DB2 10 for z/0S

Application Programming and SQL
Guide

<||IH

DB2 10 for z/0S

Application Programming and SQL
Guide

..lli

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

Eleventh edition (August 2014)

This edition applies to DB2 10 for z/OS (product number 5605-DB2), DB2 10 for z/OS Value Unit Edition (product
number 5697-P31), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1983, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. s et e h e e e e e e . . XV

Who should read this information. .xv
DB2 Utilities Suiteo oxY
Terminology and citations . . S 4 4
Accessibility features for DB2 10 for z / OS e 8%
How to send your comments .xvi
How to read syntax diagrams. .xvi

Chapter 1. Planning for and designing DB2 applications.
Application and SQL release incompatibilities for migration from Version 8
Changes in BIND PACKAGE and BIND PLAN defaults (change introduced in Ver51on 9. 1)
Plan for the XML data type (change introduced in Version 9.1)
Changes to XMLNAMESPACES (change introduced in Version 9.1) .
Changes to serialization of empty elements (change introduced in Version 9.1)
Availability of LOB or XML values in]DBC or SQLJ apphcatlons with progressive streamlng (change 1ntroduced

I\JNI\JI\)M—‘

in Version 9.1) . .2
Adjust applications that depend on error 1nformat10n that is returned from DB2 supphed stored procedures
(change introduced in Version 9.1) . . .3
Some materialized query tables should be dropped (change 1ntroduced in Ver51on 9 1) .3
Fully define objects (change introduced in Version 9.1) . .3
Changes to PL/I applications with no DECLARE VARIABLE statements (change mtroduced in Ver51on 9 1) .4
Automatic rebind of plans and packages created before DB2 Version 6 . e .4
IBMREQD is no longer reliable as a release dependency mark . . .4
Changed behavior for ODBC data conversion for the SQL_BINARY type (change 1ntroduced in Vers1on 9 1) .4
Changed behavior of the INSERT statement with the OVERRIDING USER VALUE clause (change introduced in
Version 9.1) . .o . . .4
DESCRIBE no longer returns LONG type Values (change 1ntroduced in Ver510n 9 1) .o .5
DB2 enforces the restrictions about where a host variable array can be specified (change 1ntroduced in Versmn

9.1)5
DEBUGSESSION system pr1v1lege requ1red for contmued debugglng of SQL procedures (change 1ntroduced in
Version 9.1).5
Changes to the result length of the DECRYPT functlon (change mtroduced in Versmn 9 1)5
Changes to the result length and data type of some functions (change introduced in Version9.1)5
COLTYPE column in SYSIBM.SYSCOLUMNS and SYSIBM.SYSCOLUMNS_HIST for LONG column types

(change introduced in Version 9.1)6
CREATEDBY column in SYSIBM. SYSDATATYPES SYSIBM SYSROUTINES SYSIBM SYSSEQUENCES and
SYSIBM.SYSTRIGGERS (change introduced in Version 9.1) . .6
DB2 returns all DSNWZP output in the same format as DB2 parameters (change 1ntroduced in Versmn 9 1) .6
DB2 enforces the restriction that row IDs are not compatlble with character strlngs when they are used with a

set operator (change introduced in Version 9.1) . .6
Database privileges on the DSNDB04 database now give you those pr1v11eges on all 1mp11c1tly created databases
(change introduced in Version 9.1) . . . 6
Implicitly created objects that are associated w1th LOB columns requlre addltlonal pr1V1leges (change 1ntroduced

in Version 9.1) . .o .7
Adjust applications to use LRHCLR 1nstead of LGDISCLR (change 1ntroduced in Ver51on 9. 1) .7
Changed behavior for the CREATE statement (change introduced in Version 9.1) . .7
The DECLARE statement and the work file database (change introduced in Version 9.1) . .7
Adjust monitor programs that access OP buffers (change introduced in Version 9.1) .7
Changed behavior for system-required objects (change introduced in Version 9.1) . . 8
Changes to INSERT, UPDATE, or DELETE statements on some indexes (change 1ntroduced in Ver510n 9 1) .9
LOBs with a maximum length greater than 1 GB can now be logged (change introduced in Version 9.1) .9
DB2 returns an error when a LOB value is specified for an argument to a stored procedure and the argument
value is longer than the target parameter and the excess is not trailing blanks (change introduced in Version 9.1) 9
Changes to string formatting of decimal data . . .)
Change to maximum result length of VARCHAR functlon e |

© Copyright IBM Corp. 1983, 2014 iii

Leading or trailing blanks from the VARCHAR_FORMAT function format str1ng are no longer removed

(change introduced in Version 9.1). . . . e O | |
Changes to VARCHAR_FORMAT function length attrlbute e |
New format element for VARCHAR_FORMAT function . . e
Change to result of VARCHAR_FORMAT function with ”HH12” format element e O |
Change to result of VARCHAR_FORMAT function with “J” format element.12
New supported data types for VARCHAR_FORMAT function12
Change to maximum result length of REPEAT function.12
Change to maximum result length of XMLTABLE function . . B]
DB2 drops certain indexes when a unique constraint is dropped (change mtroduced in Versron 9 1) o122
DB2 enforces restriction on specifying a CAST FROM clause for some forms of CREATE FUNCTION

statements (change introduced in Version 9.1)12
DB2 enforces restrictions on specifying the AS LOCATOR clause and TABLE LIKE Clause (change 1ntroduced in
Version 9.1)13
DB2 enforces restr1ct1on on the CCSID parameter for the DECRYPT BIT and DECRYPT BINARY funct1ons

(change introduced in Version 9.1).13
Changed behavior of CREATE PROCEDURE for an SQL procedure (Change 1ntroduced in Versron 9 1) .. .13
Explicitly qualify names of variables, parameters, and columns in SQL procedures (change introduced in

Version 9.1)13
Make any necessary program changes for p0551bly dlfferent Values for RETURNED SQLSTATE and
DB2_RETURNED_SQLCODE (change introduced in Version 9.1)14
SQLSTATE and SQLCODE SQL variables after a GET DIAGNOSTICS statement (change 1ntroduced in Versron
91) Lo . 14
Coding multiple SQL statements in a handler body (change 1ntroduced in Vers1on 9. 1) B
Unhandled warnings (change introduced in Version 9.1)14
Change your programs to handle any changed messages from SQL procedures (change 1ntroduced in Vers1on
91) I
Enhanced data type checkrng for zero- length characters (change 1ntroduced in Versron 9 1)15
Adding a column generates a new table space version (change introduced in Version 9.1) 15
You cannot add a column and issue SELECT, INSERT, UPDATE, or DELETE statements in the same commrt

scope15
CAST FROM clause of CREATE FUNCTION statement for SQL functlons is no longer supported (change
introduced in Version 9.1) . . . R ()
Specifying ALTER DATABASE STOGROUP for work frle databases (change 1ntroduced in Vers1on 9 1) .. .16
DB2 enforces restrictions about where an INTO clause can be specified (change introduced in Version 9.1) . . 16
Change to how a positive, signed integer in an ORDER BY clause is treated.16
Binding DBRMs directly into plans is no longer supported . . . e V4
Some BIND PLAN and REBIND PLAN command options are no longer supported B V4
Plans and packages should be converted to DRDA protocol . . . B 4
Change to GRANT statement . . e V4
Change to IMMEDWRITE option of BIND PACKAGE command e v
Changes to conversion of special characters in collection IDs and package names17
Changes to the RELEASE bind option . . e £
Database metadata stored procedures are converted to Un1code . e £
AUTHID is the default owner of packages that are bound by DSNTRIN e £
New default DEFINE attribute for dependent objects .19
Change for creating partitioned table spaces . . e 0]
Change to default for CREATE TABLESPACE statements e &)
Upgrade to supported COBOL and PL/I compilers . . . A0
GRAPHIC and NOGRAPHIC SQL processing options are removed .o e ... L20
SELECT FROM data change statements in BEFORE triggers no longer supported e e e oo oo o2
RETURN statement in scalar functions must follow option-list e o020
Changes to ROUND_TIMESTAMP and TRUNC_TIMESTAMP functions21
Changes to result of NEXT_DAY function .21
Changes to MONTHS_BETWEEN function. .21
Changes to TIMESTAMPDIFF function .21
Static SQL applications that use parallelism. . . A
Enforced SELECT authorization checking for UPDATE and DELETE statements e e e e 22
Increased limit for work file record length .22
New restrictions for EXPLAIN tables. . . . e e 22
MEMBER CLUSTER table spaces indicated by MEMBER CLUSTER column e 22

iv Application Programming and SQL Guide

Changed values for the modification level in the product signature.

Changed behavior for the CREATE FUNCTION statement

Different SQLSTATE returned for some DELETE or UPDATE statements .
Changed default behavior of multiple-row inserts for ODBC z/OS apphcatrons
Changes to ALTER TABLESPACE statement error codes .
Change to CREATE and ALTER statements.

Change to DESCRIBE statement

New restrictions on using DSNTIAUL

Changes to SYSROUTINES .

Catalog restructured . .

Changed data type for an untyped parameter marker .

Changes to handling of special values Infinity, sNaN, and NaN

Changes for INSTEAD OF triggers o

Change to positioned update or delete statements .
Change to stored procedure parameter values returned to non-]ava chents .
Change to results of JDBC method PreparedStatement.setTimestamp

Change in how DB2 returns stored procedure output parameter data to remote chents .

Changes to datetime built-in functions

SQLCODE change for subsequent CAF CONNECT attempts

Change to serialization of an empty XML element .

Data types of output arguments from a stored procedure call ina]ava apphcatlon

Change to IBM Data Server Driver for JDBC and SQLJ handling of TIMESTAMP WITH TIME ZONE data type

Delimiters used for accessing tables on DB2 for Linux, UNIX, and Windows
Qualify user-defined function names .
SQLCODE changes .
SQL reserved words .

Application and SQL release 1ncompat1b111t1es for mrgratlon from Versmn 9. 1
Automatic rebind of plans and packages created before DB2 Version 6
IBMREQD is no longer reliable as a release dependency mark
Changes to string formatting of decimal data . .
Change to maximum result length of VARCHAR functlon
Changes to VARCHAR_FORMAT function length attribute
New format element for VARCHAR_FORMAT function
Change to result of VARCHAR_FORMAT function with ”HH12” format element
Change to result of VARCHAR_FORMAT function with “]J” format element .
New supported data types for VARCHAR_FORMAT function .
Change to maximum result length of REPEAT function.
Change to maximum result length of XMLTABLE function
Change to how a positive, signed integer in an ORDER BY clause is treated
Binding DBRMs directly into plans is no longer supported . .
Some BIND PLAN and REBIND PLAN command options are no longer supported .
Plans and packages should be converted to DRDA protocol .
Change to GRANT statement
Change to IMMEDWRITE option of BIND PACKAGE command . .
Changes to conversion of special characters in collection IDs and package names .
Changes to the RELEASE bind option .
Database metadata stored procedures are converted to Unlcode .
AUTHID is the default owner of packages that are bound by DSNTRIN
New default DEFINE attribute for dependent objects .
Change for creating partitioned table spaces .
Change to default for CREATE TABLESPACE statements .
Change to default SEGSIZE value for universal table spaces .
Upgrade to supported COBOL and PL/I compilers . .
GRAPHIC and NOGRAPHIC SQL processing options are removed .
SELECT FROM data change statements in BEFORE triggers no longer supported
RETURN statement in scalar functions must follow option-list . .
Changed behavior of LOCATE_IN_STRING function .
Changes to ROUND_TIMESTAMP and TRUNC_ TIMESTAMP functlons .
Changes to result of NEXT_DAY function e
Changes to MONTHS_BETWEEN function .
Changes to TIMESTAMPDIFF function .

Contents

.23
.23
.23
.23
.23
.24
.24
.24
.24
.24
.24
.24
. 25
. 25
. 25
. 26
. 26
. 29
.29
. 30

. 30
31

.31
. 32
.32
.32
.32
. 32
. 33
. 33
. 34
. 34
. 35
. 35
. 35
. 35
. 35
. 35
. 36
. 36
. 36
. 36
. 37
. 37
. 37
. 37
. 37
. 38
. 38
. 39
. 39
. 39
. 39
. 40
. 40
. 40
. 40
. 40
.41
.41
.41

A\

Static SQL applications that use parallelism. .41
Enforced SELECT authorization checking for UPDATE and DELETE statements .41
Increased limit for work file record length . .42
New restrictions for EXPLAIN tables . . .42
MEMBER CLUSTER table spaces indicated by MEMBER CLUSTER column .42
Changed values for the modification level in the product signature. . . 42
Changed behavior for the CREATE FUNCTION statement . 43
Different SQLSTATE returned for some DELETE or UPDATE statements . 43
Changed default behavior of multiple-row inserts for ODBC z/OS apphcatlons . 43
Changes to ALTER TABLESPACE statement error codes . . . 43
Change to CREATE and ALTER statements. . 44
Change to ALTER PROCEDURE statement . .44
Change to DESCRIBE statement .44
New restrictions on using DSNTIAUL .44
Changes to SYSROUTINES . .44
Catalog restructured . .44
Changed data type for an untyped parameter marker . . .44
Changes to handling of special values Infinity, sNaN, and NaN . 44
Changes for INSTEAD OF triggers . .44
Change to positioned update or delete statements . . . 45
Change to stored procedure parameter values returned to non-]ava chents . . 45
Change to results of JDBC method PreparedStatement.setTimestamp . 46
Change to behavior of comma operator in XQuery path expression. . . 46
Change in how DB2 returns stored procedure output parameter data to remote chents . . 46
Change to IBM Data Server Driver for JDBC and SQLJ handhng of TIMESTAMP WITH TIME ZONE data type 49
Changes to datetime built-in functions e . . 49
SQLCODE change for subsequent CAF CONNECT attempts . . 50
Delimiters used for accessing tables on DB2 for Linux, UNIX, and Wlndows . 50
Qualify user-defined function names . . 51
SQLCODE changes . . 51
SQL reserved words .o Lo . 51
Determining the value of any SQL processmg optlons that affect the des1gn of your program . . 51
Changes that invalidate packages . . .52
Determining the value of any bind options that affect the de51gn of your program . 53
Programming applications for performance. . 54
Designing your application for recovery . . 55
Unit of work in TSO . 56
Unit of work in CICS . . 57
Planning for program recovery in IMS programs . . . 58
Undoing selected changes within a unit of work by using savepomts . . 65
Planning for recovery of table spaces that are not logged . . 66
Designing your application to access distributed data . 67
Remote servers and distributed data . . . 68
Preparing for coordinated updates to two or more data sources . . 69
Forcing restricted system rules in your program . . 69
Creating a feed in IBM Mashup Center with data from a DB2 for zZ / OS server . .70
Chapter 2. Connecting to DB2 from your application program . . 73
Invoking the call attachment facility . .74
Call attachment facility .77
Making the CAF language 1nterface (DSNALI) avallable . 80
Requirements for programs that use CAF . . 81
How CAF modifies the content of registers. .82
Implicit connections to CAF . . 82
CALL DSNALI statement parameter hst . 83
Summary of CAF behavior . . . 85
CAF connection functions . 86
Turning on a CAF trace . 98
CAF return codes and reason codes . 98
Sample CAF scenarios . .99
Examples of invoking CAF . . 100

vi Application Programming and SQL Guide

Invoking the Resource Recovery Services attachment facility . 106
Resource Recovery Services attachment facility 108
Making the RRSAF language interface (DSNRLI) ava1lab1e . 112
Requirements for programs that use RRSAF . . . 114
How RRSAF modifies the content of registers . 114
Implicit connections to RRSAF. . 114
CALL DSNRLI statement parameter list . 115
Summary of RRSAF behavior . . . 116
RRSAF connection functions . . 118
RRSAF return codes and reason codes . . 148
Sample RRSAF scenarios . 149
Program examples for RRSAF . . 151

Universal language interface . . 153
Link-editing an application with DSNULI . 155

Controlling the CICS attachment facility from an apphcatlon . 155
Detecting whether the CICS attachment facility is operational . . 156
Improving thread reuse in CICS applications . S . 157

Chapter 3. Coding SQL statements in appllcatlon programs General information . . 159

Declaring table and view definitions. . 160
DCLGEN (declarations generator) . 161
Generating table and view declarations by usmg DCLGEN . 161
Including declarations from DCLGEN in your program . 169
Example: Adding DCLGEN declarations to a library . . 169

Defining the items that your program can use to check whether an SQL statement executed successfully . 173

Defining SQL descriptor areas . . . 173

Declaring host variables and indicator Varrables . 174
Host variables . . 174
Host variable arrays . . 175
Host structures . . . 175
Indicator variables, arrays and structures . 176
Setting the CCSID for host variables. . . 178
Determining what caused an error when retrlevmg data 1nto a host Varlable . . 179

Accessing an application defaults module . . 180

Compatibility of SQL and language data types . . 180

Embedding SQL statements in your application . . 183
Delimiting an SQL statement . . . 183
Rules for host variables in an SQL statement . 183
Retrieving a single row of data into host variables . . 184
Determining whether a retrieved value in a host variable is null or truncated . 186
Determining whether a column value is null . . 188
Updating data by using host variables . . 189
Inserting a single row by using a host variable . . 189
Inserting null values into columns by using indicator varrables or arrays . 190
Host variable arrays in an SQL statement . . . 191
Retrieving multiple rows of data into host variable arrays . 192
Inserting multiple rows of data from host variable arrays. . 192
Retrieving a single row of data into a host structure . 193
Including dynamic SQL in your program . . 193

Checking the execution of SQL statements. . 227
Checking the execution of SQL statements by usrng the SQLCA . . 228
Checking the execution of SQL statements by using SQLCODE and SQLSTATE . . 232
Checking the execution of SQL statements by using the WHENEVER statement . . . 233
Checking the execution of SQL statements by using the GET DIAGNOSTICS statement . 234

Handling SQL error codes . . . C e e . 239
Arithmetic and conversion errors. . 240

Writing applications that enable users to create and modlfy tables . 240

Saving SQL statements that are translated from user requests . 240

XML data in embedded SQL applications . . . 241
Host variable data types for XML data in embedded SQL apphcatlons . 241
XML column updates in embedded SQL applications . .o . 246

Contents Vii

XML data retrieval in embedded SQL apphcatlons 2 £
Programming examples oY |
Examples of programs that call stored procedures Ce 252

Chapter 4. Coding SQL statements in assembler application programs 253

Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler253
Defining SQL descriptor areas in assembler . . . Ao
Declaring host variables and indicator variables in assembler Ao Tt
Host variables in assembler .25
Indicator variables in assembler .260
Equivalent SQL and assembler data types. .26l
SQL statements in assembler programs. . . C o200
Delimiters in SQL statements in assembler programs e e .2
Macros for assembler applications ... 27
Programming examples in assembler .27

Chapter 5. Coding SQL statements in C application programs 273

Defining the SQL communications area, SQLSTATE, and SQLCODE inC273
Defining SQL descriptor areas in C . . . S 274
Declaring host variables and indicator Varlables in C Ce o275
Host variables in C27
Host variable arrays in C L L L2287
Host structures in C A
Indicator variables, indicator arrays and host structure mdlcator arrays in C e e 297
Referencing pointer host variables in C programs .29
Declaring pointer host variables in C programs .300
Equivalent SQL and C data types. ...
SQL statements in C programs . . e 10 /4
Delimiters in SQL statements in C programs o 1N |
Programming examplesinC ..31

Chapter 6. Coding SQL statements in COBOL application programs. 323

Defining the SQL communications area, SQLSTATE, and SQLCODE inCOBOL323
Defining SQL descriptor areas in COBOL G 1.2
Declaring host variables and indicator variables in COBOL G o}
Host variables in COBOL .32
Host variable arrays in COBOL .33
Host structures in COBOL 344
Indicator variables, indicator arrays, and host structure 1nd1cator arrays in COBOL e)
Controlling the CCSID for COBOL host variables .351
Equivalent SQL and COBOL data types .32
SQL statements in COBOL programs . . N 1574
Delimiters in SQL statements in COBOL programs e ¢
Object-oriented extensions in COBOL .363
Programming examples in COBOL .363

Chapter 7. Coding SQL statements in Fortran application programs. 395

Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran39
Defining SQL descriptor areas in Fortran . . . N M
Declaring host variables and indicator variables in Fortran .
Host variables in Fortran ... 37
Indicator variables in Fortran .400
Equivalent SQL and Fortran data types. .40
SQL statements in Fortran programs. . . Ce oo 408
Delimiters in SQL statements in Fortran programs " (o}

Chapter 8. Coding SQL statements in PL/l application programs 407

Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/T407
Defining SQL descriptor areas in PL/I Ce o408
Declaring host variables and indicator variables in PL / L.408

viii Application Programming and SQL Guide

Host variables in PL/I
Host variable arrays in PL/I
Host structures in PL/I .
Indicator variables in PL/T .

Equivalent SQL and PL/I data types

SQL statements in PL/I programs .
Delimiters in SQL statements in PL/I programs
Programming examples in PL/I .

Chapter 9. Coding SQL statements in REXX application programs
Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX .
Defining SQL descriptor areas in REXX. e
Equivalent SQL and REXX data types .
SQL statements in REXX programs .
Delimiters in SQL statements in REXX programs .
Accessing the DB2 REXX language support application programmmg mterfaces .
Ensuring that DB2 correctly interprets character input data in REXX programs
Passing the data type of an input data type to DB2 for REXX programs .
Setting the isolation level of SQL statements in a REXX program .
Retrieving data from DB2 tables in REXX programs .
Cursors and statement names in REXX. .
Programming examples in REXX .

Chapter 10. Creatmg and modlfylng DB2 objects
Creating tables .
Data types
Storing LOB data in a table
Identity columns
Creating tables for data mtegrlty .
Creating work tables for the EMP and DEPT sample tables .
Creating created temporary tables o
Creating declared temporary tables .
Providing a unique key for a table
Fixing tables with incomplete definitions .
Dropping tables
Defining a view
Views . .
Dropping a view . .
Creating a common table expresswn
Common table expressions . .
Examples of recursive common table expressmns
Creating triggers .
Invoking a stored procedure or user- defmed functlon from a trlgger . .
Inserting, updating, and deleting data in views by using INSTEAD OF trlggers .
Trigger packages o e . .
Trigger cascading . .
Order of multiple trlggers . .
Interactions between triggers and referentlal Constramts .
Interactions between triggers and tables that have multilevel securrty w1th row—level granularlty
Triggers that return inconsistent results.
Sequence objects .
DB2 object relational extenswns .
Creating a distinct type .
Distinct types .o .
Example of distinct types, user- deﬁned functlons and LOBS
Defining a user-defined function .
User-defined functions . .
Components of a user-defined functlon deflrutlon .
Writing an external user-defined function .
Making a user-defined function reentrant .

. 409
. 415
. 420
. 422
. 423
. 427
. 432
. 432

. 437

. 437
. 437
. 438
. 439
. 442
. 442
. 444
. 445
. 445
. 446
. 447
. 448

. 459

Contents

. 459
. 460
. 463
. 466
. 468
. 478
. 479
. 481
. 483
. 484
. 484
. 485
. 486
. 487
. 487
. 488
. 489
. 493
. 501
. 503
. 504
. 505
. 505
. 506
. 508
. 508
. 511
. 512
. 513
. 513
. 514
. 517
. 520
. 523
. 525
. 547

ix

Special registers in a user-defined function or a stored procedure . .
Accessing transition tables in a user-defined function or stored procedure .
Preparing an external user-defined function for execution

Abnormal termination of an external user-defined function .

Saving information between invocations of a user-defined function by usmg a scratchpad

Example of creating and using a user-defined scalar function
User-defined function samples that ship with DB2 .
Creating a stored procedure .
Stored procedures .
Creating a native SQL procedure . .
Migrating an external SQL procedure to a natlve SQL procedure .
Changing an existing version of a native SQL procedure .
Regenerating an existing version of a native SQL procedure .
Removing an existing version of a native SQL procedure.
Creating an external SQL procedure .
Creating an external stored procedure . .
Creating multiple versions of external procedures and external SQL procedures .

Chapter 11. Adding and modifying data .
Inserting data into tables
Inserting rows by using the INSERT statement .
Inserting data and updating data in a single operation
Selecting values while inserting data
Adding data to the end of a table
Storing data that does not have a tabular format
Updating table data .
Selecting values while updatrng data
Updating thousands of rows
Deleting data from tables
Selecting values while deleting data

Chapter 12. Accessing data
Determining which tables you have access to. .
Displaying information about the columns for a given table
Retrieving data by using the SELECT statement .
Selecting derived columns .
Selecting XML data
Formatting the result table . . .
Combining result tables from multiple SELECT statements .
Summarizing group values .
Finding rows that were changed w1th1n a specrﬁed perrod of trme
Joining data from more than one table .
Optimizing retrieval for a small set of rows .
Creating recursive SQL by using common table expressrons
Updating data as it is retrieved from the database .
Avoiding decimal arithmetic errors .
Implications of using SELECT *
Subqueries
Restrictions when usrng drstrnct types w1th UNION EXCEPT and INTERSECT
Comparison of distinct types . o
Nested SQL statements . L.
Retrieving a set of rows by using a cursor.
Cursors . .
Accessing data by usmg a row-posmoned cursor
Accessing data by using a rowset-positioned cursor
Retrieving rows by using a scrollable cursor . .
Accessing XML or LOB data quickly by using FETCH WITH CONTINUE
Determining the attributes of a cursor by using the SQLCA .

Determining the attributes of a cursor by using the GET DIAGNOSTICS statement .

Scrolling through previously retrieved data

X Application Programming and SQL Guide

. 548
. 551
. 554
. 554
. 555
. 556
. 557
. 558
. 559
. 572
. 596
. 598
. 599
. 599
. 600
. 615
. 654

. 655
. 655
. 655
. 661
. 663
. 670
. 670
. 670
. 672
. 672
. 673
. 674

. 677
. 677
. 677
. 678
. 681
. 681
. 682
. 688
. 692
. 694
. 695
. 706
. 707
. 708
. 708
. 709
. 710
. 719
. 719
. 720
. 722
. 722
. 726
. 731
. 737
. 742
. 745
. 746
. 746

Updating previously retrieved data . .
FETCH statement interaction between row and rowset posrtronmg
Examples of fetching rows by using cursors .

Specifying direct row access by using row IDs
ROWID columns .

Ways to manipulate LOB data .
LOB host variable, LOB locator, and LOB f11e reference varlable declaratrons .
LOB and XML materialization .

Saving storage when manipulating LOBs by usmg LOB locators
Deferring evaluation of a LOB expression to improve performance
LOB file reference variables

Referencing a sequence object .

Retrieving thousands of rows .

Determining when a row was changed .

Checking whether an XML column contains a certain Value

Accessing DB2 data that is not in a table .

Ensuring that queries perform sufficiently .

Items to include in a batch DL/I program .

Chapter 13. Invoking a user-defined function. .
Determining the authorization ID for invoking user-defined functions
Ensuring that DB2 executes the intended user-defined function.

How DB2 resolves functions

Checking how DB2 resolves functrons by usmg DSN FUNCTION TABLE
Restrictions when passing arguments with distinct types to functions
Cases when DB2 casts arguments for a user-defined function

Chapter 14. Calling a stored procedure from your application

Passing large output parameters to stored procedures by using indicator variables .

Data types for calling stored procedures
Calling a stored procedure from a REXX procedure
Preparing a client program that calls a remote stored procedure
How DB2 determines which stored procedure to run . .
Calling different versions of a stored procedure from a single apphcatron
Invoking multiple instances of a stored procedure .
Designating the active version of a native SQL procedure .
Temporarily overriding the active version of a native SQL procedure
Specifying the number of stored procedures that can run concurrently
Retrieving the procedure status .
Writing a program to receive the result sets from a stored procedure
DB2-supplied stored procedures .

WLM_REFRESH stored procedure .

WLM_SET_CLIENT_INFO stored procedure .

DSN_WLM_APPLENV stored procedure .

DSNACICS stored procedure . .

DSNAIMS stored procedure

DSNAIMS?2 stored procedure .

DSNACCOR stored procedure (deprecated)

XSR_REGISTER stored procedure

XSR_ADDSCHEMADOC stored procedure

XSR_COMPLETE stored procedure .

XSR_REMOVE stored procedure .

Chapter 15. Coding methods for distributed data .
Accessing distributed data by using three-part table names . .
Accessing remote declared temporary tables by using three-part table names .
Accessing distributed data by using explicit CONNECT statements
Specifying a location alias name for multiple sites . .o
Releasing connections
Transmitting mixed data.

. 748
. 748
. 749
. 754
. 756
. 756
. 757
. 762
. 763
. 765
. 767
. 769
. 770
. 770
. 771
. 771
. 772
. 772

. 777

. 779
. 779
. 780
. 783
. 787
. 788

. 791

. 796
. 797
. 797
. 800
. 801
. 802
. 803
. 804
. 804
. 805
. 806
. 807
. 811
. 816
. 820
. 822
. 825
. 833
. 837
. 842
. 863
. 865
. 866
. 868

. 871

Contents

. 871
. 873
. 874
. 875
. 875
. 876

xi

Identifying the server at run time
SQL limitations at dissimilar servers.
Support for executing long SQL statements in a dlstrrbuted env1ronment
Distributed queries against ASCII or Unicode tables .
Restrictions when using scrollable cursors to access distributed data .
Restrictions when using rowset-positioned cursors to access distributed data .
WebSphere MQ with DB2

WebSphere MQ messages

DB2 MQ functions and DB2 MQ XML stored procedures

Generating XML documents from existing tables and sending them to an MQ message queue

Shredding XML documents from an MQ message queue .
DB2 MQ tables . .

Basic messaging with WebSphere MQ

Sending messages with WebSphere MQ

Retrieving messages with WebSphere MQ .

Application to application connectivity with WebSphere MQ
Asynchronous messaging in DB2 for z/OS ..

Chapter 16. DB2 as a web services consumer and provider
Deprecated: The SOAPHTTPV and SOAPHTTPC user-defined functions
The SOAPHTTPNV and SOAPHTTPNC user-defined functions

SQLSTATESs for DB2 as a web services consumer

Chapter 17. Preparing an appllcatlon to run on DB2 for z/OS .
Setting the DB2I defaults
Processing SQL statements . .
Processing SQL statements by usmg the DB2 precompller
Processing SQL statements by using the DB2 coprocessor.
Translating command-level statements in a CICS program
Differences between the DB2 precompiler and the DB2 coprocessor
Options for SQL statement processing .
Compiling and link-editing an application.
Binding an application . .o
Binding a DBRM to a package
Binding an application plan
Bind process for remote access
Binding a batch program
Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package
Converting an existing plan into packages to run remotely . o
Setting the program level
DYNAMICRULES bind option
Dynamic plan selection .
Rebinding an application
Rebinding a package .
Rebinding a plan . . .
Rebinding lists of plans and packages .
Generating lists of REBIND commands.
Automatic rebinding .
Specifying the rules that apply to SQL behav1or at run t1me
DB2 program preparation overview . .
Input and output data sets for DL/I batch]obs . .
DB2-supplied JCL procedures for preparing an apphcatlon .

JCL to include the appropriate interface code when using the DB2 supphed]CL procedures .

Tailoring DB2-supplied JCL procedures for preparing CICS programs
DB2I primary option menu. .
DB2I panels that are used for program preparatlon

DB2 Program Preparation panel .

DB2I Defaults Panel 1

DB2I Defaults Panel 2

Precompile panel .

xii Application Programming and SQL Guide

. 876
. 876
. 877
. 877
. 878
. 878
. 879
. 879
. 881
. 883
. 884
. 884
. 892
. 893
. 894
. 895
. 898

. 909
. 909
. 911
. 912

. 915
. 917
. 918
. 920
. 926
. 929
. 930
. 932
. 942
. 943
. 944
. 949
. 953
. 956
. 957
. 958
. 959
. 959
. 961
. 962
. 963
. 964
. 965
. 965
. 970
. 972
. 973
. 975
. 978
. 978
. 979
. 981
. 982
. 983
. 987
. 989
. 990

Bind Package panel . 993
Bind Plan panel . 996
Defaults for Bind Package and Defaults for Rebmd Package panels . 998
Defaults for Bind Plan and Defaults for Rebind Plan panels . 1001
System Connection Types panel . A .o . 1003
Panels for entering lists of values . 1004
Program Preparation: Compile, Link, and Run panel . 1005
DB2I panels that are used to rebind and free plans and packages . 1007
Bind /Rebind /Free Selection panel . .o . . . 1008
Rebind Package panel . . 1009
Rebind Trigger Package panel . 1011
Rebind Plan panel . . 1013
Free Package panel . . 1014
Free Plan panel . 1015
Chapter 18. Running an apphcatlon on DB2 for z/OS . . 1017
DSN command processor . . 1017
DB2I Run panel . . . 1018
Running a program in TSO foreground . 1019
Running a DB2 REXX application . . 1020
Invoking programs through the Interactive System Product1v1ty Fac1l1ty . 1020
ISPF . . Lo . 1021
Invoking a single SQL program through ISPF and DSN . 1022
Invoking multiple SQL programs through ISPF and DSN . 1023
Loading and running a batch program .. . 1024
Authorization for running a batch DL/I program . 1025
Restarting a batch program . . . 1025
Running stored procedures from the command l1ne processor . 1028
Command line processor CALL statement . 1028
Example of running a batch DB2 application in TSO . 1029
Example of calling applications in a command procedure . . 1030
Chapter 19. Testing and debuggmg an appl|cat|on program on DB2 for z/0S . 1031
Designing a test data structure . . 1031
Analyzing application data needs . . . 1031
Authorization for test tables and applications . 1033
Example SQL statements to create a comprehensive test structure . 1033
Populating the test tables with data . 1034
Methods for testing SQL statements . 1034
Executing SQL by using SPUFI . . 1035
Content of a SPUFI input data set . . 1039
The SPUFI panel . .o . 1039
Changing SPUFI defaults . . 1041
Setting the SQL terminator character in a SPUFI 1nput data set . 1047
Controlling toleration of warnings in SPUFI. . 1048
Output from SPUFI . . 1048
Testing an external user-defined funct10n . . 1050
Testing a user-defined function by using the Debug Tool for z / OS . . 1050
Testing a user-defined function by routing the debugging messages to SYSPRINT . 1052
Testing a user-defined function by using driver applications o . 1052
Testing a user-defined function by using SQL INSERT statements . 1052
Debugging stored procedures . 1052
Debugging stored procedures with the Debug Tool and IBM V1sualAge COBOL .. 1054
Debugging a C language stored procedure with the Debug Tool and C/C++ Productivity Tools for z / OS 1055
Debugging stored procedures by using the Unified Debugger . e . 1055
Debugging stored procedures with the Debug Tool for z/OS . . 1056
Recording stored procedure debugging messages in a file . . 1058
Driver applications for debugging procedures . . 1059
DB2 tables that contain debugging information. . 1059
Debugging an application program. . . 1059
Contents Xiii

Locating the problem in an application
Techniques for debugging programs in TSO.
Techniques for debugging programs in IMS .
Techniques for debugging programs in CICS
Finding a violated referential or check constraint .

Chapter 20. DB2 sample appllcatlons and data
DB2 sample tables
Activity table (DSN8A10. ACT)
Department table (DSN8A10.DEPT)
Employee table (DSN8A10.EMP)
Employee photo and resume table (DSN8A10 EMP PHOTO RESUME)
Project table (DSN8A10.PROY) e
Project activity table (DSN8A10. PRO]ACT)
Employee-to-project activity table (DSNSA10. EMPPRO]ACT)
Unicode sample table (DSN8A10.DEMO_UNICODE).
Relationships among the sample tables .o
Views on the sample tables
Storage of sample application tables
DB2 sample applications . .
Types of sample applications . .
Application languages and enV1ronments for the sample apphcatlons .
Sample applications in TSO .
Sample applications in IMS
Sample applications in CICS .
DSNTIAUL.
DSNTIAD . .
DSNTEP2 and DSNTEP4 .

Information resources for DB2 for z/OS and related products .

Notices e e e
Programming interface information.
Trademarks.

Privacy policy con51derat10ns

Glossary .

Index

xiv Application Programming and SQL Guide

. 1059
. 1064
. 1065
. 1066
. 1070

. 1071

. 1071
. 1071
. 1072
. 1074
. 1077
. 1079
. 1080
. 1081
. 1082
. 1083
. 1084
. 1088
. 1092
. 1094
. 1096
. 1097
. 1100
. 1100
. 1100
. 1106
. 1108

. 1115

. 1117

. 1118
. 1119
. 1119

. 1121

. 1123

About this information

This information discusses how to design and write application programs that
access DB2® for z/OS® (DB2), a highly flexible relational database management
system (DBMS).

This information assumes that your DB2 subsystem is running in Version 10
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise. In Versions 8 and 9, most utility
functions were available in conversion mode. However, for Version 10, most utility
functions work only in new-function mode.

Who should read this information

This information is for DB2 application developers who are familiar with
Structured Query Language (SQL) and who know one or more programming
languages that DB2 supports.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program. You are
licensed to use DFSORT in support of the DB2 utilities even if you do not
otherwise license DFSORT for general use. If your primary sort product is not
DFSORT, consider the following informational APARs mandatory reading:

+ 1114047/1114213: USE OF DFSORT BY DB2 UTILITIES
* 1113495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE
These informational APARs are periodically updated.
Related information
[DB2 utilities packaging (Utility Guide)|

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses

the product's full name to avoid ambiguity.
The following terms are used as indicated:
DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

Tivoli® OMEGAMON® XE
Refers to any of the following products:
« IBM® Tivoli OMEGAMON XE for DB2 Performance Expert on z/0OS

© Copyright IBM Corp. 1983, 2014 XV

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.ugref/src/tpc/db2z_utlpackaging.htm

e IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
¢ IBM DB2 Performance Expert for Multiplatforms and Workgroups
 IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.
IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®
Represents the functions that are provided by the RACF component of the
z/0S Security Server.

Accessibility features for DB2 10 for z/0S

xvi

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 10 for z/OS. These features support:

* Keyboard-only operation.

¢ Interfaces that are commonly used by screen readers and screen magnifiers.
* Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 10 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 10 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 10 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information
Online documentation for DB2 10 for z/OS is available in the Information

Management Software for z/OS Solutions Information Center, which is available at
the following website: [http:/ /pic.dhe.ibm.com/infocenter/dzichelp /v2r2 /index.jsp|

IBM and accessibility

See the IBM Accessibility Center at [http: / /www.ibm.com /abld for more information
about the commitment that IBM has to accessibility.

Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:

* Send your comments by email to [db2zinfo@us.ibm.com|and include the name of
the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

* You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at |nttp:/ /pic.dhe.ibm.com/infocenter /dzichelp/v2r2 /index.jsp}

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/0OS documentation:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

A\
A

»>—required_item

* Optional items appear below the main path.

»>—required_item |_o _| <
ptional_item

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

v
A

ptional_item
»>—required_item |—0 —l

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Erequ ired choicel ><
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

About this information ~ XVii

mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

xviii

v
A

»>—required_item
i:(o)ptional_choicel:‘
ptional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

default_choice
»>—required_item |_ _| <
i:optional_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item— —repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

B

»»—required_item—

repeatable_item

Y
A

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

v
A

»—required_item—| fragment-name i

fragment-name:

f—required_item I
|—optional_name—I

With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Application Programming and SQL Guide

Chapter 1. Planning for and designing DB2 applications

Before you write or run your program, you need to make some planning and
design decisions. These decisions need to be made whether you are writing a new
DB2 application or migrating an existing application from a previous release of
DB2.

If you are migrating an existing application from a previous release of DB2, read
the application and SQL release incompatibilities and make any necessary changes
in the application.

If you are writing a new DB2 application, first determine the following items:
* the value of some of the SQL processing options

* the binding method

* the value of some of the bind options

Then make sure that your program implements the appropriate recommendations
so that it promotes concurrency, can handle recovery and restart situations, and can
efficiently access distributed data.

Related tasks:

[[Programming applications for performance (DB2 Performance)|

[[Programming for concurrency (DB2 Performance)|

[[Writing efficient SQL queries (DB2 Performance)|

[[[mproving performance for applications that access distributed data (DB2]

|[2erformance)

Related reference:

[[BIND and REBIND options for packages and plans (DB2 Commands)|

Application and SQL release incompatibilities for migration from
Version 8

When you migrate from DB2 Version 8 to Version 10, be aware of the application
and SQL release incompatibilities.

GUPI

Plan for the following changes in Version 9.1 and Version 10 that might affect your
migration.

Release incompatibilities that were changed or added since the first edition of this
Version 10 publication are indicated by a vertical bar in the left margin. In other
areas of this publication, a vertical bar in the margin indicates a change or addition
that has occurred since the Version 9.1 release of this publication.

© Copyright IBM Corp. 1983, 2014 1

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_programapplicationperformance.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_programapps4concurrency.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_programsqlperf.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_tunedistributedapps.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_tunedistributedapps.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_bindrebindoptions.dita

Changes in BIND PACKAGE and BIND PLAN defaults (change
introduced in Version 9.1)

In DB2 Version 9, the default value for bind option CURRENTDATA is changed
from YES to NO. This applies to the BIND PLAN and the BIND PACKAGE
subcommands, the CREATE TRIGGER SQL statements for trigger packages, and
the CREATE PROCEDURE and the ALTER PROCEDURE ADD VERSION SQL
statements for SQL PL procedure packages. Specifying NO for CURRENTDATA is
the best option for performance.

The default value for bind option ISOLATION is changed from RR to CS. This
applies to the BIND PLAN and the remote BIND PACKAGE subcommands. For
the BIND PACKAGE subcommand, the current default (plan value) stays. The
default change does not apply to implicitly built CTs (for example, DISTSERV CTs).

If DBPROTOCOL(PRIVATE) is specified, the Version 10 BIND or REBIND
command parser issues error message DSNT225I and fails the BIND or REBIND
request to prevent any outbound private protocol communications as a requester.
DSNT2251 indicates that DBPROTOCOL(PRIVATE) is no longer a supported bind
option.

All BIND statements for plans and packages that are bound during the installation
or migration process specify the ISOLATION parameter explicitly, except for
routines that do not fetch data. The current settings are maintained for
compatibility.

Plan for the XML data type (change introduced in Version 9.1)

Drop any user-defined data types with the name “XML” to prevent problems with
the new Version 9 built-in XML data type. You can re-create the existing
user-defined data types with new names.

Changes to XMLNAMESPACES (change introduced in Version
9.1)

In DB2 Version 8, in the XMLNAMESPACES function, if the XML-namespace-uri
argument has a value of http://www.w3.org/XML /1998 /namespace or

http:/ /www.w3.org/2000/xmlns/, DB2 does not issue an error. Starting in Version
9 conversion mode, DB2 issues an error.

Changes to serialization of empty elements (change
introduced in Version 9.1)

In Version 8, DB2 serializes empty XML elements in a different way than it
serializes them in Version 10. In Version 8, empty element “a” is serialized as
<a>. Starting in Version 9 conversion mode, empty element “a” is serialized as
<a/>.

Availability of LOB or XML values in JDBC or SQLJ
applications with progressive streaming (change introduced in
Version 9.1)

In previous releases, if a JDBC or SQLJ application retrieves LOB data into an
application variable, the contents of the application variable are still available after
the cursor is moved or closed. Version 9 supports streaming. The IBM Data Server
Driver for JDBC and SQL]J uses progressive streaming as the default for retrieval of

2 Application Programming and SQL Guide

LOB or XML values. When progressive streaming is in effect, the contents of LOB
or XML variables are no longer available after the cursor is moved or closed.

Adjust applications that depend on error information that is
returned from DB2-supplied stored procedures (change
introduced in Version 9.1)

Adjust any applications that call one of the following stored procedures and then
check and process the specific SQLCODE or SQLSTATE that is returned by the
CALL statement:

« SQLJINSTALL_JAR

« SQLJ.REMOVE_JAR

« SQLJ.REPLACE_JAR

« SQLJ.DB2_INSTALL_JAR

« SQLJ.DB2_REPLACE_JAR

« SQLJ.DB2_REMOVE_JAR

« SQLJ.DB2_UPDATEJARINFO

Starting in Version 9, these stored procedures return more meaningful SQLCODEs
and SQLSTATESs than they return in previous releases of DB2. The other input and
output parameters of these stored procedures have not changed.

For example, the following application needs to change because -20201 is no longer
the SQLCODE that is returned. Successful execution (SQLCODE 0) is not affected.
CALL SQLJ.REMOVE_JAR(...)

IF (SQLCODE = -20201) THEN
DO;

END;

Some materialized query tables should be dropped (change
introduced in Version 9.1)

Before migrating to conversion mode from Version 8, drop all materialized query
tables that are based on the SYSIBM.SYSROUTINES catalog table. During
migration to conversion mode from Version 8, if any materialized query tables are
based on the SYSIBM.SYSROUTINES catalog table, SQLCODE -750 is issued.

Before migrating to enabling-new-function mode from Version 8, drop all
materialized query tables that are based on the SYSIBM.SYSPACKSTMT catalog
table. During migration to enabling-new-function mode from Version 8§, if any
materialized query tables are based on the SYSIBM.SYSPACKSTMT catalog table,
SQLCODE -750 is issued.

Fully define objects (change introduced in Version 9.1)

Ensure that you do not have any incomplete object definitions in your DB2 Version
8 catalog. For example, if a table has a primary or unique key defined but the
enforcing primary or unique key index does not exist, the table definition is
considered incomplete. You need to complete or drop all such objects before you
begin migration because their behavior will be different in Version 10. For example,
if you attempt to create an enforcing primary key index to complete a table
definition in Version 10 and the residing table space is implicitly created, the index
is treated as a regular index instead of an enforcing index.

Chapter 1. Planning for and designing DB2 applications 3

Changes to PL/I applications with no DECLARE VARIABLE
statements (change introduced in Version 9.1)

For PL/I applications with no DECLARE VARIABLE statements, the rules for host
variables and string constants in the FROM clause of a PREPARE or EXECUTE
IMMEDIATE statement have changed. A host variable must be a varying-length
string variable that is preceded by a colon. A PL/I string cannot be preceded by a
colon.

Automatic rebind of plans and packages created before DB2
Version 6

If you have plans and packages that were bound before DB2 Version 6 and you
specified YES or COEXIST in the AUTO BIND field of panel DSNTIPO, DB2
Version 10 autobinds these packages. Thus, you might experience an execution
delay the first time that such a plan is loaded. Also, DB2 might change the access
path due to the autobind, potentially resulting in a more efficient access path.

If you specify NO in the AUTO BIND field of panel DSNTIPO, DB2 Version 10
returns SQLCODE -908, SQLSTATE 23510 for each attempt to use such a package
or plan until it is rebound.

IBMREQD is no longer reliable as a release dependency mark

The IBMREQD field in DB2 catalog tables is no longer a reliable indicator for
determining release dependencies. Use the RELCREATED or RELBOUND fields
instead.

Changed behavior for ODBC data conversion for the
SQL_BINARY type (change introduced in Version 9.1)

In releases before Version 9.1, when ODBC applications used the SQL_BINARY
type to bind parameter markers, ODBC mapped the SQL_BINARY type to CHAR
FOR BIT DATA. In Version 10, when the DB2 server is in Version 10 new-function
mode, ODBC maps SQL_BINARY to BINARY. Because CHAR FOR BIT DATA
fields are padded with blanks, and BINARY fields are not padded, applications
might experience differences in behavior.

For example, in releases before Version 9.1, if the target CHAR FOR BIT DATA
column was shorter than the SQL_BINARY input host variable, and the truncated
values were blanks, DB2 did not generate an error. In Version 10, if the target
BINARY column is shorter than the SQL_BINARY input host variable, and the
truncated values are hexadecimal zeroes, DB2 generates an error.

Changed behavior of the INSERT statement with the
OVERRIDING USER VALUE clause (change introduced in
Version 9.1)

When the INSERT statement is specified with the OVERRIDING USER VALUE
clause, the value for the insert operation is ignored for columns that are defined
with the GENERATED BY DEFAULT or GENERATED ALWAYS attribute.

4 Application Programming and SQL Guide

DESCRIBE no longer returns LONG type values (change
introduced in Version 9.1)

Because DB2 no longer stores LONG type values in the catalog, when you execute
a DESCRIBE statement against a column with a LONG VARCHAR or LONG
VARGRAPHIC data type, the DESCRIBE statement returns the values as
VARCHAR or VARGRAPHIC data types.

DB2 enforces the restrictions about where a host variable
array can be specified (change introduced in Version 9.1)

host-variable-array is the meta-variable for host variable arrays in syntax diagrams.
host-variable-array is included only in the syntax for multi-row FETCH, multi-row
INSERT, multi-row MERGE, and EXECUTE in support of a dynamic multi-row
INSERT or MERGE statement. host-variable-array is not included in the syntax
diagram for expression, so a host variable array cannot be used in other contexts. In
previous releases, if you specified host-variable-array in an unsupported context, you
received no errors. In Version 10, if a host variable array is referenced in an
unsupported context, DB2 issues an error.

For more information about where you can specify the host-variable-array variable,
see [Host variable arrays in an SQL statement (DB2 Application programming and|

BQLY

DEBUGSESSION system privilege required for continued
debugging of SQL procedures (change introduced in Version
9.1)

After you migrate to new-function mode, users that debug external SQL
procedures need the DEBUGSESSION system privilege. (External SQL procedures
were previously called SQL procedures in Version 8.) Only users of the new
Unified Debugger enabled client platforms need this system privilege. Users of the
Version 8 SQL Debugger-enabled client platforms do not need this system
privilege.

Changes to the result length of the DECRYPT function
(change introduced in Version 9.1)

The result length of the DECRYPT function is shortened to 8 bytes less than the
length of the input value. If the result expands because of a difference between
input and result CCSIDs, you must cast the encrypted data to a larger VARCHAR
value before the DECRYPT function is run.

Changes to the result length and data type of some functions
(change introduced in Version 9.1)

For the following built-in functions, if all parameters have data type
DECFLOAT(n), the result has data type DECFLOAT(34):

* AVG

» STDDEV

STDDEV_SAMP

SUM

VARIANCE

VARIANCE_SAMP

Chapter 1. Planning for and designing DB2 applications 5

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.apsg/src/tpc/db2z_hostvararraysqlstatement.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.apsg/src/tpc/db2z_hostvararraysqlstatement.dita

For the following built-in functions, if the input is all integer or decimal values, or
is a mixture of float or double values with integer or decimal values, the result
data type is DOUBLE:

* CORRELATION

* COVARIANCE

* COVARIANCE_SAMP

COLTYPE column in SYSIBM.SYSCOLUMNS and
SYSIBM.SYSCOLUMNS_HIST for LONG column types (change
introduced in Version 9.1)

When new tables are created with LONG VARCHAR or LONG VARGRAPHIC
columns, the COLTYPE values in SYSIBM.SYSCOLUMNS and
SYSIBM.SYSCOLUMNS_HIST contain VARCHAR or VARG.

CREATEDBY column in SYSIBM.SYSDATATYPES,
SYSIBM.SYSROUTINES, SYSIBM.SYSSEQUENCES, and
SYSIBM.SYSTRIGGERS (change introduced in Version 9.1)

The CREATEDBY column might contain a different value than in previous releases
of DB2. The column might contain a different value in static CREATE statements
for distinct types, functions, and procedures or when a dynamic SQL statement
sets the CURRENT SQLID value to a value other than USER.

DB2 returns all DSNWZP output in the same format as DB2
parameters (change introduced in Version 9.1)

In previous releases, DSNWZP returned the current setting of several system
parameters in a format other than the one used by the system parameter macros.
For example, DSN6SPRM expected the setting for EDMPOOL in kilobytes, and
DSNWZP returned it in bytes. In Version 10, DB2 returns all DSNWZP output in
the same format as DB2 parameters. Modify programs that call DSNWZP if they
compensate for the format differences.

DB2 enforces the restriction that row IDs are not compatible
with character strings when they are used with a set operator
(change introduced in Version 9.1)

In previous releases, DB2 did not always enforce the restriction that row IDs are
not compatible with character strings. In Version 10, DB2 enforces the restriction
that row IDs are not compatible with string types when they are used with a set
operator (UNION, INTERSECT, or EXCEPT).

Database privileges on the DSNDB04 database now give you
those privileges on all implicitly created databases (change
introduced in Version 9.1)

Because database privileges on the DSNDB04 database now give you those
privileges on all implicitly created databases, careful consideration is needed before
you grant database privileges on DSNDB04. For example, in Version 10, if you
have the STOPDB privilege on DSNDB04, you also have the STOPDB privilege on
all implicitly created databases.

6 Application Programming and SQL Guide

Implicitly created objects that are associated with LOB
columns require additional privileges (change introduced in
Version 9.1)
In releases before Version 9.1, implicitly created objects that are associated with
LOB columns do not require CREATETAB and CREATETS privileges on the
database of the base table. Those implicitly created objects also do not require the

USE privilege on the buffer pool and storage group that is used by the LOB
objects. In Version 10, these privileges are required.

Adjust applications to use LRHCLR instead of LGDISCLR
(change introduced in Version 9.1)

The LGDISCLR field in the DSNDQJ00 macro has been removed. Update
applications that use the LGDISCLR value in the DSNDQJ00 mapping macro to
determine whether a log record is a compensation log record to use the LRHCLR
value instead.

Changed behavior for the CREATE statement (change
introduced in Version 9.1)

You can no longer create databases with the AS TEMP clause or table spaces that
specify TEMP as the target database. The TEMP database is no longer used by
DB2. The WORKFILE database is the only temporary database.

The DECLARE statement and the work file database (change
introduced in Version 9.1)

If you have applications in Version 8 that issue DECLARE SENSITIVE STATIC
SCROLL CURSOR or DECLARE GLOBAL TEMPORARY TABLE statements,
ensure that the work file database exists and that it has at least one table space
with a 32 KB page size to avoid errors.

Adjust monitor programs that access OP buffers (change
introduced in Version 9.1)

Adjust assignment strategies of monitor programs that access OP buffers. In
Version 8, traces are left in a disabled state, which consumes CPU for trace data
that cannot be retrieved. In Version 10, traces that are started with a destination of
OPX choose the next available buffer that is not in use and traces are no longer left
in a disabled state.

In addition, in Version 8, when the thread that owns an OP buffer terminates, OP
traces are left in a disabled state and can be reactivated by starting another trace to
that buffer. In Version 10, if an OP buffer terminates and the only destinations for
the trace records are OP buffers, the traces that are started to that buffer are
stopped. If an OP buffer terminates and the trace is started to both OP and non-OP
destinations, the traces that are started to that buffer are modified to use non-OP
destinations only.

The message format of DSNW128I and DSNW129I has changed, so modify
automation that is based on those message formats.

Chapter 1. Planning for and designing DB2 applications 7

Changed behavior for system-required objects (change
introduced in Version 9.1)

After you migrate to Version 10 new-function mode, if the containing table space is
implicitly created, you cannot drop any system-required objects, except for the
LOB table space. This restriction applies even if you explicitly created these objects
in a previous release. The following statements will not work properly if the
system-required objects were implicitly created by DB2:

CREATE AUXILIARY TABLE
If you issue a CREATE AUXILIARY TABLE statement and an auxiliary
table that was implicitly created by DB2 already exists for the same base
table, the CREATE AUXILIARY TABLE statement fails and DB2 issues
SQLCODE -646, SQLSTATE 55017, and reason code 3.

CREATE LOB TABLESPACE
If you issue a CREATE LOB TABLESPACE statement to create a LOB table
space in an implicitly created database, the CREATE LOB TABLESPACE
statement fails and DB2 issues SQLCODE -20355, SQLSTATE 429BW, and
reason code 1.

CREATE DATABASE
If you specify an eight-character database name that begins with DSN and is
followed by exactly five digits in a CREATE DATABASE statement, the
CREATE DATABASE statement fails and DB2 issues SQLCODE -20074,
SQLSTATE 42939.

CREATE INDEX
If you create an index on a primary key, unique key, or ROWID column
that is defined as GENERATED BY DEFAULT, the index will be treated as
a regular index instead of an enforcing index.

CREATE AUXILIARY INDEX
If you issue a CREATE AUXILIARY INDEX statement and an auxiliary
index that was implicitly created by DB2 already exists for the same base
table, the CREATE AUXILIARY INDEX statement fails and DB2 issues
SQLCODE -748, SQLCODE 54048, and reason code 3.

CREATE
If you issue a CREATE statement and do not specify an IN clause or table
space name, and the default buffer pool is not large enough, DB2 chooses a
4 KB, 8 KB, 16 KB, or 32 KB buffer pool, depending on the record size. If
you issue a CREATE statement and do not specify an IN clause or table
space name, DB2 implicitly creates a partitioned-by-growth universal table
space. If you drop the table, DB2 also drops the containing table space.

DROP TABLE
If you issue a DROP TABLE statement to drop an auxiliary table from a
table space that was implicitly created by DB2, the DROP TABLE statement
fails and DB2 issues SQLCODE -20355, SQLSTATE 429BW, and reason code
2.

DROP TABLESPACE
If you issue a DROP TABLESPACE statement to drop an implicitly created
LOB table space, the DROP TABLESPACE statement fails and DB2 issues
SQLCODE -20355, SQLSTATE 429BW, and reason code 2.

DROP INDEX
If you issue a DROP INDEX statement to drop an enforcing primary key,
unique key, or ROWID index from a table space that was implicitly
created, the DROP INDEX statement fails and DB2 issues SQLCODE -669,

8 Application Programming and SQL Guide

SQLSTATE 42917, and reason code 2. If you issue a DROP INDEX
statement to drop an auxiliary index from a table space that was implicitly
created, the DROP INDEX statement fails and DB2 issues SQLCODE
-20355, SQLSTATE 429BW, and reason code 2.

Changes to INSERT, UPDATE, or DELETE statements on some
indexes (change introduced in Version 9.1)
In Version 10, you cannot execute INSERT, UPDATE, or DELETE statements that

affect an index in the same commit scope as ALTER INDEX statements on that
index.

LOBs with a maximum length greater than 1 GB can now be
logged (change introduced in Version 9.1)

In releases before Version 9.1, only LOBs with a maximum length of 1 GB or less
could be logged. In Version 10, LOBs with a maximum length that is greater than
1 GB can be logged.

DB2 returns an error when a LOB value is specified for an
argument to a stored procedure and the argument value is
longer than the target parameter and the excess is not trailing
blanks (change introduced in Version 9.1)

In releases before Version 9.1, DB2 did not return an error when a LOB value was
specified for an argument to a stored procedure and the argument value was
longer than the target parameter and the excess was not trailing blanks. DB2
truncated the data and the procedure executed. In Version 10, DB2 returns an error.

Changes to string formatting of decimal data
Explanation

DB2 Version 10 changed the formatting of decimal data by the CHAR and
VARCHAR built-in functions and CAST specifications with a CHAR or VARCHAR
result type. For input data that contains decimals, leading zeros are removed, and
leading zeros are not added to values that did not already contain leading zeros. If
the scale of the decimal value is zero, the decimal character is not returned. Also,
the CHAR function no longer returns leading blanks for positive decimal values.
The result of the CHAR function for decimal data is now consistent with the result
of CAST(decimal-expression AS CHAR).

After migration to Version 10, packages that were bound before Version 10 use the
old behavior for these functions. Materialized query tables and indexes on
expressions that were created before Version 10 also continue to use the old
behavior.

Views and inline SQL functions use the behavior of the SQL statement that
references the object. It is possible for references to the same view or function in
different applications to get different behavior for these functions or casts.
Possible impact to your DB2 environment

These changes might cause unexpected output from applications that use the

CHAR or VARCHAR functions for decimal data or the CAST(decimal-expression AS
CHAR) or CAST(decimal-expression AS VARCHAR) specifications.

Chapter 1. Planning for and designing DB2 applications 9

Actions to take

These changes occur in Version 10 conversion mode (from both Version 8 and
Version 9.1). You can temporarily override these changes on a subsystem level by
using the BIF_COMPATIBILITY subsystem parameter. You can also temporarily
override these changes on an application level by adding schema SYSCOMPAT_V9
to the front of the PATH bind option or CURRENT PATH special register. This
approach works for CHAR and VARCHAR functions and does not affect CAST
specifications. The recommended approach is to modify your applications to
handle the Version 10 behavior for these functions, as described in the following
steps.

To modify your applications to handle the Version 10 behavior for CHAR,
VARCHAR, and CAST:

1. Identify applications that need to be modified to handle this change. You can
use IFCID trace 0366 to identify affected applications.

2. Ensure that the BIF_COMPATIBILITY subsystem parameter is set to
V9_DECIMAL_VARCHAR.

To handle the change for the CHAR function only, you can set the subsystem
parameter to V9 and complete the following steps for the CHAR function.

3. Change any affected applications to handle the new Version 10 CHAR and
VARCHAR behavior, including stored procedures, non-inline user-defined
functions, and trigger packages. Rewrite affected CAST specifications with the
appropriate CHAR or VARCHAR function and a CAST to the correct length if
needed.

4. Rebind and prepare packages with the PATH(SYSCURRENT,SYSIBM) rebind
option to use the new Version 10 CHAR and VARCHAR built-in functions.
Repeat this step for native stored procedures (SQLPL) and non-inline SQL
scalar functions.

5. For views that reference these casts or built-in functions, determine whether the
view needs to be changed to have the expected output. Drop and re-create the
views with the PATH(SYSCURRENT,SYSIBM) rebind option only if necessary.
Rebind any applications that reference the views with the
PATH(SYSCURRENT,SYSIBM) option to use the new Version 10 CHAR and
VARCHAR built-in functions. Repeat this step for inline SQL scalar functions.

6. For materialized query tables or indexes on expressions that reference these
casts or built-in functions, drop and re-create the materialized query tables or
indexes on expressions with the PATH(SYSCURRENT,SYSIBM) rebind option.
Issue the REFRESH TABLE statement for materialized query tables. Rebind any
applications that reference the materialized query tables or indexes on
expressions with the PATH(SYSCURRENT,SYSIBM) option to use the new
Version 10 CHAR and VARCHAR built-in functions.

7. Change the value of the BIF_COMPATIBILITY subsystem parameter to
CURRENT. When the subsystem parameter value is CURRENT, new
applications, rebinds, and CREATE statements use the new CHAR, VARCHAR,
and CAST behavior.

Materialized query tables and indexes on expressions use the CHAR, VARCHAR,
and CAST behavior that is specified during its creation. If a reference statement
has a different behavior that is specified by the BIF_COMPATIBILITY parameter or
a different path, the materialized query table or expression-based index is not used.

Related reference:

10 Application Programming and SQL Guide

[[BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (DB2]
[Installation and Migration)|

Change to maximum result length of VARCHAR function

In Version 10, the maximum result length of the VARCHAR function is changed
from 32767 to the maximum length of a VARCHAR.

Leading or trailing blanks from the VARCHAR_FORMAT
function format string are no longer removed (change
introduced in Version 9.1)

Leading or trailing blanks from the format string for the VARCHAR_FORMAT
function are no longer removed. Existing view definitions are recalculated as part
of Version 10, so the new rules take effect. You can continue to use existing SQL
statements that use a materialized query table that references the
VARCHAR_FORMAT function, but they use the old rules and remove leading and
trailing blanks. Existing references to the VARCHAR_FORMAT function in bound
statements only get the new behavior when they have been bound or rebound in
Version 10.

Changes to VARCHAR_FORMAT function length attribute

In Version 10, for VARCHAR_FORMAT functions, the length attribute of the result
is the length attribute of the format string, up to a maximum of 255. To apply this
change, use the following guidance:

 Existing view definitions that reference the VARCHAR_FORMAT function
should be regenerated with an ALTER VIEW statement.

 Existing materialized query statements that reference the VARCHAR_FORMAT
function should be dropped and re-created.

* Bound SQL statements that reference the VARCHAR_FORMAT function will
only use the new behavior when they have been bound in Version 10 conversion
mode (from Version 8 or Version 9.1) or later.

* DESCRIBE statements will only determine the result data type for the
VARCHAR_FORMAT function using the modified rules in the DESCRIBE
statements have been bound in Version 10 conversion mode (from Version 8 or
Version 9.1) or later.

* Existing indexes that involve an expression that reference the
VARCHAR_FORMAT function should be dropped and re-created.

If an application is using the DSNTIAUL program, the result string is padded with
characters '00'X. Consider this incompatible change for any applications that use
the VARCHAR_FORMAT function and are dependent on the output from
DSNTIAUL.

New format element for VARCHAR_FORMAT function

In Version 10, a new format element, “RRRR”, is supported. In previous versions,
this format element was interpreted as two adjacent specifications of the “RR”
format element.

Change to result of VARCHAR_FORMAT function with “HH12”
format element

In Version 10, if the “HH12” format element is specified in a VARCHAR_FORMAT
function and the time component of the first argument is 24:00:00, the input

Chapter 1. Planning for and designing DB2 applications 11

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ipf_bifcompatibility.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ipf_bifcompatibility.dita

timestamp value is adjusted to 00:00:00 and the date is changed to the next day. In
previous releases, the timestamp value is adjusted to 12:00:00 and the day is not
changed.

Change to result of VARCHAR_FORMAT function with “J”
format element

In Version 10, if the “J” format element is specified in a VARCHAR_FORMAT
function, the result is different from the result of the JULIAN_DAY function for
dates earlier than October 15, 1582.

New supported data types for VARCHAR_FORMAT function

The VARCHAR_FORMAT function has been extended to allow date, character, and
graphic string input for the first argument, and graphic string input for the second
argument. If the function is invoked with one of the newly supported data types,
and an existing user-defined function named VARCHAR_FORMAT also supports
the data type, the function might resolve to the built-in function rather than the
user-defined function. If the reference to the existing function uses the unqualified
name and SYSIBM precedes the schema that was used for the user-defined
function, the new function will be invoked rather than the user-defined function.

Change to maximum result length of REPEAT function

In Version 10, the maximum result length of the REPEAT function is changed from
32767 to the maximum length of a VARCHAR.

Change to maximum result length of XMLTABLE function

In Version 10, the maximum length of a VARCHAR data type result column of the
XMLTABLE function is changed from 32767 to the maximum length of a
VARCHAR.

DB2 drops certain indexes when a unique constraint is
dropped (change introduced in Version 9.1)

In releases before Version 9.1, if a unique constraint was dropped, DB2 did not
drop the index that enforced uniqueness. Starting in Version 9, if a table is in an
implicitly created table space, and a unique constraint on that table is dropped,
DB2 drops the index that enforces uniqueness.

DB2 enforces restriction on specifying a CAST FROM clause
for some forms of CREATE FUNCTION statements (change

introduced in Version 9.1)

The CAST FROM clause is included only in the syntax diagram for the CREATE
FUNCTION statement for an external scalar function. The CAST FROM clause is
not included in the syntax diagrams for the other variations of CREATE
FUNCTION (external table function, sourced function, or SQL function); the clause
cannot be used for these other variations. In previous releases, if you specified a
CAST FROM clause in an unsupported context, you received no errors. Starting in
Version 9, if a CAST FROM clause is specified in an unsupported context, DB2
issues an error.

12 Application Programming and SQL Guide

DB2 enforces restrictions on specifying the AS LOCATOR
clause and TABLE LIKE clause (change introduced in Version
9.1)

The AS LOCATOR clause for LOBs is included in the syntax diagram for the
CREATE FUNCTION statement for an SQL function. This clause is not supported
in other contexts when identifying an existing SQL function such as in an ALTER,
COMMENT, DROP, GRANT, or REVOKE statement. In previous releases, if you
specified an AS LOCATOR clause for LOBs in an unsupported context, you might
not have received an error. Starting in Version 9, if an AS LOCATOR clause for
LOBs is specified in an unsupported context, DB2 issues an error.

The TABLE LIKE clause for a trigger transition table is included only in the syntax
diagram for the CREATE FUNCTION statement for an external scalar function,
external table function, or sourced function. This clause is not supported for SQL
functions or in other contexts when identifying an existing function such as in an
ALTER, COMMENT, DROP, GRANT, or REVOKE statement, or in the SOURCE
clause of a CREATE FUNCTION statement. In previous releases, if you specified a
TABLE LIKE clause for a trigger transition table in an unsupported context, you
might not have received an error. Starting in Version 9, if a TABLE LIKE clause for
a trigger transition table is specified in an unsupported context, DB2 issues an
error.

DB2 enforces restriction on the CCSID parameter for the
DECRYPT_BIT and DECRYPT_BINARY functions (change
introduced in Version 9.1)

The CCSID parameter is not supported by the DECRYPT_BIT and
DECRYPT_BINARY built-in functions. In previous releases, if you specified an
argument for the CCSID parameter for these functions, you received no errors.
Starting in Version 9, if an argument is specified for the CCSID parameter in an
unsupported context, DB2 issues an error.

Changed behavior of CREATE PROCEDURE for an SQL
procedure (change introduced in Version 9.1)
With the introduction of native SQL procedures in Version 9, the semantics of the
CREATE PROCEDURE statement for an SQL procedure has changed. Starting in
Version 9, all SQL procedures that are created without the FENCED option or the
EXTERNAL option in the CREATE PROCEDURE statement are native SQL

procedures. In previous releases of DB2, if you did not specify either of these
options, the procedures were created as external SQL procedures.

If you do specify FENCED or EXTERNAL, the meanings are the same as in
previous releases of DB2. Both of these keywords mean that an external SQL
procedure is to be created.

Explicitly qualify names of variables, parameters, and
columns in SQL procedures (change introduced in Version
9.1)

As of Version 9, the rules that are used for name resolution within a native SQL
procedure differ from the rules that were used for SQL procedures in prior
releases. Because an SQL parameter or SQL variable can have the same name as a
column name, you should explicitly qualify the names of any SQL parameters,
SQL variables or columns that have non-unique names. For more information

Chapter 1. Planning for and designing DB2 applications 13

about how the names of these items are resolved, see [References to SQL)
fparameters and SQL variables (DB2 SQL)| The rules that are used for name
resolution within external SQL procedures remain unchanged.

Make any necessary program changes for possibly different
values for RETURNED_SQLSTATE and
DB2_RETURNED_SQLCODE (change introduced in Version

9.1)

Starting in Version 9, when an SQL statement other than GET DIAGNOSTICS or
compound-statement is processed, the current diagnostics area is cleared before
DB2 processes the SQL statement. Clearing of the diagnostics area can result in
different values being returned for RETURNED_SQLSTATE and
DB2_RETURNED_SQLCODE for a GET DIAGNOSTICS statement than what
would be returned if the GET DIAGNOSTICS statement were issued from within
an external SQL procedure. Additionally, there might be some differences in the
values returned for the SQLSTATE and SQLCODE SQL variables than would have
been returned from an external SQL procedure. (External SQL procedures were
previously called SQL procedures in Version 8.)

SQLSTATE and SQLCODE SQL variables after a GET
DIAGNOSTICS statement (change introduced in Version 9.1)

Starting in Version 9, the SQLSTATE and SQLCODE SQL variables are not cleared
following a GET DIAGNOSTICS statement.

Coding multiple SQL statements in a handler body (change
introduced in Version 9.1)

Previous releases of DB2 did not allow for a compound statement within a handler.
A workaround to include multiple statements within a handler (without support
for a compound statement in a handler) was to use another control statement, such
as an IF statement, which in turn contained multiple statements. Starting in
Version 9, DB2 supports a compound statement within a handler body. The
compound statement is recommended for including multiple statements within a
handler body.

Unhandled warnings (change introduced in Version 9.1)

Starting in Version 9, when a native SQL procedure completes processing with an
unhandled warning, DB2 returns the unhandled warning to the calling application.
The behavior of an external SQL procedure is unchanged from releases prior to
Version 9. When such a procedure completes processing with an unhandled
warning, DB2 does not return the unhandled warning to the calling application.

Change your programs to handle any changed messages from
SQL procedures (change introduced in Version 9.1)

Starting in Version 9, DB2 issues different messages for the new native SQL
procedures than it does for external SQL procedures. (External SQL procedures
were previously called SQL procedures in Version 8.) For external SQL procedures,
DB2 continues to issue DSNHxxxx messages. For native SQL procedures, DB2
issues SQL return codes. The relationship between these messages is shown in the
following table:

14 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_refs2parmsandvarsinexternalsqlpl.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_refs2parmsandvarsinexternalsqlpl.dita

Table 1. Relationship between DSNHxxxx messages that are issued for external SQL
procedures and SQLCODEs that are issued for native SQL procedures

DSNHxxxx message' SQLCODE?
DSNHO0511 -051
DSNH385I1 +385
DSNH5901 -590
DSNH44081 -408
DSNH47771 n/a
DSNH47781 -778
DSNH47791 -779
DSNHA47801 -780
DSNH47811 -781
DSNHA47821 -782
DSNH47851 -785
DSNHA47871 -787
Note:

1. These messages are used for external SQL procedures, which can be defined by
specifying EXTERNAL or FENCED in Version 10.

2. These messages are used for native SQL procedures in Version 10.

Enhanced data type checking for zero-length characters
(change introduced in Version 9.1)

Starting in Version 9, when you specify a CHAR data type with a length of 0 in the
SQLDA, DB2 issues SQLCODE -804 regardless of the null indicator value.

Adding a column generates a new table space version
(change introduced in Version 9.1)

In previous releases, adding a column to a table did not generate a new table space
version. Starting in Version 9, adding a column to a table with an ALTER TABLE
ADD COLUMN statement generates a new table space version.

You cannot add a column and issue SELECT, INSERT,
UPDATE, or DELETE statements in the same commit scope

You cannot have a version-generating ALTER TABLE ADD COLUMN statement
and SELECT, INSERT, UPDATE, or DELETE statements in the same commit scope.
If a version-generating ALTER TABLE ADD COLUMN statement follows SELECT,
INSERT, UPDATE, or DELETE statements in the same commit scope, SQLCODE
-910 is issued. SQLCODE -910 is also issued if SELECT, INSERT, UPDATE, or
DELETE statements follow a version-generating ALTER TABLE ADD COLUMN
statement in the same commit scope.

Chapter 1. Planning for and designing DB2 applications 15

CAST FROM clause of CREATE FUNCTION statement for SQL
functions is no longer supported (change introduced in
Version 9.1)

The CAST FROM clause of the CREATE FUNCTION statement for SQL functions
is no longer supported. Starting in Version 9, if you issue a CREATE FUNCTION
statement for an SQL function with a CAST FROM clause, DB2 issues an error.

Specifying ALTER DATABASE STOGROUP for work file

databases (change introduced in Version 9.1)

In previous releases of DB2, you could not execute ALTER DATABASE
STOGROUP on a work file database. Beginning with DB2 Version 9.1 conversion
mode, this restriction is removed.

DB2 enforces restrictions about where an INTO clause can be
specified (change introduced in Version 9.1)

The INTO clause (as related to queries) is included only in the syntax diagram for
the SELECT INTO statement. The INTO clause is not included in the syntax
diagrams for select-clause, subselect, fullselect, or select-statement. In previous
releases, if you specified an INTO clause in an unsupported context in a query, you
might not have received an error. Starting in Version 9, if an INTO clause is
specified in an unsupported context, DB2 issues an error.

Change to how a positive, signed integer in an ORDER BY
clause is treated
Explanation

Beginning in Version 10 conversion mode (from both Version 8 and Version 9.1), a
positive, signed integer in an ORDER BY clause is treated as a sort-key-expression.
Such integers were previously interpreted as column numbers.

For example, in previous versions of DB2, ORDER BY +1 in the following SELECT
statement meant order by column 1 (C1).

SELECT C1, C2 FROM T1 ORDER BY +1;

Starting in Version 10, +1 means the constant +1, which has no effect on the order
of the rows.

Possible impact to your DB2 environment

This change might cause unexpected results of queries that contain an ORDER BY
clause with a positive, signed integer. However, no error is issued when such
queries are run.

Actions to take

To prepare for this change, identify any queries that use a positive, signed integer
in an ORDER BY clause to refer to a column in the result table. Modify these
queries to use unsigned integers to identify column numbers.

Related reference:

(& [order-by-clause (DB2 SQL)

16 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_orderbyclause.dita

Binding DBRMs directly into plans is no longer supported

For pre-existing plans that are bound from DBRMs, you can use the COLLID
parameter of the REBIND PLAN command to create packages. If you execute a
plan that is bound from DBRMs, DB2 performs an automatic rebind that creates
packages from the DBRMs and binds those packages into a plan. However, the
recommendation is to use REBIND with the COLLID option so that you can
specify bind options and receive more diagnostic information. If the installation
uses the RACF access control module, owners of plans with DBRMs need to
explicitly rebind the plans to convert the DBRMs to packages.

Some BIND PLAN and REBIND PLAN command options are
no longer supported

The ACQUIRE(ALLOCATE) option of the BIND PLAN and REBIND PLAN
commands is no longer supported. If you specify ACQUIRE(ALLOCATE), DB2
issues a warning message and uses ACQUIRE(USE).

Also, the MEMBER option of BIND PLAN and REBIND PLAN is no longer
supported. If you specify MEMBER, DB2 issues a warning message, binds the
specified DBRM into a package, and binds the package into a plan.

Plans and packages should be converted to DRDA protocol

Plans and packages that were previously bound using DBPROTOCOL(PRIVATE)
should be converted to DRDA® protocol before migration to Version 10. In Version
10, plans and packages that were bound with the DBPROTOCOL(PRIVATE) bind
option and access remote locations cannot run. Applications that use packages or
plans that were bound with DBPROTOCOL(PRIVATE) and access remote locations
fail with SQLCODE -904. A rebind of those plans and packages must be explicitly
performed before they can execute successfully. Job DSNTIJPM identifies the
objects that must be converted to use DRDA protocol.

Change to GRANT statement

The PUBLIC AT ALL LOCATIONS clause is no longer allowed in the GRANT
statement for table and view privileges as an alternative to PUBLIC. The
DSNTPPCK program in Version 8 and Version 9.1 analyzes the embedded SQL
statements in packages and plans for private protocol SQL, which is invalid in
Version 10. The program produces a report that states which packages and member
DBRMs of plans contain the invalid syntax. The program scans either the
SYSIBM.SYSSTMT catalog table, the SYSIBM.SYSPACKSTMT catalog table, or both.
Applications that issue dynamic SQL statements with the invalid PUBLIC AT ALL
LOCATIONS clause will receive SQLCODE -199.

Change to IMMEDWRITE option of BIND PACKAGE command

In DB2 Version 10, if IMMEDWRITE is not specified on a BIND PACKAGE
command, the default is “1”, or INHERITFROMPLAN. In previous versions, the
default was NO.

Changes to conversion of special characters in collection IDs
and package names

In Version 10, DRDA character type parameter data is sent between client drivers
and DB2 in UTF-8 Unicode, if those client drivers also have this support. Character
type parameter data includes package names and collection IDs. Prior to Version
10, collection IDs and package names were sent in EBCDIC, and then converted to

Chapter 1. Planning for and designing DB2 applications 17

Unicode before being stored in the DB2 catalog. A collection ID or package name
that is in the DB2 catalog from a bind that was initiated by an older driver might
not match an ID or name that is sent to DB2 by a newer driver. This mismatch,
which is caused by the way that some special characters are converted, can cause
package-not-found errors. Job step DSNTGEN of job DSNTIJPM identifies package
names and collection IDs that contain special characters that cause mismatches.
From the upgraded client drivers, those packages need to be bound with the
ACTION(REPLACE) option.

Changes to the RELEASE bind option

In releases prior to Version 10, the RELEASE bind option had no effect on database
access threads. Starting in Version 10, by default, DB2 honors the RELEASE bind
option for database access threads. You can modify this behavior by using the new
MODIFY DDF PKGREL command.

Database metadata stored procedures are converted to

Unicode

In DB2 Version 10, DB2-supplied database metadata stored procedures are encoded
in Unicode. The Version 10 migration process redefines the stored procedures to
use the following new load modules:

Table 2. Metadata stored procedures and associated load modules

Stored procedure Load module
SYSIBM.SQLCOLPRIVILEGES DSNACPRU
SYSIBM.SQLCOLUMNS DSNACOLU
SYSIBM.SQLFOREIGNKEYS DSNAFNKU
SYSIBM.SQLFUNCTIONCOLS DSNAFCOU
SYSIBM.SQLFUNCTIONS DSNAFUNU
SYSIBM.SQLGETTYPEINFO DSNATYPU
SYSIBM.SQLPRIMARYKEYS DSNAPRKU
SYSIBM.SQLPROCEDURECOLS DSNAPCOU
SYSIBM.SQLPROCEDURES DSNAPRCU
SYSIBM.SQLSPECIALCOLUMNS DSNASPCU
SYSIBM.SQLSTATISTICS DSNASTAU
SYSIBM.SQLTABLEPRIVILEGES DSNATBPU
SYSIBM.SQLTABLES DSNATBLU
SYSIBM.SQLUDTS DSNAUDTU

Some applications call the database metadata stored procedures to retrieve
double-byte (DBCS) data. Those applications must be modified to use Unicode if
they are bound on a DB2 server that has an EBCDIC SBCS CCSID, and the MIXED
parameter is set to NO in the application defaults load module, dsnhdecp.

AUTHID is the default owner of packages that are bound by
DSNTRIN

In previous releases, the stored procedures and user-defined functions that are
provided as part of the DB2 base product (DB2-supplied routines) were created
and bound by processing inline DDL and bind statements in DSNTIJSG and other

18 Application Programming and SQL Guide

installation jobs. By default, the ID that was used to run the job was also the
authorization ID for creating the routines and the default package owner for those
routines.

In Version 10, DB2-supplied routines are created and bound by running program
DSNTRIN in job DSNTIJRT. The AUTHID parameter of DSNTRIN specifies the
authorization ID for creating the routines. This ID is also the default owner of
packages that are bound for those routines.

New default DEFINE attribute for dependent objects

As of Version 10, if the DEFINE attribute is not specified in the CREATE statement
for explicitly created dependent objects (auxiliary indexes, XML indexes, and base
table indexes), DB2 uses the DEFINE attribute of the base table space.

Exception: If the DEFINE attribute is not specified for explicitly created LOB table
spaces, there is no correlation with the base table space until the auxiliary table is
created. The DEFINE attribute is not inherited from the base, and the default is
DEFINE YES.

Implicitly created dependent objects (base table indexes, LOB and XML table
spaces, and their dependent indexes) inherit the DEFINE attribute of the base table
space if it is DEFINE NO. Otherwise, if the base table space attribute is DEFINE
YES, the value of the IMPDSDEF subsystem parameter is used for the dependent
objects.

Change for creating partitioned table spaces

To create a partitioned (non-universal) table space in DB2 Version 10 new-function
mode, you must specify SEGSIZE 0 and the NUMPARTS keyword of the CREATE
TABLESPACE statement. Before new-function mode, do not specify the SEGSIZE to
create a partitioned table space.

Change to default for CREATE TABLESPACE statements

In previous releases of DB2, if a CREATE TABLESPACE statement contains the
NUMPARTS clause but neither the MAXPARTITIONS clause nor the SEGSIZE
clause, a partitioned (non-universal) table space is created. Beginning in Version 10
new-function mode, the same statement results in a range-partitioned table space
with a segment size of 32 by default. You might observe this difference when a
subsequent CREATE INDEX statement with the specified ranges fails because
index partitioning of a range-partitioned table space is not supported.

In response, you can change the default segment size through the
DSN6SYSP.DPSEGSZ subsystem parameter, which is externalized as the DEFAULT
PARTITION SEGSIZE field on panel DSNTIP7. The value of the DPSEGSZ
parameter can range from 0 to 64 in increments of 4; for example, 0, 4, 8, and so on
up to 64. The default is 32.

When DPSEGSZ is set to 0, a CREATE TABLESPACE statement that contains the
NUMPARTS clause but neither the MAXPARTITIONS clause nor the SEGSIZE
clause results in a partitioned (non-universal) table space, which is the behavior of
previous releases. Note that the DPSEGSZ parameter is provided for compatibility
only. It is deprecated in Version 10, and you should take steps to modify affected
CREATE TABLESPACE statements or plan to use partition-by-growth table spaces
instead of partitioned (non-universal) table spaces.

Chapter 1. Planning for and designing DB2 applications 19

Upgrade to supported COBOL and PL/I compilers

If you use the Version 10 precompiler, you must upgrade to COBOL compilers that
DB2 10 for z/OS supports. See the [DB2 Program Directory| for information about
supported compilers. The generated SQLCA and SQLDA for COBOL have
changed. The generated attribute for binary data items is now COMP-5 instead of
COMP-4 or COMP. Applications that are compiled on compilers that do not
support the COMP-5 attribute no longer work.

For some COBOL and PL/I compilers that are no longer supported, you can use a
version of the precompiler that allows you to precompile applications that have
dependencies on these unsupported compilers. You can use this version of the
precompiler with the following unsupported compilers:

* OS/VS COBOL V1.24

* OSPL/I1.5 (PL/I Opt. V1.5.1)
* VS/COBOL II V1R4

« OSPL/123

The load module for this precompiler is DSNHPC?7. This precompiler is meant
only to ease the transition from unsupported compilers to supported compilers.
This precompiler has the following restrictions:

* There is no corresponding DB2 coprocessor function to match this precompiler.
* The precompiler does not support SQL procedures.

¢ Only COBOL and PL/I are supported.

¢ The SQL flagger is not supported.

* The precompiler produces Version 7 DBRMs, and does not support any
capability that is newer than Version 7.

* The application defaults module must be named DSNHDECP.

Support of this precompiler is deprecated in Version 10.

GRAPHIC and NOGRAPHIC SQL processing options are
removed

If you specify the SQL processing options GRAPHIC or NOGRAPHIC, DB2 issues
a standard warning message about an invalid option. These options are
superseded by the CCSID SQL processing option.

SELECT FROM data change statements in BEFORE triggers
no longer supported
The following statements are no longer allowed in the body of a BEFORE trigger:
* SELECT FROM DELETE
* SELECT FROM INSERT
* SELECT FROM MERGE
* SELECT FROM UPDATE

RETURN statement in scalar functions must follow option-list

In previous DB2 versions, RETURN statements in scalar functions could be in any
order, relative to other clauses. After migration to Version 10 conversion mode
(from Version 8 or Version 9.1), the RETURN statement in CREATE FUNCTION or
ALTER FUNCTION statements must follow option-list. If a RETURN statement
precedes option-list in one of these statements, DB2 issues SQLCODE -199.

20 Application Programming and SQL Guide

https://www-304.ibm.com/support/docview.wss?uid=swg27019288

Changes to ROUND_TIMESTAMP and TRUNC_TIMESTAMP
functions

In Version 10, the ROUND_TIMESTAMP and TRUNC_TIMESTAMP functions
return the first day of the first ISO week of the ISO year when an ISO year format
is specified.

Also, whenever a CC or SCC format is specified, a start of a century is considered
to be year 01.

Changes to result of NEXT_DAY function

In Version 10, the result data type for the NEXT_DAY function is determined from
the input data. If the first input argument is a string, the result is TIMESTAMP(6)
WITHOUT TIME ZONE. Otherwise, the data type of the result is the same as the
data type of the first input argument. For example, if the input is a date data type,
the result is also a date data type. The following rules apply to the change in the
NEXT_DAY function:

* Existing view definitions that reference the NEXT_DAY function should be
regenerated with an ALTER VIEW statement.

* Existing materialized query statements that reference the NEXT_DAY function
should be dropped and re-created.

* Bound SQL statements that reference the NEXT_DAY function only use the
modified rules to determine the result data type if the statements are bound in
Version 10 conversion mode (from Version 8 or Version 9.1) or later.

* DESCRIBE statements only use the modified rules to determine the result data
type for the NEXT_DAY function if the statements are bound in Version 10
conversion mode (from Version 8 or Version 9.1) or later.

 Existing indexes that involve an expression that reference the NEXT_DAY
function should be dropped and re-created.

Changes to MONTHS_BETWEEN function

In previous releases, the MONTHS_BETWEEN function ignored the time portion
of arguments. In Version 10, the MONTHS_BETWEEN function takes the time
portion of arguments into consideration.

Changes to TIMESTAMPDIFF function

In previous releases, the TIMESTAMPDIFF function allowed string input values
that had more than six digits to the right of the decimal point. In Version 10, an
error is issued if the string input value for TIMESTAMPDIFF function has more
than six digits to the right of the decimal point.

Static SQL applications that use parallelism

DB2 incrementally rebinds the statements that use parallelism after migration to
Version 10. Incremental rebinds can cause performance degradation. If you use the
access control authorization exit (DSNX@XAC) for authorization, incremental
rebinds can cause authorization failures because they trigger authorization checks
of static SQL statements when the package is executed. The authorization checks
are performed on the primary authorization ID during incremental rebinds.

You should manually rebind those statements that use parallelism after migration.
You can run a query in job DSNTIJPM before you migrate to determine which
statements can use parallelism, and are therefore candidates for incremental
rebinds. You should consider rebinding those statements after migration, as soon as

Chapter 1. Planning for and designing DB2 applications 21

your Version 10 system is stable. After you migrate to Version 10, you can also run
a performance trace, class 3 or class 10 for IFCID 360, to identify the plans and
packages that contain static SQL queries that use parallelism, and therefore need to
be rebound.

Enforced SELECT authorization checking for UPDATE and
DELETE statements

DB2 Version 10 checks for the SELECT privilege or appropriate administrative
privilege before allowing a user to execute UPDATE or DELETE statements that
reference an existing value in the target table. This authorization checking applies
regardless of how the statements are executed (for example, bound in a package or
executed in a dynamic statement). The authorization now also applies regardless of
the setting of the SQLRULES(STD) bind option for static statements or the
CURRENT RULES special register for dynamic statements. If the user does not
have the necessary SELECT authorization or administrative privilege, a negative
SQLCODE is returned.

Increased limit for work file record length

In Version 10 new-function mode, the limit for the row length in the result of a
JOIN or the row length of a SORT record is increased from 32 767 bytes (1 page)
to 65 529 bytes. The sort key maximum length is also increased from 16 000 bytes
to 32 000 bytes. Applications that exceed the old limits fail in conversion mode
(from both Version 8 and Version 9.1) with SQLCODE -670 or SQLCODE -136.

New restrictions for EXPLAIN tables

In DB2 Version 10 conversion mode (from both Version 8 and Version 9.1),
EXPLAIN tables must be in Version 8 or later format and preferably encoded in
Unicode. When EXPLAIN tables are in a format prior to the Version 8 format, DB2
returns SQLCODE -20008 reason code 2 for statements or commands that invoke
EXPLAIN processing. Statements or commands that invoke EXPLAIN processing
return SQLCODE +20520 reason code 2 if an EXPLAIN table is in Version 8 or
Version 9.1 format, regardless of the encoding type. If an EXPLAIN table is in
Version 10 format and encoded in EBCDIC, SQLCODE -878 is returned. When you
convert EXPLAIN tables to Unicode encoding, applications that join with
EXPLAIN tables might have different results because of the CCSID conversion. For
more information, see|Objects with different CCSIDs in the same SQL statement]
[(DB2 Internationalization Guide)}

Recommendation: Before you begin migration to Version 10, convert all EXPLAIN
tables to the current version (8 or 9.1) format and Unicode encoding, and then
check for joins to those tables. You can use job DSNTIJXA to convert most tables to
current release format. You can use jobs DSNTIJXB and DSNTIJXC to migrate
EBCDIC-encoded EXPLAIN tables to Unicode.

MEMBER CLUSTER table spaces indicated by
MEMBER_CLUSTER column

In previous versions of DB2, a “K” or “I” in the TYPE column of the
SYSTABLESPACE catalog table indicated that the table space had MEMBER
CLUSTER structure. In Version 10, a new MEMBER_CLUSTER column on the
SYSTABLESPACE catalog table is populated during the enabling-new-function
mode (from both Version 8 and Version 9.1) migration process. For existing
MEMBER CLUSTER table spaces, values of “K” in the TYPE column of
SYSTABLESPACE are replaced with “L”, and values of “I” are replaced with blank.

22 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.char/src/tpc/db2z_objdiffccsid.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.char/src/tpc/db2z_objdiffccsid.dita

The MEMBER_CLUSTER column is populated with “Y”. After migration to
enabling-new-function mode (from Version 8 or Version 9.1), applications that
query “K” or “I” in the TYPE column must query the new MEMBER_CLUSTER
column instead.

Changed values for the modification level in the product
signature

The DB2 Version 10 product signature has the form DSN1001m, where m is the
modification level. Values 0 and 1 are reserved for maintenance levels in
conversion mode from Version 8, conversion mode* from Version 8,
enabling-new-function mode from Version 8, and enabling-new-function mode*
from Version 8. Values 2 and 3 are for maintenance levels in conversion mode from
Version 9.1, conversion mode* from Version 9.1, enabling-new-function mode from
Version 9.1, and enabling-new-function mode* from Version 9.1. Values 5, 6, 7, §,
and 9 are for maintenance levels in new-function mode. Value 4 is undefined.

Changed behavior for the CREATE FUNCTION statement

In all forms of the CREATE FUNCTION statement, a parameter list is required.
Functions without parameters must have empty parentheses specified, as in the
following example: CREATE FUNCTION F1 () RETURNS INT RETURN 1.

In previous releases, if you specified CREATE FUNCTION without a parameter list
(for example, CREATE FUNCTION F1 RETURNS INT RETURN 1), you received no errors.

In Version 10, if you specify CREATE FUNCTION without a parameter list, DB2
issues an error.

Also, a CREATE FUNCTION statement for a non-inline SQL scalar function cannot
have a parameter that is a distinct type that is based on a LOB data type. The
inline SQL scalar functions have supported, and will continue to support, distinct
type parameters where the underlying base data type is a LOB. For the syntax of
this statement, see[CREATE FUNCTION]|in the DB2 for z/OS SQL Reference
Guide.

Different SQLSTATE returned for some DELETE or UPDATE

statements
In previous releases of DB2, a SQLSTATE value of "00000" was returned for some
DELETE or UPDATE statements that did not contain a WHERE clause, when
SQLWARN flags were set. Those situations occurred during bind processing. As of
DB2 Version 10, a SQLSTATE value of "01504" is returned in those situations. This
change does not affect SQL statements that are executed on behalf of a DB2 for
z/OS requester.

Changed default behavior of multiple-row inserts for ODBC
z/OS applications

As of DB2 Version 10, the default behavior for multiple-row inserts is changed
from non-atomic to atomic. To change the default behavior back to non-atomic, set
keyword PARAMOPTATOMIC = 0 in the data source section of the ODBC
initialization file.

Changes to ALTER TABLESPACE statement error codes

Before Version 10 conversion mode (from Version 8 or Version 9.1), if you execute
an ALTER TABLESPACE MAXPARTITIONS statement on catalog objects, DB2

Chapter 1. Planning for and designing DB2 applications 23

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createfunction.dita

issues SQLCODE -644. After you migrate to Version 10 conversion mode (from
Version 8 or Version 9.1), DB2 issues SQLCODE -607.

Also before Version 10 conversion mode (from Version 8 or Version 9.1), if you
execute an ALTER TABLESPACE MAXPARTITIONS statement with a value of
MAXPARTITIONS that is invalid with the page size and DSSIZE values, DB2
issues SQLCODE -4701. After you migrate to Version 10 conversion mode (from
Version 8 or Version 9.1), DB2 issues SQLCODE -644.

Change to CREATE and ALTER statements

CREATE and ALTER statements for native SQL procedures no longer support the
DEFAULT keyword for the SQL PATH option.

Change to DESCRIBE statement

In Version 10, when a DESCRIBE statement is used on a result table that includes a
distinct type, it will now return information about the distinct type.

New restrictions on using DSNTIAUL

DSNTIAUL can no longer be used to process CREATE FUNCTION (SQL scalar)
statements that would result in a package or CREATE TRIGGER statements.
DSNTIAUL also cannot be used to process any other statement that contains
SQL-routine-body. These statements are CREATE PROCEDURE (SQL external),
CREATE PROCEDURE (SQL native), CREATE FUNCTION (SQL table), ALTER
PROCEDURE (SQL native) with an ADD or REPLACE clause, and ALTER
FUNCTION (SQL scalar) with an ADD or REPLACE clause.

Changes to SYSROUTINES

As of Version 10, the CREATEDTS column of SYSIBM.SYSROUTINES will always
reflect the time that a CREATE statement was first issued for a routine. In previous
releases of DB2, the CREATEDTS column might have contained different values if
multiple versions of a routine were created.

Catalog restructured

In Version 10, the DB2 catalog is restructured to reduce lock contention. As a
result, binding takes longer in Version 10 than it did in previous versions. Also,
execution of the DECLARE GLOBAL TEMPORARY TABLE statement takes longer
in Version 10.

Changed data type for an untyped parameter marker

In previous releases, an untyped parameter marker for a unary minus operator has
an assumed DOUBLE data type. In DB2 Version 10, the assumed data type is
DECFLOAT(34).

Changes to handling of special values Infinity, sNaN, and NaN
In previous releases, when DB2 returns a decimal floating-point (DECFLOAT)
value for Infinity, NaN, or sNaN as a CHAR or VARCHAR string, the string is in

mixed case. In DB2 Version 10, the values are returned in upper case as follows:
INFINITY, NAN, or SNAN.

24 Application Programming and SQL Guide

Changes for INSTEAD OF triggers

Changes are introduced for existing INSTEAD OF triggers that were defined on a
view that has a ROWID column or a column that is based on an underlying
column of any of the following types:

* A security label column.

* Arow change timestamp column.

* A column that is defined with AS ROW BEGIN.

* A column that is defined with AS ROW END.

* A column that is defined with AS TRANSACTION START ID.

For such INSTEAD OF triggers, the following actions now fail with a negative
SQLCODE:

* Rebinding the INSTEAD OF trigger package.
* Dropping and re-creating the INSTEAD OF trigger.

¢ Running the REPAIR DBD utility on a database that includes the INSTEAD OF
trigger.

* Issuing ALTER TABLE ALTER COLUMN SET DATA type on a table that has a
view on which the INSTEAD OF trigger is defined.

Change to positioned update or delete statements

Explanation

In DB2 Version 10, packages must be rebound if both of the following statements
are true:

¢ The package contains static cursors that were bound in a previous version.

* The package contains dynamic UPDATE or DELETE statements that contain the

WHERE CURRENT of clause. The WHERE CURRENT of clause indicates a
positioned UPDATE or DELETE statement.

Possible impact to your DB2 environment

If any such packages are not rebound in Version 10, positioned UPDATE and
DELETE statements fail with SQLCODE -20249 when they run against a
down-level cursor.

Actions to take

After migration to Version 10 conversion mode (from Version 8 or Version 9.1),

rebind packages that contain static cursors with positioned UPDATE or DELETE
statements.

Change to stored procedure parameter values returned to
non-Java clients

In previous releases, when a remote application calls a DB2 for z/OS stored
procedure, the data types of the returned output data match the data types of the
corresponding CALL statement arguments. Starting in Version 10 conversion mode
(from both Version 8 and Version 9.1), the data types of the returned output data
match the data types of the parameters in the stored procedure definition. This
change can cause conversion failures for some applications that use non-Java client
drivers such as .NET to call stored procedures on DB2. To prepare for this change,
modify the CALL requests of your non-Java" client applications to specify

Chapter 1. Planning for and designing DB2 applications 25

argument types that conform to the semantics of the client driver. If you want to
temporarily override the Version 10 behavior, you can set the
DDF_COMPATIBILITY subsystem parameter to SP_PARMS_NJV.

The SP_PARMS_NJV option of the DDF_COMPATIBILITY subsystem parameter is
deprecated. Although the option is supported in Version 10, it will be removed in a
later release of DB2.

Change to results of JDBC method
PreparedStatement.setTimestamp

TIMESTAMP WITH TIME ZONE is first supported in DB2 for z/OS Version 10
new-function mode. Before Version 10 new-function mode, if the value that is
assigned to a column (the second parameter of PreparedStatement.setTimestamp)
has the java.sql.Timestamp data type, and the column data type is not known, the
IBM Data Server Driver for JDBC and SQL]J chooses TIMESTAMP as the target
data type. However, starting with DB2 for z/OS Version 10 new-function mode,
unless the value that is assigned to the column is 0001-01-01-00:00:00.000000 or
9999-12-31-23:59:59.999999, the driver chooses TIMESTAMP WITH TIME ZONE as
the column data type. If the driver chooses the TIMESTAMP data type, and the
column type is actually TIMESTAMP WITH TIME ZONE, the database manager
sets the time zone in the target column using the value of the
IMPLICIT_TIMEZONE DECP value. This value might differ from the value that is
inserted prior to Version 10 new-function mode.

To produce the same results before and after new-function mode when
PreparedStatement.setTimestamp is executed, specify a
com.ibm.db2.jcc.DBTimestamp value as the second parameter.

Change in how DB2 returns stored procedure output
parameter data to remote clients

When an application on a client system calls a stored procedure on a DB2 10 for
z/0S server, DB2 now handles the output parameters differently. Previously, DB2
returned stored procedure output parameters that were formatted according to the
SQL type of the corresponding argument in the CALL statement. DB2 10 now
returns output parameters that are formatted according to the SQL type of the
corresponding parameter in the stored procedure declaration. This new behavior
provides improved performance at the server by avoiding unnecessary server data
conversions. Also, this new behavior is consistent with the existing server behavior
for the return of query and select output data and it is consistent with the behavior
of other DB2 family servers. Therefore, it provides applications with a more
consistent and predictable interface to DB2.

In general, for applications that conform to client standards, this change has no
impact to the calling application. In some cases, however, application changes
might be needed. To prepare for this change, examine your remote applications
that call DB2 stored procedures. If necessary, modify the CALL statements in your
remote applications to specify argument data types that match the data types of
the parameters in the stored procedure definitions.

When the change in behavior occurs
In general, the new behavior occurs after migration to DB2 10 for z/OS conversion

mode from Version 8 (CMS8) or conversion mode from Version 9.1 (CM9). However,
the following exceptions apply:

26 Application Programming and SQL Guide

* For applications using IBM Data Server Driver for JDBC and SQL]J type 4
connectivity to access a DB2 10 data sharing group in CM8 or CM9, where the
enableSysplexWLB client property is set to true:

In such a configuration, the change in behavior occurs when the data sharing
group is migrated to DB2 10 new-function mode (NFM). As long as the data
sharing group is in CM8 or CM9 to support coexistence, DB2 uses the old
behavior. The old behavior is used because the IBM Data Server Driver for JDBC
and SQLJ might be caching data descriptors for outputs from the server. When
the enableSysplexWLB property is set to true, the old behavior is maintained to
ensure that the cached client descriptors are valid regardless of which member
of the data sharing group is accessed.

To prepare for this change in behavior while DB2 10 is in CM8 or CM9 to
support coexistence, test your applications with the enableSysplexWLB client
property set to false. Or, test the applications against a stand-alone DB2 10
server, if such a system is available for testing. The new DB2 10 behavior will be
used for each of those applications even though the DB2 data sharing group is
in CM8 or CMO.

* For applications using the IBM Data Server Driver for JDBC and SQL]J or
non-Java clients (such as .NET), Version 9 or earlier:

In such a configuration, the change in behavior occurs, by default, after
migration to DB2 10 for z/OS CM8 or CM9. However, the change in behavior
can be temporarily deferred. To temporarily override the DB2 10 behavior for
returning stored procedure output parameter data to the IBM Data Server Driver
for JDBC and SQLJ or non-Java clients only (such as .NET), set the
DDF_COMPATIBILITY subsystem parameter to SP_PARMS_N]JV. The
SP_PARMS_NJV option of the DDF_COMPATIBILITY subsystem parameter is
deprecated. Although the option is supported in DB2 10, it will be removed in a
later release of DB2. For more information about DDF_COMPATIBILITY, see
Subsystem parameters that are not on installation panels (DB2 Installation and]

Migration !I

Examples of application impacts

The following examples use the IBM Data Server Driver for JDBC and SQLJ and
.NET. Other drivers might behave differently. Because DB2 10 no longer converts
data types when returning stored procedure output parameter data, there might be
similar impacts to applications for other data types that are not discussed in the
examples. If the calling application specifies arguments that are different from the
declared parameter types, then the mismatch between the argument and parameter
data types is handled by the client system, according to the client's programming
model and the client's capabilities. If the client performs data type conversions
such as for numeric data, the result of the conversion performed by the client
might differ from the result that was previously returned when the DB2 server
performed the conversion.

Example 1

A stored procedure parameter is declared as an INTEGER data type, but the

application CALL statement specifies a SMALLINT argument.

* Behavior before DB2 10: DB2 converts the INTEGER data and returns a 2-byte
SMALLINT value, which maps to an Int16 .NET data type.

* New behavior in DB2 10: DB2 returns a 4-byte INTEGER value, which maps to
an Int32 .NET data type.

Sample application impact (NET): If the application uses an IBM Data Server
NET client, the stored procedure CALL statement now fails with an invalid

Chapter 1. Planning for and designing DB2 applications 27

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_zparmnotonpanels.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_zparmnotonpanels.dita

conversion error because the Int16 and Int32 .NET data types are not compatible
with each other. The application must be changed to specify an Int32 argument in
the CALL statement as required by the .NET programming model. Applications
that are coded with an Int32 argument and call stored procedures that have an
INTEGER parameter require no change.

The .NET programming model enforces strong data typing. Thus, even though the
argument type and the parameter type are compatible SQL types, the .NET driver
enforces strong data type checking according to the .NET semantics. Refer to the
.NET documentation for information about .NET strong type checking.

Example 2
A stored procedure parameter is declared as a REAL data type, but the application
CALL statement specifies a DOUBLE argument.

* Behavior before DB2 10: DB2 converts the output data to a DOUBLE value
before returning it to the client.

¢ New behavior in DB2 10: DB2 returns the data to the client as a REAL value.

Sample application impact (Java): If an application that uses the IBM Data Server
Driver for JDBC and SQLJ uses the registerOutParameter() method to register the
output parameter as a DOUBLE value before calling a stored procedure that has a
REAL parameter, the following behavior occurs if the Java application uses the
getObject() method to retrieve the output value:

e Before Version DB2 10, DB2 converted the REAL value to a DOUBLE value and
returned it to the client. The IBM Data Server Driver for JDBC and SQLJ
returned the DOUBLE value directly to the application as the result of the
getObject() method.

¢ Beginning in DB2 10, DB2 returns the REAL value to the client. The IBM Data
Server Driver for JDBC and SQLJ converts the REAL value to a DOUBLE value
and returns it to application as the result of the getObject() method. APAR
1C80974 for LUW clients and APAR PM58951 (JCC 3.63.131) and PM58952 (JCC
4.13.136) for z/OS clients are required in the IBM Data Server Driver for JDBC
and SQLJ to ensure that the conversion is completed by the getObject() method.
If the APAR fix is not applied, the Java application gets a ClassCastException.

Example 3
A stored procedure parameter is declared as a TIMESTAMP data type, but the
application CALL statement specifies a VARCHAR argument.

* Behavior before DB2 10: DB2 converts the fixed-length TIMESTAMP data and
returns a 26-byte VARCHAR value, containing a TIMESTAMP value in ISO
format (yyyy-mm-dd-hh.mm.ss[fifffffff]). The VARCHAR value maps to a String
.NET data type.

* New behavior in DB2 10: DB2 returns a 26-byte fixed-length TIMESTAMP
value, containing a TIMESTAMP value in ISO format. The TIMESTAMP value
maps to a DateTime .NET data type.

Sample application impact (Java): If the application uses the IBM Data Server
Driver for JDBC and SQLJ, then an application change might be required,
depending on what method the Java application uses to retrieve the parameter
data.

* Before DB2 10, the getString() method previously returned TIMESTAMP data in
ISO format, while the getTimestamp() method returned TIMESTAMP data in
Java format

28 Application Programming and SQL Guide

* Beginning in DB2 10, both the getString() and getTimestamp() methods return
the TIMESTAMP value in Java format (yyyy-mm-dd hh:mm:ss[fffffffff]).

An application change might be required if the Java application uses the
getString() method and the application depends on receiving TIMESTAMP values
in ISO format. Applications that use the getTimestamp() method require no change.

Similar considerations apply for TIME parameters. Beginning in DB2 10, DB2
returns TIME parameters as TIME data values in ISO format (hh.mm.ss), regardless
of the SQL type of the corresponding argument in the CALL statement. For Java
applications, the getString() method now returns TIME data in Java format
(hh.mm.ss). If a Java application uses the getString() method and requires TIME
data in ISO format, the application must be examined for possible changes.

Changes to datetime built-in functions

Explanation

Many datetime functions allow arguments containing string representations of
datetime values. Valid formats for those strings are described in the DB2 SQL
Reference.

In DB2 Version 10 conversion mode (from Version 8 or Version 9.1), the following
additional string formats are allowed in the specified limited contexts:

* A string value of seven characters representing a date is allowed as an argument
to the DATE function only.

* A string value of 8, 13, or 14 characters representing a point in time is allowed
as an argument to the TIMESTAMP function only.

Possible impact to your DB2 environment

After migration to Version 10, applications that provide a seven-character string
argument to represent a date for built-in functions other than the DATE function
will return an error. Applications that provide a string value of 8, 13, or 14
characters to represent a point in time as an argument for built-in functions other
than the TIMESTAMP function also return an error.

Actions to take
To prepare for this change, use valid string formats that are described in [String

frepresentations of datetime values (DB2 SQL)|in arguments for all of your datetime
functions.

SQLCODE change for subsequent CAF CONNECT attempts

Explanation

In previous releases, a call attachment facility (CAF) CONNECT request that is
followed by another CONNECT request without an intervening disconnect results
in a zero return code. In DB2 Version 10, if the second CONNECT request is for a
different or unknown subsystem, group attachment, or subgroup attachment name,
a -924 SQLCODE is returned. If the second CONNECT request is for the same
subsystem, group attachment, or subgroup attachment name, a +361 SQLCODE is
returned. A failed attempt to connect to the CAF does not change the current
connection. Therefore, in both of these scenarios, the existing CAF connection
persists.

Chapter 1. Planning for and designing DB2 applications 29

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_datetimestringrepresentation.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_datetimestringrepresentation.dita

Possible impact to your DB2 environment

Some of your applications might receive a -924 or +361 return code where a zero
return code was previously returned.

Actions to take

Review your applications for subsequent CONNECT requests for CAF. Modify
these applications to handle the new SQLCODEs or rewrite the applications to
remove subsequent CONNECT requests.

Change to serialization of an empty XML element
Explanation

In DB2 Version 9, the XML2CLOB function was deprecated, and in DB2 Version 10,
XML2CLOB is no longer supported. The replacement for XML2CLOB is explicit or
implicit execution of XMLSERIALIZE. XMLSERALIZE and XML2CLOB serialize
empty XML elements in different ways. XML2CLOB serializes an empty XML
element as a start-element tag followed by an end-element tag (for example,
<emptyElement></emptyElement>). XMLSERIALIZE serializes an empty XML
element as a start-element tag followed by an end-element tag (for example,
<emptyElement></emptyElement>), or as an empty-element tag (for example,
<emptyElement/>).

Possible impact to your DB2 environment

Applications that depend on serialization of an empty XML element as a
start-element tag followed by an end-element tag might receive errors.

Actions to take

After you migrate to DB2 Version 10, you can set subsystem parameter
XML_RESTRICT_EMPTY_TAG to YES. This setting causes DB2 to always serialize
an empty XML element as a start-element tag followed by an end-element tag.

Data types of output arguments from a stored procedure call
in a Java application

In DB2 Version 10 new-function mode, when a Java application that uses the IBM
Data Server Driver for JDBC and SQLJ calls a stored procedure, the data types of
stored procedure output arguments match the data types of the parameters in the
stored procedure definition.

Explanation

Before DB2 Version 10, if a Java client called a DB2 for z/OS stored procedure, the
data types of output arguments matched the data types of the corresponding
CALL statement arguments. Starting in DB2 Version 10, the data types of the
output arguments match the data types of the parameters in the stored procedure
definition.

Possible impact to your DB2 environment

If the version of the IBM Data Server Driver for JDBC and SQL]J is lower than 3.63
or 4.13, a java.lang.ClassCastException might be thrown when an output
argument value is retrieved.

30 Application Programming and SQL Guide

Actions to take

Take one of the following actions:

* Upgrade the IBM Data Server Driver for JDBC and SQLJ to version 3.63 or 4.13,
or later.

* Modify the data types in CallableStatement.registerOutParameter method calls
to match the parameter data types in the stored procedure definitions. You can
set application compatibility to V10R1 and run a trace for IFCID 0366 or 0376 to
identify affected applications. Trace records for those applications have a
QWO0366FN field value of 8.

Change to IBM Data Server Driver for JDBC and SQLJ
handling of TIMESTAMP WITH TIME ZONE data type

Before DB2 Version 10 new-function mode, the TIMESTAMP WITH TIME ZONE
data type was not supported. If a Java client application passed a timestamp input
value to a TIMESTAMP column, the IBM Data Server Driver for JDBC and SQL]J
did not include the local time zone with the timestamp value. Starting with DB2
Version 10 new-function mode, the TIMESTAMP WITH TIME ZONE data type is
supported. If a Java client application passes a timestamp input value to a
TIMESTAMP column, the IBM Data Server Driver for JDBC and SQL]J constructs a
timestamp input value that includes the local time zone. If the value that the
driver sends to the server is out of supported range for the server, the application
receives SQLCODE -181. You can temporarily prevent this error by including
IGNORE_TZ in the settings for the DDF_COMPATIBILITY subsystem parameter.

Delimiters used for accessing tables on DB2 for Linux, UNIX,
and Windows
Explanation

DB2 Version 10 resolves aliases prior to sending SQL statements to a remote site
for applications that use system-directed access. During a remote package bind
against the remote site, modified SQL statement text is bound on the remote
system. The DRDA_RESOLVE_ALIAS subsystem parameter is provided in DB2
Version 8 and DB2 Version 9.1 to help verify applications that are affected by this
change of behavior before you migrate to DB2 Version 10.

Possible impact to your DB2 environment

This change can impact applications that access a DB2 for Linux, UNIX, and
Windows server if the SQL preprocessing option QUOTE or QUOTESQL is used.
QUOTE or QUOTESQL specifies that a quotation mark (") is used as the string
delimiter and an apostrophe (') is used for SQL identifiers in SQL statements. This
option does not control how the COBOL compiler processes string delimiters
within the application program statements. DB2 for Linux, UNIX, and Windows
does not support statement strings that have been precompiled under the QUOTE
or QUOTESQL option and returns a warning on the BIND command. DB2 for
z/0OS does use the precompiler option to govern which string delimiter to use for
SQL identifiers when modifying the SQL text. This causes a bind or rebind to fail
on DB2 for Linux, UNIX, and Windows in DB2 Version 10 when the QUOTE or
QUOTESQL precompiler option is used to generate the DBRM that is the source of
the remote bind package processing.

Chapter 1. Planning for and designing DB2 applications 31

Actions to take

When accessing a remote table on a DB2 for Linux, UNIX, and Windows server
using an alias, applications must be precompiled using the APOST or APOSTSQL
option. Character string literals must be delimited by apostrophes and SQL
identifiers must be delimited by quotation marks.

Qualify user-defined function names

If you use a user-defined function that has the same name as a built-in function
that has been added to Version 10, ensure that you fully qualify the function name.
If the function name is unqualified and “SYSIBM” precedes the schema that you
used for this function in the SQL path, DB2 invokes one of the built-in functions.

For a list of built-in functions, including those that have been added in Version 10,
see [Functions (DB2 SQL),

SQLCODE changes

Some SQLCODE numbers and message text might have changed in DB2 Version
10. Also, the conditions under which some SQLCODEs are issued might have
changed.

SQL reserved words

Version 10 has several new SQL reserved words. Refer to [Reserved words (DB2|
for the list of reserved words, and adjust your applications accordingly.

GUPI

Application and SQL release incompatibilities for migration from
Version 9.1

When you migrate from DB2 Version 9.1 to Version 10, be aware of the application
and SQL release incompatibilities.

GUPI

Plan for the following changes in Version 10 that might affect your migration.

Release incompatibilities that were changed or added since the first edition of this
Version 10 publication are indicated by a vertical bar in the left margin. In other
areas of this publication, a vertical bar in the margin indicates a change or addition
that has occurred since the Version 9.1 release of this publication.

Automatic rebind of plans and packages created before DB2
Version 6

If you have plans and packages that were bound before DB2 Version 6 and you
specified YES or COEXIST in the AUTO BIND field of panel DSNTIPO, DB2
Version 10 autobinds these packages. Thus, you might experience an execution
delay the first time that such a plan is loaded. Also, DB2 might change the access
path due to the autobind, potentially resulting in a more efficient access path.

32 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqlfunctionsintro.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_reservedwords.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_reservedwords.dita

If you specify NO in the AUTO BIND field of panel DSNTIPO, DB2 Version 10
returns SQLCODE -908, SQLSTATE 23510 for each attempt to use such a package
or plan until it is rebound.

IBMREQD is no longer reliable as a release dependency mark

The IBMREQD field in DB2 catalog tables is no longer a reliable indicator for
determining release dependencies. Use the RELCREATED or RELBOUND fields
instead.

Changes to string formatting of decimal data

Explanation

DB2 Version 10 changed the formatting of decimal data by the CHAR and
VARCHAR built-in functions and CAST specifications with a CHAR or VARCHAR
result type. For input data that contains decimals, leading zeros are removed, and
leading zeros are not added to values that did not already contain leading zeros. If
the scale of the decimal value is zero, the decimal character is not returned. Also,
the CHAR function no longer returns leading blanks for positive decimal values.
The result of the CHAR function for decimal data is now consistent with the result
of CAST(decimal-expression AS CHAR).

After migration to Version 10, packages that were bound before Version 10 use the
old behavior for these functions. Materialized query tables and indexes on
expressions that were created before Version 10 also continue to use the old
behavior.

Views and inline SQL functions use the behavior of the SQL statement that
references the object. It is possible for references to the same view or function in
different applications to get different behavior for these functions or casts.

Possible impact to your DB2 environment

These changes might cause unexpected output from applications that use the
CHAR or VARCHAR functions for decimal data or the CAST(decimal-expression AS
CHAR) or CAST(decimal-expression AS VARCHAR) specifications.

Actions to take

These changes occur in Version 10 conversion mode (from both Version 8 and
Version 9.1). You can temporarily override these changes on a subsystem level by
using the BIF_COMPATIBILITY subsystem parameter. You can also temporarily
override these changes on an application level by adding schema SYSCOMPAT_V9
to the front of the PATH bind option or CURRENT PATH special register. This
approach works for CHAR and VARCHAR functions and does not affect CAST
specifications. The recommended approach is to modify your applications to
handle the Version 10 behavior for these functions, as described in the following
steps.

To modify your applications to handle the Version 10 behavior for CHAR,
VARCHAR, and CAST:

1. Identify applications that need to be modified to handle this change. You can
use IFCID trace 0366 to identify affected applications.

2. Ensure that the BIF_COMPATIBILITY subsystem parameter is set to
V9_DECIMAL_VARCHAR.

Chapter 1. Planning for and designing DB2 applications 33

To handle the change for the CHAR function only, you can set the subsystem
parameter to V9 and complete the following steps for the CHAR function.

3. Change any affected applications to handle the new Version 10 CHAR and
VARCHAR behavior, including stored procedures, non-inline user-defined
functions, and trigger packages. Rewrite affected CAST specifications with the
appropriate CHAR or VARCHAR function and a CAST to the correct length if
needed.

4. Rebind and prepare packages with the PATH(SYSCURRENT,SYSIBM) rebind
option to use the new Version 10 CHAR and VARCHAR built-in functions.
Repeat this step for native stored procedures (SQLPL) and non-inline SQL
scalar functions.

5. For views that reference these casts or built-in functions, determine whether the
view needs to be changed to have the expected output. Drop and re-create the
views with the PATH(SYSCURRENT,SYSIBM) rebind option only if necessary.
Rebind any applications that reference the views with the
PATH(SYSCURRENT,SYSIBM) option to use the new Version 10 CHAR and
VARCHAR built-in functions. Repeat this step for inline SQL scalar functions.

6. For materialized query tables or indexes on expressions that reference these
casts or built-in functions, drop and re-create the materialized query tables or
indexes on expressions with the PATH(SYSCURRENT,SYSIBM) rebind option.
Issue the REFRESH TABLE statement for materialized query tables. Rebind any
applications that reference the materialized query tables or indexes on
expressions with the PATH(SYSCURRENT,SYSIBM) option to use the new
Version 10 CHAR and VARCHAR built-in functions.

7. Change the value of the BIF_COMPATIBILITY subsystem parameter to
CURRENT. When the subsystem parameter value is CURRENT, new
applications, rebinds, and CREATE statements use the new CHAR, VARCHAR,
and CAST behavior.

Materialized query tables and indexes on expressions use the CHAR, VARCHAR,
and CAST behavior that is specified during its creation. If a reference statement
has a different behavior that is specified by the BIF_COMPATIBILITY parameter or
a different path, the materialized query table or expression-based index is not used.

Related reference:

(= [BIF COMPATIBILITY field (BIF_COMPATIBILITY subsystem parameter) (DB2)
[nstallation and Migration)|

Change to maximum result length of VARCHAR function

In Version 10, the maximum result length of the VARCHAR function is changed
from 32767 to the maximum length of a VARCHAR.

Changes to VARCHAR_FORMAT function length attribute

In Version 10, for VARCHAR_FORMAT functions, the length attribute of the result

is the length attribute of the format string, up to a maximum of 255. To apply this

change, use the following guidance:

* Existing view definitions that reference the VARCHAR_FORMAT function
should be regenerated with an ALTER VIEW statement.

* Existing materialized query statements that reference the VARCHAR_FORMAT
function should be dropped and re-created.

* Bound SQL statements that reference the VARCHAR_FORMAT function will
only use the new behavior when they have been bound in Version 10 conversion
mode (from Version 8 or Version 9.1) or later.

34 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ipf_bifcompatibility.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ipf_bifcompatibility.dita

* DESCRIBE statements will only determine the result data type for the
VARCHAR_FORMAT function using the modified rules in the DESCRIBE
statements have been bound in Version 10 conversion mode (from Version 8 or
Version 9.1) or later.

* Existing indexes that involve an expression that reference the
VARCHAR_FORMAT function should be dropped and re-created.

If an application is using the DSNTIAUL program, the result string is padded with
characters '00'X. Consider this incompatible change for any applications that use
the VARCHAR_FORMAT function and are dependent on the output from
DSNTIAUL.

New format element for VARCHAR_ FORMAT function

In Version 10, a new format element, “RRRR”, is supported. In previous versions,
this format element was interpreted as two adjacent specifications of the “RR”
format element.

Change to result of VARCHAR_FORMAT function with “HH12”
format element

In Version 10, if the “HH12” format element is specified in a VARCHAR_FORMAT
function and the time component of the first argument is 24:00:00, the input
timestamp value is adjusted to 00:00:00 and the date is changed to the next day. In
previous releases, the timestamp value is adjusted to 12:00:00 and the day is not
changed.

Change to result of VARCHAR_FORMAT function with “J”

format element

In Version 10, if the “J” format element is specified in a VARCHAR_FORMAT
function, the result is different from the result of the JULIAN_DAY function for
dates earlier than October 15, 1582.

New supported data types for VARCHAR_FORMAT function

The VARCHAR_FORMAT function has been extended to allow date, character, and
graphic string input for the first argument, and graphic string input for the second
argument. If the function is invoked with one of the newly supported data types,
and an existing user-defined function named VARCHAR_FORMAT also supports
the data type, the function might resolve to the built-in function rather than the
user-defined function. If the reference to the existing function uses the unqualified
name and SYSIBM precedes the schema that was used for the user-defined
function, the new function will be invoked rather than the user-defined function.

Change to maximum result length of REPEAT function

In Version 10, the maximum result length of the REPEAT function is changed from
32767 to the maximum length of a VARCHAR.

Change to maximum result length of XMLTABLE function

In Version 10, the maximum length of a VARCHAR data type result column of the
XMLTABLE function is changed from 32767 to the maximum length of a
VARCHAR.

Chapter 1. Planning for and designing DB2 applications 35

Change to how a positive, signed integer in an ORDER BY
clause is treated
Explanation

Beginning in Version 10 conversion mode (from both Version 8 and Version 9.1), a
positive, signed integer in an ORDER BY clause is treated as a sort-key-expression.
Such integers were previously interpreted as column numbers.

For example, in previous versions of DB2, ORDER BY +1 in the following SELECT
statement meant order by column 1 (C1).

SELECT C1, C2 FROM T1 ORDER BY +1;

Starting in Version 10, +1 means the constant +1, which has no effect on the order
of the rows.

Possible impact to your DB2 environment

This change might cause unexpected results of queries that contain an ORDER BY
clause with a positive, signed integer. However, no error is issued when such
queries are run.

Actions to take

To prepare for this change, identify any queries that use a positive, signed integer
in an ORDER BY clause to refer to a column in the result table. Modify these
queries to use unsigned integers to identify column numbers.

Related reference:

[[order-by-clause (DB2 SQL)|

Binding DBRMs directly into plans is no longer supported

For pre-existing plans that are bound from DBRMs, you can use the COLLID
parameter of the REBIND PLAN command to create packages. If you execute a
plan that is bound from DBRMs, DB2 performs an automatic rebind that creates
packages from the DBRMs and binds those packages into a plan. However, the
recommendation is to use REBIND with the COLLID option so that you can
specify bind options and receive more diagnostic information. If the installation
uses the RACF access control module, owners of plans with DBRMs need to
explicitly rebind the plans to convert the DBRMs to packages.

Some BIND PLAN and REBIND PLAN command options are
no longer supported

The ACQUIRE(ALLOCATE) option of the BIND PLAN and REBIND PLAN
commands is no longer supported. If you specify ACQUIRE(ALLOCATE), DB2
issues a warning message and uses ACQUIRE(USE).

Also, the MEMBER option of BIND PLAN and REBIND PLAN is no longer
supported. If you specify MEMBER, DB2 issues a warning message, binds the
specified DBRM into a package, and binds the package into a plan.

Plans and packages should be converted to DRDA protocol

Plans and packages that were previously bound using DBPROTOCOL(PRIVATE)
should be converted to DRDA protocol before migration to Version 10. In Version

36 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_orderbyclause.dita

10, plans and packages that were bound with the DBPROTOCOL(PRIVATE) bind
option and access remote locations cannot run. Applications that use packages or
plans that were bound with DBPROTOCOL(PRIVATE) and access remote locations
fail with SQLCODE -904. A rebind of those plans and packages must be explicitly
performed before they can execute successfully. Job DSNTIJPM identifies the
objects that must be converted to use DRDA protocol.

Change to GRANT statement

The PUBLIC AT ALL LOCATIONS clause is no longer allowed in the GRANT
statement for table and view privileges as an alternative to PUBLIC. The
DSNTPPCK program in Version 8 and Version 9.1 analyzes the embedded SQL
statements in packages and plans for private protocol SQL, which is invalid in
Version 10. The program produces a report that states which packages and member
DBRMs of plans contain the invalid syntax. The program scans either the
SYSIBM.SYSSTMT catalog table, the SYSIBM.SYSPACKSTMT catalog table, or both.
Applications that issue dynamic SQL statements with the invalid PUBLIC AT ALL
LOCATIONS clause will receive SQLCODE -199.

Change to IMMEDWRITE option of BIND PACKAGE command

In DB2 Version 10, if IMMEDWRITE is not specified on a BIND PACKAGE
command, the default is “1”, or INHERITFROMPLAN. In previous versions, the
default was NO.

Changes to conversion of special characters in collection IDs
and package names

In Version 10, DRDA character type parameter data is sent between client drivers
and DB2 in UTF-8 Unicode, if those client drivers also have this support. Character
type parameter data includes package names and collection IDs. Prior to Version
10, collection IDs and package names were sent in EBCDIC, and then converted to
Unicode before being stored in the DB2 catalog. A collection ID or package name
that is in the DB2 catalog from a bind that was initiated by an older driver might
not match an ID or name that is sent to DB2 by a newer driver. This mismatch,
which is caused by the way that some special characters are converted, can cause
package-not-found errors. Job step DSNTGEN of job DSNTIJPM identifies package
names and collection IDs that contain special characters that cause mismatches.
From the upgraded client drivers, those packages need to be bound with the
ACTION(REPLACE) option.

Changes to the RELEASE bind option

In releases prior to Version 10, the RELEASE bind option had no effect on database
access threads. Starting in Version 10, by default, DB2 honors the RELEASE bind
option for database access threads. You can modify this behavior by using the new
MODIFY DDF PKGREL command.

Database metadata stored procedures are converted to
Unicode

In DB2 Version 10, DB2-supplied database metadata stored procedures are encoded
in Unicode. The Version 10 migration process redefines the stored procedures to
use the following new load modules:

Chapter 1. Planning for and designing DB2 applications 37

Table 3. Metadata stored procedures and associated load modules

Stored procedure Load module
SYSIBM.SQLCOLPRIVILEGES DSNACPRU
SYSIBM.SQLCOLUMNS DSNACOLU
SYSIBM.SQLFOREIGNKEYS DSNAFNKU
SYSIBM.SQLFUNCTIONCOLS DSNAFCOU
SYSIBM.SQLFUNCTIONS DSNAFUNU
SYSIBM.SQLGETTYPEINFO DSNATYPU
SYSIBM.SQLPRIMARYKEYS DSNAPRKU
SYSIBM.SQLPROCEDURECOLS DSNAPCOU
SYSIBM.SQLPROCEDURES DSNAPRCU
SYSIBM.SQLSPECIALCOLUMNS DSNASPCU
SYSIBM.SQLSTATISTICS DSNASTAU
SYSIBM.SQLTABLEPRIVILEGES DSNATBPU
SYSIBM.SQLTABLES DSNATBLU
SYSIBM.SQLUDTS DSNAUDTU

Some applications call the database metadata stored procedures to retrieve
double-byte (DBCS) data. Those applications must be modified to use Unicode if
they are bound on a DB2 server that has an EBCDIC SBCS CCSID, and the MIXED
parameter is set to NO in the application defaults load module, dsnhdecp.

AUTHID is the default owner of packages that are bound by
DSNTRIN

In previous releases, the stored procedures and user-defined functions that are
provided as part of the DB2 base product (DB2-supplied routines) were created
and bound by processing inline DDL and bind statements in DSNTIJSG and other
installation jobs. By default, the ID that was used to run the job was also the
authorization ID for creating the routines and the default package owner for those
routines.

In Version 10, DB2-supplied routines are created and bound by running program
DSNTRIN in job DSNTIJRT. The AUTHID parameter of DSNTRIN specifies the
authorization ID for creating the routines. This ID is also the default owner of
packages that are bound for those routines.

New default DEFINE attribute for dependent objects

As of Version 10, if the DEFINE attribute is not specified in the CREATE statement
for explicitly created dependent objects (auxiliary indexes, XML indexes, and base
table indexes), DB2 uses the DEFINE attribute of the base table space.

Exception: If the DEFINE attribute is not specified for explicitly created LOB table
spaces, there is no correlation with the base table space until the auxiliary table is
created. The DEFINE attribute is not inherited from the base, and the default is
DEFINE YES.

Implicitly created dependent objects (base table indexes, LOB and XML table
spaces, and their dependent indexes) inherit the DEFINE attribute of the base table

38 Application Programming and SQL Guide

space if it is DEFINE NO. Otherwise, if the base table space attribute is DEFINE
YES, the value of the IMPDSDEF subsystem parameter is used for the dependent
objects.

Change for creating partitioned table spaces

To create a partitioned (non-universal) table space in DB2 Version 10 new-function
mode, you must specify SEGSIZE 0 and the NUMPARTS keyword of the CREATE
TABLESPACE statement. Before new-function mode, do not specify the SEGSIZE to
create a partitioned table space.

Change to default for CREATE TABLESPACE statements

In previous releases of DB2, if a CREATE TABLESPACE statement contains the
NUMPARTS clause but neither the MAXPARTITIONS clause nor the SEGSIZE
clause, a partitioned (non-universal) table space is created. Beginning in Version 10
new-function mode, the same statement results in a range-partitioned table space
with a segment size of 32 by default. You might observe this difference when a
subsequent CREATE INDEX statement with the specified ranges fails because
index partitioning of a range-partitioned table space is not supported.

In response, you can change the default segment size through the
DSN6SYSP.DPSEGSZ subsystem parameter, which is externalized as the DEFAULT
PARTITION SEGSIZE field on panel DSNTIP7. The value of the DPSEGSZ
parameter can range from 0 to 64 in increments of 4; for example, 0, 4, 8, and so on
up to 64. The default is 32.

When DPSEGSZ is set to 0, a CREATE TABLESPACE statement that contains the
NUMPARTS clause but neither the MAXPARTITIONS clause nor the SEGSIZE
clause results in a partitioned (non-universal) table space, which is the behavior of
previous releases. Note that the DPSEGSZ parameter is provided for compatibility
only. It is deprecated in Version 10, and you should take steps to modify affected
CREATE TABLESPACE statements or plan to use partition-by-growth table spaces
instead of partitioned (non-universal) table spaces.

Change to default SEGSIZE value for universal table spaces

In DB2 Version 10, the default SEGSIZE value for universal table spaces has
changed from 4 to 32.

Upgrade to supported COBOL and PL/I compilers

If you use the Version 10 precompiler, you must upgrade to COBOL compilers that
DB2 10 for z/OS supports. See the [DB2 Program Directory] for information about
supported compilers. The generated SQLCA and SQLDA for COBOL have
changed. The generated attribute for binary data items is now COMP-5 instead of
COMP-4 or COMP. Applications that are compiled on compilers that do not
support the COMP-5 attribute no longer work.

For some COBOL and PL/I compilers that are no longer supported, you can use a
version of the precompiler that allows you to precompile applications that have
dependencies on these unsupported compilers. You can use this version of the
precompiler with the following unsupported compilers:

-+ 0OS/VS COBOL V1.2.4

« OSPL/I 15 (PL/1 Opt. V1.5.1)
« VS/COBOL II VI1R4

- OSPL/I123

Chapter 1. Planning for and designing DB2 applications 39

https://www-304.ibm.com/support/docview.wss?uid=swg27019288

The load module for this precompiler is DSNHPC?7. This precompiler is meant
only to ease the transition from unsupported compilers to supported compilers.
This precompiler has the following restrictions:

* There is no corresponding DB2 coprocessor function to match this precompiler.
* The precompiler does not support SQL procedures.

e Only COBOL and PL/I are supported.

* The SQL flagger is not supported.

* The precompiler produces Version 7 DBRMs, and does not support any
capability that is newer than Version 7.

* The application defaults module must be named DSNHDECP.

Support of this precompiler is deprecated in Version 10.

GRAPHIC and NOGRAPHIC SQL processing options are
removed

If you specify the SQL processing options GRAPHIC or NOGRAPHIC, DB2 issues
a standard warning message about an invalid option. These options are
superseded by the CCSID SQL processing option.

SELECT FROM data change statements in BEFORE triggers
no longer supported
The following statements are no longer allowed in the body of a BEFORE trigger:
* SELECT FROM DELETE
* SELECT FROM INSERT
* SELECT FROM MERGE
* SELECT FROM UPDATE

RETURN statement in scalar functions must follow option-list

In previous DB2 versions, RETURN statements in scalar functions could be in any
order, relative to other clauses. After migration to Version 10 conversion mode
(from Version 8 or Version 9.1), the RETURN statement in CREATE FUNCTION or
ALTER FUNCTION statements must follow option-list. If a RETURN statement
precedes option-list in one of these statements, DB2 issues SQLCODE -199.

Changed behavior of LOCATE_IN_STRING function

In Version 10, a negative value for start in the LOCATE_IN_STRING function
results in the search starting at the end of the source string. When start is negative,
the starting position is LENGTH(source-string) + start + 1.

Changes to ROUND_TIMESTAMP and TRUNC_TIMESTAMP
functions

In Version 10, the ROUND_TIMESTAMP and TRUNC_TIMESTAMP functions
return the first day of the first ISO week of the ISO year when an ISO year format
is specified.

Also, whenever a CC or SCC format is specified, a start of a century is considered
to be year 01.

40 Application Programming and SQL Guide

Changes to result of NEXT_DAY function

In Version 10, the result data type for the NEXT_DAY function is determined from
the input data. If the first input argument is a string, the result is TIMESTAMP(6)
WITHOUT TIME ZONE. Otherwise, the data type of the result is the same as the
data type of the first input argument. For example, if the input is a date data type,
the result is also a date data type. The following rules apply to the change in the
NEXT_DAY function:

* Existing view definitions that reference the NEXT_DAY function should be
regenerated with an ALTER VIEW statement.

 Existing materialized query statements that reference the NEXT_DAY function
should be dropped and re-created.

* Bound SQL statements that reference the NEXT_DAY function only use the
modified rules to determine the result data type if the statements are bound in
Version 10 conversion mode (from Version 8 or Version 9.1) or later.

* DESCRIBE statements only use the modified rules to determine the result data
type for the NEXT_DAY function if the statements are bound in Version 10
conversion mode (from Version 8 or Version 9.1) or later.

* Existing indexes that involve an expression that reference the NEXT_DAY
function should be dropped and re-created.

Changes to MONTHS_BETWEEN function

In previous releases, the MONTHS_BETWEEN function ignored the time portion
of arguments. In Version 10, the MONTHS_BETWEEN function takes the time
portion of arguments into consideration.

Changes to TIMESTAMPDIFF function

In previous releases, the TIMESTAMPDIFF function allowed string input values
that had more than six digits to the right of the decimal point. In Version 10, an
error is issued if the string input value for TIMESTAMPDIFF function has more
than six digits to the right of the decimal point.

Static SQL applications that use parallelism

DB2 incrementally rebinds the statements that use parallelism after migration to
Version 10. Incremental rebinds can cause performance degradation. If you use the
access control authorization exit (DSNX@XAC) for authorization, incremental
rebinds can cause authorization failures because they trigger authorization checks
of static SQL statements when the package is executed. The authorization checks
are performed on the primary authorization ID during incremental rebinds.

You should manually rebind those statements that use parallelism after migration.
You can run a query in job DSNTIJPM before you migrate to determine which
statements can use parallelism, and are therefore candidates for incremental
rebinds. You should consider rebinding those statements after migration, as soon as
your Version 10 system is stable. After you migrate to Version 10, you can also run
a performance trace, class 3 or class 10 for IFCID 360, to identify the plans and
packages that contain static SQL queries that use parallelism, and therefore need to
be rebound.

Enforced SELECT authorization checking for UPDATE and
DELETE statements

DB2 Version 10 checks for the SELECT privilege or appropriate administrative
privilege before allowing a user to execute UPDATE or DELETE statements that

Chapter 1. Planning for and designing DB2 applications 41

reference an existing value in the target table. This authorization checking applies
regardless of how the statements are executed (for example, bound in a package or
executed in a dynamic statement). The authorization now also applies regardless of
the setting of the SQLRULES(STD) bind option for static statements or the
CURRENT RULES special register for dynamic statements. If the user does not
have the necessary SELECT authorization or administrative privilege, a negative
SQLCQODE is returned.

Increased limit for work file record length

In Version 10 new-function mode, the limit for the row length in the result of a
JOIN or the row length of a SORT record is increased from 32 767 bytes (1 page)
to 65 529 bytes. The sort key maximum length is also increased from 16 000 bytes
to 32 000 bytes. Applications that exceed the old limits fail in conversion mode
(from both Version 8 and Version 9.1) with SQLCODE -670 or SQLCODE -136.

New restrictions for EXPLAIN tables

In DB2 Version 10 conversion mode (from both Version 8 and Version 9.1),
EXPLAIN tables must be in Version 8 or later format and preferably encoded in
Unicode. When EXPLAIN tables are in a format prior to the Version 8 format, DB2
returns SQLCODE -20008 reason code 2 for statements or commands that invoke
EXPLAIN processing. Statements or commands that invoke EXPLAIN processing
return SQLCODE +20520 reason code 2 if an EXPLAIN table is in Version 8 or
Version 9.1 format, regardless of the encoding type. If an EXPLAIN table is in
Version 10 format and encoded in EBCDIC, SQLCODE -878 is returned. When you
convert EXPLAIN tables to Unicode encoding, applications that join with
EXPLAIN tables might have different results because of the CCSID conversion. For
more information, see [Objects with different CCSIDs in the same SQL statement]
[(DB2 Internationalization Guide)|

Recommendation: Before you begin migration to Version 10, convert all EXPLAIN
tables to the current version (8 or 9.1) format and Unicode encoding, and then
check for joins to those tables. You can use job DSNTIJXA to convert most tables to
current release format. You can use jobs DSNTIJXB and DSNTIJXC to migrate
EBCDIC-encoded EXPLAIN tables to Unicode.

MEMBER CLUSTER table spaces indicated by
MEMBER_CLUSTER column

In previous versions of DB2, a “K” or “I” in the TYPE column of the
SYSTABLESPACE catalog table indicated that the table space had MEMBER
CLUSTER structure. In Version 10, a new MEMBER_CLUSTER column on the
SYSTABLESPACE catalog table is populated during the enabling-new-function
mode (from both Version 8 and Version 9.1) migration process. For existing
MEMBER CLUSTER table spaces, values of “K” in the TYPE column of
SYSTABLESPACE are replaced with “L”, and values of “1” are replaced with blank.
The MEMBER_CLUSTER column is populated with “Y”. After migration to
enabling-new-function mode (from Version 8 or Version 9.1), applications that
query “K” or “I” in the TYPE column must query the new MEMBER_CLUSTER
column instead.

Changed values for the modification level in the product
signature

The DB2 Version 10 product signature has the form DSN1001m, where m is the
modification level. Values 0 and 1 are reserved for maintenance levels in

42 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.char/src/tpc/db2z_objdiffccsid.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.char/src/tpc/db2z_objdiffccsid.dita

conversion mode from Version 8, conversion mode* from Version 8,
enabling-new-function mode from Version 8, and enabling-new-function mode*
from Version 8. Values 2 and 3 are for maintenance levels in conversion mode from
Version 9.1, conversion mode* from Version 9.1, enabling-new-function mode from
Version 9.1, and enabling-new-function mode* from Version 9.1. Values 5, 6, 7, §,
and 9 are for maintenance levels in new-function mode. Value 4 is undefined.

Changed behavior for the CREATE FUNCTION statement

In all forms of the CREATE FUNCTION statement, a parameter list is required.
Functions without parameters must have empty parentheses specified, as in the
following example: CREATE FUNCTION F1 () RETURNS INT RETURN 1.

In previous releases, if you specified CREATE FUNCTION without a parameter list
(for example, CREATE FUNCTION F1 RETURNS INT RETURN 1), you received no errors.
In Version 10, if you specify CREATE FUNCTION without a parameter list, DB2
issues an error.

Also, a CREATE FUNCTION statement for a non-inline SQL scalar function cannot
have a parameter that is a distinct type that is based on a LOB data type. The
inline SQL scalar functions have supported, and will continue to support, distinct
type parameters where the underlying base data type is a LOB. For the syntax of
this statement, see [CREATE FUNCTION] in the DB2 for z/OS SQL Reference
Guide.

Different SQLSTATE returned for some DELETE or UPDATE
statements

In previous releases of DB2, a SQLSTATE value of "00000" was returned for some
DELETE or UPDATE statements that did not contain a WHERE clause, when
SQLWARN flags were set. Those situations occurred during bind processing. As of
DB2 Version 10, a SQLSTATE value of "01504" is returned in those situations. This
change does not affect SQL statements that are executed on behalf of a DB2 for
z/OS requester.

Changed default behavior of multiple-row inserts for ODBC
z/0OS applications

As of DB2 Version 10, the default behavior for multiple-row inserts is changed
from non-atomic to atomic. To change the default behavior back to non-atomic, set
keyword PARAMOPTATOMIC = 0 in the data source section of the ODBC
initialization file.

Changes to ALTER TABLESPACE statement error codes

Before Version 10 conversion mode (from Version 8 or Version 9.1), if you execute
an ALTER TABLESPACE MAXPARTITIONS statement on catalog objects, DB2
issues SQLCODE -644. After you migrate to Version 10 conversion mode (from
Version 8 or Version 9.1), DB2 issues SQLCODE -607.

Also before Version 10 conversion mode (from Version 8 or Version 9.1), if you
execute an ALTER TABLESPACE MAXPARTITIONS statement with a value of
MAXPARTITIONS that is invalid with the page size and DSSIZE values, DB2
issues SQLCODE -4701. After you migrate to Version 10 conversion mode (from
Version 8 or Version 9.1), DB2 issues SQLCODE -644.

Chapter 1. Planning for and designing DB2 applications 43

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createfunction.dita

Change to CREATE and ALTER statements

CREATE and ALTER statements for native SQL procedures no longer support the
DEFAULT keyword for the SQL PATH option.

Change to ALTER PROCEDURE statement

When the REGENERATE option is specified for the ALTER PROCEDURE
statement for native SQL procedure, any existing comment in the catalog for the
routine is retained. In previous DB2 versions, the comment was cleared in this
situation.

Change to DESCRIBE statement

In Version 10, when a DESCRIBE statement is used on a result table that includes a
distinct type, it will now return information about the distinct type.

New restrictions on using DSNTIAUL

DSNTIAUL can no longer be used to process CREATE FUNCTION (SQL scalar)
statements that would result in a package or CREATE TRIGGER statements.
DSNTIAUL also cannot be used to process any other statement that contains
SQL-routine-body. These statements are CREATE PROCEDURE (SQL external),
CREATE PROCEDURE (SQL native), CREATE FUNCTION (SQL table), ALTER
PROCEDURE (SQL native) with an ADD or REPLACE clause, and ALTER
FUNCTION (SQL scalar) with an ADD or REPLACE clause.

Changes to SYSROUTINES

As of Version 10, the CREATEDTS column of SYSIBM.SYSROUTINES will always
reflect the time that a CREATE statement was first issued for a routine. In previous
releases of DB2, the CREATEDTS column might have contained different values if
multiple versions of a routine were created.

Catalog restructured

In Version 10, the DB2 catalog is restructured to reduce lock contention. As a
result, binding takes longer in Version 10 than it did in previous versions. Also,
execution of the DECLARE GLOBAL TEMPORARY TABLE statement takes longer
in Version 10.

Changed data type for an untyped parameter marker

In previous releases, an untyped parameter marker for a unary minus operator has
an assumed DOUBLE data type. In DB2 Version 10, the assumed data type is
DECFLOAT(34).

Changes to handling of special values Infinity, sNaN, and NaN

In previous releases, when DB2 returns a decimal floating-point (DECFLOAT)
value for Infinity, NaN, or sNaN as a CHAR or VARCHAR string, the string is in
mixed case. In DB2 Version 10, the values are returned in upper case as follows:
INFINITY, NAN, or SNAN.

Changes for INSTEAD OF triggers

Changes are introduced for existing INSTEAD OF triggers that were defined on a
view that has a ROWID column or a column that is based on an underlying
column of any of the following types:

* A security label column.

44 Application Programming and SQL Guide

* A row change timestamp column.

* A column that is defined with AS ROW BEGIN.

* A column that is defined with AS ROW END.

* A column that is defined with AS TRANSACTION START ID.

For such INSTEAD OF triggers, the following actions now fail with a negative
SQLCODE:

* Rebinding the INSTEAD OF trigger package.

* Dropping and re-creating the INSTEAD OF trigger.

* Running the REPAIR DBD utility on a database that includes the INSTEAD OF
trigger.

* Issuing ALTER TABLE ALTER COLUMN SET DATA type on a table that has a
view on which the INSTEAD OF trigger is defined.

Change to positioned update or delete statements

Explanation

In DB2 Version 10, packages must be rebound if both of the following statements
are true:
* The package contains static cursors that were bound in a previous version.

¢ The package contains dynamic UPDATE or DELETE statements that contain the
WHERE CURRENT of clause. The WHERE CURRENT of clause indicates a
positioned UPDATE or DELETE statement.

Possible impact to your DB2 environment

If any such packages are not rebound in Version 10, positioned UPDATE and
DELETE statements fail with SQLCODE -20249 when they run against a
down-level cursor.

Actions to take

After migration to Version 10 conversion mode (from Version 8 or Version 9.1),

rebind packages that contain static cursors with positioned UPDATE or DELETE
statements.

Change to stored procedure parameter values returned to
non-Java clients

In previous releases, when a remote application calls a DB2 for z/OS stored
procedure, the data types of the returned output data match the data types of the
corresponding CALL statement arguments. Starting in Version 10 conversion mode
(from both Version 8 and Version 9.1), the data types of the returned output data
match the data types of the parameters in the stored procedure definition. This
change can cause conversion failures for some applications that use non-Java client
drivers such as .NET to call stored procedures on DB2. To prepare for this change,
modify the CALL requests of your non-Java client applications to specify argument
types that conform to the semantics of the client driver. If you want to temporarily
override the Version 10 behavior, you can set the DDF_COMPATIBILITY subsystem
parameter to SP_PARMS_NJV.

Chapter 1. Planning for and designing DB2 applications 45

The SP_PARMS_NJV option of the DDF_COMPATIBILITY subsystem parameter is
deprecated. Although the option is supported in Version 10, it will be removed in a
later release of DB2.

Change to results of JDBC method
PreparedStatement.setTimestamp

TIMESTAMP WITH TIME ZONE is first supported in DB2 for z/OS Version 10
new-function mode. Before Version 10 new-function mode, if the value that is
assigned to a column (the second parameter of PreparedStatement.setTimestamp)
has the java.sql.Timestamp data type, and the column data type is not known, the
IBM Data Server Driver for JDBC and SQL]J chooses TIMESTAMP as the target
data type. However, starting with DB2 for z/OS Version 10 new-function mode,
unless the value that is assigned to the column is 0001-01-01-00:00:00.000000 or
9999-12-31-23:59:59.999999, the driver chooses TIMESTAMP WITH TIME ZONE as
the column data type. If the driver chooses the TIMESTAMP data type, and the
column type is actually TIMESTAMP WITH TIME ZONE, the database manager
sets the time zone in the target column using the value of the
IMPLICIT_TIMEZONE DECP value. This value might differ from the value that is
inserted prior to Version 10 new-function mode.

To produce the same results before and after new-function mode when
PreparedStatement.setTimestamp is executed, specify a
com.ibm.db2.jcc.DBTimestamp value as the second parameter.

Change to behavior of comma operator in XQuery path
expression

A comma operator in a DB2 XQuery path expression results in SQLCODE -16031.
In previous releases, a comma operator in the DB2 XQuery path expression
predicate was interpreted as the and operator.

Change in how DB2 returns stored procedure output
parameter data to remote clients

When an application on a client system calls a stored procedure on a DB2 10 for
z/0OS server, DB2 now handles the output parameters differently. Previously, DB2
returned stored procedure output parameters that were formatted according to the
SQL type of the corresponding argument in the CALL statement. DB2 10 now
returns output parameters that are formatted according to the SQL type of the
corresponding parameter in the stored procedure declaration. This new behavior
provides improved performance at the server by avoiding unnecessary server data
conversions. Also, this new behavior is consistent with the existing server behavior
for the return of query and select output data and it is consistent with the behavior
of other DB2 family servers. Therefore, it provides applications with a more
consistent and predictable interface to DB2.

In general, for applications that conform to client standards, this change has no
impact to the calling application. In some cases, however, application changes
might be needed. To prepare for this change, examine your remote applications
that call DB2 stored procedures. If necessary, modify the CALL statements in your
remote applications to specify argument data types that match the data types of
the parameters in the stored procedure definitions.

46 Application Programming and SQL Guide

When the change in behavior occurs

In general, the new behavior occurs after migration to DB2 10 for z/OS conversion
mode from Version 8 (CMS8) or conversion mode from Version 9.1 (CM9). However,
the following exceptions apply:

* For applications using IBM Data Server Driver for JDBC and SQL]J type 4
connectivity to access a DB2 10 data sharing group in CM8 or CM9, where the
enableSysplexWLB client property is set to true:

In such a configuration, the change in behavior occurs when the data sharing
group is migrated to DB2 10 new-function mode (NFM). As long as the data
sharing group is in CM8 or CM9 to support coexistence, DB2 uses the old
behavior. The old behavior is used because the IBM Data Server Driver for JDBC
and SQLJ might be caching data descriptors for outputs from the server. When
the enableSysplexWLB property is set to true, the old behavior is maintained to
ensure that the cached client descriptors are valid regardless of which member
of the data sharing group is accessed.

To prepare for this change in behavior while DB2 10 is in CM8 or CM9 to
support coexistence, test your applications with the enableSysplexWLB client
property set to false. Or, test the applications against a stand-alone DB2 10
server, if such a system is available for testing. The new DB2 10 behavior will be
used for each of those applications even though the DB2 data sharing group is
in CM8 or CMO.

* For applications using the IBM Data Server Driver for JDBC and SQL]J or
non-Java clients (such as .NET), Version 9 or earlier:

In such a configuration, the change in behavior occurs, by default, after
migration to DB2 10 for z/OS CM8 or CM9. However, the change in behavior
can be temporarily deferred. To temporarily override the DB2 10 behavior for
returning stored procedure output parameter data to the IBM Data Server Driver
for JDBC and SQLJ or non-Java clients only (such as .NET), set the
DDF_COMPATIBILITY subsystem parameter to SP_PARMS_N]JV. The
SP_PARMS_NJV option of the DDF_COMPATIBILITY subsystem parameter is
deprecated. Although the option is supported in DB2 10, it will be removed in a
later release of DB2. For more information about DDF_COMPATIBILITY, see
Subsystem parameters that are not on installation panels (DB2 Installation and]

Migration !I

Examples of application impacts

The following examples use the IBM Data Server Driver for JDBC and SQLJ and
.NET. Other drivers might behave differently. Because DB2 10 no longer converts
data types when returning stored procedure output parameter data, there might be
similar impacts to applications for other data types that are not discussed in the
examples. If the calling application specifies arguments that are different from the
declared parameter types, then the mismatch between the argument and parameter
data types is handled by the client system, according to the client's programming
model and the client's capabilities. If the client performs data type conversions
such as for numeric data, the result of the conversion performed by the client
might differ from the result that was previously returned when the DB2 server
performed the conversion.

Example 1
A stored procedure parameter is declared as an INTEGER data type, but the
application CALL statement specifies a SMALLINT argument.

* Behavior before DB2 10: DB2 converts the INTEGER data and returns a 2-byte
SMALLINT value, which maps to an Int16 .NET data type.

Chapter 1. Planning for and designing DB2 applications 47

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_zparmnotonpanels.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_zparmnotonpanels.dita

* New behavior in DB2 10: DB2 returns a 4-byte INTEGER value, which maps to
an Int32 .NET data type.

Sample application impact (NET): If the application uses an IBM Data Server
.NET client, the stored procedure CALL statement now fails with an invalid
conversion error because the Intl6 and Int32 .NET data types are not compatible
with each other. The application must be changed to specify an Int32 argument in
the CALL statement as required by the .NET programming model. Applications
that are coded with an Int32 argument and call stored procedures that have an
INTEGER parameter require no change.

The .NET programming model enforces strong data typing. Thus, even though the
argument type and the parameter type are compatible SQL types, the .NET driver
enforces strong data type checking according to the .NET semantics. Refer to the
.NET documentation for information about .NET strong type checking.

Example 2
A stored procedure parameter is declared as a REAL data type, but the application
CALL statement specifies a DOUBLE argument.

¢ Behavior before DB2 10: DB2 converts the output data to a DOUBLE value
before returning it to the client.

¢ New behavior in DB2 10: DB2 returns the data to the client as a REAL value.

Sample application impact (Java): If an application that uses the IBM Data Server
Driver for JDBC and SQL] uses the registerOutParameter() method to register the
output parameter as a DOUBLE value before calling a stored procedure that has a
REAL parameter, the following behavior occurs if the Java application uses the
getObject() method to retrieve the output value:

* Before Version DB2 10, DB2 converted the REAL value to a DOUBLE value and
returned it to the client. The IBM Data Server Driver for JDBC and SQLJ
returned the DOUBLE value directly to the application as the result of the
getObject() method.

¢ Beginning in DB2 10, DB2 returns the REAL value to the client. The IBM Data
Server Driver for JDBC and SQLJ converts the REAL value to a DOUBLE value
and returns it to application as the result of the getObject() method. APAR
1C80974 for LUW clients and APAR PM58951 (JCC 3.63.131) and PM58952 (JCC
4.13.136) for z/OS clients are required in the IBM Data Server Driver for JDBC
and SQLJ to ensure that the conversion is completed by the getObject() method.
If the APAR fix is not applied, the Java application gets a ClassCastException.

Example 3
A stored procedure parameter is declared as a TIMESTAMP data type, but the
application CALL statement specifies a VARCHAR argument.

* Behavior before DB2 10: DB2 converts the fixed-length TIMESTAMP data and
returns a 26-byte VARCHAR value, containing a TIMESTAMP value in ISO
format (yyyy-mm-dd-hh.mm.ss[fffffff{f]). The VARCHAR value maps to a String
.NET data type.

* New behavior in DB2 10: DB2 returns a 26-byte fixed-length TIMESTAMP

value, containing a TIMESTAMP value in ISO format. The TIMESTAMP value
maps to a DateTime .NET data type.

Sample application impact (Java): If the application uses the IBM Data Server
Driver for JDBC and SQLJ, then an application change might be required,
depending on what method the Java application uses to retrieve the parameter
data.

48 Application Programming and SQL Guide

* Before DB2 10, the getString() method previously returned TIMESTAMP data in
ISO format, while the getTimestamp() method returned TIMESTAMP data in
Java format

* Beginning in DB2 10, both the getString() and getTimestamp() methods return
the TIMESTAMP value in Java format (yyyy-mm-dd hh:mm:ss[.fifff{fff]).

An application change might be required if the Java application uses the
getString() method and the application depends on receiving TIMESTAMP values
in ISO format. Applications that use the getTimestamp() method require no change.

Similar considerations apply for TIME parameters. Beginning in DB2 10, DB2
returns TIME parameters as TIME data values in ISO format (hh.mm.ss), regardless
of the SQL type of the corresponding argument in the CALL statement. For Java
applications, the getString() method now returns TIME data in Java format
(hh.mm.ss). If a Java application uses the getString() method and requires TIME
data in ISO format, the application must be examined for possible changes.

Change to IBM Data Server Driver for JDBC and SQLJ
handling of TIMESTAMP WITH TIME ZONE data type

Before DB2 Version 10 new-function mode, the TIMESTAMP WITH TIME ZONE
data type was not supported. If a Java client application passed a timestamp input
value to a TIMESTAMP column, the IBM Data Server Driver for JDBC and SQLJ
did not include the local time zone with the timestamp value. Starting with DB2
Version 10 new-function mode, the TIMESTAMP WITH TIME ZONE data type is
supported. If a Java client application passes a timestamp input value to a
TIMESTAMP column, the IBM Data Server Driver for JDBC and SQL]J constructs a
timestamp input value that includes the local time zone. If the value that the
driver sends to the server is out of supported range for the server, the application
receives SQLCODE -181. You can temporarily prevent this error by including
IGNORE_TZ in the settings for the DDF_COMPATIBILITY subsystem parameter.

Changes to datetime built-in functions

Explanation

Many datetime functions allow arguments containing string representations of
datetime values. Valid formats for those strings are described in the DB2 SQL
Reference.

In DB2 Version 10 conversion mode (from Version 8 or Version 9.1), the following
additional string formats are allowed in the specified limited contexts:

* A string value of seven characters representing a date is allowed as an argument
to the DATE function only.

¢ A string value of 8, 13, or 14 characters representing a point in time is allowed
as an argument to the TIMESTAMP function only.

Possible impact to your DB2 environment

After migration to Version 10, applications that provide a seven-character string
argument to represent a date for built-in functions other than the DATE function
will return an error. Applications that provide a string value of 8, 13, or 14
characters to represent a point in time as an argument for built-in functions other
than the TIMESTAMP function also return an error.

Chapter 1. Planning for and designing DB2 applications 49

Actions to take

To prepare for this change, use valid string formats that are described in [String
frepresentations of datetime values (DB2 SQL)|in arguments for all of your datetime
functions.

SQLCODE change for subsequent CAF CONNECT attempts
Explanation

In previous releases, a call attachment facility (CAF) CONNECT request that is
followed by another CONNECT request without an intervening disconnect results
in a zero return code. In DB2 Version 10, if the second CONNECT request is for a
different or unknown subsystem, group attachment, or subgroup attachment name,
a -924 SQLCODE is returned. If the second CONNECT request is for the same
subsystem, group attachment, or subgroup attachment name, a +361 SQLCODE is
returned. A failed attempt to connect to the CAF does not change the current
connection. Therefore, in both of these scenarios, the existing CAF connection
persists.

Possible impact to your DB2 environment

Some of your applications might receive a -924 or +361 return code where a zero
return code was previously returned.

Actions to take

Review your applications for subsequent CONNECT requests for CAE. Modify
these applications to handle the new SQLCODEs or rewrite the applications to
remove subsequent CONNECT requests.

Delimiters used for accessing tables on DB2 for Linux, UNIX,
and Windows
Explanation

DB2 Version 10 resolves aliases prior to sending SQL statements to a remote site
for applications that use system-directed access. During a remote package bind
against the remote site, modified SQL statement text is bound on the remote
system. The DRDA_RESOLVE_ALIAS subsystem parameter is provided in DB2
Version 8 and DB2 Version 9.1 to help verify applications that are affected by this
change of behavior before you migrate to DB2 Version 10.

Possible impact to your DB2 environment

This change can impact applications that access a DB2 for Linux, UNIX, and
Windows server if the SQL preprocessing option QUOTE or QUOTESQL is used.
QUOTE or QUOTESQL specifies that a quotation mark (") is used as the string
delimiter and an apostrophe (') is used for SQL identifiers in SQL statements. This
option does not control how the COBOL compiler processes string delimiters
within the application program statements. DB2 for Linux, UNIX, and Windows
does not support statement strings that have been precompiled under the QUOTE
or QUOTESQL option and returns a warning on the BIND command. DB2 for
z/0OS does use the precompiler option to govern which string delimiter to use for
SQL identifiers when modifying the SQL text. This causes a bind or rebind to fail
on DB2 for Linux, UNIX, and Windows in DB2 Version 10 when the QUOTE or

50 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_datetimestringrepresentation.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_datetimestringrepresentation.dita

QUOTESQL precompiler option is used to generate the DBRM that is the source of
the remote bind package processing.

Actions to take

When accessing a remote table on a DB2 for Linux, UNIX, and Windows server
using an alias, applications must be precompiled using the APOST or APOSTSQL
option. Character string literals must be delimited by apostrophes and SQL
identifiers must be delimited by quotation marks.

Qualify user-defined function names

If you use a user-defined function that has the same name as a built-in function
that has been added to Version 10, ensure that you fully qualify the function name.
If the function name is unqualified and “SYSIBM” precedes the schema that you
used for this function in the SQL path, DB2 invokes one of the built-in functions.

For a list of built-in functions, including those that have been added in Version 10,
see [Functions (DB2 SQL)

SQLCODE changes

Some SQLCODE numbers and message text might have changed in DB2 Version
10. Also, the conditions under which some SQLCODEs are issued might have
changed.

SQL reserved words

Version 10 has several new SQL reserved words. Refer to [Reserved words (DB2|
for the list of reserved words, and adjust your applications accordingly.

GUPI

Determining the value of any SQL processing options that affect the
design of your program

When you process SQL statements in an application program, you can specify
options that describe the basic characteristics of the program. You can also indicate
how you want the output listings to look. Although most of these options do not
affect how you design or code the program, a few options do.

SQL processing options specify program characteristics such as the following items:
¢ The host language in which the program is written
¢ The maximum precision of decimal numbers in the program

* How many lines are on a page of the precompiler listing
In many cases, you may want to accept the default value provided.

To determine the value of any SQL processing options that affect the design of
your program:

Review the list of SQL processing options and decide the values for any options
that affect the way that you write your program. For example, you need to know if
you are using NOFOR or STDSQL(YES) before you begin coding.

Related concepts:

[‘DB2 program preparation overview” on page 973)|

Chapter 1. Planning for and designing DB2 applications 51

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqlfunctionsintro.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_reservedwords.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_reservedwords.dita

Related reference:

[“Descriptions of SQL processing options” on page 932|

Changes that invalidate packages

Changes to your program or database objects can invalidate packages.

A change to your program probably invalidates one or more of your packages. For
some changes, you must bind a new object; for others, rebinding is sufficient.

A package can also become invalid for reasons that do not depend on operations
in your program. For example, when an index is dropped that is used in an access
path by one of your queries, a package can become invalid. In those cases, DB2
might rebind the package automatically the next time that the package is used.

The following table lists the actions that you must take when changes are made to
your program or database objects.

Table 4. Changes that require packages to be rebound.

Change made Required action

Run RUNSTATS to update catalog statistics ~ Rebind the package by using the REBIND
command. Rebinding might improve the
access path that DB2 uses.

Add an index to a table Rebind the package by using the REBIND
command. Rebinding causes DB2 to consider
using the index when accessing this table.

Change the bind options Rebind the package by using the REBIND
command and specifying the new value for
the bind option. If the option that you want
to change is not available for the REBIND
command, issue the BIND command with
ACTION(REPLACE) instead.

Change both statements in the host language Precompile, compile, and link the application
and SQL statements program. Issue the BIND command with
ACTION(REPLACE) for the package.

Drop a table, index, or other object, and If a table with a trigger is dropped, re-create

re-create the object the trigger if you re-create the table.
Otherwise, no change is required. DB2
attempts to automatically rebind the package
the next time it is run.

Drop an object that a package depends on No action is required. If the package becomes
invalid, DB2 automatically rebinds the
package the next time that it is allocated.

Revoke an authorization to use an object No action is required. DB2 attempts to
automatically rebind the package the next
time it is run. Automatic rebind fails if
authorization is still not available. In this
case, you must rebind the package by using
the REBIND command.

Rename a column in a table on which a No action is required. DB2 automatically

package is dependent rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

52 Application Programming and SQL Guide

Table 4. Changes that require packages to be rebound. (continued)

Change made

Required action

RUN REPAIR DBD REBUILD on a database

Trigger packages in the database are
invalidated. Rebind all trigger packages in
the database

Convert a partitioned table space to a
range-partitioned universal table space

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

Convert a simple table space to a
partition-by-growth universal table space

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

ALTER TABLESPACE with BUFFERPOOL to
change the buffer pool page size

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

ALTER TABLESPACE with
MAXPARTITIONS to change the maximum
number of partitions

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

Note:

1. In the case of changing the bind options, the change is not actually made until

you perform the required action.
Related concepts:

[“Automatic rebinding” on page 970)

[“Trigger packages” on page 504|
Related tasks:

[|Checking for invalid packages (DB2 Performance)|

[“Rebinding an application” on page 962|

Related reference:

(& [nvalid and inoperative packages (Managing Security)|

Related information:

(= [00E30305 (DB2 Codes)|

Determining the value of any bind options that affect the design of

your program

Several options of the BIND PACKAGE and BIND PLAN commands can affect
your program design. For example, you can use a bind option to ensure that a
package or plan can run only from a particular CICS connection or IMS region.
Your code does not need to enforce this situation.

To determine the value of any bind options that affect the design of your program:

Review the list of bind options and decide the values for any options that affect
the way that you write your program. For example, you should decide the values

Chapter 1. Planning for and designing DB2 applications

53

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_check4invalidplanspackages.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.seca/src/tpc/db2z_invalidinoperativeplanpackage.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/00e30305.dita

of the ACQUIRE and RELEASE options before you write your program. These
options determine when your application acquires and releases locks on the objects
it uses.

Related reference:

[+ [BIND and REBIND options for packages and plans (DB2 Commands)]

Programming applications for performance

You can achieve better DB2 performance by considering performance as you
program and deploy your applications.

To improve the performance of application programs that access data in DB2, use
the following approaches when writing and preparing your programs:

e Program your applications for concurrency. The goal is to program and prepare
applications in a way that:

— Protects the integrity of the data that is being read or updated from being
changed by other applications.

— Minimizes the length of time that other access to the data is prevented.

For more information about DB2 concurrency and recommendations for
improving concurrency in your application programs, see the following topics:

— [Concurrency recommendations for application designers (Introduction to DB2)

for z/0OS)I

[Concurrency and locks (DB2 Performance)|

[[mproving concurrency (DB2 Performance)

— [Improving concurrency in data sharing environments (DB2 Data Sharing]
Planning and Administration)|

* Write SQL statements that access data efficiently. The predicates, subqueries, and
other structures in SQL statements affect the access paths that DB2 uses to access
the data.

For information about how to write SQL statements that access data efficiently,
see the following topics:

— [Ways to improve query performance (Introduction to DB2 for z/OS)|
— [Writing efficient SQL queries (DB2 Performance)|

* Use EXPLAIN or SQL optimization tools to analyze the access paths that DB2
chooses to process your SQL statements. By analyzing the access path that DB2
uses to access the data for an SQL statement, you can discover potential
problems. You can use this information to modify your statement to perform
better.

For information about how you can use EXPLAIN tables, and SQL optimization
tools such as IBM Data Studio, to analyze the access paths for your SQL
statements, see the following topics:

— [Investigating access path problems (DB2 Performance)|

— [Using EXPLAIN to understand the access path (Introduction to DB2 for
z/0OS)|

- |Investigating SQL performance by using EXPLAIN (DB2 Performance)|

- ‘Interpreting data access by using EXPLAIN (DB2 Performance)|
— [EXPLAIN tables (DB2 Performance)|
- [EXPLAIN (DB2 SQL

— [Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths|
(IBM developerWorks)

54 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_bindrebindoptions.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_concurrencyrecommendappdesign.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_concurrencyrecommendappdesign.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_concurrencyandlocksdefined.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_recommend4concurrency.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.dshare/src/tpc/db2z_tuninguseoflocks.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.dshare/src/tpc/db2z_tuninguseoflocks.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_improvequeryperformance.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_programsqlperf.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_investigateaccesspaths.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_explainforunderstandingaccesspath.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_explainforunderstandingaccesspath.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_interpretdataaccess.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_explaintables.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_explain.dita
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html

— [Generating visual representations of access plans (IBM Data Studio)|

* Consider performance in the design of applications that access distributed data.
The goal is to reduce the amount of network traffic that is required to access the
distributed data, and to manage the use of system resources such as distributed
database access threads and connections.

For information about improving the performance of applications that access
distributed data, see the following topics:

— [Ways to reduce network traffic (Introduction to DB2 for z/OS)|
— [Managing DB2 threads (DB2 Performance)|

— [Improving performance for applications that access distributed data (DB2]
Performance)

— [Improving performance for SQL statements in distributed applications (DB2|

Performance]

* Use stored procedures to improve performance, and consider performance when
creating stored procedures.

For information about stored procedures and DB2 performance, see the
following topics:

— [Implementing DB2 stored procedures (DB2 Administration Guide)|

— [Improving the performance of stored procedures and user-defined functions|
(DB2 Performance)|

Related concepts:

[+ [Query and application performance analysis (Introduction to DB2 for z/OS)|

[+ [Programming for the instrumentation facility interface (IFI) (DB2 Performance)|

Related tasks:
(Chapter 1, “Planning for and designing DB2 applications,” on page 1|

Chapter 3, “Coding SQL statements in application programs: General information,”|

on page 159|

[[Setting limits for system resource usage by using the resource limit facility|
[(DB2 Performance)|

Designing your application for recovery

If your application fails or DB2 terminates abnormally, you need to ensure the
integrity of any data that was manipulated in your application. You should
consider possible recovery situations when you design your application.

To design your application for recovery:

1. Put any changes that logically need to be made at the same time in the same
unit of work. This action ensures that in case DB2 terminates abnormally or
your application fails, the data is left in a consistent state.

A unit of work is a logically distinct procedure that contains steps that change
the data. If all the steps complete successfully, you want the data changes to
become permanent. But, if any of the steps fail, you want all modified data to
return to the original value before the procedure began. For example, suppose
two employees in the sample table DSN8A10.EMP exchange offices. You need
to exchange their office phone numbers in the PHONENO column. You need to
use two UPDATE statements to make each phone number current. Both
statements, taken together, are a unit of work. You want both statements to

Chapter 1. Planning for and designing DB2 applications 55

http://www.ibm.com/support/knowledgecenter/search/visual%20access%20plan?scope=SS7L9Q&scope=SSEPEK
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_waystoreducenetworktraffic.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_managethreads.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_tunedistributedapps.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_tunedistributedapps.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_sqloptions4dist.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_sqloptions4dist.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.admin/src/tpc/db2z_implementstoredprocedure.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_improvestoreprocudfperf.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_improvestoreprocudfperf.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_queryandapplicationperformanceanalysis.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_program4ifi.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita

complete successfully. For example, if only one statement is successful, you
want both phone numbers rolled back to their original values before attempting
another update.

2. Consider how often you should commit any changes to the data.

If your program abends or the system fails, DB2 backs out all uncommitted
data changes. Changed data returns to its original condition without interfering
with other system activities.

For IMS and CICS applications, if the system fails, DB2 data does not always
return to a consistent state immediately. DB2 does not process indoubt data
(data that is neither uncommitted nor committed) until you restart IMS or the
CICS attachment facility. To ensure that DB2 and IMS are synchronized, restart
both DB2 and IMS. To ensure that DB2 and CICS are synchronized, restart both
DB2 and the CICS attachment facility.

3. Consider whether your application should intercept abends.

If your application intercepts abends, DB2 commits work, because it is unaware
that an abend has occurred. If you want DB2 to roll back work automatically
when an abend occurs in your program, do not let the program or run time
environment intercept the abend. If your program uses Language
Environment®, and you want DB2 to roll back work automatically when an
abend occurs in the program, specify the run time options
ABTERMENC(ABEND) and TRAP(ON).

4. For TSO applications only: Issue COMMIT statements before you connect to
another DBMS.

If the system fails at this point, DB2 cannot know whether your transaction is
complete. In this case, as in the case of a failure during a one-phase commit
operation for a single subsystem, you must make your own provision for
maintaining data integrity.

5. For TSO applications only: Determine if you want to provide an abend exit
routine in your program.

If you provide this routine, it must use tracking indicators to determine if an
abend occurs during DB2 processing. If an abend does occur when DB2 has
control, you must allow task termination to complete. DB2 detects task
termination and terminates the thread with the ABRT parameter. Do not re-run
the program.

Allowing task termination to complete is the only action that you can take for
abends that are caused by the CANCEL command or by DETACH. You cannot
use additional SQL statements at this point. If you attempt to execute another
SQL statement from the application program or its recovery routine,
unexpected errors can occur.

Related concepts:

[+ [Unit of work (Introduction to DB2 for z/OS)|

Unit of work in TSO

Applications that use the TSO attachment facility can explicitly define units of
work by using the SQL COMMIT and ROLLBACK statements.

In TSO applications, a unit of work starts when the first updates of a DB2 object
occur. A unit of work ends when one of the following conditions occurs:

* The program issues a subsequent COMMIT statement. At this point in the
processing, your program has determined that the data is consistent; all data
changes that were made since the previous commit point were made correctly.

56 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_unitofwork.dita

¢ The program issues a subsequent ROLLBACK statement. At this point in the
processing, your program has determined that the data changes were not made
correctly and, therefore, should not be permanent. A ROLLBACK statement
causes any data changes that were made since the last commit point to be
backed out.

¢ The program terminates and returns to the DSN command processor, which
returns to the TSO Terminal Monitor Program (TMP).

The first and third conditions in the preceding list are called a commit point. A
commit point occurs when you issue a COMMIT statement or your program
terminates normally.

Related reference:
(% [COMMIT (DB2 SQL)|
(% [ROLLBACK (DB2 SQL)

Unit of work in CICS

CICS applications can explicitly define units of work by using the CICS
SYNCPOINT command. Alternatively, units of work are defined implicitly by
several logic-breaking points.

All the processing that occurs in your program between two commit points is
known as a logical unit of work (LUW) or unit of work. In CICS applications, a
unit of work is marked as complete by a commit or synchronization (sync) point,
which is defined in one of following ways:

* Implicitly at the end of a transaction, which is signaled by a CICS RETURN
command at the highest logical level.

* Explicitly by CICS SYNCPOINT commands that the program issues at logically
appropriate points in the transaction.

* Implicitly through a DL/I PSB termination (TERM) call or command.

* Implicitly when a batch DL/I program issues a DL/I checkpoint call. This call
can occur when the batch DL/I program shares a database with CICS
applications through the database sharing facility.

For example, consider a program that subtracts the quantity of items sold from an
inventory file and then adds that quantity to a reorder file. When both transactions
complete (and not before) and the data in the two files is consistent, the program
can then issue a DL/I TERM call or a SYNCPOINT command. If one of the steps
fails, you want the data to return to the value it had before the unit of work began.
That is, you want it rolled back to a previous point of consistency. You can achieve
this state by using the SYNCPOINT command with the ROLLBACK option.

By using a SYNCPOINT command with the ROLLBACK option, you can back out
uncommitted data changes. For example, a program that updates a set of related
rows sometimes encounters an error after updating several of them. The program
can use the SYNCPOINT command with the ROLLBACK option to undo all of the
updates without giving up control.

The SQL COMMIT and ROLLBACK statements are not valid in a CICS

environment. You can coordinate DB2 with CICS functions that are used in
programs, so that DB2 and non-DB2 data are consistent.

Chapter 1. Planning for and designing DB2 applications 57

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_commit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_rollback.dita

Planning for program recovery in IMS programs

To be prepared for recovery situations for IMS programs that access DB2 data, you
need to make several design decisions that are specific to IMS programs. These
decisions are in addition to the general recommendations that you should follow
when designing your application for recovery.

Both IMS and DB2 handle recovery in an IMS application program that accesses
DB2 data. IMS coordinates the process, and DB2 handles recovery for DB2 data.

To plan for program recovery in IMS programs:

1. For a program that processes messages as its input, decide whether to specify
single-mode or multiple-mode transactions on the TRANSACT statement of the
APPLCTN macro for the program.

Single-mode
Indicates that a commit point in DB2 occurs each time the program
issues a call to retrieve a new message. Specifying single-mode can
simplify recovery; if the program abends, you can restart the program
from the most recent call for a new message. When IMS restarts the
program, the program starts by processing the next message.

Multiple-mode
Indicates that a commit point occurs when the program issues a
checkpoint call or when it terminates normally. Those two events are
the only times during the program that IMS sends the program's
output messages to their destinations. Because fewer commit points are
processed in multiple-mode programs than in single-mode programs,
multiple-mode programs could perform slightly better than
single-mode programs. When a multiple-mode program abends, IMS
can restart it only from a checkpoint call. Instead of having only the
most recent message to reprocess, a program might have several
messages to reprocess. The number of messages to process depends on
when the program issued the last checkpoint call.

DB2 does some processing with single- and multiple-mode programs. When a
multiple-mode program issues a call to retrieve a new message, DB2 performs
an authorization check and closes all open cursors in the program.

2. Decide whether to issue checkpoint calls (CHKP) and if so, how often to issue
them. Each call indicates to IMS that the program has reached a sync point and
establishes a place in the program from which you can restart the program.

Consider the following factors when deciding when to use checkpoint calls:

* How long it takes to back out and recover that unit of work. The program
must issue checkpoints frequently enough to make the program easy to back
out and recover.

* How long database resources are locked in DB2 and IMS.

* For multiple-mode programs: How you want the output messages grouped.
Checkpoint calls establish how a multiple-mode program groups its output
messages. Programs must issue checkpoints frequently enough to avoid
building up too many output messages.

Restriction: You cannot use SQL COMMIT and ROLLBACK statements in the
DB2 DL/I batch support environment, because IMS coordinates the unit of
work.

3. Issue CLOSE CURSOR statements before any checkpoint calls or GU calls to
the message queue, not after.

58 Application Programming and SQL Guide

4.

After any checkpoint calls, set the value of any special registers that were reset
if their values are needed after the checkpoint:

A CHKRP call causes IMS to sign on to DB2 again, which resets the special
registers that are shown in the following table.

Table 5. Special registers that are reset by a checkpoint call.

Value to which it is reset after a checkpoint

Special register call

CURRENT PACKAGESET blanks

CURRENT SERVER blanks

CURRENT SQLID blanks

CURRENT DEGREE 1

5.

6.

After any commit points, reopen the cursors that you want and re-establish
positioning

Decide whether to specify the WITH HOLD option for any cursors. This option
determines whether the program retains the position of the cursor in the DB2
database after you issue IMS CHKP calls. You always lose the program
database positioning in DL/I after an IMS CHKP call.

The program database positioning in DB2 is affected according to the following
criteria:

* If you do not specify the WITH HOLD option for a cursor, you lose the
position of that cursor.

¢ If you specify the WITH HOLD option for a cursor and the application is
message-driven, you lose the position of that cursor.

* If you specify the WITH HOLD option for a cursor and the application is
operating in DL/I batch or DL/I BMP, you retain the position of that cursor.

Use IMS rollback calls, ROLL and ROLB, to back out DB2 and DL/I changes to
the last commit point. These options have the following differences:

ROLL
Specifies that all changes since the last commit point are to be backed out
and the program is to be terminated. IMS terminates the program with user
abend code U0778 and without a storage dump.

When you issue a ROLL call, the only option you supply is the call
function, ROLL.

ROLLB
Specifies that all changes since the last commit point are to be backed out
and control is to be returned to the program so that it can continue
processing.

A ROLB call has the following options:

e The call function, ROLB

* The name of the I/O PCB
How ROLL and ROLB calls effect DL/I changes in a batch environment
depends on the IMS system log and back out options that are specified, as
shown in the following table.

Chapter 1. Planning for and designing DB2 applications 59

Table 6. Effects of ROLL and ROLLB calls on DL/l changes in a batch environment

Options specified

Rollback call System log option

Backout option

Result

ROLL tape

any

disk

BKO=NO

DL/I does not back
out updates, and
abend U0778 occurs.
DB2 backs out
updates to the
previous checkpoint.

disk

BKO=YES

DL/I backs out
updates, and abend
U0778 occurs. DB2
backs out updates to
the previous
checkpoint.

ROLB tape

any

disk

BKO=NO

DL/I does not back
out updates, and an
AL status code is
returned in the PCB.
DB2 backs out
updates to the
previous checkpoint.
The DB2 DL/I
support causes the
application program
to abend when ROLB
fails.

disk

BKO=YES

DL/I backs out
database updates,
and control is passed
back to the
application program.
DB2 backs out
updates to the
previous checkpoint.
Restriction: You
cannot specify the
address of an I/0O
area as one of the
options on the call; if
you do, your
program receives an
AD status code.
However, you must
have an I/0O PCB for
your program.
Specify CMPAT=YES
on the CMPAT
keyword in the
PSBGEN statement
for your program's
PSB.

Related concepts:

[‘Checkpoints in IMS programs” on page 62

60 Application Programming and SQL Guide

Unit of work in IMS online programs
IMS applications can explicitly define units of work by using a CHKP, SYNC,
ROLL, or ROLB call, or, for single-mode transactions, a GU call.

In IMS, a unit of work starts when one of the following events occurs:

* When the program starts

» After a CHKP, SYNC, ROLL, or ROLB call has completed

* For single-mode transactions, when a GU call is issued to the I/O PCB

A unit of work ends when one of the following events occurs:

* The program issues either a subsequent CHKP or SYNC call, or, for single-mode
transactions, a GU call to the I/O PCB. At this point in the processing, the data
is consistent. All data changes that were made since the previous commit point
are made correctly.

* The program issues a subsequent ROLB or ROLL call. At this point in the
processing, your program has determined that the data changes are not correct
and, therefore, that the data changes should not become permanent.

* The program terminates.

Restriction: The SQL COMMIT and ROLLBACK statements are not valid in an
IMS environment.

A commit point occurs in a program as the result of any one of the following
events:

* The program terminates normally. Normal program termination is always a
commit point.

* The program issues a checkpoint call. Checkpoint calls are a program's means of
explicitly indicating to IMS that it has reached a commit point in its processing.

¢ The program issues a SYNC call. A SYNC call is a Fast Path system service call
to request commit-point processing. You can use a SYNC call only in a
non-message-driven Fast Path program.

¢ For a program that processes messages as its input, a commit point can occur
when the program retrieves a new message. This behavior depends on the mode
that you specify in the APPLCTN macro for the program:

— If you specify single-mode transactions, a commit point in DB2 occurs each
time the program issues a call to retrieve a new message.

— If you specify multiple-mode transactions or you do not specify a mode, a
commit point occurs when the program issues a checkpoint call or when it
terminates normally.

At the time of a commit point, the following actions occur:

* IMS and DB2 can release locks that the program has held since the last commit
point. Releasing these locks makes the data available to other application
programs and users.

* DB2 closes any open cursors that the program has been using.
* IMS and DB2 make the program's changes to the database permanent.

* If the program processes messages, IMS sends the output messages that the
application program produces to their final destinations. Until the program
reaches a commit point, IMS holds the program's output messages at a
temporary destination.

If the program abends before reaching the commit point, the following actions
occur:

Chapter 1. Planning for and designing DB2 applications 61

* Both IMS and DB2 back out all the changes the program has made to the
database since the last commit point.

* IMS deletes any output messages that the program has produced since the last
commit point (for nonexpress PCBs).

* If the program processes messages, people at terminals and other application
programs receive information from the terminating application program.

If the system fails, a unit of work resolves automatically when DB2 and IMS batch
programs reconnect. Any indoubt units of work are resolved at reconnect time.

Specifying checkpoint frequency in IMS programs

A checkpoint indicates a commit point in IMS programs. You should specify
checkpoint frequency in your program in a way that allows it to easily be changed,
in case the frequency that you initially specify is not appropriate.

To specify checkpoint frequency in IMS programs:

1. Use a counter in your program to keep track of one of the following items:
* Elapsed time
¢ The number of root segments that your program accesses
¢ The number of updates that your program performs

2. Issue a checkpoint call after a certain time interval, number of root segments, or
number of updates.

Checkpoints in IMS programs:

Issuing checkpoint calls releases locked resources and establishes a place in the
program from which you can restart the program. The decision about whether

your program should issue checkpoints (and if so, how often) depends on your
program.

Generally, the following types of programs should issue checkpoint calls:
* Multiple-mode programs
* Batch-oriented BMPs

* Nonmessage-driven Fast Path programs. (These programs can use a special Fast
Path call, but they can also use symbolic checkpoint calls.)

* Most batch programs

* Programs that run in a data sharing environment. (Data sharing makes it
possible for online and batch application programs in separate IMS systems, in
the same or separate processors, to access databases concurrently. Issuing
checkpoint calls frequently in programs that run in a data sharing environment
is important, because programs in several IMS systems access the database.)

You do not need to issue checkpoints in the following types of programs:
* Single-mode programs
* Database load programs

* Programs that access the database in read-only mode (defined with the
processing option GO during a PSBGEN) and are short enough to restart from
the beginning

¢ Programs that, by their nature, must have exclusive use of the database

A CHKP call causes IMS to perform the following actions:

62 Application Programming and SQL Guide

* Inform DB2 that the changes that your program made to the database can
become permanent. DB2 makes the changes to DB2 data permanent, and IMS
makes the changes to IMS data permanent.

* Send a message that contains the checkpoint identification that is given in the
call to the system console operator and to the IMS master terminal operator.

* Return the next input message to the program's 1/0 area if the program
processes input messages. In MPPs and transaction-oriented BMPs, a checkpoint
call acts like a call for a new message.

* Sign on to DB2 again.

Programs that issue symbolic checkpoint calls can specify as many as seven data
areas in the program that is to be restored at restart. DB2 always recovers to the
last checkpoint. You must restart the program from that point.

If you use symbolic checkpoint calls, you can use a restart call (XRST) to restart a
program after an abend. This call restores the program's data areas to the way they
were when the program terminated abnormally, and it restarts the program from
the last checkpoint call that the program issued before terminating abnormally.

Restriction: For BMP programs that process DB2 databases, you can restart the
program only from the latest checkpoint and not from any checkpoint, as in IMS.

Checkpoints in MPPs and transaction-oriented BMPs

In single-mode programs, checkpoint calls and message retrieval calls (called
get-unique calls) both establish commit points. The checkpoint calls retrieve input
messages and take the place of get-unique calls. BMPs that access non-DL/I
databases and MPPs can issue both get unique calls and checkpoint calls to
establish commit points. However, message-driven BMPs must issue checkpoint
calls rather than get-unique calls to establish commit points, because they can
restart from a checkpoint only. If a program abends after issuing a get-unique call,
IMS backs out the database updates to the most recent commit point, which is the
get-unique call.

In multiple-mode BMPs and MPPs, the only commit points are the checkpoint calls
that the program issues and normal program termination. If the program abends
and it has not issued checkpoint calls, IMS backs out the program's database
updates and cancels the messages that it has created since the beginning of the
program. If the program has issued checkpoint calls, IMS backs out the program'’s
changes and cancels the output messages it has created since the most recent
checkpoint call.

Checkpoints in batch-oriented BMPs

If a batch-oriented BMP does not issue checkpoints frequently enough, IMS can
abend that BMP or another application program for one of the following reasons:

¢ Other programs cannot get to the data that they need within a specified amount
of time.

If a BMP retrieves and updates many database records between checkpoint calls,
it can monopolize large portions of the databases and cause long waits for other
programs that need those segments. (The exception to this situation is a BMP
with a processing option of GO; IMS does not enqueue segments for programs
with this processing option.) Issuing checkpoint calls releases the segments that
the BMP has enqueued and makes them available to other programs.

Chapter 1. Planning for and designing DB2 applications 63

* Not enough storage is available for the segments that the program has read and

updated.

If IMS is using program isolation enqueuing, the space that is needed to
enqueue information about the segments that the program has read and updated
must not exceed the amount of storage that is defined for the IMS system. (The
amount of storage available is specified during IMS system definition.) If a BMP
enqueues too many segments, the amount of storage that is needed for the
enqueued segments can exceed the amount of available storage. In that case,
IMS terminates the program abnormally. You then need to increase the
program's checkpoint frequency before rerunning the program.

When you issue a DL/I CHKP call from an application program that uses DB2
databases, IMS processes the CHKP call for all DL/I databases, and DB2 commits
all the DB2 database resources. No checkpoint information is recorded for DB2
databases in the IMS log or the DB2 log. The application program must record
relevant information about DB2 databases for a checkpoint, if necessary. One way
to record such information is to put it in a data area that is included in the DL/I

CHKP call.

Performance might be slowed by the commit processing that DB2 does during a
DL/I CHKP call, because the program needs to re-establish position within a DB2
database. The fastest way to re-establish a position in a DB2 database is to use an
index on the target table, with a key that matches one-to-one with every column in

the SQL predicate.

Recovering data in IMS programs
Online IMS systems handle recovery and restart. For a batch region, the
operational procedures control recovery and restart for your location.

To recover data in IMS programs:

Take one or more of the following actions depending on the type of program:

Program type

Recommended action

DL/I batch applications

Use the DL/I batch backout utility to back
out DL/I changes. DB2 automatically backs
out changes whenever the application
program abends.

Applications that use symbolic checkpoints

Use a restart call (XRST) to restart a program
after an abend. This call restores the
program's data areas to the way they were
when the program terminated abnormally,
and it restarts the program from the last
checkpoint call that the program issued
before terminating abnormally.

BMP programs that access DB2 databases

Restart the program from the latest
checkpoint.

Restriction: You can restart the program
only from the latest checkpoint and not from
any checkpoint, as in IMS.

Applications that use online IMS systems

No action needed. Recovery and restart are
part of the IMS system

Applications that reside in the batch region

Follow your location's operational procedures
to control recovery and restart.

64 Application Programming and SQL Guide

Undoing selected changes within a unit of work by using
savepoints

Savepoints enable you to undo selected changes within a unit of work. Your
application can set any number of savepoints and then specify a specific savepoint
to indicate which changes to undo within the unit of work.

To undo selected changes within a unit of work by using savepoints:

1.

Set any savepoints by using SQL SAVEPOINT statements. Savepoints set a
point to which you can undo changes within a unit of work.

Consider the following abilities and restrictions when setting savepoints:

* You can set a savepoint with the same name multiple times within a unit of
work. Each time that you set the savepoint, the new value of the savepoint
replaces the old value.

* If you do not want a savepoint to have different values within a unit of
work, use the UNIQUE option in the SAVEPOINT statement. If an
application executes a SAVEPOINT statement with the same name as a
savepoint that was previously defined as unique, an SQL error occurs.

 If you set a savepoint before you execute a CONNECT statement, the scope
of that savepoint is the local site. If you set a savepoint after you execute the
CONNECT statement, the scope of that savepoint is the site to which you are
connected.

* When savepoints are active, which they are until the unit of work completes,
you cannot access remote sites by using three-part names or aliases for
three-part names. You can, however, use DRDA access with explicit
CONNECT statements.

* You cannot use savepoints in global transactions, triggers, user-defined
functions, or stored procedures that are nested within triggers or
user-defined functions.

Specify the changes that you want to undo within a unit of work by using the
SQL ROLLBACK TO SAVEPOINT statement.

DB2 undoes all changes since the specified savepoint. If you do not specify a
savepoint name, DB2 rolls back work to the most recently created savepoint.

Optional: If you no longer need a savepoint, delete it by using the SQL
RELEASE SAVEPOINT statement.

Recommendation: If you no longer need a savepoint before the end of a
transaction, release it. Otherwise, savepoints are automatically released at the
end of a unit of work. Releasing savepoints is essential if you need to use
three-part names to access remote locations, because you cannot perform this
action while savepoints are active.

Examples

Rolling back to the most recently created savepoint: When the ROLLBACK TO
SAVEPOINT statement is executed in the following code, DB2 rolls back work to
savepoint B.

EXEC SQL SAVEPOINT A;

EXEC SQL SAVEPQINT B;

EXEC SQL ROLLBACK TO SAVEPOINT;

Chapter 1. Planning for and designing DB2 applications 65

Setting savepoints during distributed processing: An application performs the
following tasks:

1. Sets savepoint CI.

2. Does some local processing.

3. Executes a CONNECT statement to connect to a remote site.

4. Sets savepoint C2.

Because savepoint C1 is set before the application connects to a remote site,
savepoint C1 is known only at the local site. However, because savepoint C2 is set
after the application connects to the remote site, savepoint C2 is known only at the
remote site.

Setting multiple savepoints with the same name: Suppose that the following
actions occur within a unit of work:

1. Application A sets savepoint S.

2. Application A calls stored procedure P.

3. Stored procedure P sets savepoint S.

4. Stored procedure P executes the following statement: ROLLBACK TO SAVEPOINT S
When DB2 executes the ROLLBACK statement, DB2 rolls back work to the

savepoint that was set in the stored procedure, because that value is the most
recent value of savepoint S.

Related reference:

[* [RELEASE SAVEPOINT (DB2 SQL)|
[*[ROLLBACK (DB2 SQL)|

[[SAVEPOINT (DB2 SQL)|

Planning for recovery of table spaces that are not logged

To suppress logging, you can specify the NOT LOGGED option when you create
or alter a table space. However, because logs are generally used in recovery,
planning for recovery of table spaces for which changes are not logged requires
some additional planning.

Although you can plan for recovery, you still need to take some corrective actions
after any system failures to recover the data and fix any affected table spaces. For
example, if a table space that is not logged was open for update at the time that
DB2 terminates, the subsequent restart places that table space in LPL and marks it
with RECOVER-pending status. You need to take corrective action to clear the
RECOVER-pending status.

To plan for recovery of table spaces that are not logged:

1. Ensure that you can recover lost data by performing one of the following
actions:

¢ Ensure that you have a data recovery source that does not rely on a log
record to re-create any lost data.

* Limit modifications that are not logged to easily repeatable changes that can
be quickly repeated.

2. Avoid placing a table space that is not logged in a RECOVER-pending status.
The following actions place a table space in RECOVER-pending status:

 Issuing a ROLLBACK statement or ROLLBACK TO SAVEPOINT statement
after modifying a table in a table space that is not logged.

66 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_releasesavepoint.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_rollback.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_savepoint.dita

* Causing duplicate keys or referential integrity violations when you modify a
table space that is not logged.

If the table space is placed in RECOVER-pending status, it is unavailable until
you manually fix it.

For table spaces that are not logged and have associated LOB or XML table
spaces, take image copies as a recovery set.

This action ensures that the base table space and all the associated LOB or XML
table spaces are copied at the same point in time. A subsequent RECOVER TO
LASTCOPY operation for the entire set results in consistent data across the base
table space and all of the associated LOB and XML table spaces.

Related tasks:

[[Clearing the RECOVER-pending status (DB2 Administration Guide)|
Related reference:

[[RECOVER (DB2 Utilities)]

Designing your application to access distributed data

You can design applications that access data on another database management
system (DBMS) other than your local system. You should consider the limitations
and recommendations for such programs when designing them.

To design your application to access distributed data:

1.

2.

Ensure that the appropriate authorization ID has been granted authorization at
the remote server to connect to that server and use resources from it.

If your application contains SQL statements that run at the requester, include at
the requester a database request module (DBRM) that is bound directly into a
package that is included in the plan's package list.

Copy the requester package to any remote server that is accessed by the
application via a bind package copy command and include the remote
packages in the application plan's package list.

Recommendation: Specify an asterisk (*) instead of a specific name in the
location name of any package entry of a plan so that the plan does not have to
be rebound whenever a new location is accessed by the application or a
different location is to be accessed.

For TSO and batch applications that update data at a remote server, ensure that
one of the following conditions is true:

e No other connections exist.

* All existing connections are to servers that are restricted to read-only
operations.

Restriction: If neither of these conditions are met, the application is restricted
to read-only operations.

If one of these conditions is met, and if the first connection in a logical unit of
work is to a server that supports two-phase commit, that server and all servers
that support two-phase commit can update data. However, if the first
connection is to a server that does not support two-phase commit, only that
server is allowed to update data.

Chapter 1. Planning for and designing DB2 applications 67

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.admin/src/tpc/db2z_restorerecoverpending.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.ugref/src/tpc/db2z_utl_recover.dita

5. For programs that access at least one restricted system, ensure that your
program does not violate any of the limitations for accessing restricted systems.
A restricted system is a DBMS that does not implement two-phase commit
processing.

Accessing restricted systems has the following limitations:

* For programs that access CICS or IMS, you cannot update data on restricted
systems.

* Within a unit of work, you cannot update a restricted system after updating
a non-restricted system.

¢ Within a unit of work, if you update a restricted system, you cannot update
any other systems.

If you are accessing a mixture of systems, some of which might be restricted,
you can perform the following actions:

* Read from any of the systems at any time.
¢ Update any one system many times in one unit of work.

* Update many systems, including CICS or IMS, in one unit of work, provided
that none of them is a restricted system. If the first system you update in a
unit of work is not restricted, any attempt to update a restricted system in
that unit of work returns an error.

» Update one restricted system in a unit of work, provided that you do not try
to update any other system in the same unit of work. If the first system you
update in a unit of work is restricted, any attempt to update any other
system in that unit of work returns an error.

Related concepts:

[[Phase 6: Accessing data at a remote site (DB2 Installation and Migration)|
Related tasks:

(= [[mproving performance for applications that access distributed data (DB2]

|!2erformance)
Remote servers and distributed data

Distributed data is data that resides on a database management system (DBMS)
other than your local system. Your local DBMS is the one on which you bind your
application plan. All other DBMSs are remote.

If you are requesting services from a remote DBMS, that DBMS is a server, and
your local system is a requester or client.

Your application can be connected to many DBMSs at one time; the one that is
currently performing work is the current server. When the local system is
performing work, it also is called the current server.

A remote server can be physically remote, or it can be another subsystem of the
same operating system that your local DBMS runs under. A remote server might be
an instance of DB2 for z/OS, or it might be an instance of one of another product.

A DBMS, whether local or remote, is known to your DB2 system by its location
name. The location name of a remote DBMS is recorded in the communications
database.

Related tasks:

(& [Choosing names for the local subsystem (DB2 Installation and Migration)|

68 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_dsntej6x.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_tunedistributedapps.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_tunedistributedapps.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_choosevtamnamessubsys.dita

Preparing for coordinated updates to two or more data
sources

Two or more updates are coordinated if they must all commit or all roll back in the
same unit of work.

This situation is common in banking. Suppose that an amount is subtracted from
one account and added to another. The two actions must either both commit or
both roll back at the end of the unit of work.

To prepare for coordinated updates to two or more data sources:

Ensure that all systems that your program accesses implement two-phase commit
processing. This processing ensures that updates to two or more DBMSs are
coordinated automatically.

For example, DB2 and IMS, and DB2 and CICS, jointly implement a two-phase
commit process. You can update an IMS database and a DB2 table in the same unit
of work. If a system or communication failure occurs between committing the
work on IMS and on DB2, the two programs restore the two systems to a
consistent point when activity resumes.

You cannot do true coordinated updates within a DBMS that does not implement
two-phase commit processing, because DB2 prevents you from updating such a
DBMS and any other system within the same unit of work. In this context, update
includes the statements INSERT, UPDATE, MERGE, DELETE, CREATE, ALTER,
DROP, GRANT, REVOKE, RENAME, COMMENT, and LABEL.

However, if you cannot implement two-phase commit processing on all systems
that your program accesses, you can simulate the effect of coordinated updates by
performing the following actions:

1. Update one system and commit that work.
2. Update the second system and commit its work.

3. Ensure that your program has code to undo the first update if a failure occurs
after the first update is committed and before the second update is committed.
No automatic provision exists for bringing the two systems back to a consistent
point.

Related concepts:

[[Two-phase commit process (DB2 Administration Guide)|

Forcing restricted system rules in your program

A restricted system is a DBMS that does not implement two-phase commit
processing. These systems have a number of update restrictions. You can restrict
your program completely to the rules for these restricted systems, regardless of
whether the program is accessing restricted systems or non-restricted systems.

Accessing restricted systems has the following limitations:

* For programs that access CICS or IMS, you cannot update data on restricted
systems.

* Within a unit of work, you cannot update a restricted system after updating a
non-restricted system.

* Within a unit of work, if you update a restricted system, you cannot update any
other systems.

To force restricted system rules in your program:

Chapter 1. Planning for and designing DB2 applications 69

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.admin/src/tpc/db2z_twophasecommit.dita

When you prepare your program, specify the SQL processing option
CONNECT(1). This option applies type 1 CONNECT statement rules.

Restriction: Do not use packages that are precompiled with the CONNECT(1)
option and packages that are precompiled with the CONNECT(2) option in the
same package list. The first CONNECT statement that is executed by your
program determines which rules are in effect for the entire execution: type 1 or
type 2. If your program attempts to execute a later CONNECT statement that is
precompiled with the other type, DB2 returns an error.

Related concepts:

[“Options for SQL statement processing” on page 932|

| Creating a feed in IBM Mashup Center with data from a DB2 for z/0S

server

You can create enterprise database feeds based on data from a DB2 for z/OS
server. A feed is data that is provided in a format that facilitates frequent content
updates.

9/ Introductory concepts:
[[BM Mashup Center (Introduction to DB2 for z/OS)

* Install Mashup Center on a computer that is accessible from the DB2 for z/OS
server.

* Configure the Mashup Center server for DB2 for z/OS.

To create a feed based on DB2 for z/OS data:

1. In the MashupHub component of Mashup Center, click Create > New Feed and
select the Enterprise Database (JDBC) feed generator.

2. In the SQL Query Builder window, create the SQL query for the feed. The SQL
parameters become the feed parameters. Parameters in the format ':arg' are
treated as string parameters. Parameters in the format :arg are treated as
numeric parameters. Supported SQL statements are SELECT, INSERT, UPDATE,
and DELETE.

3. Save the feed and click View Feed in Browser to execute the SQL statement.

After you create the feed, you can do one or more of the following actions:

* Create more feeds based on DB2 for z/OS data and then mix the results of the
queries in a data mashup. A data mashup is a feed that you create by applying
operators and functions to filter and restructure the source data. Use the data
mashup builder in MashupHub to create a data mashup.

+ Add the feed to the Lotus® mashup builder. When you add a feed to the
Mashup builder, the feed is added as a widget. A widget is a small application or
piece of dynamic content that can be easily placed on a web page. Mashable
widgets pass events so that they can be wired together to create something new.

* Add the feed to another application by using the "Add to" action.

 Share the feed in the Mashup Center community catalog so that other users can
include it in their mashups. Users can tag and rate catalog objects to help others
find the information that they need quickly.

Related reference:

[[Lotus Greenhousd

70 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_mashupcenterintro.dita
http://greenhouse.lotus.com/

[[[BM Mashup Center developerWorks forumj

[[[BM Mashup Center v2.x Information Center]

[[[BM Mashup Center v3.x Information Center]

[[Configuring MashupHub for enterprise database feeds|
[[[BM Mashup Center wiki

Chapter 1. Planning for and designing DB2 applications 71

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1470
http://publib.boulder.ibm.com/infocenter/mashhelp/v2/index.jsp
http://publib.boulder.ibm.com/infocenter/mashhelp/v3/index.jsp
http://publib.boulder.ibm.com/infocenter/mashhelp/v3/topic/com.ibm.help.mashups.admin.doc/userhelp/adminhelp/help_admin_enterprise_db.htm
http://www-10.lotus.com/ldd/mashupswiki.nsf

72 Application Programming and SQL Guide

Chapter 2. Connecting to DB2 from your application program

Application programs communicate with DB2 through an attachment facility. You
must invoke an attachment facility, either implicitly or explicitly, before your
program can interact with DB2.

You can use the following attachment facilities in a z/OS environment:

CICS attachment facility
Use this facility to access DB2 from CICS application programs.

IMS attachment facility
Use this facility to access DB2 from IMS application programs.

Time Sharing Option (TSO) attachment facility
Use this facility in a TSO or batch environment to communicate to a local
DB2 subsystem. This facility invokes the DSN command processor.

Call attachment facility (CAF)
Use this facility as an alternative to the TSO attachment facility when your
application needs tight control over the session environment.

Resource Recovery Services attachment facility (RRSAF)
Use this facility for stored procedures that run in a WLM-established
address space or as an alternative to the CAF. RRSAF provides support for
z/0OS RRS as the recovery coordinator and supports other capabilities not
present in CAF

For distributed applications, use the distributed data facility (DDF).

Requirement: Ensure that any application that requests DB2 services satisfies the
following environment characteristics, regardless of the attachment facility that you
use:

* The application must be running in TCB mode. SRB mode is not supported.

* An application task cannot have any Enabled Unlocked Task (EUT) functional
recovery routines (FRRs) active when requesting DB2 services. If an EUT FRR is
active, the DB2 functional recovery can fail, and your application can receive
some unpredictable abends.

* Different attachment facilities cannot be active concurrently within the same
address space. Specifically, the following requirements exist:
— An application must not use CAF or RRSAF in an CICS or IMS address
space.
— An application that runs in an address space that has a CAF connection to
DB2 cannot connect to DB2 by using RRSAF.

— An application that runs in an address space that has an RRSAF connection to
DB2 cannot connect to DB2 by using CAF.

— An application cannot invoke the z/OS AXSET macro after executing the CAF
CONNECT call and before executing the CAF DISCONNECT call.

* One attachment facility cannot start another. For example, your CAF or RRSAF
application cannot use DSN, and a DSN RUN subcommand cannot call your
CAF or RRSAF application.

© Copyright IBM Corp. 1983, 2014 73

The language interface modules for CAF and RRSAF, DSNALI and DSNRLI, are
shipped with the linkage attributes AMODE(31) and RMODE(ANY). If your
applications load CAF or RRSAF below the 16-MB line, you must link-edit
DSNALI or DSNRLI again.

Related concepts:

[[DB2 attachment facilities (Introduction to DB2 for z/OS)|

[[Distributed data facility (Introduction to DB2 for z/OS)|

Invoking the call attachment facility

Invoke the call attachment facility (CAF) when you want your application program
to establish and control its own connection to DB2. Applications that use CAF can
explicitly control the state of their connections to DB2 by using connection
functions that CAF supplies.

Before you can invoke CAF, perform the following actions:

Ensure that the CAF language interface (DSNALI) is available.

Ensure that your application satisfies the requirements for programs that access
CAE

Ensure that your application satisfies the general environment characteristics for
connecting to DB2.

Ensure that you are familiar with the following z/OS concepts and facilities:
— The CALL macro and standard module linkage conventions

— Program addressing and residency options (AMODE and RMODE)

— Creating and controlling tasks; multitasking

— Functional recovery facilities such as ESTAE, ESTAI, and FRRs

— Asynchronous events and TSO attention exits (STAX)

— Synchronization techniques such as WAIT/POST.

Applications that use CAF can be written in assembler language, C, COBOL,
Fortran, and PL/I. When choosing a language to code your application in, consider
the following restrictions:

If you need to use z/OS macros (ATTACH, WAIT, POST, and so on), use a
programming language that supports them or embed them in modules that are
written in assembler language.

The CAF TRANSLATE function is not available in Fortran. To use this function,
code it in a routine that is written in another language, and then call that routine
from Fortran.

Recommendations: For IMS and DSN applications, consider the following
recommendations:

For IMS batch applications, do not use CAF. Instead use the DB2 DL/I batch
support. Although it is possible for IMS batch applications to access DB2
databases through CAF, that method does not coordinate the commitment of
work between the IMS and DB2 systems.

For DSN applications, do not use CAF unless you provide an application
controller to manage the DSN application and replace any needed DSN
functions. You might also have to change the application to communicate
connection failures to the controller correctly. Running DSN applications with
CAF is not advantageous, and the loss of DSN services can affect how well your
program runs.

74 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_db2attachmentfacilities.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_distributeddatafacility.dita

To invoke CAF:

Perform one of the following actions:

* Explicitly invoke CAF by including in your program CALL DSNALI statements
with the appropriate options.

The first option is a CAF connection function, which describes the action that
you want CAF to take. The effect of any function depends in part on what
functions the program has already run.

Requirement: For C and PL/I applications, you must also include in your
program the compiler directives that are listed in the following table, because
DSNALI is an assembler language program.

Table 7. Compiler directives to include in C and PL/I applications that contain CALL DSNALI
statements

Language Compiler directive to include
C #pragma linkage(dsnali, 0S)
CH++ extern "0S" {

int DSNALI(

char = functn,

O
PL/1 DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE;

* Implicitly invoke CAF by including SQL statements or IFI calls in your program
just as you would in any program. The CAF facility establishes the connections
to DB2 with the default values for the subsystem name and plan name.

Restriction: If your program can make its first SQL call from different modules
with different DBRMs, you cannot use a default plan name and thus, you cannot
implicitly invoke CAF. Instead, you must explicitly invoke CAF by using the
OPEN function.

Requirement: If your application includes both SQL and IFI calls, you must
issue at least one SQL call before you issue any IFI calls. This action ensures that
your application uses the correct plan.

Although doing so is not recommended, you can run existing DSN applications
with CAF by allowing them to make implicit connections to DB2. For DB2 to
make an implicit connection successfully, the plan name for the application must
be the same as the member name of the database request module (DBRM) that
DB2 produced when you precompiled the source program that contains the first
SQL call. You must also substitute the DSNALI language interface module for
the TSO language interface module, DSNELIL

If you do not specify the return code and reason code parameters in your CAF
calls or you invoked CAF implicitly, CAF puts a return code in register 15 and a
reason code in register 0.

To determine if an implicit connection was successful, the application program
should examine the return and reason codes immediately after the first executable
SQL statement in the application program by performing one of the following
actions:

* Examining registers 0 and 15 directly.

¢ Examining the SQLCA, and if the SQLCODE is -991, obtain the return and
reason code from the message text. The return code is the first token, and the
reason code is the second token.

Chapter 2. Connecting to DB2 from your application program 75

If the implicit connection was successful, the application can examine the
SQLCODE for the first, and subsequent, SQL statements.

Examples

Example of a CAF configuration: The following figure shows an conceptual
example of invoking and using CAF. The application contains statements to load
DSNALI, DSNHLI2, and DSNWLI2. The application accesses DB2 by using the
CAF Language Interface. It calls DSNALI to handle CAF requests, DSNWLI to
handle IFI calls, and DSNHLI to handle SQL calls.

Application CAF CAF
Load Language Mainline
LOAD DSNALI

LOAD DSNHLI2 Interface Code
LOAD DSNWLI2

Call
CALL DSNALI
(CONNECT)———>»| DSNALI
(OPEN)——F+—>
(CLOSE)——7F—>»
(DISCONNECT y——>

v

CALL DSNWLI—
(IFI calls) (Process

CALL DSNHLI— connection
(SQL calls) requests)

DSNHLI (dummy DB2
application
entry point)

CALL DSNHLI2 DSNHLI2 >
(Transfer calls (Process
to real CAF SQL SQL stmts)

entry point)

DSNWLI (dummy
application
entry point)

—» CALL DSNWLI2 DSNWLI
(Transfer calls
to real CAF
IFI)

v

Figure 1. Sample call attachment facility configuration

Sample programs that use CAF: You can find a sample assembler program
(DSN8CA) and a sample COBOL program (DSN8CC) that use the CAF in library
prefix. SDSNSAMP. A PL/I application (DSN8SPM) calls DSN8CA, and a COBOL
application (DSN8SCM) calls DSNSCC.

Related concepts:

76 Application Programming and SQL Guide

[‘DB2 sample applications” on page 1092|

Related reference:

[‘CAF connection functions” on page 8§

Call attachment facility

An attachment facility enables programs to communicate with DB2. The call
attachment facility (CAF) provides such a connection for programs that run in
z/0OS batch, TSO foreground, and TSO background. The CAF needs tight control
over the session environment.

A program that uses CAF can perform the following actions:

* Access DB2 from z/OS address spaces where TSO, IMS, or CICS do not exist.
* Access DB2 from multiple z/OS tasks in an address space.

* Access the DB2 IFL.

* Run when DB2 is down.

Restriction: The application cannot run SQL when DB2 is down.
* Run with or without the TSO terminal monitor program (TMP).

* Run without being a subtask of the DSN command processor or of any DB2
code.

* Run above or below the 16-MB line. (The CAF code resides below the line.)

* Establish an explicit connection to DB2, through a CALL interface, with control
over the exact state of the connection.

* Establish an implicit connection to DB2, by using SQL statements or IFI calls
without first calling CAF, with a default plan name and subsystem identifier.

* Verify that the application is using the correct release of DB2.

* Supply event control blocks (ECBs), for DB2 to post, that signal startup or
termination.

* Intercept return codes, reason codes, and abend codes from DB2 and translate
them into messages.

Any task in an address space can establish a connection to DB2 through CAFE. Only
one connection can exist for each task control block (TCB). A DB2 service request
that is issued by a program that is running under a given task is associated with
that task's connection to DB2. The service request operates independently of any
DB2 activity under any other task.

Each connected task can run a plan. Multiple tasks in a single address space can
specify the same plan, but each instance of a plan runs independently from the
others. A task can terminate its plan and run a different plan without fully
breaking its connection to DB2.

CAF does not generate task structures.

When you design your application, consider that using multiple simultaneous
connections can increase the possibility of deadlocks and DB2 resource contention.

A tracing facility provides diagnostic messages that aid in debugging programs

and diagnosing errors in the CAF code. In particular, attempts to use CAF
incorrectly cause error messages in the trace stream.

Chapter 2. Connecting to DB2 from your application program 77

Restriction: CAF does not provide attention processing exits or functional recovery
routines. You can provide whatever attention handling and functional recovery
your application needs, but you must use ESTAE/ESTAI type recovery routines

and not Enabled Unlocked Task (EUT) FRR routines.

Properties of CAF connections

Call attachment facility (CAF) enables programs to communicate with DB2.

The connection that CAF makes with DB2 has the basic properties that are listed in

the following table.

Table 8. Properties of CAF connections

Property Value

Comments

Connection name DB2CALL

You can use the DISPLAY
THREAD command to list
CAF applications that have
the connection name
DB2CALL.

Connection type BATCH

BATCH connections use a
single phase commit process
that is coordinated by DB2.
Application programs can
also control when statements
are committed by using the
SQL COMMIT and
ROLLBACK statements.

Authorization IDs that are
associated with the address
space

Authorization IDs

DB2 establishes authorization
IDs for each task's connection
when it processes that
connection. For the BATCH
connection type, DB2 creates
a list of authorization IDs
based on the authorization ID
that is associated with the
address space. This list is the
same for every task. A
location can provide a DB2
connection authorization exit
routine to change the list of
IDs.

Scope CAF processes connections as
if each task is entirely
isolated. When a task
requests a function, the CAF
passes the functions to DB2
and is unaware of the
connection status of other
tasks in the address space.
However, the application
program and the DB2
subsystem are aware of the
connection status of multiple
tasks in an address space.

none

If a connected task terminates normally before the CLOSE function deallocates the
plan, DB2 commits any database changes that the thread made since the last
commit point. If a connected task abends before the CLOSE function deallocates

78 Application Programming and SQL Guide

the plan, DB2 rolls back any database changes since the last commit point. In
either case, DB2 deallocates the plan, if necessary, and terminates the task's
connection before it allows the task to terminate.

If DB2 abnormally terminates while an application is running, the application is
rolled back to the last commit point. If DB2 terminates while processing a commit
request, DB2 either commits or rolls back any changes at the next restart. The
action taken depends on the state of the commit request when DB2 terminates.

Related concepts:

[[Connection routines and sign-on routines (Managing Security))|

Attention exit routines for CAF

An attention exit routine enables you to regain control from DB2 during
long-running or erroneous requests. Call attachment facility (CAF) has no attention
exit routines, but you can provide your own if necessary.

An attention exit routine works by detaching the TCB that is currently waiting on
an SQL or IFI request to complete. After the TCB is detached, DB2 detects the
resulting abend and performs termination processing for that task. The termination
processing includes any necessary rollback of transactions.

You can provide your own attention exit routines. However, your routine might
not get control if you request attention while DB2 code is running, because DB2
uses enabled unlocked task (EUT) functional recovery routines (FRRs).

Recovery routines for CAF

You can use abend recovery routines and functional recovery routines (FRRs) to
handle unexpected errors. An abend recovery routine controls what happens when
an abend occurs while DB2 has control. A functional recovery routine can obtain
information about and recover from program errors.

The CAF has no abend recovery routines, but you can provide your own. Any
abend recovery routines that you provide must use tracking indicators to
determine if an abend occurred during DB2 processing. If an abend occurs while
DB2 has control, the recovery routine can take one of the following actions:

* Allow task termination to complete. Do not try the program again. DB2 detects
task termination and terminates the thread with the ABRT parameter. You lose
all database changes back to the last sync point or commit point.

This action is the only action that you can take for abends that are caused by the
CANCEL command or by DETACH. You cannot use additional SQL statements.
If you attempt to execute another SQL statement from the application program
or its recovery routine, you receive a return code of +256 and a reason code of
X'00F30083'.

* In an ESTAE routine, issue a CLOSE function call with the ABRT parameter
followed by a DISCONNECT function call. The ESTAE exit routine can try again
so that you do not need to reinstate the application task.

FRRs must comply with the following requirements and restrictions:

* You can use only enabled unlocked task (EUT) FRRs in your routines that call
DB2. The standard z/OS functional recovery routines (FRRs) apply to only code
that runs in service request block (SRB) mode, and DB2 does not support calls
from SRB mode routines.

* Do not have an EUT FRR active when using CAF, processing SQL requests, or
calling IFI. With z/OS, if you have an active EUT FRR, all DB2 requests fail,

Chapter 2. Connecting to DB2 from your application program 79

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.seca/src/tpc/db2z_connectionsignonroutine.dita

including the initial CONNECT or OPEN request. The requests fail because DB2
always creates an ARR-type ESTAE, and z/OS does not allow the creation of
ARR-type ESTAEs when an FRR is active.

* An EUT FRR cannot retry failing DB2 requests. An EUT FRR retry bypasses
ESTAE routines from DB2. The next DB2 request of any type, including a
DISCONNECT request, fails with a return code of +256 and a reason code of
X'00F30050'.

Making the CAF language interface (DSNALLI) available

Before you can invoke the call attachment facility (CAF), you must first make
DSNALI available.

Part of CAF is a DB2 load module, DSNALI, which is also known as the CAF
language interface. DSNALI has the alias names DSNHLI2 and DSNWLI2. The
module has five entry points: DSNALI, DSNHLI, DSNHLI2, DSNWLI, and
DSNWLI2. These entry points serve the following functions:

* Entry point DSNALI handles explicit DB2 connection service requests.

* DSNHLI and DSNHLI2 handle SQL calls. Use DSNHLI if your application
program link-edits DSNALL Use DSNHLI2 if your application program loads
DSNALL

* DSNWLI and DSNWLI2 handle IFI calls. Use DSNWLI if your application
program link-edits DSNALI. Use DSNWLI2 if your application program loads
DSNALL

To make DSNALI available:

1. Decide which of the following methods you want to use to make DSNALI
available:

* Explicitly issuing LOAD requests when your program runs.

By explicitly loading the DSNALI module, you beneficially isolate the
maintenance of your application from future IBM maintenance to the

language interface. If the language interface changes, the change will

probably not affect your load module.

¢ Including the DSNALI module in your load module when you link-edit your
program.

If you do not need explicit calls to DSNALI for CAF functions, link-editing
DSNALI into your load module has some advantages. When you include
DSNALI during the link-edit, you do not need to code a dummy DSNHLI
entry point in your program or specify the precompiler option ATTACH.
Module DSNALI contains an entry point for DSNHLI, which is identical to
DSNHLI2, and an entry point DSNWLI, which is identical to DSNWLI2.

A disadvantage to link-editing DSNALI into your load module is that any
IBM maintenance to DSNALI requires a new link-edit of your load module.
Alternatively, if using explicit connections via CALL DSNALI, you can link-edit
your program with DSNULI the Universal Language Interface.
2. Depending on the method that you chose in step 1, perform one of the
following actions:

 If you want to explicitly issue LOAD requests when your program runs:

In your program, issue z/OS LOAD service requests for entry points
DSNALI and DSNHLI2. If you use IFI services, you must also load
DSNWLI2. The entry point addresses that LOAD returns are saved for later
use with the CALL macro. Indicate to DB2 which entry point to use in one of
the following two ways:

80 Application Programming and SQL Guide

— Specify the precompiler option ATTACH(CAF).

This option causes DB2 to generate calls that specify entry point
DSNHLI2.

Restriction: You cannot use this option if your application is written in
Fortran.

- Code a dummy entry point named DSNHLI within your load module.

If you do not specify the precompiler option ATTACH, the DB2
precompiler generates calls to entry point DSNHLI for each SQL request.
The precompiler does not know about and is independent of the different
DB2 attachment facilities. When the calls generated by the DB2
precompiler pass control to DSNHLI, your code that corresponds to the
dummy entry point must preserve the option list that was passed in R1
and specify the same option list when it calls DSNHLI2.

¢ If you want to include the DSNALI module in your load module when
you link-edit your program:
Include DSNALI in your load module during a link-edit step. The module
must be in a load module library, which is included either in the SYSLIB
concatenation or another INCLUDE library that is defined in the linkage
editor JCL. Because all language interface modules contain an entry point
declaration for DSNHLI, the linkage editor JCL must contain an INCLUDE
linkage editor control statement for DSNALI; for example, INCLUDE
SYSLIB(DSNALI). By coding these options, you avoid inadvertently picking up
the wrong language interface module.

Related concepts:

[“LOB file reference variables” on page 767

[“Examples of invoking CAF” on page 100

[“Universal language interface” on page 153

Related tasks:

[“Link-editing an application with DSNULI” on page 155

[‘Saving storage when manipulating LOBs by using LOB locators” on page 763

Requirements for programs that use CAF

The call attachment facility (CAF) enables programs to communicate with DB2.
Before you invoke CAF in your program, ensure that your program satisfies any
requirements for using CAF.

When you write programs that use CAF, ensure that they meet the following
requirements:

* The program accounts for the size of the CAF code. The CAF code requires
about 16 KB of virtual storage per address space and an additional 10 KB for
each TCB that uses CAF.

* If your local environment intercepts and replaces the z/OS LOAD SVC that CAF
uses, you must ensure that your version of LOAD manages the load list element
(LLE) and contents directory entry (CDE) chains like the standard z/OS LOAD
macro. CAF uses z/OS SVC LOAD to load two modules as part of the
initialization after your first service request. Both modules are loaded into
fetch-protected storage that has the job-step protection key.

 If you use CAF from IMS batch, you must write data to only one system in any
one unit of work. If you write to both systems within the same unit, a system
failure can leave the two databases inconsistent with no possibility of automatic

Chapter 2. Connecting to DB2 from your application program 81

recovery. To end a unit of work in DB2, execute the SQL COMMIT statement. To
end a unit of work in IMS, issue the SYNCPOINT command.

You can prepare application programs to run in CAF similar to how you prepare
applications to run in other environments, such as CICS, IMS, and TSO. You can
prepare a CAF application either in the batch environment or by using the DB2
program preparation process. You can use the program preparation system either
through DB2I or through the DSNH CLIST.

Related tasks:

(Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 915

How CAF modifies the content of registers

If you do not specify the return code and reason code parameters in your CAF
function calls or if you invoke CAF implicitly, CAF puts a return code in register
15 and a reason code in register 0. The contents of registers 2 through 14 are
preserved across calls.

The following table lists the standard calling conventions for registers R1, R13, R14,

and R15.

Table 9. Standard usage of registers R1, R13, R14, and R15

Register Usage

R1 CALL DSNALI parameter list pointer
R13 Address of caller's save area

R14 Caller's return address

R15 CAF entry point address

Your CAF program should respect these register conventions.

CAF also supports high-level languages that cannot examine the contents of
individual registers.

Related concepts:
[“CALL DSNALI statement parameter list” on page 83

Implicit connections to CAF

If the CAF language interface (DSNALI) is available and you do not explicitly
specify CALL DSNALI statements in your application, CAF initiates implicit
CONNECT and OPEN requests to DB2. These requests are subject to the same DB2
return codes and reason codes as explicitly specified requests.

Implicit connections use the following defaults:
Subsystem name

The default name that is specified in the module DSNHDECP. CAF uses
the installation default DSNHDECP, unless your own DSNHDECP module
is in a library in a STEPLIB statement of a JOBLIB concatenation or in the
link list. In a data sharing group, the default subsystem name is the group
attachment name.

Implicit connections to CAF always use DSNHDECP as the user-specified
application defaults module.

82 Application Programming and SQL Guide

Be certain that you know what the default name is and that it names the
specific DB2 subsystem you want to use.

Plan name
The member name of the database request module (DBRM) that DB2
produced when you precompiled the source program that contains the first
SQL call.

Different types of implicit connections exist. The simplest is for an application to
call neither the CONNECT nor OPEN functions. You can also use the CONNECT
function only or the OPEN function only. Each of these calls implicitly connects
your application to DB2. To terminate an implicit connection, you must use the
proper calls.

Related concepts:

[“Summary of CAF behavior” on page 85|

CALL DSNALI statement parameter list

The CALL DSNALI statement explicitly invokes CAF. When you include CALL
DSNALI statements in your program, you must specify all parameters that come
before the return code parameter.

For CALL DSNALI statements, use a standard z/OS CALL parameter list. Register
1 points to a list of fullword addresses that point to the actual parameters. The last
address must contain a 1 in the high-order bit.

In CALL DSNALI statements, you cannot omit any of parameters that come before
the return code parameter by coding zeros or blanks. No defaults exist for those
parameters for explicit connection requests. Defaults are provided for only implicit
connections. All parameters starting with the return code parameter are optional.

When you want to use the default value for a parameter but specify subsequent
parameters, code the CALL DSNALI statement as follows:

¢ For C-language, when you code CALL DSNALI statements in C, you need to
specify the address of every required parameter, using the “address of” operator
(&), and not the parameter itself. For example, to pass the startecb parameter on
CONNECT, specify the address of the 4-byte integer (&secb).

functn char[13] = "CONNECT "
ssid char[5] = "DB2A";

int tech = 0;

int sech =0;

ptr ribptr;
int retcode;
int reascode;
ptr eibptr;

fnret = dsnali(&functn[0], &ssid[0], &tech, &secb, &ribptr, &retcode, &reascode,
NULL, &eibptr);
 For other languages except assembler language, code zero for that parameter in
the CALL DSNALI statement. For example, suppose that you are coding a
CONNECT call in a COBOL program, and you want to specify all parameters
except the return code parameter. You can write a statement similar to the
following statement:

CALL 'DSNALI' USING FUNCTN SSID TECB SECB RIBPTR
BY CONTENT ZERO BY REFERENCE REASCODE SRDURA EIBPTR.

Chapter 2. Connecting to DB2 from your application program 83

Register 1

Parameter
List

* For assembler language, code a comma for that parameter in the CALL DSNALI
statement. For example, to specify all optional parameters except the return code
parameter write a statement similar to the following statement:

CALL DSNALI, (FUNCTN,SSID,TERMECB,STARTECB,RIBPTR, ,REASCODE, SRDURA,EIBPTR,

GROUPOVERRIDE)

The following figure shows a sample parameter list structure for the CONNECT

function.

CONNECT

A

» DSN

End of

Parameters

1 —»f 1
or

2 —» 1
or

3 —>1
or

Figure 2. The parameter list for a CONNECT call

12-byte area
that contains the
function name

Subsystem name

Termination event
control block (ECB)

Startup ECB

CAF puts the address
of the release information
block (RIB) here

Return code

Reason code

Effect of value in
CURRENT DEGREE
special register

CAF puts the address of
the environment information
block (EIB) here

Whether the value in the
subsystem name field

can be a group attachment
name

The preceding figure illustrates how you can omit parameters for the CALL
DSNALLI statement to control the return code and reason code fields after a
CONNECT call. You can terminate the parameter list at any of the following
points. These termination points apply to all CALL DSNALI statement parameter

lists.

1. Terminates the parameter list without specifying the parameters retcode,
reascodeand srdura and places the return code in register 15 and the reason code

in register 0.

Terminating the parameter list at this point ensures compatibility with CAF
programs that require a return code in register 15 and a reason code in register

0.

84 Application Programming and SQL Guide

2. Terminates the parameter list after the parameter retcode and places the return
code in the parameter list and the reason code in register 0.

Terminating the parameter list at this point enables the application program to
take action, based on the return code, without further examination of the
associated reason code.

3. Terminates the parameter list after the parameter reascode and places the return
code and the reason code in the parameter list.

Terminating the parameter list at this point provides support to high-level
languages that are unable to examine the contents of individual registers.

If you code your CAF application in assembler language, you can specify the
reason code parameter and omit the return code parameter.

4. Terminates the parameter list after the parameter srdura.

If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode and reascode parameters.

5. Terminates the parameter list after the parameter eibptr.

If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode, reascode, or srdura parameters.

6. Terminates the parameter list after the parameter groupoverride.

If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode, reascode,srdura, or eibptr parameters.

Even if you specify that the return code be placed in the parameter list, it is also
placed in register 15 to accommodate high-level languages that support special
return code processing.

Related concepts:

[“'How CAF modifies the content of registers” on page 82|

Summary of CAF behavior

The effect of any CAF function depends in part on what functions the program has
already run. You should plan the CAF function calls that your program makes to
avoid any errors and major structural problems in your application.

The following table summarizes CAF behavior after various inputs from
application programs. The top row lists the possible CAF functions that programs
can call. The first column lists the task's most recent history of connection requests.
For example, the value “CONNECT followed by OPEN” in the first column means
that the task issued CONNECT and then OPEN with no other CAF calls in
between. The intersection of a row and column shows the effect of the next call if
it follows the corresponding connection history. For example, if the call is OPEN
and the connection history is CONNECT, the effect is OPEN; the OPEN function is
performed. If the call is SQL and the connection history is empty (meaning that the
SQL call is the first CAF function the program), the effect is that implicit
CONNECT and OPEN functions are performed, followed by the SQL function.

Table 10. Effects of CAF calls, as dependent on connection history

Next function

Previous
function CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE
Empty: first call CONNECT OPEN CONNECT, Error 203! Error 204! Error 205"

OPEN, followed
by the SQL or
IFI call

Chapter 2. Connecting to DB2 from your application program 85

Table 10. Effects of CAF calls, as dependent on connection history (continued)

Next function

Previous

function CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE

CONNECT Error 201! OPEN OPEN, followed Error 203! DISCONNECT TRANSLATE
by the SQL or
TFI call

CONNECT Error 201! Error 202! The SQL or IFI CLOSE? DISCONNECT TRANSLATE

followed by call

OPEN

CONNECT Error 201" Error 202 The SQL or IFI CLOSE? DISCONNECT TRANSLATE

followed by SQL call

or IFI call

OPEN Error 201" Error 202! The SQL or IFI CLOSE? Error 204! TRANSLATE
call

SQL or IFI call Error 201! Error 202! The SQL or IFI CLOSE? Error 204! TRANSLATE®
call

Notes:

1. An error is shown in this table as Error nnn. The corresponding reason code is
X'00C10nnn'. The message number is DSNAnnnl or DSNAnnnE.

2. The task and address space connections remain active. If the CLOSE call fails
because DB2 was down, the CAF control blocks are reset, the function produces
return code 4 and reason code X'00C10824', and CAF is ready for more
connection requests when DB2 is up.

3. A TRANSLATE request is accepted, but in this case it is redundant. CAF
automatically issues a TRANSLATE request when an SQL or IFI request fails.

Related reference:

[“CAF return codes and reason codes” on page 98|

CAF connection functions

A CAF connection function specifies the action that you want CAF to take. You
specify these functions when you invoke CAF through CALL DSNALI statements.

You can specify the following CAF functions in a CALL DSNALI statement:

CONNECT
Establishes the task (TCB) as a user of the named DB2 subsystem. When
the first task within an address space issues a connection request, the
address space is also initialized as a user of DB2.

OPEN Allocates a DB2 plan. You must allocate a plan before DB2 can process SQL
statements. If you did not request the CONNECT function, the OPEN
function implicitly establishes the task, and optionally the address space, as
a user of DB2.

CLOSE
Commits or abnormally terminates any database changes and deallocates
the plan. If the OPEN function implicitly requests the CONNECT function,
the CLOSE function removes the task, and possibly the address space, as a
user of DB2.

86 Application Programming and SQL Guide

DISCONNECT
Removes the task as a user of DB2 and, if this task is the last or only task
in the address space with a DB2 connection, terminates the address space
connection to DB2.

TRANSLATE
Returns an SQL code and printable text that describe a DB2 hexadecimal
error reason code. This information is returned to the SQLCA.

Restriction: You cannot call the TRANSLATE function from the Fortran
language.

Recommendation: Because the effect of any CAF function depends on what
functions the program has already run, carefully plan the calls that your program
makes to these CAF connection functions. Read about the summary of CAF
behavior and make these function calls accordingly.

Related concepts:

{‘Summary of CAF behavior” on page 85|
[“CALL DSNALI statement parameter list” on page 83

CONNECT function for CAF

The CAF CONNECT function initializes a connection to DB2. This function is
different than the SQL CONNECT statement that accesses a remote location within
DB2.

The CONNECT function establishes the caller's task as a user of DB2 services. If no
other task in the address space currently holds a connection with the specified
subsystem, the CONNECT function also initializes the address space for
communication to the DB2 address spaces. The CONNECT function establishes the
address space's cross memory authorization to DB2 and builds address space
control blocks. You can issue a CONNECT request from any or all tasks in the
address space, but the address space level is initialized only once when the first
task connects.

Using the CONNECT function is optional. If you do not call the CONNECT
function, the first request from a task, either an OPEN request or an SQL or IFI
call, causes CAF to issue an implicit CONNECT request. If a task is connected
implicitly, the connection to DB2 is terminated either when you call the CLOSE
function or when the task terminates.

Call the CONNECT function in all of the following situations:

* You need to specify a particular subsystem name (ssnm) other than the default
subsystem name.

* You need the value of the CURRENT DEGREE special register to last as long as
the connection (srdura).

* You need to monitor the DB2 startup ECB (startech), the DB2 termination ECB
(termech), or the DB2 release level.

* You plan to have multiple tasks in the address space open and close plans or a
single task in the address space open and close plans more than once.

Establishing task and address space level connections involves significant
overhead. Using the CONNECT function to establish a task connection explicitly
minimizes this overhead by ensuring that the connection to DB2 remains after
the CLOSE function deallocates a plan. In this case, the connection terminates
only when you use the DISCONNECT function or when the task terminates.

Chapter 2. Connecting to DB2 from your application program 87

The CONNECT function also enables the caller to learn the following items:

* That the operator has issued a STOP DB2 command. When this event occurs,
DB2 posts the termination ECB, termech. Your application can either wait on or
just look at the ECB.

* That DB2 is abnormally terminating. When this event occurs happens, DB2 posts
the termination ECB, termecbh.

e That DB2 is available again after a connection attempt that failed because DB2
was down. Your application can either wait or look at the startup ECB, startech.
DB2 ignores this ECB if it was active at the time of the CONNECT request.

e The current release level of DB2. To find this information, access the RIBREL
field in the release information block (RIB). If RIBREL is '999', the actual version,
release, and modification level of DB2 is indicated in the RIBRELX field and its
subfields.

Restriction: Do not issue CONNECT requests from a TCB that already has an
active DB2 connection.

Recommendation: Do not mix explicit CONNECT and OPEN requests with
implicitly established connections in the same address space. Either explicitly
specify which DB2 subsystem you want to use or allow all requests to use the
default subsystem.

The following diagram shows the syntax for the CONNECT function.

DSNALI CONNECT function

»»—CALL DSNALI—(—function, ssnm, termecb, startecb, ribptr: >

».) >
7
l—, retcode |
l—, reascod |
I—, srdura l
l—, eibptr |

I—,groupoverr‘ide—L—J—l
,decpptr

Parameters point to the following areas:

function
A 12-byte area that contains CONNECT followed by five blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment or subgroup attachment
name (if used in a data sharing group) to which the connection is made.

If ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

termech
A 4-byte integer representing the application's event control block (ECB) for
DB2 termination. DB2 posts this ECB when the operator enters the STOP DB2
command or when DB2 is abnormally terminating. The ECB indicates the type
of termination by a POST code, as shown in the following table:

Application Programming and SQL Guide

Table 11. POST codes and related termination types

POST code Termination type
8 QUIESCE

12 FORCE

16 ABTERM

Before you check termech in your CAF application program, first check the
return code and reason code from the CONNECT call to ensure that the call
completed successfully.

startecbh

A 4-byte integer representing the application's startup ECB. If DB2 has not yet
started when the application issues the call, DB2 posts the ECB when it
successfully completes its startup processing. DB2 posts at most one startup
ECB per address space. The ECB is the one associated with the most recent
CONNECT call from that address space. Your application program must
examine any nonzero CAF and DB2 reason codes before issuing a WAIT on
this ECB.

If ssnm is a group attachment or subgroup attachment name, the first DB2
subsystem that starts on the local z/OS system and matches the specified
group attachment name posts the ECB.

ribptr

A 4-byte area in which CAF places the address of the release information block
(RIB) after the call. You can determine what release level of DB2 you are
currently running by examining the RIBREL field. If RIBREL is '999, the actual
version, release, and modification level of DB2 is indicated in the RIBRELX
field and its subfields.You can determine the modification level within the
release level by examining the RIBCNUMB and RIBCINFO fields. If the value
in the RIBCNUMB field is greater than zero, check the RIBCINFO field for
modification levels.

If the RIB is not available (for example, if you name a subsystem that does not
exist), DB2 sets the 4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

Your program does not have to use the release information block, but it cannot
omit the ribptr parameter.

Macro DSNDRIB maps the release information block (RIB). It can be found in
prefix. SDSNMACS(DSNDRIB).

retcode

A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode

A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

srdura

A 10-byte area that contains the string 'SRDURA(CD)'. This field is optional. If
you specify srdura, the value in the CURRENT DEGREE special register stays
in effect from the time of the CONNECT call until the time of the

Chapter 2. Connecting to DB2 from your application program 89

DISCONNECT call. If you do not specify srdura, the value in the CURRENT
DEGREE special register stays in effect from the time of the OPEN call until
the time of the CLOSE call. If you specify this parameter in any language
except assembler, you must also specify retcode and reascode. In assembler
language, you can omit these parameters by specifying commas as
placeholders.

eibptr

A 4-byte area in which CAF puts the address of the environment information
block (EIB). The EIB contains information that you can use if you are
connecting to a DB2 subsystem that is part of a data sharing group. For
example, you can determine the name of the data sharing group, the member
to which you are connecting, and whether the subsystem is in new-function
mode. If the DB2 subsystem that you connect to is not part of a data sharing
group, the fields in the EIB that are related to data sharing are blank. If the EIB
is not available (for example, if you name a subsystem that does not exist),
DB2 sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.
You can omit this parameter when you make a CONNECT call.

If you specify this parameter in any language except assembler, you must also
specify retcode, reascode, and srdura. In assembler language, you can omit
retcode, reascode, and srdura by specifying commas as placeholders.

Macro DSNDEIB maps the EIB. It can be found in
prefix SODSNMACS(DSNDEIB).

groupoverride

An 8-byte area that the application provides. This parameter is optional. If you
do not want group attach to be attempted, specify 'NOGROUP". This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If groupoverride is not provided, ssnm is used as the group
attachment or subgroup attachment name if it matches a group attachment or
subgroup attachment name.

If you specify this parameter in any language except assembler, you must also
specify retcode, reascode, srdura, and eibptr. In assembler language, you can omit
retcode, reascode, srdura, and eibptr by specifying commas as placeholders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex®. However, you should use this parameter in a data sharing
environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

decpptr

A 4-byte area in which CAF is to put the address of the DSNHDECP control
block or user-specified application defaults module that was loaded by
subsystem ssnm when that subsystem was started. This 4-byte area is a 31-bit
pointer. If ssnm is not found, the 4-byte area is set to 0.

The area to which decpptr points may be above the 16-MB line.

If you specify this parameter in any language except assembler, you must also
specify the retcode, reascode, srdura, eibptr, and groupoverride parameters. In
assembler language, you can omit the retcode, reascode, srdura, eibptr, and
groupoverride parameters by specifying commas as placeholders.

90 Application Programming and SQL Guide

Example of CAF CONNECT function calls

The following table shows a CONNECT call in each language.
Table 12. Examples of CAF CONNECT function calls

Language Call example

Assembler CALL
DSNALI, (FUNCTN,SSID, TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE, SRDURA,
EIBPTR, GRPOVER)

C! fnret=dsnali (&functn[0],&ssid[0], &tecb, &secb,&ribptr,&retcode, &reascode, &srdura[0],
&eibptr, &grpover[0]);

COBOL CALL 'DSNALI' USING FUNCTN SSID TERMECB STARTECB RIBPTR RETCODE REASCODE SRDURA
EIBPTR GRPOVER.

Fortran CALL
DSNALI (FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE, SRDURA,
EIBPTR,GRPOVER)

PL/T! CALL
DSNALI (FUNCTN,SSID, TERMECB,STARTECB,RIBPTR, RETCODE,REASCODE, SRDURA,
EIBPTR,GRPOVER)

Note:

¢ For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related concepts:

[“Examples of invoking CAF” on page 100
Related tasks:
[“Invoking the call attachment facility” on page 74|

Related reference:

[[Synchronizing Tasks (WAIT, POST, and EVENTS Macros) (MVS Programming:l
[Assembler Services Guide)|

OPEN function for CAF

The OPEN function allocates DB2 resources that are needed to run the specified
plan or to issue IFI requests. If the requesting task does not already have a
connection to the named DB2 subsystem, the OPEN function establishes it.

Using the OPEN function is optional. If you do not call the OPEN function, the
actions that the OPEN function perform occur implicitly on the first SQL or IFI call
from the task.

Restriction: Do not use the OPEN function if the task already has a plan allocated.

The following diagram shows the syntax for the OPEN function.

Chapter 2. Connecting to DB2 from your application program 91

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2a6a0/6.1?DN=SA22-7605-12&DT=20100629133152&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2a6a0/6.1?DN=SA22-7605-12&DT=20100629133152&SHELF=&CASE=&PATH=/bookmgr/

DSNALI OPEN function

»»—CALL DSNALI—(—function, ssnm, plan

v

) »<
|) |

|—,—re tcode |

l— —reascode
’ L

,—gr‘oupover‘r‘ide—|

Parameters point to the following areas:

function
A 12-byte area that contains the word OPEN followed by eight blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment or subgroup attachment
name (if used in a data sharing group). The OPEN function allocates the
specified plan to this DB2 subsystem. Also, if the requesting task does not
already have a connection to the named DB2 subsystem, the OPEN function
establishes it.

You must specify the ssnm parameter, even if the requesting task also issues a
CONNECT call. If a task issues a CONNECT call followed by an OPEN call,
the subsystem names for both calls must be the same.

If ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

plan
An 8-byte DB2 plan name.

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This field is optional. If you do
not want group attach to be attempted, specify NOGROUP'. This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If you do not specify groupoverride, ssnm is used as the group
attachment and subgroup attachment name if it matches a group attachment or
subgroup attachment name. If you specify this parameter in any language
except assembler, you must also specify retcode and reascode. In assembler
language, you can omit these parameters by specifying commas as
placeholders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex. However, you should use this parameter in a data sharing

92 Application Programming and SQL Guide

environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

Examples of CAF OPEN calls

The following table shows an OPEN call in each language.

Table 13. Examples of CAF OPEN calls

Language Call example

Assembler CALL DSNALI, (FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

C! fnret=dsnali(&functn[0],&ssid[0], &planname[0],&retcode, &reascode,&grpover[0]);
COBOL CALL 'DSNALI' USING FUNCTN SSID PLANNAME RETCODE REASCODE GRPOVER.

Fortran CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

PL/T! CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER);

Note:

¢ For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related concepts:

|”Implicit connections to CAF” on page 82|
Related tasks:
[“Invoking the call attachment facility” on page 74|

CLOSE function for CAF

The CAF CLOSE function deallocates the plan that was created either explicitly by
a call to the OPEN function or implicitly at the first SQL call. Optionally, the
CLOSE function also disconnects the task, and possibly the address space, from
DB2.

If you did not issue an explicit CONNECT call for the task, the CLOSE function
deletes the task's connection to DB2. If no other task in the address space has an
active connection to DB2, DB2 also deletes the control block structures that were
created for the address space and removes the cross memory authorization.

Using the CLOSE function is optional. Consider the following rules and
recommendations about when to use and not use the CLOSE function:

* Do not use the CLOSE function when your current task does not have a plan
allocated.

* If you want to use a new plan, you must issue an explicit CLOSE call, followed
by an OPEN call with the new plan name.

* When shutting down your application you can improve the performance of this
shut down by explicitly calling the CLOSE function before the task terminates. If
you omit the CLOSE call, DB2 performs an implicit CLOSE. In this case, DB2
performs the same actions when your task terminates, by using the SYNC
parameter if termination is normal and the ABRT parameter if termination is
abnormal.

* If DB2 terminates, issue an explicit CLOSE call for any task that did not issue a
CONNECT call. This action enables CAF to reset its control blocks to allow for
future connections. This CLOSE call returns the reset accomplished return code

Chapter 2. Connecting to DB2 from your application program 93

(+004) and reason code X'00C10824". If you omit the CLOSE call in this case,
when DB2 is back on line, the task's next connection request fails. You get either
the message YOUR TCB DOES NOT HAVE A CONNECTION, with X'00F30018'
in register 0, or the CAF error message DSNA201I or DSNA202I, depending on
what your application tried to do. The task must then issue a CLOSE call before
it can reconnect to DB2.

* A task that issued an explicit CONNECT call should issue a DISCONNECT call
instead of a CLOSE call. This action causes CAF to reset its control blocks when
DB2 terminates.

The following diagram shows the syntax for the CLOSE function.

DSNALI CLOSE function

»>—CALL DSNALI—(—function, termop) >
L,—retcode |

I—,—reascode—l

Parameters point to the following areas:

function
A 12-byte area that contains the word CLOSE followed by seven blanks.

termop
A 4-byte terminate option, with one of the following values:

SYNC Specifies that DB2 is to commit any modified data.
ABRT Specifies that DB2 is to roll back data to the previous commit point.

retcode
A 4-byte area in which CAF is to place the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

Examples of CAF CLOSE calls

The following table shows a CLOSE call in each language.

Table 14. Examples of CAF CLOSE calls

Language Call example

Assembler CALL DSNALI, (FUNCTN,TERMOP,RETCODE, REASCODE)

C! fnret=dsnali (&functn[0], &termop[0], &retcode,&reascode);
COBOL CALL 'DSNALI'" USING FUNCTN TERMOP RETCODE REASCODE.
Fortran CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE)

PL/T! CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE);

94 Application Programming and SQL Guide

Note:

* For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related tasks:
[“Invoking the call attachment facility” on page 74|

DISCONNECT function for CAF
The CAF DISCONNECT function terminates a connection to DB2.

DISCONNECT removes the calling task's connection to DB2. If no other task in the
address space has an active connection to DB2, DB2 also deletes the control block
structures that were created for the address space and removes the cross memory
authorization.

If an OPEN call is in effect, which means that a plan is allocated, when the
DISCONNECT call is issued, CAF issues an implicit CLOSE with the SYNC
parameter.

Using the DISCONNECT function is optional. Consider the following rules and
recommendations about when to use and not use the DISCONNECT function:

* Only those tasks that explicitly issued a CONNECT call can issue a

DISCONNECT call. If a CONNECT call was not used, a DISCONNECT call
causes an error.

* When shutting down your application you can improve the performance of this
shut down by explicitly calling the DISCONNECT function before the task
terminates. If you omit the DISCONNECT call, DB2 performs an implicit
DISCONNECT. In this case, DB2 performs the same actions when your task
terminates.

* If DB2 terminates, any task that issued a CONNECT call must issue a
DISCONNECT call to reset the CAF control blocks. The DISCONNECT function
returns the reset accomplished return codes and reason codes (+004 and
X'00C10824"). This action ensures that future connection requests from the task
work when DB2 is back on line.

* A task that did not explicitly issue a CONNECT call must issue a CLOSE call
instead of a DISCONNECT call. This action resets the CAF control blocks when
DB2 terminates.

The following diagram shows the syntax for the DISCONNECT function.

DSNALI DISCONNECT function

A\
A

»>—CALL DSNALI—(—function)

l—,—retcode |

l—,—reascode—l

The single parameter points to the following area:

function
A 12-byte area that contains the word DISCONNECT followed by two blanks.

Chapter 2. Connecting to DB2 from your application program 95

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

Examples of CAF DISCONNECT calls

The following table shows a DISCONNECT call in each language.

Table 15. Examples of CAF DISCONNECT calls

Language Call example

Assembler CALL DSNALI(,FUNCTN,RETCODE,REASCODE)

Ct fnret=dsnali (&functn[0], &retcode, &reascode);
COBOL CALL 'DSNALI' USING FUNCTN RETCODE REASCODE.
Fortran CALL DSNALI(FUNCTN,RETCODE,REASCODE)

PL/T CALL DSNALI(FUNCTN,RETCODE,REASCODE);

Note:

* For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related tasks:

[“Invoking the call attachment facility” on page 74|
TRANSLATE function for CAF

The TRANSLATE function converts a DB2 hexadecimal error reason code from a
failed OPEN request into an SQL error code and printable error message text. DB2
places the information into the SQLCODE and SQLSTATE host variables or related
fields of the SQLCA of the caller.

The DB2 error reason code that is converted is read from register 0. The
TRANSLATE function does not change the contents of registers 0 and 15, unless
the TRANSLATE request fails; in that case, register 0 is set to X'C10205' and
register 15 is set to 200.

Consider the following rules and recommendations about when to use and not use
the TRANSLATE function:

* You cannot call the TRANSLATE function from the Fortran language.

* The TRANSLATE function is useful only if you used an explicit CONNECT call
before an OPEN request that fails. For errors that occur during SQL or IFI
requests, the TRANSLATE function performs automatically.

¢ The TRANSLATE function can translate those codes that begin with X'00F3', but
it does not translate CAF reason codes that begin with X'00C1".

If you receive error reason code X'00F30040' (resource unavailable) after an OPEN
request, the TRANSLATE function returns the name of the unavailable database
object in the last 44 characters of the SQLERRM field.

96 Application Programming and SQL Guide

If the TRANSLATE function does not recognize the error reason code, it returns
SQLCODE -924 (SQLSTATE '58006') and places a printable copy of the original
DB2 function code and the return and error reason codes in the SQLERRM field.

The following diagram shows the syntax for the TRANSLATE function.

DSNALI TRANSLATE function

)————>«

»>—CALL DSNALI—(—function, sqlca

l—,—retcode |_ _| |
,—reascode

Parameters point to the following areas:

function
A 12-byte area the contains the word TRANSLATE followed by three blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

Examples of CAF TRANSLATE calls

The following table shows a TRANSLATE call in each language.
Table 16. Examples of CAF TRANSLATE calls

Language Call example
Assembler CALL DSNALI, (FUNCTN,SQLCA,RETCODE, REASCODE)
C! fnret=dsnali (&functn[0], &sqlca, &retcode, &reascode);
COBOL CALL 'DSNALI' USING FUNCTN SQLCA RETCODE REASCODE.
PL/T! CALL DSNALI(FUNCTN,SQLCA,RETCODE, REASCODE);

Note:

* For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related tasks:
[“Invoking the call attachment facility” on page 74|

Chapter 2. Connecting to DB2 from your application program 97

Turning on a CAF trace

CAF does not capture any diagnostic trace messages unless you tell it to by
turning on a trace.

To turn on a CAF trace:

Allocate a DSNTRACE data set either dynamically or by including a DSNTRACE
DD statement in your JCL. CAF writes diagnostic trace messages to that data set.
The trace message numbers contain the last three digits of the reason codes.

Related concepts:

[“Examples of invoking CAF” on page 100

CAF return codes and reason codes

CAF provides the return codes either to the corresponding parameters that are
specified in a CAF function call or, if you choose not to use those parameters, to
registers 15 and 0.

When the reason code begins with X'00F3' except for X'00F30006', you can use the
CAF TRANSLATE function to obtain error message text that can be printed and
displayed. These reason codes are issued by the subsystem support for allied
memories, a part of the DB2 subsystem support subcomponent that services all
DB2 connection and work requests.

For SQL calls, CAF returns standard SQL codes in the SQLCA. CAF returns IFI
return codes and reason codes in the instrumentation facility communication area

(IFCA).

The following table lists the CAF return codes and reason codes.

Table 17. CAF return codes and reason codes

Return code Reason code Explanation

0 X'00000000' Successful completion.

4 X'00C10824' CAF reset complete. CAF is ready to make a new connection.

8 X'00C10831 Release level mismatch between DB2 and the CAF code.

200" X'00C10201" Received a second CONNECT request from the same TCB. The first
CONNECT request could have been implicit or explicit.

200" X'00C10202' Received a second OPEN request from the same TCB. The first
OPEN request could have been implicit or explicit.

200" X'00C10203' CLOSE request issued when no active OPEN request exists.

200" X'00C10204' DISCONNECT request issued when no active CONNECT request
exists, or the AXSET macro was issued between the CONNECT
request and the DISCONNECT request.

200" X'00C10205' TRANSLATE request issued when no connection to DB2 exists.

200" X'00C10206' Incorrect number of parameters was specified or the end-of-list bit
was off.

200" X'00C10207' Unrecognized function parameter.

200" X'00C10208' Received requests to access two different DB2 subsystems from the
same TCB.

204 2 CAF system error. Probable error in the attach or DB2.

98 Application Programming and SQL Guide

Table 17. CAF return codes and reason codes (continued)

Return code Reason code Explanation

Notes:

1. A CAF error probably caused by errors in the parameter lists from the application programs. CAF errors do not
change the current state of your connection to DB2; you can continue processing with a corrected request.

2. System errors cause abends. If tracing is on, a descriptive message is written to the DSNTRACE data set just
before the abend.

Sample CAF scenarios

One or more tasks can use call attachment facility (CAF) to connect to DB2. This
connection can be made either implicitly or explicitly. For explicit connections, a
task calls one or more of the CAF connection functions.

A single task with implicit connections

The simplest connection scenario is a single task that makes calls to DB2 without
using explicit CALL DSNALI statements. The task implicitly connects to the
default subsystem name and uses the default plan name.

When the task terminates, the following events occur:

* If termination was normal, any database changes are committed.

* If termination was abnormal, any database changes are rolled back.
* The active plan and all database resources are deallocated.

* The task and address space connections to DB2 are terminated.
A single task with explicit connections

The following example pseudocode illustrates a more complex scenario with a
single task.

CONNECT
OPEN allocate a plan
SQL or IFI call
CLOSE deallocate the current plan
OPEN allocate a new plan

SQL or IFI call

CLOSE
DISCONNECT

A task can have a connection to only one DB2 subsystem at any point in time. A
CAF error occurs if the subsystem name in the OPEN call does not match the
subsystem name in the CONNECT call. To switch to a different subsystem, the
application must first disconnect from the current subsystem and then issue a
connect request with a new subsystem name.

Multiple tasks

In the following scenario, multiple tasks within the address space use DB2 services.
Each task must explicitly specify the same subsystem name on either the
CONNECT function request or the OPEN function request. Task 1 makes no SQL
or IFI calls. Its purpose is to monitor the DB2 termination and startup ECBs and to
check the DB2 release level.

Chapter 2. Connecting to DB2 from your application program 99

TASK 1 TASK 2 TASK 3 TASK n

CONNECT
OPEN OPEN OPEN
SQL SQL SQL
CLOSE CLOSE CLOSE
OPEN OPEN OPEN
SQL SQL SQL
CLOSE CLOSE CLOSE

DISCONNECT

Examples of invoking CAF

The call attachment facility (CAF) enables programs to communicate with DB2. If
you explicitly invoke CAF in your program, you can use the CAF connection
functions to control the state of the connection.

Example JCL for invoking CAF

The following sample JCL shows how to use CAF in a batch (non-TSO)
environment. The DSNTRACE statement in this example is optional.

//jobname JOB z/0S_jobcard_information
//CAFJCL EXEC PGM=CAF_application_program
//STEPLIB DD DSN=application_load_library
// DD DSN=DB2_load library
//SYSPRINT DD SYSOUT=+

//DSNTRACE DD SYSOUT=+

//SYSUDUMP DD SYSOUT=*

Example of assembler code that invokes CAF

The following examples show parts of a sample assembler program that uses CAF.
They demonstrate the basic techniques for making CAF calls, but do not show the
code and z/OS macros needed to support those calls. For example, many
applications need a two-task structure so that attention-handling routines can
detach connected subtasks to regain control from DB2. This structure is not shown
in the following code examples. Also, these code examples assume the existence of
a WRITE macro. Wherever this macro is included in the example, substitute code
of your own. You must decide what you want your application to do in those
situations; you probably do not want to write the error messages shown.

Example of loading and deleting the CAF language interface: The following code
segment shows how an application can load entry points DSNALI and DSNHLI2
for the CAF language interface. Storing the entry points in variables LIALI and
LISQL ensures that the application has to load the entry points only once. When
the module is done with DB2, you should delete the entries.

FHFRFFRFRKFR R R R RFkRxkkxkxx GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNALI Load the CAF service request EP
ST RO, LIALI Save this for CAF service requests
LOAD EP=DSNHLI2 Load the CAF SQL call Entry Point

ST RO, LISQL Save this for SQL calls
Insert connection service requests and SQL calls here

DELETE EP=DSNALI Correctly maintain use count
DELETE EP=DSNHLIZ2 Correctly maintain use count

100 Application Programming and SQL Guide

Example of connecting to DB2 with CAF: The following example code shows
how to issue explicit requests for certain actions, such as CONNECT, OPEN,
CLOSE, DISCONNECT, and TRANSLATE, and uses the CHEKCODE subroutine to
check the return reason codes from CAF.
*hkkrkkkhrrrrkhrxhrhrrrrxhrxkrckx CONNECT ***rdhrhdhrdhrhdhrhrhhrhhrhhrhrrhrhss

L R15,LIALI Get the Language Interface address

MVC FUNCTN,CONNECT Get the function to call
CALL (15), (FUNCTN,SSID,TECB,SECB,RIBPTR),VL,MF=(E,CAFCALL)

BAL R14,CHEKCODE Check the return and reason codes
CLC CONTROL,CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop Toop
USING R8,RIB Prepare to access the RIB

L R8,RIBPTR Access RIB to get DB2 release level
CLC RIBREL,RIBR999 DB2 V10 or Tater?

BE USERELX If RIBREL = '999', use RIBRELX

WRITE 'The current DB2 release level is' RIBREL

B OPEN Continue with signon

USERELX WRITE 'The current DB2 release level is' RIBRELX

R R T T OPEN R e R R L

OPEN L R15,LIALI Get the Language Interface address
MVC FUNCTN,OPEN Get the function to call
CALL (15), (FUNCTN,SSID,PLAN),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

kkhkkkkkkhkkhkkhkhkkkhhkkkhkkhkhkkhkhkkhkkkhkk* SQL kkkhkkkkhkkhkkhkkhhkkhhkkhkkhkhkkhkhkkhhkkhkkhkhkkhkk*
Insert your SQL calls here. The DB2 Precompiler
generates calls to entry point DSNHLI. You should
specify the precompiler option ATTACH(CAF), or code

a dummy entry point named DSNHLI to intercept

all SQL calls. A dummy DSNHLI is shown below.

kkhkhkhkhkhkhkhkhkhhhhhhhkhhhhhkhhkkrkhxx CLOSE R R R e e

CLC CONTROL,CONTINUE Is everything still OK?

*

EEE I .

BNE EXIT If CONTROL not 'CONTINUE', shut down

MVC TRMOP,ABRT Assume termination with ABRT parameter

L R4,SQLCODE Put the SQLCODE into a register

C R4,CODEO Examine the SQLCODE

BZ SYNCTERM If zero, then CLOSE with SYNC parameter

C R4,CODE100 See if SQLCODE was 100

BNE DISC If not 100, CLOSE with ABRT parameter
SYNCTERM MVC ~ TRMOP,SYNC Good code, terminate with SYNC parameter
DISC DS OH Now build the CAF parmlist

L R15,LIALI Get the Language Interface address

MVC ~ FUNCTN,CLOSE Get the function to call

CALL (15), (FUNCTN,TRMOP),VL,MF=(E,CAFCALL)

BAL R14,CHEKCODE Check the return and reason codes
KhkkhkhkFkhkhkkhkhk Kk ok hk Kk ok *x% DISCONNECT ***kkkkkkhkhkkhkhrkhrkkhrkhrhkkk

CLC CONTROL,CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop loop

L R15,LIALI Get the Language Interface address

MVC ~ FUNCTN,DISCON Get the function to call

CALL (15), (FUNCTN),VL,MF=(E,CAFCALL)

BAL R14,CHEKCODE Check the return and reason codes

This example code does not show a task that waits on the DB2 termination ECB. If
you want such a task, you can code it by using the z/OS WAIT macro to monitor

the ECB. You probably want this task to detach the sample code if the termination
ECB is posted. That task can also wait on the DB2 startup ECB. This sample waits

on the startup ECB at its own task level.

This example code assumes that the variables in the following table are already set:

Chapter 2. Connecting to DB2 from your application program 101

Table 18. Variables that preceding example assembler code assumes are set

Variable Usage

LIALI The entry point that handles DB2 connection
service requests.

LISQL The entry point that handles SQL calls.

SSID The DB2 subsystem identifier.

TECB The address of the DB2 termination ECB.

SECB The address of the DB2 startup ECB.

RIBPTR A fullword that CAF sets to contain the RIB
address.

PLAN The plan name to use in the OPEN call.

CONTROL This variable is used to shut down

processing because of unsatisfactory return
or reason codes. The CHECKCODE
subroutine sets this value.

CAFCALL List-form parameter area for the CALL
macro.

Example of checking return codes and reason codes when using CAF: The
following example code illustrates a way to check the return codes and the DB2
termination ECB after each connection service request and SQL call. The routine
sets the variable CONTROL to control further processing within the module.

EE R T R R R R R R R R R R R R

* CHEKCODE PSEUDOCODE *
dhkkhkhkhkhkhkhkhkhkhkhhkhhhhhhhhhhhdhhdhdhhdhhdhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkkhkkhhxkx
*IF TECB is POSTed with the ABTERM or FORCE codes
THEN

CONTROL = 'SHUTDOWN'

WRITE 'DB2 found FORCE or ABTERM, shutting down'

ELSE /* Termination ECB was not POSTed =*/
SELECT (RETCODE) /* Look at the return code */
WHEN (0) ; /* Do nothing; everything is 0K */
WHEN (4) ; /* Warning */
SELECT (REASCODE) /* Look at the reason code */
WHEN ('00C10824'X) /* Ready for another CAF call */
CONTROL = 'RESTART' /* Start over, from the top */

OTHERWISE

WRITE 'Found unexpected RO when R15 was 4'
CONTROL = 'SHUTDOWN'
END INNER-SELECT
WHEN (8,12) /* Connection failure */
SELECT (REASCODE) /* Look at the reason code */
WHEN ('00C10831'X) /* DB2 / CAF release level mismatch*/
WRITE 'Found a mismatch between DB2 and CAF release levels'
WHEN ('0OF30002'X, /* These mean that DB2 is down but =/
'00F30012'X) /* will POST SECB when up again */

DO
WRITE 'DB2 is unavailable. I'T1 tell you when it is up.'
WAIT SECB /* Wait for DB2 to come up */
WRITE 'DB2 is now available.'

END

/**/
/* Insert tests for other DB2 connection failures here. */
/* CAF Externals Specification T1ists other codes you can */
/* receive. Handle them in whatever way is appropriate =*/

L I T R T R R S R R R I T N S S N N N N S S

/* for your application. */
R R R 2 R A /
OTHERWISE /* Found a code we're not ready forx/

102 Application Programming and SQL Guide

CONTROL = 'SHUTDOWN'
WRITE 'Got an unrecognized return code'
END MAIN SELECT
IF (RETCODE > 4) THEN /* Was there a connection problem?=*/
CONTROL = 'SHUTDOWN'
* END CHEKCODE
dhkkhkkhkhkhkhkhkhkhhhkhhhhhhhhhhhhkhhddhdhdhdhhdhdhdhhhhhhhhhhhhhhhhkhhhhhhhkhhhhkhkhkkkhkxkx
* Subroutine CHEKCODE checks return codes from DB2 and Call Attach.
* When CHEKCODE receives control, R13 should point to the caller's
* save area.
AR AR AR AR Ak hhhhhhhhhhhkhkkx
CHEKCODE DS OH
STM R14,R12,12(R13) Prolog

* WRITE 'Warning: DB2 connection failure. Cause unknown'
* CALL DSNALI ('TRANSLATE',SQLCA) /* Fill in SQLCA */
* WRITE SQLCODE and SQLERRM

* END INNER-SELECT

* WHEN (200)

* WRITE 'CAF found user error. See DSNTRACE data set'

* WHEN (204)

* WRITE 'CAF system error. See DSNTRACE data set'

* OTHERWISE

*

*

*

*

*

ST R15,RETCODE Save the return code
ST RO,REASCODE Save the reason code
LA R15,SAVEAREA Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13
* Kk KKk K Kk ok ko ke ke *%x% HUNT FOR FORCE OR ABTERM *#*%x%x*%k*xkx**k*%
™ TECB,POSTBIT See if TECB was POSTed
BZ DOCHECKS Branch if TECB was not POSTed
CLC TECBCODE(3),QUIESCE Is this "STOP DB2 MODE=FORCE"
BE DOCHECKS If not QUIESCE, was FORCE or ABTERM

MVC ~ CONTROL,SHUTDOWN Shutdown
WRITE 'Found found FORCE or ABTERM, shutting down'

B ENDCCODE Go to the end of CHEKCODE
DOCHECKS DS OH Examine RETCODE and REASCODE
* *hxxkrhrrrrkrrrrrrxrx HUNT FOR O #**rkrshdrsrrdhhdhrhbrrhrrrrhrnsrrs
CLC RETCODE,ZERO Was it a zero?
BE ENDCCODE Nothing to do in CHEKCODE for zero
* *kkkkkkhxkxkkrxkxkkkkxx HUNT FOR 4 **kkkkkrkhkhkkhrhkhhkhrkhhrhrdr
CLC RETCODE,FOUR Was it a 47
BNE HUNT8 If not a 4, hunt eights
CLC REASCODE,C10831 Was it a release level mismatch?
BNE HUNT824 Branch if not an 831
WRITE 'Found a mismatch between DB2 and CAF release levels'
B ENDCCODE We are done. Go to end of CHEKCODE
HUNT824 DS OH Now look for 'CAF reset' reason code
CLC REASCODE,C10824 Was it 4? Are we ready to restart?
BNE UNRECOG If not 824, got unknown code

WRITE 'CAF is now ready for more input'

MVC CONTROL,RESTART Indicate that we should re-CONNECT

B ENDCCODE We are done. Go to end of CHEKCODE
UNRECOG DS OH

WRITE 'Got RETCODE = 4 and an unrecognized reason code'

MVC ~ CONTROL,SHUTDOWN Shutdown, serious problem

B ENDCCODE We are done. Go to end of CHEKCODE
* *hxkkkhxkrxkhxkkrkhxkxkx HUNT FOR 8 #***kxkkxdhxhdkkhrhdkkhrhrrkhrhkrs
HUNT8 DS OH

CLC RETCODE,EIGHT Hunt return code of 8

BE GOT80R12
CLC RETCODE,TWELVE Hunt return code of 12
BNE HUNT200
GOT80R12 DS OH Found return code of 8 or 12
WRITE 'Found RETCODE of 8 or 12'
CLC REASCODE,F30002 Hunt for X'00F30002'
BE DB2DOWN

Chapter 2. Connecting to DB2 from your application program

103

CLC REASCODE,F30012 Hunt for X'0OF30012'

BE DB2DOWN
WRITE 'DB2 connection failure with an unrecognized REASCODE'
CLC SQLCODE,ZERO See if we need TRANSLATE
BNE A4TRANS If not blank, skip TRANSLATE
* *kkkkkxkxkkkkkkkkkxkx TRANSLATE unrecognized RETCODES #*x#x*x+
WRITE 'SQLCODE O but R15 not, so TRANSLATE to get SQLCODE'
L R15,LIALI Get the Language Interface address
CALL (15), (TRANSLAT,SQLCA),VL,MF=(E,CAFCALL)
C RO,C10205 Did the TRANSLATE work?
BNE A4TRANS If not C10205, SQLERRM now filled 1in
WRITE 'Not able to TRANSLATE the connection failure'
B ENDCCODE Go to end of CHEKCODE
A4TRANS DS OH SQLERRM must be filled in to get here
* Note: your code should probably remove the X'FF'
* separators and format the SQLERRM feedback area.
* Alternatively, use DB2 Sample Application DSNTIAR
* to format a message.
WRITE 'SQLERRM dis:' SQLERRM
B ENDCCODE We are done. Go to end of CHEKCODE
DB2DOWN DS OH Hunt return code of 200
WRITE 'DB2 is down and I will tell you when it comes up'
WAIT ECB=SECB Wait for DB2 to come up

WRITE 'DB2 is now available'
MVC ~ CONTROL,RESTART Indicate that we should re-CONNECT

B ENDCCODE
* *khxxkrkrrrrkrrkrkrkrxrx HUNT FOR 200 ***kkrskrrdhhhrhhrhrhrrhrrrrs
HUNT200 DS OH Hunt return code of 200

CLC RETCODE ,NUM200 Hunt 200
BNE HUNT204
WRITE 'CAF found user error, see DSNTRACE data set'

B ENDCCODE We are done. Go to end of CHEKCODE
* *hxkkkhxkkxhxkkxkhxkxx HUNT FOR 204 **xkkxkhxkdkkhrhkkhrhrrkhrhrxs
HUNT204 DS OH Hunt return code of 204

CLC RETCODE,NUM204 Hunt 204

BNE WASSAT If not 204, got strange code

WRITE 'CAF found system error, see DSNTRACE data set'

B ENDCCODE We are done. Go to end of CHEKCODE
* *kkxkkkkxkxkkxkxkxkk** UNRECOGNIZED RETCODE #****kxkkkkkhkkkkkhx

WASSAT DS OH
WRITE 'Got an unrecognized RETCODE'
MVC ~ CONTROL,SHUTDOWN Shutdown

BE ENDCCODE We are done. Go to end of CHEKCODE
ENDCCODE DS OH Should we shut down?

L R4 ,RETCODE Get a copy of the RETCODE

C R4, FOUR Have a Took at the RETCODE

BNH BYEBYE If RETCODE <= 4 then leave CHEKCODE

MVC ~ CONTROL,SHUTDOWN Shutdown
BYEBYE DS OH Wrap up and Teave CHEKCODE

L R13,4(,R13) Point to caller's save area

RETURN (14,12) Return to the caller

Example of invoking CAF when you do not specify the precompiler option
ATTACH(CAF): Each of the four DB2 attachment facilities contains an entry point
named DSNHLI. When you use CAF but do not specify the precompiler option
ATTACH(CAF), SQL statements result in BALR instructions to DSNHLI in your
program. To find the correct DSNHLI entry point without including DSNALI in
your load module, code a subroutine with entry point DSNHLI that passes control
to entry point DSNHLI2 in the DSNALI module. DSNHLI2 is unique to DSNALI
and is at the same location in DSNALI as DSNHLI. DSNALI uses 31-bit
addressing. If the application that calls this intermediate subroutine uses 24-bit
addressing, this subroutine should account for the difference.

104 Application Programming and SQL Guide

In the following example, LISQL is addressable because the calling CSECT used
the same register 12 as CSECT DSNHLI. Your application must also establish
addressability to LISQL.

EE R T R R R R L R R R R R R R R

* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI

B R R R o o o o e e T T T T e T T e S T Lt L

DS 0D
DSNHLI ~ CSECT
STM R14,R12,12(R13)
LA R15,SAVEHLI
ST R13,4(,R15)
ST R15,8(,R13)
LR RI3,RI5
L R15,LISQL

BASSM R14,R15

L
L

R13,4(,R13)
R14,12(,R13)

RETURN (1,12)

Begin CSECT

Prologue

Get save area address

Chain the save areas

Chain the save areas

Put save area address in R13

Get the address of real DSNHLI

Branch to DSNALI to do an SQL call
DSNALI is in 31-bit mode, so use
BASSM to assure that the addressing
mode is preserved.

Restore R13 (caller's save area addr)
Restore R14 (return address)

Restore R1-12, NOT RO and R15 (codes)

Example of variable declarations when using CAF: The following example code
shows declarations for some of the variables that were used in the previous

subroutines.

%k kK Kk k ok ok ok ok ok kA *RkKkKKK KKK K *%x% VARIABLES #*%#%%%%x P R R R R T
SECB DS F DB2 Startup ECB

TECB DS F DB2 Termination ECB

LIALI DS F DSNALI Entry Point address

LISQL DS F DSNHLI2 Entry Point address

SSID DS CL4 DB2 Subsystem ID. CONNECT parameter

PLAN DS CL8 DB2 Plan name. OPEN parameter

TRMOP DS CL4 CLOSE termination option (SYNC|ABRT)

FUNCTN DS CL12 CAF function to be called

RIBPTR DS F DB2 puts Release Info Block addr here
RETCODE DS F Chekcode saves R15 here

REASCODE DS F Chekcode saves RO here

CONTROL DS CL8 GO, SHUTDOWN, or RESTART

SAVEAREA DS 18F Save area for CHEKCODE

SHUTDOWN DC

------------- *%x% CONSTANTS #*kkkkkkkkhkhkkhkhrkkrkkhkhrkkhkx

CL8'SHUTDOWN'

CONTROL value: Shutdown execution
CONTROL value: Restart execution
CONTROL value: Everything 0K, cont
SQLCODE of 0

SQLCODE of 100

TECB postcode: STOP DB2 MODE=QUIESCE
Name of a CAF service. Must be CL12!
Name of a CAF service. Must be CL12!
Name of a CAF service. Must be CL12!
Name of a CAF service. Must be CL12!
Name of a CAF service. Must be CL12!
Termination option (COMMIT)
Termination option (ROLLBACK)

*hkkkkhkkhkkhkkkkhxkrkkxkxkxkxkx%** RETURN CODES (R15) FROM CALL ATTACH *#*%*

0

4

8

12 (Call Attach return code in R15)
200 (User error)

204 (Call Attach system error)

HRKEFKKIK KR K KRR xR xkFxkxxkxxk REASON CODES (ROO) FROM CALL ATTACH #x#%%

RESTART DC CL8'RESTART
CONTINUE DC CL8'CONTINUE'
CODEO DC F'o'

CODE100 DC F'100'
QUIESCE DC XL3'000008"
CONNECT DC CL12'CONNECT
OPEN DC CL12'OPEN
CLOSE DC CL12'CLOSE
DISCON DC CL12'DISCONNECT
TRANSLAT DC CL12'TRANSLATE
SYNC DC CL4'SYNC'
ABRT DC CL4"ABRT'
ZERO DC F'o'

FOUR DC F'a

EIGHT DC F's'

TWELVE DC F'iz2'

NUM200 DC F'200'

NUM204 DC F'204'

C10205 DC XL4'00C10205"
C10831 DC XL4'00C10831"
C10824 DC XL4'00C10824"
F30002 DC XL4'00F30002"

Call attach could not TRANSLATE

Call attach found a release mismatch
Call attach ready for more input

DB2 subsystem not up

Chapter 2. Connecting to DB2 from your application program

105

F30011 DC XL4'00F30011" DB2 subsystem not up

F30012 DC XL4'00F30012"' DB2 subsystem not up

F30025 DC XL4'00F30025" DB2 is stopping (REASCODE)

*

* Insert more codes here as necessary for your application

*
kkkkkkkkkkkkhkkkkkkkkxkkkkxkkx SQLCA and RIB *kxkkkkkkkhkhkkhkkhhhkhkkhkkk
EXEC SQL INCLUDE SQLCA
DSNDRIB Get the DB2 Release Information Block
*kkkkkkkh Rk R Rk k*Fkkx*xxx*xx%*x%* CALL macro parm Tist *xkkkkkkkkhkhkkkkkhx

CAFCALL CALL , (*,%,%,%,%,%,%,%,%) VL ,MF=L

Invoking the Resource Recovery Services attachment facility

The Resource Recovery Services attachment facility (RRSAF) enables your program
to communicate with DB2. Invoke RRSAF as an alternative to invoking CAF or
when using stored procedures that run in a WLM-established address space.
RRSAF has more capabilities than CAFE.

Before you invoke RRSAF, perform the following actions:
* Ensure that the RRSAF language interface load module, DSNRLI, is available.

* Ensure that your application satisfies the requirements for programs that access
RRSAFE.

* Ensure that your application satisfies the general environment characteristics for
connecting to DB2.

* Ensure that you are familiar with the following z/OS concepts and facilities:
— The CALL macro and standard module linkage conventions
— Program addressing and residency options (AMODE and RMODE)
— Creating and controlling tasks; multitasking
— Functional recovery facilities such as ESTAE, ESTAI, and FRRs
— Synchronization techniques such as WAIT/POST
— z/0S RRS functions, such as SRRCMIT and SRRBACK

Applications that use RRSAF can be written in assembler language, C, COBOL,

Fortran, and PL/I. When choosing a language to code your application in, consider

the following restrictions:

* If you use z/OS macros (ATTACH, WAIT, POST, and so on), choose a
programming language that supports them.

* The RRSAF TRANSLATE function is not available in Fortran. To use this
function, code it in a routine that is written in another language, and then call
that routine from Fortran.

To invoke RRSAF:
1. Perform one of the following actions:

* Explicitly invoke RRSAF by including in your program CALL DSNRLI
statements with the appropriate options.

The first option is an RRSAF connection function, which describes the action
that you want RRSAF to take. The effect of any function depends in part on
what functions the program has already performed.

To code RRSAF functions in C, COBOL, Fortran, or PL/I, follow the
individual language's rules for making calls to assembler language routines.
Specify the return code and reason code parameters in the parameter list for
each RRSAF call.

106 Application Programming and SQL Guide

Requirement: For C, C++, and PL/I applications, you must also include in
your program the compiler directives that are listed in the following table,
because DSNRLI is an assembler language program.

Table 19. Compiler directives to include in C, C++, and PL/I applications that contain CALL

DSNRLI statements
Language Compiler directive to include
C #pragma linkage(dsnrli, 0S)
CH++ extern "0S" {

int DSNRLI(

char = functn,

O

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

2.

* Implicitly invoke RRSAF by including SQL statements or IFI calls in your
program just as you would in any program. The RRSAF facility establishes
the connection to DB2 with the default values for the subsystem name, plan
name and authorization ID.

Restriction: If your program can make its first SQL call from different
modules with different DBRMs, you cannot use a default plan name and
thus, you cannot implicitly invoke RRSAF. Instead, you must explicitly
invoke RRSAF by calling the CREATE THREAD function.

Requirement: If your application includes both SQL and IFI calls, you must
issue at least one SQL call before you issue any IFI calls. This action ensures
that your application uses the correct plan.
If you implicitly invoked RRSAF, determine if the implicit connection was
successful by examining the return code and reason code immediately after the
first executable SQL statement within the application program. Your program
can check these codes by performing one of the following actions:

* Examine registers 0 and 15 directly.

* Examine the SQLCA, and if the SQLCODE is -981, obtain the return and
reason code from the message text. The return code is the first token, and the
reason code is the second token.

If the implicit connection is successful, the application can examine the
SQLCODE for the first, and subsequent, SQL statements.

Example of an RRSAF configuration

The following figure shows an conceptual example of invoking and using RRSAFE.

Chapter 2. Connecting to DB2 from your application program 107

Application
LOAD DSNRLI

RRSAF

Load Language

Interface

LOAD DSNWLIR
LOAD DSNRLIR

CALL DSNRLI

Call DSNRLI

CIDENTIFY’)

(SWITCHTO’)
('SIGNON’)

(AUTH SIGNON’)
(SET_ID’)

(SET_CLIENT_ID’)

(CONTEXT SIGNON’)

(CREATE THREAD’)
(FIND_DB2_SYSTEMS’)
(TERMINATE THREAD’)
(TERMINATE IDENTIFY’

CALL DSNWLF—
CALL DSNHLI—
(SQL calls)

DSNHLI (dummy
application
entry point)

CALL DSNHLIR
(Transfer calls
to real RRSAF
SQL entry point)

DSNWLI (dummy
application
entry point)

— CALL DSNWLIR

(Process
connection
requests)

DSNHLIR
(Process
SQL stmts)

y

(Transfer calls
to real RRSAF IFI)

DSNWLIR

RRSAF
Mainline
Code

e

—»

DB2

Figure 3. Sample RRSAF configuration

Resource Recovery Services attachment facility

An attachment facility enables programs to communicate with DB2. The Resource
Recovery Services attachment facility (RRSAF) provides such a connection for
programs that run in z/OS batch, TSO foreground, and TSO background. The
RRSAF is an alternative to CAF and has more functionality.

An application program using RRSAF can perform the following actions:
* Use DB2 to process SQL statements, commands, or instrumentation facility

interface (IFI) calls.

108 Application Programming and SQL Guide

* Coordinate DB2 updates with updates made by all other resource managers that
also use z/OS RRS in an z/OS system.

¢ Use the z/OS System Authorization Facility and an external security product,
such as RACE, to sign on to DB2 with the authorization ID of a user.

* Sign on to DB2 using a new authorization ID and an existing connection and
plan.

e Access DB2 from multiple z/OS tasks in an address space.

* Switch a DB2 thread among z/OS tasks within a single address space.
* Access the DB2 IFL.

* Run with or without the TSO terminal monitor program (TMP).

¢ Run without being a subtask of the DSN command processor (or of any DB2
code).

¢ Run above or below the 16-MB line.

* Establish an explicit connection to DB2, through a call interface, with control
over the exact state of the connection.

* Establish an implicit connection to DB2 (with a default subsystem identifier and
a default plan name) by using SQL statements or IFI calls without first calling
RRSAE.

* Supply event control blocks (ECBs), for DB2 to post, that signal start-up or
termination.

* Intercept return codes, reason codes, and abend codes from DB2 and translate
them into messages as required.

RRSAF uses z/OS Transaction Management and Recoverable Resource Manager
Services (z/OS RRS).

Any task in an address space can establish a connection to DB2 through RRSAF.
Each task control block (TCB) can have only one connection to DB2. A DB2 service
request that is issued by a program that runs under a given task is associated with
that task's connection to DB2. The service request operates independently of any
DB2 activity under any other task.

Each connected task can run a plan. Tasks within a single address space can
specify the same plan, but each instance of a plan runs independently from the
others. A task can terminate its plan and run a different plan without completely
breaking its connection to DB2.

RRSAF does not generate task structures.

When you design your application, consider that using multiple simultaneous
connections can increase the possibility of deadlocks and DB2 resource contention.

Restriction: RRSAF does not provide attention processing exits or functional
recovery routines. You can provide whatever attention handling and functional
recovery your application needs, but you must use ESTAE/ESTAI type recovery
routines only.

A tracing facility provides diagnostic messages that help you debug programs and

diagnose errors in the RRSAF code. The trace information is available only in a
SYSABEND or SYSUDUMP dump.

Chapter 2. Connecting to DB2 from your application program 109

To commit work in RRSAF applications, use the CPIC SRRCMIT function or the
DB2 COMMIT statement. To roll back work, use the CPIC SRRBACK function or
the DB2 ROLLBACK statement.

Use the following guidelines to decide whether to use the DB2 statements or the
CPIC functions for commit and rollback operations:

* Use DB2 COMMIT and ROLLBACK statements when all of the following
conditions are true:

— The only recoverable resource that is accessed by your application is DB2 data
that is managed by a single DB2 instance.

DB2 COMMIT and ROLLBACK statements fail if your RRSAF application
accesses recoverable resources other than DB2 data that is managed by a
single DB2 instance.

— The address space from which syncpoint processing is initiated is the same as
the address space that is connected to DB2.

* If your application accesses other recoverable resources, or syncpoint processing
and DB2 access are initiated from different address spaces, use SRRCMIT and
SRRBACK.

Related reference:
[# [COMMIT (DB2 SQL)|

[# [ROLLBACK (DB2 SQL)|
Related information:

(& [Using Protected Resources (MVS Programming: Callable Services for|
High-Level Languages)|

Properties of RRSAF connections
RRSAF enables programs to communicate with DB2 to process SQL statements,
commands, or IFI calls.

Restriction: Do not mix RRSAF connections with other connection types in a
single address space. The first connection that is made from an address space to
DB2 determines the type of connection allowed.

The connection that RRSAF makes with DB2 has the basic properties that are listed
in the following table.

Table 20. Properties of RRSAF connections

Property Value Comments

Connection name RRSAF You can use the DISPLAY
THREAD command to list
RRSAF applications that have
the connection name RRSAF.

Connection type RRSAF None.

110 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_commit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_rollback.dita
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2c171/4.1?ACTION=MATCHES&REQUEST=using+protected+resources&TYPE=FUZZY&SHELF=&DT=20120127100832&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2c171/4.1?ACTION=MATCHES&REQUEST=using+protected+resources&TYPE=FUZZY&SHELF=&DT=20120127100832&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

Table 20. Properties of RRSAF connections (continued)

Property Value Comments

Authorization ID Authorization IDs that are A connection must have a
associated with each DB2 primary ID and can have one
connection or more secondary IDs. Those

identifiers are used for the

following purposes:

* Validating access to DB2

* Checking privileges on
DB2 objects

* Assigning ownership of
DB2 objects

* Identifying the user of a
connection for audit,
performance, and
accounting traces.

RRSAF relies on the z/0S
System Authorization Facility
(SAF) and a security product,
such as RACEF, to verify and
authorize the authorization
IDs. An application that
connects to DB2 through
RRSAF must pass those
identifiers to SAF for
verification and authorization
checking. RRSAF retrieves
the identifiers from SAF.

A location can provide an
authorization exit routine for
a DB2 connection to change
the authorization IDs and to
indicate whether the
connection is allowed. The
actual values that are
assigned to the primary and
secondary authorization IDs
can differ from the values
that are provided by a
SIGNON or AUTH SIGNON
request. A site's DB2 signon
exit routine can access the
primary and secondary
authorization IDs and can
modify the IDs to satisfy the
site's security requirements.
The exit routine can also
indicate whether the signon
request should be accepted.

Chapter 2. Connecting to DB2 from your application program 111

Table 20. Properties of RRSAF connections (continued)

Property Value Comments

Scope RRSAF processes connections None.
as if each task is entirely
isolated. When a task
requests a function, RRSAF
passes the function to DB2,
regardless of the connection
status of other tasks in the
address space. However, the
application program and the
DB2 subsystem have access
to the connection status of
multiple tasks in an address
space.

If an application that is connected to DB2 through RRSAF terminates normally
before the TERMINATE THREAD or TERMINATE IDENTIFY functions deallocate
the plan, RRS commits any changes made after the last commit point. If the
application terminates abnormally before the TERMINATE THREAD or
TERMINATE IDENTIFY functions deallocate the plan, z/OS RRS rolls back any
changes made after the last commit point. In either case, DB2 deallocates the plan,
if necessary, and terminates the application's connection.

If DB2 abends while an application is running, DB2 rolls back changes to the last
commit point. If DB2 terminates while processing a commit request, DB2 either
commits or rolls back any changes at the next restart. The action taken depends on
the state of the commit request when DB2 terminates.

Making the RRSAF language interface (DSNRLI) available

Before you can invoke the Resource Recovery Services attachment facility (RRSAF),
you must first make available the RRSAF language interface load module,
DSNRLIL

Part of RRSAF is a DB2 load module, DSNRLI, which is also known as the RRSAF
language interface module. DSNRLI has the alias names DSNHLIR and DSNWLIR.
The module has five entry points: DSNRLI, DSNHLI, DSNHLIR, DSNWLI, and
DSNWLIR. These entry points serve the following functions:

* Entry point DSNRLI handles explicit DB2 connection service requests.

* DSNHLI and DSNHLIR handle SQL calls. Use DSNHLI if your application
program link-edits RRSAF. Use DSNHLIR if your application program loads
RRSAE.

¢ DSNWLI and DSNWLIR handle IFI calls. Use DSNWLI if your application
program link-edits RRSAF. Use DSNWLIR if your application program loads
RRSAE.

To make DSNRLI available:

1. Decide which of the following methods you want to use to make DSNRLI
available:

* Explicitly issuing LOAD requests when your program runs.

112 Application Programming and SQL Guide

By explicitly loading the DSNRLI module, you can isolate the maintenance of
your application from future IBM maintenance to the language interface. If
the language interface changes, the change will probably not affect your load
module.
¢ Including the DSNRLI module in your load module when you link-edit your
program.
A disadvantage of link-editing DSNRLI into your load module is that if IBM
makes a change to DSNRLI, you must link-edit your program again.
Alternatively, if using explicit connections via CALL DSNALI, you can link-edit
your program with DSNULI, the Universal Language Interface.
2. Depending on the method that you chose in step 1, perform one of the
following actions:

 If you want to explicitly issue LOAD requests when your program runs:
In your program, issue z/OS LOAD service requests for entry points
DSNRLI and DSNHLIR. If you use IFI services, you must also load
DSNWLIR. Save the entry point address that LOAD returns and use it in the
CALL macro.
Indicate to DB2 which entry point to use in one of the following two ways:
— Specify the precompiler option ATTACH(RRSAF).

This option causes DB2 to generate calls that specify entry point
DSNHLIR.

Restriction: You cannot use this option if your application is written in
Fortran.

— Code a dummy entry point named DSNHLI within your load module.

If you do not specify the precompiler option ATTACH, the DB2
precompiler generates calls to entry point DSNHLI for each SQL request.
The precompiler does not know about and is independent of the different
DB2 attachment facilities. When the calls that are generated by the DB2
precompiler pass control to DSNHLI, your code that corresponds to the
dummy entry point must preserve the option list that is passed in register
1 and call DSNHLIR with the same option list.

 If you want to include the DSNRLI module in your load module when
you link-edit your program:
Include DSNRLI in your load module during a link-edit step. For example,

you can use a linkage editor control statement that is similar to the following
statement in your JCL:

INCLUDE DB2LIB(DSNRLI).

By coding this statement, you avoid inadvertently picking up the wrong
language interface module.

When you include the DSNRLI module during the link-edit, do not include a
dummy DSNHLI entry point in your program or specify the precompiler
option ATTACH. Module DSNRLI contains an entry point for DSNHLI,
which is identical to DSNHLIR, and an entry point for DSNWLI, which is
identical to DSNWLIR.

Related concepts:

"Program examples for RRSAF” on paw

“Universal language interface” on page1_53|

Related tasks:

[“Making the CAF language interface (DSNALI) available” on page 80|

Chapter 2. Connecting to DB2 from your application program 113

[‘Link-editing an application with DSNULI” on page 155|

Requirements for programs that use RRSAF

The Resource Recovery Services attachment facility (RRSAF) enables programs to
communicate with DB2. Before you invoke RRSAF in your program, ensure that
your program satisfies any requirements for using RRSAF.

When you write programs that use RRSAF, ensure that they meet the following
requirements:

* The program accounts for the size of the RRSAF code. The RRSAF code requires
about 10 KB of virtual storage per address space and an additional 10 KB for
each TCB that uses RRSAF.

* If your local environment intercepts and replaces the z/OS LOAD SVC that
RRSAF uses, you must ensure that your version of LOAD manages the load list
element (LLE) and contents directory entry (CDE) chains like the standard z/OS
LOAD macro. RRSAF uses z/OS SVC LOAD to load a module as part of the
initialization after your first service request. The module is loaded into
fetch-protected storage that has the job-step protection key.

You can prepare application programs to run in RRSAF similar to how you prepare
applications to run in other environments, such as CICS, IMS, and TSO. You can
prepare an RRSAF application either in the batch environment or by using the DB2
program preparation process. You can use the program preparation system either
through DB2I or through the DSNH CLIST.

Related tasks:
(Chapter 17, “Preparing an application to run on DB2 for z/0OS,” on page 915

How RRSAF modifies the content of registers

If you do not specify the return code and reason code parameters in your RRSAF
function calls or ifyou invoke RRSAF implicitly, RRSAF puts a return code in
register 15 and a reason code in register 0. RRSAF preserves the contents of
registers 2 through 14.

If you specify the return code and reason code parameters, RRSAF places the
return code in register 15 and in the return code parameter to accommodate
high-level languages that support special return code processing.

The following table summarizes the register conventions for RRSAF calls.

Table 21. Register conventions for RRSAF calls

Register Usage

R1 Parameter list pointer

R13 Address of caller's save area
R14 Caller's return address

R15 RRSAF entry point address

Implicit connections to RRSAF

Resource Recovery Services attachment facility (RRSAF) establishes an implicit
connection to DB2 under certain situations. The connection is established if the
following are true: the RRSAF language interface load module (DSNRLI) is

114 Application Programming and SQL Guide

available, you do not explicitly specify the IDENTIFY function in a CALL DSNRLI
statement in your program, and the application includes SQL statements or IFI
calls.

An implicit connection causes RRSAF to initiate implicit IDENTIFY and CREATE
THREAD requests to DB2. These requests are subject to the same DB2 return codes
and reason codes as explicitly specified requests.

Implicit connections use the following defaults:

Subsystem name
The default name that is specified in the module DSNHDECP. RRSAF uses
the installation default DSNHDECP, unless your own DSNHDECP module
is in a library in a STEPLIB statement of the JOBLIB concatenation or in
the link list. In a data sharing group, the default subsystem name is the
group attachment name.

Be certain that you know what the default name is and that it names the
specific DB2 subsystem that you want to use.

Plan name
The member name of the database request module (DBRM) that DB2
produced when you precompiled the source program that contains the first
SQL call.

Authorization ID
The 7-byte user ID that is associated with the address space, unless an
authorized function has built an Accessor Environment Element (ACEE)
for the address space. If an authorized function has built an ACEE, DB2
passes the 8-byte user ID from the ACEE.

For an implicit connection request, your application should not explicitly specify
either the IDENTIFY function or the CREATE THREAD function. Your application
can execute other explicit RRSAF calls after the implicit connection is made. An
implicit connection does not perform any SIGNON processing. Your application
can execute the SIGNON function at any point of consistency. To terminate an
implicit connection, you must use the proper function calls.

For implicit connection requests, register 15 contains the return code, and register 0
contains the reason code. The return code and reason code are also in the message
text for SQLCODE -981.

Related concepts:

[‘Summary of RRSAF behavior” on page 116

CALL DSNRLI statement parameter list

The CALL DSNRLI statement explicitly invokes RRSAF. When you include CALL
DSNRLI statements in your program, you must specify all parameters that precede
the return code parameter.

In CALL DSNRLI statements, you cannot omit any of parameters that come before
the return code parameter by coding zeros or blanks. No defaults exist for those
parameters for explicit connection requests. Defaults are provided for only implicit
connections. All parameters starting with the return code parameter are optional.

When you want to use the default value for a parameter but specify subsequent
parameters, code the CALL DSNRLI statement as follows:

Chapter 2. Connecting to DB2 from your application program 115

* For C-language, when you code CALL DSNRLI statements in C, you need to
specify the address of every parameter, using the "address of" operator (&), and
not the parameter itself. For example, to pass the pklistptr parameter on the
"CREATE THREAD" specify the address of the 4-byte pointer to the structure
(&pklistptr):
fnret=dsnrli(&crthrdfn[0], &plan[0], &col1id[0], &reuse[0],

&retcode, &reascode, &pklistptr);

* For all languages except assembler language, code zero for that parameter in the
CALL DSNRLI statement. For example, suppose that you are coding an
IDENTIFY call in a COBOL program, and you want to specify all parameters
except the return code parameter. You can write a statement similar to the
following statement:

CALL 'DSNRLI' USING IDFYFN SSNM RIBPTR EIBPTR TERMECB STARTECB
BY CONTENT ZERO BY REFERENCE REASCODE.

* For assembler language, code a comma for that parameter in the CALL DSNRLI
statement. For example, suppose that you are coding an IDENTIFY call, and you
want to specify all parameters except the return code parameter. You can write a
statement similar to the following statement:

CALL DSNRLI, (IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB, ,REASCODE)

For assembler programs that invoke RRSAF, use a standard parameter list for an
z/0OS CALL. Register 1 must contain the address of a list of pointers to the
parameters. Each pointer is a 4-byte address. The last address must contain the
value 1 in the high-order bit.

Summary of RRSAF behavior

The effect of any Resource Recovery Services attachment facility (RRSAF) function
depends in part on what functions the program has already run. You should plan
the RRSAF function calls that your program makes to avoid any errors and major
structural problems in your application.

The following tables summarize RRSAF behavior after various inputs from
application programs. The contents of each table cell indicate the result of calling
the function in the first column for that row followed by the function in the
current column heading. For example, if you issue TERMINATE THREAD and
then IDENTIFY, RRSAF returns reason code X'00C12201". Use these tables to
understand the order in which your application must issue RRSAF calls, SQL
statements, and IFI requests.

The RRSAF FIND_DB2_SYSTEMS function is omitted from these tables, because it
does not affect the operation of any of the other functions

The following table summarizes RRSAF behavior when the next call is to the
IDENTIFY function, the SWITCH TO function, the SIGNON function, or the
CREATE THREAD function.

Table 22. Effect of call order when next call is IDENTIFY, SWITCH TO, SIGNON, or CREATE THREAD

Next function

SIGNON, AUTH SIGNON,

Previous function IDENTIFY SWITCH TO or CONTEXT SIGNON CREATE THREAD
Empty: first call IDENTIFY X'00C12205" X'00C12204" X'00C12204"
IDENTIFY X'00F30049" Switch to ssnm Signon * X'00C12217"
SWITCH TO IDENTIFY Switch to ssnm Signon ? CREATE THREAD

116 Application Programming and SQL Guide

Table 22. Effect of call order when next call is IDENTIFY, SWITCH TO, SIGNON, or CREATE THREAD (continued)

Next function
SIGNON, AUTH SIGNON,

Previous function IDENTIFY SWITCH TO or CONTEXT SIGNON CREATE THREAD
SIGNON, AUTH SIGNON, X'00F30049" Switch to ssnm Signon > CREATE THREAD
or CONTEXT SIGNON

CREATE THREAD X'00F30049'" Switch to ssnm Signon ? X'00C12202"
TERMINATE THREAD X'00C12201" Switch to ssnm Signon * CREATE THREAD
IFI X'00F30049' Switch to ssnm Signon ? X'00C12202"

SQL X'00F30049'" Switch to ssnm X'00F30092'" X'00C12202"
SRRCMIT or SRRBACK X'00F30049'" Switch to ssnm Signon ? X'00C12202"

Notes:

1. Errors are identified by the DB2 reason code that RRSAF returns.
2. Signon means either the SIGNON function, the AUTH SIGNON function, or the CONTEXT SIGNON function.

3. The SIGNON, AUTH SIGNON, or CONTEXT SIGNON functions are not allowed if any SQL operations are
requested after the CREATE THREAD function or after the last SRRCMIT or SRRBACK request.

The following table summarizes RRSAF behavior when the next call is an SQL
statement or an IFI call or to the TERMINATE THREAD function, the TERMINATE
IDENTIFY function, or the TRANSLATE function.

Table 23. Effect of call order when next call is SQL or IFI, TERMINATE THREAD, TERMINATE IDENTIFY, or

TRANSLATE

Next function
Previous function SQL or IFI TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
Empty: first call SQL or IFI call* X'00C12204" X'00C12204" X'00C12204"
IDENTIFY SQL or IFI call* X'00C12203" TERMINATE IDENTIFY TRANSLATE
SWITCH TO SQL or IFI call* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
SIGNON, AUTH SIGNON, SQL or IFI call* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
or CONTEXT SIGNON
CREATE THREAD SQL or IFI call* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
TERMINATE THREAD SQLor IFIcall* X'00C12203" TERMINATE IDENTIFY TRANSLATE
IFI SQL or IFI call* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE
SQL SQL or IFI call* X'00F30093'" X'00F30093'"* TRANSLATE
SRRCMIT or SRRBACK SQL or IFI call* TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

Notes:

1. Errors are identified by the DB2 reason code that RRSAF returns.

2. TERMINATE THREAD is not allowed if any SQL operations are requested after the CREATE THREAD function
or after the last SRRCMIT or SRRBACK request.

3. TERMINATE IDENTIFY is not allowed if any SQL operations are requested after the CREATE THREAD function
or after the last SRRCMIT or SRRBACK request.

4. If you are using an implicit connection to RRSAF and issue SQL or IFI calls, RRSAF issues implicit IDENTIFY and
CREATE THREAD requests. If you continue with explicit RRSAF statements, you must follow the standard order
of explicit RRSAF calls. Implicitly connecting to RRSAF does not cause an implicit SIGNON request. Therefore,
you might need to issue an explicit SIGNON request to satisfy the standard order requirement. For example, an
SQL statement followed by an explicit TERMINATE THREAD request results in an error. You must issue an
explicit SIGNON request before issuing the TERMINATE THREAD request.

Chapter 2. Connecting to DB2 from your application program 117

Related concepts:
[# X'CL..... codes (DB2 Codes)|
(% X'F3...... codes (DB2 Codes)

RRSAF connection functions

An Resource Recovery Services attachment facility (RRSAF) connection function
specifies the action that you want RRSAF to take. You specify these functions when
you invoke RRSAF through CALL DSNRLI statements.

Related concepts:
“CALL DSNRLI statement parameter list” on page 115|
“Summary of RRSAF behavior” on page 116|

IDENTIFY function for RRSAF
The RRSAF IDENTIFY function initializes a connection to DB2.

The IDENTIFY function establishes the caller's task as a user of DB2 services. If no
other task in the address space currently is connected to the specified subsystem,
the IDENTIFY function also initializes the address space to communicate with the
DB2 address spaces. The IDENTIFY function establishes the cross-memory
authorization of the address space to DB2 and builds address space control blocks.

The following diagram shows the syntax for the IDENTIFY function.

DSNRLI IDENTIFY function

»»—CALL DSNRLI—(—function—,—ssnm—,—ribptr—,—eibptr—,—termechb—,——»

»—startech >

L,—retcode |_ | |
,—reascode
L I

,—groupoverride

l—,—decppt‘r‘—|

Parameters point to the following areas:

function
An 18-byte area that contains IDENTIFY followed by 10 blanks.

ssnm
A 4-byte DB2 subsystem name, or group attachment or subgroup attachment
name (if used in a data sharing group) to which the connection is made. If
ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

ribptr
A 4-byte area in which RRSAF places the address of the release information
block (RIB) after the call. You can use the RIB to determine the release level of
the DB2 subsystem to which the application is connected. You can determine
the modification level within the release level by examining the RIBCNUMB

118 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/db2z_00c1.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/db2z_00f3.dita

and RIBCINFO fields. If the value in the RIBCNUMB field is greater than zero,
check the RIBCINFO field for modification levels.

If the RIB is not available (for example, if ssnm names a subsystem that does
not exist), DB2 sets the 4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

This parameter is required. However, the application does not need to refer to
the returned information.

eibptr

A 4-byte area in which RRSAF places the address of the environment
information block (EIB) after the call. The EIB contains environment
information, such as the data sharing group, the name of the DB2 member to
which the IDENTIFY request was issued, and whether the subsystem is in
new-function mode. If the DB2 subsystem is not in a data sharing group,
RRSAF sets the data sharing group and member names to blanks. If the EIB is
not available (for example, if ssnm names a subsystem that does not exist),
RRSAF sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.

This parameter is required. However, the application does not need to refer to
the returned information.

termecb

The address of the application's event control block (ECB) that is used for DB2
termination. DB2 posts this ECB when the system operator enters the STOP
DB2 command or when DB2 is terminating abnormally. Specify a value of 0 if
you do not want to use a termination ECB.

The ECB is ignored when DB2 is already stopped. The application program
must examine any nonzero RRSAF or DB2 reason codes before issuing a WAIT
request on this ECB.

RRSAF puts a POST code in the ECB to indicate the type of termination as
shown in the following table.

Table 24. Post codes for types of DB2 termination

POST code Termination type
8 QUIESCE

12 FORCE

16 ABTERM
startecb

The address of the application's startup ECB. If DB2 has not started when the
application issues the IDENTIFY call, DB2 posts the ECB when DB2 has
started. Enter a value of zero if you do not want to use a startup ECB. DB2
posts no more than one startup ECB per address space. The ECB that is posted
is associated with the most recent IDENTIFY call from that address space. The
application program must examine any nonzero RRSAF or DB2 reason codes
before issuing a WAIT request on this ECB.

retcode

A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

Chapter 2. Connecting to DB2 from your application program 119

reascode
A 4-byte area in which RRSAF places a reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specity reascode, you must also specify retcode or its default. You can
specify a default for retcode by specifying a comma or zero, depending on the
language.

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you
do not want group attach to be attempted, specify 'NOGROUP'. This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If groupoverride is not provided, ssnm is used as the group
attachment or subgroup attachment name if it matches a group attachment or
subgroup attachment name.

If you specify this parameter in any language except assembler, you must also
specify the retcode and reascode parameters. In assembler language, you can
omit the retcode and reascode parameters by specifying commas as
place-holders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex. However, you should use this parameter in a data sharing
environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

decpptr

A 4-byte area in which RRSAF is to put the address of the DSNHDECP or a
user-specified application defaults module that was loaded by subsystem ssnm
when that subsystem was started. This 4-byte area is a 31-bit pointer. If ssnm is
not found, the 4-byte area is set to 0.

The area to which decpptr points is above the 16-MB line.

If you specify this parameter in any language except assembler, you must also
specify the retcode, reascode, and groupoverride parameters. In assembler
language, you can omit the retcode, reascode, and groupoverride parameters by
specifying commas as placeholders.

Example of RRSAF IDENTIFY function calls

The following table shows an IDENTIFY call in each language.
Table 25. Examples of RRSAF IDENTIFY calls

Language Call example

Assembler CALL DSNRLI, (IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB, RETCODE,REASCODE,GRPOVER,DECPPTR)

C! fnret=dsnrli(&idfyfn[0],&ssnm[0], &ribptr, &eibptr, &termech, &startecb, &retcode,
&reascode,&grpover[0] ,&decpptr);

COBOL CALL 'DSNRLI'" USING IDFYFN SSNM RIBTPR EIBPTR TERMECB STARTECB RETCODE REASCODE GRPOVER
DECPPTR.

Fortran CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB, RETCODE,REASCODE,GRPOVER,DECPPTR)

PL/T! CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB, RETCODE,REASCODE,GRPOVER,DECPPTR);

120 Application Programming and SQL Guide

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Internal processing for the IDENTIFY function

When you call the IDENTIFY function, DB2 performs the following steps:

1. DB2 determines whether the user address space is authorized to connect to
DB2. DB2 invokes the z/OS SAF and passes a primary authorization ID to SAF.
That authorization ID is the 7-byte user ID that is associated with the address
space, unless an authorized function has built an ACEE for the address space.
If an authorized function has built an ACEE, DB2 passes the 8-byte user 1D
from the ACEE. SAF calls an external security product, such as RACF, to
determine if the task is authorized to use the following items:

* The DB2 resource class (CLASS=DSNR)
e The DB2 subsystem (SUBSYS=ssnm)
* Connection type RRSAF

2. If that check is successful, DB2 calls the DB2 connection exit routine to perform
additional verification and possibly change the authorization ID.

3. DB2 searches for a matching trusted context in the system cache and then the
catalog based on the following criteria:

¢ The primary authorization ID matches a trusted context SYSTEM AUTHID.

* The job or started task name matches the JOBNAME attribute that is defined
for the identified trusted context.

If a trusted context is defined, DB2 checks if SECURITY LABEL is defined in
the trusted context. If SECURITY LABEL is defined, DB2 verifies the SECURITY
LABEL with RACF by using the RACROUTE VERIFY request. This security
label is used to verify multi-level security for SYSTEM AUTHID.If a matching
trusted context is defined, DB2 establishes the connection as trusted. Otherwise,
the connection is established without any additional privileges.

4. DB2 then sets the connection name to RRSAF and the connection type to
RRSAE.

Related tasks:
[‘Invoking the Resource Recovery Services attachment facility” on page 106|

SWITCH TO function for RRSAF

The RRSAF SWITCH TO function directs RRSAF, SQL, or IFI requests to a
specified DB2 subsystem. Use the SWITCH TO function to establish connections to
multiple DB2 subsystems from a single task.

The SWITCH TO function is useful only after a successful IDENTIFY call. If you
have established a connection with one DB2 subsystem, you must issue a SWITCH
TO call before you make an IDENTIFY call to another DB2 subsystem. Otherwise,
DB2 returns return code X'200' and reason code X'00C12201".

The first time that you make a SWITCH TO call to a new DB2 subsystem, DB2
returns return code 4 and reason code X'00C12205' as a warning to indicate that

the current task has not yet been identified to the new DB2 subsystem.

The following diagram shows the syntax for the SWITCH TO function.

Chapter 2. Connecting to DB2 from your application program 121

DSNRLI SWITCH TO function

»»—CALL DSNRLI—(—function,ssnm

v

) »<
) |

L,—retcode | |

l— —reascode
’ L

,—gr‘oupover‘r‘ide—|

Parameters point to the following areas:

function
An 18-byte area that contains SWITCH TO followed by nine blanks.

ssnm
A 4-byte DB2 subsystem name, or group attachment or subgroup attachment
name (if used in a data sharing group) to which the connection is made. If
ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify this parameter, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you
do not want group attach to be attempted, specify 'NOGROUP". This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If groupoverride is not provided, ssnm is used as the group
attachment or subgroup attachment name if it matches a group attachment or
subgroup attachment name.

If you specify this parameter in any language except assembler, you must also
specify the retcode and reascode parameters. In assembler language, you can
omit the retcode and reascode parameters by specifying commas as
place-holders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex. However, you should use this parameter in a data sharing
environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

122 Application Programming and SQL Guide

Examples

Examples of RRSAF SWITCH TO calls: The following table shows a SWITCH TO
call in each language.

Table 26. Examples of RRSAF SWITCH TO calls

Language Call example

Assembler CALL DSNRLI, (SWITCHFN,SSNM,RETCODE,REASCODE,GRPOVER)

C! fnret=dsnrli (&switchfn[0], &ssnm[0], &retcode, &reascode,&grpover[0]);
COBOL CALL 'DSNRLI' USING SWITCHFN RETCODE REASCODE GRPOVER.

Fortran CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER)

PL/T CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER);

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Example of using the SWITCH TO function to interact with multiple DB2
subsystems: The following example shows how you can use the SWITCH TO
function to interact with three DB2 subsystems.

RRSAF calls for subsystem db21:
IDENTIFY
SIGNON
CREATE THREAD
Execute SQL on subsystem db21
SWITCH TO db22
IF retcode = 4 AND reascode = '00C12205'X THEN
DO;
RRSAF calls on subsystem db22:
IDENTIFY
SIGNON
CREATE THREAD
END;
Execute SQL on subsystem db22
SWITCH TO db23
IF retcode = 4 AND reascode = '00C12205'X THEN
DO;
RRSAF calls on subsystem db23:
IDENTIFY
SIGNON
CREATE THREAD
END;
Execute SQL on subsystem 23
SWITCH TO db21
Execute SQL on subsystem 21
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)
SWITCH TO db23
Execute SQL on subsystem 23
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)

Related tasks:
[‘Invoking the Resource Recovery Services attachment facility” on page 106|

Chapter 2. Connecting to DB2 from your application program 123

SIGNON function for RRSAF
The RRSAF SIGNON function establishes a primary authorization ID and,
optionally, one or more secondary authorization IDs for a connection.

Requirement: Your program does not need to be an authorized program to issue
the SIGNON call. For that reason, before you issue the SIGNON call, you must
issue the RACF external security interface macro RACROUTE REQUEST=VERIFY
to perform the following actions:

* Define and populate an ACEE to identify the user of the program.

* Associate the ACEE with the user's TCB.

* Verify that the user is defined to RACF and authorized to use the application.

Generally, you issue a SIGNON call after an IDENTIFY call and before a CREATE

THREAD call. You can also issue a SIGNON call if the application is at a point of

consistency, and one of the following conditions is true:

* The value of reuse in the CREATE THREAD call was RESET.

¢ The value of reuse in the CREATE THREAD call was INITIAL, no held cursors
are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If open held cursors exist or the package
or plan is bound with KEEPDYNAMIC(YES), you can issue a SIGNON call only
if the primary authorization ID has not changed.

After you issue a SIGNON call, subsequent SQL statements return an error
(SQLCODE -900) if the both of following conditions are true:

e The connection was established as trusted when it was initialized.

* The primary authorization ID that was used when you issued the SIGNON call
is not allowed to use the trusted connection.

If a trusted context is defined, DB2 checks if SECURITY LABEL is defined in the
trusted context. If SECURITY LABEL is defined, DB2 verifies the security label
with RACF by using the RACROUTE VERIFY request. This security label is used
to verify multi-level security for SYSTEM AUTHID.

The following diagram shows the syntax for the SIGNON function.

DSNRLI SIGNON function

»»—CALL DSNRLI—(—function, correlation-id,—accounting-token, accounting-interval >

») ><
]
I—,retcod I |
I—,reuscod

|
I—,user I_ |

,appl
Lows l
I—,xid l

I—,accounting—stringJ

Parameters point to the following areas:

function
An 18-byte area that contains SIGNON followed by twelve blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is

124 Application Programming and SQL Guide

displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in the output from
the DISPLAY THREAD command. If you do not want to specify a correlation
ID, fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

Alternatively, you change the value of the DB2 accounting token with RRSAF
functions AUTH SIGNON, CONTEXT SIGNON or SET_CLIENT_ID. You can
retrieve the DB2 accounting token with the CURRENT CLIENT_ACCTNG
special register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area that specifies when DB2 writes an accounting record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time that the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call the SIGNON function with a new
authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify this parameter, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this
parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays this user ID in the output from the
DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the user ID sets the value of the CURRENT CLIENT_USERID
special register. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode
and reascode. If you do not specify user, no user ID is associated with the
connection.

Chapter 2. Connecting to DB2 from your application program 125

appl
A 32-byte area that contains the application or transaction name of the user's
application. You can use this parameter to provide the identity of the client
user for accounting and monitoring purposes. DB2 displays the application
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. Setting the application name sets the
value of the CURRENT CLIENT_APPLNAME special register. If appl is less
than 32 characters long, you must pad it on the right with blanks to a length of
32 characters.

This parameter is optional. If you specify appl, you must also specify retcode,
reascode, and user. If you do not specify appl, no application or transaction is
associated with the connection.

ws An 18-byte area that contains the workstation name of the client user. You can
use this parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays the workstation name in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This field is optional. If you specify ws, you must also specify retcode, reascode,
user, and appl. If you do not specify ws, no workstation name is associated with
the connection.

xid
A 4-byte area that indicates whether the thread is part of a global transaction.
A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0 Indicates that the thread is not part of a global transaction. The value 0
must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that DB2
should retrieve the global transaction ID from RRS. If a global
transaction ID already exists for the task, the thread becomes part of
the associated global transaction. Otherwise, RRS generates a new
global transaction ID. The value 1 must be specified as a binary
integer. Alternatively, if you want DB2 to return the generated global
transaction ID to the caller, specify an address instead of 1.

address The 4-byte address of an area in which you enter a global transaction
ID for the thread. If the global transaction ID already exists, the thread
becomes part of the associated global transaction. Otherwise, RRS
creates a new global transaction with the ID that you specify.

Alternatively, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID by
setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). DB2 then replaces the contents of the area with the
generated transaction ID. The area at the specified address must be in
writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The following table shows the format of a global transaction ID.

126 Application Programming and SQL Guide

Table 27. Format of a user-created global transaction ID

Field description Length in bytes Data type
Format ID 4 Integer
Global transaction ID length 4 Integer
(1-64)

Branch qualifier length (1 - 4 Integer
64)

Global transaction ID 1 to 64 Character
Branch qualifier 0 to 64 Character

accounting-string

A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This parameter is optional. If you specify accounting-string, you must also
specify retcode, reascode, user, appl and xid. If you do not specify
accounting-string, no accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUEFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Example of RRSAF SIGNON calls

The following table shows a SIGNON call in each language.

Table 28. Examples of RRSAF SIGNON calls

Language Call example

assembler CALL DSNRLI, (SGNONFN,CORRID,ACCTTKN,ACCTINT, RETCODE,REASCODE,USERID,APPLNAME,WSNAME,XIDPTR)

C! fnret=dsnrli(&sgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &retcode, &reascode,
&userid[0], &applname[0], &wsname[0], &xidptr);

COBOL '"DSNRLI' USING SGNONFN CORRID ACCTTKN ACCTINT RETCODE REASCODE USERID APPLNAME WSNAME

Fortran CALL DSNRLI (SGNONFN,CORRID,ACCTTKN,ACCTINT, RETCODE,REASCODE,USERID,APPLNAME,WSNAME,XIDPTR)

PL/I! CALL DSNRLI (SGNONFN,CORRID,ACCTTKN,ACCTINT, RETCODE,REASCODE,USERID,APPLNAME,WSNAME,XIDPTR);

Note:

1.

For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:

Chapter 2. Connecting to DB2 from your application program 127

[“Invoking the Resource Recovery Services attachment facility” on page 106|

Related reference:

[* [RACROUTE REQUEST=VERIFY (standard form) (Security Server RACROUTH
Macro Reference)

AUTH SIGNON function for RRSAF
The RRSAF AUTH SIGNON function enables an APF authorization program to
pass an ID to DB2.

An APF-authorized program can pass to DB2 either a primary authorization ID
and, optionally, one or more secondary authorization IDs, or an ACEE that is used
for authorization checking. These IDs are then associated with the connection.

Generally, you issue an AUTH SIGNON call after an IDENTIFY call and before a
CREATE THREAD call. You can also issue an AUTH SIGNON call if the
application is at a point of consistency, and one of the following conditions is true:

e The value of reuse in the CREATE THREAD call was RESET.

e The value of reuse in the CREATE THREAD call was INITIAL, no held cursors
are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If open held cursors exist or the package
or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is permitted only if
the primary authorization ID has not changed.

The following diagram shows the syntax for the AUTH SIGNON function.

DSNRLI AUTH SIGNON function

»»—CALL DSNRLI—(—function, correlation-id, accounting-token, >

»—accounting-interval, primary-authid,—ACEE-address, secondary-authid: >

».) >
7
I—,r‘etcodh I J

L reascode
’ L

suser- | |

L,appl I
I—,ws |
I—,xid

I—,accounting-stm’ngJ

Parameters point to the following areas:

function
An 18-byte area that contains AUTH SIGNON followed by seven blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
DISPLAY THREAD command. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. Setting the

128 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ichc600/rrversf.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ichc600/rrversf.htm

value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If

you do not want to specify an accounting token, fill the 22-byte area with
blanks.

You can also change the value of the DB2 accounting token with RRSAF
functions SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID. You can retrieve
the DB2 accounting token with the CURRENT CLIENT_ACCTNG special
register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area with that specifies when DB2 writes an accounting record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time that the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call the SIGNON function with a new
authorization ID.

primary-authid
An 8-byte area in which you can put a primary authorization ID. If you are not
passing the authorization ID to DB2 explicitly, put X'00' or a blank in the first
byte of the area.

ACEE-address
The 4-byte address of an ACEE that you pass to DB2. If you do not want to
provide an ACEE, specify 0 in this field.

secondary-authid
An 8-byte area in which you can put a secondary authorization ID. If you do
not pass the authorization ID to DB2 explicitly, put X'00' or a blank in the first
byte of the area. If you enter a secondary authorization ID, you must also enter
a primary authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascoder, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this
parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays this user ID in the output from the
DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the user ID sets the value of the CURRENT CLIENT_USERID

Chapter 2. Connecting to DB2 from your application program 129

special register. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode
and reascode. If you do not specify this parameter, no user ID is associated with
the connection.

appl
A 32-byte area that contains the application or transaction name of the user's
application. You can use this parameter to provide the identity of the client
user for accounting and monitoring purposes. DB2 displays the application
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. Setting the application name sets the
value of the CURRENT CLIENT_APPLNAME special register. If appl is less
than 32 characters long, you must pad it on the right with blanks to a length of
32 characters.

This parameter is optional. If you specify appl, you must also specify retcode,
reascode, and user. If you do not specify this parameter, no application or
transaction is associated with the connection.

ws An 18-byte area that contains the workstation name of the client user. You can
use this parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays the workstation name in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This parameter is optional. If you specify ws, you must also specify retcode,
reascode, user, and appl. If you do not specify this parameter, no workstation
name is associated with the connection.

You can also change the value of the workstation name with RRSAF functions
SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID. You can retrieve the
workstation name with the CURRENT CLIENT_WRKSTNNAME special
register.

xid
A 4-byte area that indicates whether the thread is part of a global transaction.
A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0 Indicates that the thread is not part of a global transaction. The value 0
must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that DB2
should retrieve the global transaction ID from RRS. If a global
transaction ID already exists for the task, the thread becomes part of
the associated global transaction. Otherwise, RRS generates a new
global transaction ID. The value 1 must be specified as a binary
integer. Alternatively, if you want DB2 to return the generated global
transaction ID to the caller, specify an address instead of 1.

address The 4-byte address of an area into which you enter a global transaction
ID for the thread. If the global transaction ID already exists, the thread

130 Application Programming and SQL Guide

becomes part of the associated global transaction. Otherwise, RRS
creates a new global transaction with the ID that you specify.

Alternatively, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID by
setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). DB2 then replaces the contents of the area with the
generated transaction ID. The area at the specified address must be in
writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The format of a global transaction ID is shown in the description of the
RRSAF SIGNON function.

accounting-string
A 1-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This parameter is optional. If you specify this accounting-string, you must also
specify retcode, reascode, user, appl, and xid. If you do not specify this parameter,
no accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUEFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Example of RRSAF AUTH SIGNON calls

The following table shows a AUTH SIGNON call in each language.

Table 29. Examples of RRSAF AUTH SIGNON calls

Language Call example

Assembler CALL DSNRLI, (ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,
USERID,APPLNAME,WSNAME,XIDPTR)

Ct fnret=dsnrli(&asgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &pauthid[0], &aceeptr,
&sauthid[0], &retcode, &reascode, &userid[0], &applname[0], &wsname[0], &xidptr);

COBOL CALL 'DSNRLI' USING ASGNONFN CORRID ACCTTKN ACCTINT PAUTHID ACEEPTR SAUTHID RETCODE REASCODE
USERID APPLNAME WSNAME XIDPTR.

Fortran CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,USERID,
APPLNAME , WSNAME , XIDPTR)

PL/T! CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,USERID,

APPLNAME,WSNAME, XIDPTR) ;

Note:

Chapter 2. Connecting to DB2 from your application program 131

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
|”Invoking the Resource Recovery Services attachment facility” on page 106|

Related reference:
[“SIGNON function for RRSAF” on page 124

CONTEXT SIGNON function for RRSAF
The RRSAF CONTEXT SIGNON function establishes a primary authorization ID
and one or more secondary authorization IDs for a connection.

Requirement: Before you invoke CONTEXT SIGNON, you must have called the
RRS context services function Set Context Data (CTXSDTA) to store a primary
authorization ID and optionally, the address of an ACEE in the context data whose
context key you supply as input to CONTEXT SIGNON.

The CONTEXT SIGNON function uses the context key to retrieve the primary
authorization ID from data that is associated with the current RRS context. DB2
uses the RRS context services function Retrieve Context Data (CTXRDTA) to
retrieve context data that contains the authorization ID and ACEE address. The
context data must have the following format:

Version number
A 4-byte area that contains the version number of the context data. Set this
area to 1.

Server product name
An 8-byte area that contains the name of the server product that set the
context data.

ALET A 4-byte area that can contain an ALET value. DB2 does not reference this
area.

ACEE address
A 4-byte area that contains an ACEE address or 0 if an ACEE is not
provided. DB2 requires that the ACEE is in the home address space of the
task.

If you pass an ACEE address, the CONTEXT SIGNON function uses the
value in ACEEGRPN as the secondary authorization ID if the length of the
group name (ACEEGRPL) is not 0.

primary-authid
An 8-byte area that contains the primary authorization ID to be used. If the
authorization ID is less than 8 bytes in length, pad it on the right with
blank characters to a length of 8 bytes.

If the new primary authorization ID is not different than the current
primary authorization ID (which was established when the IDENTIFY
function was invoked or at a previous SIGNON invocation), DB2 invokes
only the signon exit. If the value has changed, DB2 establishes a new
primary authorization ID and new SQL authorization ID and then invokes
the signon exit.

Generally, you issue a CONTEXT SIGNON call after an IDENTIFY call and before
a CREATE THREAD call. You can also issue a CONTEXT SIGNON call if the
application is at a point of consistency, and one of the following conditions is true:

132 Application Programming and SQL Guide

e The value of reuse in the CREATE THREAD call was RESET.

e The value of reuse in the CREATE THREAD call was INITIAL, no held cursors
are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If open held cursors exist or the package
or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is permitted only if
the primary authorization ID has not changed.

The following diagram shows the syntax for the CONTEXT SIGNON function.

DSNRLI CONTEXT SIGNON function

»»>—CALL DSNRLI—(—function,—correlation-id,—accounting-token,—accounting-interval,—context-key——»

») >
I—,retcod |_ I |
,reascode
rea. T I

,user:

I—,appl I_] l
W
I—,xid |

I—,accounting-strz‘ngJ

Parameters point to the following areas:

function
An 18-byte area that contains CONTEXT SIGNON followed by four blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
DISPLAY THREAD command. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

You can also change the value of the DB2 accounting token with RRSAF
functions SIGNON, AUTH SIGNON, or SET_CLIENT _ID. You can retrieve the
DB2 accounting token with the CURRENT CLIENT_ACCTNG special register
only if the DDF accounting string is not set.

accounting-interval
A 6-byte area that specifies when DB2 writes an accounting record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time that the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid

Chapter 2. Connecting to DB2 from your application program 133

accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call the SIGNON function with a new
authorization ID.

context-key
A 32-byte area in which you put the context key that you specified when you
called the RRS Set Context Data (CTXSDTA) service to save the primary
authorization ID and an optional ACEE address.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this
parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays this user ID in the output from the
DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the user ID sets the value of the CURRENT CLIENT_USERID
special register. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode
and reascode. If you do not specify user, no user ID is associated with the
connection.

appl
A 32-byte area that contains the application or transaction name of the user's
application. You can use this parameter to provide the identity of the client
user for accounting and monitoring purposes. DB2 displays the application
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. Setting the application name sets the
value of the CURRENT CLIENT_APPLNAME special register. If appl is less
than 32 characters long, you must pad it on the right with blanks to a length of
32 characters.

This parameter is optional. If you specify appl, you must also specify retcode,
reascode, and user. If you do not specify appl, no application or transaction is
associated with the connection.

ws An 18-byte area that contains the workstation name of the client user. You can
use this parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays the workstation name in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

134 Application Programming and SQL Guide

This parameter is optional. If you specify ws, you must also specify retcode,
reascode, user, and appl. If you do not specify ws, no workstation name is
associated with the connection.

You can also change the value of the workstation name with the RRSAF
functions SIGNON, AUTH SIGNON, or SET_CLIENT _ID. You can retrieve the
workstation name with the CLIENT_WRKSTNNAME special register.

xid
A 4-byte area that indicates whether the thread is part of a global transaction.
A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0 Indicates that the thread is not part of a global transaction. The value 0
must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that DB2
should retrieve the global transaction ID from RRS. If a global
transaction ID already exists for the task, the thread becomes part of
the associated global transaction. Otherwise, RRS generates a new
global transaction ID. The value 1 must be specified as a binary
integer. Alternatively, if you want DB2 to return the generated global
transaction ID to the caller, specify an address instead of 1.

address The 4-byte address of an area into which you enter a global transaction
ID for the thread. If the global transaction ID already exists, the thread
becomes part of the associated global transaction. Otherwise, RRS
creates a new global transaction with the ID that you specify.

Alternatively, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID by
setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). DB2 then replaces the contents of the area with the
generated transaction ID. The area at the specified address must be in
writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The format of a global transaction ID is shown in the description of the
RRSAF SIGNON function.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This parameter is optional. If you specify this accounting-string, you must also
specify retcode, reascode, user, appl and xid. If you do not specify this parameter,
no accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN

Chapter 2. Connecting to DB2 from your application program 135

field contains the accounting suffix length, and the QMDASUEFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special

register.

Example of RRSAF CONTEXT SIGNON calls

The following table shows a CONTEXT SIGNON call in each language.

Table 30. Examples of RRSAF CONTEXT SIGNON calls

Language Call example

Assembler CALL DSNRLI, (CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,USERID,APPLNAME,
WSNAME ,XIDPTR)

C! fnret=dsnrli(&csgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &ctxtkey[0], &retcode,
&reascode, &userid[0], &applname[0], &wsname[0], &xidptr);

COBOL CALL 'DSNRLI'" USING CSGNONFN CORRID ACCTTKN ACCTINT CTXTKEY RETCODE REASCODE USERID APPLNAME
WSNAME XIDPTR.

Fortran CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE, USERID,APPLNAME,
WSNAME , XIDPTR)

PL/T! CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,USERID,APPLNAME,

WSNAME, XIDPTR) 3

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
[“Invoking the Resource Recovery Services attachment facility” on page 106|

Related reference:
[“SIGNON function for RRSAF” on page 124

SET_ID function for RRSAF

The RRSAF SET_ID function sets a new value for the client program ID that can be
used to identify the user. The function then passes this information to DB2 when
the next SQL request is processed.

The following diagram shows the syntax of the SET_ID function.

DSNRLI SET_ID function

»>—CALL DSNRLI—(—function,—program-id- |) ><

I—,—retcode
I—,—reascode—I

Parameters point to the following areas:

function
An 18-byte area that contains SET_ID followed by 12 blanks.

136 Application Programming and SQL Guide

program-id
An 80-byte area that contains the caller-provided string to be passed to DB2. If
program-id is less than 80 characters, you must pad it with blanks on the right
to a length of 80 characters.

DB2 places the contents of program-id into IFCID 316 records, along with other
statistics, so that you can identify which program is associated with a
particular SQL statement.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.
Example of RRSAF SET_ID calls

The following table shows a SET_ID call in each language.

Table 31. Examples of RRSAF SET_ID calls

Language Call example

Assembler CALL DSNRLI, (SETIDFN,PROGID,RETCODE,REASCODE)

C! fnret=dsnrli(&setidfn[0], &progid[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING SETIDFN PROGID RETCODE REASCODE.
Fortran CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE)

PL/T CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:

[“Invoking the Resource Recovery Services attachment facility” on page 106|

SET_CLIENT_ID function for RRSAF

The RRSAF SET_CLIENT_ID function sets new values for the client user ID, the
application program name, the workstation name, the accounting token, and the
DDF client accounting string. The function then passes this information to DB2
when the next SQL request is processed.

These values can be used to identify the end user. The calling program defines the
contents of these parameters. DB2 places the parameter values in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records.

The following diagram shows the syntax of the SET_CLIENT_ID function.

Chapter 2. Connecting to DB2 from your application program 137

DSNRLI SET_CLIENT_ID function

»»—CALL DSNRLI—(—function,—accounting-token,—user,—appl,— ws——— >

| 2

) »<
|) |

|— retcode
’ L

,reascode |
l—,accounting—s tring—l

Parameters point to the following areas:

function
An 18-byte area that contains SET_CLIENT_ID followed by 5 blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is placed in the DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. If
accounting-token is less than 22 characters long, you must pad it on the right
with blanks to a length of 22 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

Alternatively, you can change the value of the DB2 accounting token with the
RRSAF functions SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can
retrieve the DB2 accounting token with the CURRENT CLIENT_ACCTNG
special register only if the DDF accounting string is not set.

user
A 16-byte area that contains the user ID of the client end user. You can use this
parameter to provide the identity of the client end user for accounting and
monitoring purposes. DB2 places this user ID in the output from the DISPLAY
THREAD command and in DB2 accounting and statistics trace records. If user
is less than 16 characters long, you must pad it on the right with blanks to a
length of 16 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the client user ID with the RRSAF functions
SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the client
user ID with the CLIENT_USERID special register.

appl
An 32-byte area that contains the application or transaction name of the end
user's application. You can use this parameter to provide the identity of the
client end user for accounting and monitoring purposes. DB2 places the
application name in the output from the DISPLAY THREAD command and in
DB2 accounting and statistics trace records. If appl is less than 32 characters,
you must pad it on the right with blanks to a length of 32 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the application name with the RRSAF
functions SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve
the application name with the CLIENT_APPLNAME special register.

ws An 18-byte area that contains the workstation name of the client end user. You
can use this parameter to provide the identity of the client end user for
accounting and monitoring purposes. DB2 places this workstation name in the

138 Application Programming and SQL Guide

output from the DISPLAY THREAD command and in DB2 accounting and
statistics trace records. If ws is less than 18 characters, you must pad it on the
right with blanks to a length of 18 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the workstation name with the RRSAF
functions SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve
the workstation name with the CLIENT_WRKSTNNAME special register.

retcode
A 4-byte area in which RRSAF places the return code.

You can omit this parameter by specifying a value of 0 in the parameter list.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

You can omit this parameter by specifying a value of 0 in the parameter list.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASUEFX field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

You can omit this parameter by specifying a value of 0 in the parameter list.

This parameter is optional. If you specify this accounting-string, you must also
specify retcode, reascode, user, and appl. If you do not specify this parameter, no
accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUEFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Example of RRSAF SET_CLIENT_ID calls

The following table shows a SET_CLIENT_ID call in each language.
Table 32. Examples of RRSAF SET_CLIENT_ID calls

Language Call example

Assembler CALL DSNRLI, (SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE)

C! fnret=dsnrli(&seclidfn[0], &acct[0], &user[0], &app1[0], &ws[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING SECLIDFN ACCT USER APPL WS RETCODE REASCODE.

Chapter 2. Connecting to DB2 from your application program 139

Table 32. Examples of RRSAF SET_CLIENT_ID calls (continued)

Language Call example
Fortran CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE)
PL/T! CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:

[“Invoking the Resource Recovery Services attachment facility” on page 106|

SET_REPLICATION function for RRSAF
The RRSAF SET_REPLICATION function enables an APF authorized program to
identify to DB2 as a replication program.

Calling the SET_REPLICATION function is optional. If you do not call it, DB2
treats the application normally. The SET_REPLICATION function allows the
application to perform insert, update, and delete operations then the tablespace or
database is started access RREPL.

The following diagram shows the syntax for the SET REPLICATION function.

DSNRLI SET_REPLICATION function

»»—CALL DSNRLI—(—function—, |) >

l—,—retcode

|—,—reascodeJ

Parameters point to the following areas:

function
An 18-byte area that contains SET_REPLICATION.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places a reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.
If you specify reascode, you must also specify retcode.

Related tasks:

[“Invoking the Resource Recovery Services attachment facility” on page 106|

140 Application Programming and SQL Guide

CREATE THREAD function for RRSAF

The RRSAF CREATE THREAD function allocates the DB2 resources that are
required for an application to issue SQL or IFI requests. This function must
complete before the application can execute SQL statements or IFI requests.

The following diagram shows the syntax of the CREATE THREAD function.

DSNRLI CREATE THREAD function

»»—CALL DSNRLI—(—function, plan, collection, reuse

v

) »><
| <

l—,—retcode

I— —reascode |
’ L

,—kaistptr‘—l

Parameters point to the following areas:

function
An 18-byte area that contains CREATE THREAD followed by five blanks.

plan
An 8-byte DB2 plan name. RRSAF allocates the named plan.

If you provide a collection name instead of a plan name, specify the question
mark character (?) in the first byte of this field. DB2 then allocates a special
plan named ?RRSAF and uses the value that you specify for collection . When
DB2 allocates a plan named ?RRSAF, DB2 checks authorization to execute the
package in the same way as it checks authorization to execute a package from
a requester other than DB2 for z/OS.

If you do not provide a collection name in the collection field, you must enter a
valid plan name in this field.

collection
An 18-byte area in which you enter a collection name. DB2 uses the collection
names to locate a package that is associated with the first SQL statement in the
program.

When you provide a collection name and put the question mark character (?)
in the plan field, DB2 allocates a plan named ?RRSAF and a package list that
contains the following two entries:

* The specified collection name.

* An entry that contains * for the location, collection name, and package name.
(This entry lets the application access remote locations and access packages
in collections other than the default collection that is specified at create
thread time.)

The application can use the SET CURRENT PACKAGESET statement to change
the collection ID that DB2 uses to locate a package.

If you provide a plan name in the plan field, DB2 ignores the value in the
collection field.

Chapter 2. Connecting to DB2 from your application program 141

reuse
An 8-byte area that controls the action that DB2 takes if a SIGNON call is
issued after a CREATE THREAD call. Specify one of the following values in
this field:

RESET
Releases any held cursors and reinitializes the special registers

INITIAL
Does not allow the SIGNON call

This parameter is required. If the 8-byte area does not contain either RESET or
INITIAL, the default value is INITIAL.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

pklistptr
A 4-byte field that contains a pointer to a user-supplied data area that contains
a list of collection IDs. A collection ID is an SQL identifier of 1 to 128 letters,
digits, or the underscore character that identifies a collection of packages. The
length of the data area is a maximum of 2050 bytes. The data area contains a
2-byte length field, followed by up to 2048 bytes of collection ID entries,
separated by commas.

When you specify pklistptr and the question mark character (?) in the plan field,

DB2 allocates a special plan named ?RRSAF and a package list that contains

the following entries:

* The collection names that you specify in the data area to which pklistptr
points

* An entry that contains * for the location, collection ID, and package name

If you also specify collection, DB2 ignores that value.

Each collection entry must be of the form collection-ID.*, *.collection-ID.*, or *.**.
collection-ID and must follow the naming conventions for a collection 1D, as
described in the description of the BIND and REBIND options.

DB2 uses the collection names to locate a package that is associated with the
first SQL statement in the program. The entry that contains *.*.* lets the
application access remote locations and access packages in collections other
than the default collection that is specified at create thread time.

The application can use the SET CURRENT PACKAGESET statement to change
the collection ID that DB2 uses to locate a package.

This parameter is optional. If you specify this parameter, you must also specify
retcode and reascode.

If you provide a plan name in the plan field, DB2 ignores the pklistptr value.

142 Application Programming and SQL Guide

Recommendation: Using a package list can have a negative impact on
performance. For better performance, specify a short package list.

Example of RRSAF CREATE THREAD calls

The following table shows a CREATE THREAD call in each language.

Table 33. Examples of RRSAF CREATE THREAD calls

Language Call example

Assembler CALL DSNRLI, (CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLISTPTR)

C! fnret=dsnrli(&crthrdfn[0], &plan[0], &col1id[0], &reuse[0], &retcode, &reascode, &pklistptr);
COBOL CALL 'DSNRLI' USING CRTHRDFN PLAN COLLID REUSE RETCODE REASCODE PKLSTPTR.

Fortran CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR)

PL/I! CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR)

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler

directives are described in the instructions for invoking RRSAF.
Related tasks:

[“Invoking the Resource Recovery Services attachment facility” on page 106|

[[Authorizing plan or package access through applications (Managing Security)|

Related reference:

[[BIND and REBIND options for packages and plans (DB2 Commands)]
TERMINATE THREAD function for RRSAF

The RRSAF TERMINATE THREAD function deallocates DB2 resources that are
associated with a plan and were previously allocated for an application by the

CREATE THREAD function. You can then use the CREATE THREAD function to

allocate another plan with the same connection.

If you call the TERMINATE THREAD function and the application is not at a point

of consistency, RRSAF returns reason code X'00C12211'.

The following diagram shows the syntax of the TERMINATE THREAD function.

DSNRLI TERMINATE THREAD function

v
A

»»—CALL DSNRLI—(—function, |)

l—,—re tcode
l—,—reascode—|

Parameters point to the following areas:

function

An 18-byte area the contains TERMINATE THREAD followed by two blanks.

Chapter 2. Connecting to DB2 from your application program 143

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.seca/src/tpc/db2z_accesscontrolbyapp.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_bindrebindoptions.dita

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TERMINATE THREAD calls

The following table shows a TERMINATE THREAD call in each language.

Table 34. Examples of RRSAF TERMINATE THREAD calls

Language Call example

Assembler CALL DSNRLI, (TRMTHDFN,RETCODE,REASCODE)

C! fnret=dsnrli (&trmthdfn[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING TRMTHDFN RETCODE REASCODE.
Fortran CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE)

PL/T CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:

[“Invoking the Resource Recovery Services attachment facility” on page 106|

TERMINATE IDENTIFY function for RRSAF

The RRSAF TERMINATE IDENTIFY function terminates a connection to DB2.
Calling the TERMINATE IDENTIFY function is optional. If you do not call it, DB2
performs the same functions when the task terminates.

If DB2 terminates, the application must issue TERMINATE IDENTIFY to reset the
RRSAF control blocks. This action ensures that future connection requests from the
task are successful when DB2 restarts.

The TERMINATE IDENTIFY function removes the calling task's connection to DB2.
If no other task in the address space has an active connection to DB2, DB2 also
deletes the control block structures that were created for the address space and
removes the cross-memory authorization.

If the application is not at a point of consistency when you call the TERMINATE
IDENTIFY function, RRSAF returns reason code X'00C12211".

If the application allocated a plan, and you call the TERMINATE IDENTIFY
function without first calling the TERMINATE THREAD function, DB2 deallocates
the plan before terminating the connection.

The following diagram shows the syntax of the TERMINATE IDENTIFY function.

144 Application Programming and SQL Guide

DSNRLI TERMINATE IDENTIFY function

) »><

»»—CALL DSNRLI—(—function

l—,—retcode |
l—,—reascode—l

Parameters point to the following areas:

function
An 18-byte area that contains TERMINATE IDENTIFY.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TERMINATE IDENTIFY calls

The following table shows a TERMINATE IDENTIFY call in each language.
Table 35. Examples of RRSAF TERMINATE IDENTIFY calls

Language Call example
Assembler CALL DSNRLI, (TMIDFYFN,RETCODE,REASCODE)
C! fnret=dsnrli(&tmidfyfn[0], &retcode, &reascode);
COBOL CALL 'DSNRLI' USING TMIDFYFN RETCODE REASCODE.
Fortran CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE)
PL/T CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:

[“Invoking the Resource Recovery Services attachment facility” on page 106|

TRANSLATE function for RRSAF

The RRSAF TRANSLATE function converts a hexadecimal reason code for a DB2
error into a signed integer SQL code and a printable error message. The SQL code
and message text are placed in the SQLCODE and SQLSTATE host variables or
related fields of the SQLCA.

Chapter 2. Connecting to DB2 from your application program 145

Consider the following rules and recommendations about when to use and not use
the TRANSLATE function:

* You cannot call the TRANSLATE function from the Fortran language.

* Call the TRANSLATE function only after a successful IDENTIFY operation. For
errors that occur during SQL or IFI requests, the TRANSLATE function performs
automatically.

¢ The TRANSLATE function translates codes that begin with X'00F3', but it does
not translate RRSAF reason codes that begin with X'00C1".

If you receive error reason code X'00F30040' (resource unavailable) after an OPEN
request, the TRANSLATE function returns the name of the unavailable database
object in the last 44 characters of the SQLERRM field.

If the TRANSLATE function does not recognize the error reason code, it returns
SQLCODE -924 (SQLSTATE '58006') and places a printable copy of the original
DB2 function code and the return and error reason codes in the SQLERRM field.
The contents of registers 0 and 15 do not change, unless TRANSLATE fails. In this
case, register 0 is set to X'00C12204', and register 15 is set to 200.

The following diagram shows the syntax of the TRANSLATE function.

DSNRLI TRANSLATE function

»»—CALL DSNRLI—(—function, sqlca

|)————>«

l—,—retcode
I—,—reascode—I

Parameters point to the following areas:

function
An 18-byte area that contains the word TRANSLATE followed by nine blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

146 Application Programming and SQL Guide

Example of RRSAF TRANSLATE calls

The following table shows a TRANSLATE call in each language.
Table 36. Examples of RRSAF TRANSLATE calls

Language Call example
Assembler CALL DSNRLI, (XLATFN,SQLCA,RETCODE,REASCODE)
C! fnret=dsnrli(&connfn[0], &sqlca, &retcode, &reascode);
COBOL CALL 'DSNRLI' USING XLATFN SQLCA RETCODE REASCODE.
PL/T' CALL DSNRLI(XLATFN,SQLCA,RETCODE,REASCODE) ;

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:

[‘Invoking the Resource Recovery Services attachment facility” on page 106|

FIND_DB2_SYSTEMS function for RRSAF
The RRSAF FIND_DB2_SYSTEMS function identifies all active DB2 subsystems on
a z/0S LPAR.

The following diagram shows the syntax of the FIND_DB2_SYSTEMS function.

DSNRLI FIND_DB2_SYSTEMS function

»»—CALL DSNRLI—(—function—,—ssnma—,—activea—,—arraysz—,———»

) »><

l—,—retcode
I—,—r‘eascode—|

Parameters point to the following areas:

function
An 18-byte area that contains FIND_DB2_SYSTEMS followed by two blanks.

ssnma
A storage area for an array of 4-byte character strings into which RRSAF places
the names of all the DB2 subsystems (SSIDs) that are defined for the current
LPAR. You must provide the storage area. If the array is larger than the
number of DB2 subsystems, RRSAF returns the value ' ' (four blanks) in
all unused array members.

activea
A storage area for an array of 4-byte values into which RRSAF returns an
indication of whether a defined subsystem is active. Each value is represented
as a fixed 31-bit integer. The value 1 means that the subsystem is active. The
value 0 means that the subsystem is not active. The size of this array must be

Chapter 2. Connecting to DB2 from your application program 147

the same as the size of the ssnma array. If the array is larger than the number
of DB2 subsystems, RRSAF returns the value -1 in all unused array members.

The information in the activea array is the information that is available at the
point in time that you requested it and might change at any time.

arraysz
A 4-byte area, represented as a fixed 31-bit integer, that specifies the number of
entries for the ssnma and activea arrays. If the number of array entries is
insufficient to contain all of the subsystems defined on the current LPAR,
RRSAF uses all available entries and returns return code 4.

retcode
A 4-byte area in which RRSAF is to place the return code for this call to the
FIND_DB2_SYSTEMS function.

This parameter is optional. If you do not retcode, RRSAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF is to place the reason code for this call to the
FIND_DB2_SYSTEMS function.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

Example values that the FIND_DB2_SYSTEMS function returns

Assume that two subsystems are defined on the current LPAR. Subsystem DB2A is
active, and subsystem DB2B is stopped. Suppose that you invoke RRSAF with the
function FIND_DB2_SYSTEMS and a value of 3 for arraysz. The ssnma array and
activea array are set to the following values:

Table 37. Example values returned in the ssnma and activeaarrays

Array element number Values in ssnma array Values in activea array
1 DB2A 1
2 DB2B 0
3 (four blanks) -1

Related tasks:
[“Invoking the Resource Recovery Services attachment facility” on page 106|

RRSAF return codes and reason codes

If you specify return code and reason code parameters in an Resource Recovery
Services attachment facility (RRSAF) function call, RRSAF returns the return code
and reason code in those parameters. If you do not specify those parameters or
implicitly invoke RRSAF, RRSAF puts the return code in register 15 and the reason
code in register 0.

When the reason code begins with X'00F3', except for X'00F30006', you can use the
RRSAF TRANSLATE function to obtain error message text that can be printed and
displayed.

For SQL calls, RRSAF returns standard SQL return codes in the SQLCA. RRSAF

returns IFI return codes and reason codes in the instrumentation facility
communication area (IFCA).

148 Application Programming and SQL Guide

The following table lists the RRSAF return codes.
Table 38. RRSAF return codes

Return code Explanation
0 The call completed successfully.
4 Status information is available. See the

reason code for details.

>4 The call failed. See the reason code for
details.

Related reference:
[“TRANSLATE function for RRSAF” on page 145|

Sample RRSAF scenarios

One or more tasks can use Resource Recovery Services attachment facility (RRSAF)
to connect to DB2. This connection can be made either implicitly or explicitly. For
explicit connections, a task calls one or more of the RRSAF connection functions.

A single task

The following example pseudocode illustrates a single task running in an address
space that explicitly connects to DB2 through RRSAF. z/OS RRS controls commit
processing when the task terminates normally.

IDENTIFY

SIGNON

CREATE THREAD

§QL or IFI

TERMINATE IDENTIFY
Multiple tasks

In the following scenario, multiple tasks in an address space explicitly connect to
DB2 through RRSAF. Task 1 executes no SQL statements and makes no IFI calls. Its
purpose is to monitor DB2 termination and startup ECBs and to check the DB2
release level.

TASK 1 TASK 2 TASK 3 TASK n
IDENTIFY IDENTIFY IDENTIFY IDENTIFY
SIGNON SIGNON SIGNON
CREATE THREAD CREATE THREAD CREATE THREAD
SQL SQL SQL
SRRCMIT SRRCMIT SRRCMIT
SQL SQL SQL
SRRCMIT SRRCMIT SRRCMIT

TERMINATE IDENTIFY
Reusing a DB2 thread

The following example pseudocode shows a DB2 thread that is reused by another
user at a point of consistency. When the application calls the SIGNON function for
user B, DB2 reuses the plan that is allocated by the CREATE THREAD function for
user A.

Chapter 2. Connecting to DB2 from your application program 149

IDENTIFY
SIGNON user A
CREATE THREAD
SQL
SRRCMIT
SIGNON user B
SQL

SRRCMIT
Switching DB2 threads between tasks

The following scenario shows how you can switch the threads for four users (A, B,
C, and D) among two tasks (1 and 2).

Task 1 Task 2
CTXBEGC (create context a) CTXBEGC (create context b)
CTXSWCH(a,0) CTXSWCH(b,0)
IDENTIFY IDENTIFY
SIGNON user A SIGNON user B
CREATE THREAD (Plan A) CREATE THREAD (plan B)
SQL SQL
CTXSWCH(0,a) CTXSWCH(0,b)
CTXBEGC (create context c) CTXBEGC (create context d)
CTXSWCH(c,0) CTXSWCH(d,0)
IDENTIFY IDENTIFY
SIGNON user C SIGNON user D
CREATE THREAD (plan C) CREATE THREAD (plan D)
SQL SQL
CTXSWCH(b,c) CTXSWCH(0,d)

SQL (plan B)
v CTXSWCH(a,0)
SQL (plan A)

The applications perform the following steps:

e Task 1 creates context a, switches contexts so that context a is active for task 1,
and calls the IDENTIFY function to initialize a connection to a subsystem. A task
must always call the IDENTIFY function before a context switch can occur. After
the IDENTIFY operation is complete, task 1 allocates a thread for user A, and
performs SQL operations.

At the same time, task 2 creates context b, switches contexts so that context b is
active for task 2, calls the IDENTIFY function to initialize a connection to the
subsystem, allocates a thread for user B, and performs SQL operations.

When the SQL operations complete, both tasks perform RRS context switch
operations. Those operations disconnect each DB2 thread from the task under
which it was running.

e Task 1 then creates context ¢, calls the IDENTIFY function to initialize a
connection to the subsystem, switches contexts so that context c is active for task
1, allocates a thread for user C, and performs SQL operations for user C.

Task 2 does the same operations for user D.

* When the SQL operations for user C complete, task 1 performs a context switch
operation to perform the following actions:
— Switch the thread for user C away from task 1.
— Switch the thread for user B to task 1.

150 Application Programming and SQL Guide

For a context switch operation to associate a task with a DB2 thread, the DB2
thread must have previously performed an IDENTIFY operation. Therefore,
before the thread for user B can be associated with task 1, task 1 must have
performed an IDENTIFY operation.

* Task 2 performs two context switch operations to perform the following actions:
— Disassociate the thread for user D from task 2.
— Associate the thread for user A with task 2.

Program examples for RRSAF

The Resource Recovery Services attachment facility (RRSAF) enables programs to
communicate with DB2. You can use RRSAF as an alternative to CAF.

Example JCL for invoking RRSAF

The following sample JCL shows how to use RRSAF in a batch environment. The
DSNRRSAF DD statement starts the RRSAF trace. Use that DD statement only if
you are diagnosing a problem.

//jobname JOB z/0S_jobcard_information
//RRSJCL EXEC PGM=RRS_application_program
//STEPLIB DD DSN=application load library
// DD DSN=DB2_load library
//SYSPRINT DD SYSOUT=*

//DSNRRSAF DD DUMMY

//SYSUDUMP DD SYSOUT=+

Example of loading and deleting the RRSAF language interface

The following code segment shows how an application loads entry points DSNRLI
and DSNHLIR of the RRSAF language interface. Storing the entry points in
variables LIRLI and LISQL ensures that the application loads the entry points only
once. Delete the loaded modules when the application no longer needs to access

DB2.

*kkkkkkKkkkkkkkkkkkkkkkkkkkkkkx GET LANGUAGE INTERFACE ENTRY ADDRESSES
LOAD EP=DSNRLI Load the RRSAF service request EP
ST RO,LIRLI Save this for RRSAF service requests
LOAD EP=DSNHLIR Load the RRSAF SQL call Entry Point
ST RO, LISQL Save this for SQL calls

* .

* Insert connection service requests and SQL calls here

* .
DELETE EP=DSNRLI Correctly maintain use count
DELETE EP=DSNHLIR Correctly maintain use count

Example of using dummy entry point DSNHLI for RRSAF

Each of the DB2 attachment facilities contains an entry point named DSNHLL
When you use RRSAF but do not specify the ATTACH(RRSAF) precompiler
option, the precompiler generates BALR instructions to DSNHLI for SQL
statements in your program. To find the correct DSNHLI entry point without
including DSNRLI in your load module, code a subroutine, with entry point
DSNHLI, that passes control to entry point DSNHLIR in the DSNRLI module.
DSNHLIR is unique to DSNRLI and is at the same location as DSNHLI in
DSNRLI. DSNRLI uses 31-bit addressing. If the application that calls this
intermediate subroutine uses 24-bit addressing, the intermediate subroutine must
account for the difference.

Chapter 2. Connecting to DB2 from your application program 151

In the following example, LISQL is addressable because the calling CSECT used
the same register 12 as CSECT DSNHLI. Your application must also establish
addressability to LISQL.
Rk Rk R ok k ok ok ok ok ok ok ok o o o o o e e e R R R R R R R R Rk Rk k ok ok k ok ok ok ok ok ok ko
* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI
Fkhkhkhhhhhhkhhhkhhhhhhhhhhdhhhdhhhdhdhhdhdhhhdhhhddhdddddddddhdhrrhrrrrrrhrrhrrrx

DS oD
DSNHLT ~ CSECT

STM R14,R12,12(R13)

Begin CSECT
Prologue

LA R15,SAVEHLI Get save area address

ST R13,4(,R15) Chain the save areas

ST R15,8(,R13) Chain the save areas

LR R13,R15 Put save area address in R13
L R15,LISQL Get the address of real DSNHLI

BASSM R14,R15

Branch to DSNRLI to do an SQL call

DSNRLI is in 31-bit mode, so use
BASSM to assure that the addressing
mode is preserved.

Restore R13 (caller's save area addr)
Restore R14 (return address)

Restore R1-12, NOT RO and R15 (codes)

L R13,4(,R13)
L R14,12(,R13)
RETURN (1,12)

Example of connecting to DB2 with RRSAF

This example uses the variables that are declared in the following code.

kkkxkkkkxkkkkkkkxk VARIABLES SET BY APPLICATION kokskokoksokskokokshokskkokshokskkk sk
LIRLI DS F DSNRLI entry point address

LISQL DS F DSNHLIR entry point address

SSNM DS CL4 DB2 subsystem name for IDENTIFY
CORRID DS CL12 Correlation ID for SIGNON

ACCTTKN DS CL22 Accounting token for SIGNON

ACCTINT DS CL6 Accounting interval for SIGNON

PLAN DS CL8 DB2 plan name for CREATE THREAD
COLLID DS CL18 Collection ID for CREATE THREAD. If
* PLAN contains a plan name, not used.
REUSE DS CL8 Controls SIGNON after CREATE THREAD
CONTROL DS CL8 Action that application takes based
* on return code from RRSAF
*kxkxkkxkxrrxkxxk*x VARIABLES SET BY DB2 **%kkkkkkrkkhrxhrkhhrkhrhkhrhrrkhrhrs
STARTECB DS F DB2 startup ECB

TERMECB DS F DB2 termination ECB

EIBPTR DS F Address of environment info block
RIBPTR DS F Address of release info block

*kkkkkhkhrrhrhrrhrhrrhxhkrhkrxx CONSTANTS #xdcdkrkrhrrhrhrhhrhrrhrhrrkhr ks s

CONTINUE DC CL8'CONTINUE' CONTROL value: Everything OK

IDFYFN DC CL18'IDENTIFY ' Name of RRSAF service
SGNONFN DC CL18'SIGNON ' Name of RRSAF service
CRTHRDFN DC CL18'CREATE THREAD ' Name of RRSAF service

TRMTHDFN DC CL18'TERMINATE THREAD ' Name of RRSAF service
TMIDFYFN DC CL18'TERMINATE IDENTIFY' Name of RRSAF service

Kkkokkkkkkkkkkkkkkkkkkkkkkkxkkx SQLCA and RIB *#xkkxkkkkkkhkkhkhkhkkkkhks

EXEC SQL INCLUDE SQLCA
DSNDRIB Map the DB2 Release Information Block

*xkkkkkkxkrkkkxkxkkx Parameter 1ist for RRSAF calls *xkxxkxkkkkkkkkkhxkkkk

RRSAFCLL CALL , (%,%,%,%,%,%,%,%),VL,MF=L

The following example code shows how to issue requests for the RRSAF functions
IDENTIFY, SIGNON, CREATE THREAD, TERMINATE THREAD, and
TERMINATE IDENTIFY. This example does not show a task that waits on the DB2
termination ECB. You can code such a task and use the z/OS WAIT macro to
monitor the ECB. The task that waits on the termination ECB should detach the
sample code if the termination ECB is posted. That task can also wait on the DB2
startup ECB. This example waits on the startup ECB at its own task level.

152 Application Programming and SQL Guide

KhkkRhRrIRIF*hrxhrhrrdrhrxkxx [DENTIFY *xdrdhrrdhrhrrhrhrrhrhrrhrrrrhrhss

L R15,LIRLI

Get the Language Interface address

CALL (15),(IDFYFN,SSNM,RIBPTR,EIBPTR, TERMECB,STARTECB),VL,MF=X
(E,RRSAFCLL)
BAL R14,CHEKCODE Call a routine (not shown) to check
* return and reason codes
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not 'CONTINUE', stop Toop
USING R8,RIB Prepare to access the RIB
L R8,RIBPTR Access RIB to get DB2 release level
| CLC RIBREL,RIBR999 DB2 V10 or later?
| BE USERELX If RIBREL = '999', use RIBRELX
WRITE 'The current DB2 release level is' RIBREL
| B SIGNON Continue with signon
USERELX WRITE 'The current DB2 release level is' RIBRELX

hhkkkhkkkkhhkkkhrkxkhrkxkhrkrkkkhkxx STOGNON ***xkkhrkkdkhrrkkhrkrkhhkrkkhhkkkhrkxkh k%

SIGNON L R15,LIRLI
CALL
BAL R14,CHEKCODE

Get the Language Interface address

(15), (SGNONFN,CORRID,ACCTTKN,ACCTINT),VL,MF=(E,RRSAFCLL)

Check the return and reason codes

kkkrkkkkhrrrrhrxkrrrrkrxkkx CREATE THREAD #***kkkkkhkrhbkhhhhrrhrhrrhrhss

L R15,LIRLI
CALL

BAL R14,CHEKCODE

Get the Language Interface address

(15) , (CRTHRDFN,PLAN,COLLID,REUSE),VL,MF=(E,RRSAFCLL)

Check the return and reason codes

Kkhkhkhkhkhkhkhkhhhkhhkhkkhkhkkkkkkkkkxkkxx SQL B e T T T T T T

* Ok kX X

section.

*kkkkkkkkkkkkkkkxkxxxxxxx TERMINATE THREAD

Insert your SQL calls here.
generates calls to entry point DSNHLI.
code a dummy entry point of that name to intercept
all SQL calls.

The DB2 Precompiler
You should

A dummy DSNHLI is shown in the following

CLC CONTROL,CONTINUE Is everything still OK?

BNE EXIT If CONTROL not 'CONTINUE', shut down
L R15,LIRLI Get the Language Interface address
CALL (15), (TRMTHDFN),VL,MF=(E,RRSAFCLL)

BAL R14,CHEKCODE Check the return and reason codes

*kkkrkkrkhrrrxhxkkxrxrxkxx [ERMINATE IDENTIFY #****kxkkxshrhhrkhrhhrhrrhrkhrs

CLC CONTROL,CONTINUE Is everything still OK

BNE EXIT If CONTROL not 'CONTINUE', stop loop
L R15,LIRLI Get the Language Interface address
CALL (15), (TMIDFYFN),VL,MF=(E,RRSAFCLL)

BAL R14,CHEKCODE Check the return and reason codes

| Universal language interface

I The universal language interface (DSNULI) subcomponent determines the runtime
[environment and dynamically loads and branches to the appropriate language

| interface module.

I The following figure shows the general structure of DSNULI and a program that

| uses it:

Chapter 2. Connecting to DB2 from your application program 153

DSNALI

CAF
DSNALI
Appl. Program or DSNHLI2
stored procedure
DSNWLI2
DSNULI
DSNRLI
H» DSNALI RRSAF
—» DSNRLI ’ > DSNRLI
DSNHLIR
DSNHLI2
= DSNHLIR DSNWLIR
DSNHLI \' |
’ DSNELI
TSO
DSNWLI2
= DSNWLIR DSNHLI
DSNWLI |
| DSNWLI
DSNCLI
‘ CICS
| DSNHLI
| DSNWLI

Figure 4. Application program or stored procedure linked with DSNULI

DSNULI has no aliases. The module has nine entry points: DSNALI, DSNRLI,
DSNCLI, DSNHLI, DSNHLI2, DSNHLIR, DSNWLI, DSNWLI2, and DSNWLIR.
DSNULI will dynamically load and branch to the appropriate language interface
module, based on the entry point name (for attachment-specific entry points), or

based on the current environment (for the generic entry points DSNHLI and

DSNWLI).

* Entry point DSNALI handles explicit DB2 Call Attach Facility connection service
requests.

* Entry point DSNRLI handles explicit DB2 Resource Recovery Services Attach
Facility connection service requests.

* Entry point DSNCLI is provided for link-editing with CICS

» DSNHLI, DSNHLI2, and DSNHLIR handle SQL calls. DSNHLI2 is an explicit
SQL call via the Call Attachment Facility. DSNHLIR is an explicit SQL call via
the Resource Recovery Services Attachment Facility. They are provided for
compatibility only. Applications designed to run in any environment should use
the generic entry point, DSNHLI.

154 Application Programming and SQL Guide

¢ DSNWLI, DSNWLI2, DSNWLIR handle IFI calls. DSNWLI2 is an explicit IFI call
via the Call Attachment Facility. DSNWLIR is an explicit IFI call via the
Resource Recovery Services Attachment Facility. They are provided for
compatibility only. Applications designed to run in any environment should use
the generic entry point, DSNWLI.

Link-editing an application with DSNULI

To create a single load module that can be used in more than one attachment
environment, you can link-edit your program or stored procedure with the
Universal Language Interface module (DSNULI) instead of with one of the
environment-specific language interface modules (DSNELI, DSNALI, DSNRLI, or
DSNCLI).

DSNULI should be link-edited with TSO, CAF, RRSAF applications (including
Stored Procedures), and CICS applications. DSNULI does not support dynamic
loading or IMS applications. DSNULI determines the run time environment, then

dynamically loads and branches to the appropriate language interface module
(DSNELIL, DSNALI, DSNRLI, or DSNCLI).

Considerations:

 If maximum performance is the primary requirement, link-edit with DSNELI,
DSNALI DSNRLI, or DSNCLI rather than DSNULIL If maintaining a single copy
of a load module is the primary requirement, link-edit with DSNULI.

* If CAF implicit connect functionality is required, link-edit your application with
DSNALI instead of with DSNULI. DSNULI defaults to RRSAF implicit
connections if an attachment environment has not been established upon entry
to DSNHLI. Attachment environments are established by calling DSNRLI or
DSNALI initially, or by running an SQL application under the TSO command
processor or under CICS.

¢ DSNULI will not explicitly delete the loaded DSNELI, DSNALI, DSNRLI or
DSNCLL If an application cannot tolerate having these modules deleted only at
task termination, use DSNELI, DSNALI, DSNRLI or DSNCLI instead of
DSNULL

* DSNULI is shipped with the linkage attributes AMODE(31) and RMODE(ANY)
and must be entered in AMODE(31).

To link-edit an application with DSNULI:

You can include DSNULI when you link-edit your load module. For example, you
can use a linkage editor control statement like this in your JCL:

INCLUDE SYSLIB(DSNULI)

By coding this statement, you avoid linking to one of the environment-specific
language interface modules.

Controlling the CICS attachment facility from an application

Use the CICS attachment facility to access DB2 from CICS application programs.

You can start and stop the CICS attachment facility from within an application
program.

To control the CICS attachment facility:

1. To start the CICS attachment facility, perform one of the following actions:

Chapter 2. Connecting to DB2 from your application program 155

* Include the following statement in your application:
EXEC CICS LINK PROGRAM('DSN2COMO')

* Use the system programming interface SET DB2CONN for the CICS
Transaction Server.

2. To stop the CICS attachment facility, perform one of the following actions:
¢ Include the following statement in your application:
EXEC CICS LINK PROGRAM('DSN2COM2')

* Use the system programming interface SET DB2CONN for the CICS
Transaction Server.

Related information:

[[SET DB2CONN (CICS Transaction Server for z/OS)

Detecting whether the CICS attachment facility is operational

Before you execute SQL statements in a CICS program, you should determine if
the CICS attachment facility is available. You do not need to do this test if the
CICS attachment facility is started and you are using standby mode.

When an SQL statement is executed, and the CICS attachment facility is in standby
mode, the attachment issues SQLCODE -923 with a reason code that indicates that
DB2 is not available.

To detect whether the CICS attachment facility is operational:

Use the INQUIRE EXITPROGRAM command for the CICS Transaction Server in
your application.

The following example shows how to use this command. In this example, the
INQUIRE EXITPROGRAM command tests whether the resource manager for SQL,
DSNCSQL, is up and running. CICS returns the results in the EIBRESP field of the
EXEC interface block (EIB) and in the field whose name is the argument of the
CONNECTST parameter (in this case, STST). If the EIBRESP value indicates that
the command completed normally and the STST value indicates that the resource
manager is available, you can then execute SQL statements.

STST DS F

ENTNAME DS CL8
EXITPROG DS CL8

MVC ENTNAME,=CL8'DSNCSQL'
MVC EXITPROG,=CL8'DSN2EXT1'
EXEC CICS INQUIRE EXITPROGRAM(EXITPROG) X
ENTRYNAME (ENTNAME) CONNECTST(STST) NOHANDLE
CLC EIBRESP,DFHRESP(NORMAL)
BNE NOTREADY
CLC STST,DFHVALUE (CONNECTED)
BNE NOTREADY
UPNREADY DS OH
attach is up
NOTREADY DS OH
attach is not up yet

If you use the INQUIRE EXITPROGRAM command to avoid AEY9 abends and the
CICS attachment facility is down, the storm drain effect can occur. The storm drain
effect is a condition that occurs when a system continues to receive work, even
though that system is down.

Related concepts:

[[Storm-drain effect (DB2 Installation and Migration)|

156 Application Programming and SQL Guide

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha8/commands/dfha8_setdb2conn.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_stormdraineffectds.dita

Related information:
[# [NQUIRE EXITPROGRAM (CICS Transaction Server for z/OS)|
[[923 (DB2 Codes)|

Improving thread reuse in CICS applications

Having transactions reuse threads is generally recommended because each thread
creation is associated with a high processor cost.

To improve thread reuse in CICS applications:

Close all cursors that are declared with the WITH HOLD option before each sync
point. DB2 does not automatically close them. A thread for an application that
contains an open cursor cannot be reused. You should close all cursors
immediately after you finish using them.

Related concepts:

[“Held and non-held cursors” on page 725|

Chapter 2. Connecting to DB2 from your application program 157

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha8/commands/dfha8_inquireexitprogram.html
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/n923.dita

158 Application Programming and SQL Guide

Chapter 3. Coding SQL statements in application programs:
General information

A query is an SQL statement that returns data from a DB2 database. Your program
can communicate this SQL statement to DB2 in one of several ways. After
processing the statement, DB2 issues a return code, which your program should
then test to determine the result of the operation.

To include DB2 queries in an application program:

1.

7.
8.

Choose one of the following methods for communicating with DB2:

e Static SQL

¢ Embedded dynamic SQL

* Open Database Connectivity (ODBC)

* JDBC application support

* SQLJ application support

ODBC lets you access data through ODBC function calls in your application.
You execute SQL statements by passing them to DB2 through a ODBC function
call. ODBC eliminates the need for precompiling and binding your application
and increases the portability of your application by using the ODBC interface.

If you are writing your applications in Java, you can use JDBC application
support to access DB2. JDBC is similar to ODBC but is designed specifically for
use with Java. In addition to using JDBC, you can use SQL]J application support
to access DB2. SQLJ is designed to simplify the coding of DB2 calls for Java
applications.

Optional: Declare the tables and views that you use. You can use DCLGEN to
generate these declarations.

Define the items that your program can use to check whether an SQL statement
executed successfully. You can either define an SQL communications area
(SQLCA) or declare SQLSTATE and SQLCODE host variables.

Define at least one SQL descriptor area (SQLDA).

Declare any of the following data items for passing data between DB2 and a
host language:

* host variables
* host variable arrays
e host structures

Ensure that you use the appropriate data types.

Code SQL statements to access DB2 data. Ensure that you delimit these
statements properly.

Consider using cursors to select a set of rows and then process the set either
one row at a time or one rowset at a time.

Check the execution of the SQL statements.
Handle any SQL error codes.

Related concepts:

[+ [ntroduction to DB2 ODBC (DB2 Programming for ODBC)|

[+ [IDBC application programming (DB2 Application Programming for Java)

[+ [SQLJ application programming (DB2 Application Programming for Java)|

© Copyright IBM Corp. 1983, 2014 159

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.odbc/src/tpc/db2z_hdint.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.java/src/tpc/imjcc_c0052041.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.java/src/tpc/imjcc_c0052042.dita

Related tasks:
[‘Delimiting an SQL statement” on page 183

[“Including dynamic SQL in your program” on page 193|

[‘Retrieving a set of rows by using a cursor” on page 722|

[+ [Programming applications for performance (DB2 Performance)|

Declaring table and view definitions

Before your program issues SQL statements that select, insert, update, or delete
data, the program needs to declare the tables and views that those statements
access.

Your program is not required to declare tables or views, but doing so offers the
following advantages:

* Clear documentation in the program

The declaration specifies the structure of the table or view and the data type of
each column. You can refer to the declaration for the column names and data
types in the table or view.

* Assurance that your program uses the correct column names and data types

The DB2 precompiler uses your declarations to make sure that you have used
correct column names and data types in your SQL statements. The DB2
precompiler issues a warning message when the column names and data types
in SQL statements do not correspond to the table and view declarations in your
program.

To declare table and view definitions:

Perform one of the following actions:

¢ Include an SQL DECLARE TABLE statement in your program. Specify the name
of the table or view and list each column and its data type.

When you declare a table or view that contains a column with a distinct type,
declare that column with the source type of the distinct type rather than with
the distinct type itself. When you declare the column with the source type, DB2
can check embedded SQL statements that reference that column at precompile
time.

In a COBOL program, code the DECLARE TABLE statement in the
WORKING-STORAGE SECTION or LINKAGE SECTION within the DATA
DIVISION.

Example DECLARE statement in a COBOL program: The following DECLARE
TABLE statement in a COBOL program defines the DSN8A10.DEPT table:

EXEC SQL

DECLARE DSN8A10.DEPT TABLE
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16))

END-EXEC.

¢ Use DCLGEN, the declarations generator that is supplied with DB2, to create
these declarations for you and then include them in your program.

Restriction: You can use DCLGEN for only C, COBOL, and PL/I programs.

160 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_programapplicationperformance.dita

Related reference:

(% [DECLARE TABLE (DB2 SQL)|

DCLGEN (declarations generator)

Your program should declare the tables and views that it accesses. The DB2
declarations generator, DCLGEN, produces these DECLARE statements for C,
COBOL, and PL/I programs, so that you do not need to code the statements
yourself. DCLGEN also generates corresponding host variable structures.

DCLGEN generates a table or view declaration and puts it into a member of a
partitioned data set that you can include in your program. When you use
DCLGEN to generate a table declaration, DB2 gets the relevant information from
the DB2 catalog. The catalog contains information about the table or view
definition and the definition of each column within the table or view. DCLGEN
uses this information to produce an SQL DECLARE TABLE statement for the table
or view and a corresponding PL/I or C structure declaration or COBOL record
description.

Related reference:

[# [DCLGEN (DECLARATIONS GENERATOR) (DSN) (DB2 Commands)

Generating table and view declarations by using DCLGEN

Your program should declare the tables and views that it accesses. For C, COBOL,
and PL/I programs, you can use DCLGEN to produce these declarations, so that
you do not need to code the statements yourself. DCLGEN also generates
corresponding host variable structures.

Requirements:

* DB2 must be active before you can use DCLGEN.

* You can use DCLGEN for table declarations only if the table or view that you
are declaring already exists.

* If you use DCLGEN, you must use it before you precompile your program.

To generate table and view declarations by using DCLGEN:
1. Invoke DCLGEN by performing one of the following actions:

* To start DCLGEN from ISPF through DB2I: Select the DCLGEN option on
the DB2I Primary Option Menu panel. Then follow the detailed instructions
for generating table and view declarations by using DCLGEN from DB2L.

* To start DCLGEN directly from TSO: Sign on to TSO, issue the TSO
command DSN, and then issue the subcommand DCLGEN.

* To start DCLGEN directly from a CLIST: From a CLIST, running in TSO
foreground or background, issue DSN and then DCLGEN.

¢ To start DCLGEN with JCL: Supply the required information in JCL and run
DCLGEN in batch. Use the sample jobs DSNTEJ2C and DSNTE]2P in the
prefix. SDSNSAMP library as models.

Requirement: If you want to start DCLGEN in the foreground and your
table names include DBCS characters, you must provide and display
double-byte characters. If you do not have a terminal that displays DBCS
characters, you can enter DBCS characters by using the hex mode of ISPF
edit.

DCLGEN creates the declarations in the specified data set.

Chapter 3. Coding SQL statements in application programs: General information ~ 161

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_declaretable.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_cmd_dclgen.dita

DCLGEN generates a table or column name in the DECLARE statement as a
non-delimited identifier unless at least one of the following conditions is true:
* The name contains special characters and is not a DBCS string.

* The name is a DBCS string, and you have requested delimited DBCS names.

2. If you use an SQL reserved word as an identifier, edit the DCLGEN output to
add the appropriate SQL delimiters.

3. Make any other necessary edits to the DCLGEN output.

DCLGEN produces output that is intended to meet the needs of most users,
but occasionally, you need to edit the DCLGEN output to work in your specific
case. For example, DCLGEN is unable to determine whether a column that is
defined as NOT NULL also contains the DEFAULT clause, so you must edit the
DCLGEN output to add the DEFAULT clause to the appropriate column
definitions.

DCLGEN produces declarations based on the encoding scheme of the source
table. Therefore, if your application uses a different encoding scheme, you
might need to manually adjust the declarations. For example, if your source
table is in EBCDIC with CHAR columns and your application is in COBOL,
DCLGEN produces declarations of type PIC X. However, suppose your host
variables in your COBOL application are UTF-16. In this case, you will need to
manually change the declarations to be type PIC N USAGE NATIONAL.

Related reference:

[# DCLGEN (DECLARATIONS GENERATOR) (DSN) (DB2 Commands)|

[# [DSN (TSO) (DB2 Commands)|
(& [Reserved words (DB2 SQL)

Generating table and view declarations by using DCLGEN from
DB2I

DCLGEN generates table and view declarations and the corresponding variable
declarations for C, COBOL, and PL/I programs so that you do not need to code
these statements yourself. The easiest way to start DCLGEN is through DB2I.

To generate table and view declarations by using DCLGEN from DB2I:

1. From the DB2I Primary Option Menu panel, select the DCLGEN option. The
following DCLGEN panel is displayed:

162 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_cmd_dclgen.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_cmd_dsn.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_reservedwords.dita

.

DSNEDPO1 DCLGEN SSID: DSN h
===>

Enter table name for which declarations are required:

1 SOURCE TABLE NAME ===>

2 TABLE OWNER ===

3 AT LOCATION === (Optional)

Enter destination data set: (Can be sequential or partitioned)

4 DATA SET NAME ... ===

5 DATA SET PASSWORD === (If password protected)
Enter options as desired:

6 ACTION ===> ADD (ADD new or REPLACE old declaration)

7 COLUMN LABEL ===> NO (Enter YES for column label)

8 STRUCTURE NAME .. ===> (Optional)

9 FIELD NAME PREFIX === (Optional)

10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)

11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)

12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)

13 ADDITIONAL OPTIONS===> YES (Enter YES to change additional options)
PRESS: ENTER to process END to exit HELP for more information)

Figure 5. DCLGEN panel

2.

Complete the following fields on the DCLGEN panel:
1 SOURCE TABLE NAME

Is the unqualified name of the table, view, or created temporary table
for which you want DCLGEN to produce SQL data declarations. The
table can be stored at your DB2 location or at another DB2 location. To
specify a table name at another DB2 location, enter the table qualifier in
the TABLE OWNER field and the location name in the AT LOCATION
field. DCLGEN generates a three-part table name from the SOURCE
TABLE NAME, TABLE OWNER, and AT LOCATION fields. You can
also use an alias for a table name.

To specify a table name that contains special characters or blanks,
enclose the name in apostrophes. If the name contains apostrophes, you
must double each one('). For example, to specify a table named DON'S
TABLE, enter the following text:

'DON''S TABLE'

The underscore is not handled as a special character in DCLGEN. For
example, the table name JUNE_PROFITS does not need to be enclosed
in apostrophes. Because COBOL field names cannot contain
underscores, DCLGEN substitutes hyphens (-) for single-byte
underscores in COBOL field names that are built from the table name.

You do not need to enclose DBCS table names in apostrophes.

If you do not enclose the table name in apostrophes, DB2 converts
lowercase characters to uppercase.

2 TABLE OWNER

Is the schema qualifier of the source table. If you do not specify this
value and the table is a local table, DB2 assumes that the table qualifier
is your TSO logon ID. If the table is at a remote location, you must
specify this value.

3 AT LOCATION

Is the location of a table or view at another DB2 subsystem. The value
of the AT LOCATION field becomes a prefix for the table name on the
SQL DECLARE statement, as follows: location_name, schema_name,

163

Chapter 3. Coding SQL statements in application programs: General information

table_name For example, if the location name is PLAINS_GA, the
schema name is CARTER, and the table name is CROP_YIELD_89, the
following table name is included in the SQL DECLARE statement:
PLAINS_GA.CARTER.CROP_YIELD_89

The default is the local location name. This field applies to DB2 private
protocol access only. The location must be another DB2 for z/OS
subsystem.

4 DATA SET NAME
Is the name of the data set that you allocated to contain the
declarations that DCLGEN produces. You must supply a name; no
default exists.

The data set must already exist and be accessible to DCLGEN. The data
set can be either sequential or partitioned. If you do not enclose the
data set name in apostrophes, DCLGEN adds a standard TSO prefix
(user ID) and suffix (language). DCLGEN determines the host language
from the DB2I defaults panel.

For example, for library name LIBNAME(MEMBNAME), the name
becomes userid.libname.language(membname) For library name
LIBNAME, the name becomes userid.libname.language.

If this data set is password protected, you must supply the password in
the DATA SET PASSWORD field.

5 DATA SET PASSWORD
Is the password for the data set that is specified in the DATA SET
NAME field, if the data set is password protected. The password is not
displayed on your terminal, and it is not recognized if you issued it
from a previous session.

6 ACTION
Specifies what DCLGEN is to do with the output when it is sent to a
partitioned data set. (The option is ignored if the data set you specify
in the DATA SET NAME field is sequential.) You can specify one of the
following values:

ADD
Indicates that an old version of the output does not exist and
creates a new member with the specified data set name. ADD is the
default.

REPLACE
Replaces an old version, if it already exists. If the member does not
exist, this option creates a new member.

7 COLUMN LABEL
Specifies whether DCLGEN is to include labels that are declared on any
columns of the table or view as comments in the data declarations.
(The SQL LABEL statement creates column labels to use as
supplements to column names.) You can specify one of the following
values:

YES
Include column labels.

NO Ignore column labels. NO is the default.

8 STRUCTURE NAME
Is the name of the generated data structure. The name can be up to 31

164 Application Programming and SQL Guide

characters. If the name is not a DBCS string, and the first character is
not alphabetic, enclose the name in apostrophes. If you use special
characters, be careful to avoid name conflicts.

If you leave this field blank, DCLGEN generates a name that contains
the table or view name with a prefix of DCL. If the language is COBOL
or PL/I and the table or view name consists of a DBCS string, the
prefix consists of DBCS characters.

For C, lowercase characters that you enter in this field are not
converted to uppercase.

9 FIELD NAME PREFIX
Specifies a prefix that DCLGEN uses to form field names in the output.
For example, if you choose ABCDE, the field names generated are
ABCDE1, ABCDE?2, and so on.

You can specify a field name prefix of up to 28 bytes that can include
special and double-byte characters. If you specify a single-byte or
mixed-string prefix and the first character is not alphabetic, enclose the
prefix in apostrophes. If you use special characters, be careful to avoid
name conflicts.

For COBOL and PL/], if the name is a DBCS string, DCLGEN
generates DBCS equivalents of the suffix numbers.

For C, lowercase characters that you enter in this field do not converted
to uppercase.

If you leave this field blank, the field names are the same as the
column names in the table or view.

10 DELIMIT DBCS
Specifies whether DCLGEN is to delimit DBCS table names and column
names in the table declaration. You can specify one of the following
values:

YES
Specifies that DCLGEN is to enclose the DBCS table and column
names with SQL delimiters.

NO Specifies that DCLGEN is not to delimit the DBCS table and
column names.

11 COLUMN SUFFIX
Specifies whether DCLGEN is to form field names by attaching the
column name as a suffix to the value that you specify in FIELD NAME
PREFIX. You can specify one of the following values:

YES
Specifies that DCLGEN is to use the column name as a suffix. For
example, if you specify YES, the field name prefix is NEW, and the
column name is EMPNO, the field name is NEWEMPNO.

If you specify YES, you must also enter a value in FIELD NAME
PREFIX. If you do not enter a field name prefix, DCLGEN issues a
warning message and uses the column names as the field names.

NO Specifies that DCLGEN is not to use the column name as a suffix.
The default is NO.

Chapter 3. Coding SQL statements in application programs: General information ~ 165

12 INDICATOR VARS
Specifies whether DCLGEN is to generate an array of indicator
variables for the host variable structure. You can specify one of the
following values:

YES
Specifies that DCLGEN is to generate an array of indicator
variables for the host variable structure.

If you specify YES, the array name is the table name with a prefix
of I (or DBCS letter <I> if the table name consists solely of
double-byte characters). The form of the data declaration depends
on the language, as shown in the following table. # is the number
of columns in the table.

Table 39. Declarations for indicator variable arrays from DCLGEN

Language Declaration form

C short int Itable-name[n];

COBOL 01 Itable-name PIC S9(4) USAGE COMP
OCCURS n TIMES.

PL/I DCL Itable-name(n) BIN FIXED(15);

For example, suppose that you define the following table:
CREATE TABLE HASNULLS (CHARCOL1 CHAR(1), CHARCOL2 CHAR(1));

If you request an array of indicator variables for a COBOL
program, DCLGEN might generate the following host variable

declaration:

01 DCLHASNULLS.
10 CHARCOLL PIC X(1).
10 CHARCOL2 PIC X(1).

01 TIHASNULLS PIC S9(4) USAGE COMP OCCURS 2 TIMES.

NO Specifies that DCLGEN is not to generate an array of indicator
variables. The default is NO.

13 ADDITIONAL OPTIONS
Indicates whether to display the panel for additional DCLGEN options,
including the break point for statement tokens and whether to generate
DECLARE VARIABLE statements for FOR BIT DATA columns. You can
specify YES or NO. The default is YES.

If you specified YES in the ADDITIONAL OPTIONS field, the following
ADDITIONAL DCLGEN OPTIONS panel is displayed:

DSNEDPO2 ADDITIONAL DCLGEN OPTIONS SSID: DSN

===>

Enter options as desired:
1 RIGHT MARGIN ===> 72 (Enter 72 or 80)

2 FOR BIT DATA ===> NO (Enter YES to declare SQL variables for
FOR BIT DATA columns)

\PRESS: ENTER to process END to exit HELP for more information

Figure 6. ADDITIONAL DCLGEN OPTIONS panel

Otherwise, DCLGEN creates the declarations in the specified data set.

166 Application Programming and SQL Guide

3. If the ADDITIONAL DCLGEN OPTIONS panel is displayed, complete the
following fields on that panel:

1 RIGHT MARGIN

Specifies the break point for statement tokens that must be wrapped to
one or more subsequent records. You can specify column 72 or column

80.

The default is 72.
2 FOR BIT DATA

Specifies whether DCLGEN is to generate a DECLARE VARIABLE

statement for SQL variables for columns that are declared as FOR BIT
DATA. This statement is required in DB2 applications that meet all of
the following criteria:

* are written in COBOL
* have host variables for FOR BIT DATA columns
* are prepared with the SQLCCSID option of the DB2 coprocessor.

You can specify YES or NO. The default is NO.

If the table or view does not have FOR BIT DATA columns, DCLGEN
does not generate this statement.

DCLGEN creates the declarations in the specified data set.

Related reference:

[“DB2I primary option menu” on page 981

[# [CABEL (DB2 SQL)|

Data types that DCLGEN uses for variable declarations

DCLGEN produces declarations for tables and views and the corresponding host
variable structures for C, COBOL, and PL/I programs. DCLGEN derives the
variable names and data types for these declarations based on the source tables in

the database.

The following table lists the C, COBOL, and PL/I data types that DCLGEN uses
for variable declarations based on the corresponding SQL data types that are used
in the source tables. var represents a variable name that DCLGEN provides.

Table 40. Type declarations that DCLGEN generates

SQL data type' C COBOL PLN
SMALLINT short int PIC S9(4) USAGE COMP BIN FIXED(15)
INTEGER long int PIC S9(9) USAGE COMP BIN FIXED(31)
DECIMAL(p,s) or decimal(p,s)? PIC S9(p-s)V9(s) USAGE DEC FIXED(p,s)
NUMERIC(p,s) COMP-3

If p>15, the PL/I compiler
must support this precision,
or a warning is generated.

REAL or FLOAT(n) 1 <=n float
<=21

USAGE COMP-1

BIN FLOAT(n)

DOUBLE PRECISION, doubTe USAGE COMP-2 BIN FLOAT(n)
DOUBLE, or FLOAT(n)

CHAR(1) char PIC X(1) CHAR(1)
CHAR(n) char var [n+1] PIC X(n) CHAR(n)

Chapter 3. Coding SQL statements in application programs: General information 167

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_label.dita

Table 40. Type declarations that DCLGEN generates (continued)

SQL data type' C COBOL PL/1
VARCHAR(n) struct 10 var. CHAR(n) VAR
{short int var_len; 49 var_LEN PIC 9(4)
char var_data[n]; USAGE COMP.
} var; 49 var _TEXT PIC X(n).
CLOB(n)3 SQL TYPE IS CLOB_LOCATOR USAGE SQL TYPE IS SQL TYPE IS CLOB_LOCATOR
CLOB-LOCATOR
GRAPHIC(1) sqldbchar PIC G(1) GRAPHIC(1)
GRAPHIC(n) sqldbchar var[n+1]; PIC G(n) USAGE GRAPHIC (n)
DISPLAY-1.*
n>1 or
PIC N(n).*
VARGRAPHIC(n) struct VARGRAPH 10 var. GRAPHIC(n) VAR
{short Ten; 49 var_LEN PIC 9(4)
sqldbchar data[n]; USAGE COMP.
} var; 49 var_TEXT PIC G(n)
USAGE DISPLAY-1.*
or
10 var.
49 var_LEN PIC 9(4)
USAGE COMP.
49 var_TEXT PIC N(n).*
DBCLOB(n)3 SQL TYPE IS USAGE SQL TYPE IS SQL TYPE IS
DBCLOB_LOCATOR DBCLOB-LOCATOR DBCLOB_LOCATOR
BINARY(n) SQL TYPE IS BINARY(n) USAGE SQL TYPE IS SQL TYPE IS BINARY(n)
BINARY (n)
VARBINARY(n) SQL TYPE IS VARBINARY (n) USAGE SQL TYPE IS SQL TYPE IS VARBINARY(n)
VARBINARY (n)
BLOB(rl)3 SQL TYPE IS BLOB_LOCATOR USAGE SQL TYPE IS SQL TYPE IS BLOB_LOCATOR
BLOB-LOCATOR
DATE char var[11]° PIC X(10)° CHAR(10)°
TIME char var[9]° PIC X(8)° CHAR(8)®
TIMESTAMP char var([27] PIC X(26) CHAR(26)
TIMESTAMP(0) char var([20] PIC X(19) CHAR(19)
TIMESTAMP(p) p > 0 char var[21+p] PIC X(20+p) CHAR(20+p)

TIMESTAMP(0) WITH struct 01 var. DCL var CHAR(147) VAR;
TIME ZONE {short int var_len; 49 var_LEN
char var_data[147]; PIC S9(4) COMP.
} var; 49 var_TEXT
PIC X(147).
TIMESTAMP(p) WITH struct 01 var. DCL var CHAR(148 + p)
TIME ZONE {short int var_len; 49 var_LEN VAR;
char var_data[148 + p]; PIC S9(4) COMP.
} var; 49 var_TEXT
PIC X(148 + p).
ROWID SQL TYPE IS ROWID USAGE SQL TYPE IS ROWID SQL TYPE IS ROWID
BIGINT lTong long int PIC S9(18) USAGE COMP FIXED BIN(63)
XML’ SQL TYPE IS XML AS SQL TYPE IS XML AS SQL TYPE IS XML AS

CLOB(1M)

CLOB(1M)

CLOB(1M)

168 Application Programming and SQL Guide

Table 40. Type declarations that DCLGEN generates (continued)

SQL data type' C COBOL PL/1

Notes:

1. For a distinct type, DCLGEN generates the host language equivalent of the source data type.

2. If your C compiler does not support the decimal data type, edit your DCLGEN output and replace the decimal
data declarations with declarations of type double.

3. For a BLOB, CLOB, or DBCLOB data type, DCLGEN generates a LOB locator.

4. DCLGEN chooses the format based on the character that you specify as the DBCS symbol on the COBOL Defaults
panel.

5. This declaration is used unless a date installation exit routine exists for formatting dates, in which case the length
is that specified for the LOCAL DATE LENGTH installation option.

6. This declaration is used unless a time installation exit routine exists for formatting times, in which case the length
is that specified for the LOCAL TIME LENGTH installation option.

7. The default setting for XML is 1M; however, you might need to adjust it.

Including declarations from DCLGEN in your program

After you use DCLGEN to produce declarations for tables, views, and variables for
your C, COBOL, or PL/I program, you should include these declarations in your
program.

Recommendation: To ensure that your program uses a current description of the
table, use DCLGEN to generate the table's declaration and store it as a member in
a library (usually a partitioned data set) just before you precompile the program.

To include declarations from DCLGEN in your program:

Code the following SQL INCLUDE statement in your program:

EXEC SQL
INCLUDE member-name
END-EXEC.

member-name is the name of the data set member where the DCLGEN output is
stored.

Example: Suppose that you used DCLGEN to generate a table declaration and
corresponding COBOL record description for the table DSN8A10.EMP, and those
declarations were stored in the data set member DECEMP. (A COBOL record
description is a two-level host structure that corresponds to the columns of a
table's row.) To include those declarations in your program, include the following
statement in your COBOL program:

EXEC SQL

INCLUDE DECEMP
END-EXEC.

Related reference:

[[NCLUDE (DB2 SQL)]

Example: Adding DCLGEN declarations to a library

You can use DCLGEN to generate table and variable declarations for C, COBOL,
and PL/I programs. If you store these declarations in a library, you can later
integrate them into your program with a single SQL INCLUDE statement.

Chapter 3. Coding SQL statements in application programs: General information ~ 169

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_include.dita

This example adds a table declaration and a corresponding host-variable structure
to a library. This example is based on the following scenario:

The library name is prefix TEMP.COBOL.

The member is a new member named VPHONE.

The table is a local table named DSN8A10.VPHONE.
The host-variable structure is for COBOL.

The structure receives the default name DCLVPHONE.

Throughout this example, information that you must enter on each panel is in
bold-faced type.

In this scenario, to add a table declaration and a corresponding host variable
structure for DSN8A10.VPHONE to the library prefix TEMP.COBOL, complete the
following steps:

1.

Specify COBOL as the host language by completing the following actions:
a. On the ISPF/PDF menu, select option D to display the DB2I DEFAULTS
PANEL 1 panel.

b. Specify IBMCOB as the application language, as shown in the following figure
and press Enter.

4 N

DSNEOPO1 DB21 DEFAULTS PANEL 1

COMMAND ===>_

Change defaults as desired:

1 DB2 NAMEvvnnnn.. ===> DSN (Subsystem identifier)

2 DB2 CONNECTION RETRIES ===> 0 (How many retries for DB2 connection)

3 APPLICATION LANGUAGE ===> IBMCOB (ASM, C, CPP, IBMCOB, FORTRAN, PLI)

4 LINES/PAGE OF LISTING ===> 80 (A number from 5 to 999)

5 MESSAGE LEVEL ===> 1 (Information, Warning, Error, Severe)

6 SQL STRING DELIMITER ===> DEFAULT (DEFAULT, ' or "

7 DECIMAL POINT ===> , (. or,)

8 STOP IF RETURN CODE >= ===> § (Lowest terminating return code)

9 NUMBER OF ROWS ===> 20 (For ISPF Tables)

10 CHANGE HELP BOOK NAMES?===> NO (YES to change HELP data set names)

11 AS USER ===> (Userid to associate with the trusted

connection)

\\PRESS: ENTER to process END to cancel HELP for more information)

Figure 7. DB2I defaults panel—changing the application language

The DB2I DEFAULTS PANEL 2 panel for COBOL is then displayed.

c. Complete the DB2I DEFAULTS PANEL 2 panel, shown in the following
figure, as needed and press Enter to save the new defaults, if any.

170 Application Programming and SQL Guide

4 N
DSNEOPO2 DB2I DEFAULTS PANEL 2
COMMAND ===>_
Change defaults as desired:
1 DB2I JOB STATEMENT: (Optional if your site has a SUBMIT exit)
===> //ADMFOO1A JOB (ACCOUNT), 'NAME'
===> //*
===> /[
===> //*
COBOL DEFAULTS: (For IBMCOB)
2 COBOL STRING DELIMITER ===> DEFAULT (DEFAULT, " or "
\\3 DBCS SYMBOL FOR DCLGEN ===> G (G/N - Character in PIC clause))

Figure 8. The COBOL defaults panel. Shown only if the field APPLICATION LANGUAGE on the DB2I DEFAULTS
PANEL | panel is IBMCOB.

The DB2I Primary Option menu is displayed.

Generate the table and host structure declarations by completing the following
actions:

a. On the DB2I Primary Option menu, select the DCLGEN option and press
Enter to display the DCLGEN panel.

b. Complete the fields as shown in the following figure and press Enter.

-

4 N

DSNEDPO1 DCLGEN SSID: DSN

S==5)

Enter table name for which declarations are required:

1 SOURCE TABLE NAME ===> DSN8A10.VPHONE

2 TABLE OWNER ===>

3 AT LOCATION ===> (Optional)

Enter destination data set: (Can be sequential or partitioned)

4 DATA SET NAME ... ===> TEMP(VPHONEC)

5 DATA SET PASSWORD ===> (If password protected)

Enter options as desired:

6 ACTION ===> ADD (ADD new or REPLACE old declaration)

7 COLUMN LABEL NO (Enter YES for column Tabel)

8 STRUCTURE NAME .. ===> (Optional)

9 FIELD NAME PREFIX ===> (Optional)

10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)

11 COLUMN SUFFIX ... NO (Enter YES to append column name)

12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)

13 ADDITIONAL OPTIONS===> NO (Enter YES to change additional options)
PRESS: ENTER to process END to exit HELP for more information)

Figure 9. DCLGEN panel—selecting source table and destination data set

A successful completion message, such as the one in the following figure, is
displayed at the top of your screen.

DSNE9O5I EXECUTION COMPLETE

*k%k

, MEMBER VPHONEC ADDED

Figure 10. Successful completion message

DB2 again displays the DCLGEN screen, as shown in the following figure.

171

Chapter 3. Coding SQL statements in application programs: General information

DSNEDPO1 DCLGEN SSID: DSN
===>
Enter table name for which declarations are required:

1 SOURCE TABLE NAME ===> DSN8A10.VPHONE

2 TABLE OWNER ===>

3 AT LOCATION ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)

4 DATA SET NAME ... ===> TEMP(VPHONEC)

5 DATA SET PASSWORD ===> (If password protected)
Enter options as desired:

6 ACTION ===> ADD (ADD new or REPLACE old declaration)

7 COLUMN LABEL ===> NO (Enter YES for column label)

8 STRUCTURE NAME .. ===> (Optional)

9 FIELD NAME PREFIX ===> (Optional)

10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)

12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)

13 ADDITIONAL OPTIONS===> NO (Enter YES to change additional options)
PRESS: ENTER to process END to exit HELP for more information

Figure 11. DCLGEN panel—displaying system and user return codes

c. Press Enter to return to the DB2I Primary Option menu.
3. Exit from DB2L

4. Examine the DCLGEN output by selecting either the browse or the edit option
from the ISPF/PDF menu to view the results in the specified data set member.

For this example, the data set to edit is prefix. TEMP.COBOL(VPHONEC). This
data set member contains the following information.

**x*x%% DCLGEN TABLE(DSN8A10.VPHONE) *kk
KKK LIBRARY (SYSADM.TEMP.COBOL (VPHONEC)) Hkk
*kkkK QUOTE *kKk

%%%% .., IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS #%
EXEC SQL DECLARE DSN8A10.VPHONE TABLE

(LASTNAME VARCHAR(15) NOT NULL,
FIRSTNAME VARCHAR(12) NOT NULL,
MIDDLEINITIAL CHAR(1) NOT NULL,
PHONENUMBER VARCHAR(4) NOT NULL,
EMPLOYEENUMBER CHAR(6) NOT NULL,

DEPTNUMBER CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL

) END-EXEC.

#xx#% COBOL DECLARATION FOR TABLE DSN8A10.VPHONE —

01 DCLVPHONE.

10 LASTNAME.
49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 FIRSTNAME.
49 FIRSTNAME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNAME-TEXT PIC X(12).

10 MIDDLEINITIAL PIC X(1).

10 PHONENUMBER.
49 PHONENUMBER-LEN PIC S9(4) USAGE COMP.
49 PHONENUMBER-TEXT PIC X(4).

10 EMPLOYEENUMBER PIC X(6).
10 DEPTNUMBER PIC X(3).
10 DEPTNAME.
49 DEPTNAME-LEN PIC S9(4) USAGE COMP.

49 DEPTNAME-TEXT PIC X(36).
*x+%%% THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 7 ##sk*xx

You can now pull these declarations into your program by using an SQL
INCLUDE statement.

172 Application Programming and SQL Guide

Defining the items that your program can use to check whether an
SQL statement executed successfully

If your program contains SQL statements, the program should define some
infrastructure so that it can check whether the statements executed successfully.
You can either include an SQL communications area (SQLCA), which contains
SQLCODE and SQLSTATE variables, or declare individual SQLCODE and
SQLSTATE host variables.

Whether you define the SQLCODE or SQLSTATE variables or an SQLCA in your
program depends on what you specify for the SQL processing option STDSQL.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

Related tasks:

“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler’|

on page 253|

“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page|
D73

“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL"]

on page 323|

“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran’]

on page 395|
“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/1” on|
page 407

“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on|
page 437

Related reference:

[“Descriptions of SQL processing options” on page 932|
[[Description of SQLCA fields (DB2 SQL)|

[# [NCLUDE (DB2 SQL)|

[[The REXX SQLCA (DB2 SQL)|

Defining SQL descriptor areas

If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

If your program includes any of the following statements, you must include an
SQLDA in your program:

e CALL ... USING DESCRIPTOR descriptor-name

* DESCRIBE statement-name INTO descriptor-name

* DESCRIBE CURSOR host-variable INTO descriptor-name

* DESCRIBE INPUT statement-name INTO descriptor-name

* DESCRIBE PROCEDURE host-variable INTO descriptor-name

* DESCRIBE TABLE host-variable INTO descriptor-name

* EXECUTE ... USING DESCRIPTOR descriptor-name

Chapter 3. Coding SQL statements in application programs: General information ~ 173

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_include.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_therexxsqlca.dita

e FETCH ... INTO DESCRIPTOR descriptor-name
e OPEN ... USING DESCRIPTOR descriptor-name
e PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name.

To define SQL descriptor areas:

Take the actions that are appropriate for the programming language that you use.
Related tasks:
[“Defining SQL descriptor areas in assembler” on page 254|

“Defining SQL descriptor areas in C” on page 274|
“Defining SQL descriptor areas in COBOL” on page 324|
“Defining SQL descriptor areas in Fortran” on page 396|
“Defining SQL descriptor areas in PL/I” on pagem
[“Defining SQL descriptor areas in REXX” on page 437
Related reference:

[“Descriptions of SQL processing options” on page 932
[[Description of SQLCA fields (DB2 SQL)

[[SQL descriptor area (SQLDA) (DB2 SQL)|

[[The REXX SQLCA (DB2 SQL)|

Declaring host variables and indicator variables

You can use host variables and indicator variables in SQL statements in your
program to pass data between DB2 and your application.

To declare host variables, host variable arrays, and host structures:

Use the techniques that are appropriate for the programming language that you
use.

Related tasks:

[“Accessing data by using a rowset-positioned cursor” on page 731|

“Determining whether a retrieved value in a host variable is null or truncated” on|

page 18§|

Related reference:

[“Descriptions of SQL processing options” on page 932|

Host variables

Use host variables to pass a single data item between DB2 and your application.

A host variable is a single data item that is declared in the host language to be used
within an SQL statement. You can use host variables in application programs that
are written in the following languages: assembler, C, C++, COBOL, Fortran, and
PL/I to perform the following actions:

* Retrieve data into the host variable for your application program's use

* Place data into the host variable to insert into a table or to change the contents
of a row

174 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_therexxsqlca.dita

* Use the data in the host variable when evaluating a WHERE or HAVING clause

* Assign the value that is in the host variable to a special register, such as
CURRENT SQLID and CURRENT DEGREE

* Insert null values into columns by using a host indicator variable that contains a
negative value

 Use the data in the host variable in statements that process dynamic SQL, such
as EXECUTE, PREPARE, and OPEN

Related concepts:

[“Rules for host variables in an SQL statement” on page 183

Related reference:

“Host variables in assembler” on page 255|

“Host variables in C” on page 275|
“Host variables in COBOL” on paw
“Host variables in Fortran” on page 397|
[“Host variables in PL/1” on page 409

Host variable arrays

Use host variable arrays to pass a data array between DB2 and your application.

A host variable array is a data array that is declared in the host language to be used
within an SQL statement. You can use host variable arrays to perform the
following actions:

* Retrieve data into host variable arrays for your application program's use
* Place data into host variable arrays to insert rows into a table

You typically define host variable arrays for use with multiple-row FETCH,
INSERT, and MERGE statements.

Related concepts:

[“Host variable arrays in an SQL statement” on page 191
Related tasks:
[“Inserting multiple rows of data from host variable arrays” on page 192|

[‘Retrieving multiple rows of data into host variable arrays” on page 192

Related reference:

[‘Host variable arrays in C” on page 287
[‘Host variable arrays in COBOL” on page 335|
[‘Host variable arrays in PL/1” on page 415|

Host structures

Use host structures to pass a group of host variables between DB2 and your
application.

A host structure is a group of host variables that can be referenced with a single
name. You can use host structures in all host languages except REXX. You define
host structures with statements in the host language. You can refer to a host
structure in any context where you want to refer to the list of host variables in the
structure. A host structure reference is equivalent to a reference to each of the host
variables within the structure in the order in which they are defined in the
structure declaration. You can also use indicator variables (or indicator structures)
with host structures.

Related tasks:

Chapter 3. Coding SQL statements in application programs: General information ~ 175

[‘Retrieving a single row of data into a host structure” on page 193

Related reference:

[‘Host structures in C” on page 295|
“Host structures in COBOL” on page 344|
“Host structures in PL/1” on page 420|

Indicator variables, arrays, and structures

An indicator variable is associated with a particular host variable. Each indicator
variable contains a small integer value that indicates some information about the
associated host variable. Indicator arrays and structures serve the same purpose for
host variable arrays and structures.

You can use indicator variables to perform the following actions:

* Determine whether the value of an associated output host variable is null or
indicate that the value of an input host variable is null

* Determine the original length of a character string that was truncated when it
was assigned to a host variable

* Determine that a character value could not be converted when it was assigned
to a host variable

* Determine the seconds portion of a time value that was truncated when it was
assigned to a host variable

¢ Indicate that the target column of the host variable is to be set to its defined
DEFAULT value, or that the host variable's value is UNASSIGNED and its target
column is to be treated as if it had not appeared in the statement.

You can use indicator variable arrays and indicator structures to perform these
same actions for individual items in host data arrays and structures.

If you provide an indicator variable for the variable X, when DB2 retrieves a null
value for X, it puts a negative value in the indicator variable and does not update
X. Your program should check the indicator variable before using X. If the
indicator variable is negative, you know that X is null and any value that you find
in X is irrelevant. When your program uses variable X to assign a null value to a
column, the program should set the indicator variable to a negative number. DB2
then assigns a null value to the column and ignores any value in X.

An indicator variable array contains a series of small integers to help you
determine the associated information for the corresponding item in a host data
array. When you retrieve data into a host variable array, you can check the values
in the associated indicator array to determine how to handle each data item. If a
value in the associated indicator array is negative, you can disregard the contents
of the corresponding element in the host variable array. Values in indicator arrays
have the following meanings:

On output to the application, the normal indicator variable can contain the
following values:

0 A 0 (zero), or positive value of the indicator variable specifies that the first
host-identifier provides the value of this host variable reference.

-1 A -1 value indicates that the value that was selected was the null value.

-2 A -2 value of the indicator variable indicates that a numeric conversion

error (such as a divide by 0 or overflow) has occurred. Or indicates a null
result because of character string conversion warnings.

176 Application Programming and SQL Guide

-3 A -3 value of the indicator variable indicates that no value was returned. A
-3 value of the indicator variable can also indicate a null result because the

cursor's current row is on a hole that was detected during a multiple row
FETCH.

positive integer
If the indicator variable contains a positive integer, the retrieved value is
truncated, and the integer is the original length of the string.

positive integer
The seconds portion of a time if the time is truncated on assignment to a
host variable.

On input to DB2, normal indicator variables or extended indicator variables can
contain the following values:

0, or positive integer
Specifies a non-null value. A 0 (zero), or positive value of the indicator
variable specifies that the first host-identifier provides the value of this
host variable reference.

-1, -2, -3, -4, -6
Specifies a null value.

-5

¢ If the extended indicator variable is not enabled, a -5 value specifies the
NULL value.

* If the extended indicator variable is enabled, a -5 value specifies the
DEFAULT value. A -5 value specifies that the target column for this host
variable is to be set to its DEFAULT value.

-7

* If the extended indicator variable is not enabled, a -7 value specifies the
NULL value.

* If the extended indicator variable is enabled, a -7 value specifies the an
UNASSIGNED value. A -7 value specifies that the target column for this
host variable is to be treated as if it hadn't been specified in the
statement.

An indicator structure is an array of halfword integer variables that supports a
specified host structure. If the column values that your program retrieves into a
host structure can be null, you can attach an indicator structure name to the host
structure name. This name enables DB2 to notify your program about each null
value it returns to a host variable in the host structure.

Related concepts:

[“Holes in the result table of a scrollable cursor” on page 741|
Related tasks:

[“Executing SQL statements by using a rowset cursor” on page 733|

Related reference:

“Indicator variables in assembler” on page 260

“Indicator variables, indicator arrays, and host structure indicator arrays in C” on|

page 297
“Indicator variables, indicator arrays, and host structure indicator arrays in|
COBOL” on page 349|

“Indicator variables in Fortran” on page 400

Chapter 3. Coding SQL statements in application programs: General information 177

[“Indicator variables in PL/1” on page 422|

Setting the CCSID for host variables

All DB2 string data, other than binary data, has an encoding scheme and a coded
character set ID (CCSID) associated with it. You can associate an encoding scheme
and a CCSID with individual host variables. Any data in those host variable is
then associated with that encoding scheme and CCSID.

To set the CCSID for host variables:

Specify the DECLARE VARIABLE statement after the corresponding host variable
declaration and before your first reference to that host variable.

This statement associates an encoding scheme and a CCSID with individual host
variables. You can use this statement in static or dynamic SQL applications.

Restriction: You cannot use the DECLARE VARIABLE statement to control the
CCSID and encoding scheme of data that you retrieve or update by using an
SQLDA.

The DECLARE VARIABLE statement has the following effects on a host variable:

* When you use the host variable to update a table, the local subsystem or the
remote server assumes that the data in the host variable is encoded with the
CCSID and encoding scheme that the DECLARE VARIABLE statement assigns.

* When you retrieve data from a local or remote table into the host variable, the
retrieved data is converted to the CCSID and encoding scheme that are assigned
by the DECLARE VARIABLE statement.

Suppose that you are writing a C program that runs on a DB2 for z/OS subsystem.
The subsystem has an EBCDIC application encoding scheme. The C program
retrieves data from the following columns of a local table that is defined with the
CCSID UNICODE option:

PARTNUM CHAR(10)

JPNNAME GRAPHIC(10)
ENGNAME VARCHAR(30)

Because the application encoding scheme for the subsystem is EBCDIC, the
retrieved data is EBCDIC. To make the retrieved data Unicode, use DECLARE
VARIABLE statements to specify that the data that is retrieved from these columns
is encoded in the default Unicode CCSIDs for the subsystem.

Suppose that you want to retrieve the character data in Unicode CCSID 1208 and
the graphic data in Unicode CCSID 1200. Use the following DECLARE VARIABLE
statements:

EXEC SQL BEGIN DECLARE SECTION;
char hvpartnum[11];
EXEC SQL DECLARE :hvpartnum VARIABLE CCSID 1208;
sqldbchar hvjpnname[11];
EXEC SQL DECLARE :hvjpnname VARIABLE CCSID 1200;
struct {

short len;

char d[30];

} hvengname;
EXEC SQL DECLARE :hvengname VARIABLE CCSID 1208;
EXEC SQL END DECLARE SECTION;

Related reference:

[# [DECLARE VARIABLE (DB2 SOL)

178 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_declarevariable.dita

Determining what caused an error when retrieving data into a
host variable

Errors that occur when DB2 passes data to host variables in an application are
usually caused by a problem in converting from one data type to another. These
errors do not affect the position of the cursor.

For example, suppose that you fetch an integer value of 32768 into a host variable
of type SMALLINT. The conversion might cause an error if you do not provide
sufficient conversion information to DB2.

The variable to which DB2 assigns the data is called the output host variable. If you
provide an indicator variable for the output host variable or if data type
conversion is not required, DB2 returns a positive SQLCODE for the row in most
cases. In other cases where data conversion problems occur, DB2 returns a negative
SQLCODE for that row. Regardless of the SQLCODE for the row, no new values
are assigned to the host variable or to subsequent variables for that row. Any
values that are already assigned to variables remain assigned. Even when a
negative SQLCODE is returned for a row, statement processing continues and DB2
returns a positive SQLCODE for the statement (SQLSTATE 01668, SQLCODE
+354).

To determine what caused an error when retrieving data into a host variable:

1. When DB2 returns SQLCODE = +354, use the GET DIAGNOSTICS statement
with the NUMBER option to determine the number of errors and warnings.

Example: Suppose that no indicator variables are provided for the values that
are returned by the following statement:

FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :hva_coll, :hva_col2;

For each row with an error, DB2 records a negative SQLCODE and continues
processing until the 10 rows are fetched. When SQLCODE = +354 is returned
for the statement, you can use the GET DIAGNOSTICS statement to determine
which errors occurred for which rows. The following statement returns
num_rows = 10 and num_cond = 3:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

2. To investigate the errors and warnings, use additional GET DIAGNOSTIC
statements with the CONDITION option.

Example: To investigate the three conditions that were reported in the example
in the previous step, use the following statements:

Table 41. GET DIAGNOSTIC statements to investigate conditions

Statement Output

GET DIAGNOSTICS CONDITION 3 :sqlstate sqlstate = 22003
= RETURNED_SQLSTATE, :sqlcode = sqlcode = -304
DB2_RETURNED_SQLCODE, :row_num row_num =5

= DB2_ROW_NUMBER;

GET DIAGNOSTICS CONDITION 2 :sqlstate sqlstate = 22003
= RETURNED_SQLSTATE, :sqlcode = sqlcode = -802
DB2_RETURNED_SQLCODE, :row_num row_num =7

= DB2_ROW_NUMBER;

Chapter 3. Coding SQL statements in application programs: General information ~ 179

Table 41. GET DIAGNOSTIC statements to investigate conditions (continued)

Statement Output

GET DIAGNOSTICS CONDITION 1 :sqlstate sqlstate = 01668
= RETURNED_SQLSTATE, :sqlcode = sqlcode = +354
DB2_RETURNED_SQLCODE, :row_num row_num = 0

= DB2_ROW_NUMBER;

This output shows that the fifth row has a data mapping error (-304) for
column 1 and that the seventh row has a data mapping error (-802) for column
2. These rows do not contain valid data, and they should not be used.

Related concepts:

[“Indicator variables, arrays, and structures” on page 176|

Related reference:

[+ [GET DIAGNOSTICS (DB2 SQL)
Related information:

[# 1354 (DB2 Codes)|

| Accessing an application defaults module

If your application program currently uses LOAD DSNHDECP, consider changing
the application program to use the DECP address that is returned by ICFID 373,
DSNALI, or DSNRLI.

By using the DECP address that is returned by IFCID 373, DSNALI, or DSNRLI,
guarantees that you are using the same DECP module that was used to start DB2.
It also allows the code to skip the LOAD entirely, only after successfully
connecting to DB2. DSNHDECP is loaded by DB2 into Global, pageable storage, so
all programs can share it.

Compatibility of SQL and language data types

The host variable data types that are used in SQL statements must be compatible
with the data types of the columns with which you intend to use them.

When deciding the data types of host variables, consider the following rules and
recommendations:

* Numeric data types are compatible with each other:

Assembler: A SMALLINT, INTEGER, BIGINT, DECIMAL, or FLOAT column is
compatible with a numeric assembler host variable.
Fortran: An INTEGER column is compatible with any Fortran host variable that
is defined as INTEGER*2, INTEGER*4, REAL, REAL*4, REAL*8, or DOUBLE
PRECISION.
PL/I: A SMALLINT, INTEGER, BIGINT, DECIMAL, or FLOAT column is
compatible with a PL/I host variable of BIN FIXED(15), BIN FIXED(31),
DECIMAL(s,p), or BIN FLOAT(n), where n is from 1 to 53, or DEC FLOAT(m)
where m is from 1 to 16.

* Character data types are compatible with each other:

Assembler: A CHAR, VARCHAR, or CLOB column is compatible with a
fixed-length or varying-length assembler character host variable.

C/C++: A CHAR, VARCHAR, or CLOB column is compatible with a
single-character, NUL-terminated, or VARCHAR structured form of a C
character host variable.

180 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/p354.dita

COBOL: A CHAR, VARCHAR, or CLOB column is compatible with a
fixed-length or varying-length COBOL character host variable.

Fortran: A CHAR, VARCHAR, or CLOB column is compatible with Fortran

character host variable.

PL/I: A CHAR, VARCHAR, or CLOB column is compatible with a fixed-length

or varying-length PL/I character host variable.

Character data types are partially compatible with CLOB locators. You can

perform the following assignments:

— Assign a value in a CLOB locator to a CHAR or VARCHAR column

— Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a
CLOB locator host variable.

— Assign a CHAR or VARCHAR output parameter from a user-defined function
or stored procedure to a CLOB locator host variable.

— Use a SET assignment statement to assign a CHAR or VARCHAR transition
variable to a CLOB locator host variable.

— Use a VALUES INTO statement to assign a CHAR or VARCHAR function
parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.
Graphic data types are compatible with each other:

Assembler: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible
with a fixed-length or varying-length assembler graphic character host variable.

C/C++: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible with a

single character, NUL-terminated, or VARGRAPHIC structured form of a C

graphic host variable.

COBOL: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible with a

fixed-length or varying-length COBOL graphic string host variable.

PL/T: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible with a

fixed-length or varying-length PL/I graphic character host variable.

Graphic data types are partially compatible with DBCLOB locators. You can

perform the following assignments:

— Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC
column

— Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC
column to a DBCLOB locator host variable.

— Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined
function or stored procedure to a DBCLOB locator host variable.

— Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC
transition variable to a DBCLOB locator host variable.

- Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC
function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC

or VARGRAPHIC column to a DBCLOB locator host variable.

Binary data types are compatible with each other.

Binary data types are partially compatible with BLOB locators. You can perform
the following assignments:

— Assign a value in a BLOB locator to a BINARY or VARBINARY column.

— Use a SELECT INTO statement to assign a BINARY or VARBINARY column
to a BLOB locator host variable.

Chapter 3. Coding SQL statements in application programs: General information ~ 181

— Assign a BINARY or VARBINARY output parameter from a user-defined
function or stored procedure to a BLOB locator host variable.

— Use a SET assignment statement to assign a BINARY or VARBINARY
transition variable to a BLOB locator host variable.

— Use a VALUES INTO statement to assign a BINARY or VARBINARY function
parameter to a BLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a BINARY or
VARBINARY column to a BLOB locator host variable.

e Fortran: A BINARY, VARBINARY, or BLOB column or BLOB locator is
compatible only with a BLOB host variable.

e C: For varying-length BIT data, use BINARY. Some C string manipulation
functions process NUL-terminated strings and other functions process strings
that are not NUL-terminated. The C string manipulation functions that process
NUL-terminated strings cannot handle bit data because these functions might
misinterpret a NUL character to be a NUL-terminator.

* Datetime data types are compatible with character host variables.

Assembler: A DATE, TIME, or TIMESTAMP column is compatible with a
fixed-length or varying-length assembler character host variable.

C/C++: A DATE, TIME, or TIMESTAMP column is compatible with a
single-character, NUL-terminated, or VARCHAR structured form of a C
character host variable.

COBOL: A DATE, TIME, or TIMESTAMP column is compatible with a
fixed-length or varying length COBOL character host variable.

Fortran: A DATE, TIME, or TIMESTAMP column is compatible with a Fortran
character host variable.

PL/T: A DATE, TIME, or TIMESTAMP column is compatible with a fixed-length
or varying-length PL/I character host variable.

The ROWID column is compatible only with a ROWID host variable.

* A host variable is compatible with a distinct type if the host variable type is
compatible with the source type of the distinct type.

* XML columns are compatible with the XML host variable types, character types,
and binary string types.

Recommendation: Use the XML host variable types for data from XML
columns.

e Assembler:You can assign LOB data to a file reference variable (BLOB_FILE,
CLOB_FILE, and DBCLOB_FILE).

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

Related concepts:

“Distinct types” on page 513

“Host variable data types for XML data in embedded SQL applications” on page|
241

Related reference:

“Equivalent SQL and assembler data types” on page 261|

“Equivalent SQL and C data types” on page 301
“Equivalent SQL and COBOL data types” on paw
“Equivalent SQL and Fortran data types” on page 401|
[“Equivalent SQL and PL/I data types” on page 423|

182 Application Programming and SQL Guide

[“Equivalent SQL and REXX data types” on page 438|

Embedding SQL statements in your application

You can code SQL statements in an assembler, C, C++, COBOL, Fortran, or PL/I
program or REXX procedure wherever you can use executable statements.

To embed SQL statements in your application:

Take action based on the program language that you use.
Related concepts:

“SQL statements in assembler programs” on page 266|

“SQL statements in C programs” on page 307
"SQL statements in COBOL programs” on page 357|
“SQL statements in Fortran programs” on page 403

“SQL statements in PL/I programs” on page 427

[‘SQL statements in REXX programs” on page 439

Delimiting an SQL statement

You must delimit SQL statements in your program so that DB2 knows when a
particular SQL statement ends.

To delimit an SQL statement:

Take action based on the programming language that you use.
Related concepts:

[‘Delimiters in SQL statements in assembler programs” on page 271|

[“Delimiters in SQL statements in C programs” on page 311

[“‘Delimiters in SQL statements in COBOL programs” on page 363

[“Delimiters in SQL statements in Fortran programs” on page 406

[‘Delimiters in SQL statements in PL/I programs” on page 432

[“‘Delimiters in SQL statements in REXX programs” on page 442)

Rules for host variables in an SQL statement

Use host variables in embedded SQL statements to represent a single value. Host
variables are useful for storing retrieved data or for passing values that are to be
assigned or used for comparisons.

When you use host variables, adhere to the following requirements:

* You must declare the name of the host variable in the host program before you
use it. Host variables follow the naming conventions of the host language.

* You can use a host variable to represent a data value, but you cannot use it to
represent a table, view, or column name. You can specify table, view, or column
names at run time by using dynamic SQL.

* To use a host variable in an SQL statement, you can specify any valid host
variable name that is declared according to the rules of the host language.

* A colon (:) must precede host variables that are used in SQL statements so that
DB2 can distinguish a variable name from a column name. When host variables
are used outside of SQL statements, do not precede them with a colon. PL/I

Chapter 3. Coding SQL statements in application programs: General information ~ 183

programs have the following exceptions: If the SQL statement meets any of the
following conditions, do not precede a host variable or host variable array in
that statement with a colon:
— The SQL statement is in a program that also contains a DECLARE VARIABLE
statement.
— The host variable is part of a string expression, but the host variable is not the
only component of the string expression.
* To optimize performance, make sure that the host language declaration maps as
closely as possible to the data type of the associated data in the database.
* For assignments and comparisons between a DB2 column and a host variable of
a different data type or length, expect conversions to occur.

Related concepts:

[[Assignment and comparison (DB2 SQL)|
Related tasks:
[“Including dynamic SQL in your program” on page 193

Retrieving a single row of data into host variables

If you know that your query returns only one row, you can specify one or more
host variables to contain the column values of the retrieved row.

Restriction: These instructions do not apply if you do not know how many rows
DB2 will return or if you expect DB2 to return more than one row. In these
situations, use a cursor. A cursor enables an application to return a set of rows and
fetch either one row at a time or one rowset at a time from the result table.

To retrieve a single row of data into host variables:

In the SELECT statement specify the INTO clause with the name of one or more
host variables to contain the retrieved values. Specify one variable for each value
that is to be retrieved. The retrieved value can be a column value, a value of a host
variable, the result of an expression, or the result of an aggregate function.

Recommendation: If you want to ensure that only one row is returned, specify the
FETCH FIRST 1 ROW ONLY clause. Consider using the ORDER BY clause to
control which row is returned. If you specify both the ORDER BY clause and the
FETCH FIRST clause, ordering is performed on the entire result set before the first
row is returned.

DB2 assigns the first value in the result row to the first variable in the list, the
second value to the second variable, and so on.

If the SELECT statement returns more than one row, DB2 returns an error, and any
data that is returned is undefined and unpredictable.

Examples

Example of retrieving a single row into a host variable: Suppose that you are
retrieving the LASTNAME and WORKDEPT column values from the
DSN8A10.EMP table for a particular employee. You can define a host variable in
your program to hold each column value and then name the host variables in the
INTO clause of the SELECT statement, as shown in the following COBOL example.
MOVE '000110' TO CBLEMPNO.

EXEC SQL
SELECT LASTNAME, WORKDEPT

184 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_assignmentandcomparison.dita

INTO :CBLNAME, :CBLDEPT

FROM DSN8A10.EMP

WHERE EMPNO = :CBLEMPNO
END-EXEC.

In this example, the host variable CBLEMPNO is preceded by a colon (:) in the
SQL statement, but it is not preceded by a colon in the COBOL MOVE statement.

This example also uses a host variable to specify a value in a search condition. The
host variable CBLEMPNO is defined for the employee number, so that you can
retrieve the name and the work department of the employee whose number is the
same as the value of the host variable, CBLEMPNO; in this case, 000110.

In the DATA DIVISION section of a COBOL program, you must declare the host
variables CBLEMPNO, CBLNAME, and CBLDEPT to be compatible with the data
types in the columns EMPNO, LASTNAME, and WORKDEPT of the
DSN8A10.EMP table.

Example of ensuring that a query returns only a single row: You can use the
FETCH FIRST 1 ROW ONLY clause in a SELECT statement to ensure that only one
row is returned. This action prevents undefined and unpredictable data from being
returned when you specify the INTO clause of the SELECT statement. The
following example SELECT statement ensures that only one row of the
DSN8A10.EMP table is returned.
EXEC SQL
SELECT LASTNAME, WORKDEPT

INTO :CBLNAME, :CBLDEPT

FROM DSN8A10.EMP

FETCH FIRST 1 ROW ONLY
END-EXEC.

You can include an ORDER BY clause in the preceding example to control which
row is returned. The following example SELECT statement ensures that the only
row returned is the one with a last name that is first alphabetically.
EXEC SQL
SELECT LASTNAME, WORKDEPT

INTO :CBLNAME, :CBLDEPT

FROM DSN8810.EMP

ORDER BY LASTNAME

FETCH FIRST 1 ROW ONLY
END-EXEC.

Example of retrieving the results of host variable values and expressions into
host variables:

When you specify a list of items in the SELECT clause, that list can include more
than the column names of tables and views. You can request a set of column
values mixed with host variable values and constants. For example, the following
query requests the values of several columns (EMPNO, LASTNAME, and
SALARY), the value of a host variable (RAISE), and the value of the sum of a
column and a host variable (SALARY and RAISE). For each of these five items in
the SELECT list, a host variable is listed in the INTO clause.

MOVE 4476 TO RAISE.

MOVE '000220' TO PERSON.

EXEC SQL
SELECT EMPNO, LASTNAME, SALARY, :RAISE, SALARY + :RAISE

Chapter 3. Coding SQL statements in application programs: General information ~ 185

INTO :EMP-NUM, :PERSON-NAME, :EMP-SAL, :EMP-RAISE, :EMP-TTL
FROM DSN8A10.EMP
WHERE EMPNO = :PERSON

END-EXEC.

The preceding SELECT statement returns the following results. The column
headings represent the names of the host variables.

EMP-NUM PERSON-NAME EMP-SAL EMP-RAISE EMP-TTL

000220 LUTZ 29840 4476 34316

Example of retrieving the result of an aggregate function into a host variable: A
query can request summary values to be returned from aggregate functions and
store those values in host variables. For example, the following query requests that
the result of the AVG function be stored in the AVG-SALARY host variable.

MOVE 'D11' TO DEPTID.
EXEC SQL
SELECT WORKDEPT, AVG(SALARY)
INTO :WORK-DEPT, :AVG-SALARY
FROM DSNBA10.EMP
WHERE WORKDEPT = :DEPTID
END-EXEC.

Related tasks:
[“Retrieving a set of rows by using a cursor” on page 722|

Related reference:

[[SELECT INTO (DB2 SQL)|

Determining whether a retrieved value in a host variable is
null or truncated

Before your application manipulates the data that was retrieved from DB2 into a
host variable, determine if the value is null. Also determine if it was truncated
when assigned to the variable. You can use indicator variables to obtain this
information.

Before you determine whether a retrieved column value is null or truncated, you
must have defined the appropriate indicator variables, arrays, and structures.

An error occurs if you do not use an indicator variable and DB2 retrieves a null
value.

To determine whether a retrieved value in a host variable is null or truncated:

Determine the value of the indicator variable, array, or structure that is associated
with the host variable, array, or structure. Those values have the following
meanings:

Table 42. Meanings of values in indicator variables

Value of indicator variable Meaning

Less than zero The column value is null. The value of the
host variable does not change from its
previous value.

If the indicator variable value is -2, the
column value is null because of a numeric or
character conversion error,

186 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_selectinto.dita

Table 42. Meanings of values in indicator variables (continued)

Value of indicator variable Meaning

Zero The column value is nonnull. If the column
value is a character string, the retrieved
value is not truncated.

Positive integer The retrieved value is truncated. The integer
is the original length of the string.

Examples

Example of testing an indicator variable: Assume that you have defined the
following indicator variable INDNULL for the host variable CBLPHONE.

EXEC SQL
SELECT PHONENO
INTO :CBLPHONE : INDNULL
FROM DSN8A10.EMP
WHERE EMPNO = :EMPID
END-EXEC.

You can then test INDNULL for a negative value. If the value is negative, the
corresponding value of PHONENO is null, and you can disregard the contents of
CBLPHONE.

Example of testing an indicator variable array: Suppose that you declare the
following indicator array INDNULL for the host variable array CBLPHONE.

EXEC SQL
FETCH NEXT ROWSET CURS1
FOR 10 ROWS
INTO :CBLPHONE :INDNULL
END-EXEC.

After the multiple-row FETCH statement, you can test each element of the
INDNULL array for a negative value. If an element is negative, you can disregard
the contents of the corresponding element in the CBLPHONE host variable array.

Example of testing an indicator structure in COBOL: The following example
defines the indicator structure EMP-IND as an array that contains six values and
corresponds to the PEMP-ROW host structure.

01 PEMP-ROW.

10 EMPNO PIC X(6).

10 FIRSTNME.
49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(12).

10 MIDINIT PIC X(1).

10 LASTNAME.
49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 WORKDEPT PIC X(3).
10 EMP-BIRTHDATE PIC X(10).
01 INDICATOR-TABLE.
02 EMP-IND PIC S9(4) COMP OCCURS 6 TIMES.

MOVE '006230' TO EMPNO.

EXEC SQL
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, BIRTHDATE

Chapter 3. Coding SQL statements in application programs: General information ~ 187

INTO :PEMP-ROW:EMP-IND

FROM DSN8A10.EMP

WHERE EMPNO = :EMPNO
END-EXEC.

You can test the indicator structure EMP-IND for negative values. If, for example,
EMP-IND(6) contains a negative value, the corresponding host variable in the host
structure (EMP-BIRTHDATE) contains a null value.

Related concepts:

[“Arithmetic and conversion errors” on page 240
Related tasks:
[“Declaring host variables and indicator variables” on page 174|

Determining whether a column value is null

Before you retrieve a column value, you might first want to determine if the
column value is null.

To determine whether a column value is null:
Use the IS NULL predicate or the IS DISTINCT FROM predicate.

Restriction: You cannot determine whether a column value is null by comparing it
to a host variable with an indicator variable that is set to -1.

The following code, which uses an indicator variable, does not select the
employees who have no phone number:

MOVE -1 TO PHONE-IND.
EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8A10.EMP
WHERE PHONENO = :PHONE-HV:PHONE-IND
END-EXEC.

Instead, use the following statement with the IS NULL predicate to select
employees who have no phone number:

EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8A10.EMP
WHERE PHONENO IS NULL
END-EXEC.

To select employees whose phone numbers are equal to the value of :PHONE-HV
and employees who have no phone number (as in the second example), code two
predicates, one to handle the non-null values and another to handle the null
values, as in the following statement:

EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8A10.EMP
WHERE (PHONENO = :PHONE-HV AND PHONENO IS NOT NULL AND :PHONE-HV IS NOT NULL)
OR
(PHONENO IS NULL AND :PHONE-HV:PHONE-IND IS NULL)
END-EXEC.

You can simplify the preceding example by coding the following statement with
the NOT form of the IS DISTINCT FROM predicate:

188 Application Programming and SQL Guide

EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8A10.EMP
WHERE PHONENO IS NOT DISTINCT FROM :PHONE-HV:PHONE-IND
END-EXEC.

Related tasks:
[“Declaring host variables and indicator variables” on page 174|

Related reference:
[[DISTINCT predicate (DB2 SQL)|
[# [NULL predicate (DB2 SQL)|

Updating data by using host variables

When you want to update a value in a DB2 table, but you do not know the exact
value until the program runs, use host variables. DB2 can change a table value to
match the current value of the host variable.

To update data by using host variables:
1. Declare the necessary host variables.

2. Specify an UPDATE statement with the appropriate host variable names in the
SET clause.

Examples

Example of updating a single row by using a host variable: The following
COBOL example changes an employee's phone number to the value in the
NEWPHONE host variable. The employee ID value is passed through the EMPID
host variable.

MOVE '4246' TO NEWPHONE.
MOVE '000110' TO EMPID.
EXEC SQL
UPDATE DSN8A10.EMP
SET PHONENO = :NEWPHONE
WHERE EMPNO = :EMPID
END-EXEC.

Example of updating multiple rows by using a host variable value in the search
condition: The following example gives the employees in a particular department
a salary increase of 10%. The department value is passed through the DEPTID host
variable.
MOVE 'D11' TO DEPTID.
EXEC SQL

UPDATE DSN8A10.EMP

SET SALARY = 1.10 = SALARY

WHERE WORKDEPT = :DEPTID
END-EXEC.

Related reference:

[[UPDATE (DB2 SQL)|

Inserting a single row by using a host variable

Use host variables in your INSERT statement when you don't know at least some
of the values to insert until the program runs.

Chapter 3. Coding SQL statements in application programs: General information ~ 189

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_distinctpredicate.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_nullpredicate.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_update.dita

Restriction: These instructions apply only to inserting a single row. If you want to
insert multiple rows, use host variable arrays or the form of the INSERT statement
that selects values from another table or view.

To insert a single row by using host variables:

Specify an INSERT statement with column values in the VALUES clause. Specify
host variables or a combination of host variables and constants as the column
values.

DB2 inserts the first value into the first column in the list, the second value into
the second column, and so on.

The following example uses host variables to insert a single row into the activity
table.

EXEC SQL
INSERT INTO DSN8A10.ACT
VALUES (:HV-ACTNO, :HV-ACTKWD, :HV-ACTDESC)
END-EXEC.

Related tasks:
[“Inserting multiple rows of data from host variable arrays” on page 192|

Related reference:

(= [[NSERT (DB2 SQL)|

Inserting null values into columns by using indicator variables
or arrays

If you need to insert null values into a column, using an indicator variable or array
is an easy way to do so. An indicator variable or array is associated with a
particular host variable or array.

To insert null values into columns by using indicator variables or arrays:
1. Define an indicator variable or array for a particular host variable or array.
2. Assign a negative value to the indicator variable or array.

3. Issue the appropriate INSERT, UPDATE, or MERGE statement with the host
variable or array and its indicator variable or array.

When DB2 processes INSERT, UPDATE, and MERGE statements, it checks the
indicator variable if one exists. If the indicator variable is negative, the column
value is null. If the indicator variable is greater than -1, the associated host
variable contains a value for the column.

Examples

Example of setting a column value to null by using an indicator
variable: Suppose your program reads an employee ID and a new phone number
and must update the employee table with the new number. The new number could
be missing if the old number is incorrect, but a new number is not yet available. If
the new value for column PHONENO might be null, you can use an indicator
variable, as shown in the following UPDATE statement.
EXEC SQL

UPDATE DSN8A10.EMP

SET PHONENO = :NEWPHONE:PHONEIND

WHERE EMPNO = :EMPID
END-EXEC.

190 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_insert.dita

When NEWPHONE contains a non-null value, set the indicator variable
PHONEIND to zero by preceding the UPDATE statement with the following line:

MOVE 0 TO PHONEIND.

When NEWPHONE contains a null value, set PHONEIND to a negative value by
preceding the UPDATE statement with the following line:

MOVE -1 TO PHONEIND.

Example of setting a column value to null by using an indicator variable

array: Assume that host variable arrays hval and hva2 have been populated with
values that are to be inserted into the ACTNO and ACTKWD columns. Assume the
ACTDESC column allows nulls. To set the ACTDESC column to null, assign -1 to
the elements in its indicator array, ind3, as shown in the following example:

/* Initialize each indicator array */
for (i=0; i<10; i++) {

ind1[i] = 03
ind2[i] = 0;
ind3[i] = -1;
}
EXEC SQL

INSERT INTO DSN8A10.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:hval:indl, :hva2:ind2, :hva3:ind3)
FOR 10 ROWS;

DB2 ignores the values in the hva3 array and assigns the values in the ARTDESC
column to null for the 10 rows that are inserted.

Related tasks:
[“Declaring host variables and indicator variables” on page 174|

Host variable arrays in an SQL statement

Use host variable arrays in embedded SQL statements to represent values that the
program does not know until the query is executed. Host variable arrays are useful
for storing a set of retrieved values or for passing a set of values that are to be
inserted into a table.

To use a host variable array in an SQL statement, specify any valid host variable
array that is declared according to the host language rules. You can specify host
variable arrays in C or C++, COBOL, and PL/I. You must declare the array in the
host program before you use it.

Restrictions: Use of host variable arrays in assembler programs is limited in the
following:

¢ The DB2 precompiler does not recognize declarations of host variable arrays for
assembler, it recognizes these declarations only in C, COBOL, and PL/I.

* Assembler does not support multiple-row MERGE. You cannot specify MERGE
statements that reference host variable arrays.

* Assembler support for multiple-row FETCH is limited to the FETCH statement
with the INTO DESCRIPTOR clause. For example:

EXEC SQL FETCH NEXT ROWSET FROM C1 FOR 10 ROWS X
INTO DESCRIPTOR :SQLDA

* Assembler support for multiple-row INSERT is limited to the following cases:

— Static multiple-row INSERT statement with scalar values (scalar host variables
or scalar expressions) in the VALUES clause. For example:

Chapter 3. Coding SQL statements in application programs: General information 191

EXEC SQL INSERT INTO T1 VALUES (1, CURRENT DATE, 'TEST') X
FOR 10 ROWS

— Dynamic multiple-row INSERT executed with the USING DESCRIPTOR
clause on the EXECUTE statement. For example:

ATR DS CL20 ATTRIBUTES FOR PREPARE
S1 DS H,CL30 VARCHAR STATEMENT STRING

MVC ATR(20),=C'FOR MULTIPLE ROWS '

MVC S1(2),=H'25'

MVC S1+2(30),=C'INSERT INTO T1 VALUES (?) '

EXEC SQL PREPARE STMT ATTRIBUTES :ATR FROM :S1

EXEC SQL EXECUTE STMT USING DESCRIPTOR :SQLDA FOR 10 ROWS
where the descriptor is set up correctly in advance according to the
specifications for dynamic execution of a multiple-row INSERT statement
with a descriptor

Related concepts:

[“Host variable arrays” on page 175
Related tasks:
[“Embedding SQL statements in your application” on page 183

[“Inserting multiple rows of data from host variable arrays”]

[“Retrieving multiple rows of data into host variable arrays’]

Retrieving multiple rows of data into host variable arrays

If you know that your query returns multiple rows, you can specify host variable
arrays to store the retrieved column values.

You can use host variable arrays to specify a program data area to contain multiple
rows of column values. A DB2 rowset cursor enables an application to retrieve and
process a set of rows from the result table of the cursor.

Related concepts:

[“Host variable arrays in an SQL statement” on page 191

[‘Host variable arrays” on page 175|
Related tasks:
[“Accessing data by using a rowset-positioned cursor” on page 731

[“Inserting multiple rows of data from host variable arrays”]

Inserting multiple rows of data from host variable arrays

Use host variable arrays in your INSERT statement when you do not know at least
some of the values to insert until the program runs.

You can use a form of the INSERT statement or MERGE statement to insert
multiple rows from values that are provided in host variable arrays. Each array
contains values for a column of the target table. The first value in an array
corresponds to the value for that column for the first inserted row, the second
value in the array corresponds to the value for the column in the second inserted
row, and so on. DB2 determines the attributes of the values based on the
declaration of the array.

You can insert the number of rows that are specified in the host variable
NUM-ROWS by using the following INSERT statement:

192 Application Programming and SQL Guide

EXEC SQL
INSERT INTO DSN8A10.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:HVAl, :HVA2, :HVA3)
FOR :NUM-ROWS ROWS
END-EXEC.

Assume that the host variable arrays HVA1, HVA2, and HVA3 have been declared
and populated with the values that are to be inserted into the ACTNO, ACTKWD,
and ACTDESC columns. The NUM-ROWS host variable specifies the number of
rows that are to be inserted, which must be less than or equal to the dimension of
each host variable array.

Related tasks:

[“Retrieving multiple rows of data into host variable arrays” on page 192

Retrieving a single row of data into a host structure

If you know that your query returns multiple column values for only one row, you
can specify a host structure to contain the column values.

In the following example, assume that your COBOL program includes the
following SQL statement:
EXEC SQL
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME, :WORKDEPT
FROM DSN8A10.VEMP
WHERE EMPNO = :EMPID
END-EXEC.

If you want to avoid listing host variables, you can substitute the name of a
structure, say :PEMP, that contains :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME,
and :WORKDEPT. The example then reads:
EXEC SQL
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :PEMP
FROM DSN8A10.VEMP
WHERE EMPNO = :EMPID
END-EXEC.

You can declare a host structure yourself, or you can use DCLGEN to generate a
COBOL record description, PL/I structure declaration, or C structure declaration
that corresponds to the columns of a table.

Related concepts:

“DCLGEN (declarations generator)” on page 161|
"Host structures” on page 175
“Example: Adding DCLGEN declarations to a library” on page 169|

Including dynamic SQL in your program
Dynamic SQL is prepared and executed while the program is running.

Before you use dynamic SQL, consider whether static SQL or dynamic SQL is the
best technique for your application, and consider the type of dynamic SQL that
you want to use. Also consider the performance implications of using dynamic
SQL in application programs. For information about methods that you can use to
improve the performance of dynamic SQL statements, see [[mproving dynamic SQI/
performance (DB2 Performance)|

Chapter 3. Coding SQL statements in application programs: General information ~ 193

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_improvedynamicsql.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_improvedynamicsql.dita

Q/ Introductory concepts:

[Dynamic SQL applications (Introduction to DB2 for z/OS)|

Dynamic SQL prepares and executes the SQL statements within a program, while
the program is running.

You can issue dynamic SQL statements in the following contexts:

Interactive SQL
A user enters SQL statements through SPUFI, the command line processor,
or an interactive tool, such as DB2 QMF " for Windows. DB2 prepares and
executes those statements as dynamic SQL statements.

Embedded dynamic SQL
Your application puts the SQL source in host variables and includes
PREPARE and EXECUTE statements that tell DB2 to prepare and run the
contents of those host variables at run time. You must precompile and bind
programs that include embedded dynamic SQL.

Deferred embedded SQL
Deferred embedded SQL statements are neither fully static nor fully
dynamic. Like static statements, deferred embedded SQL statements are
embedded within applications; however, like dynamic statements, they are
prepared at run time. DB2 processes the deferred embedded SQL
statements with bind-time rules. For example, DB2 uses the authorization
ID and qualifier (that are determined at bind time) as the plan or package
owner.

Dynamic SQL executed through ODBC or JDBC functions
Your application contains ODBC function calls that pass dynamic SQL
statements as arguments. You do not need to precompile and bind
programs that use ODBC function calls.

JDBC application support lets you write dynamic SQL applications in Java.

For most DB2 users, static SQL, which is embedded in a host language program
and bound before the program runs, provides a straightforward, efficient path to
DB2 data. You can use static SQL when you know before run time what SQL
statements your application needs to execute.

Related tasks:

[[Setting limits for system resource usage by using the resource limit facility|
[(DB2 Performance)|

Differences between static and dynamic SQL

Static and dynamic SQL are each appropriate for different circumstances. You
should consider the differences between the two when determining whether static
SQL or dynamic SQL is best for your application.

Flexibility of static SQL with host variables
Q/ Introductory concepts:

Static SQL (DB2 SQL)|
Static SQL applications (Introduction to DB2 for z/OS)

194 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_dynamicsqlapplications.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_staticsql.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_staticsqlapplications.dita

[Dynamic SQL applications (Introduction to DB2 for z/OS)|

When you use static SQL, you cannot change the form of SQL statements unless
you make changes to the program. However, you can increase the flexibility of
static statements by using host variables.

Example: In the following example, the UPDATE statement can update the salary
of any employee. At bind time, you know that salaries must be updated, but you
do not know until run time whose salaries should be updated, and by how much.

01 TOAREA.
02 EMPID PIC X(06).
02 NEW-SALARY PIC S9(7)v9(2) COMP-3.

(Other declarations)
READ CARDIN RECORD INTO IOAREA
AT END MOVE 'N' TO INPUT-SWITCH.

(Other COBOL statements)
EXEC SQL
UPDATE DSN8A10.EMP
SET SALARY = :NEW-SALARY
WHERE EMPNO = :EMPID
END-EXEC.

The statement (UPDATE) does not change, nor does its basic structure, but the
input can change the results of the UPDATE statement.

Flexibility of dynamic SQL

What if a program must use different types and structures of SQL statements? If
there are so many types and structures that it cannot contain a model of each one,
your program might need dynamic SQL.

You can use one of the following programs to execute dynamic SQL:

DB2 Query Management Facility” (DB2 QMF)
Provides an alternative interface to DB2 that accepts almost any SQL statement

SPUFI
Accepts SQL statements from an input data set, and then processes and
executes them dynamically

command Tine processor
Accepts SQL statements from a UNIX System Services environment.

Limitations of dynamic SQL

You cannot use some of the SQL statements dynamically.

For reactive governing cases, the ASUTIME limit specified for the top-level calling
package is applied for the entire thread, regardless of any value specified for the
routines that are called.

Dynamic SQL processing

A program that provides for dynamic SQL accepts as input, or generates, an SQL

statement in the form of a character string. You can simplify the programming if
you can plan the program not to use SELECT statements, or to use only those that

Chapter 3. Coding SQL statements in application programs: General information ~ 195

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_dynamicsqlapplications.dita

return a known number of values of known types. In the most general case, in
which you do not know in advance about the SQL statements that will execute, the
program typically takes these steps:

1. Translates the input data, including any parameter markers, into an SQL
statement

2. Prepares the SQL statement to execute and acquires a description of the result
table

Obtains, for SELECT statements, enough main storage to contain retrieved data
Executes the statement or fetches the rows of data

Processes the information returned

Handles SQL return codes.

ook w

Performance of static and dynamic SQL

To access DB2 data, an SQL statement requires an access path. Two big factors in
the performance of an SQL statement are the amount of time that DB2 uses to
determine the access path at run time and whether the access path is efficient. DB2
determines the access path for a statement at either of these times:

* When you bind the plan or package that contains the SQL statement

* When the SQL statement executes

The time at which DB2 determines the access path depends on these factors:
* Whether the statement is executed statically or dynamically

* Whether the statement contains input host variables

* Whether the statement contains a declared global temporary table.

Static SQL statements with no input host variables

For static SQL statements that do not contain input host variables, DB2 determines
the access path when you bind the plan or package. This combination yields the
best performance because the access path is already determined when the program
executes.

Static SQL statements with input host variables

For static SQL statements that have input host variables, the time at which DB2
determines the access path depends on the REOPT bind option that you specify:
REOPT(NONE) or REOPT(ALWAYS). REOPT(NONE) is the default. Do not specify
REOPT(AUTO) or REOPT(ONCE); these options are applicable only to dynamic
statements. DB2 ignores REOPT(ONCE) and REOPT(AUTO) for static SQL
statements, because DB2 caches only dynamic SQL statements.

If you specify REOPT(NONE), DB2 determines the access path at bind time, just as
it does when there are no input variables.

If you specify REOPT(ALWAYS), DB2 determines the access path at bind time and
again at run time, using the values of the following types of input variables:

* Host variables

* Parameter markers

* Special registers

DB2 must spend extra time determining the access path for statements at run time.

However if DB2 determines a significantly better access path using the variable
values, you might see an overall performance improvement. With

196 Application Programming and SQL Guide

REOPT(ALWAYS), DB2 optimizes statements using known literal values. Knowing
the literal values can help DB2 to choose a more efficient access path when the
columns contain skewed data. DB2 can also recognize which partitions qualify if
there are search conditions with host variables on the limit keys of partitioned
table spaces.

With REOPT(ALWAYS) DB2 does not start the optimization over from the
beginning. For example DB2 does not perform query transformations based on the
literal values. Consequently, static SQL statements that use host variables
optimized with REOPT(ALWAYS) and similar SQL statements that use explicit
literal values might result in different access paths.

Dynamic SQL statements

For dynamic SQL statements, DB2 determines the access path at run time, when
the statement is prepared. The repeating cost of preparing a dynamic statement can
make the performance worse than that of static SQL statements. However, if you
execute the same SQL statement often, you can use the dynamic statement cache to
decrease the number of times that those dynamic statements must be prepared.

Dynamic SQL statements with input host variables

When you bind applications that contain dynamic SQL statements with input host
variables, consider using the REOPT(ALWAYS), REOPT(ONCE), or REOPT(AUTO)
bind options, instead of the REOPT(NONE) option.

Use REOPT(ALWAYS) when you are not using the dynamic statement cache. DB2
determines the access path for statements at each EXECUTE or OPEN of the
statement. This option ensures the best access path for a statement, but using
REOPT(ALWAYS) can increase the cost of frequently used dynamic SQL
statements.

Consequently, the REOPT(ALWAYS) option is not a good choice for high-volume
sub-second queries. For high-volume fast running queries, the repeating cost of
prepare can exceed the execution cost of the statement. Statements that are
processed under the REOPT(ALWAYS) option are excluded from the dynamic
statement cache even if dynamic statement caching is enabled because DB2 cannot
reuse access paths when REOPT(ALWAYS) is specified.

Use REOPT(ONCE) or REOPT(AUTO) when you are using the dynamic statements
cache:

¢ If you specify REOPT(ONCE), DB2 determines and the access path for
statements only at the first EXECUTE or OPEN of the statement. It saves that
access path in the dynamic statement cache and uses it until the statement is
invalidated or removed from the cache. This reuse of the access path reduces the
prepare cost of frequently used dynamic SQL statements that contain input host
variables; however, it does not account for changes to parameter marker values
for dynamic statements.

The REOPT(ONCE) option is ideal for ad-hoc query applications such as SPUF],
DSNTEP2, DSNTEP4, DSNTIAUL, and QMF. DB2 can better optimize statements
knowing the literal values for special registers such as CURRENT DATE and
CURRENT TIMESTAMP, rather than using default filter factor estimates.

Chapter 3. Coding SQL statements in application programs: General information 197

* If you specify REOPT(AUTO), DB2 determines the access path at run time. For
each execution of a statement with parameter markers, DB2 generates a new
access path if it determines that a new access path is likely to improve
performance.

Coding PREPARE statements for efficient optimization

You should code your PREPARE statements to minimize overhead. With
REOPT(AUTO), REOPT(ALWAYS), and REOPT(ONCE), DB2 prepares an SQL
statement at the same time as it processes OPEN or EXECUTE for the statement.
That is, DB2 processes the statement as if you specify DEFER(PREPARE). However,
in the following cases, DB2 prepares the statement twice:

* If you execute the DESCRIBE statement before the PREPARE statement in your
program
* If you use the PREPARE statement with the INTO parameter

For the first prepare, DB2 determines the access path without using input variable
values. For the second prepare, DB2 uses the input variable values to determine
the access path. This extra prepare can decrease performance.

If you specify REOPT(ALWAYS), DB2 prepares the statement twice each time it is
run.

If you specifty REOPT(ONCE), DB2 prepares the statement twice only when the
statement has never been saved in the cache. If the statement has been prepared
and saved in the cache, DB2 will use the saved version of the statement to
complete the DESCRIBE statement.

If you specify REOPT(AUTO), DB2 initially prepares the statement without using
input variable values. If the statement has been saved in the cache, for the
subsequent OPEN or EXECUTE, DB2 determines if a new access path is needed
according to the input variable values.

For a statement that uses a cursor, you can avoid the double prepare by placing
the DESCRIBE statement after the OPEN statement in your program.

If you use predictive governing, and a dynamic SQL statement that is bound with
either REOPT(ALWAYS) or REOPT(ONCE) exceeds a predictive governing warning
threshold, your application does not receive a warning SQLCODE. However, it will
receive an error SQLCODE from the OPEN or EXECUTE statement.

Related tasks:

[+ [Reoptimizing SQL statements at run time (DB2 Performance)|

Related reference:
[|Characteristics of SQL statements in DB2 for z/OS (DB2 SQL)|
[[REOPT bind option (DB2 Commands)|

Possible host languages for dynamic SQL applications
Programs that use dynamic SQL are usually written in assembler, C, PL/I, REXX,
and COBOL. All SQL statements in REXX programs are considered dynamic SQL.

You can write non-SELECT and fixed-list SELECT statements in any of the DB2
supported languages. A program containing a varying-list SELECT statement is
more difficult to write in Fortran, because the program cannot run without the
help of a subroutine to manage address variables (pointers) and storage allocation.

198 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_managereopt.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_characteristicsofsqlstmts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.comref/src/tpc/db2z_bindoptreopt.dita

Most of the examples in this topic are in PL/I. Longer examples in the form of
complete programs are available in the sample applications:

DSNTEP2
Processes both SELECT and non-SELECT statements dynamically. (PL/T).

DSNTIAD
Processes only non-SELECT statements dynamically. (Assembler).

DSNTIAUL
Processes SELECT statements dynamically. (Assembler).

Library prefix SDSNSAMP contains the sample programs. You can view the
programs online, or you can print them using ISPF, IEBPTPCH, or your own
printing program.

You can use all forms of dynamic SQL in all supported versions of COBOL.
Related concepts:

[‘Sample COBOL dynamic SQL program” on page 364]

Including dynamic SQL for non-SELECT statements in your
program

The easiest way to use dynamic SQL is to use non-SELECT statements. Because
you do not need to dynamically allocate any main storage, you can write your
program in any host language, including Fortran.

Your program must take the following steps:

1. Include an SQLCA. The requirements for an SQL communications area
(SQLCA) are the same as for static SQL statements. For REXX, DB2 includes the
SQLCA automatically.

2. Load the input SQL statement into a data area. The procedure for building or
reading the input SQL statement is not discussed here; the statement depends
on your environment and sources of information. You can read in complete
SQL statements, or you can get information to build the statement from data
sets, a user at a terminal, previously set program variables, or tables in the
database. If you attempt to execute an SQL statement dynamically that DB2
does not allow, you get an SQL error.

3. Execute the statement. You can use either of these methods:
e EXECUTE IMMEDIATE
* PREPARE and EXECUTE

4. Handle any errors that might result. The requirements are the same as those for
static SQL statements. The return code from the most recently executed SQL
statement appears in the host variables SQLCODE and SQLSTATE or
corresponding fields of the SQLCA.

Related concepts:

“Sample dynamic and static SQL in a C program” on page 311|

“SQL statements in assembler programs” on page 266|

“SQL statements in C programs” on page 307

"SQL statements in COBOL programs” on page 357

“SQL statements in Fortran programs” on page 403|

“SQL statements in PL/I programs” on page 427,

“SQL statements in REXX programs” on page 439-|
Related tasks:
[“Checking the execution of SQL statements” on page 227]

Chapter 3. Coding SQL statements in application programs: General information =~ 199

“Dynamically executing an SQL statement by using EXECUTE IMMEDIATE” on|

page 212|

“Dynamically executing an SQL statement by using PREPARE and EXECUTE” on|

page 221|

Including dynamic SQL for fixed-list SELECT statements in your
program

A fixed-list SELECT statement returns rows that contain a known number of
values of a known type. When you use this type of statement, you know in
advance exactly what kinds of host variables you need to declare to store the
results.

The term “fixed-list” does not imply that you must know in advance how many
rows of data will be returned. However, you must know the number of columns
and the data types of those columns. A fixed-list SELECT statement returns a result
table that can contain any number of rows; your program looks at those rows one
at a time, using the FETCH statement. Each successive fetch returns the same
number of values as the last, and the values have the same data types each time.
Therefore, you can specify host variables as you do for static SQL.

An advantage of the fixed-list SELECT is that you can write it in any of the
programming languages that DB2 supports. Varying-list dynamic SELECT
statements require assembler, C, PL/I, and COBOL.

To execute a fixed-list SELECT statement dynamically, your program must:
1. Include an SQLCA.

2. Load the input SQL statement into a data area. The preceding two steps are
exactly the same including dynamic SQL for non-SELECT statements in your
program.

Declare a cursor for the statement name.
Prepare the statement.

Open the cursor.

Fetch rows from the result table.

Close the cursor.

© N O RO

Handle any resulting errors. This step is the same as for static SQL, except for
the number and types of errors that can result.

Example: Suppose that your program retrieves last names and phone numbers by
dynamically executing SELECT statements of this form:

SELECT LASTNAME, PHONENO FROM DSN8A10.EMP
WHERE ... ;

The program reads the statements from a terminal, and the user determines the
WHERE clause.

As with non-SELECT statements, your program puts the statements into a
varying-length character variable; call it DSTRING. Eventually you prepare a
statement from DSTRING, but first you must declare a cursor for the statement
and give it a name.

Declaring a cursor for the statement name:

Dynamic SELECT statements cannot use INTO. Therefore, you must use a cursor
to put the results into host variables.

200 Application Programming and SQL Guide

Example: When you declare the cursor, use the statement name (call it STMT), and
give the cursor itself a name (for example, C1):

EXEC SQL DECLARE C1 CURSOR FOR STMT;
Preparing the statement:
Prepare a statement (STMT) from DSTRING.

Example: This is one possible PREPARE statement:
EXEC SQL PREPARE STMT FROM :DSTRING ATTRIBUTES :ATTRVAR;

ATTRVAR contains attributes that you want to add to the SELECT statement, such
as FETCH FIRST 10 ROWS ONLY or OPTIMIZE for 1 ROW. In general, if the
SELECT statement has attributes that conflict with the attributes in the PREPARE
statement, the attributes on the SELECT statement take precedence over the
attributes on the PREPARE statement. However, in this example, the SELECT
statement in DSTRING has no attributes specified, so DB2 uses the attributes in
ATTRVAR for the SELECT statement.

As with non-SELECT statements, the fixed-list SELECT could contain parameter
markers. However, this example does not need them.

To execute STMT, your program must open the cursor, fetch rows from the result
table, and close the cursor.

Opening the cursor:
The OPEN statement evaluates the SELECT statement named STMT.

Example: Without parameter markers, use this statement:
EXEC SQL OPEN C1;

If STMT contains parameter markers, you must use the USING clause of OPEN to
provide values for all of the parameter markers in STMT.

Example: If four parameter markers are in STMT, you need the following
statement:

EXEC SQL OPEN C1 USING :PARM1, :PARMZ, :PARM3, :PARM4;
Fetching rows from the result table:

Example: Your program could repeatedly execute a statement such as this:
EXEC SQL FETCH C1 INTO :NAME, :PHONE;

The key feature of this statement is the use of a list of host variables to receive the
values returned by FETCH. The list has a known number of items (in this case,
two items, :NAME and :PHONE) of known data types (both are character strings,
of lengths 15 and 4, respectively).

You can use this list in the FETCH statement only because you planned the
program to use only fixed-list SELECTs. Every row that cursor C1 points to must
contain exactly two character values of appropriate length. If the program is to
handle anything else, it must use the techniques for including dynamic SQL for
varying-list SELECT statements in your program.

Chapter 3. Coding SQL statements in application programs: General information 201

Closing the cursor:
This step is the same as for static SQL.

Example: A WHENEVER NOT FOUND statement in your program can name a
routine that contains this statement:

EXEC SQL CLOSE C1;
Related concepts:

“Sample dynamic and static SQL in a C program” on page 311|

“SQL statements in assembler programs” on page 266|

“SQL statements in C programs” on page 307

“SQL statements in COBOL programs” on page 357|

"SQL statements in Fortran programs” on page 403)|

“SQL statements in PL/I programs” on page 427,

“SQL statements in REXX programs” on page 439
Related tasks:

“Including dynamic SQL for non-SELECT statements in your program” on page|
199

[“Including dynamic SQL for varying-list SELECT statements in your program”|

Including dynamic SQL for varying-list SELECT statements in
your program

A varying-list SELECT statement returns rows that contain an unknown number of
values of unknown type. When you use this type of statement, you do not know
in advance exactly what kinds of host variables you need to declare for storing the
results.

Because the varying-list SELECT statement requires pointer variables for the SQL
descriptor area, you cannot issue it from a Fortran program. A Fortran program
can call a subroutine written in a language that supports pointer variables (such as
PL/I or assembler), if you need to use a varying-list SELECT statement.

What your application program must do for varying-list SELECT statements: To
execute a varying-list SELECT statement dynamically, your program must follow
these steps:

1. Include an SQLCA.
DB2 performs this step for a REXX program.
2. Load the input SQL statement into a data area.

3. Prepare and execute the statement. This step is more complex than for fixed-list
SELECTs. It involves the following steps:

a. Include an SQLDA (SQL descriptor area).
DB2 performs this step for a REXX program.
b. Declare a cursor and prepare the variable statement.
c. Obtain information about the data type of each column of the result table.
d. Determine the main storage needed to hold a row of retrieved data.
You do not perform this step for a REXX program.

e. Put storage addresses in the SQLDA to tell where to put each item of
retrieved data.

f. Open the cursor.

202 Application Programming and SQL Guide

g. Fetch a row.

h. Eventually close the cursor and free main storage.

Additional complications exist for statements with parameter markers.
4. Handle any errors that might result.

Preparing a varying-list SELECT statement:

Suppose that your program dynamically executes SQL statements, but this time
without any limits on their form. Your program reads the statements from a
terminal, and you know nothing about them in advance. They might not even be
SELECT statements.

As with non-SELECT statements, your program puts the statements into a
varying-length character variable; call it DSTRING. Your program goes on to
prepare a statement from the variable and then give the statement a name; call it
STMT.

Now, the program must find out whether the statement is a SELECT. If it is, the
program must also find out how many values are in each row, and what their data
types are. The information comes from an SQL descriptor area (SQLDA).

An SQL descriptor area:

The SQLDA is a structure that is used to communicate with your program, and
storage for it is usually allocated dynamically at run time.

To include the SQLDA in a PL/I or C program, use:
EXEC SQL INCLUDE SQLDA;

For assembler, use this in the storage definition area of a CSECT:
EXEC SQL INCLUDE SQLDA

For COBOL, use:
EXEC SQL INCLUDE SQLDA END-EXEC.

You cannot include an SQLDA in a Fortran, or REXX program.
Obtaining information about the SQL statement:

An SQLDA can contain a variable number of occurrences of SQLVAR, each of
which is a set of five fields that describe one column in the result table of a
SELECT statement.

The number of occurrences of SQLVAR depends on the following factors:
* The number of columns in the result table you want to describe.

* Whether you want the PREPARE or DESCRIBE to put both column names and
labels in your SQLDA. This is the option USING BOTH in the PREPARE or
DESCRIBE statement.

¢ Whether any columns in the result table are LOB types or distinct types.

The following table shows the minimum number of SQLVAR instances you need
for a result table that contains # columns.

Chapter 3. Coding SQL statements in application programs: General information 203

Table 43. Minimum number of SQLVARSs for a result table with n columns

Type of DESCRIBE and contents of result

table Not USING BOTH USING BOTH
No distinct types or LOBs n 2*n
Distinct types but no LOBs 2*n 3*n
LOBs but no distinct types 2*n 2*n
LOBs and distinct types 2*n 3*n

An SQLDA with n occurrences of SQLVAR is referred to as a single SQLDA, an
SQLDA with 2*n occurrences of SQLVAR a double SQLDA, an SQLDA with 3*n
occurrences of SQLVAR a triple SQLDA.

A program that admits SQL statements of every kind for dynamic execution has
two choices:

* Provide the largest SQLDA that it could ever need. The maximum number of
columns in a result table is 750, so an SQLDA for 750 columns occupies 33 016
bytes for a single SQLDA, 66 016 bytes for a double SQLDA, or 99 016 bytes for
a triple SQLDA. Most SELECT statements do not retrieve 750 columns, so the
program does not usually use most of that space.

* Provide a smaller SQLDA, with fewer occurrences of SQLVAR. From this the
program can find out whether the statement was a SELECT and, if it was, how
many columns are in its result table. If more columns are in the result than the
SQLDA can hold, DB2 returns no descriptions. When this happens, the program
must acquire storage for a second SQLDA that is long enough to hold the
column descriptions, and ask DB2 for the descriptions again. Although this
technique is more complicated to program than the first, it is more general.

How many columns should you allow? You must choose a number that is large
enough for most of your SELECT statements, but not too wasteful of space; 40 is
a good compromise. To illustrate what you must do for statements that return
more columns than allowed, the example in this discussion uses an SQLDA that
is allocated for at least 100 columns.

Declaring a cursor for the statement:

As before, you need a cursor for the dynamic SELECT. For example, write:

EXEC SQL
DECLARE C1 CURSOR FOR STMT;

Preparing the statement using the minimum SQLDA:

Suppose that your program declares an SQLDA structure with the name
MINSQLDA, having 100 occurrences of SQLVAR and SQLN set to 100. To prepare
a statement from the character string in DSTRING and also enter its description
into MINSQLDA, write this:

EXEC SQL PREPARE STMT FROM :DSTRING;
EXEC SQL DESCRIBE STMT INTO :MINSQLDA;

Equivalently, you can use the INTO clause in the PREPARE statement:

EXEC SQL
PREPARE STMT INTO :MINSQLDA FROM :DSTRING;

Do not use the USING clause in either of these examples. At the moment, only the
minimum SQLDA is in use. The following figure shows the contents of the

204 Application Programming and SQL Guide

minimum SQLDA in use.

Header —»|

SQLDAID SQLDABC 100 | SQLD

Figure 12. The minimum SQLDA structure

SQLN determines what SQLVAR gets:

The SQLN field, which you must set before using DESCRIBE (or PREPARE INTO),
tells how many occurrences of SQLVAR the SQLDA is allocated for. If DESCRIBE
needs more than that, the results of the DESCRIBE depend on the contents of the
result table. Let n indicate the number of columns in the result table. Then:

* If the result table contains at least one distinct type column but no LOB
columns, you do not specify USING BOTH, and n<=SQLN<2*n, then DB2
returns base SQLVAR information in the first # SQLVAR occurrences, but no
distinct type information. Base SQLVAR information includes:

— Data type code

— Length attribute (except for LOBs)
— Column name or label

— Host variable address

— Indicator variable address

* Otherwise, if SQLN is less than the minimum number of SQLVARs specified in
the table above, then DB2 returns no information in the SQLVARSs.

Regardless of whether your SQLDA is big enough, whenever you execute
DESCRIBE, DB2 returns the following values, which you can use to build an
SQLDA of the correct size:

* SQLD is 0 if the SQL statement is not a SELECT. Otherwise, SQLD is the
number of columns in the result table. The number of SQLVAR occurrences you
need for the SELECT depends on the value in the seventh byte of SQLDAID.

¢ The seventh byte of SQLDAID is 2 if each column in the result table requires
two SQLVAR entries. The seventh byte of SQLDAID is 3 if each column in the
result table requires three SQLVAR entries.

If the statement is not a SELECT:
To find out if the statement is a SELECT, your program can query the SQLD field
in MINSQLDA. If the field contains 0, the statement is not a SELECT, the

statement is already prepared, and your program can execute it. If no parameter
markers are in the statement, you can use:

EXEC SQL EXECUTE STMT;

(If the statement does contain parameter markers, you must use an SQL descriptor
area)

Acquiring storage for a second SQLDA if needed:

Now you can allocate storage for a second, full-size SQLDA; call it FULSQLDA.
The following figure shows its structure.

Chapter 3. Coding SQL statements in application programs: General information 205

16-byte fixed header — SQLDAID SQLDABC | SQLN | SQLD
SQLVAR set of fields —» gqITYPE | SQLLEN | SQLDATA SQLIND n* | SQLNAME

(element 1, 44 bytes)

Other SQLVAR sets of
fields (elements 2, 3,
and so on, 44 bytes
each)

SQLVAR2 set of fields —p SQLLONGL Reserved SQLDATAL m*

(element 1, 44 bytes)

Other SQLVAR2 sets of
fields (elements 2, 3,
and so on, 44 bytes
each)

*

SQLTNAME

* The length of the character string in SQLNAME.
SQLNAME is a 30-byte area immediately following
the length field.

** The length of the character string in SQLTNAME.
SQLTNAME is a 30-byte area immediately following
the length field.

Figure 13. The full-size SQLDA structure

FULSQLDA has a fixed-length header of 16 bytes in length, followed by a
varying-length section that consists of structures with the SQLVAR format. If the
result table contains LOB columns or distinct type columns, a varying-length
section that consists of structures with the SQLVAR2 format follows the structures
with SQLVAR format. All SQLVAR structures and SQLVAR? structures are 44 bytes
long. The number of SQLVAR and SQLVAR2 elements you need is in the SQLD
field of MINSQLDA, and the total length you need for FULSQLDA (16 + SQLD *
44) is in the SQLDABC field of MINSQLDA. Allocate that amount of storage.

Describing the SELECT statement again:

After allocating sufficient space for FULSQLDA, your program must take these

steps:

1. Put the total number of SQLVAR and SQLVAR2 occurrences in FULSQLDA into
the SQLN field of FULSQLDA. This number appears in the SQLD field of
MINSQLDA.

2. Describe the statement again into the new SQLDA:
EXEC SQL DESCRIBE STMT INTO :FULSQLDA;

After the DESCRIBE statement executes, each occurrence of SQLVAR in the
full-size SQLDA (FULSQLDA in our example) contains a description of one
column of the result table in five fields. If an SQLVAR occurrence describes a LOB
column or distinct type column, the corresponding SQLVAR2 occurrence contains
additional information specific to the LOB or distinct type.

The following figure shows an SQLDA that describes two columns that are not
LOB columns or distinct type columns.

206 Application Programming and SQL Guide

SQLDA header —», SQLDA 8816 | 200 | 200

SQLVAR element 1 (44 bytes) —» 452 3 Undefined 0 8 WORKDEPT
SQLVAR element 2 (44 bytes) —» 453 | 4 Undefined 0 7 PHONENO

Figure 14. Contents of FULSQLDA after executing DESCRIBE

Acquiring storage to hold a row:

Before fetching rows of the result table, your program must:

1. Analyze each SQLVAR description to determine how much space you need for
the column value.

2. Derive the address of some storage area of the required size.
3. Put this address in the SQLDATA field.

If the SQLTYPE field indicates that the value can be null, the program must also
put the address of an indicator variable in the SQLIND field. The following figures
show the SQL descriptor area after you take certain actions.

In the previous figure, the DESCRIBE statement inserted all the values except the
first occurrence of the number 200. The program inserted the number 200 before it
executed DESCRIBE to tell how many occurrences of SQLVAR to allow. If the
result table of the SELECT has more columns than this, the SQLVAR fields describe
nothing.

The first SQLVAR pertains to the first column of the result table (the WORKDEPT
column). SQLVAR element 1 contains fixed-length character strings and does not
allow null values (SQLTYPE=452); the length attribute is 3.

The following figure shows the SQLDA after your program acquires storage for the
column values and their indicators, and puts the addresses in the SQLDATA fields
of the SQLDA.

SQLDA header —», SQLDA 8816 | 200 | 200

SQLVAR element 1 (44 bytes) —» 452 3 Addr FLDA | Addr FLDAI 8 | WORKDEPT

SQLVAR element 2 (44 bytes) —» 453 4 Addr FLDB | Addr FLDBI 7 | PHONENO

Indicator variables
FLDA FLDB (halfword)
CHAR(@) CHAR(4) FLDAI FLDBI

I e e N e

Figure 15. SQL descriptor area after analyzing descriptions and acquiring storage

The following figure shows the SQLDA after your program executes a FETCH
statement.

Chapter 3. Coding SQL statements in application programs: General information 207

SQLDA header —¥| SQLDA 8816 | 200 | 200

SQLVAR element 1 (44 bytes) —® 452 3 Addr FLDA | Addr FLDAI 8 | WORKDEPT

SQLVAR element 2 (44 bytes) —® 453 4 Addr FLDB | Addr FLDBI 7 | PHONENO

Indicator variables
FLDA FLDB (halfword)
CHAR(3) CHAR(4) FLDAI FLDBI

’ E11 ‘ ’ 4502 ‘ E E

Figure 16. SQL descriptor area after executing FETCH

The following table describes the values in the descriptor area.

Table 44. Values inserted in the SQLDA

Value Field Description

SQLDA SQLDAID An “eye-catcher”

8816 SQLDABC The size of the SQLDA in bytes (16 + 44 * 200)

200 SQLN The number of occurrences of SQLVAR, set by the
program

200 SQLD The number of occurrences of SQLVAR actually used
by the DESCRIBE statement

452 SQLTYPE The value of SQLTYPE in the first occurrence of

SQLVAR. It indicates that the first column contains
fixed-length character strings, and does not allow

nulls.
3 SQLLEN The length attribute of the column
Undefined or SQLDATA Bytes 3 and 4 contain the CCSID of a string column.
CCSID value Undefined for other types of columns.
Undefined SQLIND
8 SQLNAME The number of characters in the column name
WORKDEPT SQLNAME+2 The column name of the first column

Putting storage addresses in the SQLDA:

After analyzing the description of each column, your program must replace the
content of each SQLDATA field with the address of a storage area large enough to
hold values from that column. Similarly, for every column that allows nulls, the
program must replace the content of the SQLIND field. The content must be the
address of a halfword that you can use as an indicator variable for the column.
The program can acquire storage for this purpose, of course, but the storage areas
used do not have to be contiguous.

[Figure 15 on page 207 shows the content of the descriptor area before the program
obtains any rows of the result table. Addresses of fields and indicator variables are
already in the SQLVAR.

Changing the CCSID for retrieved data:

All DB2 string data has an encoding scheme and CCSID associated with it. When
you select string data from a table, the selected data generally has the same

208 Application Programming and SQL Guide

encoding scheme and CCSID as the table. If the application uses some method,
such as issuing the DECLARE VARIABLE statement, to change the CCSID of the
selected data, the data is converted from the CCSID of the table to the CCSID that
is specified by the application.

You can set the default application encoding scheme for a plan or package by
specifying the value in the APPLICATION ENCODING field of the panel
DEFAULTS FOR BIND PACKAGE or DEFAULTS FOR BIND PLAN. The default
application encoding scheme for the DB2 subsystem is the value that was specified
in the APPLICATION ENCODING field of installation panel DSNTIPE

If you want to retrieve the data in an encoding scheme and CCSID other than the

default values, you can use one of the following techniques:

* For dynamic SQL, set the CURRENT APPLICATION ENCODING SCHEME
special register before you execute the SELECT statements. For example, to set
the CCSID and encoding scheme for retrieved data to the default CCSID for
Unicode, execute this SQL statement:

EXEC SQL SET CURRENT APPLICATION ENCODING SCHEME ='UNICODE';

The initial value of this special register is the application encoding scheme that
is determined by the BIND option.

* For static and dynamic SQL statements that use host variables and host variable
arrays, use the DECLARE VARIABLE statement to associate CCSIDs with the
host variables into which you retrieve the data. See [“Setting the CCSID for host|
[variables” on page 178 for information about this technique.

* For static and dynamic SQL statements that use a descriptor, set the CCSID for
the retrieved data in the SQLDA. The following text describes that technique.

To change the encoding scheme for SQL statements that use a descriptor, set up the
SQLDA, and then make these additional changes to the SQLDA:

1. Put the character + in the sixth byte of field SQLDAID.
2. For each SQLVAR entry:
a. Set the length field of SQLNAME to 8.
b. Set the first two bytes of the data field of SQLNAME to X'0000'.

C. Set the third and fourth bytes of the data field of SQLNAME to the CCSID,
in hexadecimal, in which you want the results to display, or to X'0000'.
X'0000" indicates that DB2 should use the default CCSID If you specify a
nonzero CCSID, it must meet one of the following conditions:

* Arow in catalog table SYSSTRINGS has a matching value for
OUTCCSID.

* The Unicode conversion services support conversion to that CCSID. See
z/0S C/C++ Programming Guide for information about the conversions
supported.

If you are modifying the CCSID to retrieve the contents of an ASCII,
EBCDIC, or Unicode table on a DB2 for z/OS system, and you previously
executed a DESCRIBE statement on the SELECT statement that you are
using to retrieve the data, the SQLDATA fields in the SQLDA that you used
for the DESCRIBE contain the ASCII or Unicode CCSID for that table. To set
the data portion of the SQLNAME fields for the SELECT, move the contents
of each SQLDATA field in the SQLDA from the DESCRIBE to each
SQLNAME field in the SQLDA for the SELECT. If you are using the same

Chapter 3. Coding SQL statements in application programs: General information 209

SQLDA for the DESCRIBE and the SELECT, be sure to move the contents of
the SQLDATA field to SQLNAME before you modify the SQLDATA field
for the SELECT.

For REXX, you set the CCSID in the stem.n.SQLUSECCSID field instead of
setting the SQLDAID and SQLNAME fields.

For example, suppose that the table that contains WORKDEPT and PHONENO is
defined with CCSID ASCII. To retrieve data for columns WORKDEPT and
PHONENO in ASCII CCSID 437 (X'01B5'), change the SQLDA as shown in the
following figure.

SQLDA header —» SQLDA+ 8816 | 200 | 200

SQLVAR element 1 (44 bytes) —® 452 3 Addr FLDA | Addr FLDAI 8 | X 000001B500000000

SQLVAR element 2 (44 bytes) —» 453 | 4 Addr FLDB | Addr FLDBI 8 | X 000001B500000000

Indicator variables
FLDA FLDB (halfword)
CHAR(3) CHAR(4) FLDAI FLDBI

I e I

Figure 17. SQL descriptor area for retrieving data in ASCII CCSID 437

Specifying that DESCRIBE use column labels in the SQLNAME field:

By default, DESCRIBE describes each column in the SQLNAME field by the
column name. You can tell it to use column labels instead.

Restriction: You cannot use column labels with set operators (UNION,
INTERSECT, and EXCEPT).

To specify that DESCRIBE use column labels in the SOLNAME field, specify one of
the following options when you issue the DESCRIBE statement:

USING LABELS
Specifies that SQLNAME is to contain labels. If a column has no label,
SQLNAME contains nothing.

USING ANY
Specifies that SQLNAME is to contain labels wherever they exist. If a column
has no label, SQLNAME contains the column name.

USING BOTH
Specifies that SQLNAME is to contain both labels and column names, when
both exist.

In this case, FULSQLDA must contain a second set of occurrences of SQLVAR.
The first set contains descriptions of all the columns with column names; the
second set contains descriptions with column labels.

If you choose this option, perform the following actions:

 Allocate a longer SQLDA for the second DESCRIBE statement ((16 + SQLD *
88 bytes) instead of (16 + SQLD * 44))

* Put double the number of columns (SLQD * 2) in the SQLN field of the
second SQLDA.

210 Application Programming and SQL Guide

These actions ensure that enough space is available. Otherwise, if not enough
space is available, DESCRIBE does not enter descriptions of any of the
columns.

EXEC SQL
DESCRIBE STMT INTO :FULSQLDA USING LABELS;

Some columns, such as those derived from functions or expressions, have neither
name nor label; SQLNAME contains nothing for those columns. For example, if
you use a UNION to combine two columns that do not have the same name and
do not use a label, SQLNAME contains a string of length zero.

Describing tables with LOB and distinct type columns:

In general, the steps that you perform when you prepare an SQLDA to select rows
from a table with LOB and distinct type columns are similar to the steps that you
perform if the table has no columns of this type. The only difference is that you
need to analyze some additional fields in the SQLDA for LOB or distinct type
columns.

Example: Suppose that you want to execute this SELECT statement:
SELECT USER, A_DOC FROM DOCUMENTS;

The USER column cannot contain nulls and is of distinct type ID, defined like this:
CREATE DISTINCT TYPE SCHEMAL.ID AS CHAR(20);

The A_DOC column can contain nulls and is of type CLOB(1M).

The result table for this statement has two columns, but you need four SQLVAR
occurrences in your SQLDA because the result table contains a LOB type and a
distinct type. Suppose that you prepare and describe this statement into
FULSQLDA, which is large enough to hold four SQLVAR occurrences. FULSQLDA
looks like the following figure .

SQLDA header —|

SQLVAR element 1 (44 bytes) —¥|

SQLVAR element 2 (44 bytes) —|

SQLVAR2 element 1 (44 bytes) —»|

SQLVAR2 element 2 (44 bytes) —»

SQLDA 2 192 4 4
452 20 | Undefined 0 4 USER
409 | © Undefined 0 5 A_DOC
7 | SCH1.ID
1048 576 11 |SYSIBM.CLOB

Figure 18. SQL descriptor area after describing a CLOB and distinct type

The next steps are the same as for result tables without LOBs or distinct types:

1. Analyze each SQLVAR description to determine the maximum amount of space
you need for the column value.
For a LOB type, retrieve the length from the SQLLONGL field instead of the
SQLLEN field.

2. Derive the address of some storage area of the required size.
For a LOB data type, you also need a 4-byte storage area for the length of the

LOB data. You can allocate this 4-byte area at the beginning of the LOB data or
in a different location.

3. Put this address in the SQLDATA field.

Chapter 3. Coding SQL statements in application programs: General information 211

For a LOB data type, if you allocated a separate area to hold the length of the
LOB data, put the address of the length field in SQLDATAL. If the length field
is at beginning of the LOB data area, put 0 in SQLDATAL. When you use a file
reference variable for a LOB column, the indicator variable indicates whether
the data in the file is null, not whether the data to which SQLDATA points is
null.

4. If the SQLTYPE field indicates that the value can be null, the program must
also put the address of an indicator variable in the SQLIND field.

The following figure shows the contents of FULSQLDA after you enter pointers to
the storage locations.

SQLDA header — SQLDA 2 192 4 4
SQLVAR element 1 (44 bytes) —» 452 20 | Addr FLDA 0 4 USER
SQLVAR element 2 (44 bytes) —® 409 0 Addr FLDB | Addr FLDBI| 5 A DOC
SQLVAR2 element 1 (44 bytes) —», 7 SCH1.ID
SQLVAR2 element 2 (44 bytes)—» 1048 576 0 11 | SYSIBM.CLOB
FLDA FLDB '”d'(ﬁztlg;,;/fg)'ab'e
CHAR(20) CLOB(1M) FLDBI
4-byte
length
field

Figure 19. SQL descriptor area after analyzing CLOB and distinct type descriptions and acquiring storage

The following figure shows the contents of FULSQLDA after you execute a FETCH

statement.
SQLDA header — SQLDA 2 192 4 4

SQLVAR element 1 (44 bytes) —»| 452 20 Addr FLDA 0 4 USER
SQLVAR element 2 (44 bytes) —» 409 0 Addr FLDB | Addr FLDBI| 5 A DOC
SQLVAR2 element 1 (44 bytes) —»| 7 SCH1.ID
SQLVAR2 element 2 (44 bytes)—»{ 1 048 576 0 11 | SYSIBM.CLOB

B Byt

(20) (1M) FLDBI
] [(o

4-byte length
field contains
actual length
of data
Figure 20. SQL descriptor area after executing FETCH on a table with CLOB and distinct type columns

Setting an XML host variable in an SQLDA:

212 Application Programming and SQL Guide

Instead of specifying host variables to store XML values from a table, you can
create an SQLDA to point to the data areas where DB2 puts the retrieved data. The
SQLDA needs to describe the data type for each data area.

To set an XML host variable in an SQLDA:

1.
2.

Allocate an appropriate SQLDA.

Issue a DESCRIBE statement for the SQL statement whose result set you want
to store. The DESCRIBE statement populates the SQLDA based on the column
definitions. In the SQLDA, an SQLVAR entry is populated for each column in
the result set. (Multiple SQLVAR entries are populated for LOB columns and
columns with distinct types.) For columns of type XML the associated SQLVAR
entry is populated as follows:

Table 45. SQLVAR field values for XML columns

SQLVAR field Value for an XML column
sqltype 988 for a column that is not nullable
SQLTYPE or 989 for a nullable column
0
sqllen
SQLLEN
0
sqldata
SQLDATA
0
sqlind
SQLIND
The unqualified name or label of the column
sqlname
SQLNAME
3. Check the SQLTYPE field of each SQLVAR entry. If the SQLTYPE field is 988 or

4.

989, the column in the result set is an XML column.

For each XML column, make the following changes to the associated SQLVAR

entry:

a. Change the SQLTYPE field to indicate the data type of the host variable to
receive the XML data. You can retrieve the XML data into a host variable of
type XML AS BLOB, XML AS CLOB, or XML AS DBCLOB, or a compatible
string data type.

If the target host variable type is XML AS BLOB, XML AS CLOB, or XML
AS DBCLOB, set the SQLTYPE field to one of the following values:

404
XML AS BLOB

405
nullable XML AS BLOB

408
XML AS CLOB

409
nullable XML AS CLOB

412
XML AS DBCLOB

Chapter 3. Coding SQL statements in application programs: General information 213

413
nullable XML AS DBCLOB

If the target host variable type is a string data type, set the SQLTYPE field
to a valid string value.

Restriction: You cannot use the XML type (988/989) as a target host
variable type.

b. If the target host variable type is XML AS BLOB, XML AS CLOB, or XML
AS DBCLOB, change the first two bytes in the SQLNAME field to X'0000'
and the fifth and sixth bytes to X'0100'. These bytes indicate that the value
to be received is an XML value.

5. Populate the extended SQLVAR fields for each XML column as you would for a
LOB column, as indicated in the following table.

Table 46. Fields for an extended SQLVAR entry for an XML host variable

SQLVAR field Value for an XML host variable
length attribute for the XML host variable

len.sqllonglen
SQLLONGL
SQLLONGLEN

*

Reserved

pointer to the length of the XML host variable
sqldatalen
SQLDATAL
SQLDATALEN

not used

sqldatatype_name
SQLTNAME
SQLDATATYPENAME

You can now use the SQLDA to retrieve the XML data into a host variable of type
XML AS BLOB, XML AS CLOB, or XML AS DBCLOB, or a compatible string data

type.

Executing a varying-list SELECT statement dynamically:

You can easily retrieve rows of the result table using a varying-list SELECT
statement. The statements differ only a little from those for the fixed-list example.

Open the cursor: If the SELECT statement contains no parameter marker, this
step is simple enough. For example:

EXEC SQL OPEN C1;

Fetch rows from the result table: This statement differs from the corresponding
one for the case of a fixed-list select. Write:

EXEC SQL
FETCH C1 USING DESCRIPTOR :FULSQLDA;

The key feature of this statement is the clause USING DESCRIPTOR :FULSQLDA.
That clause names an SQL descriptor area in which the occurrences of SQLVAR
point to other areas. Those other areas receive the values that FETCH returns. It is
possible to use that clause only because you previously set up FULSQLDA to look
like [Figure 14 on page 207]

214 Application Programming and SQL Guide

[Figure 16 on page 208 shows the result of the FETCH. The data areas identified in
the SQLVAR fields receive the values from a single row of the result table.

Successive executions of the same FETCH statement put values from successive
rows of the result table into these same areas.

Close the cursor: This step is the same as for the fixed-list case. When no more
rows need to be processed, execute the following statement:

EXEC SQL CLOSE C1;

When COMMIT ends the unit of work containing OPEN, the statement in STMT
reverts to the unprepared state. Unless you defined the cursor using the WITH
HOLD option, you must prepare the statement again before you can reopen the
cursor.

Executing arbitrary statements with parameter markers:

Consider, as an example, a program that executes dynamic SQL statements of
several kinds, including varying-list SELECT statements, any of which might
contain a variable number of parameter markers. This program might present your
users with lists of choices: choices of operation (update, select, delete); choices of
table names; choices of columns to select or update. The program also enables the
users to enter lists of employee numbers to apply to the chosen operation. From
this, the program constructs SQL statements of several forms, one of which looks
like this:

SELECT FROM DSN8A10.EMP
WHERE EMPNO IN (?7,?7,7,...7);

The program then executes these statements dynamically.

When the number and types of parameters are known: In the preceding example,
you do not know in advance the number of parameter markers, and perhaps the
kinds of parameter they represent. You can use techniques described previously if
you know the number and types of parameters, as in the following examples:

» If the SQL statement is not SELECT, name a list of host variables in the
EXECUTE statement:
WRONG: EXEC SQL EXECUTE STMT;

RIGHT: EXEC SQL EXECUTE STMT USING :VAR1, :VAR2, :VAR3;

o If the SQL statement is SELECT, name a list of host variables in the OPEN
statement:
WRONG: EXEC SQL OPEN C1;

RIGHT: EXEC SQL OPEN C1 USING :VAR1, :VARZ2, :VAR3;

In both cases, the number and types of host variables named must agree with the
number of parameter markers in STMT and the types of parameter they represent.
The first variable (VAR1 in the examples) must have the type expected for the first
parameter marker in the statement, the second variable must have the type
expected for the second marker, and so on. There must be at least as many
variables as parameter markers.

When the number and types of parameters are not known: When you do not
know the number and types of parameters, you can adapt the SQL descriptor area.

Chapter 3. Coding SQL statements in application programs: General information ~ 215

Your program can include an unlimited number of SQLDAs, and you can use them
for different purposes. Suppose that an SQLDA, arbitrarily named DPARM,
describes a set of parameters.

The structure of DPARM is the same as that of any other SQLDA. The number of
occurrences of SQLVAR can vary, as in previous examples. In this case, every
parameter marker must have one SQLVAR. Each occurrence of SQLVAR describes
one host variable that replaces one parameter marker at run time. DB2 replaces the
parameter markers when a non-SELECT statement executes or when a cursor is
opened for a SELECT statement.

You must enter certain fields in DPARM before using EXECUTE or OPEN; you can
ignore the other fields.

Field Use when describing host variables for parameter markers

SQLDAID
The seventh byte indicates whether more than one SQLVAR entry is used
for each parameter marker. If this byte is not blank, at least one parameter
marker represents a distinct type or LOB value, so the SQLDA has more
than one set of SQLVAR entries.

You do not set this field for a REXX SQLDA.

SQLDABC
The length of the SQLDA, which is equal to SQLN * 44 + 16. You do not
set this field for a REXX SQLDA.

SQLN The number of occurrences of SQLVAR allocated for DPARM. You do not
set this field for a REXX SQLDA.

SQLD The number of occurrences of SQLVAR actually used. This number must
not be less than the number of parameter markers. In each occurrence of
SQLVAR, put information in the following fields: SQLTYPE, SQLLEN,
SQLDATA, SQLIND.

SQLTYPE
The code for the type of variable, and whether it allows nulls.

SQLLEN
The length of the host variable.

SQLDATA
The address of the host variable.

For REXX, this field contains the value of the host variable.

SQLIND
The address of an indicator variable, if needed.

For REXX, this field contains a negative number if the value in SQLDATA
is null.

SQLNAME
Ignore.

Using the SQLDA with EXECUTE or OPEN: To indicate that the SQLDA called
DPARM describes the host variables substituted for the parameter markers at run
time, use a USING DESCRIPTOR clause with EXECUTE or OPEN.

¢ For a non-SELECT statement, write:
EXEC SQL EXECUTE STMT USING DESCRIPTOR :DPARM;
e For a SELECT statement, write:

216 Application Programming and SQL Guide

EXEC SQL OPEN C1 USING DESCRIPTOR :DPARM;

How bind options REOPT(ALWAYS), REOPT(AUTO) and REOPT(ONCE) affect
dynamic SQL:

When you specify the bind option REOPT(ALWAYS), DB2 reoptimizes the access
path at run time for SQL statements that contain host variables, parameter
markers, or special registers. The option REOPT(ALWAYS) has the following effects
on dynamic SQL statements:

* When you specify the option REOPT(ALWAYS), DB2 automatically uses
DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

* When you execute a DESCRIBE statement and then an EXECUTE statement on a
non-SELECT statement, DB2 prepares the statement twice: Once for the
DESCRIBE statement and once for the EXECUTE statement. DB2 uses the values
in the input variables only during the second PREPARE. These multiple
PREPARESs can cause performance to degrade if your program contains many
dynamic non-SELECT statements. To improve performance, consider putting the
code that contains those statements in a separate package and then binding that
package with the option REOPT(NONE).

 If you execute a DESCRIBE statement before you open a cursor for that
statement, DB2 prepares the statement twice. If, however, you execute a
DESCRIBE statement after you open the cursor, DB2 prepares the statement only
once. To improve the performance of a program bound with the option
REOPT(ALWAYS), execute the DESCRIBE statement after you open the cursor.
To prevent an automatic DESCRIBE before a cursor is opened, do not use a
PREPARE statement with the INTO clause.

* If you use predictive governing for applications bound with REOPT(ALWAYS),
DB2 does not return a warning SQLCODE when dynamic SQL statements
exceed the predictive governing warning threshold. DB2 does return an error
SQLCODE when dynamic SQL statements exceed the predictive governing error
threshold. DB2 returns the error SQLCODE for an EXECUTE or OPEN
statement.

When you specify the bind option REOPT(AUTO), DB2 optimizes the access path
for SQL statements at the first EXECUTE or OPEN. Each time a statement is
executed, DB2 determines if a new access path is needed to improve the
performance of the statement. If a new access path will improve the performance,
DB2 generates one. The option REOPT(AUTO) has the following effects on
dynamic SQL statements:

* When you specify the bind option REOPT(AUTO), DB2 optimizes the access
path for SQL statements at the first EXECUTE or OPEN. Each time a statement
is executed, DB2 determines if a new access path is needed to improve the
performance of the statement. If a new access path will improve the
performance, DB2 generates one.

* When you specify the option REOPT(ONCE), DB2 automatically uses
DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

* When DB2 prepares a statement using REOPT(AUTO), it saves the access path
in the dynamic statement cache. This access path is used each time the statement
is run, until DB2 determines that a new access path is needed to improve the
performance or the statement that is in the cache is invalidated (or removed
from the cache) and needs to be rebound.

Chapter 3. Coding SQL statements in application programs: General information 217

* The DESCRIBE statement has the following effects on dynamic statements that
are bound with REOPT(AUTO):

— When you execute a DESCRIBE statement before an EXECUTE statement on a
non-SELECT statement, DB2 prepares the statement an extra time if it is not
already saved in the cache: Once for the DESCRIBE statement and once for
the EXECUTE statement. DB2 uses the values of the input variables only
during the second time the statement is prepared. It then saves the statement
in the cache. If you execute a DESCRIBE statement before an EXECUTE
statement on a non-SELECT statement that has already been saved in the
cache, DB2 will always prepare the non-SELECT statement for the DESCRIBE
statement, and will prepare the statement again on EXECUTE only if DB2
determines that a new access path different from the one already saved in the
cache can improve the performance.

— If you execute DESCRIBE on a statement before you open a cursor for that
statement, DB2 always prepares the statement on DESCRIBE. However, DB2
will not prepare the statement again on OPEN if the statement has already
been saved in the cache and DB2 does not think that a new access path is
needed at OPEN time. If you execute DESCRIBE on a statement after you
open a cursor for that statement, DB2 prepared the statement only once if it is
not already saved in the cache. If the statement is already saved in the cache
and you execute DESCRIBE after you open a cursor for that statement, DB2
does not prepare the statement, it used the statement that is saved in the
cache.

* If you use predictive governing for applications that are bound with
REOPT(AUTO), DB2 does not return a warning SQLCODE when dynamic SQL
statements exceed the predictive governing warning threshold. DB2 does return
an error SQLCODE when dynamic SQL statements exceed the predictive
governing error threshold. DB2 returns the error SQLCODE for an EXECUTE or
OPEN statement.

When you specify the bind option REOPT(ONCE), DB2 optimizes the access path
only once, at the first EXECUTE or OPEN, for SQL statements that contain host
variables, parameter markers, or special registers. The option REOPT(ONCE) has
the following effects on dynamic SQL statements:

* When you specify the option REOPT(ONCE), DB2 automatically uses
DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

* When DB2 prepares a statement using REOPT(ONCE)), it saves the access path
in the dynamic statement cache. This access path is used each time the statement
is run, until the statement that is in the cache is invalidated (or removed from
the cache) and needs to be rebound.

* The DESCRIBE statement has the following effects on dynamic statements that
are bound with REOPT(ONCE):

— When you execute a DESCRIBE statement before an EXECUTE statement on a
non-SELECT statement, DB2 prepares the statement twice if it is not already
saved in the cache: Once for the DESCRIBE statement and once for the
EXECUTE statement. DB2 uses the values of the input variables only during
the second time the statement is prepared. It then saves the statement in the
cache. If you execute a DESCRIBE statement before an EXECUTE statement
on a non-SELECT statement that has already been saved in the cache, DB2
prepares the non-SELECT statement only for the DESCRIBE statement.

— If you execute DESCRIBE on a statement before you open a cursor for that
statement, DB2 always prepares the statement on DESCRIBE. However, DB2
will not prepare the statement again on OPEN if the statement has already

218 Application Programming and SQL Guide

been saved in the cache. If you execute DESCRIBE on a statement after you
open a cursor for that statement, DB2 prepared the statement only once if it is
not already saved in the cache. If the statement is already saved in the cache
and you execute DESCRIBE after you open a cursor for that statement, DB2
does not prepare the statement, it used the statement that is saved in the
cache.

To improve the performance of a program that is bound with REOPT(ONCE),
execute the DESCRIBE statement after you open a cursor. To prevent an
automatic DESCRIBE before a cursor is opened, do not use a PREPARE
statement with the INTO clause.

* If you use predictive governing for applications that are bound with
REOPT(ONCE), DB2 does not return a warning SQLCODE when dynamic SQL
statements exceed the predictive governing warning threshold. DB2 does return
an error SQLCODE when dynamic SQL statements exceed the predictive
governing error threshold. DB2 returns the error SQLCODE for an EXECUTE or
OPEN statement.

Related concepts:

[“‘SQL statements in assembler programs” on page 266|

[“SQL statements in C programs” on page 307

[“SQL statements in COBOL programs” on page 357

[“SQL statements in Fortran programs” on page 403|

[“SQL statements in PL/I programs” on page 427|

[“‘SQL statements in REXX programs” on page 439

Related reference:

[[DESCRIBE OUTPUT (DB2 SOL)|

[[SQL descriptor area (SQLDA) (DB2 SQL)]
[EOLTYPE and SOLLEN (DB2 SOL)|

[[The SOLDA Header (DB2 SOL)|

Dynamically executing an SQL statement by using EXECUTE
IMMEDIATE

In certain situations, you might want your program to prepare and dynamically
execute a statement immediately after reading it.

Suppose that you design a program to read SQL DELETE statements, similar to
these, from a terminal:

DELETE FROM DSN8A10.EMP WHERE EMPNO
DELETE FROM DSN8A10.EMP WHERE EMPNO

'000190"
'000220"

After reading a statement, the program is to run it immediately.

Recall that you must prepare (precompile and bind) static SQL statements before
you can use them. You cannot prepare dynamic SQL statements in advance. The
SQL statement EXECUTE IMMEDIATE causes an SQL statement to prepare and
execute, dynamically, at run time.

Declaring the host variable: Before you prepare and execute an SQL statement,
you can read it into a host variable. If the maximum length of the SQL statement is
32 KB, declare the host variable as a character or graphic host variable according to
the following rules for the host languages:

Chapter 3. Coding SQL statements in application programs: General information ~ 219

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_describeoutput.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqltypeandsqlleninsqlda.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_thesqldaheader.dita

* In assembler, PL/I, COBOL and C, you must declare a string host variable as a
varying-length string.
* In Fortran, it must be a fixed-length string variable.

If the length is greater than 32 KB, you must declare the host variable as a CLOB
or DBCLOB, and the maximum is 2 MB.

Example: Using a varying-length character host variable: This excerpt is from a C
program that reads a DELETE statement into the host variable dstring and executes
the statement:

EXEC SQL BEGIN DECLARE SECTION;

struct VARCHAR {
short Ten;
char s[40];
} dstring;
EXEC SQL END DECLARE SECTION;

/* Read a DELETE statement into the host variable dstring. */
gets(dstring);
EXEC SQL EXECUTE IMMEDIATE :dstring;

EXECUTE IMMEDIATE causes the DELETE statement to be prepared and executed
immediately.

Declaring a CLOB or DBCLOB host variable: You declare CLOB and DBCLOB
host variables according to certain rules.

The precompiler generates a structure that contains two elements, a 4-byte length
field and a data field of the specified length. The names of these fields vary
depending on the host language:

e In PL/I, assembler, and Fortran, the names are variable. LENGTH and
variable_DATA.

¢ In COBOL, the names are variable-LENGTH and variable-DATA.
e In C, the names are variable LENGTH and variable. DATA.

Example: Using a CLOB host variable: This excerpt is from a C program that
copies an UPDATE statement into the host variable stringl and executes the
statement:

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB(4k) stringl;
EXEC SQL END DECLARE SECTION;

/* Copy a statement into the host variable stringl. =/
strcpy(stringl.data, "UPDATE DSN8610.EMP SET SALARY = SALARY = 1.1");
stringl.length = 44;

EXEC SQL EXECUTE IMMEDIATE :stringl;

EXECUTE IMMEDIATE causes the UPDATE statement to be prepared and
executed immediately.

Related concepts:

“LOB host variable, LOB locator, and LOB file reference variable declarations” on|
age 757

“SQL statements in assembler programs” on page 266|

220 Application Programming and SQL Guide

[‘SQL statements in C programs” on page 307

[‘SQL statements in COBOL programs” on page 357

[‘SQL statements in Fortran programs” on page 403|

“SQL statements in PL/I programs” on page 427|

“SQL statements in REXX programs” on page 439|

Dynamically executing an SQL statement by using PREPARE and
EXECUTE

As an alternative to executing an SQL statement immediately after it is read, you
can prepare and execute the SQL statement in two steps. This two-step method is
useful when you need to execute an SQL statement multiple times with different
values.

Suppose that you want to execute DELETE statements repeatedly using a list of
employee numbers. Consider how you would do it if you could write the DELETE
statement as a static SQL statement:
< Read a value for EMP from the Tist. >
DO UNTIL (EMP = 0);

EXEC SQL

DELETE FROM DSN8A10.EMP WHERE EMPNO = :EMP ;

< Read a value for EMP from the list. >

END;

The loop repeats until it reads an EMP value of 0.

If you know in advance that you will use only the DELETE statement and only the
table DSN8A10.EMP, you can use the more efficient static SQL. Suppose further
that several different tables have rows that are identified by employee numbers,
and that users enter a table name as well as a list of employee numbers to delete.
Although variables can represent the employee numbers, they cannot represent the
table name, so you must construct and execute the entire statement dynamically.
Your program must now do these things differently:

¢ Use parameter markers instead of host variables

* Use the PREPARE statement

* Use EXECUTE instead of EXECUTE IMMEDIATE

Parameter markers with PREPARE and EXECUTE: Dynamic SQL statements
cannot use host variables. Therefore, you cannot dynamically execute an SQL
statement that contains host variables. Instead, substitute a parameter marker,
indicated by a question mark (?), for each host variable in the statement.

You can indicate to DB2 that a parameter marker represents a host variable of a
certain data type by specifying the parameter marker as the argument of a CAST
specification. When the statement executes, DB2 converts the host variable to the
data type in the CAST specification. A parameter marker that you include in a
CAST specification is called a typed parameter marker. A parameter marker without
a CAST specification is called an untyped parameter marker.

Recommendation: Because DB2 can evaluate an SQL statement with typed
parameter markers more efficiently than a statement with untyped parameter
markers, use typed parameter markers whenever possible. Under certain
circumstances you must use typed parameter markers.

Example using parameter markers: Suppose that you want to prepare this
statement:

DELETE FROM DSN8A10.EMP WHERE EMPNO = :EMP;

Chapter 3. Coding SQL statements in application programs: General information 221

You need to prepare a string like this:
DELETE FROM DSN8A10.EMP WHERE EMPNO = CAST(? AS CHAR(6))

You associate host variable :EMP with the parameter marker when you execute the
prepared statement. Suppose that S1 is the prepared statement. Then the EXECUTE
statement looks like this:

EXECUTE S1 USING :EMP;

Using the PREPARE statement: Before you prepare an SQL statement, you can
assign it to a host variable. If the length of the statement is greater than 32 KB, you
must declare the host variable as a CLOB or DBCLOB.

You can think of PREPARE and EXECUTE as an EXECUTE IMMEDIATE done in
two steps. The first step, PREPARE, turns a character string into an SQL statement,
and then assigns it a name of your choosing.

Example using the PREPARE statement: Assume that the character host variable
:DSTRING has the value “DELETE FROM DSN8A10.EMP WHERE EMPNO = ?”.
To prepare an SQL statement from that string and assign it the name S1, write:

EXEC SQL PREPARE S1 FROM :DSTRING;

The prepared statement still contains a parameter marker, for which you must
supply a value when the statement executes. After the statement is prepared, the
table name is fixed, but the parameter marker enables you to execute the same
statement many times with different values of the employee number.

Using the EXECUTE statement: The EXECUTE statement executes a prepared
SQL statement by naming a list of one or more host variables, one or more host
variable arrays, or a host structure. This list supplies values for all of the parameter
markers.

After you prepare a statement, you can execute it many times within the same unit
of work. In most cases, COMMIT or ROLLBACK destroys statements prepared in a
unit of work. Then, you must prepare them again before you can execute them
again. However, if you declare a cursor for a dynamic statement and use the
option WITH HOLD, a commit operation does not destroy the prepared statement
if the cursor is still open. You can execute the statement in the next unit of work
without preparing it again.

Example using the EXECUTE statement: To execute the prepared statement S1
just once, using a parameter value contained in the host variable :EMP, write:

EXEC SQL EXECUTE S1 USING :EMP;

Preparing and executing the example DELETE statement: The example in this
topic began with a DO loop that executed a static SQL statement repeatedly:
< Read a value for EMP from the list. >
DO UNTIL (EMP = 0);

EXEC SQL

DELETE FROM DSN8A10.EMP WHERE EMPNO = :EMP ;

< Read a value for EMP from the Tist. >

END;

You can now write an equivalent example for a dynamic SQL statement:

< Read a statement containing parameter markers into DSTRING.>
EXEC SQL PREPARE S1 FROM :DSTRING;
< Read a value for EMP from the Tist. >

222 Application Programming and SQL Guide

DO UNTIL (EMPNO = 0);
EXEC SQL EXECUTE S1 USING :EMP;
< Read a value for EMP from the list. >
END;

The PREPARE statement prepares the SQL statement and calls it S1. The EXECUTE
statement executes S1 repeatedly, using different values for EMP.

Using more than one parameter marker: The prepared statement (S1 in the
example) can contain more than one parameter marker. If it does, the USING
clause of EXECUTE specifies a list of variables or a host structure. The variables
must contain values that match the number and data types of parameters in S1 in
the proper order. You must know the number and types of parameters in advance
and declare the variables in your program, or you can use an SQLDA (SQL
descriptor area).

Related concepts:

[“SQL statements in assembler programs” on page 266|

[“SQL statements in C programs” on page 307
[“SQL statements in COBOL programs” on page 357|

[“SQL statements in Fortran programs” on page 403|

[“SQL statements in PL/I programs” on page 427

[“SQL statements in REXX programs” on page 439
Related tasks:
“Dynamically executing an SQL statement by using EXECUTE IMMEDIATE” on|

page 212|

Related reference:

[[PREPARE (DB2 SQL)|

Dynamically executing a data change statement
Dynamically executing data change statements with host variable arrays is useful if
you want to enter rows of data into different tables. It is also useful if you want to

enter a different number of rows. The process is similar for both INSERT and
MERGE statements.

For example, suppose that you want to repeatedly execute a multiple-row INSERT
statement with a list of activity IDs, activity keywords, and activity descriptions
that are provided by the user. You can use the following static SQL INSERT
statement to insert multiple rows of data into the activity table:
EXEC SQL

INSERT INTO DSN8A10.ACT

VALUES (:hva_actno, :hva_actkwd, :hva_actdesc)
FOR :num_rows ROWS;

However, if you want to enter the rows of data into different tables or enter
different numbers of rows, you can construct the INSERT statement dynamically.

This topic describes the following methods that you can use to execute a data
change statement dynamically:

* By using host variable arrays that contain the data to be inserted

* By using a descriptor to describe the host variable arrays that contain the data

Dynamically executing a data change statement by using host variable arrays:

Chapter 3. Coding SQL statements in application programs: General information 223

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_prepare.dita

To dynamically execute a data change statement by using host variable arrays,
perform the following actions in your program:

1. Assign the appropriate INSERT or MERGE statement to a host variable. If
needed, use the CAST specification to explicitly assign types to parameter
markers that represent host variable arrays.

Example: For the activity table, the following string contains an INSERT
statement that is to be prepared:

INSERT INTO DSN8A10.ACT
VALUES (CAST(? AS SMALLINT), CAST(? AS CHAR(6)), CAST(? AS VARCHAR(20)))

2. Assign any attributes for the SQL statement to a host variable.
3. Include a PREPARE statement for the SQL statement.
4. Include an EXECUTE statement with the FOR n ROWS clause.

Each host variable in the USING clause of the EXECUTE statement represents
an array of values for the corresponding column of the target of the SQL
statement. You can vary the number of rows without needing to prepare the
SQL statement again.

Example: The following code prepares and executes an INSERT statement:

/* Copy the INSERT string into the host variable sqlstmt */
strcpy(sqlstmt, "INSERT INTO DSN8A10.ACT VALUES (CAST(? AS SMALLINT),");
strcat(sqlstmt, " CAST(? AS CHAR(6)), CAST(? AS VARCHAR(20)))");

/* Copy the INSERT attributes into the host variable attrvar */
strcpy(attrvar, "FOR MULTIPLE ROWS");

/* Prepare and execute my_insert using the host variable arrays */
EXEC SQL PREPARE my_insert ATTRIBUTES :attrvar FROM :sqlstmt;
EXEC SQL EXECUTE my_insert USING :hval, :hva2, :hva3 FOR :num_rows ROWS;

Dynamically executing a data change statement by using descriptors:

You can use an SQLDA structure to specify data types and other information about
the host variable arrays that contain the values to insert.

To dynamically execute a data change statement by using descriptors, perform the
following actions in your program:

1. Set the following fields in the SQLDA structure for your INSERT statement.
* SQLN
* SQLABC
« SQLD
* SQLVAR
* SQLNAME

Example: Assume that your program includes the standard SQLDA structure
declaration and declarations for the program variables that point to the SQLDA
structure. For C application programs, the following example code sets the
SQLDA fields:

strcpy(sqldaptr->sqldaid, "SQLDA");

sqldaptr->sqldabc =
for the SQLDA */
sqldaptr->sqln = 4;
occurrences */
sqldaptr->sqld = 4;

192; /* number of bytes of storage allocated

/* number of SQLVAR

varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0])); /* Point

to first SQLVAR =*/

224 Application Programming and SQL Guide

varptr->sqltype = 500; /* data

type SMALLINT =/

varptr->sqllen = 2;

varptr->sqldata = (char *) hval;

varptr->sqlname.length = 8;

memcpy (varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar %) (&(sqldaptr->sqlvar[0]) + 1); /* Point

to next SQLVAR =/

varptr->sqltype = 452; /* data

type CHAR(6) =/

varptr->sqllen = 6;

varptr->sqldata = (char *) hva2;

varptr->sqlname.length = 8;

memcpy (varptr->sqiname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 2); /x Point

to next SQLVAR =*/

varptr->sqltype = 448; /* data type

VARCHAR(20) =/

varptr->sqllen = 20;

varptr->sqldata = (char *) hva3;

varptr->sqlname.length = 8;

memcpy (varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqiname.length);

The SQLDA structure has the following fields:

¢ SQLDABC indicates the number of bytes of storage that are allocated for the
SQLDA. The storage includes a 16-byte header and 44 bytes for each
SQLVAR field. The value is SQLN x 44 + 16, or 192 for this example.

* SQLN is the number of SQLVAR occurrences, plus one for use by DB2 for
the host variable that contains the number n in the FOR n ROWS clause.

* SQLD is the number of variables in the SQLDA that are used by DB2 when
processing the INSERT statement.

* An SQLVAR occurrence specifies the attributes of an element of a host
variable array that corresponds to a value provided for a target column of
the INSERT. Within each SQLVAR:

— SQLTYPE indicates the data type of the elements of the host variable
array.
— SQLLEN indicates the length of a single element of the host variable array.

— SQLDATA points to the corresponding host variable array. Assume that
your program allocates the dynamic variable arrays hval, hva2, and hva3.

- SQLNAME has two parts: the LENGTH and the DATA. The LENGTH is
8. The first two bytes of the DATA field is X'0000". Bytes 5 and 6 of the
DATA field are a flag indicating whether the variable is an array or a FOR
n ROWS value. Bytes 7 and 8 are a two-byte binary integer representation
of the dimension of the array.

2. Assign the appropriate INSERT or MERGE statement to a host variable.

Example: The following string contains an INSERT statement that is to be
prepared:

INSERT INTO DSN8A10.ACT VALUES (?, ?, ?)
3. Assign any attributes for the SQL statement to a host variable.
4. Include a PREPARE statement for the SQL statement.

5. Include an EXECUTE statement with the FOR n ROWS clause. The host
variable in the USING clause of the EXECUTE statement names the SQLDA
that describes the parameter markers in the INSERT statement.

Example: The following code prepares and executes an INSERT statement:

Chapter 3. Coding SQL statements in application programs: General information ~ 225

/* Copy the INSERT string into the host variable sqlstmt */
strcpy(sqlstmt, "INSERT INTO DSN8A10.ACT VALUES (?, ?, ?)");

/* Copy the INSERT attributes into the host variable attrvar */
strcpy(attrvar, "FOR MULTIPLE ROWS");

/* Prepare and execute my_insert using the descriptor */
EXEC SQL PREPARE my_insert ATTRIBUTES :attrvar FROM :sqlstmt;
EXEC SQL EXECUTE my_insert USING DESCRIPTOR :*sqldaptr FOR :num_rows ROWS;

Related concepts:

“SQL statements in assembler programs” on page 266|

“SQL statements in C programs” on page 307
"SQL statements in COBOL programs” on page 357|
“SQL statements in Fortran programs” on page 403|

“SQL statements in PL /1 programs” on page 427|
Related tasks:
“Including dynamic SQL for varying-list SELECT statements in your program” on|

page 202]

Related reference:

[# [SQLTYPE and SQLLEN (DB2 SQL)|

Dynamically executing a statement with parameter markers by
using the SQLDA

Your program can get data type information about parameter markers by asking
DB2 to set the fields in the SQLDA.

Before you dynamically execute a statement with parameter markers, allocate an
SQLDA with enough instances of SQLVAR to represent all parameter markers in
the SQL statement.

To dynamically execute a statement with parameter markers by using the SQLDA:

1. Include in your program a DESCRIBE INPUT statement that specifies the
prepared SQL statement and the name of an appropriate SQLDA.

DB2 puts the requested parameter marker information in the SQLDA.

2. Code the application in the same way as any other application in which you
execute a prepared statement by using an SQLDA. First, obtain the addresses of
the input host variables and their indicator variables and insert those addresses
into the SQLDATA and SQLIND fields. Then, execute the prepared SQL
statement.

Suppose that you want to execute the following statement dynamically:
DELETE FROM DSN8A10.EMP WHERE EMPNO = ?

You can use the following code to set up an SQLDA, obtain parameter information
by using the DESCRIBE INPUT statement, and execute the statement:

SQLDAPTR=ADDR (INSQLDA) ; /* Get pointer to SQLDA */
SQLDAID="SQLDA"'; /* Fil1l in SQLDA eye-catcher */
SQLDABC=LENGTH (INSQLDA) ; /* Fill in SQLDA length */
SQLN=1; /* Fill in number of SQLVARs */
SQLD=0; /* Initialize # of SQLVARs used =/
DO IX=1 TO SQLN; /* Initialize the SQLVAR x/

SQLTYPE(IX)=0;

SQLLEN(IX)=0;

SQLNAME (IX)="";
END;

226 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqltypeandsqlleninsqlda.dita

SQLSTMT="'DELETE FROM DSN8A10.EMP WHERE EMPNO = ?';

EXEC SQL PREPARE SQLOBJ FROM SQLSTMT;

EXEC SQL DESCRIBE INPUT SQLOBJ INTO :INSQLDA;

SQLDATA (1) =ADDR (HVEMP) ; /* Get input data address */
SQLIND(1)=ADDR(HVEMPIND) /* Get indicator address */
EXEC SQL EXECUTE SQLOBJ USING DESCRIPTOR :INSQLDA;

Related concepts:

“SQL statements in assembler programs” on page 266|

“SQL statements in C programs” on page 307

“SQL statements in COBOL programs” on page 357|

“SQL statements in Fortran programs” on page 403

“SQL statements in PL/I programs” on page 427,

“SQL statements in REXX programs” on page 439-|
Related tasks:
[“Defining SQL descriptor areas” on page 173

Related reference:

[# [DESCRIBE INPUT (DB2 SQL)|

Checking the execution of SQL statements

After executing an SQL statement, your program should check for any errors codes
before you commit the data and handle the errors that they represent.

You can check the execution of SQL statements in one of the following ways:
* By displaying specific fields in the SQLCA.

* By testing SQLCODE or SQLSTATE for specific values.

* By using the WHENEVER statement in your application program.

* By testing indicator variables to detect numeric errors.

* By using the GET DIAGNOSTICS statement in your application program to
return all the condition information that results from the execution of an SQL
statement.

* By calling DSNTIAR to display the contents of the SQLCA.
Related concepts:

[“Arithmetic and conversion errors” on page 240|
Related tasks:
“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”|

on page 253|

“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page|
273

“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL"l

on page 323

“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”|

on page 395

“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/1” on|
age 407

Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on|
age 437

“Displaying SQLCA fields by calling DSNTIAR” on page 229

Chapter 3. Coding SQL statements in application programs: General information 227

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_describeinput.dita

Checking the execution of SQL statements by using the
SQLCA

One way to check whether an SQL statement executed successfully is to use the
SQL communication area (SQLCA). This area is set apart for communication with
DB2.

If you use the SQLCA, include the necessary instructions to display information
that is contained in the SQLCA in your application program. Alternatively, you can
use the GET DIAGNOSTICS statement, which is an SQL standard, to diagnose
problems.

* When DB2 processes an SQL statement, it places return codes that indicate the
success or failure of the statement execution in SQLCODE and SQLSTATE.

* When DB2 processes a FETCH statement, and the FETCH is successful, the
contents of SQLERRD(3) in the SQLCA is set to the number of returned rows.

* When DB2 processes a multiple-row FETCH statement, the contents of
SQLCODE is set to +100 if the last row in the table has been returned with the
set of rows.

* When DB2 processes an UPDATE, INSERT, or DELETE statement, and the
statement execution is successful, the contents of SQLERRD(3) in the SQLCA is
set to the number of rows that are updated, inserted, or deleted.

* When DB2 processes a TRUNCATE statement and the statement execution is
successful, SQLERRD(3) in the SQLCA is set to -1. The number of rows that are
deleted is not returned.

e If SQLWARNO contains W, DB2 has set at least one of the SQL warning flags
(SQLWARNI through SQLWARNA):

— SQLWARNT1 contains N for non-scrollable cursors and S for scrollable cursors
after an OPEN CURSOR or ALLOCATE CURSOR statement.

— SQLWARN4 contains I for insensitive scrollable cursors, S for sensitive static
scrollable cursors, and D for sensitive dynamic scrollable cursors, after an
OPEN CURSOR or ALLOCATE CURSOR statement, or blank if the cursor is
not scrollable.

— SQLWARNS contains a character value of 1 (read only), 2 (read and delete),
or 4 (read, delete, and update) to indicate the operation that is allowed on the
result table of the cursor.

Related tasks:

[“Accessing data by using a rowset-positioned cursor” on page 731

“Checking the execution of SQL statements by using SQLCODE and SQLSTATE"|
on page 232

“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”|

on page 253|

“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page]
P73

“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL”I

on page 323|

“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”l

on page 395|

"Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/1” on|
age 407

“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” onl
page 437

228 Application Programming and SQL Guide

Related reference:

[[Description of SQLCA fields (DB2 SQL)|

Displaying SQLCA fields by calling DSNTIAR

If you use the SQLCA to check whether an SQL statement executed successfully,
your program needs to read the data in the appropriate SQLCA fields. One easy
way to read these fields is to use the assembler subroutine DSNTIAR.

You should check for errors codes before you commit data, and handle the errors
that they represent. The assembler subroutine DSNTIAR helps you to obtain a
formatted form of the SQLCA and a text message based on the SQLCODE field of
the SQLCA. You can retrieve this same message text by using the MESSAGE_TEXT
condition item field of the GET DIAGNOSTICS statement. Programs that require
long token message support should code the GET DIAGNOSTICS statement
instead of DSNTIAR.

DSNTIAR takes data from the SQLCA, formats it into a message, and places the
result in a message output area that you provide in your application program.
Each time you use DSNTIAR, it overwrites any previous messages in the message
output area. You should move or print the messages before using DSNTIAR again,

and before the contents of the SQLCA change, to get an accurate view of the
SQLCA.

DSNTIAR expects the SQLCA to be in a certain format. If your application
modifies the SQLCA format before you call DSNTIAR, the results are
unpredictable.

DSNTIAR:

The assembler subroutine DSNTIAR helps you to obtain a formatted form of the
SQLCA and a text message that is based on the SQLCODE field of the SQLCA.

DSNTIAR can run either above or below the 16-MB line of virtual storage. The
DSNTIAR object module that comes with DB2 has the attributes AMODE(31) and
RMODE(ANY). At installation time, DSNTIAR links as AMODE(31) and
RMODE(ANY). DSNTIAR runs in 31-bit mode if any of the following conditions is
true:

* DSNTIAR is linked with other modules that also have the attributes AMODE(31)
and RMODE(ANY).

» DSNTIAR is linked into an application that specifies the attributes AMODE(31)
and RMODE(ANY) in its link-edit JCL.

* An application loads DSNTIAR.

When loading DSNTIAR from another program, be careful how you branch to
DSNTIAR. For example, if the calling program is in 24-bit addressing mode and
DSNTIAR is loaded above the 16-MB line, you cannot use the assembler BALR
instruction or CALL macro to call DSNTIAR, because they assume that DSNTIAR
is in 24-bit mode. Instead, you must use an instruction that is capable of branching
into 31-bit mode, such as BASSM.

You can dynamically link (load) and call DSNTIAR directly from a language that

does not handle 31-bit addressing. To do this, link a second version of DSNTIAR
with the attributes AMODE(24) and RMODE(24) into another load module library.

Chapter 3. Coding SQL statements in application programs: General information ~ 229

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.dita

Line:

n-1

Field sizes (in bytes):
<+—2—»«———logical record length

Alternatively, you can write an intermediate assembler language program that calls
DSNTIAR in 31-bit mode and then call that intermediate program in 24-bit mode
from your application.

For more information on the allowed and default AMODE and RMODE settings
for a particular language, see the application programming guide for that
language. For details on how the attributes AMODE and RMODE of an application
are determined, see the linkage editor and loader user's guide for the language in
which you have written the application.

Defining a message output area:

If a program calls DSNTIAR, the program must allocate enough storage in the
message output area to hold all of the message text that DSNTIAR returns.

You will probably need no more than 10 lines, 80-bytes each, for your message
output area. An application program can have only one message output area.

You must define the message output area in VARCHAR format. In this varying
character format, a 2-byte length field precedes the data. The length field indicates
to DSNTIAR how many total bytes are in the output message area; the minimum
length of the output area is 240-bytes.

The following figure shows the format of the message output area, where length is
the 2-byte total length field, and the length of each line matches the logical record
length (Irecl) you specify to DSNTIAR.

v

Figure 21. Format of the message output area

When you call DSNTIAR, you must name an SQLCA and an output message area
in the DSNTIAR parameters. You must also provide the logical record length (Irecl)
as a value between 72 and 240 bytes. DSNTIAR assumes the message area contains
fixed-length records of length Irecl.

DSNTIAR places up to 10 lines in the message area. If the text of a message is
longer than the record length you specify on DSNTIAR, the output message splits
into several records, on word boundaries if possible. The split records are indented.
All records begin with a blank character for carriage control. If you have more
lines than the message output area can contain, DSNTIAR issues a return code of
4. A completely blank record marks the end of the message output area.

230 Application Programming and SQL Guide

Possible return codes from DSNTIAR:

The assembler subroutine DSNTIAR helps your program read the information in
the SQLCA. The subroutine also returns its own return code.

Code Meaning

0 Successful execution.

4 More data available than could fit into the provided message area.

8 Logical record length not between 72 and 240, inclusive.
12 Message area not large enough. The message length was 240 or greater.
16 Error in TSO message routine.

20 Module DSNTIA1 could not be loaded.
24 SQLCA data error.

A scenario for using DSNTIAR:

You can use the assembler subroutine DSNTIAR to generate the error message text
in the SQLCA.

Suppose you want your DB2 COBOL application to check for deadlocks and
timeouts, and you want to make sure your cursors are closed before continuing.
You use the statement WHENEVER SQLERROR to transfer control to an error
routine when your application receives a negative SQLCODE.

In your error routine, you write a section that checks for SQLCODE -911 or -913.
You can receive either of these SQLCODEs when a deadlock or timeout occurs.
When one of these errors occurs, the error routine closes your cursors by issuing
the statement:

EXEC SQL CLOSE cursor-name

An SQLCODE of 0 or -501 resulting from that statement indicates that the close
was successful.

To use DSNTIAR to generate the error message text, first follow these steps:

1. Choose a logical record length (Irecl) of the output lines. For this example,
assume [recl is 72 (to fit on a terminal screen) and is stored in the variable
named ERROR-TEXT-LEN.

2. Define a message area in your COBOL application. Assuming you want an area
for up to 10 lines of length 72, you should define an area of 720 bytes, plus a
2-byte area that specifies the total length of the message output area.

01 ERROR-MESSAGE.
02 ERROR-LEN PIC S9(4) COMP VALUE +720.
02 ERROR-TEXT PIC X(72) OCCURS 10 TIMES
INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +72.

For this example, the name of the message area is ERROR-MESSAGE.

3. Make sure you have an SQLCA. For this example, assume the name of the
SQLCA is SQLCA.

To display the contents of the SQLCA when SQLCODE is 0 or -501, call DSNTIAR
after the SQL statement that produces SQLCODE 0 or -501:

Chapter 3. Coding SQL statements in application programs: General information 231

CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

You can then print the message output area just as you would any other variable.
Your message might look like this:

DSNT408I SQLCODE = -501, ERROR: THE CURSOR IDENTIFIED IN A FETCH OR
CLOSE STATEMENT IS NOT OPEN

DSNT4181 SQLSTATE 24501 SQLSTATE RETURN CODE

DSNT4151 SQLERRP DSNXERT SQL PROCEDURE DETECTING ERROR

DSNT4161 SQLERRD -315 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION

DSNT4161 SQLERRD X'FFFFFEC5' X'00000000' X'00000000'
X'FFFFFFFF' X'00000000' X'00000000' SQL DIAGNOSTIC
INFORMATION

Checking the execution of SQL statements by using
SQLCODE and SQLSTATE

Whenever an SQL statement executes, the SQLCODE and SQLSTATE fields of the
SQLCA receive a return code. Portable applications should use SQLSTATE instead
of SQLCODE, although SQLCODE values can provide additional DB2-specific
information about an SQL error or warning.

SQLCODE:

DB2 returns the following codes in SQLCODE:

e If SQLCODE = 0, execution was successful.

e If SQLCODE > 0, execution was successful with a warning.
* If SQLCODE < 0, execution was not successful.

SQLCODE 100 indicates that no data was found.

The meaning of SQLCODEs other than 0 and 100 varies with the particular
product implementing SQL.

SQLSTATE: SQLSTATE enables an application program to check for errors in the
same way for different IBM database management systems.

Using SQLCODE and SQLSTATE:

An advantage to using the SQLCODE field is that it can provide more specific
information than the SQLSTATE. Many of the SQLCODESs have associated tokens
in the SQLCA that indicate, for example, which object incurred an SQL error.
However, an SQL standard application uses only SQLSTATE.

You can declare SQLCODE and SQLSTATE (SQLCOD and SQLSTA in Fortran) as
stand-alone host variables. If you specify the STDSQL(YES) precompiler option,
these host variables receive the return codes, and you should not include an
SQLCA in your program.

Related tasks:

“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”|
on page 253

“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page|
273

“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL”I

on page 323]
“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”]

on page 395|

232 Application Programming and SQL Guide

“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/1” on|
page 407

“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on|
page 437

Related reference:

[[SQLSTATE values and common error codes (DB2 Codes)

Checking the execution of SQL statements by using the
WHENEVER statement

The WHENEVER statement causes DB2 to check the SQLCA and continue
processing your program. If an error, exception, or warning occurs, DB2 branches
to another area in your program. The condition handling area of your program can
then examine the SQLCODE or SQLSTATE to react specifically to the error or
exception.

The WHENEVER statement is not supported for REXX.

The WHENEVER statement enables you to specify what to do if a general
condition is true. You can specify more than one WHENEVER statement in your
program. When you do this, the first WHENEVER statement applies to all
subsequent SQL statements in the source program until the next WHENEVER
statement.

The WHENEVER statement looks like this:

EXEC SQL
WHENEVER condition action
END-EXEC

The condition of the WHENEVER statement is one of these three values:

SQLWARNING
Indicates what to do when SQLWARNO = W or SQLCODE contains a
positive value other than 100. DB2 can set SQLWARNO for several
reasons—for example, if a column value is truncated when moved into a
host variable. Your program might not regard this as an error.

SQLERROR
Indicates what to do when DB2 returns an error code as the result of an
SQL statement (SQLCODE < 0).

NOT FOUND
Indicates what to do when DB2 cannot find a row to satisfy your SQL
statement or when there are no more rows to fetch (SQLCODE = 100).

The action of the WHENEVER statement is one of these two values:

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, preceded by an optional colon. The form of the token
depends on the host language. In COBOL, for example, it can be
section-name or an unqualified paragraph-name.

Chapter 3. Coding SQL statements in application programs: General information 233

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/db2z_sqlstatevalues.dita

The WHENEVER statement must precede the first SQL statement it is to affect.
However, if your program checks SQLCODE directly, you must check SQLCODE
after each SQL statement.

Related concepts:

(Chapter 9, “Coding SQL statements in REXX application programs,” on page 437

Related reference:

[WHENEVER (DB2 SQL)|

Checking the execution of SQL statements by using the GET
DIAGNOSTICS statement

One way to check whether an SQL statement executed successfully is to ask DB2
to return the diagnostic information about the last executed SQL statement.

You can use the GET DIAGNOSTICS statement to return diagnostic information
about the last SQL statement that was executed. You can request individual items
of diagnostic information from the following groups of items:

* Statement items, which contain information about the SQL statement as a whole

* Condition items, which contain information about each error or warning that
occurred during the execution of the SQL statement

e Connection items, which contain information about the SQL statement if it was a
CONNECT statement

In addition to requesting individual items, you can request that GET
DIAGNOSTICS return ALL diagnostic items that are set during the execution of
the last SQL statement as a single string.

In SQL procedures, you can also retrieve diagnostic information by using handlers.
Handlers tell the procedure what to do if a particular error occurs.

Use the GET DIAGNOSTICS statement to handle multiple SQL errors that might
result from the execution of a single SQL statement. First, check SQLSTATE (or
SQLCODE) to determine whether diagnostic information should be retrieved by
using GET DIAGNOSTICS. This method is especially useful for diagnosing
problems that result from a multiple-row INSERT that is specified as NOT
ATOMIC CONTINUE ON SQLEXCEPTIONand multiple row MERGE statements.

Even if you use only the GET DIAGNOSTICS statement in your application
program to check for conditions, you must either include the instructions required
to use the SQLCA or you must declare SQLSTATE (or SQLCODE) separately in
your program.

When you use the GET DIAGNOSTICS statement, you assign the requested
diagnostic information to host variables. Declare each target host variable with a
data type that is compatible with the data type of the requested item.

To retrieve condition information, you must first retrieve the number of condition
items (that is, the number of errors and warnings that DB2 detected during the
execution of the last SQL statement). The number of condition items is at least one.
If the last SQL statement returned SQLSTATE '00000' (or SQLCODE 0), the number
of condition items is one.

Example: Using GET DIAGNOSTICS with multiple-row INSERT:

234 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_whenever.dita

You want to display diagnostic information for each condition that might occur
during the execution of a multiple-row INSERT statement in your application
program. You specify the INSERT statement as NOT ATOMIC CONTINUE ON
SQLEXCEPTION, which means that execution continues regardless of the failure of
any single-row insertion. DB2 does not insert the row that was processed at the
time of the error.

In the following example, the first GET DIAGNOSTICS statement returns the
number of rows inserted and the number of conditions returned. The second GET
DIAGNOSTICS statement returns the following items for each condition:
SQLCODE, SQLSTATE, and the number of the row (in the rowset that was being
inserted) for which the condition occurred.

EXEC SQL BEGIN DECLARE SECTION;
long row_count, num_condns, i;
long ret_sqlcode, row_num;
char ret_sqlstate[6];

EXEC SQL END DECLARE SECTION;
EXEC SQL
INSERT INTO DSN8A10.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:hval, :hva2, :hva3)

FOR 10 ROWS
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

EXEC SQL GET DIAGNOSTICS
:row_count = ROW_COUNT, :num_condns = NUMBER;
printf("Number of rows inserted = %d\n", row_count);

for (i=1; i<=num_condns; i++) {
EXEC SQL GET DIAGNOSTICS CONDITION :i
:ret_sqlcode DB2_RETURNED_SQLCODE,
:ret_sqlstate = RETURNED_ SQLSTATE,
:row_num DB2_ROW_NUMBER;
printf("SQLCODE = %d, SQLSTATE = %s, ROW NUMBER = %d\n",
ret_sqlcode, ret_sqlstate, row_num);

}

In the activity table, the ACTNO column is defined as SMALLINT. Suppose that
you declare the host variable array hval as an array with data type long, and you
populate the array so that the value for the fourth element is 32768.

If you check the SQLCA values after the INSERT statement, the value of
SQLCODE is equal to 0, the value of SQLSTATE is '00000', and the value of
SQLERRD(3) is 9 for the number of rows that were inserted. However, the INSERT
statement specified that 10 rows were to be inserted.

The GET DIAGNOSTICS statement provides you with the information that you
need to correct the data for the row that was not inserted. The printed output from
your program looks like this:

Number of rows inserted = 9

SQLCODE = -302, SQLSTATE = 22003, ROW NUMBER = 4

The value 32768 for the input variable is too large for the target column ACTNO.
You can print the MESSAGE_TEXT condition item.

Retrieving statement and condition items:

Chapter 3. Coding SQL statements in application programs: General information ~ 235

When you use the GET DIAGNOSTICS statement, you assign the requested
diagnostic information to host variables. Declare each target host variable with a
data type that is compatible with the data type of the requested item.

To retrieve condition information, you must first retrieve the number of condition
items (that is, the number of errors and warnings that DB2 detected during the
execution of the last SQL statement). The number of condition items is at least one.
If the last SQL statement returned SQLSTATE '00000' (or SQLCODE 0), the number
of condition items is one.

Related concepts:

[“Handlers in an SQL procedure” on page 578

Related reference:
[“Data types for GET DIAGNOSTICS items’)|

[[GET DIAGNOSTICS (DB2 SQL)|
Related information:

[[302 (DB2 Codes)|

Data types for GET DIAGNOSTICS items

You can use the GET DIAGNOSTICS statement to request information about the
statement, condition, and connection for the last SQL statement that was executed.
You must declare each target host variable with a data type that is compatible with
the data type of the requested item.

The following tables specify the data types for the statement, condition, and
connection information items that you can request by using the GET
DIAGNOSTICS statement.

Table 47. Data types for GET DIAGNOSTICS items that return statement information

Item Description Data type

DB2_GET_DIAGNOSTICS_DIAGNOSTICS After a GET DIAGNOSTICS statement, VARCHAR(32672)
if any error or warning occurred, this
item contains all of the diagnostics as a
single string.

DB2_LAST_ROW After a multiple-row FETCH statement, INTEGER
this item contains a value of +100 if the
last row in the table is in the rowset
that was returned.

DB2_NUMBER_PARAMETER_MARKERS After a PREPARE statement, this item INTEGER
contains the number of parameter
markers in the prepared statement.

DB2_NUMBER_RESULT_SETS After a CALL statement that invokes a INTEGER
stored procedure, this item contains the
number of result sets that are returned
by the procedure.

236 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.codes/src/tpc/n302.dita

Table 47. Data types for GET DIAGNOSTICS items that return statement information (continued)

Item

Description Data type

DB2_NUMBER_ROWS

After an OPEN or FETCH statement
for which the size of the result table is
known, this item contains the number
of rows in the result table. After a
PREPARE statement, this item contains
the estimated number of rows in the
result table for the prepared statement.
For SENSITIVE DYNAMIC cursors,
this item contains the approximate
number of rows. Otherwise, or if the
server only returns an SQLCA, the
value zero is returned.

DECIMAL(31,0)

DB2_RETURN_STATUS

After a CALL statement that invokes INTEGER
an SQL procedure, this item contains
the return status if the procedure

contains a RETURN statement.

DB2_SQL_ATTR_CURSOR_HOLD

After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor can be held open across
multiple units of work (Y or N).

CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET

After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor can use rowset positioning
(Y or N).

CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE

After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor is scrollable (Y or N).

CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY

After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor shows updates made by
other processes (sensitivity I or S).

CHAR(1)

DB2_SQL_ATTR_CURSOR_TYPE

After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor is forward (F), declared
static (S for INSENSITIVE or
SENSITIVE STATIC, or dynamic (D for
SENSITIVE DYNAMIC).

CHAR(1)

MORE

After any SQL statement, this item
indicates whether some conditions
items were discarded because of
insufficient storage (Y or N).

CHAR(1)

NUMBER

After any SQL statement, this item INTEGER
contains the number of condition

items. If no warning or error occurred,

or if no previous SQL statement has

been executed, the number that is

returned is 1.

Chapter 3. Coding SQL statements in application programs: General information

237

Table 47. Data types for GET DIAGNOSTICS items that return statement information (continued)

Item

Description Data type

ROW_COUNT

After an insert, update, delete, or fetch, DECIMAL(31,0)
this item contains the number of rows

that are deleted, inserted, updated, or

fetched. After PREPARE, this item

contains the estimated number of

result rows in the prepared statement.

After TRUNCATE, it contains -1.

Table 48. Data types for GET DIAGNOSTICS items that return condition information

Item Description Data type
CATALOG_NAME This item contains the server name of the VARCHAR(128)
table that owns a constraint that caused an
error, or that caused an access rule or check
violation.
CONDITION_NUMBER This item contains the number of the INTEGER
condition.
CURSOR_NAME This item contains the name of a cursor in VARCHAR(128)
an invalid cursor state.
DB2_ERROR_CODE1 This item contains an internal error code. INTEGER
DB2_ERROR_CODE2 This item contains an internal error code. INTEGER
DB2_ERROR_CODE3 This item contains an internal error code. INTEGER
DB2_ERROR_CODE4 This item contains an internal error code. INTEGER
DB2_INTERNAL_ERROR_POINTER For some errors, this item contains a INTEGER
negative value that is an internal error
pointer.
DB2_MESSAGE_ID This item contains the message ID that CHAR(10)
corresponds to the message that is contained
in the MESSAGE_TEXT diagnostic item.
DB2_MODULE_DETECTING_ERROR After any SQL statement, this item indicates CHAR(8)
which module detected the error.
DB2_ORDINAL_TOKEN_n After any SQL statement, this item contains VARCHAR(515)
the nth token, where 7 is a value from 1 to
100.
DB2_REASON_CODE After any SQL statement, this item contains INTEGER
the reason code for errors that have a reason
code token in the message text.
DB2_RETURNED_SQLCODE After any SQL statement, this item contains INTEGER
the SQLCODE for the condition.
DB2_ROW_NUMBER After any SQL statement that involves DECIMAL(31,0)
multiple rows, this item contains the row
number on which DB2 detected the
condition.
DB2_TOKEN_COUNT After any SQL statement, this item contains INTEGER
the number of tokens available for the
condition.
MESSAGE_TEXT After any SQL statement, this item contains VARCHAR(32672)

the message text associated with the
SQLCODE.

238 Application Programming and SQL Guide

Table 48. Data types for GET DIAGNOSTICS items that return condition information (continued)

Item Description Data type
RETURNED_SQLSTATE After any SQL statement, this item contains CHAR(5)

the SQLSTATE for the condition.
SERVER_NAME After a CONNECT, DISCONNECT, or SET ~ VARCHAR(128)

CONNECTION statement, this item contains
the name of the server specified in the
statement.

Table 49. Data types for GET DIAGNOSTICS items that return connection information

Item Description Data type
DB2_AUTHENTICATION_TYPE This item contains the authentication type (S, CHAR(1)
C, D, E, or blank).
DB2_AUTHORIZATION_ID This item contains the authorization ID that VARCHAR(128)
is used by the connected server.
DB2_CONNECTION_STATE This item indicates whether the connection is INTEGER
unconnected (-1), local (0), or remote (1).
DB2_CONNECTION_STATUS This item indicates whether updates can be INTEGER

committed for the current unit of work (1 for
Yes, 2 for No).

DB2_ENCRYPTION_TYPE This item contains one of the following CHAR(1)
values that indicates the level of encryption
for the connection:

A Only the authentication tokens
(authid and password) are
encrypted
D All of the data for the connection is
encrypted
DB2_SERVER_CLASS NAME After a CONNECT or SET CONNECTION VARCHAR(128)

statement, this item contains the DB2 server
class name.

DB2_PRODUCT_ID This item contains the DB2 product VARCHAR(8)
signature.

Related reference:

[* [GET DIAGNOSTICS (DB2 SQL)|

Handling SQL error codes

You can use the subroutine DSNTIAR or the GET DIAGNOSTICS statement to
convert an SQL return code into a text message.

To handle SQL error codes:

Take action based on the programming language that you use.
Related concepts:

“SQL statements in assembler programs” on page 266|

"SQL statements in C programs” on page 307
“SQL statements in COBOL programs” on page 357|
[“SQL statements in Fortran programs” on page 403|

[“SQL statements in PL/I programs” on page 427

Chapter 3. Coding SQL statements in application programs: General information

239

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.dita

[‘SQL statements in REXX programs” on page 439

Arithmetic and conversion errors

You can track arithmetic and conversion errors by using indicator variables. An
indicator variable contains a small integer value that indicates some information
about the associated host variable.

Numeric or character conversion errors or arithmetic expression errors can set an
indicator variable to -2. For example, division by zero and arithmetic overflow do
not necessarily halt the execution of a SELECT statement. If you use indicator
variables and an error occurs in the SELECT list, the statement can continue to
execute and return good data for rows in which the error does not occur.

For rows in which a conversion or arithmetic expression error does occur, the
indicator variable indicates that one or more selected items have no meaningful
value. The indicator variable flags this error with a -2 for the affected host variable
and an SQLCODE of +802 (SQLSTATE '01519") in the SQLCA.

Writing applications that enable users to create and modify tables

You can write a DB2 application that enables users to create new tables, add
columns to them, increase the length of columns, rearrange the columns, and
delete columns.

To create new tables:

* Use the CREATE TABLE statement.
To add columns or increase the length of columns:

* Use the ALTER TABLE statement with the ADD COLUMN clause or the ALTER
COLUMN clause. Added columns initially contain either the null value or a
default value. Both CREATE TABLE and ALTER TABLE, like any data definition
statement, are relatively expensive to execute. Also consider the effects of locks.

To rearrange or delete columns:

* Drop the table and create the table again, with the columns you want, in the
order you want. Consider creating a view on the table, which includes only the
columns that you want, in the order that you want, as an alternative to
redefining the table.

Related tasks:

[‘Including dynamic SQL in your program” on page 193

Related reference:

[[ALTER TABLE (DB2 SQL)|
[[CREATE TABLE (DB2 SQL)|
[[CREATE VIEW (DB2 SQL)

Saving SQL statements that are translated from user requests

If your program translates requests from users into SQL statements and allows
users to save their requests, your program can improve performance by saving
those translated statements.

A program translates requests from users into SQL statements before executing
them, and users can save a request.

240 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_altertable.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createtable.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createview.dita

To save the corresponding SQL statement:

Save the corresponding SQL statements in a table with a column having a data
type of VARCHAR(n), where 7 is the maximum length of any SQL statement. You
must save the source SQL statements, not the prepared versions. That means that
you must retrieve and then prepare each statement before executing the version
stored in the table. In essence, your program prepares an SQL statement from a
character string and executes it dynamically.

Related tasks:
[“Including dynamic SQL in your program” on page 193|

XML data in embedded SQL applications

Embedded SQL applications that are written in assembler language, C, C++,
COBOL, or PL/I can update and retrieve data in XML columns.

In embedded SQL applications, you can:

* Store an entire XML document in an XML column using INSERT or UPDATE
statements.

* Retrieve an entire XML document from an XML column using SELECT
statements.

* Retrieve a sequence from a document in an XML column by using the SQL
XMLQUERY function within a SELECT or FETCH statement, to retrieve the
sequence into a textual XML string in the database, and then retrieve the data
into an application variable.

Recommendation: Follow these guidelines when you write embedded SQL
applications:

¢ Avoid using the XMLPARSE and XMLSERIALIZE functions.
Let DB2 do the conversions between the external and internal XML formats
implicitly.

* Use XML host variables for input and output.

Doing so allows DB2 to process values as XML data instead of character or
binary string data. If the application cannot use XML host variables, it should
use binary string host variables to minimize character conversion issues.

* Avoid character conversion by using UTF-8 host variables for input and output
of XML values whenever possible.

Host variable data types for XML data in embedded SQL
applications
DB2 provides XML host variable types for assembler, C, C++, COBOL, and PL/I.

Those types are:

* XML AS BLOB

* XML AS CLOB

* XML AS DBCLOB

¢ XML AS BLOB_FILE (C, C++, or PL/I) or XML AS BLOB-FILE (COBOL)

¢ XML AS CLOB_FILE (C, C++, or PL/I) or XML AS CLOB-FILE (COBOL)

* XML AS DBCLOB_FILE (C, C++, or PL/I) or XML AS DBCLOB-FILE (COBOL)

The XML host variable types are compatible only with the XML column data type.

Chapter 3. Coding SQL statements in application programs: General information 241

You can use BLOB, CLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, BINARY, or VARBINARY host variables to update XML columns.
You can convert the host variable data types to the XML type using the
XMLPARSE function, or you can let the DB2 database server perform the
conversion implicitly.

You can use BLOB, CLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, BINARY, or VARBINARY host variables to retrieve data from XML
columns. You can convert the XML data to the host variable type using the
XMLSERIALIZE function, or you can let the DB2 database server perform the
conversion implicitly.

The following examples show you how to declare XML host variables in each
supported language. In each table, the left column contains the declaration that
you code in your application program. The right column contains the declaration
that DB2 generates.

Declarations of XML host variables in assembler

The following table shows assembler language declarations for some typical XML
types.
Table 50. Example of assembler XML variable declarations

You declare this variable DB2 generates this variable

BLOB_XML SQL TYPE IS XML AS BLOB IM BLOB XML DS OFL4

BLOB_XML_LENGTH DS FL4
BLOB_XML_DATA DS CL655350
ORG *+(983041)

CLOB_XML SQL TYPE IS XML AS CLOB 40000K CLOB XML DS OFL4

CLOB_XML_LENGTH DS FL4
CLOB_XML_DATA DS CL65535H
ORG *+(40894465)

DBCLOB_XML SQL TYPE IS XML AS DBCLOB 4600K DBCLOB XML DS OFLA4

DBCLOB_XML_LENGTH DS FL4
DBCLOB_XML_DATA DS GL655348
ORG ++(4030466)

BLOB_XML_FILE SQL TYPE IS XML AS BLOB_FILE BLOB XML FILE DS OFLA

BLOB_XML_FILE_NAME_LENGTH DS FL4
BLOB_XML_FILE_DATA_LENGTH DS FL4
BLOB_XML_FILE_FILE_OPTIONS DS FL4
BLOB_XML_FILE_NAME DS CL255

CLOB_XML_FILE SQL TYPE IS XML AS CLOB_FILE CLOB XML FILE DS OFL4

CLOB_XML_FILE_NAME_LENGTH DS FL4
CLOB_XML_FILE_DATA_LENGTH DS FL4
CLOB_XML_FILE_FILE_OPTIONS DS FL4
CLOB_XML_FILE_NAME DS CL255

DBCLOB_XML_FILE SQL TYPE IS XML AS DBCLOB_FILE DBCLOB XML FILE DS OFLA

DBCLOB_XML_FILE_NAME_LENGTH DS FL4
DBCLOB_XML_FILE_DATA_LENGTH DS FL4
DBCLOB_XML_FILE_FILE OPTIONS DS FL4
DBCLOB_XML_FILE_NAME DS CL255

242 Application Programming and SQL Guide

Table 50. Example of assembler XML variable declarations (continued)

You declare this variable DB2 generates this variable

Notes:

1. Because assembler language allows character declarations of no more than 65535 bytes, DB2 separates the host
language declarations for XML AS BLOB and XML AS CLOB host variables that are longer than 65535 bytes into

two parts.

2. Because assembler language allows graphic declarations of no more than 65534 bytes, DB2 separates the host
language declarations for XML AS DBCLOB host variables that are longer than 65534 bytes into two parts.

Declarations of XML host variables in C

The following table shows C and C++ language declarations that are generated by
the DB2 precompiler for some typical XML types. The declarations that the DB2

coprocessor generates might be different.

Table 51. Examples of C language variable declarations

You declare this variable

DB2 generates this variable

SQL TYPE IS XML AS BLOB (1M) blob_xml;

struct

{ unsigned Tong length;
char data??(10485767?7?);

} blob_xml;

SQL TYPE IS XML AS CLOB(40000K) clob_xml;

struct

{ unsigned Tong length;
char data??(40960000?7?);

} clob_xml;

SQL TYPE IS XML AS DBCLOB (4000K) dbclob_xml;

struct
{ unsigned Tong length;

unsigned short data??(409600077);
} dbclob_xml;

SQL TYPE IS XML AS BLOB_FILE blob_xml_file;

struct {

unsigned long name_Tlength;
unsigned long data_length;
unsigned long file options;
char name??(25577);

} blob_xml_file;

SQL TYPE IS XML AS CLOB_FILE clob_xml_file;

struct {

unsigned long name_length;
unsigned long data_length;
unsigned long file_ options;
char name??(25577);

} clob_xml_file;

SQL TYPE IS XML AS DBCLOB_FILE dbclob_xml_file;

struct {

unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(25577);

} dbclob_xml_file;

Declarations of XML host variables in COBOL

The declarations that are generated for COBOL differ, depending on whether you
use the DB2 precompiler or the DB2 coprocessor.

Chapter 3. Coding SQL statements in application programs: General information

243

The following table shows COBOL declarations that the DB2 precompiler generates
for some typical XML types.

Table 52. Examples of COBOL variable declarations by the DB2 precompiler

You declare this variable

DB2 precompiler generates this variable

01 BLOB-XML USAGE IS
SQL TYPE IS XML AS BLOB(1M).

01 BLOB-XML.
02 BLOB-XML-LENGTH
PIC 9(9) COMP.
02 BLOB-XML-DATA.
49 FILLER PIC X(32767).H
49 FILLER PIC X(32767).
Repeat 30 times

49 FILLER
PIC X(1048576-32*32767).

01 CLOB-XML USAGE IS

SQL TYPE IS XML AS CLOB(40000K) .

01 CLOB-XML.
02 CLOB-XML-LENGTH
PIC 9(9) COMP.
02 CLOB-XML-DATA.
49 FILLER PIC X(32767).I
49 FILLER PIC X(32767).
Repeat 1248 times

49 FILLER
PIC X(40960000-1250+32767) .

01 DBCLOB-XML USAGE IS
SQL TYPE IS XML AS DBCLOB(4000K).

01 DBCLOB-XML.
02 DBCLOB-XML-LENGTH
PIC 9(9) COMP.
02 DBCLOB-XML-DATA.
49 FILLER PIC G(32767
USAGE DISPLAY-1.
49 FILLER PIC G(32767)
USAGE DISPLAY-1.
Repeat 123 times

49 FILLER
PIC G(4096000-125%32767)
USAGE DISPLAY-1.

01 BLOB-XML-FILE USAGE IS SQL
TYPE IS XML AS BLOB-FILE.

01 BLOB-XML-FILE.
49 BLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 BLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 BLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 BLOB-XML-FILE-NAME PIC X(255).

01 CLOB-XML-FILE USAGE IS SQL
TYPE IS XML AS CLOB-FILE.

01 CLOB-XML-FILE.
49 CLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 CLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 CLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 CLOB-XML-FILE-NAME PIC X(255).

01 DBCLOB-XML-FILE USAGE IS SQL
TYPE IS XML AS DBCLOB-FILE.

01 DBCLOB-XML-FILE.
49 DBCLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 DBCLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 DBCLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 DBCLOB-XML-FILE-NAME PIC X(255).

Notes:

1. For XML AS BLOB or XML AS CLOB host variables that are greater than 32767 bytes in length, DB2 creates
multiple host language declarations of 32767 or fewer bytes.

2. For XML AS DBCLOB host variables that are greater than 32767 double-byte characters in length, DB2 creates
multiple host language declarations of 32767 or fewer double-byte characters.

244 Application Programming and SQL Guide

Declarations of XML host variables in PL/I

The declarations that are generated for PL/I differ, depending on whether you use
the DB2 precompiler or the DB2 coprocessor.

The following table shows PL/I declarations that the DB2 precompiler generates
for some typical XML types.

Table 53. Examples of PL/I variable declarations

You declare this variable

DB2 precompiler generates this variable

DCL BLOB_XML DCL
SQL TYPE IS XML AS BLOB (1M); 1 BLOB_XML,
2 BLOB_XML_LENGTH BIN FIXED(31),
2 BLOB_XML_DATAH
3 BLOB XML _DATAL (32) CHAR(32767),
3 BLOB_XML_DATA2 CHAR(32);
DCL CLOB_XML DCL
SQL TYPE IS XML AS CLOB (40000K); 1 CLOB_XML,
2 CLOB_XML_LENGTH BIN FIXED(31),
2 CLOB_XML_DATAD
3 CLOB_XML_DATA1 (1250) CHAR(32767),
3 CLOB_XML_DATA2 CHAR(1250);
DCL DBCLOB_XML DCL

SQL TYPE IS XML AS DBCLOB (4000K);

1 DBCLOB XML,
2 DBCLOB_XML_LENGTH BIN FIXED(31),
2 DBCLOB_XML_DATAB
3 DBCLOB_XML_DATAL (250) GRAPHIC(16383),
3 DBCLOB_XML_DATA2 GRAPHIC(250);

DCL BLOB XML _FILE
SQL TYPE IS XML AS BLOB_FILE;

DCL

1 BLOB_XML_FILE,
BLOB_XML_FILE_NAME_LENGTH BIN FIXED(31) ALIGNED,
BLOB_XML_FILE_DATA_LENGTH BIN FIXED(31),
BLOB_XML_FILE_FILE_OPTIONS BIN FIXED(31),

2
2
2
2 BLOB_XML_FILE_NAME CHAR(255);

DCL CLOB_XML_FILE
SQL TYPE IS XML AS CLOB_FILE;

DCL
1 CLOB_XML_FILE,
2 CLOB_XML_FILE_NAME_LENGTH BIN FIXED(31) ALIGNED,
2 CLOB_XML_FILE DATA_LENGTH BIN FIXED(31),
2 CLOB_XML_FILE FILE OPTIONS BIN FIXED(31),
2 CLOB_XML_FILE_NAME CHAR(255);

DCL DBCLOB_XML_FILE SQL TYPE IS XML AS

DBCLOB_FILE;

DCL

1 DBCLOB_XML FILE,
DBCLOB_XML_FILE_NAME_LENGTH BIN FIXED(31) ALIGNED,
DBCLOB_XML_FILE_DATA_LENGTH BIN FIXED(31),
DBCLOB_XML_FILE_FILE OPTIONS BIN FIXED(31),
DBCLOB_XML_FILE_NAME CHAR(255);

NN NN

Chapter 3. Coding SQL statements in application programs: General information 245

Table 53. Examples of PL/I variable declarations (continued)

You declare this variable DB2 precompiler generates this variable

Notes:
1.

For XML AS BLOB or XML AS CLOB host variables that are greater than 32767 bytes in length, DB2 creates host
language declarations in the following way:

If the length of the XML is greater than 32767 bytes and evenly divisible by 32767, DB2 creates an array of
32767-byte strings. The dimension of the array is length/32767.

If the length of the XML is greater than 32767 bytes but not evenly divisible by 32767, DB2 creates two
declarations: The first is an array of 32767 byte strings, where the dimension of the array, n, is length/32767.
The second is a character string of length length-n*32767.

For XML AS DBCLOB host variables that are greater than 16383 double-byte characters in length, DB2 creates
host language declarations in the following way:

e If the length of the XML is greater than 16383 characters and evenly divisible by 16383, DB2 creates an array of

16383-character strings. The dimension of the array is length/16383.

e If the length of the XML is greater than 16383 characters but not evenly divisible by 16383, DB2 creates two

declarations: The first is an array of 16383 byte strings, where the dimension of the array, m, is length/16383.
The second is a character string of length length-m*16383.

Related concepts:

[[nsertion of rows with XML column values (DB2 Programming for XML)
[[Retrieving XML data (DB2 Programming for XML)
[[Updates of XML columns (DB2 Programming for XML)|

XML column updates in embedded SQL applications

When you update or insert data into XML columns of a DB2 table, the input data
must be in the textual XML format.

The encoding of XML data can be derived from the data itself, which is known as
internally encoded data, or from external sources, which is known as externally
encoded data. XML data that is sent to the database server as binary data is treated
as internally encoded data. XML data that is sent to the database server as
character data is treated as externally encoded data.

Externally encoded data can have internal encoding. That is, the data might be sent
to the database server as character data, but the data contains encoding
information. DB2 does not enforce consistency of the internal and external
encoding. When the internal and external encoding information differs, the
external encoding takes precedence. However, if there is a difference between the
external and internal encoding, intervening character conversion might have
occurred on the data, and there might be data loss.

Character data in XML columns is stored in UTF-8 encoding. The database server
handles conversion of the data from its internal or external encoding to UTE-8.

The following examples demonstrate how to update XML columns in assembler, C,
COBOL, and PL/I applications. The examples use a table named MYCUSTOMER,
which is a copy of the sample CUSTOMER table.

Example: The following example shows an assembler program that inserts data
from XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML
column. The XML AS BLOB data is inserted as binary data, so the database server

246 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.xml/src/tpc/db2z_insertxml.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.xml/src/tpc/db2z_queryxml.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.xml/src/tpc/db2z_updatexml.dita

honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.

EE R R R R R R R R e R T S T T T e S T e S T Tt L

* UPDATE AN XML COLUMN WITH DATA IN AN XML AS CLOB HOST VARIABLE *

R e e e e e T e T S S T T T e s e s T Lt Lt

EXEC SQL +
UPDATE MYCUSTOMER +
SET INFO = :XMLBUF +

WHERE CID = 1000

EE R R R R R R R R o T T T e T T T S S T e s T Tt Lt

* UPDATE AN XML COLUMN WITH DATA IN AN XML AS BLOB HOST VARIABLE *

R R e e e T T e T T e T T T e s T e s T L s L L

EXEC SQL +
UPDATE MYCUSTOMER +
SET INFO = :XMLBLOB +

WHERE CID = 1000

B R R R R e T T R T S e T T T e S T e s T Lt L L

* UPDATE AN XML COLUMN WITH DATA IN A CLOB HOST VARIABLE. USE *
* THE XMLPARSE FUNCTION TO CONVERT THE DATA TO THE XML TYPE. *
khkkhkkhkhkhkhkhkkkhhhkhkhhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhkhkhhkkkhxkx

EXEC SQL +

UPDATE MYCUSTOMER +

SET INFO = XMLPARSE (DOCUMENT :CLOBBUF) +

WHERE CID = 1000

LTORG

khkkhkkhkhkhkkhkkkhkkkhhhkhkhhkhkhkhhkhkhkhkhkk
* HOST VARIABLE DECLARATIONS =
dhkkhkkkkhkkhkkkkkkkhhhkhkhkhkhkhkhkhkhhhd*k
XMLBUF ~ SQL TYPE IS XML AS CLOB 10K
XMLBLOB SQL TYPE IS XML AS BLOB 10K
CLOBBUF SQL TYPE IS CLOB 10K

Example: The following example shows a C language program that inserts data
from XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML
column. The XML AS BLOB data is inserted as binary data, so the database server
honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.

/******************************/

/* Host variable declarations x/

/******************************/

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS XML AS CLOB(10K) xmlBuf;

SQL TYPE IS XML AS BLOB(10K) xmlblob;

SQL TYPE IS CLOB(10K) clobBuf;

EXEC SQL END DECLARE SECTION;
/**/
/* Update an XML column with data in an XML AS CLOB host variable */
/**/
EXEC SQL UPDATE MYCUSTOMER SET INFO = :xml1Buf where CID = 1000;
/**/
/* Update an XML column with data in an XML AS BLOB host variable */
/**/

EXEC SQL UPDATE MYCUSTOMER SET INFO = :xmlblob where CID = 1000;

[kK dkk ke ko ke ok ko K R 2 2 R R R R T TR T kkkxrhhhhh kAR *hA *%/
/* Update an XML column with data in a CLOB host variable. Use */
/* the XMLPARSE function to convert the data to the XML type. */

/**/

EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :clobBuf) where CID = 1000;
Example: The following example shows a COBOL program that inserts data from

XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML column.
The XML AS BLOB data is inserted as binary data, so the database server honors

Chapter 3. Coding SQL statements in application programs: General information 247

the internal encoding. The XML AS CLOB and CLOB data is inserted as character
data, so the database server honors the external encoding.
*khkhkhkkhkhkhkhhhhhhhhhhhhhhhhhhrhdx

* Host variable declarations =

*khkhkhkhkhkhkkhhhhhkhkhkhhhkhkhhrkhhkrhkx

01 XMLBUF USAGE IS SQL TYPE IS XML as CLOB(10K).

01 XMLBLOB USAGE IS SQL TYPE IS XML AS BLOB(10K).

01 CLOBBUF USAGE IS SQL TYPE IS CLOB(10K).

* Update an XML column with data in an XML AS CLOB host variable =*

kkhkkkkhkkhkhkkhkhkhkkhhkhkkhhkhkhhkhhkhkhhkhhkkhhkkhhkhkhkkhhkkhhkkhhkhkhhkhkhkkhhkhkhkkhkhkkhkhkkhkkhkk*
EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBUF where CID = 1000.

kkhkkkkhkkhkkhkkhkhkkhhkkhkkhhkkhkhkkhhkhkhhkhhkkhhkkhhkhkhkkhhkkhhkkhhkhkhkkhkhkkhhkhkkhkkhkhkkhkhkkhkkhkkkx
* Update an XML column with data in an XML AS BLOB host variable =
kkhkkkkkkkhkkkhkhkkkhhkkkhkkhkhkkhhkhkhhkhhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkhkkhhkkhkhkkhkhkkhkkkkkx
EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBLOB where CID = 1000.

EE R L R R S
* Update an XML column with data in a CLOB host variable. Use *
* the XMLPARSE function to convert the data to the XML type. *
kkhkkkkhkkhkkhkkhkhkkhhkkhhkkhkhkkhkhkhkhhkkhhkkhhkkhhkhkhkkhhkhkkhhkkhhkhkhkkhkhkkhhkhkkhkkhkkhkkhkhkkhkkhkk*x

EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) where CID = 1000.

Example: The following example shows a PL/I program that inserts data from
XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML column.
The XML AS BLOB data is inserted as binary data, so the database server honors
the internal encoding. The XML AS CLOB and CLOB data is inserted as character
data, so the database server honors the external encoding.

/******************************/
/* Host variable declarations =/
/******************************/
DCL

XMLBUF SQL TYPE IS XML AS CLOB(10K),

XMLBLOB SQL TYPE IS XML AS BLOB(10K),

CLOBBUF SQL TYPE IS CLOB(10K);
/***/
/* Update an XML column with data in an XML AS CLOB host variable =*/
/***/

EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBUF where CID = 1000;
/***/
/* Update an XML column with data in an XML AS BLOB host variable =*/

/**************** """"""""""" ******************************/

EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBLOB where CID = 1000;
/***/
/* Update an XML column with data in a CLOB host variable. Use */
/* the XMLPARSE function to convert the data to the XML type. */

/***/

EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) where CID = 1000;

[+ [[nsertion of rows with XML column values (DB2 Programming for XML)|

[+ [Updates of XML columns (DB2 Programming for XML)|

XML data retrieval in embedded SQL applications

In an embedded SQL application, if you retrieve the data into a character host
variable, DB2 converts the data from the UTF-8 encoding scheme to the application
encoding scheme. If you retrieve the data into binary host variable, DB2 does not
convert the data to another encoding scheme.

The output data is in the textual XML format.

DB2 might add an XML encoding specification to the retrieved data, depending on
whether you call the XMLSERIALIZE function when you retrieve the data. If you

248 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.xml/src/tpc/db2z_insertxml.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.xml/src/tpc/db2z_updatexml.dita

do not call the XMLSERIALIZE function, DB2 adds the correct XML encoding
specification to the retrieved data. If you call the XMLSERIALIZE function, DB2
adds an internal XML encoding declaration for UTF-8 encoding if you specify
INCLUDING XMLDECLARATION in the function call. When you use
INCLUDING XMLDECLARATION, you need to ensure that the retrieved data is
not converted from UTF-8 encoding to another encoding.

The following examples demonstrate how to retrieve data from XML columns in
assembler, C, COBOL, and PL/I applications. The examples use a table named
MYCUSTOMER, which is a copy of the sample CUSTOMER table.

Example: The following example shows an assembler program that retrieves data
from an XML column into XML AS BLOB, XML AS CLOB, and CLOB host
variables. The data that is retrieved into an XML AS BLOB host variable is
retrieved as binary data, so the database server generates an XML declaration with
UTEF-8 encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.

B R R R R R R R R R R R R o R R R T T R S S T S T Tt L

* RETRIEVE XML COLUMN DATA INTO AN XML AS CLOB HOST VARIABLE *
dhkkhkhkhkhkhkhhkhhhhkhhhhhhhhhhhhhhddhhdhhhhdhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkdhkkkhxkx
EXEC SQL +
SELECT INFO +
INTO :XMLBUF +
FROM MYCUSTOMER +
WHERE CID = 1000
R R R R R R R L R R L R R R L R R L R R L AXKXhh KA hhkhkhhhhhhhhhhkhhkhk*k AXKXA AKXk kkhhkhhhhhhkk
* RETRIEVE XML COLUMN DATA INTO AN XML AS BLOB HOST VARIABLE *
khkkkkkkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhkhhhkkkhkhxkx
EXEC SQL +
SELECT INFO +
INTO :XMLBLOB +
FROM MYCUSTOMER +
WHERE CID = 1000
dhkhkhkhkhkhkhhhhhhhkhhhhhhhhhhhdhhdhhdhhdhhhhhhhhhhhkhhhkhhhhdrhhkhdrhhhhhhdhkhhxkx
« RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. *
« BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE *
+ XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML *
* TYPE TO THE CLOB TYPE. *
dhkkhkhkhkhkhkhhkkhhkhhhhhhhhhhhdhdhdhdhhdhdhhhdhdhhhhhhhhhhhhhhhhhhhkhhhhkhhhkhkkkkhhxkx
EXEC SQL +
SELECT XMLSERIALIZE(INFO AS CLOB(10K)) +
INTO :CLOBBUF +
FROM MYCUSTOMER +

WHERE CID = 1000

LTORG

B R

* HOST VARIABLE DECLARATIONS =

khkhkhkhkhkhkhkhkhkhkhkhkkhhhkhhhhkhkkkhkxxxxx

XMLBUF SQL TYPE IS XML AS CLOB 10K
XMLBLOB ~ SQL TYPE IS XML AS BLOB 10K
CLOBBUF SQL TYPE IS CLOB 10K

Example: The following example shows a C language program that retrieves data
from an XML column into XML AS BLOB, XML AS CLOB, and CLOB host
variables. The data that is retrieved into an XML AS BLOB host variable is
retrieved as binary data, so the database server generates an XML declaration with

Chapter 3. Coding SQL statements in application programs: General information 249

UTF-8 encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.
/******************************/

/* Host variable declarations =*/
/******************************/

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xml1Blob;
SQL TYPE IS CLOB(10K) clobBuf;

EXEC SQL END DECLARE SECTION;

/**/

/* Retrieve data from an XML column into an XML AS CLOB host variable =/

/**/

EXEC SQL SELECT INFO INTO :xmlBuf from myTable where CID = 1000;

/* Retrieve data from an XML column into an XML AS BLOB host variable =/

/**/

EXEC SQL SELECT INFO INTO :xmIBlob from myTable where CID = 1000;

/**/

/* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. */
/* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE */
/* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML */
/* TYPE TO THE CLOB TYPE. */

/**/

EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
INTO :clobBuf from myTable where CID = 1000;

Example: The following example shows a COBOL program that retrieves data
from an XML column into XML AS BLOB, XML AS CLOB, and CLOB host
variables. The data that is retrieved into an XML AS BLOB host variable is
retrieved as binary data, so the database server generates an XML declaration with
UTE-8 encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.
kkhkhkhkhkhkhkhkhhhhhhhhhhhhhhrhhhrrxx
* Host variable declarations =
*khkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhrhdx
01 XMLBUF USAGE IS SQL TYPE IS XML AS CLOB(10K).
01 XMLBLOB USAGE IS SQL TYPE IS XML AS BLOB(10K).
01 CLOBBUF USAGE IS SQL TYPE IS CLOB(10K).
R R o o o o o o o o o o o o o o o o o o e e R R R R R R Rk ok ok ok ok ok ok ok ok ok
* Retrieve data from an XML column into an XML AS CLOB host variable =*
""""""" B o R
EXEC SQL SELECT INFO
INTO :XMLBUF
FROM MYTABLE
WHERE CID = 1000
END-EXEC.
Rk R Rk ok ok R ok R ok ok ok ok o o e o e e e e R R Rk k k kk ok k ok ok ko
* Retrieve data from an XML column into an XML AS BLOB host variable *
R o o o o o o o o o o o o e o o e e R R R R R R kR R ok Rk ok ok ok ok ok ok ok
EXEC SQL SELECT INFO
INTO :XMLBLOB
FROM MYTABLE
WHERE CID = 1000
END-EXEC.

250 Application Programming and SQL Guide

B R S R R R S S S S T Tk

* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. *
* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE *
* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML *
= TYPE TO THE CLOB TYPE. *

B R R R R R R R R R R R R R R R o R R R R R R R R R R S R R R S Sk

EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
INTO :CLOBBUF

FROM MYTABLE

WHERE CID = 1000

END-EXEC.

Example: The following example shows a PL/I program that retrieves data from
an XML column into XML AS BLOB, XML AS CLOB, and CLOB host variables.
The data that is retrieved into an XML AS BLOB host variable is retrieved as
binary data, so the database server generates an XML declaration with UTF-8
encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.

[k gk dkok ok kk ok k ok ok ok k ok ok ok *xkk [
/* Host variable declarations =/
/******************************/

DCL

XMLBUF SQL TYPE IS XML AS CLOB(10K),

XMLBLOB SQL TYPE IS XML AS BLOB(10K),

CLOBBUF SQL TYPE IS CLOB(10K);
/********************************* """"""""" ********************/
/* Retrieve data from an XML column into an XML AS CLOB host variable */
/**/
EXEC SQL SELECT INFO INTO :XMLBUF FROM MYTABLE WHERE CID = 1000;
/**/
/* Retrieve data from an XML column into an XML AS BLOB host variable =/
/**/

EXEC SQL SELECT INFO INTO :XMLBLOB FROM MYTABLE WHERE CID = 1000;

/**/

/* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. */
/* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE */
/* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML */
/* TYPE TO THE CLOB TYPE. */

/**/

EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
INTO :CLOBBUF FROM MYTABLE WHERE CID = 1000;

[* Retrieving XML data (DB2 Programming for XML)

Programming examples

You can write DB2 programs in assembler language, C, C++, COBOL, Fortran,
PL/I, or REXX. These programs can access a local or remote DB2 subsystem and
can execute static or dynamic SQL statements.

You can write DB2 programs in assembler language, C, C++, COBOL, Fortran,
PL/I or REXX. These programs can access a local or remote DB2 subsystem and
can execute static or dynamic SQL statements. This information contains several
such programming examples.

To prepare and run these applications, use the JCL in DSNA10.SDSNSAMP as a
model for your JCL.

Chapter 3. Coding SQL statements in application programs: General information 251

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.xml/src/tpc/db2z_queryxml.dita

Conventions used in examples of coding SQL statements

The examples in this information use certain conventions and assumptions. Some
of the examples vary from these conventions. Exceptions are noted where they
occur.

The SQL statements in this information use the following conventions:

e The SQL statement is part of a C or COBOL application program. Each SQL
example is displayed on several lines, with each clause of the statement on a
separate line.

* The use of the precompiler options APOST and APOSTSQL are assumed
(although they are not the defaults). Therefore, apostrophes (') are used to
delimit character string literals within SQL and host language statements.

* The SQL statements access data in the sample tables provided with DB2. The
tables contain data that a manufacturing company might keep about its
employees and its current projects.

* An SQL example does not necessarily show the complete syntax of an SQL
statement.

* Examples do not take referential constraints into account.

Related concepts:

[“DB2 sample applications” on page 1092|

[“Programming examples in assembler” on page 271

[“Programming examples in C” on page 311|

[“Programming examples in COBOL” on page 363

[“Programming examples in PL/I” on page 432]

[“Programming examples in REXX” on page 448§|

[[C and C++ language options to use with the installation verification|
forocedures (DB2 Installation and Migration)|

[[COBOL options to use with the installation verification procedures (DB2|
[[nstallation and Migration)|

[[PL /1 options to use with the installation verification procedures (DB2]
[[nstallation and Migration)|

Related reference:

[[DB2 sample tables (Introduction to DB2 for z/OS)|

Examples of programs that call stored procedures

Examples can be used as models when you write applications that call stored
procedures. In addition, DSNA10.SDSNSAMP contains sample jobs DSNTE]J6P and
DSNTEJ6S and programs DSN8EP1 and DSNSEP2, which you can run.

252 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ivpccppopts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ivpccppopts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ivpcobolopts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ivpcobolopts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ivppliopts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_ivppliopts.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_sampletablesdescription.dita

Chapter 4. Coding SQL statements in assembler application
programs

When you code SQL statements in assembler application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
assembler

Assembler programs that contain SQL statements can include an SQL
communications area (SQLCA) to check whether an SQL statement executed
successfully. Alternatively, these programs can declare individual SQLCODE and
SQLSTATE host variables.

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

If your program is reentrant, you must
include the SQLCA within a unique data
area that is acquired for your task (a
DSECT). For example, at the beginning
of your program, specify the following
code:

PROGAREA DSECT
EXEC SQL INCLUDE SQLCA

As an alternative, you can create a
separate storage area for the SQLCA and
provide addressability to that area.

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

© Copyright IBM Corp. 1983, 2014 253

Option Description

To declare SQLCODE and SQLSTATE host |1 Declare the SQLCODE variable within a

variables: BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a fullword integer.

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a character string of length 5 (CL5).

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

Related tasks:

[“Checking the execution of SQL statements” on page 227]

[“Checking the execution of SQL statements by using the SQLCA” on page 228|
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”]

on page 232|

“Defining the items that your program can use to check whether an SQL statement]
executed successfully” on page 173

Defining SQL descriptor areas in assembler

If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

To define SQL descriptor areas:

Code the SQLDA directly in the program, or use the following SQL INCLUDE
statement to request a standard SQLDA declaration:

EXEC SQL INCLUDE SQLDA

Restriction: You must place SQLDA declarations before the first SQL statement
that references the data descriptor, unless you use the TWOPASS SQL processing
option.

Related tasks:

[“Defining SQL descriptor areas” on page 173

Declaring host variables and indicator variables in assembler

You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

254 Application Programming and SQL Guide

You can declare host variables in normal assembler style (DC or DS),
depending on the data type and the limitations on that data type. You can
specify a value on DC or DS declarations (for example, DC H'5"). The DB2
precompiler examines only packed decimal declarations.

If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them

unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:

[“Declaring host variables and indicator variables” on page 174|

Host variables in assembler

In assembler programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variables. You can also specify result set, table, and LOB
locators and LOB and XML file reference variables.

Restrictions:

Only some of the valid assembler declarations are valid host variable
declarations. If the declaration for a host variable is not valid, any SQL
statement that references the variable might result in the message
UNDECLARED HOST VARIABLE.

The locator data types are assembler language data types and SQL data types.
You cannot use locators as column types.

Recommendations:

Be careful of overflow. For example, suppose that you retrieve an INTEGER
column value into a DS H host variable, and the column value is larger than
32767. You get an overflow warning or an error, depending on whether you
provide an indicator variable.

Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a host variable that is declared as DS CL70, the rightmost ten
characters of the retrieved string are truncated. If you retrieve a floating-point or
decimal column value into a host variable declared as DS F, any fractional part
of the value is removed.

Numeric host variables

The following diagram shows the syntax for declaring numeric host variables.

Chapter 4. Coding SQL statements in assembler application programs 255

\4
A

»—variable-name—Egg_l |_1_| H |_|_2_|
R
—FD: |_|_8 _|
(1)
p ['value '—
L
T]
—EB |—L4 7
—ED: |_|_4 _|
R
—DH |_|_8 _|
—DB |_|_8 J
—DD: |_|_8 _|
—LD

|—L16—|

Notes:

1 woalue is a numeric value that specifies the scale of the packed decimal variable. If value does not
include a decimal point, the scale is 0.

For floating-point data types (E, EH, EB, D, DH, and DB), use the FLOAT SQL
processing option to specify whether the host variable is in IEEE binary
floating-point or z/Architecture® hexadecimal floating-point format. If you specify
FLOAT(S390), you need to define your floating-point host variables as E, EH, D, or
DH. If you specify FLOAT(IEEE), you need to define your floating-point host
variables as EB or DB. DB2 does not check if the host variable declarations or
format of the host variable contents match the format that you specified with the
FLOAT SQL processing option. Therefore, you need to ensure that your
floating-point host variable types and contents match the format that you specified
with the FLOAT SQL processing option. DB2 converts all floating-point input data
to z/ Architecture hexadecimal floating-point format before storing it.

Restriction: The FLOAT SQL processing options do not apply to the decimal
floating-point host variable types ED, DD, or LD.

For the decimal floating-point host variable types ED, DD, and LD, you can specify
the following special values: MIN, MAX, NAN, SNAN, and INFINITY.

Character host variables

You can specify the following forms of character host variables:
* Fixed-length strings

* Varying-length strings

256 Application Programming and SQL Guide

¢ CLOBs
The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring fixed-length character
strings.

»»—variable-name DC C
ps— L1 L (1)
Ln

Notes:

1 If you declare a character string host variable without a length (for example, DC C 'ABCD') DB2
interprets the length as 1. To get the correct length, specify a length attribute (for example, DC CL
4 'ABCD").

The following diagram shows the syntax for declaring varying-length character
strings.

A\
A

»»>—variable-name DC H s CLn
L] L T LT L

Graphic host variables

You can specify the following forms of graphic host variables:

* Fixed-length strings

* Varying-length strings

+ DBCLOBs

The following diagrams show the syntax for forms other than DBCLOBs. In the
syntax diagrams, value denotes one or more DBCS characters, and the symbols <

and > represent the shift-out and shift-in characters.

The following diagram shows the syntax for declaring fixed-length graphic strings.

'<value>'—-
Ln'<value>'—

»>—variable-name DC G
|:DS—l |ELn—

The following diagram shows the syntax for declaring varying-length graphic
strings.

Chapter 4. Coding SQL statements in assembler application programs 257

\4
A

»»—variable-name DS H ,—GLn
_[DC—l |—L2—| |—'m'—| |—'<value>'—|

Binary host variables

The following diagram shows the syntax for declaring binary host variables.

(1)

v
A

»»—variable-name—DS—X—Ln

Notes:
1 1=n=255

Varbinary host variables

The following diagram shows the syntax for declaring varbinary host variables.

(1)

»»—variable-name—DS—H—L2—,—X—Ln >«

Notes:
1 1 =n=32704

Result set locators

The following diagram shows the syntax for declaring result set locators.

(1)
»>—variable-name——SQL TYPE IS RESULT_SET_LOCATOR VARYING >

Notes:

1 To be compatible with previous releases, result set locator host variables may be declared as
fullword integers (FL4), but the method shown is the preferred syntax.

Table Locators

The following diagram shows the syntax for declaring of table locators.

258 Application Programming and SQL Guide

»»>—variable-name—SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR

A\
A

LOB variables, locators, and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB

host variables, locators, and file reference variables.

»»—variable-name—SQL TYPE IS

BINARY LARGE OBJECT |
BLOB

CHAR LARGE OBJECT
CLOB
—DBCLOB

—ECHARACTER LARGE OBJECT——

BLOB_LOCATOR

length

;:x

[«p]

- CLOB_LOCATOR
L_DBCLOB_LOCATOR—

BLOB_FILE
CLOB_FI LEﬂ
L_DBCLOB_FILE

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB

host variables and file reference variables for XML data types.

»»—variable-name—SQL TYPE IS XML AS

Notes:

1 If you specify the length of the LOB in terms of KB, MB, or GB, do not leave spaces between the

length and K, M, or G.

BLOB

BINARY LARGE OBJECT

(1)

A\
A

CLOB

CHARACTER LARGE OBJECT——
—ECHAR LARGE OBJECT

—DBCLOB
—BLOB_FILE

length

-
|

<

[<p]

CLOB_FI LEﬂ
L_DBCLOB_FILE

ROWIDs

The following diagram shows the syntax for declaring ROWID host variables.

Chapter 4. Coding SQL statements in assembler application programs

259

»»>—variable-name—SQL TYPE IS—ROWID

\4
A

Related concepts:

[“Host variables” on page 174]

[“Rules for host variables in an SQL statement” on page 183
[“Large objects (LOBs)” on page 465
Related tasks:

“Determining whether a retrieved value in a host variable is null or truncated” on|

page 18§|

[“Inserting a single row by using a host variable” on page 189

“Inserting null values into columns by using indicator variables or arrays” on page|
190

[‘Retrieving a single row of data into host variables” on page 184]

“Updating data by using host variables” on page 189
p g

Related reference:

[“Descriptions of SQL processing options” on page 932|
[** [High Level Assembler (HLASM) and Toolkit Feature Library]

Indicator variables in assembler

An indicator variable is a 2-byte integer (DS HL2). You declare indicator variables
in the same way as host variables. You can mix the declarations of the two types of
variables.

The following diagram shows the syntax for declaring an indicator variable in
assembler.

»»>—variable-name DC H <
pod L L,

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.

EXEC SQL FETCH CLS_CURSOR INTO :CLSCD, X
:DAY :DAYIND, X
:BGN :BGNIND, X

:END :ENDIND

You can declare these variables as follows:
CLSCD DS CL7

DAY DS HL2
BGN DS CL8
END DS CL8
DAYIND DS HL2 INDICATOR VARIABLE FOR DAY
BGNIND DS HL2 INDICATOR VARIABLE FOR BGN
ENDIND DS HL2 INDICATOR VARIABLE FOR END

260 Application Programming and SQL Guide

http://www.ibm.com/software/awdtools/hlasm/library.html

Related concepts:

[“Indicator variables, arrays, and structures” on page 176|

Related tasks:

“Inserting null values into columns by using indicator variables or arrays” on page|

190

Equivalent SQL and assembler data types

When you declare host variables in your assembler programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type

into a host variable, ensure that the host variable is of an equivalent data type.

The following table describes the SQL data type and the base SQLTYPE and

SQLLEN values that the precompiler uses for host variables in SQL statements.
Table 54. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in

assembler programs

Assembler host variable data type

SQLTYPE of host
variable'

SQLLEN of
host variable

SQL data type

500

2

DS HL2 SMALLINT

DS FL4 496 4 INTEGER

DS P'value’ 484 pinbyte 1, sin pecimaL(p,s)
DS PLn'value' or byte 2

DS PLn

1<=n<=16

short decimal FLOAT: 996 4 DECFLOAT
SDFP DC ED

SDFP DC EDL4

SDFP DC EDL4'11.11"

long decimal FLOAT: 996 8 DECFLOAT
LDFP DC DD

LDFP DC DDL8

LDFP DC DDL8'22.22"

extended decimal FLOAT: 996 16 DECFLOAT
EDFP DC LD

EDFP DC LDL16

EDFP DC LDL16'33.33"

DS EL4 480 4 REAL or FLOAT (n)
DS EHL4 1<=n<=21

DS EBL4

DS DL8 480 8 DOUBLE PRECISION,
DS DHLS or FLOAT (n)
DS DBLS 22<=n<=53

DS FDL8 492 8 BIGINT

DS FD

SQL TYPE IS BINARY(n) 912 n BINARY (n)
1<=n<=255

SQL TYPE IS VARBINARY(n) or 908 n VARBINARY (n)

SQL TYPE IS BINARY(n) VARYING
1<=n<=32704

Chapter 4. Coding SQL statements in assembler application programs

261

Table 54. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
assembler programs (continued)

SQLTYPE of host SQLLEN of

Assembler host variable data type variable’ host variable SQL data type
DS CLn 452 n CHAR(n)
1<=n<=255
DS HL2,CLn 448 n VARCHAR (n)
1<=n<=255
DS HL2,CLn 456 n VARCHAR ()
n>255
DS GLm 468 n GRAPHIC(n)
2<=m<=254

3
2
DS HL2,GLm 464 n VARGRAPHIC (n)
2<=m<=254

3
2
DS HL2,GLm 472 n VARGRAPHIC (n)
m>254

3
2
SQL TYPE IS RESULT SET_LOCATOR 972 4 Result set locator™
SQL TYPE IS 976 4 Table locator’
TABLE LIKE
table-name
AS LOCATOR
SQL TYPE IS 960 4 BLOB locator
BLOB_LOCATOR
SQL TYPE IS 964 4 CLOB Tocator®
CLOB_LOCATOR
SQL TYPE IS 968 4 DBCLOB Tocator®
DBCLOB_LOCATOR
SQL TYPE IS 404 n BLOB(n)
BLOB(n)
1=n<2147483647
SQL TYPE IS 408 n CLOB(n)
CLOB(n)
1=n=2147483647
SQL TYPE IS 412 n DBCLOB(n)
DBCLOB(n)
1=n<1073741823 3
SQL TYPE IS XML AS BLOB(n) 404 0 XML
SQL TYPE IS XML AS CLOB(n) 408 0 XML
SQL TYPE IS XML AS DBCLOB(n) 412 0 XML
SQL TYPE IS BLOB_FILE 916/917 267 BLOB file reference *
SQL TYPE IS CLOB_FILE 920/921 267 CLOB file reference *

262 Application Programming and SQL Guide

Table 54. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
assembler programs (continued)

SQLTYPE of host SQLLEN of

Assembler host variable data type variable' host variable SQL data type

SQL TYPE IS DBCLOB_FILE 924/925 267 DBCLOB file reference *
SQL TYPE IS XML AS BLOB_FILE 916/917 267 XML BLOB file reference *
SQL TYPE IS XML AS CLOB FILE 920/921 267 XML CLOB file reference *
SQL TYPE IS XML AS DBCLOB_FILE 924/925 267 XML DBCLOB file reference *
SQL TYPE IS ROWID 904 40 ROWIDnote 5

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base SQLTYPE value plus 1.
m is the number of bytes.

n is the number of double-byte characters.

This data type cannot be used as a column type.

o M~ owDN

To be compatible with previous releases, result set locator host variables may be declared as fullword integers
(FL4), but the method shown is the preferred syntax.

The following table shows equivalent assembler host variables for each SQL data
type. Use this table to determine the assembler data type for host variables that
you define to receive output from the database. For example, if you retrieve
TIMESTAMP data, you can define variable DS CLn.

This table shows direct conversions between SQL data types and assembler data
types. However, a number of SQL data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 converts
those compatible data types.

Table 55. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type

Assembler host variable

SQL data type equivalent Notes

SMALLINT DS HL2

INTEGER DS F

BIGINT DS FD OR DS FDL8 DS FDLS8 requires High Level Assembler

(HLASM), Release 4 or later.

Chapter 4. Coding SQL statements in assembler application programs 263

Table 55. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type (continued)

SQL data type

Assembler host variable
equivalent

Notes

DECIMAL(p,s) or
NUMERIC(p,s)

DS P’value’” DS PLn value’

DS PLn

p is precision; s is scale. 1<=p<=31 and
O<=s<=p. 1<=n<=16. value is a literal value
that includes a decimal point. You must
use Ln, value, or both. Using only value is
recommended.

Precision: If you use L, it is 2n-1;
otherwise, it is the number of digits in
value. Scale: If you use value, it is the
number of digits to the right of the
decimal point; otherwise, it is 0.

For efficient use of indexes: Use value. If
p is even, do not use Ln and be sure the
precision of value is p and the scale of
value is s. If p is odd, you can use Ln
(although it is not advised), but you must
choose n so that 2n-1=p, and value so that
the scale is s. Include a decimal point in
value, even when the scale of value is 0.

REAL or FLOAT(n)

DS EL4 DS EHL4 DS
EBL4!

1<=n<=21

DOUBLE DS DL8 DS DHL8 DS 22<=n<=53
PRECISION, DBLS'
DOUBLE, or
FLOAT(n)
DECFLOAT DC EDL4 DC DDL8 DC
LDL16
CHAR(n) DS CLn 1<=n<=255
VARCHAR(n) DS HL2,CLn
GRAPHIC(n) DS GLm m is expressed in bytes. 1 is the number
of double-byte characters. 1<=n<=127
VARGRAPHIC(n) DS HL2,GLx DS x and m are expressed in bytes. n is the
HL2'm',GLx'<value>' number of double-byte characters. < and
> represent shift-out and shift-in
characters.
BINARY (1) Format 1: 1<=n<=255
variable-name--
DS--X--Ln
Format 2:
SQL TYPE IS
BINARY(n)

264 Application Programming and SQL Guide

Table 55. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type (continued)

Assembler host variable

SQL data type equivalent Notes
VARBINARY (n) 1<=n<=32704
Format 1:
variable-name--
DS--H--L2--,--
X--Ln
Format 2:
SQL TYPE IS
VARBINARY(n)
or SQL TYPE IS
BINARY(n)
VARYING

DATE DS CLn If you are using a date exit routine, 7 is
determined by that routine; otherwise, n
must be at least 10.

TIME DS CLn If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP DS CLn n must be at least 19. To include
microseconds, n must be 26; if 1 is less
than 26, truncation occurs on the
microseconds part.

TIMESTAMP(0) DS CLn n must be at least 19.

TIMESTAMP(p) p > DS CLn n must be at least 19. To include fractional

0 seconds, n must be 20+x where x is the
number of fractional seconds to include; if
x is less than p, truncation occurs on the
fractional seconds part.

TIMESTAMP(0) DS HL2,CLn n must be at least 25.

WITH TIME ZONE

TIMESTAMP(p) DS HL2,CLn n must be at least 26+p.

WITH TIME ZONE

p>0

Result set locator DS F Use this data type only to receive result

sets. Do not use this data type as a
column type.

Table locator

SQL TYPE IS TABLE
LIKE table-name AS

Use this data type only in a user-defined
function or stored procedure to receive

LOCATOR rows of a transition table. Do not use this
data type as a column type.
BLOB locator SQL TYPE IS Use this data type only to manipulate

BLOB_LOCATOR

data in BLOB columns. Do not use this
data type as a column type.

CLOB locator

SQL TYPE IS
CLOB_LOCATOR

Use this data type only to manipulate
data in CLOB columns. Do not use this
data type as a column type.

DBCLOB locator

SQL TYPE IS
DBCLOB_LOCATOR

Use this data type only to manipulate
data in DBCLOB columns. Do not use this
data type as a column type.

Chapter 4. Coding SQL statements in assembler application programs 265

Table 55. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type (continued)

Assembler host variable

SQL data type equivalent Notes

BLOB(n) SQL TYPE IS BLOB(n) 1=n=2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1=n=2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.

1=n=1073741823

XML SQL TYPE IS XML AS 1=n=2147483647
BLOB(n)

XML SQL TYPE IS XML AS 1=n=2147483647
CLOB(n)

XML SQL TYPE IS XML AS n is the number of double-byte characters.
DBCLOB(n) 1=n=1073741823

BLOB file reference ~ SQL TYPE IS BLOB_FILE Use this data type only to manipulate
data in BLOB columns. Do not use this
data type as a column type.

CLOB file reference SQL TYPE IS CLOB_FILE Use this data type only to manipulate
data in CLOB columns. Do not use this
data type as a column type.

DBCLOB file SQL TYPE IS Use this data type only to manipulate

reference DBCLOB_FILE data in DBCLOB columns. Do not use this
data type as a column type.

XML BLOB file SQL TYPE IS XML AS Use this data type only to manipulate

reference BLOB_FILE XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file SQL TYPE IS XML AS Use this data type only to manipulate

reference CLOB_FILE XML data as CLOB files. Do not use this

data type as a column type.

XML DBCLOB file SQL TYPE IS XML AS Use this data type only to manipulate
reference DBCLOB_FILE XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID SQL TYPE IS ROWID

Notes:

1. Although stored procedures and user-defined functions can use IEEE floating-point host
variables, you cannot declare a user-defined function or stored procedure parameter as
IEEE.

Related concepts:

[“Compeatibility of SQL and language data types” on page 180
“LOB host variable, LOB locator, and LOB file reference variable declarations” on|

page 752]

“Host variable data types for XML data in embedded SQL applications” on page
241

SQL statements in assembler programs

You can code SQL statements in a assembler program wherever you can use
executable statements.

266 Application Programming and SQL Guide

Each SQL statement in an assembler program must begin with EXEC SQL. The
EXEC and SQL keywords must appear on one line, but the remainder of the
statement can appear on subsequent lines.

You might code an UPDATE statement in an assembler program as follows:

EXEC SQL UPDATE DSN8A10.DEPT X
SET MGRNO = :MGRNUM X
WHERE DEPTNO = :INTDEPT

Comments: You cannot include assembler comments in SQL statements. However,
you can include SQL comments in any embedded SQL statement.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for assembler statements, except that you must specify EXEC
SQL within one line. Any part of the statement that does not fit on one line can
appear on subsequent lines, beginning at the continuation margin (column 16, the
default). Every line of the statement, except the last, must have a continuation
character (a non-blank character) immediately after the right margin in column 72.

Declaring tables and views: Your assembler program should include a DECLARE
statement to describe each table and view the program accesses.

Including code: To include SQL statements or assembler host variable declaration
statements from a member of a partitioned data set, place the following SQL
statement in the source code where you want to include the statements:

EXEC SQL INCLUDE member-name
You cannot nest SQL INCLUDE statements.

Margins: Use the precompiler option MARGINS to set a left margin, a right
margin, and a continuation margin. The default values for these margins are
columns 1, 71, and 16, respectively. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement. If you use the
default margins, you can place an SQL statement anywhere between columns 2
and 71.

Multiple-row FETCH statements: You can use only the FETCH ... USING
DESCRIPTOR form of the multiple-row FETCH statement in an assembler
program. The DB2 precompiler does not recognize declarations of host variable
arrays for an assembler program.

Names: You can use any valid assembler name for a host variable. However, do
not use external entry names or access plan names that begin with 'DSN' or host
variable names that begin with 'SQL'. These names are reserved for DB2.

The first character of a host variable that is used in embedded SQL cannot be an
underscore. However, you can use an underscore as the first character in a symbol
that is not used in embedded SQL.

Statement labels: You can prefix an SQL statement with a label. The first line of an
SQL statement can use a label beginning in the left margin (column 1). If you do
not use a label, leave column 1 blank.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER

statement must be a label in the assembler source code and must be within the
scope of the SQL statements that WHENEVER affects.

Chapter 4. Coding SQL statements in assembler application programs 267

Special assembler considerations: The following considerations apply to programs

written in assembler:

* To allow for reentrant programs, the precompiler puts all the variables and
structures it generates within a DSECT called SQLDSECT, and it generates an
assembler symbol called SQLDLEN. SQLDLEN contains the length of the
DSECT. Your program must allocate an area of the size indicated by SQLDLEN,
initialize it, and provide addressability to it as the DSECT SQLDSECT. The
precompiler does not generate code to allocate the storage for SQLDSECT; the
application program must allocate the storage.

CICS: An example of code to support reentrant programs, running under CICS,

follows:

DFHEISTG DSECT
DFHEISTG

EXEC SQL INCLUDE SQLCA

*

DS OF
SQDWSREG EQU R7
SQDWSTOR DS

(SQLDLEN)C RESERVE STORAGE TO BE USED FOR SQLDSECT

XXPROGRM DFHEIENT CODEREG=R12,EIBREG=R11,DATAREG=R13

*
*

* SQL WORKING STORAGE

LA SQDWSREG, SQDWSTOR
USING SQLDSECT,SQDWSREG

GET ADDRESS OF SQLDSECT
AND TELL ASSEMBLER ABOUT IT

In this example, the actual storage allocation is done by the DFHEIENT macro.

TSO: The sample program in prefix. SDSNSAMP(DSNTIAD) contains an example
of how to acquire storage for the SQLDSECT in a program that runs in a TSO
environment. The following example code contains pieces from

prefix SODSNSAMP(DSNTIAD) with explanations in the comments.

DSNTIAD CSECT

SAVE (14,12)
LR R12,R15
USING DSNTIAD,R12
LR R7,R1
*
*
*
*
*
*
L R6,PRGSIZ1
A R6,SQLDSIZ
GETMAIN R,LV=(6)
LR R10,R1
*
* Initialize the storage
*
LR R2,R10
LR R3,R6
SR R4,R4
SR R5,R5
MVCL R2,R4

* ok

ST R13,FOUR(R10)
ST R10,EIGHT(R13)

268 Application Programming and SQL Guide

CONTROL SECTION NAME
ANY SAVE SEQUENCE
CODE ADDRESSABILITY
TELL THE ASSEMBLER
SAVE THE PARM POINTER

Allocate storage of size PRGSIZ1+SQLDSIZ, where:

- PRGSIZ1 is the size of the DSNTIAD program area

- SQLDSIZ is the size of the SQLDSECT, and declared
when the DB2 precompiler includes the SQLDSECT

GET SPACE FOR USER PROGRAM

GET SPACE FOR SQLDSECT

GET STORAGE FOR PROGRAM VARIABLES
POINT TO IT

POINT TO THE FIELD

GET ITS LENGTH

CLEAR THE INPUT ADDRESS
CLEAR THE INPUT LENGTH
CLEAR OUT THE FIELD

Map the storage for DSNTIAD program area

CHAIN THE SAVEAREA PTRS
CHAIN SAVEAREA FORWARD

LR R13,R10 POINT TO THE SAVEAREA
USING PRGAREA1,R13 SET ADDRESSABILITY

*

* Map the storage for the SQLDSECT

*

LR R9,R13 POINT TO THE PROGAREA

A R9,PRGSIZ1 THEN PAST TO THE SQLDSECT

USING SQLDSECT,R9 SET ADDRESSABILITY

LTORG
ko koK ok Rk Kok kR kK Ak KA Kok kKRR R TR AT AR R AT A K AR K
* *
* DECLARE VARIABLES, WORK AREAS *
* *
S ek o ook o koo koo ek ok ko ko ok ko ko ek ko ko
PRGAREAL DSECT WORKING STORAGE FOR THE PROGRAM

DS 0D
PRGSIZE1l EQU *-PRGAREAL DYNAMIC WORKAREA SIZE
DSNTIAD CSECT RETURN TO CSECT FOR CONSTANT
PRGSIZ1 DC A(PRGSIZE1) SIZE OF PROGRAM WORKING STORAGE
CA DSECT

EXEC SQL INCLUDE SQLCA

* DB2 does not process set symbols in SQL statements.

* Generated code can include more than two continuations per comment.

* Generated code uses literal constants (for example, =F'-84'), so an LTORG
statement might be necessary.

* Generated code uses registers 0, 1, 14, and 15. Register 13 points to a save area
that the called program uses. Register 15 does not contain a return code after a
call that is generated by an SQL statement.

CICS: A CICS application program uses the DFHEIENT macro to generate the

entry point code. When using this macro, consider the following:

— If you use the default DATAREG in the DFHEIENT macro, register 13 points
to the save area.

— If you use any other DATAREG in the DFHEIENT macro, you must provide
addressability to a save area.

For example, to use SAVED, you can code instructions to save, load, and
restore register 13 around each SQL statement as in the following example.

ST 13,SAVERI3 SAVE REGISTER 13
LA 13,SAVED POINT TO SAVE AREA
EXEC SQL . . .

L 13,SAVER13 RESTORE REGISTER 13

 If you have an addressability error in precompiler-generated code because of
input or output host variables in an SQL statement, check to make sure that you
have enough base registers.

¢ Do not put CICS translator options in the assembly source code. Instead, pass
the options to the translator by using the PARM field.

Handling SQL error return codes in assembler

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
[“Displaying SQLCA fields by calling DSNTIAR” on page 229

Chapter 4. Coding SQL statements in assembler application programs 269

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see [“Checking the execution of SQL statements by using the GET]|
IDIAGNOSTICS statement” on page 234

DSNTIAR syntax:
CALL DSNTIAR,(sqlca, message, Irecl), MF=(E,PARM)

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, defined as a varying-length string, in which DSNTIAR places
the message text. The first halfword contains the length of the remaining area;
its minimum value is 240.

The output lines of text, each line being the length specified in Irecl, are put
into this area. For example, you could specify the format of the output area as:

LINES EQU 10
LRECL EQU 132

MSGLRECL DC AL4 (LRECL)
MESSAGE DS H,CL(LINES*LRECL)
ORG ~ MESSAGE
MESSAGEL DC AL2 (LINES*LRECL)

MESSAGE1 DS CL(LRECL) text Tine 1
MESSAGE2 DS CL(LRECL) text Tine 2
MESSAGEn DS CL(LRECL) text line n

CALL DSNTIAR, (SQLCA,MESSAGE,MSGLRECL) ,MF=(E,PARM)

where MESSAGE is the name of the message output area, LINES is the
number of lines in the message output area, and LRECL is the length of each
line.

lrecl

A fullword containing the logical record length of output messages, between 72
and 240.

The expression MF=(E,PARM) is an z/OS macro parameter that indicates dynamic
execution. PARM is the name of a data area that contains a list of pointers to the
call parameters of DSNTIAR.

See ['DB2 sample applications” on page 1092 for instructions on how to access and
print the source code for the sample program.

CICS: If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:

CALL DSNTIAC, (eib, commarea,sqlca,msg, Lrecl) ,MF=(E,PARM)

270 Application Programming and SQL Guide

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.

eib EXEC interface block

commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the

same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see member DSN8FRDO in the data set
prefix. SDSNSAMP.

The assembler source code for DSNTIAC and job DSNTE]J5A, which assembles and
link-edits DSNTIAC, are also in the data set prefix. SDSNSAMP.

Related tasks:
[“Including dynamic SQL in your program” on page 193

[“Embedding SQL statements in your application” on page 183

[“Handling SQL error codes” on page 239

[& [Setting limits for system resource usage by using the resource limit facility]
[(DB2 Performance)|

Delimiters in SQL statements in assembler programs

You must delimit SQL statements in your assembler program so that DB2 knows
when a particular SQL statement ends.

Delimit an SQL statement in your assembler program with the beginning keyword
EXEC SQL and an end of line or end of last continued line.

Macros for assembler applications
Data set DSNA10.SDSNMACS contains all DB2 macros that are available for use.

Programming examples in assembler

You can write DB2 programs in assembler. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.

Related reference:

[“Programming examples” on page 251|

Chapter 4. Coding SQL statements in assembler application programs 271

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita

272 Application Programming and SQL Guide

Chapter 5. Coding SQL statements in C application programs

When you code SQL statements in C or C++ application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
C

C and C++ programs that contain SQL statements can include an SQL
communications area (SQLCA) to check whether an SQL statement executed
successfully. Alternatively, these programs can declare individual SQLCODE and
SQLSTATE host variables.

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

The standard declaration includes both a
structure definition and a static data area
named 'sqlca’.

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

© Copyright IBM Corp. 1983, 2014 273

Option Description

To fieclare SQLCODE and SQLSTATE host | | Declare the SQLCODE variable within a
variables: BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a long integer:

lTong SQLCODE;

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a character array of length 6:

char SQLSTATE[6];

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

Related tasks:

[“Checking the execution of SQL statements” on page 227

[“Checking the execution of SQL statements by using the SQLCA” on page 228|
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE’]

on page 232|

“Defining the items that your program can use to check whether an SQL statement]
executed successfully” on page 173

Defining SQL descriptor areas in C

If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

To define SQL descriptor areas:

Code the SQLDA directly in the program, or use the following SQL INCLUDE
statement to request a standard SQLDA declaration:

EXEC SQL INCLUDE SQLDA

You can place an SQLDA declaration wherever C allows a structure definition.
Normal C scoping rules apply. The standard declaration includes only a structure
definition with the name sqlda.

Restriction: You must place SQLDA declarations before the first SQL statement
that references the data descriptor, unless you use the TWOPASS SQL processing
option.

Related tasks:

[“Defining SQL descriptor areas” on page 173

274 Application Programming and SQL Guide

Declaring host variables and indicator variables in C

You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

* You can have more than one host variable declaration section in your
program.

* You can use class members as host variables. Class members that are used as
host variables are accessible to any SQL statement within the class. However,
you cannot use class objects as host variables.

¢ If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

Restriction: The DB2 coprocessor for C/C++ supports only the ONEPASS
option.

* If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

* Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

* If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:

[‘Declaring host variables and indicator variables” on page 174|

Host variables in C

In C and C++ programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variables. You can also specify result set, table, and LOB
locators and LOB and XML file reference variables.

Restrictions:

* Only some of the valid C declarations are valid host variable declarations. If the
declaration for a variable is not valid, any SQL statement that references the
variable might result in the message UNDECLARED HOST VARIABLE.

* C supports some data types and storage classes with no SQL equivalents, such
as register storage class, typedef, and long long.

* The following locator data types are special SQL data types that do not have C
equivalents:

— Result set locator
— Table locator

Chapter 5. Coding SQL statements in C application programs 275

— LOB locators

You cannot use them to define column types.

* Although DB2 allows you to use properly formed L-literals in C application
programs, DB2 does not check for all the restrictions that the C compiler
imposes on the L-literal. \

* Do not use L-literals in SQL statements. Use DB2 graphic string constants in
SQL statements to work with the L-literal.

Recommendations:

* Be careful of overflow. For example, suppose that you retrieve an INTEGER
column value into a short integer host variable, and the column value is larger
than 32767. You get an overflow warning or an error, depending on whether you
provide an indicator variable.

* Be careful of truncation. Ensure that the host variable that you declare can
contain the data and a NUL terminator, if needed. Retrieving a floating-point or
decimal column value into a long integer host variable removes any fractional
part of the value.

Numeric host variables

The following diagram shows the syntax for declaring numeric host variables.

> float >
auto i:const —double
extern volatile— int
static —short |_ —l
sqlint32

int
]ong_L—I_

int
—long long |_ —l

—decimal—(—precision |_ _|)—
,—scale

— Decimal32
— Decimal64
— Decimall28

>'—|:variab le-name
*pointer-name

Notes:

(1) |—=express ionJ

1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

Restrictions:

* If your C compiler does not have a decimal data type, no exact equivalent exists
for the SQL data type DECIMAL. In this case, you can use one of the following
variables or techniques to handle decimal values:

276 Application Programming and SQL Guide

— An integer or floating-point variable, which converts the value. If you use an
integer variable, you lose the fractional part of the number. If the decimal
number can exceed the maximum value for an integer or if you want to
preserve a fractional value, use floating-point variables. Floating-point
numbers are approximations of real numbers. Therefore, when you assign a
decimal number to a floating-point variable, the result might be different from
the original number.

— A character-string host variable. Use the CHAR function to get a string
representation of a decimal number.

— The DECIMAL function to explicitly convert a value to a decimal data type,
as shown in the following example:

long duration=10100; /* 1 year and 1 month */
char result_dt[11];

EXEC SQL SELECT START_DATE + DECIMAL(:duration,8,0)
INTO :result_dt FROM TABLEL;
e z/0S 1.10 or above (z/OS V1R10 XL C/C++) is required to use the decimal
floating-point host data type.

* The special C only 'complex floating-point' host data type is not a supported
type for host variable.

¢ The FLOAT precompiler option does not apply to the decimal floating-point host
variable types.

* To use decimal floating-point host variable, you must use the DB2 coprocessor.

For floating-point data types, use the FLOAT SQL processing option to specify
whether the host variable is in IEEE binary floating-point or z/Architecture
hexadecimal floating-point format. DB2 does not check if the format of the host
variable contents match the format that you specified with the FLOAT SQL
processing option. Therefore, you need to ensure that your floating-point host
variable contents match the format that you specified with the FLOAT SQL
processing option. DB2 converts all floating-point input data to z/Architecture
hexadecimal floating-point format before storing it.

Character host variables

You can specify the following forms of character host variables:

¢ Single-character form

¢ NUL-terminated character form

¢ VARCHAR structured form

+ CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring single-character host
variables.

Chapter 5. Coding SQL statements in C application programs 277

v
v

\/

char
|—uns1‘gned—|

auto i:const
extern volatile—

static

> variable-name : ><
(1) |—=express ion—|

*pointer-name

Notes:

1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

The following diagram shows the syntax for declaring NUL-terminated character
host variables.

y
y

v

> char:
auto i:const |—uns1'gned—|
extern volatile—
static
F (2) (3)
v

> variable-name —[—length—] |_ _| ; >
(1) =expression

*pointer-name

Notes:
1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

2 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

3 A NUL-terminated character host variable maps to a varying-length character string (except for
the NUL).

The following diagram shows the syntax for declaring varying-length character
host variables that use the VARCHAR structured form.

278 Application Programming and SQL Guide

A4
A\

»
>

auto i:const
extern volatile—
static

char—var-2
|—unsigned—I

(1) int (2)
struct { —short |_ —l var-1 >

L tag

(2)

v

[—length—]— ; — }

B

>'—|:variab le-name
*pointer-name

Notes:

(3) |—={expression,expression}—|

1 You can use the struct tag to define other variables, but you cannot use them as host variables in

SQL.

2 You cannot use var-1 and var-2 as host variables in an SQL statement.

3 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

Example: The following example code shows valid and invalid declarations of the
VARCHAR structured form:

EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable VARCHAR vstring =/
struct VARCHAR {

short Ten;

char s[10];

} vstring;

/* invalid declaration of host variable VARCHAR wstring =/
struct VARCHAR wstring;

For NUL-terminated string host variables, use the SQL processing options
PADNTSTR and NOPADNTSTR to specify whether the variable should be padded
with blanks. The option that you specify determines where the NUL-terminator is
placed.

If you assign a string of length 1 to a NUL-terminated string host variable, the
variable has one of the values that is shown in the following table.

Table 56. Value of a NUL-terminated string host variable that is assigned a string of length n

Length of the NUL-terminated string host
variable Value of the variable

Less than or equal to n The source string up to a length of n-1 and a
NUL at the end of the string. '

DB2 sets SQLWARN][1] to W and any
indicator variable that you provide to the
original length of the source string.

Chapter 5. Coding SQL statements in C application programs 279

Table 56. Value of a NUL-terminated string host variable that is assigned a string of length
n (continued)

Length of the NUL-terminated string host
variable Value of the variable

Equal to n+1 The source string and a NUL at the end of
the string. '

Greater than n+1 and the source is a

fixed-length string If PADNTSTR is in effect

The source string, blanks to pad the
value, and a NUL at the end of the
string.

If NOPADNTSTR is in effect
The source string and a NUL at the end
of the string.

Greater than n+1 and the source is a The source string and a NUL at the end of
varying-length string the string. !
Note:

1. In these cases, whether NOPADNTSTR or PADNTSTR is in effect is irrelevant.

Restriction: If you use the DB2 precompiler, you cannot use a host variable that is
of the NUL-terminated form in either a PREPARE or DESCRIBE statement.
However, if you use the DB2 coprocessor, you can use host variables of the
NUL-terminated form in PREPARE, DESCRIBE, and EXECUTE IMMEDIATE
statements.

Graphic host variables

You can specify the following forms of graphic host variables:
* Single-graphic form

* NUL-terminated graphic form

* VARGRAPHIC structured form.

+ DBCLOBs

Recommendation: Instead of using the C data type wchar_t to define graphic and
vargraphic host variables, use one of the following techniques:

* Define the sqldbchar data type by using the following typedef statement:
typedef unsigned short sqldbchar;

* Use the sqldbchar data type that is defined in the typedef statement in one of
the following files or libraries:

- SQL library, sql.h

— DB2 CLI library, sqlcli.h

— SQLUDF file in data set DSNA10.SDSNC.H
* Use the C data type unsigned short.
Using sqldbchar or unsigned short enables you to manipulate DBCS and Unicode
UTF-16 data in the same format in which it is stored in DB2. Using sqldbchar also

makes applications easier to port to other platforms.

The following diagrams show the syntax for forms other than DBCLOBs.

280 Application Programming and SQL Guide

The following diagram shows the syntax for declaring single-graphic host

variables.
(1) (2)
sq1 dbchar*—[v variable-name ; ><
auto i:const *pointer-nameé |—=expression—|
extern volatile—
static
Notes:

1 You cannot use array notation in variable-name.

2 The single-graphic form declares a fixed-length graphic string of length 1.

The following diagram shows the syntax for declaring NUL-terminated graphic
host variables.

v

sqldbchar
auto i:const
extern volatile—
static

J (2) (3) (4)
> variable-name —[—Llength] 5 -
(1) |—=express ionJ

*pointer-name

Notes:
1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.
2 length must be a decimal integer constant greater than 1 and not greater than 16352.

3 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

4 The NUL-terminated graphic form does not accept single-byte characters for the variable.

The following diagram shows the syntax for declaring graphic host variables that
use the VARGRAPHIC structured form.

Chapter 5. Coding SQL statements in C application programs 281

(1) int (2) (3)
{ —short |_ —l var-1 ; >

struct H »
auto i:const l—tag—l
extern volatile—

static

A4
Y

(3) (4)
[—length

v

1— 5 —

»—sqldbchar—var-2

»—Y _variable-name B] ; <
(5) ={expression,expression}

*pointer-name

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variables in
SQL.

var-1 must be less than or equal to length.
You cannot use var-1 or var-2 as host variables in an SQL statement.

length must be a decimal integer constant greater than 1 and not greater than 16352.

g = W N

f you use the pointer notation of the host variable, you must use the DB2 coprocessor.

Example: The following example shows valid and invalid declarations of graphic
host variables that use the VARGRAPHIC structured form:
EXEC SQL BEGIN DECLARE SECTION;
/* valid declaration of host variable structured vgraph */
struct VARGRAPH {
short Ten;

sqldbchar d[10];
} vgraph;

/* invalid declaration of host variable structured wgraph */
struct VARGRAPH wgraph;

Binary host variables

You can specify the following forms of binary host variables:

* Fixed-length strings

* Varying-length strings

* BLOBs

The following diagrams show the syntax for forms other than BLOBs.

The following diagram shows the syntax for declaring binary host variables.

282 Application Programming and SQL Guide

o |

SQL TYPE IS BINARY—(—Ilength)——variable-name—— ; ———»>=
auto i:const
extern volatile—

static

Notes:
1 The length must be a value from 1 to 255.

The following diagram shows the syntax for declaring VARBINARY host variables.

(1)
SQL TYPE IS VARBINARY—_I—(—length—)
Eauto—:' i:const BINARY VARYING
rn

v

exte volatile—
static

A\
A

»—~Y variable-name

L =—{—init-len—,—"—init-data—"—}—l

Notes:
1 For VARBINARY host variables, the length must be in the range from 1 to 32 704.

The C language does not have variables that correspond to the SQL binary data

types BINARY and VARBINARY. To create host variables that can be used with

these data types, use the SQL TYPE IS clause. The SQL precompiler replaces this
declaration with the C language structure in the output source member.

When you reference a BINARY or VARBINARY host variable in an SQL statement,
you must use the variable that you specify in the SQL TYPE declaration. When
you reference the host variable in a host language statement, you must use the
variable that DB2 generates.

Examples of binary variable declarations: The following table shows examples of
variables that DB2 generates when you declare binary host variables.

Table 57. Examples of BINARY and VARBINARY variable declarations for C

Variable declaration that you include in Corresponding variable that DB2 generates
your C program in the output source member

SQL TYPE IS BINARY(10) bin_var; char bin_var[10]

SQL TYPE IS VARBINARY(10) vbin var; struct {

short length;
char data[10];
} vbin_var;

Chapter 5. Coding SQL statements in C application programs 283

Recommendation: Be careful when you use binary host variables with C and C++.
The SQL TYPE declaration for BINARY and VARBINARY does not account for the
NUL-terminator that C expects, because binary strings are not NUL-terminated
strings. Also, the binary host variable might contain zeroes at any point in the
string.

Result set locators

The following diagram shows the syntax for declaring result set locators.

>> SQL TYPE IS—RESULT_SET_LOCATOR—VARYING >
auto i:const
extern—- volatile—
static—
register—
»—~Y _variable-name ; ><
|:*pointer-name—l |—= z'nit-value—|
Table locators
The following diagram shows the syntax for declaring table locators.
> SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR >
auto i:const
extern—-y volatile—
static—
register—

»—E' variable-name ;
vkpoint‘er‘-name—I |—=in i t‘-value—|

A\
A

LOB variables, locators, and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables, locators, and file reference variables.

284 Application Programming and SQL Guide

v
v

>'—|:variable—name_| >
*pointer-name L (1)
=init-value
Notes:
1 Specify the initial value as a series of expressions. For example, specify ={expression,

auto i:const
extern—- volatile—
static——

register—

BINARY LARGE 0BJ ECT—I—— (—length

BLOB

v

SQL TYPE IS

v

CHARACTER LARGE OBJECT——
—ECHAR LARGE OBJECT

CLOB

—DBCLOB

[
= =~

[<p]

—BLOB_LOCATOR
- CLOB_LOCATOR—
- DBCLOB_LOCATOR—
- BLOB_FILE
CLOB_FILE

—DBCLOB_FILE——

expression}. For BLOB_FILE, CLOB_FILE, and DBCLOB_FILE, specify ={name_length,
data_length, file option map, file name}.

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables and file reference variables for XML data types.

Chapter 5. Coding SQL statements in C application programs

285

\/

A
A

auto
extern—-
static—

register—

-

SQL TYPE IS XML AS BLOB
const XML AS CLOB

volatile— XML AS DBCLOB
XML AS BLOB FILE—
XML AS CLOB_FILE—
XML AS DBCLOB_FILE-

Notes:

(1)

»'—[variable-name
*pointer-name

—| |—=init-value—| ,

\4
A

1 Specify the initial value as a series of expressions. For example, specify ={expression,
expression}. For BLOB_FILE, CLOB_FILE, and DBCLOB_FILE, specify ={name_length,
data_length, file option map, file name}.

ROWID host variables

The following diagram shows the syntax for declaring ROWID host variables.

v
A

A
A

auto
extern—-
static—

register—

-

variable-name:l—SQL TYPE IS—ROWID—;
const I—*pointer-name

volatile—

Constants

The syntax for constants in C and C++ programs differs from the syntax for
constants in SQL statements in the following ways:

e C/C++ uses various forms for numeric literals (possible suffixes are: 1, LL, u, U,
tELL,df,DF, dd, DD, dl, DL,d, D). For example, in C/C++:

4850976 is a decimal literal

0x4bD is a hexadecimal integer literal

03245 is an octal integer literal

3.2E+4 is a double floating-point literal

3.2E+4f is a float floating-point literal

3.2E+4l is a long double floating-point literal
0x4bDP+4 is a double hexadecimal floating-point literal
22.2df is a _Decimal32 decimal floating-point literal

0.00D is a fixed-point decimal literal (z/OS only when
LANGLVL(EXTENDED) is specified)

* Use C/C++ literal form only outside of SQL statements. Within SQL statements,
use numeric constants.

286 Application Programming and SQL Guide

* In C, character constants and string constants can use escape sequences. You
cannot use the escape sequences in SQL statements.

¢ Apostrophes and quotation marks have different meanings in C and SQL. In C,
you can use double quotation marks to delimit string constants, and apostrophes
to delimit character constants.

Example of the use of quotation marks in C:

printf("%d lines read. \n", num_lines);

Example of the use of apostrophes in C:
#define NUL '\O'

In SQL, you can use double quotation marks to delimit identifiers and
apostrophes to delimit string constants.

Example of the use of quotation marks in SQL:
SELECT "COL#1" FROM TBL1;

Example of the use of apostrophes in SQL:
SELECT COL1 FROM TBL1 WHERE COL2 = 'BELL';

* Character data in SQL is distinct from integer data. Character data in C is a
subtype of integer data.

Related concepts:

[“Host variables” on page 174]

[‘Rules for host variables in an SQL statement” on page 183

[“Large objects (LOBs)” on page 465|

Related tasks:

“Determining whether a retrieved value in a host variable is null or truncated” on|

page 18§|

[“Inserting a single row by using a host variable” on page 189

“Inserting null values into columns by using indicator variables or arrays” on page|
190

[‘Retrieving a single row of data into host variables” on page 184]

[‘Retrieving a single row of data into a host structure” on page 193

[‘Updating data by using host variables” on page 189|

Related reference:

[‘Descriptions of SQL processing options” on page 932|

Host variable arrays in C

In C and C++ programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variable arrays. You can also specify LOB locators and
LOB and XML file reference variables.

Restrictions:

* Only some of the valid C declarations are valid host variable array declarations.
If the declaration for a variable array is not valid, any SQL statement that
references the variable array might result in the message UNDECLARED HOST
VARIABLE ARRAY.

¢ For both C and C++, you cannot specify the _packed attribute on the structure
declarations for the following arrays that are used in multiple-row INSERT,
FETCH, and MERGE statements:

Chapter 5. Coding SQL statements in C application programs 287

— varying-length character arrays
- varying-length graphic arrays
— LOB arrays

In addition, the #pragma pack(1) directive cannot be in effect if you plan to use
these arrays in multiple-row statements.

Numeric host variable arrays

The following diagram shows the syntax for declaring numeric host variable
arrays.

[
>

float

auto i:
extern
static

const
volatile— |—1'nt—|

v

|—uns1‘gned—| —double

long
—[short
int

—long long |_ —l

—decimal—(—precision |_ _|)—
,—scale

— Decimal32

—_Decimal64

— Decimal128

(1)
»—Y variable-name—[—dimension] J ; ><
L=—{—Y expression——]}

Notes:
1 dimension must be an integer constant between 1 and 32767.

Example: The following example shows a declaration of a numeric host variable
array:
EXEC SQL BEGIN DECLARE SECTION;

/* declaration of numeric host variable array =*/
Tong serial_num[10];

EXEC.é(-)L END DECLARE SECTION;

Character host variable arrays

You can specify the following forms of character host variable arrays:
* NUL-terminated character form

¢ VARCHAR structured form

* CLOBs

The following diagrams show the syntax for forms other than CLOBs.

288 Application Programming and SQL Guide

The following diagram shows the syntax for declaring NUL-terminated character
host variable arrays.

> char >
auto |:const I—unsigned—|
extern volatile—

static

s

(1) (2) (3)

1—[—length—] ;
—=—{—l_expression——}J

»—Y variable-name—[—dimension

>«

Notes:
1 dimension must be an integer constant between 1 and 32767.

2 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

3 The strings in a NUL-terminated character host variable array map to varying-length character
strings (except for the NUL).

The following diagram shows the syntax for declaring varying-length character
host variable arrays that use the VARCHAR structured form.

Chapter 5. Coding SQL statements in C application programs 289

y
Y

(1) int (2)
{ —short |_ —l var-1 : >

struct H >
auto i:const
extern volatile—

static

(3)

[
>

[—length—]— ; — }

v

char—var-2
|—unsigned—|

(4)

»—Y variable-name—[—dimension] H >4

-

Y _expression——}

L

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variable
arrays in SQL.

2 var-1 must be a scalar numeric variable.

3 wvar-2 must be a scalar CHAR array variable.

4 dimension must be an integer constant between 1 and 32767.

Example: The following example shows valid and invalid declarations of
VARCHAR host variable arrays.

EXEC SQL BEGIN DECLARE SECTION;
/* valid declaration of VARCHAR host variable array */
struct VARCHAR {
short Ten;
char s[18];
} name[10];

/% invalid declaration of VARCHAR host variable array */
struct VARCHAR name[10];

Binary host variable arrays

The following diagram shows the syntax for declaring binary host variable arrays.

290 Application Programming and SQL Guide

> SQL TYPE IS—[BINARY (Length) >
auto i:const VARBINARY
extern—- volatile—
static——
register—
(1)
»—Y variable-name—[—dimension] ; ><
Notes:
1 dimension must be an integer constant between 1 and 32767.

Graphic host variable arrays

You can specify the following forms of graphic host variable arrays:
* NUL-terminated graphic form
¢ VARGRAPHIC structured form.

Recommendation: Instead of using the C data type wchar_t to define graphic and
vargraphic host variable arrays, use one of the following techniques:

* Define the sqldbchar data type by using the following typedef statement:
typedef unsigned short sqldbchar;

* Use the sqldbchar data type that is defined in the typedef statement in the
header files that are supplied by DB2.

* Use the C data type unsigned short.

The following diagram shows the syntax for declaring NUL-terminated graphic
host variable arrays.

Chapter 5. Coding SQL statements in C application programs 291

»p-

sqldbchar:
auto I:const I—uns1'gned—|
extern volatile—

static

I M (2) (3 @

»—Yvariable-name—[—dimension]—[—TLlength] ; ><

—=—{—yexpress ion]—}J

Notes:
1 dimension must be an integer constant between 1 and 32767.
2 length must be a decimal integer constant greater than 1 and not greater than 16352.

3 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

4 Do not assign single-byte characters into a NUL-terminated graphic host variable array

The following diagram shows the syntax for declaring graphic host variable arrays
that use the VARGRAPHIC structured form.

v

v

(1) int (2)
{ —short |_ —l var-1

»> struct H
auto i:const
extern volatile—
static

(3) (4)
> |_ _| sqldbchar—var-2 [—length 1— 3 — } >
unsigned
(5)
»—Y variable-name—[—dimension] J ; >
L= {—Yexpression——}

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variable
arrays in SQL.

var-1 must be a scalar numeric variable.
var-2 must be a scalar char array variable.

length must be a decimal integer constant greater than 1 and not greater than 16352.

O &~ W BN

dimension must be an integer constant between 1 and 32767.

292 Application Programming and SQL Guide

Example: The following example shows valid and invalid declarations of graphic
host variable arrays that use the VARGRAPHIC structured form.
EXEC SQL BEGIN DECLARE SECTION;
/* valid declaration of host variable array vgraph =/
struct VARGRAPH {
short Ten;
sqldbchar d[10];
} vgraph[20];

/* invalid declaration of host variable array vgraph */
struct VARGRAPH vgraph[20];

LOB, locator, and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable arrays, locators, and file reference variables.

v
v

auto

extern—- ii

static—
register—

> BINARY LARGE
BLOB

SQL TYPE IS >
const
volatile—

0BJ ECT—I——(—length) >

CHARACTER LA
—ECHAR LARGE 0
CLOB

§+

RGE OBJECT——
BJECT

[ep}

—DBCLOB

——BLOB_LOCATOR

-CLOB_LOCATOR—
L_DBCLOB_LOCATOR—

_—BLOB_FILE
CLOB_FI LEﬂ
L_DBCLOB_FILE

»—Y variable-name—I[

Notes:

1 dimension must be an integer constant between 1 and 32767.

(1)

—dimension 1 J ; ><
—}

L=—{—Y expression—

XML host and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable arrays and file reference variable arrays for XML data types.

Chapter 5. Coding SQL statements in C application programs 293

v
v

auto
extern—-
static—

register—

-

BINARY LARGE OBJECT

const

volatile—

BLOB

CLOB

CHAR LARGE OBJECT

—(—Llength
T e

—ECHARACTER LARGE OBJECT—

—DBCLOB

SQL TYPE IS XML AS

\/

v

=
|

<

[<p]

—BLOB_FILE

CLOB_FI LEﬂ
L_DBCLOB_FILE

Notes:

»—Y variable-name—[—dimension

(1)

{

[

Y _expression—

1 dimension must be an integer constant between 1 and 32767.

\4
A

ROWID variable arrays

The following diagram shows the syntax for declaring ROWID variable arrays.

SQL TYPE IS—ROWID—

auto
extern—-y
static—

register—

Notes:

-

const

volatile—

variable-name—[—dimension

1 dimension must be an integer constant between 1 and 32767.

(1)

1-

Related concepts:

“Host variable arrays in an SQL statement” on page 191

“Host variable arrays” on page 175

“Large objects (LOBs)” on page 465)|

Related tasks:

[“Inserting multiple rows of data from host variable arrays” on page 192|

294 Application Programming and SQL Guide

[‘Retrieving multiple rows of data into host variable arrays” on page 192

Host structures in C

A C host structure contains an ordered group of data fields.
Host structures

The following diagram shows the syntax for declaring host structures.

>

v

struct {
I—packed—| l—tag—l

auto i:const
extern volatile—
static

»—variable-name

float var-1—; } >
—double

int
—short |_ —l

sqlint32
int
tong—— 1

int
—long long |_ —l

—decimal—(—precision |_ _|
,—scale—)

— Decimal32
— Decimal64
—_Decimall28
—varchar structure
—binary structure
—vargraphic structure
—SQL TYPE IS ROWID
—LOB data type

char—var-2 5
|:unsigned:| |—[—Zength—]—|

‘—sqldbchar—var-5

|—[—length—]—|

A\
A

|—=exp ress ion—|

VARCHAR structures

The following diagram shows the syntax for VARCHAR structures that are used
within declarations of host structures.

Chapter 5. Coding SQL statements in C application programs 295

int
short |_ —l var-3—;

v

»»—struct {
l—tag—l |—s1' gned—|

»
»

v
A

|_ _| char—var-4—[—Ilength—]—;—}
unsigned

VARGRAPHIC structures

The following diagram shows the syntax for VARGRAPHIC structures that are
used within declarations of host structures.

int
»>—struct { short [] var-6—;—sqldbchar—var-7—[—length—] —;—}——><
I—t‘ag—| I—s1'gned—|

Binary structures

The following diagram shows the syntax for binary structures that are used within
declarations of host structures.

VARBINARY
BINARY VARYING—

»»—SQL TYPE IS |:BINARY (Length) »<

LOB data types

The following diagram shows the syntax for LOB data types that are used within
declarations of host structures.

»»—SQL TYPE IS BINARY LARGE OBJECT—I——(—length) ><
BLOB
—ECHARACTER LARGE OBJECT—— M

CHAR LARGE OBJECT

CLOB
LDBCLOB
—BLOB_LOCATOR
CLOB_LOCATOR
L DBCLOB_LOCATOR—

296 Application Programming and SQL Guide

LOB data types for XML data

The following diagram shows the syntax for LOB data types that are used within
declarations of host structures for XML data.

»—SQL TYPE IS XML AS BINARY LARGE OBJECT—I——(—length) ><

|—BLOB
—ECHARACTER LARGE OBJECT——

~
|

<

CHAR LARGE OBJECT
CLOB
—DBCLOB

BLOB_FILE
CLOB_FI LEﬂ
L_DBCLOB_FILE

[p]

Example

In the following example, the host structure is named target, and it contains the
fields c1, c2, and ¢3. c1 and ¢3 are character arrays, and c2 is a host variable that is
equivalent to the SQL VARCHAR data type. The target host structure can be part
of another host structure but must be the deepest level of the nested structure.
struct {char c1[3];
struct {short len;
char data[5];
}e2;
char c3[2];
}target;

Related concepts:

[“Host structures” on page 179

Indicator variables, indicator arrays, and host structure
indicator arrays in C

An indicator variable is a 2-byte integer (short int). An indicator variable array is
an array of 2-byte integers (short int). You declare indicator variables in the same
way as host variables. You can mix the declarations of the two types of variables.

The following diagram shows the syntax for declaring an indicator variable in C
and C++.

int ’(
short |_ —l Y _variable-name ;——><

T

auto i:
extern
static

const
volatile—

I—s1'gned—|

|—=—express ion—|

The following diagram shows the syntax for declaring an indicator array or a host
structure indicator array in C and C++.

Chapter 5. Coding SQL statements in C application programs 297

int
short |_ —l >

auto i:const |—s1'gned—|
extern volatile—
static
(1)
»—Y variable-name—[—dimension] B] H >
=—expression
Notes:

1 dimension must be an integer constant between 1 and 32767.

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.

EXEC SQL FETCH CLS_CURSOR INTO :ClsCd,
:Day :Daylnd,
:Bgn :Bgnlnd,
:End :EndInd;

You can declare these variables as follows:

EXEC SQL BEGIN DECLARE SECTION;
char Cl1sCd[8];

char Bgn[9];

char End[9];

short Day, DayInd, BgniInd, EndInd;
EXEC SQL END DECLARE SECTION;

Related concepts:

[“Indicator variables, arrays, and structures” on page 176
Related tasks:

“Inserting null values into columns by using indicator variables or arrays” on page|
190

Referencing pointer host variables in C programs

If you use the DB2 coprocessor, you can reference any declared pointer host
variables in your SQL statements.

To reference pointer host variables in C and C++ programs:
Specify the pointer host variable exactly as it was declared. The only exception is
when you reference pointers to nul-terminated character arrays. In this case, you

do not have to include the parentheses that were part of the declaration.

Examples of scalar pointer host variable references:

298 Application Programming and SQL Guide

Table 58. Example references to scalar pointer host variables

Declaration Description Reference

short *hvshortp; hvshortp is a pointer host EXEC SQL set:*hvshortp=123;
variable that points to two

bytes of storage.

double *hvdoubp; hvdoubp is a pointer host EXEC SQL set:*hvdoubp=456;
variable that points to eight

bytes of storage.

char (*hvcharpn) [20]; hvcharpn is a pginter host EXEC SQL set:
variable that points to a *hvcharpn="nul_terminated';
nul-terminated character

array of up to 20 bytes.

Example of a bounded character pointer host variable reference: Suppose that
your program declares the following bounded character pointer host variable:

struct {
unsigned long len;
char * data;
} hvbcharp;

The following example references this bounded character pointer host variable:

hvcharp.len = dynlen; EY
hvcharp.data = (char *) malloc (hvcharp.len); [
EXEC SQL set :hvcharp = 'data buffer with length';

Note:

a dynlen can be either a compile time constant or a variable with a value
that is assigned at run time.

b Storage is dynamically allocated for hvcharp.data.

C The SQL statement references the name of the structure, not an element

within the structure.

Examples of array pointer host variable references:

Table 59. Example references to array pointer host variables

Declaration

Description Reference

short * hvarrpl[6]

hvarrp1 is an array of 6 pointers that pxrc SQL set:xhvarrpl[n]=123;
point to two bytes of storage each.

double * hvarrp2[3]

hvarrp2 is an array of 3 pointers that pxpc sqL set:*hvarrp2[n]=456;
point to 8 bytes of storage each.

struct {
unsigned long len;
char * data; }
hvbarrp3[5];

hvbarrp3 is an array of 5 bounded EXEC SQL set :hvarrp3[n] =
character pointers. 'data buffer with length'

Example of a structure array host variable reference: Suppose that your program
declares the following pointer to the structure tbl_struct:

struct tbl_struct *ptr_tbl_struct =
(struct tbl_struct *) malloc (sizeof (struct tbl_struct) * n);

To reference this data is SQL statements, use the pointer as shown in the following
example. Assume that tbl_sel_cur is a declared cursor.

Chapter 5. Coding SQL statements in C application programs 299

for (L_col cnt = 0; L_col_cnt < n; L_con_cnt++)
{ ...
EXEC SQL FETCH tb1_sel cur INTO :ptr_tbh1 struct [L _col cnt]

.
Related tasks:
[“Declaring pointer host variables in C programs”|

Declaring pointer host variables in C programs

If you use the DB2 coprocessor, you can use pointer host variables with statically
or dynamically allocated storage. These pointer host variables can point to numeric
data, non-numeric data, or a structure.

You can declare the following types of pointer host variables:

scalar pointer host variable
A host variable that points to numeric or non-numeric scalar data.

array pointer host variable
A host variable that is an array of pointers.

structure array host variable
A host variable that points to a structure.

To declare pointer host variables in C and C++ programs:

Include an asterisk (*) in each variable declaration to indicate that the variable is a
pointer.

Restrictions:

* You cannot use pointer host variables that point to character data of an
unknown length. For example, do not specify the following declaration: char *
hvcharpu. Instead, specify the length of the data by using a bounded character
pointer host variable. A bounded character pointer host variable is a host variable
that is declared as a structure with the following elements:

— A 4-byte field that contains the length of the storage area.
— A pointer to the non-numeric dynamic storage area.

* You cannot use untyped pointers. For example, do not specify the following
declaration: void * untypedprt .

Examples of scalar pointer host variable declarations:

Table 60. Example declarations of scalar pointer host variables

Declaration Description

short *hvshortp; hvshortp is a pointer host variable that
points to two bytes of storage.

double *hvdoubp; hvdoubp is a pointer host variable that
points to eight bytes of storage.

char (+hvcharpn) [20]; hvcharpn is a pointer host variable that
points to a nul-terminated character array of
up to 20 bytes.

Example of a bounded character pointer host variable declaration: The following
example code declares a bounded character pointer host variable called hvbcharp
with two elements: len and data.

300 Application Programming and SQL Guide

struct {
unsigned long len;
char * data;
} hvbcharp;

Examples of array pointer host variable declarations:

Table 61. Example declarations of array pointer host variables

Declaration Description

short * hvarrpl [6] hvarrpl is an array of 6 pointers that point to
two bytes of storage each.

double * hvarrp2[3] hvarrp2 is an array of 3 pointers that point to
8 bytes of storage each.

struct { hvbarrp3 is an array of 5 bounded character

unsigned long len; pointers.
char * data; }
hvbarrp3[5];

Example of a structure array host variable declaration: The following example
code declares a table structure called tbl_struct.

struct tbl_struct

{
char colname[20];
small int colno;
small int coltype;
small int collen;

}s

The following example code declares a pointer to the structure tbl_struct. Storage is
allocated dynamically for up to n rows.

struct tbl_struct *ptr_tbl _struct =
(struct tb1_struct *) malloc (sizeof (struct tbl_struct) = n);

Related tasks:
[“Referencing pointer host variables in C programs” on page 298|

Equivalent SQL and C data types

When you declare host variables in your C programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, you need to ensure that the host variable is of an equivalent
data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Table 62. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs

SQLTYPE of host SQLLEN of host

C host variable data type variable' variable SQL data type
short int 500 2 SMALLINT
long int 496 4 INTEGER
long long 492 8 BIGINT®
long long int
sqlint64

Chapter 5. Coding SQL statements in C application programs 301

Table 62. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs (continued)

SQLTYPE of host SQLLEN of host

C host variable data type variable' variable SQL data type
decimal(p,s)* 484 p in byte 1, s in DECIMAL(p,s)*
byte 2
« _Decimal32 996/997 4 DECFLOAT(16)"8
« _Decimal64 996/997 8 DECFLOAT(16)®
« _Decimall28 996/997 16 DECFLOAT(34)®
float 480 4 FLOAT (single
precision)
double 480 8 FLOAT (double
precision)
. 912 n BINARY (1)
SQL TYPE IS
BINARY(n),
1<=n<=255
. 908 n VARBINARY (n)
SQL TYPE IS
VARBINARY(n),
1<=n<=32704
Single-character form 452 1 CHAR(1)
NUL-terminated 460 n VARCHAR (n-1)
character form
VARCHAR structured 448 n VARCHAR(n)
form 1<=n<=255
VARCHAR structured 456 n VARCHAR(n)
form
n>255
Single-graphic form 468 1 GRAPHIC(1)
NUL-terminated 400 n VARGRAPHIC (n-1)
graphic form
VARGRAPHIC 464 n VARGRAPHIC(n)
structured form
1<=n<128
VARGRAPHIC 472 n VARGRAPHIC(n)
structured form
n>127
. 972 4 Result set locator®
SQL TYPE IS
RESULT_SET
_LOCATOR
SQL TYPE IS 976 4 Table locator®
TABLE LIKE
table-name
AS LOCATOR

302 Application Programming and SQL Guide

Table 62. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs (continued)

C host variable data type

SQLTYPE of host
variable'

SQLLEN of host
variable

SQL data type

SQL TYPE IS 960 4 BLOB locator®
BLOB_LOCATOR
SQL TYPE IS 964 4 CLOB locator®
CLOB_LOCATOR
SQL TYPE IS 968 4 DBCLOB locator®
DBCLOB_LOCATOR
SQL TYPE IS 404 n BLOB(1)
BLOB(1)
1=n=2147483647
SQL TYPE IS 408 n CLOB(1)
CLOB(1)
1=n=2147483647
SQL TYPE IS 412 n DBCLOB(1)*
DBCLOB(1)
1=n=<1073741823
SQL TYPE IS XML AS 404 0 XML
BLOB(1)
SQL TYPE IS XML AS 408 0 XML
CLOB(n)
SQL TYPE IS XML AS 412 0 XML
DBCLOB(1)
SQL TYPE IS BLOB_FILE 916/917 267 BLOB file reference °
SQL TYPE IS CLOB_FILE 920/921 267 CLOB file reference ?
SQL TYPE IS 924/925 267 DBCLOB file reference
DBCLOB_FILE 3
SQL TYPE IS XML AS 916/917 267 XML BLOB file
BLOB_FILE reference °
SQL TYPE IS XML AS 920/921 267 XML CLOB file
CLOB_FILE reference °
SQL TYPE IS XML AS 924/925 267 XML DBCLOB file
DBCLOB_FILE reference *
SQL TYPE IS ROWID 904 40 ROWID

Chapter 5. Coding SQL statements in C application programs 303

Table 63. C host variable

Table 62. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs (continued)

SQLTYPE of host SQLLEN of host
C host variable data type variable' variable SQL data type

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base
SQLTYPE value plus 1.

2. pis the precision; in SQL terminology, this the total number of digits. In C, this is called
the size.

s is the scale; in SQL terminology, this is the number of digits to the right of the decimal
point. In C, this is called the precision.

C++ does not support the decimal data type.

Do not use this data type as a column type.

n is the number of double-byte characters.

No exact equivalent. Use DECIMAL(19,0).

The C data type long maps to the SQL data type BIGINT.

DFP host variable with a length of 4 is supported while DFP column can be defined only
with length 8(DECFLOAT(16)) or 16(DECFLOAT(34)).

8. To use the decimal floating-point host data type, you must do the following:
e Use z/0S 1.10 or above (z/OS VIR10 XL C/C++).
* Compile with the C/C++ compiler option, DFP.

No o ko

* Specify the SQL compiler option to enable the DB2 coprocessor.
* Specify C/C++ compiler option, ARCH(7). It is required by the DFP compiler option if
the DFP type is used in the source.

* Specify 'DEFINE(__STDC_WANT_DEC_FP__)' compiler option because DFP is not
officially part of the C/C++ Language Standard.

The following table shows equivalent C host variables for each SQL data type. Use
this table to determine the C data type for host variables that you define to receive
output from the database. For example, if you retrieve TIMESTAMP data, you can
define a variable of NUL-terminated character form or VARCHAR structured form

This table shows direct conversions between SQL data types and C data types.
However, a number of SQL data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 converts those
compatible data types.

equivalents that you can use when retrieving data of a particular SQL data type

SQL data type C host variable equivalent Notes

SMALLINT short int

INTEGER long int

DECIMAL(p,s) or decimal You can use the double data type if your

NUMERIC(p,s) C compiler does not have a decimal data
type; however, double is not an exact
equivalent.

REAL or FLOAT(n) float 1<=n<=21

DOUBLE PRECISION or double 22<=n<=53

FLOAT(n)

DECFLOAT(16)

_Decminal32

DECFLOAT(34)

_Decimal128

304 Application Programming and SQL Guide

Table 63. C host variable equivalents that you can use when retrieving data of a particular SQL data type (continued)

SQL data type C host variable equivalent Notes
BIGINT long long, long long int, and sqlint64
BINARY (1) SQL TYPE IS BINARY(n) 1<=n<=255
If data can contain character NULs (\0),
certain C and C++ library functions might
not handle the data correctly. Ensure that
your application handles the data
properly.
VARBINARY (1) SQL TYPE IS VARBINARY (1) 1<=n<=32 704
CHAR(1) single-character form
CHAR(n) no exact equivalent If n>1, use NUL-terminated character form
VARCHAR(n) NUL-terminated character form If data can contain character NULs (\0),
use VARCHAR structured form. Allow at
least n+1 to accommodate the
NUL-terminator.
VARCHAR structured form
GRAPHIC(1) single-graphic form
GRAPHIC(n) no exact equivalent If n>1, use NUL-terminated graphic form.
n is the number of double-byte characters.
VARGRAPHIC(n) NUL-terminated graphic form If data can contain graphic NUL values
(\O\0), use VARGRAPHIC structured
form. Allow at least n+1 to accommodate
the NUL-terminator. n is the number of
double-byte characters.
VARGRAPHIC structured form n is the number of double-byte characters.
DATE NUL-terminated character form If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 11 characters to
accommodate the NUL-terminator.
VARCHAR structured form If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 10 characters.
TIME NUL-terminated character form If you are using a time exit routine, the

length is determined by that routine.
Otherwise, the length must be at least 7;
to include seconds, the length must be at
least 9 to accommodate the
NUL-terminator.

VARCHAR structured form

If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 6;
to include seconds, the length must be at
least 8.

Chapter 5. Coding SQL statements in C application programs 305

Table 63. C host variable equivalents that you can use when retrieving data of a particular SQL data type (continued)

SQL data type C host variable equivalent

Notes

TIMESTAMP NUL-terminated character form

The length must be at least 20. To include
microseconds, the length must be 27. If the
length is less than 27, truncation occurs on
the microseconds part.

VARCHAR structured form

The length must be at least 19. To include
microseconds, the length must be 26. If the
length is less than 26, truncation occurs on
the microseconds part.

TIMESTAMP(0) NUL-terminated character form The length must be at least 20.
VARCHAR structured form The length must be at least 19.
TIMESTAMP(p) p > 0 NUL-terminated character form The length must be at least 20. To include

fractional seconds, the length must be
21+x where x is the number of fractional
seconds to include; if x is less than p,
truncation occurs on the fraction seconds
part.

VARCHAR structured form

The length must be at least 19. To include
fractional seconds, the length must be
20+x where x is the number of fractional
seconds to include; if x is less than p,
truncation occurs on the fractional seconds
part.

TIMESTAMP(0) WITH TIME NUL-terminated character form

The length must be at least 26.

ZONE VARCHAR structured form

The length must be at least 25.

TIMESTAMP(p) WITH TIME NUL-terminated character form

The length must be at least 27+p.

ZONE VARCHAR structured form The length must be at least 26+p.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS TABLE LIKE table-name AS Use this data type only in a user-defined

LOCATOR function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator SQL TYPE IS DBCLOB_LOCATOR Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) SQL TYPE IS BLOB(n) 1=n=2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1=n=2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1=n=1073741823

XML SQL TYPE IS XML AS BLOB(n) 1=n=2147483647

XML SQL TYPE IS XML AS CLOB(n) 1=n=2147483647

306 Application Programming and SQL Guide

Table 63. C host variable

equivalents that you can use when retrieving data of a particular SQL data type (continued)

SQL data type C host variable equivalent Notes

XML SQL TYPE IS XML AS DBCLOB(n) n is the number of double-byte characters.
1=n=1073741823

BLOB file reference SQL TYPE IS BLOB_FILE Use this data type only to manipulate data

in BLOB columns. Do not use this data
type as a column type.

CLOB file reference

SQL TYPE IS CLOB_FILE Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB file reference

SQL TYPE IS DBCLOB_FILE Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

XML BLOB file reference

SQL TYPE IS XML AS BLOB_FILE Use this data type only to manipulate
XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file reference

SQL TYPE IS XML AS CLOB_FILE Use this data type only to manipulate
XML data as CLOB files. Do not use this
data type as a column type.

XML DBCLOB file reference SQL TYPE IS XML AS DBCLOB_FILE Use this data type only to manipulate

XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID

SQL TYPE IS ROWID

Related concepts:

“Compatibility of SQL and language data types” on page 180

“LOB host variable, LOB locator, and LOB file reference variable declarations” on|

page 757
“Host variable data types for XML data in embedded SQL applications” on page|

241

SQL statements in C programs

You can code SQL statements in a C program wherever you can use executable
statements.

Each SQL statement in a C program must begin with EXEC SQL and end with a
semicolon (;). The EXEC and SQL keywords must appear on one line, but the
remainder of the statement can appear on subsequent lines.

In general, because C is case sensitive, use uppercase letters to enter all SQL
keywords. However, if you use the FOLD precompiler suboption, DB2 folds
lowercase letters in SBCS SQL ordinary identifiers to uppercase. For information
about host language precompiler options, see [Table 150 on page 933]

You must keep the case of host variable names consistent throughout the program.
For example, if a host variable name is lowercase in its declaration, it must be
lowercase in all SQL statements. You might code an UPDATE statement in a C
program as follows:
EXEC SQL

UPDATE DSN8A10.DEPT

SET MGRNO = :mgr_num

WHERE DEPTNO = :int_dept;

Chapter 5. Coding SQL statements in C application programs 307

Comments: You can include C comments (/* ... */) within SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can use single-line comments (starting with //) in C language statements, but not
in embedded SQL. You can use SQL comments within embedded SQL statements.
You can nest comments.

To include EBCDIC DBCS characters in comments, you must delimit the characters
by a shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string.

Continuation for SQL statements: You can use a backslash to continue a
character-string constant or delimited identifier on the following line. However,
EBCDIC DBCS string constants cannot be continued on a second line.

Declaring tables and views: Your C program should use the DECLARE TABLE
statement to describe each table and view the program accesses. You can use the
DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. For more information, see ['DCLGEN (declarations generator)” on page
161,

Including SQL statements and variable declarations in source code that is to be
processed by the DB2 precompiler: To include SQL statements or C host variable
declarations from a member of a partitioned data set, add the following SQL
statement to the source code where you want to include the statements:

EXEC SQL INCLUDE member-name;

You cannot nest SQL INCLUDE statements. Do not use C #include statements to
include SQL statements or C host variable declarations.

Margins: Code SQL statements in columns 1 through 72, unless you specify other
margins to the DB2 precompiler. If EXEC SQL is not within the specified margins,
the DB2 precompiler does not recognize the SQL statement. The margin rules do
not apply to the DB2 coprocessor. The DB2 coprocessor allows variable length
source input.

Names:You can use any valid C name for a host variable, subject to the following
restrictions:

* Do not use DBCS characters.

* Do not use external entry names or access plan names that begin with 'DSN’,
and do not use host variable names or macro names that begin with 'SQL' (in
any combination of uppercase or lowercase letters). These names are reserved
for DB2.

Nulls and NULs: C and SQL differ in the way they use the word null. The C
language has a null character (NUL), a null pointer (NULL), and a null statement
(just a semicolon). The C NUL is a single character that compares equal to 0. The C
NULL is a special reserved pointer value that does not point to any valid data
object. The SQL null value is a special value that is distinct from all non-null
values and denotes the absence of a (nonnull) value. NUL (or NUL-terminator) is
the null character in C and C++, and NULL is the SQL null value.

Sequence numbers: The DB2 precompiler generates statements without sequence

numbers. (The DB2 coprocessor does not perform this action, because the source is
read and modified by the compiler.)

308 Application Programming and SQL Guide

Statement labels: You can precede SQL statements with a label.

Trigraph characters: Some characters from the C character set are not available on
all keyboards. You can enter these characters into a C source program using a
sequence of three characters called a trigraph. The trigraph characters that DB2
supports are the same as those that the C compiler supports.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be within the scope of any SQL statements that the statement
WHENEVER affects.

Special C/C++ considerations:

« Using the C/370" multi-tasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results.

* Except for the DB2 coprocessor, you must run the DB2 precompiler before
running the C preprocessor.

* Except for the DB2 coprocessor, DB2 precompiler does not support C
preprocessor directives.

* If you use conditional compiler directives that contain C code, either place them
after the first C token in your application program, or include them in the C
program using the #include preprocessor directive.

Refer to the appropriate C documentation for more information about C
preprocessor directives.

To use the decimal floating-point host data type, you must do the following:
* Use z/0S 1.10 or above (z/OS VIR10 XL C/C++).

¢ Compile with the C/C++ compiler option, DFP.

* Specify the SQL compiler option to enable the DB2 coprocessor.

* Specify C/C++ compiler option, ARCH(7). It is required by the DFP compiler
option if the DFP type is used in the source.

* Specify 'DEFINE(__STDC_WANT_DEC_FP__)' compiler option.
Handling SQL error return codes in C or C++

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
[‘Displaying SQLCA fields by calling DSNTIAR” on page 229 |

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET

DIAGNOSTICS, see |“Checking the execution of SQL statements by using the GE
IAGNOSTICS statement” on page 234.

DSNTIAR syntax:

rc = DSNTIAR(&sqlca, &message, &Slrecl);

The DSNTIAR parameters have the following meanings:

Chapter 5. Coding SQL statements in C application programs 309

&sqlca
An SQL communication area.

&message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in &lrecl, are put
into this area. For example, you could specify the format of the output area as:
#define data_len 132
#define data_dim 10
int length_of_line = data_len ;
struct error_struct {

short int error_len;

char error_text[data_dim] [data_Ten];

} error_message = {data_dim * data_len};

rc = DSNTIAR(&sqlca, &error_message, &length of line);

where error_message is the name of the message output area, data_dim is the
number of lines in the message output area, and data_len is the length of each
line.

&lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

To inform your compiler that DSNTIAR is an assembler language program, include
one of the following statements in your application.

For C, include:
#pragma linkage (DSNTIAR,OS)

For C++, include a statement similar to this:

extern "0S" short int DSNTIAR(struct sqlca =*sqlca,
struct error_struct xerror_message,
int *data_len);

Examples of calling DSNTIAR from an application appear in the DB2 sample C
program DSN8BD3 and in the sample C++ program DSNSBE3. Both are in the
library DSN8A10.SDSNSAMP. See ['DB2 sample applications” on page 1092 for
instructions on how to access and print the source code for the sample programs.

CICS: If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:

rc = DSNTIAC(&eib, &commarea, &sqlca, &message, &lrecl);

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.
&eib EXEC interface block

&commarea
communication area

310 Application Programming and SQL Guide

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the
same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which assembles and
link-edits DSNTIAC, are in the data set prefix. SDSNSAMP.

Related concepts:

[“Host variable arrays in an SQL statement” on page 191
Related tasks:
[“Including dynamic SQL in your program” on page 193]

[“Embedding SQL statements in your application” on page 183

[“Handling SQL error codes” on page 239|

[[Setting limits for system resource usage by using the resource limit facility|
[(DB2 Performance)|

Delimiters in SQL statements in C programs

You must delimit SQL statements in your C program so that DB2 knows when a
particular SQL statement ends.

Delimit an SQL statement in your C program with the beginning keyword EXEC
SQL and a Semicolon (;).

Programming examples in C

You can write DB2 programs in C and C++. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, start with the JCL in member DSNTE]2D of
data set prefix. SODSNSAMP as a model for your JCL. prefix is the high-order
qualifier for the data set that contains the sample jobs after they are customized by
the installation process.

Related concepts:

[[Job DSNTEJ2D (DB2 Installation and Migration)|

Related reference:

[“Programming examples” on page 251|

Sample dynamic and static SQL in a C program
Programs that access DB2 can contain static SQL, dynamic SQL, or both.

This example shows a C program that contains both static and dynamic SQL.
The following figure illustrates dynamic SQL and static SQL embedded in a C
program. Each section of the program is identified with a comment. Section 1 of

the program shows static SQL; sections 2, 3, and 4 show dynamic SQL. The
function of each section is explained in detail in the prologue to the program.

Chapter 5. Coding SQL statements in C application programs 311

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.inst/src/tpc/db2z_dsntej2d.dita

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Descriptive name = Dynamic SQL sample using C language

Function = To show examples of the use of dynamic and static

Notes = This example assumes that the EMP and DEPT tables are
defined. They need not be the same as the DB2 Sample

SQL

tables

Module type

Processor
Module size
Attributes

Input

Qutput

Exit-normal =

= C program

= DB2 precompiler, C compiler
= see link edit

= not reentrant or reusable

symbolic label/name = DEPT
description = arbitrary table
symbolic label/name = EMP
description = arbitrary table

symbolic label/name = SYSPRINT

description = print results via printf

return code 0 normal completion

Exit-error =
Return code = SQLCA
Abend codes = none
External references = none

Control-blo
SQLCA

cks =
- sql communication area

Logic specification:

There are four SQL sections.

1)
2)

3)

4)

STATIC SQL
Two output h

Dynamic SQL 2: Fixed-1ist SELECT, using same SELECT statement
used in SQL 1 to show the difference. The prepared string
riptstr can be assigned with other dynamic-able SQL statements.
Dynamic SQL 3: Insert with parameter markers.

Using four parameter markers which represent four input host

variables wi
Dynamic SQL

A GRANT statement is executed immediately by passing it to DB2
via a varying string host variable. The example shows how to

set up the h

1: using static cursor with a SELECT statement.

ost variables.

thin a host structure.
4. EXECUTE IMMEDIATE

ost variable before passing it.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

#include "stdio.h"
#include "stdefs.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;
EXEC SQL BEGIN DECLARE SECTION;
short edlevel;
struct { short len;

char «x1

312 Application Programming and SQL Guide

?7(5677);

} stmthfl, stmtbf2, inpstr;
struct { short len;
char x1?7(1577?);
} Tname;
short hvl;
struct { char deptno??(4?7?);
struct { short len;
char x?7?(3677);
} deptname;
char mgrno??(7??);
char admrdept??(427?);
char Tlocation??(17?7?);
} hv2;
short ind??(477?);
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE EMP TABLE
(EMPNO CHAR(6)

FIRSTNAME VARCHAR(12) s
MIDINIT CHAR(1) .
LASTNAME VARCHAR(15) s
WORKDEPT CHAR(3) .
PHONENO CHAR(4) ,
HIREDATE DECIMAL(6) .
JOBCODE DECIMAL(3) ,
EDLEVEL SMALLINT s
SEX CHAR(1) ,
BIRTHDATE DECIMAL(6) s
SALARY DECIMAL(8,2) .
FORFNAME VARGRAPHIC(12) .
FORMNAME GRAPHIC(1) .
FORLNAME VARGRAPHIC(15) ,
FORADDR VARGRAPHIC(256)) H
EXEC SQL DECLARE DEPT TABLE

(

DEPTNO CHAR(3) ,
DEPTNAME VARCHAR(36) ,
MGRNO CHAR(6) s
ADMRDEPT CHAR(3) .
LOCATION CHAR(16));

main ()
printf("??/nx*= begin of program xxk') 3

EXEC SQL WHENEVER SQLERROR GO TO HANDLERR;

EXEC SQL WHENEVER SQLWARNING GO TO HANDWARN;

EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND;
/**/
/* Assign values to host variables which will be input to DB2 */
/**/
strcpy (hv2.deptno, "M92") ;

strcpy (hv2.deptname.x,"DDL");

hv2.deptname.len = strlen(hv2.deptname.x);

strcpy (hv2.mgrno, "000010") ;

strcpy (hv2.admrdept,"A0O") ;

/**/

/* Static SQL 1: DECLARE CURSOR, OPEN, FETCH, CLOSE */
/* Select into :edlevel, :Tname */
/**/
printf("?7/nxx= begin declare wkx!)

EXEC SQL DECLARE C1 CURSOR FOR SELECT EDLEVEL, LASTNAME FROM EMP
WHERE EMPNO = '000010';

printf("??/nx*= begin open xkx")

EXEC SQL OPEN CI1;

printf("??/nxx* begin fetch x5
EXEC SQL FETCH C1 INTO :edlevel, :1name;
printf("??/n*x* returned values xxx')

printf("?2/n??/nedlevel = %d",edlevel);

Chapter 5. Coding SQL statements in C application programs 313

printf("??/nTname = %s\n",Iname.x1);

printf("??/nx*x* begin close wwxl) s
EXEC SQL CLOSE C1;
/**/
/* Dynamic SQL 2: PREPARE, DECLARE CURSOR, OPEN, FETCH, CLOSE x/
/* Select into :edlevel, :1name */
/**/
sprintf (inpstr.x1,

"SELECT EDLEVEL, LASTNAME FROM EMP WHERE EMPNO = '000010'");
inpstr.len = strlen(inpstr.x1);

printf("??/nxxx begin prepare *xx")
EXEC SQL PREPARE STAT1 FROM :inpstr;
printf("?2/nx*x begin declare xRk
EXEC SQL DECLARE C2 CURSOR FOR STATI1;
printf("??/nx*=* begin open wax") 5

EXEC SQL OPEN C2;

printf("?2?2/nxx* begin fetch *kk)
EXEC SQL FETCH C2 INTO :edlevel, :1name;
printf("??/n*** returned values xxx")

printf("??/n??/nedlevel = %d",edlevel);
printf("??/nIname = %s??/n",Tname.x1);

printf("??/n*x*x begin close xxk) g
EXEC SQL CLOSE C2;

/**/

/* Dynamic SQL 3: PREPARE with parameter markers */
/* Insert into with five values. */
YR IET I ok kxx I IR h KRk kI *hh kKK * % R R 2 2 R R R R T TR T /

sprintf (stmtbfl.x1,
"INSERT INTO DEPT VALUES (?,?7,?,7,7)");
stmtbfl.len = strlen(stmtbfl.x1);

printf("?2?2/n**x begin prepare *k)
EXEC SQL PREPARE sl FROM :stmtbfl;
printf("??/nxxx begin execute *xk") 3
EXEC SQL EXECUTE sl USING :hv2:ind;
printf("??/n¥xx following are expected insert results wk)

printf("??/n hv2.deptno = %s",hv2.deptno);
printf("??/n hv2.deptname.len = %d",hv2.deptname.len);
printf("??/n hv2.deptname.x = %s",hv2.deptname.x);
printf("??/n hv2.mgrno = %s",hv2.mgrno);
printf("??/n hv2.admrdept = %s",hv2.admrdept);
printf("??/n hv2.location = %s",hv2.location);
EXEC SQL COMMIT;
/**/
/* Dynamic SQL 4: EXECUTE IMMEDIATE */
/* Grant select x/
/**/
sprintf (stmtbf2.x1,

"GRANT SELECT ON EMP TO USERX");
stmtbf2.1en = strlen(stmtbf2.x1);

printf("?2?2/n**x begin execute immediate xxx")
EXEC SQL EXECUTE IMMEDIATE :stmtbf2;
printf("??/nx*x* end of program *xx")

goto progend;

HANDWARN: HANDLERR: NOTFOUND: ;
printf("??/n SQLCODE = %d",SQLCODE);
printf("??/n SQLWARNO = %c",SQLWARNO) ;
printf("??/n SQLWARN1 = %c",SQLWARN1);
printf("??/n SQLWARN2 = %c",SQLWARN2);
printf("??/n SQLWARN3 = %c",SQLWARN3);
printf("??/n SQLWARN4 = %c",SQLWARN4);
printf("??/n SQLWARN5 = %c",SQLWARN5) ;
printf("??/n SQLWARN6 = %c",SQLWARNSG) ;

314 Application Programming and SQL Guide

}

printf("??/n SQLWARN7
printf("??/n SQLERRMC
progend: ;

%c",SQLWARN7) ;
%s",sqlca.sqlerrmc);

Example C program that calls a stored procedure
You can call the C language version of the GETPRML stored procedure that uses
the GENERAL WITH NULLS linkage convention.

Because the stored procedure returns result sets, this program checks for result sets

and retrieves the contents of the result sets. The following figure contains the

example C program that calls the GETPRML stored procedure.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main()

{
/****************************** """"""""" *************/
/* Include the SQLCA and SQLDA */

/**/

EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;

/**/

/* Declare variables that are not SQL-related. */
/**/
short int i; /* Loop counter */
/**/
/* Declare the following: */
/* - Parameters used to call stored procedure GETPRML */
/* - An SQLDA for DESCRIBE PROCEDURE */
/* - An SQLDA for DESCRIBE CURSOR */
/* - Result set variable locators for up to three result */
/* sets */

/**/

EXEC SQL BEGIN DECLARE SECTION;

char procnm[19]; /* INPUT parm -- PROCEDURE name */
char schema[9]; /* INPUT parm -- User's schema =x/
long int out_code; /* OUTPUT -- SQLCODE from the =/

/* SELECT operation. */
struct {

short int parmlen;
char parmtxt[254];
} parmlst; /* OUTPUT -- RUNOPTS values */
/* for the matching row in */
/* catalog table SYSROUTINES =/
struct indicators {
short int procnm_ind;
short int schema_ind;
short int out_code_ind;
short int parmlst_ind;
} parmind;
/* Indicator variable structure =/

struct sqlda *proc_da;

*

/
/

/* SQLDA for DESCRIBE PROCEDURE
struct sqlda *res_da;
/* SQLDA for DESCRIBE CURSOR

*

static volatile
SQL TYPE IS RESULT_SET_LOCATOR *Tocl, *loc2, *loc3;
/* Locator variables %/
EXEC SQL END DECLARE SECTION;

/***/

/* Allocate the SQLDAs to be used for DESCRIBE */
/* PROCEDURE and DESCRIBE CURSOR. Assume that at most */

Chapter 5. Coding SQL statements in C application programs

315

/* three cursors are returned and that each result set */
/* has no more than five columns. */
/***/
proc_da = (struct sqlda *)malloc(SQLDASIZE(3));
res_da = (struct sqlda *)malloc(SQLDASIZE(5));

/**/

/* Call the GETPRML stored procedure to retrieve the */
/* RUNOPTS values for the stored procedure. In this */
/* example, we request the PARMLIST definition for the */
/* stored procedure named DSNSEP2. */
/* */
/* The call should complete with SQLCODE +466 because */
/* GETPRML returns result sets. */
/**/
strcpy (procnm, "dsn8ep2 ")s

/* Input parameter -- PROCEDURE to be found */
strcpy(schema," ")s

/* Input parameter -- Schema name for proc */
parmind.procnm_ind=0;
parmind.schema_ind=0;
parmind.out_code_ind=0;
/* Indicate that none of the input parameters =*/
/* have null values */
parmind.parmlst_ind=-1;
/* The parmlst parameter is an output parm. x/
/* Mark PARMLST parameter as null, so the DB2 */
/* requester does not have to send the entire =/

/% PARMLST variable to the server. This */
/* helps reduce network I/0 time, because */
/* PARMLST is fairly large. */

EXEC SQL
CALL GETPRML(:procnm INDICATOR :parmind.procnm_ind,
:schema INDICATOR :parmind.schema_ind,
:out_code INDICATOR :parmind.out_code_ind,
:parmlst INDICATOR :parmind.parmlst_ind);
if(SQLCODE!=+466) /+ 1f SQL CALL failed, */
{
/* print the SQLCODE and any =/
/* message tokens */
printf("SQL CALL failed due to SQLCODE =
printf("sqlca.sqlerrmc = ");
for(i=0;i<sqlca.sqlerrml;i++)
printf("i]);
printf("\n");
}
else /* If the CALL worked, */
if(out_code!=0) /* Did GETPRML hit an error? */
printf("GETPRML failed due to RC =

/**/

/* If everything worked, do the following: */
/* - Print out the parameters returned. */
/* - Retrieve the result sets returned. */

/**/
else

{
printf("RUNOPTS =
/* Print out the runopts Tist */

/**/

/* Use the statement DESCRIBE PROCEDURE to */
/* return information about the result sets in the */
/* SQLDA pointed to by proc_da: */
/* - SQLD contains the number of result sets that were =/
/* returned by the stored procedure. */
/* - Each SQLVAR entry has the following information */
/* about a result set: */

316 Application Programming and SQL Guide

Example C stored procedure with a GENERAL linkage

}

/* - SQLNAME contains the name of the cursor that */

/* the stored procedure uses to return the result */
/* set. */
/* - SQLIND contains an estimate of the number of */
/* rows in the result set. */
/* - SQLDATA contains the result locator value for %/
/* the result set. */

/**/

EXEC SQL DESCRIBE PROCEDURE INTO :#*proc_da;

/**/
/* Assume that you have examined SQLD and determined */

/* that there is one result set. Use the statement */
/* ASSOCIATE LOCATORS to establish a result set locator =/
/* for the result set. */

/**/

EXEC SQL ASSOCIATE LOCATORS (:1ocl) WITH PROCEDURE GETPRML;

/**/

/* Use the statement ALLOCATE CURSOR to associate a */
/* cursor for the result set. */
/**/
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :locl;

/**/
/* Use the statement DESCRIBE CURSOR to determine the */
/* columns in the result set. */
/**/

EXEC SQL DESCRIBE CURSOR C1 INTO :+res_da;

[Fk gk ok kk ok dk ok ok k ok ok dkk ok ok k ko k ko kok ok kk ok ok k ok Kkkkkkkkkkkhk [
/* Call a routine (not shown here) to do the following: =/
/* - Allocate a buffer for data and indicator values */
/* fetched from the result table. */
/* - Update the SQLDATA and SQLIND fields in each */
/* SQLVAR of xres_da with the addresses at which to */
/* to put the fetched data and values of indicator */
/* variables. */
/**/
alloc_outbuff(res_da);

/**/
/* Fetch the data from the result table. */
/**/
while(SQLCODE==0)
EXEC SQL FETCH C1 USING DESCRIPTOR :+*res_da;
}

return;

convention
You can call a stored procedure that uses the GENERAL linkage convention from a
C program.

This example stored procedure does the following:

The linkage convention used for this stored procedure is GENERAL.

Chapter 5. Coding SQL statements in C application programs

Searches the DB2 catalog table SYSROUTINES for a row that matches the input
parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.
Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

317

The output parameters from this stored procedure contain the SQLCODE from the
SELECT statement and the value of the RUNOPTS column from SYSROUTINES.

The CREATE PROCEDURE statement for this stored procedure might look like
this:

CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,
OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"

COLLID GETPRML

ASUTIME NO LIMIT

PARAMETER STYLE GENERAL

STAY RESIDENT NO

RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG

PROGRAM TYPE MAIN

SECURITY DB2

RESULT SETS 2

COMMIT ON RETURN NO;

The following example is a C stored procedure with linkage convention GENERAL

#pragma runopts(plist(os))
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

/***/
/* Declare C variables for SQL operations on the parameters. =/
/* These are local variables to the C program, which you must =/
/* copy to and from the parameter Tist provided to the stored =/
/* procedure. */
/***/
EXEC SQL BEGIN DECLARE SECTION;

char PROCNM[19];

char SCHEMA[9];

char PARMLST[255];

EXEC SQL END DECLARE SECTION;

/***/
/* Declare cursors for returning result sets to the caller. */
/***/
EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR=:SCHEMA;

main(argc,argv)
int argc;
char =*argv[];

/**/
/* Copy the input parameters into the area reserved in =/
/* the program for SQL processing. */
/**/
strcpy (PROCNM, argv[1]);
strcpy (SCHEMA, argv[2]);

/**/

/* Issue the SQL SELECT against the SYSROUTINES */

/* DB2 catalog table. */

/**/
strcpy (PARMLST, ""); /* Clear PARMLST */
EXEC SQL

318 Application Programming and SQL Guide

SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.ROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;

/**/

/* Copy SQLCODE to the output parameter list. */

/**/

*x(int *) argv[3] = SQLCODE;

/**/

/* Copy the PARMLST value returned by the SELECT back to*/
/* the parameter 1ist provided to this stored procedure.x*/
/**/

strcpy(argv[4], PARMLST);

/**/
/* Open cursor Cl to cause DB2 to return a result set =/
/* to the caller. */

[Hkrdk gk gk gk ko k ko k ko k ko kkhk Rk kA hh Ak ko h ko k ko k ko k ko k kK k kK [
EXEC SQL OPEN C1;

Example C stored procedure with a GENERAL WITH NULLS
linkage convention

You can call a stored procedure that uses the GENERAL WITH NULLS linkage
convention from a C program.

This example stored procedure does the following:

* Searches the DB2 catalog table SYSROUTINES for a row that matches the input
parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

* Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:

CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,
OUTCODE INTEGER OUT, PARMLST VARCHAR(254) 0UT)
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"

COLLID GETPRML

ASUTIME NO LIMIT

PARAMETER STYLE GENERAL WITH NULLS

STAY RESIDENT NO

RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG

PROGRAM TYPE MAIN

SECURITY DB2

RESULT SETS 2

COMMIT ON RETURN NO;

Chapter 5. Coding SQL statements in C application programs 319

The following example is a C stored procedure with linkage convention GENERAL
WITH NULLS.

#pragma runopts(plist(os))
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

/***/

/* Declare C variables used for SQL operations on the */
/* parameters. These are local variables to the C program, */
/* which you must copy to and from the parameter list provided =/
/* to the stored procedure. */

/***/
EXEC SQL BEGIN DECLARE SECTION;
char PROCNM[19];
char SCHEMA[9];
char PARMLST[255];
struct INDICATORS {
short int PROCNM_IND;
short int SCHEMA_IND;
short int OUT_CODE_IND;
short int PARMLST_IND;
} PARM_IND;
EXEC SQL END DECLARE SECTION;

/***/
/% Declare cursors for returning result sets to the caller. */
[K gk ke kok A T T Kkkkkkkkkkkkh Rk kkkkhkkkhkx [
EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR=:SCHEMA;

main(argc,argv)
int argc;
char =*argv[];

{

/**/

/* Copy the input parameters into the area reserved in =/
/* the local program for SQL processing. */

strcpy (PROCNM, argv[1]);
strcpy (SCHEMA, argv[2]);

/**/
/* Copy null indicator values for the parameter list. =*/
/**/

memcpy (&PARM_IND, (struct INDICATORS =) argv[5],

sizeof (PARM_IND));

/**/
/* If any input parameter is NULL, return an error */
/* return code and assign a NULL value to PARMLST. */
/**/

if (PARM_IND.PROCNM_IND<0
PARM_IND.SCHEMA_IND<0 {

*=(int *) argv[3] = 9999; /* set output return code =*/
PARM_IND.OUT_CODE_IND = 0; /* value is not NULL */
PARM_IND.PARMLST_IND = -1; /* PARMLST is NULL */
}

else {

/**/
/* If the input parameters are not NULL, issue the SQL =/
/* SELECT against the SYSIBM.SYSROUTINES catalog */
/% table. */

320 Application Programming and SQL Guide

/**/
strcpy (PARMLST, ""); /* Clear PARMLST */
EXEC SQL

SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;

/**/

/* Copy SQLCODE to the output parameter list. */

/**/
x(int *) argv[3] = SQLCODE;

PARM_IND.OUT_CODE_IND = 0; /* OUT_CODE is not NULL */

/**/
/* Copy the RUNOPTS value back to the output parameter =/
/* area. */
/**/

strcpy(argv[4], PARMLST);

/**/
/* Copy the null indicators back to the output parameterx/
/* area. */
/**/
memcpy ((struct INDICATORS *) argv[5],&PARM_IND,
sizeof (PARM_IND));

/**/
/* Open cursor Cl to cause DB2 to return a result set =*/
/* to the caller. */
/**/
EXEC SQL OPEN C1;
}

Chapter 5. Coding SQL statements in C application programs

321

322 Application Programming and SQL Guide

Chapter 6. Coding SQL statements in COBOL application
programs

When you code SQL statements in COBOL application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
COBOL

COBOL programs that contain SQL statements can include an SQL
communications area (SQLCA) to check whether an SQL statement executed
successfully. Alternatively, these programs can declare individual SQLCODE and
SQLSTATE host variables.

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

For COBOL programs, when you specify STDSQL(YES), you must declare an
SQLCODE variable. DB2 declares an SQLCA area for you in the
WORKING-STORAGE SECTION. DB2 controls the structure and location of the
SQLCA.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

You can specify INCLUDE SQLCA or a
declaration for SQLCODE wherever you
can specify a 77 level or a record
description entry in the
WORKING-STORAGE SECTION.

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

© Copyright IBM Corp. 1983, 2014 323

Option Description

To fieclare SQLCODE and SQLSTATE host | | Declare the SQLCODE variable within a
variables: BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as PIC S9(9) BINARY, PIC S9(9) COMP-4,
PIC $9(9) COMP-5, or PICTURE S9(9)
COMP.

When you use the DB2 precompiler, you
can declare a stand-alone SQLCODE
variable in either the
WORKING-STORAGE SECTION or
LINKAGE SECTION. When you use the
DB2 coprocessor, you can declare a
stand-alone SQLCODE variable in the
WORKING-STORAGE SECTION,
LINKAGE SECTION or
LOCAL-STORAGE SECTION.

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as PICTURE X(5).

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

Related tasks:

[‘Checking the execution of SQL statements” on page 227

[‘Checking the execution of SQL statements by using the SQLCA” on page 228
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”]

on page 232|

“Defining the items that your program can use to check whether an SQL statement]
executed successfully” on page 173]

Defining SQL descriptor areas in COBOL

If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

To define SQL descriptor areas:

Perform one of the following actions:

* Code the SQLDA declarations directly in your program. When you use the DB2
precompiler, you must place SQLDA declarations in the WORKING-STORAGE
SECTION or LINKAGE SECTION of your program, wherever you can specify a
record description entry in that section. When you use the DB2 coprocessor, you
must place SQLDA declarations in the WORKING-STORAGE SECTION,

324 Application Programming and SQL Guide

LINKAGE SECTION or LOCAL-STORAGE SECTION of your program,
wherever you can specify a record description entry in that section.

* Call a subroutine that is written in C, PL/L, or assembler language and that uses
the INCLUDE SQLDA statement to define the SQLDA. The subroutine can also
include SQL statements for any dynamic SQL functions that you need.

Restrictions:

* You must place SQLDA declarations before the first SQL statement that
references the data descriptor, unless you use the TWOPASS SQL processing
option.

* You cannot use the SQL INCLUDE statement for the SQLDA, because it is not
supported in COBOL.

Related tasks:

[“Defining SQL descriptor areas” on page 173

Declaring host variables and indicator variables in COBOL

You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

To declare host variables, host variable arrays, and host structures:

1. Declare the variables according to the following rules and guidelines:

You must explicitly declare all host variables and host variable arrays that
are used in SQL statements in the WORKING-STORAGE SECTION or
LINKAGE SECTION of your program's DATA DIVISION.

You must explicitly declare each host variable and host variable array before
using them in an SQL statement.

You can specify OCCURS when defining an indicator structure, a host
variable array, or an indicator variable array. You cannot specify OCCURS for
any other type of host variable.

You cannot implicitly declare any host variables through default typing or by
using the IMPLICIT statement.

If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:

[“Declaring host variables and indicator variables” on page 174|

Chapter 6. Coding SQL statements in COBOL application programs 325

Host variables in COBOL

In COBOL programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variables. You can also specify result set and table locators
and LOB and XML file reference variables.

Restrictions:

* Only some of the valid COBOL declarations are valid host variable declarations.
If the declaration for a variable is not valid, any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

* You can not use locators as column types.
The following locator data types are COBOL data types and SQL data types:
— Result set locator

Table locator

— LOB locators

— LOB file reference variables

* One or more REDEFINES entries can follow any level 77 data description entry.
However, you cannot use the names in these entries in SQL statements. Entries
with the name FILLER are ignored.

Recommendations:

* Be careful of overflow. For example, suppose that you retrieve an INTEGER
column value into a PICTURE S9(4) host variable and the column value is larger
than 32767 or smaller than -32768. You get an overflow warning or an error,
depending on whether you specify an indicator variable.

* Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a PICTURE X(70) host variable, the rightmost 10 characters of
the retrieved string are truncated. Retrieving a double precision floating-point or
decimal column value into a PIC S9(8) COMP host variable removes any
fractional part of the value. Similarly, retrieving a column value with DECIMAL
data type into a COBOL decimal variable with a lower precision might truncate
the value.

* If your varying-length string host variables receive values whose length is
greater than 9999 bytes, compile the applications in which you use those host
variables with the option TRUNC(BIN). TRUNC(BIN) lets the length field for the
string receive a value of up to 32767 bytes.

Numeric host variables

You can specify the following forms of numeric host variables:
¢ Floating-point numbers

* Integers and small integers

¢ Decimal numbers

The following diagram shows the syntax for declaring floating-point or real host
variables.

326 Application Programming and SQL Guide

0l ———

]]———
(1)

level-1

—variable-name

COMPUTATIONAL-1

IS
|\USAGE—|_——|—

COMP-1

COMPUTATIONAL-2
COMP-2

(2)

(3)

»
>

Notes:

Is J
LVALUE numeric-constant

1 level-1 indicates a COBOL level between 2 and 48.

2 COMPUTATIONAL-1 and COMP-1 are equivalent.
3 COMPUTATIONAL-2 and COMP-2 are equivalent.

A\
A

The following diagram shows the syntax for declaring integer and small integer

host variables.

0l———

77—
(1)

level-1

(2)
»——BINARY

7

S9(4)

—varioble—name—[PICTURE
PIC4

$9999
S9(9)
5999999999
$9(18)——

(4)

L 15
USAGE

—COMPUTATIONAL-4
—COMP-4

—COMPUTATIONAL-5
—COMP-5
—COMPUTATIONAL
—COMP

(3)

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3 COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary integer data

Is J
LVALUE numeric-constant

types if you compile the other data types with TRUNC(BIN).

4 Any specificat

ion for scale is ignored.

The following diagram shows the syntax for declaring decimal host variables.

Chapter 6. Coding SQL statements in COBOL application programs

327

IS
(1) USAGE—I_——I—

IS (2)
01— —variable-name PICTURE picture-string >
EN— PIC L

level-1

(3)

>— PACKED-DECIMAL
—ECOMPUTATIONAL-3—

v

COMP-3
IS CHARACTER:
—|:DISPLAY_| SIGN |_ —l LEADING SEPARATE |_ —l
NATIONAL
Is J
—VALUE numeric-constant

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string that is associated with SIGN LEADING SEPARATE must have the form
S9(i))V9(d) (or S9...9V9...9, with i and d instances of 9 or 59...9V with i instances of 9).

3 PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The picture-string that is
that is associated with these types must have the form S9(:)V9(d) (or S9..9V9...9, with i and d
instances of 9) or S9(i)V.

In COBOL, you declare the SMALLINT and INTEGER data types as a number of
decimal digits. DB2 uses the full size of the integers (in a way that is similar to
processing with the TRUNC(BIN) compiler option) and can place larger values in
the host variable than would be allowed in the specified number of digits in the
COBOL declaration. If you compile with TRUNC(OPT) or TRUNC(STD), ensure
that the size of numbers in your application is within the declared number of
digits.

For small integers that can exceed 9999, use S9(4) COMP-5 or compile with
TRUNC(BIN). For large integers that can exceed 999 999 999, use S9(10) COMP-3
to obtain the decimal data type. If you use COBOL for integers that exceed the
COBOL PICTURE, specify the column as decimal to ensure that the data types
match and perform well.

If you are using a COBOL compiler that does not support decimal numbers of
more than 18 digits, use one of the following data types to hold values of greater
than 18 digits:

* A decimal variable with a precision less than or equal to 18, if the actual data
values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might be truncated.

* An integer or a floating-point variable, which converts the value. If you use an
integer variable, you lose the fractional part of the number. If the decimal
number might exceed the maximum value for an integer or if you want to
preserve a fractional value, use a floating-point variable. Floating-point numbers

328 Application Programming and SQL Guide

are approximations of real numbers. Therefore, when you assign a decimal
number to a floating-point variable, the result might be different from the
original number.

* A character-string host variable. Use the CHAR function to retrieve a decimal
value into it.

Restriction: The SQL data type DECFLOAT has no equivalent in COBOL.
Character host variables

You can specify the following forms of character host variables:

* Fixed-length strings

* Varying-length strings

* CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring fixed-length character host
variables.

v

IS (2)
»»——0l———variable-name PICTURE picture-string
Iy) — PIC

(1)

level-1

| DISPLAY—| L
IS
Luspge— [||

Is J
VALUE—I_——I—character-constant

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string that is associated with these forms must be X(mm) (or XX...X, with m instances of
X), where m is up to COBOL's limitation. However, the maximum length of the CHAR data type
(fixed-length character string) in DB2 is 255 bytes.

The following diagrams show the syntax for declaring varying-length character
host variables.

v
A

Q01— —variable-name— .
(1)
level-1

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

Chapter 6. Coding SQL statements in COBOL application programs 329

(1) (2) |—IS—| (3)

»>—49 var-1 PICTURE S9(4) "
l—PIC |—s9999—I L IS

usagE— L 1 |

BINARY . >«
COMPUTATIONAL-4— L IS J
COMP-4—— VALUE numeric-constant
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP:

Notes:
1 You cannot use an intervening REDEFINE at level 49.
2 You cannot directly reference var-1 as a host variable.

3 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

(1) (2) |—IS—| (3)
»»—49 var-2 PICTURE picture-string | >

PIC DISPLAY—|
L 15
USAGE

> >«

Is J
LVALU E—I_——I—character-cons tant

Notes:
1 You cannot use an intervening REDEFINE at level 49.
2 You cannot directly reference var-2 as a host variable.

3 For fixed-length strings, the picture-string must be X(m) (or XX, with m instances of X), where mis
up to COBOL's limitation. However, the maximum length of the VARCHAR data type in DB2
varies depending on the data page size.

Graphic character host variables

You can specify the following forms of graphic host variables:

* Fixed-length strings

* Varying-length strings

* DBCLOBs

The following diagrams show the syntax for forms other than DBCLOBs.

330 Application Programming and SQL Guide

The following diagram shows the syntax for declaring fixed-length graphic host

variables.

> 0l———
77—
(1)
level-1

»
>

IS (2)
—variable-name PICTURE picture-string
PIC

IS
LJSAGE_I___I_

Notes:

DISPLAY-1
o] Ly T J
NATIONAL VALUE graphic-constant

1 level-1 indicates a COBOL level between 2 and 48.

2 For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of GG...G or NN...N),

A\
A

where m is up to COBOL's limitation. However, the maximum length of the GRAPHIC data type
(fixed-length graphic string) in DB2 is 127 double-bytes.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE

NATIONAL, you must use N in place of G. USAGE NATIONAL is supported only by the DB2

coprocessor.

The following diagrams show the syntax for declaring varying-length graphic host

variables.

0l————
(1)
level-1

Notes:

—variable-name— .

1 level-1 indicates a COBOL level between 2 and 48.

A\
A

Chapter 6. Coding SQL statements in COBOL application programs

331

(1) |—15—| (2)
»»—A49—yqr-]1 PICTURE S9(4) BINARY >
|:PIC |—599994 \\ IS COMPUTATIONAL-4—
USAG E—I_——I— COMP-4—M—
COMPUTATIONAL-5—
COMP-5

COMPUTATIONAL—
COMP

». >

IS J
LVALUE numeric-constant

Notes:
1 You cannot directly reference var-1 as a host variable.

2 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

(3)

(1) IS (2)
»»>—49—var-2 PICTURE picture-string
PIC L

».

LDISPLAY-l——»

IS
USAGE—r——I—

NATIONAL

A\
A

Is J
LVALUE graphic-constant

Notes:
1 You cannot directly reference var-2 as a host variable.

2 For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of GG...G or NN...N),
where m is up to COBOL's limitation. However, the maximum length of the VARGRAPHIC data
type in DB2 varies depending on the data page size.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G. USAGE NATIONAL is supported only by the DB2
COProCessor.

Binary host variables

You can specify the following forms of binary host variables:
* Fixed-length strings

* Varying-length strings

* BLOBs

332 Application Programming and SQL Guide

The following diagram shows the syntax for declaring BINARY and VARBINARY

host variables.

IS
|—USAGE4|7—\I—‘ (1)
»»—01—variable-name SQL TYPE IS BINARY————(—length)— . —>«

Notes:

1 For BINARY host variables, the length must be in the range from 1 to 255. For VARBINARY host

EVARBINARY
BINARY VARYING—

variables, the length must be in the range from 1 to 32 704.

COBOL does not have variables that correspond to the SQL binary types BINARY
and VARBINARY. To create host variables that can be used with these data types,
use the SQL TYPE IS clause. The SQL precompiler replaces this declaration with a
COBOL language structure in the output source member.

When you reference a BINARY or VARBINARY host variable in an SQL statement,

you must use the variable that you specify in the SQL TYPE declaration. When
you reference the host variable in a host language statement, you must use the

variable that DB2 generates.

Examples of binary variable declarations: The following table shows examples of
variables that DB2 generates when you declare binary host variables.

Table 64. Examples of BINARY and VARBINARY variable declarations for COBOL

Variable declaration that you include in your COBOL Corresponding variable that DB2 generates in the

program

output source member

01 BIN-VAR USAGE IS SQL TYPE IS BINARY(10).

01 BIN-VAR PIC X(10).

01 VBIN-VAR USAGE IS SQL TYPE IS VARBINARY(10). 01 VBIN-VAR.

49 VBIN-VAR-LEN PIC S9(4) USAGE BINARY.
49 VBIN-VAR-TEXT PIC X(10).

Result set locators

The following diagram shows the syntax for declaring result set locators.

»»—01—variable-name

IS
LUSAGE—I_——I—

SQL TYPE IS—RESULT-SET-LOCATOR—VARYING—.

Table Locators

The following diagram shows the syntax for declaring table locators.

Chapter 6. Coding SQL statements in COBOL application programs

333

\/

»—|:01——variable-name
(1) L IS
level-1 USAGE—I_——I—

»-SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR—.

Y
A

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

LOB variables and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
variables and file reference variables.

01—_|—variable—nome SQL TYPE IS >
level-1 L IS
USAGE—I_——I—

> BINARY LARGE OBJECT—I——(—length) . ><
|—BLOB

—ECHARACTER LARGE OBJECT—— M

CHAR LARGE OBJECT
CLOB
—DBCLOB
——BLOB-LOCATOR
—CLOB-LOCATOR
—DBCLOB-LOCATOR—

BLOB-FILE
—CLOB-FI LEﬂ
—DBCLOB-FILE

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables and file reference variables for XML data types.

334 Application Programming and SQL Guide

»——01

Notes:

T

—variable-name SQL TYPE IS XML AS

v

(1) L IS
level-1 USAGE—I_——I—
BINARY LARGE OBJECT—I——(—length) > <
BLOB —K—

CHARACTER LARGE OBJECT——
CHAR LARGE OBJECT
CLOB

<

o

—DBCLOB
—BLOB-FILE

—CLOB-FI LEﬂ
—DBCLOB-FILE

1 level-1 indicates a COBOL level between 2 and 48.

ROWID host variables

The following diagram shows the syntax for declaring ROWID host variables.

N
level-1

Notes:

(1)

—Vvariable-name

SQL TYPE IS—ROWID—. ><

IS
LUSAGE_I___I_

1 level-1 indicates a COBOL level between 2 and 48.

Related concepts:

[“Host variables” on page 174]

[‘Large objects (LOBs)” on page 465

Related tasks:

[‘Embedding SQL statements in your application” on page 183

Related reference:

[[Cimits in DB2 for z/OS (DB2 SQL)|

Host variable arrays in COBOL

In COBOL programs, you can specify numeric, character, graphic, LOB, XML, and
ROWID host variable arrays. You can also specify LOB locators and LOB and XML
file reference variables.

Restriction: Only some of the valid COBOL declarations are valid host variable
array declarations. If the declaration for a variable array is not valid, any SQL

statement that references the variable array might result in the message
UNDECLARED HOST VARIABLE ARRAY.

Chapter 6. Coding SQL statements in COBOL application programs 335

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_limits.dita

Numeric host variable arrays

You can specify the following forms of numeric host variable arrays:
* Floating-point numbers

* Integers and small integers

* Decimal numbers

The following diagram shows the syntax for declaring floating-point host variable
arrays.

(1)
L COMPUTATIONAL-1
IS (2)
USAGE—I_——I— COMP-1———————

COMPUTATIONAL-2—
(3)

v

»»—Ilevel-1 variable-name

COMP-2

(4)

»—0CCURS—dimension . ><
|—TIMES—| L IS J
VALUE numeric-constant

Notes:

1 level-1 indicates a COBOL level between 2 and 48.
2 COMPUTATIONAL-1 and COMP-1 are equivalent.
3 COMPUTATIONAL-2 and COMP-2 are equivalent.
4

dimension must be an integer constant between 1 and 32767.

The following diagram shows the syntax for declaring integer and small integer
host variable arrays.

336 Application Programming and SQL Guide

PIC $9999
$9(9)
5999999999

(1) |—I S—l
»»—level-1 variable-name—EPICTURE S9(4) >
L Is
E USAGE

(2) (4)
»—BINARY———0CCURS—dimension |_ _|
—COMPUTATIONAL-4— TIMES L IS J
—COMP-4 VALUE numeric-constant
—COMPUTATIONAL-5—

(3)
—COMP-5
—COMPUTATIONAL—
—COMP

v

(5)

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3 COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary integer data
types if you compile the other data types with TRUNC(BIN).

4 dimension must be an integer constant between 1 and 32767.

5 Any specification for scale is ignored.

The following diagram shows the syntax for declaring decimal host variable
arrays.

Chapter 6. Coding SQL statements in COBOL application programs 337

(1) IS
»»—level-1 variable-name PICTURE picture-string >
PIC IS

L-USAGE
(2)
> PACKED-DECIMAL >
COMPUTATIONAL-3—
COMP-3
IS (3) CHARACTER
DISPLAY_| SIGN |_ —l LEADING SEPARATE |_ —l
NATIONAL
(4)
»—0CCURS—dimension |_ _| ><
TIMES L IS J
VALUE numeric-constant
Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The picture-string that is
associated with these types must have the form S9(i))V9(d) (or 59...9V9...9, with i and d instances
of 9) or S9(i)V.

3 The picture-string that is associated with SIGN LEADING SEPARATE must have the form
S9(i))V9(d) (or S9...9V9...9, with i and d instances of 9 or 59...9V with i instances of 9).

4 dimension must be an integer constant between 1 and 32767.

Character host variable arrays

You can specify the following forms of character host variable arrays:
* Fixed-length character strings

* Varying-length character strings

* CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring fixed-length character string
arrays.

338 Application Programming and SQL Guide

(1) IS (2)
»»—level-1 variable-name PICTURE picture-string >
PIC

(3)
> 0CCURS—dimension >

] | DISPL/—\Y—| I—TIMES—|
IS
LUSAGE_I___I_

y
v
A

Is J
LVALU E—l_——l—character-cons tant

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string must be in the form X(m) (or XX...X, with m instances of X), where 1 <= m <=
32767 for fixed-length strings. However, the maximum length of the CHAR data type
(fixed-length character string) in DB2 is 255 bytes.

3 dimension must be an integer constant between 1 and 32767.

The following diagrams show the syntax for declaring varying-length character
string arrays.

(1) (2)

»»—level-1 variable-name—OCCURS—dimension |_ _| . > <
TIMES

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

Chapter 6. Coding SQL statements in COBOL application programs 339

(1) |—15—| (2)
»»—A49—yqr-]1 PICTURE S9(4) BINARY >
|:PIC |—599994 \\ IS COMPUTATIONAL-4—
USAG E—I_——I— COMP-4—M—
COMPUTATIONAL-5—
COMP-5

COMPUTATIONAL—
COMP

»——SYNCHRONIZED
—[SYNCQ L IS
VALUE

numeric-constantJ

Notes:
1 You cannot directly reference var-1 as a host variable array.

2 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

v

(1) IS (2)
»»>—49—var-2 PICTURE picture-string | _|
PIC DISPLAY

{_ IS
USAGE
(3)

»- >«

Is J
LVALU E—I_——I—character-cons tant

Notes:
1 You cannot directly reference var-2 as a host variable array.

2 The picture-string must be in the form X(m) (or XX...X, with m instances of X), where 1 <= m <=
32767 for fixed-length strings; for other strings, m cannot be greater than the maximum size of a
varying-length character string.

3 You cannot use an intervening REDEFINE at level 49.

Example: The following example shows declarations of a fixed-length character
array and a varying-length character array.

01 OUTPUT-VARS.
05 NAME OCCURS 10 TIMES.
49 NAME-LEN PIC S9(4) COMP-4 SYNC.
49 NAME-DATA PIC X(40).
05 SERIAL-NUMBER PIC S9(9) COMP-4 OCCURS 10 TIMES.

340 Application Programming and SQL Guide

Graphic character host variable arrays

You can specify the following forms of graphic host variable arrays:
* Fixed-length strings

* Varying-length strings

* DBCLOBs

The following diagrams show the syntax for forms other than DBCLOBs.

The following diagram shows the syntax for declaring fixed-length graphic string
arrays.

(1) IS (2)
»»—level-1 variable-name PICTURE picture-string >
PIC

IS (5)
»—USAGE DISPLAY-1— — 0CCURS—dimension B 7 >
(3) (4) TIMES
NATIONAL——

> »<

Is J
LVALUE graphic-constant

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 For fixed-length strings, the format for picture-string is G(m) or N(m) (or, m instances of GG...G or
NN...N), where 1 <= m <= 127; for other strings, m cannot be greater than the maximum size of a
varying-length graphic string.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G.

4 You can use USAGE NATIONAL only if you are using the DB2 coprocessor.

5 dimension must be an integer constant between 1 and 32767.

The following diagrams show the syntax for declaring varying-length graphic
string arrays.

(1) (2)
»»>—level-1———variable-name—O0CCURS—dimension |_ _|
TIMES

v
A

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

Chapter 6. Coding SQL statements in COBOL application programs 341

1
2

>>—49—var‘-1—|:PICTURE |_ —l S9(4) BINARY >
PIC |—S9999Q L COMPUTATIONAL-4—

»——SYNCHRONIZED
—[SYNCQ L IS
VALUE

(1) IS (2)

IS
USAGE—I_——I— COMP-4——

COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP

numeric-constantJ

Notes:

You cannot directly reference var-1 as a host variable array.

DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

».

(1) IS (2) |—IS—|
»»>—49—var-2 PIC%—F—\I—picture-string USAGE DISPLAY-1
P1C L (3) (@)

v

NATIONAL

Is J
LVALUE graphic-constant

A\
A

Notes:

1 You cannot directly reference var-2 as a host variable array.

2 For fixed-length strings, the format for picture-string is G(m) or N(m) (or, m instances of GG...G or
NN...N), where 1 <= m <= 127; for other strings, m cannot be greater than the maximum size of a
varying-length graphic string.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G.

4 You can use USAGE NATIONAL only if you are using the DB2 coprocessor.

Binary host variable arrays

The following diagram shows the syntax for declaring binary host variable arrays.

342 Application Programming and SQL Guide

(1) (2)

»»—level-1 variable-name—SQL TYPE IS BINARY (—length) >
i:BINARY VARY ING—
VARBINARY
(3)
»—0CCURS—dimension . >«
|—TIMESJ

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 For BINARY host variables, the length must be in the range 1 to 255. For VARBINARY host
variables, the length must be in the range 1 to 32704.

3 dimension must be an integer constant between 1 and 32767.

LOB, locator, and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable, locator, and file reference arrays.

(1)
»»>—level-1 variable-name L SQL TYPE IS >
IS
(2)
> BINARY LARGE OBJECT—I——(—Zength) O0CCURS—dimension —p
|—BLOB —K— |—TIMESJ
CHARACTER LARGE OBJECT— M
—ECHAR LARGE OBJECT G
CLOB
-DBCLOB

BLOB-LOCATOR
—CLOB-LOCATOR—
—DBCLOB-LOCATOR—
BLOB-FILE

—CLOB-FI LEﬂ
—DBCLOB-FILE

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

XML host and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable and file reference arrays for XML data types.

Chapter 6. Coding SQL statements in COBOL application programs 343

(1)
»»—level-1 variable-name SQL TYPE IS XML AS >
IS
(2)
> BINARY LARGE OBJECT—I——(—Zength) 0CCURS—dimension —p
|—BLOB —K— |—TIMESJ
CHARACTER LARGE OBJECT— M
—ECHAR LARGE OBJECT G
CLOB
—DBCLOB
BLOB-FILE
—CLOB—FILEﬂ
—DBCLOB-FILE
Notes:
1 level-1 indicates a COBOL level between 2 and 48.
2 dimension must be an integer constant between 1 and 32767.

ROWID variable arrays

The following diagram shows the syntax for declaring ROWID variable arrays.

(1) (2)

»»—level-1 variable-name L SQL TYPE IS—ROWID—OCCURS—dimension—— >
IS
usage— 1|

Lrives—

Notes:
1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

Related concepts:

|”Host variable arrays in an SQL statement” on page 191|

“Host variable arrays” on page 175

“Large objects (LOBs)” on page 465|

Related tasks:

[“Inserting multiple rows of data from host variable arrays” on page 192|
[“Retrieving multiple rows of data into host variable arrays” on page 192|

Host structures in COBOL

A COBOL host structure is a named set of host variables that are defined in your
program's WORKING-STORAGE SECTION or LINKAGE SECTION.

344 Application Programming and SQL Guide

Requirements: Host structure declarations in COBOL must satisfy the following
requirements:

¢ COBOL host structures can have a maximum of two levels, even though the
host structure might occur within a structure with multiple levels. However, you
can declare a varying-length character string, which must be level 49.

* A host structure name can be a group name whose subordinate levels name
elementary data items.

* If you are using the DB2 precompiler, do not declare host variables or host
structures on any subordinate levels after one of the following items:
— A COBOL item that begins in area A
— Any SQL statement (except SQL INCLUDE)
— Any SQL statement within an included member

When the DB2 precompiler encounters one of the preceding items in a host

structure, it considers the structure to be complete.

When you write an SQL statement that contains a qualified host variable name
(perhaps to identify a field within a structure), use the name of the structure
followed by a period and the name of the field. For example, for structure B that
contains field C1, specify B.C1 rather than C1 OF B or C1 IN B.

Host structures

The following diagram shows the syntax for declaring host structures.

(1)

»»—level-1 variable-name—. >
(2) (3) (4)
»Y level-2 var-l—-—numeric-usage—. ><
7
PICTURE integer-decimal-usage—.——
—EPIC—I I—picture-string—l

Notes:

1 level-1 indicates a COBOL level between 1 and 47.
2 level-2 indicates a COBOL level between 2 and 48.

3 For elements within a structure, use any level 02 through 48 (rather than 01 or 77), up to a
maximum of two levels.

4 Using a FILLER or optional FILLER item within a host structure declaration can invalidate the
whole structure.

—char-inner-variable—.
—varchar-inner-variables
—vargraphic-inner-variables

SQL TYPE IS—ROWID—.
Lusnee 51
USAGE:
Lusnee 51
USAGE:
LOB data type—.
Lussee_ L1
USAGE:

SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR—.—

Chapter 6. Coding SQL statements in COBOL application programs 345

Numeric usage items

The following diagram shows the syntax for numeric-usage items that are used
within declarations of host structures.

»>>- L COMPUTATIONAL-1 ><
IS COMP-1—— L IS J
USAGE ECOMPUTATIONAL-Z— VALUE—I_——l—COHStant

COMP-2

Integer and decimal usage items

The following diagram shows the syntax for integer and decimal usage items that
are used within declarations of host structures.

> BINARY >
L IS —COMPUTATIONAL-4—
USAGE —COMP-4
—COMPUTATIONAL-5—
—COMP-5
—COMPUTATIONAL—
—COMP
PACKED-DECIMAL
—COMPUTATIONAL-3—
—COMP-3

™7
—[DISPLAY SIGN LEADING SEPARATE _|
NATIONAL—| |—CHARACTER

Is |
LVALUE—I_——I—constant

CHAR inner variables

The following diagram shows the syntax for CHAR inner variables that are used
within declarations of host structures.

346 Application Programming and SQL Guide

IS
PICTURE picture-string |
PIC

| 2

DISPLAYJ

L 15
USAGE

Is J
LVALU E—I_——I—cons tant

VARCHAR inner variables

The following diagrams show the syntax for VARCHAR inner variables that are
used within declarations of host structures.

(1)

IS

»»>—49 var-2

».

[]
PICTURE $9(4)
Lpre— | L 59999

i
LUSAGEJ_I—S—I—

BINARY
COMPUTATIONAL-4—
COMP-4
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—

COMP

Is J
LVALUE numeric-constant

Notes:

1 The number 49 has a special meaning to DB2. Do not specify another number.

]
»»—A49—var-3 PICTURE picture-string |

PIC

| 2

DISPLAYJ

L Is
USAGE

Is J
LVALU E—l_——l—character-cons tant

Chapter 6. Coding SQL statements in COBOL application programs

347

VARGRAPHIC inner variables

The following diagrams show the syntax for VARGRAPHIC inner variables that
are used within declarations of host structures.

™7
»»—A49—vyqr-4 PICTURE S9(4) BINARY >
|:PICJ |—59999

—| L IS COMPUTATIONAL-4—
USAGE—r——I— COMP-4—————
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
comp

»
>

\4
A

Is J
LVALUE numeric-constant

IS (1) (2) (3)
»>—49—var-5——PICTURE picture-string LDISPLAY-l >
PIC L NATIONAL

IS
usae—— 1

»
>

A\
A

Is J
LVALUE graphic-constant

Notes:

1 For fixed-length strings, the format of picture-string is G(m) or N(m) (or, m instances of GG...G or
NN...N), where 1 <= m <= 127; for other strings, m cannot be greater than the maximum size of a
varying-length graphic string.

2 Use USAGE NATIONAL for only Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G.

3 You can use USAGE NATIONAL only if you are using the DB2 coprocessor.

LOB variables, locators, and file reference variables

The following diagram shows the syntax for LOB variables, locators, and file
reference variables that are used within declarations of host structures.

348 Application Programming and SQL Guide

»»—SQL TYPE IS BINARY LARGE OBJECT—I——(—Zength)
|—BLOB —
—ECHARACTER LARGE OBJECT——

=
|

CHAR LARGE OBJECT
CLOB

<

[<p}

—DBCLOB

——BLOB-LOCATOR
—CLOB-LOCATOR
—DBCLOB-LOCATOR—

——BLOB-FILE
—CLOB—FILEi‘
—DBCLOB-FILE

A\
A

LOB variables and file reference variables for XML data

The following diagram shows the syntax for LOB variables and file reference
variables that are used within declarations of host structures for XML.

»»—SQL TYPE IS XML AS BINARY LARGE OBJECT—I——(—Zength) ><

=
|

BLOB
—ECHARACTER LARGE OBJECT——

<

CHAR LARGE OBJECT
CLOB
—DBCLOB

BLOB-FILE
—CLOB-FI LEﬂ
—DBCLOB-FILE

[ep]

Example

In the following example, B is the name of a host structure that contains the
elementary items C1 and C2.
01 A

02 B

03 C1 PICTURE ...
03 C2 PICTURE ...

To reference the C1 field in an SQL statement, specify B.CL.
Related concepts:

|”Host structures” on page 1751

Indicator variables, indicator arrays, and host structure
indicator arrays in COBOL

An indicator variable is a 2-byte integer (PIC S9(4) USAGE BINARY). An indicator
variable array is an array of 2-byte integers (PIC S9(4) USAGE BINARY). You
declare indicator variables in the same way as host variables. You can mix the
declarations of the two types of variables.

You can define indicator variables as scalar variables or as array elements in a
structure form or as an array variable by using a single level OCCURS clause.

Chapter 6. Coding SQL statements in COBOL application programs 349

The following diagram shows the syntax for declaring an indicator variable in

COBOL.
IS
variable- name—EPICTURE S9(4) BINARY >
77 PICJ 59999J L |: :| COMPUTATIONAL-4—
USAGE COMP-4—
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP
[]
VALUE constant

The following diagram shows the syntax for declaring an indicator array in
COBOL.

variable-name PICTURE S9(4)
|:PICJ 59999

v

»»—level-1

e 51

(2)
BINARY————0CCURS—dimension |_ _| . »><
COMPUTATIONAL-4— TIMES L IS J
COMP-4 VALUE—I_——I—constant
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP:

Notes:
1 level-1 must be an integer between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.
EXEC SQL FETCH CLS_CURSOR INTO :CLS-CD,

:DAY :DAY-IND,

:BGN :BGN-IND,

:END :END-IND
END-EXEC.

You can declare these variables as follows:

350 Application Programming and SQL Guide

77 CLS-CD PIC X(7).

77 DAY
77 BGN
77 END

PIC S9(4) BINARY.
PIC X(8).
PIC X(8).

77 DAY-IND PIC S9(4) BINARY.
77 BGN-IND PIC S9(4) BINARY.
77 END-IND PIC S9(4) BINARY.

Related concepts:

[“Indicator variables, arrays, and structures” on page 176

Related tasks:

“Inserting null values into columns by using indicator variables or arrays” on page|

190

Controlling the CCSID for COBOL host variables

Setting the CCSID for COBOL host variables is slightly different than the process
for other host languages. In COBOL, several other settings affect the CCSID.

This task applies to programs that use IBM Enterprise COBOL for z/OS and the
DB2 coprocessor.

To control the CCSID for COBOL host variables:

Use one or more of the following items:

The NATIONAL data type

Use this data type to declare Unicode values in the UTF-16 format (CCSID
1200).

If you declare a host variable HV1 as USAGE NATIONAL, DB2 always
handles HV1 as if you had used the following DECLARE VARIABLE
statement:

DECLARE :HV1 VARIABLE CCSID 1200

The COBOL CODEPAGE compiler option

Use this option to specify the default EBCDIC CCSID of character data
items.

The SQLCCSID compiler option

Use this option to control whether the CODEPAGE compiler option
influences the processing of SQL host variables in your COBOL programs
(available in Enterprise COBOL V3R4 or later).

When you specify the SQLCCSID compiler option, the COBOL DB2
coprocessor uses the CCSID that is specified in the CODEPAGE compiler
option. All host variables of character data type, other than NATIONAL,
are specified with that CCSID unless they are explicitly overridden by a
DECLARE VARIABLE statement.

When you specify the NOSQLCCSID compiler option, the CCSID that is
specified in the CODEPAGE compiler option is used for processing only
COBOL statements within the COBOL program. That CCSID is not used
for the processing of host variables in SQL statements. DB2 uses the
CCSIDs that are specified through DB2 mechanisms and defaults as host
variable data value encodings.

The DECLARE VARIABLE statement.

This statement explicitly sets the CCSID for individual host variables.

Chapter 6. Coding SQL statements in COBOL application programs 351

Assume that the COBOL SQLCCSID compiler option is specified and that the
COBOL CODEPAGE compiler option is specified as CODEPAGE(1141). The
following code shows how you can control the CCSID:
DATA DIVISION.

01 HV1 PIC N(10) USAGE NATIONAL.

01 HV2 PIC X(20) USAGE DISPLAY.
01 HV3 PIC X(30) USAGE DISPLAY.

EXEC SQL
DECLARE :HV3 VARIABLE CCSID 1047
END-EXEC.
PROCEDURE DIVISION.
EXEC SQL
SELECT C1, C2, C3 INTO :HV1, :HV2, :HV3 FROM T1
END-EXEC.

Each of the host variables have the following CCSIDs:

HV1 1200
HV2 1141
HV3 1047

Assume that the COBOL NOSQLCCSID compiler option is specified, the COBOL
CODEPAGE compiler option is specified as CODEPAGE(1141), and the DB2 default
single byte CCSID is set to 37. In this case, each of the host variables in this
example have the following CCSIDs:

HV1 1200
HV2 37
HV3 1047

Related reference:
[“Host variables in COBOL” on page 326|

[[Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)|

Equivalent SQL and COBOL data types

When you declare host variables in your COBOL programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, you need to ensure that the host variable is of an equivalent
data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Table 65. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
COBOL programs

SQLTYPE of host

COBOL host variable data type variable' SQLLEN of host variable SQL data type
COMP-1 480 4 REAL or FLOAT(n) 1<=n<=21
COMP-2 480 8 DOUBLE PRECISION, or

FLOAT(n) 22<=n<=53

352 Application Programming and SQL Guide

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/2.4?DT=20090820210412

Table 65. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
COBOL programs (continued)

COBOL host variable data type

SQLTYPE of host
variable'

SQLLEN of host variable

SQL data type

S9(i)V9(d) COMP-3 or S9(i)VI(d) 484 i+d in byte 1, d in byte 2~ DECIMAL(i+d,d) or

PACKED-DECIMAL NUMERIC(i+d,d)

S9(i)V9(d) DISPLAY SIGN 504 i+d in byte 1, d in byte 2 No exact equivalent. Use

LEADING SEPARATE DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(1))V9(d) NATIONAL SIGN 504 i+d in byte 1, d in byte 2 No exact equivalent. Use

LEADING SEPARATE DECIMAL(i+d,d) or
NUMERIC(i+d,d)

59(4) COMP-4, S9(4) COMP-5, 500 2 SMALLINT

59(4) COMP, or S9(4) BINARY

59(9) COMP-4, S9(9) COMP-5, 496 4 INTEGER

59(9) COMP, or S9(9) BINARY

59(18) COMP-4, 59(18) COMP-5, 492 8 BIGINT

59(18) COMP, or S9(18) BINARY

Fixed-length character data 452 n CHAR(n)

Varying-length character data 448 n VARCHAR(n)

1<=n<=255

Varying-length character data 456 m VARCHAR(m)

m>255

Fixed-length graphic data 468 m GRAPHIC(m)

Varying-length graphic data 464 m VARGRAPHIC(m)

1<=m<=127

Varying-length graphic data 472 m VARGRAPHIC(m)

m>127

SQL TYPE is BINARY(n), 912 n BINARY(n)

1<=n<=255

SQL TYPE is VARBINARY (1), 908 n VARBINARY (1)

1<=n<=32 704

SQL TYPE IS 972 4 Result set locator?

RESULT-SET-LOCATOR

SQL TYPE IS TABLE LIKE 976 4 Table locator?

table-name AS LOCATOR

SQL TYPE IS BLOB-LOCATOR 960 BLOB locator?

SQL TYPE IS CLOB-LOCATOR 964 CLOB locator?

SQL TYPE IS 968 DBCLOB locator?

DBCLOB-LOCATOR

USAGE IS SQL TYPE IS 404 n BLOB(n)

BLOB(n) 1=n=<2147483647

USAGE IS SQL TYPE IS 408 n CLOB(n)

CLOB(n) 1=n=2147483647

USAGE IS SQL TYPE IS 412 n DBCLOB(m)*

DBCLOB(m) 1=m=1073741823°

SQL TYPE IS XML AS BLOB(n) 404 0 XML

SQL TYPE IS XML AS CLOB(n) 408 0 XML

Chapter 6. Coding SQL statements in COBOL application programs

353

Table 65. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
COBOL programs (continued)

SQOLTYPE of host

COBOL host variable data type variable'

SQLLEN of host variable SQL data type

SQL TYPE IS XML AS 412 0 XML

DBCLOB(n)

SQL TYPE IS BLOB-FILE 916/917 267 BLOB file reference®

SQL TYPE IS CLOB-FILE 920/921 267 CLOB file reference?

SQL TYPE IS DBCLOB-FILE 924/925 267 DBCLOB file reference?
SQL TYPE IS XML AS 916/917 267 XML BLOB file reference®
BLOB-FILE

SQL TYPE IS XML AS 920/921 267 XML CLOB file reference®
CLOB-FILE

SQL TYPE IS XML AS 924/925 267 XML DBCLOB file reference’
DBCLOB-FILE

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base SQLTYPE value plus 1.

2. Do not use this data type as a column type.

3. m is the number of double-byte characters.

The following table shows equivalent COBOL host variables for each SQL data
type. Use this table to determine the COBOL data type for host variables that you
define to receive output from the database. For example, if you retrieve
TIMESTAMP data, you can define a fixed-length character string variable of length

n

This table shows direct conversions between SQL data types and COBOL data
types. However, a number of SQL data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 converts
those compatible data types.

Table 66. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type

COBOL host variable equivalent

Notes

SMALLINT $9(4) COMP-4,
S9(4) COMP-5,
$9(4) COMP,
or S9(4) BINARY

INTEGER

S9(9) COMP-4,
S9(9) COMP-5,
S9(9) ComP,

or S9(9) BINARY

DECIMAL(p,s) or
NUMERIC(p,s)

S9(p-s)V9(s) COMP-3 or
S9(p-s)V9(s)
PACKED-DECIMAL
DISPLAY SIGN

LEADING SEPARATE
NATIONAL SIGN

LEADING SEPARATE

p is precision; s is scale. O<=s<=p<=31. If
5=0, use S9(p)V or S9(p). If s=p, use SVI(s).
If the COBOL compiler does not support
31-digit decimal numbers, no exact
equivalent exists. Use COMP-2.

REAL or FLOAT (n)

COMP-1

1<=n<=21

354 Application Programming and SQL Guide

Table 66. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data

type (continued)

SQL data type COBOL host variable equivalent Notes
DOUBLE PRECISION, COMP-2 22<=n<=53
DOUBLE or FLOAT (n)
BIGINT S9(18) COMP-4, S9(18) COMP-5, S9(18)
COMP, or S9(18) BINARY
CHAR(n) Fixed-length character string. For example, 1<=n<=255
01 VAR-NAME PIC X(n).
VARCHAR(n) Varying-length character string. For The inner variables must have a level of
example, 49.
01 VAR-NAME.
49 VAR-LEN PIC S9(4)
USAGE BINARY.
49 VAR-TEXT PIC X(n).
GRAPHIC(n) Fixed-length graphic string. For example, 7 refers to the number of double-byte
01 VAR-NAME PIC G(n) characters, not to the number of bytes.
USAGE IS DISPLAY-1. 1<=n<=127
VARGRAPHIC(n) Varying-length graphic string. For n refers to the number of double-byte
example, characters, not to the number of bytes.
1 VAR-NAME.
0 49 VAR-LEN PIC S9(4) The inner variables must have a level of
USAGE BINARY. 49.
49 VAR-TEXT PIC G(n)
USAGE IS DISPLAY-1.
BINARY (n) SQL TYPE IS BINARY (n) 1<=n<=255
VARBINARY (1) SQL TYPE IS VARBINARY (1) 1<=n<=32 704
DATE Fixed-length character string of length . If you are using a date exit routine, n is
For example, determined by that routine. Otherwise, n
01 VAR-NAME PIC X(n). must be at least 10.
TIME Fixed-length character string of length n. If you are using a time exit routine, # is
For example, determined by that routine. Otherwise, n
01 VAR-NAME PIC X(n). must be at least 6; to include seconds, n
must be at least 8.
TIMESTAMP Fixed-length character string of length 7. n must be at least 19. To include
For example, microseconds, n must be 26; if n is less
01 VAR-NAME PIC X(n). than 26, truncation occurs on the
microseconds part.
TIMESTAMP(0) Fixed-length character string of length n. 1 must be at least 19.

For example,
01 VAR-NAME PIC X(n).

TIMESTAMP(p) p > 0

Fixed-length character string of length 7.
For example,

01 VAR-NAME PIC X(n

).

n must be at least 19. To include fractional
seconds, n must be 20+x where x is the
number of fractional seconds to include; if
x is less than p, truncation occurs on the
fractional seconds part.

TIMESTAMP(0) WITH TIME
ZONE

Varying-length character string. For
example,

01 VAR-NAME.

49 VAR-LEN PIC S9(4) USAGE
BINARY. 49 VAR-TEXT PIC
X(n).

The inner variables must have a level of
49. n must be at least 25.

Chapter 6. Coding SQL statements in COBOL application programs

355

Table 66. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data

type (continued)

SQL data type COBOL host variable equivalent Notes
TIMESTAMP(p) WITH TIME Varying-length character string. For The inner variables must have a level of
ZONE example, 49. n must be at least 26+p.

01 VAR-NAME.

49 VAR-LEN PIC S9(4) USAGE
BINARY. 49 VAR-TEXT PIC
X(n).

Result set locator SQL TYPE IS
RESULT-SET-LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS Use this data type only in a user-defined
TABLE LIKE function or stored procedure to receive
table-name rows of a transition table. Do not use this
AS LOCATOR data type as a column type.

BLOB locator USAGE IS SQL TYPE IS Use this data type only to manipulate data

BLOB-LOCATOR

in BLOB columns. Do not use this data
type as a column type.

CLOB locator USAGE IS SQL TYPE IS
CLOB-LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator USAGE IS SQL TYPE IS
DBCLOB-LOCATOR

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) USAGE IS SQL TYPE IS 1=n=2147483647
BLOB(n)
CLOB(n) USAGE IS SQL TYPE IS 1=n=2147483647
CLOB(n)
DBCLOB(n) USAGE IS SQL TYPE IS n is the number of double-byte characters.
DBCLOB (n) 1=n=1073741823
XML SQL TYPE IS XML AS BLOB(n) 1=n=2147483647
XML SQL TYPE IS XML AS CLOB(n) 1=n=2147483647
XML SQL TYPE IS XML AS DBCLOB(n) n is the number of double-byte characters.
1=n=1073741823
BLOB file reference USAGE IS SQL TYPE IS Use this data type only to manipulate data
BLOB-FILE in BLOB columns. Do not use this data
type as a column type.
CLOB file reference USAGE IS SQL TYPE IS Use this data type only to manipulate data
CLOB-FILE in CLOB columns. Do not use this data
type as a column type.
DBCLOB file reference USAGE IS SQL TYPE IS Use this data type only to manipulate data

DBCLOB-FILE

in DBCLOB columns. Do not use this data
type as a column type.

XML BLOB file reference SQL TYPE IS XML AS BLOB-FILE

Use this data type only to manipulate
XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file reference SQL TYPE IS XML AS CLOB-FILE

Use this data type only to manipulate
XML data as CLOB files. Do not use this
data type as a column type.

356 Application Programming and SQL Guide

Table 66. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data

type (continued)

SQL data type

COBOL host variable equivalent Notes

XML DBCLOB file reference SQL TYPE IS XML AS DBCLOB-FILE Use this data type only to manipulate

XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID

SQL TYPE IS ROWID

Related concepts:

[“Compeatibility of SQL and language data types” on page 180
“LOB host variable, LOB locator, and LOB file reference variable declarations” on|

page 75Z|

“Host variable data types for XML data in embedded SQL applications” on page]
D41

SQL statements in COBOL programs

You can code SQL statements in certain COBOL program sections.

The allowable sections are shown in the following table.

Table 67. Allowable SQL statements for COBOL program sections

SQL statement Program section
BEGIN DECLARE SECTION WORKING-STORAGE SECTION' or LINKAGE
END DECLARE SECTION SECTION
INCLUDE SQLCA WORKING-STORAGE SECTION' or LINKAGE

SECTION

INCLUDE text-file-name PROCEDURE DIVISION or DATA DIVISION®
DECLARE TABLE DATA DIVISION or PROCEDURE DIVISION
DECLARE CURSOR
DECLARE VARIABLE WORKING-STORAGE SECTION'
Other PROCEDURE DIVISION

Notes:

1. If you use the DB2 coprocessor, you can use the LOCAL-STORAGE SECTION wherever
WORKING-STORAGE SECTION is listed in the table.

2. When including host variable declarations, the INCLUDE statement must be in the
WORKING-STORAGE SECTION or the LINKAGE SECTION.

You cannot put SQL statements in the DECLARATIVES section of a COBOL
program.

Each SQL statement in a COBOL program must begin with EXEC SQL and end
with END-EXEC. If you are using the DB2 precompiler, the EXEC and SQL
keywords must appear on one line, but the remainder of the statement can appear
on subsequent lines. If you are using the DB2 coprocessor, the EXEC and SQL
keywords can be on different lines. Do not include any tokens between the two
keywords EXEC and SQL except for COBOL comments, including debugging lines.
Do not include SQL comments between the keywords EXEC and SQL.

Chapter 6. Coding SQL statements in COBOL application programs 357

If the SQL statement appears between two COBOL statements, the period after
END-EXEC is optional and might not be appropriate. If the statement appears in
an IF..THEN set of COBOL statements, omit the ending period to avoid
inadvertently ending the IF statement.

You might code an UPDATE statement in a COBOL program as follows:

EXEC SQL
UPDATE DSN8A10.DEPT
SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT
END-EXEC.

Comments: You can include COBOL comment lines (* in column 7) in SQL
statements wherever you can use a blank. If you are using the DB2 precompiler,
you cannot include COBOL comment lines between the keywords EXEC and SQL.
The precompiler treats COBOL debugging lines and page-eject lines (/ in column
7) as comment lines. The DB2 coprocessor treats the debugging lines based on the
COBOL rules, which depend on the WITH DEBUGGING mode setting.

For an SQL INCLUDE statement, the DB2 precompiler treats any text that follows
the period after END-EXEC, and on the same line as END-EXEC, as a comment.

The DB2 coprocessor treats this text as part of the COBOL program syntax.
In addition, you can include SQL comments ('--') in any embedded SQL statement.

Debugging lines: The DB2 precompiler ignores the 'D' in column 7 on debugging
lines and treats it as a blank. The DB2 coprocessor follows the COBOL language
rules regarding debugging lines.

Continuation for SQL statements: The rules for continuing a character string
constant from one line to the next in an SQL statement embedded in a COBOL
program are the same as those for continuing a non-numeric literal in COBOL.
However, you can use either a quote or an apostrophe as the first nonblank
character in area B of the continuation line. The same rule applies for the
continuation of delimited identifiers and does not depend on the string delimiter
option.

To conform with SQL standard, delimit a character string constant with an
apostrophe, and use a quote as the first nonblank character in area B of the
continuation line for a character string constant.

Continued lines of an SQL statement can be in columns 8 through 72 when using
the DB2 precompiler and columns 12 through 72 when using the DB2 coprocessor.

COPY: If you use the DB2 precompiler, do not use a COBOL COPY statement
within host variable declarations. If you use the DB2 coprocessor, you can use
COBOL COPY.

REPLACE: If you use the DB2 precompiler, the REPLACE statement has no effect
on SQL statements. It affects only the COBOL statements that the precompiler

generates.

If you use the DB2 coprocessor, the REPLACE statement replaces text strings in
SQL statements as well as in generated COBOL statements.

358 Application Programming and SQL Guide

Declaring tables and views: Your COBOL program should include the statement

DECLARE TABLE to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. You should include the DCLGEN members in the DATA DIVISION.

Dynamic SQL in a COBOL program: In general, COBOL programs can easily
handle dynamic SQL statements. COBOL programs can handle SELECT statements
if the data types and the number of fields returned are fixed. If you want to use
variable-list SELECT statements, use an SQLDA.

Including code: To include SQL statements or COBOL host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:

EXEC SQL INCLUDE member-name END-EXEC.

If you are using the DB2 precompiler, you cannot nest SQL INCLUDE statements.
In this case, do not use COBOL verbs to include SQL statements or host variable
declarations, and do not use the SQL INCLUDE statement to include CICS
preprocessor related code. In general, if you are using the DB2 precompiler, use the
SQL INCLUDE statement only for SQL-related coding. If you are using the COBOL
DB2 coprocessor, none of these restrictions apply.

Use the 'EXEC SQL' and 'END-EXEC' keyword pair to include SQL statements
only. COBOL statements, such as COPY or REPLACE, are not allowed.

Margins: You must code SQL statements that begin with EXEC SQL in columns 12
through 72. Otherwise the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid COBOL name for a host variable. Do not use
external entry names or access plan names that begin with 'DSN', and do not use
host variable names that begin with 'SQL'. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can precede executable SQL statements in the PROCEDURE
DIVISION with a paragraph name.

WHENEVER statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a section name or unqualified paragraph name in the
PROCEDURE DIVISION.

Special COBOL considerations: The following considerations apply to programs

written in COBOL:

* In a COBOL program that uses elements in a multi-level structure as host
variable names, the DB2 precompiler generates the lowest two-level names.

 Using the COBOL compiler options DYNAM and NODYNAM depends on the
operating environment.
TSO and IMS: You can specify the option DYNAM when compiling a COBOL
program if you use the following guidelines. IMS and DB2 share a common alias
name, DSNHLI, for the language interface module. You must do the following
when you concatenate your libraries:

— If you use IMS with the COBOL option DYNAM, be sure to concatenate the
IMS library first.

Chapter 6. Coding SQL statements in COBOL application programs 359

— If you run your application program only under DB2, be sure to concatenate
the DB2 library first.

CICS, CAF, and RRSAF: You must specify the NODYNAM option when you
compile a COBOL program that either includes CICS statements or is translated
by a separate CICS translator or the integrated CICS translator. In these cases,
you cannot specify the DYNAM option. If your CICS program has a subroutine
that is not translated by a separate CICS translator or the integrated CICS
translator but contains SQL statements, you can specify the DYNAM option.
However, in this case, you must concatenate the CICS libraries before the DB2
libraries.

You can compile COBOL stored procedures with either the DYNAM option or
the NODYNAM option. If you use DYNAM, ensure that the correct DB2
language interface module is loaded dynamically by performing one of the
following actions:

— Use the ATTACH(RRSAF) precompiler option.

— Copy the DSNRLI module into a load library that is concatenated in front of
the DB2 libraries. Use the member name DSNHLIL

* To avoid truncating numeric values, use either of the following methods:
— Use the COMP-5 data type for binary integer host variables.
— Specify the COBOL compiler option:
- TRUNC(OPT) if you are certain that the data being moved to each binary
variable by the application does not have a larger precision than is defined
in the PICTURE clause of the binary variable.

- TRUNC(BIN) if the precision of data being moved to each binary variable
might exceed the value in the PICTURE clause.

DB2 assigns values to binary integer host variables as if you had specified the
COBOL compiler option TRUNC(BIN) or used the COMP-5 data type.

* If you are using the DB2 precompiler and your COBOL program contains
several entry points or is called several times, the USING clause of the entry
statement that executes before the first SQL statement executes must contain the
SQLCA and all linkage section entries that any SQL statement uses as host
variables.

* If you use the DB2 precompiler, no compiler directives should appear between
the PROCEDURE DIVISION and the DECLARATIVES statement.

* Do not use COBOL figurative constants (such as ZERO and SPACE), symbolic
characters, reference modification, and subscripts within SQL statements.

* Observe the rules for naming SQL identifiers. However, for COBOL only, the
names of SQL identifiers can follow the rules for naming COBOL words, if the
names do not exceed the allowable length for the DB2 object. For example, the
name 1ST-TIME is a valid cursor name because it is a valid COBOL word, but
the name 1_TIME is not valid because it is not a valid SQL identifier or a valid
COBOL word.

* Observe these rules for hyphens:

— Surround hyphens used as subtraction operators with spaces. DB2 usually
interprets a hyphen with no spaces around it as part of a host variable name.

— You can use hyphens in SQL identifiers under either of the following
circumstances:

- The application program is a local application that runs on DB2 for z/OS
Version 8 or later.

- The application program accesses remote sites, and the local site and
remote sites are DB2 for z/OS Version 8 or later.

360 Application Programming and SQL Guide

 If you include an SQL statement in a COBOL PERFORM ... THRU paragraph and
also specify the SQL statement WHENEVER ... GO, the COBOL compiler returns
the warning message IGYOP3094. That message might indicate a problem. This
usage is not recommended.

 If you are using the DB2 precompiler, all SQL statements and any host variables
they reference must be within the first program when using nested programs or
batch compilation.

* If you are using the DB2 precompiler, your COBOL programs must have a
DATA DIVISION and a PROCEDURE DIVISION. Both divisions and the
WORKING-STORAGE SECTION must be present in programs that contain SQL
statements. However, if your COBOL programs requires the LOCAL-STORAGE
SECTION, then the DB2 coprocessor should be used instead of the DB2
precompiler.

If your program uses the DB2 precompiler and uses parameters that are
defined in LINKAGE SECTION as host variables to DB2 and the address of the
input parameter might change on subsequent invocations of your program, your
program must reset the variable SQL-INIT-FLAG. This flag is generated by the
DB2 precompiler. Resetting this flag indicates that the storage must initialize when
the next SQL statement executes. To reset the flag, insert the statement MOVE
ZERO TO SQL-INIT-FLAG in the called program's PROCEDURE DIVISION, ahead
of any executable SQL statements that use the host variables. If you use the
COBOL DB2 coprocessor, the called program does not need to reset

SQL-INIT-FLAG. <PSP!]

You can use the MESSAGE_TEXT condition item field of the GET DIAGNOSTICS
statement to convert an SQL return code into a text message. Programs that require
long token message support should code the GET DIAGNOSTICS statement
instead of DSNTIAR.

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program.

DSNTIAR syntax:
CALL 'DSNTIAR' USING sglca message Irecl.

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in Irecl, are put
into this area. For example, you could specify the format of the output area as:

01 ERROR-MESSAGE.
02 ERROR-LEN PIC S9(4) COMP VALUE +1320.
02 ERROR-TEXT PIC X(132) OCCURS 10 TIMES
INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +132.

Chapter 6. Coding SQL statements in COBOL application programs 361

CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

where ERROR-MESSAGE is the name of the message output area containing
10 lines of length 132 each, and ERROR-TEXT-LEN is the length of each line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

An example of calling DSNTIAR from an application appears in the DB2 sample
assembler program DSN8BC3, which is contained in the library DSN8A10.

CICS: If you call DSNTIAR dynamically from a CICS COBOL application program,
be sure you do the following:

* Compile the COBOL application with the NODYNAM option.

¢ Define DSNTIAR in the CSD.

If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:

CALL 'DSNTIAC' USING eib commarea sqlca msg lrecl.

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.

eib EXEC interface block

commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the
same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see job DSNTE]J5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which assembles and
link-edits DSNTIAC, are in the data set prefix. SDSNSAMP.

Related concepts:

[‘DB2 sample applications” on page 1092]

“DCLGEN (declarations generator)” on page 161|

"Host variable arrays in an SQL statement” on page 191|
[* [SQL identifiers (DB2 SQL)|

Related tasks:

“Including dynamic SQL in your program” on page 193|

“Embedding SQL statements in your application” on page 183|

“Checking the execution of SQL statements by using the GET DIAGNOSTICS|
statement” on page 234]

“Defining SQL descriptor areas” on page 173
“Displaying SQLCA fields by calling DSNTIAR” on page 229|

362 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sqlidentifiers.dita

[+ [Setting limits for system resource usage by using the resource limit facility|
[(DB2 Performance)|

Delimiters in SQL statements in COBOL programs

You must delimit SQL statements in your COBOL program so that DB2 knows
when a particular SQL statement ends.

Delimit an SQL statement in your COBOL program with the beginning keyword
EXEC SQL and an END-EXEC.

Example

Use EXEC SQL and END-EXEC. to delimit an SQL statement in a COBOL program:

EXEC SQL
an SQL statement
END-EXEC.

Object-oriented extensions in COBOL

When you use object-oriented extensions in a COBOL application, you need to
consider where to place SQL statements, the SQLCA, the SQLDA, and host
variable declarations. You also need to consider the rules for host variables.

Where to place SQL statements in your application: A COBOL source data set or
member can contain the following elements:

* Multiple programs

* Multiple class definitions, each of which contains multiple methods

You can put SQL statements in only the first program or class in the source data
set or member. However, you can put SQL statements in multiple methods within
a class. If an application consists of multiple data sets or members, each of the data
sets or members can contain SQL statements.

Where to place the SQLCA, SQLDA, and host variable declarations: You can put
the SQLCA, SQLDA, and SQL host variable declarations in the
WORKING-STORAGE SECTION of a program, class, or method. An SQLCA or
SQLDA in a class WORKING-STORAGE SECTION is global for all the methods of
the class. An SQLCA or SQLDA in a method WORKING-STORAGE SECTION is
local to that method only.

If a class and a method within the class both contain an SQLCA or SQLDA, the
method uses the SQLCA or SQLDA that is local.

Rules for host variables: You can declare COBOL variables that are used as host
variables in the WORKING-STORAGE SECTION or LINKAGE-SECTION of a
program, class, or method. You can also declare host variables in the
LOCAL-STORAGE SECTION of a method. The scope of a host variable is the
method, class, or program within which it is defined.

Programming examples in COBOL

You can write DB2 programs in COBOL. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.

Chapter 6. Coding SQL statements in COBOL application programs 363

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita
http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.perf/src/tpc/db2z_setsystemresourcelimit.dita

Related reference:

[‘Programming examples” on page 251

Sample COBOL dynamic SQL program

You can code dynamic varying-list SELECT statements in a COBOL program.
Varying-List SELECT statements are statements for which you do not know the
number or data types of columns that are to be returned when you write the
program.

Q/ Introductory concepts:

[Dynamic SQL applications (Introduction to DB2 for z/OS)|

[“Including dynamic SQL in your program” on page 193| describes three variations
of dynamic SQL statements:

¢ Non-SELECT statements
¢ Fixed-List SELECT statements

In this case, you know the number of columns returned and their data types
when you write the program.

* Varying-List SELECT statements.

In this case, you do not know the number of columns returned and their data
types when you write the program.

This section documents a technique of coding varying list SELECT statements in
COBOL.

This example program does not support BLOB, CLOB, or DBCLOB data types.
Pointers and based variables in the sample COBOL program

COBOL has a POINTER type and a SET statement that provide pointers and based
variables.

The SET statement sets a pointer from the address of an area in the linkage section
or another pointer; the statement can also set the address of an area in the linkage
section. UNLDBCU?2 in [“Example of the sample COBOL program” on page 365|
provides these uses of the SET statement. The SET statement does not permit the
use of an address in the WORKING-STORAGE section.

Storage allocation for the sample COBOL program

COBOL does not provide a means to allocate main storage within a program. You
can achieve the same end by having an initial program which allocates the storage,
and then calls a second program that manipulates the pointer. (COBOL does not
permit you to directly manipulate the pointer because errors and abends are likely
to occur.)

The initial program is extremely simple. It includes a working storage section that
allocates the maximum amount of storage needed. This program then calls the
second program, passing the area or areas on the CALL statement. The second
program defines the area in the linkage section and can then use pointers within
the area.

364 Application Programming and SQL Guide

http://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/com.ibm.db2z10.doc.intro/src/tpc/db2z_dynamicsqlapplications.dita

If you need to allocate parts of storage, the best method is to use indexes or
subscripts. You can use subscripts for arithmetic and comparison operations.

Example of the sample COBOL program

The following example shows an example of the initial program UNLDBCU1 that
allocates the storage and calls the second program UNLDBCU2. UNLDBCU2 then

defines the passed storage areas in its linkage section and includes the USING

clause on its PROCEDURE DIVISION statement.

Defining the pointers, then redefining them as numeric, permits some
manipulation of the pointers that you cannot perform directly. For example, you
cannot add the column length to the record pointer, but you can add the column
length to the numeric value that redefines the pointer.

The following example is the initial program that allocates storage.
*%%% UNLDBCU1- DB2 SAMPLE BATCH COBOL UNLOAD PROGRAM s skknnnx

LR I R S T S T R R G R N S R I B . N T I N

MODULE NAME =

DESCRIPTIVE N

COPYRIGHT = 5
REFER TO COP

STATUS = VERS

FUNCTION = TH

UN

NOTES =
DEPENDENCIE
RESTRICTION
T
W
D

I

AND SPACE FOR NULL INDICATORS.

MODULE TYPE =
PROCESSOR
MODULE SIZ
ATTRIBUTES

ENTRY POINT =
PURPOSE
LINKAGE
INPUT
OUTPUT

EXIT-NORMAL =

EXIT-ERROR =
RETURN COD
ABEND CODE
ERROR-MESS

EXTERNAL REFE

UNLDBCU1

AME = DB2 SAMPLE APPLICATION
UNLOAD PROGRAM
BATCH
IBM ENTERPRISE COBOL FOR Z/0S

740-XYR (C) COPYRIGHT IBM CORP 1982, 1987
YRIGHT INSTRUCTIONS FORM NUMBER G120-2083

ION 1 RELEASE 3, LEVEL 0O

IS MODULE PROVIDES THE STORAGE NEEDED BY
LDBCUZ AND CALLS THAT PROGRAM.

S = ENTERPRISE COBOL FOR Z/0S IS REQUIRED.
SEVERAL NEW FACILITIES ARE USED.

S =
HE MAXIMUM NUMBER OF COLUMNS IS 750,
HICH IS THE SQL LIMIT.

ATA RECORDS ARE LIMITED TO 32700 BYTES,
NCLUDING DATA, LENGTHS FOR VARCHAR DATA,

IBM ENTERPRISE COBOL PROGRAM
ENTERPRISE COBOL FOR Z/0S
SEE LINK EDIT

REENTRANT

E

UNLDBCU1

SEE FUNCTION

INVOKED FROM DSN RUN
NONE

NONE

RETURN CODE © NORMAL COMPLETION

E = NONE

S = NONE
AGES = NONE

L I S R R T R R R R I N T N R R I R R R T

RENCES =

Chapter 6. Coding SQL statements in COBOL application programs

365

ROUTINES/SERVICES =
UNLDBCU2 - ACTUAL UNLOAD PROGRAM

DATA-AREAS
CONTROL-BLOCKS

NONE
NONE

TABLES = NONE
CHANGE-ACTIVITY = NONE

PSEUDOCODE~

PROCEDURE
CALL UNLDBCUZ.
END.

L R R R I

*

~

PROGRAM-1ID. UNLDBCU1

*

ENVIRONMENT DIVISION.
*

CONFIGURATION SECTION.
DATA DIVISION.

*

WORKING-STORAGE SECTION.
*
01 WORKAREA-IND.
02 WORKIND PIC S9(4) COMP OCCURS 750 TIMES.
01 RECWORK.
02 RECWORK-LEN PIC S9(8) COMP VALUE 32700.
02 RECWORK-CHAR PIC X(1) OCCURS 32700 TIMES.

*

PROCEDURE DIVISION.
*
CALL 'UNLDBCU2' USING WORKAREA-IND RECWORK.
GOBACK.

The following example is the called program that does pointer manipulation.

x+%% UNLDBCU2- DB2 SAMPLE BATCH COBOL UNLOAD PROGRAM sk ssk*
MODULE NAME = UNLDBCU2

DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION
UNLOAD PROGRAM
BATCH
ENTERPRISE COBOL FOR Z/0S

COPYRIGHT = 5740-XYR (C) COPYRIGHT IBM CORP 1982, 1987
REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083

STATUS = VERSION 1 RELEASE 3, LEVEL 0

FUNCTION = THIS MODULE ACCEPTS A TABLE NAME OR VIEW NAME
AND UNLOADS THE DATA IN THAT TABLE OR VIEW.

READ IN A TABLE NAME FROM SYSIN.

PUT DATA FROM THE TABLE INTO DD SYSRECOL.

WRITE RESULTS TO SYSPRINT.

NOTES =
DEPENDENCIES = IBM ENTERPRISE COBOL FOR Z/0S
IS REQUIRED.

RESTRICTIONS =
THE SQLDA IS LIMITED TO 33016 BYTES.
THIS SIZE ALLOWS FOR THE DB2 MAXIMUM

Lo R R I R R R R R

366 Application Programming and SQL Guide

LR T R R R

*

LR I N R R T R R

EoE R R N T I I TR TR N S S TN I N S R N T I S T S S N N N N N . N I S N

OF

DAT
INC

750 COLUMNS.

A RECORDS ARE LIMITED TO 32700 BYTES,
LUDING DATA, LENGTHS FOR VARCHAR DATA,

AND SPACE FOR NULL INDICATORS.

TAB

ONE

MODULE TYPE = E
PROCESSOR

MODULE SIZE
ATTRIBUTES

ENTRY POINT = U

PURPOSE = SE
LINKAGE =
CALL

INPUT = SY

DE

01

SY

DE

01

SY

DE

OUTPUT = SY

DE

SY

DE

LE OR VIEW NAMES ARE ACCEPTED, AND ONLY
NAME IS ALLOWED PER RUN.

NTERPRISE COBOL FOR Z/0S

DB2 PRECOMPILER, COBOL COMPILER
SEE LINK EDIT

REENTRANT

NLDBCU2
E FUNCTION

UNLDBCU2' USING WORKAREA-IND RECWORK.

MBOLIC LABEL/NAME = WORKAREA-IND

SCRIPTION = INDICATOR VARIABLE ARRAY
WORKAREA-IND.

02 WORKIND PIC S9(4) COMP OCCURS 750 TIMES.

MBOLIC LABEL/NAME = RECWORK

SCRIPTION = WORK AREA FOR OUTPUT RECORD
RECWORK.

02 RECWORK-LEN PIC S9(8) COMP.

02 RECWORK-CHAR PIC X(1) OCCURS 32700 TIMES.

MBOLIC LABEL/NAME = SYSIN
SCRIPTION = INPUT REQUESTS - TABLE OR VIEW

MBOLIC LABEL/NAME = SYSPRINT
SCRIPTION = PRINTED RESULTS

MBOLIC LABEL/NAME = SYSRECO1
SCRIPTION = UNLOADED TABLE DATA

EXIT-NORMAL = RETURN CODE O NORMAL COMPLETION

EXIT-ERROR =
RETURN CODE
ABEND CODES
ERROR-MESSAG

NONE
NONE
ES =

L T R R R R I R I R R I R S T N R

DSNT4901 SAMPLE COBOL DATA UNLOAD PROGRAM RELEASE 3.0+

DSNT4931

DSNT4951

DSNT4961

DSNT4971

Chapter 6. Coding SQL statements in COBOL application programs

- THIS IS THE HEADER, INDICATING A NORMAL
- START FOR THIS PROGRAM.

SQL ERROR, SQLCODE = NNNNNNNN

- AN SQL ERROR OR WARNING WAS ENCOUNTERED
- ADDITIONAL INFORMATION FROM DSNTIAR

- FOLLOWS THIS MESSAGE.

SUCCESSFUL UNLOAD XXXXXXXX ROWS OF

TABLE TTTTTTTT

- THE UNLOAD WAS SUCCESSFUL. XXXXXXXX IS
- THE NUMBER OF ROWS UNLOADED. TTTTTTTT
- IS THE NAME OF THE TABLE OR VIEW FROM

- WHICH IT WAS UNLOADED.

UNRECOGNIZED DATA TYPE CODE OF NNNNN

- THE PREPARE RETURNED AN INVALID DATA

- TYPE CODE. NNNNN IS THE CODE, PRINTED
- IN DECIMAL. USUALLY AN ERROR IN

- THIS ROUTINE OR A NEW DATA TYPE.

RETURN CODE FROM MESSAGE ROUTINE DSNTIAR

- THE MESSAGE FORMATTING ROUTINE DETECTED
- AN ERROR. SEE THAT ROUTINE FOR RETURN
- CODE INFORMATION. USUALLY AN ERROR IN
- THIS ROUTINE.

ECE I T R R I R S

367

DSNT4981 ERROR, NO VALID COLUMNS FOUND
- THE PREPARE RETURNED DATA WHICH DID NOT
- PRODUCE A VALID OUTPUT RECORD.
- USUALLY AN ERROR IN THIS ROUTINE.
DSNT4991 NO ROWS FOUND IN TABLE OR VIEW
- THE CHOSEN TABLE OR VIEWS DID NOT
- RETURN ANY ROWS.
ERROR MESSAGES FROM MODULE DSNTIAR
- WHEN AN ERROR OCCURS, THIS MODULE
- PRODUCES CORRESPONDING MESSAGES.
OTHER MESSAGES:
THE TABLE COULD NOT BE UNLOADED. EXITING.

EXTERNAL REFERENCES =

ROUTINES/SERVICES =

DSNTIAR - TRANSLATE SQLCA INTO MESSAGES
DATA-AREAS = NONE
CONTROL-BLOCKS =

SQLCA - SQL COMMUNICATION AREA

TABLES = NONE
CHANGE-ACTIVITY = NONE

PSEUDOCODE~
PROCEDURE
EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC.
EXEC SQL DECLARE SEL STATEMENT END-EXEC.
INITIALIZE THE DATA, OPEN FILES.
OBTAIN STORAGE FOR THE SQLDA AND THE DATA RECORDS.
READ A TABLE NAME.
OPEN SYSRECO1.
BUILD THE SQL STATEMENT TO BE EXECUTED
EXEC SQL PREPARE SQL STATEMENT INTO SQLDA END-EXEC.
SET UP ADDRESSES IN THE SQLDA FOR DATA.
INITIALIZE DATA RECORD COUNTER TO 0.
EXEC SQL OPEN DT END-EXEC.
DO WHILE SQLCODE IS 0.
EXEC SQL FETCH DT USING DESCRIPTOR SQLDA END-EXEC.
ADD IN MARKERS TO DENOTE NULLS.
WRITE THE DATA TO SYSRECO1.
INCREMENT DATA RECORD COUNTER.
END.
EXEC SQL CLOSE DT END-EXEC.
INDICATE THE RESULTS OF THE UNLOAD OPERATION.
CLOSE THE SYSIN, SYSPRINT, AND SYSRECO1 FILES.
END.

EEE I TR T R R R R A R R SN TR R I S

*

~

PROGRAM-ID. UNLDBCU2

*

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT SYSIN
ASSIGN TO DA-S-SYSIN.
SELECT SYSPRINT
ASSIGN TO UT-S-SYSPRINT.
SELECT SYSRECO1
ASSIGN TO DA-S-SYSRECO1.

*

DATA DIVISION.

368 Application Programming and SQL Guide

EE I R R R N R R R R R R R R R R R R T

FILE SECTION.

FD SYSIN
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS O RECORDS
LABEL RECORDS ARE OMITTED
RECORDING MODE IS F.

01 CARDREC PIC X(80).

FD SYSPRINT
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS MSGREC
RECORDING MODE IS F.
01 MSGREC PIC X(120).

FD SYSRECO1

RECORD CONTAINS 5 TO 32704 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS RECO1
RECORDING MODE IS V.

01 RECO1.
02 RECO1-LEN PIC S9(8) COMP.
02 RECO1-CHAR PIC X(1) OCCURS 1 TO 32700 TIMES

DEPENDING ON RECOI1-LEN.

/

WORKING-STORAGE SECTION.

*

Hedede kAR R R e ok

* STRUCTURE FOR INPUT *
*kkkkk kKA K, R T R R T T P L Hkok ok ok k ok ok kR *
01 IOAREA.
02 TNAME PIC X(72).
02 FILLER PIC X(08).
01 STMTBUF.
49 STMTLEN PIC S9(4) COMP VALUE 92.
49 STMTCHAR PIC X(92).
01 STMTBLD.
02 FILLER PIC X(20) VALUE 'SELECT * FROM'.
02 STMTTAB PIC X(72).
*
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkhhkhkhkhkhkhhkhhhhhhhhhhhhdhdhhhhhdhiikx
* REPORT HEADER STRUCTURE *
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkkhhhhhhhhhkhkhkhhhdhhdhdhdhhdhdhhdhdhdhhhhhhiikx
01 HEADER.

02 FILLER PIC X(35)
VALUE ' DSNT4901 SAMPLE COBOL DATA UNLOAD ‘.
02 FILLER PIC X(85) VALUE 'PROGRAM RELEASE 3.0'.
01 MSG-SQLERR.
02 FILLER PIC X(31)
VALUE ' DSNT493I SQL ERROR, SQLCODE = '.
02 MSG-MINUS PIC X(1).
02 MSG-PRINT-CODE PIC 9(8).
02 FILLER PIC X(81) VALUE ' L
01 MSG-OTHER-ERR.
02 FILLER PIC X(42)
VALUE ' THE TABLE COULD NOT BE UNLOADED. EXITING.'
02 FILLER PIC X(78) VALUE '
01 UNLOADED.
02 FILLER PIC X(28)
VALUE ' DSNT495I SUCCESSFUL UNLOAD '.
02 ROWS PIC 9(8).
02 FILLER PIC X(15) VALUE ' RONS OF TABLE '.
02 TABLENAM PIC X(72) VALUE
01 BADTYPE.
02 FILLER PIC X(42)
VALUE ' DSNT496I UNRECOGNIZED DATA TYPE CODE OF '.
02 TYPCOD PIC 9(8).

Chapter 6. Coding SQL statements in COBOL application programs

369

02 FILLER PIC X(71) VALUE ° ',
01 MSGRETCD.
02 FILLER PIC X(42)
VALUE ' DSNT4971 RETURN CODE FROM MESSAGE ROUTINE'.
02 FILLER PIC X(9) VALUE 'DSNTIAR '.
02 RETCODE PIC 9(8).
02 FILLER PIC X(62) VALUE ' '
01 MSGNOCOL.
02 FILLER PIC X(120)
VALUE ' DSNT498I ERROR, NO VALID COLUMNS FOUND'.
01 MSG-NOROW.
02 FILLER PIC X(120)
VALUE ' DSNT4991 NO ROWS FOUND IN TABLE OR VIEW'.

B e e e R R T T T

* WORKAREAS *

R R Kok kR KRRk R Kk
77 NOT-FOUND PIC S9(8) COMP VALUE +100.

Kk AR AR AR AR AR AR AR AR F R K AT A KA XA AR F R KA T A AR AR AR H R KK
* VARIABLES FOR ERROR-MESSAGE FORMATTING *

S ok ko ok e ko ok oo ok ok ok e ko ek ok ok ko ok e ko ok ook ok e ko ok ko ok
01 ERROR-MESSAGE.
02 ERROR-LEN PIC S9(4) COMP VALUE +960.
02 ERROR-TEXT PIC X(120) OCCURS 8 TIMES
INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +120.

B o e e o e T e T T

* SQL DESCRIPTOR AREA *
Fedede kKRR KRR R Rk R R ok
01 SQLDA.
02 SQLDAID PIC X(8) VALUE 'SQLDA .
02 SQLDABC PIC S9(8) COMPUTATIONAL VALUE 33016.

02 SQLN PIC S9(4) COMPUTATIONAL VALUE 750.
02 SQLD PIC S9(4) COMPUTATIONAL VALUE 0.
02 SQLVAR OCCURS 1 TO 750 TIMES

DEPENDING ON SQLN.
03 SQLTYPE PIC S9(4) COMPUTATIONAL.

03 SQLLEN PIC S9(4) COMPUTATIONAL.
03 SQLDATA POINTER.

03 SQLIND POINTER.

03 SQLNAME.

49 SQLNAMEL PIC S9(4) COMPUTATIONAL.
49 SQLNAMEC PIC X(30).

*

= DATA TYPES FOUND IN SQLTYPE, AFTER REMOVING THE NULL BIT
*

77 VARCTYPE PIC S9(4) COMP VALUE +448.
77 CHARTYPE PIC S9(4) COMP VALUE +452.
77 VARLTYPE PIC S9(4) COMP VALUE +456.
77 VARGTYPE PIC S9(4) COMP VALUE +464.
77 GTYPE PIC S9(4) COMP VALUE +468.
77 LVARGTYP PIC S9(4) COMP VALUE +472.
77 FLOATYPE PIC S9(4) COMP VALUE +480.
77 DECTYPE PIC S9(4) COMP VALUE +484.
77 INTTYPE PIC S9(4) COMP VALUE +496.
77 HWTYPE PIC S9(4) COMP VALUE +500.
77 DATETYP PIC S9(4) COMP VALUE +384.
77 TIMETYP PIC S9(4) COMP VALUE +388.
77 TIMESTMP PIC S9(4) COMP VALUE +392.

01 RECPTR POINTER.

01 RECNUM REDEFINES RECPTR PICTURE S9(8) COMPUTATIONAL.
01 TIRECPTR POINTER.

01 IRECNUM REDEFINES IRECPTR PICTURE S9(8) COMPUTATIONAL.
01 I PICTURE S9(4) COMPUTATIONAL.

01 J PICTURE S9(4) COMPUTATIONAL.

01 DUMMY PICTURE S9(4) COMPUTATIONAL.

01 MYTYPE PICTURE S9(4) COMPUTATIONAL.

370 Application Programming and SQL Guide

01 COLUMN-IND PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-LEN PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-PREC PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-SCALE PICTURE S9(4) COMPUTATIONAL.
01 INDCOUNT PIC S9(4) COMPUTATIONAL.
01 ROWCOUNT PIC S9(4) COMPUTATIONAL.
01 ERR-FOUND PICTURE X(1).
01 WORKAREAZ2.
02 WORKINDPTR POINTER OCCURS 750 TIMES.
S e s e oo e ok o ook ko o ok e e ok ek ok
* DECLARE CURSOR AND STATEMENT FOR DYNAMIC SQL
S s oo ek e o ok ok ook ko e ok
*
EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC.
EXEC SQL DECLARE SEL STATEMENT END-EXEC.

*
R R R o R o e R R R

* SQL INCLUDE FOR SQLCA *

B e e o o T

EXEC SQL INCLUDE SQLCA END-EXEC.

*

77 ONE PIC S9(4) COMP VALUE +1.
77 TWO PIC S9(4) COMP VALUE +2.
77 FOUR PIC S9(4) COMP VALUE +4.
77 QMARK PIC X(1) VALUE '?'.

*

LINKAGE SECTION.

01 LINKAREA-IND.
02 IND PIC S9(4) COMP OCCURS 750 TIMES.

01 LINKAREA-REC.
02 RECL-LEN PIC S9(8) COMP.
02 REC1-CHAR PIC X(1) OCCURS 1 TO 32700 TIMES

DEPENDING ON RECI-LEN.

01 LINKAREA-QMARK.
02 INDREC PIC X(1).

/

PROCEDURE DIVISION USING LINKAREA-IND LINKAREA-REC.

*

khkkhkhkkhkhkkhkhkhkhkhkkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhhkhkkhkhkkk*k

* SQL RETURN CODE HANDLING *

khkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkhhkhkhkhkhkhhkhhhhhhhhhhhhdhdhhhhhdhiikx
EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

*
khkkhkhkhkhkhkhkhkhkhkhkhhkkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhhkhkhkhkhkkk*x
* MAIN PROGRAM ROUTINE *
khkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkhhhkhkhkhkhhhhhhhhhhdhdhhdhdhdhhdhhhdhiik
SET IRECPTR TO ADDRESS OF REC1-CHAR(1).
* #*QPEN FILES
MOVE 'N' TO ERR-FOUND.
#*INITIALIZE
#% ERROR FLAG
OPEN INPUT SYSIN

OUTPUT SYSPRINT
OUTPUT SYSRECOL.
* **WRITE HEADER
WRITE MSGREC FROM HEADER
AFTER ADVANCING 2 LINES.

* *+GET FIRST INPUT
READ SYSIN RECORD INTO IOAREA.
* **MAIN ROUTINE
PERFORM PROCESS-INPUT THROUGH IND-RESULT.
*
PROG-END.
* **CLOSE FILES

Chapter 6. Coding SQL statements in COBOL application programs

371

CLOSE SYSIN

SYSPRINT
SYSRECO1.
GOBACK.

/
S ok ko ok e ko ok o ko ko ok ko ok ok ok ke ok ko ok ok o ok ek ke ok e ok ko ok
* *
* PERFORMED SECTION: *
* PROCESSING FOR THE TABLE OR VIEW JUST READ *
* *
KRR AR AR KA KA KR KA KA L L . Kok kR kR KRRk Rk

PROCESS-INPUT.
*
MOVE TNAME TO STMTTAB.
MOVE STMTBLD TO STMTCHAR.
MOVE +750 TO SQLN.
EXEC SQL PREPARE SEL INTO :SQLDA FROM :STMTBUF END-EXEC.

FhA I I AR A A A KA I IR I I A A I A A A Ak hhhhkhhhkhhhhhhhhhhhhhhhhhhrhhhhhrrx

* *
* SET UP ADDRESSES IN THE SQLDA FOR DATA. *
* *

e o o ok ko ko ok ko ok ok ke ko ek o ok ek ko ok e ok ko

IF SQLD = ZERO THEN

WRITE MSGREC FROM MSGNOCOL
AFTER ADVANCING 2 LINES

MOVE 'Y' TO ERR-FOUND
GO TO IND-RESULT.

MOVE ZERO TO ROWCOUNT.

MOVE ZERO TO REC1-LEN.

SET RECPTR TO IRECPTR.

MOVE ONE TO I.

PERFORM COLADDR UNTIL I > SQLD.

B e e e e e e T T R R T e S T e S T e S L T Lt

* *
* SET LENGTH OF OUTPUT RECORD. *
x EXEC SQL OPEN DT END-EXEC. *
* DO WHILE SQLCODE IS 0. *
* EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC. *
* ADD IN MARKERS TO DENOTE NULLS. *
* WRITE THE DATA TO SYSRECOL. *
* INCREMENT DATA RECORD COUNTER. *
x END. *
* *
KA AR A AR AR R AR A AR R AT AKX KK KK h*%
* **OPEN CURSOR
EXEC SQL OPEN DT END-EXEC.
PERFORM BLANK-REC.
EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC.
**NO ROWS FOUND
#*PRINT ERROR MESSAGE
IF SQLCODE = NOT-FOUND
WRITE MSGREC FROM MSG-NOROW
AFTER ADVANCING 2 LINES
MOVE 'Y' TO ERR-FOUND
ELSE
**WRITE ROW AND
#*CONTINUE UNTIL
**NO MORE ROWS
PERFORM WRITE-AND-FETCH
UNTIL SQLCODE IS NOT EQUAL TO ZERO.
*
EXEC SQL WHENEVER NOT FOUND GOTO CLOSEDT END-EXEC.
*
CLOSEDT.

EXEC SQL CLOSE DT END-EXEC.

*
B R R R R R R R R R R o R R R R T S S R S R R e

372 Application Programming and SQL Guide

* *

* INDICATE THE RESULTS OF THE UNLOAD OPERATION. *

* *

B R e 2 TR e e S T KERRKRKKKKKKARRRRKKRK
IND-RESULT.

IF ERR-FOUND = 'N' THEN
MOVE TNAME TO TABLENAM
MOVE ROWCOUNT TO ROWS
WRITE MSGREC FROM UNLOADED
AFTER ADVANCING 2 LINES
ELSE
WRITE MSGREC FROM MSG-OTHER-ERR
AFTER ADVANCING 2 LINES
MOVE +0012 TO RETURN-CODE
GO TO PROG-END.
*
WRITE-AND-FETCH.
* ADD IN MARKERS TO DENOTE NULLS.

MOVE ONE TO INDCOUNT.

PERFORM NULLCHK UNTIL INDCOUNT = SQLD.

MOVE RECI-LEN TO RECOI-LEN.

WRITE RECO1 FROM LINKAREA-REC.

ADD ONE TO ROWCOUNT.

PERFORM BLANK-REC.

EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC.
*

NULLCHK.
IF IND(INDCOUNT) < O THEN
SET ADDRESS OF LINKAREA-QMARK TO WORKINDPTR(INDCOUNT)
MOVE QMARK TO INDREC.

ADD ONE TO INDCOUNT.
dhhkhhkhkhhkhhhhhhhhhhhkhhdhrhhhhhhdrhdhrhhhhhhdhhdhrhdhrhdrrdhkx
x BLANK OUT RECORD TEXT FIRST *
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhhhkhhhhdhhhhhhkdikx

BLANK-REC.

MOVE ONE TO J.

PERFORM BLANK-MORE UNTIL J > REC1-LEN.
BLANK-MORE..

MOVE ' ' TO REC1-CHAR(J).

ADD ONE TO J.

COLADDR.
SET SQLDATA(I) TO RECPTR.

e ok ok K e ok ok ek ok ok ok ok ok ko ok ko ok ko ok ok ok ok ok kK Kk BTSN A A A AR AN A NI IA A AT

*

* DETERMINE THE LENGTH OF THIS COLUMN (COLUMN-LEN)

* THIS DEPENDS UPON THE DATA TYPE. MOST DATA TYPES HAVE

* THE LENGTH SET, BUT VARCHAR, GRAPHIC, VARGRAPHIC, AND

* DECIMAL DATA NEED TO HAVE THE BYTES CALCULATED.

* THE NULL ATTRIBUTE MUST BE SEPARATED TO SIMPLIFY MATTERS.
*

E R o e o o e e e R R e T T T S T e ST T L Lt s

MOVE SQLLEN(I) TO COLUMN-LEN.

* COLUMN-IND IS © FOR NO NULLS AND 1 FOR NULLS
DIVIDE SQLTYPE(I) BY TWO GIVING DUMMY REMAINDER COLUMN-IND.
* MYTYPE IS JUST THE SQLTYPE WITHOUT THE NULL BIT

MOVE SQLTYPE(I) TO MYTYPE.
SUBTRACT COLUMN-IND FROM MYTYPE.
* SET THE COLUMN LENGTH, DEPENDENT UPON DATA TYPE
EVALUATE MYTYPE
WHEN CHARTYPE CONTINUE,
WHEN DATETYP ~ CONTINUE,
WHEN TIMETYP ~ CONTINUE,
WHEN TIMESTMP CONTINUE,
WHEN FLOATYPE CONTINUE,
WHEN VARCTYPE
ADD TWO TO COLUMN-LEN,

Chapter 6. Coding SQL statements in COBOL application programs

373

WHEN VARLTYPE
ADD TWO TO COLUMN-LEN,
WHEN GTYPE
MULTIPLY COLUMN-LEN BY TWO GIVING COLUMN-LEN,
WHEN VARGTYPE
PERFORM CALC-VARG-LEN,
WHEN LVARGTYP
PERFORM CALC-VARG-LEN,
WHEN HWTYPE
MOVE TWO TO COLUMN-LEN,
WHEN INTTYPE
MOVE FOUR TO COLUMN-LEN,
WHEN DECTYPE
PERFORM CALC-DECIMAL-LEN,
WHEN OTHER
PERFORM UNRECOGNIZED-ERROR,
END-EVALUATE.
ADD COLUMN-LEN TO RECNUM.
ADD COLUMN-LEN TO RECI-LEN.

LR S S R R R Sk

IF THIS COLUMN CAN BE NULL, AN INDICATOR VARIABLE IS
NEEDED. WE ALSO RESERVE SPACE IN THE OUTPUT RECORD TO
NOTE THAT THE VALUE IS NULL.

* % X X %
* %k X X %

e o e oo o R e e ek
MOVE ZERO TO IND(I).
IF COLUMN-IND = ONE THEN
SET SQLIND(I) TO ADDRESS OF IND(I)
SET WORKINDPTR(I) TO RECPTR
ADD ONE TO RECNUM
ADD ONE TO RECI1-LEN.

ADD ONE TO I.
* PERFORMED PARAGRAPH TO CALCULATE COLUMN LENGTH
* FOR A DECIMAL DATA TYPE COLUMN
CALC-DECIMAL-LEN.
DIVIDE COLUMN-LEN BY 256 GIVING COLUMN-PREC
REMAINDER COLUMN-SCALE.
MOVE COLUMN-PREC TO COLUMN-LEN.
ADD ONE TO COLUMN-LEN.
DIVIDE COLUMN-LEN BY TWO GIVING COLUMN-LEN.
* PERFORMED PARAGRAPH TO CALCULATE COLUMN LENGTH
* FOR A VARGRAPHIC DATA TYPE COLUMN
CALC-VARG-LEN.
MULTIPLY COLUMN-LEN BY TWO GIVING COLUMN-LEN.
ADD TWO TO COLUMN-LEN.
* PERFORMED PARAGRAPH TO NOTE AN UNRECOGNIZED
* DATA TYPE COLUMN
UNRECOGNIZED-ERROR.

ERROR MESSAGE FOR UNRECOGNIZED DATA TYPE

MOVE SQLTYPE(I) TO TYPCOD

MOVE 'Y' TO ERR-FOUND

WRITE MSGREC FROM BADTYPE
AFTER ADVANCING 2 LINES

GO TO IND-RESULT.

*
e ok ko ok ko ek ook ok ok ok e ko ok ok ok ko ok e ko ek ok e ke ok ko ok
* SQL ERROR OCCURRED - GET MESSAGE *
e o o ek ok oo ko ok e ok ek ek ook ko ek ok ke ko ok
DBERROR.
* **SQL ERROR

MOVE 'Y' TO ERR-FOUND.

MOVE SQLCODE TO MSG-PRINT-CODE.

IF SQLCODE < O THEN MOVE '-' TO MSG-MINUS.

374 Application Programming and SQL Guide

WRITE MSGREC FROM MSG-SQLERR
AFTER ADVANCING 2 LINES.
CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
IF RETURN-CODE = ZERO
PERFORM ERROR-PRINT VARYING ERROR-INDEX
FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8
ELSE
* **ERROR FOUND IN DSNTIAR
* **PRINT ERROR MESSAGE
MOVE RETURN-CODE TO RETCODE
WRITE MSGREC FROM MSGRETCD
AFTER ADVANCING 2 LINES.
GO TO IND-RESULT.

*
khkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhhhhkhkhkhhkhkhkhkhhhdhhhdhdhdhdhdhdhhdhhhhiik
% PRINT MESSAGE TEXT *
dhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhhhhhhhhkhkhkhdhdhhdhdhdhhdhdhdhdhdhdhhhhhhhix
ERROR-PRINT.
WRITE MSGREC FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.

Related information:

[[DB2 Program Directory]

Sample COBOL program with CONNECT statements

This example demonstrates how to access distributed data by using CONNECT
statements in a COBOL program.

The following figure contains a sample COBOL program that uses two-phase
commit to access distributed data.

IDENTIFICATION DIVISION.
PROGRAM-ID. TWOPHASE.
AUTHOR.

REMARKS.

LR Rk R R

MODULE NAME = TWOPHASE

DESCRIPTIVE NAME = DBZ2 SAMPLE APPLICATION USING
TWO PHASE COMMIT AND THE DRDA DISTRIBUTED
ACCESS METHOD WITH CONNECT STATEMENTS

COPYRIGHT = 5665-DB2 (C) COPYRIGHT IBM CORP 1982, 1989
REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083

STATUS = VERSION 5
FUNCTION = THIS MODULE DEMONSTRATES DISTRIBUTED DATA ACCESS
USING 2 PHASE COMMIT BY TRANSFERRING AN EMPLOYEE
FROM ONE LOCATION TO ANOTHER.
NOTE: THIS PROGRAM ASSUMES THE EXISTENCE OF THE
TABLE SYSADM.EMP AT LOCATIONS STLEC1 AND
STLEC2.

MODULE TYPE = COBOL PROGRAM

PROCESSOR = DB2 PRECOMPILER, ENTERPRISE COBOL FOR Z/0S
MODULE SIZE = SEE LINK EDIT
ATTRIBUTES = NOT REENTRANT OR REUSABLE

ENTRY POINT =

b TR T R R T S T N R R R
EE I TR T R R R T R N R T T R R

PURPOSE = TO ILLUSTRATE 2 PHASE COMMIT
LINKAGE = INVOKE FROM DSN RUN

INPUT = NONE

OUTPUT =

Chapter 6. Coding SQL statements in COBOL application programs

375

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc/src/alltoc/db2z_prgdr.htm

* SYMBOLIC LABEL/NAME = SYSPRINT
* DESCRIPTION = PRINT OUT THE DESCRIPTION OF EACH
* STEP AND THE RESULTANT SQLCA
*
* EXIT NORMAL = RETURN CODE O FROM NORMAL COMPLETION
*
* EXIT ERROR = NONE
*
* EXTERNAL REFERENCES =
* ROUTINE SERVICES = NONE
x DATA-AREAS = NONE
x CONTROL-BLOCKS =
x SQLCA - SQL COMMUNICATION AREA
*
* TABLES = NONE
*
% CHANGE-ACTIVITY = NONE
*
*
*
PSEUDOCODE

MAINLINE.
Perform CONNECT-TO-SITE-1 to establish
a connection to the Tocal connection.
If the previous operation was successful Then
Do.

Perform PROCESS-CURSOR-SITE-1 to obtain the
information about an employee that is
transferring to another location.

If the information about the employee was obtained
successfully Then
Do.

Perform UPDATE-ADDRESS to update the information
to contain current information about the
employee.

Perform CONNECT-TO-SITE-2 to establish
a connection to the site where the employee is
transferring to.

If the connection is established successfully
Then
Do.

Perform PROCESS-SITE-2 to insert the
employee information at the location
where the employee is transferring to.

End if the connection was established
successfully.

End if the employee information was obtained
successfully.

End if the previous operation was successful.

Perform COMMIT-WORK to COMMIT the changes made to STLEC1

and STLEC2.

PROG-END.
Close the printer.
Return.

CONNECT-TO-SITE-1.
Provide a text description of the following step.
Establish a connection to the location where the
employee is transferring from.
Print the SQLCA out.

PROCESS-CURSOR-SITE-1.
Provide a text description of the following step.
Open a cursor that will be used to retrieve information
about the transferring employee from this site.

Ll R R R R T R R R T R R N S G R N R T I

376 Application Programming and SQL Guide

L T R R I I I

LR R R R R T N T I S R R N O R R

£ % X X ok ok X X X

L R R S R T R R R N R T S N I N .

Print the SQLCA out.
If the cursor was opened successfully Then
Do.

Perform FETCH-DELETE-SITE-1 to retrieve and
delete the information about the transferring
employee from this site.

Perform CLOSE-CURSOR-SITE-1 to close the cursor.

End if the cursor was opened successfully.

FETCH-DELETE-SITE-1.
Provide a text description of the following step.
Fetch information about the transferring employee.
Print the SQLCA out.
If the information was retrieved successfully Then
Do.
Perform DELETE-SITE-1 to delete the employee
at this site.
End if the information was retrieved successfully.

DELETE-SITE-1.
Provide a text description of the following step.
Delete the information about the transferring employee
from this site.
Print the SQLCA out.

CLOSE-CURSOR-SITE-1.
Provide a text description of the following step.
Close the cursor used to retrieve information about
the transferring employee.
Print the SQLCA out.

UPDATE-ADDRESS.
Update the address of the employee.
Update the city of the employee.
Update the location of the employee.

CONNECT-TO-SITE-2.
Provide a text description of the following step.
Establish a connection to the Tocation where the
employee is transferring to.
Print the SQLCA out.

PROCESS-SITE-2.
Provide a text description of the following step.
Insert the employee information at the location where
the employee is being transferred to.
Print the SQLCA out.

COMMIT-WORK.
COMMIT all the changes made to STLEC1 and STLEC2.

* ok ok X Xk 3k kX

LR R R R R R I I I R G I

LR Rt R R

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTER, ASSIGN TO S-OUTL.

DATA DIVISION.
FILE SECTION.

FD

01

PRINTER
RECORD CONTAINS 120 CHARACTERS

DATA RECORD IS PRT-TC-RESULTS

LABEL RECORD IS OMITTED.
PRT-TC-RESULTS.

03 PRT-BLANK PIC X(120).

Chapter 6. Coding SQL statements in COBOL application programs

377

WORKING-STORAGE SECTION.

B R R o e R R R R R R R R R S R R R T R T L e

* Variable declarations *
EE R R RS R R R S R R R R R R RS R R R R R R RS R R R R R R R R R R R R R R S R R R R R R
01 H-EMPTBL.

05 H-EMPNO PIC X(6).

05 H-NAME.

49 H-NAME-LN PIC S9(4) COMP-4.
49 H-NAME-DA PIC X(32).

05 H-ADDRESS.
49 H-ADDRESS-LN PIC S9(4) COMP-4.
49 H-ADDRESS-DA PIC X(36).

05 H-CITY.
49 H-CITY-LN PIC S9(4) COMP-4.
49 H-CITY-DA PIC X(36).

05 H-EMPLOC PIC X(4).

05 H-SSNO PIC X(11).

05 H-BORN PIC X(10).

05 H-SEX PIC X(1).

05 H-HIRED PIC X(10).

05 H-DEPTNO PIC X(3).

05 H-JOBCODE PIC S9(3)V COMP-3.

05 H-SRATE PIC S9(5) COMP.

05 H-EDUC PIC S9(5) COMP.

05 H-SAL PIC S9(6)V9(2) COMP-3.

05 H-VALIDCHK PIC S9(6)V COMP-3.

01 H-EMPTBL-IND-TABLE.

02 H-EMPTBL-IND PIC S9(4) COMP OCCURS 15 TIMES.
KhAKRAA R AR A I A h A h A hhhhhhhkhkhhkhdhkhdhhhkhhhkhdhhdhhhhhhhdhhhrddrhhrhdhxkx
* Includes for the variables used in the COBOL standard *
* language procedures and the SQLCA. *

B R R R R o e R R R R R R R R R S R R R T T R T e

EXEC SQL INCLUDE COBSVAR END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

LR Rt R R

* Declaration for the table that contains employee information =
kkhkkkkhkhkkkhkkhhkkhhkkhhkkhhkkhhkkhhkhkkhhkkhhkkhhkkhhkhkhhkkhkkhkkhhkkhkkhkkhhkkhkhkkhhkkhkkkhkkhkk*x

EXEC SQL DECLARE SYSADM.EMP TABLE
(EMPNO CHAR(6) NOT NULL,
NAME VARCHAR(32),
ADDRESS VARCHAR(36) ,
CITY VARCHAR(36) ,
EMPLOC CHAR(4) NOT NULL,
SSNO CHAR(11),

BORN DATE,

SEX CHAR(1),

HIRED CHAR(10),

DEPTNO CHAR(3) NOT NULL,
JOBCODE DECIMAL(3),

SRATE SMALLINT,

EDUC SMALLINT,

SAL DECIMAL(8,2) NOT NULL,
VALCHK DECIMAL(6))
END-EXEC.

R e e R T R T S R R R S R R T 2 L T L T e

* Constants *
KhEAAA A A hkhhhkhkhkhkhkhhkhkhhhhhhhhhhhhhhdhhddhdhhhhhdhhhhhhhhhhhhhdrhhdxdhdx

77 SITE-1 PIC X(16) VALUE 'STLEC1'.

378 Application Programming and SQL Guide

77 SITE-2 PIC X(16) VALUE 'STLEC2'.

77 TEMP-EMPNO PIC X(6) VALUE '080000'.

77 TEMP-ADDRESS-LN PIC 99 VALUE 15.

77 TEMP-CITY-LN PIC 99 VALUE 18.
khkkhkhkhkhkhkhkhkhkhkhhhkkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhhhhhhhhhhhhhhhhhkhkhhhkhhkxkx
* Declaration of the cursor that will be used to retrieve *
* information about a transferring employee *

R e e T T T T R R R S R R 2 e S L e L e L s et e

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, NAME, ADDRESS, CITY, EMPLOC,
SSNO, BORN, SEX, HIRED, DEPTNO, JOBCODE,
SRATE, EDUC, SAL, VALCHK
FROM SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO
END-EXEC.

PROCEDURE DIVISION.
A101-HOUSE-KEEPING.
OPEN OUTPUT PRINTER.

R g e e T e R e R S R S L S e L L e L L e L L L

* An employee is transferring from location STLEC1 to STLEC2.
* Retrieve information about the employee from STLEC1, delete
* the employee from STLEC1 and insert the employee at STLEC2
* using the information obtained from STLECI.

khhkkkhhkhhhhhhhhdrhhrhhhhhhdhhdrhdhhhhhhhdhhhhhhrhhhhhhhhhdrhhxhixd

* %k k%

MAINLINE.
PERFORM CONNECT-TO-SITE-1
IF SQLCODE IS EQUAL TO 0
PERFORM PROCESS-CURSOR-SITE-1
IF SQLCODE IS EQUAL TO 0
PERFORM UPDATE-ADDRESS
PERFORM CONNECT-TO-SITE-2
IF SQLCODE IS EQUAL TO O
PERFORM PROCESS-SITE-2.
PERFORM COMMIT-WORK.

PROG-END.
CLOSE PRINTER.
GOBACK.

B e e e o e e R R T T T e e T T e Tt L

* Establish a connection to STLEC1 *

B e e e T T R R T T R R S R R R e S R L L L L e

CONNECT-TO-SITE-1.

MOVE 'CONNECT TO STLEC1 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
CONNECT TO :SITE-1
END-EXEC.
PERFORM PTSQLCA.

dhhkkhkhkhhkhhhkhhhhhhhhkrhhhhhhdhhdhrhhhhhhdhhhdhhhhhhrhdhhhhhdhhdrhhrhhrd
* When a connection has been established successfully at STLEC1,*
* open the cursor that will be used to retrieve information *

* about the transferring employee. *
kkhkkkkhkkkhkkhkhkkhhkkhhkkhkkhkhkkhhkhkhhkkhkkhkkhhkkhhkkhkhkkhhkkhhkkhkkhkhkkhkhkkhhkkhkkkhkkhkk*

PROCESS-CURSOR-SITE-1.

MOVE 'OPEN CURSOR C1 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

Chapter 6. Coding SQL statements in COBOL application programs

379

OPEN C1
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO
PERFORM FETCH-DELETE-SITE-1
PERFORM CLOSE-CURSOR-SITE-1.

LR T R R

* Retrieve information about the transferring employee. *
* Provided that the employee exists, perform DELETE-SITE-1 to =
* delete the employee from STLECL. *

B e e R R T R R R S T R R S R 2 R L T L T e

FETCH-DELETE-SITE-1.

MOVE 'FETCH C1 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
FETCH C1 INTO :H-EMPTBL:H-EMPTBL-IND
END-EXEC.

PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO
PERFORM DELETE-SITE-1.

* Delete the employee from STLECL. *

oo ko ok ok o ko ke ok ko ok ok o koo ko ok ke ok ko ok ok ke ok ko
DELETE-SITE-1.

MOVE 'DELETE EMPLOYEE ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
MOVE 'DELETE EMPLOYEE ' TO STNAME
EXEC SQL

DELETE FROM SYSADM.EMP

WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PERFORM PTSQLCA.

EE R e e R R T T R R S T R R S R 2 L T L

* Close the cursor used to retrieve information about the *
* transferring employee. *
kkhkkkkhkhkkkhkkhkhkkhhkkhhkkhkkhhkkhhkhkkhhkhkhkkhkhkkhhkhkhhkhkkhkkhkhkkhkhkhkhkkhkhkkhhkkhkkkhkkhkk*x

CLOSE-CURSOR-SITE-1.

MOVE 'CLOSE CURSOR C1 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
CLOSE C1
END-EXEC.

PERFORM PTSQLCA.

B e e T R T T R R S R R R S R R T L L L e e

* Update certain employee information in order to make it *
* current. *
kkhkkkkhkhkkkhkkhkhkkhhkkhhkkhkkhhkkhhkhkkhhkkhhkkhkhkkhhkhkhhkhkkhhkkhhkkhhkhkhhkkhkhkkhhkkhkkkhkkhkk*x

UPDATE-ADDRESS.

MOVE TEMP-ADDRESS-LN TO H-ADDRESS-LN.
MOVE '1500 NEW STREET' TO H-ADDRESS-DA.
MOVE TEMP-CITY-LN TO H-CITY-LN.
MOVE 'NEW CITY, CA 97804' TO H-CITY-DA.
MOVE 'SJCA' TO H-EMPLOC.

R e e R R T R R R S R R R S R R T T L 2 e

* Establish a connection to STLEC2 *

R e e R T R T T R R S R R S S R R R L L e

380 Application Programming and SQL Guide

CONNECT-TO-SITE-2.

MOVE 'CONNECT TO STLEC2 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
CONNECT TO :SITE-2
END-EXEC.
PERFORM PTSQLCA.

R R R R R R e e e

* Using the employee information that was retrieved from STLEC1 =
* and updated previously, insert the employee at STLEC2.

B e e e e e e R T R T T T e T Tt L T s

PROCESS-SITE-2.

MOVE 'INSERT EMPLOYEE ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

INSERT INTO SYSADM.EMP VALUES

(:H-EMPNO,

:H-NAME,

:H-ADDRESS,

:H-CITY,

:H-EMPLOC,

:H-SSNO,

:H-BORN,

+H-SEX,

:H-HIRED,

:H-DEPTNO,

:H-JOBCODE,

:H-SRATE,

:H-EDUC,

:H-SAL,

:H-VALIDCHK)
END-EXEC.
PERFORM PTSQLCA.

B e o e o o e e e T R T T e e T T e Tt

* COMMIT any changes that were made at STLEC1 and STLEC2. *

B e e e T T T R T T R R S S e R 2 e L L L L e e

COMMIT-WORK.

MOVE 'COMMIT WORK ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
COMMIT
END-EXEC.

PERFORM PTSQLCA.

KhA I I AR A A I I A I I AR I I IR A I A A A A A A hhhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhrrdx

* Include COBOL standard language procedures

*

LR Rk Rt R R

INCLUDE-SUBS.
EXEC SQL INCLUDE COBSSUB END-EXEC.

Sample COBOL program using aliases for three-part names

You can access distributed data by using aliases for three-part names in a COBOL

program.

The following sample program demonstrates distributed access data using aliases

for three-part names with two-phase commit.

Chapter 6. Coding SQL statements in COBOL application programs

381

IDENTIFICATION DIVISION.
PROGRAM-ID. TWOPHASE.
AUTHOR.

REMARKS.

B e e R R R R R R S R R S S R R L T L T e

MODULE NAME = TWOPHASE

DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION USING
TWO PHASE COMMIT AND DRDA WITH
ALIASES FOR THREE-PART NAMES

FUNCTION = THIS MODULE DEMONSTRATES DISTRIBUTED DATA ACCESS
USING 2 PHASE COMMIT BY TRANSFERRING AN EMPLOYEE
FROM ONE LOCATION TO ANOTHER.

L R I

NOTE: THIS PROGRAM ASSUMES THE EXISTENCE OF THE
TABLE SYSADM.ALLEMPLOYEES AT LOCATIONS STLEC1
AND STLEC2.

MODULE TYPE = COBOL PROGRAM
PROCESSOR = DB2 PRECOMPILER, ENTERPRISE COBOL FOR Z/0S
MODULE SIZE = SEE LINK EDIT
ATTRIBUTES = NOT REENTRANT OR REUSABLE

ENTRY POINT =

PURPOSE = TO ILLUSTRATE 2 PHASE COMMIT
LINKAGE = INVOKE FROM DSN RUN

INPUT = NONE

OUTPUT =

SYMBOLIC LABEL/NAME = SYSPRINT
DESCRIPTION = PRINT OUT THE DESCRIPTION OF EACH
STEP AND THE RESULTANT SQLCA
EXIT NORMAL = RETURN CODE © FROM NORMAL COMPLETION
EXIT ERROR = NONE

EXTERNAL REFERENCES

ROUTINE SERVICES = NONE
DATA-AREAS = NONE
CONTROL-BLOCKS =

SQLCA - SQL COMMUNICATION AREA

TABLES = NONE

CHANGE-ACTIVITY = NONE

PSEUDOCODE

MAINLINE.

Perform PROCESS-CURSOR-SITE-1 to obtain the information
about an employee that is transferring to another
location.

If the information about the employee was obtained
successfully Then
Do.

Perform UPDATE-ADDRESS to update the information to
contain current information about the employee.
Perform PROCESS-SITE-2 to insert the employee
information at the location where the employee is
transferring to.
End if the employee information was obtained
successfully.
Perform COMMIT-WORK to COMMIT the changes made to STLEC1

EE I T T R R R I R R I N T R R S N I I R I I T T R R T T T .

EE T T R R T T N R R R I R T R R R T I R

382 Application Programming and SQL Guide

PROG-END.

Return.

Do.

Do.

EoE T R R T S A S R T N N N . S N TN N R N N T R G T T T

and STLEC2.

Close the printer.

PROCESS-CURSOR-SITE-1.
Provide a text description of the following step.
Open a cursor that will be used to retrieve information
about the transferring employee from this site.
Print the SQLCA out.
If the cursor was opened successfully Then

Perform FETCH-DELETE-SITE-1 to retrieve and
delete the information about the transferring
employee from this site.

Perform CLOSE-CURSOR-SITE-1 to close the cursor.

End if the cursor was opened successfully.

FETCH-DELETE-SITE-1.
Provide a text description of the following step.
Fetch information about the transferring employee.
Print the SQLCA out.
If the information was retrieved successfully Then

Perform DELETE-SITE-1 to delete the employee
at this site.
End if the information was retrieved successfully.

DELETE-SITE-1.
Provide a text description of the following step.
Delete the information about the transferring employee
from this site.
Print the SQLCA out.

CLOSE-CURSOR-SITE-1.
Provide a text description of the following step.
Close the cursor used to retrieve information about
the transferring employee.
Print the SQLCA out.

UPDATE-ADDRESS.
Update the address of the employee.
Update the city of the employee.
Update the location of the employee.

PROCESS-SITE-2.
Provide a text description of the following step.
Insert the employee information at the location where
the employee is being transferred to.
Print the SQLCA out.

COMMIT-WORK.
COMMIT all the changes made to STLEC1 and STLEC2.

LR R R S R I T R R N T N O TR R I I R I N I N SR I N I T I

R e e T T T T R R R S e S 2 e S 2 e R L L L e et e

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PRINTER, ASSIGN TO S-OUTIL.

DATA DIVISION.
FILE SECTION.
FD PRINTER

RECORD CONTAINS 120 CHARACTERS

Chapter 6. Coding SQL statements in COBOL application programs

383

DATA RECORD I
LABEL RECORD

PRT-TC-RESULT
03 PRT-BLANK

01

WORKING-STORAGE S

*hkkhkkkkkkkkkkhkkkkxkx

* Variable declara
khkkhkhkhkhkhkhkkhkhkhkkhkhkkk

01 H-EMPTBL.

05 H-EMPNO
05 H-NAME.
49 H-NAME
49 H-NAME
H-ADDRESS
49 H-ADDR
49 H-ADDR
H-CITY.
49 H-CITY
49 H-CITY
H-EMPLOC
H-SSNO
H-BORN
H-SEX
H-HIRED
H-DEPTNO
H-JOBCODE
H-SRATE
H-EDUC
H-SAL

05 H-VALIDCH
H-EMPTBL-IND-
02 H-EMPTBL-

05

S PRT-TC-RESULTS
IS OMITTED.
S.
PIC X(120).

ECTION.

kkhkkkkhkkkhkkhkhkkhhkkhhkkhkkhkhkkhhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkkkk*
tions *

B R R R R R R R R R R R R R R S
PIC X(6).

-LN
-DA

PIC S9(4) COMP-4.
PIC X(32).

ESS-LN
ESS-DA

PIC S9(4) COMP-4.
PIC X(36).

-LN
-DA
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
K PIC
TABLE.
IND

PIC S9(4) COMP-4.
PIC X(36).

X(4).

X(11).

X(10).

X(1).

X(10).

X(3).

S9(3)V COMP-3.
S9(5) COMP.

S9(5) COMP.
S9(6)V9(2) COMP-3.
S9(6)V COMP-3.

PIC S9(4) COMP OCCURS 15 TIMES.

* Includes for the

* language procedu
*kkkkhkhkkkhhkkhhkkkhhkkhkx

EXEC SQL INCL
EXEC SQL INCL

*kkkkkkkkkkkkkkkxx

* Declaration for
*hkkhkhkkkhkhkkhhkkkhhkxkx

EXEC SQL DECL
(EMPNO
NAME
ADDRESS
CITY
EMPLOC
SSNO
BORN
SEX
HIRED
DEPTNO
JOBCODE
SRATE
EDUC
SAL
VALCHK

END-EXEC.

*khkkkkkkkkkkkhkkkkxx

384 Application Programming and SQL Guide

variables used in the COBOL standard *
res and the SQLCA. *

B o S

UDE COBSVAR END-EXEC.
UDE SQLCA END-EXEC.

EE R R R R R R R o S

the table that contains employee information =*
khkhkkkhkhkhkkhhkhhhhdhhdhhdhdrhhhhhhdhhdrhdhhhhdrhdrisx

ARE SYSADM.ALLEMPLOYEES TABLE
CHAR(6) NOT NULL,
VARCHAR(32),
VARCHAR(36) ,
VARCHAR(36) ,

CHAR(4) NOT NULL,
CHAR(11),

DATE,

CHAR(1),

CHAR(10),

CHAR(3) NOT NULL,
DECIMAL(3),

SMALLINT,

SMALLINT,

DECIMAL(8,2) NOT NULL,
DECIMAL(6))

LR R R R R R R R R R R Rt R R R R R R R R R R R R R

* Constants *
B R L R R R R R R R R R R R R R L R R

77 TEMP-EMPNO PIC X(6) VALUE '080000'.

77 TEMP-ADDRESS-LN PIC 99 VALUE 15.

77 TEMP-CITY-LN PIC 99 VALUE 18.
kkhkkkkkkkhkkhkhkkhhkkhhkhkhkkhhkkhhkhkhhkhkhkkhkhkkhhkhkhhkkhhkkhhkkhkkhkhkkhkhkkhhkkhkkkhkkhkk*x
* Declaration of the cursor that will be used to retrieve *
* information about a transferring employee *
* EC1EMP 1is the alias for STLEC1.SYSADM.ALLEMPLOYEES *

B o e o o e R T R T T T e T T e T Tt

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, NAME, ADDRESS, CITY, EMPLOC,
SSNO, BORN, SEX, HIRED, DEPTNO, JOBCODE,
SRATE, EDUC, SAL, VALCHK
FROM ECIEMP
WHERE EMPNO = :TEMP-EMPNO
END-EXEC.
PROCEDURE DIVISION.
A101-HOUSE-KEEPING.
OPEN OUTPUT PRINTER.

dhhkhhkhkhhkhhhhhhhhhhhrhhhhhhdhhdhrhdhhhhhdhhdhhhhhhrhhhhhhdhhdrhhrhhrd
* An employee is transferring from location STLEC1 to STLEC2. =
* Retrieve information about the employee from STLECl, delete =
* the employee from STLEC1 and insert the employee at STLEC2 *
* using the information obtained from STLECI. *

MAINLINE.
PERFORM PROCESS-CURSOR-SITE-1
IF SQLCODE IS EQUAL TO 0
PERFORM UPDATE-ADDRESS
PERFORM PROCESS-SITE-2.
PERFORM COMMIT-WORK.

PROG-END.

CLOSE PRINTER.

GOBACK.
kkhkkkkhkhkkkhkkhkhkkhhkkhhkkhkkhhkkhhkhkhhkkhkkhkkhhkkhhkkhkhhkkhhkkhhkkhkkhkhkkhkhkkhhkkhkkkhkkhkkx*
* Open the cursor that will be used to retrieve information *
* about the transferring employee. *

LR Rk Rk Rk

PROCESS-CURSOR-SITE-1.

MOVE 'OPEN CURSOR C1 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
OPEN C1
END-EXEC.

PERFORM PTSQLCA.

IF SQLCODE IS EQUAL TO ZERO
PERFORM FETCH-DELETE-SITE-1
PERFORM CLOSE-CURSOR-SITE-1.

LR Rt R

* Retrieve information about the transferring employee. *
* Provided that the employee exists, perform DELETE-SITE-1 to =
* delete the employee from STLECI. *

B R R R R R e R R R R R R S R R R T R L L L

FETCH-DELETE-SITE-1.

Chapter 6. Coding SQL statements in COBOL application programs

385

MOVE 'FETCH C1 ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME

EXEC SQL
FETCH C1 INTO :H-EMPTBL:H-EMPTBL-IND
END-EXEC. PERFORM PTSQLCA.

IF SQLCODE IS EQUAL TO ZERO
PERFORM DELETE-SITE-1.

R e e e T R T R R S R R R S R R R e S L 2 R L L e e e e

* Delete the employee from STLECL. *

EE R R R R R kkhkkhkhkhkkhhhhhhkhhkkk kkhkhkhkhkhhhhhhhhhkhhhkrkkx

DELETE-SITE-1.

MOVE 'DELETE EMPLOYEE ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
MOVE 'DELETE EMPLOYEE ' TO STNAME
EXEC SQL

DELETE FROM EC1EMP

WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PERFORM PTSQLCA.

R o e R R R R R S R R R S R R L 2 T L e

* Close the cursor used to retrieve information about the *

* transferring employee. *
kkhkkkkhkhkkkhkkhkhkkhhkkhhkhkhkkhhkkhhkhkkhhkhkhhkhkhkkhhkhkhhkhkhkkhhkhkhkhkhkhkkhkhkkhhkkhkkkhkkhkk*

CLOSE-CURSOR-SITE-1.

MOVE 'CLOSE CURSOR Cl ' 70 STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
CLOSE C1
END-EXEC.

PERFORM PTSQLCA.

R e e R R R R R S R R R S R 2 L T L e

* Update certain employee information in order to make it *
* current. *
kkhkkkkhkhkkkhkkhkhkkhhkkhhkhkhkkhkhkkhhkhkkhhkhkhhkkhkhkkhhkhkhhkkhkhkkhhkkhkhkhkhkkhkhkkhhkkhkkkhkkhkk*

UPDATE-ADDRESS.

MOVE TEMP-ADDRESS-LN TO H-ADDRESS-LN.

MOVE '1500 NEW STREET' TO H-ADDRESS-DA.

MOVE TEMP-CITY-LN TO H-CITY-LN.

MOVE 'NEW CITY, CA 97804' TO H-CITY-DA.

MOVE 'SJCA' TO H-EMPLOC.
khhkkkhhkhkkhhkhhhhhhhdrhdhhhhhhhhhhhhhrhhhhhhhhhdrhdrhhhhhhdrhdrhdx
* Using the employee information that was retrieved from STLEC1 =
* and updated previously, insert the employee at STLEC2. *
* EC2EMP is the alias for STLEC2.SYSADM.ALLEMPLOYEES *

LR Rk R e R R

PROCESS-SITE-2.

MOVE 'INSERT EMPLOYEE ' 7O STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
INSERT INTO EC2EMP VALUES
(:H-EMPNO,
:H-NAME,
:H-ADDRESS,
:H-CITY,
:H-EMPLOC,
:H-SSNO,
:H-BORN,

386 Application Programming and SQL Guide

+H-SEX,
:H-HIRED,
:H-DEPTNO,
:H-JOBCODE,
:H-SRATE,
:H-EDUC,
:H-SAL,
:H-VALIDCHK)
END-EXEC.
PERFORM PTSQLCA.

B o e o o e o T R T T e T T e T Tt

* COMMIT any changes that were made at STLEC1 and STLEC2. *

B g e e T T R T T T R R S R R 2 L S L R L L L e e

COMMIT-WORK.

MOVE 'COMMIT WORK ' TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL
COMMIT
END-EXEC.

PERFORM PTSQLCA.

LR R R R R kR ok R o R R R R R R R R R R Rk ke

* Include COBOL standard language procedures *
kkhkkkkhkkkhkkhhkkhhkkhhkhkhhkhhkkhhkhkhhkhkhkkhkhkhkhhkhkhkkhhkkhhkkhhkhkhkkhkhkkhhkkhkkhkkhkkhkkk

INCLUDE-SUBS.
EXEC SQL INCLUDE COBSSUB END-EXEC.

Example COBOL stored procedure with a GENERAL WITH
NULLS linkage convention

You can call a stored procedure that uses the GENERAL WITH NULLS linkage
convention from a COBOL program.

This example stored procedure does the following;:

* Searches the DB2 SYSIBM.SYSROUTINES catalog table for a row that matches
the input parameters from the client program. The two input parameters contain
values for NAME and SCHEMA.

 Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:

CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,
OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE COBOL
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO

Chapter 6. Coding SQL statements in COBOL application programs 387

RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG

PROGRAM TYPE MAIN

SECURITY DB2

RESULT SETS 2

COMMIT ON RETURN NO;

The following example is a COBOL stored procedure with linkage convention
GENERAL WITH NULLS.

CBL RENT

IDENTIFICATION DIVISION.
PROGRAM-ID. GETPRML.
AUTHOR. EXAMPLE.
DATE-WRITTEN. 03/25/98.

E