Program Product

SH20-9046-3
File No. S370/4300-50

IBM System/370
Low-Level Code/
Continuity Check in

Data Language/I DOS/VS

Program Reference and
Operations Manual

Program Number 5746-XX1

Fourth Edition (December 1983)

This edition, SH24-9046-3, applies to Version 1, Release 7 (Version 1.7) of Data
Language/I Disk Operating System/ Virtual Storage (DL/I DOS/VS), Program Number
5746-XX1, and to all subsequent versions and modifications until otherwise indicated in
new editions or Technical Newsletters. It supersedes SH20-9046-2 and Technical
Newsletter SN24-5681. Changes are continually made to the information herein; any
such changes will be reported in subsequent revisions or Technical Newsletters. Before
using this publication in connection with the operation of IBM systems, consult the latest
edition of IBM System/370 and 4300 Processors Bibliography, GC20-0001, for editions
that are applicable and current.

Summary of Changes
For a list of changes, see page iii.

Changes or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address below; requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to:

IBM Corporation

Dept. 812BP

1133 Westchester Avenue
White Plains, NY, 10604 U.S.A.

or

IBM Deutschland GmbH

Dept. 3282

Schoenaicher Strasse 220

D-7030 Boeblingen, Federal Republic of Germany

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1974, 1977, 1978, 1981, 1983

Summary of Changes

Summary of Changes
for SH20-9046-3

This revision contains various performance improvements such as information on
defining VSAM control intervals and DL/1 buffers through use of the BLOCK
parameter in the DATASET statement, and the HDBFR parameter in the DL/1
statement. This edition also contains miscellaneous additions, corrections, and
improvements.

Summary of Changes
for SH20-9046-2
as updated by SN24-5681

This Technical Newsletter updates titles and/or order numbers for DL/1 DOS/VS and

other publications referenced in this book.

Summary of Changes
for SH20-9046-2

This major revision contains further additions, corrections, and improvements,
such as notes regarding loss of the application program’s position in the data base
through use of the same PCB by LLC/CC in DL/I, organization of the parts data
base in either HIDAM or HDAM, use of the RULES parameter in the SEGM statement
and the replacement of job input stream examples.

Summary of Changes
for SH20-9046-1
This edition was a major revision of SH20-9046-0, and included Technical

Newsletter SN20-5051. This revision contained miscellaneous additions,
corrections and improvements.

Summary of Changes

td

iii

Preface

Related Publications

This manual is intended for application programmers who want to use the services
of Low-Level Code/Continuity Check (LLC/CC) in Data Language/I Disk
Operation System/Virtual Storage (DL/1 DOS/VS). It describes the functions and
the operation of the system, and contains all the information required to generate
and execute LLC/CC in DL/I DOS/VS.

Low-level codes are used primarily in the manufacturing industry to indicate the
lowest level at which a particular part number is found in all product structure
trees. The product structures must not contain any loops. Therefore, a continuity
check is applied to ensure proper assembly-to-subassembly continuity.

Low-Level Code/Continuity Check in DL/1 DOS/VS provides a callable subroutine
that assigns low-level codes to parts in a manufacturing industry parts data base.
LLC/CC is used primarily by programs that maintain bills of material.

This manual has three basic parts. The first part contains an “Introduction” and a
“General Description” where the problem areas are defined and the solutions
LLC/CC offers are presented.

The second part, containing chapters on “Data Base Description,” “Invocation of
LLC/CCINDL/1,” “Operational Procedures,” and “Error Messages and Return
Codes,” describes the program structure and the functions of LLC/CC in DL/I
DOS/VS, and its data base.

The third part contains ““Installation Requirements” and the LLC/CC system
requirements.

The reader is assumed to have a working knowledge of the functions and the
facilities of DL/1DOS/VS and should be familiar with the contents of the following
publications:

e DL/I DOS/VS Application and Data Base Design, SH24-5022.

e DL/I DOS/VS Resource Definition and Utilities, SH24-5021.

» DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces,
SH12-5411.

« DL/I DOS/VS Messages and Codes, SH12-5414.

« DL/I DOS/VS Recovery/Restart Guide, SH24-5030.

iv Low-Level Code/Continuity Check in DL/I

Contents

Chapter 1. Introduction eeeeseececacrtetertrcesesesas [|
Chapter 2. General Descriptioncccciveeievnennns Ceeeteieeteteatetenssnnanans 3
Purposes and ObJectiVesttt i i i i i e, 3
EXtent Of COVEIAZEu.ttittt ittt n et naeneennsnnesnasennss 3
Processing DesCIPtON vvvtni ittt it i i i i e e 7
AdVANTAZESottt e e e i i e e 10
Relationships Between LLC/CC in DL/I and Chained File - DL/IBridge 10
Chapter 3. Data Base Descriptioncc0iiieieeecnens Ceeseteettaesesnsennnens 12
Parts Data Baseiutitiii i i e e e e e 12
Control Data Baseiuiiiniiiiiiiiit ittt it i e i 14
Definition of DBDs, PSBs,and ACBSottt ittt iiiiaennaenens 15
Chapter 4. Invocation of LLC/CCIinDL/Iciitieiiirnnernnenncasnenns [18
Relationships Between LLC/CC in DL/I and Application Programscc0vvonn. 18
Prerequisites for Initial-Generation Mode i i i i 18
Prerequisites for UpdatingMode it i 19
Application Programs Written in Assembler Languagecooviiiiiiiiiiinnennn, 20
Application Programs Written in High-Level Languagescoiviivinen... 22
EITOr RECOVEIY ..ot ittt ettt it ettt it ittt ittt e ittt 25
Chapter 5. Operational Proceduresccciieiiitieinenrsccannsnsnnes cersesenes 28
Distribution of LLC/CCinDL/Ittt e eeanannnns 28
Generation of the Execution Program (MacroDLZNN) iiiiiiinnennn. 28
Generation of the Initialization Program for the Control Data Base (MACRO DLZNNICT) 32
Generation of the DL/I Control BIOCKSvvuvttrtnn it eineenneareneennsas 33
Preparation of the VSAM Master Catalogcciiniiiiiniiiiiininneennnennn. 33
Initialization of the Control DataBasec ittt iiiirininneenenennnn 34
Link-Editing of Application Programsuuuitueernnennerneenennnenneenns 35
Execution of LLC/CCIn DL/ ittt tieeteeneenrnaranaananns 36
Chapter 6. Error Messages and Return Codes Cettesaeeenetesrtncestenannnn verees 38
EITOr MESSAZES . . oottt ittt ittt ittt ittt it 38
Return Codesciuiiiininiinininninennnas e et e et 39
Chapter 7. Installation Requirementscoc0eveenen cetersnaeens PP ¥]
Chapter 8. Performance Considerationsccoeeveveacenss eeseessesssasananen 43
Chapter 9. Control, Audit, and Reconstruction Procedurescocvevevecnceccacncnns 44
Chapter 10. System Configurationccocvtieveenenens [N ceresseseness 45
Chapter 11. Programming Systemscccceeveeneenceanns e steeesnenn Ceeeseseeeas 46
Chapter 12. Bibliographyccvviuen. ceseane Ceseeseretacans R U
INdeX .+ ovvtiiinenrennieneeseoeneeceesaoscesssoscssossasssncnsnsans Ceeeesiaecnns 48

Contents v

Figures

1. General System OVEIVIEWttt ittt ittt iiea i enaaaanas 2
2. Product Structure and Low-Level Codeottt iiiiiiiiiiiininenannnn 4
3. Continuity Checkingttt ittt ittt ernaannns 5
4. Gozinto Graph i e e e 6
5. Explosion Sequence for Part A i i i e s 9
6. Sample Parts DataBase ittt i i 12
7. Minimum Parts Data Base (Physical Structure)o i, 14
8. Control DataBasecuiuiiniiniiniiiiiiii ittt ittt 15
9. Sample DBDs foraParts DataBasettt 16
10. Sample DBDs fora Control DataBase ittt iiiiiiiiinenennn, 17
11. Sample PSB to Generate the Control DataBase o, 17
12. Sample PSB to Execute an Assembler Application Program Using LLC/C 17
13. Sample Assembler Program i i i 21
14. Sample COBOL Programcutuiinoniuneneneunenenernenernenennennnns 24
15. Sample PL/TPIOGramcuuuteuunnetennneeonnneennnnneernnnnneennnneens 25
16. Sample Job Input Stream for DLZNN it 32
17. Sample Job Input Stream for DLZNNICT 0., 33
18. Sample Job Input Stream for Definition of the Control Data Base to VSAM 34
19. Sample Job Input Stream for Initialization of the Control DataBase 35
20. Sample Job Input Stream for Execution of LLC/CC Operationsccovuu.n 37

vi Low-Level Code/Continuity Check in DL/I

Chapter 1. Introduction

This manual describes the functions and facilities of Low-Level Code/Continuity
Check in Data Language/I DOS/Vvs which will be abbreviated by LLC/CC in DL/I

This manual is designed to meet the requirements of the application programmer.
It begins with descriptions of the capabilities of the program, or processing aspects,
and of the required data bases. It presents information on how to use the services
of LLC/CC in DL/I, how to generate and operate the programs, and how to handle
error messages and return codes. The manual concludes with a series of sections
dealing with performance specifications, programming systems, system
requirements, etc.

Low-level coding and continuity checking are established techniques for production
planning and control in the manufacturing industry.

Low-level coding is generally used to facilitate the planning of material
requirements, from end items down to raw materials and purchased parts.
Continuity checking assures the continuity of the related bills of material. In other
words, continuity checking prevents a part from being accidentally contained in
itself. If continuity is violated, a loop is produced, and low-level codes cannot be
assigned. A peculiarity of common low-level coding is the reverse order of the
numeric value. While an end item is logically at the highest level in the hierarchy,
its low-level code is zero. The lower the level within the hierarchy of a bill of
material, the higher is the numeric value of the code.

LLC/CC in DL/I can also be applied to problems outside the manufacturing industry.
All problems that can be expressed as directed graphs or networks may be defined
so that they are suitable for processing by LLC/CC in DL/I. In this case, the
low-level code represents the relative distance between a particular node in a
network and one or more end nodes. Nodes in a network are linked by edges. The
relative distance is expressed by the number of edges on the longest direct path
from any one node to any one end node.

LLC/CC in DL/1 is link-edited to a user-written application program. The
application program either initially generates or updates low-level codes in a
manufacturing data base organized by Data Language/I Disk Operating
System/Virtual Storage (DL/I DOS/VS). LLC/CC in DL/I interfaces with the DL/1
language (see Figure 1 on page 2). It is a called subroutine which is link-edited
with the application program. It supports application programs written in
Assembler language, COBOL, or PL/1. Different entry points make function
selection and language adjustments possible.

LLC/CC in DL/1 is compatible with IBM System/370 Chained File - DL/1 Bridge,
Program Product 5748-XX3. Both LLC/CC in DL/I and Chained File - DL/1 Bridge
support the same data base structure; thus, an installation may use both programs
concurrently.

Chapter 1. Introduction 1

DL/l Language

—

I
APPLICATION :
|
]
' ;
LLc/cc !
! DL/
IN DL/ | |
|—>
|
|
[}
PROGRAM |
]
==
]
|
I

Figure 1. General System Overview

2 Low-Level Code/Continuity Check in DL/I

Chapter 2. General Description

Purposes and Objectives

Extent of Coverage

LLC/CC in DL/1 is designed to increase the general usability of the data base
facilities of Data Language/I DOS/VS (DL/1DOS/VS). It offers all functions
required to initially generate and to update low-level codes for manufacturing
product structures. Low-level codes are used in production planning mainly for
material requirements planning and for retrieval of bill of material and
“where-used” data.

A prerequisite for this type of planning is reliable checking of
assembly-to-subassembly continuity. Improper sequence may cause production
planning programs to loop, for instance, when a part is contained - either directly
or indirectly - in itself. It is impossible to assign a unique low-level code to parts
within such a loop. If continuity checking detects an error, the request to assign
low-level codes to a particular part and its components is rejected, and the previous
state is reestablished. The calling application program is notified of the loop and of
the part which caused the loop.

LLC/CC in DL/I is a callable subroutine, that is, it becomes a subroutine of a
user-written application program. The application program must identify the
product structure to be processed. During the initial generation, it is assumed that
all product structure relationships that are present in the data base must be
processed. During an update, it is assumed that a new product structure, that is, a
line of a new bill of material, is added after LLC/CC in DL/I has updated low-level
codes of affected components.

However, LLC/CC in DL/1 is also an extremely valuable tool for many other
applications. For instance, it may be used to resolve certain network problems if
the network reflects the structure of a unidirectional graph.

A manufacturing product structure may be considered as a tree structure (see
Figure 2 on page 4). At the top of the diagram, there is the end item. Within such
a manufacturing structure, no further processing takes place on the end item. End
items may be exploded into components, into assemblies, subassemblies, parts, and
finally into raw materials and purchased parts. An end item is defined as an item or
part which is not a component of any other item or part, for instance, items A and
K. A raw material or purchased part is defined as an item without any
components, for instance, items 1, 2, 4, 11, and 12. An item may be an end item
and a raw material, or a purchased part, simultaneously. An end item has a
low-level code of zero. All component parts have a non-zero low-level code. If an
item is only a component of an end item, it has a low-level code of 1, for instance,
item B. The components of item B have a low-level code of 2, etc.

If an item is a component of more than one item, that is, of more than one parent
item, the lowest level is assigned. A parent item may also be a component item of
another parent item. For instance, item C is a component of parent item A with
low-level code 0, and of parent item B with low-level code 1. As a consequence,
item C has low-level code 2.

Chapter 2. General Description 3

1

Level Item Number Low-Level Code

A K 0 A 0
B 1
C 2
B 1 D 1 1 D 3
K 0
1 a4
F1 I [) 2 8
c 1 2 2 4 1 1 12 4 3
11 4
I 12 4
' | [
D 4 1 12 3
11 12 4

Figure 2. Product Structure and Low-Level Code

If a new product structure is added, a new relationship between a parent part and a
component part is established. While the actual low-level code of the parent part
remains unchanged, the component part may be affected. According to the rules of
low-level coding, its low-level code must be numerically higher than that of the
parent part. Therefore, the component part is checked to determine whether it
meets this condition. If so, no further updating of low-level codes is required.
Otherwise, the low-level code of the component part is updated, and a recursive
process is set up to check the component parts of the actual component. This
process is discontinued either if a component part already has a low-level code
which needs no updating, or if a part has no further components, that is, if the part
is a purchased part or a raw material.

LLC/CC in DL/I does not support the updating of low-level codes in case of
deletions of product structure relationships. The use of low-level codes is not
affected if they are lower in the scale, that is, greater in numeric value, than the
actual usages in the product structure trees. Processing of deletions would require
extensive processing of where-used relationships which would be likely to decrease
performance.

Continuity checking is a prerequisite for the effective maintenance of
manufacturing product structures. Proper assignment of low-level codes becomes
impossible if an item is contained in itself either directly or indirectly (see Figure 3
on page 5). Hence LLC/CC includes a continuity checking facility.

If a part is contained in itself directly, as part B of Figure 3 on page 5, the
application programmer may easily detect and intercept the violation. However, if
a parent part is contained in itself indirectly, as part A of Figure 3 on page 5, the
violation is no longer easily detectable. In both cases, the continuity checking
facility of LLC/CC issues a return code to the invoking application program so that
the erroneous product structure relationship may not be added to, or removed
from, the data base.

Continuity checking also detects whether a component is contained in itself. This
situation may be encountered during initial generation of low-level codes for an
existing product structure data base. Parts may be processed sequentially in

4 Low-Level Code/Continuity Check in DL/1

ascending order. In Figure 3, part A becomes the first part to be exploded; thus,
part B has still to be checked. To avoid an endless loop caused by component part
B, LLCc/CC checks for continuity of all parts within each path of an explosion. This
facility is valuable during the updating of low-level codes if the initial generation
has not been executed properly. LLC/CC issues a return code and identifies the part
which is in error so that the data base can be corrected.

] |
+B c

-
N

Parent part B is contained in itself directly

| |
+A C

Parent part A is contained in itself indirectly

— >

—

Component part B is contained in itself indirectly

Figure 3. Continuity Checking

In a Gozinto graph (derived from ‘“‘the part that goes into’’) in Figure 4 on page 6,
the product structure is represented by a network which can be described as a
directed graph. The nodes in this network are items, the edges are the intersection
data between two adjacent nodes, that is, the product structure information. The
graph may have multiple start nodes, (that is, raw materials or purchased parts) and
multiple end nodes (that is, end items). A graph may only consist of a single node.
The low-level code for a particular node is defined by the largest number of edges
in a direct path from this node to an end node. End nodes, therefore, have
low-level code zero.

Chapter 2. General Description 5

Low-Level Code

°\ 3
1 4

Figure 4. Gozinto Graph

The Gozinto graph concept allows the general application of LLC/CC to network
analysis problems, for instance, project control or scheduling.

Product structures are normally created by a list of components for a particular
item. This list is a single-level bill of material. Each line of the bill of material
represents a parent-to-component relationship, that is, a product structure
relationship. Low-level codes may be assigned either once after all product
structures have been loaded into the data base, or consecutively each time a new
line of a new bill of material, that is, a new product structure, is added to the data
base. LLC/CC supports both processing modes. In the initial-generation mode,
existing product structures are processed. For a particular part, all components and
subcomponents are checked, and low-level codes are assigned. In the updating
mode, a single parent-to-component relationship is processed. Only the particular
component and its subcomponents are checked for the assignment of proper
low-level codes.

LLC/CC does not perform the insertion of segments to realize a product structure

relationship within a data base. The user must provide an application program to
call LLc/cC. The application program identifies the keys of the items for

6 Low-Level Code/Continuity Check in DL/I

Processing Description

processing, interprets return codes from LLC/CC, and adds new bills of material in
the updating mode if LLC/CC has signaled the proper completion of low-level
coding.

LLC/CC is executed in two different modes, namely, initial-generation mode and
updating mode.

The initial-generation mode is used to insert low-level codes into a parts data base
where product structure relationships have already been established. It is assumed
that the application program processes all root segments, that is, all parts, in an
arbitrarily selected sequence. LLC/CC is invoked by a CALL statement indicating
the particular part key. No processing is required if either:

o The part has a low-level code higher than zero, that is, if this part has already
been processed as the component of another part.

o The part has no component parts.

If processing is required, the part is exploded into its components. If the low-level
code of the component is higher than that of the parent, no low-level code updating
is required. This also excludes a loop condition, and no continuity check is
required. Otherwise, the numeric value of the low-level code of the parent part is
incremented by one and stored in the component. If the component part has
subcomponents, this process is repeated recursively. The original status of all
low-level codes which have been changed is saved in the control data base, thus
allowing the restoration of all low-level codes in their unchanged state if a part is
detected by continuity checking to be contained in itself.

Upon completion of processing, control is returned to the calling application
program. A return code is passed back, indicating either successful completion or
an abnormal condition. An abnormal condition exists, if a part is missing, if a part
is contained in itself, or if an unexpected DL/I condition has developed. If the
operation is completed successfully, all dependent low-level codes are updated, and
the user program identifies the next part for low-level code assignment. It should
also be noted that LLC/CC has used the application program’s PCB and, in doing so,
has changed the position in the data base. If the original position is required for
further processing, it must be re-established by another DL/I call.

Updating of low-level codes is performed in basically the same way. In the
updating mode, however, the application program provides two part keys, namely,
the parent key and the component key. A component part is exploded in the same
way as in initial-generation mode. However, if the component already has a
low-level code which is higher than the low-level code of the parent part, no further
processing is required. To further minimize redundant processing, it is assumed
that the product structures being updated in the update mode are continuity check
error free.

LLC/CC employs a special technique of exploding to extend continuity checking to
component parts. Explosion follows hierarchical paths. A hierarchical path is
defined by the path from the parent part to a particular purchased part, or raw
material, within a product structure. In Figure 2 on page 4, 13 different
hierarchical paths are available for parent part A, for example:

Chapter 2. General Description 7

8

A/B/C/D/1 A/C/D/1

A/B/C/D/11 A/C/D/11
A/B/C/D/12 A/C/D/12
A/B/C/2 A/C/2
A/B/C/4 A/C/4
A/B/1 A/1
A/B/2

Following a hierarchical path is discontinued if a component needs no further
explosion because its low-level code is already correct.

The relative position of a component in a hierarchical path also indicates the
numeric value of the low-level code relative to the parent part.

The explosion sequence in a product structure tree is from top to bottom and from
left to right. When a component is exploded, all its components which require
low-level code updating are entered into a list. Each entry in this list is represented
by an occurrence of the segment PARTBEXP of the control data base. The segment
contains only an identifier which is composed of the low-level code and the part
key of the component. If the explosion of a particular part is completed, all
components are processed, and the low-level code is incremented by 1.
Subsequently, the first occurrence of a part key headed by the new low-level code
is read from PARTBEXP.

When passing through the various levels of a product structure from top to bottom,
all parts making up a hierarchical path are entered into segment PARTBEXP of the
control data base.

In a particular path, no part must occur twice. For instance, if DL/I rejects an
insertion request for a part, a loop is detected. To differentiate between this type
of entry into segment PARTBEXP and other entries, the part key is headed by a
2-byte field containing hexadecimal zeros.

Processing of a hierarchical path is terminated if either:
« acomponent has no more components

» the components of the component have already low-level codes which need no
updating, that is, the numeric value is higher than the low-level code of the
component previously exploded.

When processing of one path is terminated, the next parallel component is selected
for processing. The previously exploded component is removed from both the
continuity check information and the explosion control information in segment type
PARTBEXP. The next explosion control entry is read for the same level. For
instance, according to the structure depicted in Figure 2 on page 4, the path
A/B/C/D/1 is replaced by the path A/B/C/D/11. If a particular level is
completely exhausted, the next higher level is processed, that is, the numeric value
is decremented by 1. For instance, in Figure 2 on page 4 the path A/B/C/D/12 is
replaced by the path A/B/C/2.

The operation is terminated as soon as all hierarchical paths originating from the
highest part in the tree structure, for example, from A, have been processed.

Low-Level Code/Continuity Check in DL/1

Since the initial value of all low-level codes modified during execution of LLC/CC is
saved in segment type UPDMASTR of the control data base, the original status is

restored immediately after a loop has been detected.

On return to the calling application program, the entries in the control data base
are definitely deleted by deletion of the root segment LLCTL in the control data

base.

Figure 5 gives an overview of how part A of Figure 2 on page 4 is exploded. This

explosion sequence reflects the initial generation of low-level codes for A. In
updating mode, the same sequence applies if A is identified as a component part
(parm4) of a new product structure.

Actual Changes in PARTBEXP
Parent Component Explosion - |[Continuity Actual
Part Ezv:,v;Level Part Remarks Ctrl. Entries |Check Entries | Hierarchial
(LLC/Key) (LLC/Key) (LLC/Key) |(Key only) Path
0 +0/A
0/A 1 1/8 +1/B +A A
0/A 1 1/C +1/C
0/A 1 11 +1/1
1 Change to next level
1/B 2 2/C +2/C +8 A/B
1/8 2 21 +2/1
1/B 2 2/2 +2/2
2 Change to next level
2/C 3 3/D +3/D +C A/B/C
2/C 3 3/2 +3/2
2/C 3 3/4 +3/4
3 Change to next level
3/D 4 4/1 +4/1 +D A/B/C/D
3/D 4 4/11 +4/11
3/D 4 4/12 +4/12
4 Change to next level
a1 5 - No components + 1 A/B/C/D/1
4 Next on same level —4a/1 -1 A/B/C/D
4/11 5 - No components + 11 A/B/C/D/11
4 Next on same level —-4/11 -1 A/B/C/D
4/12 5 - No components + 12 A/B/C/D/12
— 4 Next on same level —4/12 -12 A/B/C/D
- 3 Same level exhausted | — 3/D -D A/B/C
3/2 4 - No components +2 A/B/C/2
3 Next on same level —-3/2 -2 A/B/C
3/4 4 - No components +4 A/B/C/4
3 Next on same level - 3/4 —4 A/B/C
- 2 Same level exhausted | — 2/C -C A/B
21 3 - No components +1 A/B/1
2 Next on same level -2 -1 A/B
2/2 3 - No components +2 A/B/2
2 Next on same leval —-2/2 -2 A/B
- 1 Same level exhausted | — 1/B —-B A
1/C 2 2/D Comp. LLC not low - +C A/C
1/C 2 2/2 Comp. LLC not low -
1/C 2 2/4 Comp. LLC not low -
3 Change to next level
- 2 - Same level exhausted
1 Next on same level —-1/C -C A
11 2 - No components + 1 A/l
1 Next on same level -1 -1 A
- 0 - Same level exhausted | — 0/A —-A
Terminate 0 Initial level reached

Figure 5. Explosion Sequence for Part A

Chapter 2. General Description

9

Advantages

LLC/CC incorporates a key function of the bill processor systems, for instance, IBM
System/360 Data Base Organization and Maintenance Processor (DBOMP),
Program Product 5736-XX4. This provides many advantages for the users of DL/I
DOS/VS:

« Low-level codes facilitate summarized explosions and implosions of parts in a
manufacturing data base and also in material requirements planning.
Low-level codes may range from 0 to 999.

« Continuity checking detects violations of continuity rules for manufacturing
product structures. It signals loops consisting of parts which are contained in
themselves either directly or indirectly.

« The user need not code routines to assign low-level codes.

« Performance of net change operations is improved if low-level codes are
available.

« Changing from DBOMP to DL/I becomes easier.

« The low-level code approach also provides valuable tools to resolve network
problems in many other applications.

e LLC/CC is a called subroutine which may be invoked by user-written
application programs of any structure.

« LLc/cc does not interfere with external input/output operations of a calling
application program.

e LLC/CC supports application programs written in Assembler, COBOL, and PL/1.
Utilization of low-level codes may not be essential for applications in the

manufacturing industry. However, experience has shown this method to be an
extremely useful technique to resolve efficiently production planning problems.

Relationships Between LLC/CC in DL/I and Chained File - DL/I Bridge

LLC/CC in DL/I supplements the facilities of the IBM System/370 Chained File -
DL/1 Bridge, Program Product 5748-XX3. In conjunction with DL/1 Bridge,
LLC/CC in DL/I ensures a smooth change-over to DL/1 DOS/VS for current users of
the 1BM System/360 Data Base Organization and Maintenance Processor (DBOMP),
Program Product 5736-XX4. While users may continue to execute some DBOMP
programs against a DL/I data base via the DL/I Bridge, they may develop more and
more DL/I programs.

LLC/CC in DL/1 is fully compatible with DL/I Bridge:

« Low-level codes have the same format, and the same rules for continuity
checking apply.

+ Both LLC/CC in DL/I and DL/1 Bridge assume the same basic structure of the
parts data base.

« The control data base is compatible.

10 Low-Level Code/Continuity Check in DL/I

Hence, for the requirements of an application programmer, both programs are
compatible. During the transition period from DBOMP to DL/I DOS/VS, both
programs may be executed concurrently without any impact on the data bases. For
details about DL/1I Bridge, see IBM System/370 Chained File - DL/I Bridge
(DOS/VS and OS/VS), General Information Manual, GH12-5116.

Chapter 2. General Description 11

Chapter 3. Data Base Description

Parts Data Base

Ident

The user of LLC/CC must provide two different data bases. The parts data base
contains all manufacturing information which is related to parts and to product
structures. The control data base is an empty data base which is only used by
LLC/CC during execution; it does not contain any permanent information.

The parts data base is of key importance within a manufacturing environment. It is
the vehicle to maintain the majority of item-related data, for instance,
identification, description, cost data, forecast and demand data, inventory data,
information about planned and open orders. Furthermore, certain internal and
external relationships reflect the flow of production through the manufacturing
environment.

Each individual part in a product structure - whether it occurs once or more than
once -, or each node in a Gozinto graph, is reflected by the single occurrence of a
logical data base record in DL/1. Each logical data base record consists of a root
segment and a variable number of dependent segments. To establish the product
structure relationships between a parent part and its component parts, or to reflect
the edges connecting nodes within a Gozinto graph, the concept of logical
relationships within DL/1 is employed. Thereby, the root segments of all
component parts directly or indirectly become logical dependent segments of the
root segment of the parent part. The logical relationship is created using a pointer
segment. It provides bidirectional pointers to establish both the bill-of-material
relationships and the where-used relationships of a particular part. Using
additional pointer segments, a part may be linked with related segments of other
data bases, for instance, work centers. Figure 6 shows an example of a logical
parts data base. A vertical arrow in a segment box indicates that this particular
segment is linked to its parent by a pointer segment.

ftem (Parent Part)

[I I T T T T | H 1 Root
I [T 1 T I I
Item Cost Forecast Inventory Gross J Planned _] Open ’ Product J Where Routing J
Data Data Data Data Regrmts Orders Orders Structure Used |] | Opertns Level 2
! |
r--t--4 Level 3
Base Tltem voltem | |4Work
Indices Ident 1 Ident | Center
| RO

(Component Part) (Higher Level Part)

| Segment is required for LLC/CC in DL /1

Figure 6. Sample Parts Data Base

If intersection data is to be stored, an additional segment should be introduced
rather than storing this data in the data portion of a pointer segment. Intersection
data is all the information which is unique to a particular parent part-to-component
part relationship, or to a particular edge connecting two nodes in a Gozinto graph.
For instance, intersection data is the quantity of a component part which is
required to make a parent part. This type of data should be stored in a separate
product structure segment which should be the physical parent segment of the

12 Low-Level Code/Continuity Check in DL/I

pointer segment. If where-used relationships are implemented, the virtual
where-used segment of the component part should be paired with the pointer
segment of the parent part.

If a user wishes to store the intersection data in the pointer segment, he must
consider the following restrictions:

« Data without pertinent pointers is nonexistent for the system. This implies that
new product structure data can only be added after all pertinent component
part root segments have been successfully inserted. Also, when replacing one
component part by another, the intersection data must be saved immediately.

« A pointer segment only provides a single logical relationship. If the product
structure information is stored in the pointer segment, no other linkages to
related segments can be established (for instance, logical relationships with
routing data, tool data, or work center data).

« The data base compatibility with the IBM System/370 Chained File - DL/1
Bridge, Program Product 5748-XX3, is lost. DL/1I Bridge assumes a pointer
segment without data stored in it.

LLC/CC does not require a fixed structure of the parts data base, that is, the user is
free to arrange data and segments according to need. However, certain rules apply
for the location of low-level code fields and for establishing logical relationships:

o The parts data base must have a minimum structure as depicted in Figure 7 on
page 14, consisting of an item root segment and a dependent pointer segment,
which must be a logical child of the root segment of the component part.

« The pointer segment may be located on any hierarchical level below the root
segment of the parent part.

o Intersection data should not be stored in a pointer segment unless the
restrictions governing its use, described above, are acceptable to the user. The
pointer segment should be a physical child of the segment which contains the
intersection data.

« The low-level code field is located in the root segment and is a 2-byte packed
decimal number. Prior to initial generation of low-level codes, the field must
contain packed zeros.

« The parts data base is organized according to the hierarchical indexed direct
access method (HIDAM) or the hierarchical direct access method (HDAM).

When discussing the parts data base, it is necessary to differentiate carefully
between physical data base and logical data base. Throughout this manual, the
following segment names are used:

Level of Physical Logical
Segment Dependency Parts DB Parts DB
Root 1 DLZLLSPN DLZLLSPL
Pointer 2-15 DLZLLSLK -
Pointer + Component Root 2-15 - DLZLLLDD

The segment names of the logical parts data base are also used as default names
when customizing the source code of LLC/CC. (Refer to “Generation of the

Chapter 3. Data Base Description 13

Execution Program (Macro DLZNN)” on page 28 for further information.)
However, the user may change the names because of special requirements. If the
user-written application program calling the services of LLC/CC is sensitive to
additional segment types (as defined by the SENSEG statements of the PSB), LLC/CC
is not affected.

Item Segment Root Segment

DLZLLSPN

Dependent Segment
(Level 2 or Lower in
Hierarchy, Pointing

to the Root Segment
DLZLLSLK of the Component Part)

Pointer Segment

Figure 7. Minimum Parts Data Base (Physical Structure)

Control Data Base

14

The control data base is an empty data base which contains data only during the
execution of LLC/CC. Between two invocations of LLC/CC, the control data base
consists of a dummy root segment with key C‘A’. Each invocation of LLC/CC
implies the insertion into the control data base of a root segment with key C‘X’ and
of a series of level-2 dependent segments. Prior to completion, root segment X and
all dependent segments are deleted. One control data base may cover several parts
data bases, provided that the keys of the root segments have the same length.

The structure of the control data base is depicted in Figure 8 on page 15. The root
segment LLCTL is used as an anchor point for the dependent segments. Segment
PARTBEXP stores data for explosion control. It acts as a guide through all relevant
hierarchical paths. The segment UPDMASTR saves the old status of the low-level
code of all parts which have been changed. The old status of the low-level codes is
restored if continuity checking detects an error. Both dependent segments have
multiple occurrences.

The three segment types have the following layout:

* Segment LLCTL, length 1 byte, key length 1 byte.

+ Segment PARTBEXP, length (2 + length of part key), key length (2 + length of
part key), i.e., the segment only consists of a key and does not contain data.

The segment key is composed of a 2-byte prefix (either hexadecimal zeros or
current LLC), and the part key.

Low-Level Code/Continuity Check in DL/I

+ Segment UPDMASTR, length (length of part key + 2), key length equals length
of part key. The key begins at displacement 0 = start position 1. The data
portion has a length of 2 bytes. It contains the old LLC, and begins at
displacement (length of part key) = start position-(length of part key + 1).

The user must not change the segment layout or segment names of the control data
base. Failure to correct definition of DBDs results in errors during execution.

The control data base is organized according to the hierarchical indexed direct
access method (HIDAM) or the hierarchical direct access method (HDAM).

Anchor Segment Root Segment

LLCTL

= =

Explosion Control Backup Segment

Segment Is.evel -2 Dependent
UPDMASTR egments

PARTBEXP

Figure 8. Control Data Base

Definition of DBDs, PSBs, and ACBs

The definition of DBDs, PSBs, and ACBs follows the rules described in DL/I
DOS/VS Resource Definition and Utilities.

The following figures present a set of sample definitions. Figure 9 on page 16
shows the sample DBDs for a parts data base. The definition assumes a 3-level
structure with a separate product structure segment, a data portion in the pointer
segment, and no where-used relationships. All names may be changed. Figure 10
on page 17 shows the sample DBDs for a control data base. Names of segments
and fields must not be changed. However, if the control data base of the Chained
File - DL/1 Bridge is used, no separate DBD is required. Figure 11 on page 17 shows
a sample PSB used to generate the control data base. Figure 12 on page 17 shows
a sample PSB used to execute an Assembler application program invoking LLC/CC.

The names of DBDs and PSBs must not exceed seven characters. For the names
selected, the rules for naming phases in the VSE core image library apply. Before
selecting a name, check a DSERV listing of the core image library for conflicting
names.

Care must be taken when defining the operand for the RULES parameter in the
SEGM statement of the generation of the physical DBD for the parts data base. For

Chapter 3. Data Base Description 15

both the root segment and the logical child pointer segment, RULES=xxV must be
specified, where x can be one of the characters P, L, or V. If the user fails to
define it this way, low-level codes may remain unchanged without any notice.

The BYTES parameter in the SEGM statement for the logical child pointer segment
indicates the length of this segment. The length is composed of the concatenated
key of the physical parent segment, that is, the root segment of the component
part, and of the data portion of the logical child segment. If no data is stored in the
logical child pointer segment, the BYTES parameter must have the same value as the
BYTES parameter in the appropriate FIELD statement of the root segment.

However, in the data base only the data portion of the logical child pointer segment
is stored; the key portion is handled by DL/1.

DBD NAME=DLZNNPI,ACCESS=INDEX INDEX-DB-DEFINITION
DATASET DD1=DLZLDS1,DEVICE=3330 // DLBL DLZLDS1,'..PNI.CL'
SEGM NAME=DLZLLSPI,BYTES=2 KEYLENGTH OF PNM-ROOT

LCHILD NAME=(DLZLLSPN,DLZNNPN),INDEX=PNKEY HIDAM-ROOT
FIELD NAME=(PIKEY,SEQ,U),BYTES=2,START=1

DBDGEN

FINISH

END

DBD FOR INDEX DATA BASE OF PARTS DATA BASE

DBD NAME=DLZNNPN,ACCESS=HIDAM (=HIDAM,VSAM)
DATASET DD1=DLZLDSP,DEVICE=3330 // DLBL DLZLDSP,'..PNP.CL'
SEGM NAME=DLZLLSPN,PARENT=0,BYTES=50,

RULES=VVV IF NO PTR,PTR=T (DOS/DL1-DEFAULT)
LCHILD NAME=(DLZLLSPI,DLZNNPI),PTR=INDX =INDEX-DB
LCHILD NAME=(DLZLLSLK,DLZNNPN) DOS/DL1-DEFAULT:PTR=SNGL

FIELD NAME=(PNKEY,SEQ,U),BYTES=2,START=5,TYPE=C

FIELD NAME=PNLLC,BYTES=2,START=10,TYPE=P LLC-FIELD

SEGM NAME=DLZLLSST,PARENT=((DLZLLSPN,SNGL)), c
BYTES=20,PTR=T,RULES=VVL

FIELD NAME=(STKEY,SEQyM),BYTES=4,START=1,TYPE=C

FIELD NAME=COMPDATA,BYTES=5,START=5 COMP.QUANT.

SEGM NAME=DLZLLSLK, LCHILD-SEGMENT c
PARENT=((DLZLLSSTySNGL), (DLZLLSPN,VIRTUAL,DLZNNPN)), c
BYTES=10,PTR=(T,LP),RULES=VVV DEFAULT:PTR=(T,..)

DBDGEN

FINISH

END

DBD FOR PHYSICAL PARTS DATA BASE

DBD NAME=DLZNNPL,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=DLZLLSPL,PARENT=0, C
SOURCE=((DLZLLSPN,DATA,DLZNNPN))

SEGM NAME=DLZLLSSL,PARENT=DLZLLSPL, [

SOURCE=((DLZLLSST,DATA,DLZNNPN))
SEGM NAME=DLZLLLDD,PARENT=DLZLLSSL, C
SOURCE=((DLZLLSLK,DATA,DLZNNPN), (DLZLLSPN,DATA,DLZNNPN))
DBDGEN
FINISH
END

DBD FOR LOGICAL PARTS DATA BASE
Figure 9. Sample DBDs for a Parts Data Base

For improved program performance, you should define the largest VSAM control
intervals possible (up to 4096) for the control data base. This is done by specifying
the BLOCK keyword in the DATASET statement at DBD generation.

16 Low-Level Code/Continuity Check in DL/I

DBD NAME=DLZNNCI,ACCESS=INDEX
DATASET DD1=DLZLDS2,DEVICE=2314 7/
SEGM NAME=LLCTLI,PARENT=0,BYTES=1

INDEX-DB-DEFINITION
DLBL DLZLDS2,'..CTI.CL'

LCHILD NAME=(LLCTL,DLZNNCT),INDEX=CTLKEY
FIELD NAME=(CIKEY,SEQ,U)»BYTES=1,START=1

DBDGEN
FINISH
END

DBD FOR INDEX DATA BASE OF CONTROL DATA BASE

DBD NAME=DLZNNCT,ACCESS=HIDAM

(=HIDAM,VSAM)

DATASET DD1=DLZLDSC,DEVICE=2314, // DLBL DLZLDSC,'..CTP.CL' C

BLOCK=4096
SEGM NAME=LLCTL,PARENT=0,BYTES=1
LCHILD NAME=(LLCTLI,DLZNNCI),PTR=INDX

PTR TO INDEX-DB

FIELD NAME=(CTLKEY,SEQ,U) yBYTES=1,START=1
SEGM NAME=PARTBEXP,PARENT=((LLCTL,DBLE)), C

BYTES=4,PTR=TB

FIELD NAME=(EXPKEY,SEQ,U) yBYTES=4,START=1,TYPE=C
SEGM NAME=UPDMASTR,PARENT=((LLCTL,DBLE)), [«

BYTES=4,PTR=TB

FIELD NAME=(UPDKEY,SEQ,U),BYTES=2,START=1,TYPE=C

DBDGEN
FINISH
END

DBD FOR PHYSICAL DATA BASE OF CONTROL DATA BASE

Figure 10. Sample DBDs for a Control Data Base

PCB
SENSEG
PSBGEN
END

TYPE=DB, DBDNAME=DLZNNCT,PROCOPT=LS,KEYLEN=5

NAME=LLCTL,PARENT=0
LANG=ASSEM, PSBNAME=DLZNNP2

Figure 11. Sample PSB to Generate the Control Data Base

PCB

SENSEG
SENSEG
SENSEG

PCB

SENSEG
SENSEG
SENSEG

PSBGEN
END

TYPE=DB, DBDNAME=DLZNNPL,PROCOPT=AE,KEYLEN=12

NAME=DLZLLSPL,PARENT=0
NAME=DLZLLSSL,PARENT=DLZLLSPL
NAME=DLZLLLDD,PARENT=DLZLLSSL

TYPE=DB, DBDNAME=DLZNNCT,PROCOPT=AE,KEYLEN=5

NAME=LLCTL,PARENT=0
NAME=PARTBEXP,PARENT=LLCTL
NAME=UPDMASTR , PARENT=LLCTL

LANG=ASSEM, PSBNAME=DLZNNP4

Figure 12. Sample PSB to Execute an Assembler Application Program Using LLC/C

Chapter 3. Data Base Description

17

Chapter 4. Invocation of LLC/CC in DL/I

This chapter describes how to invoke the services of LLC/CC in DL/I. It shows the
relationships between DL/I DOS/VS, a user-written application program executing
under control of DL/1 DOS/VS, and the LLC/CC subroutine. The information is
addressed to the application programmer.

Since LLC/CC is a called subroutine of a user-written application program, the
application programmer must be aware of the requirements LLC/CC places on the
application program.

o The section “Relationships Between LLC/CC in DL/I and Application
Programs” describes the operations that the application program is expected to
perform.

« The sections “Application Programs Written in Assembler Language” on page
20 and“Application Programs Written in High-Level Languages” on page 22
explain how to invoke the services of LLC/CC and how to transfer the
parameter information.

« The section “Error Recovery” on page 25 presents some aspects of efficient
error recovery.

It is assumed that the application programmer is familiar with coding for DL/1
DOS/VS, including logical relationships. Refer to DL/I DOS/VS Application
Programming: CALL and RQDLI Interfaces.

Relationships Between LLC/CC in DL/I and Application Programs

An application program using LLC/CC in DL/I as a subroutine may operate in either
initial-generation mode or in updating mode.

Initial-generation mode is selected if an existing parts data base representing a
manufacturing product-structure network is to be upgraded by introducing
low-level codes for each part. The updating mode is used to add a new
product-structure relationship to an existing parts data base that already contains
low-level codes. An addition usually requires updating of low-level codes, that is,
existing low-level codes are checked to determine whether they must be
incremented. After updating the new product-structure relationship is ready to be
added physically to the data base. If any part in a product structure is contained in
itself, either directly or indirectly, the request to generate initially or to update
low-level codes is rejected by LLC/CC. The application program receives
information on the reason for the rejection and the part causing the loop.

The application program, thus, fully controls the usage of LLC/CC. It identifies the
requested services, starts the execution of LLC/CC, and sets up error recovery if
required. The application programmer must therefore provide particular functions
in his program if he wants to make efficient use of LLC/CC.

Prerequisites for Initial-Generation Mode

The prerequisites for the initial-generation mode are:

o All low-level code fields must contain packed zeros.

18 Low-Level Code/Continuity Check in DL/I

» The application program must identify the keys of the parts to be exploded.

» The application program may either scan sequentially the parts data base, or it
may read external input, for instance, from tape, to process end items first and
raw materials or purchased parts last.

« If the root segment of a particular part already contains a low-level code
greater than zero, this part should be bypassed because it no longer needs
exploding. However, if LLC/CC is called, no data is changed.

 Since initial generation of low-level codes is a time-consuming function, the job
may be split into steps. It is the responsibility of the application programmer to
define the range of each step and to ensure that updating mode processing is
not used until initial generation is completed.

+ The application program must test the return code. If the continuity checking
function of LLC/CC detects a loop, the key of the part causing the loop is
returned to the application program. The key may identify a component of the
part which is actually exploded. When the data base has been corrected, the
part which was exploded must be reprocessed in initial-generation mode.

+ The application program should provide audit lists indicating the successful
assignment of low-level codes or continuity checking information.

Prerequisites for Updating Mode

In updating mode, the prerequisites differ slightly:
« All low-level code fields must contain non-negative packed decimal numbers.

» The application program must identify the keys of the parent part and of the
component part of a new product structure. This means that a new bill of
material is processed line by line.

» The application program must test the return code. A blank return code
indicates that:

— Low-level codes for the component part and all components of the
component part have been properly assigned.

— The application program may add the new product structure.

« The application program must insert the DL/I segments which establish the new
product structure in the parts data base.

» If the status code of LLC/CC is not blank, the new product structure violates
the rules for assembly-to-subassembly continuity and must not be added to the
parts data base. The application program receives the key of the part causing
the loop. After error correction has taken place, the product structure may be
resubmitted.

» The application program should provide audit lists indicating successful
assignment of low-level codes or continuity checking information.

Application programs invoke the services of LLC/CC by standard CALL statements.
The basic information passed to the LLC/CC subroutine is:

Chapter 4. Invocation of LLC/CCinDL/I 19

« The key of the part to be exploded, for initial-generation mode.
« The keys of parent part and of component part, for updating mode.

The application programmer should be careful with processing the parts data base
by the transaction codes GN, GNP, GU, GHU, GHN, or GHNP if this operation is
followed by an invocation of LLC/CC because the status of the respective pointers
is undefined and position within the data base has been lost.

Apart from the above requirements, the general organization of the application
program may be designed according to the needs of the particular environment.

Application Programs Written in Assembler Language

Application programs written in Assembler language use normal CALL conventions
to invoke the services of LLC/CC. The user must set up a parameter list, load the
address of a register save area into register 13, load the address of the parameter
list into register 1, and issue the CALL macro instruction indicating the proper entry
point. Upon return to the application program after execution of LLC/CC, the
return code should be tested.

The following sequence of instructions applies to the request for initial generation
of low-level codes:

LA 13,savearea (load address of save area)
LA 1,parmlist (load address of parameter list)
CALL DLZNNGA (invoke LLC/CC in DL/I)

The following sequence of instructions applies to the request for updating of
low-level codes:

LA 13,savearea (load address of save area)
LA 1,parmlist (load address of parameter list)
CALL DLZNNCA (invoke LLC/CC in DL/I)

The entry point name DLZNNCA in the CALL statement can be modified by the user.
For further information refer to the section “Generation of the Execution Program
(Macro DLZNN)” on page 28.

The parameter list consists of

« 5 contiguous fullwords in initial-generation mode (parml1, parm2, parm3,
parm5, parm6),

« 6 contiguous fullwords in updating mode (parm1 through parm6).
Parameter parm4 must not be present in initial-generation mode.

Each entry in the parameter list contains an address constant. Note that the PCB
pointers must be moved directly into the first and the second fullwords of the
parameter list when the application program receives control from DL/I.

parml Pointer to the PCB of the logical parts data base

parm2 Pointer to the PCB of the control data base

20 Low-Level Code/Continuity Check in DL/I

parm3

parm4

parm5

parmé

Pointer to a field containing the key of the part (for initial generation), or
the key of the parent part (for updating)

Pointer to a field containing the key of the component part (for updating

only); this parameter must not be present for the initial-generation mode

Pointer to a 2-byte character field which contains the return code after

execution of LLC/CC

Pointer to a field containing the key of the part causing a loop which has

been detected by the continuity checking function of LLC/CC

The length of the fields identified by parm3, parm4, and parmé equals the length of

the part key. The fields identified by parm5 and parmé need no initialization. The

contents of parm1 through parm4 remain unchanged during execution of LLC/CC.

Figure 13 shows parts of an Assembler program that performs both initial
generation and updating of low-level codes. It is assumed that during PSB

generation the PCB for the parts data base was defined first, followed by the PCB

for the control data base. Both pointers thus can be moved with a single
instruction.

SAMPLE

INITGEN

UPDATE

CSECT
USING
.

.

.
MvC
MvC

.

.
DS
MVC
LA
LA

CALL

cLc

DS
Mve
MvVC
LA
LA

CALL

CLC

*yR8

APCBIN,0(R1)
APCBUP,0(R1)

OH

PARM3, PARKEY
R13,SAVEAREA
R1,APARMIN

DLZNNGA

PARM5,=X"'4040"

OH
PARM3,PARKEY
PARM4, COMPKEY
R13,SAVEAREA
R1,APARMUP

DLZNNCA

PARM5,=X"14040"

LOAD PCB'S FOR INITIAL GEN
LOAD PCB'S FOR UPDATE

INITIAL GENERATION

SPECIFY PARENT PART
ESTABLISH SAVE AREA

LOAD PARMLIST FOR INIT GEN

CALL LLC/CC IN DL/I FOR INIT GEN

TEST RETURN CODE FOR BLANKS

UPDATE

SPECIFY PARENT PART
SPECIFY COMPONENT PART
ESTABLISH SAVE AREA

LOAD PARMLIST FOR UPDATE

CALL LLC/CC IN DL/I FOR UPDATE

TEST RETURN CODE FOR BLANKS

Figure 13 (Part 1 of 2). Sample Assembler Program

Chapter 4. Invocation of LLC/CC in DL/I

21

*
*
*

DEFINITIONS OF FIELDS AND CONSTANTS

PARKEY DS cL2 PARENT KEY INPUT AREA
COMPKEY DS cL2 COMPONENT KEY INPUT AREA
*

SAVEAREA DS 18F REGISTER SAVE AREA

*

PARM3 DS cL2 PARENT PART

PARM& DS cL2 COMPONENT PART

PARMS DS cL2 RETURN CODE

PARM6 DS cL2 LOOPING PART

*

* PARAMETER LIST FOR INITIAL GENERATION

*

APARMIN DS OF PARMLIST START ADDRESS
*

APCBIN DS ocLs PCB ADDRESSES

AINPARM1 DC A(0) - PARTS DATA BASE
AINPARM2 DC A(0) - CONTROL DATA BASE
AINPARM3 DC A(PARM3) PARENT PART

AINPARM5 DC A(PARM5) RETURN CODE

AINPARM6 DC A(PARM6) LOOPING PART

*

* PARAMETER LIST FOR UPDATE

*

APARMUP DS OF PARMLIST START ADDRESS
*

APCBUP DS ocLs PCB ADDRESSES

AUPPARM1 DC A(0) - PARTS DATA BASE
AUPPARM2 DC A(0) - CONTROL DATA BASE
AUPPARM3 DC A(PARM3) PARENT PART

AUPPARM4 DC A(PARM4) COMPONENT PART
AUPPARM5 DC A(PARMS) RETURN CODE

AUPPARM6 DC A(PARM6) LOGPING PART

END

Figure 13 (Part 2 of 2). Sample Assembler Program

Application Programs Written in High-Level Languages

LLC/CC supports application programs written in COBOL and PL/I.

If the application program is written in COBOL, the following CALL statements may

be used:

« For initial generation of low-level codes:
CALL ‘DLZNNGC’ USING parml,

parm2,

parm3,

parmS$,
parmé.
¢ For updating of low-level codes:

CALL ‘DLZNNCC’ USING parml,
parm2,
parm3,
parm4,
parm$,
parmé.

22 Low-Level Code/Continuity Check in DL/I

If the application program is written in PL/I, the following CALL statements may
be used:

« For initial generation of low-level codes:

CALL DLZNNGP (parml,
parm2,
parm3,
parmS5,
parm6);

» For updating of low-level codes:

CALL DLZNNCP (parml,
parm2,
parm3,
parm4,
parmS5,
parm6);

The entry point name DLZNNCC in the CALL statement can be modified by the user.
For further information refer to the section “Generation of the Execution Program
(Macro DLZNN)” on page 28.

The parameters identify the following fields in the user-written application
program:

parml PCB of the logical parts data base
parm2 PCB of the control data base

parm3 Field containing the key of the part (for initial generation), or the key of
the parent part (for updating)

parm4 Field containing the key of the component part (for updating only); this
parameter must not be present for the initial-generation mode

parmS 2-byte character field which contains the return code after execution of
LLC/CC

parm6é Field containing the key of the part causing the loop which has been
detected by the continuity checking function of LLC/CC

The length of the fields identified by parm3, parm4, and parmé6 equals the length of
the part key. The fields identified by parm5 and parmé6 need no initialization. The
contents of parm1 through parm4 remain unchanged during the execution of
LLC/CC. InPL/I, parm3 through parmé must be defined in character format.

Note: The DLZNN module expects the parameter passed in a call from PL/I to point
to the locators of the parameters. Do not pass a parameter list with some
parameters.pointed to directly.

Figure 14 on page 24 shows parts of a COBOL program and Figure 15 on page 25

shows parts of a PL/I program. Both samples show how to invoke LLC/CC for
initial generation and for updating of low-level codes.

Chapter 4. Invocation of LLC/CCinDL/I 23

IDENTIFICATION DIVISION.
.
.

L]
DATA DIVISION.
L]
.
.
FILE SECTION.
05 KEY1 PIC XX
05 KEY2 PIC XX.
L]
.

.
WORKING-STORAGE SECTION.
.
L]
L]

05 WC-LLC-RETURN-CODE PIC XX.
05 WC-LOOP-KEY PIC XX.
L]
.
L]
05 WE-PNKEY PIC XX.
05 WE-COMPKEY PIC XX.

.
.
L]
LINKAGE SECTION.
01 PN-PCB.
.
.
.

01 CTL-PCB.

05 CTL-PCB-DBDNAME PIC X(8).
05 CTL-PCB-LEVEL PIC S9(4).
05 CTL-PCB-STATUS PIC XX.

PROCEDURE DIVISION.
ENTRY 'DLITCBL' USING PN-PCB, CTL-PCB.
L]
L]

L]
300-PROCESS-INI-GENRTN.
MOVE KEY1 TO WE-PNKEY.
CALL 'DLZNNGC' USING PN-PCB, CTL-PCB,
WE-PNKEY,
WC-LLC-RETURN-CODE, WC-LOOP-KEY.
400—-PROCESS—UPDATE.
MOVE KEY1l TO WE-PMKEY.
MOVE KEY2 TO WE-COMPKEY.
CALL 'DLZNNCC' USING PN-PCB, CTL-PCB,
WE-PNKEY, WE-COMPKEY,
WC-LLC-RETURN-CODE, WC-LOOP-KEY.

.
.
GOBACK.

STOP RUN.

Figure 14. Sample COBOL Program

24 Low-Level Code/Continuity Check in DL/I

DLITPLI: PROC (PCB1l, PCB2) OPTIONS (MAIN);
DCL PLITDLI ENTRY,
DLZNNCP ENTRY,
DLZNNGP ENTRY,
PCB1 POINTER,
PCB2 POINTER;

DCL PARTS_PCB BASED (PCB1),

DCL CNTRL_PCB BASED (PCB2),
.
L]
.

DCL PART CHAR (2),
PAR_PART CHAR (2),
COMP_PART CHAR (2);

DCL RET_CODE CHAR (2) INIT (')
LOOP_PART CHAR (2) INIT (' ¢

,
)

.

/% ROUTINE FOR INITIAL GENERATION OF LOW-LEVEL CODES */
Ld
.

.
CALL DLZNNGP (PARTS_PCB,

CNTRL_PCB,
PART,
RET_CODE,
LOOP_PART);
IF RET_CODE = ' !
THEN;
DO; “ o e ; END;
ELSE;
DO; o s e 3 END;

3
.

L]

/% ROUTINE FOR MAINTENANCE OF LOW-LEVEL CODES %/
.
.

L]
CALL DLZNNCP (PARTS_PCB,

CNTRL_PCB,
PAR_PART,
COMP_PART,
RET_CODE,
LOOP_PART) ;
IF RET_CODE = ! '
THEN;
DO; o« e e 3 END;
ELSE;
DO; « e e ; END;
.
L]
Figure 15. Sample PL/I Program

Error Recovery

If an error occurs during the execution of an application program calling the
services of LLC/CC the user must investigate carefully the error conditions. The
error may be caused by various reasons:

« The application program calling for the services of LLC/CC is not properly
cleared of errors.

» DL/I control blocks are incorrectly specified.

Chapter 4. Invocation of LLC/CC in DL/I

« The data bases are incomplete, damaged, or destroyed.
« The contents of the data bases are incomplete, damaged, or destroyed.

« The organization of the user’s data processing system does not ensure data
base integrity.

« A system component does not execute accurately.

System errors may be caused by incorrect operation procedures, for instance:

« The PsB does not ensure exclusive use of the data bases during execution.

« Not all updates of the parts data base are performed when LLC/CC is used.
The user of LLC/CC is entirely responsible for a correct application of this function.

To facilitate error recovery, a return code is always returned to the application
program. Abnormal conditions are indicated by a non-blank return code (refer to
“Return Codes” on page 39 for further details). The application programmer is
responsible for the setting up of appropriate procedures for error recovery. In
general, their implementation depends on the particular environment; however,
some guidelines may help the programmer.

Return codes beginning with the characters D, E, and F signal that the data bases
are damaged. In this case, the application program should display all available
information including the contents of the PCBs and immediately terminate
processing. In addition, a VSAM VERIFY run is recommended. (For information on
the VERIFY command, see Using VSE/VSAM Commands and Macros, SC24-5144.)

All other non-blank return codes allow processing to continue. However, it is the
application programmer’s responsibility to specify under which conditions
continuation is appropriate.

In initial-generation mode, continuity checking may detect multiple violations.
Under these circumstances it is recommended to continue processing and to
produce a complete list of all loops. If LLC/CC rejects the request for assignment
of low-level codes, the application program must print an exception notice
indicating the exploded part and the part causing the loop. This information is used
by the data base administrator to correct the data base, that is, to delete erroneous
product structures and to add correct product structures. After correction, all
affected parts must be reprocessed in initial-generation mode. It is reccommended
therefore, that the application program punch a card for each exploded part for
which low-level code assignment is rejected. These cards are resubmitted in a
second run in initial-generation mode. However, if corrections of the data base
affect more parts than originally detected, it is advisable to reset all low-level code
fields to zero and to reprocess all parts in initial-generation mode.

In updating mode, a continuity check indicates that a particular product structure
must not be added. Normally, it results from an error when preparing a new bill of
material, that is, when a wrong key is entered for the particular component.
However, in some cases existing data in the parts data base may be wrong. The
application program may then either reject the new bill of material altogether or
only defer insertion of the erroneous line in the bill of material.

26 Low-Level Code/Continuity Check in DL/I

After the bill of material and the parts data base have been corrected, updating
may be retried.

If an existing data base has been processed in initial-generation mode by LLC/CC,
and if the updating mode detects continuity errors in existing data, an
initial-generation run is advisable. This allows improper structures to be cleaned up,
and reduces the amount of rework during future updating runs.

Because error recovery involves many functions outside the data processing

department, it is up to the judgment of the application programmer to decide how
to proceed if an error occurs.

Chapter 4. Invocation of LLC/CCinDL/I 27

Chapter 5. Operational Procedures

The following sections describe the procedures required to operate LLC/CC and to
execute user-written application programs calling the facilities of LLC/CC. Samples
of job input streams are included. The reader should modify the samples (for
instance, disk addresses, names for data sets, PSBs, and phases) to meet the
requirements for a particular environment. If job control becomes lengthy, the user
should consider storing a general set of job control statements in the procedure
library.

Distribution of LLC/CC in DL/I

LLC/CC in DL/I is a component of Data Language/I Disk Operating
System/Virtual Storage (DL/1 DOS/VS), Program Product 5746-XX1. The
machine-readable material of DL/1 DOS/VS contains two macro definitions which
provide the facilities of LLC/CC in DL/I:

« The macro DLZNN generates the logic to execute LLC/CC in DL/I.

« The macro DLZNNICT generates the logic to initialize the control data base,
which is a prerequisite for executing LLC/CC in DL/I.

The macros are distributed both in edited and unedited format. LLC/CC in DL/I is
stored on the DL/1 DOS/VS distribution tape.

o The macros in edited format are included in file 1 of the distribution tape. They
are cataloged as E-books in the source statement library.

» File 3 of the distribution tape contains the macro instructions in unedited
format. They may be cataloged as A-books in the source statement library.

For full details on cataloging and maintenance, refer to DL/I DOS/VS Resource
Definition and Utilities.

Generation of the Execution Program (Macro DLZNN)

28

To generate executable code for LLC/CC in DL/I, the macro definition DLZNN is
assembled and stored in the relocatable library. A set of macro parameters is used
to tailor the program to meet the needs of the user’s individual environment.

Low-Level Code/Continuity Check in DL/I

The macro instruction has the following format:

DLZNN [COMPNAM=DLZLLLDD,
name]
[COMPLEN=KEYLEN,
length]
[DLZNNCA=DLZNNCA,
name]
[DLZNNCC=DLZNNCC,
. name]
[DLZNNCP=DLZNNCP,
name]
[DLZNNEC=DLZNNEC,
name]
[DLZNNGA=DLZNNGA,
name]
[DLZNNGC=DLZNNGC,
name]
[DLZNNGP=DLZNNGP,
name]
[INGEN=YES,

NO]
KEYDIS=displacement,
KEYLEN=length,
LLCDIS=displacement,
[MODNAM=DLZNN,

name |
[PNKEY=PNKEY,
name]
[ROOTNAM=DLZLLSPL,
name]
[BRIDGE=NO,
YES]
ROOTLEN=length

For all optional parameters, which are indicated by brackets, a default operand
(indicated by underscoring) is provided. When entering the input statements, the
macro syntax of the Assembler language applies. In particular, the rules that apply
to continuation lines must be observed carefully.

[COMPNAM=DLZLLLDD,
name]

Name of the component segment in the logical parts data base. This segment
consists of the pointer segment of the parent part and of the root segment of
the component part. The default name for this segment is DLZLLLDD.

[COMPLEN=KEYLEN,
length]

Length of the pointer segment which establishes the relationship to the root
segment of the component part as defined in the generation of the physical
DBD for the parts data base. The length is composed of the concatenated key of
the logical parent segment, that is, of the key of the component part, and of the
length of data stored in the pointer segment. If no data is stored, COMPLEN is
equal to KEYLEN. If COMPLEN is omitted, no data is assumed, and KEYLEN is
taken as default.

[DLZNNCA=DLZNNCA,
name]

Chapter 5. Operational Procedures 29

30

Name of the entry point for Assembler application programs to update
low-level codes. The name must not exceed seven characters. The default name
iSs DLZNNCA.

[DLZNNCC=DLZNNCC,
name]

Name of the entry point for COBOL application programs to update low-level
codes. The name must not exceed seven characters. The default name is
DLZNNCC.

[DLZNNCP=DLZNNCP,
name]

Name of the entry point for PL/I application programs to update low-level
codes. The name must not exceed seven characters. The default name is
DLZNNCP.

[DLZNNEC=DLZNNEC,
name]

External name for the LLC/CC Execution Control Block (LECB). The name
must not exceed seven characters. The default name is DLZNNEC.

[DLZNNGA=DLZNNGA,
name]

Name of the entry point for Assembler application programs to initially
generate low-level codes. The name must not exceed seven characters. The
default name is DLZNNGA.

[DLZNNGC=DLZNNGC,
name]

Name of the entry point for COBOL application programs to initially generate
low-level codes. The name must not exceed seven characters. The default
name is DLZNNGC.

[DLZNNGP=DLZNNGP,
name]

Name of the entry point for PL/I application programs to initially generate
low-level codes. The name must not exceed seven characters. The default name
is DLZNNGP.

[INGEN=YES,
NO]

Inclusion of the routine to initially generate low-level codes. The default is
inclusion.

KEYDIS=displacement,

Position of the part key in the root segment of the parts data base relative to
the beginning of the data area of the root segment.

Note: Because LLC/CC is written in assembler language, the displacement

value specified must be relative to zero. (The first character position in the
data area is displacement 0.)

Low-Level Code/Continuity Check in DL/I

KEYLEN=length,

Length of the part key.

LLCDIS=displacement,

Position of the low-level code field in the root segment of the parts data base
relative to the beginning of the data area of the root segment.

Note: Because LLC/CC is written in assembler language, the displacement
value specified must be relative to zero. (The first character position in the
data area is displacement 0.)

[MODNAM=DLZNN,
name]

Definition of the name of the CSECT and of the module which will be stored in
the relocatable library. The default name is DLZNN. The macro instruction
automatically produces an appropriate CATALR statement preceding the object
code. The module name defined by parameter MODNAM must be entered into
the INCLUDE statement when the user-written application program is
link-edited to LLC/CC. In conjunction with the definition of different entry
point names, this allows you to call multiple LLC/CC modules within a single
application program to service several data bases concurrently. (Refer to the
section “Link-Editing of Application Programs” on page 35 for further
information.)

[PNKEY=PNKEY,
name]

Name of the key field in the root segment. This field will be defined in the
DBD generation for the physical parts data base. The default name is PNKEY.

[ROOTNAM=DLZLLSPL,
name]

Name of the root segment in the logical parts data base. The default name is
DLZLLSPL.

[BRIDGE=NO,
YES]

Specification of BRIDGE=YES develops code which assumes utilization of the
control data base as created by the Chained File - DL/1 Bridge, Program
Product 5748-XX3. In this case, no separate control data base need be
generated for executing a phase containing DLZNN.

ROOTLEN=length
Length of the data area of the root segment in the parts data base.

Incorrect specification of operands for mandatory parameters results in an
abnormal termination of code generation. MNOTE statements are used to display
error messages (refer to “Error Messages” on page 38 for further information).
All segment names refer to the names as defined during DBD generation for the
logical parts data base. When changing the name of the CSECT or the names of the
entry points, the user should carefully check the cross reference table of an
assembly list for duplicate names.

Chapter 5. Operational Procedures 31

A sample job input stream to generate and to catalog object code is given in
Figure 16. The job control statements assume private libraries. The object code
generated by the Assembler is stored in the private relocatable library and is ready
to be link-edited to user-written application programs. The macro parameters of
the sample apply to the sample DBD described in the section “Definition of DBDs,
PSBs, and ACBs” on page 15.

// JOB GOELLASS (0795,4),T=6
// OPTION DECK
// ASSGN SYS020,DISK,VOL=DS2PR2,SHR
// ASSGN SYSSLB,SYS020
// DLBL I1JSYSSL,'DOS.DLZ.LLC.MACRO'
// EXTENT SYSSLB,DS2PR2
// ASSGN SYSRLB,SYS020
// DLBL IJSYSRL,'DOS.DLZ.LLC.OBJECT'
// EXTENT SYSRLB,DS2PR2
// DLBL IJSYSCL,'DOS.DLZ.LLC.CILIB'
// EXTENT SYSCLB,DS2PR2

ASSGN SYSCLB,SYS020

ASSGN SYSPCH,UA

ASSGN SYSPCH,X'361'
// EXEC PGM=ASSEMBLY

DLZNN KEYDIS=4,KEYLEN=2,LLCDIS=9,RO0TLEN=50,COMPLEN=10
END

/%

CLOSE SYSPCH,X'00D'

ASSGN SYSIPT,UA

ASSGN SYSIPT,X'361'
// EXEC PGM=MAINT

CLOSE SYSIPT,X'00C!
// EXEC PGM=DSERV

DSPLYS ALL
/%
/8

ASSGN SYSCLB,UA

Figure 16. Sample Job Input Stream for DLZNN

The generated object code applies to all application programs requiring low-level
code generation or updating, that is, a single copy of the object code covers all
functions and all source code languages. Regeneration of the object code is
required only if modifications to the layout of the data base affect fields and
segments which are used by LLC/CC.

Generation of the Initialization Program for the Control Data Base (MACRO DLZNNICT)

The macro instruction DLZNNICT needs no customization. It is assembled,
link-edited, and stored in the core image library.

A sample job input stream to generate and to catalog executable code is given in
Figure 17 on page 33. The job control statements assume private libraries. The
executable code is stored in the private core image library and is ready for
execution by DL/I. The name of the phase is DLZNNICT.

32 Low-Level Code/Continuity Check in DL/I

// JOB GOEASSIC (0795,4),T=5
// OPTION CATAL
// ASSGN SYS020,DISK,VOL=DS2PR2,SHR
// ASSGN SYSSLB,SYS020
// DLBL IJSYSSL,'DOS.DLZ.LLC.MACRO'
// EXTENT SYSSLB,DS2PR2
// ASSGN SYSRLB,SYS020
// DLBL IJSYSRL,'DOS.DLZ.LLC.OBJECT'
// EXTENT SYSRLB,DS2PR2
// DLBL IJSYSCL,'DOS.DLZ.LLC.CILIB'
// EXTENT SYSCLB,DS2PR2

ASSGN SYSCLB,SYS020
// EXEC PGM=ASSEMBLY

DLZINNICT
END

VA
// EXEC PGM=LNKEDT
// EXEC PGM=DSERV

DSPLYS ALL
/%
/&

ASSGN SYSCLB,UA

Figure 17. Sample Job Input Stream for DLZNNICT

For a successful link-editing run, the DL/I module DLZLI000 and the
device-independent 1/0 module UJFCBZD must be present in the relocatable library.

Generation of the DL/I Control Blocks

The Data Base Descriptions (DBDs), the Program Specification Blocks (PSBs), and
the Application Control Blocks (ACBs) are generated in exactly the same way as
for any other application program running under DL/1. (Refer to DL/I DOS/VS
Resource Definition and Utilities.) For detailed information on the specification of
the various parameters, refer to the section “Definition of DBDs, PSBs, and
ACBs” on page 15.

Note that the names of the DBDs and PSBs must not exceed seven characters. For
the names selected, the rules for naming phases in the core image library apply.
Moreover, a DSERV listing of the core image library should be checked for
conflicting names.

Preparation of the VSAM Master Catalog

The VSAM master catalog contains all information to describe fully a data set that is
organized by vSAM. The Access Method Services are used to create and to
maintain the VSAM master catalog (refer to the publication Using VSE/VSAM
Commands and Macros, SC24-5144).

Both the parts data base and the control data base are DL/I data bases organized in
HIDAM format. This implies two virtual storage access method (VSAM) clusters for
each data base.

A key-sequenced file (KSDS) cluster represents the index portion, and an
entry-sequenced file (ESDS) cluster represents the data portion of a HIDAM data
base. A KSDS cluster consists internally of two separate data sets.

To prepare the VSAM master catalog, the options DELETE, DEFINE, and LISTCAT of
the Access Method Services are used. It is recommended that a DELETE run be
executed before any DEFINE run. This automatically deletes all information about
obsolete VSAM data sets and facilitates recovery if a data set has become
inoperable, for example, during testing. Figure 18 on page 34 shows a sample job

Chapter 5. Operational Procedures 33

input stream to define the entries in the VSAM master catalog describing the control
data base. Notice that the VSAM control interval size has been set to the maximum,
4096 or 4K bytes. This is necessary to assure optimum performance for LLC/CC.

A VERIFY run may be required if a VSAM data set was not correctly closed. The
VERIFY option resets certain indicators in the VSAM master catalog, according to
the actual status of the data sets.

To avoid mismatches of entries in the DL/I control blocks and in the VSAM master
catalog, the DBD generation of DL/I produces a checklist. This facilitates definition
of parameters for the DEFINE option of the Access Method Services.

// JOB WRNALLOC (0795,4),T=06
// ASSGN SYS020,DISK,VOL=DS2PR2,SHR

// DLBL KSDINDX,,0,VSAM KSDS-INDEX

// EXTENT SYS020,DS2PR2,1,0,640,20

// DLBL KSDDATA,,0,VSAM KSDS-DATA (ROOTKEYS)
// EXTENT SYS020,DS2PR2,1,0,660,20

// DLBL ESDS,,0,VSAM SEGMENT-AREA

// EXTENT SYS020,DS2PR2,1,0,680,20
// EXEC IDCAMS,SIZE=100K
DELETE DOS.DLZLLCTI.CL /%DEL DB~INDEX FROM MSTR.CTLG*/
FILE(KSDINDX)
NOERASE;
DELETE DOS.DLZLLCTP.CL /% DEL DB-CONTENTS FROM MSTR.CTLG*/
FILE(ESDS)
NOERASE;
DEFINE CLUSTER (NAME(DOS.DLZLLCTI.CL)
/% KSDS OF CTL - DATABASE (=INDEX-DB) */
INDEXED
UNIQUE)
DATA (NAME(DOS.DLZLLCTI.INDX.DATA)
/* DATA PORTION OF KSDS */
FILE(KSDDATA)
VOL(DS2PR2)
TRACKS(5)
RECORDSIZE(12,20) /*ROOTKEY,PREFIX(6),DL1-INT(5) PLUS 1%/
KEYS(1,10)
RECOVERY
NOWRITECHECK)
INDEX(NAME(DOS.DLZLLCTI.INDX.INDX)
/% INDEX PORTION OF KSDS */
FILE(KSDINDX)
TRACKS(5)
VOL(DS2PR2))
CATALOG(AMASTCAT);
DEFINE CLUSTER(NAME(DOS.DLZLLCTP.CL)
/% ESDS (CLUSTER) OF CTL-DATABASE (NAME=DLZLLCTP)x*/
NOINDEXED
UNIQUE)
DATA(NAME (DOS.DLZLLCTP.DATA) /* ESDS (DATA) OF CTL-DB*/
FILE(ESDS)
VOL(DS2PR2)
TRACKS(10)
I RECORDSIZE(4086,4086) /* 4096 MINUS 10(VSAM CI)*/
CONTROLINTERVALSIZE(4096)
RECOVERY
NOWRITECHECK)
CATALOG(AMASTCAT) ;
LISTCAT ALL;
/%
/8

Figure 18. Sample Job Input Stream for Definition of the Control Data Base to VSAM

Initialization of the Control Data Base

The control data base is initialized by inserting a single root segment in load mode.
Its key is the character A. This root segment remains permanently in the control

data base. Therefore, temporary insertions of control and backup information into
the control data base during execution of LLC/CC are performed in updating mode.

34 Low-Level Code/Continuity Check in DL/I

The initialization is a prerequisite for the execution of LLC/CC. It requires a
particular PSB with PROCOPT=LS (refer to “‘Definition of DBDs, PSBs, and ACBs”
on page 15 for further information). If, for any reason, the control data base
becomes inoperable, the entries in the VSAM master catalog for the two clusters
defining the index portion and the data portion of the control data base must be
deleted and redefined (refer to ‘“Preparation of the VSAM Master Catalog” on
page 33 for further information). After reestablishing the entries in the master
catalog, the control data base may be reinitialized. This procedure also applies if
the initialization fails.

The initialization program is stored in the core image library under the phase name
DLZNNICT. The user generates it by means of the macro instruction DLZNNICT.
After generation, a list output is printed, reporting either successful execution or
failure. If initialization fails, the status code returned by DL/1 is displayed.
Additional information may be produced by DL/I on the system console.

Figure 19 shows a sample job input stream which corresponds to the sample
generation and to the definitions for DBDs and the PSB given in Figure 10 on page
17 and Figure 11 on page 17. Since initialization does not change any data, no
logging is required. It is important to allocate as many DL/I buffers as possible to
the control data base. This is done by specifying only the DBD name of the control
data base in the HDBFR parameter of the DL/I control statement.

// JOB GOECTLLD (0795,4),T=8
// UPSI 00000010
// ASSGN SYS020,DISK,VOL=DS2PR2,SHR
// ASSGN SYSSLB,SYS020
// DLBL IJSYSSL,'DOS.DLZ.LLC.MACRO'
// EXTENT SYSSLB,DS2PR2
// ASSGN SYSRLB,SYS020
// DLBL IJSYSRL,'DOS.DLZ.LLC.OBJECT'
// EXTENT SYSRLB,DS2PR2
// DLBL IJSYSCL,'DOS.DLZ.LLC.CILIB'
// EXTENT SYSCLB,DS2PR2

ASSGN SYSCLB,SYS020
// DLBL IJSYSCT,'AMASTCAT!
// EXTENT SYSCAT,DS2PRO
// ASSGN SYS021,SYS020
// DLBL DLZLDS2,'DOS.DLZLLCTI.CL',,VSAM
// EXTENT SYS021,DS2PR2
// ASSGN SYS022,S5YS020
// DLBL DLZLDSC,'DOS.DLZLLCTP.CL',,VSAM
// EXTENT SYS022,DS2PR2
// EXEC PGM=DLZRRCOO,SIZE=280K

I DLI,DLZNNICT,DLZNNP2,2,HDBFR=(32,DLZNNCT)

/%
/8

ASSGN SYSCLB,UA

Figure 19. Sample Job Input Stream for Initialization of the Control Data Base

Link-Editing of Application Programs

LLC/CC in DL/1 is a called subroutine for user-written application programs. The
user must link-edit an application program to LLC/CC. The default name entry in
the directory of the relocatable library is DLZNN. Since the various entry point
names of LLC/CC do not appear explicitly in the directory, the user must provide an
INCLUDE statement preceding the EXEC statement:

INCLUDE DLZNN
user-defined name
// EXEC PGM=LNKEDT

Chapter 5. Operational Procedures 35

If the user has selected a module name other than DLZNN during customization of
the LLC/CC in DL/I execution program, the operand in the INCLUDE statement must
be replaced by the user-defined name. (Refer to the description of the parameter
MODNAM in “Generation of the Execution Program (Macro DLZNN)” on page
28.)

The output of the linkage editor should be checked carefully to determine whether
the correct entry points have been selected by the application program.

For successful link-editing, the DL/1 module DLZLI1000 must be present in the
relocatable library.

For application programs written in high-level languages, certain additional
modules must be INCLUDEd. Refer to DL/I DOS/VS Application Programming:
CALL and RQDLI Interfaces, under “DL/I Application Programming.”

Execution of LLC/CC in DL/I

Application programs using the services of LLC/CC are executed as normal
application programs running under DL/1. They are stored fully link-edited in the
core image library. Execution is initialized via the DL/1 phase DLZRRC00. A
parameter statement indicates that normal DL/I support is requested, and identifies
the names of the application program and of the related PSB, both of which are
stored in the core image library.

Care must be taken to select the correct PSB. It is particularly recommended to
define PROCOPT=E or PROCOPT=A for the parts data base. This ensures integrity of
the parts data base during all low-level code operations, thus preventing the data
base from being tampered with.

Figure 20 on page 37 shows a sample job input stream for the execution of an
application program calling LLC/CC. Normally, the control statements do not differ
for initial generation or updating of low-level codes. XXX is the phase name of the
application program, YYY is the name of the PSB. The DBD name of the control
data base (DLZNNCT) should be specified in the HDBFR parameter during execution
in the same manner as it was during initialization. In all cases of abnormal
conditions, the output of the system console should be checked for additional
information produced by DL/1.

36 Low-Level Code/Continuity Check in DL/I

// JOB GOEEXEC (0795,4),T=25
// UPSI O
// ASSGN SYS020,DISK,VOL=DS2PR2,SHR
// ASSGN SYSSLB,SYS020
// DLBL IJSYSSL,'DOS.DLZ.LLC.MACRO'
// EXTENT SYSSLB,DS2PR2
// ASSGN SYSRLB,SYS020
// DLBL IJSYSRL,'DOS.DLZ.LLC.OBJECT'
// EXTENT SYSRLB,DS2PR2
// DLBL IJSYSCL,'DOS.DLZ.LLC.CILIB'
// EXTENT SYSCLB,DS2PR2
ASSGN SYSCLB,SYS020
// DLBL IJSYSCT,'AMASTCAT'
// EXTENT SYSCAT,DS2PRO
// ASSGN SYS021,SYS020
// DLBL DLZLDS2,'DOS.DLZLLCTI.CL',,VSAM INDEX FOR CONTROL DB
// EXTENT SYS021,DS2PR2
// ASSGN SYS022,SYS020
// DLBL DLZLDSC,'DOS.DLZLLCTP.CL',,VSAM DATA FOR CONTROL DB
// EXTENT SYS022,DS2PR2
// ASSGN SYS015,SYS020
// DLBL DLZLDSI,'DOS.DLZLLPNI.CL',,VSAM INDEX FOR PARTS DB
// EXTENT SYS015,DS2PR2
// ASSGN SYS016,SYS020
// DLBL DLZLDSP,'DOS.DLZLLPNP.CL',,VSAM DATA FOR PARTS DB
// EXTENT SYS016,DS2PR2
// ASSGN SYS01l1l,X'380"
// TLBL LOGOUT,'DOS.DLZ.LLC.BACKUP!' BACKUP TAPE
// EXEC PGM=DLZRRC00,SIZE=280K
DLIyXXXyYYYs2yHDBFR=(32,DLZNNCT)
.
.
.
/%
/&
ASSGN SYSCLB,UA

Figure 20. Sample Job Input Stream for Execution of LLC/CC Operations

Chapter 5. Operational Procedures 37

Chapter 6. Error Messages and Return Codes

This section describes the error messages and return codes which may be
encountered during the generation and execution of LLC/CC facilities. In many
cases, additional information is produced on the system console by DL/I DOS/VS, by
VSAM, and by the system (refer to DL/I DOS/VS Messages and Codes,
VSE/VSAM Messages and Codes, SC24-5146, and VSE/Advanced Functions
Messages, SC33-6098).

Error Messages

38

LLC/CC produces error messages during the generation of the execution program
from the macro instruction DLZNN, and during the initialization of the control data
base. Error messages are displayed on the printer.

Generation of the execution program (macro instruction DLZNN):

LLCO0011

LLC0021I

LLC0031

LLC004I

LLC0051

Low-Level Code/Continuity Check in DL/I

PARAMETER parm MISSING, GENERATION ABORTED
Cause: A mandatory parameter parm was omitted.

Action: Complete macro parameter definition.
Resubmit.

PARAMETER KEYDIS ILLEGAL, GENERATION ABORTED

Cause: The displacement for the key points beyond the end of the
root segment.

Action: Check parameters KEYDIS and ROOTLEN. Correct the
erroneous parameter.

PARAMETER KEYDIS AND/OR KEYLEN ILLEGAL,
GENERATION ABORTED

Cause: The key overlaps the end of the root segment.

Action: Check parameters KEYDIS, KEYLEN, and ROOTLEN. Correct
the erroneous parameter(s).

PARAMETER LLCDIS ILLEGAL, GENERATION ABORTED

Cause: Displacement and length of the low-level code field do not fit
into the root segment.

Action: Check parameters LLCDIS and ROOTLEN. Correct the
erroneous parameter.

PARAMETER COMPLEN ILLEGAL, GENERATION ABORTED

Cause: The specified length of the pointer segment is less than the
length of the key in the parameter KEYLEN.

Action Check parameters COMPLEN and KEYLEN. Correct the
erroneous parameter.

Return Codes

Initialization of the control data base:

LLC100I CONTROL DATA BASE HAS BEEN INITIALIZED
Cause: Successful completion.
Action: Continue.

LLC101I CONTROL DATA BASE INITIALIZATION FAILED DL/I STATUS
CODE = xx

Cause: This message is issued if DL/I returns a non-blank status code
when the program attempts to load a root segment. This message may
occur under many conditions, for instance:

o Conflicting definitions in DBD and VSAM master catalog,

« PSB does not indicate PROCOPT=LS.

« VSAM master catalog was not reset after an unsuccessful attempt
to initialize the control data base.

Action The DL/I status code which is returned after loading has been
attempted is represented by xx.

1. Check the DL/1 status code.

2. Check the console output for additional information produced by
DL/1. DL/I messages begin with the characters DLZ.

3. Correct errors.

4. Reset entries in the VSAM master catalog by using the DELETE and
DEFINE options of the Access Method Services.

5. Resubmit.

After completion of operation, LLC/CC posts a return code into the 2-byte field
identified by parameter parm5 of the calling application program. Refer to
Chapter 4, “Invocation of LLC/CC in DL/I” on page 18 for further information
on the specification of parameters. The return code consists of two alphameric
characters which indicate one of the following three conditions:

o Successful completion - b (two blank characters).

« Rejection of the request - return codes CC, CP, EC, EP, FC, FP, IP, NC, NP.
The request by the application program was not satisfied because of
conflicting structures of the parts data base. Data in the parts data base is
not changed or it is restored to its previous state. The user should correct

the contents of the data base and/or the input data of the application
program.

Chapter 6. Error Messages and Return Codes 39

o Data Base Error - return codes DC, DP, EC, EP, FC, FP.

LLC/CC did not satisfy the request because an unexpected DL/1 status code
was encountered during execution. The leftmost 240 bytes of the related
PCB are saved in a save area. The address of the save area is stored in a
fullword which may be addressed by a pointer which is stored at
DLZNNEC+12. DLZNNEC is the name of an entry point in LLC/CC. The
fullword starting at DLZNNEC+8 points to the last parameter list submitted
to DL/1. The actual status of the parts data base is not predictable.
However, if the DL/I status signals an open error, the data bases are not
likely to be affected.

Return codes starting with the letters E and F indicate both an invalid request
and a data base error.

CC

CP

DC

DP

40 Low-Level Code/Continuity Check in DL/I

A part other than the part identified by parameter parm3 (that is, a
component part of any level) is contained in itself either directly or
indirectly. The key of the looping part is posted into the field identified
by parameter parm6.

Action: The application program may continue. Correct input and/or
parts data base; resubmit.

The part identified by parameter parm3 (that is, the parent part) is
contained in itself either directly or indirectly. The key is posted into the
field identified by parameter parmé.

Action: The application program may continue. Correct input and/or
parts data base; resubmit.

Unexpected DL/I status code encountered when accessing the control
data base.

Action: Display all available information, discontinue processing of the
application program. Display contents of the parameter fields parm1
through parmé6. Test whether input has already been processed. Obtain
the output of the system console, check messages originating from DL/1
and/or from VSAM. Reset the VSAM master catalog by means of a
VERIFY run.

If the control data base is damaged, reinitialize. (Refer to “Initialization
of the Control Data Base” on page 34 for further information.)

Unexpected DL/I status code encountered when accessing the parts data
base.

Action: Display all available information, discontinue processing of the
application program. Display contents of the parameter fields parm1
through parmé6. Test whether input has already been processed. Obtain
the output of the system console, check messages originating from DL/1
and/or from VSAM. Reset the VSAM master catalog by a VERIFY run.

EC

EP

FC

IP

NC

bbd

If the parts data base is damaged, use the standard DL/I reconstruction
procedures. Resubmit application program only after the error has been
fixed.

Both error conditions CC and DP have occurred.

Action: See code DP. Thereafter, correct input and/or parts data base;
resubmit.

Both error conditions CP and DP have occurred.

Action: See code DP. Thereafter, correct input and/or parts data base;
resubmit.

Both error conditions CC and DC have occurred.

Action: See code DC. Thereafter, correct input and/or parts data base;
resubmit.

Both error conditions CP and DC have occurred.

Action: See code DC. Thereafter, correct input and/or parts data base;
resubmit.

Erroneous input parameters, for instance:

« Same part specified by parm3 and parm4 of the input parameter list
(in updating mode only).

o A parameter received from th= application program js not likely to
be a valid address.

Action: The application program may continue. Correct input; resubmit.

The component part identified by parameter parm4 cannot be found (in
updating mode only).

Action: The application program may continue. Correct input and/or
parts data base; resubmit.

The parent part identified by parameter parm3 cannot be found.

Action: The application program may continue. Correct input and/or
parts data base; resubmit.

Successful completion, all affected low-level codes are properly assigned.
Action: Insert the new product-structure relationship between the parts

identified by the parameters parm3 and parm4 (in updating mode only).
Continue processing.

Chapter 6. Error Messages and Return Codes 41

Chapter 7. Installation Requirements

To use LLC/CC in DL/I, a user must perform the following activities:

¢ Tailor LLC/CC, using the macro facilities of the Assembler language and
the appropriate library of object modules.

¢ Write and test appropriate application programs.

o Generate an appropriate parts data base. The low-level code field of 2
bytes is assumed to be located in the root segment. Establish logical
relationship with the root segments of the component parts, using a pointer
segment (admitted at any hierarchical level). The pointer segments should
not contain data.

e Generate a control data base, using the utility program DLZNNICT. Users of
the 1BM System/370 Chained File - DL/1 Bridge, Program Product
5748-XX3, may use the control data base which has been generated by
this program.

If initial generation of low-level codes is planned to be executed by LLC/CC, all
low-level code fields must contain packed zeros. In this case, updating must not
be performed until the total data base has been completely processed by initial

generation.

If only updating of low-level codes is planned, all parts must contain the correct
low-level code reflecting the actual position of each part within the product
structure. The low-level code is a 2-byte packed decimal number.

Both data bases must be generated by DL/I DOS/VS, Version 1.1 or later.

42 Low-Level Code/Continuity Check in DL/1

Chapter 8. Performance Considerations

It is not possible to give quantitative performance estimates. Performance
figures vary within a wide range. However, certain particular aspects should be
taken into account:

« Complexity of product structures involved. The number of components to
be updated influence execution time to a great extent. Also, the number of
short paths on a product structure tree has an impact on program
performance; the more short paths there are, the faster the execution.

« The size of the data base and its structure, in conjunction with the buffer
size in main storage, influences number and duration of physical input and
output operations on direct access storage devices.

« A well-defined numbering scheme for part keys allows closely related parts
to be stored in the same area. Furthermore, performance is likely to
improve if end items are processed first and parts on low levels last when
performing the initial generation of low-level codes or when adding stacks
of new product structures. This implies that identifiers for end items
should have a low position in the sorting sequence, while raw materials and
purchased parts should have a high position.

Proper continuity checking requires extensive input/output activities.

Therefore, a user should not attempt to process large amounts of input data in a
single step.

Chapter 8. Performance Considerations 43

44

Chapter 9. Control, Audit, and Reconstruction Procedures

All reliability, availability, and serviceability (RAS) facilities of DL/1 apply
without restrictions to user-written application programs utilizing LLC/CC.

LLC/CC maintains a separate control data base which contains an entry for all
parts whose low-level code has been altered. If a loop is detected during
continuity checking, the control data base is used to restore the previous state
of the low-level codes. The PSB of the control data base is defined for exclusive
control so that single-thread processing is ensured.

Initial generation of low-level codes is likely to become a time-consuming
function. Therefore, this function may be divided into several small jobs, thus
reducing the impact of a system breakdown.

If a system breakdown occurs during the execution of an application program
using LLC/CC, the log tape should be used to reestablish the original state of the
parts data base. However, the parts data base is not affected by reprocessing
of requests for low-level code operations which have already been completed
successfully. The control data base needs only to be regenerated.

Refer to “Error Recovery” on page 25 for further information about the actual
recovery from abnormal conditions.

Low-Level Code/Continuity Check in DL/1

Chapter 10. System Configuration

LLC/CC operates within a minimum configuration as defined for DL/1 DOS/VS,
Version 1.1 or later. A virtual address space of approximately 4K bytes is
required to execute LLC/CC in DL/I.

The control data base requires space on direct access storage devices. The
amount of space to be allocated depends on the length of the part number and
on the maximum number of subordinate parts which may be encountered when
exploding an end item into its components.

Chapter 10. System Configuration 45

Chapter 11. Programming Systems

LLC/CC is written in the Assembler language. It is distributed as a part of DL/I.
The object code is generated after the definition of macro parameters and after
assembly.

The object code of LLC/CC may be used as a subroutine of application
programs written in Assembler language, in COBOL, or in PL/I. If the user plans
to write application programs in high-level languages, he requires one or more
of the following programs:

46 Low-Level Code/Continuity Check in DL/I

DOS/VS COBOL Compiler and Library, 5746-CB1 or Library only,
5746-LM4

Full ANS coBOL V3 Compiler, 5736-CB2, and Full ANS COBOL Library,
5736-LM2

ANS Subset COBOL, 5736-CB1

ANS COBOL, 360N-CB-482 or 370-CB-482

PL/I Optimizing Compiler and Libraries, 5736-PL3
PL/I Optimizing Compiler, 5736-PL1

PL/I Resident Library, 5736-LM4

PL/I Transient Library, 5736-LM5

Chapter 12. Bibliography

IBM Corporation. System/360 Data Base Organization and Maintenance
Processor General Information Manual. GH20-0771.

IBM Corporation. System/370 Chained File - DL/I Bridge: General
Information Manual. GH12-5116.

IBM Corporation. Manufacturing Data Base Guide: Bill Processor Systems to
DL/I. GH20-1593.

IBM Corporation. DL/I Data Base Techniques for Manufacturing Applications.
GE20-0480.

Chapter 12. Bibliography 47

Index

[2 |

advantages of LLC/CC in DL/I 10
application program (see user-written
application program)
application programs, Assembler language
examples of call
initial generation 20
updating 20
parameter list
description of parameters 20-21
initial generation 20
updating 21
requirements 20
sample program 21-22
application programs, high-level languages
COBOL
examples of call, initial generation
22
examples of call, updating 22
sample program 24
parameter list
description of parameters 23
PL/1
examples of call, initial generation
23
examples of call, updating 23
sample program 25
Assembler language (see application programs,
Assembler language)
audit procedures 44

bill of material 6
relationship 12
bill processor systems 10
BLOCK keyword, VSAM 16
bridge (see Chained File - DL/I Bridge)

call statements 19-25

warning on use of 20
chained file (see Chained File - DL/I Bridge)
Chained File - DL/I Bridge

compatibility lost if data stored in

pointer segment 13

compatibility with LLC/CC in DL/I 10
checking discontinued, reasons for 4
COBOL (see application programs, high-level
languages)
code assignment

consecutive during adding to data base 6

once after loading data base 6
component item (see component parts)
component parts 3
configuration, system 45
continuity checking

during initial generation 4

reasons for 1, 4

uses of 4

48 Low-Level Code/Continuity Check in DL/I

violations detected by 4
control data base initialization

requirements 34

sample 35
control interval, VSAM 16
control procedures 44

[o]

data base description 12
(see also control data base
initialization)
control data base 12, 14
HDAM used for 15
HIDAM used for 15
restriction on change of segment layout or
names 15
segment types
LLCTL 9, 14
LLCTL, layout 14
PARTBEXP 8, 14
PARTBEXP, layout 14
UPDMASTER 9, 14
UPDMASTER, layout 15
structure 14
use 14
data base organizing and maintenance
processor 10
DATASET statement, VSAM 16
DBOMP (see data base organizing and
maintenance processor)
DEFINE run after DELETE run (VSAM) 33
definition of DBDs, PSBs, and ACBs 15
rules for names of 15
sample DBDs for control data base
15-17
sample DBD:s for parts data base 15-16
sample PSBs for
control data base 15, 17
executing Assembler application program
15,17
SEGM statement
BYTES parameter of 16
RULES parameter of 16
DELETE run before DEFINE run (VSAM) 33
deletions, updating of
not supported 4
directed graphs 1, 5
distribution of LLC/CC in DL/I 28
DL /1 bridge (see Chained File - DL /I Bridge)

[e]

end item
code of zero 3
defined 3
error messages 38-39
error recovery 25-27
causes of error 25
in initial generation mode 26
in update mode 26

return codes 26
system errors 26
examples of
call
Assembler language 20
COBOL 22
PL/I 23
exploding techniques 9
execution of LLC/CC in DL/I 36
initialized via DLZRRCO00 36
parameter statement 36
PROCOPT 36
sample 37
exploding technique 7-9
example 9
explosion 5, 7-9
sequence 8

generation of
DL/I control blocks 33
length of names 33
execution program (macro DLZNN) 28
format 28-32
sample 32
initialization program for control data
base (macro DLZNNICT) 32
modules required for link-edit 33
sample 32-33
gozinto graph
application 12
concept 6
definition 5

[u]

HDAM
used for control data base 15
used for parts data base 13
HDBFR parameter 36
HIDAM
used for control data base 15
used for parts data base 13
with VSAM 33
hierarchical path
defined 7
following discontinued 8
processing terminated 8
high-level languages (see application
programs, high-level languages)

[]

IBM System/360 Data Base Organizing and
Maintenance Processor 10
IBM System/370 Chained File - DL/I Bridge
(see Chained File - DL/I Bridge)
initial generation mode

description 3

details 18

prerequisites 18
processing 6

use 7
initialization of control data base 34
installation requirements 42

DL/I bridge 42

initial generation 42

updating 42
invocation of LLC/CC in DL/I 18

limitation
insertion of segments not performed 6
updating of deletions not supported 4
link-editing of application programs 35
loop
description 3
detected 8
low-level coding
numeric values in reverse order 1
usage 1,3
problems outside manufacturing 1
production planning 3

[m]

macro
DLZNN 28,35
format 28-32
sample 32
DLZNNICT 28, 35
sample 33
master catalog, VSAM 33
messages 38-39
method of distribution, LLC/CC in DL/I 28

[v]

networks 1,5
nodes 5

[o]

operational procedures 28

[r]

parent items 3
parts data base
bidirectional pointers 12
bill of material relationships 12
description 12
HIDAM used for 13
intersection data stored 12, 13
restrictions 13
logical relationships 12
rules for establishing 13
physical vs logical 13
segment names 13
structure not fixed 13
use 12

Index

49

where-used relationship 12
performance considerations 43
PL/1 (see application programs, high-level
languages)
procedures
audit 44
control 44
operational 28
reconstruction 44
processing description 7
control data base 7, 8
segment, LLCTL 9, 14
segment, PARTEXP 8§, 14
segment, UPDMASTER 9, 14
exploding technique 7-9
example 9
hierarchical path 7
defined 7
following discontinued 8
processing terminated 8
initial generation mode 7
abnormal conditions 7
control data base 7
no processing required, reason 7
updating mode 7
component key 7
parent key 7
product structure tree 3, 8
programming systems 46

[x]

reconstruction procedures 44
requirements
for installation of
DL/1 bridge 42
initial generation 42
updating 42
of application programs, Assembler
language 20
of control data base initialization 34
of modules for link-editing initialization
program for control data base 33
of user-written application program 18-21
restrictions on
change of segment layout or names in
control data base 15
storing of intersection data in parts data
base 13
return codes 39-41
application program test for 19
use of 7
rules
assignment of code values 4
for establishing logical relationships in
parts data base 13
for names of DBDs, PSBs, and ACBs 15
parameter of SEGM statement 15

50 Low-Level Code/Continuity Check in DL/I

[s]

sample
application programs
Assembler language 21-22
COBOL 24
control data base initialization 35
DBDs
for control data base 15,17
for parts data base 15-16
definition of control data base to VSAM
34
execution of LLC/CC in DL/I 36, 37
initialization program for control data
base (macro DLZNNICT) 33
macro DLZNN 32
macro DLZNNICT 33
PSBs
for control data base 15, 17
for executing Assembler application
programs 15,17
system configuration 45
systems, programming 46

tree structure (see product tree structure)

update mode
description 3
details 18, 19
prerequisites 19
if initial generation not done properly §
processing 6
use 7
user-written application program
description of 1
functions of 6
link-editing of 35
INCLUDE statement 35
module DLZDLIO0O0 required 36
requirements in relations to LLC/CC 18-21

VSAM

control interval 16
BLOCK keyword 16
DATASET statement 16

DELETE run before DEFINE run 33

HIDAM data bases 33

preparation of master catalog 33

sample job input stream 34

VERIFY run if data sets incorrectly closed
34

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

LLC/CC in DL/I DOS/VS READER’S
Program Reference and Operations Manual COMMENT
Order No. SH20-9046-3 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
¢ Does the publication meet your needs? O O
« Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O d
Complete? O O
Well illustrated? O O
Written for your technical level? O O
+ What is your occupation?
+ How do you use this publication:
As an introduction to the subject? O As an instructor in class? O
For advanced knowledge of the subject? O As a student in class? O
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SH20-9046-3

Reader’s Comment Form

UM BUOY PIOH IO IND) = = = = = =

‘W 'O 'd4 'd SA/S0Q 1/17a v 32/211

|
]
]
}
]
]
[}
Fold and Tape Please Do Not Staple Fold and Tape |
... \
|
NO POSTAGE :
NECESSARY
IF MAILED !
IN THE)
UNITED STATES | |
|
.]
e —
BUSINESS REPLY MAIL E—
I |
]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. :
]
I
POSTAGE WILL BE PAID BY ADDRESSEE: OIS
I |
]
pre—
IBM Corporation T
R
Dept 812BP :
]
1133 Westchester Avenue P —
White Plains, NY 10604, USA L
)
|
|
--- |
Fold Fold

If you would like a reply, please print:

Your Name

Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

(0S-00€Y/0LES "ON 8iid)

€-9¥06-0CHS

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

LLC/CC in DL/I DOS/VS READER’'S
Program Reference and Operations Manual COMMENT
Order No. SH20-9046-3 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
« Does the publication meet your needs? O O
* Did you find the material:
Easy to read and understand? (| a
Organized for convenient use? (] a
Complete? a (]
Well illustrated? a (]
Written for your technical level? (] O
« What is your occupation?
+ How do you use this publication:
As an introduction to the subject? O As an instructor in class? O
For advanced knowledge of the subject? d As a student in class? O
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this Sform.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SH20-9046-3

Reader’s Comment Form

UM BUOY PIOH IO IND) = = = = = =

‘W 'O 'd4 'd SA/S0Q 1/17a v 32/211

|
]
]
}
]
]
[}
Fold and Tape Please Do Not Staple Fold and Tape |
... \
|
NO POSTAGE :
NECESSARY
IF MAILED !
IN THE)
UNITED STATES | |
|
.]
e —
BUSINESS REPLY MAIL E—
I |
]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. :
]
I
POSTAGE WILL BE PAID BY ADDRESSEE: OIS
I |
]
pre—
IBM Corporation T
R
Dept 812BP :
]
1133 Westchester Avenue P —
White Plains, NY 10604, USA L
)
|
|
--- |
Fold Fold

If you would like a reply, please print:

Your Name

Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

(0S-00€Y/0LES "ON 8iid)

€-9¥06-0CHS

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

LLC/CC in DL/I DOS/VS READER'S
Program Reference and Operations Manual COMMENT
Order No. SH20-9046-3 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
« Does the publication meet your needs? O O
« Did you find the material:
Easy to read and understand? O O
Organized for convenient use? a 4
Complete? 0O O
Well illustrated? 4 O
Written for your technical level? a O
« What is your occupation?
+ How do you use this publication:
As an introduction to the subject? O As an instructor in class? 4
For advanced knowledge of the subject? (| As a student in class? a
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SH20-9046-3

Reader’s Comment Form

UM BUOY PIOH IO IND) = = = = = =

‘W 'O 'd4 'd SA/S0Q 1/17a v 32/211

|
]
]
}
]
]
[}
Fold and Tape Please Do Not Staple Fold and Tape |
... \
|
NO POSTAGE :
NECESSARY
IF MAILED !
IN THE)
UNITED STATES | |
|
.]
e —
BUSINESS REPLY MAIL E—
I |
]
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. :
]
I
POSTAGE WILL BE PAID BY ADDRESSEE: OIS
I |
]
pre—
IBM Corporation T
R
Dept 812BP :
]
1133 Westchester Avenue P —
White Plains, NY 10604, USA L
)
|
|
--- |
Fold Fold

If you would like a reply, please print:

Your Name

Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

(0S-00€Y/0LES "ON 8iid)

€-9¥06-0CHS

SH20-9046-3

LLC/CC in DL/I DOS/VS P. R. 0. M.

(File No. S370/4300-50)

SH20-9046-3

SH20-9046-03

	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif
	0037.tif
	0038.tif
	0039.tif
	0040.tif
	0041.tif
	0042.tif
	0043.tif
	0044.tif
	0045.tif
	0046.tif
	0047.tif
	0048.tif
	0049.tif
	0050.tif
	0051.tif
	0052.tif
	0053.tif
	0054.tif
	0055.tif
	0056.tif
	0057.tif
	0058.tif
	0059.tif
	0060.tif
	0061.tif
	0062.tif
	0063.tif
	0064.tif

