
IBM Language Environment for z/VSE

Writing Interlanguage Communication
Applications
Version 1 Release 4 Modification Level 6

SC33-6686-02

���

IBM Language Environment for z/VSE

Writing Interlanguage Communication
Applications
Version 1 Release 4 Modification Level 6

SC33-6686-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
ix.

This edition applies to Version 1 Release 4 Modification Level 6 of IBM Language Environment for z/VSE,
5686-CF8, and to any subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC33–6686–01.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Notices ix
Accessibility ix

Using Assistive Technologies ix
z/VSE Information x

Programming Interface Information. x
Trademarks and Service Marks x

About This Book. xi
What Is LE/VSE? xi
LE/VSE-Conforming Languages xii

LE/VSE Compatibility with Previous Versions of
COBOL xii

Where to Find More Information xv
Softcopy Publications xvii

Summary Of Changes xix

Chapter 1. Getting Started with LE/VSE
ILC 1
The Benefits of ILC under LE/VSE 1
Writing ILC Applications 1

Chapter 2. Communicating between C
and COBOL 3
Preparing for ILC. 3

LE/VSE ILC Support 3
Migrating ILC Applications 3
Compiling and Linking Considerations 4
Determining the Main Routine 4
Declarations 5

Calling between C and COBOL 6
Types of Calls Permitted 6
Dynamic Call/Fetch Considerations 6

Passing Data between C and COBOL 8
Passing Data by Value (Indirect) between C and
COBOL 9
Passing Data by Reference (Indirect) between C
and COBOL 10
Data Types Passed by Value (Indirect) between C
and COBOL 10
Data Types Passed by Reference (Indirect)
between C and COBOL 10
Passing Strings between C and COBOL 11
Aggregates 11
Return Codes 11

Data Equivalents 11
Equivalent Data Types—C to COBOL. 11
Equivalent Data Types—COBOL to C. 14

Name Scope of External Data 16
Name Space of External Data 18

File Sharing 19
Directing Output in ILC Applications. 19
C–COBOL Condition Handling 20

Enclave-Terminating Language Constructs . . . 20
Exception Occurs in C 22
Exception Occurs in COBOL. 23
CEEMRCR and COBOL 25

Sample ILC Application 26
EDCCCB 26
IGZTILCC 27
EDCCCB2 27

Chapter 3. Communicating between C
and PL/I 29
Preparing for C–PL/I ILC 29

LE/VSE ILC Support 29
Migrating C–PL/I ILC Applications 29
Determining the Main Routine 29
Reentrancy Considerations 30
Declarations 30

Calling between C and PL/I. 31
Types of Calls Permitted 31
Dynamic Call/Fetch Considerations 31

Passing Data between C and PL/I 32
Passing Pointers from C to PL/I 32
Passing Pointers from PL/I to C 33
Receiving Value Parameters in C 33
Receiving Reference Parameters in C 33
Data Types Passed Using C Pointers (by
Reference) 33
Data Types Passed Without Using Explicit C
Pointers (by Value) 34
Strings Passed between C and PL/I 34
Aggregates 35
Return Codes. 35

Data Equivalents 35
Equivalent Data Types—C to PL/I. 35
Equivalent Data Types—PL/I to C. 39
Name Scope of External Data 44
Name Space of External Data 45

How to Use Dynamic Heap Storage Functions. . . 46
File Sharing 46
Directing Output in ILC Applications. 46
C—PL/I Condition Handling 47

Enclave-Terminating Constructs 47
Exception Occurs in C 48
Exception Occurs in PL/I. 50

Sample C-PL/I ILC Application 52
IBMCPL 52
EDCCPL 53

Chapter 4. Communicating between
COBOL and PL/I. 55

© Copyright IBM Corp. 1991, 2009 iii

Preparing to Use ILC between COBOL and PL/I . . 55
LE/VSE ILC Support 55
Migrating ILC Applications 55
Determining the Main Routine 55
Declarations 56
Reentrancy 56

Calling between PL/I and COBOL 57
Types of Calls Permitted 57
Dynamic Call/Fetch Considerations 57

Passing Data between COBOL and PL/I. 57
Aggregates 58
Return Codes. 60

Data Equivalents 60
Equivalent Data Types—COBOL to PL/I . . . 60
Equivalent Data Types—PL/I to COBOL . . . 62
Data Type Equivalents When TRUNC(BIN) is
Specified 64
Name Scope of External Data 65
Name Space of External Data 66

File Sharing 67
Directing Output from ILC Applications to
MSGFILE 68
COBOL—PL/I Condition Handling 68

Enclave-Terminating Language Constructs . . . 69
Exception Occurs in COBOL. 70
Exception Occurs in PL/I. 72
GOTO Out-of-Block and Move Resume Cursor 73

Sample PL/I–COBOL Application 74
IBMPCB 74
IGZTPCB 76

Chapter 5. Communicating between
Multiple HLLs 79
Supported Data Types 79
External Data 79
Condition Handling 79

C, COBOL, and PL/I Scenario: Exception Occurs
in C 80
Enclave-Terminating Constructs 82

Sample N-Way ILC Application 83
IBMNWAY 83
EDCNWAY 84
IGZTNWAY 85

Chapter 6. Communicating between
Assembler and HLLs. 87
Calling Assembler from an HLL 87

C 87
PL/I. 87
Cancelling or Releasing Assembler 88
Restrictions on the COBOL CANCEL Statement 88

LE/VSE-Conforming Assembler Invoking an HLL
Main Routine. 88
Non-LE/VSE-Conforming Assembler Invoking an
HLL Main Routine 89
Assembler Main Calling HLL Subroutines for Better
Performance 90

CEEILCOB 91
IGZTASM 92

Chapter 7. ILC under CICS 93
Language Pairs Supported in ILC under CICS . . . 93

C and COBOL 93
C and PL/I 93
COBOL and PL/I 94
Assembler 94
Link-Editing ILC Applications under CICS . . . 95
CICS ILC Application 95

Appendix. Condition Handling
Responses 99

Language Environment Glossary . . . 101

Index 107

iv LE/VSE V1R4.6 Writing ILC Applications

Figures

1. C Fetching C–COBOL Phase 7
2. C Fetching a COBOL Routine 7
3. COBOL Dynamically Calling COBOL–C Phase 8
4. Name Scope of External Variables for C Fetch 17
5. Name Scope of External Variables for COBOL

Dynamic CALL 17
6. Name Space of External Data for COBOL

Static CALL to COBOL. 18
7. Name Space of External Data in COBOL Static

CALL to C 19
8. Stack Contents When the Exception Occurs in

C 22
9. Stack Contents When the Exception Occurs in

COBOL 24
10. Dynamic Call from C to COBOL Routine 26
11. Static CALL from COBOL to C Routine 27
12. Statically Called C Routine 27
13. C Fetching a PL/I Routine 32
14. PL/I Fetching a C Routine 32
15. Name Scope of External Variables for PL/I or

C Fetch 45
16. Name Space of External Data in PL/I Static

Call to C 45
17. Stack Contents When the Exception Occurs in

C 48
18. Stack Contents When the Exception Occurs in

PL/I 50
19. PL/I Main Routine Calling a C Subroutine 52
20. C Routine Called by PL/I Main Routine 53
21. Name Scope of External Variables for COBOL

Dynamic CALL 65

22. Name Scope of External Variables for PL/I
Fetch. 66

23. Name Space of External Data for COBOL
Static CALL to COBOL. 66

24. Name Space of External Data in COBOL Static
Call to PL/I 67

25. Stack Contents When the Exception Occurs in
COBOL 70

26. Stack Contents When the Exception Occurs in
PL/I 72

27. PL/I Routine Calling COBOL Subroutine 74
28. COBOL Routine Called by a PL/I Main 76
29. Stack Contents When the Exception Occurs in

C 80
30. PL/I Main Routine of ILC Application . . . 83
31. C Routine Called by PL/I in a 3-Way ILC

Application 84
32. COBOL Routine Called by C in a 3-Way ILC

Application 85
33. LE/VSE-Conforming Assembler Routine

Calling COBOL Routine 91
34. COBOL Routine Called from

LE/VSE-Conforming Assembler. 92
35. COBOL CICS Main Program That Calls C and

PL/I Subroutines. 96
36. PL/I Routine Called by COBOL CICS Main

Program 97
37. C Routine Called by COBOL CICS Main

Program 98

© Copyright IBM Corp. 1991, 2009 v

vi LE/VSE V1R4.6 Writing ILC Applications

Tables

1. LE/VSE-Conforming Languages xii
2. LE/VSE Publications xv
3. z/VSE Publications xv
4. IBM C for VSE/ESA Publications xv
5. IBM COBOL for VSE/ESA Publications xvi
6. IBM PL/I for VSE/ESA Publications xvi
7. Debug Tool for VSE/ESA Publications xvi
8. Supported Languages for LE/VSE ILC 3
9. How C and COBOL Main Routines Are

Determined 4
10. Determining the Entry Point 4
11. Calls Permitted for C and COBOL 6
12. Supported Data Types Passed by Value

(Indirect) 10
13. Supported Data Types Passed by Reference

(Indirect) 10
14. Supported Languages for LE/VSE ILC . . . 29
15. Determining the Entry Point 30
16. Calls Permitted for C and PL/I 31
17. Supported Data Types between C and PL/I

Using C Pointers (by Reference). 33

18. Supported Data Types between C and PL/I
without Using C Pointers (by Value) 34

19. Supported Languages for LE/VSE ILC Support 55
20. Determining the Entry Point 56
21. Calls Permitted for COBOL and PL/I 57
22. Supported Data Types between COBOL and

PL/I 57
23. Equivalent Data Types between PL/I and

COBOL When TRUNC(BIN) Compiler Option
Specified 64

24. Data Types Common to All Supported HLLs 79
25. What Occurs When LE/VSE-Conforming

Assembler Invokes an HLL Main 89
26. What Occurs When Non-LE/VSE-Conforming

Assembler Invokes an HLL Main 89
27. LE/VSE Default Responses to Unhandled

Conditions 99
28. C Conditions and Default System Actions 99

© Copyright IBM Corp. 1991, 2009 vii

viii LE/VSE V1R4.6 Writing ILC Applications

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement. IBM accepts
no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland Informationssysteme GmbH
Department 0215
Pascalstr. 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/VSE enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/VSE. Consult the assistive technology documentation for
specific information when using such products to access z/VSE interfaces.

© Copyright IBM Corp. 1991, 2009 ix

z/VSE Information
z/VSE information is accessible using screen readers with the BookServer/Library
Server versions of z/VSE books in the Internet library at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/vse.html

One exception is command syntax that is published in railroad track format. If
required, screen-readable copies of z/VSE books with that syntax information are
separately available in HTML zipped file form upon request to s390id@de.ibm.com.

Programming Interface Information
This book is intended to help with application programming. This book documents
General-Use Programming Interface and Associated Guidance Information
provided by IBM Language Environment for z/VSE.

General-Use programming interfaces allow the customer to write programs that
obtain the services of IBM Language Environment for z/VSE.

Trademarks and Service Marks
IBM, the IBM logo, ibm.com, Lotus, and Notes are trademarks or registered
trademarks of International Business Machines Corporation in the United States,
other countries, or both. If these and other IBM trademarked terms are marked on
their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the
time this information was published. Such trademarks may also be registered or
common law trademarks in other countries. A current list of IBM trademarks is
available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Linux is registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Other company, product, or service names may be trademarks or service marks of
others.

x LE/VSE V1R4.6 Writing ILC Applications

About This Book

This book is written for application programmers and developers to create and run
interlanguage communication (ILC) applications under LE/VSE.

LE/VSE improves ILC between LE/VSE-conforming high-level languages (HLLs)
because it creates one common run-time environment and it defines data types and
constructs that are equivalent across languages.

For application programming, you will need to use this book, the LE/VSE
Programming Guide and the LE/VSE Programming Reference. Descriptions of these
books are found below. You will also need to use the programming guides of the
HLLs you are programming with; all are listed in “Where to Find More
Information” on page xv.

This book is organized into pairwise chapters that discuss ILC between two
languages. There is also a chapter that discusses applications developed in more
than two languages (Chapter 5, “Communicating between Multiple HLLs,” on
page 79). ILC with assembler is discussed in Chapter 6, “Communicating between
Assembler and HLLs,” on page 87 and ILC under CICS® is discussed in Chapter 7,
“ILC under CICS,” on page 93.

Throughout this book, the term routine is used as a general term to describe a
named external routine written in any one of the languages discussed, and with or
without internal (contained) subroutines. Hence, in this book, a routine is
analogous to an Assembler CSECT, a C function, a COBOL program and a PL/I
procedure.

Please note that all information provided in this book should be treated as new.

What Is LE/VSE?
LE/VSE is a set of common services and language-specific routines that provide a
single run-time environment for applications written in LE/VSE-conforming versions
of the C, COBOL, and PL/I high level languages (HLLs), and for many
applications written in previous versions of COBOL. (For a list of
LE/VSE-conforming languages, and a description of compatibility with previous
versions of COBOL, see “LE/VSE-Conforming Languages” on page xii.) LE/VSE
also supports applications written in assembler language using LE/VSE-provided
macros and assembled using High Level Assembler (HLASM).

Prior to LE/VSE, each programming language provided its own separate run-time
environment. LE/VSE combines essential and commonly-used run-time
services—such as message handling, condition handling, storage management, date
and time services, and math functions—and makes them available through a set of
interfaces that are consistent across programming languages. With LE/VSE, you
can use one run-time environment for your applications, regardless of the
application’s programming language or system resource needs, because most
system dependencies have been removed.

Services that work with only one language are available within language-specific
portions of LE/VSE.

© Copyright IBM Corp. 1991, 2009 xi

LE/VSE consists of:
v Basic routines for starting and stopping programs, allocating storage,

communicating with programs written in different languages, and indicating
and handling error conditions.

v Common library services, such as math services and date and time services, that
are commonly needed by programs running on the system. These functions are
supported through a library of callable services.

v Language-specific portions of the common run-time library.

LE/VSE is the implementation of Language Environment on the VSE platform.
Language Environment is also offered on platforms z/OS and VM, and on OS/400
as Integrated Language Environment.

LE/VSE-Conforming Languages
An LE/VSE-conforming language is any HLL that adheres to the LE/VSE common
interface. Table 1 lists the LE/VSE-conforming language compiler products you can
use to generate applications that run with LE/VSE Release 4.

Table 1. LE/VSE-Conforming Languages

Language LE/VSE-Conforming Language Minimum Release

C IBM C for VSE/ESA Release 1

COBOL IBM COBOL for VSE/ESA Release 1

PL/I IBM PL/I for VSE/ESA Release 1

Any HLL not listed in Table 1 is known as a non-LE/VSE-conforming or,
alternatively, a pre-LE/VSE-conforming language. Some examples of
non-LE/VSE-conforming languages are:
v C/370
v DOS/VS COBOL
v VS COBOL II
v DOS PL/I
v DOS/VS RPG II

Only the following products can generate applications that run with LE/VSE:
v LE/VSE-conforming languages
v HLASM using LE/VSE-provided macros (for details, see LE/VSE Programming

Guide)
v DOS/VS COBOL and VS COBOL II, with some restrictions (see LE/VSE

Compatibility with Previous Versions of COBOL below).

LE/VSE Compatibility with Previous Versions of COBOL
Although DOS/VS COBOL and VS COBOL II are non-LE/VSE-conforming
languages, many applications generated with these compilers can run with
LE/VSE without recompiling. For details about compatibility, see LE/VSE Run-Time
Migration Guide.

However relinking under LE/VSE is the minimum effort in order to migrate
run-time, and involve LE/VSE COBOL-compatibility routines (rather than the old
and unsupported library routines of non-LE/VSE conforming COBOL compilers).

xii LE/VSE V1R4.6 Writing ILC Applications

This particularily applies to NORES-compiled units or applications that involve
former initialization techniques such as ILBDSET0. There are even restrictions with
this approach, such as:
v No use of 4-digit dates.
v No exploitation of LE/VSE functionality.
v Interlanguage communication capabilities, and so on.

Therefore you are strongly recommended to carry out a (subsequent) full migration to
a higher ANSI standard and LE/VSE-conforming COBOL compiler (COBOL for
VSE/ESA).

VS COBOL II can also dynamically call some LE/VSE date and time callable
services. For details, see LE/VSE Programming Reference.

About This Book xiii

xiv LE/VSE V1R4.6 Writing ILC Applications

Where to Find More Information

These are the manuals that describe LE/VSE:

Table 2. LE/VSE Publications

Publication Form Number

LE/VSE Fact Sheet GC33-6679

LE/VSE Concepts Guide GC33-6680

LE/VSE Customization Guide SC33-6682

LE/VSE Programming Guide SC33-6684

LE/VSE Programming Reference SC33-6685

LE/VSE C Run-Time Programming Guide SC33-6688

LE/VSE C Run-Time Library Reference SC33-6689

LE/VSE Debugging Guide and Run-Time Messages SC33-6681

LE/VSE Writing Interlanguage Communication Applications SC33-6686

LE/VSE Run-Time Migration Guide SC33-6687

LE/VSE Licensed Program Specifications GC33-6683

These are the z/VSE manuals to which you might need to refer:

Table 3. z/VSE Publications

Publication Form Number

z/VSE Administration SC33-8304

z/VSE Messages and Codes, Volume 1 SC33-8306

z/VSE Messages and Codes, Volume 2 SC33-8307

z/VSE Messages and Codes, Volume 3 SC33-8308

z/VSE Planning SC33-8301

z/VSE System Control Statements SC33-8305

z/VSE System Macros Reference SC33-8405

z/VSE System Macros User’s Guide SC33-8407

z/VSE System Upgrade and Service SC33-8303

VSE/VSAM User’s Guide and Application Programming SC33-8316

VSE/VSAM Commands SC33-8315

TCP/IP for VSE/ESA IBM Program Setup and Supplementary Information SC33-6601

These are the manuals that describe IBM C for VSE/ESA:

Table 4. IBM C for VSE/ESA Publications

Publication Form Number

Licensed Program Specifications GC09-2421

Installation and Customization Guide GC09-2422

Migration Guide SC09-2423

© Copyright IBM Corp. 1991, 2009 xv

Table 4. IBM C for VSE/ESA Publications (continued)

Publication Form Number

User’s Guide SC09-2424

Language Reference SC09-2425

Diagnosis Guide GC09-2426

These are the manuals that describe IBM COBOL for VSE/ESA:

Table 5. IBM COBOL for VSE/ESA Publications

Publication Form Number

General Information GC33-6679

Licensed Program Specifications GC33-6680

Migration Guide SC33-6682

Installation and Customization Guide GC33-6680

Programming Guide SC33-6684

Language Reference SC33-6685

Diagnosis Guide SC33-6684

Reference Summary SX26-3834

These are the manuals that describe IBM PL/I for VSE/ESA:

Table 6. IBM PL/I for VSE/ESA Publications

Publication Form Number

Fact Sheet GC26-8052

Programming Guide SC26-8053

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC33-6684

Installation and Customization Guide SC26-8057

Diagnosis Guide SC26-8058

Compile-Time Messages and Codes SC26-8059

Reference Summary SX26-3836

These are the manuals that describe Debug Tool for VSE/ESA:

Table 7. Debug Tool for VSE/ESA Publications

Publication Form Number

User’s Guide and Reference SC26-8797

Installation and Customization Guide SC26-8798

Fact Sheet GC26-8925

You might also refer to the ...

xvi LE/VSE V1R4.6 Writing ILC Applications

z/VSE Home Page
z/VSE has a home page on the World Wide Web, which offers up-to-date information about
VSE-related products and services, new z/VSE functions, and other items of interest to VSE users.

You can find the z/VSE home page at:

http://www.ibm.com/servers/eserver/zseries/zvse/

You can also find VSE User Examples (in zipped format) at:

http://www.ibm.com/servers/eserver/zseries/zvse/downloads/samples.html

Softcopy Publications
The following collection kit contains the LE/VSE and LE/VSE-conforming language product publications:

VSE Collection, SK2T-0060

Where to Find More Information xvii

xviii LE/VSE V1R4.6 Writing ILC Applications

Summary Of Changes
v Recommendations have been provided for defining interlanguage

communication between COBOL and C routines. See “COBOL Dynamically
Calling C” on page 8 and “Passing Data between C and COBOL” on page 8.

© Copyright IBM Corp. 1991, 2009 xix

xx LE/VSE V1R4.6 Writing ILC Applications

Chapter 1. Getting Started with LE/VSE ILC

Interlanguage communication (ILC) applications are applications built of two or
more high-level languages (HLLs) and frequently assembler. ILC applications run
outside of the realm of a single language’s environment, which creates special
conditions, such as how each language maps data, how conditions are handled, or
how data can be called and received by each language.

This book helps you create ILC applications using LE/VSE-conforming compilers.
Most of the book is organized into ″pairwise″ chapters, which compare how each
language handles different aspects of ILC, such as calling, data, reentrancy,
condition handling, and storage.

If your application contains more than two languages, you should read the section
for each pair of languages first. For example, if your application consists of a C
main routine that calls a COBOL subroutine, and the C main later calls a PL/I
subroutine, read the chapters on C–COBOL and C–PL/I ILC. Then read Chapter 5,
“Communicating between Multiple HLLs,” on page 79 for additional information
on developing multiple-language applications. If you have ILC with assembler or
under CICS, see Chapter 6, “Communicating between Assembler and HLLs,” on
page 87 and Chapter 7, “ILC under CICS,” on page 93.

The Benefits of ILC under LE/VSE
Performance improves under the single run time environment. LE/VSE ILC
applications run in one environment, giving you cooperative ILC support for
running mixed-language applications, without the overhead of multiple libraries
and library initializations.

Environment tailored to HLLs at initialization. When you run your ILC
applications in LE/VSE, the initialization process establishes the LE/VSE
environment, tailored to the set of HLLs in the main phase. ILC applications follow
the LE/VSE program model, making program execution consistent and predictable.

Coordinated cleanup at termination. LE/VSE terminates in an orderly manner.
Resources obtained during the execution of the application are released, regardless
of the mix of programming languages in the application.

Cooperative condition handling. All languages participating in the ILC application
handle conditions cooperatively, making exception and condition handling
consistent and predictable.

All ILC applications can reside above the line. Applications can be linked
AMODE(31) RMODE(ANY), to reside above the 16M line in storage.

Writing ILC Applications
Here are the steps you need to follow to develop an ILC application:
1. Decide which languages to use.

Your application code will need to follow the rules in the compiler
programming guides and the LE/VSE Programming Guide. Use the pairwise
language chapters to identify what levels of HLLs you should be using.

© Copyright IBM Corp. 1991, 2009 1

2. Make sure all your ILC applications are LE/VSE-conforming.
Each chapter gives the basics of what you need to do to make your ILC
applications LE/VSE-conforming. For detailed information on migration, see
the language migration guides, as listed in “Where to Find More Information”
on page xv.

3. Decide which language will have the main routine.
LE/VSE allows only one routine to be the main routine in an enclave. Each
chapter describes how to determine the main routine in an ILC application. If
you are using a multiple language application, see Chapter 5, “Communicating
between Multiple HLLs,” on page 79 to determine how to designate a main
routine.

4. Learn how to declare and use data across HLLs.
Each chapter describes how to use data in an ILC application.

5. Learn how to mix HLL and LE/VSE operations.

Each HLL has a unique way of using storage, return codes, and performing
condition handling. Each chapter describes how to mix these HLL-specific
constructs.

2 LE/VSE V1R4.6 Writing ILC Applications

Chapter 2. Communicating between C and COBOL

This chapter describes LE/VSE’s support for C and COBOL ILC applications. If
you are running a C–COBOL ILC application under CICS, you should also consult
Chapter 7, “ILC under CICS,” on page 93.

General Facts about C–COBOL ILC

v #pragma linkage(...,COBOL) is required in all statically-called C routines.
v A C–COBOL application can be constructed to be reentrant.
v LE/VSE does not support the passing of return codes between C and

COBOL routines in an ILC application. See “Return Codes” on page 11 for
more information.

Preparing for ILC
This section describes topics you might want to consider before writing an
application that uses ILC. For help in determining how different versions of HLLs
work together, refer to the migration guides for the HLLs you plan to use.

LE/VSE ILC Support
LE/VSE provides ILC support between the following combinations of C and
COBOL:

Table 8. Supported Languages for LE/VSE ILC

HLL Pair C COBOL

C–COBOL v C/VSE v COBOL/VSE Release 1
v VS COBOL II Release 3 and later

Migrating ILC Applications

Relinking
You must relink ILC applications that contain phase(s) with VS COBOL II
programs. The relink is necessary in order to remove old VS COBOL II library
routines.

If you relink a VS COBOL II NORES program with LE/VSE, you should explicitly
include IGZENRI to ensure the correct versions of the library routines are
included. If you do not include IGZENRI, the link-edited phase will be
unnecessarily large and the linkage editor will produce messages indicating
duplicate sections.

Recompiling
You must recompile all pre-LE/VSE-conforming C programs with an
LE/VSE-conforming C compiler.

© Copyright IBM Corp. 1991, 2009 3

Compiling and Linking Considerations

Compiling
Compile your COBOL/VSE program using the RMODE(ANY) compiler option.
Compile your VS COBOL II program using the RES and RENT compiler options.

Linking
When link-editing ILC applications, you can have only one main routine, or one
fetchable entry point. You should present your main routine to the linkage editor
first in order to avoid an incorrectly chosen entry point. When you are linking
modules to be fetched, you should present your fetchable entry point first. See
“Determining the Main Routine” for information on how to identify the main
routine.

Determining the Main Routine
In LE/VSE, only one routine can be the main routine; no other routine in the
enclave can use syntax that indicates it is main. If you write the main routine in C,
you must use language syntax to identify the routine as the main routine. If you
use COBOL as the first program in the enclave that is to gain control, the program
is effectively designated main by being the first to run.

In C, the same routine can serve as both the main routine and as a subroutine if
recursively called. In such a case, the new invocation of the routine is not
considered a second main routine within the enclave, but a subroutine. Within any
single VS COBOL II or COBOL/VSE enclave, a recursively-called main program is
not permitted

Table 9 describes how C and COBOL identify the main routine.

Table 9. How C and COBOL Main Routines Are Determined

Language
When
Determined Explanation

C Compilation Determined in the C source file by declaring a C function named main().
The same routine can be used both as a main and subroutine if it is
recursively called.

COBOL Run time Determined dynamically. If it is the first program in the enclave to run, it is
a main program. The main program cannot be called recursively within a
single enclave in VS COBOL II.

An entry point is defined for each supported HLL. Table 10 identifies the desired
entry point. The table assumes that your code has been compiled using the
LE/VSE-conforming compilers.

Table 10. Determining the Entry Point

HLL Main Entry Point Fetched Entry Point

C CEESTART CEESTART or routine name if #pragma
linkage(...,FETCHABLE) is used without
pre-linking

COBOL Name of the first object program to get
control in the object module

Program name

C and COBOL routines that make up an ILC application are executed together in a
single run unit (the equivalent of an LE/VSE enclave). However, unlike in earlier
versions of COBOL (VS COBOL II and DOS/VS COBOL), the first COBOL

4 LE/VSE V1R4.6 Writing ILC Applications

program in a run unit is no longer necessarily considered the main program. If the
first COBOL program is not the first program in the enclave to run, it is considered
a subroutine in the LE/VSE enclave.

Declarations
A C #pragma linkage(...,COBOL) directive is required for both static calls and
dynamic calls of mixed C and COBOL load modules. For dynamic calls of C-only
load modules, a #pragma linkage(...,FETCHABLE) is required instead.

All entry declarations are made in the C code, both in the case where C calls
COBOL and vice versa. The C #pragma linkage(...,COBOL) directive lets the C
compiler generate parameter lists for COBOL or accept them from COBOL.

C-only (not mixed languages) routines or mixed COBOL/C subroutines that:
v have a C routine as the entry point that are called dynamically, and
v receive parameters from a calling COBOL program,

must successfully handle parameter-addressing themselves. This also involves
taking into account the way in which the COBOL CALL statement has been coded.

The #pragma linkage(...,COBOL) directive has the following format:
#pragma linkage(routine_name, COBOL)

routine_name can be up to eight characters. routine_name is either the COBOL
program being called by C, or the C function being called by COBOL.

Declaring C–COBOL ILC

Declaration for C Calling COBOL:

C Function COBOL Subroutine

#pragma linkage(CBLRTN,COBOL)
void CBLRTN(int);
main() {

int p1;
CBLRTN(p1);

};

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CBLRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 P1 PIC S9(9) BINARY.
PROCEDURE DIVISION USING P1.

DISPLAY P1
GOBACK.

END PROGRAM CBLRTN.

Declaration for COBOL Calling C:

COBOL Program C Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 P1 PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION.

CALL 'CFUNC' USING BY CONTENT P1.
GOBACK.

END PROGRAM COBRTN.

#pragma linkage(CFUNC,COBOL)
void CFUNC(int p1) {
}

Chapter 2. Communicating between C and COBOL 5

Calling between C and COBOL
This section describes the types of calls permitted between C and COBOL, and
considerations when using dynamic calls and fetch.

Types of Calls Permitted
Table 11 describes the types of calls between C and COBOL that LE/VSE allows:

Table 11. Calls Permitted for C and COBOL

ILC Direction Static Call Dynamic Call/Fetch

C to COBOL Yes1 Yes1

COBOL to C Yes Yes2

Notes:
1 The C return type from all calls to COBOL must be void.
2 A C-only routine can be naturally reentrant or constructed reentrant. If you are using

constructed reentrancy:
v Entry-point C modules that have COBOL statically linked to them cannot be non-reentrant.
v The COBOL subroutine must be reentrant and prelinked together with the C routine(s).

For an understanding of C reentrancy and “writable static”, see IBM C for VSE/ESA
User’s Guide

For information about calls between COBOL/VSE programs and programs
compiled under previous versions of COBOL, see IBM COBOL for VSE/ESA
Migration Guide

Dynamic Call/Fetch Considerations
Both C and COBOL provide language constructs that support the dynamic loading,
execution, and deletion of user-written routines. The C fetch() library function
dynamically loads a phase that you specify into main storage. The phase can be
invoked subsequently from a C application (see LE/VSE C Run-Time Library
Reference for more information about fetch()). In COBOL, you can use the
dynamic CALL statement to dynamically load a phase into main storage (see IBM
COBOL for VSE/ESA Programming Guide for more information about the CALL
statement).

Both C and COBOL support multiple-level fetches or dynamic calls (for example,
Routine 1 fetches Routine 2, which in turn fetches Routine 3, and so forth).

User-written condition handlers registered using CEEHDLR can be fetched, but
must be written in the same language as the fetching language.

C Fetching C with COBOL Statically Linked
ILC between C and COBOL is supported within both a fetching C phase and a
fetched C phase, when the ILC routines adhere to the rules stated in the C
programming guides. Figure 1 on page 7 shows a C phase fetching a C–COBOL
phase.

6 LE/VSE V1R4.6 Writing ILC Applications

If any ILC occurs within the fetched phase, the fetched phase should not be
released. It is released by LE/VSE termination processing.

C Fetching COBOL
You can use the C fetch() function to fetch a COBOL routine and invoke it later
using a function pointer. The declaration of a COBOL fetched routine within a C
routine is shown in Figure 2.

You cannot release() a COBOL routine that was explicitly loaded by fetch(). A
COBOL CANCEL cannot be issued against any routine dynamically loaded using
the C fetch() function.

COBOL Dynamically Calling COBOL with C Statically Linked
ILC between COBOL and C is supported within both a dynamically calling
COBOL phase and a dynamically called COBOL phase, when the ILC routines
adhere to the rules stated in IBM COBOL for VSE/ESA Programming Guide. Figure 3
on page 8 shows a COBOL phase fetching a COBOL–C phase.

C Routine 1 C Routine 2 COBOL Rtn
┌───────────────┐ ┌───────────────┬───────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ -------�│ │ │
│ │ Fetch │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
└───────────────┴ └───────────────┴───────────────┘

└─────Phase─────┘ └─────────────Phase─────────────┘

Figure 1. C Fetching C–COBOL Phase

typedef void CBL_FUNC();
#pragma linkage (CBL_FUNC, COBOL)...
CBL_FUNC *fetch_ptr;
fetch_ptr = (CBL_FUNC*) fetch("COBEP"); /* fetch the routine */
fetch_ptr(args); /* call COBEP */

Figure 2. C Fetching a COBOL Routine

Chapter 2. Communicating between C and COBOL 7

v The called PHASE can be CANCELed providing:
– The PHASE has been prelinked (both C and COBOL routines simultaneously).
– The COBOL subroutine has been compiled RENT.

Otherwise, a COBOL CANCEL should not be used.
v If the C subroutine is the entry point, then that routine must have the #pragma

linkage(...,fetchable) directive specified.
v You cannot successfully issue a C release() against a fetch’d COBOL/C or

COBOL PHASE.

COBOL Dynamically Calling C
A COBOL/VSE routine can dynamically call a C routine that has been compiled
with the #pragma linkage(...,fetchable) C/VSE compiler directive. This C
routine is the entry point of the called PHASE.

These C routine(s):
v Can be non-reentrant.
v Can be naturally reentrant.
v Can use constructed reentrancy.

When compiling multiple functions in one compilation that will be dynamically
called by COBOL, only the C function specified as the entry point requires the
#pragma linkage(...,fetchable) directive.

Any COBOL dynamically-called C module that requires writable static support and
use of the COBOL CANCEL verb must:
v have been prelinked,
v specify the #pragma linkage(...,fetchable) compiler directive on the

appropriate C function.

Passing Data between C and COBOL
In VS COBOL II and COBOL/VSE you can pass parameters in two ways:

By reference (indirect):
COBOL BY REFERENCE

By value (indirect):
COBOL BY CONTENT

COBOL Rtn 1 COBOL Rtn 2 C Routine
┌───────────────┐ ┌───────────────┬───────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ -------�│ │ │
│ │ Dynamic │ │ │
│ │ Call │ │ │
│ │ │ │ │
│ │ │ │ │
│ │ │ │ │
└───────────────┴ └───────────────┴───────────────┘

└─────Phase─────┘ └─────────────Phase─────────────┘

Figure 3. COBOL Dynamically Calling COBOL–C Phase

8 LE/VSE V1R4.6 Writing ILC Applications

The term by value means that a temporary copy of the argument is passed to the
called routine. Any changes to the parameter made by the called routine will not
alter the original parameter passed by the calling routine.

The term by reference means that the actual address of the argument is passed. Any
changes to the parameter made by the called routine can alter the original
parameter passed by the calling routine.

The term indirect means that a pointer to the argument is passed in the parameter
list.

When data is passed between C and COBOL, the #pragma linkage(...,COBOL)
directive causes the C compiler to generate the appropriate addressing code which
introduces an extra level of indirection on the C side for non-pointer types.
Pointers, however, are passed directly; meaning that for COBOL to receive a
pointer to a C data type, C must pass a pointer to a pointer to the C data type.
Conversely, if COBOL returns a pointer to a data type, C receives a pointer to a
pointer to the data type.

You should be aware that the current C/VSE compiler does not support the use of
both the COBOL and fetchable options on the #pragma linkage statement relating
to the same function. This means that any COBOL applications calling C functions
that are not fetchable cannot use:
v the writable static support, or
v the COBOL CANCEL verb on any dynamically-loaded C subroutines.

If “fetchable” is required, the C subroutine should be written so it can address the
parameters passed from the COBOL caller without relying on the behavior of the
#pragma linkage(xxxx,COBOL) compiler directive.

Passing Data by Value (Indirect) between C and COBOL
Copies of variables can be passed between C and COBOL routines. On return, the
original value of the variables remains unchanged regardless of how the copy
might have been modified in the called routine.

Value arguments can be passed BY CONTENT from COBOL programs and
received as C function parameters when declared with the appropriate base type.
Conversely, C function arguments can be passed by value from C functions and
received as COBOL parameters. The C compiler generates the appropriate
addressing code required to access the parameter values; you can write your C
function, which interoperates with COBOL, as if it were in a C-only environment.
It can be moved to a C-only environment simply by removing the #pragma
linkage(...,COBOL) directive. For example, if a C function called FROMCOB is to
receive a parameter passed BY CONTENT of type int, the function prototype
declaration would look like this:
void FROMCOB(int)

Table 12 on page 10 shows the supported data types for passing by value
(indirect). For examples illustrating how these are passed between C and COBOL,
refer to “Equivalent Data Types—C to COBOL” on page 11.

Chapter 2. Communicating between C and COBOL 9

Passing Data by Reference (Indirect) between C and COBOL
A parameter can be passed by reference (indirect) between C and COBOL, which
means the actual address of the argument is passed to the called routine; any
changes to the parameter made by the called routine will alter the original
parameter passed by the calling routine.

To pass data by reference (indirect) from C to COBOL, the variables are passed by
C as function arguments, which are pointers to a given type or the address of a
given variable, and received as COBOL parameters. Conversely, to pass data by
reference (indirect) from COBOL to C, the variables are passed from COBOL as BY
REFERENCE arguments and received by a C function as pointers to a given type.
For example, if a C function called FROMCOB is to receive a parameter passed by
reference (indirect) of type int, the function prototype declaration would look like
this:
void FROMCOB(int *)

The C function must dereference the pointer to access the actual value. If the value
of the pointer is modified by the C function, as opposed to modifying the value
that the pointer points to, the results on return to COBOL are unpredictable.
Therefore, passing values by reference (indirect) from COBOL to C should be used
with caution, and only in cases where the exact behavior of the C function is
known.

Table 13 shows the supported data types for passing by reference (indirect). For
examples illustrating how these are passed between C and COBOL, refer to
“Equivalent Data Types—C to COBOL” on page 11.

Data Types Passed by Value (Indirect) between C and COBOL
Table 12 identifies the data types that can be passed by value (indirect) as
parameters between C and COBOL.

Table 12. Supported Data Types Passed by Value (Indirect)

C COBOL

signed int, signed long int PIC S9(9) USAGE IS BINARY

double COMP-2

pointer to... POINTER, ADDRESS OF

struct Groups

type array[n] Tables (OCCURS n TIMES)

Data Types Passed by Reference (Indirect) between C and
COBOL

Table 13 identifies the data types that can be passed by reference (indirect) between
C and COBOL.

Table 13. Supported Data Types Passed by Reference (Indirect)

C COBOL

signed short int PIC S9(4) USAGE IS BINARY

signed int, signed long int PIC S9(9) USAGE IS BINARY

float COMP-1

double COMP-2

pointer to... POINTER, ADDRESS OF

10 LE/VSE V1R4.6 Writing ILC Applications

Table 13. Supported Data Types Passed by Reference (Indirect) (continued)

C COBOL

decimal USAGE IS PACKED-DECIMAL

struct Groups

type array[n] Tables (OCCURS n TIMES)

Passing Strings between C and COBOL
C and COBOL have different string data types:

C strings
Logically unbounded length and are terminated by a NULL (the last byte
of the string contains X'00')

COBOL PIC X(n)
Fixed-length string of characters of length n

You can pass strings between COBOL and C routines, but you must match what
the routine interface demands with what is physically passed.

Refer to “Sample ILC Application” on page 26 to see how string data is passed
between C and COBOL.

Aggregates
Aggregates (arrays, strings, or structures) are mapped differently by C and COBOL
and are not automatically mapped. You must completely declare every byte in the
structure to ensure that the layouts of structures passed between the two languages
map to one another correctly. The C compile-time option AGGREGATE and the
COBOL compiler option MAP provide a layout of structures to help you perform
the mapping.

Return Codes
The passing of return codes between C (using the return() statement) and COBOL
(using the RETURN-CODE special register) is not supported within an ILC
application under LE/VSE.

However, it is possible to return data from a routine in one language to a routine
in the other language using a suitably declared/defined argument which is passed
by reference. For example, in the illustration “Fullword Integer” on page 12, the
argument “Y” could be used to communicate the contents of the COBOL
RETURN-CODE special register back to C.

Data Equivalents
This section describes how C and COBOL data types correspond to each other.

Equivalent Data Types—C to COBOL
The following examples illustrate how C and COBOL routines within a single ILC
application might code the same data types.

Chapter 2. Communicating between C and COBOL 11

Char

Sample C Usage COBOL Subroutine

#pragma linkage (cobrtn,COBOL)
#include <stdio.h>
void cobrtn (char*);
int main()
{

char x;
x='a';
cobrtn(&x); /* x by reference */
printf("x = %c\n", x);

}

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC X.
PROCEDURE DIVISION USING X.

DISPLAY X
MOVE 'B' TO X.
GOBACK.

END PROGRAM COBRTN.

Output:
a
x = B

Short Integer

Sample C Usage COBOL Subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (short int*);
int main()
{

short int x;
x=5;
cobrtn(&x); /* x by reference */
printf("x = %d\n", x);

}

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(4) BINARY.
PROCEDURE DIVISION USING X.

DISPLAY X
COMPUTE X = X + 1.
GOBACK.

END PROGRAM COBRTN.

Output:
0005
x = 57

Fullword Integer

Sample C Usage COBOL Subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (int, int*);
int main()
{

int x,y;
x=5;
y=6;
cobrtn(x,&y); /* x by value

y by reference */
printf("x = %d, y = %d\n", x, y);

}

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION USING X Y.

DISPLAY X Y
COMPUTE X = X + 1.
COMPUTE Y = Y + 1.
GOBACK.

END PROGRAM COBRTN.

Output:
000000005000000006
x = 5, y = 7

12 LE/VSE V1R4.6 Writing ILC Applications

Double-Precision Floating Point

Sample C Usage COBOL Subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (double, double*);

int main()
{

double x,y;
x=3.14159265;
y=4.14159265;
cobrtn(x,&y); /* x by value

y by reference */
printf("x = %f, y = %f\n", x, y);

}

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION USING X Y.

DISPLAY X Y
COMPUTE X = X + 1.
COMPUTE Y = Y + 1.
GOBACK.

END PROGRAM COBRTN.

Output:
.31415926500000000E 01 .41415926500000000E 01
x = 3.141593, y = 5.141593

Structure

Sample C Usage COBOL Subroutine

#pragma linkage (cobrtn,COBOL)
#include <stdio.h>
struct stype {

int s1;
int s2;};

void cobrtn (struct stype,
struct stype*);

int main()
{

struct stype struc1, struc2;
struc1.s1=1;
struc1.s2=2;
struc2.s1=3;
struc2.s2=4;
cobrtn(struc1,&struc2);

/* struc1 by value
struc2 by reference */

printf("struc1.s1 = %d\n", struc1.s1);
printf("struc2.s1 = %d\n", struc2.s1);

}

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 STRUC1.

05 S11 PIC S9(9) BINARY.
05 S12 PIC S9(9) BINARY.

01 STRUC2.
05 S21 PIC S9(9) BINARY.
05 S22 PIC S9(9) BINARY.

PROCEDURE DIVISION USING STRUC1 STRUC2.
DISPLAY S11 S12 S21 S22
COMPUTE S11 = S11 + 1.
COMPUTE S21 = S21 + 1.
GOBACK.

END PROGRAM COBRTN.

Output:
000000001000000002000000003000000004
struc1.s1 = 1
struc2.s1 = 4

Chapter 2. Communicating between C and COBOL 13

Array

Sample C Usage COBOL Subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (int array[2]);
int main()
{

int array[2];
array[0]=1;
array[1]=2;
cobrtn(array);

/* array by reference */
printf("array[0] = %d\n", array[0]);

}

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 ARRAY.

05 ELE PIC S9(9) BINARY OCCURS 2.
PROCEDURE DIVISION USING ARRAY.

DISPLAY ELE(1) ELE(2)
COMPUTE ELE(1) = ELE(1) + 1.
GOBACK.

END PROGRAM COBRTN.

Output:
000000001000000002
array[0] = 2

Fixed Decimal

Sample C Usage COBOL Subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
#include <decimal.h>
void cobrtn (decimal(5,2)*);
int main()
{

decimal(5,2) x;
x=123.45d;
cobrtn(&x); /* x by reference */
printf("x = %D(5,2)\n", x);

}

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC 999V99 COMP-3.
PROCEDURE DIVISION USING X.

DISPLAY X
COMPUTE X = X + 1.
GOBACK.

END PROGRAM COBRTN.

Output:
12345
x = 124.45

Equivalent Data Types—COBOL to C
The following examples illustrate how COBOL to C routines within a single ILC
application might code the same data types.

14 LE/VSE V1R4.6 Writing ILC Applications

Fullword Integer

Sample COBOL Usage C Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION.

MOVE 1 TO X.
MOVE 2 TO Y.

* X BY VALUE, Y BY REFERENCE ***
CALL 'CENTRY' USING BY CONTENT X

BY REFERENCE Y.
DISPLAY X Y
GOBACK.

END PROGRAM COBRTN.

#pragma linkage (centry,COBOL)
#include <stdio.h>
void centry (int x, int *y)
{

printf("x = %d, y = %d\n",x,*y);
++x, ++*y;
return;

}

Output:
x = 1, y = 2
000000001000000003

Double-Precision Floating Point

Sample COBOL Usage C Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION.

MOVE 3.14159265 TO X.
MOVE 4.14159265 TO Y.

* X BY VALUE, Y BY REFERENCE ***
CALL 'CENTRY' USING BY CONTENT X

BY REFERENCE Y.
DISPLAY X Y
GOBACK.

END PROGRAM COBRTN.

#pragma linkage (centry,COBOL)
#include <stdio.h>
void centry (double x, double *y)
{

printf("x = %f, y = %f\n",x,*y);
++x, ++*y;
return;

}

Output:
x = 3.141593, y = 4.141593
.31415926500000000E 01 .51415926500000000E 01

Chapter 2. Communicating between C and COBOL 15

Structure

Sample COBOL Usage C Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STRUC1.

05 S11 PIC S9(9) BINARY VALUE 1.
05 S12 PIC S9(9) BINARY VALUE 2.

01 STRUC2.
05 S21 PIC S9(9) BINARY VALUE 3.
05 S22 PIC S9(9) BINARY VALUE 4.

PROCEDURE DIVISION.
* STRUC1 BY VALUE**
* STRUC2 BY REFERENCE ***

CALL 'CENTRY' USING BY CONTENT STRUC1
BY REFERENCE STRUC2.

DISPLAY S11 S12 S21 S22
GOBACK.

END PROGRAM COBRTN.

#pragma linkage(centry,COBOL)
#include <stdio.h>
struct stype {

int s1;
int s2; };

void centry (struct stype struc1,
struct stype *struc2)

{
printf("a=%d, b=%d, c=%d, d=%d \n",

struc1.s1,struc1.s2,
struc2->s1,struc2->s2);

++struc1.s1;
++struc2->s1;
return;

}

Output:
a=1, b=2, c=3, d=4
000000001000000002000000004000000004

Fixed Decimal

Sample COBOL Usage C Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC 999V99 COMP-3.
PROCEDURE DIVISION.

MOVE 123.45 TO X.
* X BY REFERENCE ***

CALL 'CENTRY' USING X.
DISPLAY X
GOBACK.

END PROGRAM COBRTN.

#pragma linkage (centry,COBOL)
#include <stdio.h>
#include <decimal.h>
void centry (decimal(5,2) x)
{

printf("x = %D(5,2)\n",x);
++x;
return;

}

Output:
x = 123.45
12445

Name Scope of External Data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. The name
scope of external data differs between C and COBOL. The scope of external data
under C is the phase; under COBOL, it is the enclave (or run unit). Figure 4 on
page 17 and Figure 5 on page 17 illustrate these differences.

Because the name scope for C and COBOL is different, external variables do not
map between C and COBOL; external variables with the same name are considered
separate between C and COBOL.

16 LE/VSE V1R4.6 Writing ILC Applications

If your application relies on the separation of external data, do not give the data
the same name in both languages within a single application. If you give the data
in each phase a different name, you can change the language mix in the
application later, and your application still behaves as you expect it to.

Name Scope of External Data in a C Application

In Figure 4, external data declared in C Routine 1 maps to that declared in C
Routine 2 in the same phase. When a fetch to C Routine 3 in another phase is
made, the external data does not map, because the name scope of external data in
C is the phase.

Name Scope of External Data in a COBOL Run Unit

In Figure 5, Routines 1, 2, and 3 comprise a COBOL run unit. External data
declared in COBOL Routine 1 maps to that declared in COBOL Routine 2 in the

C Routine 1 C Routine 2 C Routine 3
┌───────────────┬───────────────┐ ┌───────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ X │ │ │
│ X │ . │ -------�│ │
│ . │ . │ Fetch │ │
│ . │ . │ │ │
│ . │ . │ │ X │
│ . │ . │ │ . │
│ . │ . │ │ . │
└──────.────────┴───.───────────┴ └──.────────────┘

 . .

 .

└────────.───Phase──.───────────┘ └ .Phase───────┘

. . .
┌─────────────────────┐ ┌───────────────┐
│ Storage │ │ Storage │
└─────────────────────┘ └───────────────┘

Figure 4. Name Scope of External Variables for C Fetch

COBOL Routine 1 COBOL Routine 2 COBOL Routine 3
┌───────────────────┬───────────────────┐ ┌────────────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ X │ │ │
│ X │ . │ -------------�│ │
│ . │ . │ Dynamic CALL │ │
│ . │ . │ │ │
│ . │ . │ │.X │
│ . │ . │ . │
│ . │ . │ .│ │
└──────.────────────┴───.───────────────┴ . └────────────────────┘

 . .
 .

└────────.────Phase─────.───────────────┘ . └──────Phase─────────┘

. . .
┌────────────────────────┐.
│ Storage │
└────────────────────────┘

Figure 5. Name Scope of External Variables for COBOL Dynamic CALL

Chapter 2. Communicating between C and COBOL 17

same phase. When a dynamic CALL to COBOL Routine 3 in another phase is
made, the external data still maps, because the name scope of external data in
COBOL is the enclave.

The scope of non-reentrant external variables within COBOL routines is the phase.

Name Space of External Data
In programming languages, the name space is defined as the portion of a phase
within which a particular declaration applies or is known. Like the name scope,
the name space of external data differs between C and COBOL.

Figure 6 and Figure 7 illustrate that within the same phase, the name space of
COBOL routines is the same. However, the name spaces of a COBOL routine and a
C routine within the same phase are not the same. If you give external data the
same name in both languages, an incompatibility in external data mapping can
occur.

COBOL RTN 1 COBOL RTN 2
┌──────────────┬──────────────┐
│ │ │
│ │ │
│ │ X │
│ X │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
└──────.───────┴───.──────────┘

 . .

└────────.─────────.──Phase───┘

. .
┌────────────────────────┐
│ Storage │
└────────────────────────┘

Figure 6. Name Space of External Data for COBOL Static CALL to COBOL

18 LE/VSE V1R4.6 Writing ILC Applications

File Sharing
Except for the file specified by the LE/VSE MSGFILE run-time option, LE/VSE
provides no support for files that are open in C and COBOL at the same time. You
must manage all such files to ensure that no conflicts arise. Performing I/O
operations on the same filename, other than the one specified by the LE/VSE
MSGFILE run-time option, might cause abnormal termination or data corruption of
the file.

LE/VSE provides no support for using C to read from or write to a file created
using COBOL, or vice versa. To do this, you must ensure that the file is in a
compatible format. For information on file formats, see the respective
programming guides.

Note: A guide to the types of considerations necessary when sharing file data
between languages can be found in Chapter 4, “Communicating between
COBOL and PL/I,” section “File Sharing” on page 67.

Directing Output in ILC Applications
Under LE/VSE, COBOL run-time messages and other related output is directed to
the destination specified in the LE/VSE run-time option MSGFILE. User-specified
output, such as output from DISPLAY UPON SYSOUT, is directed to the
destination specified in the COBOL OUTDD compiler option, which defaults to
SYSOUT.

Since the default destination for the LE/VSE MSGFILE is SYSLST, and the default
OUTDD filename is treated as SYSLST also, all output from COBOL is by default
directed to the same destination and will thus be interspersed. To separate
run-time messages and other related output from the user-specified output, the
filename specified in the LE/VSE MSGFILE run-time option must be different from
the filename specified in the COBOL OUTDD compiler option. See IBM COBOL for
VSE/ESA Programming Guide for details of using the OUTDD compiler option.

COBOL RTN 1 C RTN 2
┌──────────────┬──────────────┐
│ │ │
│ │ │
│ │ X │
│ X │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ .
└──────.───────┴────────────── .

 .
 .
└────────.──Phase─────────────┘ .

. .
┌────────────────────────┐ ┌────────────────────┐
│ Storage │ │ Storage │
└────────────────────────┘ └────────────────────┘

Figure 7. Name Space of External Data in COBOL Static CALL to C

Chapter 2. Communicating between C and COBOL 19

Note: The VS COBOL II compiler under VSE does not support the OUTDD
compiler option. When this compiler is used, all output from the DISPLAY
statement is sent to SYSLST.

Under LE/VSE, C run-time output such as run-time messages is directed to the
destination specified in the LE/VSE run-time option MSGFILE. stderr output is
also directed to the destination of the MSGFILE option. stdout output is by default
directed to SYSLST.

Since the default destination for the LE/VSE MSGFILE is also SYSLST, all output
from C is by default directed to the same destination and will thus be interspersed.
To separate the output, either stdout or the LE/VSE MSGFILE must be directed to
a file different from the other. For information on redirecting C output, see LE/VSE
C Run-Time Programming Guide.

Note: In both C and COBOL, when run-time output and user-specified output
from one or both languages is directed to the same destination such as
SYSLST, each language must manage its own I/O buffers, line counters, etc.,
for its own user-specified output.

For additional information regarding the LE/VSE MSGFILE run-time option, see
LE/VSE Programming Guide.

C–COBOL Condition Handling
This section provides two scenarios of condition handling behavior in a C–COBOL
ILC application. If an exception occurs in a C routine, the set of possible actions is
as described in “Exception Occurs in C” on page 22. If an exception occurs in a
COBOL routine, the set of possible actions is as described in “Exception Occurs in
COBOL” on page 23.

Keep in mind that some conditions can be handled only by the HLL of the routine
in which the exception occurred. For example, in a COBOL routine, a statement
can have a clause that adds condition handling to a verb, such as the ON SIZE
ERROR clause of a COBOL DIVIDE verb (which includes the logical equivalent of
a divide-by-zero condition). This type of condition is handled completely within
COBOL.

For a detailed description of LE/VSE condition handling, see LE/VSE Programming
GuideLE/VSE Programming Guide

Enclave-Terminating Language Constructs
Enclaves can be terminated for reasons other than an unhandled condition of
severity 2 or greater. HLL constructs that cause the termination of a single
language enclave also cause the termination of a C–COBOL enclave. In LE/VSE
ILC, you can issue the language construct to terminate the enclave from a COBOL
or C routine.

C
Examples of C language constructs that terminate the enclave are: abort(),
raise(SIGTERM), raise(SIGABND), and exit(). When you use a C language
construct to terminate an enclave, the T_I_S (Termination Imminent Due to STOP)
condition is raised. After T_I_S has been processed and all user code has been
removed from the stack, the C atexit list is honored.

20 LE/VSE V1R4.6 Writing ILC Applications

COBOL
The COBOL language constructs that cause the enclave to terminate are:
v STOP RUN

STOP RUN is equivalent to the C exit() function. If you code a STOP RUN
statement, the T_I_S (Termination_Imminent Due to STOP) condition is raised.
After T_I_S has been processed and all user code has been removed from the
stack, the C atexit list is honored.

v Call to CEE5ABD
Calling CEE5ABD causes T_I_U Termination Imminent due to an Unhandled
condition) to be signaled. Condition handlers are given a chance to handle the
abend. If the abend remains unhandled, normal LE/VSE termination activities
occur. For example, the C atexit list is honored and the LE/VSE assembler user
exit gains control.
User-written condition handlers written in COBOL must be compiled with
COBOL/VSE.

Chapter 2. Communicating between C and COBOL 21

Exception Occurs in C
This scenario describes the behavior of an application that contains a C and a
COBOL routine. Refer to Figure 8 throughout the following discussion.

In this scenario, a COBOL main routine invokes a C subroutine. An exception
occurs in the C subroutine. The stack contains what is shown in Figure 8.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, C determines whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

Note: The abend corresponding to the signal(SIGABND) or the LE/VSE
message 3250 is not ignored. The enclave is terminated.

v The exception is one of those listed as masked in Table 28 on page 99.
v You did not specify any action, but the default action for the condition is

SIG_IGN (see Table 28 on page 99).
v You are running under CICS and a CICS handler is pending.
If none of these things are true, the condition is enabled and processed as a
condition.

� �
│ │
│ │
│───────────────────┤
│ │
│ C subroutine │
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ C semantics │
│───────────────────┤
│ │
│ COBOL main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ COBOL semantics │
├───────────────────┤
│ │
│ │
│ │
│ ───────────────┤
│ C defaults │
│ ───────────────┤
│ │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 8. Stack Contents When the Exception Occurs in C

22 LE/VSE V1R4.6 Writing ILC Applications

2. If a user-written condition handler has been registered using CEEHDLR on the
C stack frame, it is given control. If it issues a resume, with or without moving
the resume cursor, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

3. The global error table is now examined for signal handlers that have been
registered for the condition.
If there is a signal handler registered for the condition, it is given control. If it
issues a resume or a call to longjmp(), the condition handling step ends.
Processing resumes in the routine to which the resume cursor points. You must
be careful when issuing a longjmp() in an application that contains a COBOL
routine; see “CEEMRCR and COBOL” on page 25 for details.
In this example no C signal handler is registered for the condition, so the
condition is percolated.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 28 on page 99) is to terminate, the condition is
percolated.

5. If a user-written condition handler has been registered using CEEHDLR on the
COBOL stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points. You must be careful
when moving the resume cursor in an application that contains a COBOL
routine; see “CEEMRCR and COBOL” on page 25 for details.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

6. If the condition is of severity 0 or 1, the LE/VSE default actions take place, as
described in Table 27 on page 99.

7. If the condition is of severity 2 or above, LE/VSE default action is to promote
the condition to T_I_U (Termination Imminent due to an Unhandled condition)
and redrive the stack. Condition handling now enters the termination imminent
step.

8. If, on the second pass of the stack, no condition handler moves the resume
cursor and issues a resume, LE/VSE terminates the thread.

Exception Occurs in COBOL
This scenario describes the behavior of an application that contains a COBOL and
a C routine. Refer to Figure 9 on page 24 throughout the following discussion.

Chapter 2. Communicating between C and COBOL 23

In this scenario, a C main routine invokes a COBOL subroutine. An exception
occurs in the COBOL subroutine. The stack contains what is shown in Figure 9.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, COBOL determines if the exception should be ignored

or handled as a condition.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step, described below, takes place.
2. If a user-written condition handler has been registered using CEEHDLR on the

COBOL stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. If a user-written condition handler has been registered for the condition (as
specified in the global error table) using CEEHDLR on the C stack frame, it is
given control. If it issues a resume, with or without moving the resume cursor,
the condition handling step ends. Processing continues in the routine to which
the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

� �
│ │
│ │
│───────────────────┤
│ │
│ COBOL subroutine│
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ COBOL semantics │
│───────────────────┤
│ │
│ C main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ C semantics │
├───────────────────┤
│ │
│ │
│ │
│ ───────────────┤
│ COBOL defaults │
│ ───────────────┤
│ │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 9. Stack Contents When the Exception Occurs in COBOL

24 LE/VSE V1R4.6 Writing ILC Applications

4. If a C signal handler has been registered for the condition, it is given control. If
it moves the resume cursor or issues a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
You must be careful when moving the resume cursor in an application that
contains a COBOL routine; see “CEEMRCR and COBOL” for details.
In this example, no C signal handler is registered for the condition, so the
condition is percolated.

5. If the condition has a Facility_ID of IGZ, the condition is COBOL-specific. The
COBOL default actions for the condition take place. If COBOL does not
recognize the condition, condition handling continues.

6. If the condition is of severity 0 or 1, LE/VSE default actions take place, as
described in Table 27 on page 99.

7. If the condition is of severity 2 or above, LE/VSE default action is to promote
the condition to T_I_U (Termination Imminent due to an Unhandled condition)
and redrive the stack. Condition handling now enters the termination imminent
step.

8. If on the second pass of the stack no condition handler moves the resume
cursor and issues a resume, LE/VSE terminates the thread.

CEEMRCR and COBOL
When you make a call to CEEMRCR to move the resume cursor, or issue a call to
longjmp(), and a COBOL routine is removed from the stack, the COBOL routine
can be re-entered via another call path.

If the terminated routine is not one of the following, the routine remains active. A
recursion error is raised if you attempt to enter the routine again.
v A VS COBOL II or COBOL/VSE routine compiled with the CMPR2 option
v A VS COBOL II or COBOL/VSE routine compiled with the NOCMPR2 option

that does not use nested routines
v A VS COBOL II or COBOL/VSE routine compiled with the NOCMPR2 option

that does not use the combination of the INITIAL attribute, nested routines, and
file processing in the same compilation unit

In addition, if the COBOL routine has the INITIAL attribute and contains files, the
files are closed. (COBOL supports VSAM and SAM files and these files are closed.)

Chapter 2. Communicating between C and COBOL 25

Sample ILC Application
Figure 10 and Figure 11 on page 27 contain an example of an ILC application. The
C routine C1 dynamically calls the COBOL routine CBL1. CBL1 statically calls C
routine C2.

EDCCCB

/* Module/File Name: EDCCCB */

/**/
/* Illustration of Interlanguage Communication between C */
/* and COBOL. All parameters passed by reference. */
/* */
/* C1 ========> CBL1 -------------> C2 */
/* dynamic static */
/* call call */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef void CBLrtn();
#pragma linkage(CBLrtn,COBOL)
CBLrtn *rtn_ptr;

/*********************** C1 routine example **********************/
main()
{

signed short int short_int = 2;
signed long int long_int = 4;
double floatpt = 8.0;
char string[80] = "Hello World";

fprintf(stderr,"main STARTED\n");
rtn_ptr = (CBLrtn *) fetch("CBL1"); /* get the address of CBL1 */

if (rtn_ptr == 0) /* check result of fetch */
printf("fetch failed\n");

else /* call CBL1 */
rtn_ptr (&short_int, &long_int, &floatpt, string);

fprintf(stderr,"main ENDED\n");
} /* end of main */

Figure 10. Dynamic Call from C to COBOL Routine

26 LE/VSE V1R4.6 Writing ILC Applications

IGZTILCC

EDCCCB2

CBL LIB,APOST,RMODE(ANY)
CBL NAME

*Module/File Name: IGZTILCC

****************** CBL1 routine example ********************

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL1.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 var1 PIC S9(9) BINARY VALUE 5.
01 msg-string PIC X(80).
LINKAGE SECTION.
77 int2 PIC S9(4) BINARY.
77 int4 PIC S9(9) BINARY.
77 float COMP-2.
77 char-string PIC X(80).
PROCEDURE DIVISION USING int2 int4 float char-string.

DISPLAY 'CBL1 STARTED'.
IF (int2 NOT = 2) THEN

DISPLAY 'INT2 NOT = 2'.
IF (int4 NOT = 4) THEN

DISPLAY 'INT4 NOT = 4'.
IF (float NOT = 8.0) THEN

DISPLAY 'FLOAT NOT = 8'.
* Place null-character-terminated string in parameter

STRING 'PASSED CHARACTER STRING ' char-string LOW-VALUE
DELIMITED BY SIZE INTO msg-string

* MAKE A STATIC CALL TO C FUNCTION
CALL 'C2' USING var1, msg-string.

DISPLAY 'CBL1 ENDED'.
GOBACK.

Figure 11. Static CALL from COBOL to C Routine

/* Module/File Name: EDCCCB2 */
/* C2 routine example */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#pragma linkage(C2,COBOL)
int C2(int*, char*);
int C2(int *num, char* strng)
{

fprintf(stderr, "num is %d, string is %s\n", *num,strng);
return(20);

} /* end of main */

Figure 12. Statically Called C Routine

Chapter 2. Communicating between C and COBOL 27

28 LE/VSE V1R4.6 Writing ILC Applications

Chapter 3. Communicating between C and PL/I

This chapter describes LE/VSE’s support for C and PL/I ILC applications. If you
are running a C–PL/I ILC application under CICS, you should also consult
Chapter 7, “ILC under CICS,” on page 93.

General Facts about C–PL/I ILC

v LE/VSE does not support the passing of return codes between C and PL/I
routines in an ILC application. See “Return Codes” on page 35 for more
information.

v A C NULL is X'00000000' ; a PL/I NULL is X'FF000000'; a PL/I SYSNULL
is X'00000000'. Comparisons against a NULL value and other uses of the
NULL value must therefore be done with care.

Preparing for C–PL/I ILC
This section describes topics you might want to consider before writing an
application that uses ILC. For help in determining how different versions of HLLs
work together, refer to the migration guides for the HLLs you plan to use.

LE/VSE ILC Support
Table 14. Supported Languages for LE/VSE ILC

HLL Pair C PL/I

C–PL/I v C/VSE v PL/I VSE

Migrating C–PL/I ILC Applications
In general, you need to convert (if necessary) and recompile existing C–PL/I ILC
applications.

Determining the Main Routine
In LE/VSE, only one routine can be the main routine. If a PL/I routine is
identified as a main routine in an ILC application using PROC OPTIONS(MAIN)
and a C main() function does not exist, the PL/I main routine is the first to gain
control. If a C main() function exists, but no PL/I main routine is identified in the
ILC application, the C main() function gains control first.

If both a PL/I main routine identified by PROC OPTIONS(MAIN) and a C main()
function exist in the same ILC application, this is a user error. However, the error
might not be detected by LE/VSE and can cause unpredictable results.

An entry point is defined for each supported HLL. Table 15 on page 30 identifies
the desired entry point. The table assumes that your code has been compiled using
the LE/VSE-conforming compilers.

© Copyright IBM Corp. 1991, 2009 29

Table 15. Determining the Entry Point

HLL Main Entry Point Fetched Entry Point

C CEESTART CEESTART or routine name if #pragma
linkage(...,FETCHABLE) is used.

PL/I CEESTART CEESTART or routine name if
OPTIONS(FETCHABLE) is used.

When link-editing a PL/I module that is fetched, the name of the routine that is
being fetched must be the entry point of the executable phase. If not, #pragma
linkage(...,FETCHABLE) must be specified in C, or the FETCHABLE option must
be specified on the PROCEDURE statement in PL/I. You cannot have more than
one entry point in an executable ILC phase with #pragma linkage(...,FETCHABLE)
or PL/I FETCHABLE option on the PROCEDURE statement. This error is not
detected by LE/VSE, but can cause unpredictable results.

Reentrancy Considerations
A PL/I–C application can be constructed to be reentrant. You should compile all
PL/I routines in an ILC application using the REENTRANT option of the
OPTIONS attribute of the PROCEDURE statement.

Declarations
Declaring a C entry point in a PL/I routine has the same syntax as declaring
another PL/I entry point. A C routine can be replaced by a PL/I routine without
altering the PL/I code that calls the routine. Likewise, if a C routine calls a PL/I
routine, the PL/I routine contains no explicit declaration indicating control is being
passed from the C routine. The declaration is contained within the C routine.

In C, you must declare that the C entry point receives control from a PL/I routine.
This declaration is in the form of a #pragma linkage(...,PLI) directive. The body
of the C function is the same as if the routine were called from another C function.
Calling a PL/I routine and being called by a PL/I routine are handled by the same
#pragma linkage(...,PLI) preprocessor directive.

Note: Failure to use the C #pragma linkage(...,PLI) preprocessor directive will
cause the C compiler to generate parameter lists which are incompatible or
in conflict with the recommendations and guidelines found in this book.

Declaration for C Calling PL/I

C Function PL/I Subroutine

#pragma linkage (PFUNC, PLI)
double PFUNC(double); /* function prototype */

int main()
{

double val,result;

val=6.2;
result=PFUNC(val);
printf("result=%f\n",result);

}

%process mar(1,72);
PFUNC: Proc(arg) options(reentrant)

returns(float binary(53));
Dcl arg float binary(53);
Dcl SYSPRINT file;
Put Skip List ('arg =',arg);
Return (34.0);
End;

30 LE/VSE V1R4.6 Writing ILC Applications

Declaration for PL/I Calling C

PL/I Routine C Subroutine

%PROCESS MAR(1,72);
PLIPROG: Proc options(main, reentrant);

Dcl SYSPRINT file;
Dcl cfunc external entry

returns(fixed bin(31);
Dcl arg fixed bin(31);
Dcl a fixed bin(31);
Arg = 10;
A = cfunc(arg);
Put skip list ('A =', A);
End;

#pragma linkage(CFUNC, PLI)
#include <stdio.h>

int CFUNC(int parm)
{

printf("parm = %d\n", parm);
return (5);

}

Calling between C and PL/I
This section describes the types of calls permitted between C and PL/I, and
considerations when using dynamic calls and fetch.

Types of Calls Permitted
Table 16 describes the types of calls between C and PL/I that LE/VSE allows:

Table 16. Calls Permitted for C and PL/I

ILC Direction Static Call Dynamic Call/Fetch

C to PL/I Yes Yes

PL/I to C Yes Yes1

Notes:
1 C must be non-reentrant or naturally reentrant.

For an understanding of C reentrancy and “writable static”, see IBM C for VSE/ESA
User’s Guide

Dynamic Call/Fetch Considerations
Both PL/I and C can specify only one fetchable entry point for an entire phase.

If a phase is introduced as a result of the PL/I FETCH statement or the C fetch()
function and the phase contains any ILC or the fetching and fetched routines are
written in different languages, then the phase cannot be deleted using a
corresponding PL/I RELEASE statement or the C release() function.

User-written condition handlers registered using CEEHDLR can be fetched, but
must be written in the same language as the fetching language.

C Fetching PL/I
The C fetch() function supports fetching a PL/I routine and subsequent
invocation using a function pointer. The fetched PL/I routine can make additional
calls (either static or dynamic) to other C routines.

When a PL/I routine is dynamically introduced into the enclave as a result of a
fetch, the fetch restrictions described in IBM PL/I for VSE/ESA Language Reference
apply.

Chapter 3. Communicating between C and PL/I 31

If a PL/I routine is to be dynamically loaded, you must either:
v Specify the routine name as the entry point when you link-edit it, or
v Specify OPTIONS(FETCHABLE) on the PROCEDURE statement and recompile.

The declaration of a PL/I fetched routine within a C routine is shown in Figure 13.

PL/I Fetching C
A PL/I routine can fetch a C routine or another PL/I routine that is statically
linked to a C routine. Any C routine that is either directly or indirectly fetched by
PL/I must be either naturally reentrant or be non-reentrant (that is, it cannot have
constructed reentrancy via the RENT option and the prelinker).

The declaration of a C fetched routine within a PL/I routine is shown in Figure 14.

Passing Data between C and PL/I
There are two sets of data types that you can pass between C and PL/I routines:
data types passed by reference using C explicit pointers in the routine, and data
types passed by value without using C explicit pointers.

When a parameter is passed by reference, the parameter itself is passed. A copy of
the parameter is not made. Any changes to the parameter made by the called
routine will alter the original parameter passed by the calling routine.

When a parameter is passed by value, a copy of the parameter is passed. Any
changes to the parameter made by the called routine cannot alter the original
parameter passed by the calling routine.

Passing Pointers from C to PL/I
Pointers can be passed and returned between C and PL/I routines. Because the C
#pragma linkage(...,PLI) specifies that pointers, unlike other parameters, are
passed directly, there is one level of indirection less on the PL/I side.

In order for PL/I to receive a pointer to a PL/I data type, C must pass a pointer to
a pointer to the C data type. Conversely, if PL/I returns a pointer to a data type, C
receives a pointer to a pointer to the data type.

Structures, arrays, and strings should be passed between C and PL/I only by using
pointers.

typedef int PLIFUNC();
#pragma linkage (PLIFUNC, PLI)...
PLIFUNC *fetch_ptr;
fetch_ptr = (PLIFUNC*) fetch("PLIENT"); /* fetch the routine */
fetch_ptr(args); /* call PLIENT */

Figure 13. C Fetching a PL/I Routine

DCL CENTRY EXTERNAL ENTRY; /* declare C entry point */...
FETCH CENTRY; /* fetch the routine */
CALL CENTRY(args); /* call routine */

Figure 14. PL/I Fetching a C Routine

32 LE/VSE V1R4.6 Writing ILC Applications

The non-address bits in all fullword pointers declared in PL/I source code should
always be zero. If they are not, results are unpredictable.

Passing Pointers from PL/I to C
Pointers to various data objects can be passed from PL/I and accepted by a
function written in C.

Because the C #pragma linkage(...,PLI) specifies that pointers, unlike other
parameters, are passed directly, an extra level of indirection is added when passing
a pointer value from PL/I to C. If PL/I passes or returns a pointer to a type, C
receives a pointer to a pointer to the type.

PL/I parameters that require a locator or descriptor should not be passed directly.
This includes parameters that are structures, arrays, or strings. These parameters
can be passed indirectly from PL/I by using a pointer to the associated data. For
more information on data descriptors, see IBM PL/I for VSE/ESA Programming Guide

The non-address bits in all fullword pointers declared in PL/I source code should
always be zero. If they are not, results are unpredictable.

Receiving Value Parameters in C
If you enclose in parentheses the argument you pass from a PL/I routine to a C
routine, the argument is passed by value. C should receive the parameter as the
equivalent C type. The C compiler generates the appropriate addressing code
required to access the parameter values.

You can write your PL/I-callable function as if it were in a C-only environment;
you can move it to a C-only environment simply by removing the #pragma
linkage(...,PLI) directive.

Receiving Reference Parameters in C
If you do not enclose in parentheses the argument you pass from a PL/I routine to
a C routine, the argument is passed by reference. C should receive the parameter
as a pointer to the equivalent C type.

For example, if a C function named FROMPLI is called from PL/I with an integer
argument, the C prototype declaration should be:
int FROMPLI(int *);

A parameter passed from PL/I by reference is received and used by C as a value
parameter provided that its value is not altered. If the value of such a parameter is
altered, the effect on the original PL/I variable is undefined.

Data Types Passed Using C Pointers (by Reference)
Table 17 identifies the data types that can be passed as parameters between C and
PL/I applications with the use of explicit pointers, or by reference, under C.
Conversely, reference parameters passed by PL/I to C are received as pointers to
the equivalent data type.

Table 17. Supported Data Types between C and PL/I Using C Pointers (by Reference)

C PL/I

signed short
int

REAL FIXED BINARY(15,0)

Chapter 3. Communicating between C and PL/I 33

Table 17. Supported Data Types between C and PL/I Using C Pointers (by
Reference) (continued)

C PL/I

signed int REAL FIXED BINARY(31,0)

signed long int REAL FIXED BINARY(31,0)

float FLOAT BINARY(21) FLOAT DECIMAL(06)

FLOAT BINARY (21) is the preferred equivalent for float.

double FLOAT BINARY(53) FLOAT DECIMAL(16)

FLOAT BINARY (53) is the preferred equivalent for double.

long double FLOAT BINARY(109) FLOAT DECIMAL(33)

FLOAT BINARY (109) is the preferred equivalent for long double.

pointer to . . . POINTER

decimal(n,p) FIXED DECIMAL(n,p)

Note: Data storage alignment must match.

Data Types Passed Without Using Explicit C Pointers (by
Value)

Table 18 identifies the data types that can be passed as parameters between C and
PL/I applications without the use of explicit C pointers. Parameters that are not
pointers are passed by value.

In order for a C routine to pass a parameter without using a pointer, the argument
should be passed, and the PL/I routine should receive the parameter as the
equivalent PL/I data type.

Table 18. Supported Data Types between C and PL/I without Using C Pointers (by Value)

C PL/I

signed int REAL FIXED BINARY(31,0)

signed long int REAL FIXED BINARY(31,0)

double FLOAT BINARY(53) FLOAT DECIMAL(16)

FLOAT BINARY (53) is the preferred equivalent for double.

long double FLOAT BINARY(109) FLOAT DECIMAL(33)

FLOAT BINARY (109) is the preferred equivalent for long double.

decimal(n,p) FIXED DECIMAL(n,p)

Note: Data storage alignment must match.

Strings Passed between C and PL/I
C and PL/I have different string data types:

C strings
Logically unbounded length and are terminated by a NULL (the last byte
of the string contains X’00’).

PL/I CHAR(n) VARYING
A halfword-prefixed string of characters with a maximum length of n
characters. The current length is held in the halfword prefix.

34 LE/VSE V1R4.6 Writing ILC Applications

PL/I CHAR(n)
A fixed-length string of characters of length n. There is no halfword prefix
indicating the length.

You can pass strings between C and PL/I routines, but you must match what the
routine interface demands with what is physically passed.

Aggregates
Aggregates (arrays, strings, or structures) are mapped differently by C and PL/I
and are not automatically mapped. Be sure to completely declare every byte in the
aggregate so there are no open fields. Doing so helps ensure that the layouts of
aggregates passed between the two languages map to one another correctly. The C
and PL/I AGGREGATE compile-time options provide a layout of aggregates to
help you perform the mapping.

For more information about C and PL/I aggregate mapping, see IBM C for
VSE/ESA Language Reference and IBM PL/I for VSE/ESA Language Reference
respectively.

Return Codes
The passing of return codes between C and PL/I using the PL/I PLIRETC or
PLIRETV function is not supported within an ILC application under LE/VSE.

However, it is possible to return data from both a C routine (using the C return()
statement) and from a PL/I routine (using the PL/I RETURN statement). For
example, in the illustration “Fullword Integer” on page 36, the value “ARG”
returned by PL/I could instead contain the return code obtained using the
PLIRETV function.

Data Equivalents
This section describes how C and PL/I data types correspond to each other.

Equivalent Data Types—C to PL/I
The following examples illustrate how C and PL/I routines within a single ILC
application might code the same data types. The examples might be clearer to you
if you first read “Passing Data between C and PL/I” on page 32, which describes
how a C routine can receive parameters that are passed by value and by reference.

Short Integer

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
short int *cpli(short int *);
main()
{

short int x=5, y;
y = *cpli(&x); /* by reference */
printf("x = %d, y = %d\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (POINTER);

Dcl SYSPRINT file;
DCL ARG REAL FIXED BIN(15,0);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ADDR(ARG));
END;

Output:

Chapter 3. Communicating between C and PL/I 35

ARG = 5
x = 6, y = 6

Note: Because short int is an example of a parameter which must be passed
using an explicit C pointer, you cannot code y = cpli(x), passing x by
value.

Fullword Integer

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
int cpli(int);
main()
{

int x=5, y;
y = cpli(x); /* by value */
printf("x = %d, y = %d\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (FIXED BIN(31));

Dcl SYSPRINT file;
DCL ARG FIXED BIN(31);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ARG);
END;

Output:
ARG = 5
x = 5, y = 6

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
int *cpli(int *);
main()
{

int x=5, y;
y = *cpli(&x); /* by reference */
printf("x = %d, y = %d\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (POINTER);

Dcl SYSPRINT file;
Dcl ADDR builtin;
DCL ARG FIXED BIN(31);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ADDR(ARG));
END;

Output:
ARG = 5
x = 6, y = 6

Double-Precision Floating Point

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
double cpli(double);
main()
{

double x=12.5, y;
y = cpli(x); /* by value */
printf("x = %f, y = %f\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (FLOAT BINARY(53));

Dcl SYSPRINT file;
DCL ARG FLOAT BINARY(53);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ARG);
END;

Output:
ARG = 1.250000000000000E+01
x = 12.500000, y = 13.500000

36 LE/VSE V1R4.6 Writing ILC Applications

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
double *cpli(double *);
main()
{

double x=12.5, y;
y = *cpli(&x); /* by reference */
printf("x = %f, y = %f\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (POINTER);

Dcl SYSPRINT file;
DCL ARG FLOAT BINARY(53);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ADDR(ARG));
END;

Output:
ARG = 1.250000000000000E+01
x = 13.500000, y = 13.500000

Extended-Precision Floating Point

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
long double cpli(long double);
main()
{

long double x=12.1, y;
y = cpli(x); /* by value */
printf("x = %Lf, y = %Lf\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (FLOAT BIN(109));

Dcl SYSPRINT file;
DCL ARG FLOAT BIN(109);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ARG);
END;

Output:
ARG = 1.21000000000000000888178419700125E+01
x = 12.100000, y = 13.100000

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
long double *cpli(long double *);
main()
{

long double x=12.5, y;
y = *cpli(&x); /* by reference */
printf("x = %Lf, y = %Lf\n", x, y);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG) RETURNS (POINTER);

Dcl SYSPRINT file;
DCL ARG FLOAT BINARY(109);
Put Skip List ('ARG =', ARG);
ARG = ARG + 1;
RETURN (ADDR(ARG));
END;

Output:
ARG = 1.25000000000000000000000000000000E+01
x = 13.500000, y = 13.500000

Chapter 3. Communicating between C and PL/I 37

Pointer to an Integer

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
void cpli(int **);
main()
{

int x=5, *i=&x;
cpli(&i);
printf("x = %d\n", x);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG);

Dcl SYSPRINT file;
DCL ARG POINTER;
DCL Z FIXED BIN(31,0) BASED (ARG);
Put Skip List ('Z =', Z);
Z = Z + 1;
END;

Output:
Z = 5
x = 6

Pointer to an Array

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
void cpli(int (**)[]);
main()
{

int i, matrix[5];
int (*temp)[] = &matrix;
for (i=0; i<5; ++i)

matrix[i] = i;
cpli(&temp);
printf("matrix[3] = %d\n", matrix[3]);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG);

Dcl SYSPRINT file;
DCL ARG POINTER;
DCL Z(5) FIXED BIN(31,0) BASED (ARG);
Put Skip List ('Z =', Z(4));
Z(4) = Z(4) + 1;
END;

Output:
Z = 3
matrix[3] = 4

Pointer to a Structure

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
struct date
{

int day;
int month;
int year;

} today;
void cpli(struct date **);
main()
{

struct date *temp = &today;
today.day = 20;
cpli(&temp);
printf("day = %d\n", today.day);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG);

Dcl SYSPRINT file;
DCL ARG POINTER;
DCL 1 TODAY BASED (ARG),

2 DAY FIXED BIN(31),
2 MONTH FIXED BIN(31),
2 YEAR FIXED BIN(31);

Put Skip List ('DAY =', DAY);
DAY = DAY + 1;
END;

38 LE/VSE V1R4.6 Writing ILC Applications

Output:
DAY = 20
day = 21

Fixed Decimal

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
#include <decimal.h>
void cpli(decimal(5,2));
main()
{

decimal(5,2) x;
x = 52d;
cpli(x);
printf("x = %D(5,2)\n", x);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG);

Dcl SYSPRINT file;
DCL ARG FIXED DEC(5,2);
DCL X FIXED DEC(5,2) EXTERNAL;
Put Skip List ('ARG =', ARG);
X = ARG + 1;
END;

Output:
ARG = 52.00
x = 52.00

Fixed-Length Character String

Sample C Usage PL/I Subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
void cpli(char **);
main()
{

char *string = "Have a nice day!";
cpli(&string);

}

%PROCESS MAR(1,72);
CPLI: PROC(ARG);

Dcl SYSPRINT file;
DCL ARG POINTER;
DCL Z CHAR(16) BASED (ARG);
Put Skip List (Z);
END;

Output:
Have a nice day!

Equivalent Data Types—PL/I to C
The following examples illustrate how C and PL/I routines within a single ILC
application might code the same data types. The examples might be clearer to you
if you first read “Passing Data between C and PL/I” on page 32, which describes
how an C routine can receive parameters that are passed by value and by
reference.

Chapter 3. Communicating between C and PL/I 39

Fullword Integer

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
/* BY VALUE */
Y=CENTRY((X));
Put Skip List ('X =', X, ', Y =', Y);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
int centry(int x)
{

printf("x = %d\n", x);
return(++x);

}

Output:
x = 5
X = 5 , Y = 6

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
/* BY REFERENCE */
Y=CENTRY(X);
Put Skip List ('Y =', Y);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
int centry(int x)
{

printf("x = %d\n", x);
return(x+1);

}

Output:
x = 5
Y = 6

Double-Precision Floating Point

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 3.14159265;
/* BY VALUE */
Y=CENTRY((X));
Put Skip List ('X =', X, ', Y =', Y);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
double centry(double x)
{

printf("x = %f\n", x);
return(++x);

}

40 LE/VSE V1R4.6 Writing ILC Applications

Output:
x = 3.141593
X = 3.141592649999999E+00 , Y = 4.141592649999999E+00

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 3.14159265;
/* BY REFERENCE */
Y=CENTRY(X);
Put Skip List ('Y =', Y);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
double centry(double x)
{

printf("x = %f\n", x);
return(x+1);

}

Output:
x = 3.141593
Y = 4.141592649999999E+00

Extended-Precision Floating Point

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 12.5;
/* BY VALUE */
Y=CENTRY((X));
Put Skip List ('X =', X, ', Y =', Y);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
long double centry(long double x)
{

printf("x = %Lf\n", x);
return(++x);

}

Output:
x = 12.500000
X = 1.25000000000000000000000000000000E+01 , Y =
1.35000000000000000000000000000000E+01

Chapter 3. Communicating between C and PL/I 41

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 12.5;
/* BY REFERENCE */
Y=CENTRY(X);
Put Skip List ('Y =', Y);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
long double centry(long double x)
{

printf("x = %Lf\n", x);
return(x+1);

}

Output:
x = 12.500000
Y = 1.35000000000000000000000000000000E+01

Pointer to an Integer

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL I FIXED BIN(31);
DCL Z FIXED BIN(31);
DCL P POINTER;
P = ADDR(I);
I = 5;
Z=CENTRY(P);
Put Skip List ('I =', I, ', Z =', Z);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
int centry(int **x)
{

printf("x = %d\n", **x);
return(++(**x));

}

Output:
x = 5
I = 6 , Z = 6

42 LE/VSE V1R4.6 Writing ILC Applications

Pointer to an Array

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL I(5) FIXED BIN(31,0);
DCL J FIXED BIN(31);
DCL Z FIXED BIN(31);
DCL P POINTER;
P = ADDR(I);
DO J = 1 TO 5;

I(J) = J;
END;
Z=CENTRY(P);
Put Skip List ('I(3) =', I(3), ', Z =', Z);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
int centry(int (**x)[])
{

printf("x[2] = %d\n", (**x)[2]);
return(++(**x)[2]);

}

Output:
x[2] = 3
I(3) = 4 , Z = 4

Pointer to a Structure

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL 1 TODAY,

2 DAY FIXED BIN(31),
2 MONTH FIXED BIN(31),
2 YEAR FIXED BIN(31);

DCL Z FIXED BIN(31);
DCL P POINTER;
P = ADDR(TODAY);
MONTH = 7;
Z=CENTRY(P);
Put Skip List ('MONTH =', MONTH, ', Z =', Z);

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
struct date
{

int day;
int month;
int year;

};
int centry(struct date **x)
{

printf("month = %d\n", (*x)->month);
return(++(*x)->month);

}

Output:
month = 7
MONTH = 8 , Z = 8

Chapter 3. Communicating between C and PL/I 43

Fixed Decimal

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
PLIPROG: PROC OPTIONS(MAIN, REENTRANT);

Dcl SYSPRINT file;
DCL CFUNC EXTERNAL ENTRY

RETURNS (FIXED DEC(5,0));
DCL ARG FIXED DEC(5,0);
DCL A FIXED DEC(5);
ARG = 10;
A = CFUNC(ARG);
Put Skip List ('ARG =', ARG, ', A =', A);

END;

#pragma linkage (CFUNC,PLI)
#include <stdio.h>
#include <decimal.h>
decimal(5,0) CFUNC(decimal(5,0) p)
{

printf("p = %D(5,0)\n", p);
return(++p);

}

Output:
p = 10
ARG = 11 , A = 11

Fixed-Length Character String

Sample PL/I Usage C Subroutine

%PROCESS MAR(1,72);
MY_PROG: PROC OPTIONS(MAIN);

Dcl SYSPRINT file;
DCL CENTRY EXTERNAL ENTRY;
DCL CHARSTRING CHAR(29)

INIT('Hello C, this is PL/I calling');
DCL PLI_POINTER PTR;
PLI_POINTER = ADDR(CHARSTRING);
CALL CENTRY(ADDR(PLI_POINTER));

END;

#pragma linkage (centry,PLI)
#include <stdio.h>
void centry(char ***c_character_string)
{

printf("%.29s\n", **c_character_string);
}

Output:
Hello C, this is PL/I calling

Name Scope of External Data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. The name
scope of static external data for PL/I and static variables defined outside of any
function for C is the phase. If your application contains PL/I routines and
non-reentrant C routines, PL/I’s external data maps to C’s external data only
within a phase. After you cross a phase boundary, external data does not map. In
addition, the external data does not map if any C function in the application is
compiled with the C RENT compile-time option.

Figure 15 on page 45 illustrates the name scope of external variables in a PL/I–C
enclave, if the C routine is non-reentrant. Each of the routines can be a PL/I
routine or a C routine. If Routine 3 is a PL/I routine, however, it cannot have any
variables with the EXTERNAL attribute; therefore, the name scope of Routine 3 in
the figure refers only to C routines.

44 LE/VSE V1R4.6 Writing ILC Applications

In Figure 15, external data declared in Routine 1 maps to that declared in Routine 2
in the same phase. If the fetch is made to a C Routine 3 in another phase, the
external data does not map because the name scope of external data in C is the
phase. If the fetch is made to a PL/I Routine 3, the routine is not allowed to have
any variables declared with the EXTERNAL attribute.

Because the name scopes of PL/I and C are both the phase, you cannot share
external data across a phase boundary in a PL/I–C application. Therefore, to avoid
confusion use different names for external data in separate phases if possible.

Name Space of External Data
In programming languages, the name space is defined as the portion of a phase
within which a particular declaration applies or is known. Within the same phase,
the name space of external data under both PL/I and C is the same. Therefore,
PL/I’s and C’s external data map to each other, provided that the C routine is
non-reentrant or naturally reentrant.

Routine 1 Routine 2 Routine 3
┌─────────────┬─────────────┐ ┌─────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ X │ │ │
│ X │ . │ -------� │ │
│ . │ . │ Fetch │ │
│ . │ . │ │ │
│ . │ . │ │ X │
│ . │ . │ │ . │
│ . │ . │ │ . │
└──────.──────┴───.─────────┴ └─────.───────┘

 . .

 .

└────────.──────Phase───────┘ └─────Phase───┘

. . .
┌────────────────┐ ┌────────────┐
│ Storage │ │ Storage │
└────────────────┘ └────────────┘

Figure 15. Name Scope of External Variables for PL/I or C Fetch

PL/I Rtn 1 C Routine 2
┌──────────────┬──────────────┐
│ │ │
│ │ │
│ │ X │
│ X │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
└──────.───────┴───.──────────┘

 . .

└────────.─────────.───Phase──┘

. .
┌────────────────────────┐
│ Storage │
└────────────────────────┘

Figure 16. Name Space of External Data in PL/I Static Call to C

Chapter 3. Communicating between C and PL/I 45

Figure 16 illustrates that within the same phase, the name spaces of PL/I and C
routines are the same. Therefore you can give external data the same name in a
PL/I–C application, if no phase boundary is crossed.

How to Use Dynamic Heap Storage Functions
Use the following guidelines when you mix HLL storage constructs and LE/VSE
storage services:

Storage allocated using the PL/I ALLOCATE statement that:
v Is within a PL/I AREA, or
v Is of the storage class CONTROLLED, or
v Has the REFER option

must be released by the PL/I FREE statement. Storage with these characteristics
cannot be released by the LE/VSE callable service CEEFRST or by an HLL
construct such as the C free() function.

Storage allocated as a result of the PL/I ALLOCATE statement that is of the
storage class BASED can be released by CEEFRST or an HLL construct such as the
C free() function if the structure:
v Is completely declared,
v Requires no pad bytes to be added automatically by the compiler, and
v Does not contain the REFER option

File Sharing
Except for the file specified by the LE/VSE MSGFILE run-time option, LE/VSE
provides no support for files that are open in C and PL/I at the same time. You
must manage all such files to ensure that no conflicts arise. Performing I/O
operations on the same filename, other than the one specified by the LE/VSE
MSGFILE run-time option, might cause abnormal termination or data corruption of
the file.

LE/VSE provides no support for using C to read from or write to a file created
using PL/I, or vice versa. To do this, you must ensure that the file is in a
compatible format. For information on file formats, see the respective
programming guides.

Note: A guide to the types of considerations necessary when sharing file data
between languages can be found in Chapter 4, “Communicating between
COBOL and PL/I,” section “File Sharing” on page 67.

Directing Output in ILC Applications
Under LE/VSE, PL/I run-time output such as run-time messages and ON
condition SNAP output is directed to the destination specified in the LE/VSE
run-time option MSGFILE. User-specified output, such as the output of the PUT
SKIP LIST statement, remains directed to the PL/I STREAM PRINT file SYSPRINT.

Since the default destination for the LE/VSE MSGFILE and the default destination
for SYSPRINT are both SYSLST, all output from PL/I is by default directed to the
same destination and will thus be interspersed. To separate the output, either
SYSPRINT or the LE/VSE MSGFILE must be directed to a file different from the

46 LE/VSE V1R4.6 Writing ILC Applications

other. Specifying MSGFILE(SYSPRINT) under LE/VSE has no effect unless
SYSPRINT has been declared using a different destination to the one used by the
LE/VSE MSGFILE.

Under LE/VSE, C run-time output such as run-time messages is directed to the
destination specified in the LE/VSE run-time option MSGFILE. stderr output is
also directed to the destination of the MSGFILE option. stdout output is by default
directed to SYSLST.

Since the default destination for the LE/VSE MSGFILE is also SYSLST, all output
from C is by default directed to the same destination and will thus be interspersed.
To separate the output, either stdout or the LE/VSE MSGFILE must be directed to
a file different from the other. For information on redirecting C output, see LE/VSE
C Run-Time Programming Guide.

Note: In both C and PL/I, when run-time output and user-specified output from
one or both languages is directed to the same destination such as SYSLST,
each language must manage its own I/O buffers, line counters, etc., for its
own user-specified output.

For additional information regarding the LE/VSE MSGFILE run-time option, see
LE/VSE Programming Guide.

C—PL/I Condition Handling
This section offers two scenarios of condition handling behavior in a C-PL/I ILC
application. If an exception occurs in a C routine, the set of possible actions is as
described in “Exception Occurs in C” on page 48. If an exception occurs in a PL/I
routine, the set of possible actions is as described in “Exception Occurs in PL/I” on
page 50.

Keep in mind that if there is a PL/I routine currently active on the stack, PL/I
language semantics can be applied to handle conditions that occur in non-PL/I
routines within an ILC application. For example, PL/I semantics apply to LE/VSE
hardware conditions that map directly to PL/I conditions such as ZERODIVIDE,
even if they occur in a non-PL/I routine. Also, PL/I treats any unknown condition
of severity 2 or greater as the ERROR condition. In a case in which a C-specific
condition of severity 2 or greater is passed to a PL/I stack frame, an ERROR
ON-unit can handle it on the first pass of the stack.

For a detailed description of LE/VSE condition handling, see LE/VSE Programming
Guide.

Enclave-Terminating Constructs
Enclaves might be terminated due to reasons other than an unhandled condition of
severity 2 or greater. The language constructs that cause a single language
application to be terminated also cause a C-PL/I application to be terminated.
Those language constructs of interest are listed below.

C
Typical C language constructs that cause the application to terminate are:
v The abort(), raise(SIGTERM), raise(SIGABRT), and exit() function calls.

If you call abort(), raise(SIGABRT), or exit(), the T_I_S (Termination Imminent
Due to STOP) condition is raised. After T_I_S has been processed and all user
code has been removed from the stack, the C atexit list is honored.

Chapter 3. Communicating between C and PL/I 47

PL/I
The PL/I language constructs that cause the application to terminate are:
v A STOP statement, or an EXIT statement

If you code a STOP or EXIT statement, the T_I_S (Termination_Imminent Due to
STOP) condition is raised. After T_I_S has been processed and after all user code
has been removed from the stack, the C atexit list is honored.

v A call to PLIDUMP with the S or E option
If you call PLIDUMP with the S or E option, neither termination imminent
condition is raised, and the C atexit list is not honored before the enclave is
terminated. See LE/VSE Debugging Guide and Run-Time Messages for syntax of the
PLIDUMP service.

Exception Occurs in C
This scenario describes the behavior of an application that contains a C and a PL/I
routine. Refer to Figure 17 throughout the following discussion.

In this scenario, a PL/I main routine invokes a C subroutine. An exception occurs
in the C subroutine. The stack contains what is shown in Figure 17.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, it is determined whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after where the exception occurred:

� �
│ │
│ │
│───────────────────┤
│ │
│ C subroutine │
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ C semantics │
│───────────────────┤
│ │
│ PL/I main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ PL/I semantics │
├───────────────────┤
│ │
│ │
│ │
│ ───────────────┤
│ C defaults │
│ ───────────────┤
│ PL/I defaults │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 17. Stack Contents When the Exception Occurs in C

48 LE/VSE V1R4.6 Writing ILC Applications

v You specified SIG_IGN for the exception in a call to signal().

Note: The abend corresponding to the signal(SIGABND) or the LE/VSE
message 3250 is not ignored. The enclave is terminated.

v The exception is one of those listed as masked in Table 28 on page 99.
v You did not specify any action, but the default action for the condition is

SIG_IGN (see Table 28 on page 99).
v You are running under CICS and a CICS handler is pending.
If none of these things are true, the condition is enabled and processed as a
condition.

2. If a user-written condition handler has been registered on the stack frame using
CEEHDLR, it is given control.
If it issues a resume, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. If a C signal handler has been registered for the condition on the C stack frame,
it is given control. If it successfully issues a resume or a call to longjmp(), the
condition handling step ends. Processing resumes in the routine to which the
resume cursor points.
In this case, there is not a C signal handler registered for the condition.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 28 on page 99) is to terminate, the condition is
percolated.

5. No user-written condition handlers can exist on the PL/I stack frame, because
they cannot be registered in PL/I. If an ON-unit has been established for the
condition being processed on the PL/I stack frame, it is given control, however.
If it issues a GOTO out of block, the condition handling step ends. Execution
resumes at the label of the GOTO.
In this example no ON-unit is established for the condition, so the condition is
percolated.

6. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

LE/VSE default actions take place, as described in Table 27 on page 99.
Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass is made of
the stack to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found
then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit or user-written condition handler is run if the stack frame in which
it is established is reached.

v If no condition handler moves the resume cursor and issues a resume,
LE/VSE terminates the thread.

Chapter 3. Communicating between C and PL/I 49

Exception Occurs in PL/I
This scenario describes the behavior of an application that contains a PL/I and a C
routine. Refer to Figure 18 throughout the following discussion.

In this example, a C main routine invokes a PL/I subroutine. An exception occurs
in the PL/I subroutine. The stack contains what is shown in Figure 18.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, PL/I determines if the exception that occurred should

be handled as a condition according to the PL/I rules of enablement.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step, described below, takes place.
2. No user-written condition handler can be registered using CEEHDLR on the

PL/I stack frame because they cannot be registered in PL/I.
If an ON-unit that corresponds to the condition being processed is established
on the PL/I stack frame, however, it is given control. If it issues a GOTO out of
block, the condition handling step ends. Execution resumes at the label of the
GOTO.
In this example no ON-unit is established for the condition, so the condition is
percolated.

� �
│ │
│ │
│───────────────────┤
│ │
│ PL/I subroutine │
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ PL/I semantics │
│───────────────────┤
│ │
│ C main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ C semantics │
├───────────────────┤
│ │
│ │
│ │
│ │
│ │
│ ───────────────┤
│ PL/I defaults │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 18. Stack Contents When the Exception Occurs in PL/I

50 LE/VSE V1R4.6 Writing ILC Applications

3. If a user-written condition handler has been registered using CEEHDLR on the
C stack frame, it is given control. If it issues a resume, the condition handling
step ends. Processing continues in the routine to which the resume cursor
points.

Note: There are special considerations for resuming from some PL/I conditions
of severity 2 or greater. See the chapter on coding a user-written
condition handler in LE/VSE Programming Guide for more information.

In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

4. If a C signal handler has been registered for the condition, it is given control. If
it successfully issues a resume or a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
In this example no C signal handler is registered for the condition, so the
condition is percolated.

5. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

LE/VSE default actions take place, as described in Table 27 on page 99.
Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass of the stack is
made to look for ERROR ON-units or user-written condition handlers. If an
ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found
then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit is run if the stack frame in which it is established is reached.

v If no condition handler moves the resume cursor and issues a resume,
LE/VSE terminates the thread.

Chapter 3. Communicating between C and PL/I 51

Sample C-PL/I ILC Application

IBMCPL

*PROCESS LC(101),OPT(0),S,MAP,LIST,STMT,A(F),AG;
CEPLI2C: PROC OPTIONS(MAIN);
/*Module/File Name: IBMCPL */

/***/
/* FUNCTION : Interlanguage communications call to a C */
/* program. */
/* */
/* This example illustrates an interlanguage call from */
/* a PL/I main program to a C subroutine. */
/* The parameters passed across the call from PL/I to */
/* C have the following declarations: */
/* */
/* PL/I fixed bin(15,0) to C short as pointer to BIN */
/* PL/I fixed bin(31,0) to C int */
/* PL/I float bin(53) to C double */
/* PL/I float bin(109) to C long double */
/* PL/I characters to C as pointer to pointer to CHAR */
/***/
/**/
/* DECLARES FOR THE CALL TO C */
/**/

DCL ADDR BUILTIN;
DCL J FIXED BIN(31,0);
DCL CECFPLI EXTERNAL ENTRY RETURNS(FIXED BIN(31,0));
DCL PL1_SHORT FIXED BIN(15,0) INIT(15);
DCL PL1_INT FIXED BIN(31,0) INIT(31);
DCL PL1_DOUBLE FLOAT BIN(53) INIT (53.99999);
DCL PL1_LONG_DOUBLE FLOAT BIN(109) INIT(3.14151617);
DCL PL1_POINTER PTR;
DCL CHARSTRING CHAR(23) INIT('PASSED CHARACTER STRING');

/**/
/* PROCESS STARTS HERE */
/**/

PUT SKIP LIST ('******************************');
PUT SKIP LIST ('PL/I CALLING C EXAMPLE STARTED');
PUT SKIP LIST ('******************************');
PL1_POINTER = ADDR(CHARSTRING);
PUT SKIP LIST ('Calling C subroutine');
J = CECFPLI(ADDR(PL1_SHORT), PL1_INT, PL1_DOUBLE,

PL1_LONG_DOUBLE, ADDR(PL1_POINTER));
PUT SKIP LIST ('Returned from C subroutine');
IF (J ¬= 999) THEN

PUT SKIP LIST ('Error in return code from C');
PUT SKIP LIST ('******************************');
PUT SKIP LIST ('PL/I CALLING C EXAMPLE ENDED ');
PUT SKIP LIST ('******************************');

END CEPLI2C;

Figure 19. PL/I Main Routine Calling a C Subroutine

52 LE/VSE V1R4.6 Writing ILC Applications

EDCCPL

/*Module/File Name: EDCCPL */
#pragma linkage (CECFPLI,PLI)
#include <stdio.h>
#include <string.h>
/**
*This is an example of a C program invoked by a PL/I program. *
*CECFPLI is called from PL/I program CEPLI2C with the following *
*list of arguments: *
* PL/I fixed bin(15,0) to C short as pointer to BIN *
* PL/I fixed bin(31,0) to C int *
* PL/I float bin(53) to C double *
* PL/I float bin(109) to C long double *
* PL/I characters to C as pointer to pointer to CHAR *
**/
int CECFPLI (short **c_short,

int *c_int,
double *c_double,
long double *c_long_double,
char *** c_character_string
)

{
int ret=999; /* pli is expecting 999 returned */

fprintf(stderr,"CECFPLI STARTED\n");
/**
* Compare each passed argument against the C value. *
* Issue an error message for any incorrectly passed parameter. *
**/
if (**c_short != 15)
{
fprintf(stderr,"**c_short not = 15\n");
--ret;

}
if (*c_int != 31)
{
fprintf(stderr,"*c_int not = 31\n");
--ret;

}
if ((53.99999 - *c_double) >1.0E-14)
{
fprintf(stderr,

"53.99999 - *c_double not >1.0E-14\n");
--ret;

}
if ((3.14151617 - *c_long_double) >1.0E-16)
{
fprintf(stderr,

"3.14151617 - *c_long_double not >1.0E-16\n");
--ret;

}
if (memcmp(**c_character_string,"PASSED CHARACTER STRING",23)

!= 0)
{
fprintf(stderr,"**c_character_string not %s\n",
"\"PASSED CHARACTER STRING\"");
--ret;

}
/**
* PL/I will check for a correct return code. *
**/
fprintf(stderr,"CECFPLI ENDED\n");
return(ret);

}

Figure 20. C Routine Called by PL/I Main Routine

Chapter 3. Communicating between C and PL/I 53

54 LE/VSE V1R4.6 Writing ILC Applications

Chapter 4. Communicating between COBOL and PL/I

This chapter describes LE/VSE’s support for COBOL and PL/I ILC applications. If
you are running a COBOL–PL/I ILC application under CICS, you should also
consult Chapter 7, “ILC under CICS,” on page 93.

General Facts about COBOL–PL/I ILC

v A COBOL routine cannot be used as a PL/I function; it must be CALLed.
v The halfword prefix for PL/I varying strings is exposed, so you need to

code the COBOL group data item with a halfword in front of the character
string.

v PL/I supports access to COBOL files via the COBOL option of the
ENVIRONMENT attribute.

v See “How to Use Dynamic Heap Storage Functions” on page 46 for
information about how to use PL/I’s storage facilities with LE/VSE storage
services.

v LE/VSE supports the passing of return codes within an ILC application
from COBOL to PL/I but not from PL/I to COBOL. See “Return Codes” on
page 60 for more information.

Preparing to Use ILC between COBOL and PL/I
This section describes topics you might want to consider before writing an
application that uses ILC between COBOL and PL/I. For help in determining how
different versions of HLLs work together, refer to the migration guides for the
HLLs you plan to use.

LE/VSE ILC Support
LE/VSE supports ILC between the following combinations of COBOL and PL/I:

Table 19. Supported Languages for LE/VSE ILC Support

HLL Pair COBOL PL/I

COBOL–PL/I v COBOL/VSE Release 1
v VS COBOL II Release 3 or later

v PL/I VSE

Migrating ILC Applications
You need to relink pre-LE/VSE-conforming ILC applications in order to get
LE/VSE’s ILC support.

You do not need to recompile VS COBOL II routines in your application to run
them under LE/VSE. However, you might want to recompile some VS COBOL II
routines to obtain LE/VSE’s condition handling behavior.

Determining the Main Routine
In LE/VSE, only one routine can be the main routine. The main routine should be
presented to the linkage editor first. Because all potential main routines nominate

© Copyright IBM Corp. 1991, 2009 55

the entry point through the END record, the correct entry point is chosen. If the
main routine is not presented first, the entry point must be specified with a
link-edit control card.

An entry point is defined for each supported HLL. Table 20 identifies the desired
entry point. The table assumes that your code has been compiled using the
LE/VSE-conforming compilers.

Table 20. Determining the Entry Point

HLL Main Entry Point Fetched Entry Point

COBOL Name of the first object module to get
control in the object program

Program name

PL/I CEESTART CEESTART or routine name if
OPTIONS(FETCHABLE) is used

Declarations
If a PL/I routine invokes a COBOL routine or a COBOL routine invokes a PL/I
routine, you must specify entry declarations in the PL/I source code. No special
declaration is required within the COBOL routine.

When invoking a COBOL routine from PL/I, you identify the COBOL entry point
by using the OPTIONS attribute in the declaration of the entry in the calling PL/I
routine. By specifying OPTIONS(COBOL) when calling a COBOL routine, you
request that the PL/I compiler generate a parameter list for the COBOL routine in
the style COBOL accepts.

In a PL/I routine that calls a COBOL routine, the declaration of the COBOL entry
point looks like the following:
DCL COBOLEP ENTRY OPTIONS(COBOL);

The entry points in a PL/I routine invoked from a COBOL routine must be
identified by the appropriate options in the corresponding PL/I PROCEDURE or
ENTRY statement, as illustrated here:
PLIEP: PROCEDURE (parms) OPTIONS(COBOL);

parms specifies parameters that are passed from the calling COBOL routine.
OPTIONS(COBOL) specifies that the entry point can be invoked only by a COBOL
routine.

For more information on the COBOL option, see IBM PL/I for VSE/ESA Language
Reference

In addition to the COBOL option, other options suppress remapping of data
aggregates. These are described in “Aggregates” on page 58.

Only data types common to both languages can be passed or received.

Reentrancy
Under LE/VSE, ILC applications in which PL/I calls COBOL are reentrant,
assuming that all COBOL and PL/I routines in the application are reentrant.

56 LE/VSE V1R4.6 Writing ILC Applications

Calling between PL/I and COBOL
This section describes the types of calls permitted between COBOL and PL/I, and
considerations when using dynamic calls and fetch.

Types of Calls Permitted
Table 21 describes the types of calls between COBOL and PL/I that LE/VSE
allows:

Table 21. Calls Permitted for COBOL and PL/I

ILC Direction Static Call Dynamic Call/Fetch

COBOL to PL/I Yes Yes

PL/I to COBOL Yes Yes

Dynamic Call/Fetch Considerations
This section describes the call/fetch differences between COBOL to PL/I dynamic
CALLs and PL/I to COBOL fetches.

COBOL Dynamically Calling PL/I
Dynamically loaded phases that contain ILC cannot be released by using the
COBOL CANCEL verb. The dynamically loaded phase is instead released by
LE/VSE termination processing.

A COBOL routine can dynamically CALL a PL/I routine. Dynamically called PL/I
routines must adhere to the restrictions listed in IBM PL/I for VSE/ESA Language
Reference For specific details about COBOL dynamic CALLs, refer to IBM COBOL
for VSE/ESA Programming Guide

If a PL/I routine is to be dynamically loaded, you must either:
v Specify the routine name as the entry point when you link-edit it
v Specify PROC OPTIONS(FETCHABLE) and recompile

PL/I Fetching COBOL
PL/I routines can only call COBOL routines that are LE/VSE-conforming. ILC
between PL/I and COBOL is supported within the fetched phase.

Passing Data between COBOL and PL/I
The data types supported between COBOL and PL/I are listed below.

Table 22. Supported Data Types between COBOL and PL/I

COBOL PL/I

PIC S9(4) USAGE IS BINARY REAL FIXED BINARY(15,0)

PIC S9(9) USAGE IS BINARY REAL FIXED BINARY(31,0)

COMP-1 REAL FLOAT DECIMAL(6)

COMP-2 REAL FLOAT DECIMAL(16)

PIC S9(n) PACKED-DECIMAL FIXED DECIMAL(n)

PIC S9(n) COMPUTATIONAL-3 FIXED DECIMAL(n)

PIC X(n) USAGE IS DISPLAY CHARACTER(n)

PIC G(n) USAGE IS DISPLAY-1 GRAPHIC(n)

PIC N(n) GRAPHIC(n)

Chapter 4. Communicating between COBOL and PL/I 57

Table 22. Supported Data Types between COBOL and PL/I (continued)

COBOL PL/I

PIC X(n) CHAR(n)

groups aggregates

POINTER POINTER

PL/I program control data is used to control the execution of your routine. It
consists of the area, entry, event, file, label, and locator data types. Program control
data can be passed through a COBOL routine to a PL/I routine.

COBOL represents the NULL pointer value as X'00000000'. PL/I represents the
NULL pointer value as either X'00000000' using the SYSNULL built-in function or
as X'FF000000' using the NULL built-in function. You are responsible for managing
the different NULL values when passing pointers between COBOL and PL/I.

You must ensure that the physical layout of the data matches when passing data
by pointers between PL/I and COBOL. This particularly applies when passing
aggregates/groups and strings.

The non-address bits in all fullword pointers declared in PL/I source code should
always be zero. If they are not, results are unpredictable.

Aggregates
PL/I and COBOL map structures differently.

In PL/I, the alignment of parameters is determined by the use of the ALIGNED
and UNALIGNED attributes. For best results, all parameters passed between PL/I
and COBOL routines should be declared using the ALIGNED attribute. The
equivalent specification in COBOL is the SYNCHRONIZED clause. See IBM PL/I
for VSE/ESA Language Reference for details about the ALIGNED attribute and IBM
COBOL for VSE/ESA Language Reference for details about the SYNCHRONIZED
clause.

COBOL and PL/I Alignment Requirements

COBOL Alignment: COBOL structures are mapped as follows. Working from the
beginning, each item is aligned to its required boundary in the order in which it is
declared. The structure starts on a doubleword boundary.

If you specify the SYNCHRONIZED phrase, then BINARY and floating-point data
items are aligned on halfword, fullword, or doubleword boundaries, depending on
their length. If SYNCHRONIZED is not specified, then all data items are aligned
on byte boundary only.

PL/I Alignment: PL/I structures are mapped by a method that minimizes the
unused bytes in the structure. Simply put, the method used is to first align items
in pairs, moving the item with the lesser alignment requirement as close as
possible to the item with the greater alignment requirement. The method is
described in full in IBM PL/I for VSE/ESA Language Reference

Examples of Alignment: Consider, for example, a structure consisting of a single
character and a fullword fixed binary item. The fullword fixed binary item has a
fullword alignment requirement; the character has a byte alignment requirement.
In PL/I, ALIGNED is the default, and the structure is declared as follows:

58 LE/VSE V1R4.6 Writing ILC Applications

DCL 1 A,
2 B CHAR(1),
2 C FIXED BINARY(31,0);

and is held like this:

In COBOL, using SYNCHRONIZED, the structure would be declared as follows:
01 A SYNCHRONIZED.

02 B PIC X DISPLAY.
02 C PIC S9(9) BINARY.

and is held like this:

In COBOL, without SYNCHRONIZED, the structure would be declared as follows:
01 A.

02 B PIC X.
02 C PIC S9(9) USAGE BINARY.

and is held like this:

How to Map Aggregates
When passing aggregates between COBOL and PL/I, you should ensure that the
storage layout matches in each HLL. Also, be sure to completely declare every byte
in the aggregate so that there are no open fields.

HLL facilities provide listings of the aggregate elements to help you perform the
mapping. The COBOL MAP compiler option and PL/I AGGREGATE compiler
option provide a layout of aggregates.

┌─── fullword boundary
│
�

┌───┬───────────────┐
│ B │ C │
├───┼───┬───┬───┬───┤
│ │ │ │ │ │ (byte markers)
� � � � � �

┌──── doubleword boundary
│ ┌─── fullword boundary
│ │
� �
┌───┬───────────────┬───────────────┐
│ B │ 3 bytes │ C │
├───┼───┬───┬───┬───┼───┬───┬───┬───┤
│ │ │ │ │ │ │ │ │ │ (byte markers)
� � � � � � � � � �

┌────── doubleword boundary
│
│ ┌──── fullword boundary
� �
┌───┬───────────────┐
│ B │ C │
├───┼───┬───┬───┬───┤
│ │ │ │ │ │ (byte markers)
� � � � � �

Chapter 4. Communicating between COBOL and PL/I 59

Arrays in PL/I map to tables (OCCURS clause) in COBOL.

The options in the entry declaration that inhibit or restrict the remapping of data
aggregates in PL/I are listed below:

NOMAP
Specifies that a dummy argument is not created by PL/I. The aggregate is
passed by reference to the invoked routine.

NOMAPIN
Specifies that if a dummy argument is created by PL/I, it is not initialized
with the values of the aggregate.

NOMAPOUT
Specifies that if a dummy argument is created by PL/I, its values are not
assigned by the aggregate upon return to the invoking routine.

ARGn Applies to the NOMAP, NOMAPIN, and NOMAPOUT options. It specifies
arguments to which these options apply. If ARGn is omitted, a specified
option applies to all arguments.

Return Codes
The passing of return codes from a COBOL subroutine to PL/I using the
RETURN-CODE special register is supported as illustrated in the example
“Halfword Integer” on page 63.

However, any return code set in a PL/I subroutine (using the PLIRETC function or
the RETURN statement) is ignored when control is returned to a calling COBOL
routine. To return any information from a called PL/I routine to a calling COBOL
routine, a suitably declared/defined argument passed by reference can be used.
For example, to match the implicit declaration of the COBOL :RETURN-CODE
special register, use a fullword integer argument. In the illustration “Fullword
Integer” on page 61, the argument “X” could be used to pass back the return code.

Data Equivalents
This section describes how PL/I and COBOL data types correspond to each other.

Equivalent Data Types—COBOL to PL/I
The following examples illustrate how COBOL and PL/I routines within a single
ILC application might code the same data types.

Halfword Integer

Sample COBOL Usage PL/I Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. CSFB15.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(4) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 16 to X.
CALL 'PTFB15' USING X.
DISPLAY X
GOBACK.

END PROGRAM CSFB15.

%PROCESS MAR(1,72);
PTFB15: Proc(X) Options(Cobol);

Dcl SYSPRINT file;
Dcl X Fixed Binary(15,0);
Put Skip List('X =', X);
X = X + 1;

End;

60 LE/VSE V1R4.6 Writing ILC Applications

Output:
X = 16
0017

Fullword Integer

Sample COBOL Usage PL/I Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. CSFB31.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 5 to X.
CALL 'PTFB31' USING X.
DISPLAY X
GOBACK.

END PROGRAM CSFB31.

%PROCESS MAR(1,72);
PTFB31: Proc (X) Options(COBOL);

Dcl SYSPRINT file;
Dcl X Fixed Binary(31);
Put Skip List('X =', X);
X = X + 1;

End;

Output:
X = 5
000000006

Single-Precision Floating Point

Sample COBOL Usage PL/I Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. CSFTD6.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X USAGE IS COMPUTATIONAL-1.
PROCEDURE DIVISION.

MOVE 16 TO X.
CALL 'PTFTD6' USING X.
DISPLAY X
GOBACK.

END PROGRAM CSFTD6.

%PROCESS MAR(1,72);
PTFTD6: Proc (X) Options(COBOL);

Dcl SYSPRINT file;
Dcl X Float Decimal(6);
Put Skip List('X =', X);
X = X + 1;

End;

Output:
X = 1.60000E+01
.17000000E 02

Chapter 4. Communicating between COBOL and PL/I 61

Double-Precision Floating Point

Sample COBOL Usage PL/I Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. CSFTD16.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X USAGE IS COMPUTATIONAL-2.
PROCEDURE DIVISION.

MOVE 0 TO X.
CALL 'PTFTD16' USING X.
DISPLAY X
GOBACK.

END PROGRAM CSFTD16.

%PROCESS MAR(1,72);
PTFTD16: Proc (X) Options(COBOL);

Dcl SYSPRINT file;
Dcl X Float Decimal(16);
Put Skip List('X =', X);
X = X + 1;

End;

Output:
X = 0.000000000000000E+00
.10000000000000000E 01

Fixed-Length Character String

Sample COBOL Usage PL/I Subroutine

CBL RMODE(ANY),APOST
IDENTIFICATION DIVISION.
PROGRAM-ID. CTFSTR.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STR PIC X(80).
LINKAGE SECTION.
PROCEDURE DIVISION.

MOVE 'Test COBOL-PL/I message.' TO STR.
CALL 'PSFSTR' USING STR.
GOBACK.

END PROGRAM CTFSTR.

%PROCESS MAR(1,72);
PSFSTR: Proc (X) Options(COBOL);

Dcl SYSPRINT file;
Dcl X Char(80);
Put Skip List('X =', X);

End;

Output:
X = Test COBOL-PL/I message.

Equivalent Data Types—PL/I to COBOL
The following examples illustrate how COBOL and PL/I routines within a single
ILC application might code the same data types.

62 LE/VSE V1R4.6 Writing ILC Applications

Halfword Integer

Sample PL/I Usage COBOL Subroutine

%PROCESS MAR(1,72);
PSFB15: Proc Options(Main);

Dcl SYSPRINT file;
Dcl PLIRETV builtin;
Dcl X Fixed Binary(15,0);
Dcl CTFB15 external entry

Options(COBOL retcode);
X=1;
Call CTFB15(X);
Put Skip List ('X =', X, ', RC = ', PLIRETV);

End;

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CTFB15.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X PIC S9(4) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY X.
COMPUTE X = X + 1.

* Set return code 4
MOVE 4 TO RETURN-CODE.
GOBACK.

END PROGRAM CTFB15.

Output:
0001
X = 2 , RC = 4

Note: As well as showing the passing of halfword integer data between PL/I and
COBOL, this example illustrates how the return code is passed from COBOL
to PL/I.

Fullword Integer

Sample PL/I Usage COBOL Subroutine

%PROCESS MAR(1,72);
PSFB31: Proc Options(Main);

Dcl SYSPRINT file;
Dcl X Fixed Binary(31);
Dcl CTFB31 external entry

Options(COBOL);
X=1;
Call CTFB31(X);
Put Skip List ('X =', X);

End;

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CTFB31.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY X.
COMPUTE X = X + 1.
GOBACK.

END PROGRAM CTFB31.

Output:
000000001
X = 2

Single-Precision Floating Point

Sample PL/I Usage COBOL Subroutine

%PROCESS MAR(1,72);
PSFTD6: Proc Options(Main);

Dcl SYSPRINT file;
Dcl X Float Decimal(6);
Dcl CTFTD6 external entry

Options(COBOL);
X=1;
Call CTFTD6(X);
Put Skip List ('X =', X);

End;

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CTFTD6.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X USAGE IS COMP-1.
PROCEDURE DIVISION USING X.

DISPLAY X.
COMPUTE X = X + 1.
GOBACK.

END PROGRAM CTFTD6.

Chapter 4. Communicating between COBOL and PL/I 63

Output:
.10000000E 01
X = 2.00000E+00

Double-Precision Floating Point

Sample PL/I Usage COBOL Subroutine

%PROCESS MAR(1,72);
PSFTD16: Proc Options(Main);

Dcl SYSPRINT file;
Dcl X Float Decimal(16);
Dcl CTFTD16 external entry

Options(COBOL);
X=1;
Call CTFTD16(X);
Put Skip List ('X =', X);

End;

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CTFTD16.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X USAGE IS COMP-2.
PROCEDURE DIVISION USING X.

DISPLAY X.
COMPUTE X = X + 1.
GOBACK.

END PROGRAM CTFTD16.

Output:
.10000000000000000E 01
X = 2.000000000000000E+00

Fixed-Length Character String

Sample PL/I Usage COBOL Subroutine

%PROCESS MAR(1,72);
PSFSTR: Proc Options(Main);

Dcl SYSPRINT file;
Dcl Str Char(80);
Dcl CTFSTR external entry

Options(COBOL);
Str = 'Test PL/I-COBOL message.';
Call CTFSTR(Str);

End;

CBL RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CTFSTR.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
01 STR PIC X(80).
PROCEDURE DIVISION USING STR.

DISPLAY STR.
GOBACK.

END PROGRAM CTFSTR.

Output:
Test PL/I-COBOL message.

Data Type Equivalents When TRUNC(BIN) is Specified
If you specify the COBOL compiler option TRUNC(BIN), the following data types
are equivalent between PL/I and COBOL:

Table 23. Equivalent Data Types between PL/I and COBOL When TRUNC(BIN) Compiler
Option Specified

PL/I COBOL

REAL FIXED BINARY(31,0) PIC S9(9) USAGE IS BINARY PIC S9(8) USAGE IS
BINARY PIC S9(7) USAGE IS BINARY PIC S9(6)
USAGE IS BINARY PIC S9(5) USAGE IS BINARY

REAL FIXED BINARY(15,0) PIC S9(4) USAGE IS BINARY PIC S9(3) USAGE IS
BINARY PIC S9(2) USAGE IS BINARY PIC S9(1)
USAGE IS BINARY

64 LE/VSE V1R4.6 Writing ILC Applications

Name Scope of External Data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known.

The name scope of external data under COBOL is the enclave. Under PL/I, it is the
phase. Figure 21 and Figure 22 on page 66 illustrate these differences.

Because the name scope for COBOL and PL/I is different, PL/I external data and
COBOL EXTERNAL data—both reentrant and non-reentrant—do not map to each
other, regardless of whether you attempt to share the data within the same phase
or across different phases. External variables with the same name are considered
separate between COBOL and PL/I.

If your application relies on the separation of external data, however, do not give
the data the same name in both languages within a single application. By giving
the data in each phase a different name, you can change the language mix in the
application later, and your application will still behave as you expect it to.

In Figure 21, COBOL routines 1, 2, and 3 comprise a COBOL run unit (an LE/VSE
enclave). EXTERNAL data declared in COBOL routine 1 maps to that declared in
COBOL routine 2 in the same phase. When a dynamic call to COBOL routine 3 in
another phase is made, the EXTERNAL data still maps, because the name scope of
EXTERNAL data in COBOL is the enclave.

COBOL Routine 1 COBOL Routine 2 COBOL Routine 3
┌───────────────────┬───────────────────┐ ┌────────────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ X │ │ │
│ X │ . │ -------------�│ │
│ . │ . │ Dynamic Call │ │
│ . │ . │ │ │
│ . │ . │ │.X │
│ . │ . │ . │
│ . │ . │ .│ │
└──────.────────────┴───.───────────────┴ . └────────────────────┘

 . .
 .

└────────.─────Phase────.───────────────┘ . └────────Phase───────┘

. . .
┌────────────────────────┐.
│ Storage │
└────────────────────────┘

Figure 21. Name Scope of External Variables for COBOL Dynamic CALL

Chapter 4. Communicating between COBOL and PL/I 65

The name scope of external data in PL/I is the phase. In Figure 22, external data
declared in PL/I routine 1 maps to that declared in PL/I routine 2 in the same
phase. The fetched PL/I Routine 3 in another phase cannot share external data
with Routine 1 or Routine 2.

Name Space of External Data
In programming languages, the name space is defined as the portion of a phase
within which a particular declaration applies or is known. Figure 23 and Figure 24
on page 67 illustrates that, like the name scope, the name space of external data
differs between PL/I and COBOL.

PL/I Routine 1 PL/I Routine 2 PL/I Routine 3
┌────────────────────┬────────────────────┐ ┌────────────────────┐
│ │ │ │ │
│ │ │ │ │
│ │ X │ │ │
│ X │ . │ -------�│ │
│ . │ . │ Fetch/ │ │
│ . │ . │ Call │ │
│ . │ . │ │ │
│ . │ . │ │ │
│ . │ . │ │ │
└──────.─────────────┴───.────────────────┴ └────────────────────┘

 . .

└────────.─────Phase─────.────────────────┘ └─────────Phase──────┘

. .
┌────────────────────────┐
│ Storage │
└────────────────────────┘

Figure 22. Name Scope of External Variables for PL/I Fetch

COBOL Routine 1 COBOL Routine 2
┌──────────────┬──────────────┐
│ │ │
│ │ │
│ │ X │
│ X │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
└──────.───────┴───.──────────┘

 . .

└────────.─────────.──Phase───┘

. .
┌────────────────────────┐
│ Storage │
└────────────────────────┘

Figure 23. Name Space of External Data for COBOL Static CALL to COBOL

66 LE/VSE V1R4.6 Writing ILC Applications

Figure 23 and Figure 24 illustrate that within the same phase, the name space of
COBOL routines is the same. However, the name spaces of a COBOL routine and a
PL/I routine within the same phase are not the same. If you give external data the
same name in both languages, an incompatibility in external data mapping can
occur in the future.

File Sharing
Except for the file specified by the LE/VSE MSGFILE run-time option, LE/VSE
provides no support for files that are open in COBOL and PL/I at the same time.
You must manage all such files to ensure that no conflicts arise. Performing I/O
operations on the same filename, other than the one specified by the LE/VSE
MSGFILE run-time option, might cause abnormal termination or data corruption of
the file.

You can use PL/I to read from or write to a file that was previously created using
COBOL, and vice versa, by specifying the COBOL option of the ENVIRONMENT
attribute on the PL/I file declaration. However, if structures are used in a file,
mapping can be different, as described in “Aggregates” on page 58. When
structures are in a file and you do not know whether the mapping is the same,
both COBOL and PL/I structures are mapped. Then the object module transfers
the data between structures immediately after reading the data for input and
immediately before writing the data for output.

During compilation, the PL/I compiler examines the record variable to see if there
are any structures. If there are no structures, no further action is taken. If there are
structures, the compiler tests to see if the mapping of the structure(s) is the same in
PL/I and COBOL. If the mapping is the same, no action is required. If the
compiler cannot determine that the mapping is the same, or if the structure is
adjustable, both structures will be mapped.

When the compiler reformats the data, and when a record I/O statement involving
a file with the COBOL option is executed, the following actions take place:

INPUT
The data is read into a structure that has been mapped using the COBOL
mapping algorithm and assigned to a PL/I mapped structure.

COBOL Routine 1 PL/I Routine 2
┌────────────────┬─────────────────┐
│ │ │
│ │ │
│ │ X │
│ X │ . │
│ , │ . │
│ . │ . │
│ . │ . │
│ . │ . │
│ . │ . │
└──.─────────────┴───────────.─────┘

 . .

└──.────────────Phase────────.─────┘

. .
┌────────────────┐┌────────────────┐
│ Storage ││ Storage │
└────────────────┘└────────────────┘

Figure 24. Name Space of External Data in COBOL Static Call to PL/I

Chapter 4. Communicating between COBOL and PL/I 67

OUTPUT
Before the output takes place, the data in the PL/I structure is assigned to
a structure mapped for COBOL. The output to the file then takes place
from the second structure.

For more information on the COBOL option, see IBM PL/I for VSE/ESA
Programming Guide

Directing Output from ILC Applications to MSGFILE
Under LE/VSE, COBOL run-time messages and other related output is directed to
the destination specified in the LE/VSE run-time option MSGFILE. User-specified
output, such as output from DISPLAY UPON SYSOUT, is directed to the
destination specified in the COBOL OUTDD compiler option, which defaults to
SYSOUT.

Since the default destination for the LE/VSE MSGFILE is SYSLST, and the default
OUTDD filename SYSOUT is treated as SYSLST also, all output from COBOL is by
default directed to the same destination and will thus be interspersed. To separate
run-time messages and other related output from the user-specified output, the
filename specified in the LE/VSE MSGFILE run-time option must be different from
the filename specified in the COBOL OUTDD compiler option. See IBM COBOL for
VSE/ESA Programming Guide for details of using the OUTDD compiler option.

Note: The VS COBOL II compiler under VSE does not support the OUTDD
compiler option. When this compiler is used, all output from the DISPLAY
statement is sent to SYSLST.

Under LE/VSE, PL/I run-time output such as run-time messages and ON
condition SNAP output is directed to the destination specified in the LE/VSE
run-time option MSGFILE. User-specified output, such as the output of the PUT
SKIP LIST statement, remains directed to the PL/I STREAM PRINT file SYSPRINT.

Since the default destination for the LE/VSE MSGFILE and the default destination
for SYSPRINT are both SYSLST, all output from PL/I is by default directed to the
same destination and will thus be interspersed. To separate the output, either
SYSPRINT or the LE/VSE MSGFILE must be directed to a file different from the
other. Specifying MSGFILE(SYSPRINT) under LE/VSE has no effect unless
SYSPRINT has been declared using a different destination to the one used by the
LE/VSE MSGFILE.

Note: In both COBOL and PL/I, when run-time output and user-specified output
from one or both languages is directed to the same destination such as
SYSLST, each language must manage its own I/O buffers, line counters, etc.,
for its own user-specified output.

For additional information regarding the LE/VSE MSGFILE run-time option, see
LE/VSE Programming Guide.

COBOL—PL/I Condition Handling
This section offers two scenarios of condition handling behavior in a COBOL–PL/I
ILC application. If an exception occurs in a COBOL routine, the set of possible
actions is as described in “Exception Occurs in COBOL” on page 70. If an
exception occurs in a PL/I routine, the set of possible actions is as described in
“Exception Occurs in PL/I” on page 72.

68 LE/VSE V1R4.6 Writing ILC Applications

Keep in mind that if there is a PL/I routine currently active on the stack, PL/I
language semantics can be applied to handle conditions that occur in non-PL/I
routines within an ILC application. For example, PL/I semantics apply to LE/VSE
hardware conditions that map directly to PL/I conditions such as ZERODIVIDE,
even if they occur in a non-PL/I routine. Also, PL/I treats any unknown condition
of severity 2 or greater as the ERROR condition. In a case in which a
COBOL-specific condition of severity 2 or greater is passed to a PL/I stack frame,
an ERROR ON-unit can handle it on the first pass of the stack.

However, some conditions can be handled only by the HLL of the routine in which
the exception occurred. Two examples are:
v Conditions raised using the PL/I statement SIGNAL are PL/I-specific conditions

and can be handled only by PL/I.
v In a COBOL routine, if a statement has a condition handling clause added to a

verb (such as ON EXCEPTION), the condition is handled within COBOL. For
example, the ON SIZE clause of a COBOL DIVIDE verb (which includes the
logical equivalent of zero divide condition) is handled completely within
COBOL.

For a detailed description of LE/VSE condition handling, see LE/VSE Programming
Guide.

Enclave-Terminating Language Constructs
Enclaves might be terminated due to reasons other than an unhandled condition of
severity 2 or greater. HLL constructs that cause the termination of a single
language enclave also cause the termination of a COBOL–PL/I enclave. The
language construct that terminates the enclave can be issued from either a COBOL
or PL/I routine.

COBOL
The COBOL language constructs that cause the enclave to terminate are:
v A STOP RUN

COBOL’s STOP RUN is equivalent to the PL/I STOP statement. If you code a
COBOL STOP RUN statement, the T_I_S (Termination Imminent Due to STOP)
condition is raised.

v A call to CEE5ABD
Calling CEE5ABD causes T_I_U (Termination Imminent due to an Unhandled
condition) to be signaled. Condition handlers are given a chance to handle the
abend. If the abend remains unhandled, normal LE/VSE termination activities
occur. For example, the LE/VSE assembler user exit gains control.
User-written condition handlers written in COBOL must be compiled with
COBOL/VSE.

PL/I
The PL/I language constructs that cause the enclave to terminate are:
v A STOP statement, or an EXIT statement

If you code a STOP or EXIT statement, the T_I_S (Termination Imminent Due to
STOP) condition is raised.

v A call to PLIDUMP with the S or E option
If you call PLIDUMP with the S or E option, neither termination imminent
condition is raised before the enclave is terminated. See LE/VSE Debugging Guide
and Run-Time Messages for syntax of the PLIDUMP service.

Chapter 4. Communicating between COBOL and PL/I 69

Exception Occurs in COBOL
This scenario describes the behavior of an application that contains a COBOL and
a PL/I routine. Refer to Figure 25 throughout the following discussion.

In this scenario, a PL/I main routine invokes a COBOL subroutine. An exception
occurs in the COBOL subroutine. The stack contains what is shown in Figure 25.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, COBOL determines whether the exception that

occurred should be handled as a condition.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step, described below, takes place.
2. If a user-written condition handler has been registered using CEEHDLR on the

COBOL stack frame, it is given control.
If it issues a resume, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
Two areas to watch out for here are resuming from an IBM® condition of
severity 2 or greater (see the chapter on coding a user-written condition
handler in LE/VSE Programming Guide) and moving the resume cursor in an
application that contains a COBOL routine (see “GOTO Out-of-Block and Move
Resume Cursor” on page 73).

� �
│ │
│ │
│───────────────────┤
│ │
│ COBOL subroutine│
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ COBOL semantics │
│───────────────────┤
│ │
│ PL/I main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ PL/I semantics │
├───────────────────┤
│ │
│ │
│ │
│ ───────────────┤
│ COBOL defaults │
│ ───────────────┤
│ PL/I defaults │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 25. Stack Contents When the Exception Occurs in COBOL

70 LE/VSE V1R4.6 Writing ILC Applications

In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. No user-written condition handlers can be registered on the PL/I stack frame,
because they cannot be written in PL/I.
If a PL/I ON-unit on the PL/I stack frame corresponds to the condition being
processed, however, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Processing continues at the label of the GOTO.
Be careful when issuing a GOTO out-of-block in an application that contains a
COBOL routine; see “GOTO Out-of-Block and Move Resume Cursor” on page
73 for more information.
If the ON-unit ends, the PL/I normal return action occurs.
In this example, there is not an ON-unit established for the condition, so the
condition is percolated.

4. After all stack frames have been visited, and if the condition is COBOL-specific
(with a facility ID of IGZ), the COBOL default action occurs. Otherwise, the
LE/VSE default actions take place.

5. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

LE/VSE default actions take place, as described in Table 27 on page 99.
Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass of the stack is
made to look for ERROR ON-units or user-written condition handlers. If an
ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found
then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, both
FINISH ON-units and user-written condition handlers can be run if the stack
frames in which they are established are reached.

v If no condition handler moves the resume cursor and issues a resume,
LE/VSE terminates the thread.

Chapter 4. Communicating between COBOL and PL/I 71

Exception Occurs in PL/I
This scenario describes the behavior of an application that contains a PL/I and a
COBOL routine. Refer to Figure 26 throughout the following discussion.

In this scenario, a COBOL main routine invokes a PL/I subroutine. An exception
occurs in the PL/I subroutine. The stack contains what is shown in Figure 26.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, PL/I determines if the exception that occurred should

be handled as a condition according to the PL/I rules of enablement.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step, described below, takes place.
2. No user-written condition handlers can be registered using CEEHDLR on the

PL/I stack frame, because they cannot be registered in PL/I.
3. If an ON-unit that corresponds to the condition being processed is established

on the PL/I stack frame, however, it is given control. If it issues a GOTO
out-of-block, the condition handling step ends. Processing continues at the label
of the GOTO. You must be careful when issuing a GOTO out-of-block in an
application that contains a COBOL routine; see “GOTO Out-of-Block and Move
Resume Cursor” on page 73 for more information.
In this example, no ON-unit is established for the condition, so the condition is
percolated.

� �
│ │
│ │
│───────────────────┤
│ │
│ PL/I subroutine │
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ PL/I semantics │
│───────────────────┤
│ │
│ COBOL main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ COBOL semantics │
├───────────────────┤
│ │
│ │
│ │
│ ───────────────┤
│ PL/I defaults │
│ ───────────────┤
│ COBOL defaults │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 26. Stack Contents When the Exception Occurs in PL/I

72 LE/VSE V1R4.6 Writing ILC Applications

4. If a user-written condition handler registered using CEEHDLR is present on the
COBOL stack frame, it is given control. (User-written condition handlers
written in COBOL must be compiled with COBOL/VSE.) If it successfully
issues a resume, with or without moving the resume cursor, the condition
handling step ends. Processing continues in the routine to which the resume
cursor points. Note that you must be careful when moving the resume cursor
in an application that contains a COBOL routine. See “GOTO Out-of-Block and
Move Resume Cursor” for details.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

5. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

LE/VSE default actions take place, as described in Table 27 on page 99.
Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass is made of
the stack to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found
then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, both
FINISH ON-units and user-written condition handlers can be run if the stack
frames in which they are established are reached.

v If no condition handler moves the resume cursor and issues a resume,
LE/VSE terminates the thread.

GOTO Out-of-Block and Move Resume Cursor
When a GOTO out-of-block or a call to CEEMRCR causes a routine to be removed
from the stack, a “non-return style” termination of the routine occurs. Multiple
routines can be terminated by a non-return style termination independent of the
number of ILC boundaries that are crossed. If one of the routines that is
terminated by the non-return style is a COBOL routine, the COBOL routine can be
re-entered via another call path.

If the terminated routine is not one of the following, the routine is not deactivated.
A recursion error is raised if you attempt to enter the routine again.
v A VS COBOL II or COBOL/VSE routine compiled with the CMPR2 option
v A VS COBOL II or COBOL/VSE routine compiled with the NOCMPR2 option

that does not use nested routines
v A VS COBOL II or COBOL/VSE routine compiled with the NOCMPR2 option

that does not use the combination of the INITIAL attribute, nested routines, and
file processing in the same compilation unit

In addition, if the COBOL routine has the INITIAL attribute and contains files, the
files are closed. (COBOL supports VSAM and SAM files and these files are closed.)

Chapter 4. Communicating between COBOL and PL/I 73

Sample PL/I–COBOL Application

IBMPCB

*PROCESS MACRO;
PL1CBL: PROC OPTIONS(MAIN);
/*Module/File Name: IBMPCB

/***/
/* FUNCTION : Interlanguage communication call to a COBOL */
/* program. */
/* */
/* This example illustrates an interlanguage call from */
/* a PL/I main program to a COBOL subprogram. */
/* The parameters passed across the call from PL/I to */
/* COBOL have the following characteristics: */
/* */
/* Data Type PL/I Attributes COBOL Data Description */
/* ---------------- -------------------- ---------------------- */
/* Halfword Integer REAL FIXED BIN(15,0) PIC S9999 USAGE COMP */
/* Fullword Integer REAL FIXED BIN(31,0) PIC S9(9) USAGE COMP */
/* Packed Decimal REAL FIXED DEC(m,n) PIC S9(m-n).9(n) COMP-3 */
/* Short Floating REAL FLOAT DEC(6) USAGE COMP-1 */
/* or REAL FLOAT BIN(21) */
/* Long Floating REAL FLOAT DEC(16) USAGE COMP-2 */
/* or REAL FLOAT BIN(53) */
/* Character string CHARACTER(n) PIC X(n) USAGE DISPLAY */
/* DBCS string GRAPHIC(n) PIC G(n) USAGE DISPLAY-1 */
/* */
/* Note 1: in COBOL, the usages COMPUTATIONAL-1 and COMP-1 */
/* are equivalent. */
/* Note 2: in COBOL, the usages COMPUTATIONAL-2 and COMP-2 */
/* are equivalent. */
/* Note 3: in COBOL, the usages FIXED-DECIMAL, COMP-3, and */
/* COMPUTATIONAL-3 are all equivalent. */
/* Note 4: in COBOL, the usages COMP, COMPUTATIONAL, COMP-4, */
/* COMPUTATIONAL-4, and BINARY are all equivalent. */
/* Note 5: character strings passed must NOT have the VARYING */
/* attribute in PL/I (both SBCS and DBCS). */
/* Note 6: in COBOL, the reserved word USAGE is optional. */
/* Note 7: in PL/I, the attributes BIN and BINARY are equivalent. */
/* Note 8: in PL/I, the attributes DEC and DECIMAL are equivalent. */
/* Note 9: in PL/I, attributes CHAR and CHARACTER are equivalent. */
/* */
/***/

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

/**/
/* DECLARE ENTRY FOR THE CALL TO COBOL */
/**/
DCL PL1CBSB EXTERNAL ENTRY(

/*1*/ FIXED BINARY(15,0),
/*2*/ FIXED BINARY(31,0),
/*3*/ FIXED DECIMAL(5,3),
/*4*/ FLOAT DECIMAL(6),
/*5*/ FLOAT DECIMAL(16),
/*6*/ CHARACTER(23),
/*7*/ GRAPHIC(2))

OPTIONS(COBOL);

Figure 27. PL/I Routine Calling COBOL Subroutine (Part 1 of 2)

74 LE/VSE V1R4.6 Writing ILC Applications

/**/
/* Declare parameters: */
/**/
DCL PLI_INT2 FIXED BINARY(15,0) INIT(15);
DCL PLI_INT4 FIXED BINARY(31,0) INIT(31);
DCL PLI_PD53 FIXED DECIMAL(5,3) INIT(-12.345);
DCL PLI_FLOAT4 FLOAT DECIMAL(6) INIT(53.99999);
DCL PLI_FLOAT8 FLOAT DECIMAL(16) INIT(3.14151617);
DCL PLI_CHAR23 CHARACTER(23) INIT('PASSED CHARACTER STRING');
DCL PLI_DBCS GRAPHIC(2) INIT('40404040'GX);
/**/
/* PROCESS STARTS HERE */
/**/
PUT SKIP LIST('***');
PUT SKIP LIST('PL/I Calling COBOL example is now in motion');
PUT SKIP LIST('***');
PUT SKIP;
CALL PL1CBSB(PLI_INT2, PLI_INT4, PLI_PD53,

PLI_FLOAT4, PLI_FLOAT8, PLI_CHAR23, PLI_DBCS);
PUT SKIP LIST('PL/I calling COBOL subprogram example ended');

END PL1CBL;

Figure 27. PL/I Routine Calling COBOL Subroutine (Part 2 of 2)

Chapter 4. Communicating between COBOL and PL/I 75

IGZTPCB

CBL LIB,APOST,NODYNAM
*Module/File Name: IGZTPCB

**
** PL1CBSB - COBOL language subroutine invoked by the ***
** PL/I program PL1CBL. ***
** ***
** This is an example of a COBOL subroutine that is called ***
** from a PL/I main program. See the calling PL/I program ***
** for a table of the PL/I data formats and corresponding ***
** COBOL data formats. The arguments received are compared ***
** to their expected values, and any discrepancies reported. ***
** ***
**
IDENTIFICATION DIVISION.
PROGRAM-ID. PL1CBSB.

DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
77 COBOL-INT2 PIC S9999 BINARY VALUE 15.
77 COBOL-INT4 PIC S9(9) BINARY VALUE 31.
77 COBOL-PD53 PIC S9(2)V9(3) COMP-3 VALUE -12.345.
77 COBOL-FLOAT4 COMP-1 VALUE 53.99999E0.
77 COBOL-FLOAT8 COMP-2 VALUE 3.14151617E0.
77 COBOL-CHAR23 PIC X(23) DISPLAY

VALUE 'PASSED CHARACTER STRING'.
77 COBOL-DBCS PIC G(2) DISPLAY-1 VALUE SPACES.
77 FLOAT8-DIFF COMP-2.
LINKAGE SECTION.
01 INT2-ARG PIC S9999 BINARY.
01 INT4-ARG PIC S9(9) BINARY.
01 PD53-ARG PIC S9(2)V9(3) COMP-3.
01 FLOAT4-ARG COMP-1.
01 FLOAT8-ARG COMP-2.
01 CHAR23-ARG PIC X(23) DISPLAY.
01 DBCS-ARG PIC G(2) DISPLAY-1.
**
PROCEDURE DIVISION USING INT2-ARG, INT4-ARG, PD53-ARG,

FLOAT4-ARG, FLOAT8-ARG,
CHAR23-ARG, DBCS-ARG.

0001-ENTRY-FROM-PL1.
DISPLAY '***************************************'.
DISPLAY 'COBOL PROGRAM ENTERED FROM PL/I PROGRAM'.
DISPLAY '***************************************'.

**
** Compare passed arguments to initialized values. **
**

IF (INT2-ARG NOT = COBOL-INT2) THEN
DISPLAY 'Error passing PL/I FIXED BIN(15,0) to COBOL:'
DISPLAY 'Actual argument value is ' INT2-ARG
DISPLAY 'Expected value is ' COBOL-INT2

END-IF.
IF (INT4-ARG NOT = COBOL-INT4) THEN

DISPLAY 'Error passing PL/I FIXED BIN(31,0) to COBOL:'
DISPLAY 'Actual argument value is ' INT4-ARG
DISPLAY 'Expected value is ' COBOL-INT4

END-IF.
IF (PD53-ARG NOT = COBOL-PD53) THEN

DISPLAY 'Error passing PL/I FIXED DEC(5,3) to COBOL:'
DISPLAY 'Actual argument value is ' PD53-ARG
DISPLAY 'Expected value is ' COBOL-PD53

END-IF.
IF (FLOAT4-ARG NOT = COBOL-FLOAT4) THEN

Figure 28. COBOL Routine Called by a PL/I Main (Part 1 of 2)

76 LE/VSE V1R4.6 Writing ILC Applications

**
* Calculate absolute difference between short float value *
**

COMPUTE FLOAT8-DIFF = COBOL-FLOAT4 - FLOAT4-ARG
IF (FLOAT8-DIFF < 0) THEN

COMPUTE FLOAT8-DIFF = - FLOAT8-DIFF
END-IF IF (FLOAT8-DIFF > .00001E0) THEN

DISPLAY 'Error passing PL/I FLOAT DEC(6) to COBOL:'
ELSE

DISPLAY 'Warning: slight difference found when '
'passing PL/I FLOAT DEC(6) to COBOL:'

END-IF
DISPLAY 'Actual argument value is ' FLOAT4-ARG
DISPLAY 'Expected value is ' COBOL-FLOAT4

END-IF.
IF (FLOAT8-ARG NOT = COBOL-FLOAT8) THEN

**
* Calculate absolute difference between long float values *
**

COMPUTE FLOAT8-DIFF = COBOL-FLOAT8 - FLOAT8-ARG
IF (FLOAT8-DIFF < 0) THEN

COMPUTE FLOAT8-DIFF = - FLOAT8-DIFF
END-IF IF (FLOAT8-DIFF > .000000001E0) THEN

DISPLAY 'Error passing PL/I FLOAT DEC(16) to COBOL:'
ELSE

DISPLAY 'Warning: slight difference found when '
'passing PL/I FLOAT DEC(16) to COBOL:'

END-IF
DISPLAY 'Actual argument value is ' FLOAT8-ARG
DISPLAY 'Expected value is ' COBOL-FLOAT8

END-IF.
IF (CHAR23-ARG NOT = COBOL-CHAR23) THEN

DISPLAY 'Error passing PL/I CHAR(23) to COBOL:'
DISPLAY 'Actual argument value is '' CHAR23-ARG '''
DISPLAY 'Expected value is '' COBOL-CHAR23 '''

END-IF.
IF (DBCS-ARG NOT = COBOL-DBCS) THEN

DISPLAY 'Error passing PL/I GRAPHIC(23) to COBOL:'
DISPLAY 'Actual argument value is '' DBCS-ARG '''
DISPLAY 'Expected value is '' COBOL-DBCS '''

END-IF.

GOBACK.

Figure 28. COBOL Routine Called by a PL/I Main (Part 2 of 2)

Chapter 4. Communicating between COBOL and PL/I 77

78 LE/VSE V1R4.6 Writing ILC Applications

Chapter 5. Communicating between Multiple HLLs

This section describes considerations for writing ILC applications comprised of
three or more languages. One approach to writing an n-way ILC application is to
treat it as several pairwise ILC groupings within a single application. For any call
between routines written in two different HLLs, you must, at a minimum, adhere
to the restrictions described for that pair, as documented in the pairwise ILC
descriptions.

The considerations in this section apply to any combination of supported
languages within an ILC application. These common considerations are
summarized here to provide a convenient overview of writing an n-way ILC
application. For specific details, refer to the appropriate pairwise considerations
described previously.

If you are running any ILC application under CICS, you should also consult
Chapter 7, “ILC under CICS,” on page 93.

Supported Data Types
Table 24 lists those data types that are common across all supported HLLs when
passed without using a pointer. There are, in addition to those listed in this table,
additional data types supported across specific ILC pairs; these are listed in the
applicable pairwise ILC descriptions.

Table 24. Data Types Common to All Supported HLLs

C COBOL PL/I

signed long int PIC S9(9) USAGE IS BINARY Real Fixed Bin(31,0)

double COMP-2 Real Float Dec(16)

External Data
The following list describes how external data maps across the languages, as well
as how mapping is restricted:

C–COBOL
C and COBOL static external variables do not map to each other.

C–PL/I
If C is non-reentrant, then C and PL/I static external variables map by
name. If the C routine has constructed reentrancy, the C and PL/I static
external variables will map if the C routine uses
#pragma variable(...,norent) to make the specific variable non-reentrant.

COBOL–PL/I
COBOL and PL/I static external variables do not map to each other.

Condition Handling
This section describes what happens during LE/VSE condition handling and
enclave termination.

© Copyright IBM Corp. 1991, 2009 79

For a detailed description of LE/VSE condition handling, see LE/VSE Programming
Guide.

C, COBOL, and PL/I Scenario: Exception Occurs in C
This scenario describes the behavior of an application that contains C, COBOL, and
PL/I. Refer to Figure 29 throughout the following discussion.

In this example, X.COBOL invokes Y.PLI, which invokes Z.C. An exception occurs
in Z.C. The stack contains what is shown in Figure 29. No user-written condition
handlers have been registered using CEEHDLR for any stack frame, and no PL/I
ON-units have been established.

The actions taken follow the three LE/VSE condition handling steps: enablement,
condition, and termination imminent.
1. In the enablement step, it is determined whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

� �
│ │
│ │
├───────────────────┤
│ │
│ Z.C subroutine │
│ │ ─────── Exception occurs here
│ ───────────────┤
│ │
│ ───────────────┤
│ C semantics │
├───────────────────┤
│ │
│ Y.PLI subroutine │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ PL/I semantics │
├───────────────────┤
│ │
│ X.COBOL main rtn │
│ │
│ ───────────────┤
│ │
│ ───────────────┤
│ COBOL semantics │
├───────────────────┤
│ │
│ │
│ C defaults │
│ ───────────────┤
│ PL/I defaults │
│ ───────────────┤
│ COBOL defaults │
│ ───────────────┤
│ LE/VSE defaults │
└───────────────────┘

Figure 29. Stack Contents When the Exception Occurs in C

80 LE/VSE V1R4.6 Writing ILC Applications

However, the system or user abend represented by the LE/VSE message
3250 and the signal(SIGABND) is not ignored. The enclave is terminated.

v The exception is one of those listed as masked in Table 28 on page 99.
v You do not specify any action, but the default action for the condition is

SIG_IGN (see Table 28 on page 99).
v You are running under CICS and a CICS handler is pending.
If none of these things are true, the condition is enabled and processed as a
condition.

2. If a user-written condition handler is registered using CEEHDLR on the Z.C
stack frame, it receives control. If it issues a resume, the condition handling
step ends. Processing continues in the routine to which the resume cursor
points.
In this example, there is no user-written condition handler registered, so the
condition is percolated.

3. If a C signal handler has been registered for the condition on the Z.C stack
frame, it is given control. If it issues a resume or a call to longjmp(), the
condition handling step ends. Processing resumes in the routine to which the
resume cursor points.
In this example, no signal handler is registered, so the condition is percolated.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 28 on page 99) is to terminate, the condition is
percolated.

5. No user-written condition handlers can be registered using CEEHDLR on the
Y.PLI stack frame, because they cannot be written in PL/I. If an ON-unit that
corresponds to the condition being processed exists on the Y.PLI stack frame,
however, it is given control. If it issues a GOTO out of block, the condition
handling step ends. Execution resumes at the label of the GOTO.
In this example, no ON-unit has been established for the condition on the Y.PLI
stack frame, so the condition is percolated.

6. If a user-written condition handler has been registered using CEEHDLR on the
X.COBOL stack frame, it is given control. (User-written condition handlers
written in COBOL must be compiled with COBOL/VSE.) If it issues a resume,
with or without moving the resume cursor, the condition handling step ends.
Processing continues in the routine to which the resume cursor points.

7. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then

LE/VSE default actions take place, as described in Table 27 on page 99.
Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass of the stack is
made to look for ERROR ON-units or user-written condition handlers. If an
ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found
then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination

Chapter 5. Communicating between Multiple HLLs 81

imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit or user-written condition handler is run if the stack frame in which
it is established is reached.

v If no condition handler moves the resume cursor and issues a resume,
LE/VSE terminates the thread.

User handlers that you register using CEEHDLR must be written in the same
language you are using to do the registration.

Enclave-Terminating Constructs
Enclave termination can occur due to reasons other than an unhandled condition
of severity 2, 3, or 4. These include:
v A language STOP-like construct such as a C abort(), raise(SIGABRT), exit()

function call, COBOL STOP RUN, or PL/I STOP or EXIT statement.
When one of these statements is encountered, the T_I_S (Termination Imminent
Due to STOP) condition is signaled.

v A return from the main routine.
v An LE/VSE-initiated abend.
v A user-requested abend (call to CEE5ABD).

You can call CEE5ABD to request an abend either with or without clean-up. If
the abend is issued without clean-up, T_I_U (Termination Imminent due to an
Unhandled condition) is not raised. See LE/VSE Programming Reference for more
information about the CEE5ABD callable service.
If you call CEE5ABD and request an abend with clean-up, T_I_U is signaled.
Condition handlers are given a chance to handle the abend. If the abend remains
unhandled, normal LE/VSE termination activities occur. For example, the C
atexit list is honored if a C routine is present on the stack, and the LE/VSE
assembler user exit gains control.

82 LE/VSE V1R4.6 Writing ILC Applications

Sample N-Way ILC Application

IBMNWAY

*Process lc(101),s,map,list,stmt,a(f),ag;
NWAYILC: PROC OPTIONS(MAIN);
/*Module/File Name: IBMNWAY

/***/
/* FUNCTION : Interlanguage communications call to a C */
/* program that calls a COBOL program. */
/* */
/* Our example illustrates a 3-way interlanguage call from */
/* a PL/I main program to a C routine and from C to a */
/* COBOL subroutine. PL/I initializes an array to zeros. */
/* PL/I passes the array and an empty character string to */
/* C program NWAY2C. NWAY2C fills the numeric array with */
/* random numbers and a C character array with lowercase */
/* letters. A COBOL program, NWAY2CB, is called to */
/* convert the characters to uppercase. The random */
/* numbers array and the string of uppercase characters */
/* are returned to the PL/I main program and printed. */
/***/
/**/
/* DECLARES FOR THE CALL TO C */
/**/
DCL J FIXED BIN(31,0);
DCL NWAY2C EXTERNAL ENTRY RETURNS(FIXED BIN(31,0));
DCL RANDS(6) FIXED BIN(31,0);
DCL STRING CHAR(80) INIT('Initial String Value');
DCL ADDR BUILTIN;
RANDS = 0;
PUT SKIP LIST('NWAYILC STARTED');
/**/
/*Pass array and an empty string to C */
/**/
J = NWAY2C(ADDR(RANDS), ADDR(STRING));
PUT SKIP LIST ('Returned from C and COBOL subroutines');
IF (J = 999) THEN DO;
PUT EDIT (STRING) (SKIP(1) , A(80));
PUT EDIT ((RANDS(I) DO I = 1 TO HBOUND(RANDS,1)))

(SKIP(1) , F(10));
END;
ELSE DO;
PUT SKIP LIST('BAD RETURN CODE FROM C');

END;
PUT SKIP LIST('NWAYILC ENDED');
END NWAYILC;

Figure 30. PL/I Main Routine of ILC Application

Chapter 5. Communicating between Multiple HLLs 83

EDCNWAY

/*Module/File Name: EDCNWAY */

/**
* NWAY2C is invoked by a PL/I program. The PL/I program passes *
* an array of zeros and an UNINITIALIZED character string. *
* NWAY2C fills the array with random numbers. It fills the *
* character string with lowercase letters, calls a COBOL *
* subroutine to convert them to uppercase (NWAY2CB) and returns *
* to PL/I. The by-reference parameters are modified. *
**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#pragma linkage (NWAY2C,PLI)
#pragma linkage (NWAY2CB,COBOL)
void NWAY2CB(char *);
int NWAY2C (int *c_array[6], char *chrptr[80])
{
int *pRns ;
char *pChr ;
char string [80] = "the random numbers are";
int i, ret=999;
fprintf(stderr,"NWAY2C STARTED\n");
/**/
/* Check chrptr from PLI to verify we got what expected */
/**/
if(strncmp(*chrptr, "Initial String Value", 20))
{
fprintf(stderr,
"NWAY2C: chrptr not what expected.\n \"%s\"\n", *chrptr);

--ret;
}
/**/
/*Fill numeric array parameter with random numbers. */
/*Adjust for possible array element size difference. */
/**/
pRns = *c_array;
for (i=0; i < 6; ++i)
{

pRns[i] = rand() ;
fprintf(stderr,"pRns[%d] = %d\n",i,pRns[i]);

} /**/
/* Call Cobol to change lower case characters to upper. */
/**/
NWAY2CB(*chrptr);
if(strncmp(*chrptr, "INITIAL STRING VALUE", 20))
{
fprintf(stderr,
"NWAY2C: string not what expected.\n \"%s\"\n", *chrptr);

--ret;
}

fprintf(stderr,"NWAY2C ENDED\n");
return(ret);
}

Figure 31. C Routine Called by PL/I in a 3-Way ILC Application

84 LE/VSE V1R4.6 Writing ILC Applications

IGZTNWAY

CBL APOST
*Module/File Name: IGZTNWAY

** NWAY2CB is called and passed an 80-character *
* lowercase character string by reference. *
* The string is converted to uppercase and *
* control returns to the caller. *

ID DIVISION.
PROGRAM-ID. NWAY2CB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
77 STRING-VAL PIC X(80).
PROCEDURE DIVISION USING STRING-VAL.

DISPLAY 'NWAY2CB STARTED'.
MOVE FUNCTION UPPER-CASE (STRING-VAL)

TO STRING-VAL.
DISPLAY 'NWAY2CB ENDED'.

GOBACK.

Figure 32. COBOL Routine Called by C in a 3-Way ILC Application

Chapter 5. Communicating between Multiple HLLs 85

86 LE/VSE V1R4.6 Writing ILC Applications

Chapter 6. Communicating between Assembler and HLLs

This chapter describes LE/VSE’s support for assembler– ILC applications.
Throughout this chapter, an LE/VSE-conforming assembler routine refers to an
assembler routine coded using the CEEENTRY and associated macros, and
assembled using High Level Assembler (HLASM).

Note: For further information on using assembler under LE/VSE, refer to the:
v LE/VSE Programming Guide.
v IBM-provided samples that you can find at the z/VSE Home Page whose

URL is given in “Where to Find More Information” on page xv.

Calling Assembler from an HLL
LE/VSE-conforming assembler can be dynamically called/fetched from any
LE/VSE-conforming HLL. In addition, LE/VSE-conforming assembler can
dynamically load another routine by using the LE/VSE CEELOAD macro.

Using CEELOAD imposes restrictions on further dynamic loading or dynamic calls
or fetches, you cannot:
v Dynamically load a routine with CEELOAD that has already been dynamically

loaded by CEELOAD or been fetched or dynamically called.
v Fetch or dynamically call a routine that has already been dynamically loaded by

CEELOAD.
v CEELOAD any C routine(s) that have been prelinked. Instead, you should use

the CEEFETCH/CEERELES macros.

Results are unpredictable if these rules are violated.

The syntax of CEELOAD is described in LE/VSE Programming Guide.

Arguments are passed between HLL and assembler routines in a list of addresses.
Each address in a parameter list occupies a fullword in storage. The last fullword
in the list must have its high-order bit turned on for the last parameter address to
be recognized. Each address in a parameter list is either the address of a data item
or the address of a control block that describes a data item.

C
For assembler to call C, or vice versa, you should include the following statement
in the C code:
#pragma linkage(...,OS)

PL/I
For assembler to call PL/I, OPTIONS(BYVALUE) should be specified on the
declaration of the PL/I procedure. For PL/I to call assembler,
OPTIONS(ASSEMBLER) should be specified on the declaration of the external
assembler routine.

© Copyright IBM Corp. 1991, 2009 87

Cancelling or Releasing Assembler
An assembler routine must be released using the same language that
called/fetched it. COBOL, C, and PL/I can only CANCEL or release the assembler
routine if there is no ILC with other HLLs in the target phases.

Restrictions on the COBOL CANCEL Statement
Under certain configurations, using a CANCEL statement in an application that
consists of multiple phases with a mixture of COBOL/VSE or VS COBOL II and
assembler (LE/VSE-conforming or non-LE/VSE-conforming) routines is not
supported and can result in program checks. The following describes one such
configuration.

An application might consist of these routines:
v COBOL RTNA linked with assembler routine ASMI (further references to this

instance of ASMI are in the form ASMI(A))
v COBOL RTNX linked with assembler routine ASMI (further references to this

instance of ASMI are in the form ASMI(X))
v Assembler routine ASM
v COBOL routines RTNB, RTNC, RTND, RTNE (these routines are all contained in

the RTNB phase)

All of the COBOL routines are compiled with NODYNAM and RES. All CALLs in
the COBOL routines are static, except where RTNA calls RTNX; this is a dynamic
CALL.

The purpose of ASMI is to check if ASM is loaded, and if it is, branch to it. If ASM
is not loaded, ASMI loads it and branches to it.

The purpose of ASM is to check if RTNB is loaded, and if it is, branch to it. If
RTNB is not loaded, ASM loads it and branches to it.

The routine flow is as follows:
1. RTNA => ASMI(A) => ASM => RTNB => RTND => RTNE
2. Return to RTNA by reversing the route (all COBOL routines use GOBACK)
3. RTNA => RTNX => ASMI(X) => ASM => RTNB => RTNC => RTNE
4. Return to RTNA by reversing the route
5. RTNA then issues a CANCEL for RTNX
6. RTNA => ASMI(A) => ASM => RTNB => RTND => RTNE

Because storage is released for RTNB, RTNC, and RTNE in the scope of the
CANCEL statement in step 5, a program check results in step 6.

If you plan to use a configuration such as this, avoid the use of CANCEL or use
COBOL programming that uses dynamic calls instead of assembler language
programming, such as the combination of ASMI and ASM that uses
CDLOAD/BALR.

LE/VSE-Conforming Assembler Invoking an HLL Main Routine
When a C or PL/I main routine is called from LE/VSE-conforming assembler, the
actions in Table 25 on page 89 take place.

88 LE/VSE V1R4.6 Writing ILC Applications

Note: Unlike C and PL/I, COBOL has no mechanism to statically declare a routine
“main”; rather, a main routine is determined dynamically when a COBOL
routine is the first routine in an enclave. Therefore, it makes sense to discuss
calling a COBOL main only in the context of creating a new enclave in
which a COBOL routine is the first to run. Only parts of the following tables
apply to a COBOL main.

Table 25. What Occurs When LE/VSE-Conforming Assembler Invokes an HLL Main

Type of Assembler Invocation LE/VSE Is Up

CEELOAD macro Symbolic feedback code CEE393 is signaled.
CEELOAD cannot load a main routine.

EXEC CICS LINK and EXEC CICS XCTL Nested enclave is created.

The COBOL routine could be a main in this
case.

EXEC CICS LOAD and BALR This is not supported.

CDLOAD and BALR Symbolic feedback code CEE393 is signaled.
You cannot load and BALR a main routine
under LE/VSE.

However, this is supported in COBOL
because the COBOL routine would be a
subroutine, not a main.

Note: See LE/VSE Programming Guide for information on nested enclaves.

Non-LE/VSE-Conforming Assembler Invoking an HLL Main Routine
When a C, COBOL, or PL/I main routine is called from a non-LE/VSE-conforming
assembler routine, the actions in Table 26 take place.

Table 26. What Occurs When Non-LE/VSE-Conforming Assembler Invokes an HLL Main

Type of Assembler
Invocation LE/VSE Is Not Up LE/VSE Is Up

EXEC CICS LINK and
EXEC CICS XCTL

Initial enclave is created. Nested enclave is created.

The COBOL routine could be
a main in this case.

EXEC CICS LOAD and
BALR

This is not supported. This is not supported.

CDLOAD and BALR Initial enclave is created. Symbolic feedback code
CEE393 is signaled. You
cannot load and BALR a
main routine under LE/VSE.

However, this is supported in
COBOL because the COBOL
routine would be a
subroutine, not a main.

Note: The supported method for using assembler programs with other LE/VSE-conforming
HLL programs is to use the IBM-provided LE/VSE assembler macros. For further information,
refer to the LE/VSE Programming Guide.

Chapter 6. Communicating between Assembler and HLLs 89

Assembler Main Calling HLL Subroutines for Better Performance
To improve performance of a C, COBOL, or PL/I routine called repeatedly from
assembler, use an LE/VSE-conforming assembler routine in a preinitialized
environment, because the LE/VSE environment is maintained across calls. If the
assembler routine is not LE/VSE-conforming, the LE/VSE environment is
initialized and terminated at every call. (See LE/VSE Programming Guide for
information on creating and using preinitialization services.)

The call can be either a static call (the HLL routine is linked with the assembler
routine) or a dynamic load (using the CEEFETCH or CEELOAD macros). The
assembler routine is a main routine and the called HLL routine is a subroutine.

For example, see Figure 33 on page 91, which demonstrates an LE/VSE-conforming
assembler routine statically calling a COBOL routine.

90 LE/VSE V1R4.6 Writing ILC Applications

CEEILCOB

/ Module/File Name: CEEILCOB */

* ===
* Bring up the LE/VSE environment
* ===
CEEILCOB CEEENTRY PPA=MAINPPA

USING WORKAREA,13*
* Call the COBOL program
*

CALL ASMCOB,(X,Y) Invoke COBOL subroutine*
* Call the CEEMOUT service
*

CALL CEEMOUT,(MESSAGE,DESTCODE,FC) Dispatch message
CLC FC(8),CEE000 Was MOUT successful?
BE GOOD Yes.. skip error logic
LH 2,MSGNO No.. get message number
DUMP RC=(2) LIGHTS OUT!*

* Terminate the LE/VSE environment
*
GOOD CEETERM RC=0 Terminate with return code zero
*
* ---
*
* Data Constants and Static Variables
*
Y DC PL3'+200' 2nd parm to COBOL program (input)
MESSAGE DS 0H
MSGLEN DC Y(MSGEND-MSGTEXT)
MSGTEXT DC C'AFTER CALL TO COBOL: X='
X DS ZL6 1st parm for COBOL program (output)
MSGEND EQU *DESTCODE DC F'2' Directs message to MSGFILE
CEE000 DC 3F'0' Success condition token
FC DS 0F 12-byte feedback/condition code
SEV DS H severity
MSGNO DS H message number
CSC DS X flags - case/sev/control
CASE EQU X'C0' 11..... case (1 or 2)
SEVER EQU X'38' ..111.. severity (0 thru 4)
CNTRL EQU X'03'11 control (1=IBM FACID, 0=USER)
FACID DS CL3 facility ID
ISI DS F index into ISI block
*
MAINPPA CEEPPA Constants describing the code block*
==
* Workarea
* ==
WORKAREA DSECT

CEEDSA , Mapping of the Dynamic Save Area
CEECAA , Mapping of the Common Anchor Area
CEEEDB , Mapping of the Enclave Data Block

*
END CEEILCOB

Figure 33. LE/VSE-Conforming Assembler Routine Calling COBOL Routine

Chapter 6. Communicating between Assembler and HLLs 91

IGZTASM

*Module/File Name: IGZTASM

IDENTIFICATION DIVISION.
PROGRAM-ID. ASMCOB.

* ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
* LINKAGE SECTION.

01 X PIC +9(5).
01 Y PIC S9(5) COMP-3.

* PROCEDURE DIVISION USING X Y.
COMPUTE X = Y + 1.

*
GOBACK.

Figure 34. COBOL Routine Called from LE/VSE-Conforming Assembler

92 LE/VSE V1R4.6 Writing ILC Applications

Chapter 7. ILC under CICS

In general, LE/VSE provides the same ILC support for applications running under
CICS as for those running in a non-CICS environment. If there is any ILC within a
run unit under CICS, each compile unit must be compiled with an
LE/VSE-conforming compiler.

If you are using ILC in CICS DL/I applications, EXEC CICS DLI and CALL
xxxTDLI can only be used in programs with the same language as the main
program.

Language Pairs Supported in ILC under CICS
To understand what support LE/VSE offers your ILC application, see the
description for the specific language pair below, and the applicable ILC chapter. If
your ILC application involves multiple HLLs, see Chapter 5, “Communicating
between Multiple HLLs,” on page 79.

C and COBOL
LE/VSE supports ILC between routines written in C and COBOL under CICS as
follows:
v C routines can statically call COBOL/VSE routines.
v COBOL/VSE routines can statically call C routines.
v C routines can fetch() COBOL/VSE routines.
v COBOL/VSE routines can dynamically CALL prelinked C fetchable subroutines.
v Dynamically-called C and COBOL routines that are statically linked together

must be:
– prelinked together
– reentrant

v C routines calling COBOL routines must pass the EIB and COMMAREA as the
first two parameters if the called program has been translated.

v There is no support for ILC calls to or from routines written in
pre-LE/VSE-conforming versions of C or COBOL.

All components of your C–COBOL ILC application must be reentrant.

For more information on ILC between C and COBOL, see Chapter 2,
“Communicating between C and COBOL,” on page 3.

C and PL/I
LE/VSE supports ILC between routines written in C and PL/I VSE under CICS as
follows:
v C routines can statically call PL/I routines.
v PL/I routines can statically call C routines.
v C routines can fetch() PL/I routines that have OPTIONS(FETCHABLE)

specified.
v PL/I routines can FETCH only those C routines that have not been run through

the CICS translator. A PL/I routine cannot dynamically call a C routine that has

© Copyright IBM Corp. 1991, 2009 93

been translated because the CICS translator introduces writable static data
elements that are not capable of being initialized when the dynamic call is made.
In addition, during the FETCH of C from PL/I, the static read/write pointer is
not swapped.

v C routines calling PL/I routines must pass the EIB and COMMAREA as the first
two parameters if the called routine contains any EXEC CICS commands.

v There is no support under CICS for ILC calls to or from routines written in
pre-LE/VSE-conforming versions of C or PL/I.

All components of your C–PL/I ILC application must be reentrant.

For more information on ILC between PL/I and C, see Chapter 3, “Communicating
between C and PL/I,” on page 29.

COBOL and PL/I
LE/VSE supports ILC between routines compiled with COBOL/VSE and PL/I
VSE under CICS as follows:
v COBOL/VSE routines can statically call PL/I routines.
v PL/I routines can statically call COBOL/VSE routines.
v COBOL/VSE routines can dynamically CALL PL/I routines that have

OPTIONS(FETCHABLE) specified.
v PL/I routines can FETCH COBOL/VSE routines.
v PL/I routines calling COBOL/VSE routines must pass the EIB and COMMAREA

as the first two parameters if the called program contains any EXEC CICS
commands.

For more information on ILC between COBOL and PL/I, see Chapter 4,
“Communicating between COBOL and PL/I,” on page 55.

If there is any ILC within a run unit under CICS, each compile unit must be
compiled with an LE/VSE-conforming compiler.

There is no support for CICS for ILC calls to or from routines written in previous
versions of COBOL or PL/I.

Assembler
LE/VSE-conforming assembler main routines are supported under CICS providing
they:
v Do not use the HANDLE LABEL option of any appropriate EXEC CICS

commands.
v Use the NOEPILOG and NOPROLOG translator options.

When calling a High Level Language (HLL) routine that will use CICS services
from an assembler main routine, you must ensure that the appropriate CICS
control blocks (EIB, DFHCOMMAREA) are passed as parameters.

To initialize initial stack storage, LE/VSE-conforming assembler main programs
under CICS should use the run-time option STORAGE=(00,NONE,CLEAR,nnk)
either as an application-specific setting, or as a CICS-wide installation default
setting.

94 LE/VSE V1R4.6 Writing ILC Applications

For information on the use of CICS commands in an assembler language, refer to
the CICS documentation.

COBOL Considerations
Static calls are allowed in VS COBOL II and COBOL/VSE to but not from routines
written in non-LE/VSE-conforming assembler.

PL/I Considerations
PL/I routines can statically call assembler routines declared with
OPTIONS(ASSEMBLER). When you declare a routine with
OPTIONS(ASSEMBLER), arguments are passed according to standard linking
conventions.

Called assembler subroutines can invoke CICS services if they were passed the
appropriate CICS control blocks.

For information on the use of CICS commands in an assembler language
subroutine, refer to the CICS documentation.

Link-Editing ILC Applications under CICS
You must link ILC applications with the CICS stub, DFHELII, in order to get ILC
support under LE/VSE.

ILC applications in which C is one of the participating languages must be
link-edited AMODE(31).

Any dynamically-called COBOL/C routines that are statically linked together must
be prelinked together before linkediting.

You cannot relink an old C object program (for example, you are running an old
batch application under CICS).

CICS ILC Application
The following examples illustrate how you can use ILC under CICS. A COBOL
main routine, COBCICS, dynamically CALLs a PL/I routine, PLICICS, which does
the following:
v Writes a message to the operator
v Establishes a ZERODIVIDE ON-unit
v Generates a divide-by-zero
v Writes another message to the operator
v Returns to the COBOL main routine

COBCICS then calls CUCICS, a statically linked C routine, and passes a message
character string and a length field to the subroutine. This routine then calls the
LE/VSE service CEEMOUT to write the message to the CESE transient data queue.

Chapter 7. ILC under CICS 95

IGZTCICS

CBL XOPTS(COBOL2),LIB,APOST
*Module/File Name: IGZTCICS

**
* TRANSACTION: COBC. *
* FUNCTION: *
* *
* A CICS COBOL main dynamically calls a PL/I *
* subroutine, and statically calls a C *
* subroutine. COBCICS passes a message to *
* the C subroutine to output to the *
* transient data queue. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBCICS.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 STARTMSG PIC X(16) VALUE 'STARTING COBCICS'.
77 DTVAL PIC X(14) VALUE 'ENDING COBCICS'.
77 RUNNING PIC X(80) VALUE 'STARTING CUCICS'.
77 RUNLENGTH PIC S9(4) BINARY VALUE 15.
77 PLISUBR PIC X(8) VALUE 'PLISUBR'.
PROCEDURE DIVISION.

EXEC CICS SEND FROM(STARTMSG) ERASE END-EXEC.
CALL PLISUBR USING DFHEIBLK DFHCOMMAREA.
CALL 'CUCICS' USING RUNLENGTH RUNNING.

EXEC CICS SEND FROM(DTVAL) ERASE END-EXEC.

EXEC CICS RETURN END-EXEC.

Figure 35. COBOL CICS Main Program That Calls C and PL/I Subroutines

96 LE/VSE V1R4.6 Writing ILC Applications

IBMCICS

/*Module/File Name: IBMCICS */

/***/
/** **/
/** FUNCTION: **/
/** **/
/** PLICICS is a PL/I CICS subroutine that is **/
/** called from a COBOL main program, COBCICS. **/
/** PLICICS writes a startup message to the **/
/** terminal operator and establishes a **/
/** ZERODIVIDE ON-unit. A zerodivide is **/
/** generated and the ZERODIVIDE ON-unit is **/
/** called to notify the terminal operator. The **/
/** ZERODIVIDE performs a normal return to the **/
/** program and the control returns to COBOL. **/
/** **/
/***/
PLICICS : PROCEDURE OPTIONS(FETCHABLE);

DCL RUNNING CHAR(20) INIT ('PLICICS ENTERED') ;
DCL MSG CHAR(30);
MSG = 'PLICICS ENTERED';
EXEC CICS SEND FROM(MSG) LENGTH(15) ERASE;
ON ZDIV BEGIN;

MSG = 'INSIDE OF ZDIV ON UNIT';
PUT SKIP LIST(MSG);
EXEC CICS SEND FROM(MSG) LENGTH(30) ERASE;

END;
A = 10;
A = A/0;

END PLICICS;

Figure 36. PL/I Routine Called by COBOL CICS Main Program

Chapter 7. ILC under CICS 97

EDCCICS

/*Module/File Name: EDCCICS */

/***/
/** */
/**Function CEEMOUT : write message to transient */
/* data queue. */
/* */
/* This example illustrates a C CICS subroutine that is */
/* statically linked to a COBOL main routine, COBCICS. COBCICS */
/* passes a message character string and a length field to the */
/* subroutine. This routine then calls the CEEMOUT service */
/* to write the message to the transient data queue, CESE. */
/* */
/***/
#pragma linkage(CUCICS,COBOL)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>

_VSTRING message;
_INT4 dest;
_CHAR80 msgarea;
_FEEDBACK fc;
/* */
/* mainline. */
/* */
void CUCICS(unsigned short *len, char (* running)[80])
{

/* Send a message to the CICS terminal operator. */
char * startmsg = "CUCICS STARTED\n";
unsigned short I1;
I1 = strlen(startmsg);
EXEC CICS SEND FROM(startmsg) LENGTH(I1) ERASE;
/* set output area to nulls */
memset(message.string,'\0',sizeof(_CHAR80));

if (*len >= sizeof(_CHAR80))
*len = sizeof(_CHAR80)-1 ;

/* copy message to output area */
memcpy(message.string, running,(unsigned int) *len);

message.length = (unsigned int) *len;
dest = 2;
/***
* Call CEEMOUT to place copy of operator message in *
* transient data queue CESE. *
**/

CEEMOUT(&message,&dest,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
/* put the message if CEEMOUT failed */
dest = 2;
CEEMSG(&fc,&dest,NULL);
exit(2999);

}
}

Figure 37. C Routine Called by COBOL CICS Main Program

98 LE/VSE V1R4.6 Writing ILC Applications

Appendix. Condition Handling Responses

Table 27 and Table 28 list condition handling responses, as referenced in the
condition handling sections of the pairwise chapters.

Table 27. LE/VSE Default Responses to Unhandled Conditions. LE/VSE's default responses to unhandled conditions
fall into one of two types, depending on whether the condition was signaled using CEESGL and an fc parameter, or it
came from any other source.

Severity of
Condition

Condition Signaled by User in a Call to
CEESGL with an fc Condition Came from Any Other Source

0 (Informative
message)

Return CEE069 condition token, and resume
processing at the next sequential instruction.

See the fc table for CEESGL (LE/VSE
Programming Reference) for a description of
the CEE069 condition token.

Resume without issuing message.

1 (Warning message) Return CEE069 condition token, and resume
processing at the next sequential instruction.

If the condition occurred in a stack frame
associated with a COBOL program, resume and
issue the message.

If the condition occurred in a stack frame
associated with a non-COBOL program, resume
without issuing message.

2 (Program
terminated in error)

Return CEE069 condition token, and resume
processing at the next sequential instruction.

Promote condition to T_I_U, redrive the stack,
then terminate the thread if the condition
remains unhandled. Message issued if
TERMTHDACT(MSG) is specified.

3 (Program
terminated in severe
error)

Return CEE069 condition token, and resume
processing at the next sequential instruction.

Promote condition to T_I_U, redrive the stack,
then terminate the thread if the condition
remains unhandled. Message issued if
TERMTHDACT(MSG) is specified.

4 (Program
terminated in critical
error)

Promote condition to T_I_U, redrive the
stack, then terminate the thread if the
condition remains unhandled. Message
issued if TERMTHDACT(MSG) is specified.

Promote condition to T_I_U, redrive the stack,
then terminate the thread if the condition
remains unhandled. Message issued if
TERMTHDACT(MSG) is specified.

Table 28 contains default C language error handling semantics.

Table 28. C Conditions and Default System Actions

C Condition Origin Default Action

SIGILL Execute exception operation exception
privileged operation raise(SIGILL)

Abnormal termination (return
code=3000)

SIGSEGV Addressing exception protection
exception specification exception
raise(SIGSEGV)

Abnormal termination (return
code=3000)

SIGFPE Data exception decimal divide
exponent overflow fixed point divide
floating point divide raise(SIGFPE)

Abnormal termination (return
code=3000)

SIGABRT abort() function raise(SIGABRT) Abnormal termination (return
code=2000)

© Copyright IBM Corp. 1991, 2009 99

Table 28. C Conditions and Default System Actions (continued)

C Condition Origin Default Action

SIGABND Abend the function Abnormal termination (return
code=3000)

SIGTERM Termination request raise(SIGTERM) Abnormal termination (return code =
3000)

SIGINT Attention condition Abnormal termination (return code =
3000)

SIGIOERR I/O errors Ignore the condition

SIGUSR1 User-defined condition Abnormal termination (return
code=3000)

SIGUSR2 User-defined condition Abnormal termination (return
code=3000)

Masked Exponent overflow fixed-point
underflow significance

These exceptions are disabled. They
are ignored during the condition
handling process, even if you try to
enable them using the CEE5SPM
callable service.

100 LE/VSE V1R4.6 Writing ILC Applications

Language Environment Glossary

A
abend. Abnormal end of application.

addressing mode. An attribute that refers to the
address length that a routine is prepared to handle
upon entry. Addresses may be 24 or 31 bits long.

aggregate. A structured collection of data items that
form a single data type. Contrast with scalar.

AMODE. Addressing mode.

application. A collection of one or more routines
cooperating to achieve particular objectives.

argument. An expression used at the point of a call to
specify a data item or aggregate to be passed to the
called routine.

array. An aggregate that consists of data objects, each
of which may be uniquely referenced by subscripting.

array element. A data item in an array.

assembler. see High Level Assembler.

atexit list. A list of actions specified in the C atexit()
function that occur at normal program termination.

B
by content. See pass by content.

by reference. See pass by reference.

by value. See pass by value.

C
C language. A high-level language used to develop
software applications in compact, efficient code that can
be run on different types of computers with minimal
change.

callable services. A set of services that can be invoked
by an LE/VSE-conforming high level language using
the conventional LE/VSE-defined call interface, and
usable by all programs sharing the LE/VSE
conventions.

Use of these services helps to decrease an application’s
dependence on the specific form and content of the
services delivered by any single operating system.

callee. Receiver of a call.

caller. A routine that calls another routine.

CICS. Customer Information Control System.

CICS run unit. Consists of a statically and/or
dynamically bound set of one or more phases which
can be loaded by a CICS loader. A CICS run unit is
equivalent to an LE/VSE enclave.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

COBOL. COmmon Business-Oriented Language. A
high level language, based on English, that is primarily
used for business applications.

COBOL run unit. A COBOL-specific term that defines
the scope of language semantics. Equivalent to an
LE/VSE enclave.

command line. The command used to invoke an
application program, and the associated program
arguments and LE/VSE run-time options. This can be
the job control EXEC statement and the associated
PARM parameter, or the parameter string passed to the
C system() function.

COMMAREA. A communication area made available
to applications running under CICS.

compilation unit. An independently compilable
sequence of HLL statements. Each HLL product has
different rules for what makes up a compilation unit.
Synonym for program unit.

condition. An exception that has been enabled, or
recognized, by LE/VSE and thus is eligible to activate
user and language condition handlers. Any alteration to
the normal programmed flow of an application.
Conditions can be detected by the hardware/operating
system and result in an interrupt. They can also be
detected by language-specific generated code or
language library code.

condition handler. A user-written condition handler
or language-specific condition handler (such as a PL/I
ON-unit) invoked by the LE/VSE condition manager to
respond to conditions.

condition handling. In LE/VSE, the diagnosis,
reporting, and/or tolerating of errors that occur in the
run-time environment.

© Copyright IBM Corp. 1991, 2009 101

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition step. The step of the LE/VSE condition
handling model that follows the enablement step. In
the condition step, user-written condition handlers and
PL/I ON-units are first given a chance to handle a
condition. See also enablement step and termination
imminent step.

condition token. In LE/VSE, a data type consisting of
96 bits (12 bytes). The condition token contains
structured fields that indicate various aspects of a
condition including the severity, the associated message
number, and information that is specific to a given
instance of the condition.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

D
data type. The properties and internal representation
that characterize data.

default. A value that is used when no alternative is
specified.

disabled/enabled. See enabled/disabled.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. See also precision and
single-precision.

dynamic call. A call that results in the resolution of
the called routine at run time. Contrast with static call.

E
enabled/disabled. A condition is enabled when its
occurrence will result in the execution of condition
handlers or in the performance of a standard system
action to handle the condition as defined by LE/VSE.

A condition is disabled when its occurrence will
apparently be ignored by the condition manager.

enablement. The determination by a language at run
time that an exception should be processed as a
condition. This is the capability to intercept an
exception and to determine whether it should be
ignored or not; unrecognized exceptions are always
defined to be enabled. Normally, enablement is used to
supplement the hardware for capabilities that it does
not have and for language enforcement of the
language’s semantics. An example of supplementing
the hardware is the specialized handling of
floating-point overflow exceptions based on language

specifications (on some machines this can be achieved
through masking the exception).

enablement step. The first step of the LE/VSE
condition handling model. In the enablement step it is
determined whether an exception is to be enabled and
processed as a condition. See also condition step and
termination imminent step.

enclave. In LE/VSE, an independent collection of
routines, one of which is designated as the main
routine. An enclave is roughly analogous to a program
or run unit.

entry point. In assembler language, the address or
label of the first instruction that is executed when a
routine is entered for execution.

environment. A set of services and data available to a
program during execution. In LE/VSE, environment is
normally a reference to the run-time environment of
HLLs at the enclave level.

EXEC interface block (EIB). In CICS, a control block
containing information useful in the execution of an
application, such as a transaction identifier and a time
and a date when the transaction is started.

exception. The original event such as a hardware
signal, software detected event, or user-signaled event
which is a potential condition. This action may or may
not include an alteration in a program’s normal flow.
See also condition.

execution time. Synonym for run time.

execution environment. Synonym for run-time
environment.

external data. Data that persists over the lifetime of an
enclave and maintains last-used values whenever a
routine within the enclave is reentered. Within an
enclave consisting of a single phase, it is equivalent to
COBOL external data.

F
feedback code (fc). A condition token value. If you
specify fc in a call to a callable service, a condition
token indicating whether the service completed
successfully is returned to the calling routine.

fetchable main. A IBM PL/I for VSE/ESA routine
specified with PROC OPTIONS(MAIN).

The routine performing the FETCH and CALL must be
compiled with the IBM PL/I for VSE/ESA compiler.

fixed decimal. See packed decimal format.

function. A routine that is invoked by coding its name
in an expression. The routine passes a result back to the
invoker through the routine name.

102 LE/VSE V1R4.6 Writing ILC Applications

H
handle cursor. Points to the first condition handler
within the stack frame that is to be invoked when a
condition occurs. As condition handling progresses, the
handle cursor moves to earlier handlers within the
stack frame, or to the first handler in the calling stack
frame.

header file. A file that contains system-defined control
information that precedes user data.

high level language (HLL). A programming language
above the level of assembler language and below that
of program generators and query languages.

HLL. High level language.

I
ILC. Interlanguage communication.

indirect argument passing. The body of the argument
list contains a pointer to the argument value.

interlanguage communication (ILC). The ability of
routines written in different programming languages to
communicate. ILC support allows the application
writer to readily build applications from component
routines written in a variety of languages.

L
Language Environment. A set of architectural
constructs and interfaces that provides a common
run-time environment and run-time services to
applications compiled by Language
Environment-conforming compilers.

Language Environment for z/VSE. An IBM software
product that is the implementation of Language
Environment on the VSE platform.

LE/VSE. Short form of Language Environment for
z/VSE.

LE/VSE-conforming. Adhering to LE/VSE’s common
interface.

linkage editor. A program that resolves
cross-references between separately assembled object
modules and then assigns final addresses to create a
single relocatable phase. The linkage editor then stores
the phase in a program library in main storage.

link-edit. To create a loadable computer program by
means of a linkage editor.

M
main program. The first routine in an enclave to gain
control from the invoker.

N
n-way ILC application. An ILC application that
includes a C routine, COBOL program, and PL/I
routine.

name scope. The portion of an application within
which a particular declaration of external data applies
or is known.

name space. The portion of a phase within which a
particular declaration of external data applies or is
known.

natural reentrancy. The attribute of applications that
contain no static external data and do not require
additional processing to make them reentrant. Contrast
with constructed reentrancy.

nested program. In COBOL, a program that is directly
contained within another program.

non-LE/VSE conforming. Any HLL program that does
not adhere to LE/VSE’s common interface. For
example, VS COBOL II, DOS/VS COBOL, and DOS/VS
PL/I are all non-LE/VSE conforming HLLs. Synonym
for pre-LE/VSE conforming.

O
object module. A portion of an object program
suitable as input to a linkage editor. Synonym for object
deck.

ON-unit. The specified action to be taken upon
detection of the condition named in the containing ON
statement.

P
packed decimal format. A format in which each byte
in a field except the rightmost byte represents two
numeric digits. The rightmost byte contains one digit
and the sign. For example, the decimal value +123 is
represented as 0001 0010 0011 1100.

parameter. Data items that are received by a routine.

pass by content. A COBOL argument passing style
synonymous with passing an argument by value
directly. In this style, R1 contains a pointer to a copy of
the argument.

pass by reference. In programming languages, one of
the basic argument passing semantics. The address of
the object is passed. Any changes made by the callee to

Language Environment Glossary 103

the argument value will be reflected in the calling
routine at the time the change is made.

pass by value. In programming languages, one of the
basic argument passing semantics. The value of the
object is passed. Any changes made by the callee to the
argument value will not be reflected in the calling
routine.

phase. An application or routine in a form suitable for
execution. The application or routine has been
compiled and link-edited; that is, address constants
have been resolved.

PL/I. A general purpose scientific/business high level
language. It is a high-powered procedure-oriented
language especially well suited for solving complex
scientific problems or running lengthy and complicated
business transactions and record-keeping applications.

pointer. A data element that indicates the location of
another data element.

precision. A measure of the ability to distinguish
between nearly equal values. See also single-precision
and double-precision.

pre-LE/VSE conforming. Any HLL program that does
not adhere to LE/VSE’s common interface. For
example, VS COBOL II, DOS/VS COBOL, and DOS/VS
PL/I are all pre-LE/VSE conforming HLLs. Synonym
for non-LE/VSE conforming.

procedure. A named block of code that can be
invoked, usually via a call. In LE/VSE, the term routine
is used as generic for a procedure or a function.

R
reentrant. The attribute of a routine or application that
allows more than one user to share a single copy of a
phase.

resume. To begin execution in an application at the
point immediately after which a condition occurred. A
resume occurs when the condition manager determines
that a condition has been handled and normal
application execution should continue.

resume cursor. Designates the point in the application
where a condition occurred when it is first reported to
the condition manager. The resume cursor also
designates the point where execution resumes after a
condition is handled, usually at the instruction in the
application immediately following the point at which
the error occurred. The resume cursor can be moved
with the CEEMRCR callable service.

routine. In this book, used as a general term to
describe a named external routine, written in any of the
languages discussed, and with or without internal
(contained) subroutines.

run time. Any instant at which a program is being
executed. Synonym for execution time.

run-time environment. A set of resources that are
used to support the execution of a program. Synonym
for execution environment.

run unit. One or more object programs that are
executed together. In LE/VSE, a run unit is the
equivalent of an enclave.

S
scalar. A quantity characterized by a single value.
Contrast with aggregate.

scope. 1. A term used to describe the effective range of
the enablement of a condition and/or the establishment
of a user-generated routine to handle a condition.
Scope can be both statically and dynamically defined.
2. The portion of an application within which the
definition of a variable remains unchanged.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. Needed for proper
alignment. See also precision and double-precision.

static call. A call that results in the resolution of the
called program statically at link-edit time. Contrast
with dynamic call.

subroutine. In general, any routine within an
application called by another routine.

T
thread. The basic run-time path within the LE/VSE
program management model. It is dispatched by the
system with its own instruction counter and registers.
The thread is where actual code resides.

termination imminent step. The final step of the
3-step LE/VSE condition handling model. In the
termination imminent step, user-written condition
handlers and PL/I ON-units are given one last chance
to handle a condition or perform cleanup before the
thread is terminated. See also condition step and
enablement step.

U
unpacked decimal format. A format for representing
numbers in which the digit is contained in bits 4
through 7 and the sign is contained in bits 0 through 3
of the rightmost byte. Bits 0 through 3 of all other bytes
contain 1s (hex F). For example, the decimal value of
+123 is represented as 1111 0001 1111 0010 1111 0011.
Synonym for zoned decimal format.

104 LE/VSE V1R4.6 Writing ILC Applications

user-written condition handler. A routine established
by the CEEHDLR callable service to handle a condition
or conditions when they occur in the common run-time
environment. A queue of user-written condition
handlers established by CEEHDLR may be associated
with each stack frame in which they are established.

V
void function. The C representation of a procedure
invocation. A void function is a function that does not
return a value.

VSE (Virtual Storage Extended). A system that
consists of a basic operating system (VSE/Advanced
Functions) and IBM-supplied programs required to
meet the data processing needs of a user.

W
writable static. In C, writable static may be any of the
following:
v Program variables with the extern storage class
v Program variables with the static storage class
v Writable strings

The LE/VSE term for writable static is external data.

Z
zoned decimal format. Synonym for unpacked decimal
format.

Language Environment Glossary 105

106 LE/VSE V1R4.6 Writing ILC Applications

Index

A
accessibility ix
aggregate

mapped between C–COBOL 11
mapped between C–PL/I 35
mapped between COBOL–PL/I 58

AGGREGATE compile-time option
in C–COBOL ILC 11

AMODE
where ILC applications can reside,

summary 1
array

C to COBOL equivalents 14
assembler

ILC with HLLs 87

B
by reference

passing between C–COBOL 8
passing between C–PL/I 32

by value
passing between C–COBOL 8
passing between C–PL/I 32

C
C

data types in common with all
HLLs 79

C–COBOL ILC
calling 6
compiling and linking

considerations 4
condition handling 20
data equivalents for C to COBOL

calls 11
data equivalents for COBOL to C

calls 14
determining main routine 4
directing output 19
dynamic call/fetch 6
level of support 3
migrating 3
passing data 8
passing strings 11
sample application 26

C–PL/I ILC
calling 31
condition handling 47
data declarations 30
data equivalents for C to PL/I

calls 35
data equivalents for PL/I to C

calls 39
determining main routine 29
directing output 46
dynamic call/fetch considerations 31
migrating 29
passing data 32

C–PL/I ILC (continued)
passing data by value 34
sample application 52
storage function comparison 46
support for products 29

calling
between C–COBOL 6
between C–PL/I 31
between COBOL–PL/I 57

character string, fixed-length
COBOL to PL/I equivalents 62
PL/I to COBOL equivalents 64

CICS
ILC under 93

COBOL
data types in common with all

HLLs 79
COBOL BY CONTENT

passing in C–COBOL 8
COBOL BY REFERENCE

passing in C–COBOL 8
COBOL BY VALUE

passing in C–COBOL 8
COBOL–C ILC

calling 6
compiling and linking

considerations 4
condition handling 20
data equivalents for C to COBOL

calls 11
data equivalents for COBOL to C

calls 14
determining main routine 4
directing output 19
dynamic call/fetch 6
level of support 3
migrating 3
passing data 8
passing strings 11
sample application 26

COBOL–PL/I ILC
calling 57
condition handling 68
data declarations 56
data equivalents for COBOL to PL/I

calls 60
data equivalents for PL/I to COBOL

calls 62
determining the main routine 55
directing output 68
dynamic call/fetch considerations 57
level of product support 55
migrating 55
passing data 57
reentrancy 56
sample application 74

compiling
for C–COBOL ILC 4

condition handling
in C–COBOL ILC 20
in C–PL/I ILC 47

condition handling (continued)
in COBOL–PL/I ILC 68
in multiple HLL ILC 79

D
data

equivalents for C to COBOL calls 11
equivalents for C to PL/I calls 35
equivalents for COBOL to C calls 14
equivalents for COBOL to PL/I

calls 60
equivalents for PL/I to C calls 39
equivalents for PL/I to COBOL

calls 62
external

in C–COBOL ILC 16
in C–PL/I ILC 44
in COBOL–PL/I ILC 65

passing
C pointers between C–PL/I 33

passing by value between C–PL/I 34
data declarations

for C–COBOL ILC 5
for C–PL/I ILC 30
for COBOL–PL/I ILC 56

data types
overview of common data types 79
supported between COBOL and

PL/I 57
disability ix
double-precision floating point

C to PL/I equivalents 36
COBOL to PL/I equivalents 62
PL/I to C equivalents 40
PL/I to COBOL equivalents 64

dynamic call
between COBOL–COBOL 57

dynamic call/fetch
between C–COBOL 6
between C–PL/I 31

E
entry point

declaring in C–PL/I 30
examples

C–COBOL ILC 26
C–PL/I ILC 52
COBOL–PL/I ILC 74
multiple HLL ILC 83

extended-precision floating point
C to PL/I equivalents 37
PL/I to C equivalents 41

external data
in C–COBOL ILC 16
in C–PL/I ILC 44
in COBOL–PL/I ILC 65
in multiple HLL ILC 79

© Copyright IBM Corp. 1991, 2009 107

F
fetch

between C–COBOL 6
between C–PL/I 31
between COBOL–COBOL 57
name scope in C–COBOL ILC 16
name scope in C–PL/I ILC 44

file sharing
between C and COBOL 19
between C and PL/I 46
between COBOL and PL/I 67

fixed decimal
C to COBOL equivalents 14
C to PL/I equivalents 39
PL/I to C equivalents 44

fixed-length character string
C to PL/I equivalents 39
COBOL to PL/I equivalents 62
PL/I to C equivalents 44
PL/I to COBOL equivalents 64

floating point, double-precision
C to PL/I equivalents 36
COBOL to PL/I equivalents 62
PL/I to C equivalents 40
PL/I to COBOL equivalents 64

floating point, extended-precision
C to PL/I equivalents 37
PL/I to C equivalents 41

floating point, single-precision
COBOL to PL/I equivalents 61
PL/I to COBOL equivalents 63

fullword integer
C to PL/I equivalents 36
COBOL to PL/I equivalents 60, 61
PL/I to C equivalents 40
PL/I to COBOL equivalents 63

H
heap storage

comparison in C–PL/I ILC 46
homepage, VSE xvii

I
IBM C for VSE/ESA

data types in common with all
HLLs 79

IGZERRE/IGXENRI, using to relink
C–COBOL routines 3

ILC (interlanguage communication)
benefits of 1
overview 1, 3

Internet address, VSE homepage xvii

L
linking

C–COBOL ILC 4

M
main routine

determining in C–COBOL ILC 4
determining in C–PL/I ILC 29

main routine (continued)
determining in COBOL–PL/I ILC 55

MAP compile-time option
used in mapping aggregates 11

message file
directing in C–COBOL ILC 19
directing in C–PL/I ILC 46
directing in COBOL–PL/I ILC 68

migrating
C–COBOL ILC 3
C–PL/I ILC 29
COBOL–PL/I ILC 55

N
name scope and name space

of external data in C–COBOL ILC 16
of external data in C–PL/I ILC 44
of external data in COBOL–PL/I

ILC 65
NORENT/RENT COBOL programs,

relinking for ILC with C 3
NULL

how it compares between C and
PL/I 29

pointer in COBOL 58

O
OCCURS, use in mapping aggregates in

COBOL–PL/I ILC 59
output

directing in C–COBOL ILC 19
directing in C–PL/I ILC 46
directing in COBOL–PL/I ILC 68

P
parameter

value, receiving in C 33
PL/I

data types in common with all
HLLs 79

PL/I–C ILC
calling 31
condition handling 47
data declarations 30
data equivalents for C to PL/I

calls 35
data equivalents for PL/I to C

calls 39
determining main routine 29
directing output 46
dynamic call/fetch considerations 31
migrating 29
passing data 32
passing data by value 34
sample application 52
storage function comparison 46
support for products 29

PL/I–COBOL ILC
calling 57
condition handling 68
data declarations 56
data equivalents for COBOL to PL/I

calls 60

PL/I–COBOL ILC (continued)
data equivalents for PL/I to COBOL

calls 62
determining the main routine 55
directing output 68
dynamic call/fetch considerations 57
level of product support 55
migrating 55
passing data 57
reentrancy 56
sample application 74

pointer
passing between C–PL/I 33
passing data using C pointers in

C–PL/I ILC 33
pointer to a structure data type

C to PL/I equivalents 38
PL/I to C equivalents 43

pointer to an array data type
C to PL/I equivalents 38
PL/I to C equivalents 43

pointer to an integer data type
C to PL/I equivalents 38
PL/I to C equivalents 42

pragma linkage 5

R
reentrancy

in C–PL/I ILC 30
RENT/NORENT COBOL programs,

relinking for ILC with C 3
return codes

between C–COBOL 11
between C–PL/I 35
between COBOL–PL/I 60
restriction on passing between C and

COBOL 3
restriction on passing between C and

PL/I 29
restriction on passing bewteen

COBOL and PL/I 55

S
short integer

C to PL/I equivalents 35
single-precision floating point

COBOL to PL/I equivalents 61
PL/I to COBOL equivalents 63

storage
in C–PL/I ILC 46

string
passing between C–COBOL 11
passing between C–PL/I 34, 35
restriction on passing between

COBOL–PL/I 58
structure

C to COBOL equivalents 13
how mapped between

COBOL–PL/I 58
SYSPRINT file

in C–PL/I ILC 46

108 LE/VSE V1R4.6 Writing ILC Applications

T
TRUNC(BIN) compiler option

and data types in COBOL–PL/I
ILC 64

V
value parameters

receiving in C 33

Index 109

110 LE/VSE V1R4.6 Writing ILC Applications

Readers’ Comments — We’d Like to Hear from You

IBM Language Environment for z/VSE
Writing Interlanguage Communication Applications
Version 1 Release 4 Modification Level 6

Publication No. SC33-6686-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: FAX (Germany): 07031+16-3456

FAX (Other Countries): (+49)+7031-16-3456
v Send your comments via e-mail to: s390id@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
SC33-6686-02

SC33-6686-02

���
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

File Number: S370/S390-40
Program Number: 5686-CF8

SC33-6686-02

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
IB

M
L

an
gu

ag
e

E
nv

ir
on

m
en

tf
or

z/
VS

E
LE

/V
SE

V
1R

4.
6

W
ri

tin
g

IL
C

Ap
pl

ic
at

io
ns

Ve
rs

io
n

1
R

el
ea

se
4

M
od

ifi
ca

tio
n

L
ev

el
6

SC
33

-6
68

6-
02

	Contents
	Figures
	Tables
	Notices
	Accessibility
	Using Assistive Technologies
	z/VSE Information

	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	What Is LE/VSE?
	LE/VSE-Conforming Languages
	LE/VSE Compatibility with Previous Versions of COBOL

	Where to Find More Information
	Softcopy Publications

	Summary Of Changes
	Chapter 1. Getting Started with LE/VSE ILC
	The Benefits of ILC under LE/VSE
	Writing ILC Applications

	Chapter 2. Communicating between C and COBOL
	Preparing for ILC
	LE/VSE ILC Support
	Migrating ILC Applications
	Relinking
	Recompiling

	Compiling and Linking Considerations
	Compiling
	Linking

	Determining the Main Routine
	Declarations
	Declaring C–COBOL ILC

	Calling between C and COBOL
	Types of Calls Permitted
	Dynamic Call/Fetch Considerations
	C Fetching C with COBOL Statically Linked
	C Fetching COBOL
	COBOL Dynamically Calling COBOL with C Statically Linked
	COBOL Dynamically Calling C

	Passing Data between C and COBOL
	Passing Data by Value (Indirect) between C and COBOL
	Passing Data by Reference (Indirect) between C and COBOL
	Data Types Passed by Value (Indirect) between C and COBOL
	Data Types Passed by Reference (Indirect) between C and COBOL
	Passing Strings between C and COBOL
	Aggregates
	Return Codes

	Data Equivalents
	Equivalent Data Types—C to COBOL
	Char
	Short Integer
	Fullword Integer
	Double-Precision Floating Point
	Structure
	Array
	Fixed Decimal

	Equivalent Data Types—COBOL to C
	Fullword Integer
	Double-Precision Floating Point
	Structure
	Fixed Decimal

	Name Scope of External Data
	Name Scope of External Data in a C Application
	Name Scope of External Data in a COBOL Run Unit

	Name Space of External Data

	File Sharing
	Directing Output in ILC Applications
	C–COBOL Condition Handling
	Enclave-Terminating Language Constructs
	C
	COBOL

	Exception Occurs in C
	Exception Occurs in COBOL
	CEEMRCR and COBOL

	Sample ILC Application
	EDCCCB
	IGZTILCC
	EDCCCB2

	Chapter 3. Communicating between C and PL/I
	Preparing for C–PL/I ILC
	LE/VSE ILC Support
	Migrating C–PL/I ILC Applications
	Determining the Main Routine
	Reentrancy Considerations
	Declarations
	Declaration for C Calling PL/I
	Declaration for PL/I Calling C

	Calling between C and PL/I
	Types of Calls Permitted
	Dynamic Call/Fetch Considerations
	C Fetching PL/I
	PL/I Fetching C

	Passing Data between C and PL/I
	Passing Pointers from C to PL/I
	Passing Pointers from PL/I to C
	Receiving Value Parameters in C
	Receiving Reference Parameters in C
	Data Types Passed Using C Pointers (by Reference)
	Data Types Passed Without Using Explicit C Pointers (by Value)
	Strings Passed between C and PL/I
	Aggregates
	Return Codes

	Data Equivalents
	Equivalent Data Types—C to PL/I
	Short Integer
	Fullword Integer
	Double-Precision Floating Point
	Extended-Precision Floating Point
	Pointer to an Integer
	Pointer to an Array
	Pointer to a Structure
	Fixed Decimal
	Fixed-Length Character String

	Equivalent Data Types—PL/I to C
	Fullword Integer
	Double-Precision Floating Point
	Extended-Precision Floating Point
	Pointer to an Integer
	Pointer to an Array
	Pointer to a Structure
	Fixed Decimal
	Fixed-Length Character String

	Name Scope of External Data
	Name Space of External Data

	How to Use Dynamic Heap Storage Functions
	File Sharing
	Directing Output in ILC Applications
	C—PL/I Condition Handling
	Enclave-Terminating Constructs
	C
	PL/I

	Exception Occurs in C
	Exception Occurs in PL/I

	Sample C-PL/I ILC Application
	IBMCPL
	EDCCPL

	Chapter 4. Communicating between COBOL and PL/I
	Preparing to Use ILC between COBOL and PL/I
	LE/VSE ILC Support
	Migrating ILC Applications
	Determining the Main Routine
	Declarations
	Reentrancy

	Calling between PL/I and COBOL
	Types of Calls Permitted
	Dynamic Call/Fetch Considerations
	COBOL Dynamically Calling PL/I
	PL/I Fetching COBOL

	Passing Data between COBOL and PL/I
	Aggregates
	COBOL and PL/I Alignment Requirements
	How to Map Aggregates

	Return Codes

	Data Equivalents
	Equivalent Data Types—COBOL to PL/I
	Halfword Integer
	Fullword Integer
	Single-Precision Floating Point
	Double-Precision Floating Point
	Fixed-Length Character String

	Equivalent Data Types—PL/I to COBOL
	Halfword Integer
	Fullword Integer
	Single-Precision Floating Point
	Double-Precision Floating Point
	Fixed-Length Character String

	Data Type Equivalents When TRUNC(BIN) is Specified
	Name Scope of External Data
	Name Space of External Data

	File Sharing
	Directing Output from ILC Applications to MSGFILE
	COBOL—PL/I Condition Handling
	Enclave-Terminating Language Constructs
	COBOL
	PL/I

	Exception Occurs in COBOL
	Exception Occurs in PL/I
	GOTO Out-of-Block and Move Resume Cursor

	Sample PL/I–COBOL Application
	IBMPCB
	IGZTPCB

	Chapter 5. Communicating between Multiple HLLs
	Supported Data Types
	External Data
	Condition Handling
	C, COBOL, and PL/I Scenario: Exception Occurs in C
	Enclave-Terminating Constructs

	Sample N-Way ILC Application
	IBMNWAY
	EDCNWAY
	IGZTNWAY

	Chapter 6. Communicating between Assembler and HLLs
	Calling Assembler from an HLL
	C
	PL/I
	Cancelling or Releasing Assembler
	Restrictions on the COBOL CANCEL Statement

	LE/VSE-Conforming Assembler Invoking an HLL Main Routine
	Non-LE/VSE-Conforming Assembler Invoking an HLL Main Routine
	Assembler Main Calling HLL Subroutines for Better Performance
	CEEILCOB
	IGZTASM

	Chapter 7. ILC under CICS
	Language Pairs Supported in ILC under CICS
	C and COBOL
	C and PL/I
	COBOL and PL/I
	Assembler
	COBOL Considerations
	PL/I Considerations

	Link-Editing ILC Applications under CICS
	CICS ILC Application
	IGZTCICS
	IBMCICS
	EDCCICS

	Appendix. Condition Handling Responses
	Language Environment Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V

	Readers’ Comments — We'd Like to Hear from You

