
CICS Transaction Server for z/OS
Version 4 Release 2

CICSPlex SM Application Programming
Guide

SC34-7194-01

���

CICS Transaction Server for z/OS
Version 4 Release 2

CICSPlex SM Application Programming
Guide

SC34-7194-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 129.

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1995, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
Who this book is for. v
How to use this book v
Notes on terminology v
CICS System Connectivity v

Changes in CICS Transaction Server
for z/OS, Version 4 Release 2 vii

Chapter 1. An overview of the CICSPlex
SM API 1
Supported environments and languages 1
Available interfaces 1
Connecting to CICSPlex SM 2

The connection process 4
Security considerations 5

Compatibility between environments 6
Compatibility between releases of CICSPlex SM . . 7

Special considerations for REXX applications . . 8
Accessing resource tables from a new release . . 9
Accessing resource tables from a previous release 9

Sample programs 10

Chapter 2. Using the CICSPlex SM API 13
CICSPlex SM managed objects 13

Types of managed objects. 13
CICSPlex SM resource tables 15

Building a customized resource table record . . 17
How to create copybooks for customized
resource table records 18

Selecting managed objects 19
Setting the context and scope 19
Using filter expressions 20

Working with result sets 24
An overview of result set commands 24
Retrieving records from a result set 27
Positioning the record pointer in a result set . . 30
Processing selected records in a result set . . . 31
Summarizing the records in a result set 34
Sorting the records in a result set 37

Modifying managed resources 38
Modifying resource attributes 39
Performing an action against a resource 40
Working with CICSPlex SM and CICS definitions 41

Asynchronous processing. 50
Using the LISTEN command 51
Using the NOWAIT option 51
Using tokens to identify a request 52
Using the ADDRESS command 52
Using the RECEIVE command 53

Using CICSPlex SM tokens 54
Using metadata resource tables 55

ATTR 55
ATTRAVA 62

METADESC 63
METANAME 65
METAPARM 65
OBJACT 67
OBJECT 69
PARMAVA 71

Using CRESxxxx resource tables 72
Querying the CICSPlex SM API exit 72

Chapter 3. Writing an EXEC CPSM
program 73
Using the resource table copy books 73

How to access the copy books 73
Copybook names and aliases 73
Copybook format 74
Copybook data characteristics 74
Supplied copy books 75

Language and environment considerations 83
Assembler considerations 84
PL/I considerations 84
NetView considerations 84
User-replaceable programs 85
CICS Global User exit programs 85
Status programs 85

Translating your program 85
Specifying the CPSM translator option 85

Compiling your program 86
Assembler considerations 87
PL/I considerations 87
COBOL considerations. 87
C and C++ considerations 87

Link editing your program 88
Assembler considerations 88
PL/I, COBOL, and C considerations 89

Run-time considerations 89

Chapter 4. Dealing with exception
conditions 91
Default CICSPlex SM exception handling 91
Using the RESPONSE and REASON options . . . 91

Types of responses 91
Testing for RESPONSE and REASON. 94

Retrieving FEEDBACK records 95
Using the FEEDBACK command 95
Evaluating a FEEDBACK record 96
Availability of FEEDBACK records 98
An example of FEEDBACK for a result set . . . 98
Additional processing for BAS 99
Evaluating error result set records 100
Evaluating BINSTERR resource table records 100
Evaluating BINCONRS resource table records 101
Evaluating BINCONSC resource table records 103
An example of a BAS error result set 104

Chapter 5. Writing a REXX program 107

© Copyright IBM Corp. 1995, 2012 iii

Accessing the API environment 107
Specifying an API command 108
Accessing resource table data 109

Translating attribute values 110
Processing CHANGEAGENT, CHANGEAGREL,
CHANGETIME, CHANGEUSRID, and
CREATETIME attributes 110
Processing FEEDBACK attributes 111

Chapter 6. REXX error handling . . . 113
Translation errors 113
Run-time errors. 114
TPARSE and TBUILD errors 114
Messages 114
EYU_TRACE data 115

Appendix A. BINCONRS, BINCONSC,
and BINSTERR error codes 117
BINCONRS 117
BINCONSC 117
BINSTERR 118

Appendix B. Sample program listings 119
Sample program EYU#API1 119
Sample program EYUCAPI2 121
Sample program EYUAAPI3 123
Sample program EYULAPI4 125

Notices 129
Trademarks 130

Bibliography. 131
CICS books for CICS Transaction Server for z/OS 131
CICSPlex SM books for CICS Transaction Server
for z/OS 132
Other CICS publications 132

Accessibility 133

Index 135

iv CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Preface

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

This manual provides programming information for the CICSPlex® System
Manager (CICSPlex SM) element of CICS® Transaction Server for z/OS® Version 4
Release 1. You can use the application programming interface (API) to access
CICSPlex SM data and services.

Who this book is for
This book is for application programmers who want to access the services of
CICSPlex SM.

How to use this book
This book provides guidance information for the CICSPlex SM API.

It introduces the API, describes the various environments it supports, and provides
examples of its use. If this is your first experience with the API, it will probably
help to read through the guide more or less from start to finish.

Notes on terminology
In the text of this book, the term CICSPlex SM (spelled with an uppercase
letter 'P') means the IBM® CICSPlex SM element of CICS Transaction Server for
z/OS.

The term CICSplex (spelled with a lowercase letter 'p') means the largest set of
CICS systems to be managed by CICSPlex SM as a single entity. Other terms used
in this book are:

Term Meaning

API Application programming interface

ASM Assembler language

CICS The CICS element of the CICS Transaction Server for z/OS

MVS™ MVS/Enterprise Systems Architecture SP (MVS/ESA)

CICS System Connectivity
This release of CICSPlex SM can be used to control CICS systems that are directly
connected to it.

For this release of CICSPlex SM, the connectable CICS systems are:
v CICS Transaction Server for z/OS 3.1
v CICS Transaction Server for z/OS 2.3
v CICS Transaction Server for z/OS 2.2
v CICS Transaction Server for OS/390® 1.3

© Copyright IBM Corp. 1995, 2012 v

You can use this release of CICSPlex SM to control systems running supported
releases of CICS that are connected to, and managed by, your previous release of
CICSPlex SM. However, if you have any directly-connectable release levels of
CICS, as listed above, that are connected to a previous release of CICSPlex SM, you
are strongly recommended to migrate them to the current release of CICSPlex SM,
to take full advantage of the enhanced management services. See the CICS
Transaction Server for z/OS Migration from CICS TS Version 2.3 for information on
how to do this.

Table 1 shows which supported CICS systems can be directly connected to which
releases of CICSPlex SM.

Table 1. Directly-connectable CICS systems by CICSPlex SM release

CICS system CICSPlex SM
component of CICS
TS 3.1

CICSPlex SM
component of CICS
TS 2.3

CICSPlex SM
component of CICS
TS 2.2

CICSPlex SM
component of CICS
TS 1.3

CICS TS 3.1 Yes No No No

CICS TS 2.3 Yes Yes No No

CICS TS 2.2 Yes Yes Yes No

CICS TS 1.3 Yes Yes Yes Yes

TXSeries 4.3.0.4 No Yes Yes No

TXSeries 5.0 No Yes Yes No

vi CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1995, 2012 vii

viii CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Chapter 1. An overview of the CICSPlex SM API

The CICSPlex SM application programming interface (API) provides you with
access to CICS system management information and allows you to invoke
CICSPlex SM services from an external program.

The API can provide a single interface for programs designed to monitor and
control the CICS systems in your enterprise. In addition, the API provides an
interface to CICSPlex SM itself. So you can also write programs to access the
administrative functions that control the way CICSPlex SM operates.

Some typical uses of the API include:
v Monitoring key resources in your CICS environment.
v Changing the status of CICS resources relative to other conditions in your

enterprise.
v Controlling the flow of change to your CICS environment.
v Passing the information provided by CICSPlex SM to an automation product.
v Developing alternative display and report formats for CICS and CICSPlex SM

data.
v Processing CICSPlex SM notifications about events such as:

– Real-time analysis thresholds being reached
v Creating and maintaining CICSPlex SM definitions for Business Application

Services, for workload management, real-time analysis, and resource monitoring.
v Creating and maintaining CICS resource definitions in the CICSPlex SM data

repository.

Supported environments and languages
The API can be called from programs running in a variety of environments.
v z/OS Batch
v TSO
v IBM Tivoli NetView®

v CICS element of CICS Transaction Server for z/OS

Note: The CICSPlex SM API cannot be called from within a NetView RODM
method. For details on the restrictions that apply to RODM method services, see
the NetView RODM Programming Guide.

Available interfaces
CICSPlex SM provides two interfaces for API users.

Command-level interface
This interface uses the CICS translator to accept EXEC CPSM statements
and translate them into the appropriate sequence of instructions in the
source language. These instructions are then linked to an interface stub
routine that is supplied by CICSPlex SM.

The command-level interface is available for programs written in the
following languages:

© Copyright IBM Corp. 1995, 2012 1

v Assembler Version 2 and later
v OS PL/I Optimizing Compiler Version 2.3 and later
v COBOL Compiler Version 1.3.2 and later
v C Version 2.1. and later

Table 2 shows which languages are supported by the command-level
interface in each environment.

Table 2. Programming languages supported by the command-level interface

Environment Assembler COBOL PL/I C

CICS TS U U U U

MVS Batch U U U U

MVS TSO U U U U

MVS NetView U U U

Runtime interface
The runtime interface supports programs written as REXX EXECs in the
following MVS environments:
v Batch
v TSO
v NetView.

This interface consists of a REXX function package that is supplied by
CICSPlex SM. The function package accepts commands in the form of text
strings and generates the appropriate API calls.

Connecting to CICSPlex SM
You can think of a CICSPlex SM API program as existing in or having access to
three environments.

User environment
The program itself and the environment in which it runs, such as MVS or
CICS.

CICSPlex SM environment
The data that CICSPlex SM maintains and the services it provides to the
program.

Managed resource environment
The resources that CICSPlex SM manages and which the program can
access.

Before your program can access the CICSPlex SM environment and the resources it
manages, you must establish a connection to CICSPlex SM. This connection is
called an API processing thread and serves two basic purposes:
v When a thread is created, the user is identified so that security validation and

auditing of the program's operations can take place transparently.
v There are implicit relationships between some API functions, and those

relationships are maintained at the thread level. Each thread is considered a
unique API user and no resources can cross the boundary of a thread.

Once a thread is created, your program can issue commands within the context of
the local CMAS. The local CMAS is dictated by where and how the connect
command is issued:

2 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v If issued in a CICS system, it is the local CMAS to that CICS system.
v If issued as a batch job and no CMAS is stated explicitly, the local CMAS is the

last CMAS started.
v If issued as a batch job and a CMAS within the MVS image is included in the

CONNECT command, it is that CMAS.

You can look at data from CMASs other than the local CMAS but you cannot
change the context to point directly to them.

A simple API program would establish only a single thread. You could establish
the thread, perform the desired operations, and then terminate the thread. A more
complex program might maintain several concurrent threads to perform parallel
operations that would be prohibited on a single thread or to simplify the
correlation of commands and results.

You can use the following commands to manage an API thread:

CONNECT
Establishes a connection to CICSPlex SM, defines an API processing thread,
and provides default settings for the thread. The thread is maintained by
the CMAS that is supporting your API session.

DISCONNECT
Disconnects an API processing thread from CICSPlex SM and releases any
resources associated with the thread.

QUALIFY
Defines the CICSPlex SM context and scope for subsequent commands
issued by the thread.

TERMINATE
Terminates all API processing on all the threads created by the CICS or
MVS task that issues the command.

These commands manage the connection between the user environment (your
program) and CICSPlex SM; they do not affect the managed resources. Figure 1 on
page 4 illustrates the impact these commands have on the API environment.

Chapter 1. An overview of the CICSPlex SM API 3

For complete descriptions of these commands, see CICSPlex System Manager
Application Programming Reference.

The connection process
The process of connecting to CICSPlex SM varies according to what type of
program you write and where it runs.

For programs written using the command-level interface, keep in mind the
following requirements:

CICS A program written to run as a CICS application must be linked with the
proper stub routine and must run in a CICS system that is being actively
managed by CICSPlex SM as a local MAS.

A connection is established first to the MAS agent code that resides in the
CICS system and then to the CMAS that controls that MAS. On the
CONNECT command, you must specify a CONTEXT of the local CMAS.

Batch, NetView, or TSO
A program written to run as a batch job or under NetView or TSO must be
linked with the proper stub routine and must run in the same MVS image
as the CMAS to which you want to connect.

In these environments, if there is more than one CMAS in the MVS image,
the API selects a suitable CMAS and establishes a connection. The
following rules apply to the selection of a CMAS:
v The CMAS must be running the same version of CICSPlex SM as the

run-time module (EYU9AB00).

CONNECT
DISCONNECT

QUALIFY
TERMINATE

Environmental Commands

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM
API Client Code Processing

thread

Figure 1. API commands involved in managing a thread

4 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v If the context specified on the CONNECT command is a CMAS,
CICSPlex SM connects to that CMAS. If that CMAS is either not active
or not running the appropriate version of CICSPlex SM, the CONNECT
command fails.

v If the context specified on CONNECT is a CICSplex, CICSPlex SM
selects a CMAS running the appropriate version that participates in the
management of the CICSplex.

v If no context is specified on CONNECT, CICSPlex SM connects to the
CMAS that was most recently started, provided it is running the
appropriate version of CICSPlex SM.

The CICSPlex SM API also supports another type of batch environment. A
program can issue API commands from an address space that is running a
CICS system without itself being a CICS transaction. In other words, the
program can run as a separate MVS task in the same address space as the
CICS system. This type of program must be linked with the batch
environment stub routine and the connection process is the same as for
other batch programs.

Note: A program that is a CICS transaction must be run in a CICS system
that is a CICSPlex SM local MAS.

For details on the stub routines that are required for each of these environments,
see “Link editing your program” on page 88.

Note: For programs written in REXX, the connection process is the same as for a
command-level program that runs in the same environment (batch, TSO, or
NetView). No stub routine is required, but the REXX function package that is
supplied by CICSPlex SM must have been properly installed.

MVS restrictions: Upon successful completion of a CONNECT request, a thread
token is returned to the user. All subsequent commands referring to this thread
token must be issued from the same MVS TCB that issued the comnnection request

Security considerations
When an API program requests a connection to CICSPlex SM, the CMAS being
connected to attempts to extract user authorization data from the environment.
How the connection is established depends upon whether such authorization data
exists and whether security is active in the CMAS.

If security exists
Regardless of whether CMAS security is active, if a security environment
exists where the API program is running:
v The API security routine, EYU9XESV, is not called.
v The USER and SIGNONPARM options on the CONNECT command are

ignored.
v The API program is connected with the user ID of the invoking user, as

obtained from the accessor environment element (ACEE).

Note: If CMAS security is not active, the ACEE user ID is not validated by
CICSPlex SM.

This type of security environment may exist when a program runs under
TSO, batch, NetView, or a local MAS where CICS security is active.
Security checking is performed by the environment where the API program
is running.

Chapter 1. An overview of the CICSPlex SM API 5

If security does not exist and CMAS security is not active

v The API security routine, EYU9XESV, is not called.
v The USER and SIGNONPARM options on the CONNECT command are

ignored.
v No sign-on is performed. However, the user ID specified in the

XESV_CONN_USERID field of the security routine parameter block,
EYUBXESV, is associated with the connection.

This type of security environment may exist when a program runs under a
local MAS where CICS security is not active. Since CMAS security is not
active, no security checking is performed.

If security does not exist and CMAS security is active

v The API security routine, EYU9XESV, is called.
v The USER and SIGNONPARM values from the CONNECT command

are passed to EYU9XESV.
v A sign-on is performed using the user ID returned by EYU9XESV, but no

password checking is performed. By default, EYU9XESV returns the
default CICS user ID for the CMAS (the DFLT_UID value).

This type of security environment might exist in the CICSPlex SM GUI or
when a program runs under a local MAS where CICS security is not
active. Since CMAS security is active, security checking is performed by
EYU9XESV.

Table 3 summarizes the levels of API security and the conditions under which they
are implemented.

Table 3. Possible API security environments

Environment
Security

CMAS Security No CMAS Security

YES EYU9XESV not called. CONNECT
options ignored. User ID=ACEE.

EYU9XESV not called. CONNECT
options ignored. User ID=ACEE (not
checked).

NO EYU9XESV called. CONNECT options
passed. User ID=As returned by
EYU9XESV (sign-on with no
password checking).

EYU9XESV not called. CONNECT
options ignored. User ID=
XESV_CONN_USERID (no sign-on).

For a description of the USER and SIGNONPARM options, see the API CONNECT
Command in the CICSPlex System Manager Application Programming Reference. For a
description of EYU9XESV and information on customizing this security routine, see
RACF security overview in the RACF Security Guide.

Compatibility between environments
Once you have written a CICSPlex SM API program to run in one environment,
you can take that program and run it in another environment with only minor
modifications.

For example, if you want to take a CICS application written with EXEC CPSM
commands and convert it to an MVS batch program, you should:
v Make the appropriate code changes, such as:

– Remove any EXEC CICS commands that may be included

6 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht5_overview.html

– Add the necessary MVS calls
v Relink-edit the program with the batch environment stub routine.

Note: A REXX program can be moved from one MVS environment (batch, TSO, or
NetView) to another without modification, provided you have not used any
environment-specific functions.

Before you try to move an EXEC CPSM program to an environment other than the
one for which it was written, you should review the following sections:
v “Language and environment considerations” on page 83
v “Translating your program” on page 85
v “Link editing your program” on page 88.

Compatibility between releases of CICSPlex SM
Once you have written an API program to run under one release of CICSPlex SM,
you can continue to access the data provided by that release, or you can access the
data available from a later release of the product.

In general, if you plan to access more than one release of the CICSPlex SM API,
keep the following in mind:

Run-time environment
The run-time version of a CICSPlex SM API program is equal to the level
of the CMAS to which it connects:
v For a program written to run as a CICS application, the run-time version

is that of the CMAS to which the MAS is connected.
v For a program written to run as a batch job or under NetView or TSO,

the version is determined by the version of the CICSPlex SM run-time
module (EYU9AB00), which is distributed in the version's SEYUAUTH
library.

The run-time version of a program must be greater than or equal to:
v The version of the stub routine module (EYU9AxSI) with which the

program was link edited.
– For CICS programs, the stub module is called EYU9AMSI and is

distributed in the version's SEYULOAD library.
– For batch, TSO, or NetView programs, the module is called

EYU9ABSI and is distributed in the version's SEYUAUTH library.

In addition, the version of the stub module for any separately link
edited and called programs must be the same as the version used to link
edit the program that issued the CONNECT command.

v The value specified on the VERSION option of the CONNECT
command.

Note: For programs written in REXX, the run-time version must be greater
than or equal to the version of the function package (EYU9AR00), which is
distributed in the version's SEYUAUTH library.

VERSION option
The VERSION option on the CONNECT command controls which release
of CICSPlex SM resource tables are available to your program (resource
tables are the external representation of CICSPlex SM data).

Chapter 1. An overview of the CICSPlex SM API 7

v An API program cannot access data from a release of CICSPlex SM
earlier than Release 2 (the release in which the API was introduced). The
VERSION value must be set to 0120 or greater.

v An API program cannot access data from a release of CICSPlex SM later
than the run-time module that you specify. The VERSION value must be
less than or equal to the release of the run-time module.

v An API program can access data from a later release of CICSPlex SM
than that which the program was originally written for, provided:
– You compile your program using the appropriate copy books for the

version specified.
– Your program is compatible with the copy books for the version

specified.

CONTEXT option
The CONTEXT option that is supported by various API commands
determines which CICS systems your program receives data from. The
CONTEXT value can be set to any CMAS or CICSplex running any
currently supported release of CICSPlex SM. Note, however, that the
release level of the CMAS or CICSplex must be the same as the release of
the run-time module.

CURRENT option
When specifying the CURRENT option, the record pointer does not move
(that is, a subsequent FETCH retrieves the same record). Previously, the
record pointer moved to the next record. For further information, see
“Positioning the record pointer in a result set” on page 30.

Special considerations for REXX applications
If you have REXX application programs you should be aware of how CICSPlex SM
behaves in the case where you apply a PTF to some members of a CICSplex but
not others, you modify a REXX API program to put a value in a new table field
introduced by the PTF and the REXX program then connects to a CMAS which has
not had the PTF applied, and which therefore has no definition for the new field.

In this case:
1. The CMAS does not transmit the value of the new field to the maintenance

point CMAS.
2. The maintenance point CMAS (which is at the highest level) transforms the

record area to give a default value to the new field. The new value may be
different from that originally specified by the REXX program.

3. The maintenance point CMAS then broadcasts the record back to the
originating CMAS, but transforms the record back to remove the new field. At
this point, the maintenance point repository will not contain the intended
value, (it will contain the default value) and when it has broadcast the record
back to the originating CMAS, this repository will have had the intended value
removed.

4. If the same REXX program issues a TPARSE of the record, the value of the field
is still the same as it was at the time it was created, and is not changed by the
TPARSE. This might cause the program to indicate, wrongly, that the field
contains the intended value, whereas, in the maintenance point repository, the
field has the default value, and in the back-level CMAS repository, the field
does not exist.

5. If a REXX API program subsequently connects to the back-level CMAS and
issues a TPARSE of the record, the new field will not be populated by the

8 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

TPARSE. In this case the field will have the normal REXX default value - the
field value will be the same as the field name.

If the set of circumstances described above applies to you, and might cause you a
problem, your REXX program should contain code to issue a QUERY to obtain and
verify the record length.

Accessing resource tables from a new release
You can access the most up-to-date CICSPlex SM resource tables by running an
existing program under a new release of the API.

Note: To take full advantage of a new CICSPlex SM function (such as Business
Application Services), however, you would have to modify an existing program or
create a new one.

To run an existing API program under a new release of CICSPlex SM:
v Make sure the following are available to your program:

– The run-time module for the new release (EYU9AB00 from the new release's
SEYUAUTH library)

– A CMAS that is running the new release
v Change the VERSION value on the CONNECT command to reflect the new

release of CICSPlex SM (for example, 0310 for CICS Transaction Server for z/OS,
Version 4 Release 1) and relink-edit the program using the stub module supplied
in the new release.

v Review the possible effects of any changes to the CICSPlex SM resource tables.
Attributes may be added to a resource table in a new release, which could affect
your program's references to that table. And with the addition or modification of
attributes, the length of a given resource table may change from one release to
another. The resource table copy books that are distributed with the new release
are a good source of information about such changes.

Note: If there is no requirement to take advantage of the new function in the
release it is possible to continue to run an existing API program unaltered,
provided the VERSION value on the CONNECT command reflects the link-edit
level used.
If your program receives RESPONSE and REASON values of INVALIDPARM
LENGTH when you run it under a new release of CICSPlex SM, the table length
may have increased and your data buffer may not be long enough to
accommodate the new resource table records.

v If you are using customized views of resource tables, you are advised to check
that the names of any new resource tables do not duplicate the names of your
customized views, as this could affect your processing. For further details, see
“Building a customized resource table record” on page 17.
For a complete list of new and changed resource tables in a given release, refer
to CICSPlex System Manager Resource Tables Reference.

Accessing resource tables from a previous release
You can continue accessing the resource tables supplied with a previous release of
CICSPlex SM.

In order to do this you must:
v Specify the release of CICSPlex SM data that you want to access on the

VERSION option of the CONNECT command.

Chapter 1. An overview of the CICSPlex SM API 9

v Use the run-time module (EYU9AB00) supplied with the release you want to
access or a subsequent release that supports it.

v Use a version of the stub module (EYU9AxSI) that is less than or equal to the
run-time module.

Table 4 illustrates some valid combinations of the VERSION option, stub module
and run-time module for accessing data from different releases of CICSPlex SM.

Table 4. Valid ways to access data from different releases

VERSION value Stub module
(EYU9AxSI)

Run-time module
(EYU9AB00)

CMASs available CMAS used Data available

0220 V2R2 V2R2 V1R2 V1R3 V1R4
V2R1 V2R2

V2R2 V2R2

0120 V1R2 V1R2 V1R2 V1R2 V1R2

0120 V1R2 V1R3 V1R3 V1R3 V1R2

0120 V1R3 V1R3 V1R2 V1R3 V1R3 V1R2

0120 V1R4 V1R4 V1R2 V1R3 V1R4 V1R2 V1R2

0130 V1R3 V1R3 V1R2 V1R3 V1R3 V1R3

0130 V1R3 V1R4 V1R2 V1R3 V1R4 V1R4 V1R3

0130 V1R4 V1R4 V1R2 V1R3 V1R4 V1R4 V1R3

0140 V1R4 V1R4 V1R2 V1R3 V1R4 V1R4 V1R4

0210 V2R1 V2R1 V1R2 V1R3 V1R4
V2R1

V2R1 V2R1

Table 5 shows some invalid combinations of the VERSION option, run-time
module, and stub module and describes why they produce an error.

Table 5. Common errors in accessing different releases

VERSION value Stub module
(EYU9AxSI)

Run-time module
(EYU9AB00)

CMASs available Error description

0140 V2R1 V1R4 V1R4 V2R1 Stub module release level is greater
than run-time module.

0210 V2R1 V1R4 V1R4 V2R1 Stub module release level is greater
than run-time module.

0210 V1R4 V1R4 V1R4 VERSION value is greater than
run-time module.

0210 V2R1 V2R1 V1R4 No CMAS available at the required
run-time level.

Note: For programs written in REXX, the compatibility issues are similar. The
Release 2 function package (which contains the necessary stub module) can run
successfully with either the Release 2 or Release 3 run-time module. The Release 3
function package, however, cannot run with the Release 2 run-time module; the
Release 3 module is required.

Sample programs
Sample programs for each supported language are distributed with CICSPlex SM
in source form. These samples are provided to illustrate the types of programs you
can write and the commands you need to use in those programs.

10 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

The sample programs are distributed in members called EYUxAPIn, where x is a
1-character language identifier and n is a sequential program identifier. For
example, EYUCAPI1 is sample program number 1 coded in C. They are all located
in the SEYUSAMP library.

Details of the sample programs are shown in the following table.

Table 6. Sample programs provided with CICSPlex SM

Language Programs Library

Assembler EYUAAPI1 EYUAAPI2
EYUAAPI3

SEYUSAMP

COBOL EYULAPI1 EYULAPI2
EYULAPI4

SEYUSAMP

PL/I EYUPAPI1 EYUPAPI2 SEYUSAMP

C EYUCAPI1 EYUCAPI2 SEYUSAMP

REXX EYU#API1 EYU#API2
EYU#API3

SEYUSAMP

A listing is provided for each sample program (in one of its supported languages)
in Appendix B, “Sample program listings,” on page 119.

Note: Additional sample CICSPlex SM API programs are available via the IBM
CICS SupportPacs system at:

http://www.ibm.com/software/htp/cics/downloads

Chapter 1. An overview of the CICSPlex SM API 11

12 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Chapter 2. Using the CICSPlex SM API

You need to understand a number of concepts before you use the CICSPlex SM
API, including managed objects, resource tables, and result sets.

CICSPlex SM managed objects
CICSPlex SM is an object-oriented system. This means that each resource in the
CICSPlex SM environment is an instance of an object. Each object is considered to
be a specific type and each has a unique, formally defined name.

Types of managed objects
There are various types of objects in the CICSPlex SM environment. Some objects,
such as CICS systems, programs, and transactions are real-world resources that
CICSPlex SM manages. Definition objects, such as monitor specifications and
workload definitions, are resources created solely for use within CICSPlex SM.

An event is an example of a run-time object that is generated as a result of
CICSPlex SM processing.

The CICSPlex SM managed objects can be grouped into the following categories:
v Managed CICS resources

– CICS resources
– Monitored CICS resources

v CICS resource definitions
v CICSPlex SM definitions
v CICSPlex SM manager resources
v CICSPlex SM notifications
v CICSPlex SM meta-data.

Managed CICS resources
These objects represent actual CICS resources that exist in the CICS systems being
managed by CICSPlex SM.

Each object of this type describes a CICS resource that CICSPlex SM can report on
and manipulate. Managed objects exist for all the resources that are available to
CICSPlex SM using standard CICS interfaces. In some cases, the CICSPlex SM
managed objects offer a more definitive representation of the resources than CICS
does. For example, the LOCTRAN and REMTRAN objects, which CICSPlex SM
uses to distinguish between local transactions and remote transactions, are
combined by CICS as transactions.

In addition to the standard CICS resources, CICSPlex SM creates managed objects
as a result of its resource monitoring activity. Monitored CICS resources contain a
subset of the resource attributes, normally those that reflect the state and
consumption characteristics of the resource. In addition, CICSPlex SM may provide
derived attributes that show resource utilization as an average, rate, or percentage.
MLOCTRAN and MREMTRAN are examples of monitored CICS resource objects;
they are derived from the LOCTRAN and REMTRAN CICS resource objects. A

© Copyright IBM Corp. 1995, 2012 13

monitored CICS resource object can exist after the associated CICS resource object
is removed from the CICS system, or even after the system itself is shut down.

CICS resource definitions
These objects represent definitions of CICS resources that CICSPlex SM can assign
to, and possibly install in, CICS systems.

The actual definitions are stored in the CICSPlex SM data repository as definition
records. For example, the TRANDEF object represents a CICS transaction that can
be assigned both locally and remotely to multiple CICS systems throughout the
CICSplex.

Assigning CICS resources to CICS systems enables CICSPlex SM to manage those
resources as a logical group, such as an application. In addition, CICSPlex SM can
install instances of a resource in CICS systems that support the EXEC CICS
CREATE command.

CICSPlex SM definitions
These objects represent the definitions that are used by CICSPlex SM management
applications.

The actual definitions are stored in the CICSPlex SM data repository as definition
records. For example, the MONSPEC object represents a user-defined monitor
specification that CICSPlex SM uses to establish resource monitoring in a CICS
system.

Any changes you make to CICSPlex SM definitions are automatically distributed
throughout the CICSplex. In addition, certain definitions are bound to other
definitions for the purpose of referential integrity. If you remove one of these
definitions, all the related definitions are also removed. For example, removing a
CPLEXDEF object causes all definition objects for that CICSplex to be
automatically removed from all CMASs that manage the CICSplex.

CICSPlex SM manager resources
These objects represent run-time resources that are either built from CICSPlex SM
definitions or created by CICSPlex SM management applications during
processing.

You can manipulate a CICSPlex SM manager resource without necessarily affecting
the underlying definition. The RTAACTV object is an example of a CICSPlex SM
manager resource; it describes the currently installed RTADEF and STATDEF
definition objects.

There are other CICSPlex SM manager resources that are not directly related to any
definition. For example, the CRESCONN object is a Topology Services resource
map that describes the CICS connections in an active MAS.

CICSPlex SM notifications
CICSPlex SM notifications are really messages that are generated asynchronously
by a CICSPlex SM managed object.

Notifications describe an interesting event related to the object. CICSPlex SM
manager resources can register interest in one or more of these events. When a
notification is generated, the manager resource performs whatever processing is
needed based on the event that occurred.

14 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

An API program can also register interest in events that generate CICSPlex SM
notifications. The EMSTATUS, EMASSICK, and EMASWELL objects are examples
of notification messages generated by the CICSPlex SM MAS agent. These
notifications describe the current state of the MAS.

The ERMCxxxx objects are generated by CICSPlex SM when a Topology resource
map is changed. CICSPlex SM maintains resource maps which describe the
topology of certain CICS resources in the MASs. CICS resources for which resource
maps are maintained have a corresponding ERMCxxxx notification object. The
CICSPlex SM agent detects the installs and discards of these CICS resources and
causes the Topology resource map to be updated. For example, if a file definition is
installed in a MAS, the Topology resource map will be changed and an ERMCFILE
notification will be generated. The ACTION attribute of the ERMCFILE notification
indicates that an install has occurred. Furthermore, for a local MAS, the CICSPlex
SM MAS agent detects updates to these CICS resources. For example, if a program
is disabled, the ERMCPRGM notification will be generated with the ACTION
attribute indicating an update.

CICSPlex SM meta-data
These objects describe the structure of CICSPlex SM managed resources. This
information is maintained in an object directory that exists in each active CMAS.

An API program can request the following types of meta-data from the object
directory:

OBJECT
General characteristics of an object

OBJACT
Valid actions for an object

METADESC
Basic description of an object's attributes

ATTR Complete description of an object's attributes

ATTRAVA
Valid EYUDA or CVDA values for an attribute

METANAME
All CVDAS, CVDAT, and EYUDA information

METAPARM
Description of a parameter for an action

PARMAVA
Description of the values allowed for a parameter

CICSPlex SM resource tables
Each CICSPlex SM managed object is represented externally by a resource table.

A resource table defines all the attributes of an object. The attributes represent the
collection of data that is available for that object.

The formal object name is used as the name of the resource table that describes the
object's attributes. You identify an object in your API program by specifying its
resource table name. For example, to find out about the programs in one or more
CICS systems, you could access the PROGRAM object. PROGRAM is the name of
the CICSPlex SM resource table that describes CICS programs.

Chapter 2. Using the CICSPlex SM API 15

Each instance of an object is formatted as a resource table record that describes an
actual resource in the CICSPlex SM environment. The object attributes are
presented in the individual fields of a resource table record. It is important to note
that a resource table is not itself an object. A resource table record is merely the
format in which information about a managed object is returned by CICSPlex SM.
This information includes the current attribute values, the actions that the object
supports, and the releases of CICS for which the object is valid.

There is a resource table type for each type of CICSPlex SM managed object:

Resource table type
Object type

CICS Definition
CICS resource definitions

CICS Resource
CICS resources

CICS Monitored
Monitored CICS resources

CPSM Definition
CICSPlex SM definitions

CPSM Manager
CICSPlex SM manager resources

CPSM Notification
CICSPlex SM notifications

CPSM MetaData
CICSPlex SM meta-data

CPSM Configuration
CICSPlex SM configuration definitions

For a summary of the CICSPlex SM resource tables by type and complete
descriptions of specific resource tables see the Resource table summary in the
CICSPlex System Manager Resource Tables Reference.

Restricted Resource Table Attributes

Certain attributes in the CICSPlex SM resource tables are for internal use only; they
cannot be modified or manipulated by an API program.

In CICS Resource and CICS Monitored tables, CICSPlex SM uses the following
attributes to identify uniquely which CICS system contains the resource:
v EYU_CICSNAME
v EYU_CICSREL.

These attributes are included in every CICS Resource and CICS Monitored resource
table record. You can specify these attributes in a GROUP command to summarize
the records in a result set. However, you should not specify these attributes in an
ORDER, SPECIFY FILTER, or SPECIFY VIEW command.

CPSM Definition and CICS Definition tables include a CHANGETIME attribute,
that reflects the date and time at which the definition was last modified. CICS
Definition tables also include a CREATETIME attribute, that is the date and time at

16 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

which the definition was created. CICS TS 4.1 introduced new attribute fields (
CHANGEAGENT, CHANGEAGREL and CHANGEUSRID) for BAS resource
definitions. These attributes display details as to how the resource was defined or
last modified, the level of CICS system running when the resource was defined or
last modified and the ID of the user who created or modified the resource
definitionCICSPlex SM is solely responsible for maintaining the CHANGEAGENT,
CHANGEAGREL, CHANGETIME, CREATETIME and CHANGEUSRID attributes;
do not attempt to modify these attribute values.

Building a customized resource table record
Normally, when you create a result set, each resource table record contains the
complete set of attributes in the format defined by CICSPlex SM. There might be
times, however, when you want to work with a subset of those attributes or work
with them in a different order. The SPECIFY VIEW command lets you decide
which attributes of a resource table to include in a record and what order to
present them in. In effect, you are building a temporary, custom-made resource
table.

You can build views only for resource tables with a type of CICS Resource; you
cannot build views for any other type of resource table. Also, a view can be built
from the attributes of only one resource table at a time. You cannot combine
attributes from different resource tables into a single view. You can specify the
EYU_CICSNAME and EYU_CICSREL attributes in an order expression to identify
the CICS system from which a view record was collected.

When you build a resource table view, you have to give it a name. The name you
assign to a view takes precedence over any existing resource table names. This
means you can redefine an existing resource table name to represent a subset of
the attributes in a different order than they appear in the original table.

For ease of maintenance of your programs, give unique names to your customized
resource table views. If you do not use unique names, you cannot access another
view with the same name in the same processing thread without the programming
overhead of discarding the original view. When you upgrade your version of
CICSPlex SM, check that any new resource tables do not duplicate your
customized view names.

To define to CICSPlex SM which resource table attributes you want to include and
in what order, you specify an order expression on the FIELDS option of the
SPECIFY VIEW command. This expression is similar to the one you use when
sorting records in a result set with the ORDER command. The order expression
consists of a list of the attributes to be included in the view.

The syntax of an order expression for building a view is:

Order Expression – Building a View

�� �

,

.
attr

��

attr Is the name of an attribute in the resource table.

You can specify as many attribute names as you like, but the total length of
an order expression, including commas and blank spaces, must not exceed

Chapter 2. Using the CICSPlex SM API 17

|
|
|
|
|
|

255 characters. If you do not specify an attribute name, the order
expression contains the name of the first attribute in the resource table, for
example, the JOBNAME attribute in the CICSRGN resource table.

For example, to build a limited view of the LOCTRAN resource table, you can
specify:

TRANID,STATUS,USECOUNT,PROGRAM,PRIORITY,TRANCLASS.

An order expression must be followed by either blank spaces or null characters to
the end of the specified buffer. That is, the buffer length you specify (using the
LENGTH option) must not include any data other than an order expression. Once
a view is built, you can specify it on the OBJECT option of a GET command. The
resource table records returned by GET include only those attributes you named in
the order expression on the SPECIFY VIEW command.

Any views that you build are associated with the specific processing thread on
which you build them; they cannot be shared by other processing threads. When
you terminate your processing thread, any views you built on it are discarded. You
can also choose to discard a view at any time by using the DISCARD command.

How to create copybooks for customized resource table
records

You can build a structure for your customized view by using the SPECIFY VIEW,
GET and FETCH commands to move the data into your structure.

For example:

The associated structure will consist of each attribute specified in the SPECIFY
VIEW FIELDS keyword and is shown in Figure 3 on page 19.

* SPECIFY VIEW *

STRING ’POOLNAME,MINITEMLEN,QUELENGTH,NUMITEMS,’
’RECOVSTATUS,MAXITEMLEN,LASTUSEDINT,’
’NAME,TRANSID,LOCATION.’
DELIMITED BY SIZE INTO BUFFERA.
MOVE 96 TO BUFFERL.
EXEC CPSM SPECIFY

VIEW(’VTSQSHR’)
FIELDS(BUFFERA)
LENGTH(BUFFERL)
OBJECT(’TSQSHR’)
THREAD(TTKN(1))
RESPONSE(SMRESP)
REASON(SMRESP2)

END-EXEC.

Figure 2. SPECIFY VIEW command to build a structure

18 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Note that the EYU-CICSNAME, EYU-CICSREL, and EYU-RESERVED attributes or
any field alignment or padding attributes are not used in this structure.

Selecting managed objects
Any given API program is likely to be interested in only a subset of the CICSPlex
SM managed objects.

You can identify the managed objects you want to work with by:
v Setting the context and scope for your program
v Using filter expressions on individual commands.

Setting the context and scope
The set of managed objects that your API program can work with is determined
primarily by the context and scope associated with the processing thread.

As with all CICSPlex SM operations, the context and scope of an API program
identify the CICS systems on which the program can act.

In general, you can set the context and scope values as follows:

CONTEXT
For most operations in a CICSplex, the context is the name of the
CICSplex. For operations related to CMAS configuration (such as defining
CICSplexes or CMAS communication links), the context must be a CMAS
name and for applications executing in a CICS local MAS the CMAS name
must be the local CMAS name.

SCOPE
When the context is a CICSplex, the scope can be:
v The CICSplex itself
v A CICS system or CICS system group within the CICSplex
v A logical scope, as defined in a CICSPlex SM resource description

(RESDESC)

01 VTSQSHR.
* Shared Temporary Storage Queue

02 POOLNAME PIC X(0008).
* TS Pool Name

02 MINITEMLEN PIC S9(0004) USAGE BINARY.
* Smallest item Length in bytes

02 QUELENGTH PIC S9(0008) USAGE BINARY.
* Total length in bytes . FLENGT

02 NUMITEMS PIC S9(0004) USAGE BINARY.
* Number items in queue

02 RECOVSTATUS PIC S9(0008) USAGE BINARY.
* Recovery Status

02 MAXITEMLEN PIC S9(0004) USAGE BINARY.
* Largest item length in bytes

02 LASTUSEDINT PIC S9(0008) USAGE BINARY.
* Interval since last use

02 NAME-R PIC X(0016).
* Queue Name -- RESERVED WORD --

02 TRANSID PIC X(0004).
* Trans that created tsqueue

02 LOCATION PIC S9(0008) USAGE BINARY.
* Queue Location

Figure 3. Structure of a customized view

Chapter 2. Using the CICSPlex SM API 19

When the context is a CMAS, the scope value is ignored. There are also a
number of resources for which the scope value is ignored. These are
identified in the description of resource tables in CICSPlex System Manager
Resource Tables Reference by the SCOPE applies field.

You can set a default context and scope for your program by using one of these
commands:

CONNECT
Defines a default context and scope when the API processing thread is
established.

QUALIFY
Changes the default context and scope for subsequent commands issued
on the thread.

The values you set on either of these commands are in effect for all API commands
that use context and scope.

Alternatively, you can specify context and scope values for individual API
commands. The following commands support one or both of the CONTEXT and
SCOPE options:
v CREATE
v GET
v LISTEN
v PERFORM OBJECT
v REMOVE
v UPDATE.

The context and scope values you set on any of these commands are in effect for
that command alone. If you specified a default context and scope for the thread,
the values on any of these commands temporarily override the default values. If
you did not specify a default context and scope and you issue a command that
expects these values (such as GET), you must specify a context and scope on the
command.

Using filter expressions
If you are only interested in certain programs, you can use a filter expression to
limit the number of records returned based on the current values of certain
PROGRAM attributes.

A request for CICSPlex SM managed object data can produce a large number of
resource table records. The default is to return all the resource table records that
exist for a given object within the current context and scope. For example, if you
ask for PROGRAM object data, you receive a resource table record for every
program in every CICS system in the current context and scope.

How you can use filter expressions
You can use filter expressions in one of two ways.
v With the CRITERIA option of a GET or PERFORM OBJECT command to filter

the resource table records returned by that command. The filter expression is
used only once and is discarded when the command that used it completes its
processing.

v With a SPECIFY FILTER command to define a filter that can be used repeatedly.

20 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Once a filter is defined, you can use it with these commands to limit the
resource table records being processed:
– COPY
– DELETE
– FETCH
– GET
– GROUP
– LISTEN
– LOCATE
– MARK
– PERFORM OBJECT
– PERFORM SET
– REFRESH
– SET
– UNMARK

A filter expression that you define with the SPECIFY FILTER command is
available to your program until you either discard it (with the DISCARD
command) or terminate the processing thread.

How to build a filter expression
A filter expression is a character string that defines logical expressions to be used
in filtering resource table records.

A filter expression can be made up of one or more attribute expressions in the
form:

Filter Expression

�� logic_expr . ��

logic_expr:

�

AND/OR

attr_expr
NOT (logic_expr)

attr_expr:

attr oper value

where:

attr Is the name of an attribute in the resource table.

You can name the same attribute more than once in a filter expression.

Note: In a filter expression you cannot specify the EYU_CICSREL
attribute, or attributes with a maximum length over 256 bytes.

oper Is one of the following comparison operators:

< Less than

Chapter 2. Using the CICSPlex SM API 21

<= Less than or equal to

= Equal to

>= Greater than or equal to

> Greater than

¬= Not equal to

value Is the value for which the attribute is being tested. The value must be a
valid one for the resource table attribute.

Generic values
If the attribute accepts character data, this value can be a generic.
Generic values can contain:
v An asterisk (*), to represent any number of characters, including

zero. The asterisk must be the last or only character in the
specified value. For example:

TRANID=PAY*.

v A plus sign (+), to represent a single character. A + can appear in
one or more positions in the specified value. For example:

TRANID=P++9.

Note:

1. Generic value checking is applied only to the filter value. For
example, a filter value of USERID=S* returns resource table
records that have a user ID starting with S. However, a filter
value of USERID=SMITH does not return resource table records
that appear to contain generic characters, for example, those
with a user ID of S*.

2. For hexadecimal data types, the data must be converted to
hexadecimal before appending the asterisk (*) for the generic
search. The plus sign (+) is not supported for hexadecimal data
types.

3. The Web User Interface does not support the use of embedded
generic characters in attribute filters in WLM active views such
as EYUSTARTWLMATAFF. A single asterisks (*) may be used
to request all values.

Imbedded blanks or special characters

If the value contains imbedded blanks or special characters (such
as periods, commas, or equal signs), the entire value string must be
enclosed in single quotes. For example:

TERMID=’Z AB’.

To include a single quote or apostrophe in a value, you must
repeat the character, like this:

DESCRIPTION=’October’’s Payroll’.

Note: Be sure to consider the quoting conventions of your
programming language when using single quotes in a CICSPlex
SM value string.

Hexadecimal data
If the attribute has a datatype of HEX the value must be in
hexadecimal notation.

22 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

For example, the NAME attribute of the REQID resource table is a
HEX datatype. To specify a name equal to 01234567 the value,
using hexadecimal notation, would be

NAME=F0F1F2F3F4F5F6F7.

AND/OR
Combines attribute expressions into compound logic expressions using the
logical operators AND and OR, like this:
attr_expr AND attr_expr.

Filter expressions are evaluated from left to right. You can use parentheses
to vary the meaning of a filter expression. For example, this expression:

attr_expr AND (attr_expr OR attr_expr).

has a different meaning than this one:
(attr_expr AND attr_expr) OR attr_expr.

NOT Negates one or more attribute expressions.

You can negate a single attribute expression, like this:
NOT attr_expr.

You can also negate multiple attribute expressions or even a whole filter
expression, like this:

NOT (attr_expr OR attr_expr).

Note that you must place parentheses around the attribute expressions (or
the filter expression) to be negated.

Note: A filter expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you specify
(using the LENGTH option) should not include any data other than a filter
expression.

For example, the following is a simple filter expression that you could use to select
LOCTRAN objects representing local transactions that are enabled and have a
storage violation count greater than zero:

STATUS=ENABLED AND STGVCNT>0.

You can build more complex filter expressions to select objects with a very specific
combination of attributes. For example, to select LOCTRAN objects that:
v Have a transaction ID starting with P
v Have a program name starting with PAY
v Are enabled
v Have a nonzero use count and storage violations, or have been restarted.

you could specify a filter expression like this:
(TRANID=P* AND PROGRAM=PAY* AND STATUS=ENABLED) AND
((USECOUNT>0 AND STGVCNT>0) OR NOT RESTARTCNT=0).

Note that the RESTARTCNT attribute in this example could also have been
specified with the greater than operator instead of the NOT operator.

Chapter 2. Using the CICSPlex SM API 23

Working with result sets
CICSPlex SM places the resource table records that you select in a result set. A
result set is a logical group of resource table records that can be accessed,
reviewed, and manipulated by an API program.

A result set can be created in one of two ways:
v By a direct API request to obtain resource data. The GET command is the

primary means of collecting resource data and creating a result set.
v By an API request that manipulates one result set to create another. COPY is an

example of a command that can create a new result set from the records in an
existing one. The result set from which records are being copied is referred to as
the source result set. The one being copied to is the target result set.

The resource table records in a result set must all represent one type of managed
object. That is, a result set that contains PROGRAM resource table records cannot
also contain LOCTRAN resource table records. The resource table records must
also be collected from the same CICSPlex SM context. So a result set that contains
records from one CICSplex cannot be used to hold records from any other
CICSplex. Once a result set is created, its resource type and context are fixed. The
only way to change the type or context of a result set is to completely replace the
contents of the result set with new resource table records.

Keep in mind that a resource table record in a result set is not the actual managed
object; it is a report of the managed object's attributes at the point in time when
data was collected. This is an important distinction because the actual managed
object may have changed or may no longer exist by the time the resource table
record is returned to your program. The number of records returned may vary as
managed objects come and go, but the structure of the records in a result set
remains constant.

A simple API program might deal with only one result set at a time. Each new
request for data could create a result set that replaces the previous one. A more
complex program might maintain several result sets concurrently and control the
retention of those result sets more directly.

An overview of result set commands
You can use the following commands to create result sets and manage the
resources that they represent.

GET Returns a result set containing selected resource table records that
represent instances of a managed resource.

PERFORM
Performs an action on one or more managed resources. PERFORM SET
acts upon the resource table records in an existing result set. PERFORM
OBJECT does not require a result set to exist; it creates one implicitly.

REFRESH
Refreshes the data for some or all of the managed resources as represented
by resource table records in a result set.

SET Modifies the attributes of one or more managed resources as represented
by resource table records in a result set.

These commands affect not only the resource table records in a result set, but also
the managed resources that those records represent. Figure 4 on page 25 illustrates

24 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

the relationship of these commands to the API environment.

Once a result set is created, you can perform various operations on the records it
contains. You can sort, mark, copy, delete, and summarize the records in a result
set. Most importantly, perhaps, you can retrieve records from a result set into local
storage where they can be processed by your program.

You can use the following commands to manipulate one or more records in a
result set:

COPY Copies some or all of the resource table records in one result set to another
result set.

DELETE
Deletes one or more resource table records from a result set.

EXPAND
Returns a result set containing all of the records summarized in a summary
record.

FETCH
Retrieves data and status information for one or more resource table
records in a result set.

GROUP
Returns a summarized result set by grouping some or all of the resource
table records in a result set.

LOCATE
Positions the record pointer within a result set.

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM
API Client Code Processing

thread

Result
Set

GET
PERFORM OBJECT

PERFORM SET
REFRESH

SET

Managed Resource Commands

Figure 4. API commands that manipulate managed resources

Chapter 2. Using the CICSPlex SM API 25

MARK
Marks selected resource table records in a result set.

ORDER
Sorts the resource table records in a result set.

UNMARK
Removes the marks placed on resource table records by a previous MARK
command.

These commands affect only the current contents of a result set; they have no
impact on the managed resources that the result set represents. Figure 5 illustrates
the relationship of these commands to the API environment.
CICSPlex SM also provides tools for managing result sets as a whole: filters and

views for controlling the contents of a result set and commands for reviewing and
discarding result sets.

You can use the following commands to manage result sets and their contents:

DISCARD
Discards a result set.

QUERY
Retrieves information about a result set and the resource table records it
contains.

SPECIFY FILTER
Defines an attribute or value filter that can be used to control the contents
of a result set.

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM

API Client Code Processing

thread

Result

Set

Result Set Record Commands
COPY

DELETE

EXPAND

FETCH

GROUP

LOCATE

ORDER

Figure 5. API commands that manipulate result set records

26 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

SPECIFY VIEW
Builds a customized view of a resource table that can be used to control
the contents of a result set

These commands affect only an existing or newly created result set; they have no
impact on the managed resources that the result set represents. Figure 6 illustrates
the relationship of these commands to the API environment.

Retrieving records from a result set
Once you have created a result set (using the GET command), you can transfer
some or all of the records it contains to local storage for processing.

You can use the FETCH command to retrieve a single resource table record,
multiple selected records, or the entire result set at one time.

Each resource table record that you retrieve contains current data about the
managed resource that it represents. Each record also contains certain status
information that is maintained by CICSPlex SM.

This status information is presented as a resource table called OBJSTAT. The
contents of the OBJSTAT resource table are described below:

In effect, each record in a result set contains a pair of resource tables: an instance
of the OBJSTAT resource table followed by an instance of the resource table that
was requested. The managed resource data and the OBJSTAT status information
can be retrieved either as a pair or separately, depending on the option you specify
with the FETCH command:

DATA Retrieves only the specified resource table data.

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM
API Client Code Processing

thread

Result
Set

Result Set Commands

View

Filter

DISCARD
QUERY

SPECIFY FILTER
SPECIFY VIEW

Figure 6. API commands that manipulate result sets

Chapter 2. Using the CICSPlex SM API 27

STATUS
Retrieves only the OBJSTAT status information.

BOTH Retrieves both the resource table data and the OBJSTAT status information.

Figure 7 illustrates the information available in result set records and the FETCH
commands you can use to retrieve that information.
The result set referenced by TOKENA was created by issuing a GET command for

LOCTRAN records. Each record in the result set consists of LOCTRAN data and
OBJSTAT data.

You can use the FETCH commands shown in Figure 7 to selectively retrieve some
or all of the data. For example, Figure 8 shows the output of a FETCH DATA
command.

OBJSTAT
The OBJSTAT resource table provides status information for a specific record in a
result set.

TOKENA Result Set

OBJSTAT
Num, Context, MAS, Object, CntRecords, . . .

1, PLEX1, MAS1, LOCTRAN, 1, . . .

2, PLEX1, MAS2, LOCTRAN, 1, . . .

3, PLEX1, MAS1, LOCTRAN, 1, . . .

4, PLEX1, MAS2, LOCTRAN, 1, . . .

5, PLEX1, MAS1, LOCTRAN, 1, . . .

6, PLEX1, MAS2, LOCTRAN, 1, . . .

FETCH STATUS FETCH DATA

FETCH BOTH

LOCTRAN
MAS, Tranid, Program, Status, UseCount, . . .

MAS1,

MAS2,

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR02,

TR03,

TR03,

PROG01,

PROG01,

PROG01,

PROG01,

PROG02,

PROG02,

ENABLED,

ENABLED,

ENABLED,

DISABLED,

DISABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

10, . . .

0, . . .

15, . . .

GET OBJECT(LOCTRAN) RESULT(TOKENA) . . .

Figure 7. Using FETCH to retrieve result set records

MAS1,

MAS2,

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR02,

TR03,

TR03,

PROG01,

PROG01,

PROG01,

PROG01,

PROG02,

PROG02,

ENABLED,

ENABLED,

ENABLED,

DISABLED,

DISABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

10, . . .

0, . . .

15, . . .

FETCH DATA ALL RESULT(TOKENA) INTO(AREA1) . . .

Figure 8. Sample FETCH DATA output

28 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Name Description

RECORDNUM
The number of the record within the result set.

CONTEXT
The context in effect when the data for the record was collected.

CICSNAME
The name of the CICS system from which the data was collected.

CICSREL
The release level of the CICS system from which the data was collected.

OBJECT
The name of the managed object to which the data refers.

OBJTYPE
The data type of the managed object:

1 CPSM resource

2 Logical view

RECTYPE
The type of record data:

1 Detail data

2 Summary data

LASTOPER
The last operation performed against the object:

1 COPY operation

2 DELETE operation

3 GET operation

4 MARK operation

5 REFRESH operation

6 PERFORM OBJECT operation

7 PERFORM SET operation

8 SET operation

9 UNMARK operation

STATUS
The current record status:
1... X’80’ The record is MARKED
.... ...1 X’01’ Operation error

The attribute is not valid in the version of CICS if the bit is set on.

CNTRECORDS
The record count. For RECTYPE=1 the record count is zero. For
RECTYPE=2 the record count will reflect the number of detail records.

KEYLEN
The length of the key data.

KEYDATA
The native key data

Chapter 2. Using the CICSPlex SM API 29

RESERVE1
Reserved area for future use.

Positioning the record pointer in a result set
CICSPlex SM maintains a current record pointer in each result set. When you first
create a result set (with a GET command, for example), the pointer is positioned at
the top of the result set. The first command that you issue against the result set
affects the first record.

In most cases, when you issue FETCH commands to retrieve records from the
result set, the record pointer is positioned to the next record in the result set (that
is, the record following the last record that was fetched). However, certain API
commands always act upon the last record that was fetched. When you issue any
of these commands after a FETCH command, the record pointer is not advanced to
the next record:
v COPY
v DELETE
v MARK
v UNMARK
v PERFORM SET CURRENT
v REFRESH CURRENT
v SET CURRENT

The record pointer in a result set may move either forward or backward,
depending on the direction in which you are retrieving records. If you issue a
FETCH command and no records are found that match the specified criteria, no
records are retrieved. In that case, the pointer is positioned to the top or bottom of
the result set, depending on the direction the pointer was moving.

If you issue a FETCH command and there is insufficient storage to retrieve all of
the records, the pointer is positioned at the last record that would have been
retrieved if there had been enough space. The pointer is not positioned at the last
record that was retrieved. To be certain of the pointer's location, you should use
the LOCATE command to explicitly position it within the result set.

The GET and FETCH commands leave the record pointer in specific, predefined
positions, but other API commands do not. Many API commands manipulate
records or update the data in a result set. The position of the record pointer after
one of these commands depends on a combination of factors, including the options
that you specified on the command. The pointer may have moved forward or
backward one or more records, or it may be positioned to the top or bottom of the
result set. If you specified the CURRENT option, the record pointer does not move;
it remains positioned on the current record after the command is complete.

For this reason, CICSPlex SM provides the LOCATE command, which lets you
explicitly position the record pointer within a result set. If you want to use the
record pointer after issuing any of these commands, first use the LOCATE
command to reposition it:
v COPY
v DELETE
v GETDEF
v GROUP
v MARK

30 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v ORDER
v PERFORM OBJECT
v PERFORM SET
v REFRESH
v SET
v UNMARK.

Processing selected records in a result set
If you want to process a subset of the resource table records in a result set, you can
identify the records you are interested in.

You can do this by:
v Using the SPECIFY FILTER command to define a filter for selecting records, as

described in “Using filter expressions” on page 20.
v Using the MARK and UNMARK commands to mark the records.

Using MARK and UNMARK
The MARK command enables you to mark some or all of the resource table
records in a result set for future reference.

The UNMARK command removes existing marks from selected records. Once you
have marked records in a result set, you can refer to the records that are either
marked or not marked in subsequent commands. The following API commands
support the MARKED and NOTMARKED options:
v COPY
v DELETE
v FETCH
v GROUP
v LOCATE
v PERFORM SET
v REFRESH
v SET

For example, Figure 9 on page 32 shows a result set in which selected resource
table records have been marked. The MARKED option is then used with the
FETCH command to retrieve only those records that are marked.

Chapter 2. Using the CICSPlex SM API 31

Identifying the records to be marked
By default, when you issue a MARK or UNMARK command, only the current
resource table record is marked or unmarked.

But there are a variety of ways that you can identify the records to be marked:
v To mark a specific record other than the current record, use the POSITION

option and identify the record by its relative position in the result set.
v To mark one or more records that meet previously defined filtering criteria, use

the FILTER or NOTFILTER option.
v To mark all the records in a result set, use the ALL option.

In addition to these options, you can use the PARM option to identify a list of
records to be marked. To use the PARM option, you specify a character string of
record numbers in a parameter expression. The parameter expression can contain:
v Individual record numbers, separated by commas.
v Ranges of record numbers, with the low and high numbers separated by a colon.

The whole parameter expression must end with a period.

For example, to mark records 1, 3, 6 through 9, and 24 in a result set, you would
specify:

PARM(’1,3,6:9,24.’)

TOKENA Result Set

OBJSTAT
Num, Context, MAS, Object, CntRecords, . . .

1, PLEX1, MAS1, LOCTRAN, 1, . . .

2, PLEX1, MAS2, LOCTRAN, 1, . . .

3, PLEX1, MAS1, LOCTRAN, 1, . . .

4, PLEX1, MAS2, LOCTRAN, 1, . . .

5, PLEX1, MAS1, LOCTRAN, 1, . . .

6, PLEX1, MAS2, LOCTRAN, 1, . . .

LOCTRAN
MAS, Tranid, Program, Status, UseCount, . . .

MAS1,

MAS2,

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR02,

TR03,

TR03,

PROG01,

PROG01,

PROG01,

PROG01,

PROG02,

PROG02,

ENABLED,

ENABLED,

ENABLED,

DISABLED,

DISABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

10, . . .

0, . . .

15, . . .

3, PLEX1, MAS1, LOCTRAN, 1, . . .

4, PLEX1, MAS1, LOCTRAN, 1, . . .

6, PLEX1, MAS1, LOCTRAN, 1, . . .

TR02,

TR02,

TR03,

PROG01,

PROG01,

PROG02,

ENABLED,

DISABLED,

ENABLED,

15, . . .

10, . . .

15, . . .

MAS1,

MAS2,

MAS2,

FETCH BOTH MARKED RESULT(TOKENA) INTO(AREA2) . . .

GET OBJECT(LOCTRAN) RESULT(TOKENA) . . .
MARK PARM(`3,4,6.') RESULT(TOKENA) . . .

Figure 9. Marking and retrieving records in a result set

32 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

When you use the PARM option, you must also use the PARMLEN option to
specify the length of the buffer that contains the parameter expression.

Note:

1. Negative values and 0 are not valid record numbers. If you specify an invalid
record number, the MARK (or UNMARK) command returns RESPONSE and
REASON values of INVALIDPARM PARM.

2. If you mistakenly specify the higher value in a range first (such as 9:6),
CICSPlex SM reverses the values to produce a valid range.

3. If you mistakenly specify a single value preceded or followed by a colon (such
as 6:), the colon is ignored. CICSPlex SM marks only the specified record.

Identifying records that could not be marked
When you are marking or unmarking records, it might be useful to know if all the
records you identified were successfully processed.

For example, you might mistakenly ask CICSPlex SM to mark or unmark a record
that was previously deleted from the result set. Or you might identify a record
number that is out of range for the result set.

You can use the COUNT option on a MARK or UNMARK command to determine
the number of records that could not be marked or unmarked. You can also use
the INTO and LENGTH options to identify a buffer to receive a list of records that
could not be marked. When deciding on the length of the INTO buffer, keep in
mind that it must be long enough to hold the maximum number of record
numbers that could result from your MARK request (if none of them can be
marked). Furthermore, all record numbers are listed individually (not by range) in
the INTO buffer and are separated by commas. So if you specified the PARM
option like this:

PARM(’1,3:6,12,15.’)

the INTO buffer would have to be long enough to hold the following character
string:

1,3,4,5,6,12,15

If the INTO buffer you specify is not long enough to hold a complete list of
records that could not be marked, you receive a RESPONSE value of WARNING
AREATOOSMALL. In that case, the INTO buffer returns a partial list of records
and the LENGTH value is set to the buffer length that would be required for a
complete list. You could then resubmit the MARK command with the appropriate
LENGTH value to determine which records could not be marked.

How to remove the marks in a result set
You can use the UNMARK command to remove some or all of the marks placed
on resource table records by a previous MARK command. However, if you want to
mark other records at the same time, you can save a step by using the RESET
option of the MARK command.

By default, the records you specify on a MARK command are marked in addition
to any records that are already marked in the result set. That is, any resource table
records that were marked previously remain marked unless you use the RESET
option. RESET wipes the result set clean of any previous marks. So the records
identified on the current MARK command are the only records marked when
processing is complete. Using the RESET option on a MARK command is an
alternative to using the UNMARK command before the MARK command.

Chapter 2. Using the CICSPlex SM API 33

Note: Any marks that you placed on resource table records are also removed when
you use the COPY command to copy those records from one result set to another.

Summarizing the records in a result set
If you want to analyze or modify a large number of records in a result set, you
might find it useful to summarize those records.

The GROUP command lets you summarize the records in a result set based upon
the value of some resource table attribute.

Note: You can summarize only on those attributes that have a length of 251 or
less.

When you issue a GROUP command, CICSPlex SM summarizes the records in one
result set to create a new, summarized result set. A summarized result set is a
special type of result set. It contains summary resource table records that
correspond to one or more records in the source result set.

For example, you could use the GROUP command to summarize a result set that
contains LOCTRAN resource table records. If you want to group the records
according to the value of the STATUS attribute, the summarized result set would
contain, at most, two records: one representing those records with a STATUS value
of ENABLED, and one representing those with a STATUS of DISABLED. Figure 10
illustrates this use of the GROUP command.
In general, you can work with a summarized result set in the same ways that you

do a regular result set. You can use the FETCH command to retrieve records from
a summarized result set. You can also retrieve the individual records of the source
result set on which the summary is based. The DETAIL option of the FETCH
command lets you retrieve that subset of records in the source result set that
correspond to a particular summary record.

Figure 11 on page 35 shows an example of fetching the detail records associated
with a summary record. In this case, the summary record was a LOCTRAN record
that represented all enabled transactions.

TOKENB Summarized Result Set

OBJSTAT
Num, Context, MAS, Object, CntRecords, . . .

, , , , 4 , . . .

, , , , 2 , . . .

LOCTRAN
MAS, Tranid, Program, Status, UseCount, . . .

, TR0*, PROG0*,

, TR0*, PROG0*,

ENABLED,

DISABLED

15, . . .

5, . . .

GROUP BY(STATUS) FROM(TOKENA) TO(TOKENB) . . .

Figure 10. Using GROUP to summarize result set records

34 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

You can modify the records in a summarized result set using the PERFORM or
SET commands. This is equivalent to modifying all the records in the source result
set that are represented by a given summary record. However, since each record in
a summarized result set has a single OBJSTAT record associated with it (rather
than one for each of the source records being modified), you may want to use the
FETCH DETAIL command to determine the results of a summary action.

Another method of working with individual records from a summarized result set
is by using the EXPAND command. This is similar to the FETCH command when
used with the DETAIL option, but EXPAND creates a new result set containing one
record for each of the records summarized by GROUP in an individual summary
record. This allows you to perform further actions on the result set including using
additional GROUP or FETCH commands. EXPAND includes a number of options
for manipulating the record counter in order to select the summarized record you
want to work with. It can also be used in conjunction with the MARK and
UNMARK commands.

The OBJSTAT records in a source result set are not summarized when you issue a
GROUP command. So the OBJSTAT records in a summarized result set do not
represent the OBJSTAT information for all of the source records. However, the
OBJSTAT records in a summarized result set do include a summary count, which
indicates how many source records were combined to produce each summary
record.

A summarized result set and its source result set should be thought of as a pair to
be used together. They share certain attributes and the summarized result set has
certain dependencies on the source result set:
v A summarized result set cannot exist without the source result set from which it

was built. If you discard a source result set, all the summarized result sets that
were built from it are also discarded.

v You can reuse a summarized result set only to resummarize the records in the
same source result set. An existing summarized result set cannot be used as the
target of a GROUP command for a different source result set.

v A summarized result set cannot be used as the source of a COPY command.
v If you modify a source or summarized result set in any way, all the summarized

result sets that have been built from the source result set are rebuilt.

Note: To prevent this from happening, you can specify the NOREFRESH option
on the PERFORM or SET command.

Specifying summary expressions
The attributes of a summary record are set according to a summary option that is
appropriate for the attribute's data type. For each resource table attribute, CICSPlex
SM defines a default summary option. CICSPlex SM uses these defaults when
summarizing records unless you explicitly override them.

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR03,

PROG01,

PROG01,

PROG01,

PROG02,

ENABLED,

ENABLED,

ENABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

15, . . .

FETCH DETAIL RESULT (TOKENB) INTO (AREA3) . . .

Figure 11. Sample FETCH DETAIL output

Chapter 2. Using the CICSPlex SM API 35

You tell CICSPlex SM how to summarize the attributes in a record by specifying a
summary expression on the SUMOPT option of the GROUP command. A summary
expression is a character string that consists of one or more summary options and
the resource table attributes to which they apply.

The syntax of a summary expression is:

Summary Expression

�� � �

,

sumopt (attr) . ��

where:

sumopt
Is the summary option to be used for the specified resource table
attributes:

AVG Provides the average attribute value. Valid for numeric fields only.

DIF Provides those characters that are common to all underlying
records and displays an asterisk (*) for those not common. Valid
for character fields only.

LIKE Provides the CVDA or EYUDA value, if all records contain a
common value. Otherwise, displays N/A. Valid for CVDA and
EYUDA fields only.

MAX Provides the maximum attribute value.

MIN Provides the minimum attribute value.

SUM Provides the sum of the attribute values. Valid for numeric fields
only.

You can specify the same summary option more than once in a summary
expression.

attr Is the name of an attribute in the resource table.

Note: You can summarize only on those attributes that have a length of
251 or less.
You can specify as many attribute names for each summary option as you
like.

Note: A summary expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you specify
(using the LENGTH option) should not include any data other than a summary
expression.

For example, you could use a summary expression like this when grouping
LOCTRAN records:

SUM(USECOUNT) MAX(PRIORITY,TWASIZE).

By default, the values for these attributes would be averaged. But this summary
expression specifies that each summary record should include the sum of all
USECOUNT values and the maximum PRIORITY and TWASIZE values.

36 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Table 7 shows the valid summary options for the various datatypes.

Table 7. Valid summary options by attribute data type

AVG DIF LIKE MAX MIN SUM

ADDRESS X X

AVG X X X X

AVG3 X X X X

BIN X X X X

BIT X X

CHAR X X X

CODEBIN X X X X

COMPID X X

CVDAS X X X

CVDAT X X X

DATE X X

DATETIME X X

DEC X X

DECSTP X X

EYUDA X X X

HCHAR X X X

HEX X X X

HHMM X X

INTVMSEC X X X X

INTVSEC X X X X

INTVSTCK X X X X

INTVUSEC X X X X

INTV16US X X X X

PCT X X X X

PCT3 X X X X

RATE X X X X

RATE3 X X X X

RATIO X X X X

RESTYPE X X

SCLOCK X X X X

SCLOCK12 X X X X

SUM X X X X

SUM3 X X X X

TEXT X X X

TIMESTP X X

Sorting the records in a result set
The records in a result set are normally sorted by the key attributes for that
resource table.

Chapter 2. Using the CICSPlex SM API 37

In the case of CICS Resource and CICS Monitored tables, records are sorted by the
CICS system from which they were collected. In working with result sets, you may
find it easier to process the records if they are in some logical order of your own
choosing. The ORDER command in the CICSPlex SM API lets you sort the records in
a result set according to the values of a particular resource table attribute. If you
are using the CICS management client interface (CMCI), use the ORDERBY parameter
instead.

If you are using the CICSPlex SM API you can choose how the records are sorted
by specifying an order expression on the BY option of the ORDER command. If you
are using the CICS management client interface (CMCI) you can specify how the
records are sorted using the ORDERBY parameter. An order expression is a character
string that consists of one or more attribute names to be used in sorting the
resource table records.

The syntax of an order expression for sorting records is:

Order Expression – Sorting Records

�� �

,

attr .
/D

��

where:

attr Is the name of an attribute in the resource table.

You can specify as many attribute names as you like, but the total length of
an order expression, including commas and blank spaces, must not exceed
255 characters.

/D Indicates the attribute values should be sorted in descending order. By
default, the values are sorted in ascending order.

Note: An order expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you specify
(using the LENGTH option) should not include any data other than an order
expression.

For example, to sort a result set of LOCTRAN records by transaction ID and
enabled status, you could specify:

TRANID,STATUS.

In this example, transaction ID is the primary sort key and enabled status is the
secondary sort key.

To sort records in descending order of use count, add /D to the end of the
attribute name, like this:

USECOUNT/D

Modifying managed resources
You can modify the resources managed by CICSPlex SM in various ways. The
actions described here are issued against resource table records in a result set.
However, the changes that you request are made to the actual resources which
those records represent.

38 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

|
|
|

|
|
|

Modifying resource attributes
You can change the current value of a resource attribute by using the SET or
UPDATE command.

SET modifies the attributes of a CICS resource, while UPDATE modifies CICSPlex
SM and CICS definitions. The MODIFY option of these commands accepts a
modification expression, which is a character string that defines the attribute
changes to be made.

A modification expression can be made up of one or more attribute expressions in
the form:

Modification Expression

�� �

,

attr = value . ��

where:

attr Is the name of a modifiable attribute in the resource table.

value Is the value to which you want the attribute set. The following restrictions
apply:
v The value must be a valid one for the attribute.
v If the value contains imbedded blanks or special characters (such as

periods, commas, or equal signs), the entire value string must be
enclosed in single quotes, like this:

DESCRIPTION=’Payroll.OCT’

v To include a single quote or apostrophe in a value, you must repeat the
character, like this:

DESCRIPTION=’October’’s Payroll’

Note: Be sure to consider the quoting conventions of your programming
language when using single quotes in a CICSPlex SM value string.

Note: A modification expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you specify
(using the LENGTH option) should not include any data other than a modification
expression.

For example, to disable one or more local transactions (LOCTRAN), you could
specify:

STATUS=DISABLED.

in the MODIFY option of a SET command.

If you issue a SET command against CICS systems that do not support the
requested modification, the request is ignored for those CICS systems. If your
context and scope consist solely of CICS systems that do not support the
modification, you receive RESPONSE and REASON values of NOTAVAILABLE
SCOPE.

To change the task storage location of a CICS transaction definition (TRANDEF),
you could specify:

Chapter 2. Using the CICSPlex SM API 39

TASKDATALOC=ANY

in the MODIFY option of an UPDATE command.

Note that the MODIFY option of UPDATE is valid only for CICS Definition
resource tables.

For a list of the attributes for each resource and their valid values, refer to the
CICSPlex System Manager Resource Tables Reference.

Performing an action against a resource
In addition to modifying individual attributes, you can also perform actions
against many resources by using either of the PERFORM commands;
PERFORM OBJECT or PERFORM SET.

The difference between these two commands is that PERFORM SET performs an
action against the resource table records in an existing result set, while
PERFORM OBJECT first creates a result set and then performs the requested
action.

Some actions are self-contained and self-explanatory; specifying the action is
enough to indicate the changes to be made to the resource. For example, you can
discard a local file by issuing the DISCARD action against a LOCFILE resource
table record.

Other actions require you to specify additional parameters. For these actionsyou
might require a parameter expression to obtain the function you need. A parameter
expression can be made up of one or more parm expressions in the form:

Parameter Expression

�� � parm_expr + . ��

parm_expr::

parm_name +
. parm_value .

where:
v parm_name is the name of a parameter associated with the action.
v parm_value is the value associated with the specified parameter name, if

applicable.

Multiple instances of parm_exp should be delimited by spaces. The parameter
expression buffer is terminated with a period (.).

Examples
v To disable a local file (LOCFILE), you must indicate how to handle a file that is

currently busy. To do that, you could specify the following parameter expression:
PARM(’BUSY(cvda).’)

40 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

where cvda is a valid CVDA value for the file busy condition, for example
WAIT, NOWAIT or FORCE.

v To request a dump of a CICS region (CICSRGN) specifying the dump code and
title of the dump, you could use the following parameter expression:
PARM(’DUMPCODE(PMR12345) TITLE(’Doc for PMR12345’).’)

Note that if the parm_value contains special characters such as spaces or periods,
the value must be enclosed in single quotes. Also note that all parameter values
are folded to upper case.

If you issue a PERFORM command against CICS systems that do not support the
requested action, the request is ignored for those CICS systems. If your context and
scope consist solely of CICS systems that do not support the action, you receive
RESPONSE and REASON values of NOTAVAILABLE SCOPE.

The PERFORM OBJECT command does not require an existing result set, as it will
effectively run a GET command followed be a PERFORM SET. In this case any
parameter expression may be passed on the GET or PERFORM SET phase of the
command depending on whether the parameter expression is valid on the GET or
PERFORM SET as follows:
v If the parameter expression is valid for GET it is used on the GET phase of the

PERFORM OBJECT command
v If the parameter expression is valid for PERFORM it is used on the PERFORM

SET phase of the PERFORM OBJECT command.
v If the parameter expression is valid for GET and PERFORM it is used on the

GET and PERFORM SET phases of the PERFORM OBJECT command. This rule
may mean that some actions are not possible via PERFORM OBJECT. Instead
separate GET and PERFORM SET commands may be required to achieve the
desired results.

v If the parameter is not valid for GET or PERFORM, then an INVALIDPARM
PARM condition will be raised.

For a list of the valid actions for each resource and their required parameters, see
the CICSPlex System Manager Resource Tables Reference.

Working with CICSPlex SM and CICS definitions
When you work with CICSPlex SM and CICS definitions there are some special
API commands and command options available.

Creating, updating, and removing definitions
You can use certain API commands to maintain the CICSPlex SM and CICS
definitions in your data repository.

CREATE
Creates a new CICSPlex SM or CICS definition using the attribute values
you specify. The new definition is stored in the data repository.

UPDATE
Updates an existing CICSPlex SM or CICS definition according to the
attribute values you specify. The updated definition replaces the existing
definition in the data repository.

REMOVE
Removes a CICSPlex SM or CICS definition from the data repository.

Note:

Chapter 2. Using the CICSPlex SM API 41

1. Before you can update or remove a definition you must use the FETCH
command to retrieve the appropriate resource table record from a result set.

2. For CICSPlex SM definitions that have a CICSplex as their context (such as
workload management or real-time analysis definitions), any changes you make
are automatically distributed to all the CMASs involved in managing the
CICSplex.

With each of these commands, you use the FROM option to supply a CICSPlex SM
Definition or CICS definition resource table record for the definition you are
working with. The record must include all of the attributes in the resource table for
the definition. If you do not want to specify certain optional attributes, you must
set those fields to null (that is zero) values.

As an alternative, when you are updating CICS definitions, you can use the
RESULT and MODIFY options of the UPDATE command. These options enable
you to modify multiple definitions at one time (this is the equivalent of issuing the
ALTER action command from the CICSPlex SM end-user interface).

To update CICS definitions, identify a result set that contains CICS Definition
resource table records in the RESULT option. Then use the MODIFY option to
specify the changes to be made to the definitions. MODIFY accepts a modification
expression, as described in “Modifying resource attributes” on page 39.

The CHANGEAGENT, CHANGEAGREL, CHANGETIME,
CHANGEUSRID, and CREATETIME attributes
When you work with existing CICSPlex SM or CICS definitions, keep in mind that
the first 8 bytes of each record contain an attribute called CHANGETIME, reflects
the date and time when the record was last modified. CICS Definition records also
include a CREATETIME attribute, which is the date and time the definition was
created.

CICS TS 4.1 introduced new attribute fields CHANGEAGENT, CHANGEAGREL,
and CHANGEUSRID to the resource table resource definition record. These new
attributes, combined with the existing CHANGETIME and CREATETIME
attributes, form the resource definition signature and are valid only for BAS
resource definitions.

CHANGEAGENT displays how the resource was defined or last modified.
CHANGEAGREL contains the level of CICS system that created or last modified
the resource definition. CHANGEUSRID contains the user ID that created or last
modified the resource definition.

The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and
CREATETIME attributes are maintained internally by CICSPlex SM. Do not
attempt to modify these attribute values. When you update or remove a definition
resource table record, the CHANGETIME and CREATETIME values you return to
CICSPlex SM must be the same values you received.

Using the PARM option
For most CICSPlex SM and CICS definitions, all of the information needed to
process an API request is included in the attributes of the resource table.

Some definitions, however, allow you to supply optional data and some require
additional data. For those definitions, you have to specify the PARM option on the
appropriate API command:
v CREATE

42 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v UPDATE
v REMOVE
v GET

The PARM option accepts a parameter expression, which is a character string that
defines the parameters required for a definition to be processed.

For example, suppose you want to create an LNKSMSCG definition, which is a
CICSPlex SM definition that describes the association between a CICS system
group and a monitor specification (MONSPEC). Before CICSPlex SM can process
your request, it must know how to handle other links that may be affected by the
change. So when you issue the CREATE command, you must specify a parameter
expression like this on the PARM option:

PARM(’FORCE.’)

which tells CICSPlex SM that all CICS systems in the CICS system group are to
inherit the new specification.

The PARM option is especially useful when working with CICS definitions. For
each CICS Definition resource table there is another resource table that describes
the definition's association with a resource group (RESGROUP), if one exists. For
example, the CONNDEF resource table represents a connection definition and the
CONINGRP resource table represents an association between a connection
definition and a resource group. The RESGROUP parameter provided with the
CREATE and GET commands for CICS Definitions simplifies the processing of
these records.

When you create a CICS Definition record, you can identify an existing resource
group to which the definition should be added. To do this, use the PARM option
to identify the resource group like this:

PARM(’RESGROUP(resgroup).’)

Using the RESGROUP parameter automatically creates an xxxINGRP record (such
as a CONINGRP record), which describes the association between the CICS
definition and its resource group.

When you use the GET command to request CICS Definition records from the data
repository, you can select definitions according to the resource group to which they
belong. To do this, use the PARM option to identify the resource group like this:

PARM(’RESGROUP(resgroup).’)

which tells CICSPlex SM to select CICS definitions only from the specified resource
group. If you do not use the PARM option, CICSPlex SM selects definitions from
all resource groups, according to the other criteria you specify on the GET
command.

Note: For a complete list of the CREATE, UPDATE, REMOVE, and GET
parameters required (or supported) by a given resource table, see the CICSPlex
System Manager Resource Tables Reference.

Special considerations for CSD resources
CICSPlex SM supports the management of CSD resource definitions with certain
limitations.

Compatibility mode is not supported by the CPSM API.

Chapter 2. Using the CICSPlex SM API 43

For a CSD request, you must specify the scope as an individual CICS system.
Logical scopes, CICS system groups, and CICSplex names cannot be used.
Specifying the scope of individual CICS systems means that you cannot issue
commands to multiple systems concurrently.

Only CICS TS 4.1 (CICS 660) regions and above can be the target of a CSD request.
Systems running earlier releases do not support CSD requests.

BAS-specific attributes that are not valid for CSD are ignored if they are specified
on a CREATE or UPDATE request.

The CSDLOCK and CSDUNLOCK actions have limited capability in the CPSM API
because the requests they generate always use the same values to authenticate. The
values used by these actions are the OPIDENT of the PLTPIUSR, and the APPLID
for the CICS system specified in the SCOPE. You can use these actions to prevent
inadvertent updates, however; you are not recommended to use them for security.

You cannot use an EXEC CPSM COPY command in any of the following situations:
v To copy resource table records from a CSD result set to a non-CSD result set.
v To copy resource table records from a non-CSD result set to a CSD result set.
v To copy resource table records from a CSD result set to a CSD result set in a

different scope.

Example of using the CICSPlex SM API to install a file definition
You can use the CICSPlex SM API to install a CICS resource definition either from
the CSD or by using BAS.

To simplify the example, only the attributes that relate to the task have been
included. For example, the THREAD and RESULT attributes are omitted from
CRITERIA, and the LENGTH and PARMLEN values are omitted from PARM.

Installing a file using BAS

This example shows the installation of a single CICS file definition, filedef_name,
into a CICS System, cics_system_name, in the CICSplex, cicsplex_name.
CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name) �1�

GET OBJECT(FILEDEF)
CRITERIA(NAME=filedef_name AND DEFVER=def_ver.) �2�

PERFORM SET ACTION(INSTALL)
PARM(TARGET(cics_system_name) USAGE(LOCAL).) �3�

Installing a file from the CSD

This example shows the installation of a single CICS file definition, filedef_name,
into a CICS System, cics_system_name, in the CSD group csd_group_name.
CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name) �1�

GET OBJECT(FILEDEF)
SCOPE(cics_system_name) �1�
PARM(CSDGROUP(csd_group_name).) �4�
CRITERIA(NAME=filedef_name.) �2�

PERFORM SET ACTION(CSDINSTALL)

44 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

�1� The SCOPE value is not used for BAS installs. For CSD installs the active
SCOPE must be the name of the CICS system whose CSD the resources are
extracted from, and into which definitions are installed.

�2� The DEFVER attribute specifies the definition version of a resource, this is useful
if you have more than one resource with the same name. If you are installing a
resource using BAS and you have more than one resource with the same name,
you must specify both the resource name and the definition version. Do not use
the DEFVER attribute with resources defined in the CSD.

�3� The TARGET parameter specifies the CICS system, or systems, into which BAS
will install the resources.

�4� The CSDGROUP parameter specifies that the resource definition objects are to be
retrieved from the CSD associated with the CICS system in the SCOPE.

Example of using the CICSPlex SM API to install a CICS
connection definition
You can use the CICSPlex SM API to install a CICS connection definition either
from the CSD, or from the CICSPlex SM data repository using BAS.

The installation of CICS connection definitions differs from the installation of other
CICS resources in that they must be installed with at least one associated session
definition. In BAS the installation of CICS connection definitions is achieved
through the use of a Resource Assignment (RASGNDEF). In the CSD installation of
CICS connection definitions is achieved by installing the connection and session
from a group.

Installing a connection definition using BAS

This example shows the installation of a CICS connection definition, conndef_name,
into a CICS System, cics_system_name, in the CICSplex, cicsplex_name.
CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(CONNDEF)
CRITERIA(NAME=conndef_name AND DEFVER=def_ver.))

PERFORM SET ACTION(INSTALL)
PARM(TARGET(cics_system_name)

USAGE(LOCAL)
REFASSIGN(rasgndef_name).) �1�

Installing a connection definition from the CSD

This example shows the installation of a CICS connection definition, condef_name,
defined to the CSD group, csd_group_name, into a CICS System, cics_system_name.
CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(CSDGROUP) �2�
SCOPE(cics_system_name)
CRITERIA(NAME=csd_group_name.)

PERFORM SET ACTION(CSDINSTALL) �3�

�1� The REFASSIGN parameter is required for a CONNDEF install. The value is the
Resource Assignment (RASGNDEF) that identifies the session definition or
definitions in a Resource Group (RESGROUP) to be installed with the connection
definition.

Chapter 2. Using the CICSPlex SM API 45

�2� One of CSDGROUP, CSDINGRP, CSDINLST, or CSDLIST must be used to install
connection definitions from the CSD and must include at least one connection and
session pair in the result set being installed.

�3� The CSDINSTALL action does not require any parameters because the OBJECT is
a CSD only resource.

Example of using the CICSPlex SM API to install a remote CICS
transaction definition
You can use the CICSPlex SM API to install a remote CICS transaction definition
either from the CSD or by using BAS.

For resources which support Function Shipping, BAS provides the ability to install
both the local and remote definitions of the resource simultaneously. If you are
installing from the CSD, discrete local and remote definitions must be installed
separately.

Installing a remote CICS transaction definition using BAS

This example shows the installation of a local CICS transaction definition,
trandef_name, into a routing CICS System, cics_system_local, and the reciprocal
remote definition, with the same name, into the target CICS System,
cics_system_remote, both of which are in the CICSplex, cicsplex_name.
CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(TRANDEF)
CRITERIA(NAME=trandef_name AND DEFVER=def_ver.))

PERFORM SET ACTION(INSTALL)
PARM(TARGET(cics_system_remote)

USAGE(REMOTE)
MODE(DYNAM)
RELATED(cics_system_local).)

Installing a remote CICS transaction definition from the CSD

This example shows the installation of a local CICS transaction definition,
trandef_name, into the local CICS System, cics_system_local, in the CSD group,
csd_group_local. This is followed by a separate install of the reciprocal remote
definition, into the target CICS System, cics_system_remote, in the CSD group,
csd_group_remote.
CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(TRANDEF)
SCOPE(cics_system_local)
PARM(CSDGROUP(csd_group_local).)
CRITERIA(NAME=trandef_name.)

PERFORM SET ACTION(CSDINSTALL)

GET OBJECT(TRANDEF)
SCOPE(cics_system_remote)
PARM(CSDGROUP(csd_group_remote).)
CRITERIA(NAME=trandef_name.)

PERFORM SET ACTION(CSDINSTALL)

46 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Example of using the CICSPlex SM API to create an ATOM
service definition
You can use the CICSPlex SM API to create a CICS ATOM service definition in
both the CICS CSD and in CICSPlex SM BAS.

Create an ATOM service definition using BAS

This example shows the creation of a CICS ATOM service definition, atomdef_name,
using BAS.
CONNECT CONTEXT(cicsplex_name) �1�
CRERESG_RESGROUP = resgroup_name
CRERESG_DESCRIPTION = “Sample BAS Resource Group”

CREATE OBJECT(RESGROUP)
FROM(CRERESG)
LENGTH(resgroup_tbl_len) �2�

CREATOM_DEFVER = "1"; �3�
CREATOM_NAME = atomdef_name;
CREATOM_DESCRIPTION = “Dummy FILE ATOM Service”;
CREATOM_STATUS = "ENABLED”;
CREATOM_ATOMTYPE = "FEED";
CREATOM_RESOURCETYPE = "FILE";
CREATOM_RESOURCENAME = atomdef_file_name;
CREATOM_BINDFILE = atomdef_bindfile_name;
CREATOM_CONFILE = atomdef_configfile_name;

CREATE OBJECT(ATOMDEF)
FROM(CREATOM)
LENGTH(atomdef_tbl_len)
PARM(RESGROUP(resgroup_name).) �4�

Create an ATOM service definition from the CSD

This example shows the creation of a CICS ATOM service definition, atomdef_name,
into a CICS System, cics_system_name, in the CSD group csd_group_name.
CONNECT CONTEXT(cicsplex_name)

CREATOM_CSDGROUP = csd_group_name; �5�
CREATOM_NAME = atomdef_name;
CREATOM_DESCRIPTION = “Dummy FILE ATOM Service”;
CREATOM_STATUS = "ENABLED”;
CREATOM_ATOMTYPE = "FEED";
CREATOM_RESOURCETYPE = "FILE";
CREATOM_RESOURCENAME = atomdef_file_name;
CREATOM_BINDFILE = atomdef_bindfile_name;
CREATOM_CONFILE = atomdef_configfile_name;

CREATE OBJECT(ATOMDEF)
SCOPE(cics_system_name) �6�
FROM(CREATOM)
LENGTH(atomdef_tbl_len)
PARM(CSD.) �7�

�1� BAS resource definitions are stored in the CICSplex identified by the CONTEXT
parameter. Do not specify the SCOPE parameter for BAS resource definitions.

�2� If the RESGROUP parameter is specified on the CREATE command, the RESGROUP
must have already been defined to the CICSplex.

Chapter 2. Using the CICSPlex SM API 47

�3� If you are defining a BAS resource, you must specify a value for the DEFVER
parameter. If the DEFVER parameter and the CSDGROUP parameter are both specified
the CSDGROUP parameter is ignored.

�4� Adding a BAS CICS resource definition to a resource group is optional. If you
specify the RESGROUP parameter, the CICS resource definition is associated with a
BAS resource group. Resource definitions can also be explicitly added to one or
more resource groups using a PERFORM command with the action set to
ACTION=ADDTOGRP.

�5� The CSDGROUP parameter specifies the CSD group in which the resource
definition are created. All CSD resource definitions must have belong to a group; if
the group does not already exist in the CSD it is created dynamically.

�6� The SCOPE parameter specifies the name of the CICS system using the CSD in
which the definition is to be created.

�7� Specifying the CSD attribute on the PARM parameter identifies the resource
definition as a CSD resource definition.

Example of using the CICSPlex SM API to add a CSD group to a
list
You can use the CICSPlex SM API to add a CSD group to a list.

Adding a CSD group to a list
CONNECT CONTEXT(cicsplex_name)

SCOPE(cics_system_name) �1�

GET OBJECT(CSDGROUP)
CRITERIA(NAME=csd_group_new.)

PERFORM SET ACTION(CSDADD)
PARM(TO_LIST(csd_list_name)

ADD_CSDGROUP(csd_group_old)
ADD_LOCATION(AFTER)) �2�

�1� The value of the SCOPE parameter must be the name of the CICS system using
the CSD in which the group to be added, and the list that it is added to, are
defined. For a PERFORM SET command the SCOPE parameter must be specified as the
active scope for the thread because the PERFORM command must have the same
scope as the GET command and it cannot be specified explicitly on the command.
The SCOPE parameter is specified by a CONNECT or QUALIFY command.

�2� The example adds the group, csd_group_new after the csd_group_old in the list
csd_list_name, as specified by ADD_LOCATION(AFTER).

Example of using the CICSPlex SM API to delete a CSD resource
from a group
You can use the CICSPlex SM API to delete a resource from a group.

Deleting a CSD resource from a group

This example shows the deletion of a CICS transaction definition trandef_name,
defined to a CSD group, csd_group_name, in the CSD used by CICS System,
cics_system_name.
CONNECT CONTEXT(cicsplex_name)

SCOPE(cics_system_name) �1�

48 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

GET OBJECT(TRANDEF)
CRITERIA(NAME=trandef_name.)
PARM(CSDGROUP(csd_group_name).) �2�
RESULT(result_set_token)

FETCH INTO(trandef_record_buffer)
LENGTH(trandef_record_length)
RESULT(result_set_token)

REMOVE OBJECT(TRANDEF)
FROM(trandef_record_buffer)
LENGTH(trandef_record_length)
PARM(CSD.) �3�

�1� The value of the SCOPE parameter for both the GET and REMOVE commands
must be the name of the CICS system which is using the CSD.

�2� The CSDGROUP parameter on the transaction definition, TRANDEF, identifies the
resource as being defined to the CSD, and specifies the CSD group in which it is
defined.

�3� The CSD parameter identifies the CICS transaction definition record, which was
retrieved by the FETCH command, as a CSD resource. The transaction definition
record contains both the name of the transaction definition and the CSD group it is
currently defined in, and from which it will be deleted.

Example of using the CICSPlex SM API to remove a CSD group
from a list
You can use the CICSPlex SM API to remove a CSD group from a CSD list.

Remove a CSD group from a list

This example shows the removal of a CSD group, csd_group_name, from a CSD list,
csd_list_name, in the CSD used by the CICS System, cics_system_name.
CONNECT CONTEXT(cicsplex_name)

SCOPE(cics_system_name) �1�

GET OBJECT(CSDINLST)
CRITERIA(CSDLIST=csd_list_name

AND CSDGROUP=csd_group_name.)
RESULT(result_set_token)

FETCH INTO(csdinlst_record_buffer)
LENGTH(csdinlst_record_length)
RESULT(result_set_token)

REMOVE OBJECT(CSDINLST)
FROM(csdinlst_record_buffer)
LENGTH(csdinlst_record_length)

�1� The value of the SCOPE parameter for both the GET and REMOVE commands
must be the name of the CICS system which is using the CSD.

Example of using the CICSPlex SM API to delete a CSD group
You can use the CICSPlex SM API to delete a CSD group from the CSD.

Chapter 2. Using the CICSPlex SM API 49

Delete a CSD group

This example shows the deletion of a CSD group, csd_group_name, all the CICS
resource definitions in the group, and all references to the group in CSD lists in the
CSD used by the CICS System, cics_system_name.
CONNECT CONTEXT(cicsplex_name)

SCOPE(cics_system_name) �1�

GET OBJECT(CSDGROUP)
CRITERIA(NAME=csd_group_name.)

RESULT(result_set_token)

FETCH INTO(csdgroup_record_buffer)
LENGTH(csdgroup_record_length)
RESULT(result_set_token)

REMOVE OBJECT(CSDGROUP)
FROM(csdgroup_record_buffer)
LENGTH(csdgroup_record_length)
PARM(LISTREMOVE.)

�1� The value of the SCOPE parameter for both the GET and REMOVE commands
must be the name of the CICS system which is using the CSD.

�2� The LISTREMOVE parameter removes the CSD group from all lists in the CSD. If
this parameter is not specified, the CSD group is deleted but references to the
group remain in any CSD lists to which it belonged.

Asynchronous processing
Most CICSPlex SM API commands normally function in a synchronous manner,
where your program issues a request and then waits until command processing is
complete.

The CANCEL command cancels an outstanding LISTEN request. The other
commands can be used in either a synchronous or asynchronous manner. If you
specify the NOWAIT option on any of these commands, the request is processed
asynchronously.

The API commands you can use to monitor and receive the results of
asynchronous processing are:
v ADDRESS
v RECEIVE.

Figure 12 on page 51 illustrates the relationship of these commands to the API
environment.

50 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Using the LISTEN command
Many of the resources that are managed by CICSPlex SM can notify the system
when events occur that are considered significant to the CICSplex.

Such events are not scheduled and cannot be anticipated, so a program designed
to process these notifications must do so asynchronously. You can identify the
event notifications you are interested in by using the LISTEN command.

The events that can be listened for are represented by resource tables with a type
of CPSM Notification. For example, an EMASSICK notification is produced by a
MAS when a condition occurs that adversely affects the health of the CICS system.
For a list of the CPSM Notification resource tables, and complete descriptions of
other resource table's, see CICSPlex System Manager Resource Tables Reference.

When you issue a LISTEN command, the resulting notifications are added to an
outstanding data queue for the API processing thread. The number of completed
asynchronous requests, including event notifications and requests issued with the
NOWAIT option, is reported by the SENTINEL option of the ADDRESS command.
You can retrieve the event notifications by issuing a RECEIVE command.

Using the NOWAIT option
If you specify the NOWAIT option on a GET, PERFORM OBJECT, PERFORM SET,
REFRESH, or SET command, the request does not complete processing
immediately. Instead, the request is scheduled for processing, the command returns
a RESPONSE value of SCHEDULED, and control returns to your program.

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM
API Client Code

Processing
thread

Result
Set

LISTEN
CANCEL

NOWAIT option
ADDRESS
RECEIVE

Asynchronous Processing Commands

Asynchronous
Request

Figure 12. API commands for asynchronous processing

Chapter 2. Using the CICSPlex SM API 51

While the asynchronous request is executing, your program can perform other
processing, even issuing another CICSPlex SM API command. However, as long as
a command is active, the result set it has been given to process is unavailable. A
RESPONSE value of INUSE is returned if you try to access a result set that is still
being processed by an asynchronous request.

An ASYNCREQ resource table record is produced when the asynchronous request
completes. The number of completed asynchronous requests, including
ASYNCREQ records that represent requests issued with the NOWAIT option, is
reported by the SENTINEL option of the ADDRESS command. You can retrieve
ASYNCREQ records by issuing a RECEIVE command.

The ASYNCREQ resource table includes much of the information that is normally
returned by the command itself. Because control returns to your program before
the command completes processing, that information is not available to the
command. The information returned in the ASYNCREQ resource table includes:
v The command that was issued.
v The associated result set token.
v The RESPONSE and REASON values returned by the command.
v The diagnostic data normally returned in a FEEDBACK resource table record, if

the RESPONSE value is not OK.
v A user-defined token that identifies the asynchronous request, if one was

specified.

Note: To access the ASYNCREQ data from a REXX program, you can use either
the CICSPlex SM TPARSE command with the ASIS option or the REXX SUBSTR
function.

Using tokens to identify a request
To keep track of the asynchronous requests your program issues, you can assign
each request a unique identifying token.

This allows your program to correlate LISTEN requests and requests made with
the NOWAIT option with the results of a subsequent RECEIVE command. The
CICSPlex SM API makes no use of any tokens you define. User token values are
held until the associated requests are complete and then returned to your program
by the RECEIVE command. You can use any 1- to 4-character value as an
identifying token. For example, you might specify:
v A literal constant
v An offset of a service routine
v The address of a data structure.

Using the ADDRESS command
When you issue a CONNECT command and an API processing thread is
established, two control fields are created in the MVS address space or CICS
system where the program is running.

By requesting the addresses of these thread control fields, you can determine if
asynchronous output is available without the need for polling or suspending
processing.

You can use the ADDRESS ECB() SENTINEL() command to request the addresses
of these fields:

52 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

ECB The ECB is posted by the API each time an asynchronous request
completes and is added to the thread's outstanding data queue. With the
ECB address, you can:
v Test the appropriate MVS post bits to determine if output is available.
v Issue an MVS WAIT command in a batch, TSO, or NetView program.
v Issue an EXEC CICS WAITCICS or WAIT EXTERNAL command in a

CICS program.

The ECB field is cleared whenever the counter value in the SENTINEL
field reaches 0.

SENTINEL
The sentinel is a 4-byte counter of completed asynchronous requests
associated with the thread.

The sentinel value increases each time an asynchronous request completes.
Examples of completed asynchronous requests include:
v An event occurs that is named in a LISTEN command
v A command that was issued with the NOWAIT option completes

processing.

The sentinel value decreases when a RECEIVE command is issued.

Note:

1. You should use the ADDRESS command before issuing the RECEIVE
command. If the sentinel value is 0, it means there are no completed
asynchronous requests to be received.

2. Because of the nature of asynchronous processing, the sentinel value may
understate the actual number of outstanding requests at any point in time.
When processing multiple asynchronous requests, you should issue the
RECEIVE IMMEDIATE command until a response of NODATA is returned to
ensure that all output has been received.

Using the RECEIVE command
You can use the RECEIVE command to determine if any of the asynchronous
requests you issued have completed.

RECEIVE returns the output from those requests. The output returned can be:
v A resource table record representing an event named in a previous LISTEN

command
v An ASYNCREQ resource table record representing completion of an

asynchronous GET, PERFORM, REFRESH, or SET request.

Note: Before you issue the RECEIVE command, you should issue the ADDRESS
command and check the SENTINEL value to determine if there are any
outstanding asynchronous requests to be received. If the sentinel value is 0, there
are no outstanding asynchronous requests to be received.

As an example, your program might issue a LISTEN command and a GET
command with the NOWAIT operand on the same API thread. Then, in response
to a RECEIVE command, you would receive either an ASYNCREQ resource table
record for the GET command or a resource table record associated with the event
you were listening for.

Chapter 2. Using the CICSPlex SM API 53

Alternatively, you can use multiple API threads to separate the output returned by
subsequent RECEIVE commands. For example, you might create one thread and
use it only for receiving event notifications from the LISTEN command. You might
also create another thread for use by other API functions. In this way, you can
control what output is returned by the RECEIVE commands issued against each
thread.

Another reason you might want to create multiple API threads is because each
thread can have only 256 asynchronous requests outstanding at one time. If your
program issues a large number of asynchronous requests on a single API thread,
you should issue the RECEIVE command at regular intervals. If a processing
thread reaches its maximum of 256, asynchronous requests are discarded and are
not processed.

By default, the RECEIVE command waits until asynchronous output is available
before returning control to your program. This means processing is suspended
until an asynchronous request completes. As an alternative to waiting indefinitely,
you can specify one of these options on the RECEIVE command:

DELAY(data-value)
Checks for asynchronous output, waits the specified number of seconds for
output to become available, and then returns control to the processing
thread, with or without output.

IMMEDIATE
Checks for asynchronous output and then immediately returns control to
the processing thread, whether or not any output is available.

Using CICSPlex SM tokens
Many of the CICSPlex SM API commands are interrelated; you use them in
conjunction with each other to accomplish the objectives of your program. For
example, you issue a GET command to build a result set and then issue a FETCH
command to access the resource table records in that result set.

To correlate the results of various operations with subsequent requests that you
make, CICSPlex SM assigns 4-byte tokens to the following objects of the API
environment:
v Processing threads
v Result sets
v Filters
v Views
v LISTEN requests.

So, for example, each processing thread has a unique, 4-byte identifying token. You
must specify a thread token on each API command that your program issues to
identify the thread where it should be processed. Likewise, once a result set or
filter is created, you refer to it on subsequent commands by supplying the token
value assigned to it by CICSPlex SM. And each LISTEN request is given a token so
that you can cancel the request using the CANCEL command.

Note:

1. CICSPlex SM assigns a token to views for internal use only. Externally, you
refer to a view by the name which you assigned to it.

54 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

2. There is a limit to the number of CICSPlex SM tokens available to each
processing thread. In general, the number of result sets, filters, views, and
LISTEN requests created on a processing thread cannot exceed 255.

Token values are not only unique for individual objects, but the structure of the
tokens varies by object type. So a thread token cannot be mistaken by CICSPlex
SM for any other type of token. If you specify an invalid token (such as, a result
set token on the FILTER option), you receive a RESPONSE value of
INVALIDPARM.

Using metadata resource tables
The GETDEF command is used to obtain records describing the structure of the
CICSPlex SM managed objects, including general characteristics, valid actions, and
object attributes.

The OBJECT option of the GETDEF command identifies the type of metadata to be
retrieved. The contents of the following metadata resource tables are described:
v ATTR
v ATTRAVA
v METADESC
v METANAME
v METAPARM
v OBJACT
v OBJECT
v PARMAVA

ATTR
The ATTR resource table contains detailed information for a specific attribute of a
managed object.

Attribute
Description

OBJECT
The name of the managed object to which the specific attribute belongs.

TABLEVER
The version of the table identified by the OBJECT attribute.

NAME
The name of the specific attribute. 1 to 12 characters in length.

ID The ID of the attribute

LENGTH
The length of the data associated with the attribute. Not to be confused
with the length of the ATTR attribute NAME.

OFFSET
The offset in the resource table at which the attribute data begins.

DATATYPE
The data type of the attribute data:

COMPID
CICSPlex SM component ID

Chapter 2. Using the CICSPlex SM API 55

BINARY
Binary

RATE Rate to 1 decimal place

PERCENT
Percentage to 1 decimal place

SUM Sum of values to 1 decimal place

RATIO
Ratio

AVERAGE
Average to 1 decimal place

TIMESTP
Time stamp

BIT Bit string

TEXT Text

CHAR
Character

EYUDA
EYUDA

CVDAS
Standard CVDA

CVDAT
Terminal CVDA

RESTYPE
Restype

DECIMAL
Packed Decimal

DECDATE
Date in decimal form

ILABEL
Internal Label

HHMM
Binary Hours/Minutes

SCLOCK
CMF 8 byte interval store clock

SCLOCK12
CMF 12 byte interval store clock

INTUSEC
Interval in microseconds

INTMSEC
Interval in milliseconds

INT16US
Interval in 16 microseconds

INTSEC
Interval in Seconds

56 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

INTTSTP
Interval Timestamp Delta

DATETIME
Date Time Group

DECTSTP
Decimal Timestamp

ADDRESS
Address

CNUMERIC
Coded Numeric

HIDCHAR
Non Display Character

HEX Hexadecimal

TBLVER
Resource table version

RATE3
Rate to 3 decimal places

PERCENT3
Percentage to 3 decimal places

SUM3 Sum of values to 3 decimal places

AVERAGE3
Average to 3 decimal places

DECTIME
Time in units of tenths of a second

DECTIMES
Time in units of seconds

SUMOPT
The default summary option used for the attribute:

AVG Average

DIFF Difference

MIN Minimum

MAX Maximum

SUM Summary

LIKE Like

IDATATYPE
A numeric value which represents the internal data type

0 Component

4 Numeric

8 Rate

12 Percent

16 Sum

20 Ratio

Chapter 2. Using the CICSPlex SM API 57

24 Average

28 Timestamp

32 Bit

36 Text

40 Character

44 EYUDA

48 CVDA standard

52 CVDA terminal

56 Resource type

60 Packed decimal

64 Packed decimal date

68 Internal label field

72 HHMM

76 Interval store clock, 8 byte

80 Interval microseconds

84 Interval milliseconds

88 Interval 16 microseconds

92 Interval seconds

96 Store clock delta

100 Date time group

104 Packed decimal timestamp to tenths of seconds

108 Address

112 Codes numeric

116 Non-display character

120 Hexadecimal

124 Table version

128 Binary derived rate to 3 decimal places

132 Binary derived percent to 3 decimal places

136 Binary derived sum to 3 decimal places

140 Binary derived average to three deecimal places

144 Packed decimal time to seconds

148 Packed decimal time to tenths of seconds

152 Interval store clock, 12 byte

SETVALID
Whether or not the attribute may be set/modified: Y or N

REQUIRED
Whether or not the attribute is required for CREATE: Y or N

58 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

AVAAVAIL
Whether or not attribute value assertion information is available for the
attribute: Y or N. When available, refer to the ATTR attributes:
v AVACOUNT

Use the ATTRAVA resource table to obtain attribute value assertion
information.

CICSVALAVAIL
Whether or not CICS validity data is available: Y or N. When available,
refer to the ATTR attributes:
v VALCICSESA
v VALCICSVSE
v VALCICSOS2
v VALCICSWNT
v VALCICSES2

HDRTXTAVAIL
Whether or not attribute header text is available: Y or N. When available,
refer to the ATTR attributes:
v HDRTEXT

VALSETAVAIL
Whether or not value set information is available: Y or N. When available,
refer to the ATTR attributes:
v VALCOUNT

Use the ATTRAVA resource table to obtain value set information.

SOURCE
The source of the attribute data:

V Created by CPSM

I Acquired from CICS INQ

S Acquired from CICS STATS

P Acquired from CICS CMF data

KEY Whether or not the attribute participates in the key of the managed object:
0 or n, where 0 means the attribute is not part of the key, and n means the
part number of the key.

AVACOUNT
The number of attribute value assertions for the attribute. This value
corresponds to the number of ATTRAVA resource table records available
with a LISTTYPE value of AVA for the attribute. Only present if the
AVAAVAIL attribute is Y.

VALCOUNT
The number of value set values for the attribute. This value corresponds to
the number of ATTRAVA resource table records available with a LISTTYPE
value of VALUE for the attribute. Only present if the VALSETAVAIL
attribute is Y.

VALCICSESA
First byte of flags indicating whether or not the attribute is valid in
different versions of CICS/ESA:

Chapter 2. Using the CICSPlex SM API 59

1... X’80’ CICS/MVS 2.1.2
.1.. X’40’ CICS/ESA 3.3.0
..1. X’20’ CICS/ESA 4.1.0
...1 X’10’ CICS Transaction Server for

OS/390 Release 1
.... 1... X’08’ CICS Transaction Server for

OS/390 Release 2
.... .1.. X’04’ CICS Transaction Server for

OS/390 Release 3
.... ..1. X’02’ CICS Transaction Server for

z/OS Version 2 Release 1
.... ...1 X’01’ CICS Transaction Server for

z/OS Version 2 Release 2

The attribute is not valid in the version of CICS if the bit is set on.
VALCICSES2 contains a second byte of flags.

VALCICSVSE
Flags indicating whether or not the attribute is valid in different versions
of CICS/VSE:
1... X’80’ CICS/VSE 2.2.0
.1.. X’40’ CICS/VSE 2.3.0
..1. X’20’ CICS/VSE 4.1.0
...1 1111 Reserved

The attribute is not valid in the version of CICS if the bit is set on.

VALCICSOS2
Flags indicating whether or not the attribute is valid in different versions
of CICS OS/2:
1... X’80’ CICS OS/2 2.0.1
.1.. X’40’ CICS OS/2 3.0.0
..1. X’20’ CICS OS/2 3.1.0
...1 1111 Reserved

The attribute is not valid in the version of CICS if the bit is set on.

VALCICSWNT
Flags indicating whether or not the attribute is valid in different versions
of TXSeries:
1... X’80’ CICS for TXSeries 4.3.0
.1.. X’40’ CICS for TXSeries 5.0.0
..11 1111 Reserved

The attribute is not valid in the version of CICS if the bit is set on.

VALCICSES2
Second byte of flags indicating whether or not the action is valid in
different versions of CICS/ESA:
1... X’80’ CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X’40’ CICS Transaction Server for z/OS, Version 3 Release 1
..11 1111 Reserved

The action is not valid in the version of CICS if the bit is set on. The first
byte of flags is contained in VALCICSESA.

SETCICSESA
First byte of flags indicating whether or not the attribute is modifiable in
different versions of CICS/ESA:
1... X’80’ CICS/MVS 2.1.2
.1.. X’40’ CICS/ESA 3.1.0
..1. X’20’ CICS/ESA 4.1.0

60 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

...1 X’10’ CICS Transaction Server for
OS/390 Release 1

.... 1... X’08’ CICS Transaction Server for
OS/390 Release 2

.... .1.. X’04’ CICS Transaction Server for
OS/390 Release 3

.... ..1. X’02’ CICS Transaction Server for
z/OS Version 2 Release 1

.... ...1 X’01’ CICS Transaction Server for
z/OS Version 2 Release 2

The attribute is not modifiable in the version of CICS if the bit is set on. A
second byte of flags is contained in SETCICSES2.

SETCICSVSE
Flags indicating whether or not the attribute is modifiable in different
versions of CICS/VSE:
1... X’80’ CICS/VSE 2.2.0
.1.. X’40’ CICS/VSE 2.3.0
..1. X’20’ CICS/VSE 4.1.0
...1 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on.

SETCICSOS2
Flags indicating whether or not the attribute is modifiable in different
versions of CICS OS/2:
1... X’80’ CICS OS/2 2.0.1
.1.. X’40’ CICS OS/2 3.0.0
..1. X’20’ CICS OS/2 3.1.0
...1 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on.

SETCICSWNT
Flags indicating whether or not the attribute is modifiable in different
versions of TXSeries:
1... X’80’ CICS for TXSeries 4.3.0
.1.. X’40’ CICS for TXSeries 5.0.0
..11 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on.

SETCICSES2
Second byte of flags indicating whether or not the attribute is modifiable in
different versions of CICS/ESA:
1... X’80’ CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X’40’ CICS Transaction Server for z/OS, Version 3 Release 1
..11 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on

IGNVALUE
The value that signifies Not Applicable or Ignore for the attribute.

LOWVALUE
The lowest value allowed in the range of valid values for the attribute.

HIGHVALUE
The highest value allowed in the range of valid values for the attribute.

Chapter 2. Using the CICSPlex SM API 61

HDRTEXT
The header text of the attribute. Only present if the HDRTXTAVAIL
attribute value is Y.

DESC The description of the attribute.

DEFAULT
The default value for the attribute, if any.

UCHAR
Whether or not the attribute value is uppercase: Y or N.

CICSSETAVAIL
Indicates whether or not the SET command is valid for an attribute: Y or
N. When set to Y the following to the ATTR attributes indicate the levels of
different CICS products for which the command is valid:
v SETCICSESA
v SETCICSVSE
v SETCICSOS2
v SETCICSWNT
v SETCICSES2

SORT Indicates whether or not the attribute participates in ORDER

Y The attribute participates in ORDER

N The attribute does not participate in ORDER

FILTER
Indicates whether or not the attribute participates in SPECIFY FILTER

Y The attribute participates in SPECIFY FILTER

N The attribute does not participate in SPECIFY FILTER

SUMMARISE
Eligibility of the attribute for summarizing

Y The attribute may be summarized

N The attribute may not be summarized

VIEWMOD
Eligibility of the attribute for view support

Y The attribute is eligible for view support

N The attribute is not eligible for view support

INHERIT
Indicates whether or not the attribute participates in inheritance

Y The attribute participates in inheritance

N The attribute does not participate in inheritance

ATTRAVA
Information in this resource table is available only when the AVAAVAIL or
VALSETAVAIL attributes of the ATTR resource table have a value of Y.

The ATTRAVA resource table provides an acceptable value for a specific attribute
of a managed object. The set of ATTRAVA base tables for a specific attribute
provide the list of all acceptable values.

62 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

However, please note that the attribute may support a range of values (for
example, zero to 999) and there are no ATTRAVA base tables for the range values.
There also may not be an ATTRAVA base table for the default value for the
attribute. The default value, and the highest and lowest in range values can be
found from the ATTR base table for the attribute.

Attribute
Description

OBJECT
The name of the managed object to which the specific attribute belongs.

TABLEVER
The version of the table identified by the OBJECT attribute.

NAME
The name of the specific attribute. 1 to 12 characters in length.

AVAVALUE
A value for the attribute.

LISTTYPE
Indicates if the AVAVALUE data is an attribute value assertion or other
acceptable value for the attribute:

AVA A value derived from an attribute value assertion

VALUE
At present, this is only used to return the special value meaning
"ignore"

IOTYPE
Indicates whether the attribute value is used for input, output, or input
and output operations:

I Input

O Output

B Input and output

METADESC
The METADESC resource table provides basic structure and layout information for
a specific attribute of a managed object.

Attribute
Description

NAME
The name of the specific attribute. 1 to 12 characters in length.

LENGTH
The length of the data associated with the attribute. Not to be confused
with the length of the METADESC attribute NAME.

OFFSET
The offset in the resource table at which the attribute data begins.

DATATYPE
The data type of the attribute data:

0 Component Identifier

4 Binary Numeric

Chapter 2. Using the CICSPlex SM API 63

8 Binary Derived Rate

12 Binary Derived Percent

16 Binary Derived Sum

20 Binary Derived Ratio

24 Binary Derived Average

28 Operating system timestamp

32 Bit

36 Text

40 Character

44 EYUDA

48 CVDA Standard

52 CVDA Terminal

56 Resource Type

60 Packed Decimal

64 Packed decimal date

68 Internal Label Field

72 Binary HHMM

76 Interval store clock, 8 byte

80 Interval Microseconds

84 Interval Milliseconds

88 Interval 16 Microseconds

92 Interval Seconds

96 Interval Store Clock delta

100 Date Time Group

104 Packed Decimal Timestamp to tenths of seconds

108 Address

112 Coded Numeric

116 Non Display Character

120 Hexadecimal

124 Table version

128 Binary derived rate to 3 decimal places

132 Binary derived percent to 3 decimal places

136 Binary derived sum to 3 decimal places

140 Binary derived average to three decimal places

144 Packed decimal timestamp to seconds

148 Packed decimal timestamp to tenths of seconds

152 Interval store clock, 12 byte

64 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

INHERIT
Whether or not the attribute value is inheritable: Y or N. Valid only for
CICSPlex SM definition resource tables that participate in CICSplex
inheritance.

METANAME
The METANAME resource table contains information about all CVDASs, CVDATs,
and EYUDAs.

Attribute
Description

NAMETYPE
Type of data

1 CVDAS

2 CVDAT

3 EYUDA

VALUE
Numeric value of CVDA or EYUDA

NAME
Name of CVDA or EYUDA

DESCRIPTION
Description of CVDA or EYUDA

METAPARM
The METAPARM resource table contains information about a parameter for an
action.

Attribute
Description

TABLE
Table name

ACTION
Action name

NAME
Parameter name as it appears in the API PARM string

ID Parameter number

GROUP_ID
Multiple parameters may be related to each other in the sense that only
one of a group may be specified. Parameters that are related in this way
will have the same group ID.

REQUIRED
Indicates whether or not the parameter is required

Y The parameter is required

N The parameter is not required

WORKLOAD
Indicates whether or not the parameter is a workload name

Y The parameter is a workload name

Chapter 2. Using the CICSPlex SM API 65

N The parameter is not a workload name

WRKLOWNER
Indicates whether or not the parameter is the name of a workload owner

Y The parameter is the name of a workload owner

N The parameter is not the name of a workload owner

VALUE
Parameter value

MODE
Method by which parameter is applied

1 Copy from base table

2 Array of values

3 Bit setting

4 Keyword in API parameter string:

5 Filter string

6 API keyword with value

7 Base table field with existence bit

8 API modification string

Modes 3 and 4 appear in the API parameter string as stand-alone
keywords. Modes 2, 5, 6 and 8 appear in the API parameter string as
keywords with a value. Modes 1 and 7 do not appear in the API parameter
string.

DESCRIPTION
Description

CICSVALAVAIL
Indicates whether or not CICS validity data is available

Y CICS validity data is available

N CICS validity data is not available

VALCICSESA
First byte of flags indicating whether or not the parameter is valid in
different versions of CICS:
1... X’80’ CICS/MVS 2.1.2
.1.. X’40’ CICS/ESA 3.3.0
..1. X’20’ CICS/ESA 4.1.0
...1 X’10’ CICS Transaction Server for

OS/390 Release 1
.... 1... X’08’ CICS Transaction server for

OS/390 Release 2
.... .1.. X’04’ CICS Transaction Server for

OS/390 Release 3
.... ..1. X’02’ CICS Transaction Server for

z/OS Version 2 Release 1
.... ...1 X’01’ CICS Transaction Server for z/OS, Version 2 Release 2

The parameter is not valid in the version of CICS if the bit is set on. The
second byte of flags is contained in VALCICSES2.

66 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

VALCICSVSE
Flags indicating whether or not the parameter is valid in different versions
of CICS Transaction Server for VSE:
1... X’80’ CICS/VSE 2.2.0
.1.. X’40’ CICS/VSE 2.3.0
..1. X’20’ CICS/VSE 4.1.0
...1 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on.

VALCICSOS2
Flags indicating whether or not the parameter is valid in different versions
of CICS OS/2:
1... X’80’ CICS OS/2 2.0.1
.1.. X’40’ CICS OS/2 3.0.0
..1. X’20’ CICS OS/2 3.1.0
...1 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on.

VALCICSWNT
Flags indicating whether or not the parameter is valid in different versions
of TXSeries:
1... X’80’ CICS for TXSeries 4.3.0
.1.. X’40’ CICS for TXSeries 5.0.0
..11 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on.

VALCICSES2
Second byte of flags indicating whether or not the parameter is valid in
different versions of CICS:
1... X’80’ CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X’40’ CICS Transaction Server for z/OS, Version 3 Release 1
..11 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on. The
first byte of flags is contained in VALCICSESA.

OBJACT
The OBJACT resource table contains action information for a specific managed
object.

Attribute
Description

OBJECT
The name of the managed object to which the specific action applies.

TABLEVER
The version of the table identified by the OBJECT attribute.

ACTION
The name of the action. 1 to 12 characters in length.

VALCICSESA
First byte of flags indicating whether or not the action is valid in different
versions of CICS:
1... X’80’ CICS/MVS 2.1.2
.1.. X’40’ CICS/ESA 3.3.0
..1. X’20’ CICS/ESA 4.1.0

Chapter 2. Using the CICSPlex SM API 67

...1 X’10’ CICS Transaction Server for
OS/390 Release 1

.... 1... X’08’ CICS Transaction server for
OS/390 Release 2

.... .1.. X’04’ CICS Transaction Server for
OS/390 Release 3

.... ..1. X’02’ CICS Transaction Server for
z/OS Version 2 Release 1

.... ...1 X’01’ CICS Transaction Server for z/OS, Version 2 Release 2

The action is not valid in the version of CICS if the bit is set on. The
second byte of flags is contained in VALCICSES2.

VALCICSVSE
Flags indicating whether or not the action is valid in different versions of
CICS Transaction Server for VSE:
1... X’80’ CICS/VSE 2.2.0
.1.. X’40’ CICS/VSE 2.3.0
..1. X’20’ CICS/VSE 4.1.0
...1 1111 Reserved

The action is not valid in the version of CICS if the bit is set on.

VALCICSOS2
Flags indicating whether or not the action is valid in different versions of
CICS OS/2:
1... X’80’ CICS OS/2 2.0.1
.1.. X’40’ CICS OS/2 3.0.0
..1. X’20’ CICS OS/2 3.1.0
...1 1111 Reserved

The action is not valid in the version of CICS if the bit is set on.

VALCICSWNT
Flags indicating whether or not the action is valid in different versions of
TXSeries:
1... X’80’ CICS for TXSeries 4.3.0
.1.. X’40’ CICS for TXSeries 5.0.0
..11 1111 Reserved

The action is not valid in the version of CICS if the bit is set on.

VALCICSES2
Second byte of flags indicating whether or not the action is valid in
different versions of CICS Transaction Server for z/OS:
1... X’80’ CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X’40’ CICS Transaction Server for z/OS, Version 3 Release 1
..1. 1111 X’20’ CICS Transaction Server for z/OS, Version 3 Release 2
...1 1111 X’10’ CICS Transaction Server for z/OS, Version 4 Release 1
..11 1111 Reserved

The action is not valid in the version of CICS if the bit is set on. The first
byte of flags is contained in VALCICSESA.

DESCRIPTION
The description of the action

ID The number of the action

PARMCOUNT
The number of parameters for this action

68 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

APIPERFORM
Indicates whether or not an action is valid for EXEC CPSM PERFORM,
GET, SET, CREATE, UPDATE, and REMOVE.

N The action is not valid.

Y The action is valid.

OBJECT
The OBJECT resource table contains detailed information for a specific managed
object.

Attribute
Description

NAME
The name of the managed object. 1 to 8 characters in length.

ID The numeric resource table ID.

NUMTBLVER
The number of different versions of the managed object which are known
to exist.

HIGHTBLVER
The number of the highest version of the managed object.

RELTBLVER
The version of the managed object at the current CPSM release.

OWNERNAME
The name of the component which owns the managed object.

CREATREL
CPSM release at which the managed object was introduced.

QUERYREL
CPSM release of the querying CMAS.

OBJTYPE
The object type of the managed object:

C CICS Resource

M Monitored CICS Resource

D CPSM Definition

V CPSM Resource

O CPSM Metadata

N CPSM Notification

R CICS Resource Definition

L CPSM Configuration Definition

CURTBLVER
Version of the managed object at the current CONNECT version

CURNUMATTR
Number of attributes in the managed object at the current CONNECT
version

CURSTGSIZE
External length of the managed object at the current CONNECT version

Chapter 2. Using the CICSPlex SM API 69

CURCPSMREL
CPSM release when the version of the managed object at the current
CONNECT version was created

CURVALRTA
Whether or not the managed object is valid for use with RTA: Y or N.

CURVALUTL
Whether or not the managed object is valid for use with the batch utility: Y
or N.

CURGETVAL
Whether or not the managed object is valid for GET requests: Y or N.

CURSETVAL
Whether or not the managed object is valid for SET requests: Y or N.

CURCREVAL
Whether or not the managed object is valid for CREATE requests: Y or N.

CURUPDVAL
Whether or not the managed object is valid for UPDATE requests: Y or N.

CURREMVAL
Whether or not the managed object is valid for REMOVE requests: Y or N.

CURACTVAL
Whether or not the managed object has actions defined: Y or N.

Use the OBJACT resource table to obtain action information.

CURVALESA
First byte of flags indicating whether or not the managed object is valid in
different versions of CICS/ESA:
1... X’80’ CICS/MVS 2.1.2
.1.. X’40’ CICS/ESA 3.3.0
..1. X’20’ CICS/ESA 4.1.0
...1 X’10’ CICS Transaction Server for

OS/390 Release 1
.... 1... X’08’ CICS Transaction Server for

OS/390 Release 2
.... .1.. X’04’ CICS Transaction Server for

OS/390 Release 3
.... ..1. X’02’ CICS Transaction Server for

z/OS Version 2 Release 1
.... ...1 X’01’ CICS Transaction Server for

z/OS Version 2 Release 2

The object is not valid in the version of CICS if the bit is set on.The second
byte of flags is contained in CURVALES2.

CURVALVSE
Flags indicating whether or not the managed object is valid in different
versions of CICS/VSE:
1... X’80’ CICS/VSE 2.2.0
.1.. X’40’ CICS/VSE 2.3.0
..1. X’20’ CICS/VSE 4.1.0
...1 1111 Reserved

The object is not valid in the version of CICS if the bit is set on.

CURVALOS2
Flags indicating whether or not the managed object is valid in different
versions of CICS OS/2:

70 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

1... X’80’ CICS OS/2 2.0.1
.1.. X’40’ CICS OS/2 3.0.0
..1. X’20’ CICS OS/2 3.1.0
...1 1111 Reserved

The object is not valid in the version of CICS if the bit is set on.

CURVALWNT
Flags indicating whether or not the managed object is valid in different
versions of TXSeries:
1... X’80’ CICS for TXSeries 4.3.0
.1.. X’40’ CICS for TXSeries 5.0.0
..11 1111 Reserved

The object is not valid in the version of CICS if the bit is set on.

CURVALES2
Second byte of flags indicating whether or not the managed object is valid
in different versions of CICS/ESA:
1... X’80’ CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X’40’ CICS Transaction Server for z/OS, Version 3 Release 1
..11 1111 Reserved

The action is not valid in the version of CICS if the bit is set on. The first
byte of flags is contained in CURVALESA.

DESC The description of the managed object.

VIEWMOD
Eligibility of the managed object for view support

Y The managed object is eligible for view support

N The managed object is not eligible for view support

APIPREFIX
Indicates whether or not an API prefix is required

Y An API prefix is required

N An API prefix is not required

SCOPESORT

Y The API sorts by scope

N The API does not sort by scope

SCOPEREQ

Y Scope must be specified

N Scope need not be specified

PARMAVA
The PARMAVA resource table provides information about the values that may be
specified for a parameter.

Attribute
Description

PARMIDN
Parameter number

Chapter 2. Using the CICSPlex SM API 71

PARMAVAIDN
AVA number for parameter

LITERAL
Parameter literal

VALUE
Parameter value in numeric form

VALUENAME
Parameter value as a character string

Using CRESxxxx resource tables
The CRESxxxx resource tables are externalized versions of the topology resource
maps, and are usually updated when a resource is installed, added, discarded or
removed. This information is captured via the CICS XRSINDI global user exit, or
for CRESIPCN, via the XMEOUT message exit.

In addition, a small number of CRESxxxx resource tables are also updated when
the characteristics of an existing resource is modified. Those CRESxxxx resource
tables that are updated regularly at MAS heartbeat time are:
v CRESDSNM data set
v CRESFECO FEPI connection
v CRESGLUE global user exit
v CRESSDMP system dump code
v CRESTDMP transaction dump code
v CRESTRUE task-related user exit

An application program that needs to be informed when any of the CRESxxxx
topology resource maps is changed can use the API LISTEN command to register
an interest in the corresponding ERMCxxxx CPSM notification resource table.

Note: When an IPCONN is acquired, or released, owing to the synchronization of
the states on both sides of the connection, the actual values returned may be a
combination of Obtaining and Acquired, or Freeing and Released, for the
instigator and partner resource respectively.

Querying the CICSPlex SM API exit
In a CICS LMAS environment the CICSPlex SM API function is implemented via a
task-related user exit. CICS application programs can use the EXEC CICS INQUIRE
EXITPROGRAM command to retrieve information about the CICSPlex SM API
task-related user exit.

EXEC CICS INQUIRE EXITPROGRAM(EYU9XLAP)
CONNECTST(cvda)
QUALIFIER(data-area)

In CICS systems that support the CONNECTST and QUALIFIER keywords of the
INQUIRE EXITPROGRAM command, CONNECTST returns a CVDA indicating
the status of the CICSPlex SM API task-related user exit, and QUALIFIER returns
the name of the CICSplex to which the LMAS is connected. For more information
about the INQUIRE EXITPROGRAM command, see INQUIRE EXITPROGRAM.

72 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquireexitprogram.html

Chapter 3. Writing an EXEC CPSM program

You can use the CICSPlex SM command-level interface to write an API program.
Language-specific copy books are supplied for each CICSPlex SM resource table.

Using the resource table copy books
The CICSPlex SM API accepts and returns resource data in the form of records that
contain the resource attributes.

For example, if you issue a FETCH command against a result set containing
LOCTRAN resource table records, the API returns all the attributes for a given
transaction in a single record. Your program must identify an area of storage to
receive the resource table records.

Note: This method of returning data differs from the EXEC CICS system
programming interface, where you must fetch each attribute of a resource
individually.

To simplify the use of these resource table records, CICSPlex SM provides a set of
copy books for each resource table that you can access from an API program. By
including these copy books in your program, you can access the resource table
data in the appropriate structure and format for the language you are using.

How to access the copy books
The copy books are installed as part of the CICSPlex SM installation process.

The copy books are installed as part of the CICSPlex SM installation process. They
are placed into the following libraries:
Assembler

CICSTS42.CPSM.SEYUMAC
COBOL

CICSTS42.CPSM.SEYUCOB
PL1 CICSTS42.CPSM.SEYUPL1
C CICSTS42.CPSM.SEYUC370

If you want to include the copy books in your program, make sure the appropriate
library is available to the assemble or compile step.

Note: The CICSPlex SM API uses variable names that begin with EYU. Make sure
your program does not define variables or structures with variable names that are
the same as variable names generated by the translator or declared in the resource
table copy books. Also be careful that your program does not implicitly generate
such variable names.

Copybook names and aliases
Each CICSPlex SM resource table has a name that is unique within the product.

In addition, a unique name is created for each copy book version of the resource
table in each language. The copy book names take the form:

EYUtnnnn

© Copyright IBM Corp. 1995, 2012 73

where:

t Identifies which language the copy book supports, as one of the following:

A Assembler

P PL/I

L COBOL

C C

nnnn Is a 4-character numeric resource table identifier.

For example:

EYUA0001
Is the Assembler DSECT for the CICSRGN resource table.

EYUC2451
Is the C structured data type for the CMAS resource table.

To make the copy books easy to reference in your program, CICSPlex SM provides
alias support for the copy book names. The appropriate data set contains the
following two entries for each resource table:

EYUtnnnn
The resource table copy book name.

formname
The format name alias, which is the resource table name as shown in
CICSPlex System Manager Resource Tables Reference.

So, using the previous example, the Assembler DSECT for the CICSRGN resource
table could be referred to as either EYUA0001 or its alias, CICSRGN.

Copybook format
Each copy book contains a prologue that describes the resource table and its
characteristics.

The copy book prologue includes:
v Valid API operations
v Any parameters that are required for an operation
v Valid API actions
v CICS releases that do not support the resource table, if any.

A description is provided for each attribute of the resource table. In addition, the
following information is provided for an attribute, if appropriate:
v Whether the attribute can be modified by a SET command
v CICS releases that do not support the attribute, if any
v CICS releases that do not allow the attribute to be modified, if any.

Copybook data characteristics
Each resource table that can be processed by an API program contains data values
for each of its attributes.

The attribute values are presented in an internal format that is appropriate for the
data type and the environment in which the program is running:

74 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v Standard System/390 data formats are used. No translation or formatting
operations are performed on the attribute values.

v For programs written in C, variable-length character fields do not contain the
zero-byte ending delimiter.

v The lengths of all resource table records are a multiple of 8 bytes. Each copy
book contains a definition of the resource table length.

v System/390 boundary alignments are observed for all data types. That means all
resource table records are maintained internally starting on doubleword-aligned
storage locations. Alignment fields are automatically generated in each copy
book. These alignment fields, which contain binary zeros, have names like:

EYU_RSVnnnn

Make sure the data areas your program uses to send and receive resource table
records have proper boundary alignment.

Supplied copy books
Resource table copy books are supplied for each language.

Assembler copy books
Assembler copy books are distributed in CICSTS42.CPSM.SEYUMAC.

Distributed as:
DSECTs

Copybook names:
EYUAnnnn

Note the following as you use the Assembler copy books:
v DSECT and DS statements are used to describe the resource table.
v The DSECT name is the resource table format name (such as, EMASSTRT).
v The attribute names are a concatenation of the resource table format name and

the attribute name, connected by an underscore (such as,
EMASSTRT_CMASNAME).

v EQU statements are used to describe the setting of indicator fields for bit, binary,
and character values.

v The table length field is a concatenation of the resource table format name and
the constant TBL_LEN, connected by an underscore (such as,
EMASSTRT_TBL_LEN).

The resource table data types are defined using the data definition operands of the
DS statement. The following data type definitions are used:

DS X - Bit, binary values greater than 8 bytes
- Odd number binary values less than 8 bytes
- Mixed character and binary data

DS H - 2-byte binary numeric values

DS F - 4-byte binary numeric values
- 4-byte intervals

DS D - Time stamps and 8-byte intervals
- 8-byte numeric values

DS P - Packed decimal data

DS C - Character data

Chapter 3. Writing an EXEC CPSM program 75

Figure 13 is a representative extract of an Assembler resource table copy book:

PL/I copy books
PL/I copy books are distributed in CICSTS42.CPSM.SEYUPL1.

Distributed as:
Based structures

Copybook names:
EYUPnnnn

Note the following as you use the PL/I copy books:
v The variable EYUPTPTR must be explicitly declared as follows:

DCL EYUPTPTR POINTER;

v The structure level 1 name is the resource table format name (such as,
EMASSTRT).

--
* Name = EYUA2400 *
* Format Name = EMASSTRT *
* Version = 0001 *
* Status = CPSMREL(0310) *
* Function = Base Table Structure generator *
* Format definition for this element = EMASSTRT *
* Valid Operations = None *
* Valid Actions = None *
--
EMASSTRT DSECT Notify CICS System Start Event
EMASSTRT_CMASNAME DS CL0008 CMAS Name
EMASSTRT_PLEXNAME DS CL0008 CICSPlex Name
EMASSTRT_CSYSNAME DS CL0008 CICS System Name
EMASSTRT_MON_SPEC DS CL0008 Monitor Spec Name
EMASSTRT_RTA_SPEC DS CL0008 Real Time Analysis Spec Name
EMASSTRT_WLM_SPEC DS CL0008 Work Load Manager Spec Name
EMASSTRT_STATUS DS XL0001 Status
EMASSTRT_STATUS_LOCAL EQU 128 Local MAS
EMASSTRT_STATUS_REMOTE EQU 64 Remote MAS
EMASSTRT_DYNROUTE DS XL0001 Dynamic Routing Mode
EMASSTRT_DYNROUTE_ACTIVE EQU 1 Routing ACTIVE
EMASSTRT_DYNROUTE_SUSPEND EQU 2 Routing SUSPENDED
EMASSTRT_DYNTYPE DS CL0003 Dynamic Routing Type
EMASSTRT_DYNTYPE_WLMTOR EQU C’TOR’ Routing TOR
EMASSTRT_DYNTYPE_WLMAOR EQU C’AOR’ Routing AOR
EMASSTRT_DESC DS CL0030 Description
EMASSTRT_CSYSAPPL DS CL0008 CICS System VTAM APPLID
EMASSTRT_EYU_RSV0015 DS XL0005 Alignment Padding
EMASSTRT_MASSTART DS D MAS Start STCK Value
EMASSTRT_TMEZONEO DS XL0001 Time Zone Offset
EMASSTRT_TMEZONE DS CL0001 Time Zone
EMASSTRT_EYU_RSV0019 DS XL0002 Alignment Padding
EMASSTRT_DAYLGHTSV DS F DayLight saving in effect
EMASSTRT_SYSID DS CL0004 MAS System Id
EMASSTRT_OPSYSREL DS CL0004 MAS Op Sys Release
EMASSTRT_MVSNAME DS CL0004 MVS System Name
EMASSTRT_JOBNAME DS CL0008 MAS Job Name
EMASSTRT_CECNAME DS CL0008 CEC Name
EMASSTRT_SYSPLEX DS CL0008 SYSPlex Name
EMASSTRT_EYU_RSV0257 DS XL0004 Alignment Padding
EMASSTRT_TBL_LEN EQU 152 Current Table size

Note: VTAM is now z/OS Communications Server.

Figure 13. Sample Assembler copy book

76 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v The attribute names are used as subordinate level names.
v For attributes that describe bit indicators, subordinate structure levels are used.

Each bit indicator is assigned a unique name.
v All other indicator attributes result in constant declarations being generated at

the end of the resource table. These constants can be used for assignment or
evaluation of the attribute. The constant name is a concatenation of the resource
table name, the attribute name, and the indicator name, connected by
underscores (such as, EMASSTRT_DYNROUTE_ACTIVE).

v The table length field is a concatenation of the resource table format name and
the constant TBL_LEN, connected by an underscore (such as,
EMASSTRT_TBL_LEN).

The resource table data types are mapped into the valid set of PL/I data types.
However, exact mapping is not always possible. The resource table data types are
mapped as follows:

BIT(8) ALIGNED - 1-byte binary numeric values

FIXED BIN(15) - 2-byte binary numeric values

FIXED BIN(31) - 4-byte binary numeric values
- 4-byte intervals

(2) FIXED BIN(31) - Time stamps and 8-byte intervals
- 8-byte binary numeric values

(an array of two fullwords)

FIXED DEC(n) - Packed decimal data

CHAR(nnnn) - Character data
- Binary values greater than 8 bytes
- Odd number binary values less than 8 bytes

Figure 14 on page 78 is a representative extract of a PL/I resource table copy book:

Chapter 3. Writing an EXEC CPSM program 77

/*--*/
/* Name = EYUP2400 */
/* Format Name = EMASSTRT */
/* Version = 0001 */
/* Status = CPSMREL(0310) */
/* Function = Base Table Structure generator */
/* Format definition for this element = EMASSTRT */
/* Valid Operations = None */
/* Valid Actions = None */
/*--*/

DCL 01 EMASSTRT BASED(EYUPTPTR), /* Notify CICS System Start Event*/
02 CMASNAME CHAR(0008),

/* CMAS Name */
02 PLEXNAME CHAR(0008),

/* CICSPlex Name */
02 CSYSNAME CHAR(0008),

/* CICS System Name */
02 MON_SPEC CHAR(0008),

/* Monitor Spec Name */
02 RTA_SPEC CHAR(0008),

/* Real Time Analysis Spec Name */
02 WLM_SPEC CHAR(0008),

/* Work Load Manager Spec Name */

02 STATUS,
/* Status */
03 LOCAL BIT(1) UNALIGNED,
/* Local MAS */
03 REMOTE BIT(1) UNALIGNED,
/* Remote MAS */
03 RSVD0003 BIT(1) UNALIGNED,
/* Reserved */
03 RSVD0004 BIT(1) UNALIGNED,
/* Reserved */
03 RSVD0005 BIT(1) UNALIGNED,
/* Reserved */
03 RSVD0006 BIT(1) UNALIGNED,
/* Reserved */
03 RSVD0007 BIT(1) UNALIGNED,
/* Reserved */
03 RSVD0008 BIT(1) UNALIGNED,
/* Reserved */

02 DYNROUTE BIT(8) ALIGNED,
/* Dynamic Routing Mode */

02 DYNTYPE CHAR(0003),
/* Dynamic Routing Type */

02 DESC CHAR(0030),
/* Description */

02 CSYSAPPL CHAR(0008),
/* CICS System VTAM APPLID */

02 EYU_RSV0015 CHAR(0005),
/* Alignment Padding */

02 MASSTART(2) FIXED BIN(31),
/* MAS Start STCK Value */

02 TMEZONEO BIT(8) ALIGNED,
/* Time Zone Offset */

02 TMEZONE CHAR(0001),
/* Time Zone */

02 EYU_RSV0019 CHAR(0002),
/* Alignment Padding */

02 DAYLGHTSV FIXED BIN(31),
/* DayLight saving in effect */

02 SYSID CHAR(0004),
/* MAS System Id */

02 OPSYSREL CHAR(0004),
/* MAS Op Sys Release */

02 MVSNAME CHAR(0004),
/* MVS System Name */

02 JOBNAME CHAR(0008),
/* MAS Job Name */

02 CECNAME CHAR(0008),
/* CEC Name */

02 SYSPLEX CHAR(0008),

78 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

COBOL copy books
COBOL copy books are distributed in CICSTS42.CPSM.SEYUCOB.

Distributed as:
Structures

Copybook names:
EYULnnnn

Note the following as you use the COBOL copy books:
v The structure level 1 name is the resource table format name (such as,

EMASSTRT).
v The attribute names are used as subordinate level names.
v For attributes that describe indicators, subordinate 88 levels are used. Each

indicator is assigned a unique name. Hexadecimal literals are used to describe
the content of the indicator setting.

v By default, CICSPlex SM attribute names are formed with a connecting
underscore character, as in WLM_SPEC. However, earlier versions of COBOL
that are supported by CICS do not support underscores. All attribute names that
contain underscores are therefore converted in the copy books to use hyphens,
as in WLM-SPEC. When attribute names are passed to the API, they must
contain the underscore character, not the hyphen.

v All the resource tables use apostrophe characters as literal delimiters. When you
translate or compile your program with a supplied copy book, you must specify
the APOST option. Otherwise, you will receive COBOL warning messages.

v COBOL reserves many words for its own use. Some of the CICSPlex SM
resource table and attribute names conflict with these reserved words. To
prevent such a conflict, any CICSPlex SM name that conflicts with a COBOL
reserved word is modified by adding a suffix of -R. For example, the name of
the CONNECT resource table becomes CONNECT-R and the name of the
STATUS attribute becomes STATUS-R. The comment area for a name that would
conflict with COBOL shows the description “-- RESERVED WORD --”. When
resource table or attribute names are passed to the API, they must not include
the -R suffix.

v COBOL does not support duplicate names at different levels in the same data
structure. Some of the CICSPlex SM attribute names are the same as resource
table names. To prevent a duplicate name problem, any attribute name that is
the same as a resource table name is modified by adding a suffix of -A. For
example, the name of the DSNAME attribute becomes DSNAME-A. The name of
the DSNAME resource table remains unchanged. The comment area for an
attribute that has the same name as a resource table shows the description “--
RESERVED WORD --”. When attribute names are passed to the API, they must
not include the -A suffix.

v The table length field is a concatenation of the resource table format name and
the constant TBL-LEN, connected by a hyphen (such as, EMASSTRT-TBL-LEN).

The resource table data types are mapped into the valid set of COBOL data types.
However, exact mapping is not always possible. The resource table data types are
mapped as follows:

PIC S9(0004) USAGE BINARY - 2-byte binary numeric values

PIC S9(0008) USAGE BINARY - 4-byte binary numeric values
- 4-byte intervals

Chapter 3. Writing an EXEC CPSM program 79

PIC S9(0016) USAGE BINARY - Time stamps and 8-byte intervals
- 8-byte binary numeric values

PIC S9(nnnn) USAGE PACKED-DECIMAL - Packed decimal data

PIC X(0001) - 1-byte binary and bit indicators

PIC X(nnnn) - Character data
- Binary values greater than 8 bytes
- Odd number binary values less than

8 bytes

Figure 15 on page 81 is a representative extract of a COBOL resource table copy
book:

80 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

* ---*
* Name = EYUL2400 *
* Format Name = EMASSTRT *
* Version = 0001 *
* Status = CPSMREL(0310) *
* Function = Base Table Structure generator *
* Format definition for this element = EMASSTRT *
* Valid Operations = None *
* Valid Actions = None *
* ---*
01 EMASSTRT.
* Notify CICS System Start Event

02 CMASNAME PIC X(0008).
* CMAS Name

02 PLEXNAME PIC X(0008).
* CICSPlex Name

02 CSYSNAME PIC X(0008).
* CICS System Name

02 MON-SPEC PIC X(0008).
* Monitor Spec Name

02 RTA-SPEC PIC X(0008).
* Real Time Analysis Spec Name

02 WLM-SPEC PIC X(0008).
* Work Load Manager Spec Name

02 STATUS-R PIC X(0001).
* Status -- RESERVED WORD --

88 LOCAL VALUE X’80’.
* Local MAS

88 REMOTE VALUE X’40’.
* Remote MAS

02 DYNROUTE PIC X(0001).
* Dynamic Routing Mode

88 ACTIVE VALUE X’01’.
* Routing ACTIVE

88 SUSPEND VALUE X’02’.
* Routing SUSPENDED

02 DYNTYPE PIC X(0003).
* Dynamic Routing Type

88 WLMTOR VALUE ’TOR’.
* Routing TOR

88 WLMAOR VALUE ’AOR’.
* Routing AOR

02 DESC PIC X(0030).
* Description

02 CSYSAPPL PIC X(0008).
* CICS System VTAM APPLID

02 EYU-RSV0015 PIC X(0005).

Note: VTAM is now z/OS Communications Server.

* Alignment Padding
02 MASSTART PIC S9(0016) USAGE BINARY.

* MAS Start STCK Value
02 TMEZONEO PIC X(0001).

* Time Zone Offset
02 TMEZONE PIC X(0001).

* Time Zone
02 EYU-RSV0019 PIC X(0002).

* Alignment Padding
02 DAYLGHTSV PIC S9(0008) USAGE BINARY.

* DayLight saving in effect
02 SYSID PIC X(0004).

* MAS System Id
02 OPSYSREL PIC X(0004).

* MAS Op Sys Release
02 MVSNAME PIC X(0004).

* MVS System Name
02 JOBNAME PIC X(0008).

* MAS Job Name
02 CECNAME PIC X(0008).

* CEC Name
02 SYSPLEX PIC X(0008).

* SYSPlex Name
02 EYU RSV0257 PIC X(0004)

Chapter 3. Writing an EXEC CPSM program 81

C copy books
C copy books are distributed in CICSTS42.CPSM.CPSM.SEYUC370.

Distributed as:
Structured data types

Copybook names:
EYUCnnnn

Note the following as you use the C copy books:
v Typedef statements are used to describe the resource table.
v The structure name is the resource table format name (such as, EMASSTRT).
v The attribute names are used as subordinate names.
v For attributes that describe bit indicators, #define statements are generated at the

end of the resource table Each #define statement identifies a single indicator
value. These constants can be used for assignment or evaluation of the attribute.
The constant name is a concatenation of the resource table name, the attribute
name, and the indicator name, connected by underscores (such as,
EMASSTRT_DYNROUTE_ACTIVE).

v The copy books use trigraphs, which are multi-character combinations, to
represent square brackets.

v Any variable-length data that you send to the API must be padded with blanks
to the end of the field. The API does not insert the zero-byte ending delimiter.

v The table length field is a concatenation of the resource table format name and
the constant TBL_LEN, connected by an underscore (such as,
EMASSTRT_TBL_LEN).

The resource table data types are mapped into the valid set of C data types.
However, exact mapping is not always possible. The resource table data types are
mapped as follows:

char - 1-byte binary numeric values

short int - 2-byte binary numeric values

long - 4-byte binary numeric values
- 4-byte intervals

long 2 - Time stamps and 8-byte intervals
8- byte binary numeric values
(an array of two fullwords)

char nnnn - Packed decimal data

char nnnn - Character data
- Binary values greater than 8 bytes
- Odd number binary values less than 8 bytes

Figure 16 on page 83 is a representative extract of a C resource table copy book:

82 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Language and environment considerations
You must consider both the language and environment when writing a CICSPlex
SM API program.

All of the usual language considerations that apply to the various environments
(CICS, MVS batch, TSO, and NetView) also apply to CICSPlex SM programs
written to run in those environments.

/*--*
* Name = EYUC2400 *
* Format Name = EMASSTRT *
* Version = 0001 *
* Status = CPSMREL(0310) *
* Function = Base Table Structure generator *
* Format definition for this element = EMASSTRT *
* Valid Operations = None *
* Valid Actions = None *
--/
typedef struct EMASSTRT {
char CMASNAME??(8??); /* CMAS Name */
char PLEXNAME??(8??); /* CICSPlex Name */
char CSYSNAME??(8??); /* CICS System Name */
char MON_SPEC??(8??); /* Monitor Spec Name */
char RTA_SPEC??(8??); /* Real Time Analysis Spec Name */
char WLM_SPEC??(8??); /* Work Load Manager Spec Name */
char STATUS; /* Status */
char DYNROUTE; /* Dynamic Routing Mode */
char DYNTYPE??(3??); /* Dynamic Routing Type */
char DESC??(30??); /* Description */
char CSYSAPPL??(8??); /* CICS System VTAM APPLID */
char EYU_RSV0015??(5??); /* Alignment Padding */
long MASSTART??(2??); /* MAS Start STCK Value */
char TMEZONEO; /* Time Zone Offset */
char TMEZONE; /* Time Zone */
char EYU_RSV0019??(2??); /* Alignment Padding */
long DAYLGHTSV; /* Daylight saving in effect */
char SYSID??(4??); /* MAS System Id */
char OPSYSREL??(4??); /* MAS Op Sys Release */
char MVSNAME??(4??); /* MVS System Name */
char JOBNAME??(8??); /* MAS Job Name */
char CECNAME??(8??); /* CEC Name */
char SYSPLEX??(8??); /* SYSPlex Name */
char EYU_RSV0257??(4??); /* Alignment Padding */
} EMASSTRT;

Note: VTAM is now z/OS Communications Server.

/*--*
* *
* EMASSTRT Defines for Table *
* *
--/
#define EMASSTRT_STATUS_LOCAL 128
#define EMASSTRT_STATUS_REMOTE 64
#define EMASSTRT_DYNROUTE_ACTIVE 1
#define EMASSTRT_DYNROUTE_SUSPEND 2
#define EMASSTRT_DYNTYPE_WLMTOR "TOR"
#define EMASSTRT_DYNTYPE_WLMAOR "AOR"
#define EMASSTRT_TBL_LEN 152

Figure 16. Sample C copy book

Chapter 3. Writing an EXEC CPSM program 83

Assembler considerations
For Assembler programs that run in an MVS batch, TSO, or NetView environment,
you need to be aware of some special considerations.
v Since the program does not execute in CICS, do not use the DFHEIENT or

DFHEIRET macros. Instead, use the CICS translator options NOEPILOG,
NOPROLOG, and NOSYSEIB.

v You must explicitly code the DFHEISTG and DFHEIEND macros to provide the
required work areas for EXEC CPSM commands. Your program is responsible
for acquiring storage for the DFHEISTG area and setting up any necessary base
registers before making any EXEC CPSM calls. This storage can be acquired
dynamically using local GETMAIN services or, if the program is nonreentrant,
the storage can be defined directly in the program area. Reentrant programs are
recommended if there is any possibility of the program being used concurrently
in the same address space.

v You must make the appropriate CICS macro library available in the SYSLIB
concatenation for the Assembler step. The DFHEISTG, DFHEIEND, and
DFHSCALL macros are fetched from this library.

PL/I considerations
For PL/I programs, you need to be aware of the following special consideration
regarding the variable EYUPTPTR.
v The variable EYUPTPTR must be explicitly declared as follows:

DCL EYUPTPTR POINTER;

NetView considerations
If you plan to run C programs under NetView, you need to be aware of several
special considerations.
v Depending on which resource tables you access, you may encounter some name

conflicts between the CICSPlex SM #define statements for resource table
attributes and the standard NetView #define statements. For example, the
NetView statement #include "dsic.h" generates the following define statement:

#define COMMAND "COMMAND "

Some of the CICSPlex SM resource tables use COMMAND as an attribute name.
If you use #include "dsic.h" as supplied by NetView, the resource table
attribute names are converted and cannot be processed by CICSPlex SM.
One way of handling any potential conflicts is to undefine the COMMAND
value, like this:

#include "dsic.h"
#undef COMMAND
#include "feedback.h"

.

.

.

If you want to, you can also redefine the COMMAND value using a new name
that does not conflict with any resource table attribute name, like this:

#include "dsic.h"
#undef COMMAND
#define XCOMMAND "COMMAND "
#include "feedback.h"

.

.

.

84 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

User-replaceable programs
The CICSPlex SM API cannot be used from within the user-replaceable programs
EYU9XESV and EYU9WRAM.

CICS Global User exit programs
You can use the CICSPlex SM API from within the CICS XICEREQ Global User
Exit program. You must avoid recursion within the CICSPlex SM API program and
the exit should not delay any requests issued by CPSM related tasks.

The use of the CICSPlex SM API from within other CICS Global User Exit points is
not recommended as the results are unpredictable.

Status programs
The CICSPlex SM API cannot be used from within a program that is invoked
through the STATDEF view. Where access to the API is required, you must start
another task and invoke the API from the new task.

Translating your program
Separate translation is the process of converting programs into executable code that
the compiler (or assembler) can understand.

Some compilers allow you to use the integrated CICS translator approach, where
the compiler interfaces with CICS at compile time to interpret CICS commands and
convert them automatically to calls to CICS service routines. If you use the
integrated CICS translator approach many of the translation tasks are done for
you. For details of the integrated CICS translator see the CICS Application
Programming Guide.

For programs written using the command-level interface, you must use a language
translator to interpret the source program for the API. Any external program that
contains EXEC CPSM commands must be processed by the appropriate version of
the CICS command level translator.

The CICS TS translator supports EXEC CPSM commands. If you are using
Business Application Services (BAS) to create CICS resource definitions, be sure to
use the appropriate version of the translator for the definitions you are creating.

Specifying the CPSM translator option
Because CICSPlex SM uses the CICS translator, you can use your CICS translate
JCL as a model for translating CICSPlex SM API programs.

You must specify one additional translator option, called CPSM, in order to
translate CICSPlex SM programs. The CPSM option can be specified by using
either the PARM operand of the EXEC statement or a language-specific XOPTS
options statement.

If your program also contains EXEC CICS commands, those commands are
processed in the same translation step. The CICS translator inserts the necessary
variable and invocation definitions required for proper execution of the program.

When using the CPSM API in a non-CICS environment, be sure to remove any
CICS or SP translator options, and only specify the CPSM translator option.

Chapter 3. Writing an EXEC CPSM program 85

As a result of the translation process, EXEC CPSM statements are replaced with
language specific calls to an EXEC interface stub program.

Sample Assembler translation
To specify the CPSM translator option, use either the PARM or the XOPTS operand
of the EXEC statement or the XOPTS options statement.

Use PARM like this:
//TRANSLAT EXEC PGM=DFHEAP1$,PARM=’CPSM’,REGION=4096K

or XOPTS like this:
*ASM XOPTS(...CPSM)

Sample PL/I translation
To specify the CPSM translator option, use either the PARM operand of the EXEC
statement or the XOPTS options statement.

Use PARM , like this:
//TRANSLAT EXEC PGM=DFHEPP1$,PARM=’CPSM’,REGION=4096K

or XOPTS , like this:
*PROCESS XOPTS(...CPSM)

Sample COBOL translation
To specify the CPSM translator option, you can use one of three methods.

Use the PARM operand of the EXEC statement, like this:
//TRANSLAT EXEC PGM=DFHECP1$,PARM=’COBOL3,CPSM’,REGION=4096K

or (for the separate translator) an XOPTS options statement, like this:
PROCESS XOPTS(...CPSM)

or (for the integrated translator) a CICS compiler option like this:
CICS(’opt1 opt2 optn ...’)

Note that when you translate a COBOL program, you must specify both the CPSM
and the COBOL3 translator options.

Sample C translation
To specify the CPSM translator option, use either the PARM operand of the EXEC
statement or the XOPTS options statement.

Use PARM like this:
//TRANSLAT EXEC PGM=DFHEDP1$,PARM=’CPSM’,REGION=4096K

or XOPTS like this:
#pragma XOPTS(...CPSM)

Compiling your program
Compiling a CICSPlex SM API program is similar to compiling a CICS program.
You can use your CICS compile JCL as a model and then make the following
modifications according to the language you are using.

86 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Assembler considerations
To assemble CICSPlex SM programs, you must include a SYSLIB statement for the
CICSTS42.CPSM.SEYUMAC macro library in your compile JCL.

//ASM EXEC PGM=ASMA90,REGION=4096K
.
.
.

//SYSLIB DD DSN=CICSTS42.CPSM.SEYUMAC,DISP=SHR
.
.
.

PL/I considerations
To compile CICSPlex SM programs, include a SYSLIB statement for the
CICSTS42.CPSM.SEYUPL1 macro library in your compile JCL.

//COMPILE EXEC PGM=IEL0AA,REGION=1000K,
// PARM=’OBJECT,MACRO,LIST’

.

.

.
//SYSLIB DD DSN=CICSTS42.CPSM.SEYUPL1,DISP=SHR

.

.

.

See High-level language support for information about supported PL/I Compilers.

COBOL considerations
To compile CICSPlex SM programs, include a SYSLIB statement for the
CICSTS42.CPSM.SEYUCOB macro library in your compile JCL.

//COMPILE EXEC PGM=IGYCRCTL,REGION=4096K
.
.
.

//SYSLIB DD DSN=CICSTS42.CPSM.SEYUCOB,DISP=SHR
.
.
.

See High-level language support for information about supported COBOL
compilers.

C and C++ considerations
To compile CICSPlex SM programs, include a SYSLIB statement for the
CICSTS42.CPSM.SEYUC370 macro library in your compile JCL.

//COMPILE EXEC PGM=EDCCOMP,REGION=4096K
.
.
.

//SYSLIB DD DSN=CICSTS42.CPSM.SEYUC370,DISP=SHR
.
.
.

See High-level language support for information about supported C and C++
compilers.

Chapter 3. Writing an EXEC CPSM program 87

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html

Link editing your program
The CICS translator inserts a call to the CICSPlex SM EXEC interface stub
program.

The stub entry name is not the name of an object or load module. Because
CICSPlex SM API programs can run in a variety of environments, the stub
reference must be resolved to a module consistent with the intended usage. This
resolution is performed at link-edit time using the INCLUDE linkage editor control
statement.

You must link edit all program load modules with the correct CICSPlex SM stub
module for the environment where the program will run. To do this, specify one of
the following stub modules in the INCLUDE statement:

EYU9AMSI
For CICS TS programs. EYU9AMSI is supplied in the
CICSTS42.CPSM.SEYULOAD library.

EYU9ABSI
For batch, TSO, or NetView programs. EYU9ABSI is supplied in the
CICSTS42.CPSM.SEYUAUTH library.

Each of these stub modules contains the appropriate entrypoint identifier. The
services provided by the entrypoint are unique to the type of execution
environment.

Note: You should not attempt to run a program identified as a CICS program in a
batch environment. Likewise, batch programs are not suitable for running under
CICS.

You can use your CICS link-edit JCL as a model for link editing CICSPlex SM
programs. Be sure to review the language-specific considerations in the remainder
of this section and modify your JCL accordingly.

In addition, if your program contains EXEC CICS commands, you should review
the link-edit considerations in the Application Programming Guide for your version
of CICS. Likewise, if your program runs under NetView, you should refer to the
NetView customization book for your programming language, either Customization:
Using Assembler, or Customization: Using PL/I and C.

Assembler considerations
Assembler load modules can reside in 24- or 31-bit storage and can be entered in
either addressing mode.

To link edit an Assembler module to run with a CICSPlex SM program, you must
include a SYSLIB statement for the SEYULOAD load library in your link-edit step.
This allows you to include the appropriate CICSPlex SM stub module when link
editing. For example:

//LKED EXEC PGM IEWL,
// PARM=’XREF,LET,LIST,AMODE=ANY,RMODE=31’,
// REGION=4096K,COND=(7,LT,ASM)

.

.

.
//SYSLIB DD DSN=CICSTS42.CPSM.SEYULOAD,DISP=SHR

.

.

88 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

.
INCLUDE SYSLIB(userprog)
INCLUDE SYSLIB(EYU9AMSI)
NAME LMODNAME(R)

PL/I, COBOL, and C considerations
PL/I, COBOL, and C load modules can reside in 24- or 31-bit storage and can be
entered in either addressing mode.

To link edit a module to run with a CICSPlex SM program, you must include a
SYSLIB statement for the SEYULOAD load library in your link-edit step. This
allows you to include the appropriate CICSPlex SM stub module when link
editing. For example:

//LKED EXEC PGM=IEWL,
// PARM=’XREF,LET,LIST,AMODE=ANY,RMODE=31’,
// REGION=4096K,COND=(8,LE,COMPILE)

.

.

.
//SYSLIB DD DSN=CICSTS42.CPSM.SEYULOAD,DISP=SHR

.

.

.
INCLUDE SYSLIB(userprog)
INCLUDE SYSLIB(EYU9AMSI)
NAME LMODNAME(R)

Run-time considerations
You need to be aware of a number of run-time considerations:
v The run-time version of a CICSPlex SM API program is equal to the level of the

CMAS to which it connects:
– For a program written to run as a CICS application, the run-time version is

that of the CMAS to which the MAS is connected.
– For a program written to run as a batch job or under NetView or TSO, the

version is determined by the version of the CICSPlex SM run-time module
(EYU9AB00).
EYU9AB00 is distributed in CICSTS42.CPSM.SEYUAUTH At run time,
CICSPlex SM must find EYU9AB00 in the STEPLIB, MVS linklist, or LPA
library concatenation.

v The run-time version of a program must be greater than or equal to:
– The version of the stub routine module (EYU9AxSI) with which the program

was link edited.
– The value specified on the VERSION option of the CONNECT command.

v For programs written in PL/I, COBOL, or C, a set of run-time libraries is
shipped with the language compiler. To run a CICSPlex SM program written in
one of these languages, you must modify your environment startup procedure to
reference the appropriate run-time libraries for the language.

v Before running any CICSPlex SM program under CICS, make sure the program
and its associated transaction are defined to CEDA. The program may be
defined with an EXECKEY value of either User or CICS. The associated
transaction may be defined with a TASKDATAKEY value of either User or CICS.

Chapter 3. Writing an EXEC CPSM program 89

90 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Chapter 4. Dealing with exception conditions

Several tools and techniques are available for dealing with error conditions in a
CICSPlex SM API program.

Note: For information on additional diagnostic data that is available for an API
program, refer to CICSPlex System Manager Problem Determination.

Default CICSPlex SM exception handling
The CICSPlex SM API writes an exception trace, in the form of a user trace record,
to the CICS trace data set.

Resources available via the CICSPlex SM API are not recoverable, and, therefore,
resources updated before the exception are neither recovered nor are they available
for backout by the application using EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK commands.

Using the RESPONSE and REASON options
The RESPONSE and REASON options are required on each API command.

You should specify these options as user-defined variables to receive the numeric
response and reason values returned by a command. You can then convert the
numeric values into more meaningful character equivalents. In general, RESPONSE
describes the result of command processing and REASON further qualifies the
response to certain commands.

Note: The TBUILD and TPARSE commands, which can be used only with the
REXX run-time interface, do not use the RESPONSE and REASON options. The
result of these REXX-specific processes is returned by their STATUS option. For
more information, see Chapter 6, “REXX error handling,” on page 113.

Types of responses
An API command can return normal, warning or error response codes.

The character equivalents of the RESPONSE and REASON values that can be
returned are given in the description of each command. For a summary of
RESPONSE and REASON character values by command, see CICSPlex System
Manager Application Programming Reference. For a list of RESPONSE and REASON
character values and their numeric equivalents, also see CICSPlex System Manager
Application Programming Reference.

Normal responses
A normal response indicates the API command completed processing successfully.

A normal response indicates the API command completed processing successfully.
The following values represent a normal response:

OK The command was successfully processed and control was returned to the
program. There are no reasons associated with a response of OK.

© Copyright IBM Corp. 1995, 2012 91

SCHEDULED
A command that was issued with the NOWAIT option has been scheduled
for processing. The actual result of command processing is returned by the
RECEIVE command in an ASYNCREQ resource table record. There are no
reasons associated with a response of SCHEDULED.

Warning responses
A warning response indicates the API command was successfully processed, but a
condition occurred that should be investigated.

A REASON value is also returned that describes the condition. The following
values represent a warning response:

NODATA
A command that normally results in data being returned to the program
was processed successfully, but there was no data to return. The reasons
for a NODATA response are given with the commands that return it.

WARNING
A command that normally results in data being returned to the program
was processed successfully, but not all of the available data was returned.
A typical reason for this response might be that the output area provided
by the program was not large enough to hold all the data. The actual
reasons for a WARNING response are given with the commands that
return it.

Error responses
An error response indicates the API command was not successful. One or more
REASON values are also returned that describe the error.

Note: Note that, except for the FAILED error response, these response codes
usually indicate either an error in the user's API program (for example, failing to
discard resources when they are no longer required), or an error with the CICSPlex
SM environment (for example, a CMAS or MAS is not available).

The following values represent an error response:

BUSY A resource referred to by the command is currently being processed by
another command. This situation can occur when a command that was
previously issued with the NOWAIT option is processing a resource that is
required by the current command. The reasons for a BUSY response are
given with the commands that return it.

DUPE A resource referred to by the command already exists. The reasons for a
DUPE response are given with the commands that return it.

ENVIRONERROR
An environmental condition (such as short on storage) prevented the
command from being processed. The reasons for an ENVIRONERROR
response are given with the commands that return it.

FAILED
An unexpected problem occurred during command processing. The
reasons for a FAILED response are given with the commands that return it.

In the case of a FAILED EXCEPTION response, you should check the
following sources for information related to the condition:
v EYULOG
v Job log

92 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

v AUXTRACE data set

INCOMPATIBLE
Two or more resources referred to by the command are incompatible. The
reasons for an INCOMPATIBLE response are given with the commands
that return it.

INUSE
A resource referred to by the command is in use and, therefore, cannot be
discarded. The reasons for an INUSE response are given with the
commands that return it.

INVALIDATA
The command parameter list contains invalid data. The reason for an
INVALIDATA response is always the name of the parameter that contains
invalid data. The reasons are given with the commands that return this
response.

INVALIDCMD
The command is invalid as indicated by the reason code:

Filter The filter that is being built is too large or complex.

Length
The total length of all the inputs used in the command exceeds the
maximum limit.

N_A The command is invalid. Check which version of the CICS
translator was used to translate the API command. Also check that
the command being used is available on the CICSPlex SM release
that the program is using.

INVALIDPARM
The command parameter list is invalid. There are a variety of situations
that could result in an INVALIDPARM response. For example:

Syntax error
The syntax of an input parameter is incorrect (for example, a
resource table name begins with a numeric character).

Null parameter address
An input parameter could not be found because the generated
address for that parameter is 0.

The reason for an INVALIDPARM response is always the name of the
parameter that is invalid. The reasons are given with the commands that
return this response.

NOTAVAILABLE
A required CMAS or MAS resource is not available. The reasons for a
NOTAVAILABLE response are given with the commands that return it.

NOTFOUND
A resource referred to by the command could not be found. The reasons
for a NOTFOUND response are given with the commands that return it.

NOTPERMIT
The API request is not permitted by the external security manager (ESM)
at your enterprise. The reasons for a NOTPERMIT response are given with
the commands that return it.

Chapter 4. Dealing with exception conditions 93

SERVERGONE
The CMAS to which the processing thread was connected is no longer
active. There are no reasons associated with a response of SERVERGONE.

TABLEERROR
An error was detected in a resource table record (either a result set record
or a CICSPlex SM definition record). The reasons for a TABLEERROR
response are given with the commands that return it.

VERSIONINVL
An invalid version of CICSPlex SM was detected. The reasons for a
VERSIONINVL response are given with the commands that return it.

Testing for RESPONSE and REASON
To evaluate the results of an API command, you code the RESPONSE and
REASON options on the command and follow the command immediately with a
test of the returned values.

The RESPONSE and REASON options return numeric values. Different built-in
functions are provided for converting and testing the numeric response and reason
values in the command-level interface and the REXX run-time interface.

Using the command-level interface
When you are using the CICSPlex SM command-level interface, you can use the
EYUVALUE built-in function to convert and test the numeric RESPONSE and
REASON values returned by an API command.

As an example, consider this API command:
EXEC CPSM CONNECT

CONTEXT(WCONTEXT)
SCOPE(WSCOPE)
VERSION(’0310’)
THREAD(WTHREAD)
RESPONSE(WRESPONSE)
REASON(WREASON)

.

.

To test for the RESPONSE value in each of the supported languages, you could
code:

COBOL or PL/I:
IF WRESPONSE NOT = EYUVALUE(OK) GO TO NOCONNECT.

C:
if (WRESPONSE ¬= EYUVALUE(OK)) { goto NOCONNECT; }

Assembler language:
CLC WRESPONSE,EYUVALUE(OK)
BNE NOCONNECT

which the built-in function changes to:
CLC WRESPONSE,=F’1024’

You can use EYUVALUE in the same way to test for the REASON value, if the
RESPONSE is one that returns a reason.

94 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Using the REXX run-time interface
When you are using the REXX run-time interface, you can use the EYURESP and
EYUREAS built-in functions to convert and test the numeric RESPONSE and
REASON values returned by an API command.

As an example, consider this API command:
var = EYUAPI(’CONNECT’ ,

’CONTEXT(’WCONTEXT’)’ ,
’SCOPE(’WSCOPE’)’ ,
’VERSION(0310)’ ,
’THREAD(WTHREAD)’ ,
’RESPONSE(WRESPONSE)’ ,
’REASON(WREASON)’)

.

.

To test for the RESPONSE value, you could code:
If WRESPONSE <> EYURESP(OK) Then Signal NOCONNECT

to compare the numeric RESPONSE value returned in WRESPONSE with the
numeric equivalent of OK.

Alternatively, you could code:
If EYURESP(WRESPONSE) <> "OK" Then Signal NOCONNECT

to convert the numeric RESPONSE value to its character equivalent first.

Note: The RESPONSE and REASON options report only run-time errors. Errors in
interpreting an API command are reported in either the REXX RC variable or the
variable assigned to a REXX function.

Retrieving FEEDBACK records
In addition to the specific values returned by a command's RESPONSE and
REASON options, CICSPlex SM also provides diagnostic data in the form of
FEEDBACK resource table records. This data can help you evaluate the results of
an API command, especially if the command did not complete successfully.

Using the FEEDBACK command
You can retrieve diagnostic data about a previously issued API command by
issuing the FEEDBACK command.

The type of command for which you want diagnostic data affects how you specify
the FEEDBACK command and where the data is placed:

A command that processed a result set
Use the RESULT option of the FEEDBACK command to retrieve data about
the last command that processed a specific result set.

If the command that processed the result set returned a RESPONSE other
than OK, a FEEDBACK resource table record is appended to the end of
each resource table record in the result set that had an error associated
with it. You can use the FIRST, NEXT, and COUNT options of the
FEEDBACK command to retrieve multiple FEEDBACK records.

The diagnostic data in a result set is available to the FEEDBACK command
until another command processes the same result set. At that point, the
data is replaced with FEEDBACK records for the subsequent command.

Chapter 4. Dealing with exception conditions 95

Note: No FEEDBACK records are produced if the command that processed
the result set returned a RESPONSE of OK.

A command that did not process a result set
Use the FEEDBACK command without the RESULT option to retrieve data
about the command issued immediately before FEEDBACK.

The FEEDBACK resource table records are returned in a separate feedback
area. The records in that feedback area are cleared and refreshed for each
command that is not result set-oriented. So for commands that place their
diagnostic data in the feedback area rather than in a result set, FEEDBACK
can retrieve data only for the most recently issued command.

Once you have issued the FEEDBACK command to retrieve diagnostic data for a
command, the feedback record or area is cleared. You cannot request the same
FEEDBACK resource table records more than once.

Evaluating a FEEDBACK record
The diagnostic data for a CICSPlex SM API command is presented in a
FEEDBACK resource table record. The attributes of that resource table provide a
variety of information about the completion status of an API command.

Note: This section provides general information about FEEDBACK records. The
FEEDBACK resource table copy book that is supplied by CICSPlex SM provides a
detailed description of the contents and structure of a FEEDBACK record. You
should refer to the CICSPlex System Manager Resource Tables Reference or the
supplied copy book when writing a program that uses the FEEDBACK command.

To identify which API operation the FEEDBACK record applies to, check the
values in these fields:

COMMAND
A numeric code that identifies the command to which this FEEDBACK
record applies. The API commands and their numeric equivalents are given
in Table 8.

Table 8. Numeric codes and API commands

Numeric code Mnemonic Command

02 CANCEL Cancel

03 CONNECT Connect

04 COPY Copy

05 CREATE Create

06 DELETE Delete

07 DISCARD Discard

08 DISCONN Disconnect

09 FETCH Fetch

10 GET Get

11 LOCATE Locate

12 MARK Mark

13 ORDER Order

14 PERFSET Perform Set

15 PERFOBJ Perform Object

96 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Table 8. Numeric codes and API commands (continued)

Numeric code Mnemonic Command

16 QUALIFY Qualify

17 QUERY Query

18 RECEIVE Receive

19 REMOVE Remove

20 FILTER Specify Filter

21 UNMARK Unmark

22 ADDRESS Address

23 GETDEF Getdef

24 LISTEN Listen

25 REFRESH Refresh

26 SET Set

27 VIEW Specify View

28 TERM Terminate

29 TRANS Translate

30 GROUP Group by

31 UPDATE Update

32 FEEDBACK Feedback

33 EXPAND Expand

OBJECT
The CICSPlex SM object that the command was issued against.

OBJECT_ACT
The action that was being performed against the CICSPlex SM object.

RSLTRECID
If the FEEDBACK record applies to a result set, the numeric ID of the
result set record associated with this FEEDBACK record.

To determine what type of problem the FEEDBACK record describes, check the
values in these fields:

ATTRDATAVAL
Indicates whether attribute data is available for the command. Attribute
data is included only if the command itself did not complete successfully.

If the ATTRDATAVAL value is Y, the FEEDBACK record identifies as many
as five attributes (ATTR_NM1 through ATTR_NM5) that contributed to the
error. Each attribute is identified by its name and its offset and relative
number within the resource table record. The data type and length of each
attribute is also included.

If the ATTRDATAVAL value is N, you can ignore the ATTR_ fields.

CEIBDATAVAL
Indicates whether CICS EIB data is available for the command. EIB data is
included only if the command encountered a CICS error.

If the CEIBDATAVAL value is Y, the FEEDBACK record includes the
EIBFN, RESP, and RESP2 values as provided by CICS. Note that if the

Chapter 4. Dealing with exception conditions 97

RESP value indicates a NOTAUTH condition that was raised due to
CICSPlex SM simulated security, EIBFN is not set.

If the CEIBDATAVAL value is N, you can ignore the CEIBFN, CEIBRESP,
and CEIBRESP1 fields.

ERRCODEVAL
Indicates whether a CICSPlex SM error code is available for the command.
An error code is included only if the command itself did not complete
successfully.

If the ERRCODEVAL value is Y, the FEEDBACK record includes a numeric
ERROR_CODE value. Each resource table copy book includes a list of the
error codes for that object and their meanings.

If the ERRCODEVAL value is N, you can ignore the ERROR_CODE field,
as well as the RESPONSE and REASON fields.

For some API operations that affect BAS resources, the FEEDBACK record may
point to additional diagnostic data in an error result set. For more information
about using the diagnostic data in error result sets, see “Additional processing for
BAS” on page 99.

Availability of FEEDBACK records
In general, FEEDBACK records are produced for all API commands, whether they
are successful or not. However, for some API commands and in some situations,
FEEDBACK records are not produced because they would not provide useful
diagnostic data.

FEEDBACK records are not available for these commands:

DISCONNECT and TERMINATE
When you disconnect an API processing thread from CICSPlex SM, any
remaining diagnostic data is discarded.

FEEDBACK
The FEEDBACK command cannot report on its own processing.

TBUILD and TPARSE
These REXX-specific commands issue a series of API commands internally
and reuse the same feedback area. Therefore, the feedback area cannot
represent the entire sequence of events.

FEEDBACK records are also not available in these situations:
v A command processes a result set and completes with a RESPONSE value of

OK, and no additional information was returned by CICS in the EIBRESP2 field.
v A command is processed asynchronously (that is, you specify the NOWAIT

option). The diagnostic data for asynchronous requests is returned in the
ASYNCREQ notification resource table.

An example of FEEDBACK for a result set
As an example of how you can use FEEDBACK data, this example illustrates the
results of issuing a SET command. In this case, SET was issued to modify the
service status of CONNECT records in the result set referenced by TOKENC.

98 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

One of the connections (C002 in MAS1B) was not successfully taken out of service
by the SET command. The ServStatus field is still set to INSERVICE and there is a
pointer to FEEDBACK data.

Figure 18 shows how you can use the FEEDBACK command to retrieve the
FEEDBACK records associated with the result set referenced by TOKENC.
The FEEDBACK record shown in Figure 18 reveals the cause of the problem.

CICSPlex SM returned RESPONSE and REASON values of TABLEERROR
DATAERROR, which means the value associated with one or more resource table
attributes is invalid. Furthermore, CICS responded to the SET request for this
connection with RESP(16) RESP2(2). A check of the CICS response codes indicates
that the attempt to take the connection out of service was invalid because the
connection is currently acquired.

Note: The LASTOPER and STATUS attributes of the OBJSTAT resource table and
some of the FEEDBACK attributes are binary fields (that is, they are represented
by a bit being set on or off). For detailed information about the attribute values for
a given resource table, refer to the CICSPlex System Manager Resource Tables
Reference or the supplied copy books.

Additional processing for BAS
For API operations that affect BAS resources, the diagnostic data in a FEEDBACK
record may not be enough to fully describe an error condition.

In these cases, the FEEDBACK record points to an error result set. An error result
set is identified by the following fields:

ERR_RESULT
A 4-byte token identifying an error result set.

ERR_COUNT
The number of records in the error result set referenced by ERR_RESULT.

TOKENC Result Set

OBJSTAT
Num, Context, Object, Lastoper, Status . . .

1, PLX01, CONNECT, SET, . . .

2, PLX01, CONNECT, SET, OPERERR, . . .

3, PLX01, CONNECT, SET, . . .

4, PLX01, CONNECT, SET, . . .

CONNECT
CICS,Rel, Name, ConnStatus, ServStatus, . . .

MAS1A,

MAS1B,

MAS1A,

MAS1A,

E410,

E330,

E410,

E410,

C001,

C002,

C003,

C004,

RELEASED,

ACQUIRED,

RELEASED,

RELEASED,

OUTSERVICE, . . .

INSERVICE, . . .

OUTSERVICE, . . .

OUTSERVICE, . . .

SET MODIFY(`SERVSTATUS=OUTSERVICE.') RESULT(TOKENC) . . .

FEEDBACK

Figure 17. Using SET to modify result set records

SET, N, Y, N, TABLEERROR, DATAERROR, . . ., 16, 2, . . ., CONNECT, . . .

FEEDBACK RESULT(TOKENC) INTO(AREA5) . . .

Figure 18. Using FEEDBACK to retrieve diagnostic data for a result set

Chapter 4. Dealing with exception conditions 99

ERR_OBJECT
The type of records in the error result set referenced by ERR_RESULT. This
value is the 1- to 8-character name of a CICSPlex SM resource table, and
may be BINSTERR, BINCONRS, BINCONSC, or FEEDBACK.

Note: For details of the BINSTERR, BINCONRS, and BINCONSC resource tables,
see the CICSPlex System Manager Resource Tables Reference.

Evaluating error result set records
If the ERR_OBJECT field of the FEEDBACK record contains FEEDBACK, the error
result set contains errors that arose when CICSPlex SM attempted to update CICS
resources.

In response to the API command:
UPDATE RESULT(token) MODIFY(string)

CICSPlex SM tries to update multiple CICS definition records in a result set
according to the supplied modification string. For each CICS definition that could
not be modified, an error record is created in the error result set. The RESPONSE
and REASON values returned are TABLEERROR and DATAERROR.

The records are standard FEEDBACK records. To access the error result records,
use the FEEDBACK command to retrieve diagnostic data about each of the CICS
definitions in the ERR_RESULT result set. The ERR_COUNT value in the original
FEEDBACK record for the UPDATE command indicates how many records are in
the ERR_RESULT result set and therefore the number of times you should issue
the FEEDBACK command against the ERR_RESULT result set.

Evaluating BINSTERR resource table records
If the ERR_OBJECT field of the FEEDBACK record contains BINSTERR, errors
were encountered while CICS resources were being installed.

In response to one of the following API commands:
PERFORM OBJECT ACTION(INSTALL)
PERFORM SET ACTION(INSTALL)

CICSPlex SM tries to install CICS resources in one or more active CICS regions. A
BINSTERR record is created for each CICS resource that cannot be installed. The
RESPONSE and REASON values returned are TABLEERROR and DATAERROR.

The BINSTERR records that you receive contain the following information:

CMASNAME
The 1- to 8-character name of a CMAS that manages the specified
CICSplex.

PLEXNAME
The 1- to 8-character name of the CICSplex to which the specified CICS
system belongs.

CICSNAME
The 1- to 8-character name of the CICS system into which the resource
could not be installed.

RESNAME
The name of the CICS resource that could not be installed.

100 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

RESVER
The version of the CICS definition that represents the resource being
installed.

ERRCODE
A numeric CICSPlex SM error code. See “BINSTERR” on page 118. The
BINSTERR resource table copy book also contains a list of the error codes
and their meanings.

CRESP1
The RESP value as returned by CICS.

CRESP2
The RESP2 value as returned by CICS.

CEIBFN
The EIBFN value as returned by CICS.

To access the error result set records, use the FETCH command to retrieve the
BINSTERR records from the ERR_RESULT result set. The ERR_COUNT value in
the FEEDBACK record for the PERFORM command indicates how many records
are in the ERR_RESULT result set and therefore the number of times you should
issue the FETCH command against the ERR_RESULT result set.

Evaluating BINCONRS resource table records
If the ERR_OBJECT field of the FEEDBACK record contains BINCONRS,
inconsistent resource set errors were encountered when attempting to update or
create the specified definition.

In response to one of the following API commands:
CREATE OBJECT(basdef)
UPDATE OBJECT(basdef)

CICSPlex SM tries to create or update one of the following Business Application
Services definitions:
v RASGNDEF (resource assignment)
v RASINDSC (resource assignment in resource description)
v RESDESC (resource description)
v RESGROUP (resource group)
v RESINDSC (resource group in resource description)

A BINCONRS resource table record is created for each CICS definition that would
cause an inconsistent set error. The RESPONSE and REASON values returned are
TABLEERROR and DATAERROR.

The BINCONRS records that you receive contain the following information:

CMASNAME
The 1- to 8-character name of a CMAS that manages the specified
CICSplex.

PLEXNAME
The 1- to 8-character name of the CICSplex to which the specified CICS
system belongs.

CICSNAME
The 1- to 8-character name of the CICS system that experienced
inconsistent resource set errors.

Chapter 4. Dealing with exception conditions 101

RESTYPE
The type of CICS resource.

ERROP
A numeric value that identifies the operation being performed when the
error occurred (such as updating a RASGNDEF). See “BINCONRS” on
page 117. The BINCONRS resource table copy book also contains a list of
the ERROP values and their meanings.

CANDNAME
The name of the candidate resource

CANDVER
The version of the candidate resource

CANDRGRP
The group of the candidate resource

CANDRASG
The assignment of the candidate resource

CANDRDSC
The description of the candidate resource

CANDUSAGE
The candidate assignment usage

CANDSGRP
The candidate system group

CANDTYPE
The candidate system type

CANDASGOVR
The candidate assignment override

EXISTNAME
The name of the existing resource

EXISTVER
The version of the existing resource

EXISTRGRP
The group of the existing resource

EXISTRASG
The assignment of the existing resource

EXISTRDSC
The description of the existing resource

EXISTUSAGE
The existing assignment usage

EXISTSGRP
The existing system group

EXISTTYPE
The existing system type

EXISTASGOVR
The existing assignment override

To access the error result records, use the FETCH command to retrieve the
BINCONRS records from the ERR_RESULT result set. The ERR_COUNT value in

102 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

the FEEDBACK record for the CREATE or UPDATE command indicates how many
records are in the ERR_RESULT result set and therefore the number of times you
should issue the FETCH command against the ERR_RESULT result set.

Evaluating BINCONSC resource table records
If the ERR_OBJECT field contains BINCONSC, inconsistent scope errors were
encountered while attempting to update or create the specified definition.

If the ERR_OBJECT field contains BINCONSC, inconsistent scope errors were
encountered while attempting to update or create the specified definition. In
response to one of the following API commands:

CREATE OBJECT(basdef)
UPDATE OBJECT(basdef)

The RESPONSE and REASON values returned are TABLEERROR and
DATAERROR.

BINCONSC records contain the following information:

CMASNAME
The 1- to 8-character name of a CMAS that manages the specified
CICSplex.

PLEXNAME
The 1- to 8-character name of the CICSplex to which the specified CICS
system belongs.

CICSNAME
The 1- to 8-character name of the CICS system that experienced
inconsistent scope errors.

ERROP
A numeric value that identifies the operation being performed when the
error occurred (such as updating a RASGNDEF). See “BINCONSC” on
page 117. The BINCONSC resource table copy book also contains a list of
the ERROP values and their meanings.

ERRCODE
A numeric CICSPlex SM error code. See “BINCONSC” on page 117. The
BINCONSC resource table copy book contains a list of the error codes and
their meanings.

TARGSCOPE
The name of the target scope

TARGRASG
The assignment for the target scope

TARGRDSC
The description for the target

RELSCOPE
The name of the related scope

RELRASG
The assignment for the related scope

RELRDSC
The description for the related scope

Chapter 4. Dealing with exception conditions 103

To access the error result records, use the FETCH command to retrieve the
BINCONSC records from the ERR_RESULT result set. The ERR_COUNT value in
the FEEDBACK record for the CREATE or UPDATE command indicates how many
records are in the ERR_RESULT result set and therefore the number of times you
should issue the FETCH command against the ERR_RESULT result set.

An example of a BAS error result set
As an example of how you can the FEEDBACK data to obtain BAS error result set
information,this example illustrates the results of issuing a PERFORM OBJECT
command. In this case, PERFORM OBJECT ACTION(INSTALL) was issued to
install the CONNDEF definitions in the result set referenced by TOKENC.

One of the connection definitions (CON02, z/OS Communications Server) was not
successfully installed by the PERFORM OBJECT command. There is a pointer to
the FEEDBACK data.

Figure 20 shows how you can use the FEEDBACK command to retrieve the
FEEDBACK records associated with the result set referenced by TOKENC.

The FEEDBACK data shown in Figure 20 reveals the cause of the problem.
CICSPlex SM returned RESPONSE and REASON values of TABLEERROR
DATAERROR, which means that one or more connection definitions did not install
successfully. Furthermore, the ERR_RESULT attribute points to an error result set
which contains a single BINSTERR resource table record.

00000000, 1, CON01, VTAM, ...

00000000, 1, CON04, TCPIP, ...

00000000, 1, CON03, XM, ...

00000000, 2, CON02, VTAM, ...

CONNDEF
Changetime, Defver, Name, Accessmethod,...

Result Set

FEEDBACK

PERFORM OBJECT ACTION (INSTALL) RESULT (TOKENC)

TOKENC

Figure 19. Using PERFORM OBJECT to install BAS definitions

PERFORM OBJECT, N, Y, N, TABLEERROR, DATAERROR, ..., , 1, BINSTERR

FEEDBACK RESULT (TOKENC) INTO (AREA5) ...

Figure 20. Using FEEDBACK to retrieve diagnostic data for a result set

104 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

The BINSTERR error result set referenced by TOKENE, and shown in Figure 21 is
accessed using a FETCH command.

Figure 22 shows how you can use the FETCH command to retrieve the BINSTERR
records associated with the error result set referenced by TOKENE.

BINSTERR
Cmasname, Plexname, CICSname, Resname,

Error Result Set

1, CMAS1, PLX01, MAS1B, CON02, ...

TOKENE

Figure 21. BINSTERR error result set

CMAS1, PLX01, MAS1B, CONO2, 2, FORCENO, ...

FETCH RESULT (TOKENE) INTO (AREA6) ...

Figure 22. Using FETCH to retrieve BINSTERR records

Chapter 4. Dealing with exception conditions 105

106 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Chapter 5. Writing a REXX program

You can use the REXX run-time interface to write an API program. You access the
API through the REXX function package that is supplied with CICSPlex SM.

Accessing the API environment
The REXX run-time interface does not require any translation of API commands.
The commands are interpreted by a REXX function package that is supplied by
CICSPlex SM.

Note: For instructions on installing the REXX function package, see CICS
Transaction Server for z/OS Installation Guide.

The first call to CICSPlex SM in your program must be an EYUINIT or EYUAPI
function. EYUINIT is the primary means of initializing the API environment.
However, if EYUINIT is not issued first, the EYUAPI function initializes the
environment.

For example, sample program EYU#API1, which is distributed in the
CICSTS22.CPSM.SEYUSAMP library, begins like this:

Say ’Initializing API...’
XX = EYUINIT()
If XX <> 0 Then Signal UNEXPECTED
Say ’Establishing connection...’
XX = EYUAPI(’CONNECT’ ,

’CONTEXT(’W_CONTEXT’)’ ,
’SCOPE(’W_SCOPE’)’ ,
’VERSION(0310)’ ,
’THREAD(W_THREAD)’ ,
’RESPONSE(W_RESPONSE)’ ,
’REASON(W_REASON)’)

If XX <> 0 Then Signal UNEXPECTED

In this example, the EYUINIT function is issued first to initialize the API
environment. Then an EYUAPI function is used to issue the API CONNECT
command.

Once you have issued an EYUINIT or EYUAPI function, you can:
v Issue any other CICSPlex SM function.
v Access the host subcommand environment by issuing the REXX ADDRESS

command.

Once the API environment is initialized, it exists until it is terminated, either by
your program or by REXX. Therefore, the final call to CICSPlex SM in your
program should always be an EYUTERM function. If you do not issue EYUTERM,
some REXX resources, such as storage, may remain allocated and REXX becomes
responsible for releasing them.

For example, sample program EYU#API1 ends like this:
XX = EYUAPI(’TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON)’)
XX = EYUTERM()

© Copyright IBM Corp. 1995, 2012 107

In this example, the EYUAPI function is used to issue an API TERMINATE
command. Then EYUTERM is issued to terminate the API environment and release
its allocated resources.

Using the EYUTERM function is always a good idea. However, if the CICSPlex SM
host subcommand environment is installed at your enterprise (as opposed to being
called from the function package), you may not need to use the EYUTERM
function at the end of every program. Depending on the programming guidelines
at your enterprise, the REXX resources that remain allocated can be reused by the
next CICSPlex SM API program that accesses the host subcommand environment.

Specifying an API command
When you write a program in REXX, you pass a character image of the command
to be issued to the REXX function package supplied by CICSPlex SM.

The command string can include imbedded REXX variables, as appropriate. You
can specify the command in one of two ways:
v Invoke the EYUAPI function with the name of the command as its parameter.
v Use the REXX ADDRESS command to pass subsequent statements to the

function package.

Note: You can also use the REXX PARSE VALUE command to pass API commands
to the function package. However, the processing overhead of PARSE VALUE is
quite high. Furthermore, the EYUAPI function returns only a single character (0 or
1), so there is no need to parse its results. For these reasons, using PARSE VALUE
is not recommended.

The following example shows a partial GET command as it would be issued using
the EYUAPI function:

var = EYUAPI(’GET OBJECT(LOCTRAN)...’)

var is the variable assigned to receive the return code from the EYUAPI function.

The next example shows the same GET command being issued by the REXX
ADDRESS command:

ADDRESS CPSM ’GET OBJECT(LOCTRAN)...’

When the data in a REXX variable is to be passed to the function package the text
portion of the API command must be terminated, the REXX variable provided, and
the rest of the API command completed. The following is an example of a
complete GET command that demonstrates the imbedded use of REXX variables:

var = EYUAPI(’GET OBJECT(LOCTRAN)’ ,
’RESULT(setvar) THREAD(THRD1)’ ,
’RESPONSE(rspvar) REASON(reavar)’)

In this example, the result set to receive the LOCTRAN objects, and the
RESPONSE and REASON options are all specified as REXX variables.

Because of the way REXX handles variable substitution, you must keep in mind
whether a variable is being used to send data to the API, receive data from the
API, or both. The next example shows a CONNECT command where the USER
and VERSION options send data to the API. The THREAD, RESPONSE, and
REASON options all name variables to receive data from the API. Note that names
of variables that receive data are specified as part of the command.

108 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

var = EYUAPI(’CONNECT USER(’userid’) VERSION(0310)’ ,
’THREAD(thdtkn) RESPONSE(rspvar) REASON(reavar)’)

In those cases where you want to access a resource table, special processing is
required. An example of this is a FETCH command, which requires an INTO
option to define where the resource table data should be placed for processing by
your program. In REXX, you must specify the INTO option as the prefix of a stem
variable to receive one or more resource table records. The zero entry of the stem
variable indicates the number of records returned.

Accessing resource table data
Because of the way CICSPlex SM supplies resource table data to REXX, two
additional commands are provided as part of the REXX function package.

These commands are:

TPARSE
Extracts individual resource table attributes from a record and places them
into standard REXX variables. The resource table record itself can be
supplied in any valid REXX variable, including a stem variable.

You can use TPARSE to break down and access the attribute data in a
resource table record.

TBUILD
Builds a CPSM Definition or CICS Definition resource table record from a
set of variables that you supply. Each variable must contain an individual
resource table attribute.

You can use TBUILD to build the resource table record for a definition that
you want to create, update, or remove in the CICSPlex SM data repository.

Note: TBUILD only uses attributes that you specify; it does not assume
any default values for optional attributes. If you do not supply a variable
for an attribute that is optional, the corresponding field in the resource
table record is initialized according to its data type (that is, character fields
are set to blanks, binary data and EYUDA values are set to zeroes).

The variables that represent the resource table attributes are created either by
CICSPlex SM, in the case of TPARSE, or by you, in the case of TBUILD. The
variable names are formed by adding a prefix to the attribute name, like this:

prefix_fieldname

where:

prefix Is a text string that you supply. The maximum allowable length for a prefix
is determined by REXX and the environment in which the program runs.

fieldname
Is the name of an attribute in the resource table.

An underscore character (_) must be inserted between the prefix and the attribute
name.

When a program written in REXX passes resource table records to the API, the
format and layout of the record must be exactly as it is defined by CICSPlex SM.

Chapter 5. Writing a REXX program 109

For complete descriptions of the TBUILD and TPARSE commands, see CICSPlex
System Manager Application Programming Reference.

Translating attribute values
The TBUILD and TPARSE commands use the TRANSLATE API command when
processing certain resource table attributes.

For example, EYUDA and CVDA values are maintained in a resource table record
in their numeric form. By default, the TPARSE command converts these values into
a displayable character form. TBUILD, on the other hand, converts any EYUDA or
CVDA character values that you supply into their numeric equivalents.

However, if you use the ASIS option on these commands, attribute values are not
converted. If you specify ASIS on the TPARSE command, you must also specify
ASIS on the TBUILD command when you rebuild the record so that the API does
not try to reconvert the values.

If you specify ASIS on the TPARSE command and then decide you want to convert
the attribute values, you can use the TRANSLATE API command.

Processing CHANGEAGENT, CHANGEAGREL, CHANGETIME,
CHANGEUSRID, and CREATETIME attributes

The first 8 bytes of every CPSM Definition and CICS Definition resource table
record contain an attribute called CHANGETIME, which reflects the date and time
at which the record was last modified. CICS Definition records also include a
CREATETIME attribute, which is the date and time at which the definition was
created.

CICS Definition records also include a CREATETIME attribute, which is the date
and time at which the definition was created.

CICS TS 4.1 introduced new attribute fields CHANGEAGENT, CHANGEAGREL,
and CHANGEUSRID to the resource table resource definition record. These new
attributes, combined with the existing CHANGETIME and CREATETIME
attributes, form the resource definition signature and are valid only for BAS
resource definitions.

CHANGEAGENT displays how the resource was defined or last modified.
CHANGEAGREL contains the level of CICS system that created or last modified
the resource definition. CHANGEUSRID contains the user ID that created or last
modified the resource definition.

You can use the Operations base table resource name and the BAS resource
definition version to identify the resource definition used to install a resource.
However, the BAS definition record might have changed since the resource was
installed. Compare the CHANGETIME value in the Operations base table record
with the CHANGETIME value in the BAS resource definition record to see if the
time values correspond. You can only compare the first word of the STCK time
values because the CHANGETIME value in the BAS record is in full local STCK
format but the CHANGETIME value in the Operations base table record is in
reduced granularity STCK format. This restriction also applies when comparing a
BAS resource definition CREATETIME with the corresponding Operations base
table DEFINETIME STCK values.

110 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID and
CREATETIME attributes are maintained internally by CICSPlex SM; do not attempt
to modify these attribute values. When you update a resource table record, the
CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID and
CREATETIME values you pass to the TBUILD command must be the same values
you received from TPARSE.

By default, the TPARSE command translates the CHANGETIME and
CREATETIME values into displayable, character values. However, the character
forms of these values cannot be passed back to TBUILD. So, if you plan to update
a definition and then rebuild the resource table record, you should use the ASIS
option on the TPARSE and TBUILD commands. When you use ASIS, the
CHANGETIME and CREATETIME values appear as 16-byte hexadecimal values.

Processing FEEDBACK attributes
Having used a TPARSE command to extract the individual resource table attributes
additional processing may be required before the data can be used in subsequent
API commands.

The ERR_RESULT error result set token is returned in decimal format and must be
converted to character format before it can be used in a RESULT() option. To do
this you can use the D2X() and X2C() REXX built-in functions, for example:
var = X2C(RIGHT(D2X(FEEDBACK_ERR_RESULT),8,’0’))

Chapter 5. Writing a REXX program 111

112 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Chapter 6. REXX error handling

Several types of errors are associated with REXX run-time interface.

Translation errors
Errors that occur while REXX is trying to interpret a CICSPlex SM API command
result in a REXX return code.

Errors that occur while REXX is trying to interpret a CICSPlex SM API command
result in a REXX return code. If REXX cannot process a command string or
function, the run-time interface sets the REXX return code in one of two places:

RC variable
When the ADDRESS CPSM command is used.

The return code value is one of the following:

0 The command was successfully processed.

8 The command contained syntax errors that prevented REXX from
processing it. EYUARnnnn messages that describe the error are
written to the destination defined on your system for IRXSAY
WRITEERR output.

16 The command could not be processed because of some system
failure (such as a lack of storage). REXX messages that describe the
error may be produced.

-3 The CICSPlex SM API environment is not available. This condition
can occur if the function package is not properly installed. If the
function package is installed, it could mean that you did not issue
at least one EYUxxxx REXX function before invoking the
ADDRESS CPSM command.

Function variable
When an EYUxxxx REXX function is used.

For most EYUxxxx functions, the return code value is one of the following:

0 The function was successfully processed.

1 The function failed. EYUARnnnn messages that describe the error
are written to the destination defined on your system for IRXSAY
WRITEERR output.

For the EYURESP and EYUREAS functions, the return code is either the
numeric equivalent of the value being translated or -1, if the translation
failed.

In general, if the REXX return code is anything other than:

0 From EYUAPI, EYUINIT, or EYUTERM

A valid RESPONSE or REASON value
From EYURESP or EYUREAS

© Copyright IBM Corp. 1995, 2012 113

the API command was not successfully interpreted by REXX and, therefore, was
not passed to CICSPlex SM for processing. If a command is not processed, the
RESPONSE and REASON values are not set and you do not need to check them.

If the return code is 0, the API command was interpreted by REXX and passed to
CICSPlex SM. Note that a return code of 0 does not indicate whether the command
was successfully processed by CICSPlex SM. To determine the results of an API
command, refer to the RESPONSE and REASON values returned by the command.

Run-time errors
Errors that occur while CICSPlex SM is trying to process an API command are
reported by the RESPONSE and REASON values for the command.

Errors that occur while CICSPlex SM is trying to process an API command are
reported by the RESPONSE and REASON values for the command. For more
information, see “Using the RESPONSE and REASON options” on page 91.

TPARSE and TBUILD errors
The results of a TPARSE or TBUILD command are returned by the STATUS option,
which is a required option on those commands. The STATUS option serves a
similar purpose to the RESPONSE and REASON options on other API commands.

The STATUS option returns the REXX status value in character form as one of the
following:

OK The command completed processing successfully.

SYNTAX ERROR
The command could not be processed because of a syntax error.
EYUARnnnn messages that describe the error are written to the destination
defined on your system for IRXSAY WRITEERR output.

FAILURE
The command failed because some of the data it was attempting to process
is invalid. Trace data is written to a REXX stem variable called
EYU_TRACE. EYUARnnnn messages that describe the failure may also be
written to the destination defined on your system for IRXSAY WRITEERR
output.

For more information about the EYU_TRACE stem variable, see “EYU_TRACE
data” on page 115.

Messages
Many of the error conditions you might encounter when using the REXX run-time
interface are accompanied by messages that describe the error.

Many of the error conditions you might encounter when using the REXX run-time
interface are accompanied by messages that describe the error. These messages,
which begin with the prefix EYUARnnnn, are written to the destination defined on
your system for IRXSAY WRITEERR output. By default, such output goes to one of
the following places:
v For a program running in TSO foreground, the output goes to the terminal.
v For a program running in background, the output goes to the SYSTSPRT DD

destination.

114 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

EYU_TRACE data
The run-time interface creates a REXX stem variable called EYU_TRACE anytime
an error occurs that warrants tracing.

The run-time interface creates a REXX stem variable called EYU_TRACE anytime
an error occurs that warrants tracing. Such conditions include:
v A STATUS of FAILURE from a TBUILD or TPARSE command
v A return code other than 0 from an EYUxxxx function.

The zero entry of the stem array indicates the number of trace records that were
produced. Entries 1 through n contain the actual trace records.

If you are having problems with a REXX program or the run-time interface, IBM
support may request the trace records from EYU_TRACE. CICSPlex SM distributes
a REXX EXEC that IBM support will ask you to include in your REXX program to
format and print the EYU_TRACE records. The formatting routine is called
EYU#TRCF and is distributed in the SEYUCLIB library. EYU#TRCF should be used
only at the request of IBM support.

Chapter 6. REXX error handling 115

116 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Appendix A. BINCONRS, BINCONSC, and BINSTERR error
codes

The BINCONRS, BINCONSC, and BINSTERR copy books contain error codes.

See “Retrieving FEEDBACK records” on page 95 for information on interpreting
feedback error result sets containing these error codes.

BINCONRS
The BINCONRS copy book contains a number of error codes.

Table 9. BINCONRS error codes–ERROP field

Value Code Reason

01 ADDSYS Add System to System Group

02 ADDTOGRP Add Definition to Group

03 UPDINGRP Update Definition in Group

04 ADDRASI Add RASINDSC

05 ADDRESI Add RESINDSC

06 UPDRASG Update RASGNDEF

07 UPDRASI Update RASINDSC

08 UPDRESI Update RESDESC Install Scope

09 UPDRDSC Update RESDESC

BINCONSC
The BINCONSC copy book contains a number of error codes.

Table 10. BINCONSC error codes–ERROP field

Value Code Reason

01 ADDRASI Add RASINDSC

02 UPDRASG Update RASGNDEF

03 UPDRASI Update RASINDSC

04 UPDRDSC Update RESDESC

05 ADDSYS Add System to Group

Table 11. BINCONSC error codes–ERRCODE field

Value Code Reason

01 SAMESCP Target/Related scopes are same

02 TRGINREL Target Scope is in Related

03 RELINTRG Related Scope is in Target

04 SYSNBOTH CICSNAME in Target and Related

05 MULTREL Multiple Systems in Related

06 RELNOSYS Related System has no SYSID

© Copyright IBM Corp. 1995, 2012 117

BINSTERR
The BINSTERR copy book contains a number of error codes.

Table 12. BINSTERR error codes–ERRCODE field

Value Code Reason

01 SYSSTATE System inactive/not create capable

02 INSTNAUT Install not authorized

03 DSCDNAUT Discard not authorized

04 INSTFAIL Install failure

05 DSCDFAIL Install discard failure

06 INSTCPFL Install Complete failure

07 INSTNCON Install Connection failure

08 INSTSTAT Install status failure

09 INSTNSUP Install not supported

10 FORCENO Resource Install negated

11 DSCRDERR Discard failure

12 METHFAIL MAS method failure

13 NOCREATE System not create capable

118 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Appendix B. Sample program listings

CICSPlex SM provides several sample programs.

Each sample program is shown here in one of the languages in which it is
distributed. For a list of the sample programs provided in each language and the
libraries where they are distributed, see Table 6 on page 11.

Note: Additional sample CICSPlex SM API programs are available via the IBM
CICS SupportPacs system at:

http://www.ibm.com/software/htp/cics/downloads

Sample program EYU#API1
Program EYU#API1 is written in REXX for the TSO environment.

EYUxAPI1
This program does the following:
v Establishes a connection to the API.
v Creates a result set containing all PROGRAM resource table records that

do not begin with DFH, EYU, or IBM.
v Retrieves each record in the result set.
v Translates any CICS CVDA attributes into meaningful character values.
v Displays each record on the terminal, showing the program name,

language, enable status, and CEDF status.
v Terminates the API connection.

Commands Used: CONNECT, FETCH, GET, TERMINATE, TRANSLATE

© Copyright IBM Corp. 1995, 2012 119

/* REXX */
/**/
/* */
/* MODULE NAME = EYU#API1 */
/* */
/* DESCRIPTIVE NAME = CPSM Sample API Program 1 */
/* (Sample REXX Version) */
/* */
/* 5695-081 */
/* COPYRIGHT = NONE */
/* */
/* STATUS = %CP00 */
/* */
/* FUNCTION = */
/* */
/* To provide an example of the use of the following EXEC CPSM */
/* commands: CONNECT, GET, FETCH, TRANSLATE, TERMINATE. */
/* */
/* When invoked, the program depends upon the values held in the */
/* W_CONTEXT and W_SCOPE declarations when establishing a */
/* connection with CICSPlex SM. They must take the following */
/* values: */
/* */
/* W_CONTEXT = The name of a CMAS or CICSplex. Refer to the */
/* description of the EXEC CPSM CONNECT command */
/* for further information regarding the CONTEXT */
/* option. */
/* */
/* W_SCOPE = The name of a CICSplex, CICS system, or CICS */
/* system group within the CICSplex. Refer to the */
/* description of the EXEC CPSM CONNECT command */
/* for further information regarding the SCOPE */
/* option. */
/* */
/* This sample requires no parameters at invocation time. */
/* */
/* The sample establishes an API connection and issues a GET */
/* command to create a result set containing program resource */
/* table records which match the criteria. */
/* */
/* Using the FETCH command each record in the result set is */
/* retrieved. Once retrieved the TRANSLATE command is used to */
/* convert those attributes of each record which are EYUDA or */
/* CVDA values into meaningful character representations. A */
/* record is then displayed on the terminal showing the program */
/* name, language, program status, and CEDF status. */
/* */
/* Finally, the API connection is terminated. */
/* */
/*--*/
/*NOTES : */
/* DEPENDENCIES = S/390, TSO */
/* RESTRICTIONS = None */
/* REGISTER CONVENTIONS = */
/* MODULE TYPE = Executable */
/* PROCESSOR = REXX */
/* ATTRIBUTES = Read only, Serially Reusable */
/* */

/*--*/
/* */
/*ENTRY POINT = EYU#API1 */
/* */
/* PURPOSE = All Functions */
/* */
/* LINKAGE = From TSO as a REXX EXEC. */
/* */
/* INPUT = None. */
/* */
/*--*/
/* */
Address ’TSO’
Parse Value 0 0 With W_RESPONSE W_REASON .
/*--*/

120 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

The C/370™, COBOL and PL/I versions of EYUxAPI1 are written for the CICS
environment and can be converted to run in the MVS batch environment by
commenting the EXEC CICS SEND commands, and uncommenting the preceding
language specific output statements.

Sample program EYUCAPI2
Program EYUCAPI2 is written in C for the CICS ENVIRONMENT.

EYUxAPI2
This program does the following:
v Establishes a connection to the API.
v Defines a filter to identify PROGRAM resource table records with a

language attribute of Assembler.
v Creates a result set containing all PROGRAM resource table records that

do not begin with DFH, EYU, or IBM.
v Marks those records in the result set that match the specified filter

(LANGUAGE=ASSEMBLER).
v Copies the marked records to a new result set.
v Deletes the marked records from the original result set.
v For each result set (LANGUAGE=ASSEMBLER and

LANGUAGE≠ASSEMBLER):
– Retrieves each record.
– Translates any CICS CVDA attributes.
– Displays each record on the terminal.

v Terminates the API connection.

Commands Used: CONNECT, COPY, DELETE, FETCH, GET, LOCATE,
MARK, SPECIFY FILTER, TERMINATE, TRANSLATE

Appendix B. Sample program listings 121

/**/
/* */
/* MODULE NAME = EYUCAPI2 */
/* */
/* DESCRIPTIVE NAME = CPSM Sample API Program 2 */
/* (Sample C Version) */
/* */
/* 5695-081 */
/* COPYRIGHT = NONE */
/* */
/* STATUS = %CP00 */
/* */
/* FUNCTION = */
/* */
/* To provide an example of the use of the following EXEC CPSM */
/* commands: CONNECT, SPECIFY FILTER, GET, MARK, COPY, DELETE, */
/* LOCATE, FETCH, TRANSLATE, TERMINATE. */
/* */
/* When invoked, the program depends upon the values held in the */
/* W_CONTEXT and W_SCOPE declarations when establishing a */
/* connection with CICSPlex SM. They must take the following */
/* values: */
/* */
/* W_CONTEXT = The name of a CMAS or CICSplex. Refer to the */
/* description of the EXEC CPSM CONNECT command */
/* for further information regarding the CONTEXT */
/* option. */
/* */
/* W_SCOPE = The name of a CICSplex, CICS system, or CICS */
/* system group within the CICSplex. Refer to the */
/* description of the EXEC CPSM CONNECT command */
/* for further information regarding the SCOPE */
/* option. */
/* */
/* This sample requires no parameters at invocation time. */
/* */
/* The sample establishes an API connection and issues a SPECIFY */
/* FILTER command to create a filter which will match only */
/* specific program resource table records. The filter is used */
/* later in the program by the MARK command. */
/* */
/* A GET command is issued to create a result set containing */
/* program resource table records which match the criteria. The */
/* result set is then used by the MARK command to flag records */
/* meeting the previous filter specification. The marked records */
/* are then COPYed to a new result set, and then DELETEd from */
/* the original result set. After this sequence of commands we */
/* have two results sets; one containing records which did not */
/* meet the filter specification (that is, records where the */
/* LANGUAGE is not ASSEMBLER), and one containing records */
/* which did match the filter (that is, records where the */
/* LANGUAGE is ASSEMBLER). */
/* */
/* Taking each of the two results sets in turn a LOCATE command */
/* is used to ensure we start at the top of the result set */
/* before a FETCH command is used to retrieve each record in */
/* the result set. Once retrieved the TRANSLATE command is used */
/* to convert those attributes of each record which are EYUDA */
/* or CVDA values into meaningful character representations. A */
/* record is then displayed on the terminal showing the program */
/* name, language, program status, and CEDF status. */
/* */
/* Finally, the API connection is terminated. */
/* */

* --*
/*NOTES : */
/* DEPENDENCIES = S/390, CICS */
/* RESTRICTIONS = None */
/* REGISTER CONVENTIONS = */
/* MODULE TYPE = Executable */
/* PROCESSOR = C */
/* ATTRIBUTES = Read only, Serially Reusable */
/* */

122 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

The C, C++, COBOL, and PL/I versions of EYUxAPI2 are written for the CICS
environment and can be converted to run in the MVS batch environment by
commenting the EXEC CICS SEND commands, and uncommenting the preceding
language specific output statements.

Sample program EYUAAPI3
Program EYUAAPI3 is written in Assembler for the MVS batch environment.

EYUxAPI3
This program does the following:
v Establishes a connection to the API with the context set to an existing

CICSplex.
v Verifies that a proposed new CICSplex name is not already defined to

CICSPlex SM as a CICSplex, CMAS, CICS system, or CICS system
group.

v Creates a result set containing the CPLEXDEF resource table record for
the existing CICSplex definition and retrieves that record.

v Creates a new CPLEXDEF resource table record using the existing record
as a model.

v Creates a result set containing the CICSPLEX resource table records
associated with the existing CICSplex and retrieves those records.

v Creates new CICSPLEX resource table records using the existing records
as models.

v Sequentially retrieves all the resource table records associated with the
existing CICSplex, including CICS systems, CICS system groups,
workload management definitions, real-time analysis definitions, and
resource monitoring definitions.

v Creates all the necessary resource table records for the new CICSplex
using the existing records as models.

v If an error occurs before all the necessary resource table records are
created, removes the new CICSplex definition.

v Disconnects the API processing thread.

Commands Used: CONNECT, CREATE, DISCARD, DISCONNECT,
FETCH, GET, PERFORM OBJECT, QUALIFY, QUERY, REMOVE

Appendix B. Sample program listings 123

*
EYUAAPI3 TITLE ’EYUAAPI3 - CPSM SAMPLE API PROGRAM 3 - ASSEMBLER’

* *
* MODULE NAME = EYUAAPI3 *
* *
* DESCRIPTIVE NAME = API sample program 3 ASSEMBLER Version *
* *
* 5695-081 *
* COPYRIGHT = NONE *
* *
* STATUS = %CP00 *
* *
* FUNCTION = *
* *
* To mirror an existing PLEX to a new PLEX. *
* *
* When invoked, the program depends upon the values held in the *
* OLDPLEX, NEWPLEX, and MPCMAS variables. They must be set to *
* the following values: *
* *
* OLDPLEX = The name of an existing PLEX that will be mirrored. *
* *
* NEWPLEX = The name that will be given to the new PLEX. *
* *
* MPCMAS = The maintenance point CMAS of the OLDPLEX. This *
* will also be the MP for the NEWPLEX. *
* *
* This sample requires no parameters at invocation time. *
* *
* The sample processes as follows: *
* *
* - a CONNECTion is established to CPSM, with the CONTEXT and *
* SCOPE of the OLDPLEX. *
* *
* - since a PLEX can be either a CONTEXT or SCOPE, we verify *
* that the NEWPLEX is not already a valid CONTEXT (i.e, an *
* existing CICSplex or CMAS) or SCOPE in the OLDPLEX (i.e, *
* an existing CICS system or CICS system group). *
* *
* - we GET the CPLEXDEF record for the OLDPLEX, and use this as *
* a module to CREATE the NEWPLEX. *
* *
* - we GET the CICSPLEX records for the OLDPLEX, and use these *
* to add the CMASs in the OLDPLEX to the NEWPLEX. *
* *
* - using a list that contains CICSplex definitions including *
* CICS systems, CICS system groups, workload management *
* definitions, real-time analysis definitions and resource *
* monitoring definitions, we GET and FETCH the records from *
* the OrigPlex, and CREATE them in the NewPlex. *
* *
* - we then DISCONNECT from CPSM. *
* *

* --*
* *
* NOTES : *
* DEPENDENCIES = S/370 *
* RESTRICTIONS = None *
* REGISTER CONVENTIONS = *
* R0 Workarea / external call parameter pointer *
* R1 Workarea / external call parameter pointer *
* R2 Resource Table record pointer *
* R3 Loop counter *
* R4 List pointer *
* R5 Loop counter *
* R6 Unused *
* R7 Unused *
* R8 Unused *
* R9 Subroutine linkage *
* R10 Subroutine linkage *
* R11 Base register *
* R12 Base register *

124 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Sample program EYULAPI4
Program EYULAPI4 is written in COBOL for the CICS environment.

EYUxAPI4
This program does the following:
v Establishes a connect to the API.
v Creates a BAS definition for a TS Model (TSMDEF) specifying a version

of 1.
v Creates a result set containing the previously defined TSMDEF.
v Issues a PERFORM OBJECT command to INSTALL the TSMDEF into the

target scope.
v Terminates the API connection.
v BAS errors are processed using BINCONRS, BINCONSC, and BINSTERR

resource table records.

Commands Used: CONNECT, CREATE, GET, PERFORM OBJECT,
FEEDBACK, FETCH, TERMINATE, TRANSLATE

Appendix B. Sample program listings 125

IDENTIFICATION DIVISION.
PROGRAM-ID. EYULAPI4

* *
* MODULE NAME = EYULAPI4 *
* *
* DESCRIPTIVE NAME = CPSM SAMPLE API PROGRAM 4 *
* (SAMPLE COBOL VERSION) *
* *
* COPYRIGHT = Licensed Materials - Property of IBM *
* 5695-081 *
* (C) Copyright IBM Corp. 1995, 1997 *
* All Rights Reserved *
* *
* US Government Users Restricted Rights - Use, *
* duplication or disclosure restricted by GSA ADP *
* Schedule Contract with IBM Corp. *
* *
* STATUS = %CP00 *
* *
* FUNCTION = *
* *
* TO PROVIDE AN EXAMPLE OF THE USE OF THE FOLLOWING EXEC CPSM *
* COMMANDS: CONNECT, CREATE, FEEDBACK, FETCH, GET, *
* PERFORM OBJECT, TERMINATE. *
* *
* WHEN INVOKED, THE PROGRAM DEPENDS UPON THE VALUES HELD IN THE *
* W-CONTEXT AND W-SCOPE DECLARATIONS WHEN ESTABLISHING A *
* CONNECTION WITH CICSPLEX SM. THEY MUST TAKE THE FOLLOWING *
* VALUES: *
* *
* W-CONTEXT = THE NAME OF A CMAS OR CICSPLEX. REFER TO THE *
* DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND *
* FOR FURTHER INFORMATION REGARDING THE CONTEXT *
* OPTION. *
* *
* W-SCOPE = THE NAME OF A CICSPLEX, CICS SYSTEM, OR CICS *
* SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE *
* DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND *
* FOR FURTHER INFORMATION REGARDING THE SCOPE *
* OPTION. *
* *
* THIS SAMPLE REQUIRES NO PARAMETERS AT INVOCATION TIME. *
* *
* WHEN CREATING THE BAS DEFINITION THE PROGRAM DEPENDS UPON THE *
* VALUES HELD IN THE W-DEFNAME AND W-DEFPREFIX DECLARATIONS. *
* THEY MUST TAKE THE FOLLOWING VALUES: *
* *
* W-DEFNAME = THE NAME OF THE CREATED BAS DEFINITION. A *
* 1 TO 8 CHARACTER VALUE. *
* *
* W-DEFPFIX = THE MODEL PREFIX OF THE CREATED BAS DEFINITION. *
* A 1 TO 16 CHARACTER VALUE. *
* *
* *

* WHEN INSTALLING THE BAS DEFINITION THE PROGRAM USES THE *
* VALUE HELD IN THE W-TSCOPE DECLARATION AS THE TARGET FOR *
* THE INSTALL OPERATION. IT MUST TAKE THE FOLLOWING VALUE : *
* *
* W-TSCOPE = THE NAME OF A CICS SYSTEM, OR CICS *
* SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE *
* DESCRIPTION OF THE TARGET PARAMETER OF AN *
* INSTALL ACTION IN THE RESOURCE TABLE REFERENCE *
* FOR FURTHER INFORMATION REGARDING THE TARGET *
* SCOPE VALUE. *
* *
* *
* THE SAMPLE ESTABLISHES AN API CONNECTION AND ISSUES A CREATE *
* COMMAND TO CREATE A BAS DEFINITION. A GET COMMAND IS ISSUED *
* TO OBTAIN A RESULT SET CONTAINING THE CREATED BAS DEFINITION. *
* *
* USING THE PERFORM OBJECT ACTION(INSTALL) COMMAND EACH RECORD *
* IN THE RESULT SET IS INSTALLED INTO THE TARGET SCOPE *

126 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

The COBOL version of EYUxAPI4 is written for the CICS environment and can be
converted to run in the MVS/ESA batch environment by commenting the EXEC
CICS SEND commands, and uncommenting the preceding language specific output
statement.

Appendix B. Sample program listings 127

128 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1995, 2012 129

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

130 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0565
CICS Transaction Server for z/OS What's New, GC34-7192
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-7188
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-7189
CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1, GC34-7190
CICS Transaction Server for z/OS Installation Guide, GC34-7171

Access to CICS
CICS Internet Guide, SC34-7173
CICS Web Services Guide, SC34-7191

Administration
CICS System Definition Guide, SC34-7185
CICS Customization Guide, SC34-7161
CICS Resource Definition Guide, SC34-7181
CICS Operations and Utilities Guide, SC34-7213
CICS RACF Security Guide, SC34-7179
CICS Supplied Transactions, SC34-7184

Programming
CICS Application Programming Guide, SC34-7158
CICS Application Programming Reference, SC34-7159
CICS System Programming Reference, SC34-7186
CICS Front End Programming Interface User's Guide, SC34-7169
CICS C++ OO Class Libraries, SC34-7162
CICS Distributed Transaction Programming Guide, SC34-7167
CICS Business Transaction Services, SC34-7160
Java Applications in CICS, SC34-7174

Diagnosis
CICS Problem Determination Guide, GC34-7178
CICS Performance Guide, SC34-7177
CICS Messages and Codes Vol 1, GC34-7175
CICS Messages and Codes Vol 2, GC34-7176
CICS Diagnosis Reference, GC34-7166
CICS Recovery and Restart Guide, SC34-7180
CICS Data Areas, GC34-7163
CICS Trace Entries, SC34-7187
CICS Debugging Tools Interfaces Reference, GC34-7165

Communication
CICS Intercommunication Guide, SC34-7172
CICS External Interfaces Guide, SC34-7168

Databases
CICS DB2 Guide, SC34-7164
CICS IMS Database Control Guide, SC34-7170

© Copyright IBM Corp. 1995, 2012 131

CICS Shared Data Tables Guide, SC34-7182

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7196
CICSPlex SM Web User Interface Guide, SC34-7214

Administration and Management
CICSPlex SM Administration, SC34-7193
CICSPlex SM Operations Views Reference, SC34-7202
CICSPlex SM Monitor Views Reference, SC34-7200
CICSPlex SM Managing Workloads, SC34-7199
CICSPlex SM Managing Resource Usage, SC34-7198
CICSPlex SM Managing Business Applications, SC34-7197

Programming
CICSPlex SM Application Programming Guide, SC34-7194
CICSPlex SM Application Programming Reference, SC34-7195

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7204
CICSPlex SM Resource Tables Reference Vol 2, SC34-7205
CICSPlex SM Messages and Codes, GC34-7201
CICSPlex SM Problem Determination, GC34-7203

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 2.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

132 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1995, 2012 133

134 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Index

A
accessing API from REXX 107
accessing CICSPlex SM 2
accessing resource tables from

REXX 109
actions, performing 40
Assembler language programs

compiling 87
language considerations 84
link editing 88
run-time considerations 89
supported environments 2
translating 86
using resource table copy books 75

asynchronous processing
overview 50
using ADDRESS 52
using LISTEN 51
using NOWAIT 52
using RECEIVE 53
using tokens 52

ASYNCREQ records
description 52
retrieving 53

attribute expression
in filter expression 21
in modification expression 39

attributes, resource table
modifying 39
ordering 17
translating

in REXX program 110
availability, CICS release 1

B
BINCONRS resource table records 101,

103, 117
BINCONSC resource table records 101,

103, 117
BINSTERR resource table records 100,

118

C
C programs

compiling 87
link editing 89
run-time considerations 89
running under 84
supported environments 2
translating 86
using resource table copy books 82

C++ programs
compiling 87

CHANGEAGENT attribute
description 42

CHANGEAGREL attribute
description 42

CHANGETIME attribute
description 16, 42
processing with REXX 110

CHANGEUSRID attribute
description 42

CICS definitions
description 14
working with 41

CICS Global User exit programs 85
CICS release availability 1
CICS resources, managed

description 13
resource tables 16

CICSPlex SM API in status program 85
CICSPlex SM API in user-replaceable

program 85
CICSPlex SM API task related user

exit 72
CICSPlex SM definitions

description 14
resource tables 16
working with 41

CICSPlex SM manager resources
description 14
resource tables 16

CICSPlex SM meta-data
description 15
resource tables 16

CICSPlex SM notifications
description 14
processing 51
resource tables 16

CICSPlex SM tokens 54
COBOL programs

compiling 87
link editing 89
run-time considerations 89
supported environments 2
translating 86
using resource table copy books 79

command responses
testing for

using the command-level
interface 94

using the run-time interface 95
types 91

command-level interface
compiling a program 87
environment considerations 83
language considerations 83
link editing a program 88
run-time considerations 89
supported environments 1
translating a program 85
using resource table copy books 73

compatibility of API programs
between environments 6
between releases 7

compiling a command-level program 87
CONNECT command

using 2

connecting to CICSPlex SM 2
context

description 19
specifying on commands 20

copy books, resource table 117
accessing 73
Assembler 75
BINCONRS 101, 117
BINCONSC 103, 117
BINSTERR 100, 118
C 82
COBOL 79
data characteristics 74
description 73
format 74
names and aliases 73
PL/I 76

CREATETIME attribute
description 42
processing with REXX 110

CRESxxxx resource tables 72
customizing resource table records 17

D
definitions, CICS

description 14
working with 41

definitions, CICSPlex SM
description 14
resource tables 16
working with 41

dumps
requesting 41

E
ECB field

description 52
environment

compatibility 6
considerations 84
support 1

ERR_RESULT token 111
error codes 117
error handling

in REXX programs 113
using error result sets 99
using FEEDBACK data 95
using RESPONSE and REASON 91

error result set
description 99
fields in FEEDBACK record 98
for BAS definitions 101, 103
for installing CICS resources 100
for updating CICS definitions 100

event control block (ECB)
description 52

event, listening for 51
EXPAND command 35

© Copyright IBM Corp. 1995, 2012 135

expanding records
in a summarized result set 35

expression
attribute

in filter expression 21
in modification expression 39

filter 20
modification 39
order 17, 38
parameter 40, 42
summary 36

EYU_ attributes 16
EYU_TRACE stem variable 115
EYU9XESV security routine

considerations 5
EYU9XLAP 72
EYUAPI function

using 108
EYUREAS function

using 95
EYURESP function

using 95
EYUTERM function

using 107
EYUVALUE function

using for response and reason 94

F
FEEDBACK attributes

processing with REXX 111
FEEDBACK command

using 95
feedback records

availability 98
description 96
example 98
location 95
retrieving 95

FETCH command
using 27

filter
description 20

filter expression
description 20
generic values 22

filtering result set records 20
function package, REXX 107

G
GROUP command

using 34

I
integrated CICS translator 85

L
language considerations

Assembler 84
PL/I 84

link editing a command-level
program 88

LISTEN command
using 51

listening for event 51
local file

disabling 40
LOCATE command

using 30
locating a result set record 30
LOCFILE

disabling 40

M
managed CICS resources

description 13
resource tables 16

managed object
modifying 39
selecting 19
types 13

MARK command
using 31

meta-data, CICSPlex SM
description 15
resource tables 16

migrating an API program 7
modification expression

description 39
modifying CICS definitions 42
modifying CICSPlex SM definitions 42
modifying resource attributes 39

N
notifications, CICSPlex SM

description 14
processing 51
resource tables 16

NOWAIT option, using 52

O
objects, managed by CICSPlex SM

modifying 39
selecting 19
types 13

OBJSTAT records
description 27
in summarized result set 35
retrieving 27

OBJSTAT resource table records 29
ORDER command

using 38
order expression

description 17, 38
ordering result set records 38

P
parameter expression 40

for CICS definitions 32, 42
for CICSPlex SM definitions 42
when performing an action 40

PERFORM OBJECT command
using parameter expression with 40

performing actions 40
PL/I programs

compiling 87
language considerations 84
link editing 89
run-time considerations 89
supported environments 2
translating 86
using resource table copy books 76

programs, sample
descriptions 11
list of supplied 11
listings 119

R
REASON option

using 91
RECEIVE command

using 53
record pointer, positioning 30
release compatibility 7
resource table

copy books 73
customizing 17
description 15
restricted attributes 16
SCOPE applies field 20
translating attributes

in REXX program 110
using with command-level

interface 73
using with REXX 109
view 17

resource table copy books 117
accessing 73
Assembler 75
BINCONRS 101, 117
BINCONSC 103, 117
BINSTERR 100, 118
C 82
COBOL 79
data characteristics 74
description 73
format 74
names and aliases 73
PL/I 76

RESPONSE option
using 91

responses, command
testing for

using the command-level
interface 94

using the run-time interface 95
types 91

restricted resource table attributes 16
result set

commands
overview 24

creating 24
description 24
positioning record pointer 30
records

customizing 17
filtering 20
locating 30
retrieving 27

136 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

result set (continued)
records (continued)

sorting 38
summarizing 34

result set, error
description 99
fields in FEEDBACK record 98
for BAS definitions 101, 103
for installing CICS resources 100
for updating CICS definitions 100

retrieving ASYNCREQ records 53
retrieving FEEDBACK records 95
retrieving OBJSTAT records 27
retrieving result set records 27
REXX function package 107
REXX processing

CHANGETIME attribute 110
CREATETIME attribute 110
FEEDBACK attribute 111

REXX run-time interface
accessing resource tables 109
EYU_TRACE data 115
function package 107
messages 114
run-time errors 114
STATUS values 114
supported environments 2
translation errors 113
using 107

run-time considerations,
command-level 89

run-time errors, REXX 114

S
sample programs

descriptions 11
list of supplied 11
listings 119

scheduling a request 52
scope

description 19
specifying on commands 20

security
considerations 5

selecting managed objects
using context and scope 19
using filter expressions 20

sentinel field
description 52

sorting result set records 38
SPECIFY VIEW command

using 17
status program

CICSPlex SM API 85
STATUS values, interpreting 114
summarized result set

description 34
summarizing result set records 34
summary expression

description 36
summary options

description 36
supported environments 1

T
task related user exit 72
TBUILD command

handling errors 114
using 109

tokens
CICSPlex SM 54
user-defined 52

TPARSE command
handling errors 114
using 109

trademarks 130
translating

command-level program 85
resource table attributes

in REXX program 110
RESPONSE and REASON values

using the command-level
interface 94

using the run-time interface 95
translation errors, REXX 113

U
UNMARK command

using 31
user tokens 52
user-replaceable program

CICSPlex SM API 85

V
view

description 17

W
Web User Interface

filter expressions 22

X
XICEREQ 85

Index 137

138 CICS TS for z/OS 4.2: CICSPlex SM Application Programming Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 2
CICSPlex SM Application Programming Guide

Publication No. SC34-7194-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7194-01

SC34-7194-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7194-01

	Contents
	Preface
	Who this book is for
	How to use this book
	Notes on terminology
	CICS System Connectivity

	Changes in CICS Transaction Server for z/OS, Version 4 Release 2
	Chapter 1. An overview of the CICSPlex SM API
	Supported environments and languages
	Available interfaces
	Connecting to CICSPlex SM
	The connection process
	Security considerations

	Compatibility between environments
	Compatibility between releases of CICSPlex SM
	Special considerations for REXX applications
	Accessing resource tables from a new release
	Accessing resource tables from a previous release

	Sample programs

	Chapter 2. Using the CICSPlex SM API
	CICSPlex SM managed objects
	Types of managed objects
	Managed CICS resources
	CICS resource definitions
	CICSPlex SM definitions
	CICSPlex SM manager resources
	CICSPlex SM notifications
	CICSPlex SM meta-data

	CICSPlex SM resource tables
	Building a customized resource table record
	How to create copybooks for customized resource table records

	Selecting managed objects
	Setting the context and scope
	Using filter expressions
	How you can use filter expressions
	How to build a filter expression

	Working with result sets
	An overview of result set commands
	Retrieving records from a result set
	OBJSTAT

	Positioning the record pointer in a result set
	Processing selected records in a result set
	Using MARK and UNMARK
	Identifying the records to be marked
	Identifying records that could not be marked
	How to remove the marks in a result set

	Summarizing the records in a result set
	Specifying summary expressions

	Sorting the records in a result set

	Modifying managed resources
	Modifying resource attributes
	Performing an action against a resource
	Working with CICSPlex SM and CICS definitions
	Creating, updating, and removing definitions
	The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and CREATETIME attributes
	Using the PARM option
	Special considerations for CSD resources
	Example of using the CICSPlex SM API to install a file definition
	Example of using the CICSPlex SM API to install a CICS connection definition
	Example of using the CICSPlex SM API to install a remote CICS transaction definition
	Example of using the CICSPlex SM API to create an ATOM service definition
	Example of using the CICSPlex SM API to add a CSD group to a list
	Example of using the CICSPlex SM API to delete a CSD resource from a group
	Example of using the CICSPlex SM API to remove a CSD group from a list
	Example of using the CICSPlex SM API to delete a CSD group

	Asynchronous processing
	Using the LISTEN command
	Using the NOWAIT option
	Using tokens to identify a request
	Using the ADDRESS command
	Using the RECEIVE command

	Using CICSPlex SM tokens
	Using metadata resource tables
	ATTR
	ATTRAVA
	METADESC
	METANAME
	METAPARM
	OBJACT
	OBJECT
	PARMAVA

	Using CRESxxxx resource tables
	Querying the CICSPlex SM API exit

	Chapter 3. Writing an EXEC CPSM program
	Using the resource table copy books
	How to access the copy books
	Copybook names and aliases
	Copybook format
	Copybook data characteristics
	Supplied copy books
	Assembler copy books
	PL/I copy books
	COBOL copy books
	C copy books

	Language and environment considerations
	Assembler considerations
	PL/I considerations
	NetView considerations
	User-replaceable programs
	CICS Global User exit programs
	Status programs

	Translating your program
	Specifying the CPSM translator option
	Sample Assembler translation
	Sample PL/I translation
	Sample COBOL translation
	Sample C translation

	Compiling your program
	Assembler considerations
	PL/I considerations
	COBOL considerations
	C and C++ considerations

	Link editing your program
	Assembler considerations
	PL/I, COBOL, and C considerations

	Run-time considerations

	Chapter 4. Dealing with exception conditions
	Default CICSPlex SM exception handling
	Using the RESPONSE and REASON options
	Types of responses
	Normal responses
	Warning responses
	Error responses

	Testing for RESPONSE and REASON
	Using the command-level interface
	Using the REXX run-time interface

	Retrieving FEEDBACK records
	Using the FEEDBACK command
	Evaluating a FEEDBACK record
	Availability of FEEDBACK records
	An example of FEEDBACK for a result set
	Additional processing for BAS
	Evaluating error result set records
	Evaluating BINSTERR resource table records
	Evaluating BINCONRS resource table records
	Evaluating BINCONSC resource table records
	An example of a BAS error result set

	Chapter 5. Writing a REXX program
	Accessing the API environment
	Specifying an API command
	Accessing resource table data
	Translating attribute values
	Processing CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and CREATETIME attributes
	Processing FEEDBACK attributes

	Chapter 6. REXX error handling
	Translation errors
	Run-time errors
	TPARSE and TBUILD errors
	Messages
	EYU_TRACE data

	Appendix A. BINCONRS, BINCONSC, and BINSTERR error codes
	BINCONRS
	BINCONSC
	BINSTERR

	Appendix B. Sample program listings
	Sample program EYU#API1
	Sample program EYUCAPI2
	Sample program EYUAAPI3
	Sample program EYULAPI4

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

