For example, in Figure 28 on page 262 the IP address that
you specify in the application's requester pipeline is requester.example.com.

The same arguments apply to the service provider application. In the example, the
provider application's pipeline will specify an IP address of
requester.example.com.

Configuring CICS for web service transactions
For web service requester and provider applications to participate in web service
transactions, you must configure CICS accordingly by installing a number of CICS
resources.

Before you begin

Before you can install these resources you must know the location of the pipeline
configuration files that CICS supplies in support of web service transactions. By
default, the configuration files are supplied in the /usr/lpp/cicsts/cicsts42/
pipeline/configs directory, but the default file path might have been changed
during CICS installation.

About this task

CICS support for web service transactions uses a CICS-supplied registration
service. This registration service consists of a service provider and a service
requester. You must install resources for both the service provider and the service
requester; even if your applications are all service providers or all service
requesters.

You must also install a program definition for the header handler program that is
invoked when you run your service provider and requester applications.

The resources you require to configure CICS for web service transactions are all
supplied in the DFHWSAT group, except for DFHPIDIR which is supplied in one
of the following groups: DFHPIVS, DFHPIVR, or DFHPICF. The DFHWSAT group
is not included in the DFHLIST list, and therefore is not installed automatically.
You cannot change the resources supplied by CICS in the DFHWSAT group.

To configure CICS for web service transactions:

Procedure
1. Add the DFHPIDIR data set to your startup JCL. DFHPIDIR stores a mapping

between contexts and tasks.
a. Add a new DD statement for the DFHPIDIR data set to your CICS startup

JCL
b. Create the DFHPIDIR data set using information in DFHDEFDS.JCL. The

default RECORDSIZE of DFHPIDIR is 1 KB, which is adequate for most
uses. You can create DFHPIDIR with a larger RECORDSIZE if you need to.

c. Install the appropriate group for the data set on your CICS system:
DFHPIVS, DFHPIVR, or DFHPICF. For more information about these
groups, see Defining the WS-AT data set.

If you want to share the DFHPIDIR file across CICS regions, the regions must
be interconnected over MRO. You must install one data set per group of
regions that are acting as a logical server.

Chapter 9. Support for Web Services transactions 263

Tip: You are recommended not to share data sets between regions that are not
logically connected.

2. Copy the contents of the DFHWSAT group to another group. You cannot
change the resources supplied by CICS in the DFHWSAT group. However, you
must change the CONFIGFILE attribute in the PIPELINE resources.

3. Modify the registration service's provider PIPELINE resource. The PIPELINE is
named DFHWSATP, and specifies the pipeline configuration file
/usr/lpp/cicsts/cicsts42/pipeline/configs/registrationservicePROV.xml in
the CONFIGFILE attribute.
a. Change the CONFIGFILE attribute to reflect the location of the file in your

system.
b. Leave the other attributes unchanged.

Use the pipeline configuration file exactly as provided; do not change its
contents.

4. Install the PIPELINE resource. The registration services provider PIPELINE
resource need not be in the same CICS region as your service requester or
provider applications, but must be connected to that region with a suitable
MRO or APPC connection.

5. Without changing it, install the URIMAP that is used by the registration
services provider in the same region as the PIPELINE. The URIMAP is named
DFHRSURI.

6. Modify the registration service's requester PIPELINE resource. The PIPELINE is
named DFHWSATR, and specifies the pipeline configuration file
/usr/lpp/cicsts/cicsts42/pipeline/configs/registrationserviceREQ.xml in
the CONFIGFILE attribute.
a. Change the CONFIGFILE attribute to reflect the location of the file in your

system.
b. Leave the other attributes unchanged.

Use the pipeline configuration file exactly as provided; do not change its
contents.

7. Install the PIPELINE resource. The registration services requester PIPELINE
resource must be in the same CICS region as the service requester and provider
applications.

8. Install the programs used by the registration service provider pipeline in the
same region as your PIPELINE resources. The programs are DFHWSATX,
DFHWSATR, and DFHPIRS. If both your PIPELINE resources are in different
regions, you must install these programs in both regions.

9. Install the PROGRAM resource definition for the header handler program. The
program is named DFHWSATH. Install the PROGRAM in the regions where
your service provider and requester applications run.

Results

CICS is now configured so that your service provider and requester applications
can participate in distributed transactions using WS-AtomicTransaction and
WS-Coordination protocols.

What to do next

You must now configure each participating application individually.

264 CICS TS for z/OS 4.2: Web Services Guide

Configuring a service provider for web service transactions
If a service provider application is to participate in web service transactions, the
pipeline configuration file must specify a <headerprogram> element and a
<service_parameter_list> element.

Before you begin

If you want your service provider application to participate in web service
transactions, it must use SOAP protocols to communicate with the service
requester, and you must configure your pipeline to use one of the CICS-provided
SOAP message handlers. Even if you have configured your service provider
application correctly, it will participate in web service transactions with the service
requester only if the requester application has been set up to participate.

About this task

In addition to the pipeline configuration information that is specific to your
application, the configuration file must contain information that CICS uses to
ensure that your application participates in web service transactions.

CICS provides an example of a pipeline configuration file containing this
information in file /usr/lpp/cicsts/cicsts42/samples/pipelines/
wsatprovider.xml directory (where /usr/lpp/cicsts/cicsts42 is the default install
directory for CICS files on z/OS UNIX).

Procedure
1. In the definition of your terminal handler, code a <headerprogram> element in

the <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java>, or <cics_soap_1.2_handler_java> element.
Code the <program_name>, <namespace>, <localname>, and <mandatory> elements
exactly as shown in this example:
<terminal_handler>

<cics_soap_1.1_handler>
<headerprogram>

<program_name>DFHWSATH</program_name>
<namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
<localname>CoordinationContext</localname>
<mandatory>false</mandatory>

</headerprogram>
</cics_soap_1.1_handler>

</terminal_handler>

Include other <headerprogram> elements if your application needs them.
2. Code a <registration_service_endpoint> element in a

<service_parameter_list>. Code the <registration_service_endpoint> as
follows:
<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

address is the IP address of the CICS region where the registration service
provider pipeline is located.
port is the port number used by the registration service provider pipeline.

Code everything else exactly as shown; the string cicswsat/
RegistrationService matches the PATH attribute of URIMAP DFHRSURI:

Chapter 9. Support for Web Services transactions 265

|

<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>

Configuring a service requester for web service transactions
If a service requester application is to participate in web service transactions, the
pipeline configuration file must specify a <headerprogram> element and a
<service_parameter_list> element.

Before you begin

If you want your service requester application to participate in web service
transactions, it must use SOAP protocols to communicate with the service provider,
and your pipeline must be configured to use one of the CICS-provided SOAP
message handlers. Even if you have configured your service requester application
correctly, it will only participate in web service transactions with the service
provider if the provider application has been set up to participate.

About this task

In addition to the pipeline configuration information that is specific to your
application, the configuration file must contain information which CICS uses to
ensure that your application participates in web service transactions.

CICS provides an example of a pipeline configuration file containing this
information in file /usr/lpp/cicsts/cicsts42/samples/pipelines/
wsatrequester.xml directory (where /usr/lpp/cicsts/cicsts42 is the default
install directory for CICS files on z/OS UNIX).

Procedure
1. Code a <headerprogram> element in the <cics_soap_1.1_handler>,

<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>, or
<cics_soap_1.2_handler_java> element. Code the <program_name>, <namespace>,
<localname>, and <mandatory> elements exactly as shown in the example below.
For example:
<cics_soap_1.1_handler>

<headerprogram>
<program_name>DFHWSATH</program_name>
<namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
<localname>CoordinationContext</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.1_handler>

You can include other <headerprogram> elements if your application needs
them.

2. Code a <registration_service_endpoint> element in a
<service_parameter_list>. Code the <registration_service_endpoint> as
follows:
<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

address is the IP address of the CICS region where the registration service
provider pipeline is located.
port is the port number used by the registration service provider pipeline.

266 CICS TS for z/OS 4.2: Web Services Guide

|
|

There must be no space between the start the
<registration_service_endpoint> element, its contents, and the end of the
<registration_service_endpoint> element. Spaces have been included in this
example for clarity.

3. If you want CICS to create a new transactional context for each request, rather
than using the same one for requests in the same unit of work, add the empty
element, <new_tx_context_required/>, in a <service_parameter_list> to your
pipeline configuration file:
<service_parameter_list>

<registration_service_endpoint>
http://requester.example.com:7159/cicswsat/RegistrationService
</registration_service_endpoint>
<new_tx_context_required/>

</service_parameter_list>

There must be no space between the start of the
<registration_service_endpoint> element, its contents, and the end of the
<registration_service_endpoint> element. Spaces have been included in this
example for clarity.
The <new_tx_context_required/> setting is not the default for CICS, and is not
included in the example pipeline configuration file, wsatprovider.xml. If you
add <new_tx_context_required/> in a <service_parameter_list> to your
pipeline configuration file, loopback calls to CICS are allowed, so be aware that
a deadlock might occur in this situation.

Determining if the SOAP message is part of an atomic transaction
When a CICS web service is invoked in the atomic transaction pipeline, the SOAP
message does not necessarily have to be part of an atomic transaction.

About this task

The <soapenv:Header> element contains specific information when the SOAP
message is part of an atomic transaction. To find out if the SOAP message is part
of an atomic transaction, you can either:

Procedure
v Look inside the contents of the <soapenv:Header> element using a trace.

1. Perform an auxiliary trace using component PI and set the tracing level to 2.
2. Look for trace point PI 0A31, which contains the information for the request

container. In particular, look for PIIS EVENT - REQUEST_CNT which appears
just before the <cicswsa:Action> element.

v Use a user-written message handler program in the DFHWSATP pipeline to
display the content of the DFHREQUEST container when it contains the data
RECEIVE-REQUEST. If you opt for this approach, make sure that you define the
message handler program in the pipeline configuration file.

Example

The following example shows the information that you could see in the SOAP
envelope header for an atomic transaction.

<soapenv:Header>
<wscoor:CoordinationContext soapenv:mustUnderstand="1"> �1�

<wscoor:Expires>500</wscoor:Expires>
<wscoor:Identifier>com.ibm.ws.wstx:

0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921

Chapter 9. Support for Web Services transactions 267

</wscoor:Identifier>
<wscoor:CoordinationType>http://schemas.xmlsoap.org/ws/2004/10/wsat</wscoor:CoordinationType> �2�
<wscoor:RegistrationService �3�

xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor">
<cicswsa:Address xmlns:cicswsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

http://clientIPaddress:clientPort/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort
</cicswsa:Address>
<cicswsa:ReferenceProperties

xmlns:cicswsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
<websphere-wsat:txID

xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921

</websphere-wsat:txID>
<websphere-wsat:instanceID

xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921

</websphere-wsat:instanceID>
</cicswsa:ReferenceProperties>

</wscoor:RegistrationService>
</wscoor:CoordinationContext>

</soapenv:Header>

1. The CoordinationContext indicates that the SOAP message is intended to
participate in an atomic transaction. It contains the necessary information for
the web service provider to be part of the coordination service, assuming that
the provider is configured to recognize and process the header.

2. The CoordinationType indicates the version of the WS-AT specification that the
coordination context complies with.

3. The coordination RegistrationService describes where the coordinator's
registration point is, and the information that the participating web service
must return to the coordinator when it attempts to register as a component of
the atomic transaction.

Checking the progress of an atomic transaction
When a CICS web service is invoked as part of an atomic transaction, the
transaction passes through a number of states. These states indicate whether the
transaction was successful or had to roll back.

About this task

If you need to access this information, you can either:

Procedure
v Look inside the contents of the <cicswsa:Action> element using a trace.

1. Perform an auxiliary trace using component PI and set the tracing level to 2.
2. Look for trace point PI 0A31, which contains the information for the request

container. In particular, look for PIIS EVENT - REQUEST_CNT which appears
just before the <cicswsa:Action> element.

v Use a user-written message handler program in the DFHWSATR and
DFHWSATP pipelines to display the content of DFHWS-SOAPACTION
containers. If you opt for this approach, make sure that you define the message
handler program in the pipeline configuration files.

Example

The states for a transaction that completes successfully and is committed are:

268 CICS TS for z/OS 4.2: Web Services Guide

"http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepare"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepared"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Committed "

The states for a transaction that is rolled back are:
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Rollback"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Aborted"

Chapter 9. Support for Web Services transactions 269

270 CICS TS for z/OS 4.2: Web Services Guide

Chapter 10. Support for MTOM/XOP optimization of binary
data

In standard SOAP messages, binary objects are base64-encoded and included in the
message body, which increases their size by 33%. For very large binary objects, this
size increase can significantly impact transmission time. Implementing
MTOM/XOP provides a solution to this problem.

The SOAP Message Transmission Optimization Mechanism (MTOM) and
XML-binary Optimized Packaging (XOP) specifications, often referred to as
MTOM/XOP, define a method for optimizing the transmission of large
base64Binary data objects within SOAP messages.
v The MTOM specification conceptually defines a method for optimizing SOAP

messages by separating out binary data, that would otherwise be base64
encoded, and sending it in separate binary attachments using a MIME
Multipart/Related message. This type of MIME message is called an MTOM
message. Sending the data in binary format significantly reduces its size, thus
optimizing the transmission of the SOAP message.

v The XOP specification defines an implementation for optimizing XML messages
using binary attachments in a packaging format that includes but is not limited
to MIME messages.

CICS implements support for these specifications in both requester and provider
pipelines when the transport protocol is WebSphere MQ, HTTP, or HTTPS. As an
alternative to including the base64Binary data directly in the SOAP message, CICS
applications that are deployed as web service providers or requesters can use this
support to send and receive MTOM messages with binary attachments.

You can configure this support by using additional options in the pipeline
configuration file.

MTOM/XOP and SOAP
When MTOM/XOP is used to optimize a SOAP message, it is serialized into a
MIME Multipart/Related message using XOP processing. The base64Binary data is
extracted from the SOAP message and packaged as separate binary attachments
within the MIME message, in a similar manner to e-mail attachments.

The size of the base64Binary data is significantly reduced because the attachments
are encoded in binary format. The XML in the SOAP message is then converted to
XOP format by replacing the base64Binary data with a special <xop:Include>
element that references the relevant MIME attachment using a URI.

The modified SOAP message is called the XOP document, and forms the root
document within the message. The XOP document and binary attachments
together form the XOP package. When applied to the SOAP MTOM specification,
the XOP package is a MIME message in MTOM format.

The root document is identified by referencing its Content-ID in the overall
content-type header of the MIME message. Here is an example of a content-type
header:

© Copyright IBM Corp. 2005, 2012 271

Content-Type: Multipart/Related; boundary=MIME_boundary;
type="application/soap+xml"; start="<claim@insurance.com>"

The start parameter contains the Content-ID of the XOP document. If this
parameter is not included in the content-type header, the first part in the MIME
message is assumed to be the XOP document.

The order of the attachments in the MIME message is unimportant. In some
messages for example, the binary attachments could appear before the XOP
document. An application that handles MIME messages must not rely on the
attachments appearing in a specific order. For detailed information, read the
MTOM/XOP specifications.

The following example demonstrates how a simple SOAP message that contains a
JPEG image is optimized using XOP processing. The SOAP message is as follows:
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2003/12/xop/mime">
<soap:Body>
<submitClaim>
<accountNumber>5XJ45-3B2</accountNumber>
<eventType>accident</eventType>
<image xmime:contentType="image/jpeg" xsi:type="base64binary">4f3e..(encoded image)</image>
</submitClaim>
</soap:Body>
</soap:Envelope>

An MTOM/XOP version of this SOAP message is below.
MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;
type="application/soap+xml"; start="<claim@insurance.com>"�1�

--MIME_boundary
Content-Type: application/soap+xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim@insurance.com>�2�

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:xop=’http://www.w3.org/2004/08/xop/include’
xmlns:xop-mime=’http://www.w3.org/2005/05/xmlmime’>
<soap:Body>
<submitClaim>
<accountNumber>5XJ45-3B2</accountNumber>
<eventType>accident</eventType>
<image xop-mime:content-type=’image/jpeg’><xop:Include href="cid:image@insurance.com"/></image>�3�
</submitClaim>
</soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <image@insurance.com>�4�

...binary JPG image...

--MIME_boundary--

1. The start parameter indicates which part of the MIME message is the root
XOP document.

2. The Content-ID value identifies a part of the MIME message. In this case it is
the root XOP document.

3. The <xop:Include> element references the JPEG binary attachment.
4. The Content-ID identifies the JPEG in the binary attachment.

272 CICS TS for z/OS 4.2: Web Services Guide

MTOM messages and binary attachments in CICS
CICS supports and controls the handling of MTOM messages in both web service
provider and requester pipelines using an MTOM handler program and XOP
processing.

You configure and enable the MTOM support using the pipeline configuration file.
If MTOM support is enabled for a pipeline, CICS unpacks inbound MTOM
messages automatically and packages outbound messages. If MTOM support is not
enabled for a pipeline and CICS receives an MTOM message, Java-based pipelines
accept the inbound MTOM message, however other SOAP pipelines reject the
inbound MTOM message with a SOAP fault.

Configuration options for Java-based pipelines

You can configure a provider pipeline to perform the following tasks:
v Accept MTOM messages, but never send MTOM response messages.
v Accept MTOM messages and always send MTOM response messages.
v Process XOP documents and binary attachments in Axis2 mode.

You can configure a requester pipeline to perform the following tasks:
v Never send an MTOM message, but accept MTOM response messages.
v Always send MTOM messages and accept MTOM response messages.
v Process XOP documents and binary attachments in Axis2 mode.

Configuration options for pipelines that do not support Java

You can configure a provider pipeline to perform the following tasks:
v Accept MTOM messages, but never send MTOM response messages.
v Accept MTOM messages and send the same type of response message.
v Accept MTOM messages, but only send MTOM messages when there are binary

attachments present.
v Accept MTOM messages and always send MTOM response messages.
v Process XOP documents and binary attachments in direct or compatibility mode.

You can configure a requester pipeline to perform the following tasks:
v Never send an MTOM message, but accept MTOM response messages.
v Only send MTOM messages when there are binary attachments, and accept

MTOM response messages.
v Always send MTOM messages and accept MTOM response messages.
v Process XOP documents and binary attachments in direct or compatibility mode.

Modes of support

There are three modes of support provided in the pipeline to handle XOP
documents and any associated binary attachments.

Axis2 mode
Axis2 mode is used when the terminal handler of your web services
pipeline is either the <cics_soap_1.1_handler_java> or the
<cics_soap_1.2_handler_java> message handler.

Direct mode

Chapter 10. Support for MTOM/XOP optimization of binary data 273

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|

In direct mode, the binary attachments associated with an inbound or
outbound MTOM message are passed in containers through the pipeline
and handled directly by the application, without the need to perform any
data conversion.

Compatibility mode
Compatibility mode is used when the pipeline processing requires the
message to be in standard XML format, with any binary data stored as
base64Binary fields within the message. For inbound messages, the XOP
document and binary attachments are reconstituted into a standard XML
message, either at the beginning of the pipeline when Web Services
Security is enabled, or at the end of the pipeline when web service
validation is enabled. For outbound messages, a standard XML message is
created and passed along the pipeline. This XML message is converted to
XOP format by the MTOM handler just before CICS sends it.

Compatibility mode is much less efficient than direct mode because binary data
gets converted to base64 format and back again. However, it does allow your web
services to interoperate with other MTOM/XOP web service requesters and
providers without needing to change your applications.

Inbound MTOM message processing for pipelines that do not
support Java

When the MTOM handler is enabled in pipelines that do not support Java, it
checks the headers of the inbound message in the DFHREQUEST or
DFHRESPONSE container to determine the format of the message during the
transport handling processing.

When a MIME Multipart/Related message is received, the MTOM handler
unpackages the message as follows:
1. It puts the headers and binary data from each binary attachment into separate

containers.
2. It puts the list of containers in the DFHWS-XOP-IN container.
3. It puts the XOP document, which formed the root of the message, back in the

DFHREQUEST or DFHRESPONSE container, replacing the original message.

If there are no binary attachments, the XOP document is handled as a normal XML
message and no XOP processing is required. If there are any binary attachments,
XOP processing is enabled for the message.

If XOP processing is enabled, the MTOM handler checks the pipeline properties to
determine if the current message should be processed in direct or compatibility
mode, and puts this information in the DFHWS-MTOM-IN container.

In provider mode, the MTOM handler also creates the DFHWS-MTOM-OUT
container to determine how the outbound response message should be processed.

Direct mode

When you are using CICS web services support, that is, when a service provider
pipeline uses the DFHPITP application handler or a service requester pipeline is
invoked using INVOKE WEBSERVICE, the pipeline can process the XOP document and
binary attachments in direct mode.

274 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

In this mode, the XOP document and associated containers are passed by the
MTOM handler to the next message handler in the pipeline for processing. The
CICS web services support interprets the <xop:Include> elements. If the
base64Binary field is represented as a container in the application data structure,
then the attachment container name is stored in the structure. If the field is
represented as a variable or fixed length string, the contents of the container are
copied to the relevant application data structure field. The data structure is then
passed to the application program.

Compatibility mode

If your pipeline is configured to use a custom application handler, or Web Services
Security is also enabled, the message is processed in compatibility mode. In this
mode, the XOP document and binary attachments are immediately reconstituted
into a SOAP message using XOP processing, so that the content can be successfully
processed in the pipeline. The XOP processing performs the following tasks:
1. Scans the XOP document for <xop:Include> elements, replacing each

occurrence with the binary data from the referenced attachment in
base64-encoded format.

2. Discards the DFHWS-XOP-IN container and all of the attachment containers.

The reconstituted SOAP message is then passed to the next handler in the pipeline
to be processed as normal.

If web service validation is enabled, the pipeline switches to compatibility mode
when the message reaches the application handler. The message is reconstituted
into a SOAP message, validated, and passed to the application.

Outbound MTOM message processing for pipelines that do
not support Java

When a pipeline that does not support Java is configured to send outbound
MTOM messages, the web service and pipeline properties are checked to
determine how the message should be processed and sent.

These properties are stored in two containers, DFHWS-MTOM-OUT and
DFHWS-XOP-OUT. In a requester mode pipeline, these containers are created by
CICS when the application issues the EXEC CICS INVOKE WEBSERVICE command. In a
provider mode pipeline, the DFHWS-MTOM-OUT container is already initialized
with the options that were determined when the inbound message was received.

If the outbound message can be processed in direct mode, the optimization of the
message takes place immediately. If the outbound message has to be processed in
compatibility mode, the optimization takes place at the very end of the pipeline
processing.

If you have not deployed your web service provider or requester application using
the CICS web services assistant, or if you have web service validation enabled or
Web Services Security enabled in your pipeline, the outbound message is processed
in compatibility mode.

Direct mode

In direct mode, the following processing takes place:

Chapter 10. Support for MTOM/XOP optimization of binary data 275

1. An XOP document is constructed from the application's data structure in
container DFHWS-DATA. Any binary fields that are equal to or larger in size
than 1500 bytes are identified, and the binary data and MIME headers
describing the binary attachment are put in separate containers. If the binary
data is already in a container, that container is used directly as the attachment.
A <xop:Include> element is then inserted in the XML in place of the usual
base64-encoded binary data using a generated Content-ID. For example:
<xop:Include href="cid:generated-content-ID-value"
xmlns:xop="http://www.w3.org/2004/08/xop/include">

2. All of the containers are added to the attachment list in the DFHWS-XOP-OUT
container.

3. When the SOAP handler has processed DFHWS-DATA, the XOP document and
SOAP envelope are stored in the DFHREQUEST or DFHRESPONSE container
and processed through the pipeline.

4. When the last message handler has finished, the MTOM handler packages the
XOP document and binary attachments into a MIME Multipart/Related
message and sends it to the web service requester or provider. The
DFHWS-XOP-OUT container and any associated containers are then discarded.

Compatibility mode

If the pipeline is not capable of handling the XOP document directly, then the
following processing takes place:
1. The SOAP body is constructed in DFHWS-DATA from the application data

structure and processed in the pipeline as normal.
2. When the final handler has finished processing the message, the MTOM

handler checks the options in the DFHWS-MTOM-OUT container to determine
whether MTOM should be used, optionally taking into account whether any
binary attachments are present. If the MTOM handler determines that MTOM
is not required, no XOP processing takes place and a SOAP message is sent by
CICS as normal.

3. If the MTOM handler determines that the outbound message should be sent in
MTOM format, the XOP processing scans the message for eligible fields to split
the data out into binary attachments. For a field to be eligible, it must have the
MIME contentType attribute specified on the element and the associated binary
value must consist of valid base64Binary data in canonical form. The size of the
data must be greater than 1500 bytes. The XOP processing creates the binary
attachments and attachment list, and then replaces the fields with
<xop:Include> elements.

4. The MTOM handler packages the XOP document and binary attachments as a
MIME Multipart/Related message and CICS sends it to the web service
requester or provider.

Restrictions when using MTOM/XOP
To support MTOM/XOP you can either specify the <mtom> element in your
pipeline configuration file or enable the MTOM handler in your pipeline. However,
there are restrictions associated with each method.

Restrictions for Java-based pipelines
Specifying the <mtom> element in the a pipeline configuration file enables
MTOM/XOP support for your Java-based pipeline. However, there are restrictions
with this MTOM/XOP implementation.

276 CICS TS for z/OS 4.2: Web Services Guide

|

|
|
|

|

|
|
|

DFHPITP application handler
The Axis2 mode of MTOM/XOP support cannot be used with pipelines
that specify DFHPITP as the application handler.

WS-Security
The Axis2 mode of MTOM/XOP support cannot be used with pipelines
that use WS-Security configurations that require XML signatures.

Using the INQUIRE PIPELINE command
If an INQUIRE PIPELINE command is issued against a Java-based pipeline
using the Axis2 mode of MTOM/XOP support, the Mtomst, Sendmtomst,
Mtomnoxopst, Xopsupportst, and Xopdirectst attributes report as Nomtom.
For more information, see INQUIRE PIPELINE.

Restrictions for other SOAP pipelines
Enabling the MTOM handler in the pipeline means that you can support web
service implementations that use the MTOM/XOP optimization. The compatibility
mode option means that you can interoperate with these web services without
needing to change your web service applications. However, there are certain
situations where you cannot use MTOM/XOP or its use is restricted.

Using the CICS web services assistant
The direct mode optimization for MTOM/XOP is only available if you are
using DFHWS2LS at a mapping level of at least 1.2, and the WSDL
document contains at least one field of type xsd:base64Binary. Web services
that are enabled using DFHLS2WS are not eligible for XOP optimization.

Web services generated using DFHLS2WS with CHAR-VARYING=BINARY
specified may be eligible for the MTOM/XOP optimizations. Other web
services generated using DFHLS2WS do not contain binary data and are
not eligible for the MTOM/XOP optimizations, but will work normally in
a PIPELINE that supports MTOM/XOP.

Provider pipelines
CICS provides a default application handler called DFHPITP that can be
configured in a provider pipeline. This application handler is capable of
handling XOP documents and creating the necessary containers to support
the pipeline processing in both direct and compatibility mode. If you are
using your own application handler in a provider pipeline, and want to
enable MTOM/XOP, you should configure the pipeline to run in
compatibility mode.

Requester pipelines
If your applications use the INVOKE WEBSERVICE command, CICS handles
the optimization of the SOAP message for you in direct and compatibility
mode. If you are using the program DFHPIRT to start the pipeline, you can
only send and receive MIME Multipart/Related messages in compatibility
mode.

Web Services Security
If you enable the MTOM handler in the pipeline configuration file to run
in direct mode, and you also enable the Web Services Security message
handler, the pipeline only supports the handling of MTOM messages in
compatibility mode.

Handling binary data
When you have large binary data to include in your web service, for
example a graphic file such as a JPEG, you can use MTOM/XOP to
optimize the size of the message that is sent to the service provider or

Chapter 10. Support for MTOM/XOP optimization of binary data 277

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

requester. The minimum size of binary data that can be optimized using
MTOM/XOP is 1500 bytes. If the binary data in a field is less than 1500
bytes, CICS does not optimize the field.

As stated in the XOP specification, there should be no white space in the
base64Binary data. Any application programs that produce base64Binary
data must use the canonical form. If the base64Binary data in an outbound
message does contain white space, CICS does not convert the data to a
binary attachment. When base64Binary data is generated by CICS, the
fields are provided in canonical form and therefore contain no white space.

The contentType attribute must be present on base64Binary fields for XOP
processing to occur in compatibility mode on outbound messages. The
contentType attribute must not be present on hexBinary fields.

Web service validation
If you switch on web service validation the following pipeline processing
takes place:
v If an inbound XOP document has been passed through the pipeline in

direct mode, CICS automatically switches to compatibility mode and
converts it back to standard XML when CICS web service support is
about to validate the document.

v An outbound SOAP message is generated as standard XML and is
processed in compatibility mode.

The extra pipeline processing is required because the validation processing
cannot handle the contents of XOP documents.

Configuring CICS to support MTOM/XOP
To support MTOM messages in CICS, you must specify the correct MTOM/XOP
support for your type of pipeline in your pipeline configuration files.

Configuring MTOM/XOP support for Java-based pipelines
To configure MTOM/XOP support for Java-based pipelines, you must add the
<mtom> element to your pipeline configuration files.

Before you begin

Before performing this task, you must identify or create the pipeline configuration
files to which you will add configuration information for MTOM/XOP.

About this task

If the <mtom> element is defined in your pipeline configuration file, MTOM support
is enabled for all inbound and outbound messages. However, if this element is not
specified in the pipeline configuration file, then MTOM support is enabled for only
inbound messages.

Procedure

Add a <mtom> element to your pipeline configuration file. This element should be
defined after the optional <addressing> element and before the optional
<headerprogram> element.

278 CICS TS for z/OS 4.2: Web Services Guide

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|
|
|

|

|
|
|

Example

For a provider or requester mode pipeline, you could specify:
<cics_soap_1.2_handler_java>

<jvmserver>JVMSERV1</jvmserver>
<addressing></addressing>
<mtom></mtom>
<headerprogram>

<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.2_handler_java>

Configuring MTOM/XOP for other SOAP pipelines
To configure MTOM/XOP support for pipelines that do not use the
<cics_soap_1.1_handler_java> or <cics_soap_1.2_handler_java> handlers, you
must add the MTOM handler to your pipeline configuration files.

Before you begin

Before performing this task, you must identify or create the pipeline configuration
files to which you will add configuration information for MTOM/XOP.

Procedure
1. Add a <cics_mtom_handler> element to your pipeline configuration file. This

element should be first in the <provider_pipeline> element, and the last
element before the <service_parameter_list> in the <requester_pipeline>
element. Code the following elements:
<cics_mtom_handler>

<dfhmtom_configuration version="1">
</dfhmtom_configuration>

</cics_mtom_handler>

The <dfhmtom_configuration> element is a container for the other elements in
the configuration. If you want to accept the default settings for MTOM/XOP
processing, you can specify an empty element as follows:

<cics_mtom_handler/>

2. Optional: Code an <mtom_options> element. In both a service provider and
service requester pipeline, this element specifies whether the outbound message
should be packaged as an MTOM message.
a. Code the send_mtom attribute to define if the outbound message should be

sent as an MTOM message. For details of this attribute, see “The
<mtom_options> element” on page 98.

b. Code the send_when_no_xop attribute to define if the outbound message
should be sent as an MTOM message when there are no binary attachments
present. For details of this attribute, see “The <mtom_options> element” on
page 98.

3. Optional: Code a <xop_options> element with an apphandler_supports_xop
attribute. This specifies if the application handler is capable of handling XOP
documents directly. If you do not include this attribute, the default depends on
whether the <apphandler> element specifies DFHPITP or another program. For
details of this attribute, see “The <xop_options> element” on page 99.

4. Optional: Code a <mime_options> element with a content_id_domain attribute.
This specifies the domain name that should be used when generating MIME

Chapter 10. Support for MTOM/XOP optimization of binary data 279

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

content-ID values, that are used to identify binary attachments. For details of
this attribute, see “The <mime_options> element” on page 101.

Example

The following example shows a completed <cics_mtom_handler> element in which
all the optional elements are present:
<provider_pipeline>

<cics_mtom_handler>
<dfhmtom_configuration version="1">

<mtom_options send_mtom="same" send_when_no_xop="no" />
<xop_options apphandler_supports_xop="yes" />
<mime_options content_id_domain="example.org" />

</dfhmtom_configuration>
</cics_mtom_handler>

....
</provider_pipeline>

280 CICS TS for z/OS 4.2: Web Services Guide

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

Chapter 11. Support for Web Services Addressing

CICS supports services that use the Worldwide Web Consortium (W3C) Web
Services Addressing (WS-Addressing) specifications. This family of specifications
provides transport-independent mechanisms to address web services and facilitate
end-to-end addressing.

CICS ensures that your existing web service applications can accept requests from
web services that use WS-Addressing. You can also create new web services that
use endpoint references and message addressing properties in SOAP messages.

WS-Addressing adds addressing information, in the form of Message Addressing
Properties (MAPs), to SOAP message headers. MAPs include messaging
information, such as a unique message ID and endpoint references that detail
where the message came from, where the message is going to, and where reply or
fault messages are to be sent. An endpoint reference (EPR) is a specific type of
MAP, which includes the destination address of the message, optional reference
parameters for use by the application, and optional metadata.

Features of the WS-Addressing support

CICS includes the following features to support WS-Addressing:
v Your web service requester and provider applications can interact with other

services that are using WS-Addressing without requiring you to redeploy them.
A new message handler, the addressing message handler DFHWSADH, in the
pipeline routes messages that contain WS-Addressing information to the
specified web service.

v You can write an application that uses the WS-Addressing API commands to
create an endpoint reference and to create, update, delete, and query an
addressing context.

v You can route response messages to endpoints other than the requester
endpoint; for example, you can route fault messages to a dedicated fault handler.

v You can pass reference parameters to applications as part of the MAPs in the
SOAP header.

Support for WS-Addressing specifications and interoperability

By default, CICS supports the recommendation specifications:
v W3C WS-Addressing 1.0 - Core
v W3C WS-Addressing 1.0 - SOAP Binding
v W3C WS-Addressing 1.0 - Metadata

These specifications are identified by the http://www.w3.org/2005/08/addressing
namespace. Unless otherwise stated, WS-Addressing semantics that are described
in this documentation refer to the recommendation specifications.

For interoperability, CICS also supports the submission specification:
v W3C WS-Addressing- Submission

This specification is identified by the http://schemas.xmlsoap.org/ws/2004/08/
addressing namespace. Use the submission specification only if you must

© Copyright IBM Corp. 2005, 2012 281

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/

interoperate with a client or web service provider that implements the submission
specification.

Web Services Addressing overview
Web Services Addressing (WS-Addressing) provides a standard framework for
specifying the endpoints of a SOAP message. This framework is transport-neutral
and improves the interoperability of web services that use different transport
mechanisms. The WS-Addressing specification introduces message addressing
properties and endpoint references.

Web Services Addressing (WS-Addressing) is a Worldwide Web Consortium (W3C)
specification that improves interoperability between web services by defining a
standard way to address web services and provide addressing information in
SOAP messages. SOAP messages can be sent over a variety of transport
mechanisms, including HTTP and WebSphere MQ, each of which stores destination
information for the message in a different way.

Existing CICS web services that are deployed in a pipeline configured to use
WS-Addressing can use the default WS-Addressing settings without requiring any
changes. To take full advantage of the WS-Addressing capabilities, use the
WS-Addressing API commands.

Message addressing properties

Message addressing properties (MAPs) are a set of well defined WS-Addressing
properties that can be represented as elements in SOAP headers. MAPs provide a
standard way of conveying information, such as the endpoint to which message
replies must be directed, or information about the relationship that the message
has with other messages. The MAPs that are defined by the WS-Addressing
specification are summarized in the following table.

Table 10. Message addressing properties defined by the WS-Addressing specification

Abstract
WS-Addressing
MAP name

SOAP
WS-Addressing
MAP name MAP content type Multiplicity Description

[action] <wsa:Action> xs:anyURI 1..1 An absolute URI that uniquely identifies
the semantics of the message. This value is
required.

[destination] <wsa:To> xs:anyURI in the SOAP
message

EndpointReference in the
addressing context

0..1 The absolute URI that specifies the address
of the intended receiver of the message. If
this value is not specified, it defaults to
the anonymous URI that is defined in the
specification: http://www.w3.org/2005/08/
addressing/anonymous.

In the addressing context, the <wsa:To>
MAP is represented as an EPR. When the
<wsa:To> is sent as part of a SOAP
message it is split into its address and its
reference parameters, as defined by the
schema.

[reference
parameters] *

[reference
parameters]*

xs:any 0..unbounded Parameters that correspond to
<wsa:ReferenceParameters> properties of
the endpoint reference to which the
message is addressed. This value is
optional.

282 CICS TS for z/OS 4.2: Web Services Guide

Table 10. Message addressing properties defined by the WS-Addressing specification (continued)

Abstract
WS-Addressing
MAP name

SOAP
WS-Addressing
MAP name MAP content type Multiplicity Description

[source endpoint] <wsa:From> EndpointReference 0..1 A reference to the endpoint from which
the message originated. This value is
optional.

[reply endpoint] <wsa:ReplyTo> EndpointReference 0..1 An endpoint reference for the intended
receiver of replies to this message. This
value is optional.

If this value is not specified, it defaults to
http://www.w3.org/2005/08/addressing/
anonymous.

[fault endpoint] <wsa:FaultTo> EndpointReference 0..1 An endpoint reference for the intended
receiver of faults relating to this message.
This value is optional and defaults to the
value of the <wsa:ReplyTo> MAP.

[relationship] * <wsa:RelatesTo> xs:anyURI plus optional
attribute of type xs:anyURI

0..unbounded A pair of values that indicate how this
message relates to another message. The
contents of this element conveys the
<wsa:MessageID> of the related message.
An optional attribute conveys the
relationship type. This value is optional.

If this value is not specified, it defaults to
http://www.w3.org/2005/08/addressing/
reply.

[message id] <wsa:MessageID> xs:anyURI An absolute URI that uniquely identifies
the message. This value is optional; if not
supplied, CICS generates a value for
outbound requests and responses.

The following example of a SOAP message contains WS-Addressing MAPs:
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://w3.org/2005/08/addressing"
xmlns:example="http://example.ibm.com/namespace">

<S:Header>
...
<wsa:To>http://example.ibm.com/enquiry</wsa:To>
<wsa:ReplyTo>
<wsa:Address>http://example.ibm.com/enquiryReply</wsa:Address>

</wsa:ReplyTo>
<wsa:Action>...</wsa:Action>
<example:AccountCode wsa:IsReferenceParameter=’true’>123456789</example:AccountCode>
<example:DiscountId wsa:IsReferenceParameter=’true’>ABCDEFG</example:DiscountId>
...

</S:Header>
<S:Body>
...
</S:Body>

</S:Envelope>

Endpoint references

An endpoint reference is a specific type of MAP, which provides a standard
mechanism to encapsulate information about specific endpoints. Endpoint
references can be sent to other parties and used to target the web service endpoint
that they represent. The following table summarizes the information model for
endpoint references.

Chapter 11. Support for Web Services Addressing 283

Table 11. Information model for endpoint references

Abstract property name Property type Multiplicity Description

[address] xs:anyURI 1..1 The absolute URI that
specifies the address of the
endpoint.

[reference parameters] * xs:any 0..unbounded Namespace qualified
element information items
that are required to
interface with the endpoint.

[metadata] xs:any 0..unbounded Description of the behavior,
policies, and capabilities of
the endpoint.

The following XML fragment illustrates an endpoint reference. The
<wsa:EndpointReference> element references the endpoint at the URI
http://example.ibm.com/enquiry and contains metadata specifying the interface to
which the endpoint reference refers and some application-specific reference
parameters.
<wsa:EndpointReference

xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
xmlns:example="http://example.ibm.com/namespace">

<wsa:Address>http://example.ibm.com/enquiry</wsa:Address>
<wsa:Metadata

xmlns:wsdli="http://www.w3.org/ns/wsdl-instance"
wsdli:wsdlLocation="http://example.ibm.com/wsdl/wsdl-location.wsdl">

<wsam:InterfaceName>example:reservationInterface</wsam:InterfaceName>
</wsa:Metadata>
<wsa:ReferenceParameters>

<example:AccountCode>123456789</example:AccountCode>
<example:DiscountId>ABCDEFG</example:DiscountId>

<wsa:ReferenceParameters>
</wsa:EndpointReference>

WS-Addressing MAPs of type wsa:EndpointReferenceType are: <wsa:From>,
<wsa:ReplyTo>, and <wsa:FaultTo>. However, the <wsa:To> MAP is defined in the
WS-Addressing 1.0 standard as having a type of xs:anyURI. For simplicity CICS
treats <wsa:To> MAPs in the addressing context as EPRs. When a <wsa:To> MAP
is sent as part of a SOAP message, CICS splits it into its address and reference
parameters, as required by the standard.

Default namespaces

The following prefix and corresponding namespaces are referred to throughout the
WS-Addressing documentation:

Table 12. Prefix and corresponding namespace

Default prefix Namespace

xs http://www.w3.org/2001/XMLSchema

wsa http://www.w3.org/2005/08/addressing (Recommendation schema)

http://schemas.xmlsoap.org/ws/2004/08/addressing (Submission schema)

wsam http://www.w3.org/2007/05/addressing/metadata

284 CICS TS for z/OS 4.2: Web Services Guide

Related reference:
“DFHWS-URI container” on page 140
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the
service.

Configuring a requester pipeline for Web Services Addressing
To configure a requester pipeline to support Web Services Addressing
(WS-Addressing), you must add an addressing handler to your pipeline
configuration file.

Before you begin

You must identify or create the pipeline configuration file to add the configuration
information for WS-Addressing. You must also decide which of the WS-Addressing
specifications to use. Use the W3C WS-Addressing 1.0 Core specification where
possible.

About this task

You can add support for WS-Addressing in one of two ways:
v If the SOAP pipeline uses Java, the SOAP processing is handled by Axis2 and

you can use the support provided by this technology to handle requests that use
WS-Addressing. All of the header handling is handled by Axis2 and it is
important that you do not add the DFHWSADH header processing program to
the pipeline. You can use your own header processing programs. For better
performance, write Axis2 handlers in Java if you want to process SOAP headers.

v If the SOAP pipeline does not use Java, you must add the CICS-supplied header
processing program DFHWSADH to handle the requests.

Procedure
v If the SOAP pipeline uses a <cics_soap_1.1_handler_java> or

<cics_soap_1.2_handler_java> element, add an <addressing> element to the
pipeline configuration file. Include one <namespace> element that contains the
specification that you want to use on the request message, which can be
different to the response message; for example, you can always send a request
that complies with the W3C core specification, even if the response message uses
the submission specification. Axis2 supports both WS-Addressing specifications
on inbound messages.
The following example shows how you might configure the requester pipeline:
<requester_pipeline>

<service>
<service_handler_list>

<cics_soap_1.1_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<addressing>

<namespace>http://www.w3.org/2005/08/addressing</namespace>
</addressing>

</cics_soap_1.1_handler_java>
</service_handler_list>

</service>
</requester_pipeline>

The <jvmserver> element contains the name of the JVMSERVER resource that
supports Axis2.

Chapter 11. Support for Web Services Addressing 285

|

|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

v If the SOAP pipeline does not use Java, add a CICS addressing header program
in the <cics_soap_1.1_handler> or <cics_soap_1.2_handler> to the pipeline
configuration file. The following example shows how you might configure the
requester pipeline:
<requester_pipeline>

<service>
<service_handler_list>

<cics_soap_1.1_handler>
<headerprogram>

<program_name>DFHWSADH</program_name>
<namespace>http://www.w3.org/2005/08/addressing</namespace>
<localname>*</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.1_handler>

</service_handler_list>
</service>

</requester_pipeline>

Code the <program_name>, <localname>, and <mandatory> elements exactly as
shown. Set <namespace> to http://www.w3.org/2005/08/addressing to use the
W3C WS-Addressing 1.0 Core specification or http://schemas.xmlsoap.org/ws/
2004/08/addressing to use the W3C WS-Addressing Submission specification.
The order of header processing programs is not guaranteed. If you define other
header processing programs, add them in a subsequent CICS SOAP handler
element in your <service_handler_list> element. The DFHWSADH header
handler must be in the first SOAP handler element.

Results

Your requester pipeline is now configured to support WS-Addressing.

What to do next

Create a PIPELINE resource that points to the configuration file. If you are using a
Java-based SOAP pipeline, ensure that a JVMSERVER resource is enabled to handle
the Axis2 processing.

Configuring a provider pipeline for Web Services Addressing
To configure a provider pipeline to support Web Services Addressing
(WS-Addressing), you must add an addressing handler to your pipeline
configuration file.

Before you begin

You must identify or create the pipeline configuration file to add the configuration
information for WS-Addressing. You must also decide which of the WS-Addressing
specifications to use. Use the W3C WS-Addressing 1.0 Core specification where
possible.

About this task

You can add support for WS-Addressing in one of two ways:
v If the SOAP pipeline uses Java, the SOAP processing is handled by Axis2 and

you can use the support provided by this technology to handle requests that use
WS-Addressing. All of the header handling is handled by Axis2 and it is

286 CICS TS for z/OS 4.2: Web Services Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|

|
|
|

important that you do not add the DFHWSADH header processing program to
the pipeline. You can use your own header processing programs. For better
performance, write Axis2 handlers in Java if you want to process SOAP headers.

v If the SOAP pipeline does not use Java, you must add the CICS-supplied header
processing program DFHWSADH to handle the requests.

Procedure
v If the SOAP pipeline uses a <cics_soap_1.1_handler_java> or

<cics_soap_1.2_handler_java> element, add an <addressing> element to the
pipeline configuration file. You can optionally include one or more <namespace>
elements. This element contains the specification that you want to use on the
outbound message, which can be different to the inbound message; for example,
you can always send an outbound response that complies with the W3C core
specification, even if the inbound message uses the submission specification. If
you exclude this element, Axis2 uses the same specification on the outbound
message as the inbound message. Axis2 supports both WS-Addressing
specifications on inbound messages.
The following example shows how you might configure the provider pipeline:
<provider_pipeline>

<terminal_handler>
<cics_soap_1.1_handler_java>

<jvmserver>JVMSERV1</jvmserver>
<addressing>

<namespace>http://www.w3.org/2005/08/addressing</namespace>
</addressing>

</cics_soap_1.1_handler_java>
</terminal_handler>

</provider_pipeline>

The <jvmserver> element contains the name of the JVMSERVER resource that
supports Axis2.

v If the SOAP pipeline does not use Java, add the CICS addressing header
program DFHWSADH to the SOAP handler in the pipeline configuration file.
The following example shows how you might configure the provider pipeline:
<provider_pipeline>

<terminal_handler>
<cics_soap_1.1_handler>

<headerprogram>
<program_name>DFHWSADH</program_name>
<namespace>http://www.w3.org/2005/08/addressing</namespace>
<localname>*</localname>
<mandatory>true</mandatory>

</headerprogram>
</cics_soap_1.1_handler>

</terminal_handler>
</provider_pipeline>

Code the <program_name>, <localname>, and <mandatory> elements exactly as
shown. Set <namespace> to http://www.w3.org/2005/08/addressing to use the
W3C WS-Addressing 1.0 Core specification or http://schemas.xmlsoap.org/ws/
2004/08/addressing to use the W3C WS-Addressing Submission specification.
The order of header processing programs is not guaranteed. If you define other
header processing programs, add them in another CICS SOAP handler element
in a <service_handler_list> element. The DFHWSADH header handler must be
in the last SOAP handler element.

Chapter 11. Support for Web Services Addressing 287

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

Results

Your provider pipeline is now configured to support WS-Addressing.

What to do next

Create a PIPELINE resource that points to the configuration file. If you are using a
Java-based SOAP pipeline, ensure that a JVMSERVER resource is enabled to handle
the Axis2 processing.

Creating a web service that uses WS-Addressing
To create a web service from a WSDL document that uses Web Services Addressing
(WS-Addressing), use parameters on the web services assistant to handle the
conversion from XML to language structures.

About this task

You can use the web services assistant job, DFHWS2LS, to control how an end
point reference (EPR) is handled in the WSDL document and determine whether
CICS constructs default input, output, and fault actions.

Procedure
1. Set the MINIMUM-RUNTIME parameter on the web services assistant, DFHWS2LS,

to 3.0 or higher. A runtime level of at least 3.0 ensures that any generated web
service binding fully supports WS-Addressing and can interoperate with other
web services platforms.

2. Set the MAPPING-LEVEL parameter on the web services assistant, DFHWS2LS, to
3.0 or higher.

3. Set the WSADDR-EPR-ANY parameter to TRUE if you want to use
wsa:EndpointReferenceType type elements in the request or response messages.
End point references can be included in application data and you have the
option of using the EPR in API commands such as WSACONTEXT BUILD. Setting
the WSADDR-EPR-ANY parameter to TRUE indicates that CICS must not transform
the EPR into a language structure at run time; instead, CICS treats the EPR data
as an <xsd:any> element and stores it in a named container.
This example WSDL fragment shows a <wsa:To> MAP being passed as an
element of type wsa:EndpointReferenceType:
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="exampleEPR" targetNamespace="http://example.ibm.com/"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:s0="http://example.ibm.com/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

<types>
<xs:schema targetNamespace="http://test.org/"

xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://example.ibm.com/"
xmlns:wsa="http://www.w3.org/2005/08/addressing">

...
<xs:element name="exampleResponse" type="s0:typeResponse"/>
<xs:complexType name="typeResponse">

<xs:sequence>
<xs:element name="myEpr" type="wsa:EndpointReferenceType"/> �1�

</xs:sequence>
</xs:complexType>
...

288 CICS TS for z/OS 4.2: Web Services Guide

|

|

|

|
|
|

</xs:schema>
</types>
...
<message name="msgResponse">

<part element="s0:exampleResponse" name="response"/>
</message>
...

</definitions>

When the element, <xs:element name="myEpr"
type="wsa:EndpointReferenceType"/> �1�, is processed by DFHWS2LS with the
WSADDR-EPR-ANY parameter set to TRUE, the myEpr element data is stored in a
named container as an <xsd:any> element and a pointer to the container added
to the generated language structure.
For example, the COBOL language structure generated by DFHWS2LS for the
myEpr element is shown below:
09 myEpr.

12 myEpr-xml-cont PIC X(16).
12 myEpr-xmlns-cont PIC X(16).

The myEpr-xml-cont container stores the name of the container that contains the
myEpr data. The myEpr-xmlns-cont is an optional container that is populated
with any XML namespace declarations that are in scope.

4. Save and submit the DFHWS2LS job.

Results

CICS creates a web service binding to handle the data transformation and
language structures that you can use to create the service requester or provider
application.

What to do next

To enable the web service, perform a pipeline scan to create the required CICS
resources.

Default end point references
Most WSDL documents contain the address at which the web service is hosted. In
WS-Addressing, the WSDL document can also contain an end point reference
(EPR) for the web service. This EPR can contain additional metadata to facilitate
communication between the requester and provider applications.

If you use DFHWS2LS to process the WSDL, the EPR is saved in the web service
binding and is used by CICS to send request and response messages. Any
reference parameters, <wsa:ReferenceParameters>, that are defined in the EPR are
included in the SOAP message. This EPR is known as the default EPR, because it
can be overridden by the application. If the application does not supply an explicit
EPR, the default EPR from the WSDL is used.

The WSDL 1.1 fragment below includes a default EPR: <soap:address
location="http://example.ibm.com:12345/exampleTest" />. The <port> element
includes a child element, <wsa:EndpointReference>, the address specified by the
child element, �2�, must match the address specified by the parent element, �1�:
<service name="exampleService">

<port name="examplePort" binding="s0:createBinding">
<soap:address location="http://example.ibm.com:12345/exampleTest" />�1�

<wsa:EndpointReference

Chapter 11. Support for Web Services Addressing 289

xmlns:example="http://example.ibm.com/namespace"
xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"
wsdli:wsdlLocation="http://example.ibm.com/location "
title="http://example.ibm.com/example/example_wsdl"
class="http://example.ibm.com/example/example.wsdl">
<wsa:Address>http://example.ibm.com:12345/exampleTest</wsa:Address>�2�
<wsa:Metadata>

<wsam:InterfaceName>example:Inventory</wsam:InterfaceName>
</wsa:Metadata>
<wsa:ReferenceParameters>

<example:AccountCode>123456789</example:AccountCode>
<example:DiscountId>ABCDEFG</example:DiscountId>

</wsa:ReferenceParameters>
</wsa:EndpointReference>

</port>
</service>

Explicit actions
WSDL documents can explicitly define the values of the <wsa:Action> properties.
If the WSDL document does not contain explicitly defined <wsa:Action>
properties, CICS builds default actions when the WSDL is processed by
DFHWS2LS.

WSDL 1.1

The following WSDL 1.1 fragment represents a booking system that contains
explicitly defined <wsa:Action> properties:

<definitions targetNamespace="http://example.ibm.com/namespace" ...>
...
<portType name="bookingSystem">

<operation name="makeBooking">
<input message="tns:makeBooking"

wsa:Action="http://example.ibm.com/namespace/makeBooking"
</input>
<output message="tns:bookingResponse"

wsa:Action="http://example.ibm.com/namespace/bookingResponse"
</output>

</operation>
</portType>
...

</definitions>

In this example, the input action of the makeBooking operation is explicitly defined
as http://example.ibm.com/namespace/makeBooking, and the output action is
explicitly defined as http://example.ibm.com/namespace/bookingResponse.

WSDL 2.0

The following WSDL 2.0 fragment represents a booking system that contains
explicitly defined <wsa:Action> properties:

<description targetNamespace="http://example.ibm.com/namespace" ...>
...
<interface name="bookingInterface">
<operation name="makeBooking" pattern="http://www.w3.org/ns/wsdl/in-out">
<input element="tns:makeBooking" messageLabel="In"

wsa:Action="http://example.ibm.com/namespace/makeBooking"/>
<output element="tns:makeBookingResponse" messageLabel="Out"

wsa:Action="http://example.ibm.com/namespace/makeBookingResponse"/>
</operation>

</interface>
...

</description>

290 CICS TS for z/OS 4.2: Web Services Guide

In this example, the input action of the makeBooking operation is explicitly defined
as http://example.ibm.com/namespace/makeBooking, and the output action is
defined as http://example.ibm.com/namespace/makeBookingResponse.

For more information, see the W3C WS-Addressing 1.0 Metadata specification.

Default actions for WSDL 1.1
If a WSDL 1.1 document does not contain explicitly specified <wsa:Action>
properties, CICS builds default input, output, and fault actions when the WSDL is
processed by DFHWS2LS.

Default input and output actions for WSDL 1.1

The following pattern is used by CICS in WSDL 1.1 documents that follow either
the recommendation schema or the submission schema to construct a default input
or output action:

[target namespace]/[port type name]/[input|output name]

Default fault actions for WSDL 1.1

If you are following the recommendation schema, the way that CICS builds the
default fault action differs from the behavior described in the schema. The
following pattern is used by CICS, in WSDL 1.1 documents that follow the
recommendation schema, to construct a default fault message. Notice that the fault
name is omitted.

[target namespace]/[port type name]/[operation name]/Fault/

If you are following the submission schema, the way that CICS builds the default
fault action follows the behavior described in the schema. The following pattern is
used by CICS, in WSDL 1.1 documents that follow the submission schema, to
construct a default fault message:

[target namespace]/[port type name]/[operation name]/Fault/[fault name]

Example of the default actions generated by CICS for a WSDL
1.1 document

This example of a booking system illustrates how CICS constructs default actions
from a WSDL 1.1 document:

<description targetNamespace="http://example.ibm.com/namespace" ...>
...
<portType name="bookingInterface">
<operation name="makeBooking">
<input element="tns:makeBooking" name="MakeBooking"/>
<output element="tns:bookingResponse" name="BookingResponse"/>

<fault message="tns:InvalidBooking" name="InvalidBooking"/>
</operation>

</interface>
...

</definitions>

The WSDL fragment has the following addressing properties:

Property name Value

[targetNamespace] http://example.ibm.com/namespace

[portType name] bookingInterface

[operation name] makeBooking

Chapter 11. Support for Web Services Addressing 291

http://www.w3.org/TR/ws-addr-metadata/

Property name Value

[input name] MakeBooking

[output name] BookingResponse

[fault name] InvalidBooking

The following actions are created from these values:

Action Value

Input Action http://example.ibm.com/namespace/bookingInterface/MakeBooking

If the [input name] is not specified, the value of the [operation name] with "Request" appended is used instead. For
example, in this case the Input Action is http://example.ibm.com/namespace/bookingInterface/makeBookingRequest.

Output Action http://example.ibm.com/namespace/bookingInterface/BookingResponse

If the [output name] is not specified, the value of the [operation name] with "Response" appended is used instead.
For example, in this case the Output Action is http://example.ibm.com/namespace/bookingInterface/
makeBookingResponse.

Fault Action http://example.ibm.com/namespace/bookingInterface/MakeBooking/Fault/

(Recommendation schema) Notice that the [fault name] is omitted.

Fault Action
http://example.ibm.com/namespace/bookingInterface/MakeBooking/Fault/
InvalidBooking

(Submission schema)

For more information, see the W3C WS-Addressing 1.0 Metadata specification.

Default actions for WSDL 2.0
If a WSDL 2.0 document does not contain explicitly specified <wsa:Action>
properties, CICS build default input, output, and fault actions when the WSDL is
processed by DFHWS2LS.

Default input and output actions for WSDL 2.0

The following pattern is used by CICS, in WSDL 2.0 documents that follow the
recommendation schema, to construct default actions for inputs and outputs:

[target namespace]/[interface name]/[operation name][direction token]

Default fault actions for WSDL 2.0

If you are following the recommendation schema, the way that CICS builds the
default action for WS-Addressing faults differs from the behavior described in the
schema. If you are following the submission schema, the way that CICS builds the
default action for WS-Addressing faults follows the behavior described in the
schema.

The following pattern is used by CICS, in WSDL 2.0 documents that follow the
recommendation schema, to construct a default action for faults. Notice that the
fault name is omitted.

[target namespace]/[interface name]/

The following pattern is used by CICS, in WSDL 2.0 documents that follow the
submission schema, to construct a default action for faults:

[target namespace]/[interface name]/[fault name]

292 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/ws-addr-metadata/

Example of the default actions generated by CICS for a WSDL
2.0 document

This example shows how CICS constructs default actions for a WSDL 2.0
document following the recommendation schema:

<description targetNamespace="http://example.ibm.com/namespace" ...>
...
<interface name="bookingInterface">
<operation name="makeBooking" pattern="http://www.w3.org/ns/wsdl/in-out">
<input element="tns:makeBooking" messageLabel="In"/>
<output element="tns:bookingResponse" messageLabel="Out"/>

</operation>
</interface>
...

</definitions>

The WSDL fragment has the following addressing properties:

Property Name Value

[targetNamespace] http://example.ibm.com/namespace

[interface name] bookingInterface

[operation name] makeBooking

[direction token] Either Request or Response.

The following input and output actions are created from these values:

Action Value

Input Action http://example.ibm.com/namespace/bookingInterface/makeBookingRequest

Output Action http://example.ibm.com/namespace/bookingInterface/makeBookingResponse

For more information, see the W3C WS-Addressing 1.0 Metadata specification.

Message exchanges
Web Services Addressing (WS-Addressing) supports these message exchanges:
one-way, two-way request-response, synchronous request-response, and
asynchronous request-response.

Web Services Addressing message exchanges involve message addressing
properties (MAPs) and endpoint references (EPRs).

At run time CICS ensures that the SOAP header of the request message contains
the relevant WS-Addressing message information, the requester application does
not have to set the WS-Addressing headers and might not even be aware that it is
using WS-Addressing.

One-way

This straightforward one-way message is defined as an input-only operation. The
web Services Description Language (WSDL) for this operation takes the following
form:
<operation name="myOperation">

<input message="tns:myInputMessage"/>
</operation>

Chapter 11. Support for Web Services Addressing 293

http://www.w3.org/TR/ws-addr-metadata/

If you are using WS-Addressing, CICS adds the <wsa:Action> MAPs and the
<wsa:MessageID> MAP to the SOAP message header of the WS-Addressing
request message at run time to ensure compliance with the WS-Addressing
specification.

The <wsa:MessageID> MAP is a unique ID, if not specified CICS generates this ID
automatically.

The <wsa:Action> MAPs are derived from the WSDL and stored in the WSBind
file.

You can override the values of these MAPs using the CICS WS-Addressing API
commands.

Two-way request-response

This two-way exchange involves a request message and a response message. The
response part of the operation can be defined as an output message, a fault
message, or both. The WSDL definition for a request-response operation takes the
following form:
<operation name="myOperation">

<input message="tns:myInputMessage"/>
<output message="tns:myOutputMessage"/>
<fault="tns:myFaultMessage"/>

</operation>

Responses to, or faults generated from, requests that are directed at endpoints are
targeted at the <wsa:ReplyTo> MAP or the <wsa:FaultTo> MAP depending on
whether the reply type is normal or a fault.

Specify a <wsa:ReplyTo> or <wsa:FaultTo> MAP in the request message to indicate
where the response must be sent.

If you are using the recommendation specifications and do not specify a value for
the <wsa:ReplyTo> MAP, the <wsa:ReplyTo> MAP defaults to an endpoint
reference that contains the anonymous URI (http://www.w3.org/2005/08/
addressing/anonymous), which causes CICS to send the response back to the
requester.

If you are using the recommendation specifications and do not specify a value for
the <wsa:FaultTo> MAP, the <wsa:FaultTo> MAP defaults the value of the
<wsa:ReplyTo> MAP.

If the requester builds MAPs that are incorrect and that cause validation failures,
CICS sends the fault message back to the requester instead of to the address
specified by the <wsa:FaultTo> MAP.

Synchronous request-response

By default, the response part of a two-way message is returned according to the
underlying protocol in use. In the case of an HTTP request, the response is
returned synchronously in the HTTP response.

294 CICS TS for z/OS 4.2: Web Services Guide

Asynchronous request-response

An asynchronous response is targeted at another web service and does not arrive
back at the original requester application. In the case of an HTTP request, the
connection with the requesting client is closed with an HTTP 202 response. If the
web service provider is running on a CICS system, the requester application will
receive an empty response message. If the web service provider is running on a
WebSphere MQ system, the requester application will not receive any response.

To change the destination of the response part of a two-way message, you must
specify the appropriate addresses in the <wsa:ReplyTo> MAP, or the
<wsa:ReplyTo> and <wsa:FaultTo>, MAPs.

For a full list of the MAPs that are mandatory in WSDL 1.1 and WSDL 2.0, see
“Mandatory message addressing properties for WS-Addressing.”
Related concepts:
“WSDL and message exchange patterns” on page 30
A WSDL 2.0 document contains a message exchange pattern (MEP) that defines the
way that SOAP 1.2 messages are exchanged between the web service requester and
web service provider.
Related reference:
“Mandatory message addressing properties for WS-Addressing”
The WS-Addressing 1.0 metadata specification states which message addressing
properties (MAPs) must be included in WSDL 1.1 and WSDL 2.0 documents. The
CICS implementation of WS-Addressing helps you to comply with the
WS-Addressing specifications by automatically supplying values for these
mandatory MAPs.

Mandatory message addressing properties for WS-Addressing
The WS-Addressing 1.0 metadata specification states which message addressing
properties (MAPs) must be included in WSDL 1.1 and WSDL 2.0 documents. The
CICS implementation of WS-Addressing helps you to comply with the
WS-Addressing specifications by automatically supplying values for these
mandatory MAPs.

You can specify your own values for MAPs in the WSDL that you supply, and you
can update these values in the addressing context using the CICS WS-Addressing
API commands. If you do not supply values for the mandatory MAPs, CICS will
generate values for you.

The following table lists which MAPs are mandatory for the different supported
message exchange patterns (MEPs) with WSDL 1.1 and WSDL 2.0:

Table 13. Mandatory message addressing properties for WS-Addressing.

WS-Addressing
MAP name

Description Mandatory in WSDL 1.1 Mandatory in WSDL 2.0

<wsa:To> The address of the
intended receiver of the
message.

No No

If the value of the <wsa:To> MAP is not specified, CICS set the address to the anonymous URI:
http://www.w3.org/2005/08/addressing/anonymous. The anonymous URI indicates that the
request is to be sent to the address specified in the DFHWS-URI container; for more
information, see “DFHWS-URI container” on page 140.

Chapter 11. Support for Web Services Addressing 295

Table 13. Mandatory message addressing properties for WS-Addressing. (continued)

WS-Addressing
MAP name

Description Mandatory in WSDL 1.1 Mandatory in WSDL 2.0

<wsa:Action> The WS-Addressing action:
input, output, or fault.

Mandatory for the following
MEPs:

One-way

Two-way (Request)

Two-way (Response)

Mandatory for the following
MEPs:

In-only

Robust In-only (In)

Robust In-only (Fault)

In-out (In)

In-out (Out)

In-optional-out (In)

In-optional-out (Out)

You can define the <wsa:Action> MAPs explicitly in your WSDL document, or you can let
CICS generate them automatically.

<wsa:From> The endpoint from which
the message originated.

No No

This value is not required.

<wsa:ReplyTo> The endpoint of the
intended receiver for
replies to the message.

No No

If a value is not set for the address element of the <wsa:ReplyTo> MAP, the address is set to
the anonymous URI: http://www.w3.org/2005/08/addressing/anonymous. The anonymous URI
indicates that responses are sent back to the requester.

<wsa:FaultTo> The endpoint of the
intended receiver for faults
related to the message.

No No

If a value is not specified for the address element of the <wsa:FaultTo> MAP, CICS sets this
address to the same value as the address element of the <wsa:ReplyTo> MAP.

Note that if the requester builds MAPs that are incorrect and which cause validation failures,
CICS sends the fault message back to the requester instead of to the address specified by the
<wsa:FaultTo> MAP.

<wsa:MessageID> A unique message
identifier.

Mandatory for the following
MEPs:

Two-way (Request)

Mandatory for the following
MEPs:

Robust In-only (In)

In-out (In)

In-optional-out (In)

CICS automatically sets a unique value for the <wsa:MessageID> MAP at run time for request
messages that expect a response, and for response messages.

<wsa:RelatesTo> A pair of values that
indicate how this message
relates to another message.
This element includes the
<wsa:MessageID> of the
related message and an
optional attribute conveys
the relationship type.

Mandatory for the following
MEPs:

Two-way (Response)

Mandatory for the following
MEPs:

Robust In-only (Fault)

In-out (Out)

In-optional-out (Out)

The <wsa:RelatesTo> MAP is mandatory for response messages. The relationship type of the
message is optional and defaults to http://www.w3.org/2005/08/addressing/reply.

296 CICS TS for z/OS 4.2: Web Services Guide

For more information, see the W3C WS-Addressing 1.0 Metadata specification:
http://www.w3.org/TR/ws-addr-metadata.
Related concepts:
“Message exchanges” on page 293
Web Services Addressing (WS-Addressing) supports these message exchanges:
one-way, two-way request-response, synchronous request-response, and
asynchronous request-response.
Related reference:
“DFHWS-URI container” on page 140
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the
service.

Web Services Addressing security
Communications traveling on a public network using Web Services Addressing
(WS-Addressing) must be adequately secured and a sufficient level of trust must
be established between the communicating parties. You are recommended to use
transport level security, such as SSL or HTTPS, to secure your communications.

Transport level security, such as SSL or HTTPS, is the most straightforward way to
ensure that your WS-Addressing communications are secure. If transport level
security is not available, you can secure your messages by signing the
WS-Addressing message addressing properties and encrypting the endpoint
references.

CICS cannot sign headers containing WS-Addressing message addressing
properties or encrypt endpoint references. However, CICS can verify signatures on
incoming messages and can decrypt headers that have been encrypted. If you want
to use signing and encryption to secure your communications, you must use an
external security gateway, such as the IBM WebSphere DataPower® XML Security
Gateway. For more information, see IBM WebSphere DataPower XML Security
Gateway.

Web Services Addressing example
This example provides a high-level overview of the process that takes place when
a customer places an order with a company that uses Web Services Addressing to
send messages.

An international company that sells electronic components uses Web Services
Addressing in its business. The infrastructure of this company consists of an
Ordering Client, a group of Distribution Services, a Fulfilment Service, and a
Configuration Service.

Using WS-Addressing offers the company the following benefits:
v WS-Addressing provides a transport-independent mechanism for transferring

messages, this encourages interoperability between web services running on
different platforms. In this example, the distribution services owned by the
company are running on a variety of platforms; WS-Addressing makes
interoperability between different platforms straightforward because the web
service requesters and providers do not need to be aware of the platform on
which the service that they are exchanging messages with is running.

v WS-Addressing can be used to change the destination of the reply message by
updating the EPR in the <wsa:ReplyTo> MAP. In this example, the Fulfilment

Chapter 11. Support for Web Services Addressing 297

http://www.ibm.com/software/integration/datapower/xs40/
http://www.ibm.com/software/integration/datapower/xs40/

Service modifies the destination of the response message when it selects the
Distribution Service to which the message is diverted.

The company has several distribution centers in a number of different countries;
each of the distribution centers is represented in this example by a Distribution
Service and is registered with the Configuration Service.

The Fulfilment Service selects which Distribution service is the most appropriate to
process the order based on a variety of factors, which might include the
availability of items requested and the distance of the Distribution Center from the
customer.

Addressing information is passed to and from the Configuration Service. The
Configuration Service stores the addresses of the available services in the form of
Endpoint References. New services register with the Configuration Service by
creating an EPR using the WSAEPR CREATE command and sending the EPR to the
Configuration Service. The Configuration Service requires the EPR as a block of
XML, so the WSADDR-EPR-ANY parameter on DFHWS2LS must be set to TRUE. The
WSADDR-EPR-ANY=TRUE option is used to instruct CICS to treat the EPR as an
<xsd:any> element; CICS must place it in a container instead of transforming it
into a language structure at run time.

The way in which these services interact is shown in the following diagram. The
diagram shows other services, which have been excluded from the task, that might
be relevant in a business application:
v A Tracking Service, which can be updated by each of the other services with the

status of the order.
v A Problem Resolution service to handle any fault messages that arise.
v An Ordering Client callback service to handle any reply messages directed at the

Ordering Client.

298 CICS TS for z/OS 4.2: Web Services Guide

The following steps describe the process that takes place from the time a customer
places an order to the point at which that order is processed.
1. A customer places an order with the company.

a. The customer places the order on the company web site, which is the front
end for the Ordering Client.

b. The Ordering Client takes the customer's contact details as part of the order.
c. The Ordering Client returns a confirmation and a unique order reference to

the customer through the web interface.
2. The Ordering Client sends the order request to the Fulfilment Service.

a. If the Ordering Client does not already know the EPR for the Fulfilment
Service, it requests it from the Configuration Service. The process involved
when the Ordering Client requests the EPR of the Fulfilment Service from
the Configuration service is detailed in the Example of <wsa:To> section.

b. The Ordering Client issues the INVOKE SERVICE command for the Fulfilment
Service. WS-Addressing routes the message to the address specified by the
To EPR in the request addressing context.

3. The Fulfilment Service selects a Distribution Service to process the order and
redirects the response message to that service.
a. The Fulfilment Service uses a WSACONTEXT GET command to extract the order

reference and other addressing properties from the addressing context.
b. The Fulfilment Service selects the most appropriate Distribution Service

from the Configuration Service.
c. The <wsa:ReplyTo> EPR is added to the addressing context:

Company Infrastucture

Configuration Service

Fulfilment Service

Distribution
Service

DFHNORESPONSE

Tracking Service

Problem
Resolution

Service

Ordering
Client

Web
interface

Customer

(front-end
of the

Ordering
Client)

Ordering
Client

Callback
Service

Figure 29. Company infrastructure

Chapter 11. Support for Web Services Addressing 299

<wsa:EndpointReference
xmlns:wsa="http://www.w3.org/2005/08/addressing">

<wsa:Address>http://www.example.ibm.com/DistributionService</wsa:Address>
</wsa:EndpointReference>

The Fulfilment Service uses the WSACONTEXT BUILD command to add the
ReplyTo EPR of the chosen Distribution Service to the request addressing
context.

d. The Fulfilment Service uses the WSACONTEXT BUILD command repeatedly to
add the order reference and other information to the request addressing
context.

e. A DFHNORESPONSE container is added to the Ordering Client pipeline to
indicate to the Ordering Client that it will not receive a response and the
response message is redirected in the form of a request message to the
Distribution Service.

4. The Distribution Service receives the redirected response message and processes
the order.
a. The Distribution Service uses a WSACONTEXT GET command to extract the

order reference and addressing details from the request addressing context.
b. The Distribution Service process the order.

Example of <wsa:To>
1. The Ordering Client requests the EPR of the service that it wants to send a

message to from the Configuration Service. In this example, the Ordering Client
requests the EPR of the Fulfilment Service.

2. The Configuration Service creates and sends a response message:
a. The Configuration Service creates the requested <wsa:To> EPR for the

Fulfilment Service using the WSAEPR CREATE API command: EXEC CICS
WSAEPR CREATE.

b. The Configuration Service writes the output from the WSAEPR CREATE
command to a container: EXEC CICS PUT CONTAINER(work-cont).

c. The Configuration Service copies the container name into the
myEpr-xml-cont element: MOVE work-cont TO myEpr-xml-cont.

d. The Configuration Service sends a response message to the Ordering Client,
this message contains the contents of the container named by the
myEpr-xml-cont container. In this example, the contents of the work-cont
container is sent to the Ordering Client inside the <wsa:myEpr> element:
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

...
<env:Body>

<wsa:myEpr>
<wsa:EndpointReference>

<wsa:Address>
Fulfilment_Service_EPR_XML

</wsa:Address>
</wsa:EndpointReference>

</wsa:myEpr>
</env:Body>
...

</env:Envelope>

Figure 30 on page 301 shows the request-response message exchange between
the Ordering Client and the Configuration Service. This message exchange
involves two typical web services pipelines.

300 CICS TS for z/OS 4.2: Web Services Guide

3. The Ordering Client receives the response message, builds the <wsa:To> EPR,
and sends a request to the Fulfilment Service:
a. The Ordering Client extracts the <wsa:To> EPR data from the response

message.
b. CICS populates a unique container, in this example the DFHPICC-00000001

container, with the <wsa:To> EPR data.
c. CICS copies the name of the container, in this example DFHPICC-00000001,

into the myEpr-xml-cont element.
d. The Ordering Client reads the contents of the container specified by the

myEpr-xml-cont element and provides it as input to the WSACONTEXT BUILD
API command. The WSACONTEXT BUILD command uses this input to build the
<wsa:To> EPR for the Fulfilment Service.

e. The Ordering Client issues an INVOKE SERVICE command which initiates the
pipeline processing.

f. The CICS web services addressing handler, DFHWSADH, on the outbound
pipeline converts the <wsa:To> EPR into an address and an optional set of
reference parameters which it puts into the header of the SOAP request
message that is being sent to the Fulfilment Service:

<env:Header>
<wsa:To>http://example.ibm.com/Fulfilment_Service</wsa:To>

</env:Header>

Figure 31 on page 302 shows the request from the Ordering Client to the
Fulfilment service. This request involves a web services pipeline that includes
the CICS web services addressing handler, DFHWSADH.

DFHPICC-0000001

<wsa:EndpointReference>
<wsa:Address>

Fulfilment_Service_EPR_XML
</wsa:Address>

</wsa:EndpointReference>

work-cont

myEpr-xml-cont

work-cont

Configuration
Service

CICS Web Services pipeline CICS Web Services pipeline

Handlers HandlersOrdering
Client

CICS Transaction Server CICS Transaction Server

myEpr-xml-cont

DFHPICC-00000001

<wsa:EndpointReference>
<wsa:Address>

Fulfilment_Service_EPR_XML
</wsa:Address>

</wsa:EndpointReference>

1

2

Figure 30. Request-response message exchange between the Ordering Client and the Configuration Service

Chapter 11. Support for Web Services Addressing 301

Related reference:
“Web Services Addressing terminology”
Terms used to explain Web Services Addressing (WS-Addressing) support.

Web Services Addressing terminology
Terms used to explain Web Services Addressing (WS-Addressing) support.

addressing context
An XML document that stores WS-Addressing message addressing
properties (MAPs) before they are sent in SOAP request messages and after
they are received from SOAP request and response messages.

endpoint reference (EPR)
An XML structure containing addressing information that is used to route
a message to a web service. This addressing information includes the
destination address of the message, optional reference parameters for use
by the application, and optional metadata.

message addressing property (MAP)
An XML element that conveys addressing information for a specific web
service message, such as a unique message ID, the destination of the
message, and the endpoint references of the message.

3

CICS Transaction Server CICS Transaction Server

INVOKE SERVICE
DFHWSADH Handlers

CICS Web Services pipeline

DFHWSADHHandlers

CICS Web Services pipeline

Ordering
Client

Fulfilment
Service

Figure 31. Request from the Ordering Client to the Fulfilment Service

302 CICS TS for z/OS 4.2: Web Services Guide

Chapter 12. Support for securing web services

CICS Transaction Server for z/OS provides support for a number of related
specifications that enable you to secure SOAP messages.

The Web Services Security (WSS): SOAP Message Security 1.0 specification describes
the use of security tokens and digital signatures to protect and authenticate SOAP
messages. For more information, see the WSS: Soap Message Security 1.0
specification.

Web Services Security protects the privacy and integrity of SOAP messages by,
respectively, protecting messages from unauthorized disclosure and preventing
unauthorized and undetected modification. WSS provides this protection by
digitally signing and encrypting XML elements in the message. The elements that
can be protected are the body or any elements in the body or the header. You can
give different levels of protection to different elements in the SOAP message.

The Web Services Trust Language specification enhances Web Services Security
further by providing a framework for requesting and issuing security tokens, and
managing trust relationships between web service requesters and providers. This
extension to the authentication of SOAP messages enables web services to validate
and exchange security tokens of different types using a trusted third party. This
third party is called a Security Token Service (STS). For more information on the Web
Services Trust Language, see the WS-Trust Language specification.

CICS Transaction Server for z/OS provides support for these specifications through
the use of a CICS-supplied security handler in the pipeline:
v For outbound messages, CICS provides support for digital signing and

encryption of the entire SOAP body. CICS can also exchange a username token
for a security token of a different type with an STS.

v For inbound messages, CICS supports messages in which the body, or elements
of the body and header, are encrypted or digitally signed. CICS can also
exchange and validate security tokens with an STS.

CICS also provides a separate Trust client interface so that you can interact with an
STS without using the CICS security handler.

Prerequisites for Web Services Security
To implement Web Services Security, you must apply these updates to your CICS
region: install the IBM XML Toolkit for z/OS v1.10, apply APAR OA14956, and
add 3 libraries to the DFHRPL concatenation.

About this task

Complete the following steps before you implement Web Services Security:

Procedure
1. Install the free IBM XML Toolkit for z/OS v1.10. You can download it from the

following site: http://www.ibm.com/servers/eserver/zseries/software/xml/.
You must install version 1.10. Later versions do not work with Web Services
Security support in CICS.

© Copyright IBM Corp. 2005, 2012 303

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://www.ibm.com/servers/eserver/zseries/software/xml/

2. Apply ICSF APAR OA14956 if it is not already installed in z/OS.
3. Add the following libraries to the DFHRPL concatenation:

v hlq.SIXMLOD1, where hlq is the high-level qualifier of the XML Toolkit.
v hlq.SCEERUN, where hlq is the high-level qualifier of the Language

Environment.
v hlq.SDFHWSLD, where hlq is the high-level qualifier of the CICS installation;

for example CICSTS42.
The first two libraries contain DLLs that are required at run time by the
security handler. IXM4C57 is provided by the XML Toolkit and is found in
hlq.SIXMLOD1; C128N is provided by the Language Environment run time and
is found in hlq.SCEERUN.
The hlq.SDFHWSLD library enables CICS to find the DFHWSSE1 and
DFHWSXXX Web Services Security modules.

4. You might need to increase the value of the EDSALIM system initialization
parameter. The three DLLs that are loaded require approximately 15 MB of
EDSA storage.

Results

If you do not have the libraries specified, you see the following message:
CEE3501S The module module_name was not found.

The module_name varies depending on which library is missing.

Planning to secure web services
You can decide the best way to secure your web services. CICS supports a number
of options, including a configurable security message handler and a separate Trust
client interface.

About this task

CICS implements Web Services Security (WS-Security or WSS) at a pipeline level,
rather than for each web service. Answer the following questions to decide how
best to implement security.

Procedure
1. Is the performance of your pipeline processing important? The use of WSS to

secure your web services incurs a significant performance impact.
The main advantage of implementing WSS is that, by encrypting part of a
SOAP message, you can send the message through a chain of intermediate
nodes, all of which might have legitimate reasons to look at the SOAP header
to make routing or processing decisions, but are not allowed to view the
content of the message. By encrypting only those sections that need to be
confidential, you derive the following benefits:
v You do not incur the overhead of encrypting and decrypting at every node in

a chain of intermediate processes.
v You can route a confidential message over a public network of untrusted

nodes, where only the ultimate recipient of the data can understand it.
As an alternative to using WSS, you can use SSL to encrypt the whole data
stream.

304 CICS TS for z/OS 4.2: Web Services Guide

2. If you want to use WSS, what level of security do you want? The options range
from basic authentication, where the message header includes a user name and
a password, through to combining digital signatures and encryption in the
message. The options that the CICS security handler supports are described in
“Options for securing SOAP messages.”

3. Does the CICS-supplied security handler meet your requirements? If you want
to perform more advanced security processing, you must write your own
custom security handler. This handler must perform the necessary
authentication of messages, either directly with RACF or using a Security Token
Service, and handle the processing of digital certificates and encrypted
elements. See “Writing a custom security handler” on page 320 for details.

4. Does your pipeline include an MTOM handler? If you are planning to enable
both the MTOM handler and the security handler in your pipeline
configuration file, any MIME Multipart or Related messages are processed in
compatibility mode, because the security handler cannot parse the XOP
elements in the body of the message. This processing can have a further effect
on the performance of the pipeline processing.

Options for securing SOAP messages
CICS supports both the signing and encryption of SOAP messages, so you can
select the level of security that is most appropriate for the data that you are
sending or receiving in the SOAP message.

Signing and encryption of SOAP messages are not supported for provider mode
Axis2 web service Java applications or for provider web services that attach to the
pipeline using Axis2 MessageContext.

You can choose from these options:

Trusted authentication
In service provider pipelines, CICS can accept a username token in the
SOAP message header as trusted. This type of security token typically
contains a user name and password, but in this case the password is not
required. CICS trusts the provided user name and places it in container
DFHWS-USERID, and the message is processed in the pipeline.

In service requester pipelines, CICS can send a username token without the
password in the SOAP message header to the service provider.

Basic authentication
In service provider mode, CICS can accept a username token in the SOAP
message header for authentication on inbound SOAP messages. This type
of security token contains a user name and password. CICS verifies the
username token using an external security manager, such as RACF. If
successful, the user name is placed in container DFHWS-USERID and the
SOAP message is processed in the pipeline. If CICS cannot verify the
username token, a SOAP fault message is returned to the service requester.

Username tokens that contain passwords are not supported in service
requester mode or on outbound SOAP messages.

HTTP basic authentication
In service provider mode, CICS can accept basic authentication information
over an HTTP protocol. The service requester uses a URIMAP definition to
specify that credentials (user identification information) can be captured by

Chapter 12. Support for securing web services 305

the global user exit, XWBAUTH. XWBAUTH passes this information to
CICS on request and CICS sends the information in an HTTP authorization
header to the service provider.

Advanced authentication
In service provider and requester pipelines, you can verify or exchange
security tokens with a Security Token Service (STS) for authentication
purposes. This authentication enables CICS to accept and send messages
that have security tokens in the message header that are not normally
supported; for example, Kerberos tokens or SAML assertions.

For an inbound message, you can select to verify or exchange a security
token. If the request is to exchange the security token, CICS must receive a
username token back from the STS. For an outbound message, you can
exchange a username token only for a security token.

Signing with X.509 certificates
In service provider and service requester mode, you can provide an X.509
certificate in the SOAP message header to sign the body of the SOAP
message for authentication. This type of security token is known as a
binary security token. To accept binary security tokens from inbound SOAP
messages, the public key associated with the certificate must be imported
into an external security manager, such as RACF, and associated with the
key ring that is specified in the KEYRING system initialization parameter. For
outbound SOAP messages, you generate and publish the public key to the
intended recipients. The Integrated Cryptographic Service Facility (ICSF) is
used to generate public keys.

When you specify the label associated with an X.509 digital certificate, do
not use the following characters:
< > : ! =

You can also include a second X.509 certificate in the header and sign it
using the first certificate. With this second certificate, you can run the work
in CICS under the user ID associated with the second X.509 certificate. The
certificate that you are using to sign the SOAP message must be associated
with a trusted user ID, and have surrogate authority to assert that work
runs under a different identity, the asserted identity, without the trusted user
ID having the password associated with that identity.

Encrypting
In service provider and service requester mode, you can encrypt the SOAP
message body using a symmetric algorithm such as Triple DES or AES. A
symmetric algorithm is where the same key is used to encrypt and decrypt
the data. This key is known as a symmetric key. It is then included in the
message and encrypted using a combination of the public key of the
intended recipient and the asymmetric key encryption algorithm RSA 1.5.
This encryption provides you with increased security, because the
asymmetric algorithm is complex and it is difficult to decrypt the
symmetric key. However, you obtain better performance because the
majority of the SOAP message is encrypted with the symmetric algorithm,
which is faster to decrypt.

For inbound SOAP messages, you can encrypt an element in the SOAP
body and then encrypt the SOAP body as a whole. This sort of encryption
might be particularly appropriate for an element that contains sensitive
data. If CICS receives a SOAP message with two levels of encryption, CICS
decrypts both levels automatically. This sort of encryption is not supported
for outbound SOAP messages.

306 CICS TS for z/OS 4.2: Web Services Guide

CICS does not support inbound SOAP messages that have an encrypted
element in the message header only and no encrypted elements in the
SOAP body.

Signing and encrypting
In service provider and service requester mode, you can choose to both
sign and encrypt a SOAP message. CICS always signs the SOAP message
body first and then encrypts it. The advantage of this method is that it
gives you both message confidentiality and integrity.

ICRX-based identity propagation
In service provider mode, you can use an unauthenticated ICRX (Extended
Identity Context Reference) identity token in the same circumstances that
you would use an unauthenticated WS-Security user ID token. An ICRX
identity token is a z/OS identifier that maps to a user ID. CICS resolves
the ICRX identity token to a user ID and places a copy in the
DFHWS-ICRX container. CICS also populates the DFHWS-USERID
container. For more information about an ICRX identity token, see Identity
propogation and distributed security in the RACF Security Guide.

Authentication using a Security Token Service
CICS can interoperate with a Security Token Service (STS), such as Tivoli Federated
Identity Manager, to provide more advanced authentication of web services.

An STS is a web service that acts as a trusted third party to broker trust
relationships between a web service requester and a web service provider. In a
similar manner to a certificate authority in an SSL handshake, the STS guarantees
that the requester and provider can "trust" the credentials that are provided in the
message. This trust is represented through the exchange of security tokens. An STS
can issue, exchange, and validate these security tokens, and establish trust
relationships, allowing web services from different trust domains to communicate
successfully. For more details, see the Web Services Trust Language specification.

CICS acts as a Trust client and can send two types of web service request to an
STS. The first type of request is to validate the security token in the WS-Security
message header; the second type of request is to exchange the security token for a
different type. These requests enable CICS to send and receive messages that
contain different security tokens from a wide variety of trust domains, such as
SAML assertions and Kerberos tokens.

You can either configure the CICS security handler to define how CICS interacts
with an STS or write your own message handler to use a separately provided Trust
client interface. Whichever method you select, use SSL to secure the connection
between CICS and the STS.

How the security handler calls the STS

The CICS security handler uses the information in the pipeline configuration file to
send a web service request to the Security Token Service (STS). The type of request
that is sent depends on the action that you want the STS to perform.

In a service provider pipeline
In a service provider pipeline, the security handler supports two types of
actions, depending on the way you configure the security handler:

Chapter 12. Support for securing web services 307

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/idprop_intro.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/idprop_intro.html

v Send a request to the STS to validate the first instance of a security
token, or the first security token of a specific type, in the WS-Security
header of the inbound message.

v Send a request to the STS to exchange the first instance of a security
token, or the first security token of a specific type, in the WS-Security
header of the inbound message, for a security token that CICS can
understand.

The security handler dynamically creates a pipeline to send the web
service request to the STS. This pipeline exists until a response is received
from the STS, after which it is deleted. If the request is successful, the STS
returns an identity token or the status of the validity of the token. The
security handler places the RACF ID that is derived from the token in the
DFHWS-USERID container.

If the STS encounters an error, it returns a SOAP fault to the security
handler. The security handler then passes a fault back to the web service
requester.

In a service requester pipeline
In a service requester pipeline, the security handler can request only to
exchange a token with the STS. The pipeline configuration file defines
what type of token the STS issues to the security handler.

If the request is successful, the RACF ID is placed in the DFHWS-USERID
container and the token is included in the outbound message header. If the
STS encounters an error, it returns a SOAP fault to the security handler.
The security handler then passes the fault back through the pipeline to the
web service requester application.

The security handler can request only one type of action from the STS for the
pipeline. It can also exchange only one type of token for an outbound request
message, and is limited to handling the first token in the WS-Security message
header, either the first instance or the first instance of a specific type. These options
cover the most common scenarios for using an STS, but might not offer you the
processing that you require for handling inbound and outbound messages.

If you want to provide more specific processing to handle many tokens in the
inbound message headers or exchange multiple types of tokens for outbound
messages, use the Trust client interface. Using this interface, you can create a
custom message handler to send your own web service request to the STS.

The Trust client interface
The Trust client interface enables you to interact with a Security Token Service
(STS) directly, rather than using the security handler. In this way, you have the
flexibility to provide more advanced processing of tokens than the processing
offered by the security handler.

The Trust client interface is an enhancement to the CICS-supplied program
DFHPIRT. This program is usually used to start a pipeline when a web service
requester application has not been deployed using the CICS web services assistant.
But it can also act as the Trust client interface to the STS.

You can invoke the Trust client interface by linking to DFHPIRT from a message
handler or header processing program, passing a channel called DFHWSTC-V1 and
a set of security containers. Using these containers, you have the flexibility to
request either a validate or issue action from the STS, select which token type to

308 CICS TS for z/OS 4.2: Web Services Guide

exchange, and pass the appropriate token from the message header. DFHPIRT
dynamically creates a pipeline, composes a web service request from the security
containers, and sends it to the STS.

DFHPIRT waits for the response from the STS and passes this back in the
DFHWS-RESTOKEN container to the message handler. If the STS encounters an
error, it returns a SOAP fault. DFHPIRT puts the fault in the DFHWS-STSFAULT
container and returns to the linking program in the pipeline.

You can use the Trust client interface without enabling the security handler in your
service provider and service requester pipelines, or you can use the Trust client
interface in addition to the security handler.

Signing of SOAP messages
For inbound messages, CICS supports digital signatures on elements in the SOAP
body and on SOAP header blocks. For outbound messages, CICS signs all elements
in the SOAP body.

A SOAP message is an XML document, consisting of an <Envelope> element, which
contains an optional <Header> element and a mandatory <Body> element.

The WSS: SOAP Message Security specification permits the contents of the <Header>
and the <Body> to be signed at the element level. That is, in a given message,
individual elements can be signed or not, or can be signed with different
signatures or using different algorithms. For example, in a SOAP message used in
an online purchasing application, it is appropriate to sign elements that confirm
receipt of an order, because these elements might have legal status. However, to
avoid the overhead of signing the entire message, other information might safely
be left unsigned.

For inbound messages, the security message handler can verify the digital
signature on individual elements in the SOAP <Header> and the <Body>:
v Signed elements it encounters in the <Header>.
v Signed elements in the SOAP <Body>. If the handler is configured to expect a

signed body, CICS rejects any SOAP message in which the body is not signed
and issues a SOAP fault.

For outbound messages, the security message handler can sign the SOAP <Body>
only; it does not sign the <Header>. The algorithm and key used to sign the body
are specified in the handler configuration information.

Signature algorithms
CICS supports the signature algorithms required by the XML Signature
specification. Each algorithm is identified by a universal resource identifier (URI).

Algorithm URI

Digital Signature Algorithm
with Secure Hash Algorithm
1 (DSA with SHA1)

Supported on inbound SOAP
messages only.

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Chapter 12. Support for securing web services 309

Algorithm URI

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with
SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Example of a signed SOAP message
This is example shows a SOAP message that has been signed by CICS.

<?xml version="1.0" encoding="UTF8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" SOAP-ENV:mustUnderstand="1">

<wsse:BinarySecurityToken �1�
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
wsu:Id="x509cert00">MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJHQjEMMAoGA1UEChMD

SUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEzMTAwMDAwMFoXDTA3MDEzMTIzNTk1OVow
MDELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkq
hkiG9w0BAQEFAAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiogePsR
6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8JXPFzA+BqV63JqRgJyxN6
msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhC
AQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgG
ZQVRFU0BVSy5JQk0uQ09ggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO

</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<c14n:InclusiveNamespaces xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="ds wsu xenc SOAP-ENV "/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#TheBody">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<c14n:InclusiveNamespaces xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="wsu SOAP-ENV "/>

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>�2�
<ds:DigestValue>QORZEA+gpafluShspHxhrjaFlXE=</ds:DigestValue>�3�
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>drDH0XESiyN6YJm27mfK1ZMG4Q4IsZqQ9N9V6kEnw2lk7aM3if77XNFnyKS4deglbC3ga11kkaFJ�4�

p4jLOmYRqqycDPpqPm+UEu7mzfHRQGe7H0EnFqZpikNqZK5FF6fvYlv2JgTDPwrOSYXmhzwegUDT
lTVjOvuUgXYrFyaO3pw=</ds:SignatureValue>

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#x509cert00"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/>�5�
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="TheBody">
<getVersion xmlns="http://msgsec.wssecfvt.ws.ibm.com"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The binary security token contains the base64binary encoding of the X.509
certificate. This encoding includes the public key that the intended recipient of
the SOAP message uses to verify the signature.

2. The algorithm that is used during the hashing process to produce the message
digest.

3. The value of the message digest.
4. The digest value is then encrypted with the user's private key and included

here as the signature value.
5. References the binary security token that contains the public key that is used to

verify the signature.

310 CICS TS for z/OS 4.2: Web Services Guide

CICS support for encrypted SOAP messages
For inbound messages, CICS can decrypt any encrypted elements in the SOAP
body, and encrypted SOAP header blocks where the body is also encrypted. For
outbound messages, CICS encrypts the entire SOAP body.

A SOAP message is an XML document, consisting of an <Envelope> element, which
contains an optional <Header> element, and a mandatory <Body> element.

The WSS: SOAP Message Security specification allows some of the contents of the
<Header> element and all of the contents of the <Body> element to be encrypted at
the element level. That is, in a given message, individual elements can have
different levels of encryption, or can be encrypted using different algorithms. For
example, in a SOAP message used in an online purchasing application, it is
appropriate to encrypt an individual's credit card details to ensure that they remain
confidential. However, to avoid the overhead of encrypting the entire message,
some information might safely be encrypted using a less secure (but faster)
algorithm and other information might safely be left unencrypted.

For inbound messages, the CICS-supplied security message handler can decrypt
individual elements in the SOAP <Body>, and can decrypt elements in the SOAP
<Header> if the SOAP body is also encrypted. The security message handler always
decrypts these elements:
v Elements it encounters in the <Header> element in the order in which the

elements are found.
v Elements in the SOAP <Body> element. If you want to reject a SOAP message

that does not have an encrypted <Body>, configure the handler to expect an
encrypted body using the <expect_encrypted_body> element.

For outbound messages, the security message handler supports encryption of the
contents of the SOAP <Body> only; it does not encrypt any elements in the
<Header> element. When the security message handler encrypts the <Body> element,
all elements in the body are encrypted with the same algorithm and using the
same key. The algorithm, and information about the key, are specified in the
configuration information about the handler.

Encryption algorithms
CICS supports the encryption algorithms required by the XML Encryption
specification. Each algorithm is identified by a universal resource identifier (URI).

Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

Chapter 12. Support for securing web services 311

Example of an encrypted SOAP message
This example of a SOAP message has been encrypted by CICS.

<?xml version="1.0" encoding="UTF8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" SOAP-ENV:mustUnderstand="1">

<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"�1�
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
wsu:Id="x509cert00">MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJHQjEMMAoGA1UEChMD

SUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEzMTAwMDAwMFoXDTA3MDEzMTIzNTk1OVow
MDELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkq
hkiG9w0BAQEFAAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiogePsR
6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8JXPFzA+BqV63JqRgJyxN6
msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhC
AQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgG
A1UdEQQxMC+BEVdZQVRFU0BVSy5JQk0uQ09NggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO
BgNVHQ8BAf8EBAMCAfYwHQYDVR0OBBYEFMiPX6VZKP5+mSOY1TLNQGVvJzu+MA0GCSqGSIb3DQEB
BQUAA4GBAHdrS409Jhoe67pHL2gs7x4SpV/NOuJnn/w25sjjop3RLgJ2bKtK6RiEevhCDim6tnYW
NyjBL1VdN7u5M6kTfd+HutR/HnIrQ3qPkXZK4ipgC0RWDJ+8APLySCxtFL+J0LN9Eo6yjiHL68mq
uZbTH2LvzFMy4PqEbmVKbmA87alF

</wsse:BinarySecurityToken>
<xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>�2�
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#x509cert00"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/> �3�
</wsse:SecurityTokenReference>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>M6bDQtJrvX0pEjAEIcf6bq6MP3ySmB4TQOa/B5UlQj1vWjD56V+GRJbF7ZCES5ojwCJHRVKW1ZB5�4�

Mb+aUzSWlsoHzHQixc1JchgwCiyIn+E2TbG3R9m0zHD3XQsKTyVaOTlR7VPoMBd1ZLNDIomxjZn2
p7JfxywXkObcSLhdZnc=</xenc:CipherValue>

</xenc:CipherData>
<xenc:ReferenceList>
<xenc:DataReference URI="#Enc1"/>
</xenc:ReferenceList>
</xenc:EncryptedKey>
</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Id="Enc1" Type="http://www.w3.org/2001/04/xmlenc#Content">
<xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>�5�
<xenc:CipherData>
<xenc:CipherValue>kgvqKnMcgIUn7rl1vkFXF0g4SodEd3dxAJo/mVN6ef211B1MZelg7OyjEHf4ZXwlCdtOFebIdlnK�6�

rrksql1Mpw6So7ID8zav+KPQUKGm4+E=</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The binary security token contains the base64binary encoding of the X.509
certificate. This encoding includes the public key that was used to encrypt the
symmetric key.

2. States the algorithm that was used to encrypt the symmetric key.
3. References the binary security token that contains the public key used to

encrypt the symmetric key.
4. The encrypted symmetric key that was used to encrypt the message.
5. The encryption algorithm that was used to encrypt the message.
6. The encrypted message.

Configuring RACF for Web Services Security
You must configure an external security manager, such as RACF, to create
public-private key pairs and X.509 certificates for signing and encrypting outbound
SOAP messages and to authenticate and decrypt signed and encrypted inbound
SOAP messages.

312 CICS TS for z/OS 4.2: Web Services Guide

Before you begin

Before you perform this task, you must have RACF set up to work with CICS.
Specify the DFLTUSER, KEYRING, and SEC=YES system initialization parameters in the
CICS region that contains your web services pipelines.

Procedure
1. To authenticate inbound SOAP messages that are signed:

a. Import the X.509 certificate into RACF as an ICSF key.
b. Attach the certificate to the key ring specified in the KEYRING system

initialization parameter, using the RACDCERT command:
RACDCERT ID(userid1)
CONNECT(ID(userid2) LABEL(’label-name’) RING(ring-name)

where:
v userid1 is the default user ID of the key ring or has authority to attach

certificates to the key ring for other user IDs.
v userid2 is the user ID that you want to associate with the certificate.
v label-name is the name of the certificate.
v ring-name is the name of the key ring that is specified in the KEYRING

system initialization parameter.
c. Optional: If you want to use asserted identities, ensure that the user ID

associated with the certificate has surrogate authority to allow work to run
under other user IDs. Also, make sure that any additional certificates
included in the SOAP message header are also imported into RACF.

The SOAP message can contain a binary security token in the header that either
includes the certificate or contains a reference to the certificate. This reference
can be the KEYNAME (the certificate label in RACF), a combination of the
ISSUER and SERIAL number, or the SubjectKeyIdentifier. CICS can recognize
the SubjectKeyIdentifier only if it has been specified as an attribute in the
definition of the certificate in RACF.

2. To sign outbound SOAP messages:
a. Create an X.509 certificate and a public-private key pair using the following

RACDCERT command:
RACDCERT ID(userid2) GENCERT
SUBJECTSDN(CN(’common-name’)

T(’title’)
OU(’organizational-unit’)
O(’organization’)
L(’locality’)
SP(’state-or-province’)
C(’country’))

WITHLABEL(’label-name’)

where userid2 is the user ID that you want to associate with the certificate.
When you specify the certificate label-name value, do not use the following
characters:
< > : ! =

b. Attach the certificate to the key ring specified in the KEYRING system
initialization parameter. Use the RACDCERT command.

c. Export the certificate and publish it to the intended recipient of the SOAP
message.

Chapter 12. Support for securing web services 313

You can edit the pipeline configuration file so that CICS automatically includes
the X.509 certificate in the binary security token of the SOAP message header
for the intended recipient to validate the signature.

3. To decrypt inbound SOAP messages that are encrypted, the SOAP message
must include the public key that is part of a key pair, where the private key is
defined in CICS.
a. Generate a public-private key pair and certificate in RACF for encryption.

The key pair and certificate must be generated using ICSF.
b. Attach the certificate to the key ring specified in the KEYRING system

initialization parameter. Use the RACDCERT command.
c. Export the certificate and publish it to the generator of the SOAP messages

that you want to decrypt.

The generator of the SOAP message can then import the certificate that
contains the public key and use it to encrypt the SOAP message. The SOAP
message can contain a binary security token in the header that either includes
the public key or contains a reference to it. This reference can be the
KEYNAME, a combination of the ISSUER and SERIAL number, or the
SubjectKeyIdentifier. CICS can recognize the SubjectKeyIdentifier only if it has
been specified as an attribute in the definition of the public key in RACF.

4. To encrypt outbound SOAP messages:
a. Import the certificate that contains the public key that you want to use for

encryption into RACF as an ICSF key. The intended recipient must have the
private key associated with the public key to decrypt the SOAP message.

b. Attach the certificate that contains the public key to the key ring specified
in the KEYRING system initialization parameter. Use the RACDCERT command.

CICS uses the public key in the certificate to encrypt the SOAP body and sends
the certificate containing the public key as a binary security token in the SOAP
message header. The public key is defined in the pipeline configuration file.

What to do next

The above configuration for signing and encrypting outbound messages requires
that the certificate used is owned by the CICS region userid. The certificate must
be owned by the CICS region userid because RACF allows only the certificate
owner to extract the private key, which is used for the signing or encryption
process.

If CICS needs to sign or encrypt a message using a certificate that it does not own,
for example a single certificate shared by multiple CICS systems where each
system has a different region userid, the following conditions must be true:
1. You must be using one of the following z/OS releases:

v z/OS 1.9 or above
v z/OS 1.8 with PTF UA37039
v z/OS 1.7 with PTF UA37038

2. The certificate must be connected to its key ring with the PERSONAL usage
option.

3. If the certificate is a USER certificate, the CICS region userid that wishes to use
the certificate must have READ or UPDATE authority for the
<ringOwner>.<ringName>.LST resource in the RDATALIB class.

4. The RDATALIB class must have been activated using the RACLIST option.

314 CICS TS for z/OS 4.2: Web Services Guide

CICS uses the RACF R_datalib callable service to extract the private key from the
certificate. For more information, see the z/OS Security Server RACF Callable Services
guide.

Configuring provider mode web services for identity propagation
Identity propagation with a web service request relies on trust-based
configurations; for example, using a client-certified SSL connection from
WebSphere DataPower. In this task, you configure a PIPELINE resource to expect
an ICRX identity token in the WS-Security header, sent from a trusted client.

Before you begin

You must configure your RACF RACMAP settings before you configure your web
service connections, otherwise you receive the RACF ICH408I message for every
unmapped request that is sent to RACF. For more information about configuring
the RACF RACMAP command, see Configuring RACF for identity propagation.

You must configure a trust relationship between the WebSphere DataPower
appliance and CICS, for example, using SSL client certification between WebSphere
DataPower and CICS. The digital certificate that WebSphere DataPower uses to
identify itself must be associated with a user ID, and that user ID must be granted
surrogate authority to assert identities. For more information about surrogate
authority, see Surrogate user security.

About this task

This task explains how to use CICS with a WebSphere DataPower appliance to
provide a web service configuration that can propagate distributed identities in a
secure and robust way. The circle in the diagram indicates that this task explains
the CICS-specific configuration.

distinguished name
and realm

distributed
identity

DataPower

CICSCICS

CICS

RACF

LDAP

RACF

WebSphere
Application

Server

z/OS
sysplex

RACF ID

MRO

SOAP/HTTP IPIC

IPIC

SSL

distributed
identity

distributed
identity

Figure 32. Configuring CICS to expect an ICRX identity token from WebSphere DataPower.

Chapter 12. Support for securing web services 315

WebSphere DataPower acts as an intermediary between CICS and other
applications. Remote web service requester applications connect to the WebSphere
DataPower appliance using the SOAP protocol. WebSphere DataPower
authenticates the credentials supplied by the remote client and mapping the
credentials to a z/OS ICRX identity token, which identifies the distributed identity
of a user. The SOAP message is then forwarded to CICS over the trusted SSL
connection with an ICRX identity token in a WS-Security header. For more
information about ICRX identity tokens, see z/OS Security Server RACF Data Areas.

CICS receives the SOAP message from WebSphere DataPower. The PIPELINE
configuration file specifies blind trust, because the only possible client is the
WebSphere DataPower appliance, and WebSphere DataPower is communicating
with CICS over a secure SSL connection. Therefore, you do not need to specify
additional authentication in the PIPELINE configuration file. The WS-Security
handler program locates the first ICRX found in the WS-Security header and uses
the ICRX to identify the user.

Procedure
1. Create a PIPELINE resource, or edit an existing PIPELINE resource to specify

the basic-ICRX mode, which allows the PIPELINE to receive an ICRX. The most
typical combination is the blind trust with the basic-ICRX mode. For more
information about the PIPELINE resource element, see “The <authentication>
element” on page 104.
Here is an example PIPELINE configuration file, showing blind trust with the
basic-ICRX mode:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">

<service>
<service_handler_list>
<wsse_handler>
<dfhwsse_configuration version="1">
<authentication trust="blind" mode="basic-ICRX"/>

</dfhwsse_configuration>
</wsse_handler>

</service_handler_list>
<terminal_handler>
<cics_soap_1.2_handler/>

</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>

</provider_pipeline>

Here is an example SOAP message with an ICRX identity, using blind trust:
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
SOAP-ENV:mustUnderstand="1">

<wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-soap-message-security-1.0#Base64Binary"

wsu:Id="ICRX"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-utility-1.0.xsd"
ValueType="http://www.IBM.com/xmlns/prod/zos/saf#ICRXV1">

ICRX IS HERE

</wsse:BinarySecurityToken>

</wsse:Security>
</SOAP-ENV:Header>

316 CICS TS for z/OS 4.2: Web Services Guide

<SOAP-ENV:Body>

APPLICATION SPECIFIC XML IS HERE

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2. If you have not already configured WebSphere DataPower to be able to send
ICRX information, see this scenario: Configuring identity propagation for web
service requests into CICS using WebSphere DataPower.

Results

Web service requests from WebSphere DataPower with an ICRX identity token in
the WS-Security header, connected over a client-certified SSL connection, can now
flow.
Related information:
Configuring identity propagation for web service requests into CICS using
WebSphere DataPower
Configuring RACF for identity propagation
Configuring IPIC connections for identity propagation

Configuring the pipeline for Web Services Security
To configure a pipeline to support Web Services Security (WSS), you must add a
security handler to your pipeline configuration files. You can use the
CICS-supplied security handler, as described, or create your own.

Before you begin

Before you define the CICS-supplied security handler, you must identify or create
the pipeline configuration files to which you will add configuration information for
WSS.

Procedure
1. Add a <wsse_handler> element to your pipeline. The handler must be

included in the <service_handler_list> element in a service provider or
requester pipeline. Code the following elements:
<wsse_handler>

<dfhwsse_configuration version="1">

</dfhwsse_configuration>
</wsse_handler>

The <dfhwsse_configuration> element is a container for the other elements in
the configuration.

2. Optional: Code an <authentication> element.
v In a service requester pipeline, the <authentication> element specifies the

type of authentication that must be used in the security header of outbound
SOAP messages.

v In a service provider pipeline, the element specifies whether CICS uses the
security tokens in an inbound SOAP message to determine the user ID
under which work is processed.

Chapter 12. Support for securing web services 317

a. Code the trust attribute to specify whether asserted identity is used and
the nature of the trust relationship between service provider and requester.
For details of the trust attribute, see “The <authentication> element” on
page 104.

b. Optional: If you specified trust=none, code the mode attribute to specify
how credentials found in the message are processed. For details of the
mode attribute, see “The <authentication> element” on page 104.

c. In the <authentication> element, code these elements:
1) An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler
does not attempt to use any security tokens in the message to
determine under which user ID the work will run.
If this element is specified in a service requester pipeline, the handler
does not attempt to add to the outbound SOAP message any of the
security tokens that are required for authentication.

2) In a requester pipeline, an optional <algorithm> element that specifies
the URI of the algorithm used to sign the body of the SOAP message.
You must specify this element if the combination of trust and mode
attribute values indicate that the messages are signed. You can specify
only the RSA with SHA1 algorithm in this element. The URI is
http://www.w3.org/2000/09/xmldsig#rsa-sha1.

3) An optional <certificate_label> element that specifies the label
associated with an X.509 digital certificate installed in RACF. If you
specify this element in a service requester pipeline and the <suppress>
element is not specified, the certificate is added to the security header
in the SOAP message. If you do not specify a <certificate_label>
element, CICS uses the default certificate in the RACF key ring.
This element is ignored in a service provider pipeline.

3. Optional: Code an <sts_authentication> element as an alternative to the
<authentication> element. You must not code both in your pipeline
configuration file. This element specifies that a Security Token Service (STS) is
used for authentication and determines the type of request that is sent.
a. Optional: In service provider mode only, code the action attribute to

specify whether the STS verifies or exchanges a security token . For details
of the action attribute, see “The <sts_authentication> element” on page
108.

b. Within the <sts_authentication> element, code these elements:
1) An <auth_token_type> element. This element is required when you

specify a <sts_authentication> element in a service requester pipeline
and is optional in a service provider pipeline. For more information,
see <auth_token_type>.
v In a service requester pipeline, the <auth_token_type> element

indicates the type of token that STS issues when CICS sends it the
user ID contained in the DFHWS-USERID container. The token that
CICS receives from the STS is placed in the header of the outbound
message.

v In a service provider pipeline, the <auth_token_type> element is
used to determine the identity token that CICS takes from the
message header and sends to the STS to exchange or validate. CICS
uses the first identity token of the specified type in the message
header. If you do not specify this element, CICS uses the first

318 CICS TS for z/OS 4.2: Web Services Guide

identity token that it finds in the message header. CICS does not
consider the following as identity tokens:
– wsu:Timestamp

– xenc:ReferenceList

– xenc:EncryptedKey

– ds:Signature

2) In a service provider pipeline only, an optional, empty <suppress/>
element. If this element is specified, the handler does not attempt to
use any security tokens in the message to determine under which user
ID the work will run. The <suppress/> element includes the identity
token that is returned by the STS.

4. Optional: Code an <sts_endpoint> element. Use this element only if you have
also specified an <sts_authentication> element. In the <sts_endpoint>
element, code this element:
v An <endpoint> element. This element contains a URI that points to the

location of the Security Token Service (STS) on the network. It is
recommended that you use SSL or TLS to keep the connection to the STS
secure, rather than using HTTP.
You can also specify a WebSphere MQ endpoint using the JMS format of
URI.

5. Optional: If you require inbound SOAP messages to be digitally signed, code
an empty <expect_signed_body/> element.
The <expect_signed_body/> element indicates that the <body> of the inbound
message must be signed. If the body of an inbound message is not correctly
signed, CICS rejects the message with a security fault.

6. Optional: If you want to reject inbound SOAP messages that are digitally
signed, code an empty <reject_signature/> element.

7. Optional: If you require inbound SOAP messages to be encrypted, code an
empty <expect_encrypted_body/> element.
The <expect_encrypted_body/> element indicates that the <body> of the
inbound message must be encrypted. If the body of an inbound message is
not correctly encrypted, CICS rejects the message with a security fault.

8. If you want to reject inbound SOAP messages that are partially or fully
encrypted, code an empty <reject_encryption/> element.

9. Optional: If you require outbound SOAP messages to be signed, code a
<sign_body> element.
a. In the <sign_body> element, code an <algorithm> element.
b. Following the <algorithm> element, code a <certificate_label> element.

Here is an example of a completed <sign_body> element:
<sign_body>

<algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
<certificate_label>SIGCERT01</certificate_label>

</sign_body>

10. Optional: If you require outbound SOAP messages to be encrypted, code an
<encrypt_body> element.
a. In the <encrypt_body> element, code an <algorithm> element.
b. Following the <algorithm> element, code a <certificate_label> element.

Here is an example of a completed <encrypt_body> element:

Chapter 12. Support for securing web services 319

<encrypt_body>
<algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
<certificate_label>ENCCERT02</certificate_label>

</encrypt_body>

Example

The following example shows a completed security handler in which most of the
optional elements are present:
<wsse_handler>

<dfhwsse_configuration version="1">
<authentication trust="signature" mode="basic">

<suppress/>
<certificate_label>AUTHCERT03</certificate_label>

</authentication>
<expect_signed_body/>
<expect_encrypted_body/>
<sign_body>

<algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
<certificate_label>SIGCERT01</certificate_label>

</sign_body>
<encrypt_body>

<algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
<certificate_label>ENCCERT02</certificate_label>

</encrypt_body>
</dfhwsse_configuration>

</wsse_handler>

Writing a custom security handler
If you want to use your own security procedures and processing, you can write a
custom message handler to process secure SOAP messages in the pipeline.

Before you begin

You need to decide the level of security that your security handler must support,
and ensure that an appropriate SOAP fault is returned when a message includes
security that is not supported.

About this task

The message handler must also be able to cope with security on inbound and
outbound messages.

Procedure
1. Retrieve the DFHREQUEST or DFHRESPONSE container using an EXEC CICS

GET CONTAINER command.
2. Parse the XML to find the security token that is in the WS-Security message

header. The header starts with the <wsse:Security> element. The security token
might be a user name and password, a digital certificate, or an encryption key.
A message can have many tokens in the security header, so your handler needs
to identify the correct one to process.

3. Perform the appropriate processing, depending on the security that is
implemented in the message.
a. If you want to perform basic authentication, issue an EXEC CICS VERIFY

PASSWORD command. This command checks the user name and password in
the security header of the message. If this command is successful, update

320 CICS TS for z/OS 4.2: Web Services Guide

the DFHWS-USERID container with an EXEC CICS PUT CONTAINER.
Otherwise, issue an EXEC CICS SOAPFAULT CREATE command.

b. If you want to perform advanced authentication, either by exchanging or
validating a range of tokens with a Security Token Service, use the Trust
client interface. See “Invoking the Trust client from a message handler” for
details.

c. Validate the credentials of the digital certificate if the message is signed.
d. If parts of the message are encrypted, decrypt the message using the

information in the security header. The Web Services Security: SOAP
Message Security specification provides information about how to do this.

Results

Define your security handler program in CICS and update the pipeline
configuration file, ensuring that it is correctly placed in the XML. In a service
requester pipeline configuration file, the security handler must be configured to
run at the end of the pipeline. In a service provider pipeline configuration file, the
security handler must be configured to run at the beginning of the pipeline.

What to do next

For general information about how to write a custom message handler, see the
Application Development for CICS Web Services Redbooks publication that is available
from http://www.redbooks.ibm.com/abstracts/sg247126.html.

Invoking the Trust client from a message handler
CICS provides an interface so that you can write your own message handler to
invoke a Security Token Service (STS). With this interface you can perform more
advanced processing than the CICS-supplied security handler.

Before you begin

About this task

You can use the Trust client instead of the security handler or in addition to it. To
use the Trust client interface:

Procedure
1. Extract the correct token from the security message header of the inbound or

outbound message.
2. Link to program DFHPIRT, passing the channel DFHWSTC-V1 and the

following required containers:
v DFHWS-STSURI, containing the location of the STS on the network.
v DFHWS-STSACTION, containing the URI of the type of request that the STS

must perform. The two supported actions are issue and validate.
v DFHWS-IDTOKEN, containing the token that must either be verified or

exchanged by the STS.
v DFHWS-TOKENTYPE, containing the type of must that the STS should send

back in the response.
v DFHWS-SERVICEURI, containing the URI of the web service operation that

is being invoked.

Chapter 12. Support for securing web services 321

http://www.redbooks.ibm.com/abstracts/sg247126.html

You can optionally include the DFHWS-XMLNS container to provide the
namespaces of the SOAP message that contains the security token. This
container is described in more detail in “The header processing program
interface” on page 124.

3. DFHPIRT returns with the response from the STS. A successful response is
stored in the DFHWS-RESTOKEN container.
If the STS encounters a problem with the request, it returns a SOAP fault.
DFHPIRT puts the SOAP fault in the DFHWS-STSFAULT container. If the STS
provides a reason for issuing the SOAP fault, the reason is put in the
DFHWS-STSREASON container.
If an abend occurs, a DFHERROR container is returned that contains details of
the processing error.
Your message handler must handle these responses and perform suitable
processing in the event of an error. For example, the message handler might
return a suitable SOAP fault to the web service requester.

4. Process the response as appropriate. In provider mode, your pipeline
processing must ensure that a user name and password that CICS can
understand is placed in the DFHWS-USERID container by the time the message
reaches the application handler. In requester mode, your message handler must
add the correct token to the outbound message security header.

What to do next

When you have written your message handler, deploy the program in CICS and
update the appropriate pipeline configuration files. In service requester pipelines,
define your message handler to occur at the end of the pipeline processing but
before the CICS-supplied security handler. In service provider pipelines, define
your message handler at the beginning of the pipeline but after the CICS-supplied
security handler.

322 CICS TS for z/OS 4.2: Web Services Guide

Related reference:
“DFHWS-STSURI container” on page 149
DFHWS-STSURI is a container of DATATYPE(CHAR). It contains the absolute URI
of the Security Token Service (STS) that is used to validate or issue an identity
token for the SOAP message.
“DFHWS-STSACTION container” on page 148
DFHWS-STSACTION is a container of DATATYPE(CHAR). It contains the URI of
the action that the Security Token Service (STS) takes to either validate or issue a
security token.
“DFHWS-IDTOKEN container” on page 147
DFHWS-IDTOKEN is a container of DATATYPE(CHAR). It contains the token that
the Security Token Service (STS) either validates or uses to issue an identity token
for the message.
“DFHWS-TOKENTYPE container” on page 149
DFHWS-TOKENTYPE is a container of DATATYPE(CHAR). It contains the URI of
the requested token type that the Security Token Service (STS) issues as an identity
token for the SOAP message.
“DFHWS-SERVICEURI container” on page 148
DFHWS-SERVICEURI is a container of DATATYPE(CHAR). It contains the URI
that the Security Token Service (STS) uses as the AppliesTo scope.
“DFHWS-RESTOKEN container” on page 147
DFHWS-RESTOKEN is a container of DATATYPE(CHAR). It contains the response
from the Security Token Service (STS).
“DFHWS-STSFAULT container” on page 148
DFHWS-STSFAULT is a container of DATATYPE(CHAR). It contains the error that
was returned by the Security Token Service (STS).
“DFHWS-STSREASON container” on page 148
DFHWS-STSREASON is a container of DATATYPE(CHAR). It contains the contents
of the <wst:Reason> element, if this element is present in the response message
from the Security Token Service (STS).
“DFHERROR container” on page 128
DFHERROR is a container of DATATYPE(BIT) that is used to convey information
about pipeline errors to other message handlers.

Chapter 12. Support for securing web services 323

324 CICS TS for z/OS 4.2: Web Services Guide

Chapter 13. Interoperability between the web services
assistant and WSRR

The CICS web services assistant can interoperate with the IBM WebSphere Service
Registry and Repository (WSRR). Use WSRR to find web services that you are
requesting more quickly and enforce version control of the web services that you
are providing.

Both DFHLS2WS and DFHWS2LS include parameters to interoperate with WSRR.
DFHLS2WS also includes an optional parameter so that you can add your own
customized metadata to the WSDL document in WSRR.

If you want the web services assistant to communicate securely with WSRR, you
can use secure socket level (SSL) encryption. Both DFHLS2WS and DFHWS2LS
include parameters for using SSL encryption.

To use SSL with the web services assistant and WSRR, see “Example of how to use
SSL with the web services assistant and WSRR.”

Example of how to use SSL with the web services assistant and WSRR
You can interoperate securely between the web services assistant and an IBM
WebSphere Service Registry and Repository (WSRR) server by using secure socket
layer (SSL) encryption. To use SSL encryption you need a key store and a trust
store; you must also specify certain parameters on the web services assistant.

About this task

Complete the following steps to use SSL encryption for interactions between the
web services assistant and WSRR.

Procedure
1. Create a key store for your private keys and public key certificates (PKC).

a. You can create a key store using a key configuration program such as the
IBM Key Management Utility (iKeyman).

b. Specify the SSL-KEYSTORE parameter in DFHWS2LS or DFHLS2WS with the
fully qualified name of the key store that you have created.

c. Optional: Specify the SSL-KEYPWD parameter in DFHWS2LS or DFHLS2WS
with the password of the key store that you have created.

2. Create a trust store for all your trusted root certificate authority (CA)
certificates. These certificates are used to establish the trust of any inbound
public key certificates.
a. You can create a trust store using a key configuration program such as the

IBM Key Management Utility (iKeyman).
b. Specify the SSL-TRUSTSTORE parameter in DFHWS2LS or DFHLS2WS with

the fully qualified name of the trust store that you have created.
c. Optional: Specify the SSL-TRUSTPWD parameter in DFHWS2LS or DFHLS2WS

with the password of the trust store that you have created.
3. Test that the web services assistant is able to communicate with WSRR using

SSL encryption.

© Copyright IBM Corp. 2005, 2012 325

a. You can use the sample files provided by IBM WebSphere Application
Server to test the web services assistant with WSRR.
v The sample key stores provided by WebSphere Application Server are

DummyClientKeyFile.jks and DummyServerKeyFile.jks.
v The sample trust stores provided by WebSphere Application Server are

DummyClientTrustFile.jks and DummyServerTrustFile.jks.
b. Replace the keys in the sample key and trust store files. These keys are

shipped with WebSphere Application Server and must be replaced for
security.

Results

The web services assistant can now use SSL encryption to communicate securely
with WSRR across a network.

326 CICS TS for z/OS 4.2: Web Services Guide

Chapter 14. Diagnosing problems

The problems that you might get when implementing web services in CICS can
occur during the deployment process, or at run time when CICS is transforming
SOAP messages.

Diagnosing deployment errors
Deployment errors can occur when you try to run the CICS web services assistant
batch jobs or the CICS XML assistant batch jobs, install a PIPELINE resource in
CICS, or install a WEBSERVICE resource in CICS. The most common deployment
errors are described here, including the symptom of the problem, the cause and the
solution.

About this task

In the event of a deployment error, PIPELINE resources typically install in a
DISABLED state and WEBSERVICE resources install in an UNUSABLE state.
Information and error messages associated with the CICS web services assistant
batch jobs and the CICS XML assistant batch jobs are located in the job log. Error
messages associated with installing resources are located in the system log.

Codes of 0, 4, 8, or 12 are issued by the assistants, other codes are typically issued
by BPXBATCH, the JVM, or IEBGENER.

Codes issued by BPXBATCH fall into two main categories: a code of less than 128
indicates a command failure, a code of greater than or equal to 128 indicates that
the process was terminated by a signal. For more information about BPXBATCH
and its return codes, see the z/OS UNIX System Services Command Reference.

Procedure
v You receive a return code of 0, 4, 8, or 12 when running the CICS web services

assistant batch jobs or the CICS XML assistant batch jobs. The return codes mean
the following:
– 0 - The job completed successfully.
– 4 - Warning. The job completed successfully, but one or more warning

messages have been issued.
– 8 - Input error. The job did not complete successfully. One or more error

messages were issued while validating the input parameters.
– 12 - Error. The job did not complete successfully. One or more error messages

were issued during execution.
1. Check the job log for any warning or error messages. Look up the detailed

explanations for the messages. The explanations normally describe actions
that you can take to fix the problem.

2. Ensure that you have entered the correct values for each of the parameters in
the job. Parameter values such as file names and elements in the web service
description should be treated as case sensitive.

3. Ensure that you have specified the correct combination of parameters. For
example, if you include the PGMNAME parameter in DFHWS2LS when
generating a web service binding file for a service requester, you get an error
and the job does not complete successfully.

© Copyright IBM Corp. 2005, 2012 327

v You receive a return code of 1, 136 or 139 when running the CICS web services
assistant batch jobs or the CICS XML assistant batch jobs. These return codes
indicate that the JVM has failed, usually because there is insufficient storage
available. The CICS assistants require a JCL region size of at least 200 MB.
1. Increase the region size, or consider setting the region size to 0M.
2. Check for any active IEFUSI exits, which can limit the region size.

v You receive a return code of 137 when running the CICS web services assistant
batch job DFHLS2WS, or the CICS XML assistant batch job DFHLS2SC. This
return code means that the job timed out.
1. Increase the time by coding the TIME parameter on the EXEC statement of

your job to TIME=1440, or increase the MAXCPUTIME value in the
SYS1.PARMLIB(BPXPRMxx) member.

v You receive a DFHPI0914 error message when attempting to install a
WEBSERVICE resource. The message includes some information about the cause
of the install failure.
1. Check that you have authorized CICS to read the web service binding file in

z/OS UNIX.
2. Check that the web service binding file is not corrupt. This can occur, for

example, if you use FTP to transfer the file to z/OS UNIX in text mode
rather than binary mode.

3. Check that two web service binding files with the same name are not in
different pick up directories.

4. If you are attempting to install a resource for a web service requester
application, check that the version of the SOAP binding matches the level
supported in the pipeline. You cannot install a SOAP 1.1 WEBSERVICE into a
service requester pipeline that supports SOAP 1.2.

5. Check that you are not installing a provider mode WEBSERVICE resource
into a requester mode pipeline. Provider mode web service binding files
specify a PROGRAM value, whereas requester mode binding files do not.

6. If you are using DFHWS2LS or DFHLS2WS, check that you have specified
the correct parameters when generating the web service binding file. Some
parameters, such as PGMNAME, are only allowed for web service providers and
have to be excluded if you are creating a web service requester.

7. If you are using DFHWS2LS or DFHLS2WS, check the messages issued by
the job to see if there are any problems that you need to resolve before
creating the WEBSERVICE resource.

v The PIPELINE resource fails to install and you receive a DFHPI0700,
DFHPI0712, DFHPI0714 or similar error message.
1. If you received a DFHPI0700 error message, you need to enable PL/I

language support in your CICS region. This is required before you can install
any PIPELINE resources. See the CICS Transaction Server for z/OS Installation
Guide for more information.

2. Check that you have authorized CICS to access the z/OS UNIX directories to
read the pipeline configuration files.

3. Check that the directory you are specifying in the WSDIR parameter is valid.
In particular, check the case as directory and file names in z/OS UNIX are
case-sensitive.

4. Ensure that you do not have a PIPELINE resource of the same name in an
ENABLED state in the CICS region.

v The PIPELINE resource installs in a DISABLED state. You get an error message
in the range of DFHPI0702 to DFHPI0711.

328 CICS TS for z/OS 4.2: Web Services Guide

1. Check that there are no errors in the pipeline configuration file. The elements
in the pipeline configuration file can only appear in certain places. If you
specify these incorrectly you get a DFHPI0702 error message. This message
includes the name of the element that is causing the problem. Check the
element description to make sure you have coded it in the correct place.

2. Check that you do not have any unprintable characters, such as tabs, in the
pipeline configuration file.

3. Check that the XML is valid. If the XML is not valid, this can cause parsing
errors when you attempt to install the PIPELINE resource.

4. Ensure that the pipeline configuration file is encoded in US EBCDIC. If you
try to use a different EBCDIC encoding, CICS cannot process the file.

Diagnosing service provider runtime errors
If you are having problems receiving or processing inbound messages in a
provider mode pipeline, there could be a problem with the transport or a specific
SOAP message.

Procedure
v You receive a DFHPI0401, DFHPI0502, or similar message, indicating that a

HTTP or WebSphere MQ transport error has occurred. If the transport is HTTP,
the client receives a 500 Server Internal Error message. If the transport is
WebSphere MQ, the message is written to the dead letter queue (DLQ). A SOAP
fault is not returned to the web service requester, because CICS cannot
determine what type of message was received.

v You receive a DFHxx message and a 404 Not Found error message.
1. If you are not using the web services assistant, you must create a URIMAP

resource. If you are using the web services assistant, the URIMAP is created
automatically for you when you run the PIPELINE SCAN command. The
system log provides information on any errors that occurred as a result of
running this command.

2. Check that the WEBSERVICE resource is enabled and that the URIMAP it is
associated with is what you expected. If your WEBSERVICE resource is in an
UNUSABLE state, see “Diagnosing deployment errors” on page 327.

3. Check that you have correctly specified the URI and port number. In
particular, check the case, because the attribute PATH on the URIMAP
resource is case sensitive.

v If there are unexpected errors being reported, consider using CEDX to debug the
web service application.
1. Check the system log to see what error messages are being reported by CICS.

This could indicate what type of error is occurring. If CICS is not reporting
any errors, ensure that the request is reaching CICS through the network.

2. Run CEDX against CPIH for the HTTP transport, CPIQ for the WebSphere
MQ transport, or the transaction that you specified in the URIMAP if this is
different.
If a task switch occurs during the pipeline processing before the application
handler, unless the DFHWS-TRANID container is populated, the new task
runs under the same transaction id as the first one. This can interfere with
running CEDX,, because the first task has a lock on the CEDX session. You
can avoid this problem by using DFHWS-TRANID to change the transaction
id when the task switches, allowing you to use CEDX on both the pipeline
and application tasks separately.For more information on CEDX, see Using
the CEDX transaction in CICS Supplied Transactions.

Chapter 14. Diagnosing problems 329

3. If CEDX does not activate or allow you solve the problem, consider running
auxiliary trace with the PI, SO, AP, EI, and XS domains active. This could
indicate whether there is a security problem, TCP/IP problem, application
program problem, or pipeline problem in your CICS region. Look for any
exception trace points or abends.

v If you are receiving conversion errors, see “Diagnosing data conversion errors”
on page 334.

v If you think your problem is related to MTOM messages, see “Diagnosing
MTOM/XOP errors” on page 331.

Diagnosing service requester runtime errors
Read this section if you are having problems sending web service requests from
your service requester application, or you are receiving SOAP fault messages from
the web service provider.

About this task

Problems that occur can be due to errors in individual web services or issues at the
transport level.

Procedure
v If you are using the INVOKE SERVICE command in your application program, a

RESP and RESP2 code are returned when there is a problem.
1. Look up the meaning of the RESP and RESP2 codes for the INVOKE

SERVICE command to give you an indication of what the problem might be.
2. Check the CICS system log to see if there are any messages that can help you

determine the cause of the problem.
v If you are unable to send a SOAP request message and the pipeline is returning

a DFHERROR container, there was a problem when the pipeline tried to process
the SOAP message.
1. Look at the contents of the DFHERROR container. This should contain an

error message and some data describing the problem that occurred.
2. Have you introduced any new message handlers or header processing

programs in the pipeline? If you have, try removing the new program and
rerunning the web service to see if this solves the problem. If your message
handler is trying to perform some processing using a container that isn't
present in the pipeline, or is trying to update a container that is read-only,
the pipeline stops processing and returns an error in the DFHERROR
container. Header processing programs can only update a limited set of
containers in the pipeline. See “The header processing program interface” on
page 124 for details.

3. If the web service requester application is not using the INVOKE SERVICE
command to send a web service request, check that it has created all of the
necessary control containers and that they are the right datatype. In
particular, check that the DFHREQUEST container has a datatype of CHAR
rather than BIT.

4. If the web service requester application is using the INVOKE SERVICE
command an INVREQ and a RESP2 code of 14 is returned, this indicates that
there has been a data conversion error. See “Diagnosing data conversion
errors” on page 334.

5. Check that the XML in your SOAP message has not been invalidated by a
custom message handler during pipeline processing. CICS does not perform

330 CICS TS for z/OS 4.2: Web Services Guide

any validation on outbound messages in the pipeline. If your application
uses the INVOKE SERVICE command, the XML is generated by CICS and is
well formed when the body of the SOAP message is placed in the
DFHREQUEST container. However, if you have any additional message
handlers that change the contents of the SOAP message, this is not validated
in the pipeline.

v If you are able to send a SOAP message, but are getting a time out or transport
error, this is usually returned as a SOAP fault. If your program is using the
INVOKE SERVICE command, CICS returns a RESP value of TIMEDOUT and
RESP2 code of 2 for a timeout error, and a RESP value of INVREQ and RESP2
code of 17 for a transport error.
1. Check that the network end point is present.
2. Ensure that the RESPWAIT attribute on the PIPELINE resource is correctly

configured to meet your application's requirements. The RESPWAIT attribute
defines how long CICS waits for a reply from the web service provider
before returning to the application. If no value is specified, CICS uses the
defaults of 10 seconds for HTTP and 60 seconds for WebSphere MQ.
However, CICS also has a time out in the dispatcher for each transaction,
and if this is less than the default of the protocol that is being used, CICS
uses the dispatcher time out instead.

v If you are able to send a SOAP message, but are getting a SOAP fault response
back from the web service provider that you didn't expect, look at the contents
of the DFHWS-BODY container for details of the SOAP fault.
1. If you sent a complete SOAP envelope in DFHREQUEST using the DFHPIRT

interface, ensure that the outbound message doesn't contain duplicate SOAP
headers. This can occur when the requester pipeline uses a SOAP 1.1 or
SOAP 1.2 message handler. The SOAP message handlers add SOAP headers,
even if they are already specified in the SOAP envelope by the service
requester application. In this scenario, you can either:

– Remove the SOAP 1.1 or SOAP 1.2 message handler from the pipeline. This
will affect any other service requester applications that use this pipeline.

– Remove the SOAP headers from the SOAP envelope that the application puts
in DFHREQUEST. CICS adds the necessary SOAP headers for you. If you
want to perform additional processing on the headers, you can use the header
processing program interface.

– Use a WEB SEND command instead in your application and opt out of the web
services support.

v If you think the problem is related to sending or receiving MTOM messages, see
“Diagnosing MTOM/XOP errors.”

Diagnosing MTOM/XOP errors
MTOM/XOP errors can occur at run time, in both requester and provider mode
pipelines.

Before you begin

If you are having problems configuring a pipeline to support MTOM/XOP, read
“Diagnosing deployment errors” on page 327.

Chapter 14. Diagnosing problems 331

About this task

Procedure
v If you are able to send a web service request message in MTOM format, but are

getting a SOAP fault message from the web service provider, look at the
contents of the DFHWS-BODY container for details of the SOAP fault.
1. Is the web service provider able to receive MIME Multipart/Related

messages? If the web service provider does not support the MTOM format,
the fault that you get back can vary depending on the implementation. If the
web service provider is another CICS application, the SOAP fault would
indicate that the MIME message is not a valid content type.

2. If the web service provider can receive MIME messages, check to see if the
pipeline is sending the message in direct or compatibility mode. If you are
sending an MTOM message in direct mode, there could be a problem with
the XML.

3. To find out if the problem is with the XML, turn validation on for the web
service. This causes the MTOM message to be processed in compatibility
mode through the pipeline. As part of this processing, the MTOM handler
parses the message contents to optimize the base64binary data. If there is an
error in the XML, CICS puts the error in the DFHERROR container and
issues an MTOM transport failure in the pipeline.

4. Examine the contents of the DFHERROR container to see if this indicates
what problem occurred. If this isn't enough information to help you diagnose
the cause of the problem, run a level 2 trace of the PI domain.

5. Look for trace point PI 0C16. This describes the problem that was
encountered in more detail, and should help you to fix the problem with the
XML that is provided by the requester application.

v If expected binary attachments are missing from the outbound MTOM message,
this could indicate that the binary data is considered too small to optimize as a
binary attachment. CICS only creates binary attachments for data that is large
enough to justify the processing overhead of optimizing it in the pipeline. Any
binary data below 1,500 bytes in size is not optimized.

v If you are unable to send an outbound MTOM message in compatibility mode
and the pipeline is returning a DFHERROR container, there was a problem when
the pipeline tried to process the MTOM message.
1. Look at the contents of the DFHERROR container. This should contain an

error message and some data describing the problem that occurred.
2. Check that the XML in your outbound MTOM message is valid. CICS does

not perform any validation on outbound messages in the pipeline.
v If you receive a DFHPI1100E message, there was a problem with the MIME

headers of an MTOM message that was received by CICS. The CICS message
contains the general class of MIME error that occurred. To find the exact
problem that occurred:
1. If you have auxiliary trace active in your CICS region, check for any

exception trace entries.
2. Look for trace point PI 1305. This describes the nature of the MIME header

error, the location of the error in the header, and up to 80 bytes of text before
and after the error so you can understand the context of where the error
occurred.

For example, the following excerpt of trace indicates that the MIME content-type
start parameter was invalid because it was not enclosed in quotes, but included
characters that are not valid outside a quoted string.

332 CICS TS for z/OS 4.2: Web Services Guide

PI 1305 PIMM *EXC* - MIME_PARSE_ERROR -

TASK-01151 KE_NUM-0214 TCB-QR /009C7B68 RET-9C42790A TIME-10:33:41.3667303015 INTERVAL-00.0000053281 =000599=
1-0000 C5A79785 83A38584 40978199 819485A3 859940A5 8193A485 40A39692 85954096 *Expected parameter value token o*
0020 994098A4 96A38584 40A2A399 899587 *r quoted string *

2-0000 D4C9D4C5 40A2A895 A381A740 85999996 994081A3 404EF0F0 F0F0F1F1 F2408995 *MIME syntax error at +0000112 in*
0020 40C39695 A38595A3 60A3A897 85408885 81848599 * Content-type header *

3-0000 5F626F75 6E646172 793B2074 7970653D 22617070 6C696361 74696F6E 2F786F70 *_boundary; type="application/xop*
0020 2B786D6C 223B2073 74617274 2D696E66 6F3D2261 70706C69 63617469 6F6E2F73 *+xml"; start-info="application/s*
0040 6F61702B 786D6C22 3B207374 6172743D *oap+xml"; start= *

4-0000 3C736F61 70736C75 6E674074 6573742E 68757273 6C65792E 69626D2E 636F6D3E *<soapslung@test.hursley.ibm.com>*
0020 3B206368 61727365 743D7574 662D38 *; charset=utf-8 *

v The pipeline processing fails to parse an inbound MTOM message, and the web
service requester receives a SOAP fault message. This indicates that there was a
problem with the XOP document in the MTOM message. In direct mode, the
SOAP fault is generated by the application handler. If the pipeline is running in
compatibility mode, the message is parsed by the MTOM handler when
constructing the SOAP message. In this case, CICS issues a DFHPI prefixed error
message and a SOAP fault.
1. The DFHPI prefixed error message indicates what was wrong with the XOP

document. For example, it could be an invalid MIME header or a missing
binary attachment.

2. To find the exact cause of the problem, check for any exception trace points.
In particular, look for trace points beginning with PI 13xx. This describes the
exception that occurred in more detail.

You can also run a PI level 2 trace to establish the sequence of events leading up
to the error, but this can have a significant performance impact and is not
recommended on production regions.
Determining if a web service supports MTOM/XOP

You can find out whether a web service supports MTOM/XOP with the
following interfaces:

CICS Explorer

The CICS Explorer administration views
Use the XOP Direct Status and XOP Support Status attributes in the Web
Services view.

CICSPlex SM

The WEBSERVICE definitions view

CEMT

The INQUIRE WEBSERVICE command

The CICS SPI

The INQUIRE WEBSERVICE command
Checking the operation mode of a PIPELINE resource

You can check the operation mode of a PIPELINE with the following interfaces:

CICS Explorer

The CICS Explorer administration views
Use the Operation mode attribute in the Pipelines view.

Chapter 14. Diagnosing problems 333

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_administration.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7cp.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquirewebservice.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_administration.html

CICSPlex SM

The PIPELINE definitions view

CEMT

The INQUIRE PIPELINE command

The CICS SPI

The INQUIRE PIPELINE command

Diagnosing data conversion errors
Data conversion errors can occur at run time when converting a SOAP message
into a CICS COMMAREA or container and from a COMMAREA or container into
a SOAP message.

Before you begin

Symptoms include the generation of SOAP fault messages and CICS messages
indicating that a failure has occurred.

About this task

If you have a data conversion problem, perform the following steps:

Procedure
1. Ensure that the WEBSERVICE resource is up to date. Regenerate the web

service binding file for the web service and redeploy it to CICS.
2. Ensure that the remote web service has been generated using the same version

of the web service document (WSDL) as used or generated by CICS.
3. If you are sure that the WEBSERVICE resource is using a current web service

binding file:
a. Enable runtime validation for the WEBSERVICE resource using the

command SET WEBSERVICE(name) VALIDATION where name is the
WEBSERVICE resource name.

b. Check for the CICS messages DFHPI1001 or DFHPI1002 in the message log.
DFHPI1001 describes the precise nature of the data conversion problem and
can help you identify the source of the conversion error. DFHPI1002
indicates that no problems were found.

c. When you no longer need validation for the web service, use the following
command to turn off validation: SET WEBSERVICE(name) NOVALIDATION.

4. If you still have not determined the reason for the conversion error, take a CICS
trace of the failing web service. Look for the following PI domain exception
trace entries:
PI 0F39 - PICC *EXC* - CONVERSION_ERROR
PI 0F08 - PIII *EXC* - CONVERSION_ERROR

A PICC conversion error indicates that a problem occurred when transforming
an inbound SOAP message into a COMMAREA or container. A PIII conversion
error indicates that a problem occurred when generating a SOAP message from
a COMMAREA or container supplied by the application program. In both
cases, the trace point identifies the name of the field associated with the
conversion error and might also identify the value that is causing the problem.

334 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7cl.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquirepipeline.html

If either of these trace points occur, they are followed by a conversion error. For
a possible interpretation of these conversion errors, see the explanations of
messages DFHPI1007 to DFHPI1010.

Why data conversion errors occur
CICS validates SOAP messages only to the extent that it is necessary to confirm
that they contain well-formed XML, and to transform them. This means that it is
possible for a SOAP message to be successfully validated using the WSDL, but
then fail in the runtime environment and vice versa.

The WEBSERVICE resource encapsulates the mapping instructions to enable CICS
to perform data conversion at run time. A conversion error occurs when the input
does not match the expected data, as described in the WEBSERVICE resource.

This mismatch can occur for any of the following reasons:
v A SOAP message that is received by CICS is not well formed and valid when

checked against the web service description (WSDL) associated with the
WEBSERVICE resource.

v A SOAP message that is received by CICS is well formed and valid but contains
values that are out of range for the WEBSERVICE resource.

v The contents of a COMMAREA or container are not consistent with the
WEBSERVICE resource and the language structure from which the web service
was generated.

For example, the WSDL document might specify range restrictions on a field, such
as an unsignedInt that can only have a value between 10 and 20. If a SOAP
message contains a value of 25, then validating the SOAP message would cause it
to be rejected as invalid. The value 25 is accepted as a valid value for an integer
and is passed to the application.

A second example is where the WSDL document specifies a string without
specifying a maximum length. DFHWS2LS assumes a maximum length of 255
characters by default when generating the web service binding file. If the SOAP
message contains 300 characters, then although the check against the WSDL would
validate the message as no maximum length is set, an error would be reported
when attempting to transform the message as the value does not fit the 255
character buffer allocated by CICS.

Code page issues

CICS uses the value of the LOCALCCSID system initialization parameter to encode
the application program data. However, the web service binding file is encoded in
US EBCDIC (Cp037). This can lead to problems with converting data when the
code page used by the application program encodes characters differently to the
US EBCDIC code page. To avoid this problem, you can use the CCSID parameter in
the web services assistant batch jobs to specify a different code page to encode
data between the application program and the web services binding file. The value
of this parameter overrides the LOCALCCSID system initialization parameter for that
particular WEBSERVICE resource. The value of CCSID must be an EBCDIC CCSID.

SOAP fault messages for conversion errors
If a conversion error occurs at run time and CICS is acting as a web service
provider, a SOAP fault message is issued to the service requester. This SOAP fault
message includes the message that is issued by CICS.

Chapter 14. Diagnosing problems 335

The service requester can receive one of the following SOAP fault messages:
v Cannot convert SOAP message

This fault message implies that either the SOAP message is not well formed and
valid, or its values are out of range.

v Outbound data cannot be converted

This fault message implies that the contents of a COMMAREA or container are
not consistent.

v Operation not part of web service

This fault message is a special variation of when an invalid SOAP message is
received by CICS.

If CICS is the web service requester, the INVOKE SERVICE command returns a RESP
code of INVREQ and a RESP2 value of 14.

336 CICS TS for z/OS 4.2: Web Services Guide

Chapter 15. The CICS catalog manager example application

The CICS catalog manager example application is a working COBOL application
that is designed to illustrate best practice when connecting CICS applications to
external clients and servers.

The example is constructed around a simple sales catalog and order processing
application, in which a user can perform these tasks:
v List the items in a catalog.
v Inquire on individual items in the catalog.
v Order items from the catalog.

The catalog is implemented as a VSAM file.

The base application has a 3270 user interface, but the modular structure, with
well-defined interfaces between the components, makes it possible to add further
components. In particular, the application comes with web service support, which
is designed to illustrate how you can extend an existing application into the web
services environment.

For this example, the CICS Explorer is used to install and deploy the application.
The CICS Explorer is an Eclipse-based graphical tooling interface for CICS.

The base application
The base application, with its 3270 user interface, provides functions with which
you can list the contents of a stored catalog, select an item from the list, and enter
a quantity to order. The application has a modular design, which makes it simple
to extend the application to support newer technology, such as web services.

Figure 33 on page 338 shows the structure of the base application.

© Copyright IBM Corp. 2005, 2012 337

The components of the base application are:
v A BMS presentation manager (DFH0XGUI) that supports a 3270 terminal or

emulator, and that interacts with the main catalog manager program.
v A catalog manager program (DFH0XCMN) that is the core of the example

application, and that interacts with several back-end components:
– A data handler program that provides the interface between the catalog

manager program and the data store. The base application provides two
versions of this program. They are the VSAM data handler program
(DFH0XVDS), which stores data in a VSAM data set; and a dummy data
handler (DFH0XSDS), which does not store data, but returns valid responses
to its caller. Configuration options let you choose between the two programs.

– A dispatch manager program that provides an interface for dispatching an
order to a customer. Again, configuration options let you choose between the
two versions of this program: DFHX0WOD is a web service requester that
invokes a remote order dispatch end point, and DFHX0SOD is a dummy
program that returns valid responses to its caller.

Dummy
stock manager
(DFH0XSSM)

Dispatch
manager

(DFH0XWOD)

Dummy
dispatch manager

(DFH0XSOD)

Dummy
data handler
(DFH0XSDS)

VSAM
data handler
(DFH0XVDS)

Catalog manager
(DFH0XCMN)

BMS presentation
manager

(DFH0XGUI)

Datastore Type
= VSAM

Datastore Type
= STUB

Outbound WebService
= NO

Outbound WebService
= YES

Catalog
data

(EXMPCAT)

VSAM

Order dispatch
endpoint

(DFH0XODE)

Order dispatch
endpoint

ExampleApp

DispatchOrder.ear

CICS1

CICS2 WebSphere Application Server

Pipeline
(EXPIPE02)

3270 emulation

Figure 33. Structure of the base application

338 CICS TS for z/OS 4.2: Web Services Guide

There are two equivalent order dispatch endpoints: DFH0XODE is a CICS
service provider program; ExampleAppDispatchOrder.ear is an enterprise
archive that can be deployed in WebSphere Application Server or similar
environments.

– A dummy stock manager program (DFH0XSSM) that returns valid responses
to its caller, but takes no other action.

BMS presentation manager
The presentation manager is responsible for all interactions with the end user via
3270 BMS panels. No business decisions are made in this program.

The BMS presentation manager can be used in two ways:
v As part of the base application.
v As a CICS web service client that communicates with the base application using

SOAP messages.

Data handler
The data handler provides the interface between the catalog manager and the data
store.

The example application provides two versions of the data handler:
v The first version uses a VSAM file as the data store.
v The second version is a dummy program that always returns the same data on

an inquire and does not store the results of any update requests.

Dispatch manager
The dispatch manager is responsible for dispatching the order to the customer
when the order has been confirmed.

The example application provides two versions of the dispatch manager program:
v The first version is a dummy program that returns a correct response to the

caller, but takes no other action.
v The second version is a web service requester program that makes a request to

the endpoint address defined in the configuration file.

Order dispatch program
The order dispatch program is a web service provider program that is responsible
for dispatching the item to the customer.

In the example application, the order dispatcher is a dummy program that returns
a correct response to the caller, but takes no other action. It makes it possible for
all configurations of the example web services to be operable.

Stock manager
The stock manager is responsible for managing the replenishment of the stock.

In the example program, the stock manager is a dummy program that returns a
correct response to the caller, but takes no other action.

Chapter 15. The CICS catalog manager example application 339

Application configuration
The example application includes a program that lets you configure the base
application.

Installing and setting up the base application
Before you can run the base application, you must define and populate two VSAM
data sets, and create two TRANSACTION resources.

Creating and defining the VSAM data sets
Two KSDS VSAM data sets are used to define and populate the example
application. One data set contains configuration information for the example
application. The other contains the sales catalog.

Procedure
1. Locate the JCL to create the VSAM data sets. During CICS installation, the JCL

is placed in the hlq.SDFHINST library:
v Member DFH$ECNF contains the JCL to generate the configuration data set.
v Member DFH$ECAT contains the JCL to generate the catalog data set.

2. Modify the JCL and access method services commands.
a. Supply a valid JOB card.
b. Supply a suitable high-level qualifier for the data set names in the access

method services commands. As supplied, the JCL uses a high-level qualifier
of HLQ.
The following command defines the configuration file:
DEFINE CLUSTER (NAME(hlq.EXMPLAPP.EXMPCONF)-

TRK(1 1) -
KEYS(9 0) -
RECORDSIZE(350,350) -
SHAREOPTIONS(2 3) -
INDEXED -
) -
DATA (NAME(hlq.EXMPLAPP.EXMPCONF.DATA) -
) -
INDEX (NAME(hlq.EXMPLAPP.EXMPCONF.INDEX) -
)

where hlq is a high-level qualifier of your choice.
The following command defines the catalog file:
DEFINE CLUSTER (NAME(hlq.EXMPLAPP.catname)-

TRK(1 1) -
KEYS(4 0) -
RECORDSIZE(80,80) -
SHAREOPTIONS(2 3) -
INDEXED -
) -
DATA (NAME(hlq.EXMPLAPP.catname.DATA) -
) -
INDEX (NAME(hlq.EXMPLAPP.catname.INDEX) -
)

where:
v hlq is a high-level qualifier of your choice
v catname is a name of your choice. The name used in the example

application as supplied is EXMPCAT.
3. Run both jobs to create and populate the data sets.

340 CICS TS for z/OS 4.2: Web Services Guide

4. Use the CICS Explorer to create a FILE definition for the catalog file.
a. Select Definitions > File Definitions. Right-click in the Name column and

click New to create a new file definition. Type DFH$EXBS in the Resource
Group text box, and type EXMPCAT in the Name text box. Click Finish to
define the FILE definition. Alternatively, you can copy the file definition
from the CICS supplied group DFH$EXBS.

b. Double-click the new EXMPCAT file. In the File Definition (EXMPCAT)
CICS Example Application editor, select the VSAM tab. Type
hlq.EXMPLAPP.EXMPCAT in the Data set name to be used text box.

c. Select the Attributes tab and set the operations of the following attributes to
Yes:

Add
Browse
Delete
Read
Update

d. Use the default values for all other attributes.
5. Use the CICS Explorer to create a FILE definition for the configuration file.

a. Select Definitions > File Definitions. Right-click in the Name column and
click New to create a new file definition. Type DFH$EXBS in the Resource
Group text box, and type EXMPCONF in the Name text box. Click Finish to
define the FILE definition. Alternatively, you can copy the file definition
from the CICS supplied group DFH$EXBS.

b. Double-click the new EXMPCONF file. In the File Definition (EXMPCONF)
CICS Example Application window, select the VSAM tab. Type
hlq.EXMPLAPP.EXMPCONF in the Data set name to be used text box.

c. Select the Attributes tab and set the operations of the following attributes to
Yes:

Add
Browse
Delete
Read
Update

d. Use the default values for all other attributes.

Results

The data sets are populated, and the FILE definitions for the catalog file and the
configuration file have been created and are ready to install.

Defining the 3270 interface
The example application is supplied with a 3270 user interface to run the
application and to customize it. The user interface consists of two transactions,
EGUI and ECFG. A third transaction, ECLI, is used for the CICS web service client.

Procedure
1. Create TRANSACTION definitions for the following transactions using the

CICS Explorer. The correct operation of the example application does not
depend on the names of the transactions, so you can use different names.

Chapter 15. The CICS catalog manager example application 341

a. Copy the definitions for transaction EGUI from the CICS supplied group
DFH$EXBS by right-clicking DFH$EXBS in the Resource Group Definitions
view. Select New > Transaction Definition. Type EGUI in the Name text
box, and DFH0XGUI in the Program Name text box. Click Finish to create the
EGUI TRANSACTION definition.

b. Copy the definitions for transaction ECFG from the CICS supplied group
DFH$EXBS by right-clicking DFH$EXBS in the Resource Group Definitions
window. Select New > Transaction Definition. Type ECFG in the Name text
box, and DFH0XCFG in the Program Name text box. Click Finish to create the
ECFG TRANSACTION definition.

c. Optional: Copy the definitions for transactions ECLI from the CICS supplied
group DFH$EXWS by right-clicking DFH$EXWS in the Resource Group
Definitions view. Select New > Transaction Definition. Type ECLI in the
Name text box, and DFH0XCUI in the Program Name text box. Click Finish to
create the ECLI transaction definition.

Use the default values for all other attributes.
2. Optional: If you do not want to use program autoinstall, copy the PROGRAM

definitions for the base application programs and the MAPSET definitions for
the BMS maps from the CICS supplied group DFH$EXBS.
a. Copy the MAPSET resource definitions for the BMS maps in members

DFH0XS1, DFH0XS2, and DFH0XS3. For details of what is in each member,
see “Components of the base application” on page 368.

b. Copy the PROGRAM resource definitions for the following COBOL
programs.

Table 14. SDFHSAMP members containing COBOL source for the base application

Member name Description

DFH0XCFG Program invoked by transaction ECFG to read and update the
VSAM configuration file.

DFH0XCMN Controller program for the catalog application. All requests pass
through the controller program.

DFH0XGUI Program invoked by transaction EGUI to manage the sending of
the BMS maps to the terminal user and the receiving of the maps
from the terminal user. This program links to program
DFH0XCMN.

DFH0XODE One of two versions of the endpoint for the order dispatch web
service. This is the version that runs in CICS. This program sets the
text "Order in dispatch" in the return COMMAREA.

DFH0XSDS A stubbed or dummy version of the data store program that allows
the application to work when the VSAM catalog file has not been
set up. DFH0XSDS uses data defined in the program rather than
data stored in a VSAM file.

DFH0XSOD A stubbed version of the order dispatch program. It sets the return
code in the COMMAREA to 0 and returns to its caller. DFH0XSOD
is used when outbound web services are not required.

DFH0XSSM A stubbed version of the stock manager (replenishment) program.
DFH0XSSM sets the return code in the COMMAREA to 0 and
returns to its caller.

DFH0XVDS The VSAM version of the data store program. DFH0XVDS accesses
the VSAM file to perform reads and updates of the catalog.

342 CICS TS for z/OS 4.2: Web Services Guide

Table 14. SDFHSAMP members containing COBOL source for the base
application (continued)

Member name Description

DFH0XWOD The web service version of the order dispatch program.
DFH0XWOD issues an EXEC CICS INVOKE WEBSERVICE to
make an outbound web service call to an order dispatcher.

Use the default values for all other attributes.
c. Optional: Copy the PROGRAM definitions for DFH0XCUI from the CICS

supplied group DFH$EXWS. Use the default values for all other attributes.
This program is required if you want to use transaction ECLI that starts the
web service client.

DIS G(DFH$EXWS)
ENTER COMMANDS
NAME TYPE GROUP
DFH0XCUI PROGRAM DFH£EXWS
ECLI TRANSACTION DFH£EXWS
EXMPPORT TCPIPSERVICE DFH£EXWS
EXPIPE01 PIPELINE DFH£EXWS
EXPIPE02 PIPELINE DFH£EXWS

Completing the installation
To complete the installation, install the RDO group that contains your resource
definitions.

Procedure

Right-click the resource group in the Resource Group Definitions window. Select
Install. Make sure that your CICSplex is correct and that you select your target
region, then click OK.

Results

Your RDO is now installed and the application is ready for use.

Configuring the example application
The base application includes a transaction (ECFG) that you can use to configure
the example application.

Before you begin

The configuration transaction uses mixed-case information. You must use a
terminal that can handle mixed-case information correctly.

About this task

You can specify a number of aspects of the example application. These include:
v The overall configuration of the application, such as the use of web services
v The network addresses used by the web services components of the application
v The names of resources, such as the file used for the data store
v The names of programs used for each component of the application

With the configuration transaction, you can replace CICS-supplied components of
the example application with your own without restarting the application.

Chapter 15. The CICS catalog manager example application 343

Procedure
1. Enter the transaction ECFG to start the configuration application. CICS displays

the following screen:

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

Datastore Type ==> VSAM STUB|VSAM
Outbound WebService? ==> NO YES|NO

Catalog Manager ==> DFH0XCMN
Data Store Stub ==> DFH0XSDS
Data Store VSAM ==> DFH0XVDS

Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD

Stock Manager ==> DFH0XSSM
VSAM File Name ==> EXMPCAT

Server Address and Port ==> myserver:99999
Outbound WebService URI ==> http://myserver:80/exampleApp/dispatchOrder

==>
==>
==>
==>
==>

PF 3 END 12 CNCL

2. Complete the fields.

Datastore Type
Specify STUB if you want to use the data store stub program.

Specify VSAM if you want to use the VSAM data store program.

Outbound WebService
Specify YES if you want to use a remote web service for your order
dispatch function; that is, if you want the catalog manager program to link
to the order dispatch web service program.

Specify NO if you want to use a stub program for your order dispatch
function; that is, if you want the catalog manager program to link to the
order dispatch stub program.

Catalog Manager
Specify the name of the catalog manager program. The program supplied
with the example application is DFH0XCMN.

Data Store Stub
If you specified STUB in the Datastore Type field, specify the name of the
data store stub program. The program supplied with the example
application is DFH0XSDS.

Data Store VSAM
If you specified VSAM in the Datastore Type field, specify the name of the
VSAM data store program. The program supplied with the example
application is DFH0XVDS.

Order Dispatch Stub
If you specified NO in the Outbound WebService field, specify the name of
the order dispatch stub program. The program supplied with the example
application is DFH0XSOD.

Order Dispatch WebService
If you specified YES in the Outbound WebService field, specify the name of

344 CICS TS for z/OS 4.2: Web Services Guide

the program that functions as a service requester. The program supplied
with the example application is DFH0XWOD.

Stock Manager
Specify the name of the stock manager program. The program supplied
with the example application is DFH0XSSM.

VSAM File Name
If you specified VSAM in the Datastore Type field, specify the name of the
CICS FILE definition. The name used in the example application as
supplied is EXMPCAT.

Server Address and Port
If you are using the CICS web service client, specify the IP address and
port of the system on which the example application is deployed as a web
service.

Outbound WebService URI
If you specified YES in the Outbound WebService field, specify the location
of the web service that implements the dispatch order function. If you are
using the supplied CICS endpoint, set the Outbound WebService to:
http://myserver:myport/exampleApp/dispatchOrder where myserver and
myport are your CICS server address and port.

Running the example application with the BMS interface
The base application can be run using the BMS interface.

Procedure
1. Enter transaction EGUI from a CICS terminal. The example application menu is

displayed:

CICS EXAMPLE CATALOG APPLICATION - Main Menu

Select an action, then press ENTER

Action 1. List Items
2. Order Item Number ____
3. Exit

F3=EXIT F12=CANCEL

You can list the items in the catalog, order an item, or exit the application using
the options on the menu.

2. Type 1 and press Enter to select the List Items option. The application
displays a list of items in the catalog.

Chapter 15. The CICS catalog manager example application 345

CICS EXAMPLE CATALOG APPLICATION - Inquire Catalog

Select a single item to order with /, then press ENTER

Item Description Cost Order

0010 Ball Pens Black 24pk 2.90 /
0020 Ball Pens Blue 24pk 2.90 _
0030 Ball Pens Red 24pk 2.90 _
0040 Ball Pens Green 24pk 2.90 _
0050 Pencil with eraser 12pk 1.78 _
0060 Highlighters Assorted 5pk 3.89 _
0070 Laser Paper 28-lb 108 Bright 500/ream 7.44 _
0080 Laser Paper 28-lb 108 Bright 2500/case 33.54 _
0090 Blue Laser Paper 20lb 500/ream 5.35 _
0100 Green Laser Paper 20lb 500/ream 5.35 _
0110 IBM Network Printer 24 - Toner cart 169.56 _
0120 Standard Diary: Week to view 8 1/4x5 3/4 25.99 _
0130 Wall Planner: Eraseable 36x24 18.85 _
0140 70 Sheet Hard Back wire bound notepad 5.89 _
0150 Sticky Notes 3x3 Assorted Colors 5pk 5.35 _

F3=EXIT F7=BACK F8=FORWARD F12=CANCEL

3. Type / in the Order column, and press Enter to order an item. The application
displays details of the item to be ordered.

CICS EXAMPLE CATALOG APPLICATION - Details of your order

Enter order details, then press ENTER

Item Description Cost Stock On Order

0010 Ball Pens Black 24pk 2.90 0011 000

Order Quantity: 5
User Name: CHRISB

Charge Dept: CICSDEV1

F3=EXIT F12=CANCEL

4. If there is sufficient stock to fulfill the order, enter the following information:
a. Complete the Order Quantity field. Specify the number of items you want

to order.
b. Complete the User Name field. Enter a 1-to 8-character string. The base

application does not check the value that is entered here.
c. Complete the Charge Dept field. Enter a 1-to 8-character string. The base

application does not check the value that is entered here.
5. Press Enter to submit the order and return to the main menu.
6. Press F3 to end the applications.

346 CICS TS for z/OS 4.2: Web Services Guide

Web service support for the example application
The web service support extends the example application, providing a web client
front end and two versions of a web service endpoint for the order dispatcher
component.

The web client front end and one version of the web service endpoint are supplied
as enterprise archive files (EARs) that run in the following environments:

Environment EAR files

WebSphere Application Server Version 6.1 ExampleAppClientV6.ear
ExampleAppWrapperClient.ear
DispatchOrderV6.ear

Rational Developer for System z uses the web service endpoint for WebSphere
Application Server.

The second version of the web service endpoint is supplied as a CICS service
provider application program (DFH0XODE).

Figure 34 on page 348 shows one configuration of the example application.

Chapter 15. The CICS catalog manager example application 347

In this configuration, the application is accessed through two different clients:
v A web browser client connected to WebSphere Application Server, in which

ExampleAppClient.ear is deployed.
v CICS web service client DFH0XECC. This client uses the same BMS presentation

logic as the base application but uses module DFH0XCUI instead of DFH0XGUI.

Figure 35 on page 349 shows another way to configure the example application as
a web service.

WebSphere Application Server

CICS2

Dummy
stock manager
(DFH0XSSM)

Dispatch
manager

(DFH0XWOD)

VSAM
data handler
(DFH0XVDS)

Catalog manager
(DFH0XCMN)

Catalog
data

(EXMPCAT)

VSAM

Order dispatch
endpoint

(DFH0XODE)

CICS1

BMS presentation
manager

(DFH0XCUI)

CICS Web Service
client

(DFH0XECC)

Pipeline
(EXPIPE02)

Pipeline
(EXPIPE02)

ExampleApp
Client.ear

Web browser

3270 emulation

Pipeline
(EXPIPE01)

CICS3

Figure 34. The example application configured as a web service provider

348 CICS TS for z/OS 4.2: Web Services Guide

In this configuration, the web browser client is connected to WebSphere
Application Server, in which ExampleAppWrapperClient.ear is deployed. In CICS,
three wrapper applications (for the inquire catalog, inquire single, and place order
functions) are deployed as service provider applications. They in turn link to the
base application.

Configuring code page support
As supplied, the example application uses two coded character sets. You must
configure your system to enable data conversion between the two character sets.

About this task

The coded character sets used in the example application are:

037 EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal, Brazil,
Australia, New Zealand)

WebSphere Application Server

CICS2

Dummy
stock manager
(DFH0XSSM)

Dispatch
manager

(DFH0XWOD)

VSAM
data handler
(DFH0XVDS)

Catalog manager
(DFH0XCMN)

Catalog
data

(EXMPCAT)

VSAM

Order dispatch
endpoint

(DFH0XODE)

CICS1

Pipeline
(EXPIPE02)

Web browser

Wrapper for
inquire catalog
(DFH0XICW)

Wrapper for
inquire single
(DFH0XISW)

Wrapper for
place order

(DFH0XPOW)

Pipeline
(EXPIPE01)

ExampleAppWrapperClient.ear

Figure 35. Alternate web service provider configuration

Chapter 15. The CICS catalog manager example application 349

1208 UTF-8 Level 3

Procedure

Add the following statements to the conversion image for your z/OS system:

CONVERSION 037,1208;
CONVERSION 1208,037;

For more information, see the CICS Transaction Server for z/OS Installation Guide.

Defining the web service client and wrapper programs
If you are not using program autoinstall, you must define resource definitions for
the web service client and wrapper programs.

Procedure
1. Use the CICS Explorer to define PROGRAM resource definitions for the

wrapper programs, by selecting Definitions > Program Definitions. Right-click
in the Program Definitions view and select New to create a new program
definition. Type DFH0XECC in the Resource Group text box, and type PROGRAM1 in
the Name text box. Click Finish to define the PROGRAM definition. Create
definitions for the following COBOL programs:

Table 15. SDFHSAMP members containing COBOL source code for the wrapper modules

Member name Description

DFH0XICW Wrapper program for the inquireCatalog service.

DFH0XISW Wrapper program for the inquireSingle service.

DFH0XPOW Wrapper program for the purchaseOrder service.

2. Use the CICS Explorer to define PROGRAM resource definitions for the web
services client program DFH0XECC, by selecting Definitions > Program
Definitions. Right-click in the Program Definitions view and select New to
create a new program definition. Type DFH0XECC in the Resource Group text
box, and type PROGRAM1 in the Name text box. Click Finish to define the
program definition. The web services client program DFH0XECC is a COBOL
program. You can use default values for all of the other attributes.

Installing web service support
Before you can run the web service support for the example application, you must
create two z/OS UNIX directories, and create the required CICS resources.

The z/OS UNIX directories
Web service support for the example application requires a shelf directory and a
pickup directory in z/OS UNIX.

The shelf directory is used to store the WEBSERVICE binding files that are
associated with WEBSERVICE resources. Each WEBSERVICE resource is, in turn,
associated with a PIPELINE. The shelf directory is managed by the PIPELINE
resource and you should not modify its contents directly. Several PIPELINEs can
use the same shelf directory, as CICS ensures a unique directory structure beneath
the shelf directory for each PIPELINE.

The pickup directory is the directory that contains the WEBSERVICE binding files
associated with a PIPELINE. When a PIPELINE is installed, or in response to a

350 CICS TS for z/OS 4.2: Web Services Guide

PERFORM PIPELINE SCAN command, information in the binding files is used to
dynamically create the WEBSERVICE and URIMAP definitions associated with the
PIPELINE.

The example application uses /var/cicsts for the shelf directory.

Creating the pipeline definition
The complete definition of a pipeline consists of a PIPELINE resource and a
PIPELINE configuration file. The file contains the details of the message handlers
that act on web service requests and responses as they pass through the pipeline.

About this task

The example application uses the supplied SOAP 1.1 handler to deal with the
SOAP envelopes of inbound and outbound requests. CICS provides sample
pipeline configuration files, which you can use in your service provider and
service requester.

More than one web service can share a single pipeline, therefore you need define
only one pipeline for the inbound requests of the example application. You must,
however, define a second pipeline for the outbound requests because a single
pipeline cannot be configured to be both a provider and requester pipeline at the
same time.

If you want to use Java-based pipelines, you must specify the sample service
provider configuration file basicsoap11javaprovider.xml instead of
basicsoap11provider.xml in step 1b. And specify the sample service requester
configuration file basicsoap11javarequester.xml instead of
basicsoap11requester.xml in step 2b. For more information about sample
configuration files, see “Pipeline configuration files” on page 68. Also, if you want
to use the Axis2 application handler in your Java-based pipeline, you must replace
EXPIPE01 with EXPIPE03 in step 1a and EXPIPE02 with EXPIPE04 in step 2a

Procedure
1. Use the CICS Explorer to create a pipeline definition for the service provider.

a. Create a PIPELINE definition for the wrapper programs using the CICS
Explorer by selecting Definitions > Pipeline Definitions. Right-click in the
Pipeline Definitions view and select New to create a new pipeline
definition. Type DFH$EXWS in the Resource Group text box, and type
EXPIPE01 in the Name text box. Click Finish to create the PIPELINE
definition. Alternatively, you can copy the PIPELINE definition from CICS
supplied group DFH$EXWS. Right-click DFH$EXWS in the Resource Group
Definition view and select New > Pipeline Definition.

b. Double-click the PIPELINE definition and select the Attributes tab from the
Pipeline Definition (EXPIPE01) editor. Under Details, the Configuration
File must be set to the location of the sample files /usr/lpp/cicsts/
samples/pipelines/basicsoap11provider.xml, where /usr/lpp/cicsts is the
path to the files on your directory, Shelf must be /var/cicsts/, Status must
be ENABLED, and WS Directory must be /usr/lpp/cicsts/samples/
webservices/wsbind/provider/.
The z/OS UNIX entries are case-sensitive and assume a default CICS z/OS
UNIX installation root of /usr/lpp/cicsts.

2. Use the CICS Explorer to create a PIPELINE definition for the service requester.
a. Create a PIPELINE definition for the wrapper programs using the CICS

Explorer by selecting Definitions > Pipeline Definitions. Right-click in the

Chapter 15. The CICS catalog manager example application 351

Pipeline Definitions view and select New to create a new pipeline
definition. Type DFH$EXWS in the Resource Group text box, and type
EXPIPE02 in the Name text box. Click Finish to create the PIPELINE
definition. Alternatively, you can copy the PIPELINE definition from CICS
supplied group DFH$EXWS.

b. Double click the PIPELINE definition and select the Attributes tab from the
Pipeline Definition (EXPIPE02) editor. Under Details, Configuration File
must be set to the location of the sample files /usr/lpp/cicsts/samples/
pipelines/basicsoap11requester.xml, where /usr/lpp/cicsts is the path to
the files on your directory, Shelf must be /var/cicsts/, Status must be
ENABLED, and WS Directory must be /usr/lpp/cicsts/samples/
webservices/wsbind/requester/.

Creating a TCP/IP service
Because the client connects to your web services over an HTTP transport you must
define a TCP/IP service to receive the inbound HTTP traffic.

Procedure

Use the CICS Explorer to create a TCPIPSERVICE definition to handle inbound
HTTP requests.
1. Create a TCPIPSERVICE definition by selecting Definitions > TCP/IP Service

Definitions. Right-click in the TCP/IP Service Definitions view and select New
to create a new definition. Type DFH$EXWS in the Resource Group text box, and
type EXMPPORT in the Name text box. You must specify a port number; type in
the number of any unused port in your CICS system. Click Finish to create the
TCPIPSERVICE definition.

2. Double-click the TCPIPSERVICE definition. In the Attributes tab in the TCP/IP
Service Definition (EXMPPORT) editor, set the following attributes:

Urm must be DFHWBAAX

Protocol must be HTTP

Transaction must be CWXN

3. Use the default values for all other attributes.

Dynamically installing the WEBSERVICE and URIMAP resources
Each function that is exposed as a web service requires a WEBSERVICE resource to
map between the incoming XML of the SOAP BODY and the COMMAREA
interface of the program, and a URIMAP resource that routes incoming requests to
the correct pipeline and web service. Although you can use resource definition
online (RDO) to define and install your WEBSERVICE and URIMAP resources, you
can also have CICS create them dynamically when you install a pipeline resource.

Procedure
1. Use the CICS Explorer to install the PIPELINE resources.

a. Select Definitions > Pipeline Definitions. Right-click the EXPIPE01
PIPELINE definition in the Pipeline Definitions view and select Install.
Select your target CICS region by selecting the check box. Click OK to
install the PIPELINE.

Note: If you created Java-based pipeline definitions in “Creating the
pipeline definition” on page 351 then right-click EXPIPE03 PIPELINE
definition in the Pipeline Definitions view.

b. Repeat this process for the EXPIPE02 PIPELINE definition or EXPIPE04 for
Java-based pipelines.

352 CICS TS for z/OS 4.2: Web Services Guide

When you install each PIPELINE resource, CICS scans the directory
specified in the PIPELINE WSDIR attribute (the pickup directory). For each
WEBSERVICE binding file in the directory, that is for each file with the
.wsbind suffix, CICS installs a WEBSERVICE resource and one URIMAP
resource if these resources do not exist.
The URIMAP resource provides CICS with the information to associate the
WEBSERVICE resource with a specific URI. Existing resources are replaced
if the information in the binding file is newer than the existing resources.
A second optional URIMAP resource is installed if a WSDL file or WSDL
archive file has been copied to the pickup directory. This URIMAP resource
provides CICS with the information to associate the WSDL archive file or
WSDL document with a specific URI so that external requesters can use the
URI to discover the WSDL archive file or WSDL document.
When the PIPELINE is later disabled and discarded, all associated
WEBSERVICE and URIMAP resources are also discarded.

2. If you have already installed the PIPELINE resource, use the PERFORM PIPELINE
SCAN command to initiate the scan of the PIPELINE pickup directory.
When you have installed the PIPELINE resources, the following WEBSERVICE
resources and the associated URIMAP resources for the provider pipeline are
installed in your system:

dispatchOrder

dispatchOrderEndpoint

inquireCatalog

inquireCatalogClient

inquireCatalogWrapper

inquireSingle

inquireSingleClient

inquireSingleWrapper

placeOrder

placeOrderClient

placeOrderWrapper

The names of the WEBSERVICE resources are derived from the names of the
WEBSERVICE binding files; the names of the URIMAP resources are generated
dynamically. An additional URIMAP is generated for each WSDL document
that exists in the pickup directory of the pipeline. You can view the resources
by selecting Operations > Web Services to open the Web Services view.
Right-click the WEBSERVICE resource and select Open Related > URI Map.
The CICS Explorer view shows the names of the PIPELINE resource, the
URIMAP resource, and the target program that is associated with each web
service. In this example, there is no URIMAP or target program for
WEBSERVICE(dispatchOrder) because the WEBSERVICE resource is for an
outbound request.
WEBSERVICE(dispatchOrderEndpoint) represents the local CICS
implementation of the dispatch order service.

Creating the WEBSERVICE resources with resource definition
online (RDO)
As an alternative to using the pipeline scanning mechanism to install
WEBSERVICE resources, you can create and install them using resource definition
online (RDO).

Chapter 15. The CICS catalog manager example application 353

|
|
|
|
|

Before you begin

Important: If you use RDO to define the WEBSERVICE and URIMAP resources,
you must ensure that their Web service binding files are not in the pickup
directory of the PIPELINE. This ensures that the WEBSERVICE and URIMAP
resources are not dynamically installed during a pipeline scan of the pickup
directory. Alternatively, you can ensure that no value is specified for WSDIR in the
PIPELINE. However, if you do not specify a value for WSDIR, no pipeline scans of
the pickup directory occur. Therefore, all WEBSERVICE and URIMAP resources
have to be created and installed using RDO.

Procedure
1. Use the CICS Explorer to create a WEBSERVICE definition for the inquire

catalog function of the example application.
a. Create a WEBSERVICE definition using the CICS Explorer by selecting

Definitions > Web Service Definition.
b. Right-click in the Web Service Definitions view and select New to create a

new WEBSERVICE definition.
c. Type DFH$EXWS in the Resource Group text box, type EXINQCWS in the Name

text box, and type EXPIPE01 in the Pipeline text box or type EXPIPE03 for
Java-based pipelines. You must enter the WSBind attribute before you can
create the WEBSERVICE definition. In the WSBind File text box type
/usr/lpp/cicsts/samples/webservices/wsbind/provider/
inquireCatalog.wsbind.

d. Click Finish to create the WEBSERVICE definition.
2. Repeat the preceding step for each of the following functions of the example

application.

Function
WEBSERVICE
name

PIPELINE
attribute WSBind attribute

INQUIRE
SINGLE ITEM

EXINQSWS EXPIPE01 or
EXPIPE03

/usr/lpp/cicsts/samples
/webservices/wsbind
/provider/inquireSingle.wsbind

PLACE ORDER EXORDRWS EXPIPE01 or
EXPIPE03

/usr/lpp/cicsts/samples
/webservices/wsbind
/provider/placeOrder.wsbind

DISPATCH
STOCK

EXODRQWS EXPIPE02 or
EXPIPE04

/usr/lpp/cicsts/samples
/webservices/wsbind
/requester/dispatchOrder.wsbind

DISPATCH
STOCK
endpoint
(optional)

EXODEPWS EXPIPE01 or
EXPIPE03

/usr/lpp/cicsts/samples
/webservices/wsbind
/provider/dispatchOrderEndpoint.wsbind

Creating the URIMAP resources with resource definition online
(RDO)
As an alternative to using the pipeline scanning mechanism to install URIMAP
resources, you can create and install them using resource definition online (RDO).

Before you begin

Important: If you use RDO to define the WEBSERVICE and URIMAP resources,
you must ensure that their Web service binding files are not in the pickup
directory of the PIPELINE. This ensures that the WEBSERVICE and URIMAP
resources are not dynamically installed during a pipeline scan of the pickup
directory. Alternatively, you can ensure that no value is specified for WSDIR in the

354 CICS TS for z/OS 4.2: Web Services Guide

PIPELINE. However, if you do not specify a value for WSDIR, no pipeline scans of
the pickup directory occur. Therefore, all WEBSERVICE and URIMAP resources
have to be created and installed using RDO.

Procedure
1. Use the CICS Explorer to create a URIMAP definition for the inquire catalog

function of the example application.
a. Create a URIMAP definition in the CICS Explorer by selecting Definitions

> URI Map Definition.
b. Right-click in the URI Map Definitions view and select New to create a new

URIMAP definition.
c. Type INQCURI in the Name text box, and type * in the Host text box. You

must enter the Path attribute before you can create the URIMAP definition.
In the Path text box type /exampleApp/inquireCatalog. Usage must be set to
Pipeline; the PIPELINE resource is EXPIPE01 or EXPIPE03 for Java-based
pipelines.

d. Click Finish to finish the URIMAP definition.
e. Double-click the new URIMAP resource to open the Editor. In the

Attributes tab in the Editor, set the Web Service attribute to EXINQCWS and
TCP/IP Service to SOAPPORT.

2. Repeat the preceding step for each of the remaining functions of the example
application. Use the following names for your URIMAPs:

Function URIMAP name

INQUIRE SINGLE ITEM INQSURI

PLACE ORDER ORDRURI

DISPATCH STOCK Not required

DISPATCH STOCK endpoint (optional) ODEPURI

3. Specify the following distinct attributes for each URIMAP:

Function URIMAP name PATH WEBSERVICE

INQUIRE
SINGLE ITEM

INQSURI /exampleApp/inquireSingle EXINQSWS

PLACE ORDER ORDRURI /exampleApp/placeOrder EXORDRWS

DISPATCH
STOCK endpoint
(optional)

ODEPURI /exampleApp/dispatchOrder EXODEPWS

Completing the installation
To complete the installation, install the RDO group that contains your resource
definitions.

Procedure

Right-click the resource group in the Resource Group Definitions window. Select
Install. Make sure that your CICSplex is correct and that you select your target
region, then click OK.

Results

Your RDO is now installed and the application is ready for use.

Chapter 15. The CICS catalog manager example application 355

Configuring the web client
Before you can use the web client, you must deploy the enterprise archive (EAR)
for the client into one of the supported environments and configure it to call the
appropriate endpoints in your CICS system.

About this task

The following environments are supported:
v WebSphere Application Server Version 6 or later
v WebSphere Studio Application Developer Version 5 Release 1 or later with a

WebSphere unit test environment
v WebSphere Studio Enterprise Developer Version 5 Release 1 later with a

WebSphere unit test environment.

The following environments are supported for the ExampleAppClientV6.ear client
application:
v WebSphere Application Server Version 6
v Rational Application Developer Version 6 or later with a WebSphere unit test

environment
v WebSphere Developer for zSeries® Version 6 or later with a WebSphere unit test

environment

The EAR files are located in the hlq/samples/webservices/client directory in
z/OS UNIX.

Procedure
1. To start the web client enter http://myserver:9080/ExampleAppClientV6Web/ in

your web browser, where myserver is the host name of the server on which the
web service client is installed. The example application displays the following
page:

356 CICS TS for z/OS 4.2: Web Services Guide

2. Click CONFIGURE to display the configuration page. The configuration page
is displayed.

Chapter 15. The CICS catalog manager example application 357

3. Enter the new endpoints for the web service. There are three endpoints to
configure:

Inquire catalog
Inquire item
Place order

a. In the URLs replace the string myCicsServer with the name of the system on
which your CICS is running.

b. Replace the port number 9999 with the port number configured in the
TCPIPSERVICE definition resource, in the example this is 30000.

4. Click SUBMIT.

Results

The web application is now ready to run.

358 CICS TS for z/OS 4.2: Web Services Guide

What to do next

The URL for the web services invocation is stored in an HTTP session. It is
therefore necessary to repeat this configuration step each time a web browser is
first connected to the client.

Running the web service enabled application
You can invoke the example application from a web browser.

Procedure
1. Enter the following URL in your web browser: http://myserver:9080/

ExampleAppClientWeb/, where myserver is the host name of the server on which
the web service client is installed. The example application displays the
following page:

2. Click the INQUIRE button. The example application displays the following
page:

Chapter 15. The CICS catalog manager example application 359

3. Enter an item number, and click the SUBMIT button.

Tip: The base application is primed with item numbers in the sequence 0010,
0020, ... through 0210.
The application displays the following page, which contains a list of items in
the catalog, starting with the item number that you entered.

360 CICS TS for z/OS 4.2: Web Services Guide

4. Select the item that you want to order.
a. Click the radio button in the Select column for the item you want to order.
b. Click the SUBMIT button.
The application displays the following page:

Chapter 15. The CICS catalog manager example application 361

5. To place an order, enter the following information.
a. Complete the Quantity field. Specify the number of items you want to

order.
b. Complete the User Name field. Enter a 1- to 8-character string. The base

application does not check the value that is entered here.
c. Complete the Department Name field. Enter a 1- to 8-character string. The

base application does not check the value that is entered here.
d. Click the SUBMIT button.

The application displays the following page to confirm that the order has been
placed:

362 CICS TS for z/OS 4.2: Web Services Guide

Deploying the example application
You can use the web services assistant to deploy parts of the example application
as a web service. Although the application works without performing this task,
you must perform a similar task if you want to deploy your own applications to
extend the example application.

Extracting the program interface
To deploy a program with the CICS web services assistant, you must create a
copybook that matches the COMMAREA or container interface.

About this task

In this example, the INQUIRE SINGLE ITEM function of the central catalog
manager program (DFH0XCMN) is deployed as a web service. The interface to this
program is a COMMAREA; the structure of the COMMAREA is defined in the
copybook DFH0XCP1:
* Catalogue COMMAREA structure

03 CA-REQUEST-ID PIC X(6).
03 CA-RETURN-CODE PIC 9(2).
03 CA-RESPONSE-MESSAGE PIC X(79).
03 CA-REQUEST-SPECIFIC PIC X(911).

* Fields used in Inquire Catalog
03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

05 CA-LIST-START-REF PIC 9(4).
05 CA-LAST-ITEM-REF PIC 9(4).
05 CA-ITEM-COUNT PIC 9(3).
05 CA-INQUIRY-RESPONSE-DATA PIC X(900).

Chapter 15. The CICS catalog manager example application 363

05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA
OCCURS 15 TIMES.

07 CA-ITEM-REF PIC 9(4).
07 CA-DESCRIPTION PIC X(40).
07 CA-DEPARTMENT PIC 9(3).
07 CA-COST PIC X(6).
07 IN-STOCK PIC 9(4).
07 ON-ORDER PIC 9(3).

* Fields used in Inquire Single
03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.

05 CA-ITEM-REF-REQ PIC 9(4).
05 FILLER PIC 9(4).
05 FILLER PIC 9(3).
05 CA-SINGLE-ITEM.

07 CA-SNGL-ITEM-REF PIC 9(4).
07 CA-SNGL-DESCRIPTION PIC X(40).
07 CA-SNGL-DEPARTMENT PIC 9(3).
07 CA-SNGL-COST PIC X(6).
07 IN-SNGL-STOCK PIC 9(4).
07 ON-SNGL-ORDER PIC 9(3).

05 FILLER PIC X(840).
* Fields used in Place Order

03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
05 CA-USERID PIC X(8).
05 CA-CHARGE-DEPT PIC X(8).
05 CA-ITEM-REF-NUMBER PIC 9(4).
05 CA-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(888).

The copybook defines three separate interfaces for the INQUIRE CATALOG,
INQUIRE SINGLE ITEM, and PLACE ORDER functions, which are overlaid on
one another in the copybook. However, the DFHLS2WS utility does not support
the REDEFINES statement. Therefore you must extract from the combined
copybook just those sections that relate to the inquire single function:
* Catalogue COMMAREA structure

03 CA-REQUEST-ID PIC X(6).
03 CA-RETURN-CODE PIC 9(2) DISPLAY.
03 CA-RESPONSE-MESSAGE PIC X(79).

* Fields used in Inquire Single
03 CA-INQUIRE-SINGLE.

05 CA-ITEM-REF-REQ PIC 9(4) DISPLAY.
05 FILLER PIC X(4) DISPLAY.
05 FILLER PIC X(3) DISPLAY.
05 CA-SINGLE-ITEM.

07 CA-SNGL-ITEM-REF PIC 9(4) DISPLAY.
07 CA-SNGL-DESCRIPTION PIC X(40).
07 CA-SNGL-DEPARTMENT PIC 9(3) DISPLAY.
07 CA-SNGL-COST PIC X(6).
07 IN-SNGL-STOCK PIC 9(4) DISPLAY.
07 ON-SNGL-ORDER PIC 9(3) DISPLAY.

05 FILLER PIC X(840).

The redefined element CA-REQUEST-SPECIFIC has been removed and replaced by
the section of the copybook that redefined it for the inquire single function. The
copybook is now suitable for use with the web service assistant.

The copybook is supplied with the example application as copybook DFH0XCP4.

Running the web services assistant program DFHLS2WS
The CICS web services assistant consists of two batch programs that can help you
to transform existing CICS applications into web services, and to enable CICS

364 CICS TS for z/OS 4.2: Web Services Guide

applications to use web services provided by external providers. Program
DFHLS2WS transforms a language structure to generate a web service binding file
and a web service description.

Procedure
1. Copy the supplied sample JCL to a suitable working file. The JCL is supplied in

samples/webservices/JCL/LS2WS.
2. Add a valid JOB card to the JCL.
3. Code the parameters for DFHLS2WS. The following parameters are required

for the INQUIRE SINGLE ITEM function of the example application are:
//INPUT.SYSUT1 DD *
LOGFILE=/u/exampleapp/wsbind/inquireSingle.log
PDSLIB=CICSHLQ.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
PGMNAME=DFH0XCMN
PGMINT=COMMAREA
URI=mycicsserver:myport/exampleApp/inquireSingle
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
*/

LOGFILE=/u/exampleapp/wsbind/inquireSingle.log
The file that is used to record diagnostic information from DFHLS2WS. The
file is normally used only by IBM software support organization.

PDSLIB=CICSHLQ.SDFHSAMP
The name of the partitioned data set (PDS) where the web service assistant
looks for copybooks that define the request and response structures. In the
example, this is the CICS installed data set SDFHSAMP.

REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4

These parameters define the language structure for the request and the
response to the program. In the example, the request and the response have
the same structure and are defined by the same copybook.

LANG=COBOL
The target program and the data structures are written in COBOL.

PGMNAME=DFH0XCMN
The name of the target program that is started when a web service request
is received.

PGMINT=COMMAREA
The target program is invoked with a COMMAREA interface.

URI=mycicsserver:myport/exampleApp/inquireSingle

The unique part of the URI that is used in the generated web service
definition, and used to create the URIMAP resource that maps incoming
requests to the correct web service. The value specified results in the
service being available to external clients at:
http://mycicsserver:myport/exampleApp/inquireSingle

where mycicsserver and myport are the CICS server address and the port
onto which this WEBSERVICE resource has been installed.

Note: The parameter does not have a leading '/'.

Chapter 15. The CICS catalog manager example application 365

WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
The location on z/OS UNIX to which the web service binding file is
written.

Note: If the file is to be used with the pipeline scanning mechanism it
must have the extension .wsbind.

WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
The location on z/OS UNIX to which the file containing the generated web
service description is written. It is good practice to use matching names for
the web service binding file and its corresponding web service description.

Conventionally, files containing web service descriptions have the extension
.wsdl.

The web services description provides the information that a client must
use to access the web service. It contains an XML schema definition of the
request and response, and location information for the service.

4. Run the job. A web service description and web service binding file are created
in the locations specified.

An example of the generated WSDL document
An example of the web service description (WSDL) document that is generated
when the web services assistant program DFHLS2WS is run.

<?xml version="1.0" ?>
<definitions targetNamespace="http://www.DFH0XCMN.DFH0XCP4.com" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.DFH0XCMN.DFH0XCP4.Request.com" xmlns:resns="http://www.DFH0XCMN.DFH0XCP4.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.com">

<types>
<xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Request.com" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.Request.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complextype abstract="false" block="#all" final="#all" mixed="false" name="ProgramInterface">
<xsd:annotation>

<xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
This schema was generated by the CICS Web services assistant.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name="ca_request_id" nillable="false">
<xsd:simpletype>

<xsd:annotation>
<xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
#Thu Nov 03 11:55:26 GMT 2005 com.ibm.cics.wsdl.properties.synchronized=false
</xsd:appinfo>

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:maxlength value="6"/>
<xsd:whitespace value="preserve"/>

</xsd:restriction>
</xsd:simpletype>

</xsd:element>

.... most of the schema for the request is removed

</xsd:sequence>
</xsd:complextype>
<xsd:element name="DFH0XCMNOperation" nillable="false" type="tns:ProgramInterface"/>

</xsd:schema>
<xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Response.com" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.Response.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

... schema content for the reply is removed

</xsd:schema>
</types>
<message name="DFH0XCMNOperationResponse">

<part element="resns:DFH0XCMNOperationResponse" name="ResponsePart"/>
</message>

366 CICS TS for z/OS 4.2: Web Services Guide

<message name="DFH0XCMNOperationRequest">
<part element="reqns:DFH0XCMNOperation" name="RequestPart"/>

</message>
<porttype name="DFH0XCMNPort">

<operation name="DFH0XCMNOperation">
<input message="tns:DFH0XCMNOperationRequest" name="DFH0XCMNOperationRequest"/>
<output message="tns:DFH0XCMNOperationResponse" name="DFH0XCMNOperationResponse"/>

</operation>
</porttype>
<binding name="DFH0XCMNHTTPSoapBinding" type="tns:DFH0XCMNPort">

<!-- This soap:binding indicates the use of SOAP 1.1 -->
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<!-- This soap:binding indicates the use of SOAP 1.2 -->
<!-- <soap:binding style="document" transport="http://www.w3.org/2003/05/soap-http"/> -->
<operation name="DFH0XCMNOperation">

<soap:operation soapAction="" style="document"/>
<input name="DFH0XCMNOperationRequest">
<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFH0XCMNOperationResponse">

<soap:body parts="ResponsePart" use="literal"/>
</output>

</operation>
</binding>
<service name="DFH0XCMNService">

<port binding="tns:DFH0XCMNHTTPSoapBinding" name="DFH0XCMNPort">
<!-- This soap:address indicates the location of the Web service over HTTP.

Please replace "my-server" with the TCPIP host name of your CICS region.
Please replace "my-port" with the port number of your CICS TCPIPSERVICE. -->

<soap:address location="http://my-server:my-port/exampleApp/inquireSingles.log"/>
<!-- This soap:address indicates the location of the Web service over HTTPS. -->
<!-- <soap:address location="https://my-server:my-port/exampleApp/inquireSingles.log"/> -->
<!-- This soap:address indicates the location of the Web service over Websphere MQSeries.

Please replace "my-queue" with the appropriate queue name. -->
<!-- <soap:address location="jms:/queue?destination=my-queue&connectionFactory=()&
targetService=/exampleApp/inquireSingles.log&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->

</port>
</service>

</definitions>

Deploying the web services binding file
The WEBSERVICE binding file, created by DFHLS2WS, is deployed into your CICS
region dynamically when you install a PIPELINE resource.

About this task

When a pipeline scan command is issued, CICS scans the pickup directory to
search for WEBSERVICE binding files with the .wsbind extension. For each binding
file found, CICS determines whether to install a WEBSERVICE resource.

A URIMAP resource is also created to map the URI, as provided in the JCL, to the
installed WEBSERVICE resource and the PIPELINE onto which the web service is
installed. When a scanned WEBSERVICE resource is discarded, the URIMAP
resource associated with it is also discarded.

Procedure
1. Modify the PIPELINE definition for your provider pipeline

PIPELINE(EXPIPE01) in the CICS Explorer by selecting Definitions > Pipeline
Definitions. Double-click EXPIPE01 to open the Pipeline Definition (EXPIPE01)
editor. In the Attributes tab, change the WS Directory parameter to
/u/exampleapp/wsbind. This pickup directory contains the WEBSERVICE
binding file that you generated with DFHLS2WS.

2. Copy any other WEBSERVICE binding files used by the application to the same
directory. In this example, the following files are copied:

inquireCatalog

placeOrder

Chapter 15. The CICS catalog manager example application 367

They are provided in directory /usr/lpp/cicsts/samples/webservices/wsbind/
provider.

3. Install the PIPELINE resource.

Results

CICS creates two URIMAP resources; the first URIMAP definition is required in a
service provider when it contains information that maps the URI of an inbound
web service request to the other resources (such as the PIPELINE resource) that
service the request. The second URIMAP contains information that maps the URI
of an inbound request for the WSDL document or documents associated with the
web service.

Components of the base application
Use these tables to understand the components of the base application and the
members supplied in the SDFHSAMP sample. The SDFHSAMP members listed
contain BMS maps, COBOL source, and copybooks for the base application, web
service client application, and the wrapper modules.

Table 16. SDFHSAMP members containing BMS maps

Member name Description

DFH0XS1 BMS macros for the mapset consisting of the map (EXMENU) for
the Main Menu screen and the map (EXORDR) for the Details of
your order screen.

DFH0XS2 BMS macros for the mapset consisting of the map (EXINQC) for
the Inquire Catalog screen.

DFH0XS3 BMS macros for the mapset consisting of the map (EXCONF) for
the Configure CICS example catalog application screen.

DFH0XM1 COBOL copybook generated by assembling DFH0XS1. DFH0XGUI
and DFH0XCUI include this copybook

DFH0XM2U COBOL copybook generated by assembling DFH0XS2 and editing
the result to include an indexed array structure for ease of
copybook programming. DFH0XGUI and DFH0XCUI include this
copybook.

DFH0XM3 COBOL copybook generated by assembling DFH0XS3. DFH0XCFG
includes this copybook

Table 17. SDFHSAMP members containing COBOL source for the base application

Member name Description

DFH0XCFG Program invoked by transaction ECFG to read and update the
VSAM configuration file.

DFH0XCMN Controller program for the catalog application. All requests pass
through the controller program.

DFH0XGUI Program invoked by transaction EGUI to manage the sending of
the BMS maps to the terminal user and the receiving of the maps
from the terminal user. This program links to program
DFH0XCMN.

DFH0XODE One of two versions of the endpoint for the order dispatch web
service. This is the version that runs in CICS. This program sets the
text "Order in dispatch" in the return COMMAREA.

368 CICS TS for z/OS 4.2: Web Services Guide

Table 17. SDFHSAMP members containing COBOL source for the base
application (continued)

Member name Description

DFH0XSDS A stubbed or dummy version of the data store program that allows
the application to work when the VSAM catalog file has not been
set up. DFH0XSDS uses data defined in the program rather than
data stored in a VSAM file.

DFH0XSOD A stubbed version of the order dispatch program. It sets the return
code in the COMMAREA to 0 and returns to its caller. DFH0XSOD
is used when outbound web services are not required.

DFH0XSSM A stubbed version of the stock manager (replenishment) program.
DFH0XSSM sets the return code in the COMMAREA to 0 and
returns to its caller.

DFH0XVDS The VSAM version of the data store program. DFH0XVDS accesses
the VSAM file to perform reads and updates of the catalog.

DFH0XWOD The web service version of the order dispatch program.
DFH0XWOD issues an EXEC CICS INVOKE WEBSERVICE to
make an outbound web service call to an order dispatcher.

Table 18. SDFHSAMP members containing COBOL copybooks for the base application

Member name Description

DFH0XCP1 Defines a COMMAREA structure that includes the request and
response for the inquire catalog, inquire single, and place order
functions. Programs DFH0XCMN, DFH0XCUI, DFH0XECC,
DFH0XGUI, DFH0XICW, DFH0XISW, DFH0XPOW, DFH0XSDS,
and DFH0XVDS include this copybook.

DFH0XCP2 Defines a COMMAREA structure for the order dispatcher and
stock manager modules. Programs DFH0XCMN, DFH0XSOD,
DFH0XSSM, and DFH0XWOD include this copybook

DFH0XCP3 Defines a data structure for an inquire catalog request and
response. Used as input to DFHLS2WS in order to produce
inquireCatalog.wsdl and inquireCatalog.wsbind.

DFH0XCP4 Defines a data structure for an inquire single request and response.
Used as input to DFHLS2WS in order to produce
inquireSingle.wsdl and inquireSingle.wsbind.

DFH0XCP5 Defines a data structure for a place order request and response.
Used as input to DFHLS2WS in order to produce placeOrder.wsdl
and placeOrder.wsbind.

DFH0XCP6 Defines a data structure for a dispatch order request and response.
Used as input to DFHLS2WS in order to produce
dispatchOrder.wsdl and dispatchOrder.wsbind.

DFH0XCP7 Defines the data structure for a dispatch order request. Programs
DFH0XODE and DFH0XWOD include this copybook

DFH0XCP8 Defines the data structure for a dispatch order response. Programs
DFH0XODE and DFH0XWOD include this copybook.

Chapter 15. The CICS catalog manager example application 369

Table 19. SDFHSAMP members containing COBOL source code for the web service client
application thatruns in CICS

Member name Description

DFH0XCUI Program invoked by transaction ECLI to manage the sending of
the BMS maps to the terminal user and the receiving of the maps
from the terminal user. It links to program DFH0XECC.

DFH0XECC Makes outbound web service requests to the base application,
using the EXEC CICS INVOKE WEBSERVICE command. The web
service specified is one of the following:

inquireCatalogClient
inquireSingleClient
placeOrderClient

Table 20. SDFHSAMP members containing COBOL copybooks for the web service client
application thatruns in CICS. They are all generated by DFHWS2LS, and are included by
program DFH0XECC.

Member name Description

DFH0XCPA Defines the data structure for the inquire catalog request.

DFH0XCPB Defines the data structure for the inquire catalog response.

DFH0XCPC Defines the data structure for the inquire single request.

DFH0XCPD Defines the data structure for the inquire single response.

DFH0XCPE Defines the data structure for the place order request.

DFH0XCPF Defines the data structure for the place order response.

Table 21. SDFHSAMP members containing COBOL source code for the wrapper modules

Member name Description

DFH0XICW Wrapper program for the inquireCatalog service.

DFH0XISW Wrapper program for the inquireSingle service.

DFH0XPOW Wrapper program for the purchaseOrder service.

Table 22. SDFHSAMP members containing COBOL copybooks for the wrapper modules

Member name Description

DFH0XWC1 Defines the data structure for the inquire catalog request. Program
DFH0XICW includes this copybook.

DFH0XWC2 Defines the data structure for the inquire catalog response.
Program DFH0XICW includes this copybook.

DFH0XWC3 Defines the data structure for the inquire single request. Program
DFH0XISW includes this copybook.

DFH0XWC4 Defines the data structure for the inquire single response. Program
DFH0XISW includes this copybook.

DFH0XWC5 Defines the data structure for the place order request. Program
DFH0XPOW includes this copybook.

DFH0XWC6 Defines the data structure for the place order response. Program
DFH0XPOW includes this copybook

370 CICS TS for z/OS 4.2: Web Services Guide

Table 23. CICS Resource Definitions

Resource name Resource type Comment

EXAMPLE CICS Resource definition
group

CICS resource definitions
required for the example
application.

EGUI TRANSACTION Transaction to invoke
program DFH0XGUI to start
the BMS interface to the
application (Customizable).

ECFG TRANSACTION Transaction to invoke the
program DFH0XCFG to start
the example configuration
BMS interface
(Customizable).

EXMPCAT FILE File definition of the
EXMPCAT VSAM file for the
application catalog
(Customizable).

EXMPCONF FILE File definition of the
EXMPCONF application
configuration file.

The catalog manager program
The catalog manager is the controlling program for the business logic of the
example application, and all interactions with the example application pass
through it.

To ensure that the program logic is simple, the type checking and error recovery
that the catalog manager performs is limited.

The catalog manager supports a number of operations. Input and output
parameters for each operation are defined in a single data structure, which is
passed to and from the program in a COMMAREA.

COMMAREA structures
Data is passed between the sample client and server programs by using a standard
CICS communications area (COMMAREA).

The following code extract shows the catalog manager application COMMAREA
structure.
* Catalogue COMMAREA structure

03 CA-REQUEST-ID PIC X(6).
03 CA-RETURN-CODE PIC 9(2).
03 CA-RESPONSE-MESSAGE PIC X(79).
03 CA-REQUEST-SPECIFIC PIC X(911).

* Fields used in Inquire Catalog
03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

05 CA-LIST-START-REF PIC 9(4).
05 CA-LAST-ITEM-REF PIC 9(4).
05 CA-ITEM-COUNT PIC 9(3).
05 CA-INQUIRY-RESPONSE-DATA PIC X(900).
05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA

OCCURS 15 TIMES.
07 CA-ITEM-REF PIC 9(4).
07 CA-DESCRIPTION PIC X(40).
07 CA-DEPARTMENT PIC 9(3).

Chapter 15. The CICS catalog manager example application 371

07 CA-COST PIC X(6).
07 IN-STOCK PIC 9(4).
07 ON-ORDER PIC 9(3).

* Fields used in Inquire Single
03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.

05 CA-ITEM-REF-REQ PIC 9(4).
05 FILLER PIC 9(4).
05 FILLER PIC 9(3).
05 CA-SINGLE-ITEM.

07 CA-SNGL-ITEM-REF PIC 9(4).
07 CA-SNGL-DESCRIPTION PIC X(40).
07 CA-SNGL-DEPARTMENT PIC 9(3).
07 CA-SNGL-COST PIC X(6).
07 IN-SNGL-STOCK PIC 9(4).
07 ON-SNGL-ORDER PIC 9(3).

05 FILLER PIC X(840).
* Fields used in Place Order

03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
05 CA-USERID PIC X(8).
05 CA-CHARGE-DEPT PIC X(8).
05 CA-ITEM-REF-NUMBER PIC 9(4).
05 CA-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(888).

* Dispatcher/Stock Manager COMMAREA structure
03 CA-ORD-REQUEST-ID PIC X(6).
03 CA-ORD-RETURN-CODE PIC 9(2).
03 CA-ORD-RESPONSE-MESSAGE PIC X(79).
03 CA-ORD-REQUEST-SPECIFIC PIC X(23).

* Fields used in Dispatcher
03 CA-DISPATCH-ORDER REDEFINES CA-ORD-REQUEST-SPECIFIC.

05 CA-ORD-ITEM-REF-NUMBER PIC 9(4).
05 CA-ORD-QUANTITY-REQ PIC 9(3).
05 CA-ORD-USERID PIC X(8).
05 CA-ORD-CHARGE-DEPT PIC X(8).

* Fields used in Stock Manager
03 CA-STOCK-MANAGER-UPDATE REDEFINES CA-ORD-REQUEST-SPECIFIC.

05 CA-STK-ITEM-REF-NUMBER PIC 9(4).
05 CA-STK-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(16).

Return codes
Each operation of the catalog manager can return a number of return codes.

Table 24. Catalog manager return codes

Type Code Explanation

General 00 Function completed without
error

Catalog file 20 Item reference not found

21 Error opening, reading, or
ending browse of catalog file

22 Error updating file

Configuration file 50 Error opening configuration
file

51 Data store type was neither
STUB nor VSAM

52 Outbound Web service
switch was neither Y nor N

372 CICS TS for z/OS 4.2: Web Services Guide

Table 24. Catalog manager return codes (continued)

Type Code Explanation

Remote Web service 30 The EXEC CICS INVOKE
WEBSERVICE command
returned an INVREQ
condition

31 The EXEC CICS INVOKE
WEBSERVICE command
returned an NOTFND
condition

32 The EXEC CICS INVOKE
WEBSERVICE command
returned a condition other
than INVREQ or NOTFND

Application 97 Insufficient stock to complete
order

98 Order quantity was not a
positive number

99 DFH0XCMN received a
COMMAREA in which the
CA-REQUEST-ID field was
not set to one of the
following: 01INQC, 01INQS,
or 01ORDR

INQUIRE CATALOG operation
This operation returns a list of up to 15 catalog items, starting with the item
specified by the caller.

Input parameters

CA-REQUEST-ID
A string that identifies the operation. For the INQUIRE CATALOG command,
the string contains 01INQC.

CA-LIST-START-REF
The reference number of the first item to be returned.

Output parameters

CA-RETURN-CODE
A string that identifies the operation.

CA-RESPONSE-MESSAGE
A human readable string, containing num ITEMS RETURNED where num is the
number of items returned.

CA-LAST-ITEM-REF
The reference number of the last item returned.

CA-ITEM-COUNT
The number of items returned.

CA-CAT-ITEM
An array containing the list of catalog items returned. The array has 15
elements; if fewer than 15 items are returned, the remaining array elements
contain blanks.

Chapter 15. The CICS catalog manager example application 373

INQUIRE SINGLE ITEM operation
This operation returns a single catalog item specified by the caller.

Input parameters

CA-REQUEST-ID
A string that identifies the operation. For the INQUIRE SINGLE ITEM
command, the string contains 01INQS.

CA-ITEM-REF-REQ
The reference number of the item to be returned.

Output parameters

CA-RETURN-CODE
A string that identifies the operation.

CA-RESPONSE-MESSAGE
A human readable string, containing RETURNED ITEM: REF=item-reference
where item-reference is the reference number of the returned item.

CA-SINGLE-ITEM
An array containing in its first element the returned catalog item.

PLACE ORDER operation
This operation places an order for a single item. If the required quantity is not
available a message is returned to the user. If the order is successful, a call is made
to the Stock Manager informing it what item has been ordered and the quantity
ordered.

Input parameters

CA-REQUEST-ID
A string that identifies the operation. For the PLACE ORDER operation, the
string contains 01ORDR.

CA-USERID
An 8-character user ID which the application uses for dispatch and billing.

CA-CHARGE-DEPT
An 8-character department ID which the application uses for dispatch and
billing.

CA-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-QUANTITY-REQ
The number of items required.

Output parameters

CA-RETURN-CODE
A string that identifies the operation.

CA-RESPONSE-MESSAGE
A human readable string, containing ORDER SUCCESSFULLY PLACED.

DISPATCH STOCK operation
This operation places a call to the stock dispatcher program, which in turn
dispatches the order to the customer.

374 CICS TS for z/OS 4.2: Web Services Guide

Input parameters

CA-ORD-REQUEST-ID
A string that identifies the operation. For the DISPATCH ORDER operation, the
string contains 01DSPO.

CA-ORD-USERID
An 8-character user ID which the application uses for dispatch and billing.

CA-ORD-CHARGE-DEPT
An 8-character department ID which the application uses for dispatch and
billing.

CA-ORD-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-ORD-QUANTITY-REQ
The number of items required.

Output parameters

CA-ORD-RETURN-CODE
A string that identifies the operation.

NOTIFY STOCK MANAGER operation
This operation takes details of the order that has been placed to decide if stock
replenishment is necessary.

Input parameters

CA-ORD-REQUEST-ID
A string that identifies the operation. For the NOTIFY STOCK MANAGER
operation, the string contains 01STKO.

CA-STK-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-STK-QUANTITY-REQ
The number of items required.

Output parameters

CA-ORD-RETURN-CODE
A string that identifies the operation.

File structures and definitions
The example application uses two VSAM files: the catalog file, which contains the
details of all items stocked and their stock levels, and the configuration file, which
holds user-selected options for the application.

Catalog file
The catalog file is a KSDS VSAM file that contains all information relating to the
product inventory.

Chapter 15. The CICS catalog manager example application 375

Catalog file records

Records in the file have the following structure:

Name COBOL data type Description

WS-ITEM-REF-NUM PIC 9(4) Item reference number

WS-DESCRIPTION PIC X(40) Item description

WS-DEPARTMENT PIC 9(3) Department identification
number

WS-COST PIC ZZZ.99 Item price

WS-IN-STOCK PIC 9(4) Number of items in stock

WS-ON-ORDER PIC 9(3) Number of items on order

Configuration file
The configuration file is a KSDS VSAM file that contains information used to
configure the example application.

Configuration file records

The configuration file is a KSDS VSAM file with four distinct records.

Table 25. General information record

Name COBOL data type Description

PROGS-KEY PIC X(9) Key field for the general
information record,
containing EXMP-CONF.

filler PIC X

DATASTORE PIC X(4) A character string that
specifies the type of data
store program to be used.
Values are:

STUB

VSAM

filler PIC X

DO-OUTBOUND-WS PIC X A character that specifies
whether the dispatch
manager is make an
outbound web service
request. Values are:

Y

N

filler PIC X

CATMAN-PROG PIC X(8) The name of the catalog
manager program.

filler PIC X

DSSTUB-PROG PIC X(8) The name of the dummy
data handler program.

filler PIC X

376 CICS TS for z/OS 4.2: Web Services Guide

Table 25. General information record (continued)

Name COBOL data type Description

DSVSAM-PROG PIC X(8) The name of the VSAM data
handler program.

filler PIC X

ODSTUB-PROG PIC X(8) The name of the dummy
order dispatcher module.

filler PIC X

ODWEBS-PROG PIC X(8) The name of the outbound
web service order dispatcher
program.

filler PIC X

STKMAN-PROG PIC X(8) The name of the stock
manager program.

filler PIC X(10)

Table 26. Outbound URL record

Name COBOL data type Description

URL-KEY PIC X(9) Key field for the general
information record,
containing OUTBNDURL.

filler PIC X

OUTBOUND-URL PIC X(255) Outbound URL for the order
dispatcher web service
request.

Table 27. Catalog file information record

Name COBOL data type Description

URL-FILE-KEY PIC X(9) Key field for the general
information record,
containing VSAM-NAME.

filler PIC X

CATALOG-FILE-NAME PIC X(8) Name of the CICS FILE
resource used for the catalog
file.

Table 28. Server information record

Name COBOL data type Description

WS-SERVER-KEY PIC X(9) Key field for the server
information record,
containing WS-SERVER.

filler PIC X

CATALOG-FILE-NAME PIC X(8) For the CICS web service
client only, the IP address
and port of the system on
which the example
application is deployed as a
web service.

Chapter 15. The CICS catalog manager example application 377

378 CICS TS for z/OS 4.2: Web Services Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 2005, 2012 379

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

380 CICS TS for z/OS 4.2: Web Services Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0565
CICS Transaction Server for z/OS What's New, GC34-7192
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-7188
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-7189
CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1, GC34-7190
CICS Transaction Server for z/OS Installation Guide, GC34-7171

Access to CICS
CICS Internet Guide, SC34-7173
CICS Web Services Guide, SC34-7191

Administration
CICS System Definition Guide, SC34-7185
CICS Customization Guide, SC34-7161
CICS Resource Definition Guide, SC34-7181
CICS Operations and Utilities Guide, SC34-7213
CICS RACF Security Guide, SC34-7179
CICS Supplied Transactions, SC34-7184

Programming
CICS Application Programming Guide, SC34-7158
CICS Application Programming Reference, SC34-7159
CICS System Programming Reference, SC34-7186
CICS Front End Programming Interface User's Guide, SC34-7169
CICS C++ OO Class Libraries, SC34-7162
CICS Distributed Transaction Programming Guide, SC34-7167
CICS Business Transaction Services, SC34-7160
Java Applications in CICS, SC34-7174

Diagnosis
CICS Problem Determination Guide, GC34-7178
CICS Performance Guide, SC34-7177
CICS Messages and Codes Vol 1, GC34-7175
CICS Messages and Codes Vol 2, GC34-7176
CICS Diagnosis Reference, GC34-7166
CICS Recovery and Restart Guide, SC34-7180
CICS Data Areas, GC34-7163
CICS Trace Entries, SC34-7187
CICS Debugging Tools Interfaces Reference, GC34-7165

Communication
CICS Intercommunication Guide, SC34-7172
CICS External Interfaces Guide, SC34-7168

Databases
CICS DB2 Guide, SC34-7164
CICS IMS Database Control Guide, SC34-7170

© Copyright IBM Corp. 2005, 2012 381

CICS Shared Data Tables Guide, SC34-7182

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7196
CICSPlex SM Web User Interface Guide, SC34-7214

Administration and Management
CICSPlex SM Administration, SC34-7193
CICSPlex SM Operations Views Reference, SC34-7202
CICSPlex SM Monitor Views Reference, SC34-7200
CICSPlex SM Managing Workloads, SC34-7199
CICSPlex SM Managing Resource Usage, SC34-7198
CICSPlex SM Managing Business Applications, SC34-7197

Programming
CICSPlex SM Application Programming Guide, SC34-7194
CICSPlex SM Application Programming Reference, SC34-7195

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7204
CICSPlex SM Resource Tables Reference Vol 2, SC34-7205
CICSPlex SM Messages and Codes, GC34-7201
CICSPlex SM Problem Determination, GC34-7203

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 2.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

382 CICS TS for z/OS 4.2: Web Services Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 2005, 2012 383

384 CICS TS for z/OS 4.2: Web Services Guide

Index

Special characters
<addressing>

pipeline configuration element 81
<apphandler_class>

pipeline configuration element 77
<apphandler>

pipeline configuration element 76, 79
<auth_token_type>

pipeline configuration element 109
<authentication>

pipeline configuration element 104
<cics_mtom_handler>

pipeline configuration element 97
<cics_soap_1.1_handler_java>

pipeline configuration element 83
<cics_soap_1.1_handler>

pipeline configuration element 81
<cics_soap_1.2_handler_java>

pipeline configuration element 88
<cics_soap_1.2_handler>

pipeline configuration element 86
<default_http_transport_handler_list>

pipeline configuration element 90
<default_mq_transport_handler_list>

pipeline configuration element 91
<default_target>

pipeline configuration element 96
<default_transport_handler_list>

pipeline configuration element 91
<dfhmtom_configuration>

pipeline configuration element 98
<dfhwsse_configuration>

pipeline configuration element 102
<encrypt_body>

pipeline configuration element 111
<handler>

pipeline configuration element 92
<jvmserver>

pipeline configuration element 92
<mime_options>

pipeline configuration element 101
<mtom_options>

pipeline configuration element 99
<mtom>

pipeline configuration element 96
<named_transport_entry>

pipeline configuration element 78
<namespace>

pipeline configuration element 81
<provider_pipeline>

pipeline configuration element 79
<repository>

pipeline configuration element 93
<requester_pipeline>

pipeline configuration element 80
<service_handler_list>

pipeline configuration element 94
<service_parameter_list>

pipeline configuration element 95
<service>

pipeline configuration element 93

<sign_body>
pipeline configuration element 110

<sts_authentication>
pipeline configuration element 108

<sts_endpoint>
pipeline configuration element 110

<terminal_handler>
pipeline configuration element 79

<transport_handler_list>
pipeline configuration element 80

<transport>
pipeline configuration element 96

<wsse_handler>
pipeline configuration element 102

<xop_options>
pipeline configuration element 100

A
addressing

pipeline configuration element 81
algorithm 309, 311
apphandler

pipeline configuration element 79
application handler

pipeline configuration element 76, 77
assistant, web services 152
atomic transaction 261, 267

configuring CICS 263
configuring service provider 265
configuring service requester 266
registration services 261
states 268

auth_token_type
pipeline configuration element 109

authentication
pipeline configuration element 104

Axis2 64

B
batch utility

web services assistant 152
binary attachment

pipeline configuration 96
body, SOAP 11

C
C and C++

mapping to XML Schema 194, 197
catalog samplecatalog sample 337
channel description 232
channel interface 232
cics_mtom_handler

pipeline configuration element 97
cics_soap_1.1_handler

pipeline configuration element 81
cics_soap_1.1_handler_java

pipeline configuration element 83

cics_soap_1.2_handler
pipeline configuration element 86

cics_soap_1.2_handler_java
pipeline configuration element 88

COBOL
mapping to XML schema 190
mapping to XML Schema 186
variable repeating content 224

compatibility mode 273
configuration file, pipeline 68
configuring RACF 313
configuring the pipeline 317
container

context container
DFH-HANDLERPLIST 137
DFH-SERVICEPLIST 137
DFHWS-APPHANDLER 137, 138,

139
DFHWS-DATA 138
DFHWS-PIPELINE 140
DFHWS-SOAPLEVEL 140
DFHWS-STSREASON 148
DFHWS-TRANID 140
DFHWS-URI 140
DFHWS-USERID 143
DFHWS-WEBSERVICE 144

control container
DFHERROR 128
DFHFUNCTION 130
DFHHTTPSTATUS 132
DFHMEDIATYPE 132
DFHNORESPONSE 133
DFHREQUEST 133
DFHRESPONSE 133
DFHWS-CCSID 134

DFH-EXIT-HEADER1 137
DFH-HANDLERPLIST 137
DFH-SERVICEPLIST 137
DFHERROR 128
DFHFUNCTION 130
DFHHTTPSTATUS 132
DFHMEDIATYPE 132
DFHNORESPONSE 133
DFHREQUEST 133
DFHRESPONSE 133
DFHWS-APPHANDLER 137, 138,

139
DFHWS-CCSID 134
DFHWS-CID-DOMAIN 144
DFHWS-DATA 138
DFHWS-IDTOKEN 147
DFHWS-MEP 139
DFHWS-MTOM-IN 144
DFHWS-MTOM-OUT 145
DFHWS-PIPELINE 140
DFHWS-RESPWAIT 140
DFHWS-RESTOKEN 147
DFHWS-SERVICEURI 148
DFHWS-SOAPLEVEL 140
DFHWS-STSACTION 148
DFHWS-STSFAULT 148

© Copyright IBM Corp. 2005, 2012 385

container (continued)
DFHWS-STSREASON 148
DFHWS-STSURI 149
DFHWS-TOKENTYPE 149
DFHWS-TRANID 140
DFHWS-URI 140
DFHWS-USERID 143
DFHWS-WEBSERVICE 144
DFHWS-XOP-IN 147
DFHWS-XOP-OUT 146, 147

Container DFH-EXIT-HEADER1 137
Container DFHWS-CID-DOMAIN 144
Container DFHWS-IDTOKEN 147
Container DFHWS-MEP 139
Container DFHWS-MTOM-IN 144
Container DFHWS-MTOM-OUT 145
Container DFHWS-RESPWAIT 140
Container DFHWS-RESTOKEN 147
Container DFHWS-SERVICEURI 148
Container DFHWS-STSACTION 148
Container DFHWS-STSFAULT 148
Container DFHWS-STSURI 149
Container DFHWS-TOKENTYPE 149
Container DFHWS-WSDL-CTX 146
Container DFHWS-XOP-IN 147
Container DFHWS-XOP-OUT 147
containers

channel description 232
used in a pipeline 127

context container
DFH-EXIT-HEADER1 137
DFHWS-CID-DOMAIN 144
DFHWS-IDTOKEN 147
DFHWS-MEP 139
DFHWS-MTOM-IN 144
DFHWS-MTOM-OUT 145
DFHWS-RESPWAIT 140
DFHWS-RESTOKEN 147
DFHWS-SERVICEURI 148
DFHWS-STSACTION 148
DFHWS-STSFAULT 148
DFHWS-STSURI 149
DFHWS-TOKENTYPE 149
DFHWS-WSDL-CTX 146
DFHWS-XOP-IN 147
DFHWS-XOP-OUT 147

context containers 136
control containers 128
custom security handler 320
customizing pipeline processing 256

D
default EPR 289

WSDL 1.1 289
default_http_transport_handler_list

pipeline configuration element 90,
92, 93

default_mq_transport_handler_list
pipeline configuration element 91

default_target
pipeline configuration element 96

default_transport_handler_list
pipeline configuration element 91

DFH-HANDLERPLIST container 137
DFH-SERVICEPLIST container 137
DFHERROR container 128

DFHFUNCTION container 130
DFHHTTPSTATUS container 132
DFHLS2WS

cataloged procedure 152
DFHMEDIATYPE container 132
dfhmtom_configuration

pipeline configuration element 98
DFHNORESPONSE container 133
DFHREQUEST container 133
DFHRESPONSE container 133
DFHWS-APPHANDLER container 137,

138, 139
DFHWS-CCSID container 134
DFHWS-DATA container 138
DFHWS-PIPELINE container 140
DFHWS-SOAPLEVEL container 140
DFHWS-STSREASON container 148
DFHWS-TRANID container 140
DFHWS-URI container 140
DFHWS-USERID container 143
DFHWS-WEBSERVICE container 144
DFHWS2LS

cataloged procedure 165
dfhwsse_configuration

pipeline configuration element 102
diagnosing problems

service provider 329
service requester 330

diagram
syntax 178

direct mode 273
dynamic routing

in a service provider 126
in a terminal handler 126

E
encrypt_body

pipeline configuration element 111
end point reference

default 289
endpoint reference (EPR) 282
envelope, SOAP 11
EXEC CICS SOAPFAULT CREATE

command 236

F
fault, SOAP 11

G
global user exits 256
GLUEs 256

H
handler

pipeline configuration element 92
header, SOAP 11
high level language structure

converting to WSDL 152

I
invoking the trust client 321

J
Java 64
Java-based SOAP pipelines 285
JVM server 64

L
language structure

converting to WSDL 152
limitations at run time 253

M
mapping to C and C++ 194, 197
mapping to COBOL 186, 190
mapping to PL/I 200, 204
maxOccurs

in XML schema 209
MEP 30
message exchange pattern (MEP) 30
message handler

invoking trust client 321
non-terminal 117, 118, 119

MIME message
pipeline configuration 96

mime_options
pipeline configuration element 101

minOccurs
in XML schema 209

mtom
pipeline configuration element 96

mtom_options
pipeline configuration element 99

MTOM/XOP
pipeline configuration 96

N
named_transport_entry

pipeline configuration element 78
namespace

pipeline configuration element 81
non-terminal message handler 117, 118,

119
notation

syntax 178

O
overriding the URI 258

P
persistent message 59
persistent message support 60
pipeline configuration

MTOM/XOP 96
Web Services Security 101

pipeline configuration element
<addressing> 81

386 CICS TS for z/OS 4.2: Web Services Guide

pipeline configuration element (continued)
<apphandler> 79
<auth_token_type> 109
<authentication> 104
<cics_mtom_handler> 97
<cics_soap_1.1_handler_java> 83
<cics_soap_1.1_handler> 81
<cics_soap_1.2_handler_java> 88
<cics_soap_1.2_handler> 86
<default_http_transport_

handler_list> 90
<default_mq_transport_

handler_list> 91
<default_transport_handler_list> 91
<dfhmtom_configuration> 98
<dfhwsse_configuration> 102
<encrypt_body> 111
<handler> 92
<jvmserver> 92
<mime_options> 101
<mtom_options> 99
<mtom> 96
<named_transport_entry> 78
<namespace> 81
<provider_pipeline> 79
<repository> 93
<requester_pipeline> 80
<service_handler_list> 94
<service> 93
<sign_body> 110
<sts_authentication> 108
<sts_endpoint> 110
<terminal_handler> 79
<transport_handler_list> 80
<transport> 96
<wsse_handler> 102
<xop_options> 100

pipeline configuration file 68
pipeline definition

service requester 76
pipeline processing

customizing 256
overriding the URI 258

PL/I
mapping to XML Schema 200, 204

provider_pipeline
pipeline configuration element 79

R
repeating content 224
requester_pipeline

element of pipeline definition 76
pipeline configuration element 80

run time limitations 253

S
schema

channel description 232
security containers 147
security for web services 303
security handler

writing your own 320
Security Token Service

trust client interface 308

service
pipeline configuration element 93

service parameter list
<service_parameter_list> 95

service provider
diagnosing problems 329

service provider application
creating from a data structure 230
using atomic transactions 265

service requester
diagnosing problems 330
pipeline definition 76

service requester application
using atomic transactions 266

service_handler_list
pipeline configuration element 94

service_parameter_list
service parameter list 95

sign_body
pipeline configuration element 110

SOAP
body 11
envelope 11
fault 11
header 11
overview 11
overview of SOAP 11

SOAP faults 236
SOAP message

encrypting 311
example 11
signing 309
structure 11

SOAP message path 18
SOAP Message Security 35
SOAP messages

validating against XML Schema 248
XML Schema

validating SOAP message 248
SOAP pipelines 64
sts_authentication

pipeline configuration element 108
sts_endpoint

pipeline configuration element 110
syntax notation 178

T
terminal_handler

pipeline configuration element 79
trademarks 380
transport

pipeline configuration element 96
transport_handler_list

pipeline configuration element 80
trust client

interface 308
invoking 321

U
URI

for WebSphere MQ transport 58
user containers 151
utility program

web services assistant 152

V
validating SOAP messages 248
Variable arrays 209

W
web service errors 330
Web service errors 329
Web Services Addressing

<wsa:Action> 290
addressing handler 285, 286
default actions 288, 291, 292
default EPR 288, 289
DFHWS-URI 282
DFHWSADH 285, 286
EPR 282
explicit actions 288, 290
MAP 282
provider pipeline configuration 286
requester pipeline configuration 285
requester service 288
specification 281
support 281
WSDL 1.1 291
WSDL 2.0 292

web services assistant 152
creating a service provider

application 230
Web Services Security

pipeline configuration 101
Web Services Security (WSS) 303, 313,

317
Web Services Security: SOAP Message

Security 35
workload management

in a service provider 126
in a terminal handler 126

WS-Addressing
<wsa:Action> 290
addressing handler 285, 286
default actions 291, 292
default EPR 289
DFHWS-URI 282
DFHWSADH 285, 286
EPR 282
explicit actions 290
MAP 282
provider pipeline configuration 286
requester pipeline configuration 285
specification 281
WSDL 1.1 291
WSDL 2.0 292

WS-AT 261
WSDL

and application data structure 28
converting to language structure 165
Web Services Addressing 288

WSDL 1.1
default EPR 289

WSDL document
variable-length 213
white space 213

WSDL specifications 35
WSS: SOAP Message Security 35
wsse_handler

pipeline configuration element 102

Index 387

X
XML schema 190

variable-length 213
white space 213

XML Schema 186, 194, 197, 200, 204
xop_options

pipeline configuration element 100

Z
zAAP 64

388 CICS TS for z/OS 4.2: Web Services Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 2
Web Services Guide

Publication No. SC34-7191-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7191-02

SC34-7191-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7191-02

	Contents
	Preface
	What this book is about
	Who should read this book

	Changes in CICS Transaction Server for z/OS, Version 4 Release 2
	Chapter 1. CICS and web services
	What is a web service?
	How web services can help your business
	Web services terminology

	Chapter 2. Web services architecture
	Web service description
	Service publication

	Chapter 3. SOAP
	Structure of a SOAP message
	The SOAP header
	The SOAP body
	The SOAP fault

	SOAP nodes
	The SOAP message path

	Chapter 4. How CICS supports web services
	Message handlers and pipelines
	Transport-related handlers
	Interrupting the flow
	A service provider pipeline
	A service requester pipeline
	CICS pipelines and SOAP

	SOAP messages and the application data structure
	WSDL and the application data structure
	WSDL and message exchange patterns
	The web service binding file
	External standards
	SOAP 1.1 and 1.2
	SOAP 1.1 Binding for MTOM 1.0
	SOAP Message Transmission Optimization Mechanism (MTOM)
	Web Services Addressing 1.0
	Web Services Atomic Transaction Version 1.0
	Web Services Coordination Version 1.0
	Web Services Description Language Version 1.1 and 2.0
	Web Services Security: SOAP Message Security
	Web Services Trust Language
	WSDL 1.1 Binding Extension for SOAP 1.2
	WS-I Basic Profile Version 1.1
	WS-I Simple SOAP Binding Profile Version 1.0
	XML (Extensible Markup Language) Version 1.0
	XML-binary Optimized Packaging (XOP)
	XML Encryption Syntax and Processing
	XML-Signature Syntax and Processing
	CICS compliance with Web services standards
	How CICS complies with WS-Addressing
	How CICS complies with WSDL 2.0
	How CICS complies with Web Services Security specifications
	How CICS complies with WS-Trust
	How CICS complies with WS-I Basic Profile 1.1

	Chapter 5. Getting started with web services
	Planning to use web services
	Planning a service provider application
	Planning a service requester application

	Chapter 6. Creating the web services infrastructure
	Configuring your CICS system for web services
	CICS resources for web services
	Configuring CICS to use the WebSphere MQ transport
	The WebSphere MQ transport
	Defining local queues in a service provider
	Defining local queues in a service requester
	The URI for the WebSphere MQ transport
	Configuring CICS to support persistent messages
	Persistent message processing

	The web services infrastructure
	CICS as a service provider
	CICS as a service requester
	Java-based SOAP pipelines

	Creating the CICS infrastructure for a service provider
	Creating the CICS infrastructure for a service requester
	Pipeline configuration files
	Transport-related handlers
	The pipeline definition for a service provider
	The pipeline definition for a service requester
	Elements used only in service providers
	The <apphandler> element
	The <apphandler_class> element
	The <named_transport_entry> element
	The <provider_pipeline> element
	The <terminal_handler> element
	The <transport_handler_list> element

	Elements used in service requesters
	The <requester_pipeline> element

	Elements used in service provider and service requester pipelines
	The <addressing> element
	The <cics_soap_1.1_handler> element
	The <cics_soap_1.1_handler_java> element
	The <cics_soap_1.2_handler> element
	The <cics_soap_1.2_handler_java> element
	The <default_http_transport_handler_list> element
	The <default_mq_transport_handler_list> element
	The <default_transport_handler_list> element
	The <handler> element
	The <jvmserver> element
	The <repository> element
	The <service> element
	The <service_handler_list> element
	The <service_parameter_list> element
	The <transport> element

	Pipeline configuration for MTOM/XOP
	The <mtom> element
	The <cics_mtom_handler> element
	The <dfhmtom_configuration> element
	The <mtom_options> element
	The <xop_options> element
	The <mime_options> element

	Pipeline configuration for WS-Security
	The <wsse_handler> element
	The <dfhwsse_configuration> element
	The <authentication> element
	The <sts_authentication> element
	The <auth_token_type> element
	The <sts_endpoint> element
	The <sign_body> element
	The <encrypt_body> element

	Application handlers
	Channel-attached application handlers

	Message handlers
	Message handler protocols
	Supplying your own message handlers
	Working with messages in a non-terminal message handler
	Passing a message to the next message handler in the pipeline
	Forcing a transition to the response phase of the pipeline
	Suppressing the response
	Handling one way messages in a service requester pipeline

	Working with messages in a terminal message handler
	Handling errors
	The message handler interface

	The SOAP message handlers
	Header processing programs
	The header processing program interface
	Dynamic routing of inbound requests in a terminal handler

	Containers used in the pipeline
	Control containers
	DFHERROR container
	DFHFUNCTION container
	DFHHTTPSTATUS container
	DFHMEDIATYPE container
	DFHNORESPONSE container
	DFHREQUEST container
	DFHRESPONSE container
	DFHWS-CCSID container

	How containers control the pipeline protocols
	Context containers
	DFH-EXIT-HEADER1 container
	DFH-HANDLERPLIST container
	DFH-SERVICEPLIST container
	DFHWS-APPHANDLER container
	DFHWS-APPHANCLAS container
	DFHWS-DATA container
	DFHWS-MEP container
	DFHWS-OPERATION container
	DFHWS-PIPELINE container
	DFHWS-RESPWAIT container
	DFHWS-SOAPLEVEL container
	DFHWS-TRANID container
	DFHWS-URI container
	DFHWS-USERID container
	DFHWS-WEBSERVICE container
	DFHWS-CID-DOMAIN container
	DFHWS-MTOM-IN container
	DFHWS-MTOM-OUT container
	DFHWS-WSDL-CTX container
	DFHWS-XOP-IN container
	DFHWS-XOP-OUT container

	Security containers
	DFHWS-IDTOKEN container
	DFHWS-RESTOKEN container
	DFHWS-SERVICEURI container
	DFHWS-STSACTION container
	DFHWS-STSFAULT container
	DFHWS-STSREASON container
	DFHWS-STSURI container
	DFHWS-TOKENTYPE container

	Containers generated by CICS
	User containers

	Chapter 7. Creating a web service
	The CICS web services assistant
	DFHLS2WS: high-level language to WSDL conversion
	DFHWS2LS: WSDL to high-level language conversion
	Syntax notation
	Mapping levels for the CICS assistants
	High-level language and XML schema mapping
	Data mapping limitations when using the CICS assistants
	COBOL to XML schema mapping
	XML schema to COBOL mapping
	C and C++ to XML schema mapping
	XML schema to C and C++ mapping
	PL/I to XML schema mapping
	XML schema to PL/I mapping
	Variable arrays of elements
	Support for variable-length values and white space
	Support for XML attributes
	Support for <xsd:any> and xsd:anyType
	Support for <xsd:choice>
	Support for substitution groups
	Support for abstract elements and abstract data types
	How to handle variably repeating content in COBOL

	Creating a web service provider by using the web services assistant
	Creating a service provider application from a web service description
	Creating a service provider application from a data structure
	Creating a channel description document
	Customizing generated web service description documents
	Sending a SOAP fault

	Creating a web service requester using the web services assistant
	Creating a web service using tooling
	Creating your own XML-aware web service applications
	Creating an XML-aware service provider application
	Creating an XML-aware service requester application

	Using Java with web services
	Deploying a provider-mode Axis2 web service
	Creating a Java web service that generates and parses XML
	Creating a Java web service that has a COBOL interface
	Deploying a requester-mode Axis2 web service

	Validating SOAP messages

	Chapter 8. Runtime processing for web services
	How CICS invokes a service provider program deployed with the web services assistant
	Invoking a web service from an application deployed with the web services assistant
	Runtime limitations for code generated by the web services assistant
	Customizing pipeline processing
	Options for controlling requester pipeline processing
	Controlling requester pipeline processing using a URI

	Chapter 9. Support for Web Services transactions
	Registration services
	Configuring CICS for web service transactions
	Configuring a service provider for web service transactions
	Configuring a service requester for web service transactions
	Determining if the SOAP message is part of an atomic transaction
	Checking the progress of an atomic transaction

	Chapter 10. Support for MTOM/XOP optimization of binary data
	MTOM/XOP and SOAP
	MTOM messages and binary attachments in CICS
	Inbound MTOM message processing for pipelines that do not support Java
	Outbound MTOM message processing for pipelines that do not support Java

	Restrictions when using MTOM/XOP
	Restrictions for Java-based pipelines
	Restrictions for other SOAP pipelines

	Configuring CICS to support MTOM/XOP
	Configuring MTOM/XOP support for Java-based pipelines
	Configuring MTOM/XOP for other SOAP pipelines

	Chapter 11. Support for Web Services Addressing
	Web Services Addressing overview
	Configuring a requester pipeline for Web Services Addressing
	Configuring a provider pipeline for Web Services Addressing
	Creating a web service that uses WS-Addressing
	Default end point references
	Explicit actions
	Default actions for WSDL 1.1
	Default actions for WSDL 2.0

	Message exchanges
	Mandatory message addressing properties for WS-Addressing
	Web Services Addressing security
	Web Services Addressing example
	Web Services Addressing terminology

	Chapter 12. Support for securing web services
	Prerequisites for Web Services Security
	Planning to secure web services
	Options for securing SOAP messages
	Authentication using a Security Token Service
	The Trust client interface

	Signing of SOAP messages
	Signature algorithms
	Example of a signed SOAP message

	CICS support for encrypted SOAP messages
	Encryption algorithms
	Example of an encrypted SOAP message

	Configuring RACF for Web Services Security
	Configuring provider mode web services for identity propagation
	Configuring the pipeline for Web Services Security
	Writing a custom security handler
	Invoking the Trust client from a message handler

	Chapter 13. Interoperability between the web services assistant and WSRR
	Example of how to use SSL with the web services assistant and WSRR

	Chapter 14. Diagnosing problems
	Diagnosing deployment errors
	Diagnosing service provider runtime errors
	Diagnosing service requester runtime errors
	Diagnosing MTOM/XOP errors
	Diagnosing data conversion errors
	Why data conversion errors occur
	SOAP fault messages for conversion errors

	Chapter 15. The CICS catalog manager example application
	The base application
	BMS presentation manager
	Data handler
	Dispatch manager
	Order dispatch program
	Stock manager
	Application configuration

	Installing and setting up the base application
	Creating and defining the VSAM data sets
	Defining the 3270 interface
	Completing the installation
	Configuring the example application

	Running the example application with the BMS interface
	Web service support for the example application
	Configuring code page support
	Defining the web service client and wrapper programs
	Installing web service support
	The z/OS UNIX directories
	Creating the pipeline definition
	Creating a TCP/IP service
	Dynamically installing the WEBSERVICE and URIMAP resources
	Creating the WEBSERVICE resources with resource definition online (RDO)
	Creating the URIMAP resources with resource definition online (RDO)
	Completing the installation

	Configuring the web client
	Running the web service enabled application
	Deploying the example application
	Extracting the program interface
	Running the web services assistant program DFHLS2WS
	An example of the generated WSDL document
	Deploying the web services binding file

	Components of the base application
	The catalog manager program
	COMMAREA structures
	Return codes
	INQUIRE CATALOG operation
	INQUIRE SINGLE ITEM operation
	PLACE ORDER operation
	DISPATCH STOCK operation
	NOTIFY STOCK MANAGER operation

	File structures and definitions
	Catalog file
	Configuration file

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

